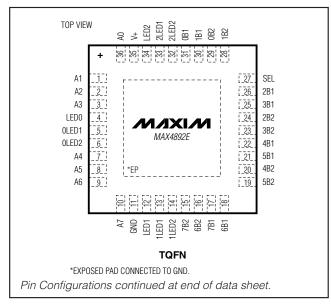
General Description

The MAX4890E/MAX4892E meet the needs of high-speed differential switching. The devices handle the needs of Gigabit Ethernet (10/100/1000) Base-T switching as well as LVDS and LVPECL switching. The MAX4890E/MAX4892E provide enhanced ESD protection up to \pm 15kV, and excellent high-frequency response, making the devices especially useful for interfaces that must go to an outside connection.


Both devices provide extremely low capacitance (C_{ON}) , as well as low resistance (R_{ON}) , for low-insertion loss and very wide bandwidth. In addition to the four pairs of DPDT switches, the MAX4892E provides LED switching for laptop computer/docking station use.

The MAX4890E/MAX4892E are pin-for-pin equivalents to the MAX4890/MAX4892 and can replace these devices for those applications requiring the enhanced ESD protection. Both devices are available in space-saving TQFN packages and operate over the standard -40°C to +85°C temperature range.

Applications

Notebooks and Docking Stations Servers and Routers with Ethernet Interfaces Board-Level Redundancy Protection SONET/SDH Signal Routing T3/E3 Redundancy Protection LVDS and LVPECL Switching

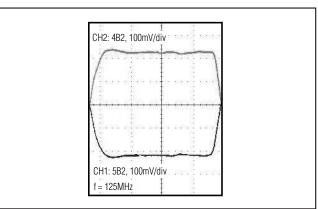
Pin Configurations

_ Features

 ±15kV ESD Protected Per MIL-STD-883, Method 3015

- Single +3.0V to +3.6V Power-Supply Voltage
- Low On-Resistance (R_{ON}): 4Ω (typ), 6.5Ω (max)
- Ultra-Low On-Capacitance (CON): 8pF (typ)
- -23dB Return Loss (100MHz)
- -3dB Bandwidth: 650MHz
- Optimized Pin Out for Easy Transformer and PHY Interface
- Built-In LED Switches for Switching Indicators to Docking Station (MAX4892E)
- ♦ Low 450µA (max) Quiescent Current
- Bidirectional 8 to 16 Multiplexer/Demultiplexer
- Standard Pin Out, Matching the MAX4890 and MAX4892
- Space-Saving Lead-Free Packages 32-Pin, 5mm x 5mm, TQFN Package 36-Pin, 6mm x 6mm, TQFN Package

_Ordering Information


PART	PIN- PACKAGE	LED SWITCHES	PKG CODE
MAX4890EETJ+	32 TQFN-EP*	—	T-3255-4
MAX4892EETX+	36 TQFN-EP*	3	T-3666-3

+Denotes lead-free package.

Note: All devices are specified over the -40°C to +85°C operating temperature range.

*EP = Exposed pad.

Eye Diagram

Typical Operating Circuit and Functional Diagrams appear at end of data sheet.

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

V+ All Other Pins Continuous Current (A_ to _B_) Continuous Current (LED_ to _LED_) Peak Current (A_ to _B_)	0.3V to (V+ + 0.3V) ±120mA
(pulsed at 1ms, 10% duty cycle)	±240mA
Current into Any Other Pin	
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
32-Pin TQFN (derate 34.5mW/°C above +7	70°C) 2.76W
36-Pin TQFN (derate 35.7mW/°C above +7	70°C) 2.85W
ESD Protection, Human Body Model	±15kV

Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

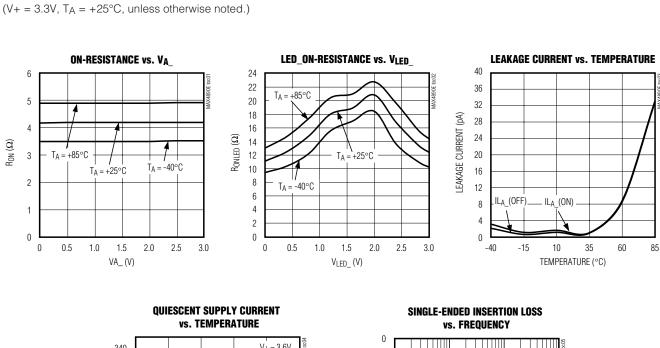
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

