

General Description

The MAX7318 2-wire-interfaced expander provides 16bit parallel input/output (I/O) port expansion for SMBus[™] and I²C[™] applications. The MAX7318 consists of input port registers, output port registers, polarity inversion registers, configuration registers, a bus timeout register, and an I²C-compatible serial interface logic compatible with SMBus. The system master can invert the MAX7318 input data by writing to the activehigh polarity inversion register.

Any of the 16 I/O ports can be configured as an input or output. A power-on reset (POR) initializes the 16 I/Os as inputs. Three address select pins configure one of 64 slave ID addresses.

The MAX7318 supports hot insertion. All port pins, the INT output, SDA, SCL, and the slave address inputs AD0-2 remain high impedance in power-down (V+ = 0V) with up to 6V asserted upon them.

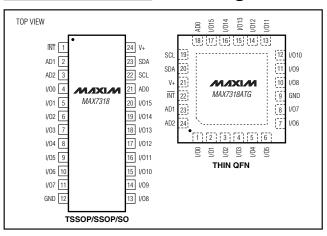
The MAX7318 is available in 24-pin SO, SSOP, TSSOP, and thin QFN packages and is specified over the -40°C to +125°C automotive temperature range.

For applications requiring an SMBus timeout function, refer to the MAX7311 data sheet.

Applications

Servers

RAID Systems


Industrial Control

Medical Equipment

PLCs

Instrumentation and Test Measurement

Pin Configurations

Features

- ♦ 400kbps I²C-Compatible Serial Interface
- ♦ 2V to 5.5V Operation
- ♦ 5.5V Overvoltage-Tolerant I/Os
- **♦ Supports Hot Insertion**
- ♦ 16 I/O Pins that Default to Inputs on Power-Up
- ♦ 100kΩ Pullup on Each I/O
- ♦ Open-Drain Interrupt Output (INT)
- ♦ Noise Filter on SCL/SDA Inputs
- ♦ 64 Slave ID Addresses Available
- ♦ Low Standby Current (5.4µA typ)
- **♦** Polarity Inversion
- ♦ 4mm × 4mm, 0.8mm Thin QFN Package
- ♦ -40°C to +125°C Operation

Ordering Information

PART	PART TEMP RANGE		PKG CODE
MAX7318AWG	-40°C to +125°C	24 Wide SO	_
MAX7318AAG	-40°C to +125°C	24 SSOP	
MAX7318ATG	-40°C to +125°C	24 Thin QFN (4mm × 4mm)	T2444-4
MAX7318AUG	-40°C to +125°C	24 TSSOP	_

SMBus is a trademark of Intel Corp.

 ${}^{\beta}C$ is a trademark of Philips Corp.

Purchase of I²C components from Maxim Integrated Products, Inc., or one of its sublicensed Associated Companies, conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the PC Standard Specification as defined by Philips.

ABSOLUTE MAXIMUM RATINGS

0.3V to +6V
(GND - 0.3V) to +6V
(GND - 0.3V) to +6V
+250mA
250mA
±20mA
±80mA

Continuous Power Dissipation (T _A = +70°C)	
24-Pin Wide SO (derate 11.8mW/°C above +70°C)94	41mW
24-Pin SSOP (derate 8.0mW/°C above +70°C)64	40mW
24-Pin TSSOP (derate 12.2mW/°C above +70°C)9	76mW
24-Pin Thin QFN (derate 20.8mW/°C above +70°C) .160	67mW
Operating Temperature Range40°C to +	125°C
Junction Temperature+	150°C
Storage Temperature Range65°C to +	150°C
Lead Temperature (soldering, 10s)+	300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V+ = 2V \text{ to } 5.5V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V+ = 3.3V, T_A = +25^{\circ}\text{C.}$) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage	V+			2.0		5.5	V
		A11.1/0	V+ = 2V		24	36	
Supply Current	l ⁺	All I/Os unloaded, f _{SCL} = 400kHz	V + = 3.3V		45	62	μΑ
		1306 - 1001112	V + = 5.5V		83	124	
			V+ = 2V		4.8	12.1	
Standby Current	ISTBY	All I/Os unloaded, fscl = 0	V+ = 3.3V		5.4	14.4	μΑ
		15CL - 0	V + = 5.5V		6.4	19.4	
Power-On Reset Voltage	Vpor				1.4	1.7	V
SCL, SDA							
Input Voltage Low	VIL					0.3 x V+	V
Input Voltage High	V _{IH}			0.7 x V+			V
Low-Level Output Voltage	V _{OL}	I _{SINK} = 6mA				0.4	V
Leakage Current	ΙL			-1		+1	μΑ
Input Capacitance					10		рF
I/O_							
Input Voltage Low	VIL					0.8	V
Input Voltage High	VIH			1.8			V
Input Leakage Current		T _A = -40°C to +85°C; in pullup current, V _{IO} = V				1	μΑ
Internal Pullup Current		$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, V$	_{1O} = 0		34	100	μA
		$V + = 2V, V_{OL} = 0.5V$		8.5	17		
Low-Level Output Current	ISINK	$V + = 3.3V, V_{OL} = 0.5V$		17	32		mA
			$V + = 5V, V_{OL} = 0.5V$				
		$V + = 3.3V, V_{OH} = 2.4V$		29	41		
High Output Current	ISOURCE	$V + = 5V, V_{OH} = 4.5V$			31		mA
AD0, AD1, AD2				•			
Input Voltage Low	VIL					0.3 x V+	V
Input Voltage High	V _{IH}			0.7 x V+			V

