
101 Innovation Drive
San Jose, CA 95134
www.altera.com

Virtual JTAG (sld_virtual_jtag)
Megafunction User Guide

Software Version: 8.1
Document Version: 2.0
Document Date: © December 2008

http://www.altera.com

Copyright © 2008 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

UG-SLDVRTL-2.0

 © December 2008 Altera Corporation
Contents
Chapter 1. About This Megafunction
Device Family Support . 1-1
Introduction . 1-1
The JTAG Protocol . 1-3

System-Level Debugging Infrastructure . 1-7
Description of the Virtual JTAG Interface (VJI) . 1-11

Design Flow . 1-12
Simulation Model . 1-14
Run-Time Communication with the Virtual JTAG Megafunction . 1-14
Run-Time Communication without Using an Altera Programming Cable . 1-16

Virtual IR/DR Shift Transaction without Returning Captured IR/DR Values 1-18
Virtual IR/DR Shift Transaction that Captures Current VIR/VDR Values 1-19
Reset Considerations when Using a Custom JTAG Controller . 1-21

Applications . 1-21

Chapter 2. Getting Started
System and Software Requirements . 2-1
Using the MegaWizard Plug-In Manager . 2-1
Instantiating the Virtual JTAG Megafunction in Your Design . 2-3
Simulation Support . 2-5
Compiling the Design . 2-8

Third-Party Synthesis Support . 2-9
Design Example 1 . 2-9

Write Logic . 2-10
Read Logic . 2-11
Runtime Communication . 2-11

Design Example 2 . 2-12
Conclusion . 2-14

Chapter A. SLD_NODE Discovery and Enumeration
Issuing the HUB_INFO Instruction . A-2
HUB IP Configuration Register . A-2

SLD_NODE Info Register . A-2

Chapter B. Capturing the Virtual IR Instruction Register

Additional Information
Revision History . Info-1
Referenced Documents . Info-1
How to Contact Altera . Info-1
Typographic Conventions . Info-2
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

iv
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide © December 2008 Altera Corporation

© December 2008 Altera Corporation
1. About This Megafunction
Device Family Support
The virtual JTAG (SLD_VIRTUAL_JTAG) megafunction supports the following target
Altera® device families:

■ Arria® series

■ Stratix® series

■ Cyclone® series

■ HardCopy® ASICs

■ MAX® II series

■ APEX™ II, APEX 20KE, APEX 20KC

Introduction
The virtual JTAG megafunction provides access to the JTAG input pins and all of the
control signals from the JTAG controller on your device. It is one feature in the
on-chip debugging tools portfolio.

The on-chip debugging tool suite is a powerful set of tools enabling real time
verification of a design.

Each feature in the on-chip debugging tool set leverages on-chip resources to get real
time visibility to the logic under test. During runtime, each tool shares the JTAG
connection to transmit collected test data to the Quartus® II software for analysis. The
tool set consists of a set of GUIs, megafunction intellectual property (IP) cores, and Tcl
application programming interfaces (APIs). The GUIs provide for the configuration of
test signals and the visualization of data captured during debugging. The Tcl scripting
interface provides for automation during runtime.

Table 1–1 shown describes the available tools in the on-chip debugging tool suite.

Table 1–1. Available Tools in the On-Chip Debugging Tool Suite (Part 1 of 2)

Tool Description Typical Circumstances of Use

SignalTap® II
Embedded Logic
Analyzer

This embedded logic analyzer uses FPGA
resources to sample tests nodes and outputs the
information to the Quartus II software for display
and analysis.

You have spare on-chip memory and you want
functional verification of your design running in
hardware.

SignalProbe This tool incrementally routes internal signals to
I/O pins while preserving the results from your
last place-and-route procedure.

You have spare I/O pins and you would like to
check the operation of a small set of control pins
using either an external logic analyzer or an
oscilloscope.
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

1–2 Chapter 1: About This Megafunction
Introduction
The virtual JTAG megafunction IP gives you direct access to the JTAG control signals
routed to the FPGA core logic, which gives you a fine granularity of control over the
JTAG resource. This opens up the JTAG resource as a general-purpose serial
communication interface. A complete Tcl API is available for sending and receiving
transactions into your device during runtime. Because the JTAG pins are readily
accessible during runtime, this megafunction can be an easy way to customize a JTAG
scan chain internal to the device, which can be used to create debugging applications.
Examples of debugging applications can include the following scenarios:

■ Induce trigger conditions evaluated by a SignalTap II Embedded Logic Analyzer
by exercising test signals connected to the SignalTap II Embedded Logic Analyzer
instance.

