
101 Innovation Drive
San Jose, CA 95134
www.altera.com

Viterbi Compiler
User Guide

MegaCore Version: 11.0
Document Date: May 2011

http://www.altera.com

Copyright © 2011 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

UG-VITERBI-11.0

 © May 2011 Altera Corporation
Contents
Chapter 1. About This Compiler
Features . 1–1
Release Information . 1–2
Device Family Support . 1–3
Performance and Resource Utilization . 1–4

Hybrid Architecture . 1–4
Parallel Architecture . 1–6

Installation and Licensing . 1–7
OpenCore Plus Evaluation . 1–8
OpenCore Plus Time-Out Behavior . 1–8

Chapter 2. Getting Started
Design Flows . 2–1
DSP Builder Flow . 2–1
MegaWizard Plug-In Manager Flow . 2–2

Parameterize the MegaCore Function . 2–4
Set Up Simulation . 2–7
Generate the MegaCore Function . 2–8

Simulate the Design . 2–11
Compile the Design . 2–11
Program a Device . 2–11

Chapter 3. Functional Description
Soft Symbol Inputs . 3–1
Encoding Scheme . 3–1
State Metrics . 3–2
Puncturing Scheme . 3–2
Trellis Coded Modulation . 3–3
Trellis Termination . 3–7
Trellis Initiation . 3–8
The Avalon Streaming Interface . 3–8
Parameters . 3–9

Architecture Tab . 3–9
BER Estimator . 3–9
Node Synchronization . 3–10

Code Sets Tab . 3–11
Parameters Tab . 3–12

Throughput Calculator . 3–12
Latency Calculator . 3–13

Test Data Tab . 3–13
Signals . 3–13

Timing Diagrams . 3–17
MegaCore Verification . 3–18

Additional Information
Revision History . Info–1
How to Contact Altera . Info–1
Typographic Conventions . Info–2
Viterbi Compiler User Guide

iv
Viterbi Compiler User Guide © May 2011 Altera Corporation

© May 2011 Altera Corporation
1. About This Compiler
This document describes the Altera® Viterbi Compiler. The Altera Viterbi Compiler
comprises high-performance, soft-decision Viterbi MegaCore functions that
implement a wide range of standard Viterbi decoders.

Viterbi decoding (also known as maximum likelihood decoding or forward dynamic
programming) is the most common way of decoding convolutional codes by using an
asymptotically optimum decoding technique. In its basic form, Viterbi decoding is an
efficient, recursive algorithm that performs an optimal exhaustive search.

A convolutional encoder and Viterbi decoder can be used together to provide error
correction over a noisy channel, e.g., a communications channel. A convolutional
encoder adds redundancy (i.e., extra bits) to a data stream before transmission.

The rate and the generating polynomials describe the convolutional code, hence they
describe the convolutional encoder. The rate is the number of transmitted bits per
input bit, e.g., a rate 1/2 encodes 1 bit and produces 2 bits for transmission. Similarly,
a rate 2/3 encodes 2 bits and produces 3 bits for transmission. A code can be
punctured to increase its rate, by deleting some of the encoded bits according to a
deterministic pattern.

The generating polynomials denote the convolutional encoder state bits, which are
mathematically combined to produce an encoded bit. There is one generating
polynomial per encoded bit. The length in bits of the generating polynomial is called
the constraint length; systems with higher constraint lengths are generally more
robust. However, the complexity of the Viterbi decoder increases exponentially with
the constraint length, so it is unusual to find constraint lengths greater than nine.

A noisy transmission channel causes bit errors at the receiver. The Viterbi algorithm
finds the most likely sequence of bits that is closest to the actual received sequence.
The Viterbi decoder uses the redundancy, which the convolutional encoder imparted,
to decode the bit stream and remove the errors.

The receiver can deliver either hard or soft symbols to the Viterbi decoder. A hard
symbol is equivalent to a binary ±1. A soft symbol is multi-leveled to represent the
confidence in the bit being positive or negative. For instance, if the channel is non-
fading and Gaussian, the output of a matched filter quantized to a given number of
bits is a suitable soft input. Punctured symbols are indicated with the eras_sym
input. The Viterbi algorithm has better performance with soft input symbols.

The Viterbi decoder works on blocks of data, or continuous streams. It takes in N
symbols at a time for processing, where N is the number of encoded symbols. The
traceback length is the number of trellis states processed before the decoder makes a
decision on a bit.

Features
The Viterbi Compiler provides two high-performance, area-optimized, soft-decision
Viterbi decoder MegaCore functions—the hybrid and parallel architecture. For both
MegaCore functions, you can specify the BER estimator, node synchronization, and
multiple code sets (including the variable constraint lengths).
Viterbi Compiler User Guide

1–2 Chapter 1: About This Compiler
Release Information
The Viterbi Compiler supports the following features:

■ High-speed parallel architecture with:

■ Performance of over 250 megabits per second (Mbps)

■ Fully parallel operation

■ Optimized block decoding and continuous decoding

■ Low to medium-speed, hybrid architecture

■ Configurable number of add compare and select (ACS) units

■ Memory-based architecture

■ Wide range of performance; wide range of logic area

■ Fully parameterized Viterbi decoder, including:

■ Number of coded bits

■ Constraint length

■ Number of soft bits

■ Traceback length

■ Polynomial for each coded bit

■ Avalon® Streaming (Avalon-ST) interfaces

■ Variable constraint length

■ Trellis coded modulation (TCM) option

■ Easy-to-use IP Toolbench interface

■ DSP Builder ready

■ VHDL testbenches to verify the decoder

■ IP functional simulation models for use in Altera-supported VHDL and Verilog
HDL simulators

■ Flexible licensing—use only the features you require

■ Support for OpenCore Plus evaluation

Release Information
Table 1–1 provides information about this release of the Viterbi Compiler.

Table 1–1. Viterbi Compiler Release Information (Part 1 of 2)

Item Description

Version 11.0

Release Date May 2011

Ordering Code IP-VITERBI/HS (parallel architecture)

IP-VITERBI/SS (hybrid architecture)
Viterbi Compiler User Guide © May 2011 Altera Corporation

Chapter 1: About This Compiler 1–3
Device Family Support
f For more information about this release, refer to the MegaCore IP Library Release Notes
and Errata.

Altera verifies that the current version of the Quartus® II software compiles the
previous version of each MegaCore® function. The MegaCore IP Library Release Notes
and Errata report any exceptions to this verification. Altera does not verify
compilation with MegaCore function versions older than one release."

Device Family Support
Table 1–2 defines the device support levels for Altera IP cores.

Table 1–3 shows the level of support offered by the Viterbi MegaCore functions to
each of the Altera device families.

Product IDs 0037 (parallel architecture)

0038 (hybrid architecture)

Vendor ID 6AF7

Table 1–1. Viterbi Compiler Release Information (Part 2 of 2)

Item Description

Table 1–2. Altera IP Core Device Support Levels

FPGA Device Families HardCopy Device Families

Preliminary support—The IP core is verified with
preliminary timing models for this device family. The IPcore
meets all functional requirements, but might still be
undergoing timing analysis for the device family. It can be
used in production designs with caution.

HardCopy Companion—The IP core is verified with
preliminary timing models for the HardCopy companion
device. The IP core meets all functional requirements, but
might still be undergoing timing analysis for the HardCopy
device family. It can be used in production designs with
caution.

Final support—The IP core is verified with final timing
models for this device family. The IP core meets all
functional and timing requirements for the device family and
can be used in production designs.

HardCopy Compilation—The IP core is verified with final
timing models for the HardCopy device family. The IP core
meets all functional and timing requirements for the device
family and can be used in production designs.

