FAIRCHILD

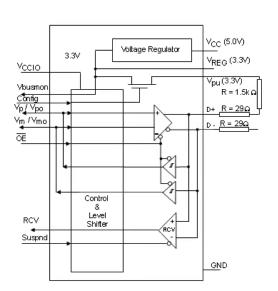
SEMICONDUCTOR

USB1T1102 • USB1T1102R (Preliminary) Universal Serial Bus Peripheral Transceiver with Voltage Regulator

General Description

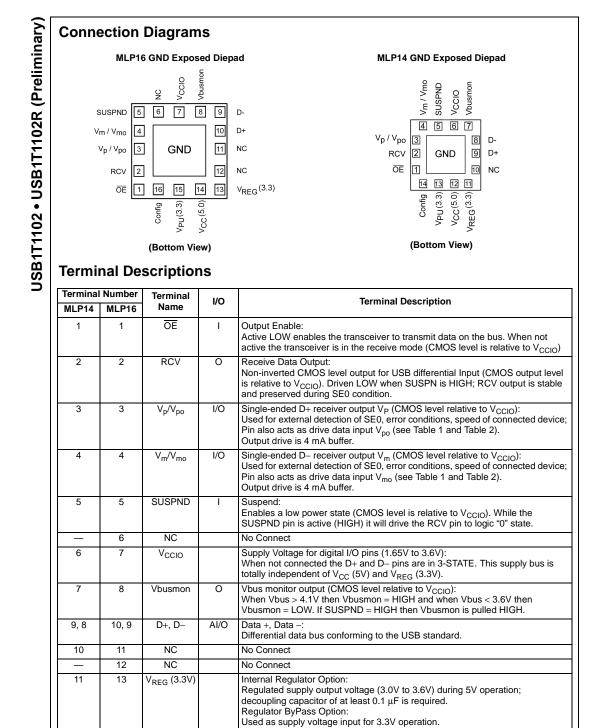
This chip provides a USB Transceiver functionality with a voltage regulator that is compliant to USB Specification Rev 2.0. this integrated 5V to 3.3V regulator allows interfacing of USB Application specific devices with supply voltages ranging from 1.65V to 3.6V with the physical layer of Universal Serial Bus. It is capable of operating at 12Mbits/s (full speed) data rates and hence is fully compliant to USB Specification Rev 2.0. The Vbusmon pin allows for monitoring the Vbus line.

The USB1T1102 also provides exceptional ESD protection with 15kV contact HBM on D+, D- pins.


Features

- Complies with Universal Serial Bus Specification 2.0
- Integrated 5V to 3.3V voltage regulator for powering
- VBus
- Utilizes digital inputs and outputs to transmit and receive USB cable data
- Supports full speed (12Mbits/s) data rates
- Ideal for portable electronic devices
- MLP technology package (16 pin) with HBCC footprint
- 15kV contact HBM ESD protection on bus pins

Ordering Code:


Order Number	Package Number	Package Description
USB1T1102MPX	MLP14D	14-Terminal Molded Leadless Package (MLP), 2.5mm Square
USB1T1102RMPX (Preliminary)	MLP14D	14-Terminal Molded Leadless Package (MLP), 2.5mm Square
USB1T1102MHX	MLP16HB	16-Terminal Molded Leadless Package (MHBCC), JEDEC MO-217, 3mm Square
USB1T1102RMHX (Preliminary)	MLP16HB	16-Terminal Molded Leadless Package (MHBCC), JEDEC MO-217, 3mm Square

Logic Diagram

Note: On the USB1T1102R the 1.5k resistor is integrated into the part, and connects V_{PU} and D+ eliminating the need for this external pull-up resistor.

August 2004 Revised August 2004

www.fairchildsemi.com

14

V_{CC} (5.0V)

12

Used as supply voltage input (4.0V to 5.5V); can be connected directly to USB

Internal Regulator Option:

Regulator ByPass Option: Connected to V_{REG} (3.3V)

line Vbus.

