

OUTLINE DIMENSION & BLOCK DIAGRAM

The tolerance unless classified ± 0.3 mm

	MECHANICAL SPECIFICATION									
Overall Size	55.7 x 32.0	Module	H2 / H1							
View Area	46.7 x 17.5	W /O B/L	5.1 / 9.2							
Dot Size	0.45 x 0.60	EL B/L	5.1 / 9.2							
Dot Pitch	0.55 x 0.70	LED B/L	8.7 / 12.8							

	PIN ASSIGNMENT							
Pin no.	Symbol	Function						
1	Vss/K	Power supply(GND) / LED B/L()						
2	Vdd	Power supply(+)						
3	Vo	Contrast Adjust						
4	RS	Register select signal						
5	R/W	Data read / write						
6	Е	Enable signal						
7	DB0	Data bus line						
8	DB1	Data bus line						
9	DB2	Data bus line						
10	DB3	Data bus line						
11	DB4	Data bus line						
12	DB5	Data bus line						
13	DB6	Data bus line						
14	DB7	Data bus line						
15	Α	Power supply for LED B/L (+)						

ABSOLUTE MAXIMUM RATING										
Item	Symbo	ol	Conditi	ion	M	lin.		Ma	x.	Units
Supply for logic voltage	Vdd-Vss		25°C	25°C -0		.3		7		V
LCD driving supply voltage	Vdd-Ve	ее	25 ⁰ 0		-0	.3		13		V
Input voltage	Vin		25°C		-0	.3	V	′dd+	0.3	V
ELEC	TRICA	LC	CHARA	1C7	ER	rist	ΓIC	S		
Item	Symbol	Со	ndition	N	lin.	Тур	ical	M	lax.	Units
Power supply voltage	Vdd-Vs	-		2.	.7	-	-	5	.5	V
			Тор	N	W	N	W	Ν	W	V
		-:	20°C	_	7.1	_	7.5	_	7.9	V
LCD operation voltage	Vop		0°C	4.5	_	4.6	_	5.1	_	V
LOD operation voltage	νορ		25°C	4.1	6.1	4.4	6.4	4.7	6.7	V
			50°C	3.8	_	4.1	_	4.4	_	V
			70°C	-	5.7	_	6	_	6.3	V
LCM current consumption (No B/L)	ldd V		dd=5V	-	-	1	.5	2.	.5	mA
Packlight current concumption	LED/edge	VB	/L=4.2V	-	-	40		_		mΑ
Backlight current consumption	LED/array	VB	/L=4.2V	-	-	8	0	-	-	mΑ

REMARK

LCD option: STN, TN, FSTN

Backlight Option: LED Backlight feature, other Specs not available on catalog is under request.

CODING SYSTEM FOR LCD MODULE

PC 1 6 0 2 * * * * - * 8 9 - * 10 - * 11

NO	Code value	Description	Туре		
1	Р	Powertip products	Brand		
	С	Character			
2	G	Graphic	Modulo typo		
2	S	Engineer sample	Module type		
	Т	Total solution			
3	08.16.20.24 ···	Characters per			
3	120.122.128	Row dots (for graphic modules)	line or row dots		
4	01.02.03.04 ···	Lines (for character modules)	Lines or column		
4	32.64.128 ···	Column dots (for graphic modules)	dots		
	Α	Without backlight			
	В	EL backlight, Blue-green			
	D =	EL backlight, Yellow-green			
		EL backlight, White			
	F	CCFL backlight, White	Backlight mode (Type + Color)		
	L	LED backlight, Yellow-green			
5	M 🗐	LED backlight, Amber			
	N 🗐	LED backlight, Red	(1) [2010.1]		
	0 🗐	LED backlight, Orange			
	P 🗐	LED backlight, Pure-green			
	s <mark>=</mark> j	LED backlight, Green			
	U 🗐	LED backlight, Blue			
	W	LED backlight, White			
	R	Standard (through hole, cable, connector and etc.)			
6	Υ	Connecting type			
	Z				
	None (*1)	TN positive, Gray	100		
7	N	TN negative, Blue	LCD mode (Type + Color)		
	S	STN positive, Gray	(1)00 . 00101)		

	U	STN positive, Yellow-green	
7	М	STN negative, Blue	LCD mode
'	F	FSTN positive, White	(Type+Color)
	Т	FSTN negative, Black	
8	0~Z	Series number	Model name
9	00~ZZ	IC manufacturer / character pattern /total solution series number	* 2
	NN	Without controller	
	А	Reflective /Normal temp. /6:00 direction	
	D	Reflective /Normal temp. /12:00 direction	
	G	Reflective /Extended temp. /6:00 direction	
	J	Reflective /Extended temp. /12:00 direction	
	В	Transflective /Noraml temp. /6:00 direction	Polarizer type/
10	Е	Transflective /Noraml temp. /12:00 direction	LCD Temperature
10	Н	Transflective /Extended temp. /6:00 direction	range/
	К	Transflective /Extended temp. /12:00 direction	Viewing direction
	С	Transmissive /Normal temp. /6:00 direction	
	F	Transmissive /Normal temp. /12:00 direction	
	1	Transmissive /Extended temp. /6:00 direction	
	L	Transmissive /Extended temp. /12:00 direction	
11	No code value	Standard product	Version
(*4)	01~ZZ	Special code	VGISIUII

(*1) Without code value

(*2)

Character Pattern		Character									
English / Japanese	EA	EA HO/HA/HC SO NO		WA	AO	JA	YA	E4			
English / Europe	EB	H2/HB/HC/HU	S5/S6	N5/N6/NI	WB/W5		JB	ТА			
English / France	EC		S3	N3							
English / Russia	EH		SH	NH							
English / Chinese		НН									
English / Hebrew			S4/S8	N4/N8							

Note: A: APANPEC LSI M: MOTOROLA LSI R: SHARP LSI

W: SITRONIX LSI

E: ESPON LSI N: NOVATECH LSI S: SUMSUNG LSI Y: SANYO LSI

H: HITACHI LSI O: OKI LSI

T: TOSHIBA LSI

J : JRC LSI

P: PHILIPS LSI

U: UMC GROUP LSI

(*3) Check with our sales for available combinations.

CODING SYSTEM FOR OTHER PRODUCTS

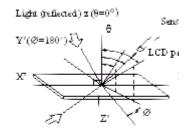
NO	CODE VALUE	DESCRIPTION	TYPE
1	PD	Powertip design product	Products
2	IN05300,IN05500	Product characteristic	Types

NOTE: The code value and length of product characteristic are unlimited

Typtical/Electrical Characteristics of LCD Modules

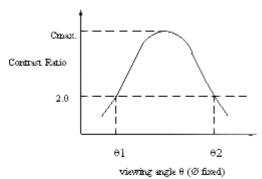
- Optical Characteristics Of LCD Modules
- Electrical Characteristics Of LCD Modules

Optical Characteristics Of LCD Modules


STN Type, Ta=25°C

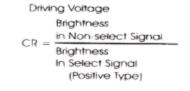
Item	Symbol	Conditions	Min.	Тур.	Max	Note
Viewing angle	02-01	C≥2.0,Ø=0°C	60°	-	-	Note 1,2
Contrast Ratio	С	0=5°, Ø=0°	-	5	-	Note 3
Response time(rise)	ton	θ=5°, Ø=0°	-	150ms	250ms	Note 4
Response time(fall)	toff	θ=5°, Ø=0°	-	200ms	300ms	Note 4

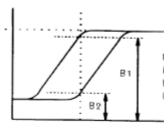
TN Type, Ta=25°C


Item	Symbol	Conditions	Min.	Тур.	Max	Note
Viewing angle	62-61	C≥2.0,Ø=0°C		40°	-	Note 1,2
Contrast Ratio	С	θ=25°, Ø=0°	-	5	-	Note 3
Response time(rise)	ton	θ=25°, Ø=0°	-	80ms	120ms	Note 4
Response time(fall)	toff	θ=25°, Ø=0°	-	60ms	90ms	Note 4

Note 1: Definition of angles 0 an

Light (when transmitted) $Y(\varnothing=70^{\circ})$ (9=90°)

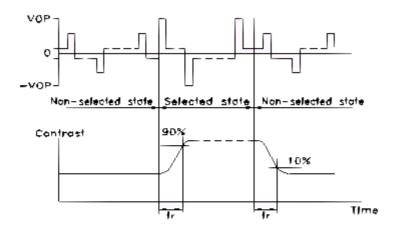

Note 2: Definition of viewing angles 01 and 02



Remark: Optimum viewing angle with the naked eye and viewing angle 8 at Cmax

B2 B1

Note 3: Definition of contrast Ratio



Driving Voltage

Brightness
In Select Signal

Brightness
In Non-select Signal
(Negative type)

Note 4: Definition of response time

Note: Measured with a transmissive LCD

panel which is displayed 1 cm^1

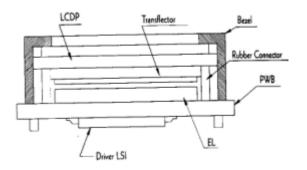
Electrical Characteristics Of LCD Modules

Character Type: VDD=+5V±10%,Vss=0V,TA=25°C

			Stano			
Item	Szzmbol	Condition		Unit		
Heiti	Jynoor	Commission	Min.	Тур.	Max.	OILL
Logic Supply voltage	VDD	-	4.5	5	5.5	V
"H" input voltage	Vш	-	2.2	-	ADD	V
"L" input voltage	Vп	-	0	-	0.6	V
"H" output voltage	Von	-	VDD-0.3	-	-	V
"L" output voltage	Vor	-	-	-	0.4	V
Supply current	Iop	VDD=5V	-	0.4	-	mA
LCD driving voltage	VLCD	VDD-Vo	3.0	8.1	11.0	V

© 2001, All rights reserved.
Powertip Technology, Inc.

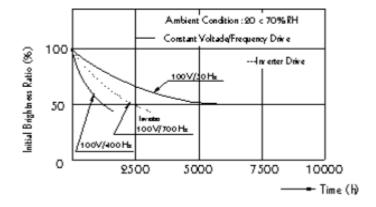
18 Technology Drive, STE 161, Irvine, CA 92618
Phone: (949) 585-9888, Fax: (949) 585-9889
sales@powertipusa.com

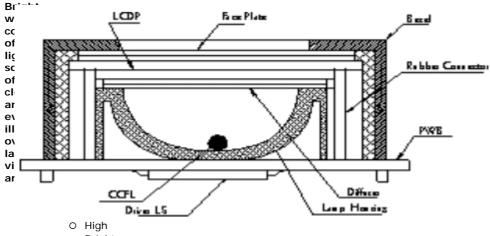

Backlight options for LCD modules

- EL Backlight
- CCFL Backlight
- LED Backlight

EL Backlight Precautions For Handling LCD Modules

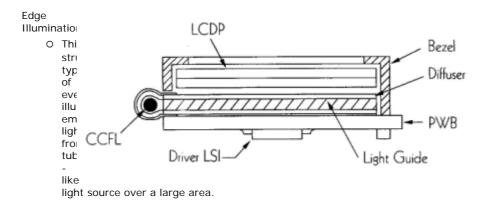
Flat surface light source offers simple and even illumination over large area.


- Max.1.3mm thickness (Max.
 1.5mm for lead portion)
- Wide driving condition, 60-1,000Hz at 150V AC Max. With inverter, step-up voltage from 1.5V battery is available.
- Emitted colors are blue-green, yellow-green and white.
- Operating characteristics of PC2002-A SERIES is 110V, 400Hz, 8mA, (Ta=20°C, 60% RHæ)
- Temperature Range:
 - O Operating 0°C~ +50°C
 - O Storage -20°C~ +60°C


Inverter for EL Backlight Drive:

- Requires an inverter to operate the EL panel with a battery or DC power supply.
- Low inverter loss and high light efficiency since it is designed for EL backlight.
- Constant power consumption during operation, given temperature change for extended hours. This is characterized by the constant supply current, which minimizes the brightness change of the EL panel.

Life Characteristics:


CCFL Backlight(Cold Cathode Fluorescent Lamp)

- Brightness
- O Long life time.
- O Low Power consumption
- O White color emitted

Direct Illumination

O Suitable for multi-color and / or dot matrix LCDP.

Precaution

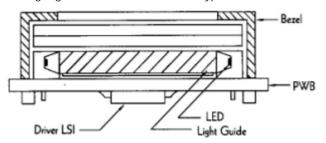
O Inverter for CCFL use output high pressure AC current. Therefore, please pay attention when you handleinverter and power supply cable of LCD backlight.

LED Backlight


Long life, low power consumption and requires a simple power supply. Available colors are red, green and orange, available in array type illumination or edge illumination.

Features:

- O Low driving voltage (DC) and does not require an inverter.
- O Long life of 100,000 hours (average)
- O No noise occurrence.