Table 1–3. Device Family Support (Part 1 of 2)

Device Family Support

Arria® GX Final

Arria II GX Final

Arria II GZ Final

Cyclone® Final

Cyclone II Final

Cyclone III Final

Cyclone III LS Final

Cyclone IV GX Final

HardCopy® II HardCopy Compilation

HardCopy III HardCopy Compilation
© May 2011 Altera Corporation Viterbi Compiler User Guide

www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf

1–4 Chapter 1: About This Compiler
Performance and Resource Utilization
Performance and Resource Utilization
This section shows typical expected performance for different architectures and
constraint length, L, combinations, and ACS units, A, using the Quartus II software,
for the following devices:

■ Cyclone III (EP3C10F256C6)

■ Stratix III (EP3SE50F780C2)

■ Stratix IV (EP4SGX70DF29C2X)

1 Performance largely depends on constraint length, L.

Hybrid Architecture
Table 1–4 through Table 1–6 show the performance for the hybrid architecture using
the BER option and the following parameters:

v = 6 × L
softbits = 3
N = 2

where:

v is the traceback length
L is the constraint length
N is the number of coded bits
A is the number of ACS units

HardCopy IV E HardCopy Compilation

HardCopy IV GX HardCopy Compilation

Stratix® Final

Stratix II Final

Stratix II GX Final

Stratix III Final

Stratix IV GT Final

Stratix IV GX/E Final

Stratix V Preliminary

Stratix GX Final

Other device families No support

Table 1–3. Device Family Support (Part 2 of 2)

Device Family Support

Table 1–4. Performance & Area Utilization for Hybrid Architectures—Cyclone III Devices (Part 1 of
2)

Parameters
Combinational

LUTs
Logic

Registers

Memory
Blocks
(M9K)

fMAX
(MHz)

Throughput
(Mbps)A L

1 5 605 387 5 193 19

1 7 825 502 6 197 6
Viterbi Compiler User Guide © May 2011 Altera Corporation

Chapter 1: About This Compiler 1–5
Performance and Resource Utilization
2 7 977 619 6 191 12

4 7 1,259 833 6 185 19

1 9 1,577 922 12 188 1

2 9 1,730 1,047 12 185 3

4 9 2,044 1,277 12 178 6

8 9 2,653 1,723 14 174 11

16 9 3,807 2,585 18 166 17

Table 1–5. Performance & Area Utilization for Hybrid Architectures—Stratix III Devices

Parameters
Combinational

ALUTs
Logic

Registers

Memory
Blocks
(M9K)

fMAX
(MHz)

Throughput
(Mbps)A L

1 5 542 387 5 327 33

1 7 730 502 6 330 10

2 7 889 620 6 341 21

4 7 1,127 833 6 323 32

1 9 1,419 922 12 312 2

2 9 1,582 1,047 12 303 5

4 9 1,896 1,277 12 318 10

8 9 2,466 1,723 14 298 19

16 9 3,487 2,587 18 297 30

Table 1–6. Performance & Area Utilization for Hybrid Architectures—Stratix IV Devices

Parameters
Combinational

ALUTs
Logic

Registers

Memory
fMAX
(MHz)

Throughput
(Mbps)ALUTs M9KA L

1 5 548 407 4 4 331 33

1 7 736 526 6 5 328 10

2 7 894 643 6 5 337 21

4 7 1,134 857 6 5 319 32

1 9 1,459 978 24 10 312 2

2 9 1,622 1,103 24 10 307 5

4 9 1,936 1,333 24 10 310 10

8 9 2,509 1,780 24 12 285 18

16 9 3,526 2,643 24 16 293 29

Table 1–4. Performance & Area Utilization for Hybrid Architectures—Cyclone III Devices (Part 2 of
2)

Parameters
Combinational

LUTs
Logic

Registers

Memory
Blocks
(M9K)

fMAX
(MHz)

Throughput
(Mbps)A L
© May 2011 Altera Corporation Viterbi Compiler User Guide

1–6 Chapter 1: About This Compiler
Performance and Resource Utilization
Parallel Architecture
Table 1–7 through Table 1–9 show the performance for the parallel architecture with
no BER option and the following parameters:

v = 6 × L
N = 2

where:

v is the traceback length
L is the constraint length
N is the number of coded bits

Table 1–7. Performance & Area Utilization for Parallel Architecture—Cyclone III Devices

Parameters

Combinational
LUTs

Logic
Registers

Memory
Blocks
(M9K)

fMAX
(MHz)

Throughput
(Mbps)softbits L Optimization

Best State
Finder

7 3 Block Off 2,218 847 5 184 184

7 2 Continuous Off 2,048 814 5 181 181

3 3 None Off 725 436 5 211 211

5 3 None Off 1,117 574 5 198 198

7 1 None Off 2,218 964 7 198 198

7 3 None Off 2,624 1,108 7 187 187

7 4 None Off 2,825 1,180 7 181 181

3 3 None On 755 464 5 205 205

5 3 None On 1,275 720 5 200 200

7 3 None On 3,307 1,732 7 188 188

Table 1–8. Performance & Area Utilization for Parallel Architecture—Stratix III Devices

Parameters

Combinational
ALUTs

Logic
Registers

Memory
Blocks
(M9K)

fMAX
(MHz)

Throughput
(Mbps)softbits L Optimization

Best State
Finder

7 3 Block Off 2,059 848 5 281 281

7 2 Continuous Off 2,015 816 9 279 279

3 3 None Off 548 437 5 327 327

5 3 None Off 918 574 5 307 307

7 1 None Off 2,013 970 7 292 292

7 3 None Off 2,401 1,109 7 285 285

7 4 None Off 2,596 1,180 7 285 285

3 3 None On 565 464 5 326 326

5 3 None On 1,092 723 5 308 308

7 3 None On 3,082 1,732 7 277 277
Viterbi Compiler User Guide © May 2011 Altera Corporation

Chapter 1: About This Compiler 1–7
Installation and Licensing
Installation and Licensing
The Viterbi Compiler is part of the MegaCore® IP Library, which is distributed with
the Quartus® II software and can be downloaded from the Altera® website,
www.altera.com.

f For system requirements and installation instructions, refer to the Altera Software
Installation and Licensing manual.

Figure 1–1 shows the directory structure after you install the Viterbi Compiler, where
<path> is the installation directory for the Quartus II software. The default installation
directory on Windows is c:\altera\<version>; or on Linux is /opt/altera<version>.

Table 1–9. Performance & Area Utilization for Parallel Architecture—Stratix IV Devices

Parameters

Combinational
ALUTs

Logic
Registers

Memory

fMAX
(MHz)

Throughput
(Mbps)softbits L Optimization

Best State
Finder ALUTs M9K

7 3 Block Off 2,058 847 -- 5 285 285

7 2 Continuous Off 2,015 815 -- 9 292 292

3 3 None Off 606 523 40 2 345 345

5 3 None Off 942 608 16 4 316 316

7 1 None Off 2,044 1,012 24 6 292 292

7 3 None Off 2,436 1,153 24 6 289 289

7 4 None Off 754 545 6 5 311 311

3 3 None On 624 551 40 2 341 341

5 3 None On 1,115 756 16 4 314 314

7 3 None On 3,117 1,777 24 6 288 288

Figure 1–1. Directory Structure

lib
Contains encrypted lower-level design files.

ip
Contains the Altera MegaCore IP Library and third-party IP cores.

<path>
Installation directory.

altera
Contains the Altera MegaCore IP Library.

common
Contains shared components.
viterbi
Contains the Viterbi Compiler files.
© May 2011 Altera Corporation Viterbi Compiler User Guide

www.altera.com
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

1–8 Chapter 1: About This Compiler
Installation and Licensing
OpenCore Plus Evaluation
With Altera’s free OpenCore Plus evaluation feature, you can perform the following
actions:

■ Simulate the behavior of a megafunction (Altera MegaCore function or AMPPSM
megafunction) within your system.

■ Verify the functionality of your design, as well as evaluate its size and speed
quickly and easily.

■ Generate time-limited device programming files for designs that include
megafunctions.

■ Program a device and verify your design in hardware.

You only need to purchase a license for the Viterbi Compiler when you are completely
satisfied with its functionality and performance, and want to take your design to
production. After you purchase a license, you can request a license file from the Altera
website at www.altera.com/licensing and install it on your computer. When you
request a license file, Altera emails you a license.dat file. If you do not have Internet
access, contact your local Altera representative.

f For more information about OpenCore Plus hardware evaluation, refer to
AN320: OpenCore Plus Evaluation of Megafunctions.

OpenCore Plus Time-Out Behavior
OpenCore Plus hardware evaluation supports the following operation modes:

■ Untethered—the design runs for a limited time.

■ Tethered—requires a connection between your board and the host computer. If
tethered mode is supported by all megafunctions in a design, the device can
operate for a longer time or indefinitely.

All megafunctions in a device time-out simultaneously when the most restrictive
evaluation time is reached. If there is more than one megafunction in a design, a
specific megafunction’s time-out behavior might be masked by the time-out behavior
of the other megafunctions.

The untethered time-out for the Viterbi Compiler is one hour; the tethered time-out
value is indefinite.

Your design stops working after the hardware evaluation time expires and the
decbit signal remains low.
Viterbi Compiler User Guide © May 2011 Altera Corporation

http://www.altera.com/literature/an/an320.pdf

© May 2011 Altera Corporation
2. Getting Started
Design Flows
The Viterbi Compiler supports the following design flows:

■ DSP Builder: Use this flow if you want to create a DSP Builder model that
includes a Viterbi Compiler variation.