Terminal Number		Terminal	1/0	Terminal Description	
MLP14	MLP16	Name	I/O	Terminal Description	
13	15	V _{PU} (3.3V)		$ \begin{array}{l} \mbox{Pull-up Supply Voltage (3.3V \pm 10\%):} \\ \mbox{Connect an external } 1.5k\Omega \mbox{ resistor on D+ (FS data rate);} \\ \mbox{Pin function is controlled by Config input pin:} \\ \mbox{Config = LOW - V}_{PU} \ (3.3V) \mbox{ is floating (High Impedance) for zero pull-up curren Config = HIGH - V}_{PU} \ (3.3V) \mbox{ = } 3.3V; \mbox{ internally connected to V}_{REG} \ (3.3V). \end{array} $	
14	16	Config	Ι	USB connect or disconnect software control input. Configures 3.3V to external 1.5k Ω resistor on D+ when HIGH.	
Exposed Diepad	Exposed Diepad	GND	GND	GND supply down bonded to exposed diepad to be connected to the PCB GNE	

Functional Description

The USB1T1102 transceiver is designed to convert CMOS data into USB differential bus signal levels and to convert USB differential bus signal to CMOS data.

To minimize EMI and noise the outputs are edge rate controlled with the rise and fall times controlled and defined for full speed data rates only (12Mbits/s). The rise, fall times are balanced between the differential pins to minimize skew. The USB1T1102 differs from earlier USB Transceiver in that the V_p/V_m and V_{po}/V_{mo} pins are now I/O pins rather than discrete input and output pins. Table 1 describes the specific pin functionality selection. Table 2 and Table 3 describe the specific Truth Tables for Driver and Receiver operating functions.

The USB1T1102 also has the capability of various power supply configurations to support mixed voltage supply applications (see Table 4) and Section 2.1 for detailed descriptions.

Functional Tables

TABLE 1. Function Select

SUSPND	OE	D+, D-	RCV	V _p /V _{po}	V _m /V _{mo}	Function
L	L	Driving & Receiving	Active	V _{po} Input		Normal Driving (Differential Receiver Active)
L	Н	Receiving (Note 1)	Active	V _p Output	V _m Output	Receiving
Н	L	Driving	Inactive (Note 2)	V _{po} Input	V _{mo} Input	Driving during Suspend (Differential Receiver Inactive)
Н	Н	3-STATE (Note 1)	Inactive (Note 2)	V _p Output	V _m Output	Low Power State

Note 1: Signal levels is function of connection and/or pull-up/pull-down resistors.

Note 2: For SUSPND = HIGH mode the differential receiver is inactive and the output RCV is forced LOW. The out-of-suspend signaling (K) is detected via the single-ended receivers of the V_p/V_{po} and V_m/V_{mo} pins.

TABLE 2. Driver Function ($\overline{OE} = L$) using Differential Input Interface

V _m /V _{mo}	V _p /V _{po}	Data
L	L	SE0 (Note 3)
L	Н	Differential Logic 1
Н	L	Differential Logic 0
Н	Н	Illegal State

Note 3: SE0 = Single Ended Zero

TABLE 3. Receiver Function ($\overline{OE} = H$)

D+, D-	RCV	V _p /V _{po}	V _m /V _{mo}
Differential Logic 1	Н	Н	L
Differential Logic 0	L	L	Н
SE0	Х	L	L

X = Don't Care

Power Supply Configurations and Options

The two modes of power supply operation are:

- Normal Mode: V_{CCIO} and V_{CC} (5V) are connected or $V_{CCIO},\,V_{CC}$ (5V) and $[V_{REG}$ (3.3V) and V_{CC} (5V) shorted for Bypass mode]
 - 1. For 5V operation V_{CC} is connected to 5V source (4.0V to 5.5V) and the internal voltage regulator then produces 3.3V for the USB connections.
 - 2. For 3.3V operation both V_{CC} and V_{REG} are connected to a 3.3V source (3.0V to 3.6V)

In both cases for normal mode the $V_{\rm CCIO}$ is an independent voltage source (1.65V to 3.6V) that is a function of the external circuit configuration.

• Sharing Mode: V_{CCIO} is only supply connected. V_{CC} and V_{REG} are not connected. In this mode the D+ and D- pins are 3-STATE and the USB1T1102 allows external signals up to 3.6V to share the D+ and D- bus lines. Internally the circuitry limits leakage from D+ and D- pins (maximum 10 μA) and V_{CCIO} such that device is in low power (suspended) state. Pins Vbusmon and RCV are forced LOW as an indication of this mode with Vbusmon being ignored during this state.

A summary of the Supply Configurations is described in Table 4.