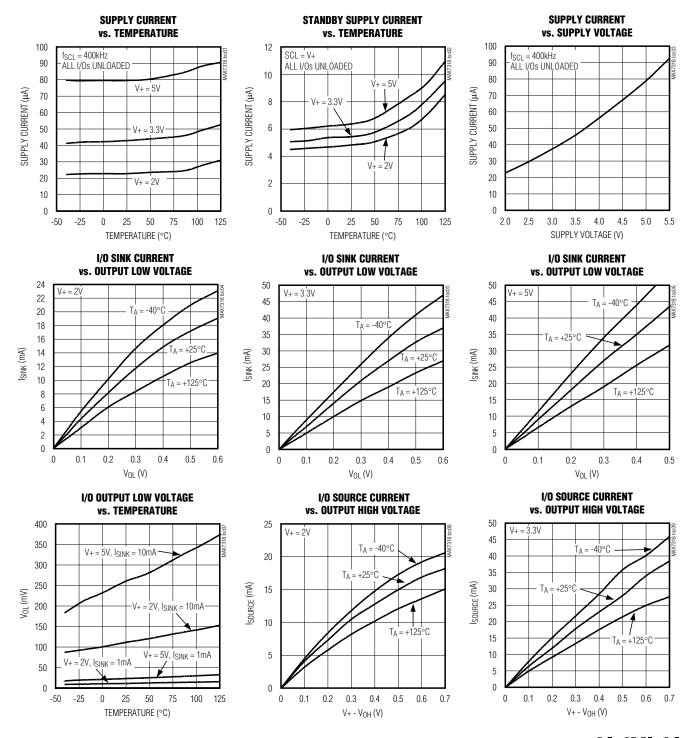
DC ELECTRICAL CHARACTERISTICS (continued)

 $(V+ = 2V \text{ to } 5.5V, T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V+ = 3.3V, T_A = +25^{\circ}\text{C.}$) (Note 1)

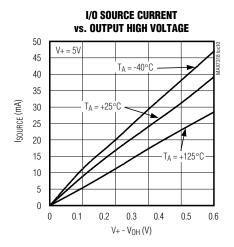
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Leakage Current			-1		+1	μΑ
Input Capacitance				4		рF
ĪNT						
Low-Level Output Current	loL	V _{OL} = 0.4V	6			mA

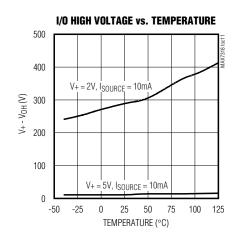
AC ELECTRICAL CHARACTERISTICS

 $(V+ = 2V \text{ to } 5.5V, T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}, \text{ unless otherwise noted.})$ (Note 1)


PARAMETER	SYMBOL	CONDIT	CONDITIONS		TYP	MAX	UNITS
SCL Clock Frequency	f _{SCL}				400	kHz	
Bus Free Time Between STOP and START Conditions	tBUF	Figure 2	1.3			μs	
Hold Time (Repeated) START Condition	^t HD,STA	Figure 2		0.6			μs
Repeated START Condition Setup Time	tsu,sta	Figure 2		0.6			μs
STOP Condition Setup Time	tsu,sto	Figure 2		0.6			μs
Data Hold Time	thd,dat	Figure 2 (Note 2)				0.9	μs
Data Setup Time	t _{SU,DAT}	Figure 2	100			ns	
SCL Low Period	tLOW	Figure 2		1.3			μs
SCL High Period	thigh	Figure 2		0.7			μs
SDA Fall Time	tF	Figure 2 (Notes 3, 4)	V+ < 3.3V			500	ns
SDAT all Tillie	4-	rigure 2 (Notes 3, 4)	V+ ≥ 3.3V			250	115
Pulse Width of Spike Suppressed	tsp	(Note 5)			50		ns
PORT TIMING							
Output Data Valid	tpv	Figure 7				3	μs
Input Data Setup Time			27			μs	
Input Data Hold Time			0			μs	
INTERRUPT TIMING							
Interrupt Valid	t _{IV}	Figure 9				30.5	μs
Interrupt Reset	tıR	Figure 9				2	μs

- **Note 1:** All parameters are 100% production tested at $T_A = +25$ °C. Specifications over temperature are guaranteed by design.
- Note 2: A master device must internally provide a hold time of at least 300ns for the SDA signal (referred to the V_{IL} of the SCL signal) to bridge the undefined region SCL's falling edge.
- Note 3: C_B = total capacitance of one bus line in pF.
- Note 4: The maximum t_F for the SDA and SCL bus lines is specified at 300ns. The maximum fall time for the SDA output stage t_F is specified at 250ns. This allows series protection resistors to be connected between the SDA and SCL pins and the SDA/SCL bus lines without exceeding the maximum specified t_F.
- Note 5: Input filters on the SDA and SCL inputs suppress noise spikes less than 50ns.


Typical Operating Characteristics


 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Pin Description

PI	IN						
TSSOP/ SSOP/SO	THIN QFN	NAME	FUNCTION				
1	22	ĪNT	Interrupt Output (Open Drain)				
2	23	AD1	Address Input 1				
3	24	AD2	Address Input 2				
4–11	1–8	1/00-1/07	Input/Output Port 1				
12	9	GND	Supply Ground				
13–20	10–17	I/O8-I/O15	Input/Output Port 2				
21	18	AD0	Address Input 0				
22	19	SCL	Serial Clock Line				
23	20	SDA	Serial Data Line				
24	21	V+	Supply Voltage. Bypass with a 0.047µF capacitor to GND.				
_	_	EP	Exposed Pad on Package Underside. Connect to GND.				

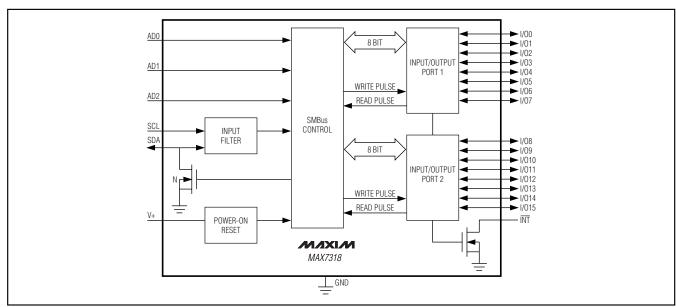


Figure 1. MAX7318 Block Diagram

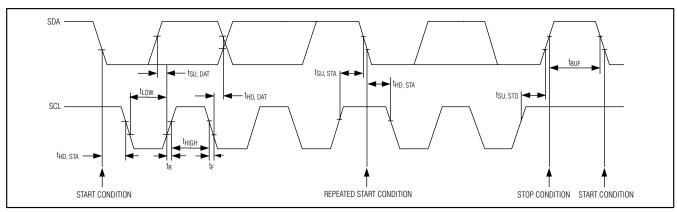


Figure 2. 2-Wire Serial Interface Timing Diagram

Detailed Description

The MAX7318 general-purpose input/output (GPIO) peripheral provides up to 16 I/O ports, controlled through an I²C-compatible serial interface. The MAX7318 consists of input port registers, output port registers, polarity inversion registers, and configuration registers. Upon power-on, all I/O lines are set as inputs. Three slave ID address select pins, ADO, AD1, and AD2, choose one of 64 slave ID addresses, including the eight addresses supported by the Phillips PCA9555. Table 1 is the register address table. Tables 2–5 show detailed register information.