Various colors available in red, green and orange etc. (multi-color by alternative switch is also available)

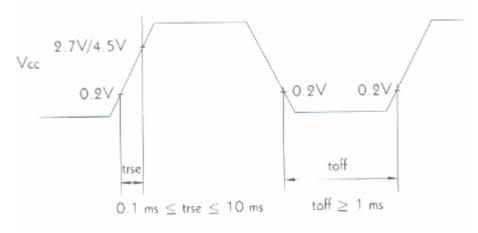
O Operating characteristics of PC2002-A series is 4.2V, 210mA, 250cd/m

Edge Illumination

O Combination LED with a light guide offers a thin structure type of illumination.

© 2001, All rights reserved.
Powertip Technology, Inc.

18 Technology Drive, STE 161, Irvine, CA 92618
Phone: (949) 585-9888, Fax: (949) 585-9889
sales@powertipusa.com



Power Supply Reset

The internal reset circuit will be operating properly when the following power supply conditions are satisfied. If it is not operating properly, please perform the initial setting along with the instruction.

Item	Symbol	Measuring	Standard Value		'alue	Unit	
item	Gymbol	Condition	Min.	Тур.	Max.	Onit	
Power Supply RISE Time	trse		0.1		10	mS	
Power Supply OFF Time	toff		1			mS	

Reset function

Initialization made by internal reset circuit

- O The HD44780 automatically initializes (resets) when power is supplied (builtin internal reset circuit).
- O The following instructions are executed during initialization.
 - The busy flag (BF) is kept in busy state until initialization ends. (BF=1) The busy state is 10ms after Vdd reaches 4.5V.
 - 1. Display clear
 - 2. Function set
 - DL=1:8 bit long interface data
 - DL=0:4 bit F=0:5 * 7 dots character font
 - N=1:2 lines
 - N=0:1 line
 - Display ON/OFF control
 - D=0: Display OFF C=0: Cursor OFF
 - B=0:Blink OFF
 - 4. Entry mode set
 - 1/D=1:+1(increment) S=0:No shift

Note: When the power supply conditions, using internal reset circuit is not satisfied, the internal reset circuit will not function properly and initialization will not be performed. Please initialize using the MPU along with the instruction set.

Initialization along with instruction

Please use the following procedures.

0

Initialization ends.

0

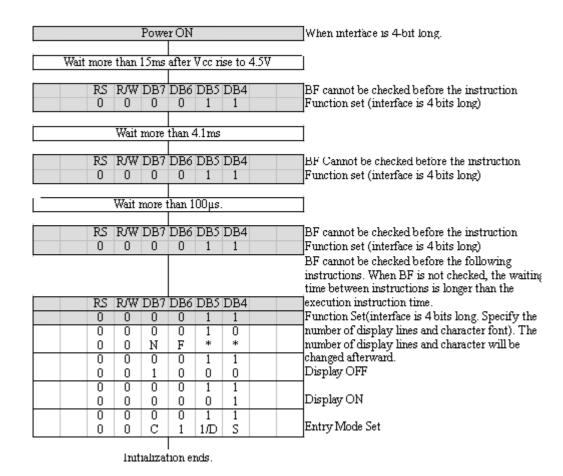
Ō

0

If power supply conditions are not satisfied, for the proper operation of the internal reset circuit, it is necessary to initialize using the instructions.

Power ON When interface is 8-bit long. Wait more than 15ms after V cc rise to 4.5V RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 BF cannot be checked before the instruction 1 * * * Function set (interface is 8 bits long) 0 0 0 1 Wait more than 4.1ms RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 BF Cannot be checked before the instruction Function set (interface is 8 bits long) Wait more than 100 µs RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 BF cannot be checked before the instruction * * * * Function set (interface is 8 bits long) BF cannot be checked before the following instructions. When BF is not checked. The waiting time between instructions is longer than the execution instruction time Function Set(interface is 8 bit long. Specify the number of display lines and character font) The R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 number of display line and character will be changed afterward. n Display OFF Ō Ō ō 0 0 0 0 Display ON 0 0 0 0 Ō 0 Ō Ō 0

S


1/D

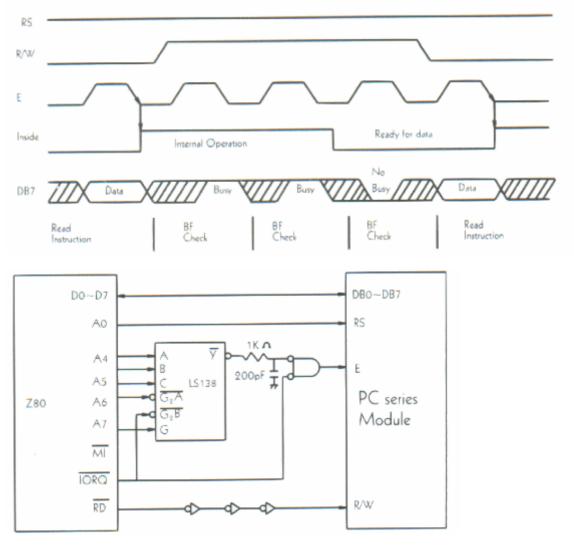
Entry Mode Set

http://www.powertipusa.com/ps.htm

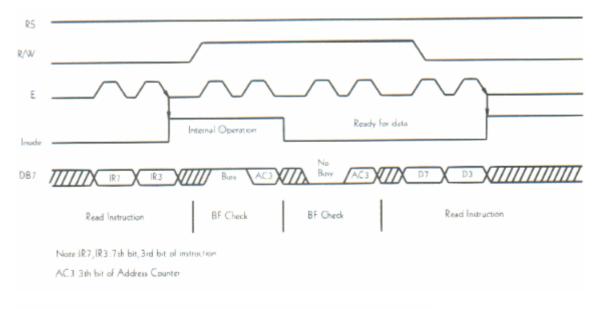
0

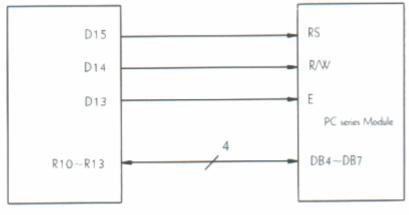
0 0

© 2001, All rights reserved.
Powertip Technology, Inc.


18 Technology Drive, STE 161, Irvine, CA 92618
Phone: (949) 585-9888, Fax: (949) 585-9889
sales@powertipusa.com

Interface With MPU


- Example of interfacing to an 8-bit MPU(Z80)
- Example of interfacing to a 4-bit MPU
- If interface data is 4-bits long
- If interface data is 8-bits long


Example of interfacing to an 8-bit MPU(Z80)

Example of interface to a 4-bit MPU

Interface to a 4-bit MPU can be made through the I/O port of the 4-bit MPU. If there are sufficient I/O ports, data can be transferred at 8-bit cycles, however, if there are not, data transfer can be accomplished by two cycles of 4-bit transfers (select interface as 4-bits long). Please take into account that 2 cycles of the BF check will be necessary and the timing sequence will prove to be complicated.

Features:

- 1. Interface to an 8-bit or 4-bit MPU is available.
- 2. 192 types of alphanumerics, symbols and special characters can be displayed with the multi built-in character generator (ROM).
- 3. Other preferred characters can be displayed by character generator(RAM)
- 4. Various instructions may be programmed.
 - Clear display
 - Cursor at home
 - On/Off cursor
 - Blink character
 - Shift display
 - Shift cursor
 - Read/write display data, etc.
- 5. Compact and light weight design which can easily be integrated into end products.
- 6. single power supply +5V drive(except for extended temp. type).
- 7. Low power consumption.
 - Interface between data bus line and 4-bit or 8-bit MPU is available.
 - Data transfer requires two cycles in case of a 4-bit MPU, and once in case of an 8-bit MPU.

If Interface Data Is 4-bit long

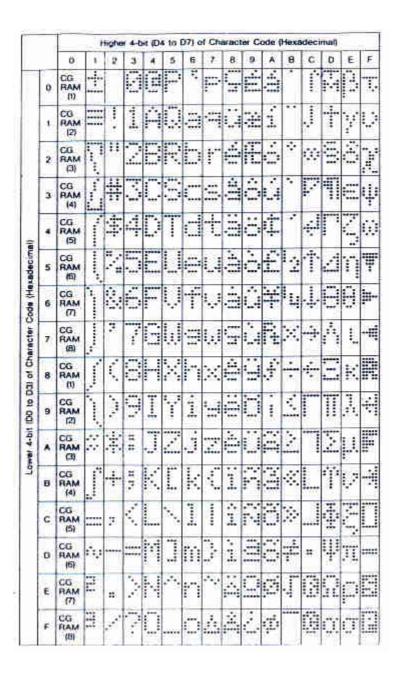
- Data transfer is accomplished through 4 bus lines from DB4 to DB7. (while the rest of 4 bus lines from DB0 to DB3 are not used.)
- Data transfer is completed when 4-bits of data is transferred twice. (upper 4-bits of data, then lower 4-bits of data.)

If Interface Data Is 8-bits Long

• Data transfer is made through all 8 bus lines from DB0 to DB7.

© 2001, All rights reserved.
Powertip Technology, Inc.

18 Technology Drive, STE 161, Irvine, CA 92618
Phone: (949) 585-9888, Fax: (949) 585-9889
sales@powertipusa.com

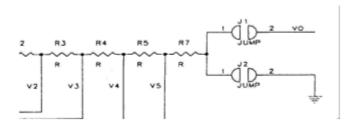


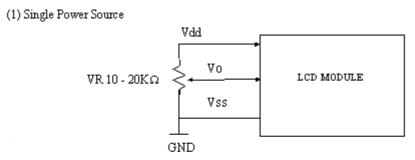
Standard Character Pattern

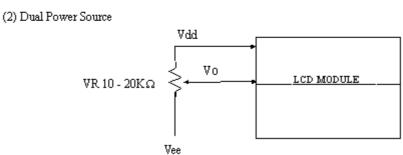
- Character Pattern (WB)
- Character Pattern (HC)
- Character Pattern (NI)
- Character Pattern (JA)
- Character Pattern (SO,WA)
- Character Pattern
- Character Pattern (N5)
- Character Pattern
- Character Pattern (N4)
- Character Pattern (TA)
- Character Pattern (NH)
- Character Pattern (YA)

© 2001, All rights reserved.
Powertip Technology, Inc.

18 Technology Drive, STE 161, Irvine, CA 92618
Phone: (949) 585-9888, Fax: (949) 585-9889
<u>sales@powertipusa.com</u>

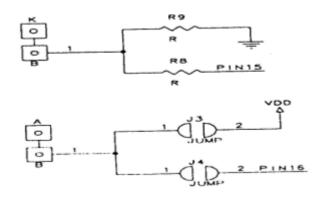

Powertip USA Page 1 of 6


Q & A


1. Adjusting the contrast of a character LCD module.

There are two means of adjusting the contrast: Please refer to the following drawing:

- 1. Internal: J2 short, add the appropriate resister to R7 for contrast control.
- 2. External: J1 short, R7=0, By adding a VR the contrast can be controlled externally. Please note the following diagram:



2. Connecting and powering the backlight.

There are two means of connecting and powering the backlight. Please refer to the below diagrams:

Powertip USA Page 2 of 6

- 1. PINS 1 & 2 (Vdd & Vss): J3 short, by adding a resistor on R9.
- 2. PINS 15 & 16: J4 short, by adding a resistor on R8.

NOTE: The brightness can be controlled by the value of R8 or R9.

3. Reference table for establishing the relationship between the temperature range, viewing direction and type of polarizer:

Polarizer	Normal		Exte	nded	Not	rmal	Extended		
FUIdilizei	06:00	12:00	06:00	12:00	03:00	09:00	03:00	09:00	
Reflective	A	D	G	J	M	P	S	V	
Transflective	В	E	Н	K	N	Q	T	W	
Transmissive	С	F	I	L	0	R	U	X	

4. Differences between a driver IC, a controller IC and a controller/driver IC:

Driver IC: There are two types of driver IC's. One is a "common" driver and the other a "segment" driver. Common drivers output signals to create the rows or number of lines while the segment drivers output the necessary signals to create the characters or columns.

Controller IC: This IC receives data written in ASCII or JIS code from the MPU and stores this data in RAM. This data is then converted into a serial character pattern and transferred to the LCD driver IC.

Driver/Controller IC: It is most commonly found in a graphics module. It receives data from the MPU and stores it in RAM. It accepts commands directly from the MPU for both the common and segment drivers.