Pins	Power Supply Mode Configuration					
FIIIS	Sharing	Normal (Regulated Output)	Normal (Regulator Bypass)			
V _{CC} (5V)	Not Connected	Connected to 5V Source	Connected to V _{REG} (3.3V) [Max Drop of 0.3V] (2.7V to 3.6V)			
V _{REG} (3.3V)	Not Connected	3.3V, 300 μA Regulated Output	Connected to 3.3V Source			
V _{CCIO}	1.65V to 3.6V Source	1.65V to 3.6V Source	1.65V to 3.6V Source			
V _{PU} (3.3V)	3-STATE (Off)	3.3V Available if Config = HIGH	3.3V Available if Config = HIGH			
D+, D-	3-STATE	Function of Mode Set Up	Function of Mode Set Up			
V _p /V _{po} , V _m /V _{mo}	L	Function of Mode Set Up	Function of Mode Set Up			
RCV	L	Function of Mode Set Up	Function of Mode Set Up			
Vbusmon	L	Function of Mode Set Up	Function of Mode Set Up			
OE, SUSPND, Config	Hi-Z	Function of Mode Set Up	Function of Mode Set Up			

TABLE 4. Power Supply Configuration Options

ESD Protection

ESD Performance of the USB1T1102

HBM D+/D-: 15.0kV HBM, all other pins (Mil-Std 883E): 6.5kV

ESD Protection: D+/D- Pins

Since the differential pins of a USB transceiver may be subjected to extreme ESD voltages, additional immunity has been included in the D+ and D- pins without compromising performance. The USB1T1102 differential pins have ESD protection to the following limits:

- 15kV using the contact Human Body Model
- 8kV using the Contact Discharge method as specified in IEC 61000-4-2

Human Body Model

Figure 1 shows the schematic representation of the Human Body Model ESD event. Figure 2 is the ideal waveform representation of the Human Body Model.

IEC 61000-4-2, IEC 60749-26 and IEC 60749-27

The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment, and as such evaluates the equipment in its entirety for ESD immunity. Fairchild Semiconductor has evaluated this device using the IEC 6100-4-2 representative system model depicted in Figure 3. Under the additional standards set forth by the IEC, this device is also compliant with IEC 60749-26 (HBM) and IEC 60749-27 (MM).

Additional ESD Test Conditions

For additional information regarding our product test methodologies and performance levels, please contact Fairchild Semiconductor.

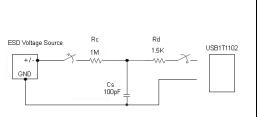


FIGURE 1. Human Body ESD Test Model

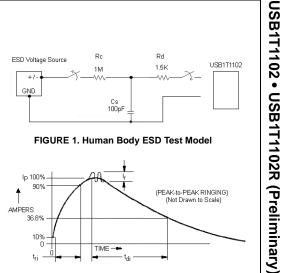


FIGURE 2. HBM Current Waveform

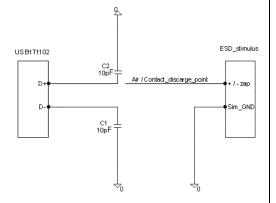


FIGURE 3. IEC 61000-4-2 ESD Test Model

Absolute Maximum R	atings(Note 4)	Recommended
Supply Voltage (V _{CC})(5V)	-0.5V to +6.0V	Conditions
I/O Supply Voltage (V _{CCIO})	-0.5V to +4.6V	DC Supply Voltage V _{CC} (
Latch-up Current (I _{LU})		I/O DC Voltage V _{CCIO}
$V_{I} = -1.8V$ to $+5.4V$	150 mA	DC Input Voltage Range
DC Input Current (I _{IK})		DC Input Range for AI/O
V ₁ < 0	–50 mA	Pins D+ and D-
DC Input Voltage (VI)		Operating Ambient Temp
(Note 5)	–0.5V to V_{CCIO} +5.5V	(T _{AMB})
DC Output Diode Current (I _{OK})		
$V_{O} > V_{CC}$ or $V_{O} < 0$	±50 mA	
DC Output Voltage (V _O)		
(Note 5)	–0.5V to $V_{\mbox{CCIO}}$ + 0.5V	
Output Source or Sink Current (I _O)		
$V_0 = 0$ to V_{CC}		
Current for D+, D– Pins	±50 mA	
Current for RCV, V _m /V _p	±15 mA	
DC V _{CC} or GND Current		
(I _{CC} , I _{GND})	±100 mA	
ESD Immunity Voltage (V _{ESD});		
Contact HBM		Note 4: The Absolute Maximum the safety of the device cannot be
Pins D+, D–, V _{CC} (5.5V) and GND		operated at these limits. The pa
All Other Pins	6.5kV	Characteristic tables are not gua The "Recommended Operating C
Storage Temperature (T _{STO})	$-40^{\circ}C$ to $+ 125^{\circ}C$	for actual device operation.
Power Dissipation (P _{TOT})		Note 5: IO Absolute Maximum Ra
I _{CC} (5V)	48 mW	
Iccio	9 mW	