■ MegaWizard™ Plug-In Manager: Use this flow if you would like to create a
Viterbi Compiler variation that you can instantiate manually in your design.

This chapter describes how you can use a Viterbi Compiler variation in either of these
flows. The parameterization provides the same options in each flow and is described
in “Parameterize the MegaCore Function” on page 2–4.

After parameterizing and simulating a design in either of these flows, you can
compile the completed design in the Quartus II software.

DSP Builder Flow
Altera’s DSP Builder product shortens digital signal processing (DSP) design cycles
by helping you create the hardware representation of a DSP design in an
algorithm-friendly development environment.

DSP Builder integrates the algorithm development, simulation, and verification
capabilities of The MathWorks MATLAB® and Simulink® system-level design tools
with Altera Quartus® II software and third-party synthesis and simulation tools. You
can combine existing Simulink blocks with Altera DSP Builder blocks and MegaCore
function variation blocks to verify system level specifications and perform simulation.

In DSP Builder, a Simulink symbol for the MegaCore function appears in the
MegaCore Functions library of the Altera DSP Builder Blockset in the Simulink library
browser.

To use the Viterbi Compiler in the MATLAB/Simulink environment, follow these
steps:

1. Create a new Simulink model.

2. Select the viterbi_<version> block from the MegaCore Functions library in the
Simulink Library Browser, add it to your model, and give the block a unique
name.

3. Double-click on the viterbi_<version> block in your model to display the
parameter editor and parameterize the MegaCore function variation. For an
example of setting parameters for the Viterbi Compiler, refer to “Parameterize the
MegaCore Function” on page 2–4.

4. Click Finish in the parameter editor to complete the parameterization and
generate your Viterbi Compiler MegaCore function variation. For information
about the generated files, refer to Table 2–1 on page 2–10.

5. Connect your Viterbi Compiler variation to the other blocks in your model.
Viterbi Compiler User Guide

2–2 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
6. Simulate the MegaCore function variation in your DSP Builder model.

f For more information about the DSP Builder flow, refer to the Using MegaCore
Functions chapter in the DSP Builder User Guide.

1 When you are using the DSP Builder flow, device selection, simulation, Quartus II
compilation and device programming are all controlled within the DSP Builder
environment.

DSP Builder supports integration with SOPC Builder using Avalon® Memory-
Mapped (Avalon-MM) master/slave and Avalon Streaming (Avalon-ST) source/sink
interfaces.

f For more information about these interface types, refer to the Avalon Interface
Specifications.

MegaWizard Plug-In Manager Flow
The MegaWizard™ Plug-in Manager flow allows you to customize a Viterbi Compiler
MegaCore function, and manually integrate the MegaCore function variation into a
Quartus II design.

Follow the steps below to use the MegaWizard Plug-in Manager flow.

1. Create a new project using the New Project Wizard available from the File menu
in the Quartus II software.

2. Launch MegaWizard Plug-in Manager from the Tools menu, and select the option
to create a new custom megafunction variation (Figure 2–1).

Figure 2–1. MegaWizard Plug-In Manager
Viterbi Compiler User Guide © May 2011 Altera Corporation

http://www.altera.com/literature/ug/ug_dsp_builder.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 2: Getting Started 2–3
MegaWizard Plug-In Manager Flow
3. Click Next and select Viterbi <version> from the DSP >Error Detection/Correction
section in the Installed Plug-Ins tab.

4. Verify that the device family is the same as you specified in the New Project
Wizard.

5. Select the top-level output file type for your design; the wizard supports VHDL
and Verilog HDL.

6. The MegaWizard Plug-In Manager shows the project path that you specified in the
New Project Wizard. Append a variation name for the MegaCore function output
files <project path>\<variation name>. Figure 2–2 shows the wizard after you have
made these settings.

7. Click Next to launch IP Toolbench.

Figure 2–2. Selecting the Megafunction
© May 2011 Altera Corporation Viterbi Compiler User Guide

2–4 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
Parameterize the MegaCore Function
To parameterize your MegaCore function, follow these steps:

1. Click Step 1: Parameterize in IP Toolbench (Figure 2–3).

2. Select the architecture, either Hybrid or Parallel (Figure 2–4).

Figure 2–3. IP Toolbench—Parameterize

Figure 2–4. Selecting the Architecture
Viterbi Compiler User Guide © May 2011 Altera Corporation

Chapter 2: Getting Started 2–5
MegaWizard Plug-In Manager Flow
3. Turn on the options that you require. When you turn on BER, you can turn on
Node Sync (Figure 2–4).

f For information about BER, refer to “BER Estimator” on page 3–9.

4. For parallel architectures, you can select one of the following optimizations:

■ None. The core uses combined continuous and block decoding. With this
option only, you can turn on the Best State Finder option.

■ Block. This option implements a single traceback engine with memory to hold
the whole size of the block.

■ Continuous. This option implements a fixed traceback length, which reduces
the size of the architecture.

5. Click the Code Sets tab (Figure 2–5).

6. Enter the code set information that you require:

a. Choose the Number of Code Sets. Choose a value greater than one, for
multiple code sets.

b. Select Decimal or Octal.

c. Choose either Viterbi mode, V, or trellis coded modulation (TCM) mode, T.

d. Enter values for the required polynomials GA, GB, GC, GD, GE, GF, and GG.

e. Enter a value for the number of coded bits, N.

f. Enter the constraint length, L, for the code set.

Figure 2–5. Code Set Configuration
© May 2011 Altera Corporation Viterbi Compiler User Guide

2–6 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
f For information about multiple code sets, refer to “Code Sets Tab” on
page 3–11.

7. Click the Parameters tab (Figure 2–6).

8. Choose the parameters that define the specific Viterbi code that you wish to
implement:

a. For the hybrid architecture only, choose the number of ACS Units.

b. Enter the Traceback length.

c. Choose the number of Softbits.

1 The maximum constraint length L that you specified on the Code Sets tab is
displayed as a read-ony field. The Bmgwide field displays the state metric
accumulation precision and is calclated from the maximum values of N, L
and Softbits.

9. Enter values into the throughput calculator (Figure 2–6). The throughput
calculator calculates throughput for specified frequencies.

f For information about these parameters, refer to “Parameters Tab” on
page 3–12). For the formulae used by the throughput calculator, refer to
“Throughput Calculator” on page 3–12. For the formulae used by the
latency calculator, refer to “Latency Calculator” on page 3–13.

10. Click the Test Data tab (Figure 2–7 on page 2–7).

Figure 2–6. Choosing the Parameters
Viterbi Compiler User Guide © May 2011 Altera Corporation

Chapter 2: Getting Started 2–7
MegaWizard Plug-In Manager Flow
11. Enter the test data settings for the testbench:

1 IP Toolbench generates a VHDL testbench, which can be used in any Altera-
supported VHDL simulator. The testbench uses data as specified on this
tab.

a. Enter the Number of bits per block. The minimum value is equal to the
constraint length.

b. Enter the Signal to Noise ratio in decbels.

c. Enter the Number of blocks.

d. Enter the Puncturing Patterns. You can specify de-punctured data for testing.

f For information about the test data parameterss, refer to “Test Data Tab”
on page 3–13.

12. Click Finish.

Set Up Simulation
An IP functional simulation model is a cycle-accurate VHDL or Verilog HDL model
produced by the Quartus II software. The model allows for fast functional simulation
of IP using industry-standard VHDL and Verilog HDL simulators.

c You may only use these simulation model output files for simulation purposes and
expressly not for synthesis or any other purposes. Using these models for synthesis
will create a nonfunctional design.

Figure 2–7. Test Data Settings
© May 2011 Altera Corporation Viterbi Compiler User Guide

2–8 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
To generate an IP functional simulation model (<variation name>.vo or <variation
name>.vho) for your MegaCore function, follow these steps:

1. Click Step 2: Set Up Simulation in IP Toolbench (Figure 2–3 on page 2–4).

2. Turn on Generate Simulation Model (Figure 2–8).

3. Choose the required language in the Language drop-down box.

4. Some third-party synthesis tools can use a netlist that contains only the structure
of the MegaCore function, but not detailed logic, to optimize performance of the
design that contains the MegaCore function. If your synthesis tool supports this
feature, turn on Generate netlist.

5. Click OK.

Generate the MegaCore Function
To generate your MegaCore function, follow these steps:

1. Click Step 3: Generate in IP Toolbench (Figure 2–3 on page 2–4).

The generation phase may take several minutes to complete. The generation
progress and status is displayed in a report window.

Figure 2–9 on page 2–9 shows the generation report.

