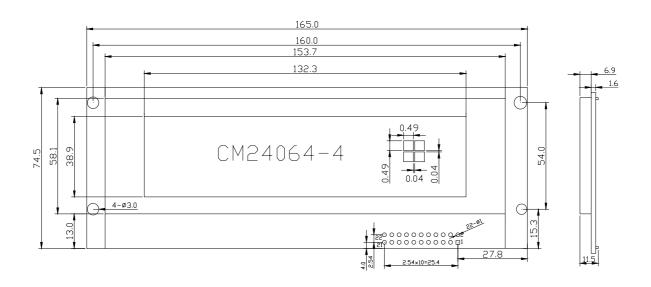
图形点阵液晶显示模块使用手册 CM24064-4BLWB

广州市瑞通科技有限公司

广州新赛格电子城三楼 B 3 3 1 3 档

TEL: 020-88403268

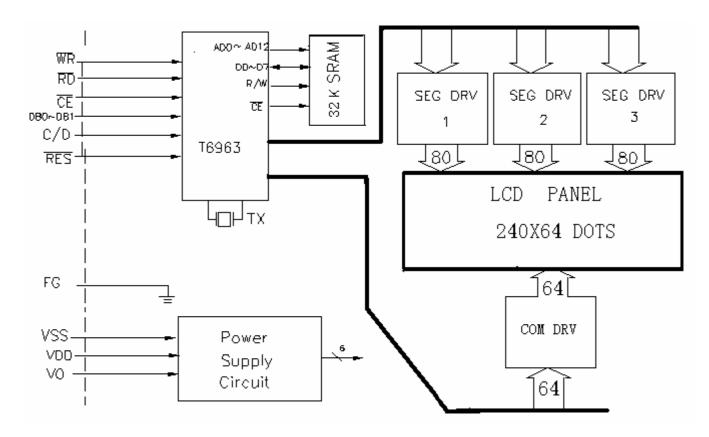
FAX: 020-87580480


 $h\ t\ t\ p\ :\ w\ w\ w\ .\ r\ t\ l\ c\ d\ .\ c\ o\ m$

E-mail: xiezhong2@163.com

CM24064-4 是一种图形点阵液晶显示器,它由控制器 T6963C、行驱动器/列驱动器及 240×64 全点阵液晶显示器组成.可完成图形显示,也可以显示 15×4个 (16×16 点阵)汉字主要技术参数和性能:

- 1. 电源: VDD: +5V±10%; 模块内自带-15V 负压,用于 LCD 的驱动电压。
- 2. 显示内容: 240(列)×64(行)点
- 3. 全屏幕点阵
- 4. 带 8K 外部数据存储器(其地址由软件设定)
- 5. 其接口适配 8080 系列和 Z80 系列 MPU 的控制时序
- 6. 驱动方式: 1/64 DUTY, 1/9 BIAS
- 7. 工作温度: -10℃∽+60℃, 存储温度: -20℃∽+70℃
- 8. 显示模式: 黄绿膜、灰膜、蓝膜、黑白膜
- 9. 背光特性: LED 或 EL 背光 (黄绿色、蓝色、白色、红色)
- 10. 模块封装方式: COB
- 11. 视角方向: 6:00
- 12. 功耗: 模块自带负压


二、外形尺寸图

外形尺寸一览

ITEM	NOMINAL DIMEN	UNIT
模块体积	$165 \times 74.5 \times 11.5$	mm
视域	132.3×38.9	mm
行列点阵数	240×64	DOTS
点距离	0.04×0.04	mm
点大小	0.49×0.49	mm

三、硬件结构图

四、模块的外部接口

Pin no	Symbol	Level	Function
1	FG	0V	Frame ground
2	Vss	0V	Ground
3	VDD	5.0V	Supply voltage for logic
4	V0	-	Operating voltage for LCD drive (-10∽15V)
5	/WR	L	Write signal
6	/RD	L	Read signal
7	/CE	L	Chip enable signal
8	C/D	H/L	H: Instruction code L: Data
9	NC		No connection
10	/RESET	L	Reset signal
11	DB0	H/L	Data bit 0
12	DB1	H/L	Data bit 1
13	DB2	H/L	Data bit 2
14	DB3	H/L	Data bit 3
15	DB4	H/L	Data bit 4
16	DB5	H/L	Data bit 5
17	DB6	H/L	Data bit 6
18	DB7	H/L	Data bit 7
19	FS	H/L	Font select signal (H:5X8 dots; L:8X8 dots)
20	VEE		-15V
21	LED+	5V	LED Backlight
22	LED-		LED Backlight

五、IC 说明及指令表

T6963C is LCD controller designed to be used for control LCD driver LCD driver LSIs and display data Memory, It has an 8 bit parallel data bus $\frac{1}{2}$

And control lines for reading or writing through a MPU I/F.

It has 128 words character generator ROM with the capability to control External display RAM of up to 128K bytes. Allocation of text, graphics And external generator RAM can be easily made and the display window can Be freely moved within the allocated memory range.

It supports a very board range of LCD formats by selecting different Combinations on a set of programmable inputs. It can be used in text, graphic

Modes and has various attribute functions.

COMMAND	CODE	D1	D2	FUNCTION
	00100001	X address	Y address	Cursor pointer set
Register Set	00100010	Data	00H	Off register
3	00100100	Low address	High address	Address pointer set
	01000000	Low address	High address	Text home address set
Control	01000001	Columns	00H	Text area set
Word set	01000010	Low address	High address	Graphic home address set
	01000011	Columns	00H	Graphic area set
	1000x000	-	-	"OR" mode
	1000x001	-	-	"EXOR" mode
Mode set	1000x011	_	_	"AND" mode
	1000x100	-	-	"Text attribute" mode
	10000xxx	-	-	Internal CGROM mode
	10001xxx	_	_	External CGRAM mode
	10010000	_	_	Display off
	1001xx10	_	_	Cursor on, blink off
Di spl ay	1001xx11	_	_	Cursor on, blink on
Mode	100101xx	_	_	Text on, graphic off
mode o	100110xx	_	_	Text off, graphic on
	100111xx	_	_	Text on, graphic on
	10100000	_	_	1 line cursor
	10100000	_	_	2 line cursor
	10100001		_	3 line cursor
Cursor	10100010	_	_	4 line cursor
Pattern	10100011	_	_	5 line cursor
Select	10100100	_	_	6 line cursor
Jerect	10100101	_	_	7 line cursor
	10100110	_	_	8 line cursor
Data auto	10110000			Data auto write set
Read/write	10110000	_	-	Data auto read set
Read/Wille	10110001	_	-	Auto reset
	11000000	Data	-	Data write and ADP increment
		Data	-	
Data road	11000001	- Doto	-	Data read and ADP degreement
Data read	11000010	Data	-	Data write and ADP decrement
Write	11000011	- Doto	-	Data read and ADP decrement
	11000100	Data	-	Data write and ADP no variable
Company models	11000101	-	-	Data read and ADP no variable
Screen peek	11100000	-	-	Screen peek
Screen copy	11101000	-	-	Screen copy
	11110XX	-	-	Bit reset
	11111XXX	-	-	Bit set
	1111X000	-	-	Bit O(LSB)
	1111X001	-	-	Bit 1
Bit	1111X010	-	-	Bit 2
Set/Reset	1111X011	-	-	Bit 3
	1111X100	-	-	Bit 4
	1111X101	-	-	Bit 5
	1111X110	-	-	Bit 6
	1111X111	_	-	Bit 7(MSB)