Operating

Supply Voltage V _{CC} (5V)	4.0V to 5.5V
DC Voltage V _{CCIO}	1.65V to 3.6V
CInput Voltage Range (VI)	0V to V _{CCIO} +5.5V
Input Range for AI/O (V _{AI/O})	0V to V _{CC}
Pins D+ and D-	0V to 3.6V
perating Ambient Temperature	
(T _{AMB})	-40°C to +85°C

m Ratings are those values beyond which t be guaranteed. The device should not be parametric values defined in the Electrical uaranteed at the absolute maximum rating. Conditions" table will define the conditions

Rating must be observed.

DC Electrical Characteristics (Supply Pins)

Over recommended range of supply voltage and operating free air temperature (unless otherwise noted). V_{CC} (5V) = 4.0V to 5.5V or V_{REG} (3.3V) = 3.0V to 3.6V, V_{CCIO} = 1.65V to 3.6V

				Limits			
Symbol	Parameter	Conditions	-40	°C to +85°C		Units	
			Min	Тур	Max		
V _{REG} (3.3V)	Regulated Supply Output	Internal Regulator Option;	3.0	3.3	3.6		
		$I_{LOAD} \le 300 \ \mu A$	(Note 6)(Note 7)			V	
Icc	Operating Supply Current (V _{CC} 5.0)	Transmitting and Receiving at		4.0	8.0		
		12 Mbits/s; $C_{LOAD} = 50 \text{ pF} (D+, D-)$		(Note 8)		mA	
I _{CCIO}	I/O Operating Supply Current	Transmitting and Receiving at		1.0	2.0	mA	
		12 Mbits/s		(Note 8)		ШA	
I _{CC (IDLE)}	Supply Current during	IDLE: $V_{D+} \ge 2.7V$, $V_{D-} \le 0.3V$;			300	۸	
	FS IDLE and SE0 (V _{CC} 5.0)	SE0: $V_{D+} \leq 0.3 V, \ V_{D-} \leq 0.3 V$			(Note 9)	μA	
ICCIO (STATIC)	I/O Static Supply Current	IDLE, SUSPND or SE0			20.0	μΑ	
I _{CC(SUSPND)}	Suspend Supply Current	SUSPND = HIGH			25.0		
	USB1T1102	OE = HIGH			(Note 9)		
		$V_m = V_p = OPEN$					
	Suspend Supply Current	SUSPND = HIGH			40.0	μA	
	USB1T1102R	OE = HIGH			(Note 10)		
		$V_p = V_m = OPEN$					
ICCIO(SHARING)	I/O Sharing Mode Supply Current	V _{CC} (5V) Not Connected			20.0	μΑ	
ID+ (SHARING)	Sharing Mode Load Current on	V _{CC} (5V) Not Connected			10.0		
	D+/D- Pins	Config = LOW; $V_{D\pm} = 3.6V$			10.0	μA	

			Limits			
Symbol	Parameter	Conditions	-40°C to +85°C			Units
			Min	Тур	Max	
V _{CCTH}	V _{CC} Threshold Detection Voltage	$1.65V \le V_{CCIO} \le 3.6V$				-
		Supply Lost			3.6	V
		Supply Present	4.1			
V _{CCHYS}	V _{CC} Threshold Detection Hysteresis Voltage	V _{CCIO} = 1.8V		70.0		mV
V _{CCIOTH}	V _{CCIO} Threshold Detection Voltage	$2.7V \le V_{REG} \le 3.6V$				
		Supply Lost			0.5	V
		Supply Present	1.4			
V _{CCIOHYS}	V _{CCIO} Threshold Detection Hysteresis Voltage	V _{REG} = 3.3V		450		mV
V _{REGTH}	Regulated Supply Threshold	$1.65V \le V_{CCIO} \le V_{REG}$				
	Detection Voltage	$2.7V \leq V_{REG} \leq 3.6V$				v
		Supply Lost		0.8		Ň
		Supply Present	2.4 (Note 11)			1
V _{REGHYS}	Regulated Supply Threshold Detection Hysteresis Voltage	V _{CCIO} = 1.8V		450		mV

LOAD e pu

Note 7: The minimum voltage in Suspend mode is 2.7V. Note 8: Not tested in production, value based on characterization.