Figure 2–8. Generate Simulation Model
Viterbi Compiler User Guide © May 2011 Altera Corporation

Chapter 2: Getting Started 2–9
MegaWizard Plug-In Manager Flow
Figure 2–9. Generation Report (Note 1)

Note to Figure 2–9:

(1) The Entity Name is added automatically. It includes _par for a parallel architecture or _hyb for a hybrid architecture.
© May 2011 Altera Corporation Viterbi Compiler User Guide

2–10 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
Table 2–1 describes the generated files and other files that may be in your project
directory. The names and types of files specified in the IP Toolbench report vary
based on whether you created your design with VHDL or Verilog HDL.

2. After you review the generation report, click Exit to close IP Toolbench. Then click
Yes on the Quartus II IP Files prompt to add the .qip file describing your custom
MegaCore function to the current Quartus II project.

f Refer to the Quartus II Help for more information about the MegaWizard Plug-In
Manager.

You can now integrate your custom variation into your system design, simulate, and
compile the design.

Table 2–1. Generated Files (Note 1)

Filename Description

<variation name>.bsf Quartus II symbol file for the MegaCore function variation. You can use this file in
the Quartus II block diagram editor.

<variation name>.cmp A VHDL component declaration file for the MegaCore function variation. Add the
contents of this file to any VHDL architecture that instantiates the MegaCore
function.

<variation name>.html A MegaCore function report file in hypertext markup language format.

<variation name>.qip A single Quartus II IP file is generated that contains all of the assignments and other
information required to process your MegaCore function variation in the Quartus II
compiler. You are prompted to add this file to the current Quartus II project when
you exit from the MegaWizard.

<variation name>.vho or .vo VHDL or Verilog HDL IP functional simulation model.

<variation name>.vhd, or .v A MegaCore function variation file, which defines a VHDL or Verilog HDL top-level
description of the custom MegaCore function. Instantiate the entity defined by this
file inside of your design. Include this file when compiling your design in the
Quartus II software.

<variation name>_nativelink.tcl Tcl Script that sets up NativeLink in the Quartus II software to natively simulate the
design using selected EDA tools.

<variation name>_syn.vhd or _syn.v
(2)

An optional timing and resource netlist for use in some third-party synthesis tools.

<variation name>_testbench.vhd The testbench.

<variation name>_vsim_script.tcl Starts the MegaCore function simulation in the ModelSim simulator.

a_rcvsym.txt Contains the received bits that are corrupted with a signal-to-noise ratio you specify
in IP Toolbench.

a_txsym.txt Contains the encoded bits.

BER_report.txt Contains the number of errors, the BERs and their location for the test data.

block_period_stim.txt The testbench stimuli, which change for every block.

tcm_rcv_sector.txt Contains the sector numbers for TCM codes for decoding the testbench. The file is
empty if there are no TCM codes defined.

transbit.txt Contains the bits that generate the test data.

Notes to Table 2–1:

(1) The <variation name> prefix is automatically added by IP Toolbench.
(2) The _syn.vhd or _syn.v file is only generated when it is enabled in the Set Up Simulation page of the IP Toolbench interface.
Viterbi Compiler User Guide © May 2011 Altera Corporation

Chapter 2: Getting Started 2–11
Simulate the Design
Simulate the Design
You can perform a simulation in a third-party simulation tool from within the
Quartus II software, using NativeLink.

f For more information about NativeLink, refer to the Simulating Altera Designs chapter
in volume 3 of the Quartus II Handbook.

You can use the Tcl script file <variation name>_nativelink.tcl to assign default
NativeLink testbench settings to the Quartus II project.

To set up simulation in the Quartus II software using NativeLink, follow these steps:

1. Create a custom variation but ensure you specify your variation name to match the
Quartus II project name.

2. Check that the absolute path to your third-party simulator executable is set. On the
Tools menu click Options and select EDA Tools Options.

3. On the Processing menu, point to Start and click Start Analysis & Elaboration.

4. On the Tools menu click Tcl scripts. Select the <variation name>_nativelink.tcl Tcl
script and click Run. Check for a message confirming that the Tcl script was
successfully loaded.

5. On the Assignments menu click Settings, expand EDA Tool Settings and select
Simulation. Select a simulator under Tool Name.

6. On the Tools menu point to EDA Simulation Tool and click Run EDA RTL
Simulation.

Compile the Design
You can use the Quartus II software to compile your design. Refer to Quartus II Help
for instructions on compiling your design.

Program a Device
After you have compiled your design, program your targeted Altera device and
verify your design in hardware.

With Altera's free OpenCore Plus evaluation feature, you can evaluate the Viterbi
Compiler before you purchase a license. OpenCore Plus evaluation allows you to
generate an IP functional simulation model, and produce a time-limited
programming file.

f For more information about IP functional simulation models, refer to the Simulating
Altera Designs chapter in volume 3 of the Quartus II Handbook.

You can simulate the Viterbi Compiler in your design, and perform a time-limited
evaluation of your design in hardware.

f For more information about OpenCore Plus hardware evaluation using the Viterbi
Compiler, refer to “OpenCore Plus Time-Out Behavior” on page 1–8, and
AN320: OpenCore Plus Evaluation of Megafunctions.
© May 2011 Altera Corporation Viterbi Compiler User Guide

http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

2–12 Chapter 2: Getting Started
Program a Device
Viterbi Compiler User Guide © May 2011 Altera Corporation

© May 2011 Altera Corporation
3. Functional Description
The Viterbi decoder can decode continuous streams and block streams. It normally
operates in continuous mode.

In continuous mode, the decoder waits until it has processed a number of symbols
greater than the traceback length. When the decoder has traced back the number of
bits indicated in the traceback length, it starts delivering output bits. This behavior is
repeated as long as it remains in continuous mode but changes when the end of
packet (EOP) signal is aserted. The decoder then switches to block mode, starting
traceback from the last symbol or state. The tr_init_state signal indicates the end
state that starts the traceback operation. For block decoding it is recommended to
indicate the end state of the tail bits (usually zero) and set the tb_type port to 1.

Soft Symbol Inputs
The number of soft decision bits per symbol, softbits, represent 2softbits – 1 soft 0s and
2softbits – 1 soft 1s. The input values represent received signal amplitudes. If the input is in
log-likelihood format, a transformation is required and you must use extra softbits to
retain signal integrity. Depunctured values are separately marked. The decoder
allows a hard-decision input when softbits = 1.

Table 3–1 shows an example of the soft symbol input representation, when
softbits = 3.

Encoding Scheme
Figure 3–1 on page 3–2 shows a convolutional encoder with parameters L = 5, N = 2
and polynomials GA = 19 and GB = 29. GA in decimal is 19, which is equal to 10011 in
binary. The most significant bit of the binary representation is the connection at the
input data bit; the least significant bit represents the connection at the end of the shift
register chain. The XOR function implements the modulo-2 adding operation.

Table 3–1. Soft Symbol Input Representation

Soft Symbol Meaning

011 Strongest '0'

010 Strong '0'

001 Weak '0'

000 Weakest '0'

111 Weakest '1'

110 Weak '1'

101 Strong '1'

100 Strongest '1'
Viterbi Compiler User Guide

3–2 Chapter 3: Functional Description
State Metrics
State Metrics
The Viterbi decoder state metrics are accumulative not Euclidean and are based on
maximum metrics rather than minimum metrics. As the metrics grow, they must be
normalized to avoid overflow. When a normalization occurs the decoder subtracts
2(bmgwide – 1) from all metrics and increases the normalization register by +1.

The total metric value for the best path = (number of normalizations) × (2(bmgwide – 1)) +
bestmet.

The total metric value for the best path, the number of symbols processed, and the
number of errors in the bit error rate (BER) block indicate the quality of the channel
and whether you have a suitable value for softbits. The state that has that best
metric is given in the output bestadd.

Puncturing Scheme
Both parallel and hybrid architectures support external puncturing. All punctured
codes shown are based on a mother code of rate 1/2. For external depuncturing you
must depuncture the received data stream external to the decoder, and input the data
into the decoder n symbols at a time.

Table 3–2 shows some possible puncturing schemes, which can be defined, and their
rate.

Figure 3–1. Encoding Scheme

RR
Port

MSB

LSB

ga_xor

gb_xor

Table 3–2. Some Puncturing Schemes (Part 1 of 2)

Punctured
Rate

Puncturing Scheme

Bit (1) Multiplier

2/3 CA 1 0

CB 1 1

3/4 CA 1 0 1

CB 1 1 0

4/5 CA 1 0 0 0

CB 1 1 1 1

5/6 CA 1 0 1 0 1

CB 1 1 0 1 0
Viterbi Compiler User Guide © May 2011 Altera Corporation

Chapter 3: Functional Description 3–3
Trellis Coded Modulation
Trellis Coded Modulation
Trellis coded modulation (TCM) combines modulation and encoding processes to
achieve better efficiency without increasing the bandwidth.

