FAIRCHILD

SEMICONDUCTOR

74F113 Dual JK Negative Edge-Triggered Flip-Flop

General Description

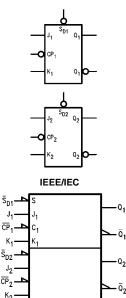
The 74F113 offers individual J, K, Set and Clock inputs. When the clock goes HIGH the inputs are enabled and data may be entered. The logic level of the J and K inputs may be changed when the clock pulse is HIGH and the flip-flop will perform according to the Truth Table as long as minimum setup and hold times are observed. Input data is

transferred to the outputs on the falling edge of the clock pulse.

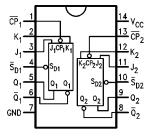
April 1988

Revised July 1999

Asynchronous input:


LOW input to \overline{S}_D sets Q to HIGH level Set is independent of clock

Ordering Code:


Order Number	Package Number	Package Description
74F113SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow
74F113SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F113PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Devices also available	in Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

© 1999 Fairchild Semiconductor Corporation DS009473

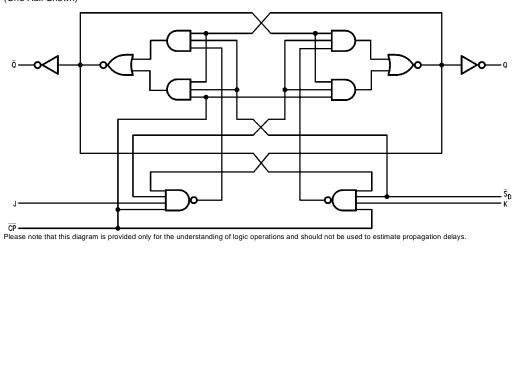
74F113

Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}	
	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
J ₁ , J ₂ , K ₁ , K ₂	Data Inputs	1.0/1.0	20 µA/-0.6 mA	
$\overline{CP}_1, \overline{CP}_2$	Clock Pulse Inputs (Active Falling Edge)	1.0/4.0	20 µA/–2.4 mA	
$\overline{S}_{D1}, \overline{S}_{D2}$	Direct Set Inputs (Active LOW)	1.0/5.0	20 µA/-3.0 mA	
$Q_1, Q_2, \overline{Q}_1, \overline{Q}_2$	Outputs	50/33.3	-1 mA/20 mA	

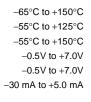
Truth Table

	Inpu	Outputs			
SD	СР	J	к	Q	Q
L	Х	Х	Х	Н	L
н	\sim	h	h	\overline{Q}_0	Q_0
н	~_	Ι	h	L	Н
н	\sim	h	Ι	н	L
н	\sim	Ι	I	Q ₀	\overline{Q}_0


H (h) = HIGH Voltage Level

 $\begin{array}{l} \mathsf{L}(\mathsf{I}) = \mathsf{RIGH} \text{ Voltage level} \\ \mathsf{L}(\mathsf{I}) = \mathsf{LOW} \text{ Voltage level} \\ \mathsf{J}_{\sim} = \mathsf{HIGH}\text{-}\mathsf{to}\text{-}\mathsf{LOW} \text{ Clock Transition} \\ \mathsf{X} = \underbrace{\mathsf{Immaterial}}_{\mathsf{Q}_0}(\overline{\mathsf{Q}}_0) = \mathsf{Before} \text{ HIGH}\text{-}\mathsf{to}\text{-}\mathsf{LOW} \text{ Transition of Clock} \end{array}$

Lower case letters indicate the state of the referenced input or output prior to the HIGH-to-LOW clock transition.


Logic Diagram

Absolute Maximum Ratings(Note 1)

Storage Temperature Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2) Input Current (Note 2) Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$) Standard Output 3-STATE Output Current Applied to Output in LOW State (Max) twice the rated I_{OL} (mA)

–0.5V to $V_{\mbox{\scriptsize CC}}$ -0.5V to +5.5V

Recommended Operating Conditions

Free Air Ambient Temperature Supply Voltage

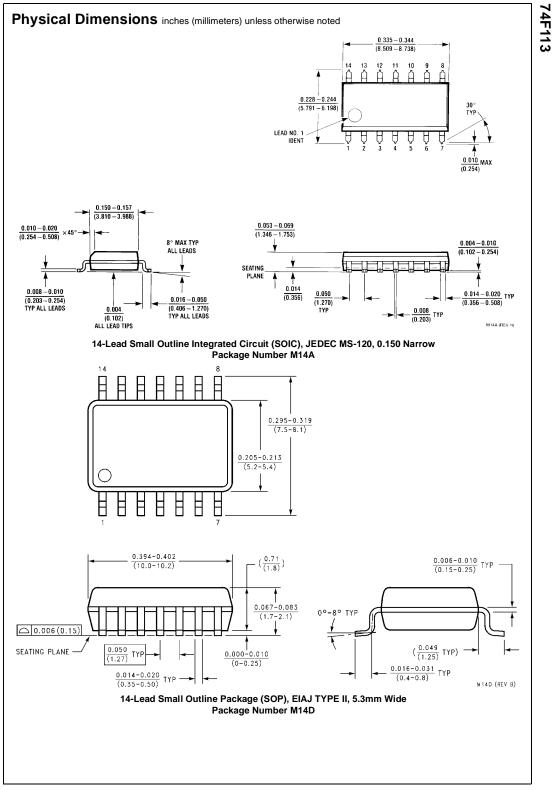
 $0^{\circ}C$ to $+70^{\circ}C$ +4.5V to +5.5V 74F113

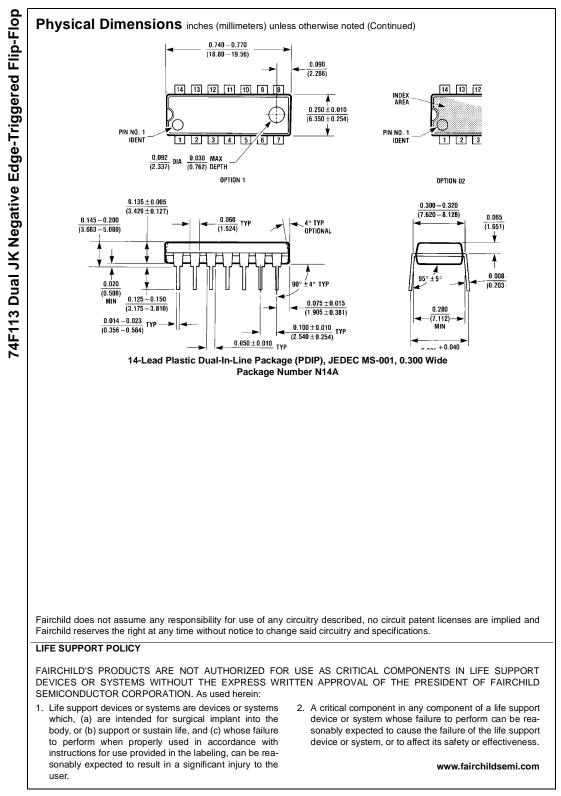
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		Min	Тур	Max	Units	V _{cc}	Conditions	
V _{IH} Input HIGH Voltage		2.0			V		Recognized as a HIGH Signa		
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH	10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA	
	Voltage	5% V _{CC}	2.7					$I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW	10% V _{CC}			0.5	V	Min	I _{OL} = 20 mA	
	Voltage								
I _{IH}	Input HIGH				5.0		Ман	V 0.7V	
	Current				5.0	μA	Max	V _{IN} = 2.7V	
I _{BVI}	Input HIGH Current				7.0		Max	V 7 0V	
	Breakdown Test				7.0	μA	IVIAX	V _{IN} = 7.0V	
ICEX	Output HIGH				50		Max	$V_{OUT} = V_{CC}$	
	Leakage Current				50	μA	IVIAX		
V _{ID}	Input Leakage		4.75			v	0.0	I _{ID} = 1.9 μA	
	Test		4.75			v	0.0	All Other Pins Grounded	
I _{OD}	Output Leakage				3.75	μA	0.0	$V_{IOD} = 150 \text{ mV}$	
	Circuit Current				3.75	μΑ	0.0	All Other Pins Grounded	
IIL	Input LOW Current				-0.6			$V_{IN} = 0.5V (J_n, K_n)$	
					-2.4	mA	Max	$V_{IN} = 0.5V (\overline{CP}_n)$	
					-3.0			$V_{IN} = 0.5V (\overline{S}_{Dn})$	
I _{OZH}	Output Leakage Current				50	μΑ	Max	V _{OUT} = 2.7V	
I _{OZL}	Output Leakage Current				-50	μΑ	Max	$V_{OUT} = 0.5V$	
I _{OS}	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$	
Icc	Power Supply Current			12	19	mA	Max		


74F113


AC Electrical Characteristics

Symbol	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	85	105		80		MHz
t _{PLH}	Propagation Delay	2.0	4.0	6.0	2.0	7.0	ns
t _{PHL}	\overline{CP}_n to Q_n or \overline{Q}_n	2.0	4.0	6.0	2.0	7.0	
t _{PLH}	Propagation Delay	2.0	4.5	6.5	2.0	7.5	
t _{PHL}	\overline{S}_{Dn} to Q_n or \overline{Q}_n	2.0	4.5	6.5	2.0	7.5	ns

AC Operating Requirements

Symbol	Parameter		$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$		$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$		
		Min	Max	Min	Max		
t _S (H)	Setup Time, HIGH or LOW	4.0		5.0			
t _S (L)	J _n or K _n to CP _n	3.0		3.5		-	
t _H (H)	Hold Time, HIGH or LOW	0		0		ns	
t _H (L)	J _n or K _n to \overline{CP}_{n}	0		0			
t _W (H)	CP _n Pulse Width	4.5		5.0			
t _W (L)	HIGH or LOW	4.5		5.0		ns	
t _W (L)	S _{Dn} Pulse Width, LOW	4.5		5.0		ns	
t _{REC}	S _{Dn} to CP _n Recovery Time	4.0		5.0		ns	

www.fairchildsemi.com

6