Note 9: Excludes any current from load and V_{PU} current to the 1.5k $\!\Omega$ resistor.

Note 10: Includes current between $\rm V_{pu}$ and the 1.5k internal pull-up resistor.

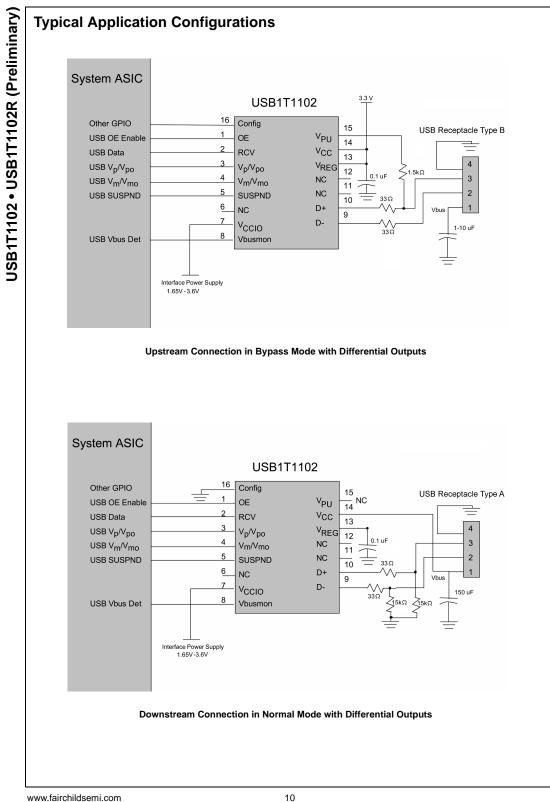
Note 11: When $V_{CCIO} <$ 2.7V, minimum value for $V_{REGTH} =$ 2.0V for supply present condition.

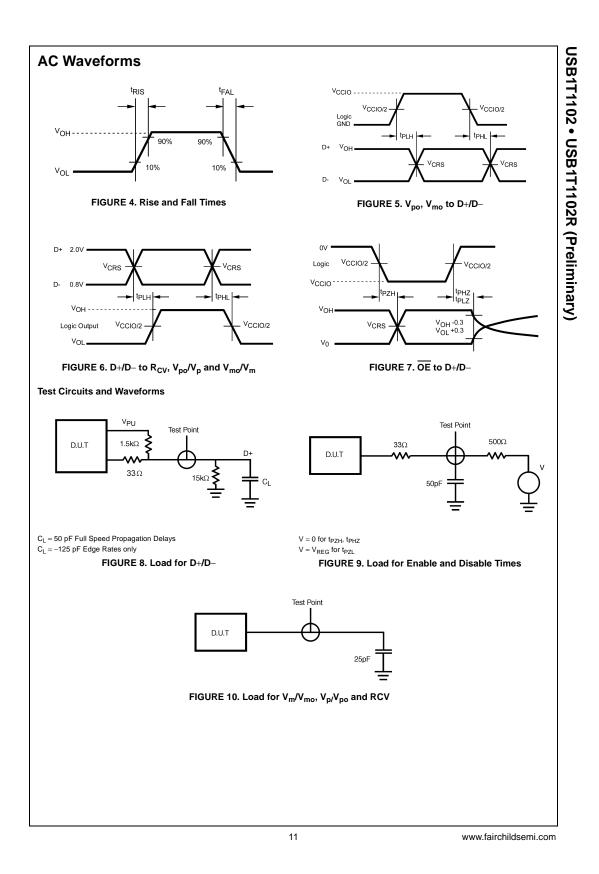
DC Electrical Characteristics (Digital Pins – excludes D+, D – Pins)