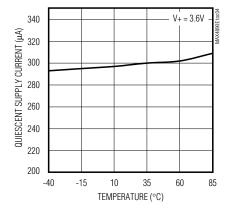
ELECTRICAL CHARACTERISTICS

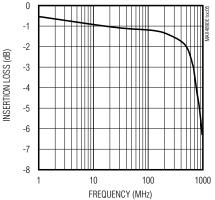
 $(V + = +3V \text{ to } +3.6V, T_A = T_J = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V + = 3.3V, T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
ANALOG SWITCH							
On-Resistance	R _{ON}	V+ = 3V, I _A _ = -40mA, V _A _ = 0, 1.5V, 3V	$T_A = +25^{\circ}C$		4	5.5	Ω
			$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$			6.5	
On-Resistance LED Switches	Ronled	V+ = 3V, I_LED_ = -40mA, V _{LED} _ = 0, 1.5V, 3V (MAX4892E)				40	Ω
On-Resistance Match Between Channels	APou	V+ = 3V, I _A _= -40mA, V _A _= 0, 1.5V, 3V (Note 2)	T _A = +25°C		0.5	1.5	Ω
	ΔR _{ON}		T _{MIN} to T _{MAX}			2	
On-Resistance Flatness	RFLAT(ON)	V+ = 3V, I _A = -40mA, V _A = 1.5V, 3V			0.01		Ω
Off-Leakage Current	ILA_(OFF)	V+ = 3.6V, V _A _ = 0.3V, 3.3V; V_B1 or V_B2 = 3.3V, 0.3V		-1		+1	
On-Leakage Current	I _{LA_(ON)}	$V_{+} = 3.6V, V_{A} = 0.3V, 3.3V;$ V_{B1} or $V_{B2} = 0.3V, 3.3V$ or floating		-1		+1	μA
ESD PROTECTION		·					
ESD Protection		Human Body Model (spec MIL-STD-883, Method 3015)			±15		kV
SWITCH AC PERFORMANCE							
Insertion Loss	ILOS	$R_S = R_L = 50\Omega$, unbalanced, f = 1MHz, (Note 2)			0.6		dB
Return Loss	R _{LOS}	f = 100MHz			-23		dB

ELECTRICAL CHARACTERISTICS (continued)


 $(V + = +3V \text{ to } +3.6V, T_A = T_J = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V + = 3.3V, T_A = +25^{\circ}C.)$ (Note 1)