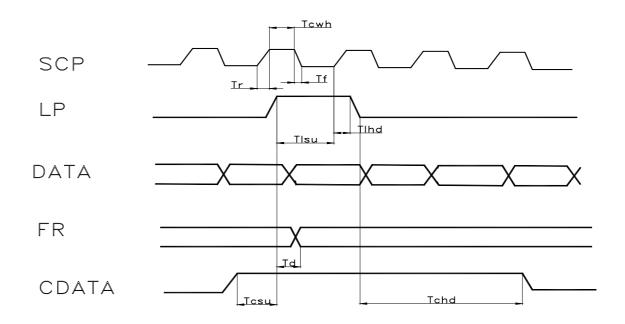
六、电气参数

1. ABSOLUTE MAXIMUM RATING

Item	Symbol	Condition	Min	Тур	Max	Unit
Supply	VDD-VSS	-	-0.3	-	7	V
Voltage(logic)						V
Supply	VDD-VO	-	VDD+0.3	-	VDD-0.3	
Voltage(LCD						V
Drive)						
Input Voltage	VI	-	-0.3	-	VDD+0.3	V
Operating	Topr	-	-10	-	+55	° C
Temperature						
Storage	Tstg	-	-20	-	+60	° C
Temperature						

2. OPTICAL DATA Ta=25° C

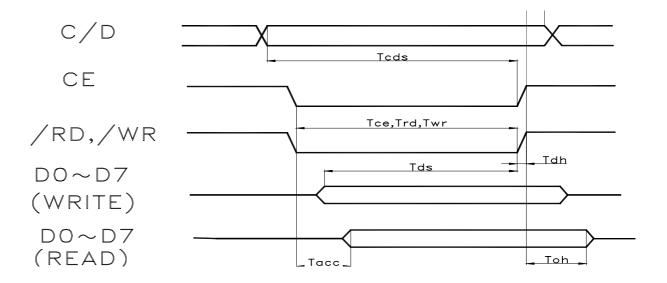
Item	Symbol	Cond	ition	St	andard Val	ue	Unit
				min	typ	max	
Supply voltage(Logic)	VDD-VSS	-		4.75	5	5.25	V
Supply voltage(LCD Drive)	VDD-VO	-		-	-	-	V
Supply current	IDD	-		-	12.0	17.0	mA
	IO	-		-	1.8	2.5	mA
EL Backlight current	IEL	-		-	100	-	mA
Input high voltage	VIH	High	level	0.7VDD	-	VDD	V
Input low voltage	VIL	Low	level	0	-	0.3VDD	V
Supply voltage for LCD		Ta=0	° C	14.2	14.5	14.8	V
Drive (1/80 duty)	VDD-VO	Ta=25° C		13.3	13.6	13.9	V
		Ta=50)°C	12.3	12.6	12.9	V
Contrast Ratio	CR			-	4	-	-
Viewing Angle	-	CR≥2	θ	-10	-	20	deg
			θ	60	-	120	deg
Response Time (rise)	Tr	Note 1	Ta=2	-	130	200	ms
			5°				
Response Time (delay)	Td	Note 2	Ta=2	-	150	230	ms
			5°				


NOTE 1: Required time for blackening ratio of segment goes up from 0% to 90% when Wave from is switched from one selected one (θ =10° , φ =90°)

Note 2: Required time for blackening ratio of segment goes down from 100% to 10% When wave from is switched from one selected one (θ =10° , φ =90°)

3. TIMING CHARACTERISICS

Item	Symbol	Min	Max	Unit
Operating frequency	fSCP	-	2.75	MHZ
SCP pulse width	Tewh, Tewl	150		ns
SCP rise/fall time	Tr	-	30	ns
LP set up time	Tlsu	150	290	ns
LP hold time	Tlhd	5	40	ns
Data set up time	Tdsu	170	-	ns
Data hold time	Tdhd	80	1	ns
FR delay time	Td	0	90	ns
CDATA set up time	Tcsu	450	850	ns
CDATA hold time	Tchd	450	950	ns


Condition: DV=+5.0V \pm 10%, Ta=-10 \circ +70 $^{\circ}$ C

驱动波形图

4. INTERFACE TIMING

Item	Symbol	Min	Max	Unit
C/D set up time	Tcds	100	1	ns
C/D hold time	Tcdh	10	1	ns
CE,RD,WR pulse width	Tce,Trd,Twr	80	-	ns
DATA set up time	Tds	80	1	ns
DATA hold time	Tdh	40	-	ns
Access time	Tacc	-	150	ns
Output hold time	Toh	10	50	ns

读写时序图

5. EL Backlight Electrical Characteristics

 $Ta=25^{\circ}$ C VDD=5V

Symbol	Parameter	Min	Type	Max	Units
IIN	VDD supply current	10		150	mA
VA-B	Output voltage across lamp	37	40	43	V
		75	80	85	V
FEL	VA-B output drive frequency	600	800	1000	V
VDD	Supply voltage	4.5		12	V
CL	Load capacitance	0		25	nF
TA	Operating temperature	0		50	°C

Note: EL Backlight with white lamp.

七、功能描述

7. 1 STATUS READ

Before sending data(read/write), command it is necessary to check the Status. Status check

Status of T6963c can read from data lines.

/RD L /WR Н /CE L C/D Н

DO D7 Status word

T6963C status word format is following

LSB MSB

STA7	STA6	STA5	STA4	STA3	STA2	STA1	STA0
D7	D6	D5	D4	D3	D2	D1	DO

STA0	Check capability of command execution	0: Di sable 1: Enable
STA1	Check capability of data read/write	0: Di sable 1: Enable
STA2	Check capability of auto mode data read	0: Di sable 1: Enable
STA3	Check capability of auto mode data write	0:Disable 1:Enable
STA4	Not use	
STA5	Check capability of controller operation	0:Disable 1:Enable
STA6	Error flag. Using screen peek/copy command	0: No error 1: error
STA7	Check the condition blink	0: Di sable 1: Enable
N-1- 1 I	+ ! + CTAO CTA1 - + + + !	. The second

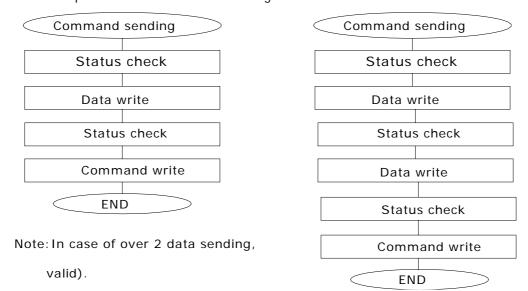
Note 1:It is necessary to check STAO and STA1 at the same time, The error Is happened by sending data at executing command.
2:The status check will be enough to check STAO/STA1.
3:STA2/STA3 are valid in auto mode STAO/STA1 are invalid.
Status checking flow:

Status checking flow:

NO

STA2 = 1

STA3 = 1


RETURN

YES

7. 2 DATA SET

In T6963C, the data have been set and command executes.

