19-0724; Rev 0; 5/07

2.5Gbps PCI Express Passive Switches

General Description

The MAX4888/MAX4889 high-speed passive switches route PCI Express[®] (PCIe) data between two possible destinations. The MAX4888 is a quad single-pole/double-throw (4 x SPDT) switch ideally suited for switching two half lanes of PCIe data between two destinations. The MAX4889 is an octal single-pole/double-throw (8 x SPDT) switch ideal for switching four half lanes of PCIe data between four destinations. The MAX4888/MAX4889 feature a single digital control input (SEL) to switch signal paths.

The MAX4888/MAX4889 are fully specified to operate from a single 3.0V to 3.6V power supply and also operate down to +1.65V. The MAX4888 is available in a 3.5mm x 5.5mm, 28-pin TQFN package. The MAX4889 is available in a 3.5mm x 9.0mm, 42-pin TQFN package. Both devices operate over the -40°C to +85°C temperature range.

Applications

Desktop Computers Servers/Storage Area Networks Laptops

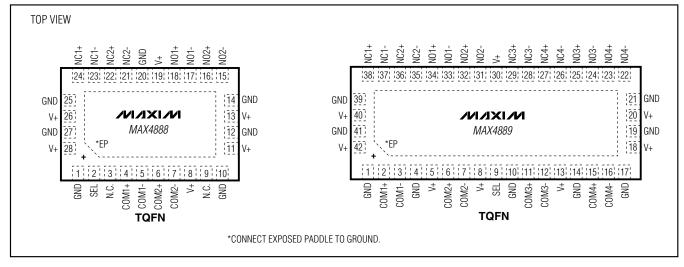
PCI Express is a registered trademark of PCI-Sig Corp.

_Features

- Single 1.65V to 3.6V Power-Supply Voltage
- Low Same-Pair Skew of 7ps
- Low 120µA (Max) Quiescent Current
- Supports PCIe Gen I Data Rates
- Flow-Through Pin Configuration for Ease of Layout
- Industry-Compatible Pinout
- Lead-Free Packaging

Ordering Information/ _____Selector Guide

PART	PIN- PACKAGE	CONFIGURATION	PKG CODE
MAX4888ETI+	28 TQFN-EP*	Two Half Lanes	T283555-1
MAX4889ETO+	42 TQFN-EP*	Four Half Lanes	T423590M-1


Note: All devices are specified over the -40°C to +85°C operating temperature range.

+Denotes lead-free package.

*EP = Exposed paddle.

Typical Application Circuit appears at end of data sheet.

Pin Configurations

M/IXI/M

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND, unless otherwise noted.)
SEL, COM_, NO_, NC_ (Note 1)0.3V to (V+ + 0.3V)
I COM NO_ I, I COM NC_ I (Note 1)0 to 2V
Continuous Current (COM_ to NO_/NC_)±70mA
Peak Current (COM_ to NO_/NC_)
(pulsed at 1ms, 10% duty cycle)±70mA
Continuous Current (SEL)±30mA
Peak Current (SEL)
(pulsed at 1ms, 10% duty cycle)±150mA

Continuous Power Dissipation ($T_A = +70^{\circ}C$	2)
28-Pin TQFN (derate 20.8mW/°C above	
42-Pin TQFN (derate 35.7mW/°C above	+70°C)2857.1mW
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	
Lead Temperature (soldering, 10s)	+300°C
Junction Temperature	+150°C

Note 1: Signals on SEL, NO__, NC__ or COM__ exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

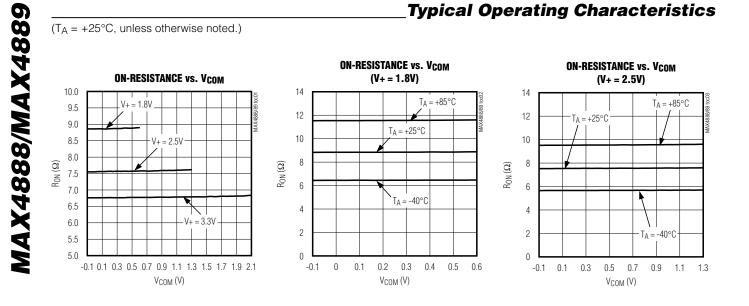
ELECTRICAL CHARACTERISTICS

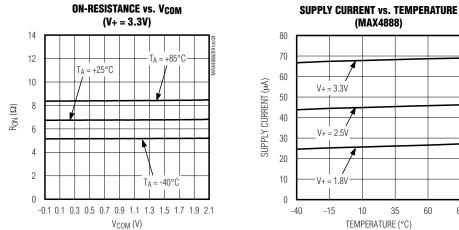
 $(V + = 3.0V \text{ to } 3.6V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } V + = 3.3V, T_A = +25^{\circ}\text{C}.)$ (Note 2)