5. Following is the minimum dot size and pitch on the LCD, the ITO line on the LCD and the elastomer (zebra) connector:

<u>ITEM</u>	Dots or Lines	<u>Gaps</u>
LCD Dots	0.22mm	0.02mm
LCD ITO lines	S=0.075, C=0.08mm	0.03mm
Rubber Connectors	0.025mm	0.025mm
Heat Seal	0.09mm	0.09mm

6. Advantages and disadvantages of backlight versions:

Powertip USA Page 3 of 6

ITEM	LED	EL	CCFL		
Туре	Edge & Array	Thin Flat Panel	Direct & edge lighting		
Power Requirement	DC4.2V, High power consumption in array type	AC110~130V, 400HZ need DC/AC converter , Low power consumption	·		
Brightness	$15 \sim 80 \text{CD/M}^2$	$70 \sim 200$ CD/M ²	200 ~ 600CD/M ²		
Life	50,000 ~ 100,000hr	2,000 ~5,000hr	10,000 ~ 20,000hr		
Thickness	Array: 5mm, Edge: 1.3 ~ 4mm	1.5mm Max	Direct: 15.0mm Edge: 3.0mm		
Color	Yellow/Green, Amber, Red, Orange, Green	Blue/Green, White, Yellow/Green	White		

7. Comparison between TN, STN and FSTN technologies:

<u>ITEM</u>	Contrast Ratio	View Angle	COST
TN	3	3	3
STN	2	2	2
FSTN	1	1	1

Remarks: with 1 being the best or most expensive and 3 the worst or least expensive.

8. Differences between reflective, transflective and transmissive displays

Reflective: Such display includes a diffuser. This layer reflects the light that enters the front of the display. Reflective displays require ambient light for the light source since there is no backlight.

Transflective: As type of backing which is bonded to the rear polarizer. Enables light to pass through the back, as well as reflecting light from the front.

Transmissive: A type of LCD which does not have a reflector or transflector laminated to the rear polarizer. A backlight must be used with this type of LCD configuration. The most common is a transmissive negative image.

9. Considerations for attaining a 3.0 Volt LCD module:

IC: Choose the ICs that can be driven at 3.3V or less. Below is a list of IC's that can accomplish this requirement:

Controller:

KS0066U 2.7 ~ 5.5V

KS0070B 2.7 ~ 5.5V

HD44780U 2.7 ~ 5.5V

Driver:

Powertip USA Page 4 of 6

KS0065 2.7 ~ 5.5V

KS0063 2.7 ~ 5.5V

SED1181 5.0V min.

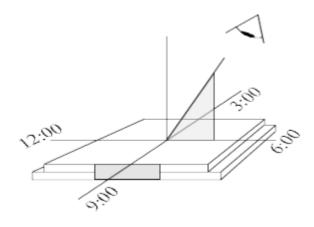
LCD panel: The driving voltage for most all LCD panels is above 3.3V. It is necessary to then add a "negative voltage" IC on the PCB of the module or to the customer's motherboard to raise the voltage. A couple of NV generators is as follows:

NV IC: SCI7661 3X with temperature compensation.

SCI7660 2X, dice font available (at a much less expensive cost).

If a NV IC must be incorporated onto the module PCB, there is apt to be two possible considerations:

- 1. Tooling cost
- The PCB is too small to accommodate the NV IC. If there is not sufficient space, a possible solution would be to replace one controller with a driver, with single controller (such as replacing a KS0066(U) & KS0065(B) with a KS0070). The per unit cost will be a little greater but it will save overall space on the PCB and eliminate having to re-tool the PCB.
 - Some TAB IC's such as SED1560 series include a power circuit, which can amplify the input voltage to drive the LCD. In this case it is not necessary to add a NV IC to raise the voltage.


C. Backlight:

CCFL & EL: These backlight options require an inverter. The inverter chosen cannot exceed 3.3 Volts.

LED: In an attempt to achieve this 3.3V requirement it is necessary to use an edge-lit LED. Note this edge-lit LED will still consume a large current.

10. Reference to Viewing angle:

Viewing Angle is the direction by which the display will look best. This is established during the manufacturing process and can not be changed by rotating the polarizer. Viewing direction is specified in terms of a clock position, such as 6:00 & 12:00. Please refer to the following drawing:

Powertip USA Page 5 of 6

11. Clarification to the term "rainbow" effect:

This refers to a red and green circle or rainbow on the LCD glass. The LCD panel under uneven pressure causes this problem from the bezel. It is very common in LCD modules and normally it will not affect the performance or the appearance of the display when operational.

12. Pin assignments for a Character module:

Example of a standard 14-pin character module:

PIN 1: Vss

PIN 2: Vdd

PIN 3: Vo

PIN 4: RS

PIN 5: R/W

PIN 6: Enable

PIN 7 ~ 14: DB0 ~ DB7

13. What is temperature compensation and why is required

A LCD operating voltage varies at different temperatures. The operating voltage must rise as temperature lowers or the contrast will degrade. Conversely, the operating temperature must fall as the temperature rises or the contrast will degrade. For this reason it is often a requirement, with graphics modules, to control the input voltage accordingly. The temperature compensation circuit is the circuit that controls the input voltage as the temperature changes. This temperature compensation circuit can be located on the LCD module or on the customer's motherboard.

14. Troubleshooting a LED backlit module in which the display is turning dark:

This problem is more than likely caused by the temperature rise from the LED backlight. In this case the LED backlight has consumed too much of the power. When the temperature rises, the V_{LCD} becomes lower causing the input voltage to be too high. The result is a poor contrast and the display becoming too dark. The solution would be to lower the power consumption of the LED. This can be accomplished by raising the value of R8 or R9 to reduce the current to the LED backlight.

15. How to control the LED backlight on a 14-pin module:

Short J2, the Vdd is controlling the input to the LED backlight. In addition, it is necessary to place a current limiting resistor to lower the voltage from 5V to 4.2V.

Note: If the LED is drawing too much current, it may cause the Vdd † Vo too low and the contrast becomes poor. If this should occur increasing the value of R9 should decrease the current draw to the LED backlight or another approach would be to increase the voltage input to the LCD by decreasing the value of R7.

16. Examples of the current consumption of an LED backlit, EL backlit and the LCD for the following modules:

Powertip USA Page 6 of 6

<u>Products</u>	<u>LCM</u>	<u>LED</u>	<u>EL</u>		
PC1602-F	1.3mA	120mA	3.26mA		
PC2002-B	1.8mA	200mA	5.3mA		
PC2004-A	PC2004-A 1.8mA		7.2mA		
PC4004-A 2.2mA		440mA	7.5mA		

17. Following is the Vop range for a Character and Graphics LCD module:

LCD Type	Vop for N.T.	Vop for W.T.			
Character	4.2 ~ 4.8V	5 ~ 9V			
Graphic	5.5 ~ 26V	6 ~ 28V			

Note: N.T. = normal temperature

W.T.= wide temperature

© 2001, All rights reserved.
Powertip Technology, Inc.

18 Technology Drive, STE 161, Irvine, CA 92618
Phone: (949) 585-9888, Fax: (949) 585-9889
sales@powertipusa.com

Sitronix

ST7066U

Dot Matrix LCD Controller/Driver

■ Features

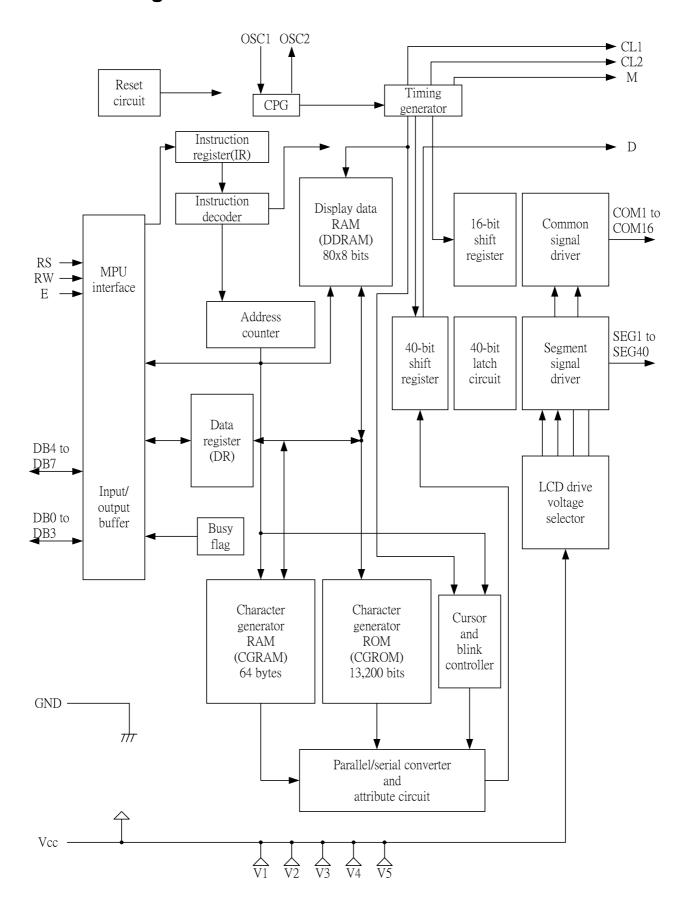
- 5 x 8 and 5 x 11 dot matrix possible
- Low power operation support:
- -- 2.7 to 5.5V
- Wide range of LCD driver power
 - -- 3.0 to 10V
- Correspond to high speed MPU bus interface
 - -- 2 MHz (when Vcc = 5V)
- 4-bit or 8-bit MPU interface enabled
- 80 x 8-bit display RAM (80 characters max.)
- 13,200-bit character generator ROM for a total of 240 character fonts(5 x 8 dot or 5 x 11 dot)
- 64 x 8-bit character generator RAM
 - -- 8 character fonts (5 x 8 dot)
 - -- 4 character fonts (5 x 11 dot)
- 16-common x 40-segment liquid crystal display driver

- Programmable duty cycles
 - -- 1/8 for one line of 5 x 8 dots with cursor
 - -- 1/11 for one line of 5 x 11 dots & cursor
 - -- 1/16 for two lines of 5 x 8 dots & cursor
- Wide range of instruction functions:
 Display clear, cursor home, display on/off, cursor on/off, display character blink, cursor shift, display shift
- Pin function compatibility with HD44780, KS0066 and SED1278
- Automatic reset circuit that initializes the controller/driver after power on
- Internal oscillator with external resistors
- Low power consumption
- QFP80 and Bare Chip available

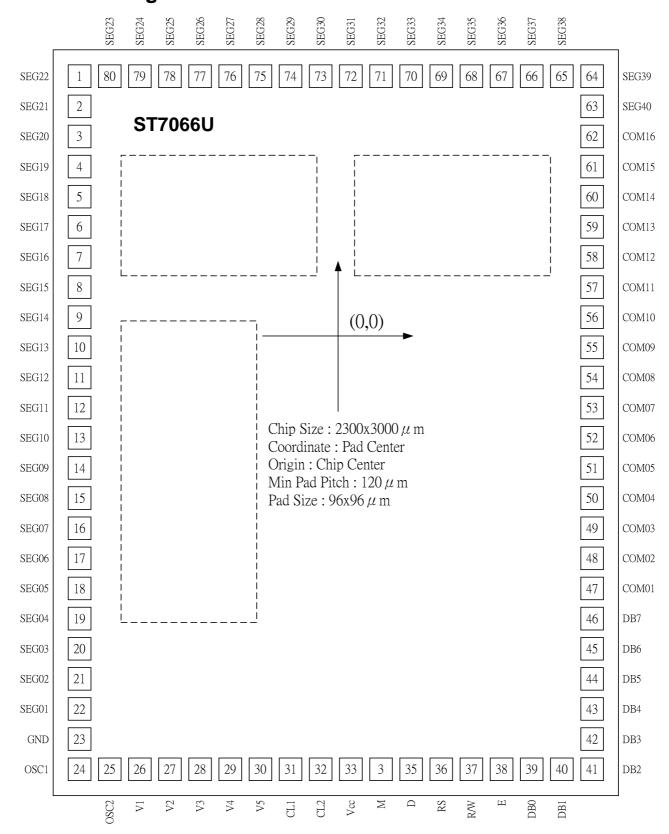
■ Description

The ST7066U dot-matrix liquid crystal display controller and driver LSI displays alphanumeric, Japanese kana characters, and symbols. It can be configured to drive a dot-matrix liquid crystal display under the control of a 4- or 8-bit microprocessor. Since all the functions such as display RAM, character generator, and liquid crystal driver, required for driving a dot-matrix liquid crystal display are internally provided on one chip, a minimal system can be interfaced with this controller/driver.