The order of procedure of command sending

7.31 Description of command

1. Register set

CODE	HEX	FUNCTI ON	D1	D2
00100001	21H	Cursor pointer set	X address	Y address
00100010	22H	Offset register set	Data	00H
00100100	24H	Address pointer set	Low address	High address

(1) Cursor pointer set The position of cursor is specified by X address. The cursor position Is moved only by this command. The cursor pointer doesn't have the Function of increment and decrement. The shift of cursor set by this Command. X address, Y address are specified following. X address 00H - - - 4FH(Low 7bits are valid) Y address 00H - - - 1FH(Low 5bits are valid)

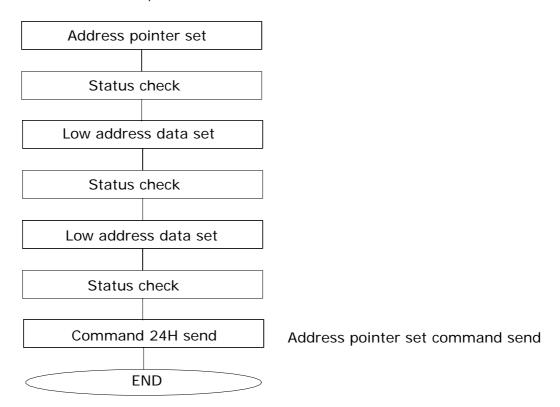
1 Screen drive

X address OOH - - - 4FH Y address OOH - - - OFH

(2) Offset register set

The offset register is used to determine external character generator RAM area.

T6963C has 16 bits address lines as follow:


MSB	MSB										LS	SB			
Ad1 5	Ad14	Ad13	Ad12	Ad11	Ad10	Ad9	Ad8	Ad7	Ad6	Ad5	Ad4	Ad3	Ad2	Ad1	Ad0
	The up	•		•	- ad1	1) are	dete	rmi ned	by o	ffset	regi s	ter. T	he		

Middle 8 bits (ad10 - ad3) are determined by character code. The Lower 3 bit (ad2 - ad10) are determined by vertical counter. The Lower 5 bit of D1(data) are valid. The data format of external character Generator RAM.

(3) Address pointer set

The address pointer set command is used to indication the start address For writing (or reading) to external RAM.

The flow chart address pointer set command

7.32 Control word set

CODE	HEX	FUNCTI ON	D1	D2
01000000	40H	Text home address set	Low address	High address
01000001	41H	Text area set	Columns	00H
01000010	42H	Graphic home address set	Low address	High address
01000011	43H	Graphic area set	Columns	00H

The home address and column size are defined by this command

(1) Text home address and area set

The starting address of external display RAM for text display is Defined by this command. The text home address shows the left end and Most upper position .

The relationship of external display RAM address and display position Example:

Text home address: 0000H
Text area: 00A0H
MD2=0, MD3=0: 80 COLUMN
DUAL=0, MDS=1, MD0=1, MD1=0: 28 LINES

Display plane:

0000H	0001H		004EH	004FH	1 Line
OOAOH	00A1H		00EEH	00EFH	2 Line
:	:	:	:	:	:
:	:	:	:	:	:
:	:	:	:	:	:
10E0H	10E1H		112EH	112FH	28 Lines

(2) Graphic home address and area set
The starting address of external display RAM for Graphic display is

Defined by this command. The graphic home address shows the left end most Upper line.

<u>The</u> relationship of external display RAM address and display position.

Example: Graphic home address:

0020H 32 COLUMNS

Graphic area:
MD2=H, MD3=H:
DUAL=H, MDS=L, MD0=H, MD1=H:
Example:

2 LINES

Display plane:

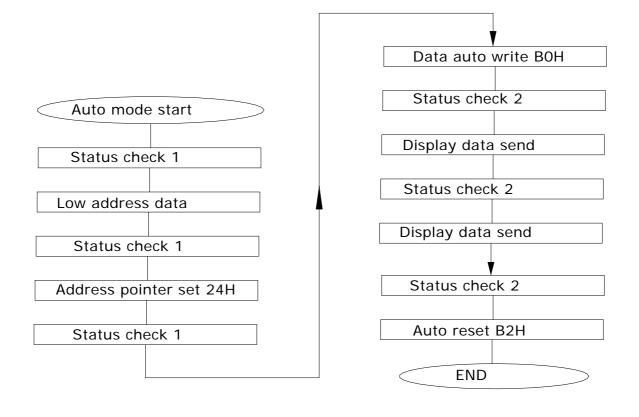
Diopia, pramor				
0000H	0001H		001EH	001FH
0020H	0021H		003EH	003FH
:	:	:	:	:
:	:	:	:	:
•	•	•	•	•
01E0H	01E1H		01FEH	01FFH

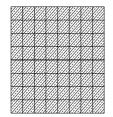
7.33 MODE SET

The display mode is defined by this command. The display mode don't have changed until to send next this command. Logically "OR", "EXOR', "AND" of text and graphic

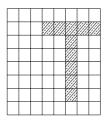
until to send next this command. Logically "OR", "EXOR", "AND" of text and graphic display can be displayed.
When internal character generator mode is selected, character code 00H - 7FH are selected from built-in character generator ROM. The character code 80H-FFH are automatically selected external character generator RAM.
NOTE: Only text display is attributed, because attributed data is located.
Attribute function
"Reverse display", "Character blink" and "Inhibit" are called "Attribute". The attribute data is written in the graphic area defined by control word set command. The mode set command selects text display only and graphic the mode set command selects text display only and graphic the mode set command selects text display cannot be displayed. The attribute data of the 1st character in text area

Is written at the IST 1 byte in graphic area, and attribute data of n-th 1byte in graphic area. Attribute function is defined as follow.