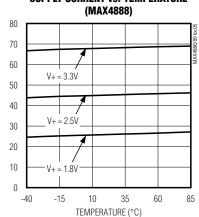
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
ANALOG SWITCH						
Analog-Signal Range	V _{COM_} , V _{NO_} , V _{NC_}		-0.1		(V+ - 1.2)	V
Voltage Between COM and NO/NC	Vcom V _{NO_} , V _{COM_} - V _{NC_}		0		1.8	V
On-Resistance	R _{ON}	$V_{+} = 3.0V, I_{COM} = 15mA, V_{NO} \text{ or } V_{NC} = 0V, 1.8V$		7		Ω
On-Resistance Match Between Pairs of Same Channel	ΔR _{ON}	V+ = 3.0V, I_{COM} = 15mA, V _{NO} or V _{NC} = 0V (Notes 3, 4)		0.1	1	Ω
On-Resistance Match Between Channels	ΔR _{ON}	$V_{+} = 3.0V, I_{COM} = 15mA, V_{NO} \text{ or } V_{NC} = 0V \text{ (Notes 3, 4)}$		0.6	2	Ω
On-Resistance Flatness	R _{FLAT(ON)}	V+ = 3.0V, I_{COM} = 15mA V _{NO} or V _{NC} = 0V, 1.8V (Notes 4, 5)		0.06	2	Ω
NO_ or NC_ Off-Leakage Current	I _{NO_(OFF)} I _{NC_(OFF)}	$V_{+} = 3.6V; V_{COM} = 0V, 1.8V; V_{NO} \text{ or } V_{NC} = 1.8V, 0V$	-1		+1	μA
COM_ On-Leakage Current	ICOM_(ON)	V+ = 3.6V; V _{COM} = 0V, 1.8V; V _{NO} or V _{NC} = V _{COM} or unconnected	-1		+1	μΑ

ELECTRICAL CHARACTERISTICS (continued)

(V+ = 3.0V to 3.6V, T_A = -40°C to +85°C, unless otherwise noted. Typical values are at V+ = 3.3V, T_A = +25°C.) (Note 2)

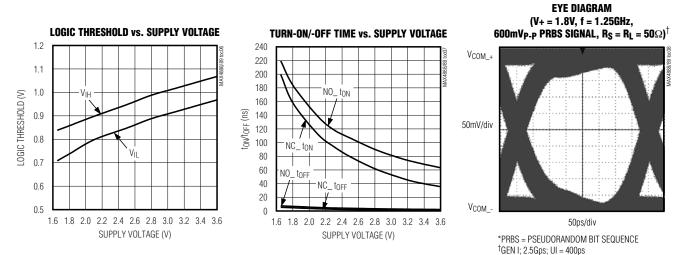

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS
DYNAMIC	•	•					
Turn-On Time	ton	V_{NO} or V_{NC} = 1.0	V, R _L = 50 Ω , Figure 1		90	250	ns
Turn-Off Time	tOFF	V_{NO} or V_{NC} = 1.0	V, R _L = 50 Ω , Figure 1		10	50	ns
Propagation Delay	t _{PD}	$R_{S} = R_{L} = 50\Omega$, unb	alanced, Figure 2		50		ps
Output Skew Between Pairs	tsk1	$R_S = R_L = 50\Omega$, unba any two pairs, Figure	alanced; skew between 2		50		ps
Output Skew Between Same Pair	tsk2	$R_S = R_L = 50\Omega$, unbatter two lines on same particular the second sec	alanced; skew between air, Figure 2		10		ps
		$R_S = R_L = 50\Omega$,	1MHz < f < 100MHz		-0.5		
On-Loss	G _{LOS}	unbalanced, Figure 3	500MHz < f < 1.25GHz		-1.4		dB
		Crosstalk between any two pairs,	f = 50MHz		-53		
Crosstalk	V _{CT1}	$R_S = R_L = 50\Omega$, unbalanced, Figure 3	f = 1.25GHz		-32		dB
Signaling Data Rate	BR	$R_S = R_L = 50\Omega$			3.0		Gbps
		Signal = 0dBm,	f = 10MHz		-56		
Off-Isolation	VISO	$R_S = R_L = 50\Omega$, Figure 3	f = 1.25GHz		-26		dB
NO_/NC_ Off-Capacitance	C _{NO_/NC_(OFF)}	Figure 4	·		1		pF
COM_ On-Capacitance	C _{COM} (ON)	Figure 4			2		pF
LOGIC INPUT		•					
Input-Logic Low	VIL					0.5	V
Input-Logic High	VIH			1.4			V
Input-Logic Hysteresis	V _{HYST}				100		mV
Input Leakage Current	l _{IN}	$V_{SEL} = 0V \text{ or } V+$		-1		+1	μA
POWER SUPPLY							
Power-Supply Range	V+			1.65		3.60	V
V+ Supply Current	l+	$V_{SEL} = 0V \text{ or } V+$	MAX4888			60	
	1+	VSEL = 0 V 01 V+	MAX4889			120	μA