■ Use as a replacement for a front panel interface during the prototyping phase of
the design

■ Insert test vectors for exercising the design under test

f For more information about the Quartus II software on-chip debugging tool suite,
refer to Section V: In-System Design Debugging in the Quartus II Handbook.

The following section provides background information with an overview of the
JTAG protocol and the system-level debugging (SLD) infrastructure used in Altera
devices. The SLD infrastructure is an extension of the JTAG protocol for use with
Altera-specific applications and user applications, such as the SignalTap II Embedded
Logic Analyzer. This section serves as a high-level introduction, with the appropriate
level of information needed to use the virtual JTAG megafunction properly.

f For more information about the JTAG protocol, refer to AN 39: IEEE 1149.1 (JTAG)
Boundary-Scan Testing in Altera Devices.

Subsequent sections describe how to use the virtual JTAG megafunction and provide
a few application examples to help get you started.

Logic Analyzer
Interface (LAI)

This tool multiplexes a larger set of signals to a
smaller number of spare I/O pins. LAI allows you
to select which signals are switched onto the I/O
pins over a JTAG connection.

You have limited on-chip memory, and have a
large set of internal data buses that you would
like to verify using an external logic analyzer.
Logic analyzer vendors, such as Tektronics and
Agilent, provide integration with the tool to
improve the usability.

In-System Memory
Content Editor

This tool displays and allows you to edit on-chip
memory.

You would like to view and edit the contents of
either the instruction cache or data cache of a
Nios® II processor application.

In-System Sources
and Probes

This feature provides an easy way to drive and
sample logic values to and from internal nodes
using the JTAG interface.

You want to prototype a front panel with virtual
buttons for your FPGA design.

Virtual JTAG
Interface

This megafunction opens up the JTAG interface
so that you can develop your own custom
applications.

You want to generate a large set of test vectors
and send them to your device over the JTAG port
to functionally verify your design running in
hardware.

Table 1–1. Available Tools in the On-Chip Debugging Tool Suite (Part 2 of 2)

Tool Description Typical Circumstances of Use
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide © December 2008 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/an/an039.pdf
http://www.altera.com/literature/an/an039.pdf

Chapter 1: About This Megafunction 1–3
The JTAG Protocol
The JTAG Protocol
The original intent of the JTAG protocol (standardized as IEEE 1149.1) was to simplify
PCB interconnectivity testing during the manufacturing stage. As access to integrated
circuit (IC) pins became more limited due to tighter lead spacing and FPGA packages,
testing through traditional probing techniques, such as “Bed-of-nails” test fixtures,
became infeasible. The JTAG protocol alleviates the need for physical access to IC pins
via a shift register chain placed near the I/O ring. This set of registers near the I/O
ring, also known as boundary scan cells (BSCs), sample and force values out onto the
I/O pins. The BSCs from JTAG-compliant ICs are daisy-chained into a long serial-
shift chain and driven via a serial interface.

During boundary scan testing, software shifts out test data over the serial interface to
the BSCs of select ICs. This test data forces a known pattern to the pins connected to
the affected BSCs. If the adjacent IC at the other end of the PCB trace is
JTAG-compliant, the BSC of the adjacent IC can sample the test pattern and feed the
BSCs back to the software for analysis. Figure 1–1 illustrates the concept of boundary-
scan testing.

Because the JTAG interface can shift in any information to the device and is available
on all Altera devices, it lends itself well to being a low footprint, general purpose
communication interface. In addition to boundary scan applications, Altera devices
use the JTAG port for other applications, such as device configuration and all of the
on-chip debugging features available in the Quartus II software.

The basic architecture of the JTAG circuitry consists of the following components:

■ A set of Data Registers (DRs)

■ An Instruction Register (IR)

■ A state machine to arbitrate data (known as the Test Access Port (TAP) controller)

■ A four- or five-pin serial interface, consisting of the following pins:

■ Test data in (TDI), used to shift data into the IR and DR shift register chains

■ Test data out (TDO), used to shift data out of the IR and DR shift register chains

■ Test mode select (TMS), used as an input into the TAP controller

■ TCK, used as the clock source for the JTAG circuitry

■ TRST resets the TAP controller. This is an optional input pin defined by the
1149.1 standard. (The TRST pin is not present in the Cyclone device family.)