Serial Interface

Serial Addressing

The MAX7318 operates as a slave that sends and receives data through a 2-wire interface. The interface uses a serial data line (SDA) and a serial clock line (SCL) to achieve bidirectional communication between master(s) and slave(s). A master, typically a microcontroller, initiates all data transfers to and from the MAX7318, and generates the SCL clock that synchronizes the data transfer (Figure 2).

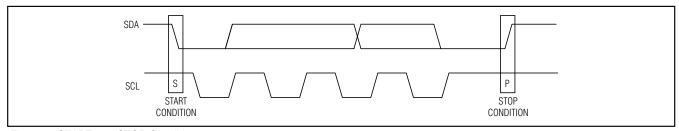


Figure 3. START and STOP Conditions

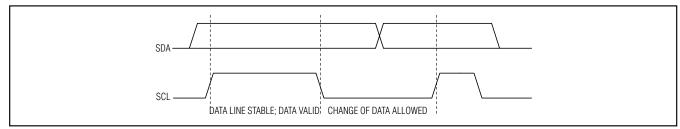


Figure 4. Bit Transfer

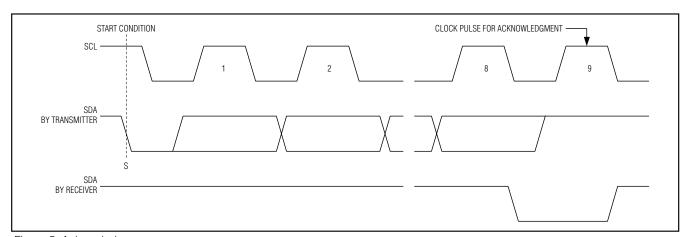


Figure 5. Acknowledge

Each transmission consists of a START condition sent by a master, followed by the MAX7318 7-bit slave address plus R/W bit, a register address byte, 1 or more data bytes, and finally a STOP condition (Figure 3).

START and STOP Conditions

Both SCL and SDA remain high when the interface is not busy. A master signals the beginning of a transmission with a START (S) condition by transitioning SDA from high to low while SCL is high. When the master has finished communicating with the slave, it issues a STOP (P) condition by transitioning SDA from low to high while SCL is high. The bus is then free for another transmission (Figure 3).

Bit Transfer

One data bit is transferred during each clock pulse. The data on SDA must remain stable while SCL is high (Figure 4).

Acknowledge

The acknowledge bit is a clocked 9th bit, which the recipient uses as a handshake receipt of each byte of data (Figure 5). Thus, each byte transferred effectively requires 9 bits. The master generates the 9th clock pulse, and the recipient pulls down SDA during the acknowledge clock pulse, such that the SDA line is stable low during the high period of the clock pulse. When the master is transmitting to the MAX7318, the MAX7318

generates the acknowledge bit since the MAX7318 is the recipient. When the MAX7318 is transmitting to the master, the master generates the acknowledge bit.

Slave Address

The MAX7318 has a 7-bit-long slave address (Figure 6). The 8th bit following the 7-bit slave address is the R/W bit. Set this bit low for a write command and high for a read command.

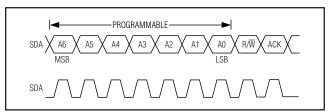


Figure 6. Slave Address

Slave address pins AD2, AD1, and AD0 choose 1 of 64 slave ID addresses (Table 7).

Data Bus Transaction

The command byte is the first byte to follow the 8-bit device slave address during a write transmission (Table 1, Figure 7). The command byte is used to determine which of the following registers are written or read.

Writing to Port Registers

Transmit data to the MAX7318 by sending the device slave address and setting the LSB to a logic zero. The command byte is sent after the address and determines which registers receive the data following the command byte (Figure 7).

Table 1. Command-Byte Register

COMMAND BYTE ADDRESS (hex)	FUNCTION	PROTOCOL	POWER-UP DEFAULT
0x00	Input port 1	Read byte	XXXX XXXX
0x01	Input port 2	Read byte	XXXX XXXX
0x02	Output port 1	Read/write byte	1111 1111
0x03	Output port 2	Read/write byte	1111 1111
0x04	Port 1 polarity inversion	Read/write byte	0000 0000
0x05	Port 2 polarity inversion	Read/write byte	0000 0000
0x06	Port 1 configuration	Read/write byte	1111 1111
0x07	Port 2 configuration	Read/write byte	1111 1111
0xFF	Factory reserved. (Do not write to this register.)	_	_

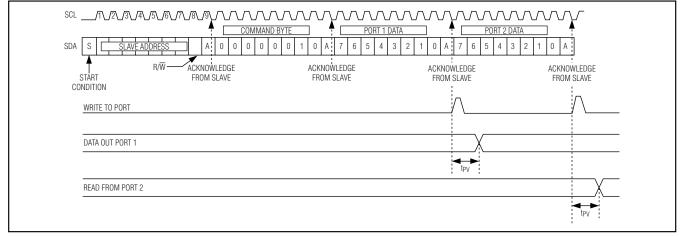


Figure 7. Writes to Output Registers Through Write-Byte Protocol

The MAX7318's eight registers are configured to operate as four register pairs: input ports, output ports, polarity inversion ports, and configuration ports. After sending 1 byte of data to one register, the next byte is sent to the other register in the pair. For example, if the first byte of data is sent to output port 2, then the next byte of data is stored in output port 1. An unlimited number of data bytes can be sent in one write transmission. This allows each 8-bit register to be updated independently of the other registers.