Note 2: All units are 100% production tested at $T_A = +85^{\circ}C$. Limits over the operating temperature range are guaranteed by design and characterization and are not production tested.

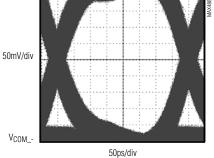

Note 3: $\Delta R_{ON} = R_{ON} (MAX) - R_{ON} (MIN).$

Note 4: Guaranteed by design. Not production tested.

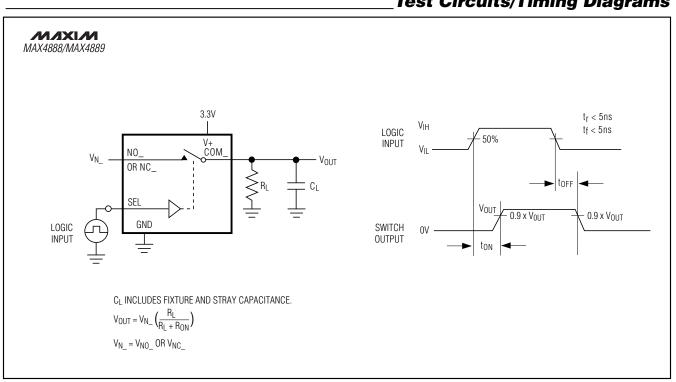
Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.



Typical Operating Characteristics (continued)


 $(T_A = +25^{\circ}C, unless otherwise noted.)$

EYE DIAGRAM (V+ = 2.5V, f = 1.25GHz, 600mV_{P-P} PRBS SIGNAL, $R_S = R_L = 50\Omega$)[†]


EYE DIAGRAM (V+ = 3.3V, f = 1.25GHz, 600mVp-p PRBS SIGNAL, Rs = RL = 50Ω)[†] V_{COM_+}

*PRBS = PSEUDORANDOM BIT SEQUENCE †GEN I; 2.5Gps; UI = 400ps

Pin Description

P	IN		FUNCTION
MAX4888	MAX4889	NAME	FUNCTION
1, 10, 12, 14, 20, 25, 27	1, 4, 10, 14, 17, 19, 21, 39, 41	GND	Ground
2	9	SEL	Digital Control Input
3, 9	—	N.C.	No Connection. Not internally connected.
4	2	COM1+	Analog Switch 1. Common Positive Terminal.
5	3	COM1-	Analog Switch 1. Common Negative Terminal.
6	6	COM2+	Analog Switch 2. Common Positive Terminal.
7	7	COM2-	Analog Switch 2. Common Negative Terminal.
8, 11, 13, 19, 26, 28	5, 8, 13, 18, 20, 30, 40, 42	V+	Positive-Supply Voltage Input. Connect V+ to a 1.65V to 3.6V supply voltage. Bypass V+ to GND with a 0.1μ F capacitor placed as close to the device as possible. (See the <i>Board Layout</i> section).
15	31	NO2-	Analog Switch 2. Normally Open Negative Terminal.
16	32	NO2+	Analog Switch 2. Normally Open Positive Terminal.
17	33	NO1-	Analog Switch 1. Normally Open Negative Terminal.
18	34	NO1+	Analog Switch 1. Normally Open Positive Terminal.
21	35	NC2-	Analog Switch 2. Normally Closed Negative Terminal.
22	36	NC2+	Analog Switch 2. Normally Closed Positive Terminal.
23	37	NC1-	Analog Switch 1. Normally Closed Negative Terminal.
24	38	NC1+	Analog Switch 1. Normally Closed Positive Terminal.
_	11	COM3+	Analog Switch 3. Common Positive Terminal.
_	12	COM3-	Analog Switch 3. Common Negative Terminal.
—	15	COM4+	Analog Switch 4. Common Positive Terminal.
	16	COM4-	Analog Switch 4. Common Negative Terminal.
—	22	NO4-	Analog Switch 4. Normally Open Negative Terminal.
_	23	NO4+	Analog Switch 4. Normally Open Positive Terminal.
—	24	NO3-	Analog Switch 3. Normally Open Negative Terminal.
_	25	NO3+	Analog Switch 3. Normally Open Positive Terminal.
	26	NC4-	Analog Switch 4. Normally Closed Negative Terminal.
	27	NC4+	Analog Switch 4. Normally Closed Positive Terminal.
_	28	NC3-	Analog Switch 3. Normally Closed Negative Terminal.
	29	NC3+	Analog Switch 3. Normally Closed Positive Terminal.
EP	EP	EP	Exposed Paddle. Connect EP to GND.