Figure 1–1. IEEE Std. 1149.1 Boundary-Scan Testing

Serial
Data In

JTAG Device 1 JTAG Device 2

Serial
Data Out

Core
Logic

Core
Logic

Boundary-Scan Cell
IC Pin Signal

Interconnection
to be Tested
© December 2008 Altera Corporation Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

1–4 Chapter 1: About This Megafunction
The JTAG Protocol
Figure 1–2 shows a functional model of the JTAG circuitry.

The bank of DRs is the primary data path of the JTAG circuitry. It carries the payload
data for all JTAG transactions. Each DR chain is dedicated to serving a specific
function. Boundary scan cells form the primary DR chain. The other DR chains are
used for identification, bypassing the IC during boundary scan tests, or a custom set
of register chains with functions defined by the IC vendor. Altera uses two of the DR
chains with user-defined IP that requires the JTAG chain as a communication
resource, such as the on-chip debugging applications. The Virtual JTAG
megafunction, in particular, allows you to extend the two DR chains to a user-defined
custom application.

The instruction register is used to select the bank of Data Registers to which the TDI
and TDO must connect. It functions as an address register for the bank of Data
Registers. Each IR instruction maps to a specific DR chain.

Figure 1–2. Functional Model of the JTAG Circuitry

Notes to Figure 1–2:

(1) The TRST pin is an optional pin in the 1149.1 Standard. It is not available in Cyclone devices.
(2) The TAP controller is a hard controller; that is, not created using programmable resources.
(3) The major function of the TAP controller is to route test data between the IR and DR register chains. A complete description of the control functions

is given in the section describing the TAP controller state machine.

IR Shift Registers

IR Update Registers

DR Shift Register 1

DR Update Register 1

DR Shift Register 2

DR Update Register 2

DR Shift Register n

DR Update Register n

JTAG TAP
Controller

(2)

TDI TDO

Tap
Controller
Output (3)

Tap
Controller
Output (3)

TRST (1)

TCK

TMS
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide © December 2008 Altera Corporation

Chapter 1: About This Megafunction 1–5
The JTAG Protocol
All shift registers that are a part of the JTAG circuitry (IR and DR register chains) are
composed of two kinds of registers:

■ Shift registers—Capture new serial shift input from the TDI pin

■ Parallel hold registers—Connect to each shift register to hold the current input in
place while any shifting is done; the parallel hold registers ensure stability in the
output while new data is being shifted

The TAP controller is a state machine with a set of control signals that routes TDI data
between the Instruction Register and the bank of DR chains, controls the start and
stop of any shift transactions, and controls the data flow between the parallel hold
registers and the shift registers of the Instruction Register and the Data Register. The
TAP controller is controlled by the TMS pin.
© December 2008 Altera Corporation Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

1–6 Chapter 1: About This Megafunction
The JTAG Protocol
Figure 1–3 shows the TAP controller state machine. A description of each of the states
is provided in Table 1–1.

Figure 1–3. JTAG TAP Controller State Machine

Table 1–2. Functional Description for the TAP Controller States (Part 1 of 2)

TAP Controller State Functional Description

Test-Logic-Reset The test logic of the JTAG scan chain is disabled.

Run-Test/Idle This is a hold state. Once entered, the controller will remain in this state as long as TMS is
held low.

CAPTURE_DR

SHIFT_DR

EXIT1_DR

PAUSE_DR

EXIT2_DR

UPDATE_DR

CAPTURE_IR

SHIFT_IR

EXIT1_IR

PAUSE_IR

EXIT2_IR

UPDATE_IR

RUN_TEST/
IDLE

TEST_LOGIC/
RESET

TMS = 1

TMS = 0

TMS = 1

TMS = 0 TMS = 1

TMS = 1

TMS = 0 TMS = 0

TMS = 0

TMS = 1

TMS = 1

TMS = 1

TMS = 0

TMS = 0 TMS = 0

TMS = 1

TMS = 1

TMS = 1

TMS = 0

TMS = 0 TMS = 0

TMS = 1

TMS = 1

TMS = 0

TMS = 1

TMS = 0

TMS = 1

TMS = 1

TMS = 0 TMS = 0

TMS = 0

TMS = 1

SELECT_
DR_SCAN

SELECT_
IR_SCAN
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide © December 2008 Altera Corporation

Chapter 1: About This Megafunction 1–7
The JTAG Protocol
System-Level Debugging Infrastructure
All on-chip debugging tools that require the JTAG resources share two Data Register
chain paths. USER1 and USER0 instructions select these two DR register chain paths.
These datapaths are an extension of the JTAG circuitry for use with the
programmable logic elements in Altera devices.

