11 DIN1

10 DIN2

9 ROUT2

SLLS723-APRIL 2006

FEATURES

www.ti.com

- Meets or Exceeds TIA/RS-232-F and ITU Recommendation V.28
- Operates From a Single 5-V Power Supply With 1.0-μF Charge-Pump Capacitors
- Operates up to 120 kbit/s
- Two Drivers and Two Receivers
- ±30-V Input Levels
- Low Supply Current . . . 8 mA Typical
- ESD Protection for RS-232 Bus Pins
 - ±15-kV Human-Body Model (HBM)
 - ±8-kV IEC61000-4-2, Contact Discharge
 - ±15-kV IEC61000-4-2, Air-Gap Discharge

APPLICATIONS

- TIA/RS-232-F
- Battery-Powered Systems
- Terminals
- Modems
- Computers

V_{S−} **[**] 6

RIN2

7

DOUT2 [

DESCRIPTION/ORDERING INFORMATION

The MAX232E is a dual driver/receiver that includes a capacitive voltage generator to supply TIA/RS-232-F voltage levels from a single 5-V supply. Each receiver converts TIA/RS-232-F inputs to 5-V TTL/CMOS levels. This receiver has a typical threshold of 1.3 V, a typical hysteresis of 0.5 V, and can accept ±30-V inputs. Each driver converts TTL/CMOS input levels into TIA/RS-232-F levels. The driver, receiver, and voltage-generator functions are available as cells in the Texas Instruments LinASIC™ library.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinASIC is a trademark of Texas Instruments.

SLLS723-APRIL 2006

ORDERING INFORMATION

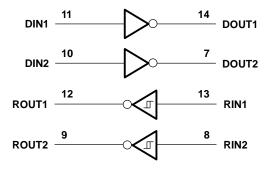
T _A	PACK	(AGE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – N	Tube of 25	MAX232ECN	MAX232ECN
	SOIC - D	Tube of 40	MAX232ECD	MAX232EC
	2010 – D	Reel of 2500	MAX232ECDR	WIAAZ3ZEC
0°C to 70°C	SOIC - DW	Tube of 40	MAX232ECDW	MAY222FC
0.0 10 70.0	301C - DW	Reel of 2000	MAX232ECDWR	MAX232EC
	SOP - NS	Reel of 2000	MAX232ECNSR	Preview
	TCCOD DW	Tube of 25	MAX232ECPW	MAYOOFC
	TSSOP – PW	Reel of 2000	MAX232ECPWR	MAX232EC
	PDIP – N	Tube of 25	MAX232EIN	MAX232EIN
	SOIC - D	Tube of 40	MAX232EID	MAYOOFI
	201C - D	Reel of 2500	MAX232EIDR	MAX232EI
-40°C to 85°C	SOIC - DW	Tube of 40	MAX232EIDW	MAX232EI
-40°C 10 85°C	301C - DW	Reel of 2000	MAX232EIDWR	IVIAAZ3ZEI
	SOP - NS	Reel of 2000	MAX232EINSR	Preview
	TCCOD DW	Tube of 25	MAX232EIPW	MDOOOLI
	TSSOP – PW	Reel of 2000	MAX232EIPWR	MB232EI

⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLES

Each Driver(1)

INPUT DIN	OUTPUT DOUT
L	Н
Н	L


(1) H = high level, L = low level

Each Receiver⁽¹⁾

INPUT RIN	OUTPUT ROUT
L	Н
Н	L

(1) H = high level, L = low level

LOGIC DIAGRAM (POSITIVE LOGIC)