Test Circuits/Timing Diagrams

Figure 1. Switching Time

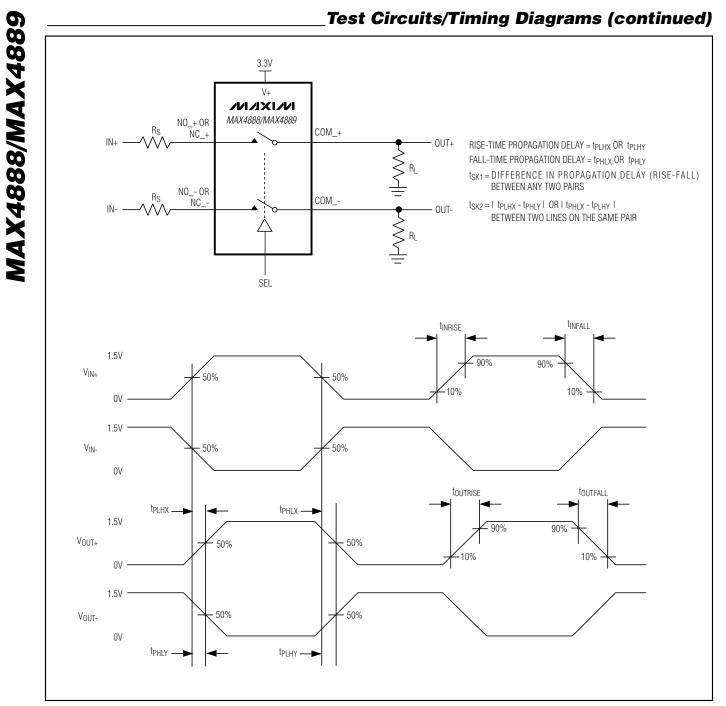
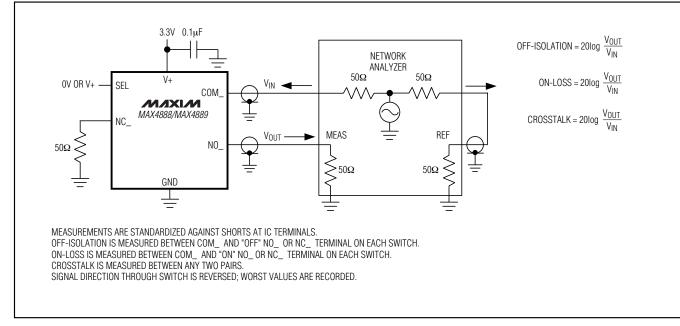



Figure 2. Propagation Delay and Output Skew

_Test Circuits/Timing Diagrams (continued)

Figure 3. On-Loss, Off-Isolation, and Crosstalk

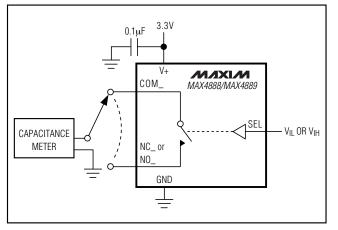
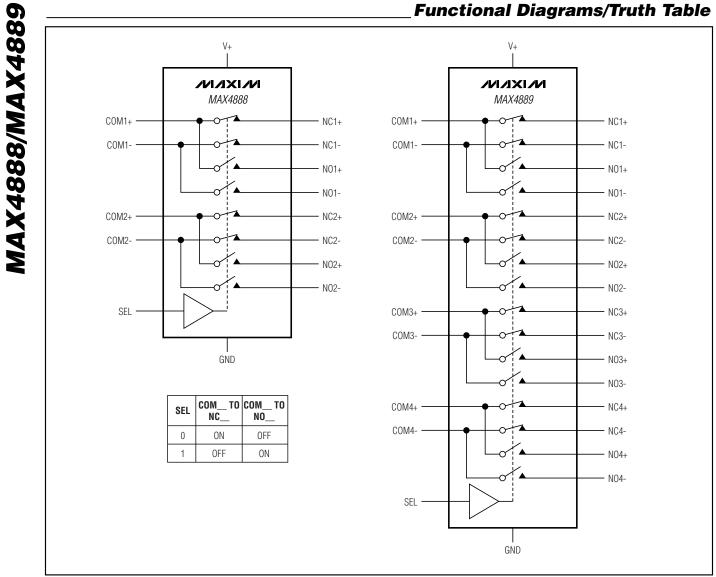