The ST7066U has pin function compatibility with the HD44780, KS0066 and SED1278 that allows the user to easily replace it with an ST7066U. The ST7066U character generator ROM is extended to generate

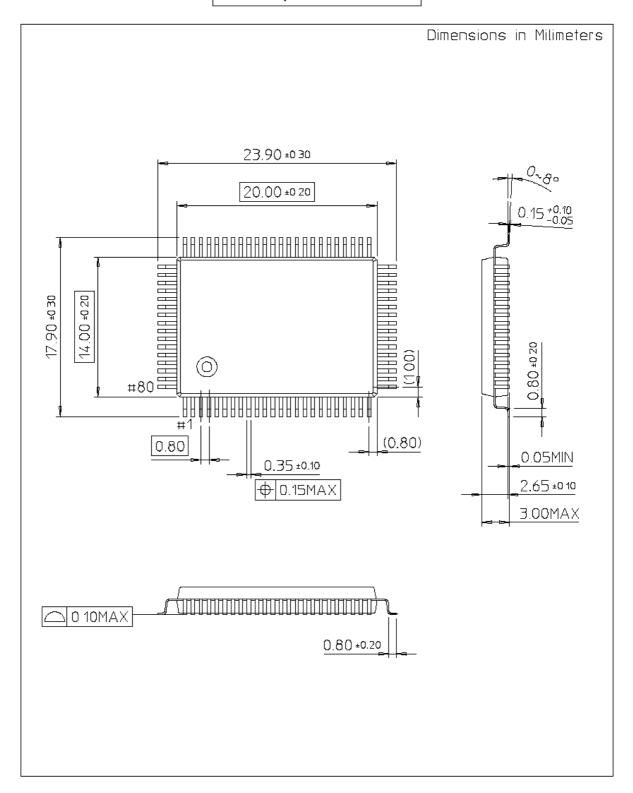

240 5x8(5x11) dot character fonts for a total of 240 different character fonts. The low power supply (2.7V to 5.5V) of the ST7066U is suitable for any portable battery-driven product requiring low power dissipation.

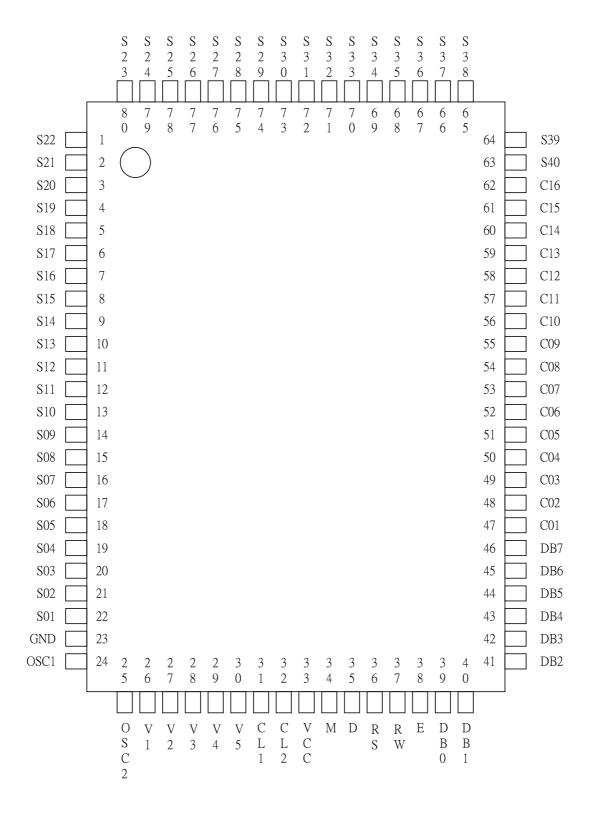
The ST7066U LCD driver consists of 16 common signal drivers and 40 segment signal drivers which can extend display size by cascading segment driver ST7065 or ST7063. The maximum display size can be either 80 characters in 1-line display or 40 characters in 2-line display. A single ST7066U can display up to one 8-character line or two 8-character lines.


Product Name	Support Character
ST7066U-0A	English / Japan
ST7066U-0B	English / European
ST7066U-0E	English / European

	ST7066 Ser	rial Specification Revision History
Version	Date	Description
1.7	2000/10/31	 Added 8051 Example Program Code(Page 21,23) Added Annotated Flow Chart : "BF cannot be checked before this instruction" Changed Maximum Ratings Power Supply Voltage:+5.5V →+7.0V(Page 28)
1.8	2000/11/14	Added QFP Pad Configuration(Page 5)
1.8a	2000/11/30	 Moved QFP Package Dimensions(Page 39) to Page 5 Changed DC Characteristics Ratings(Page 32,33)
2.0	2001/03/01	Transition to ST7066U

■ Block Diagram


■ Pad Arrangement


Substrate Connect to VDD.

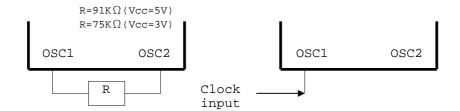
■ Package Dimensions

80-QFP-1420C

■ Pad Configuration(80 QFP)

■ Pad Location Coordinates

	Location	<u> </u>	mates		
Pad No.	Function	X	Υ		
1	SEG22	-1040	1400		
2	SEG21	-1040	1270		
3	SEG20	-1040	1140		
4	SEG19	-1040	1020		
5	SEG18	-1040	900		
6	SEG17	-1040	780		
7	SEG16	-1040	660		
8	SEG15	-1040	540		
9	SEG14	-1040	420		
10	SEG13	-1040	300		
11	SEG12	-1040	180		
12	SEG11	-1040	60		
13	SEG10	-1040	-60		
14	SEG9	-1040	-180		
15	SEG8	-1040	-300		
16	SEG7	-1040	-420		
17	SEG6	-1040	-540		
18	SEG5	-1040	-660		
19	SEG4	-1040	-780		
20	SEG3	-1040	-900		
21	SEG2	-1040	-1020		
22	SEG1	-1040	-1140		
23	GND	-1040	-1270		
24	OSC1	-1040	-1400		
25	OSC2	-910	-1400		
26	V1	-780	-1400		
27	V2	-660	-1400		
28	V3	-540	-1400		
29	V4	-420	-1400		
30	V5	-300	-1400		
31	CL1	-180	-1400		
32	CL2	-60	-1400		
33	Vcc	60	-1400		
34	M	180	-1400		
35	D	300	-1400		
36	RS	420	-1400		
37	RW	540	-1400		
38	Е	660	-1400		
39	DB0	780	-1400		
40	DB1	910	-1400		


Pad No.	Function	Х	Υ		
41	DB2	1040	-1400		
42	DB3	1040	-1270		
43	DB4	1040	-1140		
44	DB5	1040	-1020		
45	DB6	1040	-900		
46	DB7	1040	-780		
47	COM1	1040	-660		
48	COM2	1040	-540		
49	COM3	1040	-420		
50	COM4	1040	-300		
51	COM5	1040	-180		
52	COM6	1040	-60		
53	COM7	1040	60		
54	COM8	1040	180		
55	COM9	1040	300		
56	COM10	1040	420		
57	COM11	1040	540		
58	COM12	1040	660		
59	COM13	1040	780		
60	COM14	1040	900		
61	COM15	1040	1020		
62	COM16	1040	1140		
63	SEG40	1040	1270		
64	SEG39	1040	1400		
65	SEG38	910	1400		
66	SEG37	780	1400		
67	SEG36	660	1400		
68	SEG35	540	1400		
69	SEG34	420	1400		
70	SEG33	300	1400		
71	SEG32	180	1400		
72	SEG31	60	1400		
73	SEG30	-60	1400		
74	SEG29	-180	1400		
75	SEG28	-300	1400		
76	SEG27	-420	1400		
77	SEG26	-540	1400		
78	SEG25	-660	1400		
79	SEG24	-780	1400		
80	SEG23	-910	1400		

■ Pin Function

Name	Number	I/O	Interfaced with	Function				
RS	1	ı	MPU	Select registers. 0: Instruction register (for write) Busy flag: address counter (for read) 1: Data register (for write and read)				
R/W	1	I	MPU	Select read or write. 0: Write 1: Read				
Е	1	ı	MPU	Starts data read/write.				
DB4 to DB7	4	I/O	MPU	Four high order bi-directional tristate data bus pins. Used for data transfer and receive between the MPU and the ST7066U. DB7 can be used as a busy flag.				
DB0 to DB3	4	I/O	MPU	Four low order bi-directional tristate data bus pins. Used for data transfer and receive between the MPU and the ST7066U. These pins are not used during 4-bit operation.				
CL1	1	0	Extension driver	Clock to latch serial data D sent to the extension driver				
CL2	1	0	Extension driver	Clock to shift serial data D				
М	1	0	Extension driver	Switch signal for converting the liquid crystal drive waveform to AC				
D	1	0	Extension driver	Character pattern data corresponding to each segment signal				
COM1 to COM16	16	0	LCD	Common signals that are not used are changed to non-selection waveform. COM9 to COM16 are non-selection waveforms at 1/8 duty factor and COM12 to COM16 are non-selection waveforms at 1/11 duty factor.				
SEG1 to SEG40	40	0	LCD	Segment signals				
V1 to V5	5	-	Power supply	Power supply for LCD drive Vcc - V5 = 10 V (Max)				
Vcc, GND	2	-	Power supply	Vcc: 2.7V to 5.5V, GND: 0V				
OSC1, OSC2	2		Oscillation resistor clock	When crystal oscillation is performed, a resistor must be connected externally. When the pin input is an external clock, it must be input to OSC1.				

Note:

- 1. Vcc>=V1>=V2>=V3>=V4>=V5 must be maintained
- 2. Two clock options:

■ Function Description

System Interface

This chip has all two kinds of interface type with MPU: 4-bit bus and 8-bit bus. 4-bit bus or 8-bit bus is selected by DL bit in the instruction register.

During read or write operation, two 8-bit registers are used. One is data register (DR), the other is instruction register(IR).

The data register(DR) is used as temporary data storage place for being written into or read from DDRAM/CGRAM, target RAM is selected by RAM address setting instruction. Each internal operation, reading from or writing into RAM, is done automatically. So to speak, after MPU reads DR data, the data in the next DDRAM/CGRAM address is transferred into DR automatically. Also after MPU writes data to DR, the data in DR is transferred into DDRAM/CGRAM automatically.

The Instruction register(IR) is used only to store instruction code transferred from MPU. MPU cannot use it to read instruction data.

To select register, use RS input pin in 4-bit/8-bit bus mode.

RS	R/W	Operation
т	т	Instruction Write operation (MPU writes Instruction code
Ц	П	into IR)
L	Н	Read Busy Flag(DB7) and address counter (DB0 ~ DB6)
Н	L	Data Write operation (MPU writes data into DR)
Н	Н	Data Read operation (MPU reads data from DR)

Table 1. Various kinds of operations according to RS and R/W bits.

Busy Flag (BF)

When BF = "High", it indicates that the internal operation is being processed. So during this time the next instruction cannot be accepted. BF can be read, when RS = Low and R/W = High (Read Instruction Operation), through DB7 port. Before executing the next instruction, be sure that BF is not High.

Address Counter (AC)

Address Counter(AC) stores DDRAM/CGRAM address, transferred from IR.

After writing into (reading from) DDRAM/CGRAM, AC is automatically increased (decreased) by 1.

When RS = "Low" and R/W = "High", AC can be read through DB0 ~ DB6 ports.

Display Data RAM (DDRAM)

Display data RAM (DDRAM) stores display data represented in 8-bit character codes. Its extended capacity is 80 x 8 bits, or 80 characters. The area in display data RAM (DDRAM) that is not used for display can be used as general data RAM. See Figure 1 for the relationships between DDRAM addresses and positions on the liquid crystal display.

The DDRAM address (ADD) is set in the address counter (AC) as hexadecimal.

> 1-line display (N = 0) (Figure 2)

When there are fewer than 80 display characters, the display begins at the head position. For example, if using only the ST7066U, 8 characters are displayed. See Figure 3. When the display shift operation is performed, the DDRAM address shifts. See Figure 3.

Figure 1 DDRAM Address

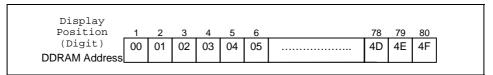


Figure 2 1-Line Display

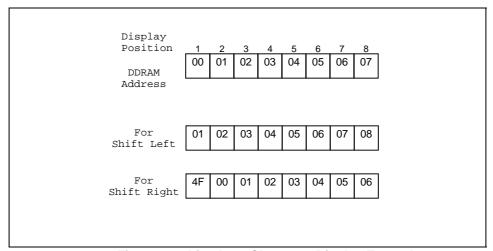


Figure 3 1-Line by 8-Character Display Example

2-line display (N = 1) (Figure 4)

Case 1: When the number of display characters is less than 40×2 lines, the two lines are displayed from the head. Note that the first line end address and the second line start address are not consecutive. For example, when just the ST7066U is used, 8 characters \times 2 lines are displayed. See Figure 5.

When display shift operation is performed, the DDRAM address shifts. See Figure 5.