SLLS723-APRIL 2006

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Input supply voltage range ⁽²⁾	-0.3	6	V	
V _{S+}	Positive output supply voltage range		V _{CC} - 0.3	15	V
V _{S-}	Negative output supply voltage range		-0.3	-15	V
V	Input valtage range	Driver	-0.3	V _{CC} + 0.3	V
VI	Input voltage range	Receiver		±30	V
Vo	Output valtage range	DOUT	$V_{S-} - 0.3$	$V_{S+} + 0.3$	V
	Output voltage range ROUT		-0.3	V _{CC} + 0.3	V
DOUT	Short-circuit duration	·		Unlimited	
		D package		73	
		DW package		57	
θ_{JA}	Package thermal impedance (3)(4)	N package		67	°C/W
		NS package		64	
	PW package			108	
TJ	Operating virtual junction temperature			150	°C
T _{stg}	Storage temperature range	-65	150	°C	

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions

			MIN	NOM	MAX	UNIT
V _{CC}	V _{CC} Supply voltage				5.5	V
V _{IH}	High-level input voltage (DIN1, DIN2)					V
V _{IL}	Low-level input voltage (DIN1, DIN2)				0.8	V
RIN1, RIN2	Receiver input voltage				±30	V
_	Operation from his temperature	MAX232EC	0		70	۰.
IA	Operating free-air temperature MAX232EI				85	°C

Electrical Characteristics(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 4)

	PARAMETER	TE	MIN	TYP ⁽²⁾	MAX	UNIT	
I_{CC}	Supply current	$V_{CC} = 5.5 \text{ V},$	All outputs open, T _A = 25°C		8	10	mA

⁽¹⁾ Test conditions are C1–C4 = 1 μ F at V_{CC} = 5 V \pm 0.5 V. (2) All typical values are at V_{CC} = 5 V and T_A = 25°C.

⁽²⁾ All voltages are with respect to network GND.

 ⁽³⁾ Maximum power dissipation is a function of T_J(max), θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_J(max) – T_A)/θ_{JA}. Operating at the absolute maximum T_J of 150°C can affect reliability.
 (4) The package thermal impedance is calculated in accordance with JESD 51-7.

DRIVER SECTION

Electrical Characteristics(1)

over recommended ranges of supply voltage and operating free-air temperature range

PARAMETER			TEST CON	MIN	TYP ⁽²⁾	MAX	UNIT	
V_{OH}	High-level output voltage	DOUT	$R_L = 3 \text{ k}\Omega \text{ to GND}$			7		V
V _{OL}	Low-level output voltage (3)	DOUT	$R_L = 3 \text{ k}\Omega \text{ to GND}$			-7	-5	V
r _o	Output resistance	DOUT	$V_{S+} = V_{S-} = 0,$	V _O = ±2 V	300			Ω
I _{OS} (4)	Short-circuit output current	DOUT	V _{CC} = 5.5 V,	V _O = 0		±10		mA
I _{IS}	Short-circuit input current	DIN	V _I = 0				200	μΑ

- (1) Test conditions are C1–C4 = 1 μF at V_{CC} = 5 V ± 0.5 V.
 (2) All typical values are at V_{CC} = 5 V and T_A = 25°C.
 (3) The algebraic convention, in which the least-positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only.
- (4) Not more than one output should be shorted at a time.

Switching Characteristics⁽¹⁾

 $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C} \text{ (see Note 4)}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SR	Driver slew rate	$R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega, \text{ See Figure 2}$			30	V/μs
SR(t)	Driver transition region slew rate	See Figure 3	3		V/μs	
	Data rate	One DOUT switching		120		kbit/s

⁽¹⁾ Test conditions are C1–C4 = 1 μ F at V_{CC} = 5 V \pm 0.5 V.