Bandwidth-constrained channels operate in the region where R/W > 1, where R =
data rate and W = bandwidth available. For such channels digital communication
systems use bandwidth efficient multi-level phase modulation. For example, phase
shift keying (PSK), phase amplitude modulation (PAM), or quadrature amplitude
modulation (QAM).

When TCM is applied to a bandwidth-constrained channel, a performance gain
results without expanding the signal bandwidth. An increase in the number of signal
phases from four to eight requires approximately 4 dB in additional signal power to
maintain the same error rate. Hence, if TCM is to provide a benefit, the performance
gain of the rate 2/3 code must overcome this 4-dB penalty. If the modulation is an
integral part of the encoding process and is designed in conjunction with the code to
increase the minimum Euclidian distance between the pairs of coded signals, the loss
from the expansion of the signal set is easily overcome and significant coding gain is
achieved with relatively simple codes.

Any bandwidth-constrained system benefits from this technique, for example,
satellite modem systems.

The Altera Viterbi decoder in TCM mode only supports N = 2 (only mother code rates
of 1/2).

Consider the use of the 1/2 rate convolutional code (Figure 3–2 on page 3–4) to
encode one information bit while the second information bit is left uncoded. When
used in conjunction with an eight-point signal constellation, for example, eight-PSK,
the two bits select one of the four subsets in the signal constellation, while the
remaining information bit selects one of the two points within each subset.

6/7 CA 1 0 0 1 0 1

CB 1 1 1 0 1 0

7/8 CA 1 1 1 1 0 1 0

CB 1 0 0 0 1 0 1

Note to Table 3–2:

(1) CA refers to the most significant (first transmitted bit, first received symbol); CB refers to the least significant (last
transmitted bit, last received symbol).

Table 3–2. Some Puncturing Schemes (Part 2 of 2)

Punctured
Rate

Puncturing Scheme

Bit (1) Multiplier
© May 2011 Altera Corporation Viterbi Compiler User Guide

3–4 Chapter 3: Functional Description
Trellis Coded Modulation
Figure 3–2 shows the mapping of the coded bits and sector numbers. The specific
mapping is not important. Other mappings can be devised by permutating subsets in
a way that preserves the main property of increased minimum distance among the
subsets. IP Toolbench and the testbench create TCM with the mapping shown in
Figure 3–2. However, it is possible to create any other mapping, including symbol
mappings for 8-PSK, 16-PSK and others.

1 If you create another mapping, you must correctly connect the branch metrics created
outside the MegaCore function to the input ports and correctly configure the
polynomials GA and GB for the trellis generation.

The four-state trellis is the trellis for the 1/2 rate convolution encoder with the
addition of parallel paths in each transition to accommodate the uncoded bit c2. Thus,
the decoder uses the coded bits (c1, c0) to select one of the four subsets that contain two
signal points each, and uses the uncoded bit to select one of the two signal points
within each subset.

Figure 3–2. Half-Rate Convolutional Code

Uncoded Bit

Input

c2

c0

GB

GA

c1

Figure 3–3. Mapping of Coded Bits & Sector Numbers

011

001

000

110

111

101

100

010

0

12

3

4

5 6

7

Viterbi Compiler User Guide © May 2011 Altera Corporation

Chapter 3: Functional Description 3–5
Trellis Coded Modulation
Figure 3–5 shows one implementation of the Viterbi decoder as a Trellis decoder. The
decoder processes a symbol upon arrival to obtain four branch metric values and a
sector number. The branch metrics enter the Viterbi decoder in trellis mode and the bit
that is encoded is obtained. This bit stream is then re-encoded and the output of this
encoder is used in conjunction with the sector number information to retrieve the
uncoded bit. All the logic is implemented in the provided testbench.

The branch metric values and sector number values are generated by IP Toolbench, so
there is no logic to create those values. The testbench reads the sector number when it
is needed, hence there is no delay functionality for that, nor is there rotation. The data
created by IP Toolbench has no phase error introduced so the phase is aligned.
However, in a real system, you must calculate the phase.

1 For a TCM code the BER block does not produce a meaningful output (numerr),
because the BER block does not compute errors at the input for TCM codes.

Figure 3–4. Four-State Trellis

00

01

10

11

101

001

110

010

000 = (c2 c1 c0)

011111

111011

100

000
100

001

101010
110
© May 2011 Altera Corporation Viterbi Compiler User Guide

3–6 Chapter 3: Functional Description
Trellis Coded Modulation
Figure 3–6 shows the conversion of a received symbol into four branch metrics and a
sector number. The decoder calculates the distances to the nearest four symbol points
as an unsigned number in the range 0...00 to 1...11 (number of softbits). Where the
range is equal to the radius of the symbol map. Because the decoder works with
accumulative metrics (not Euclidean metrics), the decoder inverts these distances (000
becomes 111; 001 becomes110).

Figure 3–5. Implementation of the Viterbi Decoder as a Trellis Decoder

decdat0
Viterbi

Decoder
Trellis Mode

Rate 1/2
Convolutional

Encoder

Trellis
Output

 Demapper
decdat1

Branch
Metric
Rotate

Delay
Sector

Number

ROM
(I, Q)

to
Branch
Metric
and

Sector
Number

Rotate
Sector

Number

I

Q

Figure 3–6. Conversion of Received Symbol into Four Branch Metrics

Branch Metric 1

Branch Metric 3

Branch Metric 2

Branch Metric 0

Received Symbol

011

001

000

110

111

101

100

010

2

Viterbi Compiler User Guide © May 2011 Altera Corporation

Chapter 3: Functional Description 3–7
Trellis Termination
For example, Figure 3–6 shows a received symbol that has landed in sector number 2
with the following distances to the four nearest symbol map points:

■ 1111

■ 1101

■ 1011

■ 0001

Where the distance of the radius for 4 softbits is 1111. The distance are inverted to
obtain the following branch metrics:

■ Branch metric 0 = 0000

■ Branch metric 1 = 0010

■ Branch metric 2 = 0100

■ Branch metric 3 = 1110

The decoder uses the coded bits (c1, c0) to select the branch metric number, which is
used to decide where to connect the branch metrics to the rr input of the Viterbi
decoder. Branch metric 3 goes to the most significant bits (MSB) of rr; branch metric 0
goes to the least significant bits (LSB) of rr.

Trellis Termination
Block decoding requires the implementation of a technique to properly decode the
last bits of the block. The technique adapts to whatever is happening in the
convolutional encoder. Two techniques are described.

With the first technique, the convolutional encoder is fed with a block and then
terminated with (L – 1) bits taken from the end of the block. These bits are unknown.
The initial state of the convolutional encoder is set with the last (L – 1) information
bits.

This technique, known as “tail-bitting”, is decoded by replicating the block at the
decoder or double feeding the block into the decoder. By decoding in the middle
point, the trellis is forced into the state that is both the initial state and the end state.
From the first decoding block, you can take the last half of the block; from the second
decoded block (or second pass through the decoder), you can obtain the first half of
the bits of the block.

1 In tail-bitting technique, the block size must be large enough to train the decoder,
otherwise there is BER loss.

With the second technique, the convolutional encoder is initialized to zero. So the
initial state of the trellis is known to be zero. The last (L – 1) bits to the convolutional
encoder are known. They serve the purpose of bringing the convolutional encoder to
a known end state. The decoder then uses this information to set the end state of the
trellis with tr_init_state.

The tr_init_state signal is derived from the last (L – 1) bits of the block in reverse
order.
© May 2011 Altera Corporation Viterbi Compiler User Guide

3–8 Chapter 3: Functional Description
Trellis Initiation
For example, for a block that ends in:

...000101

If L = 5 and the last (L – 1) = 4 bits are known, tr_init_state is set as 0101, which
reversed and in binary is 1010, or 10 in decimal.

IP Toolbench generates tr_init_state as if the last (L – 1) bits of each block are
known.

Trellis Initiation
The parallel decoder always starts its trellis from state zero for a new block. The
hybrid however allows you to set the initial state (usually zero) with
bm_init_state. This signal has range from 0 to 2 (L – 1) – 1, which are the trellis states.

The bm_init_value signal initiates the state metric of the state indicated by
bm_init_state. All other states are initialized with zero. The appropriate value for
this port is approximately 2(bmgwide – 2) or any value between 2(N + softbits) to 2(bmgwide – 1).

