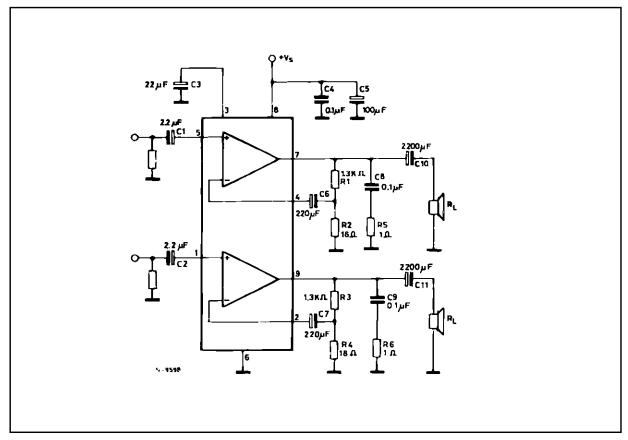
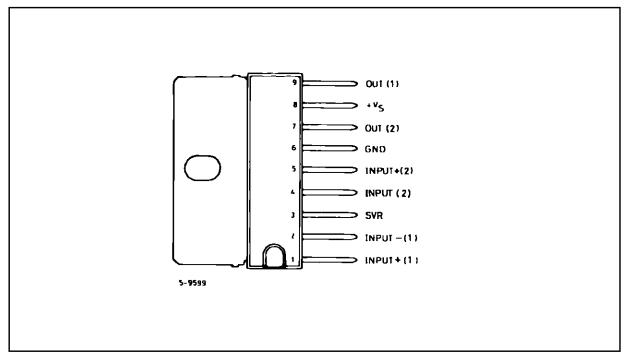
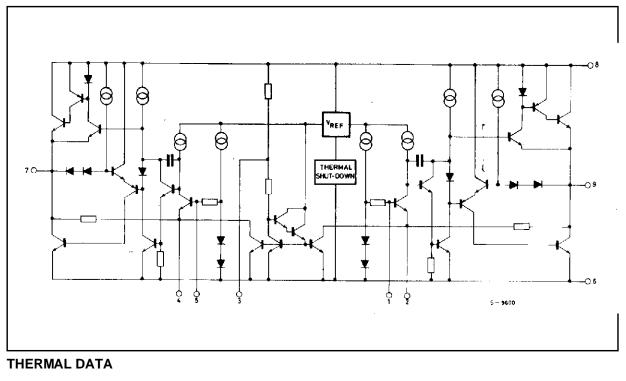


6 + 6W STEREO AMPLIFIER


- HIGH OUTPUT POWER
- HIGH CURRENT CAPABILITY
- AC SHORT CIRCUIT PROTECTION
- THERMAL OVERLOAD PROTECTION


DESCRIPTION

The TDA2007A is a class AB dual Audio power amplifier assembled in single in line 9 pins package, specially designed for stereo application in music centers TV receivers and portable radios.


STEREO TEST CIRCUIT

PIN CONNECTION (top view)

SCHEMATIC DIAGRAM

Symbol Parameter Value Unit

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	28	V
lo	Output Peak Current (repetitive f ≥ 20Hz)	3	А
Ιo	Output Peak Current (non repetitive t = 100μs)	3.5	А
Ptot	Power Dissipation at T _{case} = 70°C	10	W
T _{stg} , T _j	Storage and Junction Temperature	-40 to 150	°C

ELECTRICAL CHARACTERISTICS (refer to the stereo application circuit, $T_{amb} = 25^{\circ}$ C, $V_{S} = 18$ V, $G_{V} = 36$ dB, unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Voltage		8		26	V
Vo	Quiescent Output Voltage			8.5		V
l _d	Total Quiescent Drain Curent			50	90	mA
Po	Output Power (each channel)	$ f = 100Hz to 6KHz \\ d = 0.5\% \\ V_{\rm S} = 18V R_{\rm L} = 4\Omega \\ V_{\rm S} = 22V R_{\rm L} = 8 {\rm W} $	5.5 5.5	6 6		× ×
d	Distortion (each channel)	f = 1KHz, V _S = 18V, R _L = 4Ω P _O = 100mW to 3W f = 1KHz, V _S = 22V, R _L = 8Ω P _O = 100mW to 3W		0.1 0.05		% %
СТ	Cross Talk (°°°)	R _L = ∞, R _g = 10KΩ f = 1KHz f = 10KHz	50 40	60 50		dB dB
Vi	Input Saturation Voltage (rms)		300			mV
R _i	Input Resistance	f = 1KHz	70	200		KΩ
f∟	Low Frequency Roll Off (-3dB)	R _L = 4Ω, C10 = C11 = 2200μF		40		Hz
f _H	Low Frequency Roll Off (-3dB)			80		KHz
Gv	Voltage Gain (closed loop)	f = 1KHz	35.5	36	36.5	dB
ΔG_V	Closed Loop Gain Matching			0.5		dB
e _N	Total Input Noise Voltage	$R_g = 10k\Omega$ (°)		1.5		μV
		$R_g = 10k\Omega$ (^{oo})		2.5	8	μV
SVR	Supply Voltage Rejection (each channel)	R_g = 10KΩ f_{ripple} = 100Hz, V _{ripple} = 0.5V		55		dB
Tj	Thermal Shut-down Junction Temperature			145		°C

(°) Curve A. (°°) 22Hz to 22KHz.

Figure 1 : Stereo Test Circuit ($G_V = 36 \text{ dB}$).