ESD protection

PARAMETER	TEST CONDITIONS	TYP	UNIT
	НВМ	±15	kV
DOUT, RIN	IEC61000-4-2, Air-Gap Discharge	±15	kV
	IEC61000-4-2, Contact Discharge	±8	kV

SLLS723-APRIL 2006

RECEIVER SECTION

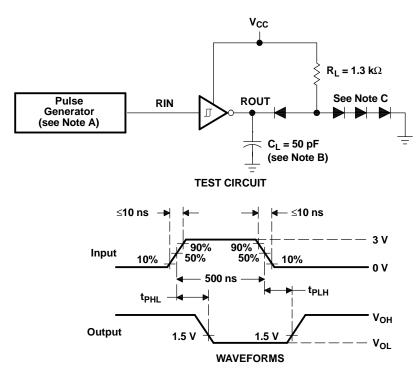
Electrical Characteristics(1)

over recommended ranges of supply voltage and operating free-air temperature range

	PARAMETER			TEST CONDITIONS			MAX	UNIT
V_{OH}	High-level output voltage	ROUT	$I_{OH} = -1 \text{ mA}$		3.5			V
V_{OL}	Low-level output voltage (3)	ROUT	$I_{OL} = 3.2 \text{ mA}$				0.4	V
V_{IT+}	Receiver positive-going input threshold voltage	RIN	$V_{CC} = 5 V$,	$T_A = 25^{\circ}C$		1.7	2.4	V
VI_{T-}	Receiver negative-going input threshold voltage	RIN	V _{CC} = 5 V,	T _A = 25°C	0.8	1.2		V
V _{hys}	Input hysteresis voltage	RIN	V _{CC} = 5 V		0.2	0.5	1	V
r _i	Receiver input resistance	RIN	V _{CC} = 5 V,	T _A = 25°C	3	5	7	kΩ

Switching Characteristics⁽¹⁾

 $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C} \text{ (see Figure 1)}$


	PARAMETER	TYP	UNIT
t _{PLH(R)}	Receiver propagation delay time, low- to high-level output	500	ns
t _{PHL(R)}	Receiver propagation delay time, high- to low-level output	500	ns

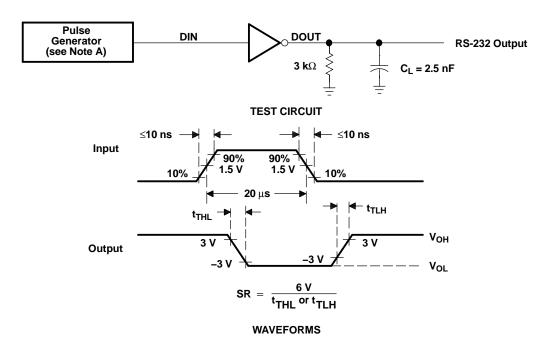
(1) Test conditions are C1–C4 = 1 μF at V_{CC} = 5 V \pm 0.5 V.

 ⁽¹⁾ Test conditions are C1–C4 = 1 μF at V_{CC} = 5 V ± 0.5 V.
 (2) All typical values are at V_{CC} = 5 V and T_A = 25°C.
 (3) The algebraic convention, in which the least-positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only.

PARAMETER MEASUREMENT INFORMATION

- A. The pulse generator has the following characteristics: Z_O = 50 Ω , duty cycle \leq 50%.
- B. C_L includes probe and jig capacitance.
- C. All diodes are 1N3064 or equivalent.

Figure 1. Receiver Test Circuit and Waveforms for t_{PHL} and t_{PLH} Measurements



PARAMETER MEASUREMENT INFORMATION (continued)

- A. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, duty cycle $\leq 50\%$.
- B. C_L includes probe and jig capacitance.

Figure 2. Driver Test Circuit and Waveforms for t_{PHL} and t_{PLH} Measurements (5-μs Input)

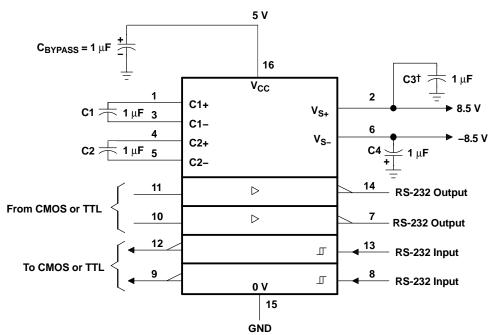

A. The pulse generator has the following characteristics: Z_O = 50 Ω , duty cycle \leq 50%.

Figure 3. Test Circuit and Waveforms for t_{THL} and t_{TLH} Measurements (20- μs Input)

APPLICATION INFORMATION

 † C3 can be connected to V_{CC} or GND.