Reading Port Registers

To read the device data, the bus master must first send the MAX7318 address with the R/W bit set to zero, followed by the command byte, which determines which register is accessed. After a restart, the bus master must then send the MAX7318 address with the R/W bit set to 1. Data from the register defined by the command byte is then sent from the MAX7318 to the master (Figures 8, 9).

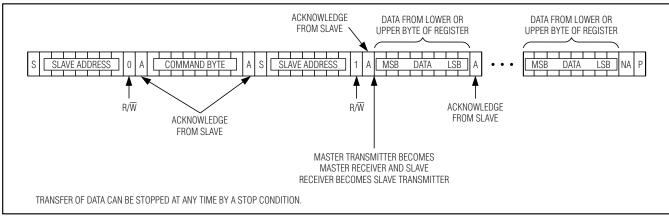


Figure 8. Read from Register

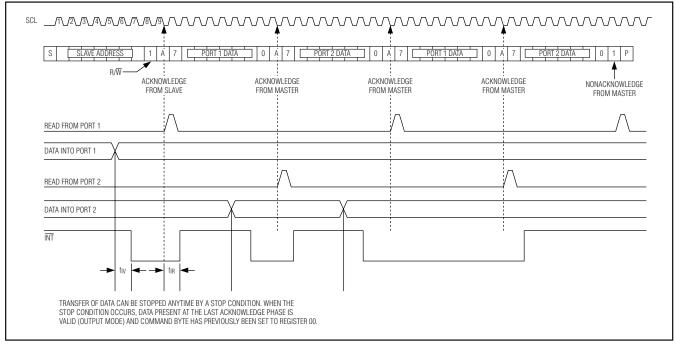


Figure 9. Read from Input Registers

Data is clocked into a register on the falling edge of the acknowledge clock pulse. After reading the first byte, additional bytes may be read and reflect the content in the other register in the pair. For example, if input port 1 is read, the next byte read is input port 2. An unlimited number of data bytes can be read in one read transmission, but the final byte received must not be acknowledged by the bus master.

Interrupt (INT)

The open-drain interrupt output, $\overline{\text{INT}}$, activates when one of the port pins changes states and only when the pin is configured as an input. The interrupt deactivates when the input returns to its previous state or the input register is read (Figure 9). A pin configured as an output does not cause an interrupt. Each 8-bit port register is read independently; therefore, an interrupt caused by port 1 is not cleared by a read of port 2's register.

Changing an I/O from an output to an input may cause a false interrupt to occur if the state of that I/O does not match the content of the input port register.

Input/Output Port

When an I/O is configured as an input, FETs Q1 and Q2 are off (Figure 10), creating a high-impedance input with a nominal $100k\Omega$ pullup to V+. All inputs are overvoltage protected to 5.5V, independent of supply voltage. When a port is configured as an output, either Q1 or Q2 is on, depending on the state of the output port register. When V+ powers up, an internal power-on reset sets all registers to their respective defaults (Table 1).

Input Port Registers

The input port registers (Table 2) are read-only ports. They reflect the incoming logic levels of the pins, regardless of whether the pin is defined as an input or an output by the respective configuration register. A read of the input port 1 register latches the current value of I/O0–I/O7. A read of the input port 2 register latches the current value of I/O8–I/O15. Writes to the input port registers are ignored.

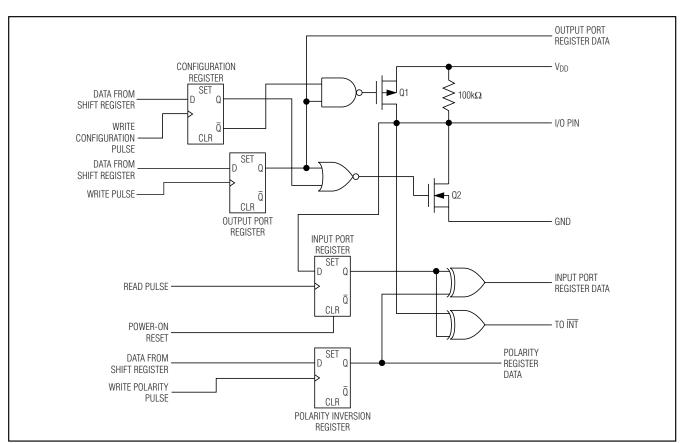


Figure 10. Simplified Schematic of I/Os

Table 2. Registers 0x00, 0x01—Input Port Registers

BIT	17	16	15	14	13	12	I1	10
ВП	I15	l14	l13	l12	l11	l10	19	18

Table 3. Registers 0x02, 0x03—Output Port Registers

DIT	07	06	O 5	04	О3	02	01	00
BIT	O15	014	O13	012	011	O10	09	08
Power-up default	1	1	1	1	1	1	1	1

Table 4. Registers 0x04, 0x05—Polarity Inversion Registers

DIT	I/O7	I/O6	I/O5	I/O4	I/O3	I/O2	I/O1	I/O0
BIT	I/O15	I/O14	I/O13	I/O12	I/O11	I/O10	I/O9	I/O8
Power-up default	0	0	0	0	0	0	0	0

Table 5. Registers 0x06, 0x07—Configuration Registers

BIT -	I/O7	I/O6	I/O5	I/O4	I/O3	I/O2	I/O1	I/O0
	I/O15	I/O14	I/O13	I/O12	I/O11	I/O10	I/O9	I/O8
Power-up default	1	1	1	1	1	1	1	1

Output Port Registers

The output port registers (Table 3) set the outgoing logic levels of the I/Os defined as outputs by the respective configuration register. Reads from the output port registers reflect the value that is in the flip-flop controlling the output selection, not the actual I/O value.

Polarity Inversion Registers

The polarity inversion registers (Table 4) enable polarity inversion of pins defined as inputs by the respective port configuration registers. Set the bit in the polarity inversion register to invert the corresponding port pin's polarity. Clear the bit in the polarity inversion register to retain the corresponding port pin's original polarity.

Configuration Registers

The configuration registers (Table 5) configure the directions of the I/O pins. Set the bit in the respective configuration register to enable the corresponding port as an input. Clear the bit in the configuration register to enable the corresponding port as an output.

