

Agilent MassHunter 工作站软件

定量分析

入门指南

声明

© Agilent Technologies, Inc. 2011

按照美国和国际版权法的规定,未经 Agilent Technologies, Inc. 事先同意和书面 许可,不得以任何形式或采取任何手段 (包括电子存储和检索或翻译成其他语 言)复制本手册中的任何内容。

手册部件号

G3335-97108

版本

第一版, 2011年6月

美国印刷

Agilent Technologies, Inc. 5301 Stevens Creek Blvd. Santa Clara, CA USA 95051

软件修订版

本指南在被替换前适用于 Agilent MassHunter 工作站软件 - 定量分析程序 的 B.05.xx 或更高版本。

如果您对本指南有任何建议,请发送电 子邮件到 feedback_lcms@agilent.com。

担保

本文档包含的内容均按"原版"提 供,若有更改,恕不另行通知。而 且,在适用法律允许的最大范围内, Agilent 不对本手册及其所包含的信 息做出任何明示或暗示的担保,其 中包括但不限于对适销性和对具体 用途适用性的暗示的担保。Agilent 不对因提供、使用面选成的任何错 误或任何意外或附带的损失承担或 任。如果 Agilent与用户签有单独的 含材料的担保条款与上述条款发生 冲突,则该书面协议中的担保条款 具有优先法律效力。

技术许可

本文档中所述的硬件和 / 或软件是依据 许可提供的,且只能根据此类许可的条 款进行使用或复制。

受限权利说明

美国政府受限权利。授予联邦政府的软件 和技术数据权利仅包括通常提供给最终 用户的那些权利。Agilent 根据 FAR 12.211 (技术数据)和12.212(计算机软件)和 (对于国防部)DFARS 252.227-7015(技 术数据 一 商品)以及 DFARS 227.7202-3 (商业计算机软件或计算机软件文档中 的权利)来提供软件和技术数据方面的 此常规商业许可。

安全声明

小心提示表示危险。提醒您注意 某个操作步骤、某项操作或类似 问题,如果执行不当或未遵照提 示操作,可能会损坏产品或丢失 重要数据。不要忽视小心提示, 直到完全理解和符合所指出的 条件。

警告

"警告"提示表示危险。提醒您 注意某个操作步骤、某项操作 或类似问题,如果执行不当或 未遵照提示操作,可能会导致 人身伤害或死亡。除非已完全 理解并符合所指出的条件,否 则请不要忽视"警告"提示而继 续进行操作。

内容提要 ...

《入门指南》提供步进练习,可帮助您学习使用定量分析程序。您可以使用系统附带的演示批处理 DrugsOfAbuse(练习1和3至5)以及以 Verapamil 为目标的批处理(练习2)(位于安装磁盘的 Data 文件夹中)或您采集的数据进行这些练习。

DrugsOfAbuse 批处理包含从 Agilent 6410 三重四极杆 LC/MS 系 统上采集的 MRM 数据文件。Verapamil 批处理包含从 Agilent 6500 系列 Q-TOF LC/MS 系统上采集的 Q-TOF 数据文件。

1 设置和定量一批采集的 MRM 数据文件

在此练习中,您将使用采集的数据文件设置批处理表、定量方法以及目标化合物。最后,您将分析批处理并保存结果。本章适用于 Agilent 6410 三重四极杆 LC/MS 系统和 Agilent 7000A 三重四极 杆 GC/MS 系统。

2 设置和定量一批采集的 Q-TOF 数据文件

在此练习中,您将使用采集的数据文件设置批处理表、定量方法以 及目标化合物。最后,您将分析批处理并保存结果。

3 检查定量结果

在此练习中,您将检查批处理文件中的样品和化合物数据,自定义 布局,并将批处理结果导出到 Microsoft Excel 文件。

4 使用工具评估结果

使用此练习中的工具可以更容易地评估定量结果并获得更准确的定量结果。

5 使用定量报告

在此练习中,您将使用指定的模板生成报告,然后在 Microsoft Excel 中检查这些报告。

选择正确的定量分析图标

在安装定量分析程序后,可在桌面上找到四个已安装的不同图标。 在从这些图标启动定量分析程序时,系统将针对相应的仪器类型对 缺省值和一些功能进行自定义。

在单击桌面上的定量分析图标时,将显示图标的全称。确保您选择 的图标与您要分析的批处理中的数据类型一致。

开始进行这些练习之前

将名为 Data 的文件夹以解压缩格式从安装磁盘复制到硬盘上的任何位置。

该文件夹包含进行这些练习所需的所有数据文件。您可能需要首先 对 zip 格式的数据文件进行解压缩。

不要重复使用系统中已存在的示例数据文件,除非您确信这些文件是从磁盘上的原始文件复制而来的,并且只有您使用过这些文件。如果系统上已有的示例数据文件与磁盘上的原始文件不完全一致,那么在这些练习过程中获得的结果将与本指南中显示的结果不一致。

目录

练习1 设置和定量一批采集的 MRM 数据文件 9

任务 1. 设置新批处理 11 任务 2. 设置批处理的新方法 14 任务 3. 设置目标化合物 17 任务 4. 设置定量 20 任务 5. 设置积分器 26 任务 6. 分析和保存批处理 27

练习2 设置和定量一批采集的 Q-TOF 数据文件 29

任务 1. 设置新批处理 31 任务 2. 设置批处理的新方法 34 任务 3. 设置目标化合物 37 任务 4. 设置定量 39 任务 5. 分析和保存批处理 42

练习3 检查定量结果 43

任务 1. 浏览批处理表结果 44 任务 2. 更改结果窗口布局 50 任务 3. 导出和打印结果 57

练习4 使用三个工具评估结果 59

任务 1. 调整校准曲线拟合 60 任务 2. 进行无参数积分 63 任务 3. 检测离群值 77

练习5 生成定量报告 83

参考 89

十大主要功能 90

定量方法 94 无参数积分器 95 批处理概览:结果 97 化合物概览 98 化合物确认 100 化合物校准 101

Agilent MassHunter 定量分析 入门指南

练习1 设置和定量一批采集的 MRM 数据 文件

任务 1. 设置新批处理 11 任务 2. 设置批处理的新方法 14 任务 3. 设置目标化合物 17 任务 4. 设置定量 20 任务 5. 设置积分器 26 任务 6. 分析和保存批处理 27

在本练习中,您将为一批采集的数据文件设置定量方法。您将通过安装磁盘上的 DrugsOfAbuse 数据文件进行该练习,并了解如何执行下列任务:

- 设置批处理表,其中包含用于滥用药物的未知样品和校准数据文件:安非他明、 可卡因、甲基苯丙胺和 MDMA。
- 根据最高浓度样品的校准标准设置新定量方法。
- 设置目标化合物。
 - 查看数据文件中化合物的 MRM 转化和色谱图参数。
 - 设置每个化合物的内标。
- 设置方法的定量步骤。
 - 输入具有最高浓度的化合物校准标准的浓度和稀释模式。
 - 设置定性离子和校准曲线。
- 自动定量批处理并保存结果。

我们将每一个练习的内容都放在了一个表中,每个表中分别包含以下三列:

- 步骤 通过这些常规说明自学使用此程序。
- 详细说明 如果您需要帮助或更喜欢使用步进学习方式,则可使用这些说明。
- 注释 阅读这些注释可了解有关练习中的每个步骤的提示和其他信息。

开始操作之前 ...

确保将 DrugsOfAbuse 文件夹从安装磁盘上的 Data 文件夹复制到您系统上的文件夹。

设置和定量一批采集的 MRM 数据文件 1 任务 1. 设置新批处理

任务 1. 设置新批处理

在此任务中,您将设置一个批处理表,该批处理包含三个未知样品的数据文件以及几个滥用药物的校准样品:安非他明、可卡因、甲基苯丙胺和 MDMA。

图1 缺省布局

1 设置和定量一批采集的 MRM 数据文件 任务 1. 设置新批处理

步骤	详细说明	注释
	 b 单击文件 > 新建批处理。系统将打 开新建批处理对话框。 c 浏览至文件夹 \ <i>您的文件央</i> \DrugsOfAbuse\。 d 输入批处理文件名 <i>iii</i>_Test_01, 然后 单击打开。 	・如果未显示缺省布局,请单击工 具栏中的 恢复缺省布局 ,然后再 创建新批处理。 恢复缺省布局(D)
2 将 DrugsOfAbuse 文件夹中的所 有样品添加到批处理。	 a 单击文件 > 添加样品:系统将显示 添加样品对话框。 b 单击全选选择所有样品,然后单击 确定将这些样品添加到批处理。 批处理表不再是空的。现在它包含 校准、QC和未知样品。请参见图 2。 	 ・请注意,只有三个文件是未知样品,一个是空白,五个是不同校 准级别的校准文件,另外两个是 0C 样品。
	添加样品 批处理文件夹::\Data\DrugsOfAbu CMAMBlk_01.d CMAMCal_L1.d CMAMCal_L2.d CMAMCal_L3.d CMAMCal_L5.d CMAMCI_L5.d CMAMQC_L2.d CMAMQC_L4.d CMAMSam_01.d CMAMSam_03.d CMAMSam_03.d CMAMSam_added.d	? ▼

任务1. 设置新批处理

任务 2. 设置批处理的新方法

任务 2. 设置批处理的新方法

此任务说明如何根据具有最高浓度的化合物的样品的校准数据文件设置新定量方法。

步	骤	详	细说明	注	E 释
1	从采集的 MRM 数据创建新 方法。 • 使用具有最高信号的校准数 据文件。	a	使用光标高亮显示具有最高浓度 的化合物级别的校准标准,如下图 所示。	•	使用具有化合物的强信号的样 品,如高浓度校准样品,让程序 创建具有适当的保留时间和定 性离子比的方法。

11 A	\gile	ent N	lassHunter 定量	台标 - DrugsOfAk	ouse - jmt	_test_(01
:文	(牛(F) 编	辑(E) 视图(V)	分析(A) 方法(M)	更新(U)	报告(R) 工具(T) 帮助(H)
1		7 🔒	┗┓ 〔耳 分相	折批处理(A) 🛛 🕜	布局:		🛛 📰 🔼 📝 娕
批处	理表	V					
: 梢	¥品:		▶ 样品类型	: <全部> ▼	化合物: 💽		
				样品			
C)	7	名称	数据文件	类型	级别	采集日期时间
			Blank-1	CMAMB1k_01.d	空白		2006/5/12 13:48
			Calib-L1	CMAMCal_L1.d	校正	L1	2006/5/12 13:51
			Calib-L2	CMAMCal_L2. d	校正	L2	2006/5/12 13:54
			Calib-L3	CMAMCal_L3.d	校正	L3	2006/5/12 13:57
			Calib-L4	CMAMCal_L4. d	校正	L4	2006/5/12 14:00
			Calib-L5	CMAMCal_L5.d	校正	L5	2006/5/12 14:03
			QC-L2	CMAMQC_L2. d	QC	12	2006/5/12 14:06
			QC-L4	CMAMQC_L4. d	QC	L4	2006/5/12 14:09
			Sample-1	CMAMSam_01. d	样品		2006/5/12 14:12
			Sample-2	CMAMSam_02. d	样品		2006/5/12 14:15
			Sample-3	CMAMSam_03. d	样品		2006/5/12 14:18
			Sample-added	CMAMSam_added. d	样品		2006/11/11 11:00

b 单击**方法 > 编辑**切换到方法编辑 模式。

方法任务显示在视图左侧的列中, 如图 3 所示。

- 请注意,图 3 显示方法编辑的缺 省布局。
- ・ 如果未显示缺省布局,请单击工 具栏中的恢复缺省布局,然后在 下一步创建新方法。

恢复缺省布局(D)

任务 2. 设置批处理的新方法

图3 方法编辑模式

1 设置和定量一批采集的 MRM 数据文件 任务 2. 设置批处理的新方法

步骤	详细说明 注释	
	 c 在方法表左侧的侧栏中的方法任务 · 也可以单击方法 > 新建 > 从下方,单击新建 / 打开方法 > 根据 集的 MRM 数据新建方法。 所采集的数据新建方法。选择否以 · 下图显示级别为 5 的校准标准将方法应用于批处理。 系统将显示请选择样品文件夹对话框。 d 单击 CMAMCal_L5.d 并单击打开,以导入采集方法信息。 	彩
	2015年1月1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1	×
; 文件(F) 编辑(E) 视图(V)	分析(A) 方法(M) 更新(U) 报告(R) 工具(T) 帮助(H)	
1 🗅 🗁 📕 🕒 💭 分枝	析批处理(A) 🛛 😥 : 布局: 🔜 🔡 🛗 🏛 🔼 📝 恢复缺省布局(D)	
方法任务栏 🗙	方法表	×
新建/打开方法	时间段: ← <全部> ▼ ➡ 化合物: • Meth-d5 ▼ ● 重置表视图(R)	
方法设置(M)	级别名称前缀: 级别数: 10 创建级别(C)	
🥂 MRM 化合物设置(M)	样品	
⚠️保留时间设置(R)		ĥ
☆ ISTD 设置(I)	Calib-L5 CMAMCal_L5. d 校正 L5 APCIautotune. m 2006/5/12 1…	
🪀 浓度设置(0)	定里化合物	
<u> <u> </u> </u>	名称 Z TS 转换 全扫描 类型 前级离子 产	
🚀 校正曲线设置(A)	□ Amp 1 136.2 -> 91.4 MRM 目标 136.2	
	定性峰	
保存/退出	前级离子 产物离子 转换 相对响应 不确定度 面积加和	н
ਔ 验证(V)	136.2 119.4 136.2 -> 119.4 26.6 20.0	
	定里化合物	
電 休住(の) 早存为(4)		物
	Hamp-d5 1 141.1 ISTD 141.1	
▶ 退出(1)	定性峰	
手动设置(U)	前级离子 产物离子 转换 相对响应 不确定度 面积加和	
离群值设置(T)		_
高級(D)		
		·韧
		-
	HNISKAGコエ 「110/04コエ ママ1米 11月X14月1122 小1項ル正ル支 単純代パルイム 304、1 82、0 304、1 -> 82、0 3、8 20、0 「	
		-
		F .
	4 个化合物(共 4 个) 4 个 ISTD (共 4 个	2.4

设置和定量一批采集的 MRM 数据文件 1 任务 3. 设置目标化合物

任务3.设置目标化合物

通过此任务,您可以学习检查新定量方法的 MRM 转化以及保留时间数据,并针 对单个目标化合物进行更改。还可以学习为每个目标化合物设置 ISTD 化合物。

步骤		详细说明			注释		
1 检查从导入的采 新定量方法的 M	餐集方法创建的 RM 转化情况。	a 在 方法表 函 任务下方。 MRM 化合	窗口左侧的 ,单击 方 ; 物设置 。	侧栏中的 方法 去设置任务⇒	 ・ 与 MRM 转付 将输入到采 下,选择最大 	化关联的化合 集方法中。缺 、信号作为定量	物名称 省情况 讀离子。
Agilent MassHunter 定量	置 分析 - [新建方法]					_	
› 文件(F) 编辑(E) 视图(V)	分析(A) 方法(M) 更新(U	り 报告(R) 工具(T)	帮助(H)				
: 🛅 🗁 📕 🕒 💭 分	析批处理(A) 🕜 布局		📝 恢复缺省	布局(D)			
方法任务栏 ×	方法表						×
新建/打开方法	时间段: 🖛 <全部>	▼ ➡ 化合	物: 🔄 Meth-c	5 👻 📄 重	置表视图(R)		
方法设置(M)	: 级别名称前缀:	级别数:10	AI	建级别(C)			
⚠️ MRM 化合物设置(M)	样品						
⚠️保留时间设置(R)	シンジャンシング	新报文件	光刑	纪 早		采集日期时间	
슔 ISTD 设置(I)	Calib-L5	CMAMCal_L5. d	 校正	15	APCIautotune.m	2006/5/12 1	
🊀 浓度设置(0)		MRM 化合物设置。 下,选择最大信号作为定量离子。 方方 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●					
────────────────────────────────────	2和	4 TS	转掐	全扫描	光刑	前级离子	
	Amp	1 136	2 -> 91.4	MRM		136.2	7 1751441.
■ 全局沿署 (4)	Amp-d5	1 141	1 -> 93.4	MRM	ISTD	141.1	
	Cocaine	1 304	1 -> 182.0	MRM	目标	304.1	
保存/退出	Cocaine-d3	1 307.	1 -> 185.0	MEM	ISTD 명선	307.1	
🤯 验证(V)	MDMA-d5	1 199	2 -> 164.3	MEM	日7小 ISTD	194.2	
■ 保存(S)	Meth	1 150	1 -> 119.3	MRM	目标	150.1	
早存为(4)	Meth-d5	1 155	2 -> 92.3	MRM	ISTD	155.2	
区 退出(X)							
手动设置(U)							
离群值设置(T)							
高级(D)							

