

MM74C925, MM74C926, MM74C927, MM74C928 4-Digit Counters with Multiplexed 7-Segment Output Drivers

General Description

These CMOS counters consist of a 4-digit counter, an internal output latch, NPN output sourcing drivers for a 7-segment display, and an internal multiplexing circuitry with four multiplexing outputs. The multiplexing circuit has its own free-running oscillator, and requires no external clock. The counters advance on negative edge of clock. A high signal on the Reset input will reset the counter to zero, and reset the carry-out low. A low signal on the Latch Enable input will latch the number in the counters into the internal output latches. A high signal on Display Select input will select the number in the counter to be displayed; a low level signal on the Display Select will select the number in the output latch to be displayed.

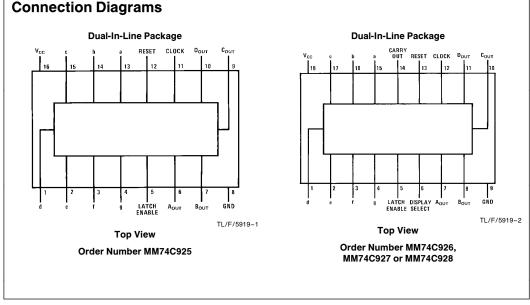
The MM74C925 is a 4-decade counter and has Latch Enable, Clock and Reset inputs.

The MM74C926 is like the MM74C925 except that it has a display select and a carry-out used for cascading counters. The carry-out signal goes high at 6000, goes back low at 0000.

The MM74C927 is like the MM74C926 except the second most significant digit divides by 6 rather than 10. Thus, if the clock input frequency is 10 Hz, the display would read tenths of seconds and minutes (i.e., 9:59.9).

The MM74C928 is like the MM74C926 except the most significant digit divides by 2 rather than 10 and the carry-out is

an overflow indicator which is high at 2000, and it goes back low only when the counter is reset. Thus, this is a $3\frac{1}{2}$ -digit counter.


Features

- Wide supply voltage range
- Guaranteed noise margin
- High noise immunity 0.45 V_{CC} (typ.)
- High segment sourcing current 40 mA @ V_{CC} - 1.6V, V_{CC} = 5V
- Internal multiplexing circuitry

Design Considerations

Segment resistors are desirable to minimize power dissipation and chip heating. The DS75492 serves as a good digit driver when it is desired to drive bright displays. When using this driver with a 5V supply at room temperature, the display can be driven without segment resistors to full illumination. The user must use caution in this mode however, to prevent overheating of the device by using too high a supply voltage or by operating at high ambient temperatures.

The input protection circuitry consists of a series resistor, and a diode to ground. Thus input signals exceeding V_{CC} will not be clamped. This input signal should not be allowed to exceed 15V.

© 1995 National Semiconductor Corporation TL/F/5919

RRD-B30M105/Printed in U. S. A

with Multiplexed 7-Segment Output Drivers MM74C925, MM74C926, MM74C927, MM74C928 4-Digit Counters

3V to 6V

1V

Absolute Maximu	m Ratings (Note 1)		
	cified devices are required,	Storage Temperature Range	
Office/Distributors for ava	onal Semiconductor Sales	Power Dissipation (P _D)	Refer to P _{D(MAX)} vs T _A Graph
		Operating V _{CC} Range	3V to 6V
Voltage at Any Output Pin	$GND - 0.3V$ to $V_{CC} + 0.3V$	V _{CC}	6.5V
Voltage at Any Input Pin	GND - 0.3V to +15V	Lead Temperature	
Operating Temperature		(Soldering, 10 seconds)	260°C
Range (T _A)	-40°C to +85°C	,	

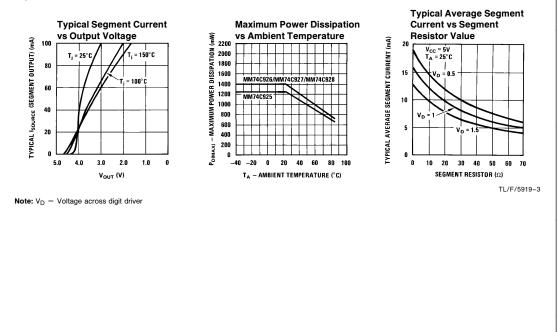
$\label{eq:DCElectrical Characteristics} \mbox{ Min/Max limits apply at } -40^\circ\mbox{C} \le T_j \le \ +85^\circ\mbox{C}, \mbox{ unless otherwise noted}$

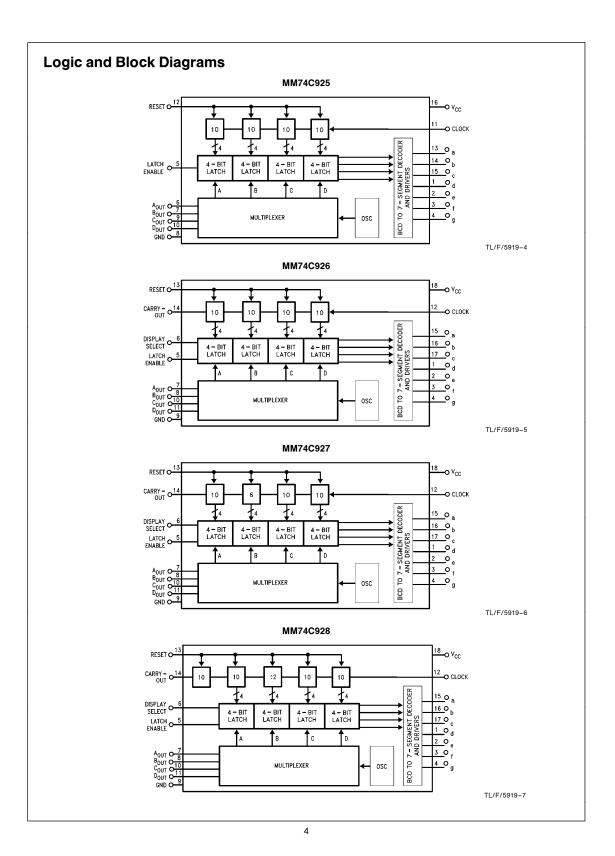
Symbol	Parameter	Conditions	Min	Тур	Max	Units
смоѕ то	CMOS					
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$	3.5			V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5V$			1.5	V
V _{OUT(1)}	Logical "1" Output Voltage (Carry-Out and Digit Output Only)	$V_{CC} = 5V, I_{O} = -10 \ \mu A$	4.5			v
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5V$, $I_O = 10 \ \mu A$			0.5	V
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 5V, V_{IN} = 15V$		0.005	1	μΑ
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 5V, V_{IN} = 0V$	-1	-0.005		μΑ
ICC	Supply Current	$V_{CC} = 5V$, Outputs Open Circuit, $V_{IN} = 0V$ or $5V$		20	1000	μΑ
CMOS/LP	TTL INTERFACE					
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 4.75V$	$V_{\text{CC}}-2$			V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 4.75V$			0.8	V
V _{OUT(1)}	Logical "1" Output Voltage (Carry-Out and Digit Output Only)	$\begin{array}{l} V_{CC}=4.75V,\\ I_{O}=-360\;\mu\text{A} \end{array}$	2.4			v
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 4.75V, I_{O} = 360 \ \mu A$			0.4	V
	DRIVE			1		
V _{OUT}	Output Voltage (Segment Sourcing Output)	$ \begin{array}{l} I_{OUT}=~-65 \text{ mA}, V_{CC}=~5V, T_{j}=~25^{\circ}\text{C} \\ I_{OUT}=~-40 \text{ mA}, V_{CC}=~5V ~ \left\{ \begin{array}{l} T_{j}=~100^{\circ}\text{C} \\ T_{j}=~150^{\circ}\text{C} \end{array} \right. \end{array} $	$\begin{array}{c} V_{CC}-2\\ V_{CC}-1.6\\ V_{CC}-2 \end{array}$	$\begin{array}{c} V_{CC}-1.3\\ V_{CC}-1.2\\ V_{CC}-1.4 \end{array}$		V V V
R _{ON}	Output Resistance (Segment Sourcing Output) Output Resistance (Segment Output) Temperature Coefficient	$\begin{split} I_{OUT} &= -65 \text{ mA}, V_{CC} = 5V, T_j = 25^\circ\text{C} \\ I_{OUT} &= -40 \text{ mA}, V_{CC} = 5V \ \left\{ \begin{array}{l} T_j = 100^\circ\text{C} \\ T_j = 150^\circ\text{C} \end{array} \right. \end{split}$		20 30 35 0.6	32 40 50 0.8	Ω Ω Ω%/℃
ISOURCE	Output Source Current (Digit Output)	$V_{CC} = 4.75V, V_{OUT} = 1.75V, T_j = 150^{\circ}C$	-1	-2		mA
ISOURCE	Output Source Current (Carry-Out)	$V_{CC} = 5V, V_{OUT} = 0V, T_j = 25^{\circ}C$	-1.75	-3.3		mA
I _{SINK}	Output Sink Current (All Outputs)	$V_{CC} = 5V, V_{OUT} = V_{CC}, T_j = 25^{\circ}C$	1.75	3.6		mA
$ heta_{jA}$	Thermal Resistance	MM74C925 (Note 4) MM74C926, MM74C927, MM74C928		75 70	100 90	°C/W °C/W

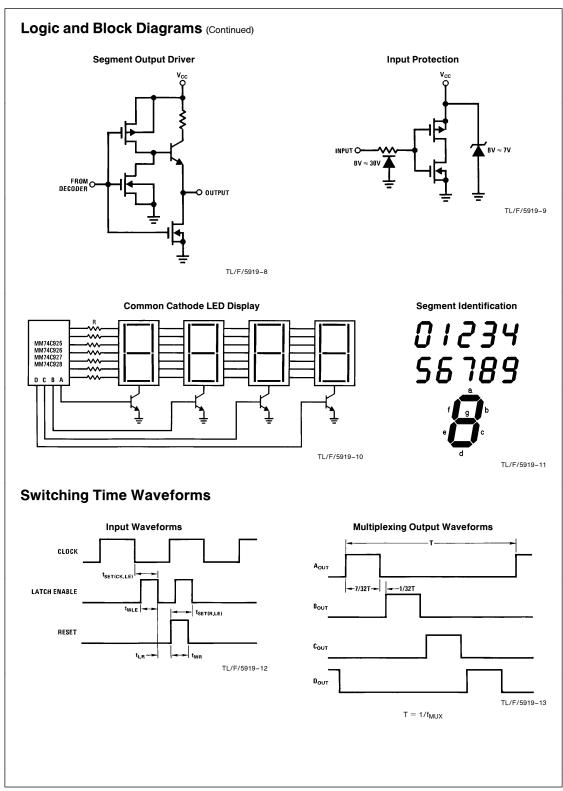
they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

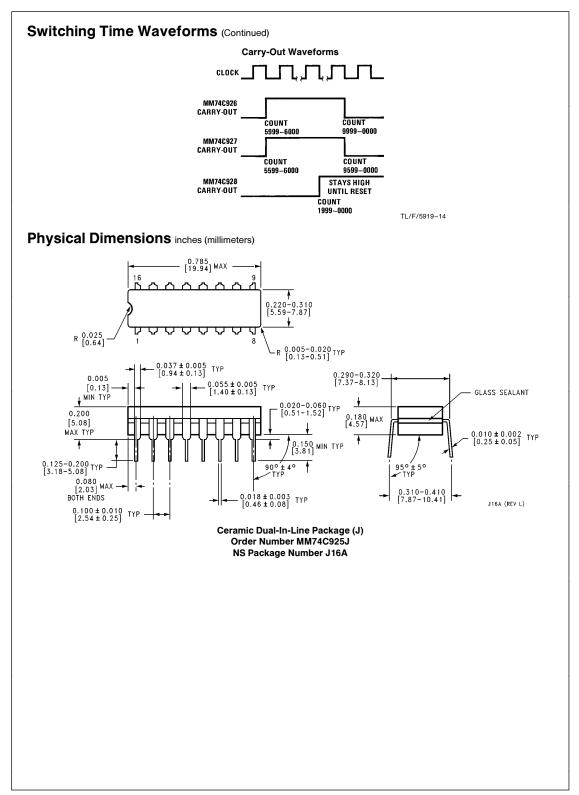
Note 2: Capacitance is guaranteed by periodic testing.

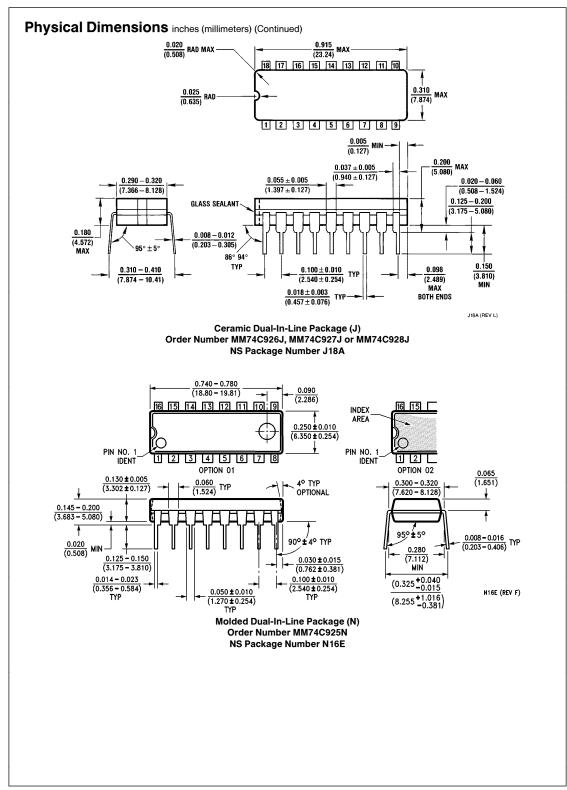
Note 3: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.

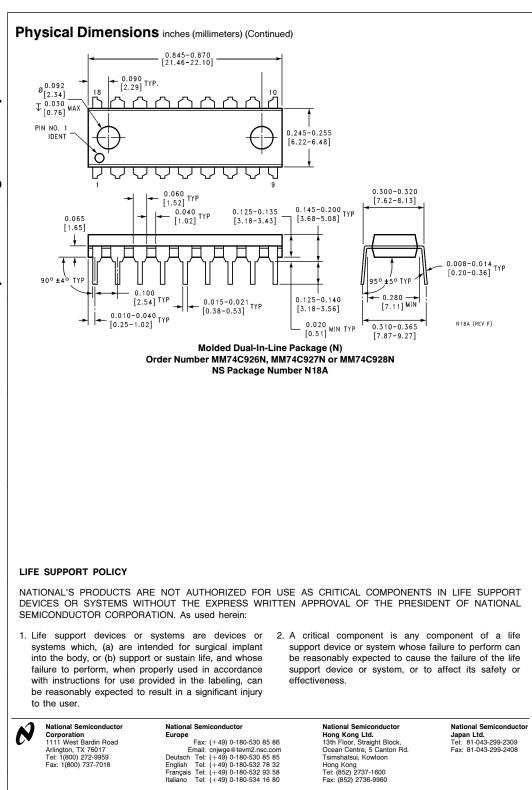

Note 4: θ_{jA} measured in free-air with device soldered into printed circuit board.


Symbol	Parameter	Conditio	ns	Min	Тур	Max	Units
f _{MAX}	Maximum Clock Frequency	V _{CC} = 5V, Square Wave Clock		2 1.5	4 3		MHz MHz
t _r , t _f	Maximum Clock Rise or Fall Time	$V_{CC} = 5V$				15	μs
t _{WR}	Reset Pulse Width	$V_{CC} = 5V$	$T_j = 25^{\circ}C$ $T_j = 100^{\circ}C$	250 320	100 125		ns ns
t _{WLE}	Latch Enable Pulse Width	$V_{CC} = 5V$	$T_j = 25^{\circ}C$ $T_j = 100^{\circ}C$	250 320	100 125		ns ns
t _{SET(CK, LE)}	Clock to Latch Enable Set-Up Time	$V_{CC} = 5V$	T _j = 25°C T _j = 100°C	2500 3200	1250 1600		ns ns
t _{LR}	Latch Enable to Reset Wait Time	$V_{CC} = 5V$	$T_j = 25^{\circ}C$ $T_j = 100^{\circ}C$	0	- 100 - 100		ns ns
^t SET(R, LE)	Reset to Latch Enable Set-Up Time	$V_{CC} = 5V$	$T_j = 25^{\circ}C$ $T_j = 100^{\circ}C$	320 400	160 200		ns ns
fмux	Multiplexing Output Frequency	$V_{CC} = 5V$			1000		Hz
C _{IN}	Input Capacitance	Any Input (Note 2)			5		pF


Functional Description


Reset	Asynchronous, active high	Segment Output — Current sourcing with 40 mA $@V_{OUT} =$
Display Select	 High, displays output of counter Low, displays output of latch 	V_{CC} - 1.6V (typ.) Also, sink capability = 2 LTTL loads
Latch Enable	 High, flow through condition Low, latch condition 	Digit Output — Current sourcing with 1 mA @V _{OUT} = 1.75V. Also, sink capability = 2 LTTL loads
Clock	- Negative edge sensitive	Carry-Out — 2 LTTL loads. See carry-out waveforms.


Typical Performance Characteristics



National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.