Because the JTAG resource is shared among multiple on-chip applications, an
arbitration scheme must define how the USER0 and USER1 scan chains are allocated
between the different user applications. The system-level debugging (SLD)
infrastructure defines the signaling convention and the arbitration logic for all
programmable logic applications using a JTAG resource. Figure 1–4 shows the SLD
infrastructure architecture.

Select DR-Scan/Select IR Scan These are temporary controller states. A decision is made here whether to enter the DR
states or the IR states.

Capture DR/Capture IR These states enable a parallel load of the shift registers from the hold registers on the
rising edge of TCK.

Shift DR/Shift IR These states enable shifting of the DR and IR chains.

Exit1 DR/Exit1 IR Temporary hold states. A decision is made in these states to either advance to the Update
states or the Pause states.

Pause DR/Pause IR This controller state allows shifting of the Instruction Register and Data Register to be
temporarily halted.

Exit2 DR/Exit2 IR Temporary hold states. A decision is made in these states to advance to the Update states.

Update DR/Update IR These states enable a parallel load of the hold registers from the shift registers. Update
happens on the falling edge of TCK.

Table 1–2. Functional Description for the TAP Controller States (Part 2 of 2)

TAP Controller State Functional Description

Figure 1–4. System Level Debugging Infrastructure Functional Model

JTAG Tap
Controller

TC

TM

TD

TD

FPGA

SLD Node

SLD Node

SLD Node

SLD Node

SLD Hub

User’s Design
(Core Logic)
© December 2008 Altera Corporation Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

1–8 Chapter 1: About This Megafunction
The JTAG Protocol
In the presence of an application that requires the JTAG resource, the Quartus II
software automatically implements the SLD infrastructure to handle the arbitration of
the JTAG resource. The communication interface between JTAG and any IP cores is
transparent to the end designer. All components of the SLD infrastructure, except for
the JTAG TAP controller, are built using programmable logic resources.

The SLD infrastructure mimics the IR/DR paradigm defined by the JTAG protocol.
Each application implements an Instruction Register, and a set of Data Registers that
operate similarly to the Instruction Register and Data Registers in the JTAG standard.
Note that the Instruction Register and the Data Register banks implemented by each
application are a subset of the USER1 and USER0 Data Register chains. The SLD
infrastructure consists of three subsystems: the JTAG TAP controller (described in the
previous section), the SLD hub, and the SLD nodes.

The SLD hub acts as the arbiter that routes the TDI pin connection between each SLD
node. It is a state machine that mirrors the JTAG TAP controller state machine.

The SLD nodes in Figure 1–4 represent the communication channels for the end
applications. Each instance of IP requiring a JTAG communication resource (such as
SignalTap II Embedded Logic Analyzer) would have its own communication channel
in the form of a SLD node interface to the SLD hub. Each SLD node instance has its
own Instruction Register and its own bank of DR chains. Up to 255 SLD nodes can be
instantiated, depending on resources available in your device.

Together, the sld_hub and the SLD nodes form a virtual JTAG scan chain within the
JTAG protocol. It is virtual in the sense that both the Instruction Register and DR
transactions for each SLD node instance are encapsulated within a standard DR scan
shift of the JTAG protocol.

The Instruction Register and Data Registers for the SLD nodes are a subset of the
USER1 and USER0 Data Registers. Because the SLD Node IR/DR register set is not
directly part of the IR/DR register set of the JTAG protocol, the SLD node Instruction
Register and Data Register chains are known as Virtual IR (VIR) and Virtual DR
(VDR) chains.
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide © December 2008 Altera Corporation

Chapter 1: About This Megafunction 1–9
The JTAG Protocol
Figure 1–5 shows the transaction model of the SLD infrastructure.

The SLD hub decodes TMS independently from the hard JTAG TAP controller state
machine and implements an equivalent state machine (called the “SLD hub finite state
machine”) for the internal JTAG path. The SLD hub performs a similar function for
the VIR and VDR chains that the TAP controller performs for the JTAG IR and DR
chains. It enables an SLD node as the active path for the TDI pin, selects the TDI data
between the VIR and VDR registers, controls the start and stop of any shift
transactions, and controls the data flow between the parallel hold registers and the
parallel shift registers of the VIR and VDR.