任务 3. 设置目标化合物

设置和定量一批采集的 MRM 数据文件 1 任务 3. 设置目标化合物

步骤	详细说明	注释
	 c 单击与目标化合物关联的 ISTD 名称。 d 输入每个 ISTD 化合物的 ISTD 浓度 	

(ISTD 浓度)。

Gilent MassHunter 定	量分析 -	[新建方法]										- • ×
: 文件(F) 编辑(E) 视图(V)	分析(A) 方法(M) 更新(U) 报	告(R) 工具(T) 幕	帮助(H)						
: 🗅 🗁 📕 🕒 💭 分	析批处理	∄(A) 0 布局:			/	恢复缺省和	ī局(D)					
方法任务栏 🗙	方法表											×
新建/打开方法	1 时间	□段: ← <全部>		▼ ➡ 化合物	勿: 💽	Amp		▼ ➡ 重置表视图	(R)			
方法设置(M)	级别	制名称前缀:		级别数: 10		创系	聿级别(C)					
⚠️ MRM 化合物设置(M)	样品											1
⚠️保留时间设置(R)		名称	1	数据文件		类型		级别	采集方法S	て件 系算	日期时间	
☆ ISTD 设置(I)	Calib-15 CNAMCal_L5.d 校正 L5 AFCIautotume.m 2006/5/12 1… 定量化合物							.m 2006,	5/12 1	12 1		
🊀 浓度设置(0)								_				
<u>飛</u> 定性峰设置(Q)		名称 △	TS	转换		全扫描	类型	ISTD 化合物名称	ISTD 标记	ISTD 浓度	时间参	参比标记
🚀 校正曲线设置(A)		▶ Amp	1	136.2 -> 91.4	M	RM	目标	Amp-d5 💌				
		Amp-d5	1	141.1 -> 93.4	M	RM	ISTD	〈无〉	V	50.0	000	
· 在方/混中	2	Cocaine Cocaine=d3	1	304.1 -> 182.0 307.1 -> 185.0	M	RM	日标 TSTD	Cocaine-d3 〈无〉		50.0	100	
体计/赵山 王		MDMA	1	194.2 -> 163.3	M	RM	目标	MDMA-d5				
于动反击(0)		MDMA-d5	1	199.2 -> 164.3	8	RM	ISTD	〈无〉	~	50.0	000	
离群值设置(T)		Meth	1	150.1 -> 119.3	M	RM	目标	Meth-d5		50.0		
高级(D)		Meth-d5	1	155.2 -> 92.3	M	EM	ISTD	〈九〉	V	50.0	000	
									4 个化合物	匆(共 4 个)	4 个 ISTD	(共 4 个) .::

任务4.设置定量

任务 4. 设置定量

此任务说明如何为方法的下列数据设置定量参数:

- 校准级别
- 定性离子
- 校准曲线拟合

步	步骤		细说明	注释
1	为每个化合物创建五个校准 级别。 将安非他明的具有最高浓度 的化合物设置为125。 将安非他明的稀释模式设置 为1:5:2:2.5:2。 比较该稀释模式下五个级别 的浓度。 	a b c	单击 方法设置任务 > 浓度设置 ,然 后在安非他明 (Amp) 的 稀释高浓度 列中输入 125。 在安非他明的 稀释模式 列中输入 1:5:2:2.5:2。 确保 系列稀释 工具栏中的 级别名称 前缀 是 L,级别数是 5。	

📅 Agilent MassHunter 定	量分析 - [[新建方法]								
: 文件(F) 编辑(E) 视图(V)	分析(A)) 方法(M) 更新(U) 报	告(R) 工具(T) #	帮助(H)					
i 🗅 🗁 📕 🖻 💭 🖯	析批处理	(A) 🕜 布局:			📝 恢复缺省	布局(D)				
方法任务栏 ×	方法表									×
新建/打开方法	时间	段: ← <全部>		▼ ➡ 化合物	л 🔄 🕅		▼ ■ 重置表視	见图(R)		
方法设置(M) 级别名称前缀: L 级别数: 5 创建级别(C)										
<u>▲</u> MRM 化合物设置(M)	样品	5	_							
⚠️保留时间设置(R)		·	1	数据文件	类型		级别	采集方法文件	采集日期时间	
☆ ISTD 设置(I)	- Calib-L5 CMAMCal_L5.d 校正 L5 APCIautotune.m 2006/5/12 1···									
🪀 浓度设置(0)		定量化合物								
────────────────────────────────────		名称 🛆	TS	转换	全扫描	类型	稀释高浓度	稀释模式	单位	
🚀 校正曲线设置(A)	2000	Amp	1	136.2 -> 91.4	MRM	目标	125.0000	1:5:2:2.5:2	ng/ml	
		Amp-d5	1	141.1 -> 93.4	MRM	ISTD			ng/ml	
		Cocaine	1	304.1 -> 182.0	MRM	目标	は ほの ほの 「 」 「 」 「 」 」 」 」 」 」 」 」 」 」 」 」 」			
保存/退出		Cocaine-d3	1	307.1 -> 185.0	MRM	ISTD			ng/ml	_
手动设置(U)		MUMA MDUA- 3E	1	194.2 -> 163.3	MIM	日尓			ng/ml	_
◎ 郵值沿罟(T)	-	Moth	1	159.2 -> 164.3	MRM	1310			ng/mi	_
宣祝(D)		Meth-d5	1	155.2 -> 92.3	MRM	ISTD			ng/ml	
Tabox (U)										
								4 个化合物(共)	4 个) 4 个 ISTD (共	4 个):

图4 为第一个化合物创建五个校准级别

设置和定量一批采集的 MRM 数据文件 1 任务4.设置定量

4 个化合物(共 4 个) 4 个 ISTD (共 4 个) ..:

步骤 详细说明 注释 d 单击创建级别。 • 为安非他明创建了校准表后,可 e 比较稀释高浓度和稀释模式下新创 指示程序将该表复制到步骤2中 建的校准级别的浓度。 的其他目标化合物。 🐻 Agilent MassHunter 定量分析 - [新建方法] - • • 文件(F) 编辑(E) 视图(V) 分析(A) 方法(M) 更新(U) 报告(R) 工具(T) 帮助(H) 🛅 🗁 📙 📭 🗊 分析批处理(A) 🛛 🕢 👬 🛗 🛗 🛗 🛗 🔛 🐼 恢复缺省布局(D) 方法任务栏 × 方法表 × 新建/打开方法 时间段: 🖛 <全部> ▼ 🔿 化合物: 🔙 Meth ▼ ■ 重置表视图(R) 方法设置(M) 级别名称前缀: L 级别数:5 创建级别(C) ⚠️ MBM 化合物设置(M) 样品 * ለ 保留时间设置(R) 名称 数据文件 类型 级别 采集方法文件 采集日期时间 ☆ ISTD 设置(I) Calib-L5 CMAMCal_L5.d 校正 15 APCIautotune.m 2006/5/12 1... 🊀 浓度设置(0) 定量化合物 ️魇 定性峰设置(Q) 名称 TS 转换 全扫描 类型 稀释高浓度 稀释模式 单位 💉 校正曲线设置(A) 1 136.2 -> 91.4 MRM 目标 125.0000 1:5:2:2.5:2 ng/ml Amp 校正 级别 浓度 保存/退出 L1 2.5000 手动设置(U) _____ L2 5.0000 12.5000 离群值设置(T) L3 L4 25.0000

2 将校准级别和浓度复制到其他化 a 单击方法 > 将校准级别复制到 ...。 合物。

L5

关闭化合物信息窗口。

高级(D)

- 系统将显示**将校准级别复制到**对 话框。
- 比较四个化合物的校准设置。 b 单击全选, 然后单击确定。

125.0000

复制校正级	别到				? <mark>×</mark>
选择化合:	物:				
名称	TS	RT	转换	ISTD 标记	
Cocaine	1	2, 448	304.1 -> 182.0		
MDMA	1	2,271	194.2 -> 163.3		
Meth	1	2.237	150.1 -> 119.3		
全选				确定	取消
	_				

设置和定量一批采集的 MRM 数据文件 任务 4. 设置定量 1

步骤	详细说明	注释
	 c 关闭定量数据分析主视图下半部 分中的化合物信息窗口和样品信 息窗口。 d 浏览方法表,比较四个目标化合物 	
	版和 MDMA)的校准浓度设置。	

Ę									
间目	段: 🐢 <全部>		▼ ➡ 化合物	: 🔄 Meth		▼ ■ 重置表被	见图(R)		
别	名称前缀: L		级别数:5	Û	建级别(C)				
品		_							-
	名称	/	数据 文件	类型		级别	采集方法文件	采集日期时间	1
С	Calib-L5	CMA	MCal_L5. d 1	交正		L5	APCIautotune.m	2006/5/12 1	
-	日田小会物		- 13						
-	日本の	TC	** +2			译码言述度	124748-0	第 1	
H	-51%	15	₩ 126-2 -> 01-4	王行田田	火尘	125,0000	1.5.2.2.5.2	半 1辺	
Ч	Kinp	150.2 7 51.4	mitan	1011	125.0000	1.5.2.2.5.2	ILEY IIIT		
	校正								
	级别 浓度								
	L1	2.5000							
	12		5.0000						
	L3		12.5000						
	L4		25.0000						
	LS		125.0000						
定	e 里化合物								
	名称 🔺	TS	转换	全扫描	类型	稀释高浓度	稀释模式	单位	
-	Amp-d5	1	141.1 -> 93.4	MRM	ISTD			ng/ml	
	Cocaine	1	304.1 -> 182.0	MRM	目标	125.0000	1:5:2:2.5:2	ng/ml	
	校正			1					
	级别		浓度						
	L1		2.5000						
	12		5.0000						
	L3		12.5000						
	L4		25.0000						
	L5		125.0000						
定	上 全里化合物			-					
	名称 🕗	TS	转换	全扫描	类型	稀释高浓度	稀释模式	单位	
E	Cocaine-d3	1	307.1 -> 185.0	MRM	ISTD			ng/ml	
1	MDMA	1	194.2 -> 163.3	MRM	目标	125.0000	1:5:2:2.5:2	ng/ml	
	校正								
	级别		浓度						
	11		2 5000						
	444	2.500		- 5					
	12								
	12		12,5000	-					
	12 13 14		12.5000	-2					

设置和定量一批采集的 MRM 数据文件 1 任务4.设置定量

步骤	详细说明	注释			
 3 设置定性离子和校准曲线。 检查定性峰设置参数。 将缺省曲线原点从"线性"更 改为"强制"。 	a 单击 方法设置 > 定性峰设置, 然后 检查定性峰设置参数。	 ・ 当系统导入 MRM 采集信息时,将 自动填充定性峰设置参数。 ・ 在创建方法的过程中,除了化合 物的定量离子外,还将其他 MRM 转化指定为定性离子。 			

名称

Amp

Amp-d5

MDMA

▶ Meth

MDMA-d5

Meth-d5

Cocaine

Cocaine-d3

TS

转换

1 136.2 -> 91.4

1 141.1 -> 93.4

1 304.1 -> 182.0

1 307.1 -> 185.0

1 194.2 -> 163.3

1 199.2 -> 164.3

1 155.2 -> 92.3

任务4.设置定量

🏏 校正曲线设置(A)

保存/退出

高级(D)

手动设置(U)

离群值设置(T)

全扫描

MRM

MRM

MRM

MRM

MRM

MRM

MRM

类型

目标

ISTD

目标

ISTD

目标

ISTD

ISTD

线性

线性

线性

线性

线性

线性

线性

CF

CF 原点

强制

忽略

强制

忽略 强制

忽略

忽略

CF 权重

Þ

无

无

无

无

无

无

无

4 个化合物(共 4 个) 4 个 ISTD (共 4 个) ...

设置和定量一批采集的 MRM 数据文件 1 任务 4. 设置定量

步骤	详细说明	注释
4 验证并保存方法。	a 单击 保存 / 退出 > 验证 ,验证方法 设置。	 您可以在屏幕底部查看发生的 任何验证错误。
	Agilent MassHunter 定量分析	
	方法已验证。没有发现错误或警告。	, , , ,
	确注	
	 b 在显示验证消息后,单击确定。 c 单击保存/退出>退出,然后在显示是否要将此方法应用于批处理? 提示时单击是。 	

任务 5. 设置积分器

任务 5. 设置积分器

步骤

详细说明

注释

- 1 将缺省积分器更改为 MS-MS。
- a 单击**方法 > 编辑**或按 F10。
- b 单击方法 > 高级任务。
- c 在高级任务下的方法任务工具栏 中,选择积分参数设置。
- d 在**方法表**中,单击位于 **积分器**值右 侧的框。

	名称	4	数据文件	类型		级别	采集方
	Calib-L5	CMJ	MCal_L5.d	校正		LS	APCIauto
	定重化合物						
	名称	TS	转换	全扫描	类型	稀释高浓度	稀释
3	Атр	1	136.2 -> 91.4	MRM	目标	125.0000	1:5:2:2.5:2
	校正						
	级别		浓度				
	L1		2.500	10			
	12		5.000	10			
	L3		12.500	0			
	L4		25.000	10			
	L5		125.000	0			
1	定重化合物						
	名称 🔺	TS	转换	全扫描	类型	稀释高浓度	稀释植
	Amp-d5	1	141.1 -> 93.4	MRM	ISTD		
3	Cocaine	1	304.1 -> 182.0	MEM	目标	125.0000	1:5:2:2.5:2
	校正						
	级别		浓度				
	L1		2.500	10			
	12		5.000	10			
	L3		12.500	10			
	L4		25.000	10			
	15		125,000	0			

任务 6. 分析和保存批处理

任务 6. 分析和保存批处理

在本练习中,您将自动定量批处理,然后保存结果。

步	骤	详	细说明	注释				
1	分析批处理,检查每个化合物的 结果。 ·检查定量消息,它将显示没有 定量信号的样品。 ·检查离群值标记消息。	a b c	单击工具栏中的 分析批处理 图标 ^{[3]分析批处理(A)} 开始批处理分析。 使光标经过样品1的定量消息。 使光标经过前两个校准标准的 标记。	•	请注意, 程序在样品 -1 中未找到 安非他明 (Amp) 的数据。 请注意,两个校准标准包含离群 值数据。			

2 保存批处理。

a 单击文件 > 保存批处理。

b 单击**文件 > 关闭批处理**以关闭批 处理。

1 设置和定量一批采集的 MRM 数据文件 任务 6. 分析和保存批处理

Agilent MassHunter 定量分析 入门指南

练习 2 设置和定量一批采集的 Q-TOF 数据 文件

任务 1. 设置新批处理 31 任务 2. 设置批处理的新方法 34 任务 3. 设置目标化合物 37 任务 4. 设置定量 39 任务 5. 分析和保存批处理 42

在本练习中,您将为一批采集的 Q-TOF 数据文件设置定量方法。您将通过安装磁盘上的 Verapamil 数据文件进行该练习,并了解如何执行下列任务:

- 设置一个批处理表,其中包含戊脉安的空白和校准数据文件。
- 根据最高浓度样品的校准标准设置新定量方法。
- 设置目标化合物。
 - 查看数据文件中戊脉安化合物的产物离子和色谱图参数。
- 设置方法的定量步骤。
 - 输入具有最高浓度的化合物校准标准的浓度和稀释模式。
 - 设置定性离子和校准曲线。
- 自动定量批处理并保存结果。

2 设置和定量一批采集的 0-TOF 数据文件

我们将每一个练习的内容都放在了一个表中,每个表中分别包含以下三列:

- 步骤 通过这些常规说明自学使用此程序。
- 详细说明 如果您需要帮助或更喜欢使用步进学习方式,则可使用这些说明。
- 注释 阅读这些注释可了解有关练习中的每个步骤的提示和其他信息。

开始操作之前 ...

确保将 Verapamil-targetedMSMS 文件夹从安装磁盘上的 Data/QTOF 文件夹复制到 您系统上的文件夹。

设置和定量一批采集的 0-TOF 数据文件 2

任务1. 设置新批处理

任务 1. 设置新批处理

在此任务中,您将设置一个批处理表,其中包含戊脉安的校准样品的数据文件。 本部分中的许多任务与练习1中的任务相同。

图5 缺省布局

2 设置和定量一批采集的 0-TOF 数据文件 任务 1. 设置新批处理

	详细说明	注释
	 b 单击文件 > 新建批处理。系统将打开新建批处理对话框。 c 浏览至文件夹 \ <i>您的目录</i> \Verapamil-targetedMSMS\。 d 输入批处理文件名 <i>iii_</i>Test_01, 然后单击打开。 	・如果未显示缺省布局,请单击工 具栏中的 恢复缺省布局 ,然后再 创建新批处理。 恢复缺省布局(D)
2 将 Verapamil 文件夹中的所有样 品添加到批处理。	 a 单击文件 > 添加样品: 系统将显示添加样品对话框。 b 单击全选选择所有样品,然后单击 确定将这些样品添加到批处理。 批处理表不再是空的。现在它包含 校准和空白样品。请参见图 6。 	・ 请注意,五个文件是空的,其他 文件是不同校准级别的所有校 准文件。
	添加样品	
	批处理文件夹: ^{^:} :\Data\Verapamil-tar 0_5pgr001.d 0_5pgr002.d 0_5pgr002.d 1000pgr003.d 1000pgr003.d 1000pgr003.d 125pgr001.d 125pgr001.d 125pgr003.d 1pgr003.d 25pgr002.d 1pgr003.d 25pgr002.d 1pgr003.d 25pgr003.d 25pgr003.d 25pgr004.d 25pgr005.d	ge

设置和定量一批采集的 Q-TOF 数据文件 2

任务1. 设置新批处理

步骤			详	细说I	明					ž	主释						
			11.1				-								(
Agilent I	MassHunter 🤅	定量分析 - Verap	2								l						
: 文件(F) 新	扁損(E) 视图(V) 分析(A) 方法	帮助(H)														
i 🛅 🗁 🖡	🎦 🗀 📕 ங 💭 分析批处理(A) 🛛 😥 施局: 🔜 🔢 🔠 🖾 🖄 🖽 🖽 🖸 🕢 🕢																
批处理表										_							×
样品: 👔	▶ 样品刻	₩型: <全部>	▼ 化合	物: 🔙]		•	IST	D:		时间的	g: <	-		1	* *	>
化合物组	: <全部>	▼ 样品组:	<全部>		-												
		样品															
9	名称	数据文件	类型	级别	采集	日期时间											
	ACN	ACN-r001.d	空白		2007/4/	6 13:12											E
	ACN	ACN-r002.d	空白		2007/4/	6 13:15											
	blank	blank-r001.d	空白		2007/4/	6 13:18											
	blank	blank-r002.d	空白		2007/4/	6 13:21											
	blank	blank-r003.d	空白		2007/4/	6 13:23											
	0.5 pg/HL	0_5pg-r001.d	校正	1	2007/4/	6 13:26											
	0.5 pg/HL	0_5pg-r002. d	校正	1	2007/4/	6 13:28											
	0.5 pg/HL	0_5pg-r003. d	校正	1	2007/4/	6 13:31											
	1 pg/HL	1pg-r001.d	校正	2	2007/4/	6 13:33											-
化合物信息	1.4 6.07	14 000 1	177-	10	10007 (4)	× · · · · ·											×
			1 n 1			<u> </u>		1	T II .		医去。		+17-7	= .			
				K	• + /	2 🔺			≌:[原只:		11/1	27	_ = [1	K 🕂	+ =
色谱图								_									
x10 1						-	/즴 x10 ²										
0.8-							0.6								-		
0.7							0.4										
0.6-							0.2										
0.5-							0										
0.4							-0.2										
0.3-						-	-0.4										10.00
0.2-							-0.6										
0.1							-0.8										
							-1										
	i ż	3 4 5	6	7	8	ģ		' -8	30 ·	-60	-40	-20	ó	20	40	60	80 wref
																	710 <u>5</u>
														26 1	个样品	供 26	个):

