平衡机操作说明书

BM 10 , 20 , 30 , 40 , 50

目录

- 1. 用户注意事项
- 2. 安全注意事项
- 2.1 操作人员安全注意事项
- 3 操作和显示面板
- 4 功能描述
- 4.1 操作区域
- 4.2 控制

5 操作流程

- 5.1 试转
- 5.2 轮胎夹具
- 5.3 平衡程序
- 5.4 检测车轮数据
- 5.4.1 手动
- 5.4.2 使用内部传感臂
- 5.4.3 使用外部传感臂
- 5.5 数据记忆
- 5.6 机器启动
- 5.7 结束测量操作
- 6. 规格

1. 用户注意事项

这些操作说明适用于 BM10-50 和 S 型号的操作 人员和管理人员。

操作员指的是汽车行业经训练的人员。他们必 须在此种平衡机的操作上受过培训(如在路斯 霸公司培训)

管理员是指对平衡机的结构情况负责的人员 (如:事故防范等)

合理适用

平衡机 10-50 适用于汽车轮胎不平衡的检查, 使用方便。

避免不合理使用

- 不要使用机器不适用的轮胎
- 不要将允许以外的其它物品放在平衡机上

使用条件

- 不可将操作和显示器暴露在阳光下
- 功能范围 + 5°C 到 + 40°C

本操作说明使用下列图形说明:

- 1 信息 包含一个注意事项
- 警告 显示对检测设备/样品有危险

\Lambda 人员危险 - 总体说明

在将机器投入使用和进行操作之前,必须先阅 读本说明书,尤其是关于安全的部分要仔细阅 读。这样,你可以排除使用设备时的不安全因 素以及由此引发的对你自身安全的威胁,防止 设备受到损坏。

以下说明书描述了所有的功能和部件。请将机器的功能范围同文本最后的清单做一个比较。

使用本产品意味着你接受下列的条件: 版权:

软件及数据是路斯霸公司或供应商的资 产,受版权法,国际法和其它法律的保护,严 禁私自翻录。禁止私自翻制或出售数据或软件, 违者将受法律惩罚。一旦侵权产生,路斯霸保 留起诉和索取损害赔偿的权利。

责任

尽可能地,程序里的所有数据都基于从制 造商和进口商的信息。路斯霸不能保证软件和 数据的完整性和正确性。我们不对由于错误的 软件和数据造成的损害负责。任何情况下,路 斯霸所负责任仅限于顾客购买产品所付出部 分。由于路斯霸公司故意造成的损害或明显的 疏忽除外。

保证

任何未经路斯霸允许的硬件和软件的使 用造成了对我们产品的改装,因而不在责任和 保修之内,即使硬件随后被卸下,或者软件已 被删除。

我们的产品绝不允许被改装。而且,我们 的产品只可用原装配件。

违反以上的声明将导致所有的保修要求 无效。

目前的路斯霸检测线只能用路斯霸认可的操作 系统。使用非路斯霸认可的不同操作系统进行 检测也会使保修要求无效。另外,我们不能承 担使用非认可的操作系统造成的损害。

3. 安全注意事项

为了你自身的安全和顾客的安全请注意所列的 安全说明。安全说明显示了可能的危险。同时 包含了如何通过恰当的操作避免危险产生的注 意事项。

安全说明也包含在操作说明之中。用以下的符 号进行显示。

1 信息 - 包含一个注意事项

警告 - 显示对检测设备/样品有危险

\Lambda 人员危险 - 总体说明

2.1 操作人员安全注意事项

1 请注意事故防范规则!