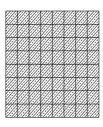

Attribute RAM 1byte

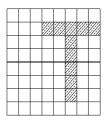

X: don't care

Χ	Χ	Χ	Χ	D3	D2	D1	DO

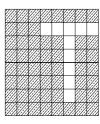

X: don't care

D3	D2	D1	DO DO	FUNCTION
0	0	0	0	Normal display
0	1	0	1	Reverse display
0	0	1	1	Inhibit display
1	0	0	0	Blink of normal display
1	1	0	0	Blink of reverse display
1	0	1	1	Blink of inhibit display





GRAPHIC



TFXT

"AND"

"EXOR"

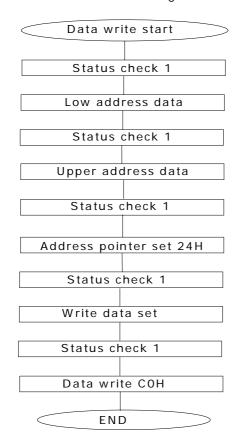
7.34 DATA AUTO READ/WRITE

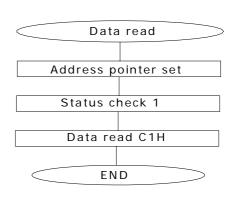
CODE	HEX	FUNCTION	OPERAND
10110000	ВОН	Data auto write set	-
10110001	B1H	Data auto read set	-
10110010	R2H	Auto reset	-

"OR"

This command is convenient to send full screen data from external display RAM. After setting auto mode, "Data write(or read)" command is not necessary between each data. "Data auto write (or read)" command should follow the "Address pointer set" and address pointer is automatically increment by + 1 after each data. After sending (or receiving) all data "Auto reset" is necessary to return normal operation because all data is regarded "Display data" and no command can be accepted in the auto mode.

Note: status check for auto mode(STA2, STA3 should be checked between each Data. Auto reset should be performed after checking (STA3=1 STA2=1)


7.35 DATA READ WRITE


CODE	HEX	FUNCTION	OPERAND
11000000	СОН	Data write and ADP increment	Data
11000001	C1H	Data read and ADP increment	Data
11000010	C2H	Data write and ADP decrement	Data
11000011	СЗН	Data read and ADP decrement	Data
11000100	C4H	Data write and ADP nonvariable	Data
11000101	C5H	Data read and ADP nonvariable	Data

This command is used for data write from MPU to external display RAM, AND data read external display RAM to MPU. Data write/data read should be executed after setting address by address pointer set command. Address Pointer can be automatically increment by setting this command.

Note: this command is necessary for each 1 byte data.

Please refer following flow chart.

NOTE:

- (1) After power on, it is necessary to reset. /RESET is kept "L" between 5 CLOCK up(oscillation clock).
- (2) When /HALT has been "L", the oscillation is stopped. It is necessary To turn off power supply for LCD, because LCD goes down by DC bias.
- (3) The HALF function contains the RESET function.
- (4) After state of RESET/HALT.

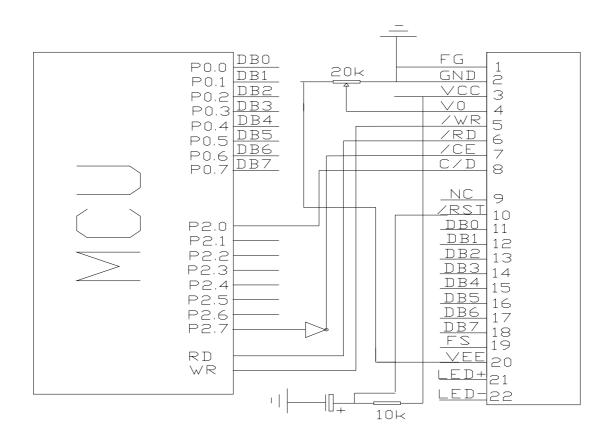
TERMINAL	HALT	RESET
D0-D7	F	F
D0-d7	F	F
R/w	Н	Н
/ce	H (NOTE 1)	H (NOTE 1)
Ad0-ad15	H (NOTE 2)	H (NOTE 2)
/ce0, /ce1	H (NOTE 1)	H (NOTE 1)
ED, HOD	Final Data	Final Data
HSCP	L	L
LP	L	L
CDATA	Н	Н
FR	Н	Н
CH1	L	КО
CH2	L	VEND
DSPON	L	L
XO	Н	OSC CLOCK

H: Level H

L: Level L

F: Floating (High impedance)

KO: Internal state (TEXT data access) normally open


VEND: End signal of V-counter(Line count) if MDS=H, T2=L,

HEND (end signal of H-count) normally open.

Note 1: In Attribute mode, H or L by state of Graphinc pointer. Note 2: In Attribute mode, DATA of Graphinc pointer.

八、应用举例

CM24064-4 与单片机 8031 的一种接口如下图. 所示:注:V0 为液晶驱动电压。此图为模块内自带负压的示例

ORG 0000H

AJMP MAIN

ORG 0003H

AJMP ZHONGDUAN

ORG 0035H

ZHONGDUAN:

HERE: SJMP HERE

RET

DATA1 EQU 30H ;第一参数单元

DATA2 EQU 31H ;第二参数/数据单元

COMMAND EQU 32H ;指令代码单元 C_ADD EQU ;指令通道地址 8100H D_ADD EQU 8000H ;数据通道地址 LI1 EQU 33H EQU LI2 34H *************** BUSY1: **PUSH** DPH **PUSH** DPL MOV DPTR,#C_ADD MOVX A,@DPTR POP DPL POP DPH **RET** BUSY: LCALL BUSY1 JNB ACC.0, BUSY1 ACC.1, BUSY1 JNB **RET** ************** WRITE_COMMAND:PUSH DPH PUSH DPL LCALL BUSY MOV A,COMMAND MOV DPTR,#C_ADD MOVX @DPTR,A POP **DPL** POP DPH **RET**

WRITE_DATA:

14

PUSH DPH

PUSH DPL

LCALL BUSY

MOV A,DATA2

MOV DPTR,#D_ADD

MOVX @DPTR,A

POP DPL

POP DPH

RET

MS40: MOV R7,#0E8H

MS2: MOV R6,#0FFH

MS1: DJNZ R6,MS1

DJNZ R7,MS2

RET

DELAY: MOV R5,#05H

DELAY1: LCALL MS40

DJNZ R5,DELAY1

RET

MAIN:

MOV SP,#20H

MOV P3,#0FFH

SETB EA

SETB EX0

SETB IT0

MOV COMMAND,#90H

LCALL WRITE_COMMAND

LCALL MS40

MOV DATA2,#00H

LCALL WRITE_DATA

MOV DATA2,#00H

LCALL WRITE_DATA

MOV COMMAND,#40H ;文本显示区首地址设置

LCALL WRITE_COMMAND

MOV DATA2,#20H

LCALL WRITE_DATA

MOV DATA2,#00H

LCALL WRITE_DATA

MOV COMMAND,#41H ;文本显示区宽度设置

LCALL WRITE_COMMAND

MOV DATA2,#00H

LCALL WRITE_DATA

MOV DATA2,#08H

LCALL WRITE_DATA

MOV COMMAND,#42H ;图形显示区首地址设置

LCALL WRITE_COMMAND

MOV DATA2,#1EH

LCALL WRITE_DATA

MOV DATA2,#00H

LCALL WRITE_DATA

MOV COMMAND,#43H ;图形显示宽度设置

LCALL WRITE_COMMAND

MOV COMMAND,#80H ;逻辑或,用 CGROM

LCALL WRITE_COMMAND

MOV COMMAND,#9CH ; 启动文本.图形.光标显示

LCALL WRITE_COMMAND

;显示全屏

MOV DATA2,#00H

LCALL WRITE_DATA

MOV DATA2,#00H

LCALL WRITE_DATA

MOV COMMAND,#24H

LCALL WRITE_COMMAND

MOV R3,#00H

MOV COMMAND,#0B0H

LCALL WRITE_COMMAND

MOV R4,#20H

YY1:

NOP

YY: MOV A,#0FFH

MOV DATA2,A

LCALL WRITE_DATA

DJNZ R3,YY

DJNZ R4,YY1

MOV COMMAND,#0B2H

LCALL WRITE_COMMAND

LCALL MS40

CLEAR1:

MOV DATA2,#00H

LCALL WRITE_DATA

MOV DATA2,#00H

LCALL WRITE_DATA

MOV COMMAND,#24H ;显示地址设置

LCALL WRITE_COMMAND

MOV R3,#00H

MOV R4,#20H

MOV COMMAND,#0B0H ;自动写入

LCALL WRITE_COMMAND

M1:

NOP

M: MOV A,#00H

MOV DATA2,A

LCALL WRITE_DATA

DJNZ R3,M

DJNZ R4,M1

MOV COMMAND,#0B2H ;推出自动写入

LCALL WRITE_COMMAND

;显示字库

MOV R3,#00H

MOV R4,#7FH

MOV COMMAND,#0B0H ;自动写入

LCALL WRITE_COMMAND

MOV A,#0FFH ;写入英文字库

L: INC A

MOV DATA2.A

LCALL WRITE_DATA

DJNZ R4,L

MOV COMMAND,#0B2H ;退出自动写入

LCALL WRITE_COMMAND

LCALL DELAY

; 写 CGROM 80H

MOV DATA2,#03H

LCALL WRITE_DATA

MOV DATA2,#00H

LCALL WRITE_DATA

MOV COMMAND,#22H

LCALL WRITE_COMMAND

MOV DATA2,#00H

LCALL WRITE_DATA

MOV DATA2,#1CH

LCALL WRITE_DATA

MOV COMMAND,#24H

LCALL WRITE_COMMAND

MOV R2,#2

MOV R0,#0FFH

MOV COMMAND,#0B0H

LCALL WRITE_COMMAND

MOV DPTR,#TEST

LL2: NOP

LL: CLR A

MOVC A, @A+DPTR

MOV DATA2,A

LCALL WRITE_DATA

INC DPTR

SETB P1.5

DJNZ R0,LL

DJNZ R2,LL2

MOV DATA2,#0B2H

LCALL WRITE_DATA

SETB P1.4

MOV DATA2,#00H

LCALL WRITE_DATA

MOV DATA2,#00H

LCALL WRITE_DATA

MOV COMMAND,#24H ;显示地址设置€

LCALL WRITE_COMMAND

MOV COMMAND,#0B0H

LCALL WRITE_COMMAND

MOV R2,#2

TIAO1: MOV R1,#255

MMM: MOV DATA2,#80H

LCALL WRITE_DATA

DJNZ R1,MMM

DJNZ R2,TIAO1

MOV COMMAND,#0B2H

LCALL WRITE_COMMAND

LCALL DELAY

MOV COMMAND,#0B0H

LCALL WRITE_COMMAND

MOV DATA2,#00H

LCALL WRITE_DATA

MOV DATA2,#00H

LCALL WRITE_DATA

MOV COMMAND,#24H ;显示地址设置€

LCALL WRITE_COMMAND

MOV R2,#2

TIAO2: MOV R1,#255

MMM1: MOV DATA2,#81H

LCALL WRITE_DATA

DJNZ R1,MMM1

DJNZ R2,TIAO2

MOV COMMAND,#0B2H

LCALL WRITE_COMMAND

LCALL DELAY

MOV COMMAND,#0B0H

LCALL WRITE_COMMAND

MOV DATA2,#00H

LCALL WRITE_DATA

MOV DATA2,#00H

LCALL WRITE_DATA

MOV COMMAND,#24H ;显示地址设置€

LCALL WRITE_COMMAND

MOV R2,#2

TIAO3: MOV R1,#255

MMM2: MOV DATA2,#82H

LCALL WRITE_DATA

DJNZ R1,MMM2

DJNZ R2,TIAO3

MOV COMMAND,#0B2H

LCALL WRITE_COMMAND

LCALL DELAY

MOV COMMAND,#0B0H

LCALL WRITE_COMMAND

MOV DATA2,#00H

LCALL WRITE_DATA

MOV DATA2,#00H

LCALL WRITE_DATA

MOV COMMAND,#24H ;显示地址设置€

LCALL WRITE_COMMAND

MOV R2,#2

TIAO4: MOV R1,#255

NN: MOV DATA2,#83H

LCALL WRITE_DATA

DJNZ R1,NN

DJNZ R2,TIAO4

MOV COMMAND,#0B2H

LCALL WRITE_COMMAND

LCALL DELAY

MOV COMMAND,#0B0H

LCALL WRITE_COMMAND

MOV DATA2,#00H

LCALL WRITE_DATA

MOV DATA2,#00H

LCALL WRITE_DATA

MOV COMMAND,#24H ;显示地址设置€

LCALL WRITE_COMMAND

MOV R2,#2

TIAO5: MOV R1,#255

NN1: MOV DATA2,#84H

LCALL WRITE_DATA

DJNZ R1,NN1

DJNZ R2,TIAO5

MOV COMMAND,#0B2H

LCALL WRITE_COMMAND

LCALL DELAY

MOV COMMAND,#0B0H

LCALL WRITE_COMMAND

MOV DATA2,#00H

LCALL WRITE_DATA

MOV DATA2,#00H

LCALL WRITE_DATA

MOV COMMAND,#24H ;显示地址设置€

LCALL WRITE_COMMAND

MOV R2,#2

TIAO6: MOV R1,#255

NN2: MOV DATA2,#85H

LCALL WRITE_DATA

DJNZ R1,NN2

DJNZ R2,TIAO6

MOV COMMAND,#0B2H

LCALL WRITE_COMMAND

LCALL DELAY

MOV DATA2,#00H

LCALL WRITE_DATA

MOV DATA2,#00H

LCALL WRITE_DATA

MOV COMMAND,#24H ;显示地址设置

LCALL WRITE_COMMAND

MOV R3,#00H

MOV R4,#20H

MOV COMMAND,#0B0H ;自动写入

LCALL WRITE_COMMAND

MM1: MOV R4,#20H

MM: MOV A,#00H

MOV DATA2,A

LCALL WRITE_DATA

DJNZ R4,MM

DJNZ R3,MM1

MOV COMMAND,#0B2H ;推出自动写入

LCALL WRITE_COMMAND

TIAN:

MOV DATA2,#00H ;显示地址

LCALL WRITE_DATA

MOV DATA2,#08H

LCALL WRITE_DATA

MOV COMMAND,#24H

LCALL WRITE_COMMAND

MOV COMMAND,#0B0H

LCALL WRITE_COMMAND

MOV R2,#10H

MOV R1,#000H

MOV DPTR,#TIANSHI

SSS: NOP

SSS1: CLR A

MOVC A,@A+DPTR

MOV DATA2,A

LCALL WRITE_DATA

INC DPTR

DJNZ R1,SSS1

DJNZ R2,SSS

MOV COMMAND,#0B2H

LCALL WRITE COMMAND

LCALL DELAY

LJMP MAIN

TIANSHI:

DB OFFH, OFF

000H, 000H, 000H, 003H, 0C4H, 0FFH, 0C2H, 040H, 080H, 040H, 03EH, 002H, 003H, 0FCH, 01EH, 022H 004H, 008H, 000H, 040H, 03EH, 0FEH, 002H, 020H, 03FH, 0FCH, 040H, 040H, 01FH, 0E0H, 03FH, 0E0H DB 07FH, 0E3H, 0C4H, 080H, 082H, 048H, 0BFH, 0FFH, 084H, 043H, 002H, 004H, 002H, 012H, 004H, 008H DB 01FH, 0FFH, 0A4H, 082H, 003H, 020H, 000H, 004H, 04FH, 0FCH, 010H, 020H, 020H, 020H, 000H, 003H 0C0H, 024H, 002H, 048H, 080H, 040H, 012H, 064H, 003H, 0FCH, 002H, 012H, 03FH, 07FH, 080H, 080H 024H, 0FEH, 002H, 020H, 000H, 004H, 012H, 040H, 01FH, 0E0H, 03FH, 0E0H, 000H, 003H, 0D0H, 023H DB 01FH, 0C8H, 080H, 040H, 00AH, 088H, 002H, 004H, 03FH, 082H, 004H, 008H, 001H, 000H, 028H, 082H 004H, 010H, 07FH, 0E5H, 012H, 040H, 010H, 020H, 020H, 020H, 000H, 003H, 0CAH, 0C1H, 002H, 048H 087H, 0FEH, 009H, 011H, 003H, 0FCH, 006H, 022H, 005H, 008H, 003H, 0FCH, 028H, 082H, 004H, 008H 000H, 004H, 0A4H, 0F8H, 01FH, 0E0H, 03FH, 0E1H, 0FFH, 0FBH, 0CAH, 008H, 002H, 048H, 084H, 042H 002H, 001H, 082H, 004H, 007H, 012H, 006H, 07FH, 006H, 004H, 024H, 0FEH, 008H, 00CH, 000H, 004H DB 0A4H, 088H, 010H, 020H, 008H, 080H, 004H, 003H, 0C2H, 008H, 002H, 048H, 084H, 042H, 03FH, 0E2H 000H, 000H, 00AH, 092H, 00CH, 042H, 00AH, 004H, 022H, 0A0H, 011H, 007H, 03FH, 0C4H, 02DH, 050H DB 000H, 000H, 008H, 080H, 004H, 003H, 0C4H, 0FFH, 082H, 048H, 084H, 042H, 002H, 005H, 01FH, 09FH DB 08AH, 003H, 0B4H, 022H, 013H, 0FCH, 022H, 092H, 021H, 082H, 020H, 044H, 057H, 030H, 0FCH, 0FCH 088H, 090H, 044H, 083H, 0C4H, 008H, 002H, 048H, 084H, 042H, 007H, 009H, 090H, 090H, 01EH 004Н, 024Н, 022Н, 004Н, 02АН, 094Н, 001Н, 000Н, 020Н, 044Н, 044Н, 0АОН, 084Н, 084Н, 048Н, 090Н DB 044H, 043H, 0D8H, 01CH, 007H, 048H, 084H, 042H, 006H, 081H, 01FH, 09FH, 0A2H, 0E2H, 004H, 018H 002H, 004H, 024H, 088H, 002H, 010H, 03FH, 0C5H, 0C4H, 040H, 0FCH, 0FCH, 028H, 0A0H, 084H, 023H 0C8H, 02BH, 018H, 088H, 084H, 042H, 00AH, 062H, 010H, 090H, 082H, 002H, 004H, 018H, 003H, 0FCH 020H, 088H, 004H, 008H, 020H, 044H, 044H, 060H, 084H, 084H, 028H, 0C1H, 004H, 033H, 0C8H, 0C9H DB $000H,\,088H,\,084H,\,04AH,\,012H,\,044H,\,010H,\,090H,\,082H,\,002H,\,004H,\,024H,\,002H,\,004H,\,020H,\,084H$ 008H, 0FCH, 020H, 004H, 044H, 0A0H, 084H, 084H, 008H, 082H, 004H, 013H, 0CBH, 008H, 081H, 000H 084H, 044H, 022H, 018H, 01FH, 09FH, 082H, 002H, 004H, 043H, 082H, 024H, 020H, 0A3H, 09FH, 08CH 000H, 014H, 045H, 010H, 0FCH, 0FDH, 0FFH, 0FCH, 004H, 003H, 0C8H, 008H, 002H, 000H, 080H, 040H DB 002H, 060H, 010H, 090H, 082H, 002H, 015H, 081H, 002H, 01CH, 020H, 0C1H, 008H, 008H, 000H, 008H 046H, 01CH, 084H, 084H, 000H, 000H, 014H, 003H, 0C8H, 008H, 000H, 000H, 000H, 040H, 002H, 000H 000Н, 000Н, 002Н, 002Н, 008Н, 000Н, 002Н, 008Н, 020Н, 080Н, 000Н, 000Н, 000Н, 000Н, 044Н, 008Н 000Н, 000Н, 000Н, 000Н, 008Н, 003Н, 0СОН, 000Н, 000Н, 000Н, 000Н, 000Н, 000Н, 000Н, 000Н, 000Н 000Н, 000Н