Standby

The MAX7318 goes into standby when the I^2C bus is idle. Standby supply current is typically 5.4 μ A.

_Applications Information

Hot Insertion

The I/O ports I/O0-I/O15, interrupt output $\overline{\text{INT}},$ and serial interface SDA, SCL, AD0-2 remain high impedance with up to 6V asserted on them when the MAX7318 is powered down (V+ = 0V). The MAX7318 can therefore be used in hot-swap applications. Note that each I/O's $100\text{k}\Omega$ pullup effectively becomes a $100\text{k}\Omega$ pulldown when the MAX7318 is powered down.

Power-Supply Consideration

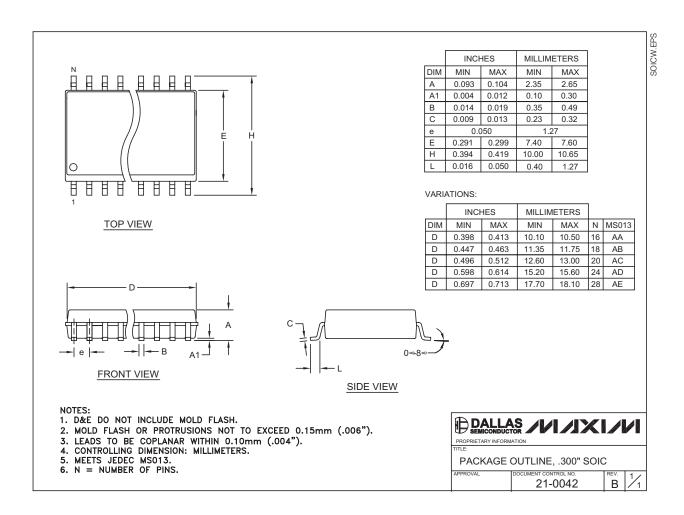
The MAX7318 operates from a supply voltage of 2V to 5.5V. Bypass the power supply to GND with a 0.047µF capacitor as close to the device as possible. For the QFN version, connect the exposed pad to GND.

Table 6. MAX7318 Address Map

AD2	AD1	AD0	A6	A5	A4	А3	A2	A1	A0	ADDRESS (hex)
GND	SCL	GND	0	0	1	0	0	0	0	0x20
GND	SCL	V+	0	0	1	0	0	0	1	0x22
GND	SDA	GND	0	0	1	0	0	1	0	0x24
GND	SDA	V+	0	0	1	0	0	1	1	0x26
V+	SCL	GND	0	0	1	0	1	0	0	0x28
V+	SCL	V+	0	0	1	0	1	0	1	0x2A
V+	SDA	GND	0	0	1	0	1	1	0	0x2C
V+	SDA	V+	0	0	1	0	1	1	1	0x2E
GND	SCL	SCL	0	0	1	1	0	0	0	0x30
GND	SCL	SDA	0	0	1	1	0	0	1	0x32
GND	SDA	SCL	0	0	1	1	0	1	0	0x34
GND	SDA	SDA	0	0	1	1	0	1	1	0x36
V+	SCL	SCL	0	0	1	1	1	0	0	0x38
V+	SCL	SDA	0	0	1	1	1	0	1	0x3A
V+	SDA	SCL	0	0	1	1	1	1	0	0x3C
V+	SDA	SDA	0	0	1	1	1	1	1	0x3E
GND	GND	GND	0	1	0	0	0	0	0	0x40
GND	GND	V+	0	1	0	0	0	0	1	0x42
GND	V+	GND	0	1	0	0	0	1	0	0x44
GND	V+	V+	0	1	0	0	0	1	1	0x46
V+	GND	GND	0	1	0	0	1	0	0	0x48
V+	GND	V+	0	1	0	0	1	0	1	0x4A
V+	V+	GND	0	1	0	0	1	1	0	0x4C
V+	V+	V+	0	1	0	0	1	1	1	0x4E
GND	GND	SCL	0	1	0	1	0	0	0	0x50
GND	GND	SDA	0	1	0	1	0	0	1	0x52
GND	V+	SCL	0	1	0	1	0	1	0	0x54
GND	V+	SDA	0	1	0	1	0	1	1	0x56
V+	GND	SCL	0	1	0	1	1	0	0	0x58
V+	GND	SDA	0	1	0	1	1	0	1	0x5A
V+	V+	SCL	0	1	0	1	1	1	0	0x5C
V+	V+	SDA	0	1	0	1	1	1	1	0x5E

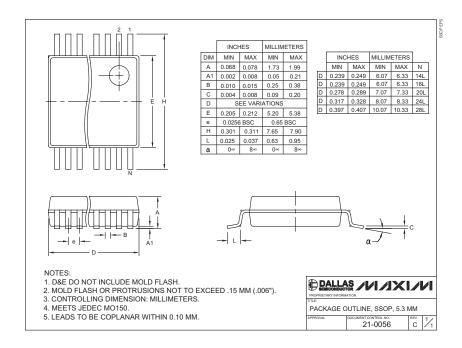
Table 6. MAX7318 Address Map (continued)