图6 定量之前的包含戊脉安样品的批处理表

2 设置和定量一批采集的 Q-TOF 数据文件

任务 2. 设置批处理的新方法

任务 2. 设置批处理的新方法

此任务说明如何根据具有最高浓度的化合物的样品的校准数据文件设置新定量方法。

步骤			细说明	注释				
1	从采集的 0-TOF 数据创建新 方法。 • 使用具有最高信号的校准数 据文件。	a	使用光标高亮显示具有最高浓度 的化合物级别的校准标准,如下图 所示。	•	使用具有化合物的强信号的样 品,如高浓度校准样品,让程序 创建具有适当的保留时间和定 性离子比的方法。			

📅 Agilent MassHunter 定量分析 - Verapamil-targetedMSMS - jmt_test_02											
: 文件(F	: 文件(F) 编辑(E) 视图(V) 分析(A) 方法(M) 更新(U) 报告(R) 工具(T) 報目										
1 🔁 🖸	🤃 🎦 🗁 🛃 📭 分析批处理(A) 🛛 🥥 🤃 布局: 🔜 🔢 💹 🖽 🛆 🗜										
批处理表											
祥品: 1 単 样品类型: <全部> ▼ 化合物: 鮰											
化合物组: <全部> ▼ 样品组: <全部> ▼											
•	7	名称	级别	采集日期时间							
H٣-		125 pg/HL	125pg=r001.d	校正	5	2007/4/6 13:56					
		125 pg/HL	125pg-r002.d	校正	5	2007/4/6 13:58					
		125 pg/HL	125pg-r003.d	校正	5	2007/4/6 14:01					
		625 pg/HL	625pg-r001.d	校正	6	2007/4/6 14:03					
		625 pg/µL	625pg-r002.d	校正	6	2007/4/6 14:06					
		625 pg/µL	625pg-r003.d	校正	6	2007/4/6 14:09					
		1000 pg/HL	1000pg-r001. d	校正	7	2007/4/6 14:11					
-		1000 pg/HL	1000pg-r002.d	校正	7	2007/4/6 14:14					
		1000 pg/HL	1000pg-r003.d	校正	7	2007/4/6 14:16					

b 单击**方法 > 编辑**切换到方法编辑 模式。 ・请注意,图7显示方法编辑的缺省布局。
・如果未显示缺省布局,请单击工

方法任务显示在视图左侧的列中, 如图 7 所示。 ・ 如果未显示缺省布局,请单击工 具栏中的恢复缺省布局,然后在 下一步创建新方法。

恢复缺省布局(D)

设置和定量一批采集的 0-TOF 数据文件 2

任务 2. 设置批处理的新方法

图7 方法编辑模式

2 设置和定量一批采集的 0-TOF 数据文件

任务 2. 设置批处理的新方法

任务 3. 设置目标化合物

任务 3. 设置目标化合物

通过此任务,您可以学习检查新定量方法的产物离子以及保留时间数据,并针对 单个目标化合物进行更改。

步		详细说明	注释
1	检查在 样品信息 窗口中为产物 离子创建的新定量方法。	a 在 方法表 窗口左侧的侧栏中的 方法 任务下方,单击 方法设置任务 > 化 合物设置。	
	Agilent MassHunter 定量分析 - [新建方法]		

文件(F) 编辑(E) 视图(V) 分析(A) 方法(M) 更新(U) 报告(R) 工具(T) 帮助(H)																
🛅 🗁 🛃 📭 分析批处理(A) 🛛 🕺 市局: 🗔 🔢 🖼 🖽 🖾 🖄 恢复缺省布局(D)																
方法任务栏 🗙	方	去表														×
新建/打开方法	1	时间	段: 🖛 <全部>		▼ ➡ 化合物	勿: 🔙	Ver 👻		重置表视图(F	R) : 缆	묈别名 称	『前缀:		级别数:	10	创建级别(C)
从采集的扫描数据新…		样品	1													
使用手动设置新建方…			名称		数据文件		类型		级另	IJ	采	集方法文件	采集日	期时间		
冯 从现有文件打开方法(…																
—————————————————————————————————————		5	定重化合物													
方法设置(M)			名称	TS	转换		全扫描		类型	前级副	哥子	产物离子	RT	离子	极性	标准
化合物设置(C) Verapamil 0.0000 → 0.0000 MRM										0	0000	0.0000		正离子		最大响应
▲ 保留时间设置(R)	1	_ « [

2 设置和定量一批采集的 0-TOF 数据文件 任务 3. 设置目标化合物

步骤		详细说明			注	释			
		b 要检查从 请单击 方	.质谱图设置 法设置 > 份	置的保留时 呆留时间设	·间, • 置。	您可以修 据字段。	改单	个化合物	的蓝色数
📅 Agilent MassHunter 定量分析 -	[新建方法]								
: 文件(F) 编辑(E) 视图(V) 分析(A) 方法(M) 更新(U)	报告(R) 工具(T) 帮助	助(H)						
🗄 🛅 🗁 📕 📭 🗊 分析批处理	L(A) 🕜 布局: 🖥		☑ 恢复缺省布局(D)					
方法任务栏 × 方法:	ŧ								×
新建/打开方法 时	间段: 🖛 <全部>	▼ ➡ 化合物	▼ ➡ 化合物: 🔄 Ver ▼ 📑 重置表视图(R) 🕴					级别数: 10	创建级别(C)
从采集的扫描数据新…	品						_		
使用手动设置新建方…	名称	数据文件	类型	级另	I ¥	集方法文件	采集日期时间		
(3)从现有文件打开方法(…									
从现有批处理打开方…	定重化合物								
古法迟罢(M)	名称	TS 转换	全扫描	类型	前级离子	产物离子	RT	离子极性	标准
	▶ Verapamil	0.0000 -> 0.000	OO MRM		0.0000	0.0000		正离子	最大响应
化合物収点(い)									
▲ 保留时间设置(R)									F.

任务4.设置定量

任务 4. 设置定量

此任务说明如何为方法的下列数据设置定量参数:

- 校准级别
- 定性离子
- 校准曲线拟合

步	骤	详细说明	注释
1	为每个化合物创建五个校准 级别。 • 将戊脉安的具有最高浓度的 化合物设置为 125。 • 将戊脉安的稀释模式设置为 1:1.6:5:5:5:5:2。 • 比较该稀释模式下七个级别 的浓度。	 a 单击方法设置任务 > 浓度设置,然后在戊脉安的稀释高浓度列中输入1000.000。 b 在戊脉安的稀释模式列中输入1:1.6:5:5:5:5:2。 c 确保系列稀释工具栏中的级别名称前缀是空的,级别数是7。 	
		d 单击创建级别。	

- e 比较稀释高浓度和稀释模式下新创
- 建的校准级别的浓度。

任务4.设置定量

步骤	详细说明	注释					
 2 设置定性离子和校准曲线。 检查定性峰设置参数。 将 CF 原点设置为包含。 	 a 选择样品信息窗口中的质谱图 "+ Product lon (0.644 min)(455.2910[z=1]-> **) 1000 pg-r001.d"。 b 单击 "303.2083"。右键单击该位置, 然后单击新建定性峰。 	 ・ 您可以选择多个定性离子。 ・ 蓝色三角形表示在质谱图中选定 的 m/z。 ・ 要添加 CF 原点列,请用右键单击 定量程序表,然后选择添加列 > CF 原点。 					

任务4.设置定量

3 验证并保存方法。

🌠 校正曲线设置(A)

- a 单击保存 / 退出 > 验证, 验证方法 · 您可以在屏幕底部查看发生的任 设置。
 - 何验证错误。

Í	Agilent MassHunter 定量分析	x
	方法已验证。没有发现错误或警告。	
	确定	
b	在显示验证消息后,单击 确定 。 单 去保存 (调出 >调出 然后在显	

C 单击**保存 / 退出 > 退出**,然后在显 示是否要将此方法应用于批处理? 提示时单击是。

任务 5. 分析和保存批处理

任务 5. 分析和保存批处理

在本练习中,您将自动定量批处理,然后保存结果。

2 保存批处理。

a 单击**文件 > 保存批处理**。

b 单击**文件 > 关闭批处理**以关闭批

处理。

Agilent MassHunter 定量分析 入门指南

练习3 检查定量结果

任务 1. 浏览批处理表结果 44 任务 2. 更改结果窗口布局 50 任务 3. 导出和打印结果 57

此练习中的任务说明如何检查批处理文件中的样品和化合物数据、自定义结果布局、将数据导出到 Microsoft Excel 以及预览和打印数据。

在本练习中将使用 **DrugsOfAbuse** 批处理。可使用三重四极杆数据文件、Q-TOF 数据文件和 TOF 数据文件执行相同的任务。

我们将每一个练习的内容都放在了一个表中,每个表中分别包含以下三列:

- 步骤 通过这些常规说明自学使用此程序。
- 详细说明 如果您需要帮助或更喜欢使用步进学习方式,则可使用这些说明。
- 注释 阅读这些注释可了解有关练习中的每个步骤的提示和其他信息。

任务 1. 浏览批处理表结果

任务 1. 浏览批处理表结果

此任务说明如何浏览样品和化合物,观察批处理表中的变化以及化合物信息数据。该任务还说明如何显示各种样品类型。

任务 1. 浏览批处理表结果

	_																				
 1 打开在练习 2 中创建的批处理文 a 要启动定量分析程序,请单击桌面 · 所显示的主视图应如下所示。这上的定量分析图标 厚。 b 单击工具栏中的打开批处理 ② 以 显示打开批处理 ③ 以 显示打开批处理 ⑤ 10.0 batch.xml. 	步	骤						详细说	明					注	释						
Bit Aglient MassHunter Quantitative Analysis - DrugsOl/Abuse - III Test_01 Image: Control of the control of th	1 打开在练习 2 中创建的批处理文 a 要启动; 件 iii_Test_01.batch.xml。 b 单击工 显示打 c 浏览至 并单击								动定工打 (五) (五) (五) (五) (五) (五) (五) (五) (五) (五)	Ξ量分析 【分析图 【社中的 F批处理 (<i>您的目</i> ii_Test_0	程标 打对子 了 了 子 子 (1.bat	, 。 批 框 、 Dr ch.	请单击, 处理 🢽 。 rugsOfAb xml。	桌面 ・ 以 use	所显之	示的: 省布/	主视目	图应	立如⁻ 含缺↑	下所示。 当列设	, 这 置。
E Bi E Ki Yew Ankyz Bethol Update Benot Tods Help Image: Sample Sample Sample Company Layout: Image: Image: Company Image		Agil	ent l	MassHunte	er Quantita	ative A	nalysis - Drugs(OfAbuse - i	ii_Test	_01											PX
Batch Table X Y Cancel Type: Cancel Type: Compound: 1: Amp X Y Y Y Compound: 1: Amp Y Y Y Y Y Y Cancel Type: Compound: 1: Amp Y Y Y Y Y Cancel Type: Compound: 1: Amp Y Y Y Y Cancel Type: Compound: 1: Amp Y Y Y Y Cancel Type: Cancel Type: Cancel Type: Cancel Type: Y Y Cancel Type: Cancel	÷ E	jle E	<u>E</u> dit	<u>View</u> <u>Analy</u>	/ze <u>M</u> ethod	Updat	e <u>R</u> eport <u>T</u> ools	Help													
Bacht Jake > Compound: ● 1: Anp > ESTD: Anp-ds The Segment: <pre>Anp Met Anp Pesults Qualier (1134) Amp-d5 (1510) Qualier (1134) Qualier (1134) Qualier (1134) Qualier (1136) Qualier (1136) Qualier (1136) Qualier (1136)</pre>	: 1) 🗅	7 🚽		Analyze Bat	ch 🛛 🥑	Layout: 📈		∆ ⊠	Restore <u>D</u> efa	ult Layout										
Sample: I: Amo I: Sample Amp Result Qualifier (119.4) Amp.ds (151D) Qualifier (119.4) Qualifier (119.4)	B	atch	Tabl	e																_	×
Sample Amp. Met. Amp. Results Qualifier (113.4). Amp.d5 (ISTD). Qualifier (113.4). ① Name Type Level Acq. Date Time Exp. Conc. RT Resp. S.N. MI Rt Resp. S.N. MI Ratio S.N. MI Rt Resp. S.N. MI Rt Resp. S.N. MI Ratio S.N. MI Rt Resp. S.N. MI Ratio S.N. MI Rt Resp. S.N. MI Ratio S.N. MI Calabititititititititititititititititititit	1	Samp	le: 1	🕴 👢 🛛 Sa	ample Type:	<ali></ali>	 Compour 	nd: 🔙 1: An	ιp		•	-	ISTD: Amp-d	5	Time S	egment	<a td="" 🔻<=""><td></td><td></td><td>FX 🌪 Ç</td><td>780</td>			FX 🌪 Ç	780
♥ Name Type Level Acq. Date-Time Exp. Conc. RT Resp. S/N MI Calc. Conc. Final Conc. Accuracy Ratio S/N MI RT Resp. Ratio ● Blark-I Blark-I 05/12/2006 25000 2141 657.5473 49.01 3.303 3.303 1332 2.4.3 45.33 2.129 1391.7148 5.0 ● CalbL3 CalbL3 CalbL3 CalbL3 2.129 1391.7148 5.0 CalbL4 CalbL3 CalbL3 CalbL3 CalbL3 CalbL4 CalbL4 CalbL4 CalbL3 CalbL3 CalbL3 CalbL4 CalbL4 CalbL4 CalbL3 CalbL4 CalbL3 CalbL3 CalbL3 CalbL4 Cal					Sample			Amp Met				Amp	Results			Quali	fier (119.	4)	Amp	d5 (ISTD)	Qualifie
● Blank. 05/12/2006 2 1 65/12/2006 2 1 65/12/2006 2 1 1 57/15 11.4 330 13/2 4/3 4/3 1/3 <td>(</td> <td>D</td> <td>8</td> <td>Name</td> <td>Туре</td> <td>Level</td> <td>Acq. Date-Time</td> <td>Exp. Conc.</td> <td>BT</td> <td>Resp.</td> <td>S/N</td> <td>М</td> <td>Calc. Conc.</td> <td>Final Conc.</td> <td>Accuracy</td> <td>Ratio</td> <td>S/N</td> <td>МІ</td> <td>RT</td> <td>Resp.</td> <td>Ratio</td>	(D	8	Name	Туре	Level	Acq. Date-Time	Exp. Conc.	BT	Resp.	S/N	М	Calc. Conc.	Final Conc.	Accuracy	Ratio	S/N	МІ	RT	Resp.	Ratio
V LabeL1 Lab L1 06/12/2006 22000 214 06/12/2006 12/14 93/148 26/1 3/303 13/303 13/303 13/303 13/303 13/303 13/303 13/303 13/303 13/303 13/303 13/303 11/14 93/17 11/14 13/303 13/303 13	►	0	-	Blank-1	Blank	-	05/12/2006														
Calb-L3 Cal Calb			۳ ب	Calib-L1	Lai Cai	12	05/12/2006	2.5000	2.141	1051 6129	49.01	H	3.3303	3.3303	133.2	24.3	45.33 Infinitu	H	2.129	1391.7148	26.0
Cabb L4 Calb L4 Calb L4 Cab V12/2006 250000 2101 19805 3105 47.80 124.4842 124.4			,	Calib-L3	Cal	L3	05/12/2006	12.5000	2.140	2673.4935	107.59	H	13.6808	13.6808	109.4	26.7	145.88	H	2.120	1377.4550	26.3
Calb.E.5 Call L5 05/12/2006 120000 2101 18805.3105 47.30 124.4842				Calib-L4	Cal	L4	05/12/2006	25.0000	2.022	4951.6051	20.20		26.7560	26.7560	107.0	29.0	49.24		1.990	1304.4692	28.8
QC-L2 QC L2 05/12/2006 250000 2135 4715/2905 31.08 27.8011 27.8011 27.8011 21.12 256 60.63 2.121 1195/167 31.1 Sample-1 Sample 05/12/2006 2.143 1003.8094 80.42 4.8977 30.9 70.27 2.130 1444.6768 25.7 Sample-3 Sample 05/12/2006 2.105 2589.606 74.87 14.2482 14.2482 25.3 65.18 2.099 1281.1231 289 Compound Information X				Calib-L5	Cal	L5	05/12/2006	125.0000	2.101	18605.3105	47.90		124.4842	124.4842	99.6	27.0	39.11		2.076	1053.4940	26.4
QCL4 QC L4 05/12/2006 25:0000 2135 4715:2005 91.09 27:8011 27.8011 111.2 25:6 80.63 2.121 1195:5167 31.1 Sample-2 Sample-2 Sample-2 Sample-2 Sample-3 Sample-3 05/12/2006 2.143 1003:8094 80.42 4.8977 4.8977 30.9 70.27 2.130 1444.6758 25.7 Sample-3 Sample-3 Sample-3 05/12/2006 2.105 2583.6606 74.67 14.2482 14.2482 25.3 65.18 2.083 1281.1231 2.9 Compound Information X X Calibration Curve X <td></td> <td></td> <td></td> <td>QC-L2</td> <td>QC</td> <td>L2</td> <td>05/12/2006</td> <td>5.0000</td> <td>2.142</td> <td>1005.9952</td> <td>80.96</td> <td></td> <td>5.2293</td> <td>5.2293</td> <td>104.6</td> <td>27.7</td> <td>34.34</td> <td></td> <td>2.131</td> <td>1356.0175</td> <td>31.1</td>				QC-L2	QC	L2	05/12/2006	5.0000	2.142	1005.9952	80.96		5.2293	5.2293	104.6	27.7	34.34		2.131	1356.0175	31.1
Sample-1 Sample 05/12/2006 2.143 1003.8094 80.42 4.8977 4.8977 30.9 70.27 2.130 1444.6758 25.7 Sample-3 Sample 05/12/2006 2.105 2589.6606 74.87 14.2482 14.2482 25.3 65.18 2.089 1281.1231 23.9 Compound Information X Calibration Curve X MRM (136.2 - 91.4) CMAMBHs_01.d The Calibration Curve X MRM (136.2 - 91.4) CMAMBHs_01.d The Calibration Curve X Mage The Calibration Curve X MRM (136.2 - 91.4) CMAMBHs_01.d The Calibration Curve X Mage The Calibration Curve X	_	•		QU-L4	L QU	L4	05/12/2006	25.0000	2.135	4715.2905	91.09	H	27.8011	27.8011	111.2	25.6	60.63		2.121	1195.5167	31.1
Sample:3 Sample OS/12/2006 2/105 2688/6606 74.87 14/2482 14/2482 25.3 65.18 2/089 1281/1231 23.9 Compound Information X Calibration Curve X Calibration Curve X MRM (136.2 > 91.4) CMAMBik_01.4 Mean (136.2 > 91.4) CMAMBik_01.4 Mean (136.2 > 91.4) CMAMBik_01.4 0.6 Compound Information X Calibration Curve X * MRM (136.2 > 91.4) CMAMBik_01.4 Mean (136.2 > 91.4) CMAMBik_01.4 Mean (136.2 > 91.4) CMAMBik_01.4 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.7 0.6 0.7 0.6 0.7 0.7 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 <td></td> <td></td> <td></td> <td>Sample-1</td> <td>Sample</td> <td>-</td> <td>05/12/2006</td> <td></td> <td>2143</td> <td>1003 8094</td> <td>80.42</td> <td>H</td> <td>4 8977</td> <td>4 8977</td> <td></td> <td>30.9</td> <td>70.27</td> <td>H</td> <td>2 1 3 0</td> <td>1444 6758</td> <td>25.7</td>				Sample-1	Sample	-	05/12/2006		2143	1003 8094	80.42	H	4 8977	4 8977		30.9	70.27	H	2 1 3 0	1444 6758	25.7
Compound Information X Compound Information X Calibration Curve X MRM (136.2 > 91.4) CMAMBIk_01.4 Image: Calibration Curve X MRM (136.2 > 91.4) CMAMBIk_01.4 Image: Calibration Curve X MRM (136.2 > 91.4) CMAMBIk_01.4 Image: Calibration Curve X Image: Calibration Curve X Image: Calibration Curve X				Sample-3	Sample		05/12/2006		2.145	2589.6606	74.87	H	14.2482	14.2482		25.3	65.18	Н	2.089	1281.1231	29.9
Compound Information X Calibration Curve X Calibration Curve X MRM (136.2 > 91.4) CMAMBIk_01.d MRM (136.2 > 91.4) CMAMBIk_01.d Map 1 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.7 0.7 0.6 0.7 <																					
Compound Information x Calibration Curve x Calibration Curve x MRM (136.2 > 91.4) CMAMBIk_01.d Type: Linear Origin: Force Weight: None ISTD OC MRM (136.2 > 91.4) CMAMBIk_01.d Amp-5 Levels. 5 Levels Used. 5 Points, 5 Points Used. 2 QCs Amp-5 Levels. 5 Levels Used. 5 Points, 5 Points Used. 2 QCs Mage: Calibration Curve X Amp-5 Levels. 5 Levels Used. 5 Points, 5 Points Used. 2 QCs Mage: Calibration Curve X Amp-5 Levels. 5 Levels Used. 5 Points, 5 Points Used. 2 QCs Mage: Calibration Curve X Amp-5 Levels. 5 Levels Used. 5 Points, 5 Points Used. 2 QCs Mage: Calibration Curve X Amp-5 Levels. 5 Levels Used. 5 Points, 5 Points Used. 2 QCs Mage: Calibration Curve X Amp-5 Levels. 5 Levels Used. 5 Points, 5 Points Used. 2 QCs Mage: Calibration Curve X Amp-5 Levels. 5 Levels Used. 5 Points, 5 Points Used. 2 QCs Mage: Calibration Curve X Amp-5 Levels. 5 Levels Used. 5 Points, 5 Points Used. 2 QCs Mage: Calibration Curve X Amp-5 Levels. 5 Levels Used. 5 Points, 5 Points Used. 2 QCs Mage: Calibration Curve X X Amp-6 Levels. 5 Level	<									Ш											>
Image: Construction of the second	Ċ	ompo	ound	Information	1					×	Cal	ibrat	ion Curve								×
+ MRM (136.2 > 91.4) CMAMBlk_01.d 1.1 0.9 0.9 0.8 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.7 0.6 0.7 0.7 0.4 0.7 0.4 0.5 0.4	1	1	4		五山 🚖		₽ ↔ ‡ <u>^</u>						Type: Linea	ir	 Origin: 	Force	-	We	ight: N	one 🔻 I	STD QC
Image: 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	+ 1	MRM	(136.)	2 -> 91.4) CM	1AMBlk_01.d						1 2	↔	‡ 🔆 -								
P 0.9 0.9 0.8 0.1 y = 7.0935 * x 0.7 0.6 0.7 0.6 0.7 0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.2 0.4 0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	ance	1.1]								Amp	-5 L	evels, 5 Levels	Used, 5 Point	s, 5 Points U	lsed, 2 0	QCs	_			
2 0.8 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.7 0.6 0.7	Pun	0.9	-								ä »	10.1_) y = 7.0935 [*] x								
0.7 0.6 0.5 0.4 0.3 0.2 0.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 Acquisition Time (min)	Į₹.	0.8									Ğ	1.6 -	R^2 = 0.9994	2319							-
0.6 0.7 0.4 0.3 0.2 0.1 12 13 14 15 16 17 18 19 2 21 22 23 2.4 2.5 2.6 2.7 2.8 2.9 3 Acquisition Time (min)		0.7									Res	1.4 -							-	_	
0.5 0.4 0.3 0.2 0.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 22 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 Acquisition Time (min)		0.6	2								e S	1.2 -					_	/			
0.3 0.2 0.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 Acquisition Time (min) Blank-1 Amp 11 Samples (11 Intal)		0.5	2					- II			Selar	1-				~					
02 0.1 0.1 12 13 14 15 16 17 18 19 2 21 22 3 24 25 26 27 28 29 3 Acquisiton Time (min) Blank-1 Amp 11 Samples (11 Intal		0.4]									0.8 -			_						
0.1 0.1 0.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 Acquisition Time (min) Blank-1 Amp 11 Samples (11 Intal)		0.2	2									0.6 -									
0 0.1 12 13 14 15 16 17 18 19 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 Acquisition Time (min) Blank-1 Amp 11 Samples (11 Intal)	1	0.1										0.4 -	_	-							
0.1 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 Acquisition Time (min) Blank-1 Amp 11 Samples [11 htal]	1	0	-+							_		0.2-	<u></u>								
Acquisition Time (min) Blank-1 Amp It is no		-0.1		12 13 14	15 16 1	7 1 8	19 2 21 22	23 24 25	26.2	7 28 29 3		-		04 06	0.8 1	12	14 19	3 1	8 1	22 24	2.6
Blank-1 Amp 11 Samples 11 Intal				1.9 1.9	1.5 1.0 1	1.0	2 2.1 2.2	2.0 2.9 2.0	Acquis	ition Time (min)			0 0.2	0.4 0.0	5.0 1	1.4		- 1	Z	Relative Cond	entration
									4				Blank-1		Amp		11 Sam	noles	(11 total	1	