1 In continuous mode, the state metrics are never reset, which creates a possible
difference if the same block of data is sent several times. The first time, the state
metrics are set such that the state metric for state 0 is 0, and all others infinity, based
on the assumption that the first state is always state 0. For any future blocks, the state
metrics contains whatever they had when the previous block ended.

The Avalon Streaming Interface
The Avalon® Streaming (Avalon-ST) interface defines a standard, flexible, and
modular protocol for data transfers from a source interface to a sink interface and
simplifies the process of controlling the flow of data in a datapath. The Avalon-ST
interface signals can describe traditional streaming interfaces supporting a single
stream of data without knowledge of channels or packet boundaries. Such interfaces
typically contain data, ready, and valid signals. The Avalon-ST interface can also
support more complex protocols for burst and packet transfers with packets
interleaved across multiple channels. The Avalon-ST interface inherently
synchronizes multi-channel designs, which allows you to achieve efficient, time-
multiplexed implementations without having to implement complex control logic.

The Avalon-ST interface supports backpressure, which is a flow control mechanism,
where a sink can signal to a source to stop sending data. The sink typically uses
backpressure to stop the flow of data when its FIFO buffers are full or when there is
congestion on its output. When designing a datapath, which includes the Viterbi
MegaCore function, you may not need backpressure if you know the downstream
components can always receive data. You may achieve a higher clock rate by driving
the source ready signal source_rdy of the Viterbi high, and not connecting the sink
ready signal sink_rdy.

f For more information about the Avalon-ST interface, refer to the Avalon Streaming
Interface Specifications.
Viterbi Compiler User Guide © May 2011 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 3: Functional Description 3–9
Parameters
Parameters
This section contains information about the following parameters and product
options, which can be set in IP Toolbench (refer to “Parameterize the MegaCore
Function” on page 2–4):

■ Architecture Tab

■ Parameters Tab

■ Code Sets Tab

■ Test Data Tab

Architecture Tab
Table 3–3 shows the options that can be set in the Architecture tab

BER Estimator
Figure 3–7 shows a block diagram of the BER estimator.

The BER estimator option uses a re-encode and compare approach for estimating the
number of errors in the input data. In cases where the signal-to-noise ratio is
sufficiently high to allow the decoder to decode an error-free output, the BER
estimation is very close to the actual channel BER.

When the decoder is not decoding an error-free output, the estimated BER is higher
and more random than the actual channel BER, which introduces a degree of
uncertainty directly proportional to the output errors (Figure 3–8 on page 3–10).

1 For a TCM code, the BER block does not produce a meaningful output (numerr)
because the BER block does not compute errors at the input for TCM codes.

Table 3–3. Architecture Tab Options

Parameter Value Description

Hybrid or Parallel – Selects the hybrid or parallel architecture.

BER On or Off Specifies the BER estimator option, refer to “BER Estimator” on page 3–9.

Node Sync On or Off Specifies the node synchronization option (only available when BER option is on).

Optimizations None,
Continuous,
or Block

Specifies the optimization for the parallel decoder. if you select None you can turn on
Best State Finder. However, to use less logic, turn off Best State Finder.

Figure 3–7. BER Estimator

Viterbi
Decoder

Input Symbols

Delay

Compare
and Count

BER Output
(numerr)

Convolutional
Encoder
© May 2011 Altera Corporation Viterbi Compiler User Guide

3–10 Chapter 3: Functional Description
Parameters
Node Synchronization
If you are not using external synchronization, you may not know the order of your N
bits. The node synchronization option allows you to rotate the rr inputs until the
decoder is in synchronization. To use node synchronization, you observe the BER and
keep changing state_node_sync to rotate the rr inputs until you get the correct
value for the BER.

Figure 3–9 shows the node synchronization block diagram.

The following equation represents node synchronization:

RR[i] = rr[((state_node_sync + i – 1) mod N) + 1]

where i is 1 to N.

RR and rr are treated as an array of width N of busses softbits wide. The range of
valid values for state_node_sync is 0 to (N – 1).

Figure 3–8. Graph comparing Actual BER with Estimated BER

Figure 3–9. Node Synchronization

Note:

(1) The barrel rotator is only implemented if you select the node synchronization option.

3.00 3.50 4.00 4.50 5.00 5.50 6.00

Signal-to-Noise Ratio

BER

Actual BER

Estimated BER

1.00e-03

1.00e-02

1.00e-01

state_node_sync

Barrel
Rotator

rr(1)
rr(2)

...

RR(1)
RR(2)
...

rr(N) RR(N)
Viterbi Compiler User Guide © May 2011 Altera Corporation

Chapter 3: Functional Description 3–11
Parameters
Code Sets Tab
Table 3–4 shows the options that can be set in the Code Sets tab.

Figure 3–10 shows the Code Sets tab.

Table 3–4. Code Sets Tab Options

Parameter Value Description

Number of Code Sets 1 to 8 The Viterbi Compiler supports multiple code definitions. The multiple code
set option allows up to eight code sets, where a code set comprises a code
rate and associated generating polynomials.

Decimal or Octal – Decimal or octal base representation for the generator polynomials. The
design file representation is decimal, but you have the option of entering in
either decimal or octal base.

Mode V or T Viterbi (V) or TCM mode (T).

GA, GB, GC, GD, GE,
GF, GG (1)

– The generator polynomials. If the multiple code set option is used, a
different set of polynomials is entered in the respective gi group. IP
Toolbench provides default values that can be overwritten by any valid
polynomial. (The wizard does not check whether the entered values are
valid.)

Number of coded
bits. (N)

2 to 7 (hybrid)

2 to 4 (parallel) (2)

For every bit to be encoded, N bits are output. With the multiple code set
option there are up to 5 different N parameters, which can be in any order.

Constraint length (L) 3 to 9 The constraint length. Defines the number of states in the convolutional
encoder, where number of states = 2(L – 1). You can choose different values
of L for each code set.

Notes to Table 3–4:

(1) For the parallel architecture, only GA, GB, GC, and GD are used.
(2) Valid only for Viterbi mode. For TCM mode only N = 2 is supported.

Figure 3–10. Code Sets
© May 2011 Altera Corporation Viterbi Compiler User Guide

3–12 Chapter 3: Functional Description
Parameters
For multiple code sets, the first code definition corresponds to the first line and is
selected with sel_code input = 0; the second line is selected with sel_code = 1; the
third with sel_code = 2 and so on. For each code definition you can select N, the
polynomials, the constraint length L, and the mode (Viterbi or TCM). You can mix
different constraint lengths with different TCM and Viterbi modes. The test data,
which IP Toolbench creates, tests each of the code definitions. You can see these tests
in the simulation with the testbench or if you look at the block_period_stim.txt file.

1 In hybrid mode, for constraint lengths of 3 and 4, the bitwidth of tr_init_state is
4, but the MegaCore function ignores the redundant higher bits.

1 For multiple constraint lengths, some of the last decoded bits may be incorrect, as a
result of the Viterbi algorithm. To avoid this effect, give a lower BER, and reduce the
probability of being on the wrong trellis path, set Optimization to None and turn on
Best State Finder.

Parameters Tab
Table 3–5 shows the options that can be set in the Parameters tab.

Throughput Calculator
The throughput calculator uses the following formulae:

Hybrid throughput = fMAX/Z

where:

Z = 10, if log2C = 3
Z= 2log

2
C, if log2C > 3

log2C = LMAX – 2 – log2A
LMAX is the maximum constraint length
A is ACS units

Parallel throughput = fMAX

Table 3–5. Parameters Tab Options

Parameter Value Description

Maximum Constraint
length (LMAX)

5 to 9 (hybrid)

3 to 9 (parallel)

The maximum constraint length LMAX. (Refer also to “Code Sets Tab” on
page 3–11.)

ACS Units (A) 1, 2, 4, 8, or 16 The number of ACS units, which adds a degree of parallelism (hybrid
architecture only). The range of values available depends upon the value of
maximum constraint length LMAX.

Traceback (v) 8 (minimum) The traceback length, which is the number of stages in the trellis that are
traced back to obtain a decoded bit. It is typically set to 6 × L for
unpunctured codes, and up to 15 × L for highly punctured codes.

Softbits (softbits) 1 to 16 The number of soft decision bits per symbol. When softbits is set to 1 bit,
the decoder acts as a hard decision decoder, and still allows for erased
symbols to be entered using the eras_sym input. (Refer to “Soft Symbol
Inputs” on page 3–1.)