			1			
SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
V _{CT1}	Any switch to any switch; R _S = R _L =	f = 25MHz		-50		dB
V _{CT2}	50 Ω , unbalanced, Figure 1	f = 125MHz		-26		uв
	•					
BW	$R_S = R_L = 50\Omega$, unba	alanced		650		MHz
COFF	f = 1MHz, _B_, A_			3.5		pF
Con	f = 1MHz, _B_, A_			6.5		pF
ton	$V_{A_{-}}$ = 1V, R _L , 100 Ω , Figure 2				50	ns
toff	V_{A} = 1V, R _L , 100 Ω , Figure 2				50	ns
t _{PLH} , t _{PHL}	$R_{S} = R_{L} = 50\Omega$, unbalanced, Figure 3			0.1		ns
t _{SK(o)}	Skew between any two ports, Figure 4			0.01		ns
VIL	V+ = 3.0V				0.8	v
VIH	V+ = 3.6V		2.0			V
V _{HYST}	V + = 3.3V			100		mV
ISEL	$V + = 3.6V, V_{SEL} = 0 \text{ or } V +$		-5		+5	μA
V+			3.0		3.6	V
l+	$V + = 3.6V, V_{SEL} = 0 \text{ or } V +$			280	450	μA
	VCT2 BW COFF CON tON tOFF tPLH, tPHL tSK(o) VIL VIH VIH VHYST ISEL V+	$\begin{array}{c} V_{CT1} & \mbox{Any switch to any switch; } R_S = R_L = 50\Omega, \mbox{unbalanced, } Figure 1 \\ \hline \\ V_{CT2} & \mbox{Figure 1} \\ \hline \\ BW & R_S = R_L = 50\Omega, \mbox{unbalanced, } Figure 1 \\ \hline \\ COFF & f = 1MHz, _B_, A_ \\ \hline \\ CON & f = 1MHz, _B_, A_ \\ \hline \\ CON & f = 1MHz, _B_, A_ \\ \hline \\ CON & VA_ = 1V, R_L, 100\Omega, \\ tOFF & VA_ = 1V, R_L, 100\Omega, \\ \hline \\ toFF & VA_ = 1V, 100\Omega, \\ \hline \\ toFF & VA_ = 1V, 100\Omega, \\ \hline \\ toFF & VA_ = 1V, 100\Omega, \\ \hline \\ toFF & VA_ = 1V, 100\Omega, \\ \hline \\ toFF & VA_ = 1V, 100\Omega, \\ \hline \\ toFF & VA_ = 1V, 100\Omega, \\ \hline \\ toFF & VA_ = 1V, 100\Omega, \\ \hline \\ toFF & VA_ = 1V, 100\Omega, \\ \hline \\ toFF & VA_ = 1V, 100\Omega, \\ \hline \\ toFF & VA_ = 1V, 100\Omega, \\ \hline \\ toFF & VA_ = 1V, 100\Omega, \\ \hline \\ toFF & VA_ = 1V, 100\Omega, \\ \hline \\ toFF & VA_ = 1V, 100\Omega, \\ \hline \\ toFF & VA$	$\begin{array}{c c} V_{CT1} & \begin{array}{c} Any \mbox{ switch to any switch; } R_S = R_L = \\ 50\Omega, \mbox{ unbalanced, } \\ Figure 1 & \end{array} & f = 25MHz \end{array}$ $\begin{array}{c} f = 125MHz \\ f = 125MHz \\ f = 125MHz \\ \end{array}$ $\begin{array}{c} BW & R_S = R_L = 50\Omega, \mbox{ unbalanced} \\ COFF & f = 1MHz, _B_, A_ \\ \hline CON & f = 1MHz, _B_, A_ \\ \hline CON & f = 1MHz, _B_, A_ \\ \hline tON & VA_ = 1V, R_L, 100\Omega, \mbox{ Figure 2} \\ \hline tOFF & VA_ = 1V, R_L, 100\Omega, \mbox{ Figure 3} \\ \hline tSK(o) & Skew \mbox{ between any two ports, Figure 4} \\ \end{array}$ $\begin{array}{c} V_{IL} & V+ = 3.0V \\ \hline V_{IH} & V+ = 3.6V \\ \hline V_{HYST} & V+ = 3.3V \\ \hline ISEL & V+ = 3.6V, \end{tabular}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $


Note 1: Specifications at -40°C are guaranteed by design.

Note 2: Guaranteed by design.

MAX4890E/MAX4892E

Typical Operating Characteristics

MXXIM

Pin Description

PIN							
MAX4892E	MAX4890E	NAME	FUNCTION				
1	32	A1	Differential PHY Interface Pair. Connect to the Ethernet PHY.				
2	1	A2	Differential PHY Interface Pair. Connect to the Ethernet PHY.				
3	2	A3	Differential PHY Interface Pair. Connect to the Ethernet PHY.				
4		LED0	ED0 Input				
5		0LED1	0LED1 Output. Drive SEL low (SEL = 0) to connect LED0 to 0LED1.				
6		0LED2	0LED2 Output. Drive SEL high (SEL = 1) to connect LED0 to 0LED2.				
7	7	A4	Differential PHY Interface Pair. Connect to the Ethernet PHY.				
8	8	A5	Differential PHY Interface Pair. Connect to the Ethernet PHY.				
9	9	A6	Differential PHY Interface Pair. Connect to the Ethernet PHY.				
10	10	A7	Differential PHY Interface Pair. Connect to the Ethernet PHY.				
11	11	GND	Ground				
12		LED1	LED1 Input				
13	_	1LED1	1LED1 Output. Drive SEL low (SEL = 0) to connect LED1 to 1LED1.				
14	_	1LED2	1LED2 Output. Drive SEL high (SEL = 1) to connect LED1 to 1LED2.				
15	13	7B2	B2 Differential Pair				
16	14	6B2	B2 Differential Pair				
17	15	7B1	B1 Differential Pair				
18	16	6B1	B1 Differential Pair				
19	17	5B2	B2 Differential Pair				
20	18	4B2	B2 Differential Pair				
21	19	5B1	B1 Differential Pair				
22	20	4B1	B1 Differential Pair				
23	21	3B2	B2 Differential Pair				
24	22	2B2	B2 Differential Pair				
25	23	3B1	B1 Differential Pair				
26	24	2B1	B1 Differential Pair				
27	29	SEL	Select Input. SEL selects switch connection. See the Truth Table (Table1).				
28	25	1B2	B2 Differential Pair				
29	26	0B2	B2 Differential Pair				
30	27	1B1	B1 Differential Pair				
31	28	0B1	B1 Differential Pair				
32	—	2LED2	2LED2 Output. Drive SEL high (SEL = 1) to connect LED2 to 2LED2.				
33	_	2LED1	2LED1 Output. Drive SEL low (SEL = 0) to connect LED2 to 2LED1.				
34	—	LED2	LED2 Input				
35	30	V+	Positive-Supply Voltage Input. Bypass to GND with a 0.1µF ceramic capacitor.				
36	31	A0	Differential PHY Interface Pair. Connect to the Ethernet PHY.				
	3-6, 12	N.C.	No Connection. Not internally connected.				
_		EP	Exposed Pad. Connect exposed pad to GND or leave it unconnected.				