Figure 1–5. Extension of the JTAG Protocol for PLD Applications

IR Shift Registers

IR Update Registers

DR Shift Register 1

DR Update Register 1

USER 0 Data Registers

USER 1 Data Registers

TDI TDO

TAP
Controller

Output

TAP
Controller
Output

Altera PLD JTAG Extension

Altera PLD JTAG Extension

Node 1

Node N

USER0 / USER1 and
SLD_HUB Control Signals

TDI TDO

VIR

VDR 1

VDR N

VIR

VIR 1

VIR N
© December 2008 Altera Corporation Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

1–10 Chapter 1: About This Megafunction
The JTAG Protocol
Because all shifts to VIR and VDR are encapsulated within a DR shift transaction, an
additional control signal is necessary to select between the VIR and VDR data paths.
The SLD hub uses the USER1 command to select the VIR data path and the USER0
command to select the VDR data path. The SLD hub finite state machine is shown in
Figure 1–6.

This state information, including a bank of enable signals, is forwarded to each of the
SLD nodes. The SLD nodes perform the updates to the VIR and VDR according to the
control states provided by the sld_hub. The SLD nodes are responsible for
maintaining continuity between the TDI and TDO pins.

Figure 1–6. sld_hub Finite State Machine

Note to Figure 1–6:
(1) There is no direct state signal available to be used for application design.

USR0 USR1

JTAG_Test_Logic_Reset

JTAG_Run_Test_Idle Virtual_Select_DR_Scan (1) Virtual_Select_IR_Scan (1)

Virtual_Capture_DR

Virtual_Shift_DR

Virtual_Exit1_DR

Virtual_Pause_DR

Virtual_Exit2_DR

Virtual_Update_DR

Virtual_Capture_IR

Virtual_Shift_IR (1)

Virtual_Exit1_IR (1)

Virtual_Pause_IR (1)

Virtual_Exit2_IR (1)

Virtual_Update_IR
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide © December 2008 Altera Corporation

Chapter 1: About This Megafunction 1–11
Description of the Virtual JTAG Interface (VJI)
Description of the Virtual JTAG Interface (VJI)
The Virtual JTAG Interface (VJI) megafunction implements a SLD node interface. It
provides a communication interface to the JTAG port. This megafunction exposes
control signals that are part of the SLD hub; namely, JTAG port signals, all FSM
controller states of the TAP controller, and the SLD hub finite state machine (FSM).
Additionally, each instance of the Virtual JTAG megafunctions house the virtual
Instruction Register for the SLD node. Instantiation of this megafunction
automatically infers the SLD infrastructure. One SLD node is added for each
instantiation of the Virtual JTAG megafunction. Refer to Figure 1–7.

Figure 1–7. Input and Output Ports of the Virtual JTAG Megafunction

Notes to Figure 1–7:
(1) The JTAG TAP controller outputs and TMS signals are used for informational purposes only. These signals can be

exposed using the option Create primitive JTAG state signal ports on page 3 of the MegaWizard® Plug-In Manager.

Inputs

One-Hot Decoded Outputs
from the SLD Hub FSM

One-Hot Decoded Outputs
from the TAP Controller

(1)

(1)

(1)
© December 2008 Altera Corporation Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

1–12 Chapter 1: About This Megafunction
Description of the Virtual JTAG Interface (VJI)
The Virtual JTAG megafunction provides a port interface that mirrors the actual
JTAG ports. The interface contains the JTAG port pins, a one-hot decoded output of
all JTAG states, and a one-hot decoded output of all the virtual JTAG states. Virtual
JTAG states are the states decoded from the SLD hub finite state machine. The ir_in
and ir_out ports are the parallel input and output to and from the VIR. The VIR
ports are used to select the active VDR datapath.

1 The JTAG states and TMS output ports are provided for debugging purposes only.
Only the virtual JTAG, TDI, TDO, and the IR signals are functional elements of the
megafunction. When configuring this megafunction using the MegaWizard Plug-In
Manager, you can hide TMS and the decoded JTAG states.

Design Flow
Designing with the Virtual JTAG megafunction includes the following steps:

1. Configuring the Virtual JTAG megafunction with the desired Instruction Register
length and instantiating the megafunction

2. Building glue logic for interfacing with your application

3. Communicating with the Virtual JTAG instance during runtime

In addition to the JTAG datapath and control signals, the Virtual JTAG megafunction
encompasses the VIR. The Instruction Register size is configured in the MegaWizard
Plug-In Manager. The Instruction Register port on the Virtual JTAG megafunction is
the parallel output of the VIR. Any updated VIR information can be read off of this
port after the virtual_state_uir signal is asserted.

f For more information about these SLD hub finite state machine controller states, refer
to the Quartus II Help.