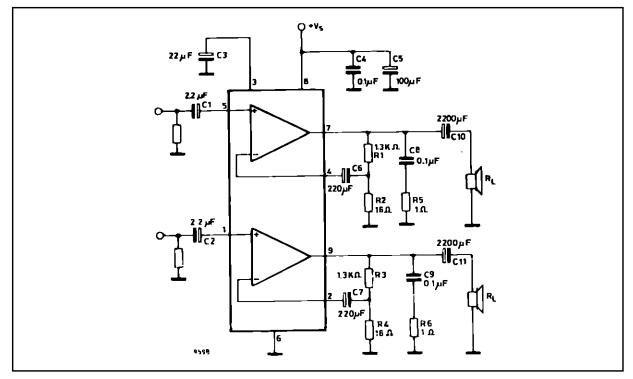
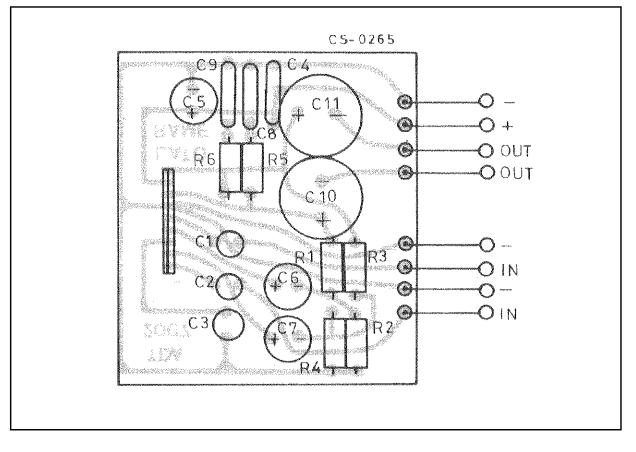
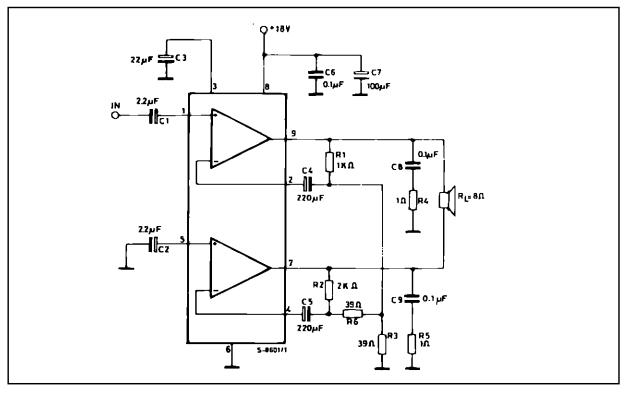



Figure 2: P.C. Board and Components layout of the Circuit of Fig.1 (1:1 scale).

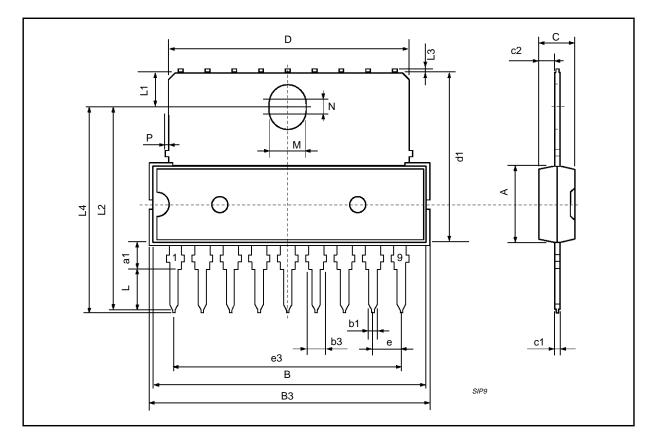
APPLICATION SUGGESTION


The recommended values of the components are those shown on application circuit of fig.1. Different values can be used ; the following table can help the designer.

Component	Recommended value	Purpose	Larger Than	Smaller Than
R1, R3	1.3ΚΩ	Close Loop Gain	Increase of Gain	Decrease of Gain
R2 and R4	18Ω	Setting (*)	Decrease of Gain	Increase of gain
R5 and R6	1Ω	Frequency stability	Danger of Oscillation at High Frequency with Inductive Load	
C1 and C2	2.2µF	Input DC Decoupling	High Turn-on Delay	High Turn-on Pop Higher Low Frequency Cutoff. Increase of Noise
C3	22µF	Ripple Rejection	Better SVR Increase of the Switch-on Time	Degradation of SVR
C6 and C7	220µF	Feedback Input DC Decoupling		
C8 and C9	0.1µF	Frequency Stability		Danger of Oscillation

(*) The closed loop gain must be higher than 26 dB.

APPLICATION INFORMATION


Figure 3 : 12 W Bridge Amplifier (d = 0.5%, $G_V = 40$ dB).

SIP9 PACKAGE MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			7.1			0.280
a1	2.7		3	0.106		0.118
В			23			0.90
B3			24.8			0.976
b1		0.5			0.020	
b3	0.85		1.6	0.033		0.063
С		3.3			0.130	
c1		0.43			0.017	
c2		1.32			0.052	
D			21.2			0.835
d1		14.5			0.571	
е		2.54			0.100	
e3		20.32			0.800	
L	3.1			0.122		
L1		3			0.118	
L2		17.6			0.693	
L3			0.25			0.010
L4	17.4		17.85	0.685		0,702
М		3.2			0.126	
N		1			0.039	
Р			0.15			0.006

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

 $\odot\,$ 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore -Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