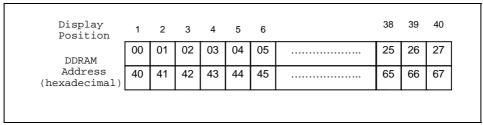


Figure 4 2-Line Display

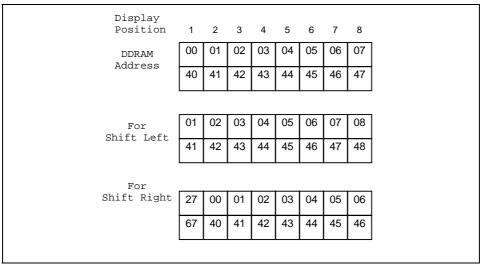


Figure 5 2-Line by 8-Character Display Example

Case 2: For a 16-character \times 2-line display, the ST7066U can be extended using one 40-output extension driver. See Figure 6.

When display shift operation is performed, the DDRAM address shifts. See Figure 6.

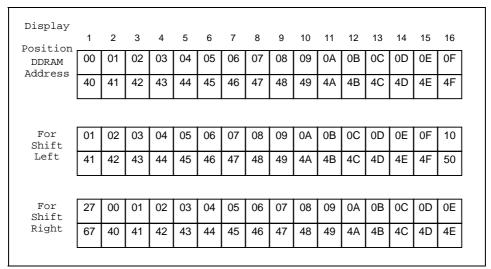


Figure 6 2-Line by 16-Character Display Example

Character Generator ROM (CGROM)

The character generator ROM generates 5 x 8 dot or 5 x 11 dot character patterns from 8-bit character codes. It can generate 240 5 x 8 dot character patterns. User-defined character patterns are also available by mask-programmed ROM.

Character Generator RAM (CGRAM)

In the character generator RAM, the user can rewrite character patterns by program. For 5 x 8 dots, eight character patterns can be written, and for 5 x 11 dots, four character patterns can be written.

Write into DDRAM the character codes at the addresses shown as the left column of Table 4 to show the character patterns stored in CGRAM.

See Table 5 for the relationship between CGRAM addresses and data and display patterns. Areas that are not used for display can be used as general data RAM.

Timing Generation Circuit

The timing generation circuit generates timing signals for the operation of internal circuits such as DDRAM, CGROM and CGRAM. RAM read timing for display and internal operation timing by MPU access are generated separately to avoid interfering with each other. Therefore, when writing data to DDRAM, for example, there will be no undesirable interference, such as flickering, in areas other than the display area.

• LCD Driver Circuit

LCD Driver circuit has 16 common and 40 segment signals for LCD driving. Data from CGRAM/CGROM is transferred to 40 bit segment latch serially, and then it is stored to 40 bit shift latch. When each common is selected by 16 bit common register, segment data also output through segment driver from 40 bit segment latch. In case of 1-line display mode, COM1 ~ COM8 have 1/8 duty or COM1 ~ COM11 have 1/11duty, and in 2-line mode, COM1 ~ COM16 have 1/16 duty ratio.

Cursor/Blink Control Circuit

It can generate the cursor or blink in the cursor/blink control circuit. The cursor or the blink appears in the digit at the display data RAM address set in the address counter.

Table 4 Correspondence between Character Codes and Character Patterns (ROM Code: 0A)

NO.7066-0A

	<u> </u>	UM	,	1		1									
67-64 63-60	0000	0001	0010	0011	0100	0101	0111	1000	1001	1010	1011	1100	1101	11 10	1111
	CG RAM (1)														
0001	(2)														
0010	(3)														
0011	(4)														
0100	(5)														
0101	(6)														
0110	6														
0111	(8)														
1000	(1)														
1001	(2)														
1010	(3)														
1011	(4)														
1100	(5)														
1101	(6)														
1110	7)														
1111	(8)														

Table 4(Cont.) (ROM Code: 0B)

NO.7066-0B

	000-	<u> </u>											
67-64 63-60	0000	0001	0010	 0100	0110	0111	1000		1011	1100	1101	1110	1111
0000	CG RAM (1)												
0001	(2)												
0010	(3)												
0011	(4)												
0100	(5)												
0101	(6)												
0110	(7)												
0111	(8)												
1000	(1)												
1001	(2)												
1010	(3)												
1011	(4)												
1100	(5)												
1101	(6)												
1110	(7)												
1111	(8)												

Table 4(Cont.) (ROM Code: 0E)

<u>NO.7066-0</u>E

	000-	~													
67-64 63-60	0000	0001	0010	 0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	CG RAM (1)														
0001	(2)														
0010	(3)														
0011	(4)														
0100	(5)														
0101	(6)														
0110	(7)														
0111	(8)														
1000	(1)														
1001	(2)														
1010	(3)														
1011	(4)														
1100	(5)														
1101	(6)														
1110	(7)														
1111	(8)														

	С	har	act	er (Cod	le		CGRAM					Ch	ara	cte	r Pa	atte	rns	;		
	(DD	RA	M D	ata)		Address				(CGRAM Data)									
b7	b6	b5	b4	b3	b2	b1	b0	b5	b4	b3	b2	b1	b0	b7	b6	b5	b4	b3	b2	b1	b0
					0	0	0				0	0	0				1	1	1	1	1
					0	0	0				0	0	1				0	0	1	0	0
					0	0	0				0	1	0				0	0	1	0	0
0	0	0	0		0	0	0	0	0	0	0	1	1				0	0	1	0	0
١٠	U	U	U	_	0	0	0	U	U	U	1	0	0	_	-	_	0	0	1	0	0
					0	0	0				1	0	1				0	0	1	0	0
					0	0	0				1	1	0				0	0	1	0	0
					0	0	0				1	1	1				0	0	0	0	0
					0	0	1				0	0	0				1	1	1	1	0
					0	0	1				0	0	1				1	0	0	0	1
					0	0	1				0	1	0				1	0	0	0	1
0	0	0	0		0	0	1	0	0	1	0	1	1				1	1	1	1	0
١٠	U	U	U	-	0	0	1	U	U	ı	1	0	0	-	-	-	1	0	1	0	0
					0	0	1				1	0	1				1	0	0	1	0
					0	0	1				1	1	0				1	0	0	0	1
					0	0	1				1	1	1				0	0	0	0	0

Table 5 Relationship between CGRAM Addresses, Character Codes (DDRAM) and Character patterns (CGRAM Data)

Notes:

- 1. Character code bits 0 to 2 correspond to CGRAM address bits 3 to 5 (3 bits: 8 types).
- 2. CGRAM address bits 0 to 2 designate the character pattern line position. The 8th line is the cursor position and its display is formed by a logical OR with the cursor. Maintain the 8th line data, corresponding to the cursor display position, at 0 as the cursor display. If the 8th line data is 1, 1 bits will light up the 8th line regardless of the cursor presence.
- 3. Character pattern row positions correspond to CGRAM data bits 0 to 4 (bit 4 being at the left).
- 4. As shown Table 5, CGRAM character patterns are selected when character code bits 4 to 7 are all 0. However, since character code bit 3 has no effect, the R display example above can be selected by either character code 00H or 08H.
- 5. 1 for CGRAM data corresponds to display selection and 0 to non-selection.
- "-": Indicates no effect.

■ Instructions

There are four categories of instructions that:

- Designate ST7066U functions, such as display format, data length, etc.
- Set internal RAM addresses
- Perform data transfer with internal RAM
- Others

Instruction Table:

instruction rab				Inst	ructi	on C	Code)				Description
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	Time (270KHz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC	1.52 ms
Return Home	0	0	0	0	0	0	0	0	1	x	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.52 ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	37 us
Display ON/OFF	0	0	0	0	0	0	1	D	С	В	D=1:entire display on C=1:cursor on B=1:cursor position on	37 us
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	х	х	Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.	37 us
Function Set	0	0	0	0	1	DL	N	F	х	x	DL:interface data is 8/4 bits N:number of line is 2/1 F:font size is 5x11/5x8	37 us
Set CGRAM address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter	37 us
Set DDRAM address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter	37 us
Read Busy flag and address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0 us
Write data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM)	37 us
Read data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM)	37 us

Note:

Be sure the ST7066U is not in the busy state (BF = 0) before sending an instruction from the MPU to the ST7066U. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to Instruction Table for the list of each instruction execution time.

■ Instruction Description

Clear Display

Clear all the display data by writing "20H" (space code) to all DDRAM address, and set DDRAM address to "00H" into AC (address counter). Return cursor to the original status, namely, bring the cursor to the left edge on first line of the display. Make entry mode increment (I/D = "1").

Return Home

Return Home is cursor return home instruction. Set DDRAM address to "00H" into the address counter. Return cursor to its original site and return display to its original status, if shifted. Contents of DDRAM does not change.

Entry Mode Set

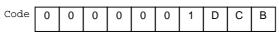
Set the moving direction of cursor and display.

I/D : Increment / decrement of DDRAM address (cursor or blink)

When I/D = "High", cursor/blink moves to right and DDRAM address is increased by 1.

When I/D = "Low", cursor/blink moves to left and DDRAM address is decreased by 1.

S: Shift of entire display


When DDRAM read (CGRAM read/write) operation or S = "Low", shift of entire display is not performed. If S = "High" and DDRAM write operation, shift of entire display is performed according to I/D value (I/D = "1": shift left, I/D = "0": shift right).

S	I/D	Description
Н	Н	Shift the display to the left
Н	L	Shift the display to the right

^{*} CGRAM operates the same as DDRAM, when read from or write to CGRAM.

Display ON/OFF

RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

Control display/cursor/blink ON/OFF 1 bit register.

D : Display ON/OFF control bit

When D = "High", entire display is turned on.

When D = "Low", display is turned off, but display data is remained in DDRAM.

C: Cursor ON/OFF control bit

When C = "High", cursor is turned on.

When C = "Low", cursor is disappeared in current display, but I/D register remains its data.

▶ B : Cursor Blink ON/OFF control bit

When B = "High", cursor blink is on, that performs alternate between all the high data and display character at the cursor position.

When B = "Low", blink is off.

Cursor or Display Shift

RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

Code	0	0	0	0	0	1	S/C	R/L	х	х

Without writing or reading of display data, shift right/left cursor position or display. This instruction is used to correct or search display data. During 2-line mode display, cursor moves to the 2nd line after 40th digit of 1st line. Note that display shift is performed simultaneously in all the line. When displayed data is shifted repeatedly, each line shifted individually. When display shift is performed, the contents of address counter are not changed.

S/C	R/L	Description	AC Value
L	L	Shift cursor to the left	AC=AC-1
L	Н	Shift cursor to the right	AC=AC+1
Н	L	Shift display to the left. Cursor follows the display shift	AC=AC
Н	Н	Shift display to the right. Cursor follows the display shift	AC=AC

Function Set

RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

Code 0 0 0 0 1 DL N F x x

DL : Interface data length control bit

When DL = "High", it means 8-bit bus mode with MPU.

When DL = "Low", it means 4-bit bus mode with MPU. So to speak, DL is a signal to select 8-bit or 4-bit bus mode.

When 4-bit bus mode, it needs to transfer 4-bit data by two times.

N: Display line number control bit

When N = "Low", it means 1-line display mode.

When N = "High", 2-line display mode is set.

> F: Display font type control bit

When F = "Low", it means 5 x 8 dots format display mode

When F = "High", 5 x11 dots format display mode.

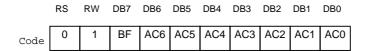
N	F	No. of Display Lines	Character Font	Duty Factor
L	L	1	5x8	1/8
L	Н	1	5x11	1/11
Н	х	2	5x8	1/16

Set CGRAM Address

Set CGRAM address to AC.

This instruction makes CGRAM data available from MPU.

Set DDRAM Address

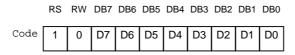

Set DDRAM address to AC.

This instruction makes DDRAM data available from MPU.

When 1-line display mode (N = 0), DDRAM address is from "00H" to "4FH".

In 2-line display mode (N = 1), DDRAM address in the 1st line is from "00H" to "27H", and DDRAM address in the 2nd line is from "40H" to "67H".

Read Busy Flag and Address

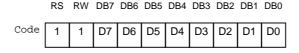


When BF = "High", indicates that the internal operation is being processed. So during this time the next instruction cannot be accepted.

The address Counter (AC) stores DDRAM/CGRAM addresses, transferred from IR.

After writing into (reading from) DDRAM/CGRAM, AC is automatically increased (decreased) by 1.

Write Data to CGRAM or DDRAM



Write binary 8-bit data to DDRAM/CGRAM.

The selection of RAM from DDRAM, CGRAM, is set by the previous address set instruction : DDRAM address set, CGRAM address set. RAM set instruction can also determine the AC direction to RAM.