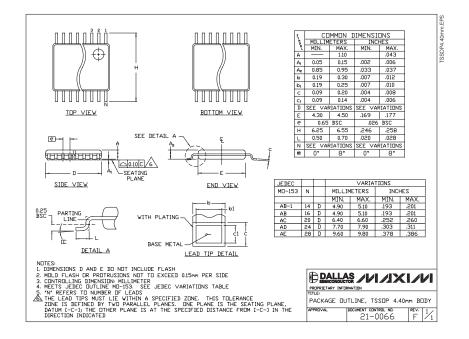
AD2	AD1	AD0	A6	A 5	A4	А3	A2	A1	A0	ADDRESS (hex)
SCL	SCL	GND	1	0	1	0	0	0	0	0xA0
SCL	SCL	V+	1	0	1	0	0	0	1	0xA2
SCL	SDA	GND	1	0	1	0	0	1	0	0xA4
SCL	SDA	V+	1	0	1	0	0	1	1	0xA6
SDA	SCL	GND	1	0	1	0	1	0	0	0xA8
SDA	SCL	V+	1	0	1	0	1	0	1	0xAA
SDA	SDA	GND	1	0	1	0	1	1	0	0xAC
SDA	SDA	V+	1	0	1	0	1	1	1	0xAE
SCL	SCL	SCL	1	0	1	1	0	0	0	0xB0
SCL	SCL	SDA	1	0	1	1	0	0	1	0xB2
SCL	SDA	SCL	1	0	1	1	0	1	0	0xB4
SCL	SDA	SDA	1	0	1	1	0	1	1	0xB6
SDA	SCL	SCL	1	0	1	1	1	0	0	0xB8
SDA	SCL	SDA	1	0	1	1	1	0	1	0xBA
SDA	SDA	SCL	1	0	1	1	1	1	0	0xBC
SDA	SDA	SDA	1	0	1	1	1	1	1	0xBE
SCL	GND	GND	1	1	0	0	0	0	0	0xC0
SCL	GND	V+	1	1	0	0	0	0	1	0xC2
SCL	V+	GND	1	1	0	0	0	1	0	0xC4
SCL	V+	V+	1	1	0	0	0	1	1	0xC6
SDA	GND	GND	1	1	0	0	1	0	0	0xC8
SDA	GND	V+	1	1	0	0	1	0	1	0xCA
SDA	V+	GND	1	1	0	0	1	1	0	0xCC
SDA	V+	V+	1	1	0	0	1	1	1	0xCE
SCL	GND	SCL	1	1	0	1	0	0	0	0xD0
SCL	GND	SDA	1	1	0	1	0	0	1	0xD2
SCL	V+	SCL	1	1	0	1	0	1	0	0xD4
SCL	V+	SDA	1	1	0	1	0	1	1	0xD6
SDA	GND	SCL	1	1	0	1	1	0	0	0xD8
SDA	GND	SDA	1	1	0	1	1	0	1	0xDA
SDA	V+	SCL	1	1	0	1	1	1	0	0xDC
SDA	V+	SDA	1	1	0	1	1	1	1	0xDE


Chip Information

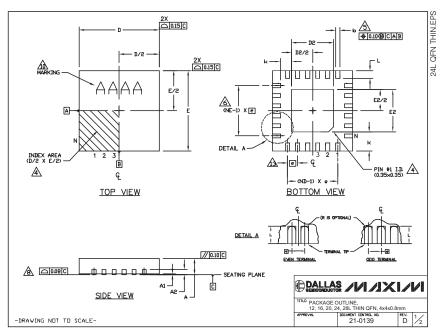
TRANSISTOR COUNT: 12,994

PROCESS: BICMOS


Package Information


(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Package Information (continued)