Figure 4. Channel Off-/On-Capacitance

Detailed Description

The MAX4888/MAX4889 high-speed passive switches route PCIe data between two possible destinations. The MAX4888/MAX4889 are ideal for routing PCIe signals to change the system configuration. For example, in a graphics application, the MAX4888/MAX4889 create two

sets of eight lanes from a single 16-lane bus. The MAX4888/MAX4889 feature a single digital control input (SEL) to switch signal paths.


The MAX4888/MAX4889 are fully specified to operate from a single 3.0V to 3.6V power supply and also operate down to 1.65V.

Digital Control Input (SEL)

The MAX4888/MAX4889 provide a single digital control input (SEL) to select the signal path between the COM__ and NO__/NC__ channels. The truth tables for the MAX4888/MAX4889 are depicted in the *Functional Diagrams/Truth Table* section. Drive SEL rail-to-rail to minimize power consumption.

Analog Signal Levels

The MAX4888/MAX4889 accept standard PCIe signals to a maximum of V+ - 1.2V. Signals on the COM_+ channels are routed to either the NO_+ or NC_+ channels, and signals on the COM_- channels are routed to either the NO_- or NC_- channels. The MAX4888/MAX4889 are bidirectional switches, allowing COM__, NO__, and NC__ to be used as either inputs or outputs.

Functional Diagrams/Truth Table

Applications Information

PCIe Switching

The MAX4888/MAX4889 primary applications are aimed at reallocating PCIe lanes (see Figure 5). For example, in graphics applications, several manufacturers have found that it is possible to improve performance by a factor of nearly two by splitting a single 16-lane PCIe bus into two 8-lane buses. Two of the more prominent examples are SLI™ (Scaled Link Interface) and CrossFire™. The MAX4889 permits a computer motherboard to operate properly with a single 16-lane graphics card, and can later be updated to dual cards. The same motherboard can be used with dual cards where the user sets a jumper or a bit through software to switch between single- or dual-card operation.

Board Layout

High-speed switches require proper layout and design procedures for optimum performance. Keep designcontrolled impedance PCB traces as short as possible or follow impedance layouts per the PCIe specification. Ensure that power-supply bypass capacitors are placed as close to the device as possible. Multiple bypass capacitors are recommended. Connect all grounds and the exposed pad to large ground planes.

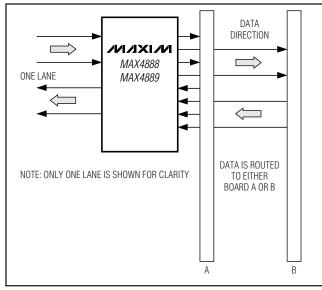
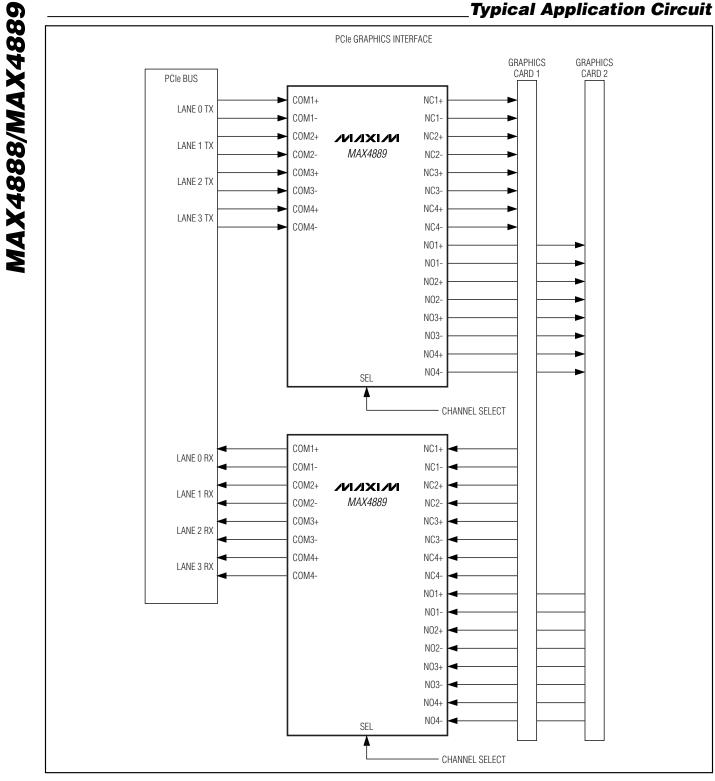
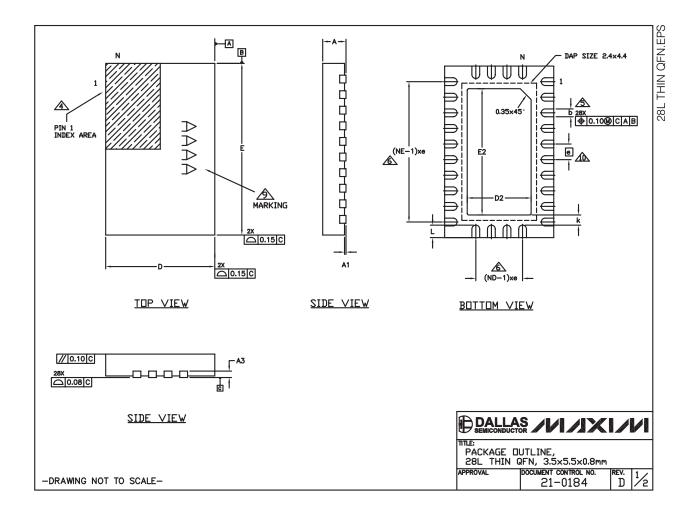