¹ 轮胎平衡机不使用时,通过主按钮关闭电 源供应。防止主按钮私自使用。

¹ 不要将任何的轮胎过长时间放置在轮胎平 衡机上。

¹ 电力系统的工作只能由熟练的合格电工进 行。

▶ 平衡过程中,必须始终盖好盖板。

▲ _{启动机器时},轮胎和其它物体不能装在轴 上。

▲ 在盖板打开情况下操作平衡机时,其他人 员不能待在机器范围内! 轮胎范围内人员有人身危险。

▲ 轮胎平衡机没有断开电源时,不可在平衡 机上进行维修和其他工作。

▲ 轮胎平衡机的操作显示在显示器上。为了 保证操作状态(开/关)能够在任何时候都观察 到,必须确保在任何情况下显示器都可见。

⚠_操作人员必须穿不带带子或线圈的工作

服。这也包括不系带的鞋。 带子和鞋带可能跑到轮胎平衡机内,可能给操

作员造成危险。

▲ ▲ 轮胎必须用相应的夹具的方法装到轮胎平 衡机上

在进行维护工作之前,轮胎平衡机必须
断开电源。
有触电危险。

\Lambda 系统必须防湿防潮。

有触电危险。

不要在进行检查时,进行任何的安装工作。

操作和显示板

显示区

- 1. 左边平衡重量数
- 2. 左/右平衡块位置
- 3. 右边平衡重量数
- 18 重量位置或选择程序的显示
- 19 PAX 程序启动
- 20 高不平衡值
- 21 均匀转动
- 22 不规则速度转动
- 23 制动开/关
- 24 分离运转程序

操作区

- 4/5 +/-: 增加或减少机器的轮圈距离输入
- 6/7 +/-: 增加或减少轮圈宽度输入
- 8/9 +/-: 增加或减少轮圈直径输入
- 10 Start:开始每项程序功能
- 11 Stop/Pos:关闭激活的功能/ 激活/关闭制动功能
- 12 确认输入/选择菜单
- 13 铝/钢程序选择
- 14 激活均衡程序
- 15 激活后轮辐位置
- 16 保存当前的轮圈数据
- 17 提取储存的轮胎数据

控制:

- 25 操作和显示板
- 26 重量盘
- 27 主按钮
- 28 护轮板
- 29 外传感臂(任选)
- 30 带夹具的轴
- 31 内传感臂
- 32 Quick-Span 的脚纽
- 33 标定重量
- 34 锥块固定器(任选)

- 4. 功能描述
- 4.1 操作员区

按钮 4/5 : 机器和轮圈法兰之间距离的输入。增加或减少 1mm 时使用 + / - 按钮。

毫米的显示如下:

_ *R* **II** 160

按钮 6/7:输入轮圈宽度 增加或减少 0.5 英寸时使用 + / - 按钮 (在 PAX 程序时则为 mm)。 通常显示为英寸,显示如下:

ь !! ЮО

按钮 8/9:输入轮圈直径 增加或减少 0.5 英寸时使用 + / - (在 PAX 程序 时则为 mm)。

通常显示为英寸,显示如下:

```
d ... ISD
```

按钮 10:开始平衡,标定和试用

按钮 11:关闭激活的功能。 在没有激活的功能时,按按钮 11 会激活或关闭 显示灯 23 显示的轴制动。

按钮 12:使用该键确认功能输入。如果没有激活的功能,你会看到可选择的菜单。按+/-按钮 4/5 会看到功能菜单 F1 到 F9。

F1 详细的显示

一个平衡循环结束后按输入键 12,显示以克或 盎司精确计算的平衡重量。这使要求的平衡重 量得以更精确的显示。

- F III - 2

按输入键 12 开始试用。试用可以使可能存在的 夹具的不平衡对结果造成的影响最小化。 试用的显示如下:

F2 试用

F3:重量单位 **FII 3**

按输入键 12 后,你可以使用+/-按钮 4/5 在克和 盎司之间转换重量单位。选择的显示如下:

___ | | | 9 = 以克显示

□□ [] □ = 以盎司显示

按输入键 12 确认所选的单位。

按输入键 12 复位到出厂设置。 复位显示在屏幕上约 4 秒,如下:

525 🖬 22

按输入键 12 开始标定。机器在使用 500 个循环 之后,必须重新调整。重新调整保证了测量值 的稳定质量。只有用附上的标定重量和中心安 装的标准夹具才能进行标定。你可以将板上的 标定重量加在左后边以进行保存。

标定操作显示如下:

со!!! о

过程: 取下轴上所有的锥块和手轮,

按开始键 10,开始测量操作。在测量操作的最 后时,显示如下:

-/--

将标定重量拧入到夹具内

· 按开始按钮 10 开始再一次测量。

在测量操作的最后时显示如下:

将标定重量从夹具的外面拧入

按开始键 10 开始最后一次测量操作。显示如下:

0000

测量完成后将标定重量取下,检测的数值接受 并且保存。即使在机器关闭后,机器仍然保存。

F6:自动操作 **FIII 8**

按输入键 12 后,你可以使用+/-按钮 4/5,激 活自动操作功能。自动操作功能如果激活,在 关闭护轮板后自动开始完成一个平衡操作循 环。选择显示如下:

8-2-11 - 激活自动操作

8.4.1.6.55 = 自动操作关闭

按输入键 12 确认选择。

F7:挤压/舍入 **F**

在按输入键 12 之后,你可以使用+/-按钮 4/5 调整变化量为1克或0.1 盎司的挤压值。 所有比此设置更小的检测值会显示为0。

□ 🛄 🖸 = 例如:挤压值达5克

再次按输入键 12,调整变化量为 1 克或 0.1 盘 司的舍入值。

所有的检测值以此设置的倍数显示,据此值上 下舍入。

按输入键 12 确认所选。

F8:护轮板安全按钮 **F**

在按输入键 12 之后,你可以使用+/-按钮 4/5 关闭护轮板安全功能。

5E d = 平衡只能在护轮板关闭时进行。

▶ 出于安全原因,这项功能不能关闭!

5EcIIbFF = 平衡在护轮板打开时也可进行。

■平衡也可在护轮板打开时进行。

F9:轴的位置 **月回 9**

在按输入键 12 之后,当前轴的位置以 0-255 范 围内的数值显示。为使在开始标定操作前,将 轴的位置调整到绝对垂直的位置,这项功能十 分重要。

₽ □ = 轴在绝对垂直的位置

P 11155 = 轴在任意的位置

按钮 13: ALU 程序选择 使用 AI 按钮在 8 个不同的平衡程序间 选择。所选的程序在显示区的 18 和 19 显示。

A:平衡机一打开后,基本的程序会自动激 活并且显示如下:

- 2		F		5	B.
_ 4		1	-		
					٠

- 内部夹钳重量 - 外部夹钳重量

B:再次按 AI 按钮进入下一个程序:静态平 衡

- 轮缘中心粘合重量

- 摩托车轮缘中心或轮辐重量

C:再次按 AI 按钮进入下一个程序:

- 内部粘合重量;

- 轮辐外部的外部粘合重量

D:再次按AI按钮进入下一个程序:

- 内部粘合重量

- 轮辐内部的外部粘合重量

- 内部夹钳重量

- 轮辐内部的外部粘合重量

F:再次按 AI 按钮进入下一个程序:

- 内部夹钳重量

- 轮辐外部的外部粘合重量

G: 再次按 AI 按钮进入下一个程序: PAX LED19 点亮

- 内部粘合重量

- 轮辐外部的外部粘合重量

H:再次按 AI 按钮进入下一个程序:

- 内部粘合重量 - 轮辐内部的外部粘合重量

按钮 14:均衡

如果系统在测量操作的最后检测到大于 30 克 的不平衡值, LED20 点亮。使用均衡程序分别 检测轮圈和轮胎的不平衡,以便达到最优化的 安装。

过程:

按按键 13 激活均衡模式。将轮胎剥离轮圈。 显示区 LED24 点亮,显示以下的信息:

▶/Ⅲ = 过程1

将轮圈夹到平衡机上,确保阀在 12 点钟方向。 按开始键 10,开始测量操作。轮圈的不平衡进 行检测。测量操作后显示如下:

₽2 = 过程 2

现在将轮胎安装到轮圈上,再一次将车轮夹到 平衡机上,确保阀在 12 点钟方向。 按开始键 10,开始第二次测量操作。轮胎的不 平衡进行检测。

在完成测量后,转动轮胎直到位置显示在0位 置。在12点钟方向,在轮胎外面作个记号。再 次安上轮胎,确保轮胎记号同轮圈阀的位置一 致。 按按钮 10 开始最后一次测量操作。程序自动从 均衡功能退出,以先前检测的数据开始标准的 测量操作。LED24 在测量结束后熄灭。