(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

				COMM	10N	DIME	IIZN	SNE								П	E	PAD	VARIATIONS					
PKG		2L 4×		16L 4x4		20L 4×4			2.	4L 4×		28L 4×4			П	PKG. CODES	122				£2		DOWN	
REF.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	Ш	CODES	MIN.	NOM.	MAX.	MIN.	NDM.	MAX.	ALLOVE
A	0.70		0.80	0.70	0.75	0.80	0.70	0.75	0.90	0.70	0.75	0.80	0.70	0.75	0.80	ш	T1244-2	1.95	2.10	2.25	1.95	5.10	2.25	ND
A1	0.0	0.02	0.05	0.0	20.0	0.05	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02			T1244-3	1.95	2.10	2.25	1.95	510	2,25	YES
A2	1	.20 RE		-	20 RE	-		20 RE	_	_	.20 RE	-	_	20 RE	-		T1244-4	1.95	2.10	2.25	1.95	2.10	2.25	ND
b	0.25	_	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.18	0.23	0.30	0.15	0.20	0.25		T1644-2	1.95	2.10	2.25	1.95	2.10	2.25	ND
D	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00		3.90	4.00	4.10	3.90	4.00	4.10	Н	T1644-3	1.95	2.10	2.25	1.95	5.10	2.25	YES
E	3.90		4.10		4.00	4.10	3.90	4.00		3.90	4.00	4.10	3.90	4.00			T1644-4	1.95	2.10	2.25	1.95	2.10	2.25	ND
6	+	0.80 35	_	_	65 BS		_	50 BS	_	_	.50 BS	_	_	1.40 BS	-	ı	T2044-1	1.95	2.10	2.25	1.95	2.10	2.25	ND
k .	0.25	0.55	0.65	0.25	0.55	0.65	0.25	0.55	0.65	0.25	_	0.50	0.25	_	0.50	ı	T2044-2	1.95	2.10	2.25	1.95	5.10	2.25	YES
N N	0.43	12	0.65	0.43		0.65	0.45		0.63	0.30	0.40	0.50	0.30	0.40	0.30		T2044-3	1.95	2.10	2.25	2.45	2.10	2.25	ND
NTD	+	3		\vdash	16	_	_	20		\vdash	6		_	28 7	-		T2444-2	1.95	2.60	2.63	1.95	2.60	2.25	YES
NE.	+	3		\vdash	4		_	5			- 6			7	-	Н	T2444-3	2.45	5.10	2.63	2.45	5.60	2.63	YES
Jedec Var.	_	VGGB	_	\vdash	VGGC	_	_	/GGD-1	_	\vdash	wggn-		\vdash	VGGE	_		T2444-4	2.45	2.60	2.63	2.45	2.60	2.63	ND IE2
Vœ.	_	4002			# OOC			, dob			WOOD			WOOL	_								2,70	ND ND
	ES: DIMENS ALL DII																T2844-1	2.50	2.60	2.70	2.50	2.60	1 270	, 10
1. 2. 3. 4. 5.	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM 1	MENSION HE TOT RMINAL 15-1 SI ONE INE SION 6 TERMINA D NE F	NS ARE AL NUI PP-012 DICATED APPLIE AL TIP,	E IN MI MBER C DENTIFIE 2. DETA 3. THE S TO L	LUMETE F TERE R AND ILS OF TERMIN RETALLI NUMB	ERS. AI MINALS TERMI TERMI ML #1 ZED TE	NAL NI NAL NI NAL #1 IDENTI RNINAL	ARE IN IMBERII IDENTII FIER IA AND	DEGR NG COI FIER AI AY BIE IS MEA	EES. NVENTK RE OPT EITHEF SURED	RAMO BETWI	BUT M LD OR EN O.:	UST BE MARKS 25 mm	ED FEA	TURE.			2.50	2.60	2.70	2.00	2.60	1270	, io
1. 2. 3. 4. 5.	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM 1 ND AND	MENSION HE TOT FRMINAL 15-1 SI ONE INE SION 6 TERMIN D NE F	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP, REFER I IS PO	E IN MI MBER C DENTIFIE 2. DETA). THE S TO M TO THE DSSIBLE	LUMETE F TER R AND ILS OF TERMIN METALU NUMB	ERS. AM MINALS TERMIN TERMIN MAL #1 ZED TE ER OF SYMME	NAL NI NAL #1 IDENTI TRMINAL TERMI	ARE IN IMBERIN IDENTI FIER M AND WALS OF	DEGR NG COI FIER AI AY BIE IS MEA N EAC ON.	EES. NVENTK RE OPT EITHEF SURED H D A	NONAL, RAMO BETWI	BUT M LD OR EN O.:	UST BE MARKI 25 mm	E LOCAT ED FEA AND IVELY.	TURE.			2.50	2.60	2.70	2.30	2.60	1270	100
1. 2. 3. 4. 5. 6. 7.	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM 1 ND AND DEPOPU	MENSION HE TOT FRMINAL 15-1 SI ONE INC SION B TERMIN D NE F ULATION NARITY	NS ARE AL NUI PP-012 DICATED APPLIE AL TIP, REFER I IS PO	E IN MI MBER C DENTIFIE 2. DETA 3. THE 3. TO IN TO THE DSSIBLE S TO T	LUMETO F TERM R AND ILS OF TERMIN NETALLI NUMB IN A HE EXI	ERS. AMMINALS TERMINALS TERMINAL #1 ZED TE ER OF SYMME POSED	NAL NI IAL #1 IDENTI RMINAL TERMI TRICAL HEAT	ARE IN IMBERITI IDENTI FIER M. AND VALS OF FASHIC SINK S	DEGR HG COL FIER AL AY BIE HS MEA	EES. MENTK RE OPT ETHEF SURED H D A	NONAL, RAMO BETWI NDES	BUT M LD OR EN O.: BIDE RE	UST BE MARKI 25 mm ESPECTI MINALS	E LOCAT ED FEA I AND IVELY.	TURE. 0.30 m			2.50	2.60	2.70	2.30	2.60	1270	100
1. 2. 3. 4. 5. 7. 48. 9.	DIMENS ALL DIM N IS TI THE TE JESD 9 THE ZO DIMENS FROM 1 ND AND DEPOPE COPLAN DRAWIN	MENSION HE TOT RMINAL 15-1 SI DNE INC SION B TERMIN D NE F ULATION NARITY NG CON	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP, REFER I IS PO APPLIE IFORMS	E IN MI MBER C DENTIFIE 2. DETA 0. THE 25 TO IA TO THE DSSIBLE 5 TO T	LUMETI F TERI R AND ILS OF TERMIN METALLI NUMB IN A HE EXI DEC M	ERS. AMMINALS TERMITERMINAL #1 ZED TE ER OF SYMME POSED 0220,	NAL NI IAL #1 IDENTI RMINAL TERMII TRICAL HEAT	ARE IN IMBERIN IDENTII FIER M AND VALS OF FASHK SINK S	DEGR HIG COI FIER AI AY BE IS MEA	EES. MENTK RE OPT ETHEF SURED H D A	NONAL, RAMO BETWI NDES	BUT M LD OR EN O.: BIDE RE	UST BE MARKI 25 mm ESPECTI MINALS	E LOCAT ED FEA I AND IVELY.	TURE. 0.30 m			2.50	2.60	2.70	2.30	2.60	1270	