000Н, 000Н, 000Н, 003Н, 0СОН, 000Н, 000Н 000Н, 000Н DB 000Н, 003Н, 0С8Н, 000Н, 000Н, 000Н, 000Н, 080Н, 003Н, 0С0Н, 000Н, 000Н, 001Н, 082Н, 004Н, 008Н DB 000Н, 040Н, 000Н, 000Н, 000Н, 000Н, 000Н, 000Н, 080Н, 080Н, 000Н, 000Н, 000Н, 000Н, 000Н, 003Н 0C4H, 0FFH, 0C2H, 040H, 080H, 040H, 03EH, 002H, 003H, 0FCH, 01EH, 022H, 004H, 008H, 000H, 040H DB 03EH, 0FEH, 002H, 020H, 03FH, 0FCH, 040H, 040H, 01FH, 0E0H, 03FH, 0E0H, 07FH, 0E3H, 0C4H, 080H DB 082H, 048H, 0BFH, 0FFH, 084H, 043H, 002H, 004H, 002H, 012H, 004H, 008H, 01FH, 0FFH, 0A4H, 082H 003H, 020H, 000H, 004H, 04FH, 0FCH, 010H, 020H, 020H, 020H, 000H, 003H, 0C0H, 024H, 002H, 048H 080H, 040H, 012H, 064H, 003H, 0FCH, 002H, 012H, 03FH, 07FH, 080H, 080H, 024H, 0FEH, 002H, 020H 000H, 004H, 012H, 040H, 01FH, 0E0H, 03FH, 0E0H, 000H, 003H, 0D0H, 023H, 01FH, 0C8H, 080H, 040H 00AH, 088H, 002H, 004H, 03FH, 082H, 004H, 008H, 001H, 000H, 028H, 082H, 004H, 010H, 07FH, 0E5H 012H, 040H, 010H, 020H, 020H, 020H, 000H, 003H, 0CAH, 0C1H, 002H, 048H, 087H, 0FEH, 009H, 011H 003H, 0FCH, 006H, 022H, 005H, 008H, 003H, 0FCH, 028H, 082H, 004H, 008H, 000H, 004H, 0A4H, 0F8H DB 01FH, 0E0H, 03FH, 0E1H, 0FFH, 0FBH, 0CAH, 008H, 002H, 048H, 084H, 042H, 002H, 001H, 082H, 004H DB 007H, 012H, 006H, 07FH, 006H, 004H, 024H, 0FEH, 008H, 00CH, 000H, 004H, 0A4H, 088H, 010H, 020H 008H, 080H, 004H, 003H, 0C2H, 008H, 002H, 048H, 084H, 042H, 03FH, 0E2H, 000H, 000H, 00AH, 092H 00СН, 042Н, 00АН, 004Н, 022Н, 0АОН, 011Н, 007Н, 03ГН, 0С4Н, 02DН, 050Н, 000Н, 000Н, 008Н, 080Н DB 004H, 003H, 0C4H, 0FFH, 082H, 048H, 084H, 042H, 002H, 005H, 01FH, 09FH, 08AH, 003H, 0B4H, 022H 013H, 0FCH, 022H, 092H, 021H, 082H, 020H, 044H, 057H, 030H, 0FCH, 0FCH, 088H, 090H, 044H, 083H 0С4Н, 008Н, 002Н, 048Н, 084Н, 042Н, 007Н, 009Н, 090Н, 090Н, 092Н, 01ЕН, 004Н, 024Н, 022Н, 004Н 02AH, 094H, 001H, 000H, 020H, 044H, 044H, 0A0H, 084H, 084H, 048H, 090H, 044H, 043H, 0D8H, 01CH 007H, 048H, 084H, 042H, 006H, 081H, 01FH, 09FH, 0A2H, 0E2H, 004H, 018H, 002H, 004H, 024H, 088H 002H, 010H, 03FH, 0C5H, 0C4H, 040H, 0FCH, 0FCH, 028H, 0A0H, 084H, 023H, 0C8H, 02BH, 018H, 088H 084H, 042H, 00AH, 062H, 010H, 090H, 082H, 002H, 004H, 018H, 003H, 0FCH, 020H, 088H, 004H, 008H DB 020H, 044H, 044H, 060H, 084H, 084H, 028H, 0C1H, 004H, 033H, 0C8H, 0C9H, 0C0H, 088H, 084H, 04AH 012H, 044H, 010H, 090H, 082H, 002H, 004H, 024H, 002H, 004H, 020H, 084H, 008H, 0FCH, 020H, 004H 044H, 0A0H, 084H, 084H, 088H, 082H, 004H, 013H, 0CBH, 008H, 081H, 000H, 084H, 044H, 022H, 018H 01FH, 09FH, 082H, 002H, 004H, 043H, 082H, 024H, 020H, 0A3H, 09FH, 08CH, 000H, 014H, 045H, 010H 0FCH, 0FDH, 0FFH, 0FCH, 004H, 003H, 0C8H, 008H, 002H, 000H, 080H, 040H, 002H, 060H, 010H, 090H 082H, 002H, 015H, 081H, 002H, 01CH, 020H, 0C1H, 008H, 008H, 000H, 008H, 046H, 01CH, 084H, 084H