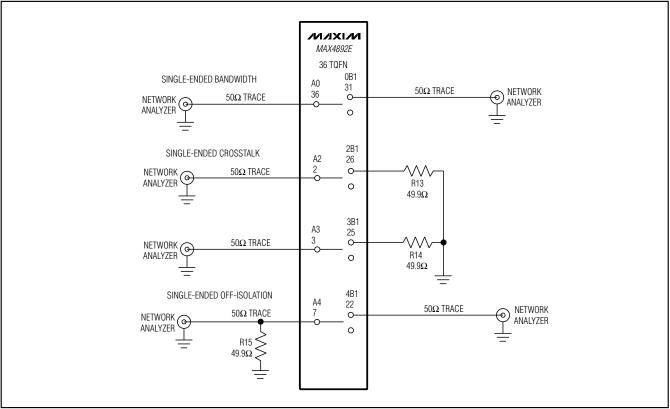


Figure 1. Single-Ended Bandwidth, Crosstalk, and Off-Isolation

Detailed Description

The MAX4890E/MAX4892E are high-speed analog switches targeted for 1000 Base-T applications. In a typical application, the MAX4890E/MAX4892E switch the signals from two separate interface transformers and connect the signals to a single 1000 Base-T Ethernet PHY (see the *Typical Operating Circuit*). This configuration simplifies docking station design by avoiding signal reflections associated with unterminated transmission lines in a T configuration. The MAX4890E/MAX4892E are protected against ±15kV electrostatic discharge (ESD) shocks. The MAX4892E also includes LED switches that allow the LED output signals to be routed to a docking station along with the Ethernet signals. See the *Functional Diagrams*.

With their low resistance and capacitance, as well as high ESD protection, the MAX4890E/MAX4892E can be used to switch most low-voltage differential signals,

such as LVDS, SEREDES, and LVPECL, as long as the signals do not exceed maximum ratings of the devices.

The MAX4890E/MAX4892E switches provide an extremely low capacitance and on-resistance to meet Ethernet insertion and return-loss specifications. The MAX4892E features three built-in LED switches.

The MAX4890E/MAX4892E incorporate a unique architecture design utilizing only n-channel switches within the main Ethernet switch, reducing I/O capacitance and channel resistance. An internal two-stage charge pump with a nominal output of 7.5V provides the high voltage needed to drive the gates of the n-channel switches while maintaining a consistently low R_{ON} throughout the input signal range. An internal bandgap reference set to 1.23V and an internal oscillator running at 2.5MHz provide proper charge-pump operation. Unlike other charge-pump circuits, the MAX4890E/MAX4892E include internal flyback capacitors, reducing design time, board space, and cost.

Table 1. Truth Table

SEL	CONNECTION		
0	A_ to _B1, LED_ to _LED1		
1	A_ to _B2, LED_ to _LED2		

Digital Control Inputs

The MAX4890E/MAX4892E provide a single digital control SEL. SEL controls the switches as well as the LED switches as shown in Table 1.

Analog Signal Levels

The on-resistance of the MAX4890E/MAX4892E is very low and stable as the analog input signals are swept from ground to V+ (see the *Typical Operating Characteristics*). The switches are bidirectional, allowing A_ and _B_ to be configured as either inputs or outputs.