按钮15:后轮辐定位(分离)

按按钮 15 激活后轮辐定位。粘合重量之间加在 轮辐的后面,以便从外面看不见。

程序:

开始测量操作,用定位装置2同平时一样将平衡块加在轮圈的里面。用手调节车轮,使用定位装置2或按按钮 Pos.11,到外部平衡块的12 点钟方向。

按按钮 15 开始后轮辐定位。LED24 点亮,制动(任选)打开,LED23 熄灭。

■如果外部平衡块的轮胎不在 12 点钟方向,会 响起两次哔哔声表示错误信息。

首先将轮辐转动到 12 点钟方向,保持此位置直 到声音信号确认了位置的转换。 对第二个轮辐重复此操作。同样声音信号确认

了位置。

显示板显示出要求的平衡重量。使用定位装置 转到加平衡块的两个位置。 按按钮 15 或开始键 10 结束后轮辐位置功能。 LED24 熄灭。

按钮 16:保存数据

在按下按钮 16 后,可以用 + / - 按钮 4/5 选择存储空间。

总共有 19 个存储空间,显示如下:

5 🔲 🛛 bis 5 🔲 19

用确认按钮 12 将数据保存到选择的存储空间

按钮 17:提取存储的轮胎数据 按下确认按钮 17,你可以用 + / - 按钮 4/5 选择 🕴 在开动机器之前,确保传感器在最初的位 存储空间。

总共有 19 个存储空间,显示如下:

5 🔲 🛛 bis 5 🔲 19

使用确认按钮 12 从所选的存储空间提取数据 到 RAM 存储,在手工修改之前或数据从存储 空间读出前可使用。

- 4.2 控制
- 操作和显示板 25: 显示检测测量值和输入要求数据
- 重量盘 26: 不同平衡块的盘。
- 主按钮 27: 轮胎平衡机的开关按钮。
- 护轮板 28: 保护操作人员的安全,防止受到转动的车 轮造成的危险。
- 外部传感臂(任选)29: 检测外轮圈边沿的平衡块位置。数据保存 在机器内用于处理而不显示。
- 带夹具的轴 30: 你可以安装拥有的夹具和所要平衡的轮 胎。
- 内部传感臂 31: BM10:测量机器-毫米标识的轮圈距离。 BM20,30,40,50:测量机器-毫米标识的轮圈 距离,内轮圈边缘的平衡块位置。数据保 存在机器内用于处理而不显示。 使用程序 D 检测轮辐后的粘合重量的外部 位置。
- Quickspan32 : 自动夹具固定。车轮在定位到轴上装上夹 具后,气动夹紧。

5 工作流程

置。因为在开动后,传感器的位置就是定义的 "0点"。

在接通电源后,显示区显示目前的软件版本, 时间大约为5秒。

●FFIII 3 = 例如版本 1.3

5.1 试转

每一次打开后我们建议先进行试转。在改变夹 具后,进行试转是必不可少的。这可以确保夹 具存在的不平衡得到补偿,维持测量的精度。

按菜单选择 F2 开始试转 (见按键 12/F2)。试 转显示如下:

588:0

5.2 轮胎夹具

定中心和夹具固定

为了将轮胎夹到机器上,必须在主轴上安装适 当的轮胎夹具装置。只有正确的安装之后,机 械上准确而干净的夹具装置可以保证高质量的 平衡精度。

一些汽车制造商在它们的技术文本里面特别指 出轮胎承口的类型(螺栓或中间中心)。据此选 择夹具和定中心装置。

-带中间中心或精确的工作中心孔的轮圈使用 中间中心装置和适配器。确保轴上的红点和定 中心装置的标定重量的线定在 12 点钟方向进 行。

-关闭的轮圈或螺栓中心的轮圈使用通用的夹 具。这种夹具有多种适配器可供选择。

- -摩托车夹具
 - ▮ 在安装夹具之前清洁主轴锥块和夹具的内 部锥块。

将夹具安装在主轴上,确保夹具的凹槽和轴 上的气缸螺栓头接合。

然后用安装螺栓将夹具安全固定。

5.3 平衡程序

由于加在铝或钢轮圈上平衡块的不同,在手动 输入和真实平衡测量值有差别。

通过选择平衡程序,这些差别在检测测量值时 考虑进去。因而,在重量加载和真实的车轮数 据输入之间有紧密的关系。

5.4 检测轮胎数据

为了检测测量存在中的不平衡,轮胎数据的检 测和输入必须正确进行。如果输入或检测的车 轮数据是错误的,测量值就会有不同值,由此 产生错误的平衡结果。

车轮数据可以手动结束或用传感臂结束,这取 决于型号。

5.4.1 手动

手动的情形下,通过键盘输入标准轮圈数据。 重量加载在多种程序里自动进行。

5.4.2 使用内部传感器

一点测量

如果在轮圈法兰的点 1 用内部传感臂进行了一 点测量,在余下的程序 A,C,D,E,F,G 和 H 中, 平衡块位置根据以上指定的数量进行考虑。

两点测量

如果在轮圈法兰的点 1 和点 3 或点 2 和点 3 用 内部传感臂进行了两点测量,在程序 C,D,E 和 H 中,检测的车轮数据直接用来计算平衡重量。

5.4.3 使用外部传感臂

通过内部和外部传感臂使用程序 A,C,F 和 G 检测所有的轮胎,使用它们计算平衡重量。 通过按钮 4/5,6/7,和 8/9 可以取得当前的车轮 的距离,宽度,直径数据。

5.5 数据存储

作为先前描述的检测车轮数据的另一选择,你 可以从存储中直接读取原先保存的车轮数据。

在按下确认键 17 后,可以通过+/-按钮 4/5 选择存储空间。总共有 19 个存储空间,显示如 下:

5 🔲 🛛 bis 5 🔲 79

使用确认按钮 12 从所选的存储空间提取数据 到 RAM 存储,在手工修改之前或数据从存储 空间读出前可使用。

5.6 启动机器

将轮胎安装到轴上,输入以上描述的车轮数据 之后,有两种办法可以开始测量操作。

- 1. 按操作板上的按钮 10,开始测量操作。
- 如果护轮板安全按钮的功能在"on"的位置(见 4.1 按钮 12 F8)测量操作在关闭护 轮板后立即开始。

5.7 结束测量操作

在测量操作的最后,马达停止车轮,内部平衡 块的位置转到 12 点钟位置。取决于型号的不同 (见文本最后的摘要),制动自动将车轮保持在 此位置。当左边第二排 LED 中间的 LED 点亮 时,表明达到正确的位置。此位置可以手工调 节。

如果车轮在正确的位置,你可以加载平衡重量。

外部平衡重量测定时将车轮确定在正确的位置。对于没有制动的机器,用手将车轮转到右排 LED 中间的 LED 点亮为止。带制动的机器 车轮在进行外部平衡重量测定时按按钮 11 "Stop/Pos"自动转到第二个位置。

将外部平衡重量加在轮圈上。现在你可以开始 核查操作了。

打开夹具固定器,将车轮从轴上取下。

型号	BM10	BM20	BM30	BM40	BM50
DC 马达	24V	48V	48V	48V	48V
轮胎距离收集	А	А	А	А	А
轮胎中间收集	М	А	А	А	А
轮胎宽度	М	М	М	А	А
数字显示	Х	Х	Х	Х	Х
VGA 显示	-	-	-	-	-
TFT 显示	-	-	-	-	-
转到第1个水平	Х	Х	Х	Х	Х
转到第2个水平	-	-	Х	Х	Х
制动	-	-	Х	Х	Х
机械夹具技术	Х	Х	Х	Х	-
气动夹具技术	-	-	-	-	Х
(Quick-Span)					
附加锥块支架	-	-	-	Х	Х
护轮板	Х	Х	Х	Х	Х
程序	9	9	9	9	9
均衡	Х	Х	Х	Х	Х
分离	Х	Х	Х	Х	Х

A =自动数据产生

M =手动输入

X =标准设备

- = 不提供

opt =任选设备