Figure 5. The MAX4888/MAX4889 Used as a Single-Lane Switch

Chip Information

PROCESS: CMOS

CrossFireTM is a trademark of ATI Technologies, Inc. SLI^{TM} is a trademark of NVIDIA Corporation.

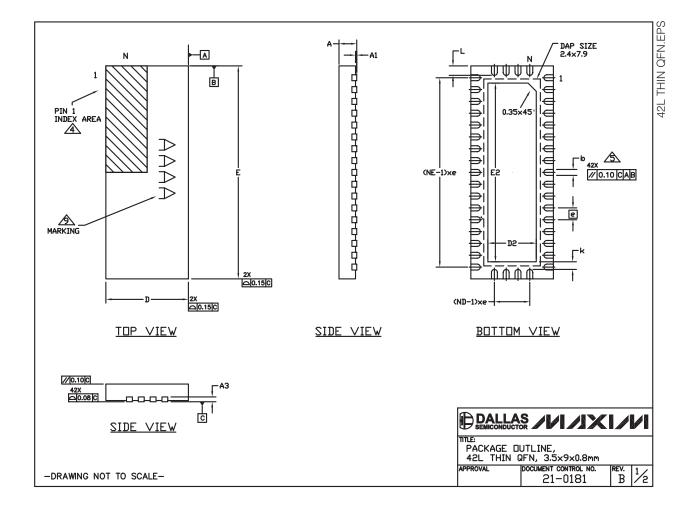


Typical Application Circuit

M/IXI/N

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)


Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

		СОММО	N DIMEN	SIONS					EXPOSE	D PAD		IONS]	
	REF.	MIN.	NDM.	MAX.	NOTE				D2			E2		1	
	A	0.70	0.75	0.80			PKG. CODE	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	1	
	A1	0	-	0.05			T283555-1	1.95	2.05	2.15	3.95	4.05	4.15	1	
	A3	0	.20 REF											-	
	ю	0.20	0.25	0.30											
	D	3.40	3.50	3.60											
	E	5.40	5.50	5.60											
	e	-	.50 BSC												
	ĸ	0.25	-	-											
	L	0.30	0.40	0.50	ALL PINS										
	N		28												
	ND		4												
DTES:	NE		10												
DIMEN ALL N IS THE CONF DPTII IDEN 0.25m 0.25m ND A RESP COPL TERM	NSIONING DIMENSIO THE TO TERMINAI ORM TO JNAL, BL TIFIER M NSION b NSION b NSION b NSION b ND NE R ECTIVEL	INS ARE TAL NUM L #1 IDE JESD 95 IT MUST AY BE E APPLIES .30mm FR EFER TO Y. APPLIES DPLANAR	RANCING IN MILL BER DF INTIFIER I SPP- BE LOC/ ITHER A I THE NU S TO THI ITY SHA	IMETERS TERMINA AND TE 012. DE ATED WI MOLD I TALLIZE MINAL T JMBER D E EXPOS	s. Angl Als. Erminal Etails Ithin t Dr mar D term IP. IF tern Sed hea	S ARE I NUMBER DF TERM IE ZONE ED FEA NAL ANI NALS DI NALS DI T SINK) IS MEASURED N EACH D AND SLUG AS WELL	IFIER A HE TERM BETWE E SIDE	RE INAL #1 EN				<u>///</u>		

