

BFS17P

NPN Silicon RF Transistor

• For broadband amplifiers up to 1 GHz at collector currents from 1 mA to 20 mA

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Туре	Marking	Pin Configuration			Package
BFS17P	MCs	1 = B	2 = E	3 = C	SOT23

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CEO}	15	V
Collector-base voltage	V _{CBO}	25	
Emitter-base voltage	V _{EBO}	2.5	
Collector current	I _C	25	mA
Peak collector current	/ _{CM}	50	
Total power dissipation ¹⁾	P _{tot}	280	mW
<i>T</i> _S ≤ 55 °C			
Junction temperature	T _i	150	°C
Ambient temperature	T _A	-65 150	
Storage temperature	T _{stg}	-65 150	

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ²⁾	R _{thJS}	≤ 340	K/W

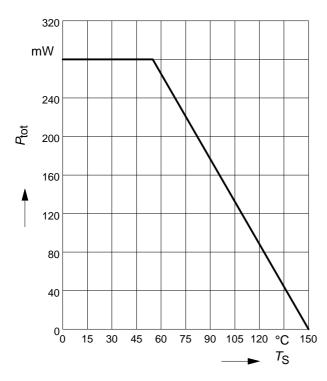
 $^{1}T_{S}$ is measured on the collector lead at the soldering point to the pcb

 $^2 \rm For}$ calculation of ${\it R}_{\rm thJA}$ please refer to Application Note Thermal Resistance

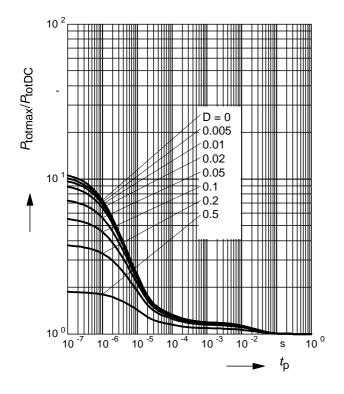
Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics					
Collector-emitter breakdown voltage	V _{(BR)CEO}	15	-	-	V
$I_{\rm C} = 1 {\rm mA}, I_{\rm B} = 0$					
Collector-base cutoff current	I _{CBO}				μA
$V_{\rm CB} = 10 \text{ V}, \ I_{\rm E} = 0$		-	-	0.05	
$V_{\rm CB} = 25 \text{ V}, \ I_{\rm E} = 0$		-	-	10	
Emitter-base cutoff current	I _{EBO}	-	-	100	
$V_{\rm EB} = 2.5 \text{ V}, I_{\rm C} = 0$					
DC current gain-	h _{FE}				-
$I_{\rm C}$ = 2 mA, $V_{\rm CE}$ = 1 V, pulse measured		40	-	150	
$I_{\rm C}$ = 25 mA, $V_{\rm CE}$ = 1 V, pulse measured		20	70	-	
Collector-emitter saturation voltage	V _{CEsat}	-	0.1	0.4	V
$I_{\rm C}$ = 10 mA, $I_{\rm B}$ = 1 mA					

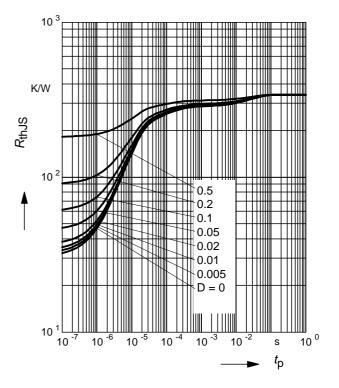
Electrical Characteristics at $T_A = 25^{\circ}C$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
AC Characteristics (verified by random sam	pling)	1	I	1	1
Transition frequency	f _T				GHz
$I_{\rm C} = 2 \text{ mA}, V_{\rm CE} = 5 \text{ V}, f = 200 \text{ MHz}$		1	1.4	-	
$I_{\rm C} = 25 \text{ mA}, V_{\rm CE} = 5 \text{ V}, f = 200 \text{ MHz}$		1.3	2.5	-	
Collector-base capacitance	C _{cb}	-	0.55	0.8	pF
$V_{\rm CB} = 5 {\rm V}, f = 1 {\rm MHz}, V_{\rm BE} = 0 ,$					
emitter grounded					
Collector emitter capacitance	C _{ce}	-	0.27	-	
$V_{CE} = 5 \text{ V}, f = 1 \text{ MHz}, V_{BE} = 0$,					
base grounded					
Emitter-base capacitance	C _{eb}	-	0.9	1.45	
$V_{\rm EB} = 0.5 \text{V}, f = 1 \text{MHz}, V_{\rm CB} = 0 ,$					
collector grounded					
Noise figure	F	-	3.5	5	dB
$I_{\rm C}$ = 2 mA, $V_{\rm CE}$ = 5 V, $Z_{\rm S}$ = 50 Ω ,					
<i>f</i> = 800 MHz					
Transducer gain	S _{21e} ²	-	13	-	dB
$I_{\rm C} = 20 \text{ mA}, \ V_{\rm CE} = 5 \text{ V}, \ Z_{\rm S} = Z_{\rm L} = 50 \Omega,$					
<i>f</i> = 500 MHz					
Third order intercept point at output	IP ₃	-	21.5	-	dBm
V _{CE} = 5 V, <i>I</i> _C = 20 mA, <i>f</i> = 800 MHz,					
$Z_{\rm S} = Z_{\rm Sopt}, Z_{\rm L} = Z_{\rm Lopt}$					
1dB Compression point	P _{-1dB}	-	10	-	-
$I_{\rm C} = 20 \text{ mA}, V_{\rm CE} = 5 \text{ V}, Z_{\rm S} = Z_{\rm L} = 50 \Omega,$					
<i>f</i> = 800 MHz					
		I	I	I	1