After instantiating the megafunction, you must create the VDR chains that interface
with your application. To do this, use the virtual instruction output to determine
which VDR chain is the active datapath. You must create the following:

■ Decode logic for the VIR

■ VDR chains to which each VIR maps

■ Interface logic between your VDR chains and your application logic

Your glue logic uses the decoded one-hot outputs from the megafunction to
determine when to shift and when to update the VDR that you created. Your
application logic interfaces with the VDR chains during any one of the non-shift
virtual JTAG states.

For example, your application logic can parallel read an updated value that was
shifted in from the JTAG port after the virtual_state_uir signal is asserted. If
you load in a value to be shifted out of the JTAG port, you would do so when the
virtual_state_cdr signal is asserted. Finally, if you enable the shift register to
clock out information to TDO, you would do so during the assertion of
virtual_state_sdr.
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide © December 2008 Altera Corporation

Chapter 1: About This Megafunction 1–13
Description of the Virtual JTAG Interface (VJI)
1 Maintaining TDI-to-TDO connectivity is important. Ensure that all possible instruction
codes map to an active register chain to maintain connectivity in the TDI-to-TDO
datapath. Altera recommends including a bypass register as the active register for all
unmapped IR values.

1 Note that TCK (a maximum 10-MHz clock, if using an Altera programming cable)
provides the clock for the entire SLD infrastructure. Be sure to follow best practices
for proper clock domain crossing between the JTAG clock domain and the rest of your
application logic to avoid metastability issues. The decoded virtual JTAG state signals
can help determine a stable output in the VIR and VDR chains.

After compiling and downloading your design into the device, you can perform shift
operations directly to the VIR and VDR chains using the Tcl commands from the
quartus_stp executable and an Altera programming cable (for example, a
USB-Blaster™, a MasterBlaster™, or a ByteBlaster™ II cable). The quartus_stp
executable is a command-line executable that contains Tcl commands for all on-chip
debug features available in the Quartus II software design suite.

The section “Run-Time Communication with the Virtual JTAG Megafunction” on
page 1–14 provides additional details about the specific Tcl commands that interface
to this megafunction.

Figure 1–8 shows a block diagram of the components of a design containing one
instance of the Virtual JTAG megafunction.

Figure 1–8. Block Diagram of a Design with a Single Virtual JTAG Instantiation (Note 1), (2), (3)

Notes to Figure 1–8:
(1) TDI-to-TDO datapath for the virtual JTAG chain, shown in red, consists of a bank of DR registers. Input to the application logic is the parallel

output of the VDR chains.
(2) Decoded state signals used to signal start and stop of shift transactions and signals when the VDR output is ready.
(3) The IR_out port, not shown, is an optional input port you can use to parallel load the VIR from the FPGA core logic.

Inferred by Instantiation
of Megafunction

Glue Logic between VJI and User Design
(Created by Designer)

Original Design

Application
Logic

SLD
Hub

VJI Megafunction
Instance

IR

JTAG TAP
Controller

TDI

TDO

TMS

TCK

TRST

TMS & Decoded
State Signals

IR_in

TDI

TDO

Input Vector 1

Input Vector 2

Input Vector nVD
R

 C
ha

in
 1

VD
R

 C
ha

in
 2

VD
R

 C
ha

in
 n
© December 2008 Altera Corporation Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

1–14 Chapter 1: About This Megafunction
Description of the Virtual JTAG Interface (VJI)
Complete application examples are provided in the section “Instantiating the Virtual
JTAG Megafunction in Your Design” on page 2–3 and in the sections that describe
“Design Example 1” on page 2–9 and “Design Example 2” on page 2–12.

Simulation Model
The virtual JTAG megafunction provides a functional simulation model. The
simulation model provides stimuli that mimic VIR and VDR shifts. You configure the
stimuli using the MegaWizard Plug-In Manager. The detailed steps for configuring
the simulation model are provided in the section “Using the MegaWizard Plug-In
Manager” on page 2–1.

1 This simulation model is used for functional verification only. The operation of the
SLD hub and the SLD node-to-hub interface is not provided in this simulation model.

Run-Time Communication with the Virtual JTAG Megafunction
The Tcl API for the Virtual JTAG megafunction consists of a set of commands for
accessing the VIR and VDR of each virtual JTAG instance.

These commands contain the underlying drivers for accessing an Altera
programming cable and for issuing shift transactions to each VIR and VDR. Table 1–3
provides all of the Tcl commands in the quartus_stp executable that can be used
with the Virtual JTAG megafunction.

Details about the underlying bit transactions can be found in Appendix A,
SLD_NODE Discovery and Enumeration, and Appendix B, Capturing the Virtual IR
Instruction Register. This information is intended for designs that use a custom
controller to drive the JTAG chain.

Table 1–3. Tcl Commands Used with the Virtual JTAG Megafunction (Part 1 of 2)

Command Arguments Description

Device_virtual_
ir_shift

-instance_index <instance_index>

-ir_value <numeric_ir_value>

-no_captured_ir_value (1)

-show_equivalent_device_ir_dr_shift (1)

Perform an IR shift operation to
the virtual JTAG instance specified
by the instance_index. Note
that ir_value takes a
numerical argument.

Device_virtual_dr_
shift

-instance_index <instance_index>

-dr_value <dr_value>

-length <data_register_length>

-no_captured_dr_value (1)

-show_equivalent_device_ir_dr_shift

-value_in_hex (1)

Perform a DR shift operation to
the virtual JTAG instance

Get_hardware_names NONE Queries for all available
programming cables

Open_device -device_name <device_name>

-hardware_name <hardware_name>

Selects the active device on the
JTAG chain

Close_device NONE Ends communication with the
active JTAG device
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide © December 2008 Altera Corporation

Chapter 1: About This Megafunction 1–15
Description of the Virtual JTAG Interface (VJI)
f For detailed information about each of these commands, refer to the Quartus II
Scripting Reference Manual or the Quartus II Help.

Each instantiation of the Virtual JTAG megafunction includes an instance index. All
instances are sequentially numbered and are automatically provided by the
Quartus II software. The instance index starts at instance index 0. The VIR and VDR
shift commands described in Table 1–3 decode the instance index and provide an
address to the SLD hub for each megafunction instance. You can override the default
index provided by the Quartus II software during configuration of the megafunction.

Central to virtual JTAG megafunction are the device_virtual_ir_shift and
device_virtual_dr_shift commands. These two commands perform the shift
operation to each VIR/VDR and provide the address to the SLD hub for the active
JTAG datapath.

Each device_virtual_ir_shift command issues a USER1 instruction to the
JTAG Instruction Register followed by a DR shift containing the VIR value provided
by the ir_value argument prepended by address bits to target the correct SLD node
instance.

1 Use the -no_captured_ir_value argument if you do not care about shifting out
the contents of the current VIR value. Enabling this option speeds up the VIR shift
transaction by eliminating a command cycle within the underlying transaction.

Similarly, each device_virtual_dr_shift command issues a USER0 instruction
to the JTAG Instruction Register followed by a DR shift containing the VDR value
provided by the dr_value argument. These commands return the underlying JTAG
transactions with the show_equivalent_device_ir_dr_shift option set.

c The device_virtual_ir_shift takes the ir_value argument as a numeric
value. The device_virtual_dr_shift takes the dr_value argument by either a
binary string or a hexadecimal string. Do not use numeric values for the
device_virtual_dr_shift.

Device_lock -timeout <timeout> Obtains exclusive communication
to the JTAG chain

Device_unlock NONE Releases device_lock

Device_ir_shift -ir_value <ir_value>

-no_captured_ir_value

Performs a IR shift operation

Device_dr_shift -dr_value <dr_value>

-length <data register length>

-no_captured_dr_value

-value_in_hex

Performs a DR shift operation

Note to Table 1–3:
(1) This argument is optional.

Table 1–3. Tcl Commands Used with the Virtual JTAG Megafunction (Part 2 of 2)

Command Arguments Description
© December 2008 Altera Corporation Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

1–16 Chapter 1: About This Megafunction
Description of the Virtual JTAG Interface (VJI)
A simple DR shift operation through a virtual JTAG chain using an Altera download
cable consists of the following steps:

1. Query for the Altera programming cable and select the active cable.

2. Target the desired device in the JTAG chain.

3. Obtain a device lock for exclusive communication to the device.

4. Perform a VIR shift.

5. Perform a VDR shift.

6. Release exclusive link with the device with the device_unlock command.

7. Close communication with the device with the close_device command.

f The Quartus II Scripting Reference Manual,“Design Example 1” on page 2–9 and
“Design Example 2” on page 2–12 include example Tcl scripts for communicating
with Virtual JTAG megafunction instances.