任务 1. 浏览批处理表结果

步骤	详细说明	注释
 2 (可选)如果所显示的布局与上 一页的图中的布局不同 如果主视图中显示少于三个 窗口,或它们的排列方式不 同,请恢复缺省布局。 如果列设置不同,请恢复缺省 列设置。 如果化合物信息窗口中显示 除"色谱图"窗格以外的其他 窗格,请隐藏其他窗格。 	 要恢复缺省布局,请在从一个样品 滚动到另一个样品之前,单击工具 栏中的恢复缺省布局。 恢复缺省布局(D) 要恢复缺省列设置,请在批处理表 窗口中的任意位置上单击右键,然 后单击恢复缺省列。 要隐藏其他窗格,请单击化合物信 息工具栏中除"显示/隐藏色谱图" 图标 八 以外的高亮显示的图标。 	 ・缺省布局是在出厂时设置好的, 不能更改。如果您要创建自己的 布局,请参见第50页的"任务2. 更改结果窗口布局"。
 3 在样品之间滚动,直到达到批处 理表末尾,然后返回到 Cal-L5。 使用工具栏中的"下一个样品 "和"上一个样品"箭头 ⑦ • 记下批处理表以及每个样品 的安非他明化合物信息中的 变化。 • 选择批处理表中的样品 Calib_ L4 以查看批处理表和化合物 信息变化。 	 a 单击批处理表标准工具栏中的下一 个样品箭头 , 直到系统显示所 需的样品。 检查化合物信息窗口中的变化。 b 要返回到 Cal-L5,请单击批处理表 标准工具栏中的上一个样品图标 ①。 c 选择批处理表窗口中样品 Calib_L4 行中的任何单元格,以查看变化。 	 ・记下批处理表中高亮显示的数据文件和化合物信息窗口中的 色谱图之间的链接。

3

<mark>检查定量结果</mark> 任务 1. 浏览批处理表结果

步	- 骤	详	细说明	 注释
4	在所有四个化合物之间滚动 浏览。 • 使用工具栏中的 "下一个化合 物"和"上一个化合物"箭头。	a	单击工具栏中的 下一个化合物 或 上 一个化合物 箭头,直到系统显示所 需的化合物。	
	化合物: 🐖 1: Amp			
	 检查化合物之间批处理表、化 合物信息和校准曲线窗口的 不同之处。 从列表中选择可卡因。 	b c d	检查 批处理表、化合物信息 和 校准 曲线 窗口中的变化。 单击 化合物 列表旁边的向下箭头。 单击 可卡因 。	

任务 1. 浏览批处理表结果

步	骤						详细说明						注	释							
5	检查的在近	至 至 行 保 检 回	个化合 Cal-L4 相 留时间 查 查 看 可	物的结果。 洋品的每个。 化合物的约 卡因结果。	, ~化合 [:] 詰果后	物	 a 单击工具栏中的多个化合 你 / 样品视图图标,以显 下所有目标化合物的定量 结果。还可以单击视图 > 此处理表布局 > 多个化合物 / 样品视图 , 你显示不同的一组列。如 处于 "多个化合物 / 样品视图 , 你子 "多个化合物 / 样品视图 , 你不是你不是你不是你不是你不是你不是你不是你不是你不是你不是你不是你不是你不是你								飞过果" "中在模不品						
E	🖬 Agil	ent N	/lassHunter	定量分析 - Drug	sOfAbuse	e - jmt	t_test_01												• 💌		
1	文件(F) 编	編(E) 视图((V) 分析(A) 方	法(M)更	新(U)	报告(R) 工具(T)	帮助	I(H)												
1	1	> 🖌	📭 💭	分析批处理(A)	0:	布局:	: 🔜 🗒 🔠 🋄 🛕 📝 恢复缺省布局(D)														
Ħ	比处理	ŧ																	×		
	样品	:	↓ 样品	类型: <全部>	- 化台	合物: 🛛	💷 1: Amp 👻 🖃 ISTD: Amp-d5							B	1间段; <	- 8		9 🤫 🕅	7 💝 🚆		
Γ		_		样品			Amp 结果 Meth 结果								MDMA 结果 Cocaine 结果						
l	()	8	名称	数据文件	类型	级别	采集日期时间	RT	最终浓度	准确度	RT	最终浓度	准确度	主确度 RT 最终浓度 准确度 RT 最终浓度 准					准确度		
		٣	Blank-1	CMAMB1k_01.d	空白		2006/5/12 13:48				1.338	9.8674		2.466	7.1863		2.433	11.8257			
		٣	Calib-L1	CMAMCal_L1.d	校正	L1	2006/5/12 13:51	2.	3.2892	131.6	2.247	2.5935	103.7	2.276	2.2841	91.4	2.453	2.3071	92.3		
		٣	Calib-L2	CMAMCal_L2. d	校正	12	2006/5/12 13:54	2.	5.7070	114.1	2.248	5.0785	101.6	2.277	4.6564	93.1	2.454	4.2642	85.3		
	_	٣	Calib-L3	CMAMCal_L3.d	校正	L3	2006/5/12 13:57	2.	13.5610	108.5	2.247	15.1411	121.1	2.277	11.2840	90.3	2.459	11.5485	92.4		
			Calib-L4	CMAMCal_L4.d	校止	L4	2006/5/12 14:00	2.	26.5517	106.2	2.228	27.1962	108.8	2.264	24.9231	99.7	2.449	25.2489	101.0		
H	•		0C-12	CMAMOC 12 d	10CLE	12	2006/5/12 14:05	2.	5 1873	99.0 103.7	2.231	5 2313	99.4 104.6	2.211	4 8686	97.4	2.440	4 2813	85.6		
			QC-L4	CMAMQC L4. d	40 0C	L4	2006/5/12 14:09	2.	27.6514	110.6	2.246	27.7396	111.0	2.276	23.0488	92.2	2.455	24.5474	98.2		
	0	*	Sample-1	CMAMSam_01.d	样品		2006/5/12 14:12				2,474	3.6177		2.315	5.6272						
			Sample-2	CMAMSam_02. d	样品		2006/5/12 14:15	2.	4.8422		2.250	5.7917		2.280	5.1811		2.460	4.3755			
			Sample-3	CMAMSam_03. d	样品		2006/5/12 14:18	2.	14.1047		2.236	14.1504		2.267	10.7917		2.446	10.9430			
	. 0		Sample	CMAMSam_add…	样品		2006/11/11 11:00														
							c 要返回 物的详细 工具栏 ^中 样品显示 d 如果需等头	記定白图,,	示量 生 之 生 年 年 年 年 年 年 代 二 二 二 二 二 二 二 二 二 二 二 二 二	目标请化合 化合物 可	化 单 物 / 列卡	· 道 旁边的]								

任务 1. 浏览批处理表结果

	详细说明	注释
 6 查看选定的样品类型。 仅显示校准标准。 然后显示所有样品类型。 	 a 单击样品类型下拉列表中的向下箭 头。将显示样品类型对话框。 b 清除 < 全部 > 复选框,并选中校准 复选框。 	
	样品类型 🖸	
	 样品 空白 交白 校正 QC CC 双空白 基质加标 基质加标副本 基质加标空白 调谐检查 响应检查 〈未分雷〉 确定 取消	
	□c 単击确定。 比处理表 应只包含可卡因的校准	
	标准。 • 单士 样只类刑 工拉利主由的白工	
	u 平古 仟印尖尘 下拉列衣中的回下 箭头。	
	e 单击 < 全部 >, 然后单击确定。 系统将选中所有复选框并显示所有 样品类型。	

任务 2. 更改结果窗口布局

任务 2. 更改结果窗口布局

此任务说明如何使用工具栏图标自定义布局以及如何重新创建缺省布局。

步	- 骤	详细说明	注释				
1	使用工具栏中的布局图标定位 批处理表、化合物信息和校准 曲线窗口。 •缺省布局称为"表顶部",因 为批处理表在主视图的顶部。 •将布局更改为"表左侧",然 后更改为"表右侧"。 •返回到"表顶部"布局。	 a 单击工具栏中的布局 – 表左侧图标 ▶ b 单击工具栏中的布局 – 表右侧图标 ▶ ▶ c 单击布局 – 表顶部图标 					
2	使用工具栏中的布局图标使每 个窗口最大化: •表 •化合物信息 •校准曲线 •返回到缺省布局	 a 单击工具栏中的最大化表图标 ● 单击工具栏中的最大化化合物信息 图标 ▲ c 单击工具栏中的最大化校准曲线图 标 ▲ o d 要返回到缺省布局,请单击工具栏中的恢复缺省布局图标。 					
3	更改 化合物信息 窗口中 Cal-L4 的 窗格。 • 显示定性离子 • 显示质谱图 • 显示 ISTD 色谱图、定性离子 和质谱图	a 在批处理表中,选择 Cal-L4 行。 b 在化合物信息工具栏中,单击显示/隐藏定性峰图标 <u></u> 。 c 单击显示/隐藏质谱图图标 <u>↓</u> 。 d 单击显示/隐藏 ISTD 图标 <u>↓</u> 。 布局和结果如下一页的图中所示。	 此步骤假设您使用化合物信息 窗口中的"色谱图"窗格开始执 行此任务。 更改布局只会更改六个窗格的 位置和可见性。化合物信息窗口 中的窗格不受更改布局的影响。 				