ESD Protection

The MAX4890E/MAX4892E are characterized using the Human Body Model for ±15kV of ESD protection. Figure 5 shows the Human Body Model. This model consists of a 100pF capacitor charged to the ESD voltage of interest which is then discharged into the test device through a 1.5k Ω resistor. All signal and control pins are ESD protected to ±15kV HBM (Human Body Model).

_Applications Information

Typical Operating Circuit

The *Typical Operating Circuit* shows the MAX4890E/ MAX4892E in a 1000 Base-T docking station application.

Power-Supply Sequencing and Overvoltage Protection

Caution: Do not exceed the absolute maximum ratings. Stresses beyond the listed ratings may cause permanent damage to the device.

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals, especially if the analog signal is not current limited.

Layout

High-speed switches require proper layout and design procedures for optimum performance. Keep design-controlled-impedance pc board traces as short as possible. Ensure that bypass capacitors are as close as possible to the device. Use large ground planes where possible.

Chip Information

PROCESS: BiCMOS

MAX4890E/MAX4892E

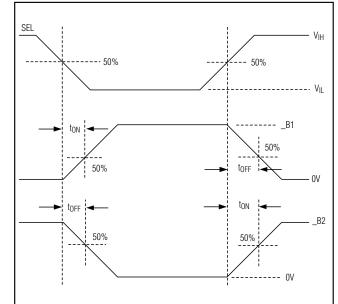


Figure 2. Turn-On and Turn-Off Times

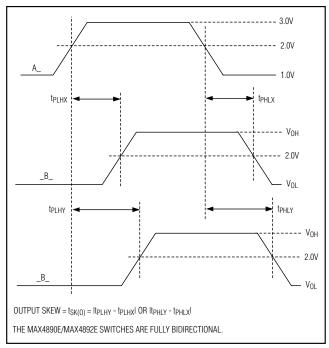


Figure 4. Output Skew

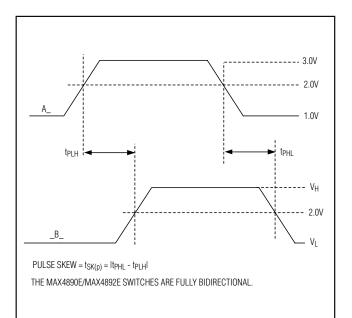


Figure 3. Propagation Delay Times

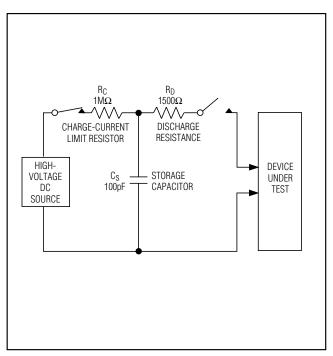
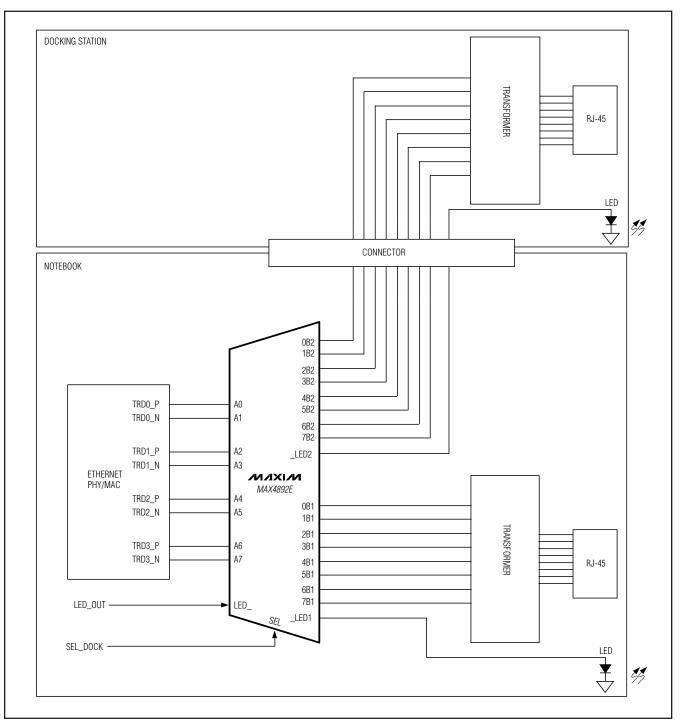
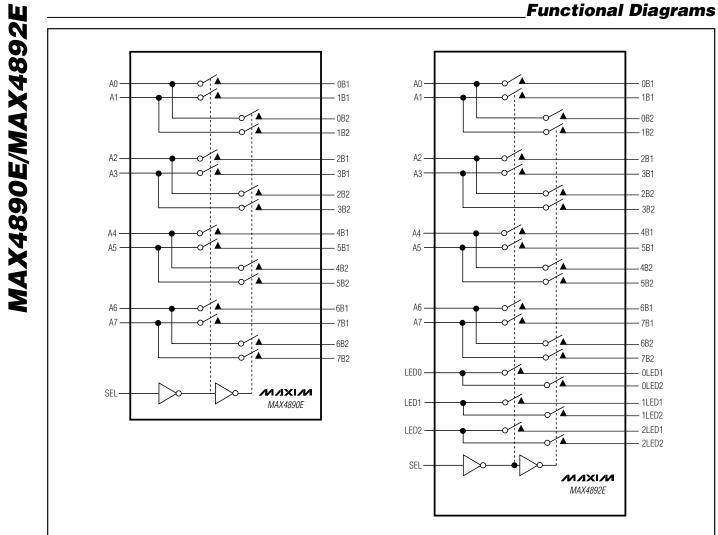
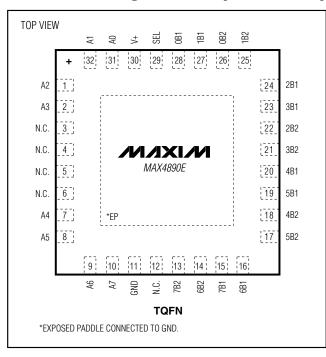