After write operation, the address is automatically increased/decreased by 1, according to the entry mode.

Read Data from CGRAM or DDRAM

Read binary 8-bit data from DDRAM/CGRAM.

The selection of RAM is set by the previous address set instruction. If address set instruction of RAM is not performed before this instruction, the data that read first is invalid, because the direction of AC is not determined. If you read RAM data several times without RAM address set instruction before read operation, you can get correct RAM data from the second, but the first data would be incorrect, because there is no time margin to transfer RAM data.

In case of DDRAM read operation, cursor shift instruction plays the same role as DDRAM address set instruction: it also transfer RAM data to output data register. After read operation address counter is automatically increased/decreased by 1 according to the entry mode. After CGRAM read operation, display shift may not be executed correctly.

* In case of RAM write operation, after this AC is increased/decreased by 1 like read operation. In this time, AC indicates the next address position, but you can read only the previous data by read instruction.

■ Reset Function

Initializing by Internal Reset Circuit

An internal reset circuit automatically initializes the ST7066U when the power is turned on. The following instructions are executed during the initialization. The busy flag (BF) is kept in the busy state until the initialization ends (BF = 1). The busy state lasts for 40 ms after VCC rises to 4.5 V.

- 1. Display clear
- 2. Function set:

DL = 1; 8-bit interface data

N = 0; 1-line display

F = 0; 5x8 dot character font

3. Display on/off control:

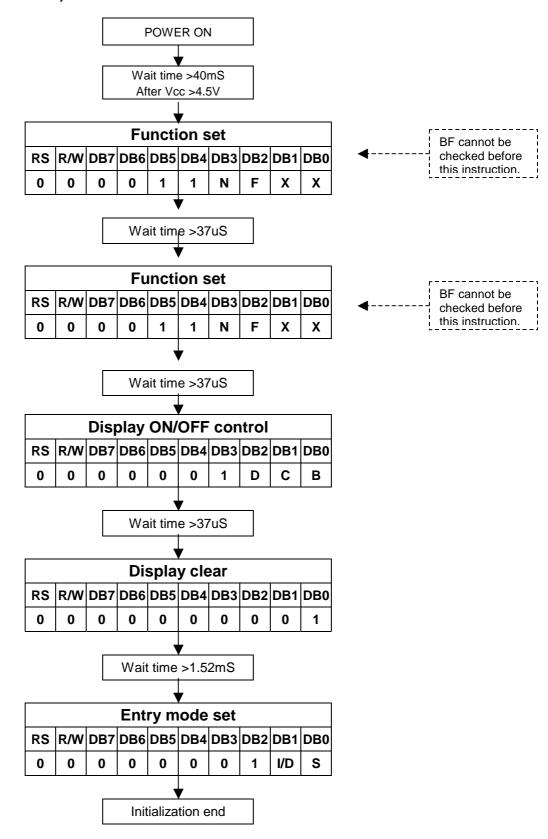
D = 0; Display off

C = 0; Cursor off

B = 0; Blinking off

4. Entry mode set:

I/D = 1; Increment by 1


S = 0; No shift

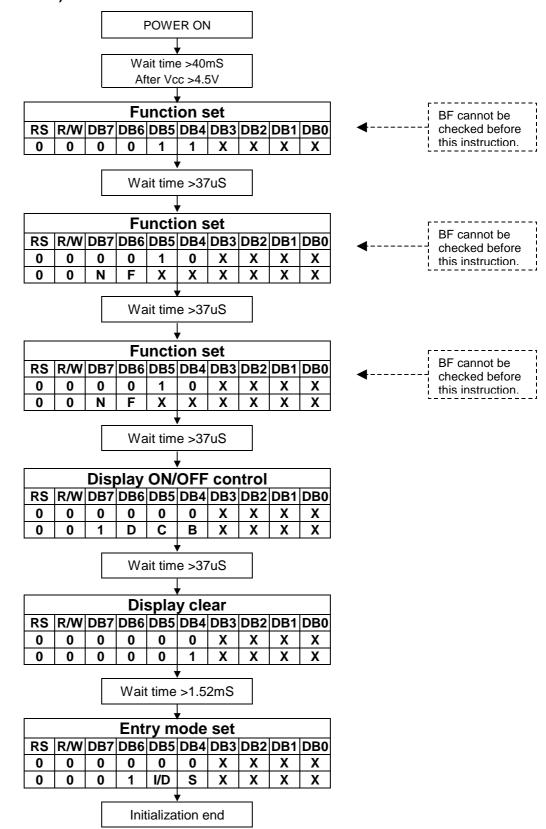
Note:

If the electrical characteristics conditions listed under the table Power Supply Conditions Using Internal Reset Circuit are not met, the internal reset circuit will not operate normally and will fail to initialize the ST7066U. For such a case, initialization must be performed by the MPU as explain by the following figure.

Initializing by Instruction

8-bit Interface (fosc=270KHz)

Initial Program Code Example For 8051 MPU(8 Bit Interface): INITIAL_START: CALL DELAY40mS MOV A,#38H ;FUNCTION SET CALL WRINS_NOCHK ;8 bit,N=1,5*7dot CALL DELAY37uS MOV A,#38H :FUNCTION SET CALL WRINS_NOCHK ;8 bit,N=1,5*7dot CALL DELAY37uS MOV A,#0FH ;DISPLAY ON CALL WRINS_CHK CALL DELAY37uS MOV A,#01H ;CLEAR DISPLAY CALL WRINS_CHK CALL DELAY1.52mS MOV A,#06H ;ENTRY MODE SET CALL WRINS_CHK ;CURSOR MOVES TO RIGHT CALL DELAY37uS MAIN_START: XXXX XXXX XXXX XXXX WRINS_CHK: CALL CHK_BUSY WRINS_NOCHK: CLR :EX:Port 3.0 RS CLR RW ;EX:Port 3.1 SETB E ;EX:Port 3.2 MOV P1,A ;EX:Port 1=Data Bus CLR Ε MOV P1,#FFH ;For Check Busy Flag RET CHK_BUSY: ;Check Busy Flag RS CLR SETB RW SETB E


P1.7,\$

Ε

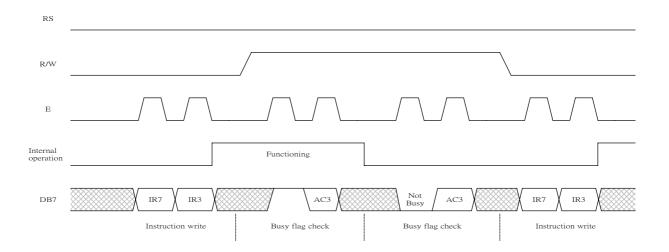
JB CLR

RET

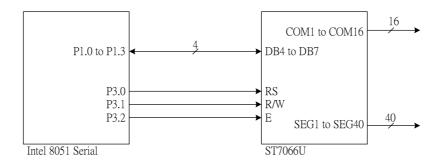
• 4-bit Interface (fosc=270KHz)

► Initial Program Code Example For 8051 MPU(4 Bit Interface):

			;	
INITIAL_STA			WRINS_CHK:	
CALL	DELAY40mS		CALL CHK_BUSY WRINS_NOCHK:	
MOV	A,#38H	;FUNCTION SET	PUSH A	
CALL	-	;8 bit,N=1,5*7dot	ANL A,#F0H	
CALL	-	,0 511,14-1,5 7401	CLR RS	;EX:Port 3.0
OALL	DELITIONGO		CLR RW	;EX:Port 3.1
MOV	A,#28H	;FUNCTION SET	SETB E	;EX:Port 3.2
CALL	-	;4 bit,N=1,5*7dot	MOV P1,A	;EX:Port1=Data Bus
CALL	DELAY37uS	, 1 511,114-1,0 1 451	CLR E	,EX. OIT - Data Dao
O/ LLL	BEERTOTAG		POP A	
MOV	A,#28H	;FUNCTION SET	SWAP A	
CALL	•		WRINS_ONCE:	
CALL		,	ANL A,#F0H	
0,			CLR RS	
MOV	A,#0FH	;DISPLAY ON	CLR RW	
CALL	WRINS_CHK	,	SETB E	
CALL	DELAY37uS		MOV P1,A	
			CLR E	
MOV	A,#01H	;CLEAR DISPLAY	MOV P1,#FFH	;For Check Bus Flag
	W/DINIO OLIIK	•		,
CALL	WRINS_CHK		RET	
CALL CALL			;	
				;Check Busy Flag
	DELAY1.52mS	ENTRY MODE SET	;	
CALL	DELAY1.52mS A,#06H	ENTRY MODE SET	; CHK_BUSY:	
CALL MOV CALL	DELAY1.52mS A,#06H	ENTRY MODE SET	; CHK_BUSY: PUSH A MOV P1,#FFH \$1	
MOV CALL CALL ;	DELAY1.52mS A,#06H WRINS_CHK DELAY37uS		; CHK_BUSY: PUSH A MOV P1,#FFH \$1 CLR RS	
MOV CALL CALL ;MAIN_STAR	DELAY1.52mS A,#06H WRINS_CHK DELAY37uS		;	
CALL MOV CALL CALL ; MAIN_STAR XXXX	DELAY1.52mS A,#06H WRINS_CHK DELAY37uS T:		;	
MOV CALL CALL ; MAIN_STAR' XXXX XXXX	DELAY1.52mS A,#06H WRINS_CHK DELAY37uS		;	
MOV CALL CALL ; MAIN_STAR XXXX XXXX XXXX	DELAY1.52mS A,#06H WRINS_CHK DELAY37uS		;CHK_BUSY: PUSH A MOV P1,#FFH \$1 CLR RS SETB RW SETB E MOV A,P1 CLR E	
MOV CALL CALL ; MAIN_STAR' XXXX XXXX	DELAY1.52mS A,#06H WRINS_CHK DELAY37uS		;CHK_BUSY: PUSH A MOV P1,#FFH \$1 CLR RS SETB RW SETB E MOV A,P1 CLR E MOV P1,#FFH	
MOV CALL CALL ; MAIN_STAR XXXX XXXX XXXX	DELAY1.52mS A,#06H WRINS_CHK DELAY37uS		;	
MOV CALL CALL ; MAIN_STAR XXXX XXXX XXXX	DELAY1.52mS A,#06H WRINS_CHK DELAY37uS		;CHK_BUSY: PUSH A MOV P1,#FFH \$1 CLR RS SETB RW SETB E MOV A,P1 CLR E MOV P1,#FFH CLR RS SETB RW	
MOV CALL CALL ; MAIN_STAR XXXX XXXX XXXX	DELAY1.52mS A,#06H WRINS_CHK DELAY37uS		;CHK_BUSY: PUSH A MOV P1,#FFH \$1 CLR RS SETB RW SETB E MOV A,P1 CLR E MOV P1,#FFH CLR RS SETB RW SETB E	
MOV CALL CALL ; MAIN_STAR XXXX XXXX XXXX	DELAY1.52mS A,#06H WRINS_CHK DELAY37uS		;CHK_BUSY: PUSH A MOV P1,#FFH \$1 CLR RS SETB RW SETB E MOV A,P1 CLR E MOV P1,#FFH CLR RS SETB RW SETB RW	
MOV CALL CALL ; MAIN_STAR XXXX XXXX XXXX	DELAY1.52mS A,#06H WRINS_CHK DELAY37uS		;	
MOV CALL CALL ; MAIN_STAR XXXX XXXX XXXX	DELAY1.52mS A,#06H WRINS_CHK DELAY37uS		;	
MOV CALL CALL ; MAIN_STAR XXXX XXXX XXXX	DELAY1.52mS A,#06H WRINS_CHK DELAY37uS		;	
MOV CALL CALL ; MAIN_STAR XXXX XXXX XXXX	DELAY1.52mS A,#06H WRINS_CHK DELAY37uS		;	

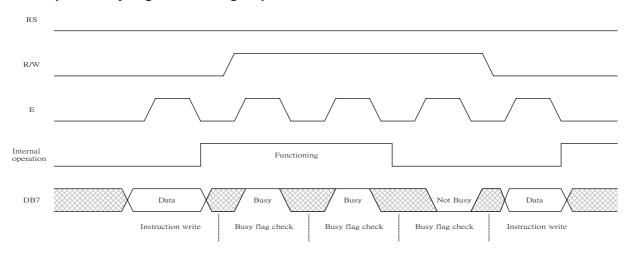

.

■ Interfacing to the MPU

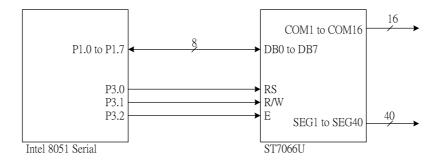

The ST7066U can send data in either two 4-bit operations or one 8-bit operation, thus allowing interfacing with 4-or 8-bit MPU.