任务 2. 更改结果窗口布局

步骤

1 年 细 况 明	详	细	说	明
-----------	---	---	---	---

注释

📆 Agi	📅 Agilent MassHunter 定量分析 - DrugsOfAbuse - jmt_test_01																		
: 又件(: X(H(F) 編編(C) 702(V) カロ(A) カ広(M) 更新(U) 按有(K) 工具(I) 報知(H) :																		
: 4	: □ 2 3 4 4 5 5 7 7 7 7 7 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2																		
16.XL4±																			
: 1=00			突尘: <:	EEP>	× 16	古 州初: [5	I: Amp	_		15	TD: Ar	np-a5			(11月19年) < (11月19日) < (11月19日)		<u> </u>		· • •
				样品			1	-	Amp 结:	₹		_Meth 结果			MDMA 结果		С	ocaine 结弊	<u></u>
	7	名称	数据	这件	类型	级别	采集日期时间	RT	最终浓度	准确度	RT	最终浓度	准确度	RT	最终浓度	准确度	RT	最终浓度	准确提
- 0	٣	Blank-1	CMAMB1	k_01. d	空白		2006/5/12 13:48				1.338	9.8674		2,466	7.1863		2.433	11.8257	
	٣	Calib-L1	CMAMCa	1_L1. d	校正	L1	2006/5/12 13:51	2.	3.2892	131.6	2.247	2.5935	103.7	2.276	2.2841	91.4	2.453	2.3071	92. ≡
	*	Calib-L2	CMAMCa	1_L2. d	校正	12	2006/5/12 13:54	2.	5.7070	114.1	2.248	5.0785	101.6	2.277	4.6564	93.1	2.454	4.2642	85.
	*	Calib-L3	CMANCa	בבב. d דע געבי	1(2)止 拡工	14	2006/5/12 13:57	2.	26 5517	106.5	2.247	15.1411	108.8	2.211	24 9231	90.3	2.459	25 2480	92.
	+	Calib-15	CMANCo	1 15 8	校正	15	2006/5/12 14:00	2.	124.5***	99.6	2.220	124, 2916	99.4	2.204	125 1550	100.1	2.445	125.0787	100
		QC-L2	CMAMQC	L2. d	QC	12	2006/5/12 14:06	2.	5.1873	103.7	2.248	5.2313	104.6	2.276	4.8686	97.4	2.453	4.2813	85.
		QC-L4	CMAMQC	L4. d	QC	L4	2006/5/12 14:09	2.	27.6514	110.6	2.246	27.7396	111.0	2.276	23.0488	92.2	2.455	24.5474	98.
	□ 👔 🔻 Sample-1 CMAMSam 01.4 样品 2006/5/12 14:12 2.414 3.6177 2.315 5.6272 -																		
化合物信息 × I校正曲线 ×																			
		۵ 🖻 🔼	<u>ш</u>		A 📕		\leftrightarrow ‡ <u>A</u> 🛣				- 类	型:线 🔻	原点:	强 🔻	权重:无	▼ IST	D(I)	् । 🛃 स	+ + "=
+ MRM # x10	(136.2 3	2 -> 91.4) 2. 1 01	C··· 13	3.2 -> 9 x10 2	91.4 , 13 bk=27.0	6.2 ->	1 + MRM (2.019-	2.240	min,	Amp - 5 {⊠ x10 ¹	个级别 ∮ = 7	,使用了 5 [1482 * x	个级别	,5 个点	気,使用了	5 个点,	2个 Q	С	¥
H.	,]	1	1	1			li li			電	R^2 =	0.9995324	1					/	*
0	1			0.5-			0 2	11	9.4	₩ 1.0									
	₀ـــــ		₩	0					1	1.4									
	1	.5 2 2.5	5		1.5 2	2.5	10	0 1	120	1.2									
	5	彩集时间 儼	の		采集时间	1 (最小	D.	质荷	光 (m/z)										
+ MRM	(141.1	L -> 93.4) ∣	C••• 14	1.1 -> 9	93.4 , 14	1.1 ->	12 + MRM (2.003-	2.246	min,	0.0				/					
∯ x10	2	2.976	- i.	x10 ²	比=26.5		∯ x10 ³			0.0			~						
1.1 1.1	5	1			1		2			0.4		~							
0.9	5		協	0.5-			1-	12	24.4	0.2		*							
	۰Ł	\~	<u>~</u> #	0		۲	<u>-</u> 011												
	1	.5 2 2.5	5		1.5 2	2.5	10) 12	0 140			o 0.'2 0.	4 0.6	0.8	i 1.2 1.	4 1.6	1.8 2	2.2 2.	4 2.6
	ŝ	彩集时间 (最	かり		采集时间	り (最小	D	质荷	光 (m/z)									1	相对浓度
	Calib-L5 Amp 12 个样品(共 12 个)																		
													C	alib-L5	Amp		12 个	样品 (共 1)	2 个) .::

4 保存没有校准曲线的缺省 布局。

a 关闭**校准曲线**窗口。

将新布局作为批处理表和化合

文件夹中。

b 单击视图 > 窗口布局 > 保存布局。 系统将显示**保存布局文件**对话框。

物信息保存在 DrugsOfAbuse c 将布局文件命名为批处理表和化合 物信息,然后单击保存。

任务 2. 更改结果窗口布局

步骤

详细说明

- 5 调用新创建的布局。
 - 恢复缺省布局。
- a 单击工具栏中的恢复缺省布局。
 b 单击视图>窗口布局>调用布局。
 系统将显示调用布局对话框。
- •调用布局**批处理表和化合物** 信息。

調通用布局											
🔾 🗢 🖟 « Dat	ta 🕨 DrugsOfA	buse 🕨	▼ ⁴ 7	搜索	Q						
🌗 组织 🔻 🎬 视图	新建文化	* 夹	_	_	0						
收藏夹链接	名称	修改日期	类型	大小	*						
 ○ 文档 ⑦ 最近的更改 2 最近访问的位置 2 桌面 ● 计算机 ● 間片 ● 音乐 ⑦ 搜索 ● 公用 	CMAMCal CMAMSan CMAMS	L1.d L2.d L3.d L4.d L5.d L2.d L4.d 1001.d 1002.d 1003.d 103.d 115			E						
文件夹 ^	🖭 Batch Tabl	e plus Compo	und Inform)		-						
文件	培名(N): Batch T	able plus Comp	ound Info: 🔻	布局文件 (*. qua 打开 (0)	ntlayout.x ▼ 取消						
	和化合物信	言息 ,然后	-								

注释

现在,结果窗口如图8所示。

任务 2. 更改结果窗口布局

注释

步骤

详细说明

图8 结果窗口

任务 2. 更改结果窗口布局

步骤	详细说明	
6 创建如第 54 页上的图 9 所示的 布局,其中的 校准曲线 和 化合 物信息窗口处于浮动状态。 提示: 批处理表 等其他信息显 示在左侧。	 a 恢复缺省布局(单击工具栏中的恢复缺省布局)。 b 在校准曲线窗口的标题栏中单击右键,然后选中浮动复选框。 ★正曲线 ★ 使正曲线 ★ 型:线 ▼ 原点:强 除藏(出) 浮动(F) c 右键单击化合物信息窗口的标题 栏,然后选中浮动复选框。 4 调整窗口中小 以便 上图 0 中的东	
日の他 「Insert Page Layout References 田Agilent MassHunter 定量分析 - DrugsOfAbuse - jmt tes 文件(F) 编辑(E) 视图(V) 分析(A) 方法(M) 更新(U) 报告 ● □	局一致。 DocChap3 - Microsoft Word Mailings Review View st.01 告(R) 工具(T) 帮助(H) 國 圖 圖 △ 図 恢复缺省布局(D) 1: Amp	
样品	Amp 方法 Amp 结果	定件···· Amp-d5···· 定件峰(··· 一
	采集日期时间 预期的浓度 RT 响应 MI 计算得到的浓度 最终浓度	准确度 比 MI RI 响应 比 MI
3 Blank-1 CMAMBlk_01.d 空白 200	06/5/12 13:48	
▼ Calib-L1 CMAMCal_L1.4 校正 L1 200	06/5/12 13:51 2.5000 2. 658 3.2892 3.2892 06/5/12 13:51 5.0000 2. 1950 5.7070 5.7070	131.6 24 2. 1398
	06/5/12 13:54 5.0000 2. 1059 5.7070 5.7070 06/5/12 13:57 12:5000 2. 2680 13:5610 13:5610	114.1 00 2. 1298 108.5 26 2. 1382
Calib-L4 CMAMCal_L4.d 校正 L4 200	08/5/12 14:00 25.0000 2. 4953 🔽 26.5517 26.5517	106.2 29 1. 1305
▶ Calib-L5 CMAMCal_L5.d 校正 L5 200	06/5/12 14:03 125.0000 2. 18661 124.5395 124.5***	99.6 27 2. 1048
QC-L4 CMAMQC_L4. d QC L4 200	5.0000 2. 1000 5.1873 5.1873 06/5/12 14:09 25.0000 2. 4723 27.6514 27.6514	110.6 25 2. 1195
④ Sample-1 CMAMSam_01.d 样品 200	06/5/12 14:12	
Sample-2 CMAMSam_02.d 样品 200 Sample-3 CMAMSam_03.d 样品 200	06/5/12 14:15 2. 1000 4.8422	
	× 校正曲线	X
	+ ▲ ▲ ● ● 类型:线 ▼ 原点:强	隐藏(出) ISTD(I) 【 ISTD(I) 】 [ISTD(I) 】 [ISTD(I)]]]]]]]]]]]]]]]]]]]
+ MRM (136.2 -> 91.4) C··· 136.2 -> 91.4 , 136.2 -> 11+	MEM (2.019-2.240 min, ···· Amp - 5 个级别,使用了 5 个级别,5	浮动(D) 个点,2个 QC
¥ x10 3 2. 101 1 x10 2 bk=27.0	x10 ⁴ (3) x10 ¹ y = 7, 1482 * x (6) x10 ¹ x ² = 0, 00053241	*
Ů ² ² ¹ ¹ ¹ ¹ ¹ ² ¹ ¹ ¹ ¹ ¹ ¹	2 119.4 E 1.6	
1.5 2 2.5 采集时间(最小) 采集时间(最小)	100 120 质荷比 (m/z)	
+ MRM (141.1 -> 93.4) C*** 141.1 -> 93.4 , 141.1 -> 1+	MRM (2.003-2.246 min, 0.6	
¥ x10 ² 2.076 ± x10 ² 比=26.5	0.4	
lễ 1−−− k 🛗 0.5−− k lễ		
1.5 Z Z.5 1.5 Z Z.5 采集时间(最小) 采集时间(最小)	100 120 140 0 0.2 0.4 0.6 0.8 1 ((()) (()) (()) (()) (()) (()) (())	1.2 1.4 1.0 1.0 2 2.2 2.4 2.6 相对浓度
	Calib-L5	Amp 12 个样品 (共 12 个) .::

图9 显示处于浮动状态的 "校准曲线"和 "化合物信息"窗口

任务 2. 更改结果窗口布局

a R	详细说明	注释

e 在化合物信息窗口的标题栏中右键
 单击,然后清除浮动复选框。
 f 调整窗口大小,以便与图 10 中的布局一致。

图 10 调整大小后的窗口

步驭

任务 2. 更改结果窗口布局

步骤	详细说明	注释						
	 g 在校准曲线窗口的标题栏中单击右键,然后清除浮动复选框。 h 移动化合物信息窗口,使布局对应于在任务开始时所显示的图中的布局。 							
 7 重新创建(不恢复)缺省布局。 在此步骤中,您将学习不使用 布局图标或恢复缺省布局来 重新创建布局。 	a 使程序主视图最大化。	 必须先锚定校准曲线窗口,然后 锚定化合物信息窗口,这样才能 重新创建缺省布局。 如果在锚定两个窗口后,校准曲 线位于左侧,则可右键单击校准 曲线窗口的标题栏,然后将其移 至右侧。将绘制一个灰色矩形, 显示该窗口将放置在主视图中 的位置。将校准曲线拖至主视图 的右下角。 						

任务 3. 导出和打印结果

此练习说明如何将数据导出到 Microsoft Excel 文件,以及如何预览和打印批处理 表及化合物信息数据。

步骤	详细说明	注释
 1 导出批处理文件 <i>iii</i>_Test_01。 指定"我的文档"作为目标 目录。 使用 <i>iii</i>_Test_01.xls 作为导出 文件名,其中"<i>iii</i>"表示您的姓 名首字母。 	 a 要激活批处理表窗口,请单击批处 理表窗口的标题栏。 b 单击文件 > 导出 > 导出表。 c 指定我的文档作为目标目录。 d 输入 <i>iii</i>_Test_01.xls 作为导出 文件名。 e 单击保存。 	

H	📅 Agilent MassHunter 定量分析 - DrugsOfAbuse - jmt_test_01																	
1	2 文件(F) 编辑(E) 视图(V) 分析(A) 方法(M) 更新(U) 报告(R) 工具(T) 帮助(H)																	
	•	新建批处理(N) Ctrl+N		📲 🏢 📐 📝 恢复缺省布局(D)														
批	2	打开批处理(O) Ctrl+O															×	c
		保存批处理(S) Ctrl+S	Amp)		•	🔿 ISTI): A	mp-d5	时	间段: <	-			1	۲	🕈 🏹	•• ਵ
Г		批处理另存为(A)			Amp 方法				Amp 结果			定忆	ŧ…	Åmj	-d5	定性	峰 (…	1
		关闭批处理(C)	集日	期时间	预期的浓度	RT	响应	MI	计算得到的浓度	最终浓度	准确度	比	MI	RT	响应	比	MI	
			/5/12	2 13:48														
		溶加性血(U)	/5/12	2 13:51	2.5000) 2.	658		3.2892	3.2892	131.6	24		2.	1398			
		导出(E) ▶		导出表(T)	2.	1059		5.7070	5.7070	114.1	33		2.	1298			
	0			BUIER	00	2.	2680		13.5610	13.5610	108.5	26		2.	1382			
	~	贝国设直(U)		守田園形	(G) DC	2.	4953		26.5517	26.5517	106.2	29		1.	1305			
		打印(P) Ctrl+P	(5/12	2 14:03	125.0000	2.	18661		124.5395	124.5***	99.6	27		2.	1048			
		红印新监(1)	/5/12	2 14:06	5.0000) 2.	1006		5. 1873	5.1873	103.7	27		2.	1356			
	ц <u>ч</u>	11 H11X36(V)	/5/12	2 14:09	25.0000	2.	4723		27.6514	27.6514	110.6	25		2.	1195			
		批处理属性(R)	(5/12	2 14:12														
			-/5/12	2 14:15		2.	1000		4.8422	4.8422		31		2.	1444			
		1: C:\Data\DrugsOTAbuse\jmt_test_01.batch.bin	/5/12	2 14:18		2.	2588		14.1047	14.1047		25		2.	1284			
		退出(X)	(11/)	1 11:00														
F	Calib-L5 Amp 12 个样品(共 12 个):																	

图 11 导出结果

2 查看显示在 Excel 中的批处理结 a 启动 Microsoft Excel。
 果,然后退出 Excel。
 b 打开我的文档 \iii_Test_01.xls。
 c 记下导出和未导出的内容。
 d 完成后,关闭 Excel。

任务 3. 导出和打印结果

步骤					ì	羊细说明					注	释							
		L) - (L -)	Ŧ			jmt_test_01 [(Compatibility	/ Moi	de] - Mic	roso	ft Excel							_	= x
	Н	me Inser	t Page Layou	t Fori	nulas	Data Review	/ View	A	dd-Ins									0 -	. = x
				Sener	eneral v 🔀 Conditional Formatting v			∎™Insert * Σ * A ™Delete * J * Z				Ż	7 8						
Clinbu	oard D	BIL	Eont	A • [^a	A ·	Alignment		.00 ÷	uber D	Ę	Cell Styles -		Forr	nat •	- 4	2-	Filter *	Select	δι t ≁
	A	1	 ✓ () <i>f</i>_x 	4 样品		Angrimerit		Num			Styles			13			Cultury	9	×
1	A B	С	D 样品	E	F	G	H Amp 方法	1	J	K	L Amp 结果	Μ	Ν	0 6.2	P ->1	Q o-d5	R (ISTD)	S (141.1	T 1 -> 124
2		名称	数据文件	类型	级别	采集日期时间	预期的浓度	RT	响应	MI	计算得到的浓度	最终浓度	准确度	比	MI	RT	响应	比	MI
3 A	mp-d5	Blank-1	CMAMBIK_01.d	空日	1.4	2006/5/12 13:48			057.55	##	2 0004772000	2.00040	424.0		##	_	4000	F	ALSE
4	An	ID Calib-L1	CMAMCal_L1.d	校正	1.2	2000/5/12 13:51	2.0	2	007.00	##	5.2891//300	5 70702	131.0	24	##	2	1398		ALSE
5	All	Calib-L2	CMAMCal_L2.d	校正	1.2	2000/3/12 13:54	12.5	2	2670.0	##	12 5610074	12 561	109.5	27	<i>##</i>	2	1290		
7		Calib-L4	CMAMCal 14 d	校正	14	2006/5/12 13:57	25	2	4953	##	26 55172164	26.5517	106.0	29	##	2	1305	F	ALSE
8		Calib-L5	CMAMCal L5.d	校正	L5	2006/5/12 14:03	125	2	18661	##	124,5394901	124.539	99.63	27	##	2	1048	F	ALSE
9		QC-L2	CMAMQC_L2.d	QC	L2	2006/5/12 14:06	5	2	1005.6	##	5.187311945	5.18731	103.7	28	##	2	1356	F	ALSE
10		QC-L4	CMAMQC_L4.d	QC	L4	2006/5/12 14:09	25	2	4722.9	##	27.65144199	27.6514	110.6	26	##	2	1195	F	ALSE
11 A	mp-d5	Sample-1	CMAMSam_01.	样品		2006/5/12 14:12				##					##			F	ALSE
12		Sample-2	CMAMSam_02.	样品		2006/5/12 14:15		2	999.61	##	4.84215371	4.84215		31	##	2	1444	F	ALSE
13		Sample-3	CMAMSam_03.	样品		2006/5/12 14:18		2	2588.4	##	14.10467025	14.1047		25	##	2	1284	F	ALSE
14 A	mp-d5	Sample-ad	CMAMSam_add	样品		2006/11/11 11:00				##					##			F	ALSE 🖕
14 4	► H	Sheet1 🦯 🖏				1	1			Ì	4								▶ [
Ready	У											Œ		100	0% (9	Ų		-+ .:

图 12 Excel 中的批处理表

3] 1	预览批处理表和化合物信息数 器的打印输出。 打印批处理表和化合物信息。 如果不想立即执行练习 4,则 保存并退出批处理。	a b c f g	在批处理表窗口的标题栏中单击, 然后单击文件>打印预览。在 Excel 2010 中,单击文件>打印。 检查打印预览窗口中批处理表的显示,确保它以所需的方式显示。 关闭打印预览窗口。 如果对批处理表感到满意,请单击 文件>打印。 对化合物信息重复步骤 a-d。 如果不想进行练习 4,请单击文件> 保存批处理。 单击文件>退出。	您也可以从 打印预览 程序打印 批处 理表 ,方法是单击 打印预览 程序中 的 文件 > 打印 菜单项。
---------------------	--	-----------------------	--	--