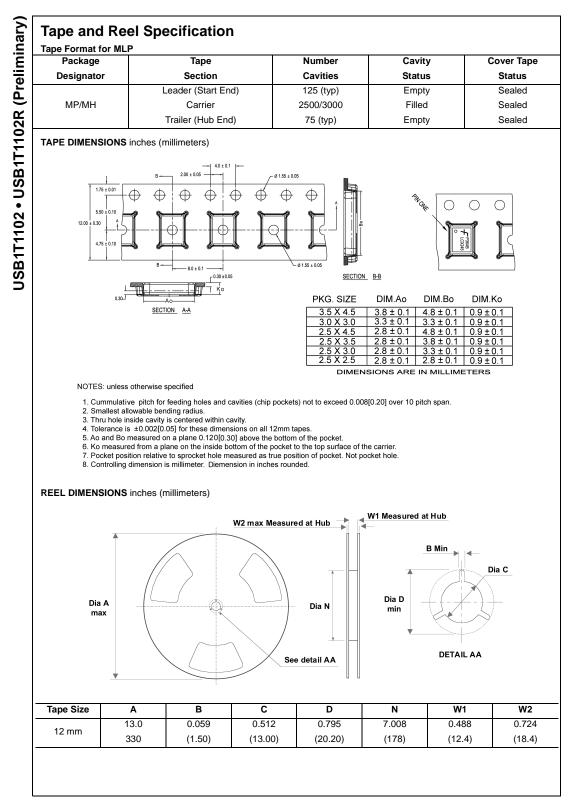
Over recommended range of supply voltage and operating free air temperature (unless otherwise noted). V_{CCIO} = 1.6V to 3.6V

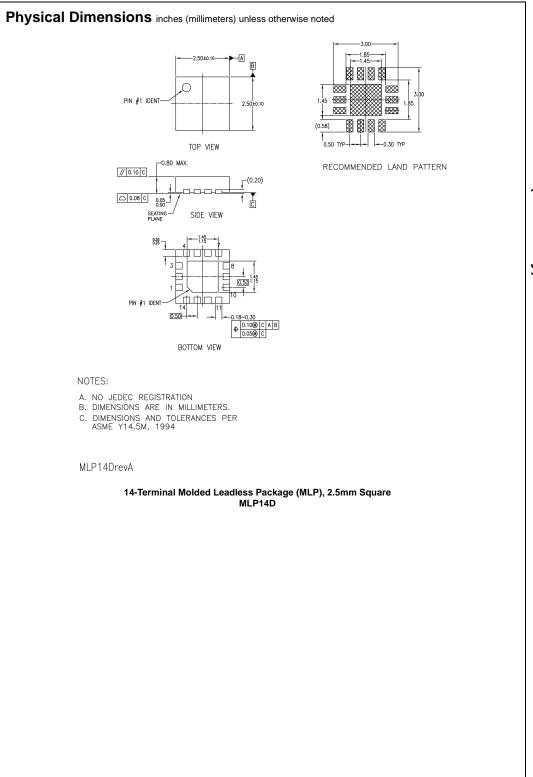
•	Parameter		Lim		
Input Levels		Test Conditions	-40°C to	-40°C to +85°C	
•	nnut Lovalo		Min	Max	1
V					
VIL L	LOW Level Input Voltage			0.3	V
V _{IH} F	HIGH Level Input Voltage		0.6*V _{CCIO}		V
(OUTPUT LEVELS:				
V _{OL} L	LOW Level Output Voltage	$I_{OL} = 2 \text{ mA}$		0.4	V
		$I_{OL} = 100 \ \mu A$		0.15	v
V _{OH} F	HIGH Level Output Voltage	I _{OH} = 2 mA	V _{CCIO} - 0.4		V
		$I_{OH} = 100 \ \mu A$	V _{CCIO} - 0.15		v
Leakage Curren	nt				
l _{LI} li	nput Leakage Current	V _{CCIO} = 1.65V to 3.6V		±1.0 (Note 12)	μA
Capacitance					
C _{IN} , C _{I/O} II	nput Capacitance	Pin to GND		10.0	pF