000Н, 000Н, 014Н, 003Н, 0С8Н, 008Н, 000Н, 000Н, 000Н, 040Н, 002Н, 000Н, 000Н, 000Н, 002Н, 002Н 008Н, 000Н, 002Н, 008Н, 020Н, 080Н, 000Н, 000Н, 000Н, 000Н, 044Н, 008Н, 000Н, 000Н, 000Н, 000Н DB 008Н, 003Н, 0СОН, 000Н, 000Н DB 000Н, 003Н ОСОН, ОООН, ОООН 000Н, 003Н, 0С8Н, 000Н DB DB 000H, 000H, 000H, 080H, 003H, 0C0H, 000H, 000H, 001H, 082H, 004H, 008H, 000H, 040H, 000H, 000H 000H, 000H, 000H, 000H, 080H, 080H, 000H, 000H, 000H, 000H, 000H, 003H, 0C4H, 0FFH, 0C2H, 040H 080Н, 040Н, 03ЕН, 002Н, 003Н, 0FСН, 01ЕН, 022Н, 004Н, 008Н, 000Н, 040Н, 03ЕН, 0FЕН, 002Н, 020Н 03FH, 0FCH, 040H, 040H, 01FH, 0E0H, 03FH, 0E0H, 07FH, 0E3H, 0C4H, 080H, 082H, 048H, 0BFH, 0FFH 084H, 043H, 002H, 004H, 002H, 012H, 004H, 008H, 01FH, 0FFH, 0A4H, 082H, 003H, 020H, 000H, 004H 04FH, 0FCH, 010H, 020H, 020H, 020H, 000H, 003H, 0C0H, 024H, 002H, 048H, 080H, 040H, 012H, 064H 003H, 0FCH, 002H, 012H, 03FH, 07FH, 080H, 080H, 024H, 0FEH, 002H, 020H, 000H, 004H, 012H, 040H DB 01FH, 0E0H, 03FH, 0E0H, 000H, 003H, 0C0H, 023H, 01FH, 0C8H, 080H, 040H, 00AH, 088H, 002H, 004H DB 03FH, 082H, 004H, 008H, 001H, 000H, 028H, 082H, 004H, 010H, 07FH, 0E5H, 012H, 040H, 010H, 020H 020H, 020H, 000H, 003H, 0CAH, 0C1H, 002H, 048H, 087H, 0FEH, 009H, 011H, 003H, 0FCH, 006H, 022H 005H, 008H, 003H, 0FCH, 028H, 082H, 004H, 008H, 000H, 004H, 0A4H, 0F8H, 01FH, 0E0H, 03FH, 0E1H DB 0FFH, 0FBH, 0CAH, 008H, 002H, 048H, 084H, 042H, 002H, 001H, 082H, 004H, 007H, 012H, 006H, 07FH 006H, 004H, 024H, 0FEH, 008H, 00CH, 000H, 004H, 0A4H, 088H, 010H, 020H, 008H, 080H, 004H, 003H 0С2H, 008H, 002H, 048H, 084H, 042H, 03FH, 0E2H, 000H, 000H, 00АH, 092H, 00СH, 042H, 00АH, 004H DB 022H, 0A0H, 011H, 007H, 03FH, 0C4H, 02DH, 050H, 000H, 000H, 008H, 080H, 004H, 003H, 0C4H, 0FFH DB 082H, 048H, 084H, 042H, 002H, 005H, 01FH, 09FH, 08AH, 003H, 0B4H, 022H, 013H, 0FCH, 022H, 092H 021H, 082H, 020H, 044H, 057H, 030H, 0FCH, 0FCH, 088H, 090H, 044H, 083H, 0C4H, 008H, 002H, 048H 084H, 042H, 007H, 009H, 090H, 090H, 092H, 01EH, 004H, 024H, 022H, 004H, 02AH, 094H, 001H, 000H DB 020H, 044H, 044H, 0A0H, 084H, 084H, 048H, 090H, 044H, 043H, 0C8H, 01CH, 007H, 048H, 084H, 042H 006Н, 081Н, 01FH, 09FH, 0A2H, 0E2H, 004Н, 018Н, 002Н, 004Н, 024Н, 088Н, 002Н, 010Н, 03FH, 0C5Н 0C4H, 040H, 0FCH, 0FCH, 028H, 0A0H, 084H, 023H, 0C8H, 02BH, 018H, 088H, 084H, 042H, 00AH, 062H 010H, 090H, 082H, 002H, 004H, 018H, 003H, 0FCH, 020H, 088H, 004H, 008H, 020H, 044H, 044H, 060H 084H, 084H, 028H, 0C1H, 004H, 033H, 0C8H, 0C9H, 0C0H, 088H, 084H, 04AH, 012H, 044H, 010H, 090H 082H, 002H, 004H, 024H, 002H, 004H, 020H, 084H, 008H, 0FCH, 020H, 004H, 044H, 0A0H, 084H, 084H DB 008H, 082H, 004H, 013H, 0CBH, 008H, 081H, 000H, 084H, 044H, 022H, 018H, 01FH, 09FH, 082H, 002H 004H, 043H, 082H, 024H, 020H, 0A3H, 09FH, 08CH, 000H, 014H, 045H, 010H, 0FCH, 0FDH, 0FFH, 0FCH DB 004H, 003H, 0C8H, 008H, 002H, 000H, 080H, 040H, 002H, 060H, 010H, 090H, 082H, 002H, 015H, 081H DB 002H, 01CH, 020H, 0C1H, 008H, 008H, 000H, 008H, 046H, 01CH, 084H, 084H, 000H, 000H, 014H, 003H 0С8Н, 008Н, 000Н, 000Н, 000Н, 040Н, 002Н, 000Н, 000Н, 000Н, 002Н, 002Н, 008Н, 000Н, 002Н, 008Н DB 020Н, 080Н, 000Н, 000Н, 000Н, 000Н, 044Н, 008Н, 000Н, 000Н, 000Н, 000Н, 008Н, 003Н, 0СОН, 000Н DB DB 000Н, 000Н DB 000Н, 003Н, 0С0Н, 000Н, 000Н, 000Н 000Н, 000Н DB DB 000Н, 000Н, 000Н, 000Н, 000Н, 000Н, 000Н, 000Н, 000Н, 003Н, 0СОН, 000Н, 000Н, 000Н, 000Н, 000Н 000Н, 000Н DB 000Н, 000Н DB 000Н, 000Н DB 000Н, 000Н, 000Н, 000Н, 000Н, 003Н, 0СОН, 000Н, 000Н, 000Н, 000Н, 000Н, 000Н, 000Н, 000Н, 000Н DB 000Н, 000Н DB 000H, 000H, 000H, 003H, 0FFH, OFFH, DB DB OFFH, DB OFFH, 000Н, 000Н DB 000Н, 000Н DB 000Н, 000Н DB 000Н, 000Н 000Н, 000Н DB 000Н, 000Н DB DB 000Н, 000Н DB 000Н, 000Н DB 000Н, 000Н 000Н, 000Н 000Н, 000Н

000Н, 000Н DB DB 000Н, 000Н DB 000Н, 000Н DB 000Н, 000Н 000Н, 000Н DB 000Н, 000Н DB DB 000Н, 000Н DB 000Н, 000Н 000Н, 000Н DB DB 000Н, 000Н 000Н, 000Н DB 000Н, 000Н DB 000Н, 000Н DB DB 000Н, 000Н DB 000Н, 000Н 000Н, 000Н DB 000Н, 000Н DB DB 000Н, 000Н DB 000Н, 000Н 000Н, 000Н DB DB 000Н, 000Н DB 000Н, 000Н DB 000Н, 000Н 000Н, 000Н DB DB 000Н, 000Н DB 000Н, 000Н DB 000Н, 000Н DB 000Н, 000Н 000Н, 000Н 000Н, 000Н

000Н, 000Н DB DB 000Н, 000Н DB 000Н, 000Н DB 000Н, 000Н 000Н, 000Н DB 000Н, 000Н DB DB 000Н, 000Н DB 000Н, 000Н 000Н, 000Н DB DB 000Н, 000Н 000Н, 000Н DB 000Н, 000Н DB 000Н, 000Н DB DB 000Н, 000Н DB 000Н, 000Н 000Н, 000Н DB 000Н, 000Н DB DB 000Н, 000Н DB 000Н, 000Н 000Н, 000Н DB DB 000Н, 000Н DB 000Н, 000Н DB 000Н, 000Н 000Н, 000Н DB DB 000Н, 000Н DB 000Н, 000Н DB 000Н, 000Н DB 000Н, 000Н 000Н, 000Н 000Н, 000Н

000Н, 000Н DB 000Н, 000Н DB DB 000Н, 000Н DB 000Н, 000Н 000Н, 000Н DB 000Н, 000Н DB DB 000Н, 000Н DB 000Н, 000Н 000Н, 000Н DB DB 000Н, 000Н 000Н, 000Н DB 000Н, 000Н DB 000Н, 000Н DB DB 000Н, 000Н DB 000Н, 000Н 000Н, 000Н DB 000Н, 000Н DB DB 000Н, 000Н DB 000Н, 000Н 000Н, 000Н DB DB 000Н, 000Н DB 000Н, 000Н DB 000Н, 000Н 000Н, 000Н DB 000Н, 000Н DB DB 000Н, 000Н DB 000Н, 000Н DB 000Н, 000Н 000Н, 000Н 000Н, 000Н

000Н, 000Н DB 000Н, 000Н 000Н, 000Н DB 000Н, 000Н DB DB 000Н, 000Н DB 000Н, 000Н 000Н, 000Н DB DB 000Н, 000Н 000Н, 000Н DB DB 000Н, 000Н DB 000Н, 000Н 000Н, 000Н DB DB 000Н, 000Н DB 000Н, 000Н 000Н, 000Н DB DB 000Н, 000Н DB 000Н, 000Н DB 000Н, 000Н 000Н, 000Н

END