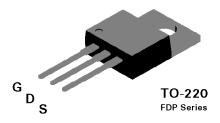
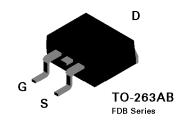
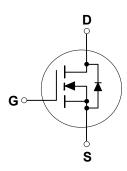


March 1998


FDP4030L / FDB4030L N-Channel Logic Level Enhancement Mode Field Effect Transistor


General Description


These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process has been especially tailored to minimize on-state resistance and provide superior switching performance. These devices are particularly suited for low voltage applications such as DC/DC converters and other battery powered circuits where fast switching, low in-line power loss, and resistance to transients are needed.

Features

- Critical DC electrical parameters specified at elevated temperature.
- Rugged internal source-drain diode can eliminate the need for an external Zener diode transient suppressor.
- High density cell design for extremely low R_{DS(ON)}.
- 175°C maximum junction temperature rating.

Absolute Maximum Ratings T₋ = 25°C unless otherwise noted

Symbol	Parameter	FDP4030L	FDB4030L	Units
V _{DSS}	Drain-Source Voltage	30		V
V_{GSS}	Gate-Source Voltage	±20		V
I _D	Drain Current - Continuous (Note 1)	20		А
	- Pulsed (Note 1)	60		
P_{D}	Total Power Dissipation @ T _C = 25°C	;	37.5	W
	Derate above 25°C	0.25		W/°C
T_J , T_{STG}	Operating and Storage Temperature Range	-65 to 175		°C
T _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds	275		°C
THERMA	L CHARACTERISTICS			
R _{euc}	Thermal Resistance, Junction-to-Case	4		°C/W
Rou	Thermal Resistance, Junction-to-Ambient	(62.5	°C/W

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
DRAIN-SOL	JRCE AVALANCHE RATINGS (Note 1)		•		•	
OFF CHAP	RACTERISTICS					
$N_{ m DSS}$	Single Pulse Drain-Source Avalanche Energy	$V_{DD} = 15 \text{ V}, I_{D} = 7 \text{ A}$			50	mJ
AR	Maximum Drain-Source Avalanche Current				7	Α
3V _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	30			V
ΔBV _{DSS} /ΔT _J	Breakdown Voltage Temp. Coefficient	$I_D = 250 \mu\text{A}$, Referenced to 25°C		33		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$			10	μA
		T _J = 125°C			1	mA
GSSF	Gate - Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
GSSR	Gate - Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
ON CHARA	CTERISTICS (Note 1)	•	•			
/ _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	1	1.6	2	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Temp. Coefficient	I _D = 250 μA, Referenced to 25°C		-4.1		mV/°0
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, I_{D} = 10 \text{ A}$		0.025	0.035	Ω
		T _J = 125°C		0.048	0.06	
		$V_{GS} = 10 \text{ V}, I_D = 4.5 \text{ A}$		0.046	0.055	
D(on)	On-State Drain Current	V _{GS} = 10 V, V _{DS} = 10 V	30			Α
FS	Forward Transconductance	$V_{DS} = 10 \text{ V}, I_{D} = 10 \text{ A}$		11		S
OYNAMIC (CHARACTERISTICS					
Siss	Input Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$		365		pF
oss	Output Capacitance	f = 1.0 MHz		210		pF
C _{rss}	Reverse Transfer Capacitance			70		pF
WITCHING	G CHARACTERISTICS (Note 1)	•				
D(on)	Turn - On Delay Time	$V_{DD} = 15 \text{ V}, I_D = 10 \text{ A},$		8	15	nS
r	Turn - On Rise Time	V_{GS} = 10 V, R_{GEN} = 10 Ω		8	15	nS
D(off)	Turn - Off Delay Time			20	40	nS
	Turn - Off Fall Time			10	20	nS
\mathbf{Q}_{g}	Total Gate Charge	V _{DS} = 24 V		13	18	nC
Q_{gs}	Gate-Source Charge	$I_{D} = 10 \text{ A}, V_{GS} = 10 \text{ V}$		2		nC
Q _{qd}	Gate-Drain Charge			4		nC
•	JRCE DIODE CHARACTERISTICS		•	•	•	
3	Maximum Continuos Drain-Source Diode Forward Current				20	Α
SM	Maximum Pulsed Drain-Source Diode Forward C	Current			60	Α
/ _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 10 \text{ A (Note 1)}$		1.12	1.3	V
		T _J = 125°C		1.08	1.2	

Note: 1. Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

Typical Electrical Characteristics

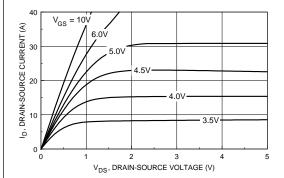


Figure 1. On-Region Characteristics.

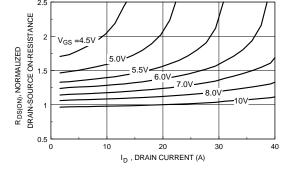


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

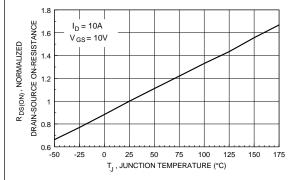


Figure 3. On-Resistance Variation with Temperature.

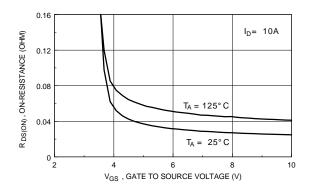


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

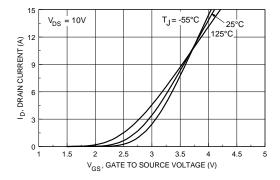


Figure 5. Transfer Characteristics.

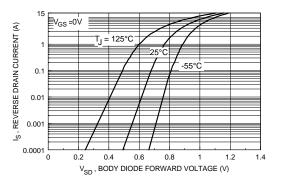
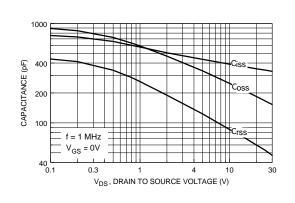
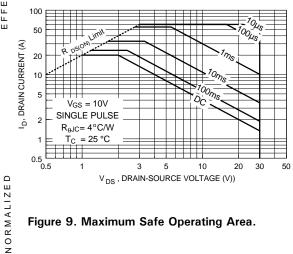




Figure 6 . Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Electrical Characteristics (continued) $V_{DS} = 6V$ VGS , GATE-SOURCE VOLTAGE (V) I_D = 10A 12 20 Q_g , GATE CHARGE (nC) Figure 7. Gate Charge Characteristics. EFFECTIVE 100 20 10

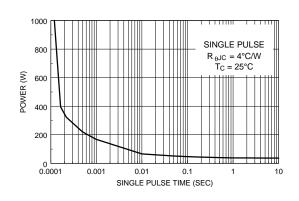


Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.

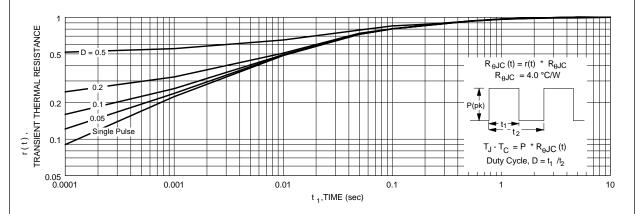


Figure 11. Transient Thermal Response Curve.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

SMART START™ VCX^{TM} FAST ® OPTOLOGIC™ STAR*POWER™ FASTr™ Bottomless™ OPTOPLANAR™ Stealth™ CoolFET™ FRFET™ PACMAN™ SuperSOT™-3 CROSSVOLT™ GlobalOptoisolator™ POP™ SuperSOT™-6 DenseTrench™ GTO™ Power247™ $HiSeC^{TM}$ SuperSOT™-8 $Power Trench^{\, @}$ DOME™ SyncFET™ EcoSPARK™ ISOPLANAR™ QFET™ TinyLogic™ E²CMOSTM LittleFET™ OS^{TM}

EnSigna™ MicroFET™ QT Optoelectronics™ TruTranslation™
FACT™ MicroPak™ Quiet Series™ UHC™
FACT Quiet Series™ MICROWIRE™ SILENT SWITCHER® UltraFET®

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. H4