1. 2. 3. 4. 5. 7. 48. 9.	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM 1 ND AND DEPOPU	MENSION HE TOT RMINAL 15-1 SI DNE INC SION B TERMIN D NE F ULATION NARITY NG CON	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP, REFER I IS PO APPLIE IFORMS	E IN MI MBER C DENTIFIE 2. DETA 0. THE 25 TO IA TO THE DSSIBLE 5 TO T	LUMETI F TERI R AND ILS OF TERMIN METALLI NUMB IN A HE EXI DEC M	ERS. AMMINALS TERMITERMINAL #1 ZED TE ER OF SYMME POSED 0220,	NAL NI IAL #1 IDENTI RMINAL TERMII TRICAL HEAT	ARE IN IMBERIN IDENTII FIER M AND VALS OF FASHK SINK S	DEGR HIG COI FIER AI AY BE IS MEA	EES. MENTK RE OPT ETHEF SURED H D A	NONAL, RAMO BETWI NDES	BUT M LD OR EN O.: BIDE RE	UST BE MARKI 25 mm ESPECTI MINALS	E LOCAT ED FEA I AND IVELY.	TURE. 0.30 m			2.50	2.60	2.70	2.30	2.60	270	
1. 2. 3. 4. 5. 7. 4. 9.	DIMENS ALL DIM N IS TI THE TE JESD 9 THE ZO DIMENS FROM 1 ND AND DEPOPE COPLAN DRAWIN	MENSION HE TOT RMINAL 15-1 SI SIONE INC SION B TERMINA D NE F ULATION NARITY NG CON C IS FO	NS ARE TAL NUI #1 ID PP-012 DICATED APPLIE AL TIP, REFER I IS PO APPLIE FORMS DR PAC	E IN MI MBER C DENTIFIE 2. DETA 3. THE CS TO IN TO THE CSSIBLE S TO T TO JE KAGE C	LUMETI OF TERM R AND ILS OF TERMIN METALLI NUMB IN A HE EXI DEC M RIENTA	ERS. AM MINALS TERMIT T	NAL NI NAL MI IDENTI TERMII TRICAL HEAT EXCEPT	ARE IN IMBERIN IDENTII FIER M AND VALS OF FASHK SINK S	DEGR HG COIFIER AI AY BE HS MEA	EES. MENTK RE OPT ETHEF SURED H D A	NONAL, RAMO BETWI NDES	BUT M LD OR EN O.: BIDE RE	UST BE MARKI 25 mm ESPECTI MINALS	E LOCAT ED FEA I AND IVELY.	TURE. 0.30 m			2.50	2.60	2.70	2.30	2.60	270	
1. 2. 3. 4. 5. 7. 6. 9.	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM ND AND DEPOPU COPLAN DRAWIN WARKING	MENSION HE TOT FRIMINAL 15—1 SI 5—1 SI 5—1 SI 5—1 SI 5—1 SI TERMIN D NE F ULATION NARITY NG CON G IS FO ARITY S	NS ARE TAL NUI #1 ID PP-012 DICATED APPLIE AL TIP, REFER H IS PO APPLIE IFORMS OR PAC HALL I	E IN MI MBER C PENTIFIE 2. DETA D. THE SS TO IL TO THE DSSIBLE SS TO T TO JE KAGE C NOT EX	LUMETE F TER R AND ILS OF TERMIN METALLI NUMB IN A HE EXI DEC M DEC M DEC M DECED (C	ERS. AVINALS TERMITERMINAL #1 ZED TE ER OF SYMME POSED 0220, TION F	NAL NI NAL MI IDENTI TERMII TRICAL HEAT EXCEPT	ARE IN IMBERIN IDENTII FIER M AND VALS OF FASHK SINK S	DEGR HG COIFIER AI AY BE HS MEA	EES. MENTK RE OPT ETHEF SURED H D A	NONAL, RAMO BETWI NDES	BUT M LD OR EN O.: BIDE RE	UST BE MARKI 25 mm ESPECTI MINALS	E LOCAT ED FEA I AND IVELY.	TURE. 0.30 m									
1. 2. 3. 4. 5. 6. 7. 6. 11. 0 12. V	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM 1 ND AND DEPOPULATION DRAWIN WARKING	MENSION HE TOT FRIMINAL HE TOT FRIMINAL HE TOT FRIMINAL HE TOT HE FOR HE	NS ARE TAL NUI APPLIE APPLIE APPLIE IFORMS OR PAC HALL 1 L NOT	E IN MI MBER C PENTIFIE 2. DETA D. THE SS TO I TO THE SSIBLE SS TO T TO JE KAGE C VOT EXCEE	LUMETE F TERM R AND ILS OF TERMIN RETALLI NUMB IN A HE EXI DEC M PRIENTA CEED (ND 0.1	ERS. AVINALS TERMITERMITERMITERMITERMITERMITERMITERMI	NAL NIL IDENTI TERMII T	ARE IN IMBERIN IDENTIFIER M. AND VALS OF FASHIK SINK S FOR	DEGR HIG CON FIER AI AY BIE IS MEA N EAC ON. LUG AS TZ4444- ILY.	EES. MENTKRE OPT EITHEF SURED H D A S WELL -1, T2	TONAL, R A MO BETWI ND E S AS TH	BUT M LD OR EN O.: SIDE RE HE TER , T244	UST BE MARKS 25 mm ESPECTI MINALS 4—4 AP	E LOCAT ED FEA I AND IVELY.	TURE. 0.30 m									
1. 2. 3. 4. 5. 6. 7. 6. 11. 0 12. V	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM 1 ND AND DEPOPUL COPLAN MARKING COPLAN WARPAGI	MENSION HE TOT FRIMINAL HE TOT FRIMINAL HE TOT FRIMINAL HE TOT HE FOR HE	NS ARE TAL NUI APPLIE APPLIE APPLIE IFORMS OR PAC HALL 1 L NOT	E IN MI MBER C PENTIFIE 2. DETA D. THE SS TO I TO THE SSIBLE SS TO T TO JE KAGE C VOT EXCEE	LUMETE F TERM R AND ILS OF TERMIN RETALLI NUMB IN A HE EXI DEC M PRIENTA CEED (ND 0.1	ERS. AVINALS TERMITERMITERMITERMITERMITERMITERMITERMI	NAL NIL IDENTI TERMII T	ARE IN IMBERIN IDENTIFIER M. AND VALS OF FASHIK SINK S FOR	DEGR HIG CON FIER AI AY BIE IS MEA N EAC ON. LUG AS TZ4444- ILY.	EES. MENTKRE OPT EITHEF SURED H D A S WELL -1, T2	TONAL, R A MO BETWI ND E S AS TH	BUT M LD OR EN O.: SIDE RE HE TER , T244	UST BE MARKS 25 mm ESPECTI MINALS 4—4 AP	E LOCAT ED FEA I AND IVELY.	TURE. 0.30 m			DA SEMP	LLA	S A	NE,	1/1	X	1/1
1. 2. 3. 4. 5. 6. 7. 6. 11. 0 12. V	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM 1 ND AND DEPOPUL COPLAN MARKING COPLAN WARPAGI	MENSION HE TOT FRIMINAL HE TOT FRIMINAL HE TOT FRIMINAL HE TOT HE FOR HE	NS ARE TAL NUI APPLIE APPLIE APPLIE IFORMS OR PAC HALL 1 L NOT	E IN MI MBER C PENTIFIE 2. DETA D. THE SS TO I TO THE SSIBLE SS TO T TO JE KAGE C VOT EXCEE	LUMETE F TERM R AND ILS OF TERMIN RETALLI NUMB IN A HE EXI DEC M PRIENTA CEED (ND 0.1	ERS. AVINALS TERMITERMITERMITERMITERMITERMITERMITERMI	NAL NIL IDENTI TERMII T	ARE IN IMBERIN IDENTIFIER M. AND VALS OF FASHIK SINK S FOR	DEGR HIG CON FIER AI AY BIE IS MEA N EAC ON. LUG AS TZ4444- ILY.	EES. MENTKRE OPT EITHEF SURED H D A S WELL -1, T2	TONAL, R A MO BETWI ND E S AS TH	BUT M LD OR EN O.: SIDE RE HE TER , T244	UST BE MARKS 25 mm ESPECTI MINALS 4—4 AP	E LOCAT ED FEA I AND IVELY.	TURE. 0.30 m		Œ.	DA SEMP	LLA	OUTLI	'V I	QFN, 4	X	1/1

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.