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

$\frac{1}{10} \frac{1}{10} \frac$				SIONS				EXPOSE	D PAD		IONS		
$\frac{1}{42} \frac{1}{30} \frac{1}{30} \frac{1}{30} \frac{1}{30} \frac{1}{300} \frac{1}{300}$	REF.	MIN.	NDM.	MAX.	NOTE			D2			E2		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Α	0.70	0.75	0.80		PKG. CODE	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	
NUTES: 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONING & TOLERANCING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE DITIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 DIMENSION & APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25mm AND 0.30mm FROM TERMINAL TIP. M DAND NE REFER TO THE NUMBER OF TERMINAL SON EACH D AND E SIDE RESPECTIVELY. 7. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. CUPLANARITY SHALL NOT EXCEED 0.008mm. 8. VARPAGE SHALL NOT EXCEED 0.000mm. 9. VARPAGE SHALL NOT EXCEED 0.000mm.	A1	0	-	0.05		T423590-1	1.95	2.05	2.15	7.45	7.55	7.65	
D 3.40 3.50 3.60 E 8.90 9.00 9.10 e 0.50 BSC. k 0.25 - - L 0.35 0.40 0.45 PMs N 42 - - - ND 4 - - - NE 17 - - - NE 17 - - - NE 17 - - - Notes: - - - - Notes: - - - - - - Notes: - - - - - - - Notes: - - - - - - - - Notes: - -	A3	0	.20 REF			T423590M-1	1.95	2.05	2.15	7.45	7.55	7.65	
NOTES: 1 1 DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. 3. N IS THE TOTAL NUMBER OF TERMINALS. Motion To Jeso 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE DPTIONAL, BUT MAY BE LOCATED WITHIN THE ZONE INDICATED THE TERMINAL #1 IDENTIFIER AND DEGREES. DIMENSION & APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25mm AND 0.30mm FROM TERMINAL AND IS MEASURED BETWEEN 0.25mm AND 0.30mm FROM TERMINAL TIP. MD AND NE REFER TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. COPLANARITY APPLIES TO THE EXPOSED MEAT SINK SLUG AS WELL AS THE TERMINALS. COPLANARITY APPLIES TO THE EXPOSED MEAT SINK SLUG AS WELL AS THE TERMINALS. COPLANARITY APPLIES TO THE EXPOSED MEAT SINK SLUG AS WELL AS THE TERMINALS. COPLANARITY APPLIES TO THE EXPOSED MEAT SINK SLUG AS WELL AS THE TERMINALS. COPLANARITY APPLIES TO THE EXPOSED MEAT SINK SLUG AS WELL AS THE TERMINALS. COPLANARITY APPLIES TO THE EXPOSED MEAT SINK SLUG AS WELL AS THE TERMINALS. COPLANARITY APPLIES TO THE EXPOSED MEAT SINK SLUG AS WELL AS THE TERMINALS. COPLANARITY APPLIES TO THE EXPOSED MEAT SINK SLUG AS WELL AS THE TERMINALS. COPLANARITY APPLIES TO THE EXPOSED DOMON. 8. VARPAGE SHALL NOT EXCEED 0.000mm. 9. VARPAGE SHALL NOT EXCEED 0.0000mm.	ю	0.20	0.25	0.30									
NUTES: 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONING ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. 3. N IS THE TOTAL NUMBER OF TERMINALS. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED THE TERMINAL #1 DIMENSION & APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25mm AND 0.30mm FROM TERMINAL TIP. MD AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. 7. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. COPLANARITY SHALL NOT EXCEED 0.00mm. 8. VARPAGE SHALL NOT EXCEED 0.010m. 9. VARPAGE SHALL NOT EXCEED 0.010m.	D	3,40	3.50	3.60									
Image: Note of the system Image: Note of the system ND 42 ND 4 NE 17 ND 4 NE 17 ND 4 NE 17 ND 4 NE 17 NE 17 NOTES: 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONS ARE IN MILLIMETERS, ANGLES ARE IN DEGREES. 3. N IS THE TOTAL NUMBER OF TERMINALS. THE TERMINAL #1 IDENTIFIER AND TERMINALS. THE TERMINAL #1 IDENTIFIER AND TERMINALS. DIMENSION & JSD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZUDRE INDICATED THE TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZUDRE INDICATED THE TERMINAL #1 IDENTIFIER MAND USDOWN FROM TERMINAL TIP. M DA AND NE REFER TO THE AMUBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. 7. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. COPLANARITY SHALL NOT EXCEED 0.000mm. 8. VARPAGE SHALL NOT EXCEED 0.000mm. MARKING IS FOR PACKAGE DRIENTATION PURPOSE ONLY. MARKING IS FOR PACKAGE DRIENTATION PURPOSE ONLY.	Е	8.90	9.00	9.10									