Agilent MassHunter 定量分析 入门指南

练习4 使用三个工具评估结果

任务 1. 调整校准曲线拟合 60 任务 2. 进行无参数积分 63 任务 3. 检测离群值 77

在此练习中,您将使用三个工具帮助评估并获得更准确的定量结果:

- 曲线拟合助手,该工具将计算曲线的所有组合,并使用方程和置信带显示结果
- 无参数积分器,无需设置更改参数就可以改进积分结果
- 离群值消息,该工具可帮助您容易地检测出超出指定范围的结果值

在本练习中将使用 DrugsOfAbuse 批处理。可使用三重四极杆数据文件、 Q-TOF 数据文件和 TOF 数据文件执行相同的任务。

我们将每一个练习的内容都放在了一个表中,每个表中分别包含以下三列:

- 步骤 通过这些常规说明自学使用此程序。
- 详细说明 如果您需要帮助或更喜欢使用步进学习方式,则可使用这些说明。
- 注释 阅读这些注释可了解有关练习中的每个步骤的提示和其他信息。

4 使用三个工具评估结果

任务1. 调整校准曲线拟合

任务 1. 调整校准曲线拟合

此任务说明如何查找化合物的准确度离群值、调整其曲线拟合以及重新分析批 处理。

步	骤	详	细说	明			注彩	注释								
1	如果需要,打开批处理文件 <i>iii_</i> Test_01.batch.xml。 如果批处理已打开,则跳至步 骤 2。	a b c	要 上 标 单显浏并启 的 医击示览单	动 Quant 定重。 具 开 入 <i>[iii]</i> 工	分析程序 itativeAna 中的 打开 处理对话 您的目录、 est_01.bat	,请 lysis(批处现 杠框。 \Drugs ch.xm	单击 000 里 [sOfA I。	桌面 ・ 也 D)图 日 以 ・ 女 Nouse 打	也可 程存站 ? 2 存	过入了定。示恢理。	单击" gilent : 建量分析 缺省布, 复缺省: 。 皆布局(开始 " 菜. > MassHu 沂 (000) 局,请单 布局 ,然 D)	单中 Inter 来 击后			
2	查找安非他明的准确度离群值, 并更改曲线拟合。 • 将 原点 设置为 忽略 ,将 权重 设 置为 1/y。	a	确保示 物的 的部	将 批处 模式, 安非他 分。	理表 设置 并且所显 明 。请参	为单 ^个 示的目 见下目	个化 目标 图中	合物 化合 带框 및 ISTD: Amp	-d5		时间周	£:< ▼				
		b	指向 确度 所示	Calib-l 列,以 。	L1 行中的 显示离群	单元相值消息	各以 急,	及 准 ・	回含离群 〔高〕或]	值的	的单元; 色 (低	格可能是)。	红色			
		置 批	Agilent 文件(F) 2 2 (2 2 (MassHuntel 编辑(E) 视图	r 定量分析 - Dru 图(V) 分析(A) 方 II 分析批处理(A)	gsOfAbus i法(M) 夏 ②	:e - jm 重新(U) 布局:	t_test_01 报告(R) 工具(T)	帮助(H) ▲ 📝 恢复缺	省布	扃(D)					
			样品: 1	● 样品	6类型: <全部> ₩□		合物:	🛀 1: Amp	A 24	- L	ISTD: A	Amp-d5	B			
		THU (1) マ 名称 数据文件 类型 级别 采集日														
				Blank-1	CMAMB1k_01. d	空白		2006/5/12 13:48								
			P 1	Calib-L1 Y 密群値	CMAMCal_L1. d	校正	L1	2006/5/12 13:51	2.5000	2. 2.	658	3. 289	2 3.2892 0 5.7070			
				Amp: 准确度	值 = 131.6 在允	许的范围	[80.0,	120.0] 之外 57	12.5000	2.	2680	13.561	0 13.5610			
				Calib-L4	[UMAMU al_L4. d	100LE	114	2006/5/12 14:00	25.0000	2.	4923	26.551	26.551			

使用三个工具评估结果 任务 1. 调整校准曲线拟合 4

步骤	详细说明	注释
	c 在校准曲线窗口中,将原点设置为 忽略,将权重设置为1/y。程序将显示新的曲线拟合分子式以及 R ² 值。	 曲线拟合原点 强制 – 强制曲线拟合线通过原点 (X=0, Y=0)。 忽略 – 不强制曲线拟合线使用原 点(X=0, Y=0)。 曲线拟合权重 无 – 对所有数据点指定相同的 权重。 1/Y – 将分子式 1/Y 应用于数据 点。此分子式将减少高 Y 值的影 响,同时增加低 Y 值的影响。
3 分析批处理,并检查 批处理表 中的结果。	 a 单击工具栏中的分析批处理图标 〔³分析批处理(A),以分析批处理。 b 分析批处理后,检查批处理表中的结果。 	
4 查找其他化合物的准确度离群 值 (如果有)。	a 单击批处理表工具栏中的下一个化 合物 ➡, 以查看单个化合物, 如可 卡因、 MDMA 和甲基苯丙胺。 b 检查定量结果, 特别是准确度列中 的值。	・ 请注意,安非他明的 Calib-L3 标 准的准确度值超出了指定范围。

4 使用三个工具评估结果

任务1. 调整校准曲线拟合

步骤			细说明	注释
5	更改安非他明的曲线拟合, 然 后分析批处理。	a b	在校准曲线拟合窗口中,将原点设 置为忽略,将权重设置为1/y。 定量分析程序将显示修改后的曲线 拟合分子式以及 R2 值。 单击主工具栏中的分析批处理,以 分析批处理。 〔3 分析批处理(A) 分析批处理后,批处理表将显示新 结果。	

任务 2. 进行无参数积分

此任务说明如何检查数据以正确进行积分。您将学习如何执行下列任务:

- 将积分列添加到批处理表
- 查看缺省积分值
- 仔细检查色谱图,查看如下详细信息:
 - 离群值消息
 - 基线参数
 - 峰标签

步骤	详细说明	注释
 将积分列添加到批处理表。 从化合物方法列表添加积分器类型和积分器参数列。 从化合物结果列表将积分器 规格列添加到批处理表。 	 a 在批处理表的任意位置上右键单击,然后单击添加/删除列。系统将显示列对话框。 b 从列来源下拉列表中选择化合物方法。 c 从可用列列表中选择积分器(积分器类型)和积分器参数(积分器参数),然后单击添加。定量分析程序将选定的列移至按顺序显示这些列列表。 	 ・此任务假设已打开了批处理 <i>iii</i>_Test_01。如果未打开,请参见 任务1中的步骤1。
	列 选择列来源 (2): 化合物方法 可用的列 (2): CAS 编号 CC ISTD 相对响应上限 CC 相对响应下限 CC 相对响应下限 CF R2 CF R2 CF 成式 CF 原	 ② ▼

上移し、「下移し」

4 使用三个工具评估结果

任务 2. 进行无参数积分

使用三个工具评估结果 任务 2. 进行无参数积分 4

壮穷 4	4. 沈1	丁元麥	致积?
-------------	-------	-----	-----

详细说明						注释									
c 检查批处: 缺省值。	理表 中	积分器	 景规材	各 列的	•	这些 安非	值 他	〔反映了用 [:] 明的缺省积	于目标 l分质量	化合 规格	物 。				
🗐 1: Amp		• 📦 I	STD:	Amp-d5			时	间段: < 🔻 🗉	A E	1 🜪 🤇	> 두				
		Amp 方	法					Amp 结	果						
采集日期时间	预期的浓度	积分	V	积分参数	RT	响应	MI	计算得到的浓度	最终浓度	准确度	积分;				
2006/5/12 13:48		MS-MS (L	C)				Г								
2006/5/12 13:51	2.5000	MS-MS (L	C)		2.	658		3.2892	3.2892	131.6	Accep				
2006/5/12 13:54	5.0000	MS-MS (L	C)		2.	1059		5. 7070	5.7070	114.1	Accep				
2006/5/12 13:57	12.5000	MS-MS (L	C)		2.	2680		13.5610	13.5610	108.5	Accep				
2006/5/12 14:00	25.0000	MS-MS (L	C)		2.	4953		26.5517	26.5517	106.2	Accep				
2006/5/12 14:03	125.0000	MS-MS (L	C)		2.	18661		124. 5395	124.5***	99.6	Accep				
2006/5/12 14:06	5.0000	MS-MS (L	C)		2.	1006		5.1873	5.1873	103.7	Accep				
2006/5/12 14:09	25.0000	MS-MS (L	C)		2.	4723		27.6514	27.6514	110.6	Accep				
2006/5/12 14:12		MS-MS (L	C)												
2006/5/12 14:15		MS-MS (L	C)		2.	1000		4,8422	4.8422		Accer				

步骤

使用三个工具评估结果 4 任务2. 进行无参数积分

步骤	详细说明	注释
 3 查看可卡因和 MDMA 的积分 问题。 放大化合物信息工具栏的色 谱图部分,以便仅显示定量离 子和定性离子色谱图。 	a 关闭 校准曲线 窗口。 b 要放大化合物信息工具栏中的色谱 图部分,请单击 显示 / 隐藏质谱图 图标。	
* 查有 枳分器规格 列和 Blank-1 样品交点处的离群值消息。	 化含物信息 c 也可以单击显示 / 隐藏 ISTD 图标。 d 单击批处理表工具栏中的下一个化合物图标 ➡,直到系统显示化合物可卡因。 e 选择 Blank-1 行,然后指向该行的积分器规格列。系统将显示该数据的任何离群值消息,以及可卡因的积分色谱图。 	▶ + ‡ <u>A</u> <u>→</u>
國 Agilent MassHunter 定量分析 - DrugsOfAbuse - jmt_test_	01	

步骤	详细说	明						注释					
	f 单个" MDI 拍子的	批合标 → ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	上理图 和 k-1 死也 明明 k-1 死也 明明 和明明 -1	表示	标准工具札 ■或"上- 重到系统显 亍,然后指 数据的任何 IA 的积分1	当一个示 一型。 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	下合合行。值。一一物物的消	・ fol RT Pr留列请分绿蓝红这	群IDMA 自 ob时问注规色色色些 動 の の の 間 题 意 格 - - - - - - - - - - - - -	消\:lnterct; (2.4干下 接查拒也	-	示 ator f terfe DMA 的颜 映在	ound the with the peak at rence 在一个的一个的一个, 之现峰具有下 。) 表示不同的积 峰颜色中。
 4 更改噪音算法。 从化合物方法列表添加噪音 算法列。 查看安非他明的噪音算法和 S/N列中的值。 	a b c d e f 在击系从方从音系些单单合物检中打,约歹说可算约歹击击牧安查的	化 然为,我们在我们的我们的我们的我们的我们的我们的我们的我们的我们的我们的我们的我们的我们的我	里音显原,可参步号。1941年19月 表音又下,列型定。。理译的第 第	的计划一拉一支,你一支了一支人	任意 加 / 册 一任 加 / 刑 框, 小 一 一 一 一 一 一 一 一 一 一 一 一 一	上余有,择算清汤项的,在一点一个小子,有不是一个小子,有不是一个小子,也是一个小子,就是一个小子,也是一个小子,也是一个小子,也是一个小子,也是一个小子,也是一个小子,也是一个小子,也是一个小子,也是	建合、一元个化)						
	ISTD: An	ip-d5			时间	段: <全部>			x 🜪 .		P		
					Amj	,结果		在批处理表	中显示	单个化台	う物	.mp-d5	
	噪音算法	RT	响应	MI	计算得到的浓度	最终浓度	准确度	积分规格	信噪比	比	MI	RT	
	RMS	0.141	are	Ē	0.0000	0.0000	101.0		40.02	04.0		0.100	
	RMS	2.141	658 1059		3.2892	5.7070	131.6	Accepted Accepted	40.96	24.3 33.5		2.129	
	RMS	2.134	2680		13.5610	13.5610	108.5	Accepted	106.52	26.6		2.121	
	RMS	2.022	4953		26.5517	26.5517	106.2	Accepted	20.26	29.0		1.990	
	RMS	2.101	18661		124.5395	124.5395	99.6	Accepted	51.59	27.0 27.6		2.076	
	RMS	2.142	4723	Γ	27.6514	27.6514	110.6	Accepted	98.30	25.6	-	2.121	
	RMS		_										
	RMS	2.143	1000		4.8422	4.8422		Accepted	80.59	31.0		2.130	
	BMS	2 105	2588		14 1047	14 1047		Accented	74 96	25.3		2 089	

RMS

....

Blank-1

Amp

Þ.

12 个样品 (共 12 个) .::

使用三个工具评估结果 任务 2. 进行无参数积分 4

步骤	详细说明	注释
5 练习将方法中的安非他明的噪 音算法从 RSM 更改为 ASTM。 • 退出但不保存方法。	 a 单击方法>编辑切换到方法编辑 模式。 b 单击方法任务 > 高级任务 > 信噪 设置。 系统将在方法表中显示积分器 参数。 	比
	方法任务栏 ◆ × 新维/打开方法 方法设置(*) 「 MBM 化合物设置 (0) ▲ (保留时间设置 (2)) ② ISTD 设置 (1) ※ 浓度设置 (0) ※ 浓度设置 (0) ※ 浓度设置 (0) ※ 在地峰设置 (0) ※ 校正曲线设置 (A) 『 全局设置 (6)	
	保存/逸出 診 验证(V) 圖 保存(S) 另存为(A) 】 退出(X)	
	手动设置(U) 高級(O) 积分参教设置(I) 信噪比设置(G) 平滑设置(M)	
	<u>山</u> 所量提取设置(X) 同位素稀释设置(S) 化合物设置(C) 化合物设置(C) 化合物语库设置(L)	
	 	

使用三个工具评估结果 任务 2. 进行无参数积分 4

步骤	详细说明			注释			
	积分参数	版MS 峰到峰 漂移中的 ASTM	全算法 峰到峰	▼ ▼			
	e 单击方法 退出。 f 在显示退 用于批处: 系统将显	任务 > 保存 出提示 是否 理? 时单击 示批处理分 [;]	/ 退出 > 要将此方 否。 断模式。	法应			
 6 关闭安非他明的基线(具有最高浓度的化合物标准),然后再次打开。 • 确保窗口中只显示"化合物信 	a 选择样品 然后单击 信息 图标	Calib-L5(如 工具栏中的: 。	□果未选□ 最大化化	中),・ 请注 注 合物 制き	主意,系统在X 基线,以作为 1	定量色谱图 缺省设置。	中绘
した。 したなまでの、一体の、一体なまで、 したなまでの、一体の、一体なまで、	📆 Agilent MassH	Hunter 定量分析 - [OrugsOfAbus	e - jmt_test_01			
	: 文件(F) 编辑(E)	视图(V) 分析(A)	方法(M) 更	「新(U) 报告(R) 工	具(T) 帮助(H)		
基线,另一个天闭了基线。	i 🛅 🗁 🛃 🗈	』│〔,⊒ 分析批处理	(A) 🕜	布局: 🔜 🛃 🛃	🏢 🔼 📝 恢复缺省	節布局(D)	
	批处理表						
	样品: 👔 🌉	样品类型: <全部	> 👻 化	合物: 🔄 1: Cocain	e 🔻	ISTD: Coc	aine-d3
			样品				
	名称	数据文件	类型 级	别系集方法文件	采集日期时间	转换	全扫描
	Blank-1	CMAMB1k_01.d	空白 応正 11	APCIautotune.m	2006/5/12 13:48	$04.1 \rightarrow 182.0$ $04.1 \rightarrow 182.0$	MRM
	Calib-L2	CMAMCal_L2.d	校正 12	APCIautotune.m	2006/5/12 13:54	04.1 -> 182.0	MRM
	Calib-L3	CMAMCal_L3.d	校正 1.3	APCIautotune.m	2006/5/12 13:57	04.1 -> 182.0	MRM
	Celib-I4	CMAMCel_14_4	校正 14	APCTentotune m	2006/5/12 14:00	04 1 -> 182 0	MRM
	C-1 ()-15	<u> CMANCAL 15 4</u>	校正 15	APPT out of two m	2006/5/12 14:03	04 1 -> 182 0	шти
	QC-12	CMAMQC_L2. d	QC 12	APCIautotune.m	2006/5/12 14:06	04.1 -> 182.0	MRM

4 使用三个工具评估结果

任务 2. 进行无参数积分

了石碇平山在一台宿到,以打开区碇 菜单。单击快捷菜单底部的**属性**以 打开**属性**对话框。

属性				X
化合物信息				
常规:			峰纯度:	
背景颜色:	自动	•	🔲 显示峰纯度	
前景颜色:	自动	•	纯度颜色	
网格颜色:	淡灰	•	定性峰:	
时间段边界:	灰色	•	☑ 归—化	
色谱图:			☑ 注释	
☑ 基线			定性峰颜色	
☑ 基线计算点			不确定带:	不見示
峰填充:	75% 透明	•	超出定性峰限值:	75% 透明 ▼
填充颜色			质谱图:	
峰标签			MS/MS 前级离子	
参比 RT:	不显示			
识别窗口:	不显示	••		
		[缺省 确定	取消 应用

4 使用三个工具评估结果

任务 2. 进行无参数积分

使用三个工具评估结果 4 任务 2. 进行无参数积分

步骤 i	详细说明	注释
 8 显示安非他明的峰标签。 在下一页显示在图中找到的 峰标签。 然后显示原始保留时间峰 标签。 	a 单击属性对话框中的峰标签。 系统将显示峰标签对话框。 b 选中所有峰标签复选框以及显示标 签名称复选框,然后单击确定。	
	化合物信息 マ 峰标签 ダ 昭和 上移 マ 名称 下移 マ 山口 下移 マ 山口 日本 頭定 取消	