• For 4-bit interface data, only four bus lines (DB4 to DB7) are used for transfer. Bus lines DB0 to DB3 are disabled. The data transfer between the ST7066U and the MPU is completed after the 4-bit data has been transferred twice. As for the order of data transfer, the four high order bits (for 8-bit operation, DB4 to DB7) are transferred before the four low order bits (for 8-bit operation, DB0 to DB3). The busy flag must be checked (one instruction) after the 4-bit data has been transferred twice. Two more 4-bit operations then transfer the busy flag and address counter data.

Example of busy flag check timing sequence

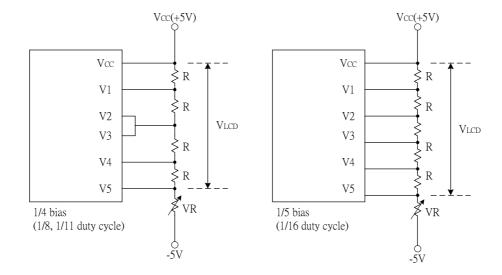


Intel 8051 interface

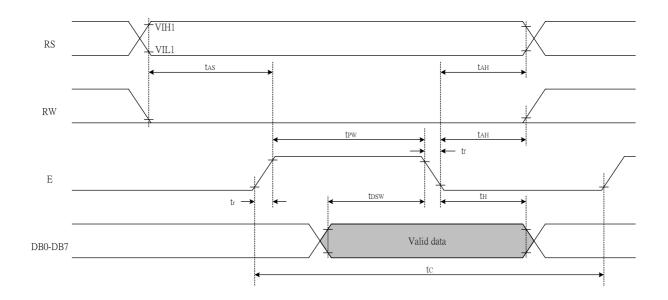


• For 8-bit interface data, all eight bus lines (DB0 to DB7) are used.

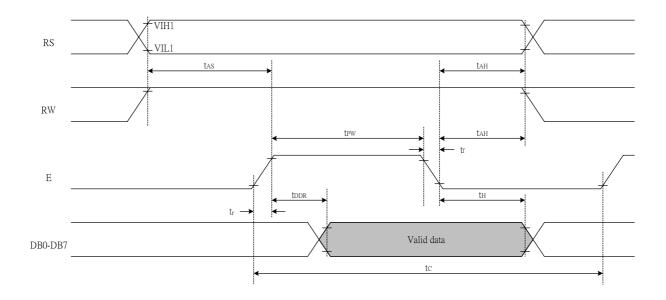
> Example of busy flag check timing sequence


> Intel 8051 interface

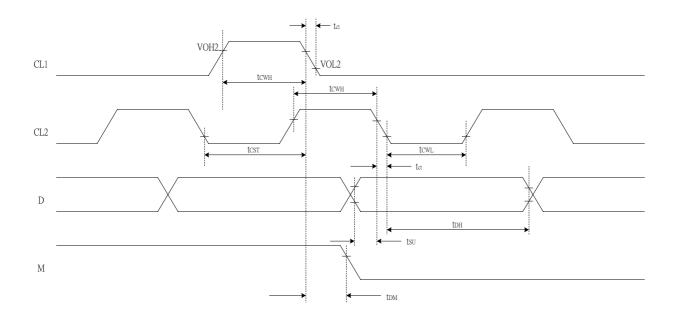
■ Supply Voltage for LCD Drive


There are different voltages that supply to ST7066U's pin (V1 - V5) to obtain LCD drive waveform. The relations of the bias, duty factor and supply voltages are shown as below:

	Duty Factor						
	1/8, 1/11	1/16					
	Bias						
Supply Voltage	1/4	1/5					
V1	Vcc - 1/4VLCD	Vcc - 1/5VLCD					
V2	Vcc - 1/2VLCD	Vcc - 2/5VLCD					
V3	Vcc - 1/2VLCD	Vcc - 3/5VLCD					
V4	Vcc - 3/4VLCD	Vcc - 4/5VLCD					
V5	Vcc - VLCD	Vcc- VLCD					



■ Timing Characteristics


Writing data from MPU to ST7066U

• Reading data from ST7066U to MPU

• Interface Timing with External Driver

■ AC Characteristics

 $(TA = 25^{\circ}C, VCC = 2.7V)$

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
		Internal Clock Operation				
f _{OSC}	OSC Frequency	R = 75ΚΩ	190	270	350	KHz
		External Clock Operation				
f_{EX}	External Frequency	-	125	270	410	KHz
	Duty Cycle	-	45	50	55	%
T_R,T_F	Rise/Fall Time	-	-	-	0.2	μs
	Write Mode	e (Writing data from MPU t	o ST706	6U)		
T _C	Enable Cycle Time	Pin E	1200	-	-	ns
T_PW	Enable Pulse Width	Pin E	460	-	-	ns
T_R,T_F	Enable Rise/Fall Time	Pin E	-	-	25	ns
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	-	-	ns
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	-	-	ns
T_{DSW}	Data Setup Time	Pins: DB0 - DB7	80	-	-	ns
Тн	Data Hold Time	Pins: DB0 - DB7	10	-	-	ns
	Read Mode	(Reading Data from ST70	66U to N	ΛPU)		
T _C	Enable Cycle Time	Pin E	1200	-	-	ns
T_PW	Enable Pulse Width	Pin E	480	-	-	ns
T_R, T_F	Enable Rise/Fall Time	Pin E	-	-	25	ns
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	-	-	ns
T_AH	Address Hold Time	Pins: RS,RW,E	10	-	-	ns
T_{DDR}	Data Setup Time	Pins: DB0 - DB7	-	-	320	ns
T _H	Data Hold Time	Pins: DB0 - DB7	10	-	-	ns
	Interfa	ce Mode with LCD Driver(S	ST7065)			
T_CWH	Clock Pulse with High	Pins: CL1, CL2	800	-	-	ns
T _{CWL}	Clock Pulse with Low	Pins: CL1, CL2	800	-	-	ns
T _{CST}	Clock Setup Time	Pins: CL1, CL2	500	-	-	ns
T _{SU}	Data Setup Time	Pin: D	300	-	-	ns
T _{DH}	Data Hold Time	Pin: D	300	-	-	ns
T _{DM}	M Delay Time	Pin: M	0	-	2000	ns

■ AC Characteristics

 $(TA = 25^{\circ}C, VCC = 5V)$

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
		Internal Clock Operation				
f _{OSC}	OSC Frequency	R = 91KΩ	190	270	350	KHz
		External Clock Operation)			
f_{EX}	External Frequency	-	125	270	410	KHz
	Duty Cycle	-	45	50	55	%
T_R,T_F	Rise/Fall Time	-	-	-	0.2	μs
	Write Mod	e (Writing data from MPU t	to ST706	6U)		
T _C	Enable Cycle Time	Pin E	1200	-	-	ns
T _{PW}	Enable Pulse Width	Pin E	140	-	-	ns
T_R,T_F	Enable Rise/Fall Time	Pin E	-	-	25	ns
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	-	-	ns
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	-	-	ns
T _{DSW}	Data Setup Time	Pins: DB0 - DB7	40	-	-	ns
Тн	Data Hold Time	Pins: DB0 - DB7	10	-	-	ns
	Read Mode	(Reading Data from ST70	66U to N	ЛРU)		
T _C	Enable Cycle Time	Pin E	1200	-	-	ns
T _{PW}	Enable Pulse Width	Pin E	140	-	-	ns
T_R,T_F	Enable Rise/Fall Time	Pin E	-	-	25	ns
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	-	-	ns
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	-	-	ns
T_{DDR}	Data Setup Time	Pins: DB0 - DB7	-	-	100	ns
T _H	Data Hold Time	Pins: DB0 - DB7	10	-	-	ns
	Interfa	ce Mode with LCD Driver(ST7065)			
T_CWH	Clock Pulse with High	Pins: CL1, CL2	800	-	-	ns
T_CWL	Clock Pulse with Low	Pins: CL1, CL2	800	-	-	ns
T _{CST}	Clock Setup Time	Pins: CL1, CL2	500	-	-	ns
T _{SU}	Data Setup Time	Pin: D	300	-	-	ns
T _{DH}	Data Hold Time	Pin: D	300	-	-	ns
T_DM	M Delay Time	Pin: M	0	-	2000	ns

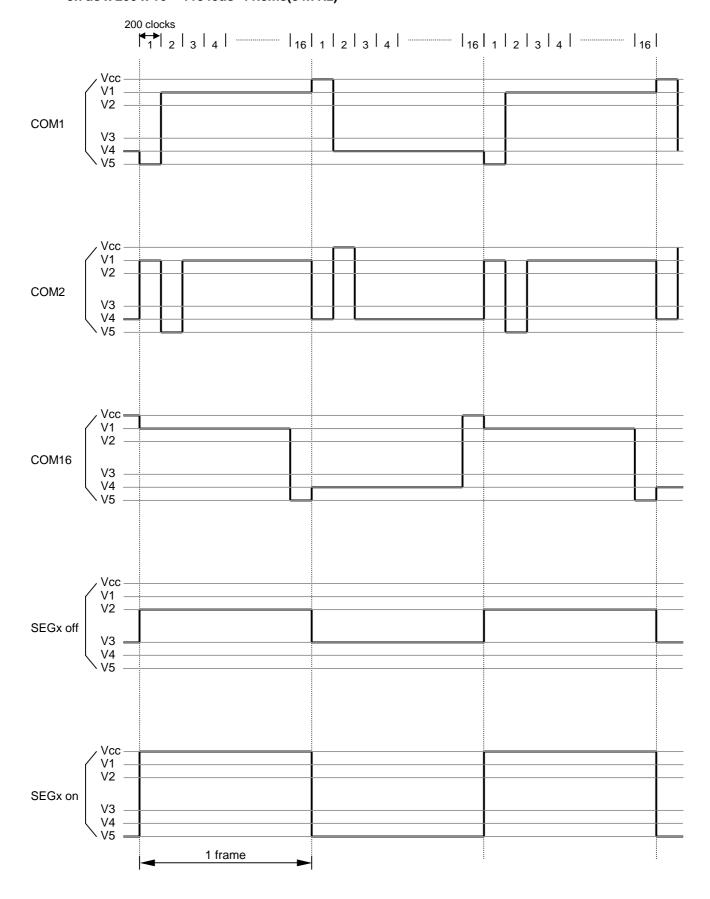
■ Absolute Maximum Ratings

Characteristics	Symbol	Value		
Power Supply Voltage	V _{CC}	-0.3 to +7.0		
LCD Driver Voltage	V_{LCD}	Vcc-10.0 to Vcc+0.3		
Input Voltage	V _{IN}	-0.3 to V _{CC} +0.3		
Operating Temperature	T _A	-40° C to + 90° C		
Storage Temperature	T _{STO}	-55°C to + 125°C		