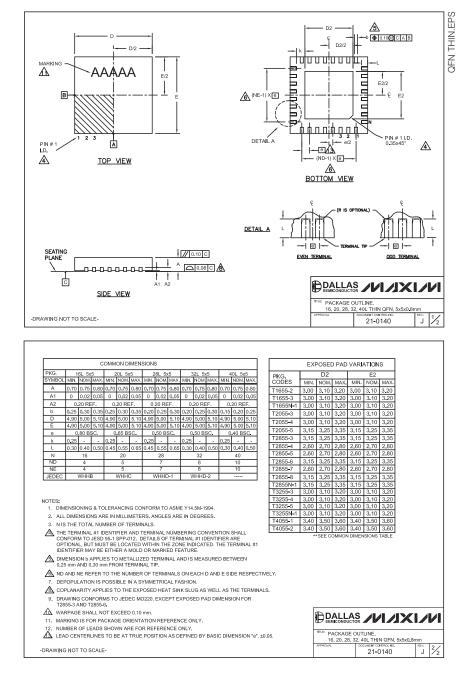
Figure 5. Human Body ESD Test Model (MIL-STD-883, Method 3015)



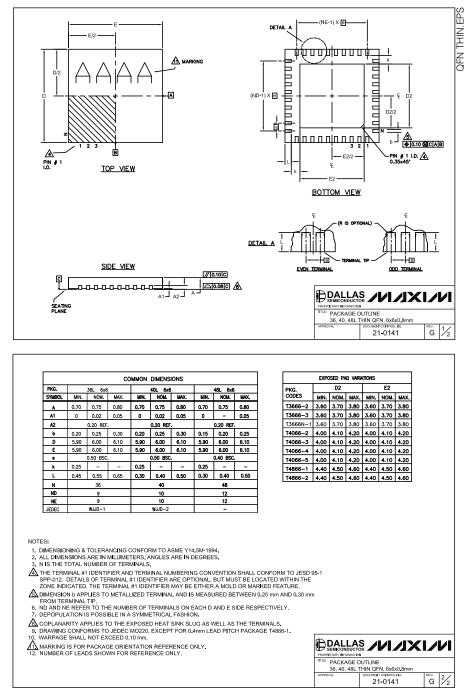


M/XI/M

MAX4890E/MAX4892E


Functional Diagrams

Pin Configurations (continued)


Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _

© 2006 Maxim Integrated Products

MAXIM is a registered trademark of Maxim Integrated Products, Inc.