4 使用三个工具评估结果

任务 2. 进行无参数积分

详细说明

注释

c 单击**属性**对话框中的**应用**按钮。 现在,峰标签应与下面示例中显示 的峰标签一致。

- d 单击**属性**对话框中的**峰标签**。 系统将显示**峰标签**对话框。
- e 清除除 RT (保留时间) 以外的所有 峰标签复选框。清除显示标签名称 复选框,然后单击确定。
- f 单击**属性**对话框中的**应用**并观察峰 标签中的变化。

使用三个工具评估结果 任务 2. 进行无参数积分 4

步骤	详细说明	注释
10 查看不确定性带。	 a 从属性对话框的不确定性带字段的下拉菜单中选择要显示的不确定性带的类型。单击应用,不确定性带即显示在定性离子色谱图中。 b 从属性对话框的不确定性带下拉菜单中选择无带。单击应用可从定性离子色谱图中删除不确定性带。 c 单击确定以关闭属性对话框。 d 比较具有和不具有不确定性带的定性离子色谱图。 	 不确定性帯 - 虚线帯, 显示定性 离子丰度的上限和下限
	Control And Control (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	○ ○
11 删除 批处理表 中的 积分器 和 积 分器参数 列的缺省值。	 a 单击恢复缺省布局按钮。 b 右键单击批处理表的甲基苯丙胺方法部分,然后单击添加/删除列。 c 从右侧的列表中选择积分器和积分器参数(化合物方法)。 d 单击删除,然后单击确定。 	

任务 3. 检测离群值

此任务说明如何精确调谐化合物的准确度范围,以及隐藏和显示具有离群值标记 的结果。

步骤	详细说明	注释	
1 查看 MDMA 的离群值信息。	 a 单击批处理表工具 合物图标 ➡,直到 MDMA。 b 选择 Blank-1 行,将 如下面的示例中所 	4栏中的 下一个化 J系统显示化合物 3光 标指向 RT 列, i示。	
📅 Agilent MassHunter 定量分析 - DrugsOfAbuse	- jmt_test_01		
: 文件(F) 编辑(E) 视图(V) 分析(A) 方法(M) 更新	新(U) 报告(R) 工具(T) 帮助(H)		
🎦 🗁 🛃 🖺 〔JI 分析批处理(A) 🛛 🞯 🧰 右	布局: 🔜 🔛 🔛 🏢 🔼 📝 恢复	(缺省布局(D)	
批处理表			×
	計物: 🔄 1: MDMA	▼ ISTD: MDMA-d5 时间段: < ▼ III III :	R
化合物组: <全部> ▼ 样品组: <全部>	*		
样品		MDMA 方法 MDMA 结果	定性峰…
 ⑦ ♡ 名称 数据文件 孝 	类型 级别 采集日期时间	预期的浓度 RT 响应 MI 计算得到的浓度 最终浓度	准确度 比 MI
▶ ● Blank-1 CMAMBlk_01.d 空白	白 2006/5/12 13:48 王 11 2006/5/12 13:51	2 466 24 <u>9</u> 7 1863 7 1863 2 5000 2 1997 东京前方	33 1
Calib-L2 CMAMCal L2. d 校	F L2 2006/5/12 13:54	<u>2,3000</u> 2,7 7 高軒回 5,0000 2,1MNMA: 保留时间 = 2,466 在分许的范围 [2,1	57 2 3851 文体
Calib-L3 CMAMCal_L3. d 校I	E L3 2006/5/12 13:57	12.5000 2.277 17051 11.2840 11.2840	00.3 10.0 1
Calib-14 CMAMCal_L4.d 校正	E L4 2006/5/12 14:00	25,0000 2,234 33279 24,9231 24,9231	99.7 9.5 🗖
Calib-L5 CMAMCal_L5.d 校正	E L5 2006/5/12_14:02	125.0000 2.271 110230 🔲 125.1550 125.1550	100.1 9.6
QC-L2 CMAMQC_L2. d QC	12 2006/5/12 14:06	5.0000 2.276 7265 🔽 4.8686 4.8686	97.4 9.6 🗖
QC-L4 Chimac_L4. d QC	L4 2006/5/12 14:09	25.0000 2.276 31520 🗖 23.0488 23.0488	92.2 9.0 🗖
🚺 💽 🦞 Sample-1 CM <mark>A</mark> MSam_01.d 样品	品 2006/5/12 14:12	2.315 476 🔲 5.6272 5.6272	12.3 🔲
Sample-2 CM <mark>W</mark> Sam_02.d 样品	品 2006/5/12 14:15	2. 280 7663 🔽 5. 1811 5. 1811	10.3 🔽 🔻
			•
化合物信息	×	校正曲线	×
🗈 🔊 💽 🖻 <u>A</u> 🏗 🛦 🔺	🛃 🕂 ‡ <u>A</u> 🛣	🔄 📄 类型: 线 ▼ 原点:强 ▼ 权重:无 ▼	i <mark>⊉</mark> ↔ ‡ 📱
+ MRM (194.2 > 163.2) CMAMBIR 01.d	2.1942>1353 to=302	ADMA - 5 个级别,使用了 5 个级别,5 个点,使用了 5 个点, 図 x10 ¹ y = 6.8192 * x 5 1.6 B [*] 2 = 0.99984470 1.4 1.4 1.4 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5	2 1 9C
米集时间(取小)	米集时间(鲸小)		相対状度
		Blank-1 MDMA 12 7	神品(共 12 个) …

4 使用三个工具评估结果

任务3. 检测离群值

步骤		详	细说明	注释	
2	更改方法中安非他明的准确度 范围,然后重新分析批处理。 • 将准确度最大百分比偏差 (Accuracy Max % Dev):设置 为 5%。	a b c d	单击工具栏中的上一个化合物图 标 译, 直到系统显示化合物安非 他明。 选择表中的 Calib-L5 行。 单击方法 > 编辑切换到方法编辑 模式。 单击方法任务 > 离群值设置任务 > 准确度。 将安非他明的准确度最大百分比偏 差值设置为 5%。	您可以拆分 方法表 ,方法是将小矩 形拖至滚动条的左侧。在下面的示 例中,使用底部滚动条旁边的矩形 拆分 方法表 。两个部分中的信息完 全相同。您可以使用这两个窗格同 时查看表的两个部分。	

4 使用三个工具评估结果

任务3.检测离群值

步骤	详细说明	注释
	 f 单击方法任务 > 保存 / 退出 > 退 出,然后在显示确认提示时单击 是,以退出方法并将方法应用于批 处理。 g 按 F5 分析批处理。 红色(高)和蓝色(低)离群值现 在显示在安非他明的准确度列中。 	您也可以将 批处理表 拆分为两个部 分。缺省情况下, 样品 列是锁定 的,只能滚动其他列。如果将表拆 分为两个部分,则可确定在每个部 分中显示的列。如果要拆分 批处理 表,则需要清除"批处理表"快捷 菜单中的 锁定样品列 菜单项。
	田 Agilent MassHunter 定量分析 - DrugsOfAbuse □ □ 文件(F) 编辑(E) 视图(V) 分析(A) 方法(M) 更新(U) 报告(R) 工具(T) 帮助(H) □ □ □ □ □ □ □ □ □ □ □ □ 正規(T) 帮助(H) □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
 3 使用下列一组离群值标记图标 ※ ♥ ♥ ♥ ♥ ♥ : • 检查具有高离群值的样品 • 检查同时具有高离群值和低离群值的样品 • 再次显示所有样品。 • 隐藏安非他明的准确度和保留时间的离群值标记 • 再次显示这些离群值标记 	 a 单击工具栏中的显示具有高离群值的样品图标 的样品图标 单击工具栏中的显示具有高 / 低离群值的样品。 b 单击工具栏中的显示具有高 / 低离群值的样品。 c 再次单击显示具有高 / 低离群值的样品。 c 再次单击显示具有高 / 低离群值的样品。 c 再次单击显示具有高 / 低离群值的样品。 d 单击选择离群值图标 , 以显示所有样品。 d 单击选择离群值图标 , 以显示离群值对话框。 e 清除准确度和保留时间复选框,然后单击确定。 f 单击选择离群值图标 , 以显示离群值对话框。 g 选中准确度和保留时间复选框,然后单击确定。 	 请注意,要恢复批处理表以查看 具有和不具有离群值的所有数 据文件,只需再次单击选定用于 进行离群值过滤的图标。

使用三个工具评估结果 4 任务 3. 检测离群值

使用三个工具评估结果 4 任务3.检测离群值

此练习将帮助您学习如何执行下列任务:

- 使用单个模板生成报告
- 预览报告

在本练习中将使用 **DrugsOfAbuse** 批处理。可使用三重四极杆数据文件、Q-TOF 数据文件和 TOF 数据文件执行相同的任务。

我们将每一个练习的内容都放在了一个表中,每个表中分别包含以下三列:

- 步骤 通过这些常规说明自学使用此程序。
- 详细说明 如果您需要帮助或更喜欢使用步进学习方式,则可使用这些说明。
- 注释 阅读这些注释可了解有关练习中的每个步骤的提示和其他信息。

报告设计器中的"高级"选项卡提供更多用于自定义报告的选项。有关"高级"选项的详细信息,请参见*联机帮助*。

有两个主要标准可确定如何在 MassHunter 中创建报告, 它们是:

- 您选择的报告模板。(有超过 50 个预定义的 Excel 模板可供使用。有关完整的 列表,请参见*联机帮助*。)
- 您选择的报告模式。(批处理与样品)
 - 批处理报告模式将为整个报告创建一个 Excel 文件。
 - 样品报告模式将为指定的每个样品创建一个 Excel 文件。

在此任务中,首先使用一个 Excel 模板生成单个样品报告,然后使用相同的模板 生成完整的批处理报告。

5 生成定量报告

步	骤	详	细说明	ž	E释
1	如果需要,打开批处理文件 <i>iii_</i> Test_01.batch.xml。 如果批处理已打开,则跳至步 骤 2。	a b c	要启动定量分析程序,请单击桌面 上的 定量分析 (000) 图标。 单击工具栏中的 打开批处理 № 以 显示 打开批处理 对话框。 浏览至 \ <i>您的目录</i> \DrugsOfAbuse 并单击 <i>iii</i> _Test_01.batch.xml。	•	也可以通过单击"开始"菜单中 的 程序 > Agilent > MassHunter 工作站 > 定量分析 (000) 来访 问该程序。 如果未显示缺省布局,请单击工 具栏中的 恢复缺省布局 ,然后再 打开批处理。 恢复缺省布局(D)
2	首先为 样品 1 生成单个样品报 告。高亮显示批处理表中的 样 品1。		如果要为多个样品生成报告,可以 使用 Shift 和 Ctrl 键从批处理表中选 择多个样品。	•	将为批处理表中高亮显示的每 个样品分别生成一个单独的样 品报告。在此任务中,我们仅选 择了一个样品,因此只会生成一 个样品报告。

步骤	详细说明	注释	
3 选择报告模板。 • 添加模板 Quantreport_ISTD_ByCompound _B_04_02.xlt。	 a 单击工具栏中的报告>生成。 系统将显示报告对话框。 b 单击模板文件字段旁边的浏览按钮 	 请注意, B_04_02 指定对应于定量分析软件版本,该版本将随着时间而变化。因此,缺省报告文件名也应相应地进行更改。 	
4 接受该报告的缺省目标目录。	您可以在 报告文件夹 文本框中更改 用于保存 Excel 报告的目标目录, 例如 \ <i>您的目录</i> \DrugsOfAbuse \ QuantReports \ <i>iii</i> _Test_03。但在这 里,可接受缺省值。	 可使用报告文件夹字段指定要存储报告的文件夹。缺省情况下,软件使用带有破折号和编号的子目录,其名称与位于您的批处理目录的QuantReports子目录中的批处理的名称相同。选择报告文件夹字段旁边的浏览按钮以浏览至其他目录。将根据数据文件自动命名该报告,其扩展名按数字顺序编号。 	

报告		? 🗙
模板文件(I):		
报告文件夹 ぽ):		
C:\DrugsOfAbuse\QuantReports\Dru	gsOfAbuseDemo-6	
◎ 批处理报告 ֎)		
◎ 选定样品的单个样品报告 (S)		
□ 开始队列查看器 Q)	高级(2)	确定 取消

5 生成定量报告

步骤		详细说明	注释
5	选择 选定样品的单个样品报告 单选按钮。	该选项将为每个选定的样品 (在这里 是 样品 1)分别生成一个单独的 样品 报告 。	 将根据每个 Excel 模板生成单个 样品报告。在这里,我们使用了 一个模板,因此将创建一个样品 报告(一个 Excel 文件)。
6	选择 输出 (可选)	使用该选项可以将报告作为 PDF 查看 并打印报告。	
7	单击 确定 生成报告。 • 在 任务队列查看器 中查看报 告生成的状态。	 a 如果要查看报告生成的进度,请选中启动队列查看器复选框。 b 单击报告对话框中的确定,以生成报告。 c 在状态列中查看报告的进度。 报告完成后将显示提示,并且状态列将指示报告已完成。 	 所有生成的报告都将显示在查 看器中。最新的报告将显示在列 表顶部。

街 Agilent MassHunter 定量分析 - 任务队列查看翻	ł		
文件(F) 服务(S) 任务(T) 帮助(H)			
i 🕟 🖬 😰 🗙 🔍			
名称	创建时间	状态	所有者
OrugsOfAbuse_jmt_test_01.20090619.16390	2009/6/19 16:39:08	Done	TWI2\jmt
DrugsOfAbuse_jmt_test_01.20090619.17143	2009/6/19 17:14:33	Processing	TWI2\jmt
<			Þ
			已连接 🤐

单,其中包含最新生成的报告。 c 双击报告文件以打开 Excel 电子 表格。	8	要查看或打印此报告, Excel 中打开它。	请在 a b c	高亮显示您要查看的报告。 从 任务队列查看器 对话框的工具栏 中选择 操作 。将显示一个下拉菜 单,其中包含最新生成的报告。 双击报告文件以打开 Excel 电子 表格。	•	可在 Excel 中查看或打印报告。 或者, 可通过在 Windows 资源管 理器中选择文件来打开电子表格。
---	---	---------------------------	----------------	--	---	---

步骤		详细说明	注释
9	现在使用此相同的模板生成批 处理报告。返回到批处理表(如 步骤1中所述)。	退出 Excel 电子表格并返回到 <i>iii_Test_01.batch.xml</i> 。	
10	根据上述过程重复步骤3和4。		
11	选择 批处理报告 单选按钮。	这将生成单个批处理报告 (单个 Excel 文件),其中包含 <i>所选批处理 中的所有内容</i> 。	
12	重复步骤 6 和 7 以生成并查看 此报告。		

5 生成定量报告

Agilent MassHunter 定量分析 入门指南

・参考

十大主要功能 90 定量方法 94 无参数积分器 95 批处理概览:结果 97 化合物概览 98 化合物确认 100 化合物校准 101

十大主要功能

定量分析程序包含十大功能,可帮助您更轻松有效地对数据进行积分、定量和 检查:

批处理概览:批处理表设置

- 新建批处理 创建批处理表,您可以在该表中从单个视图对样品和化合物进行 操作
- 分析 使用当前打开的方法重新创建校准曲线以及重新定量所有样品
- 定量 将现有的校准曲线应用于当前批处理、样品或化合物

应用定量的粒度可帮助您对特定信号进行快速操作。

• 积分 – 将信号积分到当前批处理、样品或化合物中

方法编辑器

- MRM 设置 以简单的分步方式演示定量方法
- 根据采集的 MRM 数据创建方法 在只需要指定 ISTD 关系和浓度后,根据采 集方法自动创建定量方法
- 使用"样品信息"窗口中的图形手动创建方法
- 按时间段分组 以时间段顺序按化合物组织方法
- 验证 确保定量方法符合严格标准
- 同位素稀释 支持根据 (Rx, Ry) Colby 常数计算进行调整

校准

- 曲线拟合助手 计算曲线的所有组合;选取禁用点;使用可按置信带排序以及可按 R²、标准差和最大百分比残差进行自定义过滤的方程显示结果
- 稀释助手 根据缺省值或指定的系列稀释方案计算和创建校准级别

- 复制校准级别 将校准级别从一个化合物复制到其他化合物
- 禁用校准点 根据级别、表中的单个化合物或在图形中以交互方式禁用校准点
- 曲线拟合 按下列对象支持曲线:
 - 类型:线性、二次、一阶 ln、二阶 ln、响应因子平均值
 - 原点: 忽略、包含、强制、空白偏移
 - 权重: 无、1/x、1/x²、1/y、1/y²、对数、1/SD²
- 替换曲线 根据现有的校准样品创建校准曲线
- 平均重复数 按化合物数将新的重复数平均到现有的校准曲线中
- 导入级别 从文件导入校准级别和浓度
- 缩放图形 使图形能够按 X、Y、X-log 和 Y-log 进行自动缩放;进行智能缩放 以适合指定的级别

积分器

- Agile 积分器 对所有级别的信号提供无参数积分器, 可减少手动积分工作量
- 积分器规格 生成规格, 使信号的积分可接受、检查或拒绝积分
- 信噪比 计算峰的信噪比
- 图形 显示与化合物的绘图和峰信息的显示的高级交互情况

批处理概览:结果

- 导航 在样品、化合物、时间段和化合物组之间移动(上一个、下一个、直接)
- 化合物视图 在当前化合物 / 样品的详细信息或多个化合物 / 样品的摘要信息 之间切换
- 批处理表视图 支持平面表布局,或以垂直或水平方式钻取嵌套表以了解详细 信息和化合物表布局
- 窗口布局 将屏幕重新组织为缺省设置, 或保存或调用自定义窗口布局

- 浮动窗格 使任何窗格浮动到另一个监视窗上面,以便进行双监视窗演示
- 导出表 将批处理概览表直接导出到 Excel 文件
- 导出图形 以多种格式将任何图形导出为自定义大小
- 复制 / 粘贴 将任何图形直接复制或粘贴到 Microsoft Office 应用程序中,如 Word、 PowerPoint、 Excel 等
- 打印 / 预览 以 WYSIWYG 格式 (所见即所得) 打印或预览屏幕内容
- 自动检查 以自动和交互方式显示每个样品,允许您随时停止以进一步检查
- 过滤器 显示样品类型的任意组合
- 排序 对表中显示的任何列进行排序
- 列 允许添加、删除、重新排序、保存、调用、恢复或重置列