Electrical Characteristics at $T_A = 25^{\circ}$ C, unless otherwise specified

BFS17P

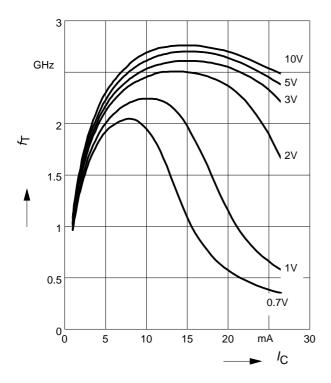

Total power dissipation $P_{tot} = f(T_S)$

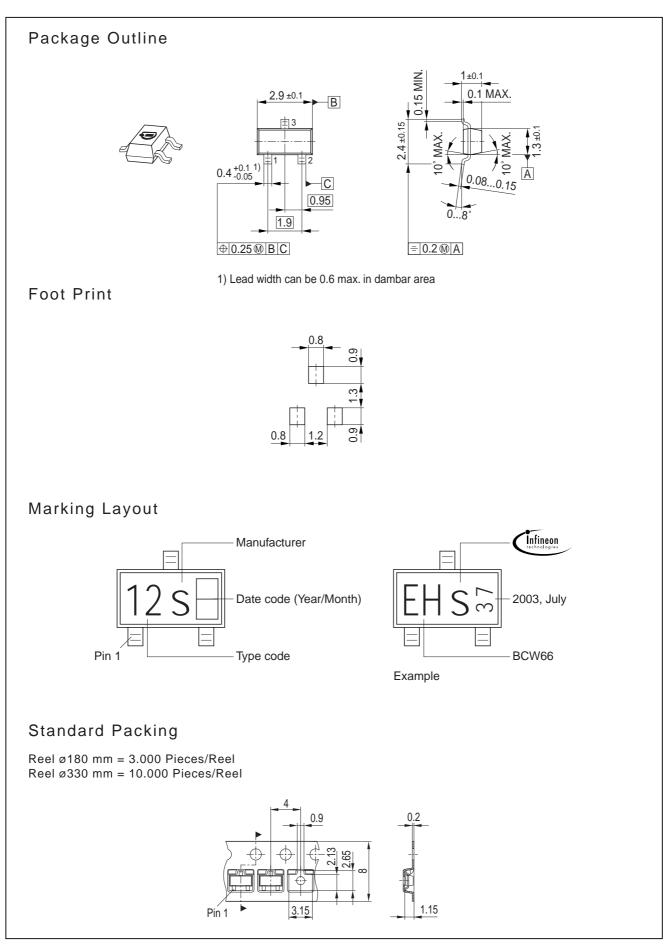

Permissible Pulse Load $R_{\text{thJS}} = f(t_{\text{p}})$

Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$

Collector-base capacitance $C_{cb} = f(V_{CB})$ Emitter-base capacitance $C_{eb} = f(V_{EB})$ f = 1 MHz




BFS17P

Transition frequency $f_{\rm T} = f(I_{\rm C})$

 V_{CE} = parameter

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München © Infineon Technologies AG 2005. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.Infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.