				Limits			
Symbol	Parameter	Test Condition	-4	Units			
			Min	Тур	Max		
Input Levels	- Differential Receiver	-					
V _{DI}	Differential Input Sensitivity	V _{I(D+)} - V _{I(D-)}	0.2			V	
V _{CM}	Differential Common Mode Voltage		0.8		2.5	V	
INPUT LEVE	LS – Single-ended Receiver		•				
V _{IL}	LOW Level Input Voltage				0.8	V	
VIH	HIGH Level Input Voltage		2.0			V	
V _{HYS}	Hysteresis Voltage		0.30		0.7	V	
Output Leve	ls		•				
V _{OL}	LOW Level Output Voltage	$R_L = 1.5 k\Omega$ to 3.6V			0.3	V	
V _{OH}	HIGH Level Output Voltage	$R_L = 15k\Omega$ to GND	2.8 (Note 13)		3.6	V	
Leakage Cur	rrent						
I _{OFF}	Input Leakage Current Off State				±1.0	μA	
	CAPACITANCE		•				
C _{I/O}	I/O Capacitance	Pin to GND			20.0	pF	
Resistance			•				
Z _{DRV}	Driver Output Impedance			41.0 (Note 14)		Ω	
Z _{IN}	Driver Input Impedance		10.0			MΩ	
R _{SW}	Switch Resistance				10.0	Ω	
V _{TERM}	Termination Voltage	R _{PU} Upstream Port	3.0 (Note 15) (Note 16)		3.6	v	

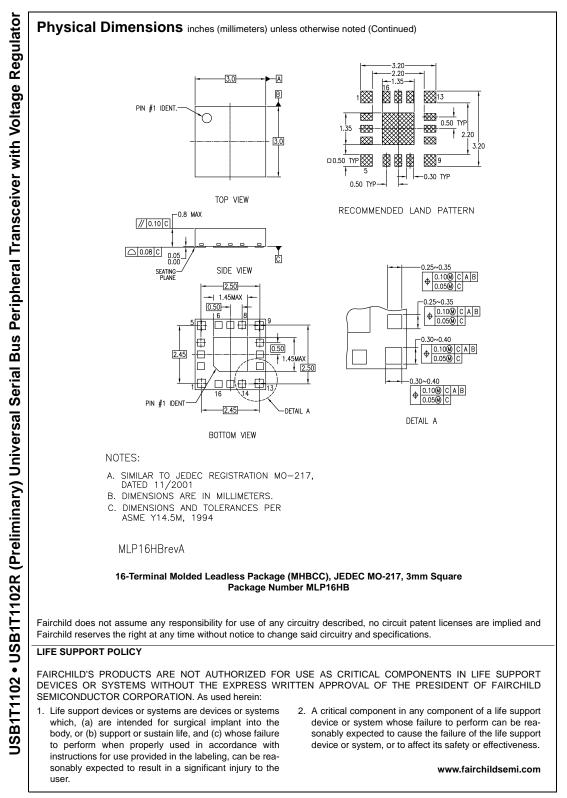

Note 13: If V_{OH} min. = V_{REG} - 0.2V.


Note 14: Includes external resistors of 29 Ω on both D+ and D– pins.


Note 15: This voltage is available at pin V_{PU} and $\mathsf{V}_{\mathsf{REG}}.$


Note 16: Minimum voltage is 2.7V in the suspend mode.

Symbol	Parameter	Test Conditions	Limits -40°C to +85°C			Unit
			Driver Cha	racteristics	•	
t _R	Output Rise Time	C _L = 50 - 125 pF	4.0		20.0	
		10% to 90%				ns
t _F	Output Fall Time	Figures 4, 8	4.0		20.0	
t _{RFM}	Rise/Fall Time Match	t _F / t _R Excludes First Transition	90.0		111.1	%
		from Idle State				
V _{CRS}	Output Signal Crossover Voltage	Excludes First Transition from Idle State see Waveform	1.3		2.0	V
(Note 17)						
Driver Tim	ing	•	•			
t _{PLH}	Propagation Delay	Figures 5, 8			18.0	ns
t _{PHL}	$(V_p/V_{po}, V_m/V_{mo} \text{ to } D+/D-)$					
t _{PHZ}	Driver Disable Delay	Figures 7, 9			15.0	ns
t _{PLZ}	(OE to D+/D-)				13.0	115
t _{PZH}	Driver Enable Delay	Figures 7, 9			15.0	ns
t _{PZL}	(OE to D+/D-)				10.0	110
Receiver T	iming	•				
t _{PLH}	Propagation Delay (Diff)	Figures 6, 10			15.0	ns
t _{PHL}	(D+/D- to Rev)			15.0	115	
t _{PLH}	Single Ended Receiver Propagation Delay	Figures 6, 10			18.0	ns
t _{PHL}	$(D+/D- to V_p/V_{po}, V_m/V_{mo})$					



USB1T1102 • USB1T1102R (Preliminary)