Bmgwide – The precision of the state metric accumulation. (Refer to “State Metrics” on
page 3–2) IP Toolbench selects and displays the optimum value, which
depends on NMAX, LMAX and, softbits.
Viterbi Compiler User Guide © May 2011 Altera Corporation

Chapter 3: Functional Description 3–13
Signals
Latency Calculator
The latency calculator gives you an approximate indication of the latency of your
Viterbi decoder. Latency is the number of clock cycles it takes for the data to be
processed and output. It is measured from the first symbol to enter the MegaCore
function (sink_sop) up to the first symbol to leave the MegaCore function
(source_sop). The latency depends on the parameters.

1 For the precise latency, perform simulation.

The latency calculator uses the following formula for the hybrid architecture:

Number of clock cycles = Z × V

where:

V is the traceback length value that is in the input tb_length
Z = 10, if log2C = 3
Z = 2log

2C, if log2C > 3
log2C = lmax – 2 – log2A, where Ais ACS units

1 For the parallel architecture the number of clock cycles is approximately 4V

Test Data Tab
Table 3–6 shows the options that can be set in the Test Data tab.

Signals
The Viterbi decoder uses the Avalon Streaming (Avalon-ST) interface for its data input
and output. The input is an Avalon-ST sink and the output is an Avalon-ST source.
The Avalon-ST interface READY_LATENCY parameter is set to 1.

f For more information about the Avalon-ST interface, refer to the Avalon Interface
Specifications.

Table 3–6. Test Data

Parameter Description

Number of bits per block The number of bits per block.

The number of bits per block × the number of blocks must be less than
50,000,000.

Signal to noise ratio (dB) The signal to noise ratio, which must be between 1 and 100.

Number of blocks The number of blocks.

The number of bits per block × the number of blocks must be less than
50,000,000.

Pattern A Enter the puncturing pattern A.

Pattern B Enter the puncturing pattern B.
© May 2011 Altera Corporation Viterbi Compiler User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

3–14 Chapter 3: Functional Description
Signals
Figure 3–11 shows the Viterbi decoder Avalon-ST interfaces.

Table 3–7 shows the global signals.

Table 3–8 shows the Avalon-ST sink signals.

Figure 3–11. Avalon-ST Interface

Avalon-ST Interface

Slave (Source)

source_val

source_ena_slave

source_eop
decbit

source_sop

User Module
Master (Sink)

ena

val

sop

eop

dat

Avalon-ST Interface

User Module
Slave (Source)

ena

val

sop

eop

dat

Master (Sink)

Viterbi Decoder
sink_val

sink_ena_master

sink_eop
rr/eras_sym

sink_sop

Table 3–7. Global Signals

Signal Name Description

clk The main system clock. The whole MegaCore function operates on the rising edge of clk.

reset Reset. The entire decoder is asynchronously reset when reset is asserted high. The reset signal resets
the entire system. The reset signal must be deasserted synchronously with respect to the rising edge
of clk.

Table 3–8. Avalon-ST Sink Signals (Part 1 of 2)

Signal Name
Avalon-ST

Name Direction Description

sink_rdy ready Output Data transfer enable signal. sink_rdy is driven by the interface sink
and controls the flow of data across the interface. sink_rdy behaves
as a read enable from sink to source. When the source observes
sink_rdy asserted on the clk rising edge, it can drive the Avalon-ST
data interface signals and assert sink_val as early as the next clock
cycle, if data is available. In the hybrid architecture, sink_rdy is
asserted for one clock cycle at a time. If data is not available at the time,
you have to wait for the next sink_rdy pulse. Previously called
sink_ena_master.

sink_val val Input Data valid signal. sink_val indicates the validity of the data signals.
sink_val is updated on every clock edge where sink_rdy is
sampled asserted, and holds its current value along with the dat bus
where sink_rdy is sampled deasserted. When sink_val is
asserted, the Avalon-ST data interface signals are valid. When
sink_val is deasserted, the Avalon-ST data interface signals are
invalid and must be disregarded. To determine whether new data has
been received, the sink qualifies the sink_val signal with the
previous state of the sink_rdy signal.
Viterbi Compiler User Guide © May 2011 Altera Corporation

Chapter 3: Functional Description 3–15
Signals
Table 3–9 shows the Avalon-ST source signals.

Table 3–10 shows the configuration signals.

sink_sop sop Input Start of packet (block) signal. sop delineates the packet boundaries on
the rr bus. When sink_sop is high, the start of the packet is present
on the rr bus. sink_sop is asserted on the first transfer of every
packet This signal applies to block decoding only.

sink_eop eop Input End of packet (block) signal. sink_eop delineates the packet
boundaries on the rr bus. When sink_eop is high, the end of the
packet is present on the dat bus. sink_eop is asserted on the last
transfer of every packet. This signal applies to block decoding only.

rr (1) dat (2) Input Data input, which takes in n symbols, each softbits wide per clock.
“Encoding Scheme” on page 3–1 describes the correspondence of the
input symbols with the output of a convolutional encoder. For the
mappings of the individual soft symbols, refer to Table 3–1.

eras_sym[Nmax:1] dat (2) Input When asserted, eras_sym Indicates an erased symbol.

Notes to Table 3–8:

(1) In TCM mode the rr width is (2N × softbits:1); in Viterbi mode the rr width is (nmax × softbits:1).
(2) Both rr and eras_sym are seen as Avalon-ST dat inputs.

Table 3–8. Avalon-ST Sink Signals (Part 2 of 2)

Signal Name
Avalon-ST

Name Direction Description

Table 3–9. Source Signals

Signal
Avalon-ST

Name Direction Description

source_rdy ready Input Data transfer enable signal. source_rdy is driven by the sink interface
and used to control the flow of data across the interface. ena behaves as a
read enable from sink to source. When the source observes source_rdy
asserted on the clk rising edge it drives, on the following clk rising
edge, the Avalon-ST data interface signals and asserts source_val. The
sink captures the data interface signals on the following clk rising edge. If
the source is unable to provide new data, it deasserts source_val for
one or more clock cycles until it is prepared to drive valid data interface
signals. Previously called source_ena_slave.

source_val val Output Data valid signal. source_val is asserted high for one clock cycle,
whenever there is a valid output on the decbit signal.

source_sop sop Output Start of packet (block) signal. if you select continuous optimization, this
signal is left open and you must remove it from the testbench.

source_eop eop Output End of packet (block) signal. if you select continuous optimization, this
signal is left open and you must remove it from the testbench.

decbit dat Output The decbit signal contains output bits when source_val is asserted.

Table 3–10. Configuration Signals (Part 1 of 2)

Signal Name Description

ber_clear Reset for the BER counter. Only for the BER block option.

state_node_sync[log2(Nmax):1] Specifies the node synchronization rotation to rr.
The state_node_sync signal is latched when sink_sop is asserted.
© May 2011 Altera Corporation Viterbi Compiler User Guide

3–16 Chapter 3: Functional Description
Signals
Table 3–11 shows the status signals.

sel_code[log2(Ncodes):1] Selects the codeword—’0’ selects the first codeword, ‘1’ selects the second,
and so on. The bus size increases according to the number of codes
specified. sel_code is latched when sink_sop is asserted.

tb_length[] Traceback length. The maximum width of tb_length is equal to the
maximum value of parameter v. The tb_length input is latched when
sink_sop is asserted. This signal is disabled if you select the continuous
optimization and you must remove it from the testbench.

tb_type Altera recommends that you set tb_type high always for future
compatibility. In block decoding when tb_type is low, the decoder starts
from state 0; when tb_type is high, the decoder uses the state specified in
tr_init_state[(L-1):1]. For block decoding set tb_type high.
tb_type is latched when sink_eop is asserted. If you select continuous
optimization, this input is removed from the top level design and connected
to zero in the inner core.

tr_init_state[(L-1):1] Specifies the state to start the traceback from, when tb_type is asserted
high. tr_init_state is latched when sink_eop is asserted. If you
select continuous optimization, this input is removed from the top level
design and connected to zero in the inner core. For more information, refer to
“Trellis Termination” on page 3–7.

bm_init_state[(L-1):1] (1) Specifies the state in which to initialize with the value from the
bm_init_value[] bus. All other state metrics are set to zero.
bm_init_state is latched when sink_sop is asserted.

bm_init_value[(L-1):1] (1) Specifies the value of the metric that initializes the start state. All other
metrics are set to 0. bm_init_value must be larger than
(L × 2(softbits – 1)). bm_init_value is latched when sink_sop is asserted.

Note to Table 3–10:

(1) Hybrid architecture only.