- A. Resistor values shown are nominal.
- B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown. In addition to the 1-μF capacitors shown, the MAX232E can operate with 0.1-μF capacitors.

Figure 4. Typical Operating Circuit

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
MAX232ECD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232ECDG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232ECDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232ECDRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232ECDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232ECDWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232ECDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232ECDWRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232ECN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
MAX232ECNE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
MAX232ECPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232ECPWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232ECPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232ECPWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232EID	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232EIDG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232EIDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232EIDRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232EIDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232EIDWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232EIDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232EIDWRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232EIN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
MAX232EINE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
MAX232EIPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

PACKAGE OPTION ADDENDUM

6-Dec-2006

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
MAX232EIPWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232EIPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232EIPWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

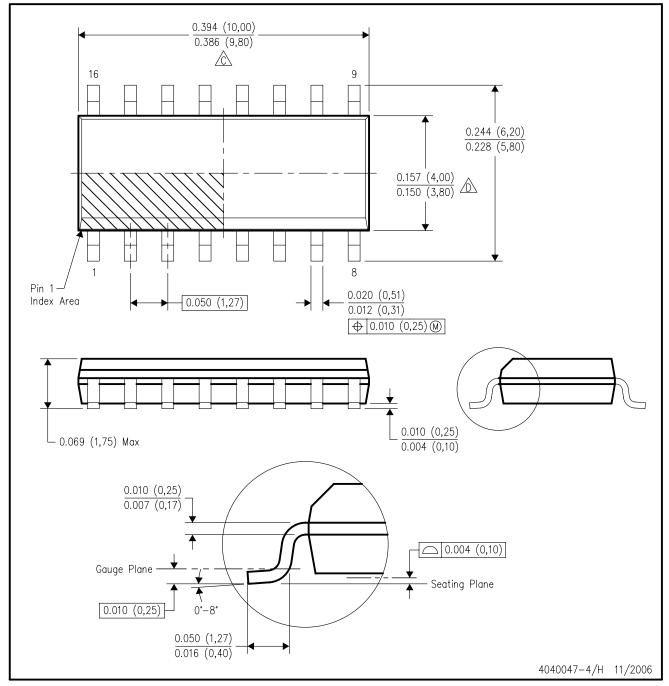
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

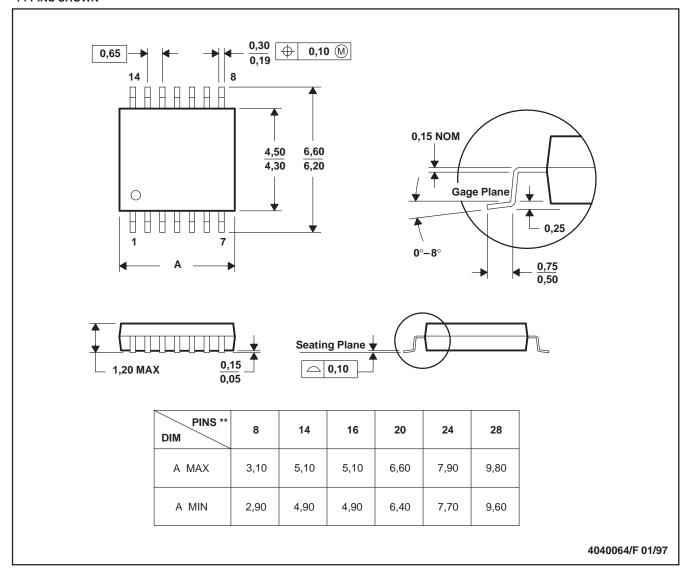
NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AC.

DW (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AA.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated