# CY8C24094, CY8C24794, CY8C24894 and CY8C24994



### **Features**

#### ■CY8C24894 includes an XRES pin to support In-System Serial Programming (ISSP) and external reset control

#### Powerful Harvard Architecture Processor

- M8C Processor Speeds to 24 MHz
- Two 8x8 Multiply, 32-Bit Accumulate
- Low Power at High Speed
- 3.0 to 5.25V Operating Voltage
- Industrial Temperature Range: -40°C to +85°C
- USB Temperature Range: -10°C to +85°C

### Advanced Peripherals (PSoC Blocks)

- 6 Rail-to-Rail Analog PSoC Blocks Provide:
  - Up to 14-Bit ADCs
  - Up to 9-Bit DACs
  - Programmable Gain Amplifiers
- Programmable Filters and Comparators ■ 4 Digital PSoC Blocks Provide:
- 8- to 32-Bit Timers, Counters, and PWMs
  - CRC and PRS Modules
  - Full-Duplex UART
  - Multiple SPI™ Masters or Slaves
  - Connectable to all GPIO Pins
- Complex Peripherals by Combining Blocks
- Capacitive Sensing Application Capability

#### ■ Full-Speed USB (12 Mbps)

- Four Uni-Directional Endpoints
- One Bi-Directional Control Endpoint
- USB 2.0 Compliant
- □ Dedicated 256 Byte Buffer
- No External Crystal Required

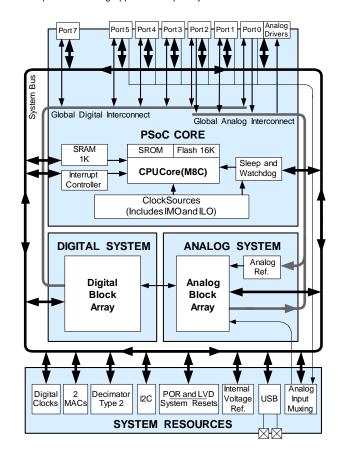
### ■ Flexible On-Chip Memory

- 16K Flash Program Storage 50,000 Erase/ Write Cycles
- 1K SRAM Data Storage
- In-System Serial Programming (ISSP)
- Partial Flash Updates
- Flexible Protection Modes
- EEPROM Emulation in Flash

### ■ Programmable Pin Configurations

- 25 mA Sink on all GPIO
- Pull up, Pull down, High Z, Strong, or Open Drain Drive Modes on all GPIO
- Up to 48 Analog Inputs on GPIO
- Two 33 mA Analog Outputs on GPIO
- Configurable Interrupt on all GPIO

### ■ Precision, Programmable Clocking


- ☐ Internal ±4% 24/48 MHz Oscillator
- □ Internal Oscillator for Watchdog and Sleep
- .25% Accuracy for USB with no External Components

#### ■ Additional System Resources

- $\hfill\Box$   $\hfill\hfill$   $\hfill\hfill$   $\hfill\hfill$  Slave, Master, and Multi-Master to 400 kHz
- Watchdog and Sleep Timers
- User-Configurable Low Voltage Detection
- Integrated Supervisory Circuit
- On-Chip Precision Voltage Reference

#### **Complete Development Tools**

- ☐ Free Development Software (PSoC Designer™
- Full-Featured, In-Circuit Emulator and Programmer
- Full Speed Emulation
- Complex Breakpoint Structure
- 128K Bytes Trace Memory



### **PSoC® Functional Overview**

The PSoC® family consists of many Mixed-Signal Array with On-Chip Controller devices. All PSoC family devices are designed to replace traditional MCUs, system ICs, and the numerous discrete components that surround them. The PSoC CY8C24x94 devices are unique members of the PSoC family because it includes a full-featured, full-speed (12 Mbps) USB port. Configurable analog, digital, and interconnect circuitry enable a high level of integration in a host of industrial, consumer, and communication applications.

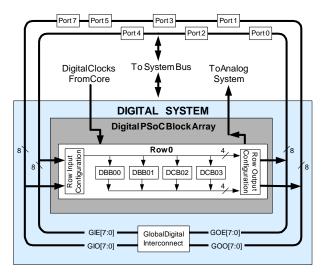
This architecture allows the user to create customized peripheral configurations that match the requirements of each individual application. Additionally, a fast CPU, Flash program memory, SRAM data memory, and configurable IO are included in a range of convenient pinouts and packages.

The PSoC architecture, as illustrated on the left, is comprised of four main areas: PSoC Core, Digital System, Analog System, and System Resources including a full-speed USB port. Configurable global busing allows all the device resources to be combined into a complete custom system. The PSoC CY8C24x94 devices can have up to seven IO ports that connect to the global digital and analog interconnects, providing access to 4 digital blocks and 6 analog blocks.

### The PSoC Core

The PSoC Core is a powerful engine that supports a rich feature set. The core includes a CPU, memory, clocks, and configurable GPIO (General Purpose IO).

The M8C CPU core is a powerful processor with speeds up to 24 MHz, providing a four MIPS 8-bit Harvard architecture microprocessor. The CPU utilizes an interrupt controller with up to 20 vectors, to simplify programming of real time embedded events. Program execution is timed and protected using the included Sleep and Watch Dog Timers (WDT).


Memory encompasses 16K of Flash for program storage, 1K of SRAM for data storage, and up to 2K of EEPROM emulated using the Flash. Program Flash utilizes four protection levels on blocks of 64 bytes, allowing customized software IP protection.

The PSoC device incorporates flexible internal clock generators, including a 24 MHz IMO (internal main oscillator) accurate to 8% over temperature and voltage. The 24 MHz IMO can also be doubled to 48 MHz for use by the digital system. A low power 32 kHz ILO (internal low speed oscillator) is provided for the Sleep timer and WDT. The clocks, together with programmable clock dividers (as a System Resource), provide the flexibility to integrate almost any timing requirement into the PSoC device. In USB systems, the IMO will self-tune to  $\pm\,0.25\%$  accuracy for USB communication.

PSoC GPIOs provide connection to the CPU, digital and analog resources of the device. Each pin's drive mode may be selected from eight options, allowing great flexibility in external interfacing. Every pin also has the capability to generate a system interrupt on high level, low level, and change from last read.

### The Digital System

The Digital System is composed of 4 digital PSoC blocks. Each block is an 8-bit resource that can be used alone or combined with other blocks to form 8, 16, 24, and 32-bit peripherals, which are called user module references.

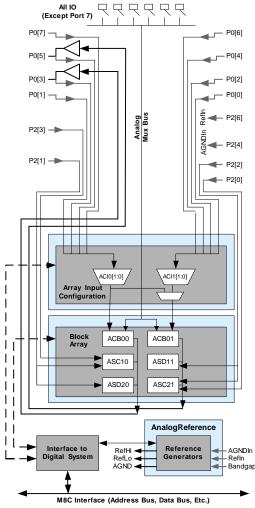


**Digital System Block Diagram** 

Digital peripheral configurations include those listed below.

- Full-Speed USB (12 Mbps)
- PWMs (8 to 32 bit)
- PWMs with Dead band (8 to 24 bit)
- Counters (8 to 32 bit)
- Timers (8 to 32 bit)
- UART 8 bit with selectable parity
- SPI master and slave
- I2C slave and multi-master
- Cyclical Redundancy Checker/Generator (8 to 32 bit)
- IrDA
- Pseudo Random Sequence Generators (8 to 32 bit)

The digital blocks can be connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and for performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.


Digital blocks are provided in rows of four, where the number of blocks varies by PSoC device family. This allows you the optimum choice of system resources for your application. Family resources are shown in the table titled "PSoC Device Characteristics" on page 3.

### The Analog System

The Analog System is composed of 6 configurable blocks, each comprised of an opamp circuit allowing the creation of complex analog signal flows. Analog peripherals are very flexible and can be customized to support specific application requirements. Some of the more common PSoC analog functions (most available as user modules) are listed below.

- Analog-to-digital converters (up to 2, with 6- to 14-bit resolution, selectable as Incremental, Delta Sigma, and SAR)
- Filters (2 and 4 pole band-pass, low-pass, and notch)
- Amplifiers (up to 2, with selectable gain to 48x)
- Instrumentation amplifiers (1 with selectable gain to 93x)
- Comparators (up to 2, with 16 selectable thresholds)
- DACs (up to 2, with 6- to 9-bit resolution)
- Multiplying DACs (up to 2, with 6- to 9-bit resolution)
- High current output drivers (two with 30 mA drive as a PSoC Core Resource)
- 1.3V reference (as a System Resource)
- DTMF Dialer
- Modulators
- Correlators
- Peak Detectors
- Many other topologies possible

Analog blocks are arranged in a column of three, which includes one CT (Continuous Time) and two SC (Switched Capacitor) blocks, as shown in the figure below.



**Analog System Block Diagram** 

### The Analog Multiplexer System

The Analog Mux Bus can connect to every GPIO pin in ports 0-5. Pins can be connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with comparators and analog-to-digital converters. It can be split into two sections for simultaneous dual-channel processing. An additional 8:1 analog input multiplexer provides a second path to bring Port 0 pins to the analog array.

Switch control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include:

- Track pad, finger sensing.
- Chip-wide mux that allows analog input from up to 48 IO pins.
- Crosspoint connection between any IO pin combinations.

### Additional System Resources

System Resources, provide additional capability useful to complete systems. Additional resources include a multiplier, decimator, low voltage detection, and power on reset. Brief statements describing the merits of each resource follow.

- Full-Speed USB (12 Mbps) with 5 configurable endpoints and 256 bytes of RAM. No external components required except two series resistors. Wider than commercial temperature USB operation (-10°C to +85°C).
- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks can be routed to both the digital and analog systems. Additional clocks can be generated using digital PSoC blocks as clock dividers.
- Two multiply accumulates (MACs) provide fast 8-bit multipliers with 32-bit accumulate, to assist in both general math as well as digital filters.
- The decimator provides a custom hardware filter for digital signal processing applications including the creation of Delta Sigma ADCs.
- The I2C module provides 100 and 400 kHz communication over two wires. Slave, master, and multi-master modes are all supported.
- Low Voltage Detection (LVD) interrupts signal the application of falling voltage levels, while the advanced POR (Power On Reset) circuit eliminates the need for a system supervisor.
- An internal 1.3V reference provides an absolute reference for the analog system, including ADCs and DACs.
- Versatile analog multiplexer system.

### PSoC Device Characteristics

Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 4 analog blocks. The following table lists the resources available for specific PSoC device groups. The device covered by this data sheet is shown in the highlighted row of the table.

### **PSoC Device Characteristics**

| PSoC Part<br>Number | Digital<br>IO | Digital<br>Rows | Digital<br>Blocks | Analog<br>Inputs | Analog<br>Outputs | Analog<br>Columns | Analog<br>Blocks | SRAM<br>Size | Flash<br>Size |
|---------------------|---------------|-----------------|-------------------|------------------|-------------------|-------------------|------------------|--------------|---------------|
| CY8C29x66           | up to<br>64   | 4               | 16                | 12               | 4                 | 4                 | 12               | 2K           | 32K           |
| CY8C27x43           | up to<br>44   | 2               | 8                 | 12               | 4                 | 4                 | 12               | 256<br>Bytes | 16K           |
| CY8C24x94           | up to<br>56   | 1               | 4                 | 48               | 2                 | 2                 | 6                | 1K           | 16K           |
| CY8C24x23A          | up to<br>24   | 1               | 4                 | 12               | 2                 | 2                 | 6                | 256<br>Bytes | 4K            |
| CY8C21x34           | up to<br>28   | 1               | 4                 | 28               | 0                 | 2                 | 4 <sup>a</sup>   | 512<br>Bytes | 8K            |
| CY8C21x23           | 16            | 1               | 4                 | 8                | 0                 | 2                 | 4 <sup>a</sup>   | 256<br>Bytes | 4K            |

a. Limited analog functionality.

# **Getting Started**

The quickest path to understanding the PSoC silicon is by reading this data sheet and using the PSoC Designer Integrated Development Environment (IDE). This data sheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications. For in-depth information, along with detailed programming information, reference the PSoC Mixed-Signal Array Technical Reference Manual.

For up-to-date Ordering, Packaging, and Electrical Specification information, reference the latest PSoC device data sheets on the web at http://www.cypress.com/psoc.

To determine which PSoC device meets your requirements, navigate through the PSoC Decision Tree in the Application Note AN2209 at http://www.cypress.com and select Application Notes under the Design Resources.

### **Development Kits**

Development Kits are available from the following distributors: Digi-Key, Avnet, Arrow, and Future. The Cypress Online Store contains development kits, **C** compilers, and all accessories for PSoC development. Go to the Cypress Online Store web site at <a href="http://www.cypress.com">http://www.cypress.com</a>, click the Online Store shopping cart icon at the bottom of the web page, and click *PSoC (Programmable System-on-Chip)* to view a current list of available items.

### **Technical Training**

Free PSoC technical training is available for beginners and is taught by a marketing or application engineer over the phone. PSoC training classes cover designing, debugging, advanced analog, as well as application-specific classes covering topics such as PSoC and the LIN bus. Go to <a href="http://www.cypress.com">http://www.cypress.com</a>, click on Design Support located on the left side of the web page, and select Technical Training for more details.

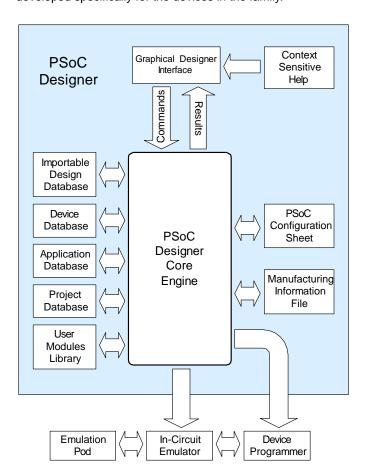
### Consultants

Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant go to <a href="http://www.cypress.com">http://www.cypress.com</a>, click on Design Support located on the left side of the web page, and select CYPros Consultants.

### Technical Support

PSoC application engineers take pride in fast and accurate response. They can be reached with a 4-hour guaranteed response at http://www.cypress.com/support/login.cfm.

# **Application Notes**


A long list of application notes will assist you in every aspect of your design effort. To view the PSoC application notes, go to the <a href="http://www.cypress.com">http://www.cypress.com</a> web site and select Application Notes under the Design Resources list located in the center of the web page. Application notes are listed by date as default.

# **Development Tools**

PSoC Designer is a Microsoft® Windows-based, integrated development environment for the Programmable System-on-Chip (PSoC) devices. The PSoC Designer IDE and application runs on Windows NT 4.0, Windows 2000, Windows Millennium (Me), or Windows XP. (Reference the PSoC Designer Functional Flow diagram below.)

PSoC Designer helps the customer to select an operating configuration for the PSoC, write application code that uses the PSoC, and debug the application. This system provides design database management by project, an integrated debugger with In-Circuit Emulator, in-system programming support, and the CYASM macro assembler for the CPUs.

PSoC Designer also supports a high-level C language compiler developed specifically for the devices in the family.



**PSoC Designer Subsystems** 

### **PSoC Designer Software Subsystems**

### Device Editor

The Device Editor subsystem allows the user to select different onboard analog and digital components called user modules using the PSoC blocks. Examples of user modules are ADCs, DACs, Amplifiers, and Filters.

The device editor also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic configuration allows for changing configurations at run time.

PSoC Designer sets up power-on initialization tables for selected PSoC block configurations and creates source code for an application framework. The framework contains software to operate the selected components and, if the project uses more than one operating configuration, contains routines to switch between different sets of PSoC block configurations at run time. PSoC Designer can print out a configuration sheet for a given project configuration for use during application programming in conjunction with the Device Data Sheet. Once the framework is generated, the user can add application-specific code to flesh out the framework. It's also possible to change the selected components and regenerate the framework.

### Design Browser

The Design Browser allows users to select and import preconfigured designs into the user's project. Users can easily browse a catalog of preconfigured designs to facilitate time-to-design. Examples provided in the tools include a 300-baud modem, LIN Bus master and slave, fan controller, and magnetic card reader.

### Application Editor

In the Application Editor you can edit your C language and Assembly language source code. You can also assemble, compile, link, and build.

**Assembler.** The macro assembler allows the assembly code to be merged seamlessly with C code. The link libraries automatically use absolute addressing or can be compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compiler. A C language compiler is available that supports the PSoC family of devices. Even if you have never worked in the C language before, the product quickly allows you to create complete C programs for the PSoC family devices.

The embedded, optimizing C compiler provides all the features of C tailored to the PSoC architecture. It comes complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

### Debugger

The PSoC Designer Debugger subsystem provides hardware in-circuit emulation, allowing the designer to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow the designer to read and program and read and write data memory, read and write IO registers, read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows the designer to create a trace buffer of registers and memory locations of interest.

### Online Help System

The online help system displays online, context-sensitive help for the user. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer in getting started.

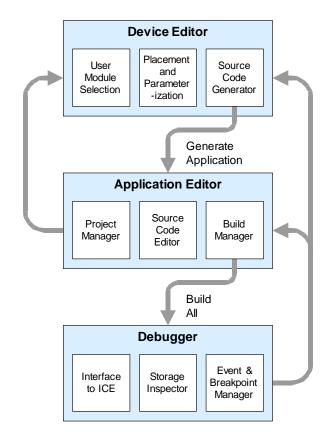
### Hardware Tools

### In-Circuit Emulator

A low cost, high functionality ICE (In-Circuit Emulator) is available for development support. This hardware has the capability to program single devices.

The emulator consists of a base unit that connects to the PC by way of a USB port. The base unit is universal and will operate with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full speed (24 MHz) operation.

# **Designing with User Modules**


The development process for the PSoC device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources, called PSoC Blocks, have the ability to implement a wide variety of user-selectable functions. Each block has several registers that determine its function and connectivity to other blocks, multiplexers, buses and to the IO pins. Iterative development cycles permit you to adapt the hardware as well as the software. This substantially lowers the risk of having to select a different part to meet the final design requirements.

To speed the development process, the PSoC Designer Integrated Development Environment (IDE) provides a library of pre-built, pre-tested hardware peripheral functions, called "User Modules." User modules make selecting and implementing peripheral devices simple, and come in analog, digital, and mixed signal varieties. The standard User Module library contains over 50 common peripherals such as ADCs, DACs Timers, Counters, UARTs, and other not-so common peripherals such as DTMF Generators and Bi-Quad analog filter sections.

Each user module establishes the basic register settings that implement the selected function. It also provides parameters that allow you to tailor its precise configuration to your particular application. For example, a Pulse Width Modulator User Module configures one or more digital PSoC blocks, one for each 8 bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. User modules also provide tested software to cut your development time. The user module application programming interface (API) provides highlevel functions to control and respond to hardware events at run-time. The API also provides optional interrupt service routines that you can adapt as needed.

The API functions are documented in user module data sheets that are viewed directly in the PSoC Designer IDE. These data sheets explain the internal operation of the user module and provide performance specifications. Each data sheet describes the use of each user module parameter and documents the setting of each register controlled by the user module.

The development process starts when you open a new project and bring up the Device Editor, a graphical user interface (GUI) for configuring the hardware. You pick the user modules you need for your project and map them onto the PSoC blocks with point-and-click simplicity. Next, you build signal chains by interconnecting user modules to each other and the IO pins. At this stage, you also configure the clock source connections and enter parameter values directly or by selecting values from drop-down menus. When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Application" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the high-level user module API functions.



**User Module and Source Code Development Flows** 

The next step is to write your main program, and any sub-routines using PSoC Designer's Application Editor subsystem. The Application Editor includes a Project Manager that allows you to open the project source code files (including all generated code files) from a hierarchal view. The source code editor provides syntax coloring and advanced edit features for both C and assembly language. File search capabilities include simple string searches and recursive "grep-style" patterns. A single mouse click invokes the Build Manager. It employs a professional-strength "makefile" system to automatically analyze all file dependencies and run the compiler and assembler as necessary. Project-level options control optimization strategies used by the compiler and linker. Syntax errors are displayed in a console window. Double clicking the error message takes you directly to the offending line of source code. When all is correct, the linker builds a HEX file image suitable for programming.

The last step in the development process takes place inside the PSoC Designer's Debugger subsystem. The Debugger downloads the HEX image to the In-Circuit Emulator (ICE) where it runs at full speed. Debugger capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint and watch-variable features, the Debugger provides a large trace buffer and allows you define complex breakpoint events that include monitoring address and data bus values, memory locations and external signals.

### **Document Conventions**

### Acronyms Used

The following table lists the acronyms that are used in this document.

| Acronym | Description                                         |
|---------|-----------------------------------------------------|
| AC      | alternating current                                 |
| ADC     | analog-to-digital converter                         |
| API     | application programming interface                   |
| CPU     | central processing unit                             |
| CT      | continuous time                                     |
| DAC     | digital-to-analog converter                         |
| DC      | direct current                                      |
| ECO     | external crystal oscillator                         |
| EEPROM  | electrically erasable programmable read-only memory |
| FSR     | full scale range                                    |
| GPIO    | general purpose IO                                  |
| GUI     | graphical user interface                            |
| HBM     | human body model                                    |
| ICE     | in-circuit emulator                                 |
| ILO     | internal low speed oscillator                       |
| IMO     | internal main oscillator                            |
| Ю       | input/output                                        |
| IPOR    | imprecise power on reset                            |
| LSb     | least-significant bit                               |
| LVD     | low voltage detect                                  |
| MSb     | most-significant bit                                |
| PC      | program counter                                     |
| PLL     | phase-locked loop                                   |
| POR     | power on reset                                      |
| PPOR    | precision power on reset                            |
| PSoC®   | Programmable System-on-Chip™                        |
| PWM     | pulse width modulator                               |
| SC      | switched capacitor                                  |
| SRAM    | static random access memory                         |

### Units of Measure

A units of measure table is located in the Electrical Specifications section. Table 3-1 on page 22 lists all the abbreviations used to measure the PSoC devices.

### **Numeric Naming**

Hexidecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexidecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (e.g., 01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimal.

### **Table of Contents**

For an in depth discussion and more information on your PSoC device, obtain the *PSoC Mixed-Signal Array Technical Reference Manual*. This document encompasses and is organized into the following chapters and sections.

| 1. | Pin I             | Information                                                                         | 9  |
|----|-------------------|-------------------------------------------------------------------------------------|----|
|    | 1.1<br>1.2<br>1.3 | 56-Pin Part Pinout (with XRES) 68-Pin Part Pinout (with XRES)                       | 10 |
|    | 1.4               | 68-Pin Part Pinout (On-Chip Debug)                                                  |    |
|    | 1.5               | 100-Ball VFBGA Part Pinout                                                          |    |
|    | 1.6               | 100-Ball VFBGA Part Pinout (On-Chip Debug)                                          |    |
|    | 1.7               | 100-Pin Part Pinout (On-Chip Debug)                                                 |    |
| 2. | Regi              | ister Reference                                                                     | 19 |
|    | 2.1               | Register Conventions                                                                |    |
|    |                   | 2.1.1 Abbreviations Used                                                            |    |
|    | 2.2               | Register Mapping Tables                                                             | 19 |
| 3. | Elec              | trical Specifications                                                               |    |
|    | 3.1               | Absolute Maximum Ratings                                                            |    |
|    | 3.2               | Operating Temperature                                                               |    |
|    | 3.3               | DC Electrical Characteristics                                                       |    |
|    |                   | 3.3.1 DC Chip-Level Specifications                                                  |    |
|    |                   | 3.3.2 DC General Purpose IO Specifications                                          |    |
|    |                   | 3.3.3 DC Full-Speed USB Specifications                                              |    |
|    |                   | 3.3.4 DC Operational Amplifier Specifications                                       |    |
|    |                   | 3.3.5 DC Analog Output Buffer Specifications                                        |    |
|    |                   | 3.3.6 DC Analog Reference Specifications                                            |    |
|    |                   | 3.3.7 DC Analog PSoC Block Specifications                                           |    |
|    |                   | 3.3.8 DC POR and LVD Specifications                                                 |    |
|    |                   | 3.3.9 DC Programming Specifications                                                 |    |
|    | 3.4               | AC Electrical Characteristics                                                       |    |
|    |                   | 3.4.1 AC Chip-Level Specifications                                                  |    |
|    |                   | 3.4.2 AC General Purpose IO Specifications                                          |    |
|    |                   | 3.4.4 AC Operational Amplifier Specifications                                       |    |
|    |                   | 3.4.4 AC Operational Amplifier Specifications 3.4.5 AC Digital Block Specifications |    |
|    |                   | 3.4.5 AC Digital Block Specifications                                               |    |
|    |                   | 3.4.7 AC Analog Output Buffer Specifications                                        |    |
|    |                   | 3.4.8 AC Programming Specifications                                                 |    |
|    |                   | 3.4.9 AC I2C Specifications                                                         |    |
|    |                   | •                                                                                   |    |
| 4. | 4.1               | kaging Information Packaging Dimensions                                             |    |
|    | 4.1               | Thermal Impedance                                                                   |    |
|    | 4.2               | Solder Reflow Peak Temperature                                                      |    |
| 5. | Deve              | elopment Tool Selection                                                             |    |
| ٠. | 5.1               | Software                                                                            |    |
|    | • • •             | 5.1.1 PSoC Designer                                                                 |    |
|    |                   | 5.1.2 PSoC Express                                                                  |    |
|    |                   | 5.1.3 PSoC Programmer                                                               |    |
|    |                   | 5.1.4 CY3202-C iMAGEcraft C Compiler                                                |    |
|    | 5.2               | Development Kits                                                                    |    |
|    |                   | 5.2.1 CY3215-DK Basic Development Kit                                               |    |
|    |                   | 5.2.2 CY3210-ExpressDK Development Kit                                              |    |
|    | 5.3               | Evaluation Tools                                                                    | 45 |

|      | 5.3.1 CY3210-MiniProg1                                       | 45                     |
|------|--------------------------------------------------------------|------------------------|
|      | 5.3.2 CY3210-PSoCEval1                                       | 45                     |
|      | 5.3.3 CY3214-PSoCEvalUSB                                     | 45                     |
| 5.4  | Device Programmers                                           | 45                     |
|      | 5.4.1 CY3216 Modular Programmer                              | 45                     |
|      | 5.4.2 CY3207ISSP Serial Programmer                           | 45                     |
| 5.5  | Accessories (Emulation and Programming)                      | 46                     |
| 5.6  | 3rd-Party Tools                                              | 46                     |
| 5.7  | Build a PSoC Emulator into Your Board                        | 46                     |
| Ord  | ering Information                                            | 47                     |
| 6.1  | Ordering Code Definitions                                    | 47                     |
| Sale | es and Company Information                                   | 48                     |
| 7.1  | Revision History                                             | 48                     |
|      |                                                              |                        |
|      | 5.5<br>5.6<br>5.7<br><b>Ord</b><br>6.1<br><b>Sale</b><br>7.1 | 5.3.1 CY3210-MiniProg1 |

# 1. Pin Information



This chapter describes, lists, and illustrates the CY8C24x94 PSoC device family pins and pinout configuration.

The CY8C24x94 PSoC devices are available in the following packages, all of which are shown on the following pages. Every port pin (labeled with a "P") is capable of Digital IO. However, Vss, Vdd, and XRES are not capable of Digital IO.

# 1.1 56-Pin Part Pinout

Table 1-1. 56-Pin Part Pinout (QFN\*\*) See LEGEND details and footnotes in Table 1-2 on page 10

| Pin | Ту      | ре     | Nama  | Description                            | CY8C24794 56-Pin PSoC Device          |         |                      |                          |                                                                                  |  |  |  |
|-----|---------|--------|-------|----------------------------------------|---------------------------------------|---------|----------------------|--------------------------|----------------------------------------------------------------------------------|--|--|--|
| No. | Digital | Analog | Name  | Description                            |                                       |         |                      |                          |                                                                                  |  |  |  |
| 1   | IO      | I, M   | P2[3] | Direct switched capacitor block input. |                                       |         |                      |                          | MA MAMA                                                                          |  |  |  |
| 2   | Ю       | I, M   | P2[1] | Direct switched capacitor block input. | 1                                     |         |                      | Ξ,                       | হব্ব্ৰ ব্ৰব্যুছ                                                                  |  |  |  |
| 3   | Ю       | М      | P4[7] |                                        |                                       |         |                      | 2.                       | ೯ <u>೯೯೯</u> ಕಿಕ್ಕಾರ್ಡಕ್                                                         |  |  |  |
| 4   | Ю       | М      | P4[5] |                                        | 1                                     |         |                      | P2[5                     | 7.7<br>8.6<br>8.7<br>8.7<br>8.7<br>8.7<br>8.7<br>8.7<br>8.7<br>8.7<br>8.7<br>8.7 |  |  |  |
| 5   | Ю       | М      | P4[3] |                                        | 1                                     |         |                      |                          |                                                                                  |  |  |  |
| 6   | Ю       | М      | P4[1] |                                        |                                       | Α.      | I, M, P2[3]          | မ တွင်း<br>⊟1            | 3 5 8 8 5 8 8 8 8 8 8 8 8 8 8 9 8 9 8 9 8                                        |  |  |  |
| 7   | Ю       | М      | P3[7] |                                        |                                       |         |                      |                          | 42 F 72[2], A, I, M<br>41 P2[0], A, I, M                                         |  |  |  |
| 8   | Ю       | М      | P3[5] |                                        |                                       |         | M, P4[7]             | <b>□</b> 3               | 40 ■ P4[6], M                                                                    |  |  |  |
| 9   | Ю       | М      | P3[3] |                                        |                                       |         | M, P4[5]             | <b>=</b> 4               | 39 ■ P4[4], M                                                                    |  |  |  |
| 10  | Ю       | М      | P3[1] |                                        |                                       |         | M, P4[3]             | <b>=</b> 5               | 38 <b>■</b> P4[2], M                                                             |  |  |  |
| 11  | Ю       | М      | P5[7] |                                        |                                       |         |                      |                          | 37 <b>=</b> P4[0], M                                                             |  |  |  |
| 12  | Ю       | М      | P5[5] |                                        | 1                                     |         | M, P3[7]             |                          | QFN 36 ■ P3[6], M                                                                |  |  |  |
| 13  | Ю       | М      | P5[3] |                                        | 1                                     |         | M, P3[5]<br>M, P3[3] | <b>=</b> 8<br><b>=</b> 9 | (Top View) 35 ≡ P3[4], M                                                         |  |  |  |
| 14  | Ю       | М      | P5[1] |                                        | 1                                     |         | M, P3[1]             | 10                       | 34 <b>=</b> P3[2], M<br>33 <b>=</b> P3[0], M                                     |  |  |  |
| 15  | Ю       | М      | P1[7] | I2C Serial Clock (SCL).                | İ                                     |         | M, P5[7]             | = 11                     | 32 ■ P5[8], M                                                                    |  |  |  |
| 16  | Ю       | М      | P1[5] | I2C Serial Data (SDA).                 | İ                                     |         | M, P5[5]             | <b>= 12</b>              | 31 ■ P5[4], M                                                                    |  |  |  |
| 17  | Ю       | М      | P1[3] | ) /                                    |                                       |         | M, P5[3]             | <b>= 1</b> 3             | 30 <b>=</b> P5[2], M                                                             |  |  |  |
| 18  | Ю       | М      | P1[1] | I2C Serial Clock (SCL), ISSP SCLK*.    |                                       |         | M, P5[1]             | =14 <sub>ഗയ</sub>        | > ~ ∞ ∞ ⊖ ~ ~ ~ ~ √ ∞ ~ ∞ <sup>29</sup> <b>= </b> P5[0], M                       |  |  |  |
| 19  | Po      | wer    | Vss   | Ground connection.                     |                                       |         |                      |                          |                                                                                  |  |  |  |
| 20  | U       | SB     | D+    |                                        | · · · · · · · · · · · · · · · · · · · |         |                      |                          |                                                                                  |  |  |  |
| 21  | U       | SB     | D-    |                                        |                                       |         |                      |                          |                                                                                  |  |  |  |
| 22  | Po      | wer    | Vdd   | Supply voltage.                        | İ                                     |         |                      | 7, 5                     | M, 12C SCL, M, 12C SCL, M, M, M, M, M, M, M, M, M, M, M, M, M,                   |  |  |  |
| 23  | Ю       |        | P7[7] |                                        | 1                                     |         |                      | 0.0                      | 5 % Ø                                                                            |  |  |  |
| 24  | Ю       |        | P7[0] |                                        | İ                                     |         |                      | 20.5                     | 120 20                                                                           |  |  |  |
| 25  | Ю       | М      | P1[0] | I2C Serial Data (SDA), ISSP SDATA*.    | İ                                     |         |                      | M, 120 %                 |                                                                                  |  |  |  |
| 26  | Ю       | М      | P1[2] |                                        | 1                                     |         |                      |                          |                                                                                  |  |  |  |
| 27  | Ю       | М      | P1[4] |                                        | İ                                     |         |                      |                          |                                                                                  |  |  |  |
| 28  | Ю       | М      | P1[6] |                                        | İ                                     |         |                      |                          |                                                                                  |  |  |  |
| 29  | Ю       | М      | P5[0] |                                        | Pin                                   | Ty      | /ре                  |                          |                                                                                  |  |  |  |
| 30  | Ю       | М      | P5[2] |                                        | No.                                   | Digital | Analog               | Name                     | Description                                                                      |  |  |  |
| 31  | Ю       | М      | P5[4] |                                        | 44                                    | 10      | М                    | P2[6]                    | External Voltage Reference (VREF) input.                                         |  |  |  |
| 32  | Ю       | М      | P5[6] |                                        | 45                                    | 10      | I, M                 | P0[0]                    | Analog column mux input.                                                         |  |  |  |
| 33  | Ю       | М      | P3[0] |                                        | 46                                    | 10      | I, M                 | P0[2]                    | Analog column mux input and column output.                                       |  |  |  |
| 34  | Ю       | М      | P3[2] |                                        | 47                                    | 10      | I, M                 | P0[4]                    | Analog column mux input and column output.                                       |  |  |  |
| 35  | Ю       | М      | P3[4] |                                        | 48                                    | IO      | I, M                 | P0[6]                    | Analog column mux input.                                                         |  |  |  |
| 36  | Ю       | М      | P3[6] |                                        | 49                                    | Po      | wer                  | Vdd                      | Supply voltage.                                                                  |  |  |  |
| 37  | Ю       | М      | P4[0] |                                        | 50 Power                              |         | Vss                  | Ground connection.       |                                                                                  |  |  |  |
| 38  | IO      | М      | P4[2] |                                        | 51                                    | IO      | I, M                 | P0[7]                    | Analog column mux input, integration input #1.                                   |  |  |  |
| 39  | Ю       | М      | P4[4] |                                        | 52                                    | Ю       | IO, M                | P0[5]                    | Analog column mux input and column output, integration input #2.                 |  |  |  |
| 40  | Ю       | М      | P4[6] |                                        | 53                                    | IO      | IO, M                | P0[3]                    | Analog column mux input and column output.                                       |  |  |  |
| 41  | 10      | I, M   | P2[0] | Direct switched capacitor block input. | 54                                    | 10      | I, M                 | P0[1]                    | Analog column mux input.                                                         |  |  |  |
| 42  | 10      | I. M   | P2[2] | Direct switched capacitor block input. | 55                                    | 10      | M                    | P2[7]                    | , along colonia max input.                                                       |  |  |  |
| 43  | IO      | M      | P2[4] | External Analog Ground (AGND) input.   | 56                                    | IO      | M                    | P2[5]                    |                                                                                  |  |  |  |

# 1.2 56-Pin Part Pinout (with XRES)

Table 1-2. 56-Pin Part Pinout (QFN\*\*)

| Pin | Ту      | ре     | Mana  | December                                            | 1        |         |         | CY8             | C24894 56-Pin PSoC Device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|---------|--------|-------|-----------------------------------------------------|----------|---------|---------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. | Digital | Analog | Name  | Description                                         |          |         |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1   | IO      | I, M   | P2[3] | Direct switched capacitor block input.              |          |         |         |                 | ¬ 0 0 ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2   | 10      | I, M   | P2[1] | Direct switched capacitor block input.              |          |         |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3   | 10      | М      | P4[7] |                                                     |          |         |         |                 | વિંવેવે વેવેવેટΣ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4   | 10      | М      | P4[5] |                                                     |          |         |         | [5]             | PO[1], PO[3], PO[3], Vss Vdd PO[6], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], PO[7], P |
| 5   | 10      | М      | P4[3] |                                                     |          |         |         | P2              | P P P P P P P P P P P P P P P P P P P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6   | IO      | М      | P4[1] |                                                     |          |         | 1       |                 | 25 25 15 05 64 84 84 84 84 84 84 84 84 84 84 84 84 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7   | 10      | М      | P3[7] |                                                     |          | AIM     | , P2[3] | _ 93 93<br>_ 1  | 42 ■ P2[2], A, I, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8   | 10      | М      | P3[5] |                                                     |          |         | , P2[1] |                 | 41 = P2[0], A, I, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9   | Ю       | М      | P3[3] |                                                     |          |         | , P4[7] |                 | 40 = P4[6], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10  | 10      | М      | P3[1] |                                                     |          |         |         | <b>=</b> 4      | 39 <b>P</b> 4[4], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11  | 10      | М      | P5[7] |                                                     |          |         | , P4[3] | <b>=</b> 5      | 38 = P4[2], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12  | Ю       | М      | P5[5] |                                                     |          |         | , P4[1] |                 | 37 <b>=</b> P4[0], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 13  | 10      | М      | P5[3] |                                                     |          |         |         | <b>=</b> 7      | QFN 36 ■ XRES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 14  | Ю       | М      | P5[1] |                                                     |          |         |         | <b>=</b> 8      | ( <b>Top View</b> ) 35 ■ P3[4], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 15  | Ю       | М      | P1[7] | I2C Serial Clock (SCL).                             |          | M       | , P3[3] | <b>=</b> 9      | 34 P3[2], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 16  | IO      | М      | P1[5] | I2C Serial Data (SDA).                              |          | M       | , P3[1] | <b>=</b> 10     | 33 P3[0], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 17  | Ю       | М      | P1[3] |                                                     |          |         | , P5[7] |                 | 32 <b>₽</b> P5[6], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 18  | 10      | М      | P1[1] | I2C Serial Clock (SCL), ISSP SCLK*.                 |          |         | , P5[5] |                 | 31 <b>P</b> 5[4], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 19  | Po      | wer    | Vss   | Ground connection.                                  |          | M       | , P5[3] | <b>=</b> 13     | 30 <b>P</b> 5[2], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 20  |         | SB     | D+    |                                                     |          | M       | , P5[1] | <b>=</b> 14     | 29 ₱ P5[0], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 21  | U:      | SB     | D-    |                                                     |          |         |         |                 | 1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 22  | Po      | wer    | Vdd   | Supply voltage.                                     |          |         |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23  | 10      |        | P7[7] |                                                     |          |         |         | 7 7 7           | P1(3)<br>VSS<br>VSS<br>D+<br>D-<br>Vdd<br>Vdd<br>P7(7)<br>P1(0)<br>P1(1)<br>P1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 24  | Ю       |        | P7[0] |                                                     |          |         |         | L L             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25  | 10      | М      | P1[0] | I2C Serial Data (SDA), ISSP SDATA*.                 |          |         |         | 3C1             | SCL, W, M, M, M, M, M, M, M, M, M, M, M, M, M,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 26  | 10      | М      | P1[2] |                                                     |          |         |         | 12C 8           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 27  | 10      | М      | P1[4] |                                                     |          |         |         | Σ, Σ<br>Ω Ω     | M, 12C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 28  | Ю       | М      | P1[6] |                                                     |          |         |         | 2 2             | 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 29  | Ю       | М      | P5[0] |                                                     | Pin      | _       | ре      | Name            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 30  | 10      | М      | P5[2] |                                                     | No.      | Digital | Analog  | Ivaille         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 31  | Ю       | М      | P5[4] |                                                     | 44       | Ю       | М       | P2[6]           | External Voltage Reference (VREF) input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 32  | Ю       | М      | P5[6] |                                                     | 45       | Ю       | I, M    | P0[0]           | Analog column mux input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 33  | Ю       | М      | P3[0] |                                                     | 46       | Ю       | I, M    | P0[2]           | Analog column mux input and column output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 34  | Ю       | М      | P3[2] |                                                     | 47       | Ю       | I, M    | P0[4]           | Analog column mux input and column output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 35  | Ю       | М      | P3[4] |                                                     | 48       | Ю       | I, M    | P0[6]           | Analog column mux input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 36  | In      | put    | XRES  | Active high external reset with internal pull down. | 49 Power |         | Vdd     | Supply voltage. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 37  | IO      | М      | P4[0] |                                                     | 50       | Po      | wer     | Vss             | Ground connection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 38  | IO      | М      | P4[2] |                                                     | 51       | Ю       | I, M    | P0[7]           | Analog column mux input, integration input #1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 39  | Ю       | М      | P4[4] |                                                     | 52       | Ю       | IO, M   | P0[5]           | Analog column mux input and column output, integration input #2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 40  | IO      | М      | P4[6] |                                                     | 53       | IO      | IO, M   | P0[3]           | Analog column mux input and column output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 41  | IO      | I, M   | P2[0] | Direct switched capacitor block input.              | 54       | Ю       | I, M    | P0[1]           | Analog column mux input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 42  | IO      | I, M   | P2[2] | Direct switched capacitor block input.              | 55       | Ю       | М       | P2[7]           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 43  | IO      | М      | P2[4] | External Analog Ground (AGND) input.                | 56       | IO      | М       | P2[5]           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

**LEGEND** A = Analog, I = Input, O = Output, and M = Analog Mux Input.

<sup>\*</sup> These are the ISSP pins, which are not High Z at POR. See the PSoC Mixed-Signal Array Technical Reference Manual for details.

<sup>\*\*</sup> The center pad on the QFN package should be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floated and not connected to any other signal.

#### 1.3 **68-Pin Part Pinout**

The 68-pin QFN part table and drawing below is for the CY8C24994 PSoC device.

Table 1-3. 68-Pin Part Pinout (QFN\*\*)

|     |     |        | · arti         | illout (Q1 14 )                                | 1   |          | _                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|-----|-----|--------|----------------|------------------------------------------------|-----|----------|----------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Pin |     | pe     | Name           | Description                                    |     |          | C                                      | CY8C24994 68-Pin PSoC Device |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| No. |     | Analog | D4[7]          | •                                              | _   |          |                                        |                              | AGND<br>AGND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 1   | 10  | M      | P4[7]          |                                                | 4   |          |                                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 3   | 10  | M      | P4[5]          |                                                | -   |          |                                        | ₹₹                           | A XX. A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 4   | 10  | M      | P4[3]<br>P4[1] |                                                | 4   |          |                                        | ΣΣ                           | ΣΣΣΣΣ ΣΣΣΣΣΣ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 5   | Ю   | IVI    | NC             | No connection.                                 | -   |          |                                        | <sup>2</sup> 2[1]            | P2[5], U P2[7], U P2[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[7], U P3[ |  |  |  |
| 6   |     |        | NC             | No connection.                                 | -   |          |                                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 7   | Po  | wer    | Vss            | Ground connection.                             | -   |          | M, P4[7]                               | ● 89<br>1                    | 888 288 288 288 288 288 288 288 288 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 8   | 10  | M      | P3[7]          | Ground connection.                             | -   | 1        | M, P4[5] 🗖                             | 2                            | 50 P4[6], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 9   | 10  | M      | P3[5]          |                                                | -   |          | M, P4[3]                               |                              | 49 P4[4], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 10  | IO  | M      | P3[3]          |                                                | 1   |          | M, P4[1] <b>=</b><br>NC <b>=</b>       |                              | 48 P P4[2], M<br>47 P P4[0], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 11  | IO  | M      | P3[1]          |                                                | 1   |          | NC =                                   |                              | 46 XRES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 12  | IO  | M      | P5[7]          |                                                | -   |          | Vss =                                  |                              | 45 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 13  | IO  | M      | P5[5]          |                                                | -   |          | M, P3[7] <b>=</b><br>M, P3[5] <b>=</b> |                              | <b>QFN</b> 44 ⊨ NC 43 ⊨ P3[6], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 14  | IO  | M      | P5[3]          |                                                | -   | 1        | M, P3[3] 🗖                             | 10                           | (Top View) 42 P3[4], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 15  | IO  | M      | P5[1]          |                                                | 1   |          | M, P3[1]                               |                              | 41 P3[2], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 16  | IO  | M      | P1[7]          | I2C Serial Clock (SCL).                        | 1   |          | M, P5[7] <b>=</b><br>M, P5[5] <b>=</b> |                              | 40 P3[0], M<br>39 P5[6], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 17  | IO  | M      | P1[5]          | I2C Serial Data (SDA).                         | -   |          | M, P5[3]                               |                              | 38 P5[4], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 18  | IO  | M      | P1[3]          | (0-1-4)                                        | 1   |          | M, P5[1]                               |                              | 37 P5[2], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 19  | IO  | M      | P1[1]          | I2C Serial Clock (SCL) ISSP SCLK*.             | 1   | I2C SCL, | M, P1[7] <b>=</b><br>M, P1[5] <b>=</b> | 16                           | 36 P 5[0], M<br>35 P1[6], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 20  |     | wer    | Vss            | Ground connection.                             | 1   | 120 0274 | ,[o] <b>\</b>                          |                              | 3 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 21  |     | SB     | D+             |                                                | 1   |          |                                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 22  | U:  | SB     | D-             |                                                | 1   |          |                                        | 2<br>5<br>7                  | Vss<br>D + V<br>D - V Vdd<br>Vdd<br>Vdd<br>P7[5]<br>P7[7]<br>P7[1]<br>P7[1]<br>P7[1]<br>P7[1]<br>P7[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 23  | Po  | wer    | Vdd            | Supply voltage.                                | 1   |          |                                        | ΣΣ                           | ΣΣΣ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 24  | Ю   |        | P7[7]          | 117                                            | 1   |          |                                        | SCL,                         | SDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 25  | Ю   |        | P7[6]          |                                                | 1   |          |                                        | I2C S                        | ISC 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 26  | Ю   |        | P7[5]          |                                                | 1   |          |                                        | 2                            | ä                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 27  | Ю   |        | P7[4]          |                                                | 1   |          |                                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 28  | Ю   |        | P7[3]          |                                                | 1   |          |                                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 29  | Ю   |        | P7[2]          |                                                | Pin | Ту       | ре                                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 30  | Ю   |        | P7[1]          |                                                | No. | Digital  | Analog                                 | Name                         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 31  | Ю   |        | P7[0]          |                                                | 50  | 10       | М                                      | P4[6]                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 32  | Ю   | М      | P1[0]          | I2C Serial Data (SDA), ISSP SDATA*.            | 51  | IO       | I,M                                    | P2[0]                        | Direct switched capacitor block input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 33  | Ю   | М      | P1[2]          |                                                | 52  | 10       | I,M                                    | P2[2]                        | Direct switched capacitor block input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 34  | Ю   | М      | P1[4]          | Optional External Clock Input (EXT-CLK).       | 53  | Ю        | М                                      | P2[4]                        | External Analog Ground (AGND) input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 35  | Ю   | М      | P1[6]          |                                                | 54  | 10       | М                                      | P2[6]                        | External Voltage Reference (VREF) input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 36  | Ю   | М      | P5[0]          |                                                | 55  | IO       | I,M                                    | P0[0]                        | Analog column mux input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 37  | Ю   | М      | P5[2]          |                                                | 56  | 10       | I,M                                    | P0[2]                        | Analog column mux input and column output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 38  | Ю   | М      | P5[4]          |                                                | 57  | 10       | I,M                                    | P0[4]                        | Analog column mux input and column output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 39  | Ю   | М      | P5[6]          |                                                | 58  | IO       | I,M                                    | P0[6]                        | Analog column mux input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 40  | Ю   | М      | P3[0]          |                                                | 59  | Pov      | wer                                    | Vdd                          | Supply voltage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 41  | Ю   | М      | P3[2]          |                                                | 60  | Pov      | wer                                    | Vss                          | Ground connection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 42  | Ю   | М      | P3[4]          |                                                | 61  | IO       | I,M                                    | P0[7]                        | Analog column mux input, integration input #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 43  | Ю   | М      | P3[6]          |                                                | 62  | Ю        | IO,M                                   | P0[5]                        | Analog column mux input and column output, integration input #2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 44  |     |        | NC             | No connection.                                 | 63  | 10       | IO,M                                   | P0[3]                        | Analog column mux input and column output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 45  |     |        | NC             | No connection.                                 | 64  | Ю        | I,M                                    | P0[1]                        | Analog column mux input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 46  | Inj | out    | XRES           | Active high pin reset with internal pull down. | 65  | Ю        | M                                      | P2[7]                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 47  | Ю   | М      | P4[0]          |                                                | 66  | IO       | М                                      | P2[5]                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 48  | Ю   | М      | P4[2]          |                                                | 67  | IO       | I,M                                    | P2[3]                        | Direct switched capacitor block input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|     | Ю   | М      | P4[4]          |                                                | 68  | IO       | I,M                                    | P2[1]                        | Direct switched capacitor block input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 49  |     |        |                |                                                |     |          |                                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |

**LEGEND**A = Analog, I = Input, O = Output, NC = No Connection, M = Analog Mux Input.

\* These are the ISSP pins, which are not High Z at POR. See the *PSoC Mixed-Signal Array Technical Reference Manual* for details.

<sup>\*\*</sup> The center pad on the QFN package should be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floated and not connected to any other signal.

#### 1.4 68-Pin Part Pinout (On-Chip Debug)

The 68-pin QFN part table and drawing below is for the CY8C24094 On-Chip Debug (OCD) PSoC device. Note This part is only used for in-circuit debugging. It is NOT available for production.

Table 1-4. 68-Pin Part Pinout (QFN\*\*)

| Pin      | T.       | ре     |                |                                          | CY8C24094 68-Pin OCD PSoC Device |            |                                      |                                          | M 69-Pin OCD PSoC Dovice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|----------|--------|----------------|------------------------------------------|----------------------------------|------------|--------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.      |          | Analog | Name           | Description                              |                                  |            | Cio                                  | C2408                                    | 14 00-PIII OCD P30C Device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1        | IO       | M      | P4[7]          |                                          |                                  |            |                                      |                                          | ш <u>О</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2        | 10       | M      | P4[5]          |                                          |                                  |            |                                      |                                          | VREF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3        | 10       | M      | P4[3]          |                                          |                                  |            |                                      |                                          | POO A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | _        |        |                |                                          | -                                |            |                                      | ₹ ₹<br>₹ ₹ ₹ ₹                           | Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4        | 10       | М      | P4[1]          | 000 d-t- 10                              | 4                                |            |                                      |                                          | Z T T T Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5        |          |        | OCDE           | OCD even data IO.                        |                                  |            |                                      | P2[1],<br>P2[3],<br>P2[5],               | P2[7], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0[1], P0 |
| 6        |          |        | OCDO           | OCD odd data output.                     |                                  |            |                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7        |          | wer    | Vss            | Ground connection.                       |                                  | M, P       | 41/1 🕇 1                             | 99                                       | 6. 4 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8        | IO       | М      | P3[7]          |                                          | _                                | M, P       | 4[5] = 2                             |                                          | 50 <b>P</b> 4[6], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9        | IO       | М      | P3[5]          |                                          |                                  |            | 4[3] = 3                             |                                          | 49 P4[4], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10       | IO       | М      | P3[3]          |                                          |                                  |            | 4[1] <b>=</b> 4<br>DE <b>=</b> 5     |                                          | 48 P4[2], M<br>47 P4[0], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 11       | Ю        | М      | P3[1]          |                                          |                                  | OC         | DO = 6                               |                                          | 46 <b>–</b> XRES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 12       | Ю        | М      | P5[7]          |                                          |                                  |            | Vss 🗖 7                              |                                          | 45 CCLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 13       | Ю        | М      | P5[5]          |                                          |                                  |            | 3[7] = 8                             |                                          | QFN 44 HCLK<br>43 P3[6], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14       | Ю        | М      | P5[3]          |                                          |                                  |            | 3[5] <b>=</b> 9<br>3[3] <b>=</b> 10  |                                          | (Top View) 42 P3[4], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15       | Ю        | М      | P5[1]          |                                          |                                  | M, P:      | 3[1] = 11                            |                                          | 41 <b>P</b> P3[2], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 16       | Ю        | М      | P1[7]          | I2C Serial Clock (SCL).                  |                                  |            | 5[7] = 12                            |                                          | 40 P3[0], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 17       | Ю        | М      | P1[5]          | I2C Serial Data (SDA).                   |                                  |            | 5[5] = 13                            |                                          | 39 P5[6], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 18       | Ю        | М      | P1[3]          |                                          |                                  |            | 5[3] <b>=</b> 14<br>5[1] <b>=</b> 15 |                                          | 38 <b>=</b> P5[4], M<br>37 <b>=</b> P5[2], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 19       | IO       | М      | P1[1]          | I2C Serial Clock (SCL), ISSP SCLK*.      | I2C                              | SCL, M, P1 | 1[7] = 16                            |                                          | 36 <b>P</b> P5[0], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 20       | Po       | wer    | Vss            | Ground connection.                       | I2C                              | SDA, M, P1 | 1[5] 🗖 17                            |                                          | - 2 € 4 5 6 7 8 9 0 7 - 2 € 4 35 ■ P1[6], M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 21       | U        | SB     | D+             |                                          |                                  |            |                                      | 13 13 13 13 13 13 13 13 13 13 13 13 13 1 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 22       | U        | SB     | D-             |                                          |                                  |            |                                      | [3]                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23       | Po       | wer    | Vdd            | Supply voltage.                          |                                  |            |                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24       | IO       |        | P7[7]          |                                          |                                  |            |                                      | M,<br>I2C SCL, M,                        | ΣΣΣ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 25       | IO       |        | P7[6]          |                                          | 1                                |            |                                      | SCL                                      | SDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 26       | IO       |        | P7[5]          |                                          |                                  |            |                                      | 2C 8                                     | 5C \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 27       | IO       |        | P7[4]          |                                          |                                  |            |                                      | _                                        | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 28       | IO       |        | P7[3]          |                                          |                                  |            |                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 29       | IO       |        | P7[2]          |                                          | Pin                              | Ту         | pe                                   |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30       | IO       |        | P7[1]          |                                          | No.                              |            | Analog                               | Name                                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 31       | IO       |        | P7[0]          |                                          | 50                               | 10         | M                                    | P4[6]                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 32       | IO       | М      | P1[0]          | I2C Serial Data (SDA), ISSP SDATA*.      | 51                               | IO         | I,M                                  | P2[0]                                    | Direct switched capacitor block input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 33       | 10       | М      | P1[2]          | ,,                                       | 52                               | IO         | I,M                                  | P2[2]                                    | Direct switched capacitor block input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 34       | IO       | M      | P1[4]          | Optional External Clock Input (EXT-      | 53                               | 10         | M                                    | P2[4]                                    | External Analog Ground (AGND) input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |          |        | [.]            | CLK).                                    |                                  |            |                                      | [.]                                      | Zatornar / manag oroana (/ tota) mpan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 35       | IO       | М      | P1[6]          | •                                        | 54                               | IO         | М                                    | P2[6]                                    | External Voltage Reference (VREF) input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 36       | IO       | М      | P5[0]          |                                          | 55                               | IO         | I,M                                  | P0[0]                                    | Analog column mux input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 37       | IO       | М      | P5[2]          |                                          | 56                               | IO         | I,M                                  | P0[2]                                    | Analog column mux input and column output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 38       | IO       | M      | P5[4]          |                                          | 57                               | 10         | I,M                                  | P0[4]                                    | Analog column mux input and column output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 39       | IO       | M      | P5[6]          |                                          | 58                               | IO         | I,M                                  | P0[6]                                    | Analog column mux input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 40       | IO       | M      | P3[0]          |                                          | 59                               | Pov        | ,                                    | Vdd                                      | Supply voltage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 41       | IO       | M      | P3[2]          |                                          | 60                               |            | wer                                  | Vss                                      | Ground connection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 42       | 10       |        | P3[4]          |                                          | 61                               | IO         | I,M                                  | P0[7]                                    | Analog column mux input, integration input #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 43       | 10       | M      | P3[6]          |                                          | 62                               | IO         | IO,M                                 | P0[5]                                    | Analog column mux input and column output, integra-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | 10       | IVI    |                |                                          |                                  |            |                                      |                                          | tion input #2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 44       |          |        | HCLK           | OCD high-speed clock output.             | 63                               | 10         | IO,M                                 | P0[3]                                    | Analog column mux input and column output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 45       |          |        | CCLK           | OCD CPU clock output.                    | 64                               | 10         | I,M                                  | P0[1]                                    | Analog column mux input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 46       | In       | put    | XRES           | Active high pin reset with internal pull | 65                               | IO         | М                                    | P2[7]                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |          |        |                | down.                                    | <b>I</b>                         |            |                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 47       | 10       | М      | P4[0]          |                                          | 66                               | 10         | М                                    | P2[5]                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |          |        |                |                                          |                                  |            |                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 48<br>49 | 10<br>10 | M<br>M | P4[2]<br>P4[4] |                                          | 67<br>68                         | 10<br>10   | I,M<br>I,M                           | P2[3]<br>P2[1]                           | Direct switched capacitor block input.  Direct switched capacitor block input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

**LEGEND**A = Analog, I = Input, O = Output, M = Analog Mux Input, OCD = On-Chip Debugger.

\* These are the ISSP pins, which are not High Z at POR. See the *PSoC Mixed-Signal Array Technical Reference Manual* for details.

<sup>\*\*</sup> The center pad on the QFN package should be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floated and not connected to any other signal.

#### 1.5 **100-Ball VFBGA Part Pinout**

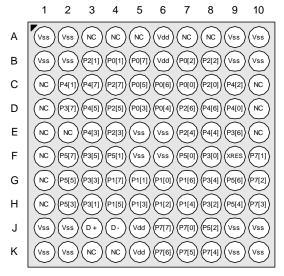

The 100-ball VFBGA part is for the CY8C24994 PSoC device.

Table 1-5. 100-Ball Part Pinout (VFBGA)

| Pin<br>No. | Digital | Analog | Name  | Description                                | Pin<br>No. | Digital | Analog | Name  | Description                                    |
|------------|---------|--------|-------|--------------------------------------------|------------|---------|--------|-------|------------------------------------------------|
| A1         | Po      | wer    | Vss   | Ground connection.                         | F1         |         |        | NC    | No connection.                                 |
| A2         | Po      | wer    | Vss   | Ground connection.                         | F2         | 0       | М      | P5[7] |                                                |
| A3         |         |        | NC    | No connection.                             | F3         | 9       | М      | P3[5] |                                                |
| A4         |         |        | NC    | No connection.                             | F4         | 9       | М      | P5[1] |                                                |
| A5         |         |        | NC    | No connection.                             | F5         | Po      | wer    | Vss   | Ground connection.                             |
| A6         | Po      | wer    | Vdd   | Supply voltage.                            | F6         | Po      | wer    | Vss   | Ground connection.                             |
| A7         |         |        | NC    | No connection.                             | F7         | Ю       | М      | P5[0] |                                                |
| A8         |         |        | NC    | No connection.                             | F8         | Ю       | М      | P3[0] |                                                |
| A9         | Po      |        | Vss   | Ground connection.                         | F9         |         |        | XRES  | Active high pin reset with internal pull down. |
| A10        |         | wer    | Vss   | Ground connection.                         | F10        | Ю       |        | P7[1] |                                                |
| B1         | Po      | wer    | Vss   | Ground connection.                         | G1         |         |        | NC    | No connection.                                 |
| B2         | Po      | wer    | Vss   | Ground connection.                         | G2         | Ю       | М      | P5[5] |                                                |
| В3         | Ю       |        | P2[1] | Direct switched capacitor block input.     | G3         | Ю       | М      | P3[3] |                                                |
| B4         | Ю       | I,M    | P0[1] | Analog column mux input.                   | G4         | Ю       | M      | P1[7] | I2C Serial Clock (SCL).                        |
| B5         | Ю       | I,M    | P0[7] | Analog column mux input.                   | G5         | Ю       | М      | P1[1] | I2C Serial Clock (SCL), ISSP SCLK*.            |
| B6         | Po      | wer    | Vdd   | Supply voltage.                            | G6         | Ю       | М      | P1[0] | I2C Serial Data (SDA), ISSP SDATA*.            |
| B7         | Ю       | I,M    | P0[2] | Analog column mux input.                   | G7         | Ю       | М      | P1[6] |                                                |
| B8         | Ю       | I,M    | P2[2] | Direct switched capacitor block input.     | G8         | Ю       | М      | P3[4] |                                                |
| B9         |         | wer    | Vss   | Ground connection.                         | G9         | Ю       | М      | P5[6] |                                                |
| B10        | Po      | wer    | Vss   | Ground connection.                         | G10        | Ю       |        | P7[2] |                                                |
| C1         |         |        | NC    | No connection.                             | H1         |         |        | NC    | No connection.                                 |
| C2         | Ю       | М      | P4[1] |                                            | H2         | Ю       | M      | P5[3] |                                                |
| C3         | Ю       | М      | P4[7] |                                            | H3         | Ю       | М      | P3[1] |                                                |
| C4         | Ю       | М      | P2[7] |                                            | H4         | Ю       | M      | P1[5] | I2C Serial Data (SDA).                         |
| C5         | Ю       | IO,M   | P0[5] | Analog column mux input and column output. | H5         | Ю       | М      | P1[3] |                                                |
| C6         | Ю       | I,M    | P0[6] | Analog column mux input.                   | H6         | Ю       | М      | P1[2] |                                                |
| C7         | Ю       | I,M    | P0[0] | Analog column mux input.                   | H7         | Ю       | М      | P1[4] |                                                |
| C8         | Ю       | I,M    | P2[0] | Direct switched capacitor block input.     | H8         | Ю       | М      | P3[2] |                                                |
| C9         | Ю       | М      | P4[2] |                                            | H9         | Ю       | М      | P5[4] |                                                |
| C10        |         |        | NC    | No connection.                             | H10        | Ю       |        | P7[3] |                                                |
| D1         |         |        | NC    | No connection.                             | J1         |         | wer    | Vss   | Ground connection.                             |
| D2         | Ю       |        | P3[7] |                                            | J2         |         | wer    | Vss   | Ground connection.                             |
| D3         | Ю       | М      | P4[5] |                                            | J3         | U       | SB     | D+    |                                                |
| D4         | Ю       | М      | P2[5] |                                            | J4         |         | SB     | D-    |                                                |
| D5         | Ю       | IO,M   | P0[3] | Analog column mux input and column output. | J5         | Po      | wer    | Vdd   | Supply voltage.                                |
| D6         | Ю       | I,M    | P0[4] | Analog column mux input.                   | J6         | Ю       |        | P7[7] |                                                |
| D7         | Ю       | М      | P2[6] | External Voltage Reference (VREF) input.   | J7         | Ю       |        | P7[0] |                                                |
| D8         | Ю       |        | P4[6] |                                            | J8         | Ю       | М      | P5[2] |                                                |
| D9         | Ю       | М      | P4[0] |                                            | J9         | Po      | wer    | Vss   | Ground connection.                             |
| D10        |         |        | NC    | No connection.                             | J10        |         | wer    | Vss   | Ground connection.                             |
| E1         |         |        | NC    | No connection.                             | K1         |         | wer    | Vss   | Ground connection.                             |
| E2         |         |        |       | No connection.                             | K2         | Po      | wer    | Vss   | Ground connection.                             |
| E3         | Ю       |        | P4[3] |                                            | K3         |         |        | NC    | No connection.                                 |
| E4         | Ю       |        | P2[3] | Direct switched capacitor block input.     | K4         |         |        | NC    | No connection.                                 |
| E5         |         | wer    | Vss   | Ground connection.                         | K5         |         | wer    | Vdd   | Supply voltage.                                |
| E6         |         | wer    | Vss   | Ground connection.                         | K6         | Ю       |        | P7[6] |                                                |
| E7         | Ю       | М      | P2[4] | External Analog Ground (AGND) input.       | K7         | 0       |        | P7[5] |                                                |
| E8         | Ю       | М      | P4[4] |                                            | K8         | Ю       |        | P7[4] |                                                |
| E9         | Ю       | М      | P3[6] |                                            | K9         |         | wer    | Vss   | Ground connection.                             |
| E10        |         |        | NC    | No connection.                             | K10        | Po      | wer    | Vss   | Ground connection.                             |

LEGEND A = Analog, I = Input, O = Output, M = Analog Mux Input, NC = No Connection.

\* This is the ISSP pin, which is not High Z at POR. See the PSoC Mixed-Signal Array Technical Reference Manual for details.



BGA (Top View)

### CY8C24994

#### 1.6 100-Ball VFBGA Part Pinout (On-Chip Debug)

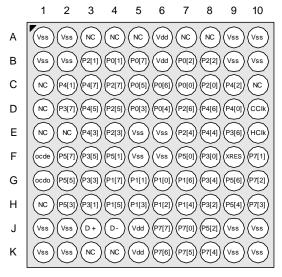

The 100-pin VFBGA part table and drawing below is for the CY8C24094 On-Chip Debug (OCD) PSoC device. Note This part is only used for in-circuit debugging. It is NOT available for production.

Table 1-6. 100-Ball Part Pinout (VFBGA)

| Pin<br>No. | Digital | Analog | Name  | Description                                | Pin<br>No. | Digital | Analog | Name  | Description                                    |
|------------|---------|--------|-------|--------------------------------------------|------------|---------|--------|-------|------------------------------------------------|
| A1         | Pov     | ver    | Vss   | Ground connection.                         | F1         |         |        | OCDE  | OCD even data IO.                              |
| A2         | Pov     | wer    | Vss   | Ground connection.                         | F2         | Ю       | М      | P5[7] |                                                |
| A3         |         |        | NC    | No connection.                             | F3         | 9       | М      | P3[5] |                                                |
| A4         |         |        | NC    | No connection.                             | F4         | 0       | М      | P5[1] |                                                |
| A5         |         |        | NC    | No connection.                             | F5         | Po      | wer    | Vss   | Ground connection.                             |
| A6         | Pov     | ver    | Vdd   | Supply voltage.                            | F6         |         | wer    | Vss   | Ground connection.                             |
| A7         |         |        | NC    | No connection.                             | F7         | Ю       | М      | P5[0] |                                                |
| A8         |         |        | NC    | No connection.                             | F8         | Ю       | M      | P3[0] |                                                |
| A9         | Pov     |        | Vss   | Ground connection.                         | F9         |         |        | XRES  | Active high pin reset with internal pull down. |
| A10        | Pov     |        | Vss   | Ground connection.                         | F10        | Ю       |        | P7[1] |                                                |
| B1         | Pov     |        | Vss   | Ground connection.                         | G1         |         |        | OCDO  | OCD odd data output.                           |
| B2         | Pov     |        | Vss   | Ground connection.                         | G2         | Ю       | М      | P5[5] |                                                |
| В3         | Ю       |        | P2[1] | Direct switched capacitor block input.     | G3         | Ю       | М      | P3[3] |                                                |
| B4         | Ю       |        | P0[1] | Analog column mux input.                   | G4         | Ю       | М      | P1[7] | I2C Serial Clock (SCL).                        |
| B5         | Ю       |        | P0[7] | Analog column mux input.                   | G5         | 0       | M      | P1[1] | I2C Serial Clock (SCL), ISSP SCLK*.            |
| B6         | Pov     |        | Vdd   | Supply voltage.                            | G6         | Ю       | М      | P1[0] | I2C Serial Data (SDA), ISSP SDATA*.            |
| B7         | Ю       |        | P0[2] | Analog column mux input.                   | G7         | Ю       | M      | P1[6] |                                                |
| B8         | Ю       |        | P2[2] | Direct switched capacitor block input.     | G8         | 0       | M      | P3[4] |                                                |
| B9         | Pov     |        | Vss   | Ground connection.                         | G9         | Ю       | М      | P5[6] |                                                |
| B10        | Pov     | ver    | Vss   | Ground connection.                         | G10        | Ю       |        | P7[2] |                                                |
| C1         |         |        | NC    | No connection.                             | H1         |         |        | NC    | No connection.                                 |
| C2         | Ю       |        | P4[1] |                                            | H2         | Ю       | М      | P5[3] |                                                |
| C3         | Ю       |        | P4[7] |                                            | Н3         | Ю       | М      | P3[1] |                                                |
| C4         | Ю       |        | P2[7] |                                            | H4         | Ю       | M      | P1[5] | I2C Serial Data (SDA).                         |
| C5         | Ю       |        | P0[5] | Analog column mux input and column output. | H5         | Ю       | M      | P1[3] |                                                |
| C6         | Ю       |        | P0[6] | Analog column mux input.                   | H6         | Ю       | М      | P1[2] |                                                |
| C7         | Ю       | I,M    | P0[0] | Analog column mux input.                   | H7         | Ю       | M      | P1[4] |                                                |
| C8         | Ю       |        | P2[0] | Direct switched capacitor block input.     | H8         | Ю       | М      | P3[2] |                                                |
| C9         | Ю       | М      | P4[2] |                                            | H9         | Ю       | М      | P5[4] |                                                |
| C10        |         |        | NC    | No connection.                             | H10        | Ю       |        | P7[3] |                                                |
| D1         |         |        | NC    | No connection.                             | J1         |         | wer    | Vss   | Ground connection.                             |
| D2         | Ю       |        | P3[7] |                                            | J2         |         | wer    | Vss   | Ground connection.                             |
| D3         | Ю       |        | P4[5] |                                            | J3         |         | SB     | D+    |                                                |
| D4         | Ю       |        | P2[5] |                                            | J4         |         | SB     | D-    |                                                |
| D5         | Ю       |        | P0[3] | Analog column mux input and column output. | J5         |         | wer    | Vdd   | Supply voltage.                                |
| D6         | Ю       |        | P0[4] | Analog column mux input.                   | J6         | Ю       |        | P7[7] |                                                |
| D7         | Ю       |        | P2[6] | External Voltage Reference (VREF) input.   | J7         | Ю       |        | P7[0] |                                                |
| D8         | Ю       |        | P4[6] |                                            | J8         | Ю       | М      | P5[2] |                                                |
| D9         | Ю       | М      | P4[0] |                                            | J9         |         | wer    | Vss   | Ground connection.                             |
| D10        |         |        | CCLK  | OCD CPU clock output.                      | J10        |         | wer    | Vss   | Ground connection.                             |
| E1         |         |        | NC    | No connection.                             | K1         |         | wer    | Vss   | Ground connection.                             |
| E2         |         |        |       | No connection.                             | K2         | Po      | wer    |       | Ground connection.                             |
| E3         | Ю       |        | P4[3] |                                            | K3         |         |        | NC    | No connection.                                 |
| E4         | Ю       |        | P2[3] | Direct switched capacitor block input.     | K4         |         |        | NC    | No connection.                                 |
| E5         | Pov     |        | Vss   | Ground connection.                         | K5         |         | wer    | Vdd   | Supply voltage.                                |
| E6         |         | ver    | Vss   | Ground connection.                         | K6         | 10      |        | P7[6] |                                                |
| E7         | Ю       |        | P2[4] | External Analog Ground (AGND) input.       | K7         | Ю       |        | P7[5] |                                                |
| E8         | Ю       |        | P4[4] |                                            | K8         | Ю       |        | P7[4] |                                                |
| E9         | Ю       | М      | P3[6] |                                            | K9         |         | wer    | Vss   | Ground connection.                             |
| E10        |         |        | HCLK  | OCD high-speed clock output.               | K10        | Po      | wer    | Vss   | Ground connection.                             |

LEGEND A = Analog, I = Input, O = Output, M = Analog Mux Input, NC = No Connection, OCD = On-Chip Debugger.

\* This is the ISSP pin, which is not High Z at POR. See the PSoC Mixed-Signal Array Technical Reference Manual for details.



BGA (Top View)

### CY8C24094 OCD

**Not for Production** 

#### 1.7 100-Pin Part Pinout (On-Chip Debug)

The 100-pin TQFP part is for the CY8C24094 On-Chip Debug (OCD) PSoC device.

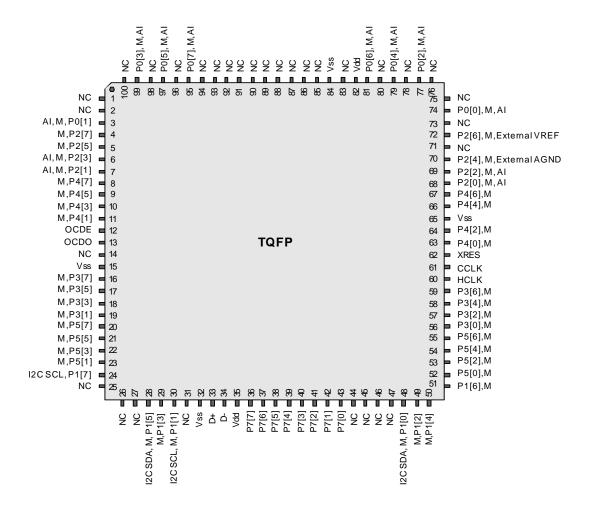

Note This part is only used for in-circuit debugging. It is NOT available for production

Table 1-7. 100-Pin Part Pinout (TQFP)

| Pin<br>No. | Digital | Analog | Name  | Description                                            | Pin<br>No. | Digital | Analog   | Name        | Description                                    |
|------------|---------|--------|-------|--------------------------------------------------------|------------|---------|----------|-------------|------------------------------------------------|
| 1          |         |        | NC    | No connection.                                         | 51         | Ю       | М        | P1[6]       |                                                |
| 2          |         |        | NC    | No connection.                                         | 52         | Ю       | М        | P5[0]       |                                                |
| 3          | Ю       | I, M   | P0[1] | Analog column mux input.                               | 53         | Ю       | М        | P5[2]       |                                                |
| 4          | Ю       | М      | P2[7] |                                                        | 54         | Ю       | М        | P5[4]       |                                                |
| 5          | Ю       | М      | P2[5] |                                                        | 55         | 10      | М        | P5[6]       |                                                |
| 6          | Ю       | I, M   | P2[3] | Direct switched capacitor block input.                 | 56         | Ю       | М        | P3[0]       |                                                |
| 7          | Ю       | I, M   | P2[1] | Direct switched capacitor block input.                 | 57         | Ю       | М        | P3[2]       |                                                |
| 8          | Ю       | М      | P4[7] |                                                        | 58         | 10      | М        | P3[4]       |                                                |
| 9          | Ю       | М      | P4[5] |                                                        | 59         | Ю       | М        | P3[6]       |                                                |
| 10         | Ю       | М      | P4[3] |                                                        | 60         |         | ı        | HCLK        | OCD high-speed clock output.                   |
| 11         | Ю       | М      | P4[1] |                                                        | 61         |         |          | CCLK        | OCD CPU clock output.                          |
| 12         |         |        | OCDE  | OCD even data IO.                                      | 62         | In      | put      | XRES        | Active high pin reset with internal pull down. |
| 13         |         |        | OCDO  | OCD odd data output.                                   | 63         | Ю       | М        | P4[0]       |                                                |
| 14         |         |        | NC    | No connection.                                         | 64         | Ю       | М        | P4[2]       |                                                |
| 15         | Pov     | ver    | Vss   | Ground connection.                                     | 65         | Po      | wer      | Vss         | Ground connection.                             |
| 16         | Ю       | М      | P3[7] |                                                        | 66         | Ю       | М        | P4[4]       |                                                |
| 17         | Ю       | М      | P3[5] |                                                        | 67         | 10      | М        | P4[6]       |                                                |
| 18         | 10      | М      | P3[3] |                                                        | 68         | 10      | I, M     | P2[0]       | Direct switched capacitor block input.         |
| 19         | 10      | М      | P3[1] |                                                        | 69         | 10      | I, M     | P2[2]       | Direct switched capacitor block input.         |
| 20         | 10      | M      | P5[7] |                                                        | 70         | 10      | .,       | P2[4]       | External Analog Ground (AGND) input.           |
| 21         | IO      | M      | P5[5] |                                                        | 71         |         | <u> </u> | NC          | No connection.                                 |
| 22         | 10      | M      | P5[3] |                                                        | 72         | Ю       | 1        | P2[6]       | External Voltage Reference (VREF) input.       |
| 23         | 10      | M      | P5[1] |                                                        | 73         |         |          | NC          | No connection.                                 |
| 24         | 10      | M      | P1[7] | I2C Serial Clock (SCL).                                | 74         | Ю       | 1        | P0[0]       | Analog column mux input.                       |
| 25         | 10      | 141    | NC    | No connection.                                         | 75         | 10      |          | NC          | No connection.                                 |
| 26         |         |        | NC    | No connection.                                         | 76         |         |          | NC          | No connection.                                 |
| 27         |         |        | NC    | No connection.                                         | 77         | 10      | I, M     | P0[2]       | Analog column mux input and column output.     |
| 28         | 10      |        | P1[5] | I2C Serial Data (SDA)                                  | 78         | 10      | 1, 101   | NC          | No connection.                                 |
| 29         | IO      |        | P1[3] | 12C Seriai Data (SDA)                                  | 79         | 10      | I, M     | P0[4]       | Analog column mux input and column output.     |
| 30         | Ю       |        | P1[1] | Crystal (XTALin), I2C Serial Clock (SCL), ISSP SCLK*.  | 80         | 10      | 1, 101   | NC          | No connection.                                 |
| 31         |         |        | NC    | No connection.                                         | 81         | Ю       | I, M     | P0[6]       | Analog column mux input.                       |
| 32         | Pov     | vor    | Vss   | Ground connection.                                     | 82         |         | wer      | Vdd         | Supply voltage.                                |
| 33         | US      | _      | D+    | Ground connection.                                     | 83         | 10      | WCI      | NC          | No connection.                                 |
| 34         | US      |        | D-    |                                                        | 84         | Po      | wer      | Vss         | Ground connection.                             |
| 35         | Pov     |        | Vdd   | Supply voltage.                                        | 85         |         | WCI      | NC          | No connection.                                 |
| 36         | 10      | VCI    | P7[7] | Supply voltage.                                        | 86         |         |          | NC          | No connection.                                 |
| 37         | Ю       |        | P7[6] |                                                        | 87         |         |          | NC          | No connection.                                 |
| 38         | 10      |        | P7[5] |                                                        | 88         |         |          | NC          | No connection.                                 |
| 39         | IO      |        | P7[4] |                                                        | 89         |         |          | NC          | No connection.                                 |
| 40         | 10      |        | P7[3] |                                                        | 90         |         |          | NC          |                                                |
|            | 10      |        |       |                                                        | 91         |         |          |             | No connection.                                 |
| 41         |         |        | P7[2] |                                                        | 91         |         |          | NC          | No connection.                                 |
| 42         | 10      |        | P7[1] |                                                        |            |         |          | NC          | No connection.                                 |
| 43         | Ю       |        | P7[0] | No connection                                          | 93         |         |          | NC          | No connection.                                 |
| 44         |         |        | NC    | No connection.                                         | 94         | 10      | 1.84     | NC<br>DOIZI | No connection.                                 |
| 45         |         |        | NC    | No connection.                                         | 95         | 10      | I, M     | P0[7]       | Analog column mux input.                       |
| 46         |         |        | NC    | No connection.                                         | 96         | 10      | 10.11    | NC          | No connection.                                 |
| 47         | 10      |        | NC    | No connection.                                         | 97         | 10      | IO, M    |             | Analog column mux input and column output.     |
| 48         | 10      |        | P1[0] | Crystal (XTALout), I2C Serial Data (SDA), ISSP SDATA*. | 98         |         |          | NC          | No connection.                                 |
| 49         | 10      |        | P1[2] |                                                        | 99         | 10      | IO, M    |             | Analog column mux input and column output.     |
| 50         | Ю       |        | P1[4] | Optional External Clock Input (EXTCLK).                | 100        |         |          | NC          | No connection.                                 |

**LEGEND** A = Analog, I = Input, O = Output, NC = No Connection, M = Analog Mux Input, OCD = On-Chip Debugger.

\* These are the ISSP pins, which are not High Z at POR. See the *PSoC Mixed-Signal Array Technical Reference Manual* for details.



CY8C24094 OCD

**Not for Production** 

# 2. Register Reference



This chapter lists the registers of the CY8C24x94 PSoC device family. For detailed register information, reference the PSoC Mixed-Signal Array Technical Reference Manual.

# 2.1 Register Conventions

### 2.1.1 Abbreviations Used

The register conventions specific to this section are listed in the following table.

| Convention | Description                  |  |  |  |  |  |
|------------|------------------------------|--|--|--|--|--|
| R          | Read register or bit(s)      |  |  |  |  |  |
| W          | Write register or bit(s)     |  |  |  |  |  |
| L          | Logical register or bit(s)   |  |  |  |  |  |
| С          | Clearable register or bit(s) |  |  |  |  |  |
| #          | Access is bit specific       |  |  |  |  |  |

# 2.2 Register Mapping Tables

The PSoC device has a total register address space of 512 bytes. The register space is referred to as IO space and is divided into two banks. The XOI bit in the Flag register (CPU\_F) determines which bank the user is currently in. When the XOI bit is set the user is in Bank 1.

**Note** In the following register mapping tables, blank fields are Reserved and should not be accessed.

# Register Map Bank 0 Table: User Space

| 7                    | 6,              | Þ        | 7                    | 6,              | Þ       | 7                    | 6,              | Þ        | 7                 | 6 v             | Þ        |
|----------------------|-----------------|----------|----------------------|-----------------|---------|----------------------|-----------------|----------|-------------------|-----------------|----------|
| Name                 | Addr<br>(0,Hex) | Access   | Name                 | Addr<br>(0,Hex) | Access  | Name                 | Addr<br>(0,Hex) | Access   | Name              | Addr<br>(0,Hex) | Access   |
| PRT0DR               | 00              | RW       | PMA0_DR              | 40              | RW      | ASC10CR0             | 80              | RW       |                   | C0              |          |
| PRT0IE               | 01              | RW       | PMA1_DR              | 41              | RW      | ASC10CR1             | 81              | RW       |                   | C1              |          |
| PRT0GS               | 02              | RW       | PMA2_DR              | 42              | RW      | ASC10CR2             | 82              | RW       |                   | C2              | +        |
| PRT0DM2<br>PRT1DR    | 03              | RW       | PMA3_DR<br>PMA4_DR   | 43              | RW      | ASC10CR3<br>ASD11CR0 | 83<br>84        | RW<br>RW |                   | C3<br>C4        | -        |
| PRT1IE               | 05              | RW       | PMA5 DR              | 45              | RW      | ASD11CR0<br>ASD11CR1 | 85              | RW       |                   | C5              | +        |
| PRT1GS               | 06              | RW       | PMA6_DR              | 46              | RW      | ASD11CR2             | 86              | RW       |                   | C6              | 1        |
| PRT1DM2              | 07              | RW       | PMA7_DR              | 47              | RW      | ASD11CR3             | 87              | RW       |                   | C7              |          |
| PRT2DR               | 08              | RW       | USB_SOF0             | 48              | R       |                      | 88              |          |                   | C8              | 1        |
| PRT2IE               | 09              | RW       | USB_SOF1             | 49              | R       |                      | 89              |          |                   | C9              |          |
| PRT2GS               | 0A              | RW       | USB_CR0              | 4A              | RW      |                      | 8A              |          |                   | CA              |          |
| PRT2DM2              | 0B              | RW       | USBIO_CR0            | 4B              | #       |                      | 8B              |          |                   | CB              |          |
| PRT3DR               | 0C              | RW       | USBIO_CR1            | 4C              | RW      |                      | 8C              |          |                   | CC              |          |
| PRT3IE               | 0D              | RW       |                      | 4D              |         |                      | 8D              |          |                   | CD              |          |
| PRT3GS               | 0E              | RW       | EP1_CNT1             | 4E              | #       |                      | 8E              |          |                   | CE              |          |
| PRT3DM2              | 0F              | RW       | EP1_CNT              | 4F              | RW      | 40000000             | 8F              | 514      | 0115 55           | CF              | 5144     |
| PRT4DR               | 10              | RW       | EP2_CNT1             | 50              | #       | ASD20CR0             | 90              | RW       | CUR_PP            | D0              | RW       |
| PRT4IE               | 11<br>12        | RW       | EP2_CNT<br>EP3_CNT1  | 51<br>52        | RW<br># | ASD20CR1             | 91<br>92        | RW       | STK_PP            | D1<br>D2        | RW       |
| PRT4GS<br>PRT4DM2    | 13              | RW<br>RW | EP3_CNT1             | 53              | #<br>RW | ASD20CR2<br>ASD20CR3 | 93              | RW<br>RW | IDX PP            | D3              | RW       |
| PRT5DR               | 14              | RW       | EP4_CNT1             | 54              | #       | ASC21CR0             | 94              | RW       | MVR PP            | D3              | RW       |
| PRT5IE               | 15              | RW       | EP4 CNT              | 55              | RW      | ASC21CR0             | 95              | RW       | MVW PP            | D5              | RW       |
| PRT5GS               | 16              | RW       | EP0 CR               | 56              | #       | ASC21CR2             | 96              | RW       | I2C_CFG           | D6              | RW       |
| PRT5DM2              | 17              | RW       | EP0_CNT              | 57              | #       | ASC21CR3             | 97              | RW       | I2C_SCR           | D7              | #        |
|                      | 18              |          | EP0 DR0              | 58              | RW      |                      | 98              |          | I2C_DR            | D8              | RW       |
|                      | 19              |          | EP0_DR1              | 59              | RW      |                      | 99              |          | I2C_MSCR          | D9              | #        |
|                      | 1A              |          | EP0_DR2              | 5A              | RW      |                      | 9A              |          | INT_CLR0          | DA              | RW       |
|                      | 1B              |          | EP0_DR3              | 5B              | RW      |                      | 9B              |          | INT_CLR1          | DB              | RW       |
| PRT7DR               | 1C              | RW       | EP0_DR4              | 5C              | RW      |                      | 9C              |          | INT_CLR2          | DC              | RW       |
| PRT7IE               | 1D              | RW       | EP0_DR5              | 5D              | RW      |                      | 9D              |          | INT_CLR3          | DD              | RW       |
| PRT7GS               | 1E              | RW       | EP0_DR6              | 5E              | RW      |                      | 9E              |          | INT_MSK3          | DE              | RW       |
| PRT7DM2              | 1F              | RW       | EP0_DR7              | 5F              | RW      |                      | 9F              |          | INT_MSK2          | DF              | RW       |
| DBB00DR0             | 20              | #        | AMX_IN               | 60              | RW      |                      | A0              |          | INT_MSK0          | E0              | RW       |
| DBB00DR1             | 21              | W        | AMUXCFG              | 61              | RW      |                      | A1              |          | INT_MSK1          | E1              | RW       |
| DBB00DR2<br>DBB00CR0 | 22              | RW<br>#  | ARF_CR               | 62<br>63        | RW      |                      | A2<br>A3        |          | INT_VC<br>RES WDT | E2<br>E3        | RC<br>W  |
| DBB00CR0             | 24              | #        | CMP_CR0              | 64              | #       |                      | A4              |          | DEC DH            | E4              | RC       |
| DBB01DR1             | 25              | W        | ASY_CR               | 65              | #       |                      | A5              |          | DEC_DIT           | E5              | RC       |
| DBB01DR2             | 26              | RW       | CMP CR1              | 66              | RW      |                      | A6              |          | DEC_CR0           | E6              | RW       |
| DBB01CR0             | 27              | #        |                      | 67              |         |                      | A7              |          | DEC_CR1           | E7              | RW       |
| DCB02DR0             | 28              | #        |                      | 68              |         | MUL1_X               | A8              | W        | MUL0_X            | E8              | W        |
| DCB02DR1             | 29              | W        |                      | 69              |         | MUL1_Y               | A9              | W        | MUL0_Y            | E9              | W        |
| DCB02DR2             | 2A              | RW       |                      | 6A              |         | MUL1_DH              | AA              | R        | MUL0_DH           | EA              | R        |
| DCB02CR0             | 2B              | #        |                      | 6B              |         | MUL1_DL              | AB              | R        | MUL0_DL           | EB              | R        |
| DCB03DR0             | 2C              | #        | TMP_DR0              | 6C              | RW      | ACC1_DR1             | AC              | RW       | ACC0_DR1          | EC              | RW       |
| DCB03DR1             | 2D              | W        | TMP_DR1              | 6D              | RW      | ACC1_DR0             | AD              | RW       | ACC0_DR0          | ED              | RW       |
| DCB03DR2             | 2E              | RW       | TMP_DR2              | 6E              | RW      | ACC1_DR3             | AE              | RW       | ACC0_DR3          | EE              | RW       |
| DCB03CR0             | 2F<br>30        | #        | TMP_DR3              | 6F              | RW      | ACC1_DR2             | AF              | RW<br>RW | ACC0_DR2          | EF              | RW       |
|                      | 31              |          | ACB00CR3<br>ACB00CR0 | 70<br>71        | RW      | RDI0RI<br>RDI0SYN    | B0<br>B1        | RW       |                   | F0<br>F1        | +        |
|                      | 32              |          | ACB00CR0             | 72              | RW      | RDI0STN<br>RDI0IS    | B2              | RW       |                   | F2              | +        |
|                      | 33              |          | ACB00CR1             | 73              | RW      | RDI0IS<br>RDI0LT0    | B3              | RW       |                   | F3              |          |
|                      | 34              |          | ACB01CR3             | 74              | RW      | RDIOLT1              | B4              | RW       |                   | F4              | 1        |
|                      | 35              |          | ACB01CR0             | 75              | RW      | RDI0RO0              | B5              | RW       |                   | F5              | <b>†</b> |
|                      | 36              |          | ACB01CR1             | 76              | RW      | RDI0RO1              | B6              | RW       |                   | F6              | 1        |
|                      | 37              |          | ACB01CR2             | 77              | RW      |                      | B7              |          | CPU_F             | F7              | RL       |
|                      | 38              |          |                      | 78              |         |                      | B8              |          |                   | F8              |          |
|                      | 39              |          |                      | 79              |         |                      | В9              |          |                   | F9              |          |
|                      | 3A              |          |                      | 7A              |         |                      | BA              |          |                   | FA              |          |
|                      | 3B              |          |                      | 7B              |         |                      | BB              |          |                   | FB              |          |
|                      | 3C              |          |                      | 7C              |         |                      | BC              |          |                   | FC              |          |
|                      | 3D              |          |                      | 7D              |         |                      | BD              |          | DAC_D             | FD              | RW       |
|                      | 3E              |          |                      | 7E              |         |                      | BE              |          | CPU_SCR1          | FE              | #        |
| Diamir Cold          | 3F              | <u> </u> | d should not be      | 7F              |         | # Access is bit      | BF              |          | CPU_SCR0          | FF              | #        |
| DIADK HEIDS 2        | ITA KASA        | rvon an  | IN COMMINA NAT NA    | 3000            |         |                      |                 |          |                   |                 |          |

# Access is bit specific.

# Register Map Bank 1 Table: Configuration Space

| Name    | Addr<br>(1,Hex) | Access                                           | Name              | Addr<br>(1,Hex) | Access                                           | Name            | Addr<br>(1,Hex) | Access       | Name      | Addr<br>(1,Hex) | Access                                           |
|---------|-----------------|--------------------------------------------------|-------------------|-----------------|--------------------------------------------------|-----------------|-----------------|--------------|-----------|-----------------|--------------------------------------------------|
| PRT0DM0 | 00              | RW                                               | PMA0_WA           | 40              | RW                                               | ASC10CR0        | 80              | RW           | USBIO_CR2 | C0              | RW                                               |
| PRT0DM1 | 01              | RW                                               | PMA1_WA           | 41              | RW                                               | ASC10CR1        | 81              | RW           | USB_CR1   | C1              | #                                                |
| PRT0IC0 | 02              | RW                                               | PMA2_WA           | 42              | RW                                               | ASC10CR2        | 82              | RW           |           |                 |                                                  |
| PRT0IC1 | 03              | RW                                               | PMA3_WA           | 43              | RW                                               | ASC10CR3        | 83              | RW           |           |                 |                                                  |
| PRT1DM0 | 04              | RW                                               | PMA4_WA           | 44              | RW                                               | ASD11CR0        | 84              | RW           | EP1_CR0   | C4              | #                                                |
| PRT1DM1 | 05              | RW                                               | PMA5_WA           | 45              | RW                                               | ASD11CR1        | 85              | RW           | EP2_CR0   | C5              | #                                                |
| PRT1IC0 | 06              | RW                                               | PMA6_WA           | 46              | RW                                               | ASD11CR2        | 86              | RW           | EP3_CR0   | C6              | #                                                |
| PRT1IC1 | 07              | RW                                               | PMA7_WA           | 47              | RW                                               | ASD11CR3        | 87              | RW           | EP4_CR0   | C7              | #                                                |
| PRT2DM0 | 80              | RW                                               |                   | 48              |                                                  |                 | 88              |              |           | C8              |                                                  |
| PRT2DM1 | 09              | RW                                               |                   | 49              |                                                  |                 | 89              |              |           | C9              |                                                  |
| PRT2IC0 | 0A              | RW                                               |                   | 4A              |                                                  |                 | 8A              |              |           | CA              |                                                  |
| PRT2IC1 | 0B              | RW                                               |                   | 4B              |                                                  |                 | 8B              |              |           | CB              |                                                  |
| PRT3DM0 | 0C              | RW                                               |                   | 4C              |                                                  |                 | 8C              |              |           | CC              |                                                  |
| PRT3DM1 | 0D              | RW                                               |                   | 4D              |                                                  |                 | 8D              |              |           | CD              |                                                  |
| PRT3IC0 | 0E              | RW                                               |                   | 4E              |                                                  |                 | 8E              |              |           | CE              |                                                  |
| PRT3IC1 | 0F              | RW                                               |                   | 4F              |                                                  |                 | 8F              |              |           | CF              |                                                  |
| PRT4DM0 | 10              | RW                                               | PMA0_RA           | 50              | RW                                               |                 | 90              |              | GDI_O_IN  | D0              | RW                                               |
| PRT4DM1 | 11              | RW                                               | PMA1_RA           | 51              | RW                                               | ASD20CR1        | 91              | RW           | GDI_E_IN  | D1              | RW                                               |
| PRT4IC0 | 12              | RW                                               | PMA2_RA           | 52              | RW                                               | ASD20CR2        | 92              | RW           | GDI_O_OU  | D2              | RW                                               |
| PRT4IC1 | 13              | RW                                               | PMA3_RA           | 53              | RW                                               | ASD20CR3        | 93              | RW           | GDI_E_OU  | D3              | RW                                               |
| PRT5DM0 | 14              | RW                                               | PMA4_RA           | 54              | RW                                               | ASC21CR0        | 94              | RW           |           | D4              |                                                  |
| PRT5DM1 | 15              | RW                                               | PMA5_RA           | 55              | RW                                               | ASC21CR1        | 95              | RW           |           | D5              |                                                  |
| PRT5IC0 | 16              | RW                                               | PMA6_RA           | 56              | RW                                               | ASC21CR2        | 96              | RW           |           | D6              |                                                  |
| PRT5IC1 | 17              | RW                                               | PMA7_RA           | 57              | RW                                               | ASC21CR3        | 97              | RW           |           | D7              |                                                  |
|         | 18              |                                                  |                   | 58              |                                                  |                 | 98              |              | MUX_CR0   | D8              | RW                                               |
|         | 19              |                                                  |                   | 59              |                                                  |                 | 99              |              | MUX_CR1   | D9              | RW                                               |
|         | 1A              |                                                  |                   | 5A              |                                                  |                 | 9A              |              | MUX_CR2   | DA              | RW                                               |
|         | 1B              |                                                  |                   | 5B              |                                                  |                 | 9B              |              | MUX_CR3   | DB              | RW                                               |
| PRT7DM0 | 1C              | RW                                               |                   | 5C              |                                                  |                 | 9C              |              |           | DC              |                                                  |
| PRT7DM1 | 1D              | RW                                               |                   | 5D              |                                                  |                 | 9D              |              | OSC_GO_EN | DD              | RW                                               |
| PRT7IC0 | 1E              | RW                                               |                   | 5E              |                                                  |                 | 9E              |              | OSC_CR4   | DE              | RW                                               |
| PRT7IC1 | 1F              | RW                                               |                   | 5F              |                                                  |                 | 9F              |              | OSC_CR3   | DF              | RW                                               |
| DBB00FN | 20              | RW                                               | CLK_CR0           | 60              | RW                                               |                 | A0              |              | OSC_CR0   | E0              | RW                                               |
| DBB00IN | 21              | RW                                               | CLK_CR1           | 61              | RW                                               |                 | A1              |              | OSC_CR1   | E1              | RW                                               |
| DBB00OU | 22              | RW                                               | ABF_CR0           | 62              | RW                                               |                 | A2              |              | OSC_CR2   | E2              | RW                                               |
|         | 23              |                                                  | AMD_CR0           | 63              | RW                                               |                 | A3              |              | VLT_CR    | E3              | RW                                               |
| DBB01FN | 24              | RW                                               | CMP_GO_EN         | 64              | RW                                               |                 | A4              |              | VLT_CMP   | E4              | R                                                |
| DBB01IN | 25              | RW                                               | CMP_GO_EN1        | 65              | RW                                               |                 | A5              |              | _         | E5              |                                                  |
| DBB01OU | 26              | RW                                               | AMD_CR1           | 66              | RW                                               |                 | A6              |              |           | E6              |                                                  |
|         | 27              |                                                  | ALT_CR0           | 67              | RW                                               |                 | A7              |              |           | E7              |                                                  |
| DCB02FN | 28              | RW                                               |                   | 68              |                                                  |                 | A8              |              | IMO_TR    | E8              | W                                                |
| DCB02IN | 29              | RW                                               |                   | 69              |                                                  |                 | A9              |              | ILO_TR    | E9              | W                                                |
| DCB02OU | 2A              | RW                                               |                   | 6A              |                                                  |                 | AA              |              | BDG_TR    | EA              | RW                                               |
|         | 2B              |                                                  |                   | 6B              |                                                  |                 | AB              |              | ECO_TR    | EB              | W                                                |
| DCB03FN | 2C              | RW                                               | TMP_DR0           | 6C              | RW                                               |                 | AC              |              | MUX_CR4   | EC              | RW                                               |
| DCB03IN | 2D              | RW                                               | TMP_DR1           | 6D              | RW                                               |                 | AD              |              | MUX_CR5   | ED              | RW                                               |
| DCB03OU | 2E              | RW                                               | TMP_DR2           | 6E              | RW                                               |                 | AE              |              |           | EE              |                                                  |
|         | 2F              |                                                  | TMP_DR3           | 6F              | RW                                               |                 | AF              |              |           | EF              |                                                  |
|         | 30              |                                                  | ACB00CR3          | 70              | RW                                               | RDI0RI          | B0              | RW           |           | F0              |                                                  |
|         | 31              |                                                  | ACB00CR0          | 71              | RW                                               | RDI0SYN         | B1              | RW           |           | F1              | 1                                                |
|         | 32              |                                                  | ACB00CR1          | 72              | RW                                               | RDI0IS          | B2              | RW           |           | F2              |                                                  |
|         | 33              |                                                  | ACB00CR2          | 73              | RW                                               | RDI0LT0         | B3              | RW           |           | F3              |                                                  |
|         | 34              |                                                  | ACB01CR3          | 74              | RW                                               | RDI0LT1         | B4              | RW           |           | F4              |                                                  |
|         | 35              |                                                  | ACB01CR0          | 75              | RW                                               | RDI0RO0         | B5              | RW           |           | F5              |                                                  |
|         | 36              |                                                  | ACB01CR1          | 76              | RW                                               | RDI0RO1         | B6              | RW           |           | F6              |                                                  |
|         | 37              | 1                                                | ACB01CR2          | 77              | RW                                               |                 | B7              | <del> </del> | CPU F     | F7              | RL                                               |
|         | 38              | <del> </del>                                     |                   | 78              | 1                                                |                 | B8              | 1            | <u> </u>  | F8              | <del>  ` ` -</del>                               |
|         | 39              |                                                  |                   | 79              |                                                  |                 | B9              |              |           | F9              | <del>                                     </del> |
|         | 3A              | <del> </del>                                     |                   | 7A              | <del>                                     </del> |                 | BA              | 1            |           | FA              | <del>                                     </del> |
|         | 3B              | <del>                                     </del> |                   | 7B              | <del>                                     </del> |                 | BB              | <del> </del> |           | FB              | 1                                                |
|         | 3C              | 1                                                |                   | 7C              | 1                                                |                 | BC              |              | 1         | FC              | <del>                                     </del> |
|         | 3D              | 1                                                |                   | 7D              | 1                                                |                 | BD              |              | DAC_CR    | FD              | RW                                               |
|         | 3E              | -                                                |                   | 7E              | -                                                |                 | BE              | -            | CPU_SCR1  | FE              | #                                                |
|         | 3F              | 1                                                |                   | 7F              | 1                                                |                 | BF              |              | CPU_SCR1  | FF              | #                                                |
|         |                 | L                                                | d should not be a |                 | <u> </u>                                         | # Access is bit |                 | l            | OFU_SCRU  | L 1 1,          | #                                                |

Blank fields are Reserved and should not be accessed.

# Access is bit specific.

# 3. Electrical Specifications



This chapter presents the DC and AC electrical specifications of the CY8C24x94 PSoC device family. For the most up to date electrical specifications, confirm that you have the most recent data sheet by going to the web at <a href="http://www.cypress.com/psoc">http://www.cypress.com/psoc</a>.

Specifications are valid for  $-40^{o}C \le T_{A} \le 85^{o}C$  and  $T_{J} \le 100^{o}C$ , except where noted. Specifications for devices running at greater than 12 MHz are valid for  $-40^{o}C \le T_{A} \le 70^{o}C$  and  $T_{J} \le 82^{o}C$ .

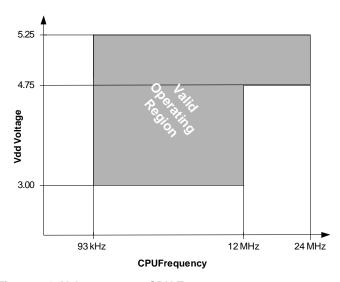



Figure 3-1. Voltage versus CPU Frequency

The following table lists the units of measure that are used in this chapter.

Table 3-1: Units of Measure

| Symbol | Unit of Measure             | Symbol | Unit of Measure               |
|--------|-----------------------------|--------|-------------------------------|
| °C     | degree Celsius              | μW     | microwatts                    |
| dB     | decibels                    | mA     | milli-ampere                  |
| fF     | femto farad                 | ms     | milli-second                  |
| Hz     | hertz                       | mV     | milli-volts                   |
| KB     | 1024 bytes                  | nA     | nanoampere                    |
| Kbit   | 1024 bits                   | ns     | nanosecond                    |
| kHz    | kilohertz                   | nV     | nanovolts                     |
| kΩ     | kilohm                      | Ω      | ohm                           |
| MHz    | megahertz                   | pA     | picoampere                    |
| MΩ     | megaohm                     | pF     | picofarad                     |
| μΑ     | microampere                 | pp     | peak-to-peak                  |
| μF     | microfarad                  | ppm    | parts per million             |
| μН     | microhenry                  | ps     | picosecond                    |
| μS     | microsecond                 | sps    | samples per second            |
| μV     | microvolts                  | σ      | sigma: one standard deviation |
| μVrms  | microvolts root-mean-square | ٧      | volts                         |

# 3.1 Absolute Maximum Ratings

**Table 3-2. Absolute Maximum Ratings** 

| Symbol            | Description                                                   | Min       | Тур | Max       | Units | Notes                                                                                                                                                                                     |
|-------------------|---------------------------------------------------------------|-----------|-----|-----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T <sub>STG</sub>  | Storage Temperature                                           | -55       | 25  | +100      | °C    | Higher storage temperatures will reduce data retention time. Recommended storage temperature is +25°C ± 25°C. Extended duration storage temperatures above 65°C will degrade reliability. |
| T <sub>A</sub>    | Ambient Temperature with Power Applied                        | -40       | -   | +85       | °С    |                                                                                                                                                                                           |
| Vdd               | Supply Voltage on Vdd Relative to Vss                         | -0.5      | -   | +6.0      | ٧     |                                                                                                                                                                                           |
| $V_{IO}$          | DC Input Voltage                                              | Vss - 0.5 | -   | Vdd + 0.5 | ٧     |                                                                                                                                                                                           |
| V <sub>IO2</sub>  | DC Voltage Applied to Tri-state                               | Vss - 0.5 | _   | Vdd + 0.5 | ٧     |                                                                                                                                                                                           |
| I <sub>MIO</sub>  | Maximum Current into any Port Pin                             | -25       | _   | +50       | mA    |                                                                                                                                                                                           |
| I <sub>MAIO</sub> | Maximum Current into any Port Pin Configured as Analog Driver | -50       | _   | +50       | mA    |                                                                                                                                                                                           |
| ESD               | Electro Static Discharge Voltage                              | 2000      | _   | _         | V     | Human Body Model ESD.                                                                                                                                                                     |
| LU                | Latch-up Current                                              | _         | _   | 200       | mA    |                                                                                                                                                                                           |

# 3.2 Operating Temperature

**Table 3-3. Operating Temperature** 

| Symbol            | Description                   | Min | Тур | Max  | Units | Notes                                                                                                                                                                             |
|-------------------|-------------------------------|-----|-----|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T <sub>A</sub>    | Ambient Temperature           | -40 | -   | +85  | °C    |                                                                                                                                                                                   |
| T <sub>AUSB</sub> | Ambient Temperature using USB | -10 | _   | +85  | °C    |                                                                                                                                                                                   |
| T <sub>J</sub>    | Junction Temperature          | -40 | _   | +100 | °C    | The temperature rise from ambient to junction is package specific. See "Thermal Impedance" on page 43. The user must limit the power consumption to comply with this requirement. |

# 3.3 DC Electrical Characteristics

### 3.3.1 DC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and  $-40^{\circ}C \le T_A \le 85^{\circ}C$ , or 3.0V to 3.6V and  $-40^{\circ}C \le T_A \le 85^{\circ}C$ , respectively. Typical parameters apply to 5V and 3.3V at  $25^{\circ}C$  and are for design guidance only.

Table 3-4. DC Chip-Level Specifications

| Symbol           | Description                                                                                | Min | Тур | Max  | Units | Notes                                                                                                                                                           |
|------------------|--------------------------------------------------------------------------------------------|-----|-----|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vdd              | Supply Voltage                                                                             | 3.0 | -   | 5.25 | V     | See DC POR and LVD specifications, Table 3-14 on page 29.                                                                                                       |
| I <sub>DD5</sub> | Supply Current, IMO = 24 MHz (5V)                                                          | -   | 14  | 27   | mA    | Conditions are Vdd = $5.0$ V, $T_A = 25$ °C, CPU = $3$ MHz, SYSCLK doubler disabled, VC1 = $1.5$ MHz, VC2 = $93.75$ kHz, VC3 = $93.75$ kHz, analog power = off. |
| I <sub>DD3</sub> | Supply Current, IMO = 24 MHz (3.3V)                                                        | -   | 8   | 14   | mA    | Conditions are Vdd = $3.3$ V, $T_A = 25$ °C, CPU = $3$ MHz, SYSCLK doubler disabled, VC1 = $1.5$ MHz, VC2 = $93.75$ kHz, VC3 = $0.367$ kHz, analog power = off. |
| I <sub>SB</sub>  | Sleep (Mode) Current with POR, LVD, Sleep Timer, and WDT. <sup>a</sup>                     | _   | 3   | 6.5  | μА    | Conditions are with internal slow speed oscillator, Vdd = 3.3V, -40 $^{\circ}$ C $\leq$ T <sub>A</sub> $\leq$ 55 $^{\circ}$ C, analog power = off.              |
| I <sub>SBH</sub> | Sleep (Mode) Current with POR, LVD, Sleep Timer, and WDT at high temperature. <sup>a</sup> | -   | 4   | 25   | μА    | Conditions are with internal slow speed oscillator, Vdd = 3.3V, 55 $^{o}$ C < $T_{A} \le 85$ $^{o}$ C, analog power = off.                                      |

a. Standby current includes all functions (POR, LVD, WDT, Sleep Time) needed for reliable system operation. This should be compared with devices that have similar functions enabled.

### 3.3.2 DC General Purpose IO Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and  $-40^{\circ}C \le T_A \le 85^{\circ}C$ , or 3.0V to 3.6V and  $-40^{\circ}C \le T_A \le 85^{\circ}C$ , respectively. Typical parameters apply to 5V and 3.3V at  $25^{\circ}C$  and are for design guidance only.

Table 3-5. DC GPIO Specifications

| Symbol           | Description                       | Min       | Тур | Max  | Units | Notes                                                                                                                                                                                           |
|------------------|-----------------------------------|-----------|-----|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R <sub>PU</sub>  | Pull-Up Resistor                  | 4         | 5.6 | 8    | kΩ    |                                                                                                                                                                                                 |
| R <sub>PD</sub>  | Pull-Down Resistor                | 4         | 5.6 | 8    | kΩ    |                                                                                                                                                                                                 |
| V <sub>OH</sub>  | High Output Level                 | Vdd - 1.0 | -   | _    | V     | IOH = 10 mA, Vdd = 4.75 to 5.25V (8 total loads,<br>4 on even port pins (for example, P0[2], P1[4]),<br>4 on odd port pins (for example, P0[3], P1[5])).<br>80 mA maximum combined IOH budget.  |
| V <sub>OL</sub>  | Low Output Level                  | -         | -   | 0.75 | V     | IOL = 25 mA, Vdd = 4.75 to 5.25V (8 total loads,<br>4 on even port pins (for example, P0[2], P1[4]),<br>4 on odd port pins (for example, P0[3], P1[5])).<br>200 mA maximum combined IOL budget. |
| V <sub>IL</sub>  | Input Low Level                   | -         | _   | 0.8  | V     | Vdd = 3.0 to 5.25.                                                                                                                                                                              |
| V <sub>IH</sub>  | Input High Level                  | 2.1       | -   |      | V     | Vdd = 3.0 to 5.25.                                                                                                                                                                              |
| V <sub>H</sub>   | Input Hysterisis                  | -         | 60  | -    | mV    |                                                                                                                                                                                                 |
| I <sub>IL</sub>  | Input Leakage (Absolute Value)    | -         | 1   | -    | nA    | Gross tested to 1 μA.                                                                                                                                                                           |
| C <sub>IN</sub>  | Capacitive Load on Pins as Input  | -         | 3.5 | 10   | pF    | Package and pin dependent. Temp = 25°C.                                                                                                                                                         |
| C <sub>OUT</sub> | Capacitive Load on Pins as Output | -         | 3.5 | 10   | pF    | Package and pin dependent. Temp = 25°C.                                                                                                                                                         |

# 3.3.3 DC Full-Speed USB Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and  $-10^{\circ}C \le T_A \le 85^{\circ}C$ , or 3.0V to 3.6V and  $-10^{\circ}C \le T_A \le 85^{\circ}C$ , respectively. Typical parameters apply to 5V and 3.3V at  $25^{\circ}C$  and are for design guidance only.

Table 3-6. DC Full-Speed (12 Mbps) USB Specifications

| Symbol            | Description                          | Min | Тур | Max | Units | Notes                                           |
|-------------------|--------------------------------------|-----|-----|-----|-------|-------------------------------------------------|
| USB Inter         | rface                                |     |     |     |       |                                                 |
| $V_{DI}$          | Differential Input Sensitivity       | 0.2 | -   | -   | V     | (D+) - (D-)                                     |
| V <sub>CM</sub>   | Differential Input Common Mode Range | 0.8 | -   | 2.5 | V     |                                                 |
| $V_{SE}$          | Single Ended Receiver Threshold      | 0.8 | -   | 2.0 | V     |                                                 |
| C <sub>IN</sub>   | Transceiver Capacitance              | -   | -   | 20  | pF    |                                                 |
| I <sub>IO</sub>   | High-Z State Data Line Leakage       | -10 | _   | 10  | μА    | 0V < V <sub>IN</sub> < 3.3V.                    |
| R <sub>EXT</sub>  | External USB Series Resistor         | 23  | -   | 25  | Ω     | In series with each USB pin.                    |
| V <sub>UOH</sub>  | Static Output High, Driven           | 2.8 | -   | 3.6 | V     | 15 kΩ ± 5% to Ground. Internal pull-up enabled. |
| V <sub>UOHI</sub> | Static Output High, Idle             | 2.7 | -   | 3.6 | V     | 15 kΩ ± 5% to Ground. Internal pull-up enabled. |
| V <sub>UOL</sub>  | Static Output Low                    | -   | _   | 0.3 | V     | 15 kΩ ± 5% to Ground. Internal pull-up enabled. |
| Z <sub>O</sub>    | USB Driver Output Impedance          | 28  | -   | 44  | Ω     | Including R <sub>EXT</sub> Resistor.            |
| V <sub>CRS</sub>  | D+/D- Crossover Voltage              | 1.3 | -   | 2.0 | V     |                                                 |

### 3.3.4 DC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  $\leq$  T<sub>A</sub>  $\leq$  85°C, or 3.0V to 3.6V and -40°C  $\leq$  T<sub>A</sub>  $\leq$  85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

The Operational Amplifier is a component of both the Analog Continuous Time PSoC blocks and the Analog Switched Capacitor PSoC blocks. The guaranteed specifications are measured in the Analog Continuous Time PSoC block.

**Table 3-7. 5V DC Operational Amplifier Specifications** 

| Symbol               | Description                                               | Min       | Тур  | Max       | Units | Notes                                                                                                                                         |
|----------------------|-----------------------------------------------------------|-----------|------|-----------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>OSOA</sub>    | Input Offset Voltage (absolute value)                     |           |      |           |       |                                                                                                                                               |
|                      | Power = Low, Opamp Bias = High                            | _         | 1.6  | 10        | mV    |                                                                                                                                               |
|                      | Power = Medium, Opamp Bias = High                         | _         | 1.3  | 8         | mV    |                                                                                                                                               |
|                      | Power = High, Opamp Bias = High                           | _         | 1.2  | 7.5       | mV    |                                                                                                                                               |
| TCV <sub>OSOA</sub>  | Average Input Offset Voltage Drift                        | -         | 7.0  | 35.0      | μV/°C |                                                                                                                                               |
| I <sub>EBOA</sub>    | Input Leakage Current (Port 0 Analog Pins)                | -         | 20   | -         | pA    | Gross tested to 1 μA.                                                                                                                         |
| C <sub>INOA</sub>    | Input Capacitance (Port 0 Analog Pins)                    | -         | 4.5  | 9.5       | pF    | Package and pin dependent. Temp = 25°C.                                                                                                       |
| V <sub>CMOA</sub>    | Common Mode Voltage Range                                 | 0.0       | -    | Vdd       | V     | The common-mode input voltage range is mea-                                                                                                   |
|                      | Common Mode Voltage Range (high power or high opamp bias) | 0.5       | -    | Vdd - 0.5 |       | sured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer. |
| G <sub>OLOA</sub>    | Open Loop Gain                                            |           | -    | -         | dB    |                                                                                                                                               |
|                      | Power = Low, Opamp Bias = High                            | 60        |      |           |       |                                                                                                                                               |
|                      | Power = Medium, Opamp Bias = High                         | 60        |      |           |       |                                                                                                                                               |
|                      | Power = High, Opamp Bias = High                           | 80        |      |           |       |                                                                                                                                               |
| V <sub>OHIGHOA</sub> | High Output Voltage Swing (internal signals)              |           |      |           |       |                                                                                                                                               |
|                      | Power = Low, Opamp Bias = High                            | Vdd - 0.2 | -    | -         | V     |                                                                                                                                               |
|                      | Power = Medium, Opamp Bias = High                         | Vdd - 0.2 | -    | -         | V     |                                                                                                                                               |
|                      | Power = High, Opamp Bias = High                           | Vdd - 0.5 | -    | _         | V     |                                                                                                                                               |
| $V_{OLOWOA}$         | Low Output Voltage Swing (internal signals)               |           |      |           |       |                                                                                                                                               |
|                      | Power = Low, Opamp Bias = High                            | _         | -    | 0.2       | V     |                                                                                                                                               |
|                      | Power = Medium, Opamp Bias = High                         | -         | -    | 0.2       | V     |                                                                                                                                               |
|                      | Power = High, Opamp Bias = High                           | _         | -    | 0.5       | V     |                                                                                                                                               |
| I <sub>SOA</sub>     | Supply Current (including associated AGND buffer)         |           |      |           |       |                                                                                                                                               |
|                      | Power = Low, Opamp Bias = Low                             | _         | 400  | 800       | μΑ    |                                                                                                                                               |
|                      | Power = Low, Opamp Bias = High                            | -         | 500  | 900       | μΑ    |                                                                                                                                               |
|                      | Power = Medium, Opamp Bias = Low                          | _         | 800  | 1000      | μΑ    |                                                                                                                                               |
|                      | Power = Medium, Opamp Bias = High                         | -         | 1200 | 1600      | μΑ    |                                                                                                                                               |
|                      | Power = High, Opamp Bias = Low                            | -         | 2400 | 3200      | μΑ    |                                                                                                                                               |
|                      | Power = High, Opamp Bias = High                           | _         | 4600 | 6400      | μΑ    |                                                                                                                                               |
| PSRR <sub>OA</sub>   | Supply Voltage Rejection Ratio                            | 65        | 80   | -         | dB    | $ \begin{aligned} &Vss \leq VIN \leq (Vdd - 2.25) \ or \ (Vdd - 1.25V) \leq VIN \\ &\leq Vdd. \end{aligned} $                                 |

Table 3-8. 3.3V DC Operational Amplifier Specifications

| Symbol               | Description                                       | Min       | Тур  | Max       | Units | Notes                                                                                                                                                                                   |
|----------------------|---------------------------------------------------|-----------|------|-----------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>OSOA</sub>    | Input Offset Voltage (absolute value)             |           |      |           |       |                                                                                                                                                                                         |
|                      | Power = Low, Opamp Bias = High                    | -         | 1.65 | 10        | mV    |                                                                                                                                                                                         |
|                      | Power = Medium, Opamp Bias = High                 | _         | 1.32 | 8         | mV    |                                                                                                                                                                                         |
|                      | High Power is 5 Volts Only                        |           |      |           |       |                                                                                                                                                                                         |
| TCV <sub>OSOA</sub>  | Average Input Offset Voltage Drift                | -         | 7.0  | 35.0      | μV/°C |                                                                                                                                                                                         |
| I <sub>EBOA</sub>    | Input Leakage Current (Port 0 Analog Pins)        | -         | 20   | _         | pA    | Gross tested to 1 μA.                                                                                                                                                                   |
| C <sub>INOA</sub>    | Input Capacitance (Port 0 Analog Pins)            | -         | 4.5  | 9.5       | pF    | Package and pin dependent. Temp = 25°C.                                                                                                                                                 |
| V <sub>CMOA</sub>    | Common Mode Voltage Range                         | 0.2       | _    | Vdd - 0.2 | V     | The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer. |
| G <sub>OLOA</sub>    | Open Loop Gain                                    |           | _    | _         | dB    |                                                                                                                                                                                         |
|                      | Power = Low, Opamp Bias = Low                     | 60        |      |           |       |                                                                                                                                                                                         |
|                      | Power = Medium, Opamp Bias = Low                  | 60        |      |           |       |                                                                                                                                                                                         |
|                      | Power = High, Opamp Bias = Low                    | 80        |      |           |       |                                                                                                                                                                                         |
| V <sub>OHIGHOA</sub> | High Output Voltage Swing (internal signals)      |           |      |           |       |                                                                                                                                                                                         |
|                      | Power = Low, Opamp Bias = Low                     | Vdd - 0.2 | -    | -         | V     |                                                                                                                                                                                         |
|                      | Power = Medium, Opamp Bias = Low                  | Vdd - 0.2 | -    | -         | V     |                                                                                                                                                                                         |
|                      | Power = High is 5V only                           | Vdd - 0.2 | -    | -         | V     |                                                                                                                                                                                         |
| $V_{OLOWOA}$         | Low Output Voltage Swing (internal signals)       |           |      |           |       |                                                                                                                                                                                         |
|                      | Power = Low, Opamp Bias = Low                     | -         | -    | 0.2       | V     |                                                                                                                                                                                         |
|                      | Power = Medium, Opamp Bias = Low                  | -         | -    | 0.2       | V     |                                                                                                                                                                                         |
|                      | Power = High, Opamp Bias = Low                    | _         | _    | 0.2       | V     |                                                                                                                                                                                         |
| I <sub>SOA</sub>     | Supply Current (including associated AGND buffer) |           |      |           |       |                                                                                                                                                                                         |
|                      | Power = Low, Opamp Bias = Low                     | -         | 400  | 800       | μΑ    |                                                                                                                                                                                         |
|                      | Power = Low, Opamp Bias = High                    | -         | 500  | 900       | μΑ    |                                                                                                                                                                                         |
|                      | Power = Medium, Opamp Bias = Low                  | _         | 800  | 1000      | μΑ    |                                                                                                                                                                                         |
|                      | Power = Medium, Opamp Bias = High                 | _         | 1200 | 1600      | μΑ    |                                                                                                                                                                                         |
|                      | Power = High, Opamp Bias = Low                    | _         | 2400 | 3200      | μΑ    |                                                                                                                                                                                         |
|                      | Power = High, Opamp Bias = High                   | _         | 4600 | 6400      | μΑ    |                                                                                                                                                                                         |
| PSRR <sub>OA</sub>   | Supply Voltage Rejection Ratio                    | 65        | 80   | -         | dB    | $ \begin{tabular}{ll} Vss \le VIN \le (Vdd - 2.25) \ or \ (Vdd - 1.25V) \le \\ VIN \le Vdd. \end{tabular} $                                                                             |

# 3.3.5 DC Analog Output Buffer Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and  $-40^{\circ}C \le T_A \le 85^{\circ}C$ , or 3.0V to 3.6V and  $-40^{\circ}C \le T_A \le 85^{\circ}C$ , respectively. Typical parameters apply to 5V and 3.3V at  $25^{\circ}C$  and are for design guidance only.

Table 3-9. 5V DC Analog Output Buffer Specifications

| Symbol               | Description                                                                  | Min                                | Тур | Max             | Units  | Notes                                                    |
|----------------------|------------------------------------------------------------------------------|------------------------------------|-----|-----------------|--------|----------------------------------------------------------|
| V <sub>OSOB</sub>    | Input Offset Voltage (Absolute Value)                                        | -                                  | 3   | 12              | mV     |                                                          |
| TCV <sub>OSOB</sub>  | Average Input Offset Voltage Drift                                           | -                                  | +6  | _               | μV/°C  |                                                          |
| V <sub>CMOB</sub>    | Common-Mode Input Voltage Range                                              | 0.5                                | -   | Vdd - 1.0       | V      |                                                          |
| R <sub>OUTOB</sub>   | Output Resistance                                                            |                                    |     |                 |        |                                                          |
|                      | Power = Low                                                                  | _                                  | 0.6 | _               | Ω      |                                                          |
|                      | Power = High                                                                 | _                                  | 0.6 | _               | Ω      |                                                          |
| V <sub>OHIGHOB</sub> | High Output Voltage Swing (Load = 32 ohms to Vdd/2) Power = Low Power = High | 0.5 x Vdd + 1.1<br>0.5 x Vdd + 1.1 |     | -               | V<br>V |                                                          |
| V <sub>OLOWOB</sub>  | Low Output Voltage Swing (Load = 32 ohms to Vdd/2)                           |                                    |     |                 |        |                                                          |
|                      | Power = Low                                                                  | _                                  | -   | 0.5 x Vdd - 1.3 | V      |                                                          |
|                      | Power = High                                                                 | -                                  | -   | 0.5 x Vdd - 1.3 | V      |                                                          |
| I <sub>SOB</sub>     | Supply Current Including Bias Cell (No Load)                                 |                                    |     |                 |        |                                                          |
|                      | Power = Low                                                                  | _                                  | 1.1 | 5.1             | mA     |                                                          |
|                      | Power = High                                                                 | _                                  | 2.6 | 8.8             | mA     |                                                          |
| PSRR <sub>OB</sub>   | Supply Voltage Rejection Ratio                                               | 53                                 | 64  | -               | dB     | $(0.5 \text{ x Vdd} - 1.3) \le V_{OUT} \le (Vdd - 2.3).$ |

Table 3-10. 3.3V DC Analog Output Buffer Specifications

| Symbol               | Description                                         | Min             | Тур | Max             | Units | Notes                                                                   |
|----------------------|-----------------------------------------------------|-----------------|-----|-----------------|-------|-------------------------------------------------------------------------|
| V <sub>OSOB</sub>    | Input Offset Voltage (Absolute Value)               | -               | 3   | 12              | mV    |                                                                         |
| TCV <sub>OSOB</sub>  | Average Input Offset Voltage Drift                  | _               | +6  | -               | μV/°C |                                                                         |
| V <sub>CMOB</sub>    | Common-Mode Input Voltage Range                     | 0.5             | -   | Vdd - 1.0       | V     |                                                                         |
| R <sub>OUTOB</sub>   | Output Resistance                                   |                 |     |                 |       |                                                                         |
|                      | Power = Low                                         | _               | 1   | -               | Ω     |                                                                         |
|                      | Power = High                                        | _               | 1   | _               | Ω     |                                                                         |
| V <sub>OHIGHOB</sub> | High Output Voltage Swing (Load = 1K ohms to Vdd/2) |                 |     |                 |       |                                                                         |
|                      | Power = Low                                         | 0.5 x Vdd + 1.0 | _   | _               | V     |                                                                         |
|                      | Power = High                                        | 0.5 x Vdd + 1.0 | _   | -               | V     |                                                                         |
| V <sub>OLOWOB</sub>  | Low Output Voltage Swing (Load = 1K ohms to Vdd/2)  |                 |     |                 |       |                                                                         |
|                      | Power = Low                                         | _               | _   | 0.5 x Vdd - 1.0 | V     |                                                                         |
|                      | Power = High                                        | -               | -   | 0.5 x Vdd - 1.0 | V     |                                                                         |
| I <sub>SOB</sub>     | Supply Current Including Bias Cell (No Load)        |                 |     |                 |       |                                                                         |
|                      | Power = Low                                         |                 | 0.8 | 2.0             | mA    |                                                                         |
|                      | Power = High                                        | _               | 2.0 | 4.3             | mA    |                                                                         |
| PSRR <sub>OB</sub>   | Supply Voltage Rejection Ratio                      | 34              | 64  | _               | dB    | $(0.5 \text{ x Vdd} - 1.0) \le V_{OUT} \le (0.5 \text{ x})$ Vdd + 0.9). |

### 3.3.6 DC Analog Reference Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and  $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}$ , or 3.0V to 3.6V and  $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}$ , respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

The guaranteed specifications are measured through the Analog Continuous Time PSoC blocks. The power levels for AGND refer to the power of the Analog Continuous Time PSoC block. The power levels for RefHi and RefLo refer to the Analog Reference Control register. The limits stated for AGND include the offset error of the AGND buffer local to the Analog Continuous Time PSoC block. Reference control power is high.

Table 3-11. 5V DC Analog Reference Specifications

| Symbol | Description                                               | Min                    | Тур                    | Max                    | Units |
|--------|-----------------------------------------------------------|------------------------|------------------------|------------------------|-------|
| BG     | Bandgap Voltage Reference                                 | 1.28                   | 1.30                   | 1.32                   | V     |
| -      | AGND = Vdd/2 <sup>a</sup>                                 | Vdd/2 - 0.04           | Vdd/2 - 0.01           | Vdd/2 + 0.007          | V     |
| _      | AGND = 2 x BandGap <sup>a</sup>                           | 2 x BG - 0.048         | 2 x BG - 0.030         | 2 x BG + 0.024         | V     |
| -      | AGND = P2[4] (P2[4] = Vdd/2) <sup>a</sup>                 | P2[4] - 0.011          | P2[4]                  | P2[4] + 0.011          | V     |
| _      | AGND = BandGap <sup>a</sup>                               | BG - 0.009             | BG + 0.008             | BG + 0.016             | V     |
| -      | AGND = 1.6 x BandGap <sup>a</sup>                         | 1.6 x BG - 0.022       | 1.6 x BG - 0.010       | 1.6 x BG + 0.018       | V     |
| -      | AGND Block to Block Variation (AGND = Vdd/2) <sup>a</sup> | -0.034                 | 0.000                  | 0.034                  | V     |
| -      | RefHi = Vdd/2 + BandGap                                   | Vdd/2 + BG - 0.10      | Vdd/2 + BG             | Vdd/2 + BG + 0.10      | V     |
| _      | RefHi = 3 x BandGap                                       | 3 x BG - 0.06          | 3 x BG                 | 3 x BG + 0.06          | V     |
| _      | RefHi = 2 x BandGap + P2[6] (P2[6] = 1.3V)                | 2 x BG + P2[6] - 0.113 | 2 x BG + P2[6] - 0.018 | 2 x BG + P2[6] + 0.077 | V     |
| _      | RefHi = P2[4] + BandGap (P2[4] = Vdd/2)                   | P2[4] + BG - 0.130     | P2[4] + BG - 0.016     | P2[4] + BG + 0.098     | V     |
| _      | RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)       | P2[4] + P2[6] - 0.133  | P2[4] + P2[6] - 0.016  | P2[4] + P2[6]+ 0.100   | V     |
| -      | RefHi = 3.2 x BandGap                                     | 3.2 x BG - 0.112       | 3.2 x BG               | 3.2 x BG + 0.076       | V     |
| -      | RefLo = Vdd/2 - BandGap                                   | Vdd/2 - BG - 0.04      | Vdd/2 - BG + 0.024     | Vdd/2 - BG + 0.04      | V     |
| _      | RefLo = BandGap                                           | BG - 0.06              | BG                     | BG + 0.06              | V     |
| _      | RefLo = 2 x BandGap - P2[6] (P2[6] = 1.3V)                | 2 x BG - P2[6] - 0.084 | 2 x BG - P2[6] + 0.025 | 2 x BG - P2[6] + 0.134 | V     |
| -      | RefLo = P2[4] - BandGap (P2[4] = Vdd/2)                   | P2[4] - BG - 0.056     | P2[4] - BG + 0.026     | P2[4] - BG + 0.107     | V     |
| -      | RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)         | P2[4] - P2[6] - 0.057  | P2[4] - P2[6] + 0.026  | P2[4] - P2[6] + 0.110  | V     |

a. AGND tolerance includes the offsets of the local buffer in the PSoC block. Bandgap voltage is 1.3V  $\pm$  0.02V.

Table 3-12. 3.3V DC Analog Reference Specifications

| Symbol | Description                                                 | Min                   | Тур                   | Max                   | Units |  |  |  |
|--------|-------------------------------------------------------------|-----------------------|-----------------------|-----------------------|-------|--|--|--|
| BG     | Bandgap Voltage Reference                                   | 1.28                  | 1.30                  | 1.32                  | V     |  |  |  |
| _      | AGND = Vdd/2 <sup>a</sup>                                   | Vdd/2 - 0.03          | Vdd/2 - 0.01          | Vdd/2 + 0.005         | V     |  |  |  |
| _      | AGND = 2 x BandGap <sup>a</sup>                             | Not Allowed           |                       |                       |       |  |  |  |
| _      | AGND = P2[4] (P2[4] = Vdd/2)                                | P2[4] - 0.008         | P2[4] + 0.001         | P2[4] + 0.009         | V     |  |  |  |
| _      | AGND = BandGap <sup>a</sup>                                 | BG - 0.009            | BG + 0.005            | BG + 0.015            | V     |  |  |  |
| _      | AGND = 1.6 x BandGap <sup>a</sup>                           | 1.6 x BG - 0.027      | 1.6 x BG - 0.010      | 1.6 x BG + 0.018      | V     |  |  |  |
| _      | AGND Column to Column Variation (AGND = Vdd/2) <sup>a</sup> | -0.034                | 0.000                 | 0.034                 | V     |  |  |  |
| _      | RefHi = Vdd/2 + BandGap                                     | Not Allowed           | •                     | •                     |       |  |  |  |
| _      | RefHi = 3 x BandGap                                         | Not Allowed           |                       |                       |       |  |  |  |
| _      | RefHi = 2 x BandGap + P2[6] (P2[6] = 0.5V)                  | Not Allowed           |                       |                       |       |  |  |  |
| _      | RefHi = P2[4] + BandGap (P2[4] = Vdd/2)                     | Not Allowed           |                       |                       |       |  |  |  |
| _      | RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V)         | P2[4] + P2[6] - 0.075 | P2[4] + P2[6] - 0.009 | P2[4] + P2[6] + 0.057 | V     |  |  |  |
| _      | RefHi = 3.2 x BandGap                                       | Not Allowed           | •                     |                       |       |  |  |  |
| _      | RefLo = Vdd/2 - BandGap                                     | Not Allowed           |                       |                       |       |  |  |  |
| _      | RefLo = BandGap                                             | Not Allowed           |                       |                       |       |  |  |  |
| _      | RefLo = 2 x BandGap - P2[6] (P2[6] = 0.5V)                  | Not Allowed           |                       |                       |       |  |  |  |
| _      | RefLo = P2[4] - BandGap (P2[4] = Vdd/2)                     | Not Allowed           |                       |                       |       |  |  |  |
| _      | RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V)           | P2[4] - P2[6] - 0.048 | P2[4]- P2[6] + 0.022  | P2[4] - P2[6] + 0.092 | V     |  |  |  |

a. AGND tolerance includes the offsets of the local buffer in the PSoC block. Bandgap voltage is  $1.3V \pm 0.02V$ .

### 3.3.7 DC Analog PSoC Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and  $-40^{\circ}C \le T_A \le 85^{\circ}C$ , or 3.0V to 3.6V and  $-40^{\circ}C \le T_A \le 85^{\circ}C$ , respectively. Typical parameters apply to 5V and 3.3V at  $25^{\circ}C$  and are for design guidance only.

Table 3-13. DC Analog PSoC Block Specifications

| Symbol          | Description                               | Min | Тур  | Max | Units | Notes |
|-----------------|-------------------------------------------|-----|------|-----|-------|-------|
| R <sub>CT</sub> | Resistor Unit Value (Continuous Time)     | _   | 12.2 | _   | kΩ    |       |
| C <sub>SC</sub> | Capacitor Unit Value (Switched Capacitor) | _   | 80   | _   | fF    |       |

# 3.3.8 DC POR and LVD Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and  $-40^{\circ}C \le T_A \le 85^{\circ}C$ , or 3.0V to 3.6V and  $-40^{\circ}C \le T_A \le 85^{\circ}C$ , respectively. Typical parameters apply to 5V or 3.3V at  $25^{\circ}C$  and are for design guidance only.

**Note** The bits PORLEV and VM in the table below refer to bits in the VLT\_CR register. See the *PSoC Mixed-Signal Array Technical Reference Manual* for more information on the VLT\_CR register.

Table 3-14. DC POR and LVD Specifications

| Symbol       | Description                             | Min  | Тур  | Max               | Units | Notes |
|--------------|-----------------------------------------|------|------|-------------------|-------|-------|
|              | Vdd Value for PPOR Trip (positive ramp) |      |      |                   |       |       |
| $V_{PPOR0R}$ | PORLEV[1:0] = 00b                       |      | 2.91 |                   | V     |       |
| $V_{PPOR1R}$ | PORLEV[1:0] = 01b                       | _    | 4.39 | _                 | V     |       |
| $V_{PPOR2R}$ | PORLEV[1:0] = 10b                       |      | 4.55 |                   | V     |       |
|              | Vdd Value for PPOR Trip (negative ramp) |      |      |                   |       |       |
| $V_{PPOR0}$  | PORLEV[1:0] = 00b                       |      | 2.82 |                   | V     |       |
| $V_{PPOR1}$  | PORLEV[1:0] = 01b                       | _    | 4.39 | _                 | V     |       |
| $V_{PPOR2}$  | PORLEV[1:0] = 10b                       |      | 4.55 |                   | V     |       |
|              | PPOR Hysteresis                         |      |      |                   |       |       |
| $V_{PH0}$    | PORLEV[1:0] = 00b                       | _    | 92   | _                 | mV    |       |
| $V_{PH1}$    | PORLEV[1:0] = 01b                       | _    | 0    | _                 | mV    |       |
| $V_{PH2}$    | PORLEV[1:0] = 10b                       | _    | 0    | -                 | mV    |       |
|              | Vdd Value for LVD Trip                  |      |      |                   |       |       |
| $V_{LVD0}$   | VM[2:0] = 000b                          | 2.86 | 2.92 | 2.98 <sup>a</sup> | V     |       |
| $V_{LVD1}$   | VM[2:0] = 001b                          | 2.96 | 3.02 | 3.08              | V     |       |
| $V_{LVD2}$   | VM[2:0] = 010b                          | 3.07 | 3.13 | 3.20              | V     |       |
| $V_{LVD3}$   | VM[2:0] = 011b                          | 3.92 | 4.00 | 4.08              | V     |       |
| $V_{LVD4}$   | VM[2:0] = 100b                          | 4.39 | 4.48 | 4.57              | V     |       |
| $V_{LVD5}$   | VM[2:0] = 101b                          | 4.55 | 4.64 | 4.74 <sup>b</sup> | V     |       |
| $V_{LVD6}$   | VM[2:0] = 110b                          | 4.63 | 4.73 | 4.82              | V     |       |
| $V_{LVD7}$   | VM[2:0] = 111b                          | 4.72 | 4.81 | 4.91              | V     |       |

a. Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply.

b. Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply.

### 3.3.9 DC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and  $-40^{\circ}C \le T_A \le 85^{\circ}C$ , or 3.0V to 3.6V and  $-40^{\circ}C \le T_A \le 85^{\circ}C$ , respectively. Typical parameters apply to 5V and 3.3V at  $25^{\circ}C$  and are for design guidance only.

**Table 3-15. DC Programming Specifications** 

| Symbol                | Description                                                                     | Min       | Тур | Max        | Units | Notes                                |
|-----------------------|---------------------------------------------------------------------------------|-----------|-----|------------|-------|--------------------------------------|
| I <sub>DDP</sub>      | Supply Current During Programming or Verify                                     | -         | 15  | 30         | mA    |                                      |
| V <sub>ILP</sub>      | Input Low Voltage During Programming or Verify                                  | _         | _   | 0.8        | V     |                                      |
| V <sub>IHP</sub>      | Input High Voltage During Programming or Verify                                 | 2.1       | -   | -          | V     |                                      |
| I <sub>ILP</sub>      | Input Current when Applying Vilp to P1[0] or P1[1] During Programming or Verify | -         | -   | 0.2        | mA    | Driving internal pull-down resistor. |
| I <sub>IHP</sub>      | Input Current when Applying Vihp to P1[0] or P1[1] During Programming or Verify | -         | -   | 1.5        | mA    | Driving internal pull-down resistor. |
| V <sub>OLV</sub>      | Output Low Voltage During Programming or Verify                                 | _         | _   | Vss + 0.75 | V     |                                      |
| V <sub>OHV</sub>      | Output High Voltage During Programming or Verify                                | Vdd - 1.0 | _   | Vdd        | V     |                                      |
| Flash <sub>ENPB</sub> | Flash Endurance (per block)                                                     | 50,000    | -   | -          | _     | Erase/write cycles per block.        |
| Flash <sub>ENT</sub>  | Flash Endurance (total) <sup>a</sup>                                            | 1,800,000 | -   | -          | -     | Erase/write cycles.                  |
| Flash <sub>DR</sub>   | Flash Data Retention                                                            | 10        | -   | -          | Years |                                      |

a. A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 blocks of 25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36x50,000 and that no single block ever sees more than 50,000 cycles).

For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information.

### 3.4 AC Electrical Characteristics

# 3.4.1 AC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and  $-40^{\circ}C \le T_A \le 85^{\circ}C$ , or 3.0V to 3.6V and  $-40^{\circ}C \le T_A \le 85^{\circ}C$ , respectively. Typical parameters apply to 5V and 3.3V at  $25^{\circ}C$  and are for design guidance only.

Table 3-16. AC Chip-Level Specifications

| Symbol                | Description                                                                                           | Min   | Тур  | Max                    | Units | Notes                                                               |
|-----------------------|-------------------------------------------------------------------------------------------------------|-------|------|------------------------|-------|---------------------------------------------------------------------|
| F <sub>IMO245V</sub>  | Internal Main Oscillator Frequency for 24 MHz (5V)                                                    | 23.04 | 24   | 24.96 <sup>a,b</sup>   | MHz   | Trimmed for 5V operation using factory trim values.                 |
| F <sub>IMO243V</sub>  | Internal Main Oscillator Frequency for 24 MHz (3.3V)                                                  | 22.08 | 24   | 25.92 <sup>b,c</sup>   | MHz   | Trimmed for 3.3V operation using factory trim values.               |
| F <sub>IMOUSB5V</sub> | Internal Main Oscillator Frequency with USB (5V) Frequency locking enabled and USB traffic present.   | 23.94 | 24   | 24.06 <sup>b</sup>     | MHz   | $-10^{\circ}C \le T_{A} \le 85^{\circ}C$<br>$4.35 \le Vdd \le 5.15$ |
| F <sub>IMOUSB3V</sub> | Internal Main Oscillator Frequency with USB (3.3V) Frequency locking enabled and USB traffic present. | 23.94 | 24   | 24.06 <sup>b</sup>     | MHz   | $-0^{\circ}C \le T_{A} \le 70^{\circ}C$<br>3.15 $\le Vdd \le 3.45$  |
| F <sub>CPU1</sub>     | CPU Frequency (5V Nominal)                                                                            | 0.93  | 24   | 24.96 <sup>a,b</sup>   | MHz   |                                                                     |
| F <sub>CPU2</sub>     | CPU Frequency (3.3V Nominal)                                                                          | 0.93  | 12   | 12.96 <sup>b,c</sup>   | MHz   |                                                                     |
| F <sub>BLK5</sub>     | Digital PSoC Block Frequency (5V Nominal)                                                             | 0     | 48   | 49.92 <sup>a,b,d</sup> | MHz   | Refer to the AC Digital Block Specifications.                       |
| F <sub>BLK3</sub>     | Digital PSoC Block Frequency (3.3V Nominal)                                                           | 0     | 24   | 25.92 <sup>b, d</sup>  | MHz   |                                                                     |
| F <sub>32K1</sub>     | Internal Low Speed Oscillator Frequency                                                               | 15    | 32   | 64                     | kHz   |                                                                     |
| Jitter32k             | 32 kHz Period Jitter                                                                                  | -     | 100  |                        | ns    |                                                                     |
| Step24M               | 24 MHz Trim Step Size                                                                                 | -     | 50   | -                      | kHz   |                                                                     |
| Fout48M               | 48 MHz Output Frequency                                                                               | 46.08 | 48.0 | 49.92 <sup>a,c</sup>   | MHz   | Trimmed. Utilizing factory trim values.                             |
| Jitter24M1            | 24 MHz Period Jitter (IMO) Peak-to-Peak                                                               | -     | 300  |                        | ps    |                                                                     |
| F <sub>MAX</sub>      | Maximum frequency of signal on row input or row output.                                               | -     | _    | 12.96                  | MHz   |                                                                     |
| T <sub>RAMP</sub>     | Supply Ramp Time                                                                                      | 0     | -    | -                      | μS    |                                                                     |

a. 4.75V < Vdd < 5.25V.

d. See the individual user module data sheets for information on maximum frequencies for user modules.



Figure 3-2. 24 MHz Period Jitter (IMO) Timing Diagram

b. Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.

c. 3.0V < Vdd < 3.6V. See Application Note AN2012 "Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation" for information on trimming for operation at 3.3V.

### 3.4.2 AC General Purpose IO Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and  $-40^{\circ}C \le T_A \le 85^{\circ}C$ , or 3.0V to 3.6V and  $-40^{\circ}C \le T_A \le 85^{\circ}C$ , respectively. Typical parameters apply to 5V and 3.3V at  $25^{\circ}C$  and are for design guidance only.

Table 3-17. AC GPIO Specifications

| Symbol            | Description                                  | Min | Тур | Max | Units | Notes                         |
|-------------------|----------------------------------------------|-----|-----|-----|-------|-------------------------------|
| F <sub>GPIO</sub> | GPIO Operating Frequency                     | 0   | -   | 12  | MHz   | Normal Strong Mode            |
| TRiseF            | Rise Time, Normal Strong Mode, Cload = 50 pF | 3   | -   | 18  | ns    | Vdd = 4.5 to 5.25V, 10% - 90% |
| TFallF            | Fall Time, Normal Strong Mode, Cload = 50 pF | 2   | -   | 18  | ns    | Vdd = 4.5 to 5.25V, 10% - 90% |
| TRiseS            | Rise Time, Slow Strong Mode, Cload = 50 pF   | 10  | 27  | -   | ns    | Vdd = 3 to 5.25V, 10% - 90%   |
| TFallS            | Fall Time, Slow Strong Mode, Cload = 50 pF   | 10  | 22  | -   | ns    | Vdd = 3 to 5.25V, 10% - 90%   |

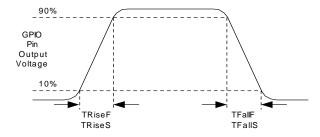



Figure 3-3. GPIO Timing Diagram

### 3.4.3 AC Full-Speed USB Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and  $-10^{\circ}C \le T_A \le 85^{\circ}C$ , or 3.0V to 3.6V and  $-10^{\circ}C \le T_A \le 85^{\circ}C$ , respectively. Typical parameters apply to 5V and 3.3V at  $25^{\circ}C$  and are for design guidance only.

Table 3-18. AC Full-Speed (12 Mbps) USB Specifications

| Symbol               | Description                                                | Min        | Тур | Max        | Units | Notes           |
|----------------------|------------------------------------------------------------|------------|-----|------------|-------|-----------------|
| T <sub>RFS</sub>     | Transition Rise Time                                       | 4          | -   | 20         | ns    | For 50 pF load. |
| T <sub>FSS</sub>     | Transition Fall Time                                       | 4          | -   | 20         | ns    | For 50 pF load. |
| T <sub>RFMFS</sub>   | Rise/Fall Time Matching: (T <sub>R</sub> /T <sub>F</sub> ) | 90         | -   | 111        | %     | For 50 pF load. |
| T <sub>DRATEFS</sub> | Full-Speed Data Rate                                       | 12 - 0.25% | 12  | 12 + 0.25% | Mbps  |                 |

# 3.4.4 AC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and  $-40^{\circ}C \le T_{A} \le 85^{\circ}C$ , or 3.0V to 3.6V and  $-40^{\circ}C \le T_{A} \le 85^{\circ}C$ , respectively. Typical parameters apply to 5V and 3.3V at  $25^{\circ}C$  and are for design guidance only.

Settling times, slew rates, and gain bandwidth are based on the Analog Continuous Time PSoC block.

Power = High and Opamp Bias = High is not supported at 3.3V.

Table 3-19. 5V AC Operational Amplifier Specifications

| Symbol            | Description                                                                                 | Min  | Тур | Max  | Units    | Notes |
|-------------------|---------------------------------------------------------------------------------------------|------|-----|------|----------|-------|
| T <sub>ROA</sub>  | Rising Settling Time from 80% of $\Delta V$ to 0.1% of $\Delta V$ (10 pF load, Unity Gain)  |      |     |      |          |       |
|                   | Power = Low, Opamp Bias = Low                                                               | _    | _   | 3.9  | μS       |       |
|                   | Power = Medium, Opamp Bias = High                                                           | _    | -   | 0.72 | μS       |       |
|                   | Power = High, Opamp Bias = High                                                             | _    | _   | 0.62 | μS       |       |
| T <sub>SOA</sub>  | Falling Settling Time from 20% of $\Delta V$ to 0.1% of $\Delta V$ (10 pF load, Unity Gain) |      |     |      |          |       |
|                   | Power = Low, Opamp Bias = Low                                                               | _    | -   | 5.9  | μS       |       |
|                   | Power = Medium, Opamp Bias = High                                                           | _    | _   | 0.92 | μS       |       |
|                   | Power = High, Opamp Bias = High                                                             | _    | -   | 0.72 | μS       |       |
| SR <sub>ROA</sub> | Rising Slew Rate (20% to 80%)(10 pF load, Unity Gain)                                       |      |     |      |          |       |
|                   | Power = Low, Opamp Bias = Low                                                               | 0.15 | -   | -    | V/μs     |       |
|                   | Power = Medium, Opamp Bias = High                                                           | 1.7  | _   | -    | V/μs     |       |
|                   | Power = High, Opamp Bias = High                                                             | 6.5  | _   | -    | V/μs     |       |
| SR <sub>FOA</sub> | Falling Slew Rate (20% to 80%)(10 pF load, Unity Gain)                                      |      |     |      |          |       |
|                   | Power = Low, Opamp Bias = Low                                                               | 0.01 | _   | -    | V/μs     |       |
|                   | Power = Medium, Opamp Bias = High                                                           | 0.5  | _   | -    | V/μs     |       |
|                   | Power = High, Opamp Bias = High                                                             | 4.0  | -   | -    | V/μs     |       |
| BW <sub>OA</sub>  | Gain Bandwidth Product                                                                      |      |     |      |          |       |
|                   | Power = Low, Opamp Bias = Low                                                               | 0.75 | _   | -    | MHz      |       |
|                   | Power = Medium, Opamp Bias = High                                                           | 3.1  | _   | _    | MHz      |       |
|                   | Power = High, Opamp Bias = High                                                             | 5.4  | -   | -    | MHz      |       |
| E <sub>NOA</sub>  | Noise at 1 kHz (Power = Medium, Opamp Bias = High)                                          | _    | 100 | -    | nV/rt-Hz |       |

Table 3-20. 3.3V AC Operational Amplifier Specifications

| Symbol            | Description                                                                                 | Min  | Тур | Max  | Units    | Notes |
|-------------------|---------------------------------------------------------------------------------------------|------|-----|------|----------|-------|
| T <sub>ROA</sub>  | Rising Settling Time from 80% of $\Delta V$ to 0.1% of $\Delta V$ (10 pF load, Unity Gain)  |      |     |      |          |       |
|                   | Power = Low, Opamp Bias = Low                                                               | -    | -   | 3.92 | μS       |       |
|                   | Power = Medium, Opamp Bias = High                                                           | -    | -   | 0.72 | μS       |       |
| T <sub>SOA</sub>  | Falling Settling Time from 20% of $\Delta V$ to 0.1% of $\Delta V$ (10 pF load, Unity Gain) |      |     |      |          |       |
|                   | Power = Low, Opamp Bias = Low                                                               | -    | -   | 5.41 | μS       |       |
|                   | Power = Medium, Opamp Bias = High                                                           | _    | -   | 0.72 | μS       |       |
| SR <sub>ROA</sub> | Rising Slew Rate (20% to 80%)(10 pF load, Unity Gain)                                       |      |     |      |          |       |
|                   | Power = Low, Opamp Bias = Low                                                               | 0.31 | -   | -    | V/μs     |       |
|                   | Power = Medium, Opamp Bias = High                                                           | 2.7  | -   | _    | V/μs     |       |
| SR <sub>FOA</sub> | Falling Slew Rate (20% to 80%)(10 pF load, Unity Gain)                                      |      |     |      |          |       |
|                   | Power = Low, Opamp Bias = Low                                                               | 0.24 | -   | -    | V/μs     |       |
|                   | Power = Medium, Opamp Bias = High                                                           | 1.8  | -   | _    | V/μs     |       |
| BW <sub>OA</sub>  | Gain Bandwidth Product                                                                      |      |     |      |          |       |
|                   | Power = Low, Opamp Bias = Low                                                               | 0.67 | -   | _    | MHz      |       |
|                   | Power = Medium, Opamp Bias = High                                                           | 2.8  | -   | -    | MHz      |       |
| E <sub>NOA</sub>  | Noise at 1 kHz (Power = Medium, Opamp Bias = High)                                          | -    | 100 | -    | nV/rt-Hz |       |

When bypassed by a capacitor on P2[4], the noise of the analog ground signal distributed to each block is reduced by a factor of up to 5 (14 dB). This is at frequencies above the corner frequency defined by the on-chip 8.1k resistance and the external capacitor.

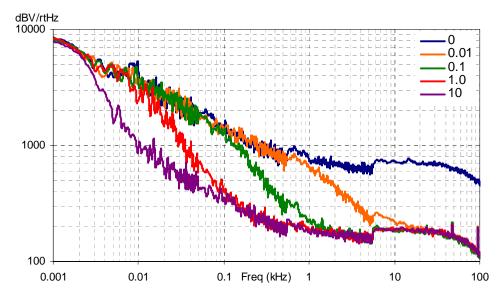



Figure 3-4. Typical AGND Noise with P2[4] Bypass

At low frequencies, the opamp noise is proportional to 1/f, power independent, and determined by device geometry. At high frequencies, increased power level reduces the noise spectrum level.

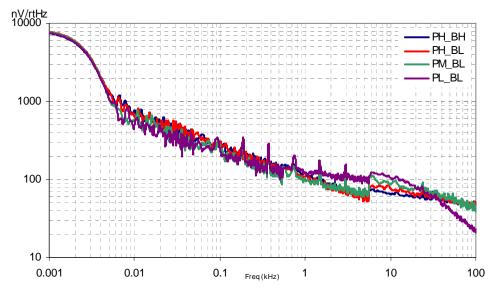



Figure 3-5. Typical Opamp Noise

### 3.4.5 AC Digital Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and  $-40^{\circ}C \le T_A \le 85^{\circ}C$ , or 3.0V to 3.6V and  $-40^{\circ}C \le T_A \le 85^{\circ}C$ , respectively. Typical parameters apply to 5V and 3.3V at  $25^{\circ}C$  and are for design guidance only.

Table 3-21. AC Digital Block Specifications

| Function             | Description                                | Min             | Тур | Max   | Units | Notes                                                   |
|----------------------|--------------------------------------------|-----------------|-----|-------|-------|---------------------------------------------------------|
| Timer                | Capture Pulse Width                        | 50 <sup>a</sup> | -   | _     | ns    |                                                         |
|                      | Maximum Frequency, No Capture              | -               | _   | 49.92 | MHz   | 4.75V < Vdd < 5.25V.                                    |
|                      | Maximum Frequency, With Capture            | -               | _   | 25.92 | MHz   |                                                         |
| Counter              | Enable Pulse Width                         | 50 <sup>a</sup> | _   | -     | ns    |                                                         |
|                      | Maximum Frequency, No Enable Input         | -               | _   | 49.92 | MHz   | 4.75V < Vdd < 5.25V.                                    |
|                      | Maximum Frequency, Enable Input            | -               | _   | 25.92 | MHz   |                                                         |
| Dead Band            | Kill Pulse Width:                          |                 |     |       |       |                                                         |
|                      | Asynchronous Restart Mode                  | 20              | _   | _     | ns    |                                                         |
|                      | Synchronous Restart Mode                   | 50 <sup>a</sup> | _   | -     | ns    |                                                         |
|                      | Disable Mode                               | 50 <sup>a</sup> | -   | -     | ns    |                                                         |
|                      | Maximum Frequency                          | -               | _   | 49.92 | MHz   | 4.75V < Vdd < 5.25V.                                    |
| CRCPRS<br>(PRS Mode) | Maximum Input Clock Frequency              | -               | _   | 49.92 | MHz   | 4.75V < Vdd < 5.25V.                                    |
| CRCPRS<br>(CRC Mode) | Maximum Input Clock Frequency              | _               | _   | 24.6  | MHz   |                                                         |
| SPIM                 | Maximum Input Clock Frequency              | -               | -   | 8.2   | MHz   | Maximum data rate at 4.1 MHz due to 2 x over clocking.  |
| SPIS                 | Maximum Input Clock Frequency              | -               | _   | 4.1   | MHz   |                                                         |
|                      | Width of SS_ Negated Between Transmissions | 50 <sup>a</sup> | -   | _     | ns    |                                                         |
| Transmitter          | Maximum Input Clock Frequency              | -               | -   | 24.6  | MHz   | Maximum data rate at 3.08 MHz due to 8 x over clocking. |
| Receiver             | Maximum Input Clock Frequency              | -               | -   | 24.6  | MHz   | Maximum data rate at 3.08 MHz due to 8 x over clocking. |

a. 50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).

### 3.4.6 AC External Clock Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  $\leq$  T<sub>A</sub>  $\leq$  85°C, or 3.0V to 3.6V and -40°C  $\leq$  T<sub>A</sub>  $\leq$  85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 3-22. AC External Clock Specifications

| Symbol              | Description                    | Min   | Тур | Max   | Units | Notes |
|---------------------|--------------------------------|-------|-----|-------|-------|-------|
| F <sub>OSCEXT</sub> | Frequency for USB Applications | 23.94 | 24  | 24.06 | MHz   |       |
| -                   | Duty Cycle                     | 47    | 50  | 53    | %     |       |
| _                   | Power up to IMO Switch         | 150   | _   | -     | μS    |       |

# 3.4.7 AC Analog Output Buffer Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and  $-40^{\circ}C \le T_A \le 85^{\circ}C$ , or 3.0V to 3.6V and  $-40^{\circ}C \le T_A \le 85^{\circ}C$ , respectively. Typical parameters apply to 5V and 3.3V at  $25^{\circ}C$  and are for design guidance only.

Table 3-23. 5V AC Analog Output Buffer Specifications

| Symbol             | Description                                                     | Min  | Тур | Max | Units | Notes |
|--------------------|-----------------------------------------------------------------|------|-----|-----|-------|-------|
| T <sub>ROB</sub>   | Rising Settling Time to 0.1%, 1V Step, 100pF Load               |      |     |     |       |       |
|                    | Power = Low                                                     | -    | -   | 2.5 | μS    |       |
|                    | Power = High                                                    | _    | -   | 2.5 | μS    |       |
| T <sub>SOB</sub>   | Falling Settling Time to 0.1%, 1V Step, 100pF Load              |      |     |     |       |       |
|                    | Power = Low                                                     | -    | -   | 2.2 | μS    |       |
|                    | Power = High                                                    | -    | -   | 2.2 | μS    |       |
| SR <sub>ROB</sub>  | Rising Slew Rate (20% to 80%), 1V Step, 100pF Load              |      |     |     |       |       |
|                    | Power = Low                                                     | 0.65 | -   | -   | V/μs  |       |
|                    | Power = High                                                    | 0.65 | -   | -   | V/μs  |       |
| SR <sub>FOB</sub>  | Falling Slew Rate (80% to 20%), 1V Step, 100pF Load             |      |     |     |       |       |
|                    | Power = Low                                                     | 0.65 | -   | -   | V/μs  |       |
|                    | Power = High                                                    | 0.65 | -   | -   | V/μs  |       |
| BW <sub>OBSS</sub> | Small Signal Bandwidth, 20mV <sub>pp</sub> , 3dB BW, 100pF Load |      |     |     |       |       |
|                    | Power = Low                                                     | 0.8  | -   | -   | MHz   |       |
|                    | Power = High                                                    | 0.8  | -   | -   | MHz   |       |
| BW <sub>OBLS</sub> | Large Signal Bandwidth, 1V <sub>pp</sub> , 3dB BW, 100pF Load   |      |     |     |       |       |
|                    | Power = Low                                                     | 300  | -   | _   | kHz   |       |
|                    | Power = High                                                    | 300  | -   | _   | kHz   |       |

Table 3-24. 3.3V AC Analog Output Buffer Specifications

| Symbol             | Description                                                     | Min | Тур | Max | Units | Notes |
|--------------------|-----------------------------------------------------------------|-----|-----|-----|-------|-------|
| T <sub>ROB</sub>   | Rising Settling Time to 0.1%, 1V Step, 100pF Load               |     |     |     |       |       |
|                    | Power = Low                                                     | -   | -   | 3.8 | μS    |       |
|                    | Power = High                                                    | -   | -   | 3.8 | μS    |       |
| T <sub>SOB</sub>   | Falling Settling Time to 0.1%, 1V Step, 100pF Load              |     |     |     |       |       |
|                    | Power = Low                                                     | -   | -   | 2.6 | μS    |       |
|                    | Power = High                                                    | -   | -   | 2.6 | μS    |       |
| SR <sub>ROB</sub>  | Rising Slew Rate (20% to 80%), 1V Step, 100pF Load              |     |     |     |       |       |
|                    | Power = Low                                                     | 0.5 | -   | -   | V/μs  |       |
|                    | Power = High                                                    | 0.5 | -   | -   | V/μs  |       |
| SR <sub>FOB</sub>  | Falling Slew Rate (80% to 20%), 1V Step, 100pF Load             |     |     |     |       |       |
|                    | Power = Low                                                     | 0.5 | -   | -   | V/μs  |       |
|                    | Power = High                                                    | 0.5 | -   | -   | V/μs  |       |
| BW <sub>OBSS</sub> | Small Signal Bandwidth, 20mV <sub>pp</sub> , 3dB BW, 100pF Load |     |     |     |       |       |
|                    | Power = Low                                                     | 0.7 | -   | -   | MHz   |       |
|                    | Power = High                                                    | 0.7 | -   | -   | MHz   |       |
| BW <sub>OBLS</sub> | Large Signal Bandwidth, 1V <sub>pp</sub> , 3dB BW, 100pF Load   |     |     |     |       |       |
|                    | Power = Low                                                     | 200 | -   | -   | kHz   |       |
|                    | Power = High                                                    | 200 | _   | -   | kHz   |       |

### 3.4.8 AC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and  $-40^{\circ}C \le T_A \le 85^{\circ}C$ , or 3.0V to 3.6V and  $-40^{\circ}C \le T_A \le 85^{\circ}C$ , respectively. Typical parameters apply to 5V and 3.3V at  $25^{\circ}C$  and are for design guidance only.

**Table 3-25. AC Programming Specifications** 

| Symbol              | Description                              | Min | Тур | Max | Units | Notes                   |
|---------------------|------------------------------------------|-----|-----|-----|-------|-------------------------|
| T <sub>RSCLK</sub>  | Rise Time of SCLK                        | 1   | -   | 20  | ns    |                         |
| T <sub>FSCLK</sub>  | Fall Time of SCLK                        | 1   | -   | 20  | ns    |                         |
| T <sub>SSCLK</sub>  | Data Set up Time to Falling Edge of SCLK | 40  | -   | -   | ns    |                         |
| T <sub>HSCLK</sub>  | Data Hold Time from Falling Edge of SCLK | 40  | _   | _   | ns    |                         |
| F <sub>SCLK</sub>   | Frequency of SCLK                        | 0   | _   | 8   | MHz   |                         |
| T <sub>ERASEB</sub> | Flash Erase Time (Block)                 | -   | 10  | -   | ms    |                         |
| T <sub>WRITE</sub>  | Flash Block Write Time                   | -   | 30  | -   | ms    |                         |
| T <sub>DSCLK</sub>  | Data Out Delay from Falling Edge of SCLK | _   | _   | 45  | ns    | Vdd > 3.6               |
| T <sub>DSCLK3</sub> | Data Out Delay from Falling Edge of SCLK | -   | -   | 50  | ns    | $3.0 \leq Vdd \leq 3.6$ |

## 3.4.9 AC I<sup>2</sup>C Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and  $-40^{\circ}C \le T_A \le 85^{\circ}C$ , or 3.0V to 3.6V and  $-40^{\circ}C \le T_A \le 85^{\circ}C$ , respectively. Typical parameters apply to 5V and 3.3V at  $25^{\circ}C$  and are for design guidance only.

Table 3-26. AC Characteristics of the I<sup>2</sup>C SDA and SCL Pins for Vdd

|                       | Standard Mode                                                                                |     |         | Fast             | Mode    |     |       |  |
|-----------------------|----------------------------------------------------------------------------------------------|-----|---------|------------------|---------|-----|-------|--|
| Symbol                | Description                                                                                  | Min | Min Max |                  | Min Max |     | Notes |  |
| F <sub>SCLI2C</sub>   | SCL Clock Frequency                                                                          | 0   | 100     | 0                | 400     | kHz |       |  |
| T <sub>HDSTAI2C</sub> | Hold Time (repeated) START Condition. After this period, the first clock pulse is generated. | 4.0 | -       | 0.6              | -       | μS  |       |  |
| T <sub>LOWI2C</sub>   | LOW Period of the SCL Clock                                                                  | 4.7 | _       | 1.3              | _       | μS  |       |  |
| T <sub>HIGHI2C</sub>  | HIGH Period of the SCL Clock                                                                 | 4.0 | _       | 0.6              | -       | μS  |       |  |
| T <sub>SUSTAI2C</sub> | Set-up Time for a Repeated START Condition                                                   | 4.7 | _       | 0.6              | -       | μS  |       |  |
| T <sub>HDDATI2C</sub> | Data Hold Time                                                                               | 0   | _       | 0                | -       | μS  |       |  |
| T <sub>SUDATI2C</sub> | Data Set-up Time                                                                             | 250 | -       | 100 <sup>a</sup> | _       | ns  |       |  |
| T <sub>SUSTOI2C</sub> | Set-up Time for STOP Condition                                                               | 4.0 | _       | 0.6              | -       | μS  |       |  |
| T <sub>BUFI2C</sub>   | Bus Free Time Between a STOP and START Condition                                             | 4.7 | -       | 1.3              | -       | μS  |       |  |
| T <sub>SPI2C</sub>    | Pulse Width of spikes are suppressed by the input filter.                                    | -   | -       | 0                | 50      | ns  |       |  |

a. A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement t<sub>SU:DAT</sub> ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t<sub>rmax</sub> + t<sub>SU:DAT</sub> = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.

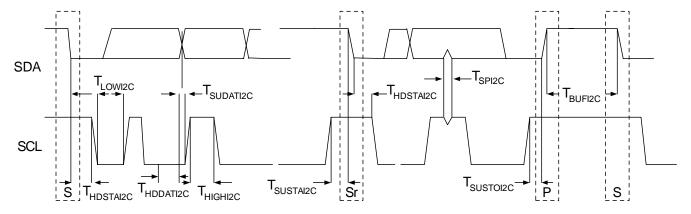



Figure 3-6. Definition for Timing for Fast/Standard Mode on the I<sup>2</sup>C Bus

# 4. Packaging Information



This chapter illustrates the package specification for the CY8C24x94 PSoC devices, along with the thermal impedance for the package and solder reflow peak temperatures.

**Important Note** Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the document titled *PSoC Emulator Pod Dimensions* at <a href="http://www.cypress.com/design/MR10161">http://www.cypress.com/design/MR10161</a>.

## 4.1 Packaging Dimensions

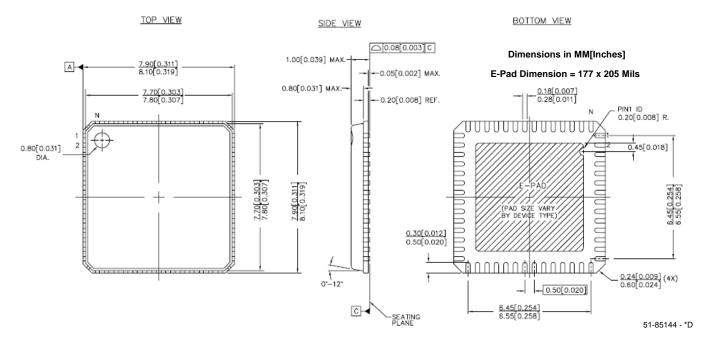



Figure 4-1. 56-Lead (8x8 mm) QFN

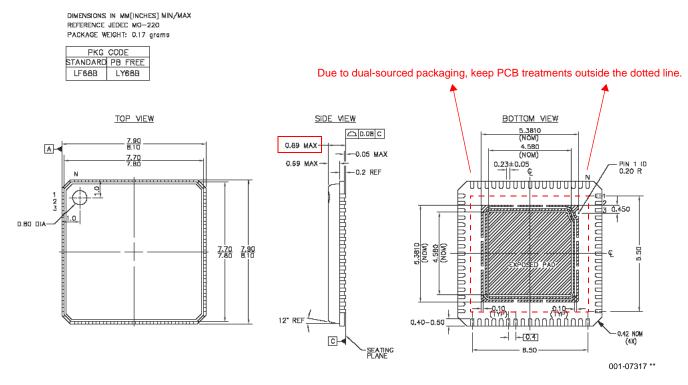



Figure 4-2. 68-Lead (8x8 mm x 0.89 mm) QFN

DIMENSIONS IN MM[INCHES] MIN/MAX REFERENCE JEDEC MO-220 PACKAGE WEIGHT: 0.17 groms

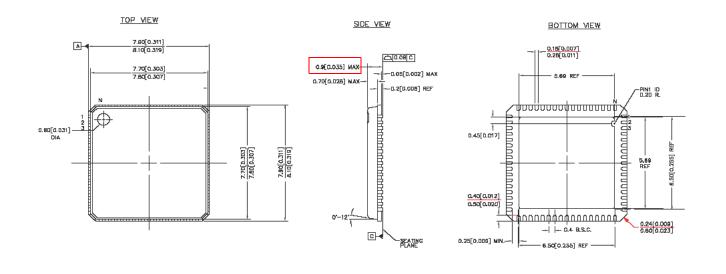



Figure 4-3. 68-Lead (8x8 mm x 0.9 mm) QFN

51-85214 \*B

EXPOSED PAD DIMENSION VARIES BY LEADFRAME CAVITY (PADDLE) SIZE

**Important Note** For information on the preferred dimensions for mounting QFN packages, see the following Application Note at <a href="http://www.amkor.com/products/notes\_papers/MLFAppNote.pdf">http://www.amkor.com/products/notes\_papers/MLFAppNote.pdf</a>.

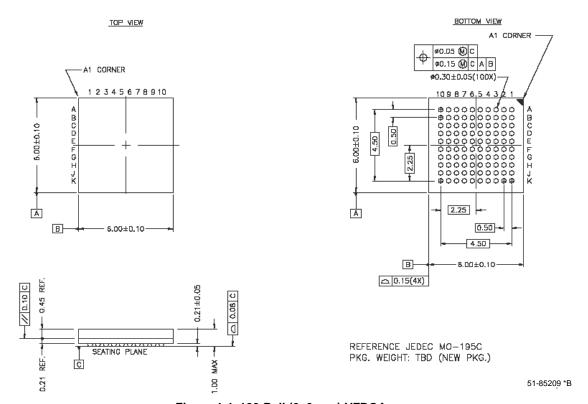



Figure 4-4. 100-Ball (6x6 mm) VFBGA

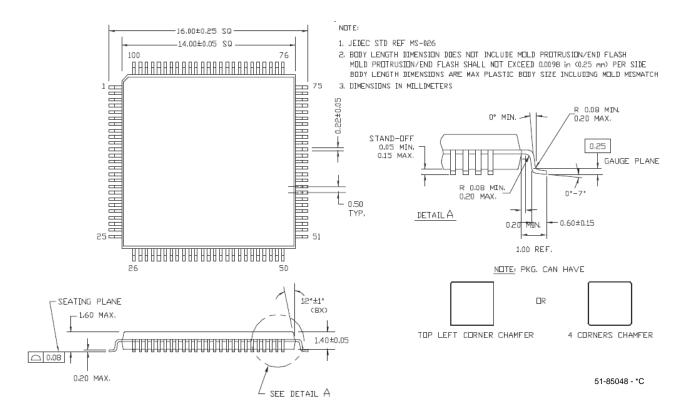



Figure 4-5. 100-Lead (14x14 x 1.4 mm) TQFP

# 4.2 Thermal Impedance

Table 4-1. Thermal Impedance for the Package

| Package             | Typical $\theta_{\text{JA}}$ * |
|---------------------|--------------------------------|
| 56 QFN**            | 12.93 °C/W                     |
| 68 QFN (0.89 MAX)** | 13.05 °C/W                     |
| 68 QFN (0.9 MAX)**  | 20.60 °C/W                     |
| 100 VFBGA           | 65 °C/W                        |

<sup>\*</sup>  $T_J = T_A + POWER \times \theta_{JA}$ 

# 4.3 Solder Reflow Peak Temperature

Following is the minimum solder reflow peak temperature to achieve good solderability.

Table 4-2. Solder Reflow Peak Temperature

| Package           | Minimum Peak Temperature* | Maximum Peak Temperature |  |  |  |
|-------------------|---------------------------|--------------------------|--|--|--|
| 56 QFN            | 240°C                     | 260°C                    |  |  |  |
| 68 QFN (0.89 MAX) | 240°C                     | 260°C                    |  |  |  |
| 68 QFN (0.9 MAX)  | 240°C                     | 260°C                    |  |  |  |
| 100 VFBGA         | 240°C                     | 260°C                    |  |  |  |

<sup>\*</sup>Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are  $220 \pm 5^{\circ}$ C with Sn-Pb or  $245 \pm 5^{\circ}$ C with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.

 $<sup>^{\</sup>star\star}$  To achieve the thermal impedance specified for the QFN package, the center thermal pad should be soldered to the PCB ground plane.

# 5. Development Tool Selection



This chapter presents the development tools available for all current PSoC device families including the CY8C24x94 family.

#### 5.1 Software

#### 5.1.1 PSoC Designer™

At the core of the PSoC development software suite is PSoC Designer. Utilized by thousands of PSoC developers, this robust software has been facilitating PSoC designs for half a decade. PSoC Designer is available free of charge at http://www.cypress.com under DESIGN RESOURCES >> Software and Drivers.

#### 5.1.2 PSoC Express™

As the newest addition to the PSoC development software suite, PSoC Express is the first visual embedded system design tool that allows a user to create an entire PSoC project and generate a schematic, BOM, and data sheet without writing a single line of code. Users work directly with application objects such as LEDs, switches, sensors, and fans. PSoC Express is available free of charge at <a href="http://www.cypress.com/psocex-press">http://www.cypress.com/psocex-press</a>.

#### 5.1.3 PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer or PSoC Express. PSoC Programmer software is compatible with both PSoC ICE-Cube In-Circuit Emulator and PSoC MiniProg. PSoC programmer is available free ofcharge at <a href="http://www.cypress.com/psocprogrammer">http://www.cypress.com/psocprogrammer</a>.

#### 5.1.4 CY3202-C iMAGEcraft C Compiler

CY3202 is the optional upgrade to PSoC Designer that enables the iMAGEcraft C compiler. It can be purchased from the Cypress Online Store. At <a href="http://www.cypress.com">http://www.cypress.com</a>, click the Online Store shopping cart icon at the bottom of the web page, and click *PSoC (Programmable System-on-Chip)* to view a current list of available items..

## 5.2 Development Kits

All development kits can be purchased from the Cypress Online Store.

#### 5.2.1 CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation and the software interface allows users to run, halt, and single step the processor and view the content of specific memory locations. Advance emulation features also supported through PSoC Designer. The kit includes:

- PSoC Designer Software CD
- ICE-Cube In-Circuit Emulator
- ICE Flex-Pod for CY8C29x66 Family
- Cat-5 Adapter
- Mini-Eval Programming Board
- 110 ~ 240V Power Supply, Euro-Plug Adapter
- iMAGEcraft C Compiler (Registration Required)
- ISSP Cable
- USB 2.0 Cable and Blue Cat-5 Cable
- 2 CY8C29466-24PXI 28-PDIP Chip Samples

# 5.2.2 CY3210-ExpressDK PSoC Express Development Kit

The CY3210-ExpressDK is for advanced prototyping and development with PSoC Express (may be used with ICE-Cube In-Circuit Emulator). It provides access to I<sup>2</sup>C buses, voltage reference, switches, upgradeable modules and more. The kit includes:

- PSoC Express Software CD
- **■** Express Development Board
- 4 Fan Modules
- 2 Proto Modules
- MiniProg In-System Serial Programmer
- MiniEval PCB Evaluation Board
- Jumper Wire Kit
- USB 2.0 Cable
- Serial Cable (DB9)
- 110 ~ 240V Power Supply, Euro-Plug Adapter
- 2 CY8C24423A-24PXI 28-PDIP Chip Samples
- 2 CY8C27443-24PXI 28-PDIP Chip Samples
- 2 CY8C29466-24PXI 28-PDIP Chip Samples

#### 5.3 Evaluation Tools

All evaluation tools can be purchased from the Cypress Online Store.

#### 5.3.1 CY3210-MiniProg1

The CY3210-MiniProg1 kit allows a user to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes:

- MiniProg Programming Unit
- MiniEval Socket Programming and Evaluation Board
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample
- 28-Pin CY8C27443-24PXI PDIP PSoC Device Sample
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

#### 5.3.2 CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of bread-boarding space to meet all of your evaluation needs. The kit includes:

- **■** Evaluation Board with LCD Module
- MiniProg Programming Unit
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

#### 5.3.3 CY3214-PSoCEvalUSB

The CY3214-PSoCEvalUSB evaluation kit features a development board for the CY8C24794-24LFXI PSoC device. Special features of the board include both USB and capacitive sensing development and debugging support. This evaluation board also includes an LCD module, potentiometer, LEDs, an enunciator and plenty of bread boarding space to meet all of your evaluation needs. The kit includes:

- PSoCEvalUSB Board
- LCD Module
- MIniProg Programming Unit
- Mini USB Cable
- PSoC Designer and Example Projects CD
- Getting Started Guide
- Wire Pack

## 5.4 Device Programmers

All device programmers can be purchased from the Cypress Online Store.

#### 5.4.1 CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- **Modular Programmer Base**
- 3 Programming Module Cards
- **■** MiniProg Programming Unit
- PSoC Designer Software CD
- **■** Getting Started Guide
- USB 2.0 Cable

# 5.4.2 CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production-programming environment.

**Note**: CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- **CY3207 Programmer Unit**
- PSoC ISSP Software CD
- 110 ~ 240V Power Supply, Euro-Plug Adapter
- USB 2.0 Cable

# 5.5 Accessories (Emulation and Programming)

Table 5-1. Emulation and Programming Accessories

| Part #               | Pin<br>Package | Flex-Pod Kit <sup>a</sup> | Foot Kit <sup>b</sup> | Adapter <sup>c</sup>        |  |
|----------------------|----------------|---------------------------|-----------------------|-----------------------------|--|
| CY8C24794<br>-24LFXI | 56 QFN         | CY3214-56MLF<br>(QFN)     | CY3230-<br>56MLF-AK   | AS-56-28                    |  |
| CY8C24894<br>-24LFXI | 56 QFN         | CY3214-56MLF<br>(QFN)     | CY3230-<br>56MLF-AK   | AS-28-28-02SS-<br>6ENG-GANG |  |

- Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.
- b. Foot kit includes surface mount feet that can be soldered to the target PCB.
- c. Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at http://www.emulation.com.

### 5.6 3rd-Party Tools

Several tools have been specially designed by the following 3rd-party vendors to accompany PSoC devices during development and production. Specific details for each of these tools can be found at <a href="http://www.cypress.com">http://www.cypress.com</a> under DESIGN RESOURCES >> Evaluation Boards.

# 5.7 Build a PSoC Emulator into Your Board

For details on how to emulate your circuit before going to volume production using an on-chip debug (OCD) non-production PSoC device, see Application Note "Debugging - Build a PSoC Emulator into Your Board - AN2323" at http://www.cypress.com/an2323.

# 6. Ordering Information



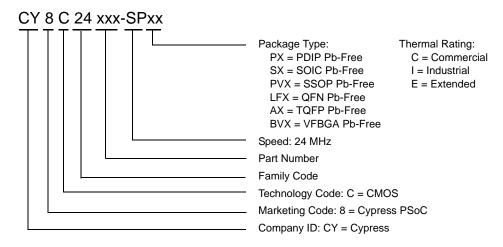

The following table lists the CY8C24x94 PSoC device's key package features and ordering codes.

Table 6-1. CY8C24x94 PSoC Device's Key Features and Ordering Information

| Package<br>Ordering<br>Code                         |                   | Flash<br>(Bytes) | SRAM<br>(Bytes) | Temperature<br>Range | Digital Blocks | Analog Blocks | Digital IO Pins | Analog Inputs | Analog Outputs | XRES Pin |
|-----------------------------------------------------|-------------------|------------------|-----------------|----------------------|----------------|---------------|-----------------|---------------|----------------|----------|
| 56 Pin (8x8 mm) QFN                                 | CY8C24794-24LFXI  | 16K              | 1K              | -40C to +85C         | 4              | 6             | 50              | 48            | 2              | No       |
| 56 Pin (8x8 mm) QFN<br>(Tape and Reel)              | CY8C24794-24LFXIT | 16K              | 1K              | -40C to +85C         | 4              | 6             | 50              | 48            | 2              | No       |
| 56 Pin (8x8 mm) QFN                                 | CY8C24894-24LFXI  | 16K              | 1K              | -40C to +85C         | 4              | 6             | 49              | 47            | 2              | Yes      |
| 56 Pin (8x8 mm) QFN<br>(Tape and Reel)              | CY8C24894-24LFXIT | 16K              | 1K              | -40C to +85C         | 4              | 6             | 49              | 47            | 2              | Yes      |
| 68 Pin OCD (8x8 mm) QFN <sup>a</sup>                | CY8C24094-24LFXI  | 16K              | 1K              | -40C to +85C         | 4              | 6             | 56              | 48            | 2              | Yes      |
| 68 Pin (8x8 mm) QFN <sup>b</sup>                    | CY8C24994-24LFXI  | 16K              | 1K              | -40C to +85C         | 4              | 6             | 56              | 48            | 2              | Yes      |
| 68 Pin (8x8 mm) QFN <sup>b</sup><br>(Tape and Reel) | CY8C24994-24LFXIT | 16K              | 1K              | -40C to +85C         | 4              | 6             | 56              | 48            | 2              | Yes      |
| 100 Ball OCD (6x6 mm) VFBGA <sup>a</sup>            | CY8C24094-24BVXI  | 16K              | 1K              | -40C to +85C         | 4              | 6             | 56              | 48            | 2              | Yes      |
| 100 Ball (6x6 mm) VFBGA                             | CY8C24994-24BVXI  | 16K              | 1K              | -40C to +85C         | 4              | 6             | 56              | 48            | 2              | Yes      |
| 100 Pin OCD TQFP <sup>a</sup>                       | CY8C24094-24AXI   | 16K              | 1K              | -40C to +85C         | 4              | 6             | 56              | 48            | 2              | Yes      |

a. This part may be used for in-circuit debugging. It is NOT available for production.

# 6.1 Ordering Code Definitions



b. Dual-sourced packaging. Order fulfillment based on availability. See Figure 4-2 on page 40 and Figure 4-3 on page 40 for package specifics.

# 7. Sales and Company Information



To obtain information about Cypress Semiconductor or PSoC sales and technical support, reference the following information.

#### **Cypress Semiconductor**

198 Champion Court San Jose, CA 95134 408.943.2600

Web Sites: Company Information - http://www.cypress.com

Sales - http://www.cypress.com/aboutus/sales\_locations.cfm

Technical Support - http://www.cypress.com/support/login.cfm

# 7.1 Revision History

#### Table 6-1. CY8C24x94 Data Sheet Revision History

| Document                                    | Title: C | CY8C24094, C | CY8C24794, CY8C24 | 894 and CY8C24994 Final Data Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|---------------------------------------------|----------|--------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Document Number: 38-12018                   |          |              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Revision                                    | ECN#     | Issue Date   | Origin of Change  | nge Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| **                                          | 133189   | 01.27.2004   | NWJ               | New silicon and new document – Advance Data Sheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| *A                                          | 251672   | See ECN      | SFV               | First Preliminary Data Sheet. Changed title to encompass only the CY8C24794 because the CY8C24494 and CY8C24694 are not being offered by Cypress MicroSystems.                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| *B                                          | 289742   | See ECN      | НМТ               | Add standard DS items from SFV memo. Add Analog Input Mux on pinouts. 2 MACs. Change 512 bytes of SRAM to 1K. Add dimension key to package. Remove HAPI. Update diagrams, registers and specs.                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| *C                                          | 335236   | See ECN      | НМТ               | Add CY logo. Update CY copyright. Update new CY.com URLs. Re-add ISSP programming pinout notation. Add Reflow Temp. table. Update features (MAC, Oscillator, and voltage range), registers (INT_CLR2/MSK2, second MAC), and specs. (Rext, IMO, analog output buffer).                                                                                                                                                                                                                                                                                   |  |  |  |  |
| *D                                          | 344318   | See ECN      | НМТ               | Add new color and logo. Expand analog arch. diagram. Fix IO #. Update Electrical Specifications.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| *E                                          | 346774   | See ECN      | HMT               | Add USB temperature specifications. Make data sheet Final.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| *F                                          | 349566   | See ECN      | HMT               | Remove USB logo. Add URL to preferred dimensions for mounting MLF packages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| *G                                          | 393164   | See ECN      | НМТ               | Add new device, CY8C24894 56-pin MLF with XRES pin. Add Fimousb3v char. to specs. Upgrade to CY Perform logo and update corporate address and copyright.                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| *H                                          | 469243   | See ECN      | НМТ               | Add ISSP note to pinout tables. Update typical and recommended Storage Temperature per industrial specs. Update Low Output Level maximum IOL budget. Add FLS_PR1 to Register Map Bank 1 for users to specify which Flash bank should be used for SROM operations. Add two new devices for a 68-pin QFN and 100-ball VFBGA under RPNs: CY8C24094 and CY8C24994. Add two packages for 68-pin QFN. Add OCD non-production pinouts and package diagrams. Update CY branding and QFN convention. Add new Dev. Tool section. Update copyright and trademarks. |  |  |  |  |
| Distribution: External/Public Posting: None |          |              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |

### 7.2 Copyrights and Code Protection

© Cypress Semiconductor Corporation. 2004-2006. All rights reserved. PSoC Designer™, Programmable System-on-Chip™, and PSoC Express™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective corporations.

The information contained herein is subject to change without notice. Cypress Semiconductor assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges. Cypress Semiconductor products are not warranted nor intended to be used for medical, life-support, life-saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress Semiconductor.

Note the following details of the Flash code protection features on Cypress Semiconductor PSoC devices.

Cypress Semiconductor products meet the specifications contained in their particular Cypress Semiconductor Data Sheets. Cypress Semiconductor believes that its family of products is one of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress Semiconductor, that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress Semiconductor nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Cypress Semiconductor is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress Semiconductor are committed to continuously improving the code protection features of our products.