Table 3–10. Configuration Signals (Part 2 of 2)

Signal Name Description

Table 3–11. Status Signals (Part 1 of 2)

Signal Description

normalizations[8:1] The normalizations bus indicates in real time the number of normalizations that
have occurred since sink_sop was last activated. (Refer to “State Metrics” on
page 3–2.)

numerr[] (1) The numerr bus contains the number of errors detected during a block. It is updated
each time an error is detected, so you can see the location of individual errors. It is reset
when source_sop asserted; it is valid two-clock cycles after source_sop. IP
Toolbench automatically sets the width of this bus. This signal is left open if you do not
select a BER block.

bestmet[bmgwide:1] The best metric. The bestmet signal shows the best state metric for every trellis step
as it is being found by the best state finder. The state that contains this best metric is
shown in bestadd. This signal is left open, if you select continuous optimization, or if
you select none for optimization and turn off best state finder in IP Toolbench.
Viterbi Compiler User Guide © May 2011 Altera Corporation

Chapter 3: Functional Description 3–17
Signals
Timing Diagrams
Figure 3–12 shows the hybrid Viterbi decoder input timing diagram. The sink_rdy
signal is asserted for one clock cycle in every Z clock cycles. (For the values of Z, refer
to “Latency Calculator” on page 3–13.) If the decoder becomes full because data is not
being collected on the source side, it may deassert sink_rdy until it can accept new
data. The decoder only accepts data, if sink_rdy is asserted.

Figure 3–13 shows the parallel Viterbi decoder input timing diagram.

Figure 3–14 and 3–18 show output timing diagrams. Figure 3–14 shows the
source_val signal asserted initially for 8 or 16 clock cycles. It is then asserted for the
number of clock cycles corresponding to the amount of remaining data, if
source_rdy remains asserted.

Figure 3–14 shows the typical ending of a block or packet in the Avalon-ST interface
on the source (Viterbi) to the sink (user) side connection.

bestadd[(L-1):1] The best address state. The address corresponding to the best metric as it is being
found by the best state finder. The metric of this state if shown in bestmet. This signal
is left open, if you select continuous optimization, or if you select none for optimization
and turn off best state finder in IP Toolbench.

Note to Table 3–11:

(1) Used only when you select the BER estimator option.

Table 3–11. Status Signals (Part 2 of 2)

Signal Description

Figure 3–12. Input Timing Diagram—Hybrid

clk

sink_rdy

sink_val

sink_sop

sink_eop

rr[8:1] 77 8888

Figure 3–13. Input Timing Diagram—Parallel

clk

sink_rdy

sink_val

sink_sop

sink_eop

rr[8:1] valid data valid data
© May 2011 Altera Corporation Viterbi Compiler User Guide

3–18 Chapter 3: Functional Description
MegaCore Verification
Figure 3–15 on page 3–18 shows a different ending.

Figure 3–16 shows a depuncturing timing diagram and shows eras_sym for the
pattern 110110 (puncturing rate 3/4). By changing the eras_sym pattern you can
implement virtually any depuncturing pattern you require.

MegaCore Verification
The MegaCore verification includes an automated regression test suite, which is
described in the following paragraphs.

Scripts drive the simulation at RTL level. Data is randomly generated and encoded.
The original transmitted bits are stored in a file transbit.txt. Optionally, Gaussian
noise is added as a channel model and the data is formatted for use by the decoder’s
testbench. The file that feeds the testbench is a_rcvsym.txt. The testbench collects the
decoder’s decoded bits and stores them in decoded.txt. Those bits are compared with
the original in transbit.txt.

A script defines sets of tests that cover a comprehensive set of parameters on RTL
VHDL simulation.

Figure 3–14. Output Timing Diagram—Example 1

clk
source_sop

source_eop

source_rdy

source_val

decbit

Figure 3–15. Output Timing Diagram—Example 2

clk

source_sop

source_eop

source_rdy

source_val

decbit

Figure 3–16. Depuncturing Timing Diagram

 clk

ena

val

sop

rr[8:5]

rr[4:1]

eras_sym[2]

eras_sym[1]

B X 7 A X 7

8 7 X D 9 X
Viterbi Compiler User Guide © May 2011 Altera Corporation

Chapter 3: Functional Description 3–19
MegaCore Verification
The testbenches can generate many patterns for the Avalon-ST interface testing and
all the possible scenarios are tested.

The first tests are carried out with noiseless data. Then tests using a subset of
parameters, which use data with noise and performing millions of bits at different
signal-to-noise ratios, are carried out to evaluate the BER performance. The BER
performance matches the theoretical behavior of a Viterbi decoder (Figure 3–17 on
page 3–19).

Another subset of parameters are tested with noiseless data using post-synthesis Vital
VHDL netlist.

The set of test patterns and parameters are comprehensive and should detect any
malfunction in any of the features or parameter sets of the hybrid and parallel
architectures.

Figure 3–17. Graph of Actual BER vs. Signal-to-Noise Ratio for Various Values of Rate

1.00e-07

1.00e-06

1.00e-05

1.00e-04

1.00e-03

1.00e-02

1.00e-01

3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00

Signal-to-Noise Ratio

BER

Rate 1/2, 3 softbits
Rate 2/3, 3 softbits
Rate 3/4, 3 softbits
Rate 7/8, 3 softbits
Unencoded BPSK
© May 2011 Altera Corporation Viterbi Compiler User Guide

3–20 Chapter 3: Functional Description
MegaCore Verification
Viterbi Compiler User Guide © May 2011 Altera Corporation

© May 2011 Altera Corporation
Additional Information
Revision History
The following table shows the revision history for this user guide.

How to Contact Altera
For the most up-to-date information about Altera® products, refer to the following
table.

Date Version Changes Made

May 2011 11.0 ■ Updated support level to final support for Arria® II GX, Arria II GZ, Cyclone® III LS, and
Cyclone IV GX devices.

■ Updated support level to HardCopy Compilation for HardCopy III, HardCopy IV E, and
HardCopy IV GX devices.

December 2010 10.1 ■ Added preliminary support for Arria II GZ devices.

■ Updated support level to final support for Stratix IV GT devices.

July 2010 10.0 ■ Added preliminary support for Stratix V devices.

November 2009 9.1 ■ Maintenance update.

■ Added preliminary support for Cyclone III LS, Cyclone IV, and HardCopy IV GX devices.

March 2009 9.0 Added Arria II GX device support.

November 2008 8.1 Added notes to trellis termination and trellis initiation sections.

May 2008 8.0 Added device support for Stratix IV devices.

October 2007 7.2 Maintenance release.

May 2007 7.1 ■ Added support for Arria GX devices.

■ Amended signal descriptions.

■ Added new ber_clear signal.

■ Added parallel architecture optimization options.

December 2006 7.0 Added support for Cyclone III devices.

December 2006 6.1 Updated format.

Contact (Note 1)
Contact
Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com

Product documentation Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note:

(1) You can also contact your local Altera sales office or sales representative.
Viterbi Compiler User Guide

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information
Typographic Conventions
Typographic Conventions
The following table shows the typographic conventions that this document uses.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicates command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box.

bold type Indicates directory names, project names, disk drive names, file names, file name
extensions, and software utility names. For example, \qdesigns directory, d: drive,
and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicates document titles. For example: AN519: Stratix IV Design Guidelines.

Italic type Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicates keyboard keys and menu names. For example, Delete key and the Options
menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. Active-low signals are denoted by suffix n. Example: resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

1., 2., 3., and
a., b., c., and so on.

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

r The angled arrow instructs you to press the enter key.

f The feet direct you to more information about a particular topic.
Viterbi Compiler User Guide © May 2011 Altera Corporation

	Viterbi Compiler User Guide
	Contents
	1. About This Compiler
	Features
	Release Information
	Device Family Support
	Performance and Resource Utilization
	Hybrid Architecture
	Parallel Architecture

	Installation and Licensing
	OpenCore Plus Evaluation
	OpenCore Plus Time-Out Behavior

	2. Getting Started
	Design Flows
	DSP Builder Flow
	MegaWizard Plug-In Manager Flow
	Parameterize the MegaCore Function
	Set Up Simulation
	Generate the MegaCore Function

	Simulate the Design
	Compile the Design
	Program a Device

	3. Functional Description
	Soft Symbol Inputs
	Encoding Scheme
	State Metrics
	Puncturing Scheme
	Trellis Coded Modulation
	Trellis Termination
	Trellis Initiation
	The Avalon Streaming Interface
	Parameters
	Architecture Tab
	Code Sets Tab
	Parameters Tab
	Test Data Tab

	Signals
	Timing Diagrams

	MegaCore Verification

	Additional Information
	Revision History
	How to Contact Altera
	Typographic Conventions