化合物概览:结果

- 打印 / 预览 打印或预览化合物色谱图。
- 复制 / 复制页面 将屏幕上选定的化合物色谱图或所有化合物色谱图复制到 Microsoft Office 应用程序中,如 Word、 PowerPoint、 Excel 等。
- 编辑化合物色谱图 手动积分数据或选择零峰值化合物。
- 视图 显示色谱图详细信息, 如基线、填充的峰。
- 调整轴 链接 / 取消链接 X 轴或 Y 轴, 自动调整以适合窗格、适合峰或适合 校准级别。
- 布局 按化合物或样品组织行,选择色谱图叠加,逐一查看样品或化合物,设置显示选项。
- 高亮显示 具有离群值的化合物

离群值检测

• 管理 – 设置和选择可被检测并单独控制的特定离群值

- 高亮显示 高亮显示结果表中的离群值 (高显示为红色,低显示为蓝色)
- 过滤器 允许显示选定的过滤器类型
- 离群值 支持对特定的数据类型进行离群值检测
- 定量消息 对在定量过程中发生严重问题的样品发出警告

报告

- 生成 生成图形和报告结果,以便导入和设置为 Excel XML 格式
- 自定义 可让您自定义 Excel 模板

更新

- 更新 / 计算保留时间平均值 更新化合物的保留时间或计算其平均值
- 更新定性离子比 根据化合物的当前样品更新定性离子比
- 更新质量指定 根据化合物的当前样品更新质量指定

定性

- 样品信息 允许显示当前样品的色谱图和提取质谱图
- 色谱图 / 质谱图 提供可用于探测不同类型的信号的质谱图的重要功能

定量方法

可使用方法编辑器从 MRM 采集数据文件 (图 13)、 SIM 数据、采集的扫描数据 文件或以手动方式创建新定量方法。

📆 Agilent MassHunter 定量统	分析	- [新建	方法	ŧ]							- • ×
› 文件(F) 编辑(E) 视图(V) 彡	分析	(A) 方	去()	/) 更新(U) 报告(R)	工具(T)	帮助(H)					
: 눱 🗁 📕 🗈 💭 分析	批刘	上理(A)		布局: 🔜 🔡		📝 恢复缺省布局	(D)				
方法任务栏	×	方法表									×
新建/打开方法	-	时间	段	← < ▼ ⇒	化合物: 💽	▲ 👻 📑 重置	表视图(R)	级别名称前	5缀:	级别数	t: 1 创建级别(C)
方法设置(M)			定	翟化合物							-
⚠️ MRM 化合物设置(M)				名称 🗠	TS	转换	全扫描	类型	前级离子	产物离子	RT
⚠️ 保留时间设置(R)				Amp	1	136.2 -> 91.4	MRM	目标	136.2	91.4	2, 101
↔ ISTD 设置(I)			_	Amp-d5	1	141.1 -> 93.4	MRM	ISTD	141.1	93.4	2.076
·····································			_	Cocaine	1	304.1 -> 182.0	MRM	目标	304.1	182.0	2.448
				Cocaine-d3	1	307.1 -> 185.0	MRM	ISTD	307.1	185.0	2.448 =
★ 定性峰设置(Q)				MUMA HDHA- 35	1	194.2 -> 163.3	MKM	日标	194.2	163.3	2.271
📝 校正曲线设置(A)			_	Math	1	150 1 -> 119 3	MRM	1310	155.2	119.3	2.200
	=			Meth-d5	1	155.2 -> 92.3	MRM	ISTD	155.2	92.3	2.231 +
保存/退出							111				•
		样品信	息								×
		i 🔽	↔		皆数: 2	▼ : 信号: <开	5>	- jlí i	ť 🔎 👘		
■ 保存(S)		+ TIC	MRM	(** -> **) CMAMCal	_L5. d						
另存为(A)		∯ x10	4_)						$\wedge \vdash$	1	1_x10 ³
X 退出(X)		Com	4-						Λ	R	-2
手动设置(U)			ĥΙ					l			
离群值设置(T)				0.2 0.4 0	.6 0.8	1 1.2 1.	4 1.6	1.8 2	2.2 2	2.4 2.6	2.8 X Velnes
宣祝/m)	- I							4 -	化合物(共	4 个) 4 个]	ISTD (共 4 个) ::
		_	_								

图 13 定量视图 – 方法编辑器

将从批处理表选定的文件用作开发方法设置的参考。然后,使用这些设置生成校准曲线并定量标准、QC和样品。

无参数积分器

什么是无参数积分器?

Agilent 开发了特别适用于 MS/MS 数据的新的峰积分器算法。无参数积分器具有下列优点:

- 通过以统计方式设置峰的起点和终点,处理低级噪音数据
- 自动调整阈值
- 不需要对低级 MRM 信号的峰重新进行手动积分
- 识别可靠的峰和应丢弃的峰

积分结果示例

图 14 显示两个极端条件下的数据。

图 14 无参数积分器 – 两个极端条件下的数据

下方的色谱峰很容易积分,因为它是一个完美的高斯形状的峰,但很难定义上方 峰的基线。实际上,许多积分器算法会将这些结果解释为多个峰。

然而,Agilent的新算法可以顺利地定义基线并将其识别为单个峰。实际上,即使基线处于上升而不是平面状态(如图所示),这种新的积分器算法也会将其作为单个峰积分。

批处理概览:结果

从安非他明 (Amp) 的分析获得的积分结果显示在图 15 中。这是**批处理表、化合物信息**和校准曲线的平面视图。

🔂 Agil	ent N	/lassHunter 定量	赴分析 - DrugsOf	Abuse - jmt	_test_	01									• •	3
: 文件(F) 编	辑(E) 视图(V)	分析(A) 方法(N	/) 更新(U)	报告((R) 工具(T) 帮助(H)										
100	> 6	🖬 📮 分	析批处理(A) 🛛 🔞	布局:		2 🔛 🛄 🛕 🗭 🚧	复缺省布局(D)								
批处理表	表															×
; 样品:	:	● 样品类型	: <全部> ▼	化合物:	1:	Amp	▼ 🗭 I	STD: A	mp-d5	B	· 1间段: <	- 🔳	III (N	۲ 🌪	7 🖗	** ₹
化合	物组:	<全部>	▼ 样品组: <	全部>	Ŧ											
			. 样品				Amp 方法			Amp 结果			定性峰…	Amp-d5	α	^
•	7	名称	数据文件	类型	级别	采集日期时间	预期的浓度	RT	响应 MI	计算得到的浓度	最终浓度	准确度	比 MI	RT	响应	
- 0		Blank-1	CMAMBlk_01.d	空白		2006/5/12 13:48										
	٣	Calib-L1	CMAMCal_L1.d	校正	L1	2006/5/12 13:51	2.5000	2.141	658 🗖	3.2892	3.2892	131.6	24.3 🗖	2.129	1398	
	٣	Calib-L2	CMAMCal_L2.d	校正	12	2006/5/12 13:54	5.0000	2.140	1059 🗖	5.7070	5.7070	114.1	33.5 🕅	2.128	1298	=
	٣	Calib-L3	CMAMCal_L3.d	校正	L3	2006/5/12 13:57	12.5000	2.134	2680 🗖	13.5610	13.5610	108.5	26.6 🗖	2.121	1382	=
	4	Calib-L4	CMAMCal_L4.d	校正	L4	2006/5/12 14:00	25.0000	2.022	4953 🗖	26.5517	26.5517	106.2	29.0	1.990	1305	
		Calib-15	CMAMCal_L5.d	校正	L5	2006/5/12 14:03	125.0000	2.101	18661	124.5395	124.5395	99.6	27.0	2.076	1048	
		QC-12	CMAMQC_L2. d	QC	12	2006/5/12 14:06	5.0000	2.142	1006	5. 1873	5. 1873	103.7	27.6	2.131	1356	r
	٣	QC-L4	CMAMQC_L4. d	QC	L4	2006/5/12 14:09	25.0000	2.135	4723	27.6514	27.6514	110.6	25.6	2.121	1195	
- 9		Sample-1	CMAMSam_01.d	杆品		2006/5/12 14:12										, I
		Sample-2	CMAMSam_U2.d	○ 件品 送日		2006/5/12 14:15		2.143	1000	4.8422	4.8422		31.0	2.130	1444	
		Sample=3	CMAMSam_03. d	杆品		2006/5/12 14:18		2.105	2588	14.1047	14.1047		25.3	2.089	1284	-
					_		1112-2-227	6								_
1化合物1	見		ا ۵ ا چا او 🗄	A :	ы †	A -	× 校正田約	≹ ≥\ #	刑・錯っ	• 盾占· 碑 •	权重・チー			. .	• †	×
					•										· •	-
T MEM	136.2	: - 2 91.4.) UMAM 0.14	Lat_LS. d	136.2 -2 93	.4,	136.2 -> 119.4	Amp - c	113股力	」,復用了 7 1492 ★ …	5 11級別, 5 11点	(*1使用了 5) "下只,	ջորալ		u. L	~
10 X10	1	- 1	01	1 ×10 × 10	;=27. L	8	[12] XIU	R^2 :	= 0.999532	41					×	_
ů				0 2- 1				3-1								_
		/	<u> </u>	ô,			₩ 1.4	1								
	·	1.5 2	2.5		1.5	5 2 2.5	- 1.3	2				_	-			_
		3	ƙ集时间 (最小)			采集时间(最	小									_
+ MRM	141.1	> 93.4) CMAM	Cal_L5.d	141.1 -> 93	3. 🔺 .	141.1 -> 124.4		2								
∯ x10	4	2.9	76	∯ x10 2 - b	a 6.4	1	- 0.0	[]		-						
1				H I		A	0.5		~							
U U	1	ſ		۵ 'T		:=====#At======	:== (5								
	ι		<u> </u>	0-				4			_			_		_
		1.5 2	2.5		1.	5 2 2.5			0 0.2 0	0.4 0.6 0.8 1	1.2 1.4	1.6	1.8 2	2.2 2.	4 2.6	-
		ž	米集时间(<u></u> 銀小)			米集时间(巅									相对浓	度
										Calib-L5	Amp		12 个样	品 (共 1	2 个)	.:i
						· · · · · · · · · · · · · · · · · · ·	_				حديد ،	LAN -				
"	批久	心理表 " 督	۲		° IL	谷物信息 " 窗	Ц				1 校准日	田线 ′	面口			

图 15 安非他明结果

- **批处理表**显示将定量方法应用于每个数据文件所得到的积分结果。带颜色的高 亮显示的数据对应于低于(蓝色)或高于(红色)预期结果的结果。
- 在左下方的化合物信息窗口显示积分的色谱峰。
- 校准曲线显示在右下方。

Agilent MassHunter 工作站软件 - 定量分析入门指南

化合物概览

化合物概览视图会显示在每个样品中检测到的特定化合物,如图 16 中所示。使用 此功能可以查看化合物色谱图,并对其进行排列以便进行数据分析。对于在多批 样品中寻找化合物趋势的食品安全实验室而言,它特别有用。

图 16 定量分析中的化合物概览

可使用化合物概览中的设置功能选择要包括在视图中的化合物和样品。如图 17 所示,设置图形框顶部的不同选项卡提供用于选择和排列色谱图的各种选项。

- **样品**选项卡列出批处理中包括的所有样品,并提供用于选择所有样品或特定样品的选项。
- 化合物选项卡列出在批处理中检测到的化合物。它允许您选择要查看的化合物。

- 使用组织选项卡可以根据样品和化合物指定色谱图的排列方式。它为化合物、 样品和离群值提供了叠加选项。该选项卡提供用于调整色谱图的选项,如显示 基线,或填充峰以最有效地说明化合物检测趋势。
- 离群值选项卡提供用于显示数据中的离群值的选项。

L 2 L	10 1	als well	in Di		
名称	数据又件	类型	级别	样品组	基质加标组
Sample-1	UMAMSam_U1.d	科品			
•		III			
	添加し	(活動会報))			
	~m//JH /	2800111111			
样品显示顺序:	~400/JH /)
样品显示顺序: 名称			级别		基质加标组
样品显示顺序: 名称 Calib-L4	数据文件 CMAMCal_L4.d	类型 校正	级别 L4		基质加标组
样品显示顺序: 名称 Calib-L4 Calib-L5	数据文件 CMAMCal_L4.d CMAMCal_L5.d	<u> </u>	级别 【4 L5		基质加标组
样品显示顺序: 名称 Calib-L4 Calib-L5 QC-L2	数据文件 CMAMCal_L4.d CMAMCal_L5.d CMAMQC_L2.d			样品组	· 基质加标组 ·
样品显示顺序: 名称 Calib-L4 Calib-L5 QC-L2 QC-L4	数据文件 CMAMCal_L4.d CMAMCal_L5.d CMAMQC_L2.d CMAMQC_L4.d	类型 校正 校正 QC QC		样品组	· 基质加标组
样品显示顺序: 名称 Calib-L4 Calib-L5 QC-L2 QC-L4 Sample-2	数据文件 CMAMCal_L4.d CMAMCal_L5.d CMAMQC_L2.d CMAMQC_L4.d CMAMQC_L4.d	类型 校正 校正 QC QC 样品	級別 L4 L5 L2 L4 L4	样品组	
样品显示顺序: 名称 Calib-L4 Calib-L5 QC-L2 QC-L4 Sample-2 Sample-3	数据文件 CMAMCal_L4.d CMAMCal_L5.d CMAMQC_L2.d CMAMQC_L4.d CMAMSam_02.d CMAMSam_03.d	类型 校正 校正 QC QC QC 样品 样品	(初知) (初知) (14 (15 (12 (14)))))))))))))))))))	样品组	
样品显示顺序: 名称 Calib-L4 Calib-L5 QC-L2	数据文件 CMAMCal_L4.d CMAMCal_L5.d CMAMQC_L2.d	类型 校正 QC		样品组	基质加标组
样品显示顺序: 名称 Calib-L4 Calib-L5 QC-L2 QC-L4 Sample-2 Sample-3	数据文件 CMAMCal_L4.d CMAMCal_L5.d CMAMQC_L2.d CMAMQC_L4.d CMAMSam_02.d CMAMSam_03.d	类型 校正 校正 QC QC 样品	級別 L4 L5 L2 L4 L4	样品组	
样品显示顺序: 名称 Calib-L4 Calib-L5 QC-L2 QC-L2 Sample-2 Sample-3	数据文件 CMAMCal_L4.d CMAMCal_L5.d CMAMQC_L2.d CMAMQC_L4.d CMAMSam_02.d CMAMSam_03.d	校正	級別 I4 I5 I2 I4 I4		

图 17 化合物概览的设置选项

化合物确认

图 18 中显示的格式是认证的药物测试实验室的值。它显示两组可从 THC 分析中获得的图谱。

安非他明定性离子 - 已归一化

安非他明定性离子 - 未归一化

图 18 定量分析中的安非他明

必须采集两个产物离子才能进行确认:定量离子和定性离子。通常,用于定量的 定量离子是两个产物离子中丰度最大的那个。

要能够确认安非他明的存在,定性离子峰面积必须至少为定量离子的一定百分比,可在定量方法中设置该数字。在本例中,将使用 26.5%,窗范围为±20%。这表示对于分析物安非他明而言,定性离子的面积必须在 21.2%-31.8% 范围内。 ISTD 的定性离子或 Amp-d5 也必须在指定的范围内。

从左侧的图中很难确定定性离子是否在可接受窗范围内,因为定性峰的大小按因子 1/0.265 进行了归一化。在右侧的图中,在定量离子峰的 26.5% 处使接受窗居中,绘制的定性离子未归一化,或绘制在与定量离子相同的刻度上。如果离子不在所需的接受窗范围内,则它带有蓝色阴影,但它仍是透明的,不会隐藏定量离子。这样可以容易地从视觉上确认化合物的存在。

化合物校准

定量分析程序包含有助于校准和定量化合物的多种工具:

- 曲线拟合助手
- 光标指针可获得数据点信息
- 数据点缩放

曲线拟合助手

曲线拟合助手提供评估可能的曲线拟合的分析视图 (图 19)。

图 19 曲线拟合助手

请注意,所绘制的通过数据点的黑色线条使用"二次"作为"拟合",使用 1/x 作为"权重",使用"包含"作为"原点",如顶部所示。曲线设置的其他多种组合列在校准曲线下方,其中以蓝色高亮显示选定的曲线。高亮显示的设置在曲线窗口中也以蓝色绘制。

例如,您可以查找最佳曲线拟合,即对应于最高 R² 值的曲线拟合,方法是按最佳 到最差 R² 值对所有可能的结果排序,然后确定将多少数据点看作离群值。

例如,列表中的第一组参数对应于线性拟合、忽略原点和相等权重。对应的 \mathbb{R}^2 值 是 0.9998001477,这个值非常好。只需在表中单击该条目即可绘制相应的曲线。

可使用这些设置重新定量数据。在某些实验室中,排除离群值是一个常见的标准操作程序 (SOP)。

数据点信息

在校准曲线中,重叠的数据点并不常见,特别是在三重四极杆 MS 数据中,其中 %RSD 值非常低(图 20)。要区分数据点,可将光标移至数据点上方,以获得有 关这些数据点的更多信息。

图 20 安非他明结果:校准数据点信息

该图显示此类型的信息的两个示例。第一个示例显示数据点重叠,并建议您放大 以单独查看它们。第二个示例显示有关数据点本身的信息。

数据点缩放

您可以在重叠的数据点上放大,以查看视觉上无法看清的数据点。

www.agilent.com

内容提要

入门指南包含可帮助您使用 定量分析程序的练习。在本 指南中,您将学习:

- 如何设置和定量一批 Agilent 三重四极杆 LC/MS 和 GC/MS 数据文件
- 如何设置和定量一批 Agilent Q-TOF LC/MS 数 据文件
- 如何检查定量结果并发现 不规则情况
- 如何提高结果准确度
- 如何生成和检查定量报告

© Agilent Technologies, Inc. 2011 第一版, 2011年6月 G3335-97108