NOTES: 1. 0.35 0.40 0.45 PL/S ND 4 17 NE 17 NE 17 NUTES: 1. 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONS ARE IN MILLIPETERS. ANGLES ARE IN DEGREES. 3. N IS THE TOTAL NUMBER OF TERMINALS. WATERTINAL #1 IDENTIFIER AND TERMINALS. MUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE DETTIONAL, BUT MUST BE LOCATED VITHIN THE ZONE INDICATED. THE TERMINAL #1 DIMENSION & APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.30mm FROM TERMINAL TIP. M DA AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. 7. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. COPLANARITY SHALL NOT EXCEED 0.008mm. 8. VARPAGE SHALL NOT EXCEED 0.008mm. 9. VARPAGE SHALL NOT EXCEED 0.010mm. MARKING IS FOR PACKAGE ORIENTATION PURPOSE DNLY.			.50 BSC										
NDTES: 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. 3. N IS THE TOTAL NUMBER OF TERMINALS. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE DPTIDNAL, BUT MUST BE LOCATED WITHIN THE ZONG INDICATED THE TERMINAL #1 DENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE. DIMENSION TO APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25mm AND 0.30mm FROM TERMINAL TIP. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. 7. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. COPLANARITY SHALL NOT EXCEED 0.008mm. 8. VARPAGE SHALL NOT EXCEED 0.10mm. MARKING IS FOR PACKAGE DRIENTATION PURPOSE DMLY.			-										
ND 4 NE 17 NDTES: 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONS ARE IN MILLIMETERS, ANGLES ARE IN DEGREES. 3. N IS THE TOTAL NUMBER OF TERMINALS. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 DENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25mm AND 0.30mm FROM TERMINAL TIP. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. 7. COPLANARITY SHALL NOT EXCEED 0.08mm. 8. VARPAGE SHALL NOT EXCEED 0.30mm. 8. VARPAGE SHALL NOT EXCEED 0.30mm. 8. VARPAGE SHALL NOT EXCEED 0.30mm.	_	0.35		0.45	PINS								
NUTES: 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONS ARE IN MILLIMETERS, ANGLES ARE IN DEGREES. 3. N IS THE TOTAL NUMBER OF TERMINALS. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 DENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25mm AND 0.30mm FROM TERMINAL TIP. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. 7. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. COPLANARITY SHALL NOT EXCEED 0.08mm. 8. VARPAGE SHALL NOT EXCEED 0.30mm. 8. VARPAGE SHALL NOT EXCEED 0.30mm. 8. VARPAGE SHALL NOT EXCEED 0.010mm.													
NUTES: 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONS ARE IN MILLIMETERS, ANGLES ARE IN DEGREES. 3. N IS THE TOTAL NUMBER OF TERMINALS. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE. DIMENSION & APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25mm AND 0.30mm FROM TERMINAL TIP. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. 7. COPLANARITY SHALL NOT EXCEED 0.08mm. 8. VARPAGE SHALL NOT EXCEED 0.10mm. 8. VARPAGE SHALL NOT EXCEED 0.10mm. MARKING IS FOR PACKAGE ORIENTATION PURPOSE ONLY.													
 DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. ALL DIMENSIONS ARE IN MILLIMETERS, ANGLES ARE IN DEGREES. N IS THE TOTAL NUMBER OF TERMINALS. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE LOTATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 DENTIFIER MAY BE LOTATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 DENTIFIER MAY BE LOTATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 DENTIFIER MAY BE LOTATED WITHIN AND IS MEASURED BETWEEN 0.25mm AND 0.30mm FROM TERMINAL TIP. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. COPLANARITY SHALL NOT EXCEED 0.08mm. VARPAGE SHALL NOT EXCEED 0.10mm. VARPAGE SHALL NOT EXCEED 0.10mm. MARKING IS FOR PACKAGE URIENTATION PURPOSE DNLY. 	NŁ		1/										
	 STONING		PANCING	CONFOR		V14 EM_1004							

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

MAX4888/MAX4889

_Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

MAXIM is a registered trademark of Maxim Integrated Products, Inc.