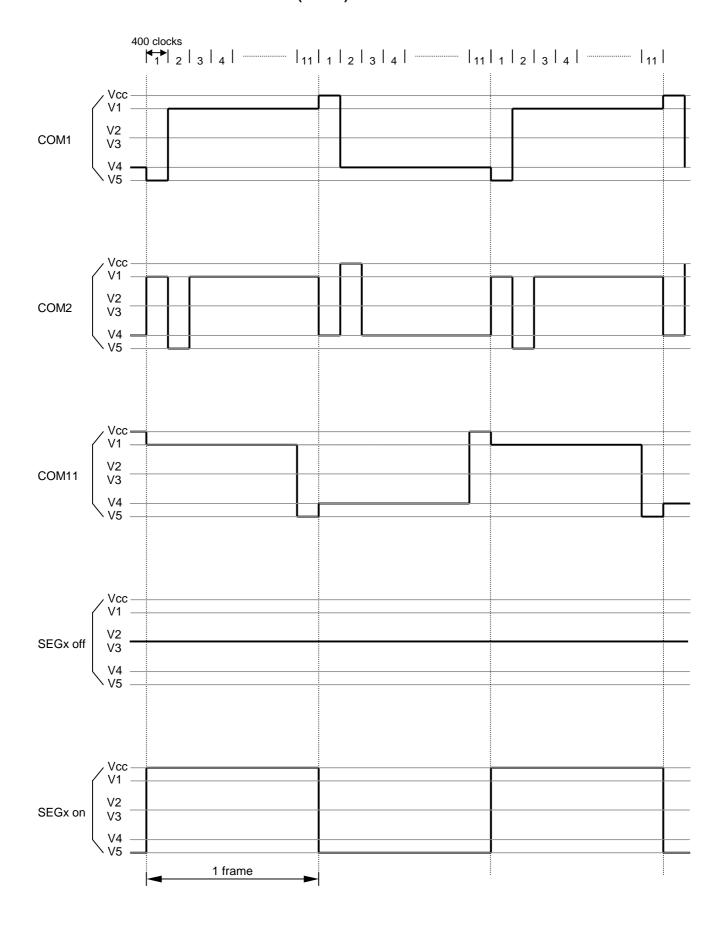
■ DC Characteristics

 $(TA = 25^{\circ}C, VCC = 2.7 V - 4.5 V)$

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
V _{CC}	Operating Voltage	-	2.7	-	4.5	V
V_{LCD}	LCD Voltage	V _{CC} -V5	3.0	-	10.0	V
I _{cc}	Power Supply Current	$f_{OSC} = 270KHz$ $V_{CC}=3.0V$	-	0.1	0.25	mA
V _{IH1}	Input High Voltage (Except OSC1)	-	0.7Vcc	-	V _{cc}	V
V _{IL1}	Input Low Voltage (Except OSC1)	-	- 0.3	-	0.6	V
V _{IH2}	Input High Voltage (OSC1)	-	0.7Vcc	-	V _{CC}	V
V _{IL2}	Input Low Voltage (OSC1)	-	-	-	0.2Vcc	V
V _{OH1}	Output High Voltage (DB0 - DB7)	I _{OH} = -0.1mA	0.75 Vcc	-	-	V
V _{OL1}	Output Low Voltage (DB0 - DB7)	I _{OL} = 0.1mA	-	-	0.2Vcc	V
V _{OH2}	Output High Voltage (Except DB0 - DB7)	I _{OH} = -0.04mA	0.8V _{CC}	-	V _{CC}	V
V _{OL2}	Output Low Voltage (Except DB0 - DB7)	I _{OL} = 0.04mA	-	-	0.2V _{CC}	V
R _{COM}	Common Resistance	$V_{LCD} = 4V, I_d = 0.05mA$	-	2	20	ΚΩ
R _{SEG}	Segment Resistance	$V_{LCD} = 4V, I_d = 0.05mA$	-	2	30	ΚΩ
I _{LEAK}	Input Leakage Current	$V_{IN} = 0V \text{ to } V_{CC}$	-1	-	1	μΑ
I _{PUP}	Pull Up MOS Current	$V_{CC} = 3V$	-10	-50	-120	μΑ

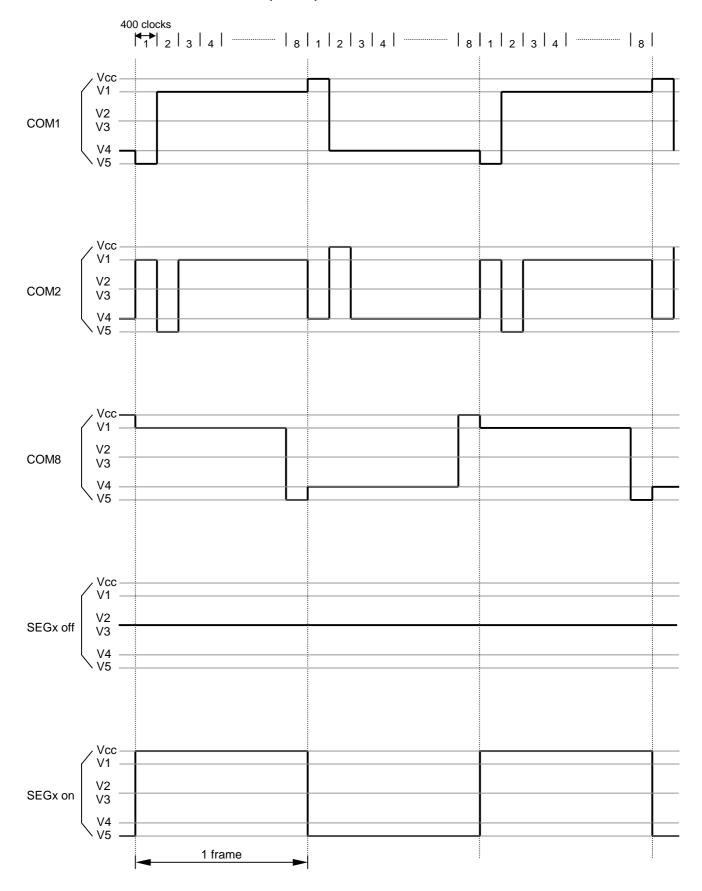

■ DC Characteristics

(TA = 25°C , V_{CC} = 4.5 V - 5.5 V)

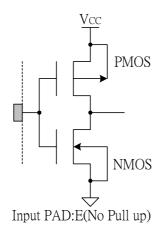

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
V _{CC}	Operating Voltage	-	4.5	1	5.5	V
V_{LCD}	LCD Voltage	V _{CC} -V5	3.0	ı	10.0	V
I _{CC}	Power Supply Current	$f_{OSC} = 270KHz$ $V_{CC}=5.0V$	-	0.2	0.5	mA
V _{IH1}	Input High Voltage (Except OSC1)	-	0.7Vcc	-	V _{CC}	٧
V _{IL1}	Input Low Voltage (Except OSC1)	-	-0.3	-	0.6	V
V _{IH2}	Input High Voltage (OSC1)	-	V _{CC} -1	-	V _{CC}	V
V_{IL2}	Input Low Voltage (OSC1)	-	-	-	1.0	٧
V _{OH1}	Output High Voltage (DB0 - DB7)	I _{OH} = -0.1mA	3.9	-	V _{CC}	٧
V _{OL1}	Output Low Voltage (DB0 - DB7)	I _{OL} = 0.1mA	-	-	0.4	V
V_{OH2}	Output High Voltage (Except DB0 - DB7)	$I_{OH} = -0.04 \text{mA}$	0.9V _{CC}	-	V _{CC}	V
V_{OL2}	Output Low Voltage (Except DB0 - DB7)	$I_{OL} = 0.04 \text{mA}$	ı	-	0.1V _{CC}	٧
R _{COM}	Common Resistance	$V_{LCD} = 4V, I_{d} = 0.05mA$	-	2	20	ΚΩ
R _{SEG}	Segment Resistance	$V_{LCD} = 4V, I_d = 0.05mA$	-	2	30	ΚΩ
I _{LEAK}	Input Leakage Current	$V_{IN} = 0V \text{ to } V_{CC}$	-1	-	1	μΑ
I _{PUP}	Pull Up MOS Current	V _{CC} = 5V	-50	-110	-180	μΑ

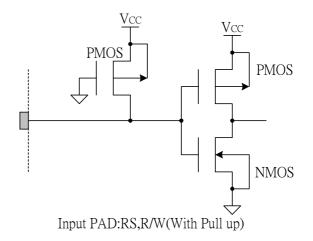
■ LCD Frame Frequency

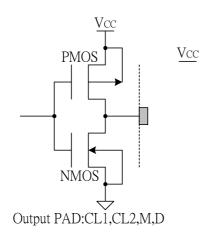
• Assume the oscillation frequency is 270KHZ, 1 clock cycle time = 3.7us, 1/16 duty; 1/5 bias,1 frame = 3.7us x 200 x 16 = 11840us=11.8ms(84.7Hz)

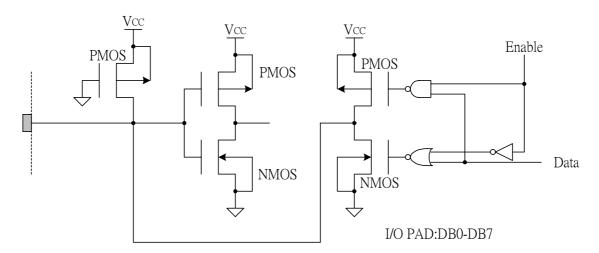


Assume the oscillation frequency is 270KHZ, 1 clock cycle time = 3.7us, 1/11 duty; 1/4 bias,1 frame = 3.7us x 400 x 11 = 16280us=16.3ms (61.3Hz)

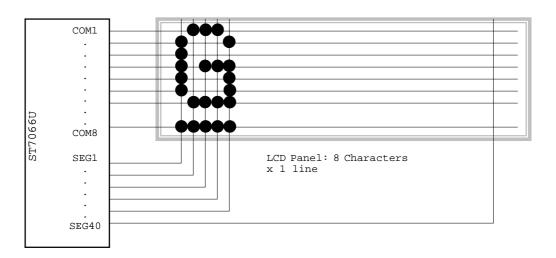


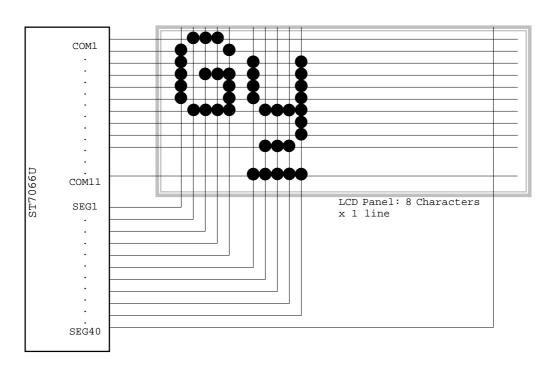

37/42

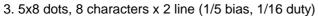

Assume the oscillation frequency is 270KHZ, 1 clock cycle time = 3.7us, 1/8 duty; 1/4 bias,1 frame = 3.7us x 400 x 8 = 11840us=11.8ms (84.7Hz)

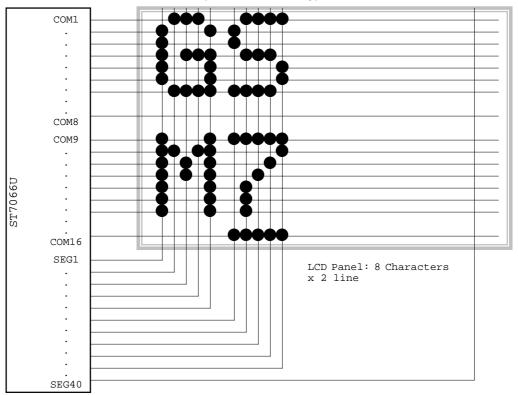


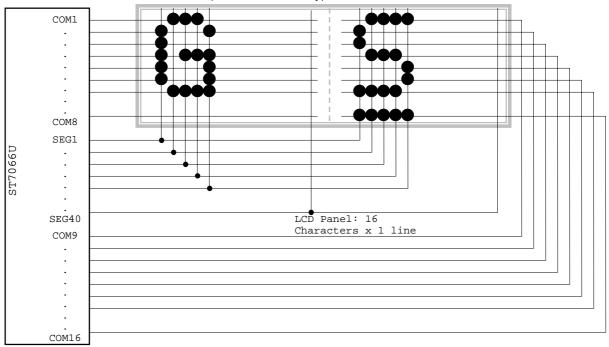
■ I/O Pad Configuration

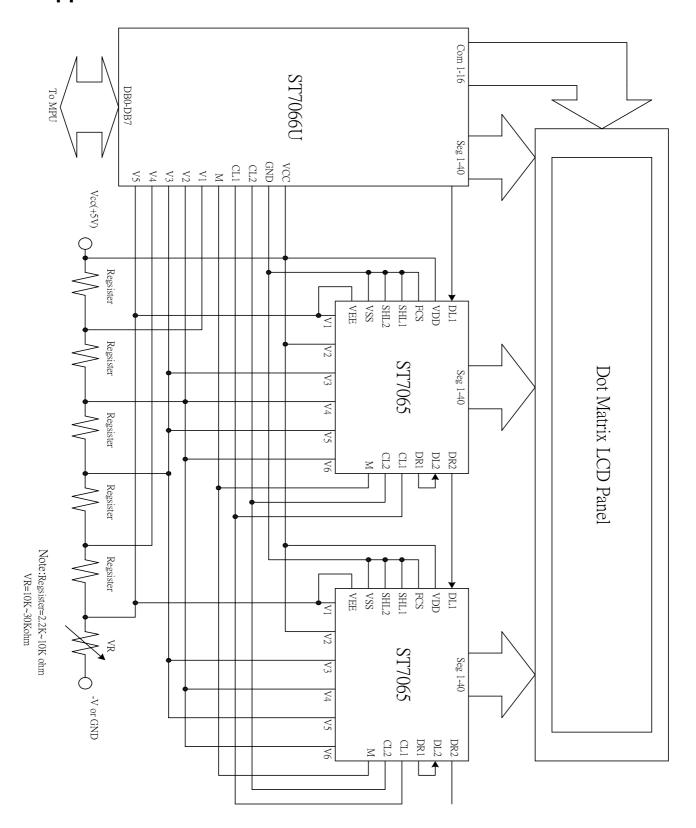





■ LCD and ST7066U Connection


1. 5x8 dots, 8 characters x 1 line (1/4 bias, 1/8 duty)


2. 5x11 dots, 8 characters x 1 line (1/4 bias, 1/11 duty)



4. 5x8 dots, 16 characters x 1 line (1/5 bias, 1/16 duty)

■ Application Circuit