Run-Time Communication without Using an Altera Programming Cable
The Virtual JTAG megafunction Tcl API requires an Altera programming cable.
Designs that use a custom controller to drive the JTAG chain directly must issue the
correct JTAG IR/DR transactions to target the Virtual JTAG megafunction instances.
The address values and register length information for each Virtual JTAG
megafunction instance are provided in the compilation reports.

Figure 1–9 shows the compilation report for a sample Virtual JTAG Megafunction
Instance and Table 1–4 describes each of the columns in the Virtual JTAG Settings
compilation report.

Figure 1–9. Compilation Report for Virtual JTAG Megafunction Instances
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide © December 2008 Altera Corporation

http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

Chapter 1: About This Megafunction 1–17
Description of the Virtual JTAG Interface (VJI)
The Tcl API provides a way to return the JTAG IR/DR transactions by using the
show_equivalent_device_ir_dr_shift argument with the
device_virtual_ir_shift and device_virtual_dr_shift commands. The
following examples use returned values of a virtual IR/DR shift to illustrate the
format of the underlying transactions.

Refer to the two separate examples in this user guide: “Design Example 1” on
page 2–9, which is a Virtual IR/DR shift with the -no_captured_ir_value
argument, and “Design Example 2” on page 2–12, a Virtual IR/DR shift without the
-no_captured_ir_value argument.

To use the Tcl API to query for the bit pattern in your design, use the
-show_equivalent_device_ir_dr_shift argument with the
device_virtual_ir_shift and device_virtual_dr_shift commands.

Both examples are from the same design, with a single Virtual JTAG instance. The
VIR length for the reference Virtual JTAG instance is configured to 3 bits in length.

Table 1–4. Virtual JTAG Settings Description

Setting Description

Instance Index Instance index of the virtual JTAG megafunction. Assigned at compile time.

Auto Index Details whether the index was auto-assigned.

Index Re-Assigned Details whether the index was user-assigned.

IR Width Length of the Virtual IR register for this megafunction instance; defined in the MegaWizard
Plug-In Manager.

Address The address value assigned to the megafunction by the compiler.

USER1 DR Length The length of the USER1 DR register. The USER1 DR register encapsulates the VIR for all SLD
nodes.

VIR Capture Instruction Instruction value to capture the VIR of this megafunction instance.
© December 2008 Altera Corporation Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

1–18 Chapter 1: About This Megafunction
Description of the Virtual JTAG Interface (VJI)
Virtual IR/DR Shift Transaction without Returning Captured IR/DR Values
The Tcl commands in Example 1–1 and Example 1–2 show a VIR/VDR transaction
with no_captured_value option set. The commands return the underlying JTAG
shift transactions that occur. Figure 1–10 shows the bit values and fields associated
with the VIR/VDR scans.

VIR shifts consist of a USER1 (0x0E) IR shift followed by a DR shift to the virtual
Instruction Register. The length and value of the DR shift is dependent on the number
of SLD nodes in your design. This value consists of address bits to the SLD node
instance concatenated with the desired value of the virtual Instruction Register. The
addressing scheme is determined by the Quartus II software during design
compilation.

Example 1–1. Virtual IR Shift with the no_captured_value Option

device_virtual_ir_shift -instance_index 0 -ir_value 1 \
-no_captured_ir_value -show_equivalent_device_ir_dr_shift r
Returns:
Info: Equivalent device ir and dr shift commands
Info: device_ir_shift -ir_value 14
Info: device_dr_shift -length 5 -dr_value 11 -value_in_hex

Example 1–2. Virtual DR Shift with the no_captured_value Option

device_virtual_dr_shift -instance_index 0 -length 8 -dr_value \
04 -value_in_hex -no_captured_dr_value \
-show_equivalent_device_ir_dr_shift r
Returns:
Info: Equivalent device ir and dr shift commands
Info: device_ir_shift -ir_value 12
Info: device_dr_shift -length 8 -dr_value 04 -value_in_hex

Figure 1–10. Equivalent Bit Pattern Shifted into Device by VIR/VDR Shift Commands (Note 1), (2), (3)

Notes to Figure 1–10:
(1) The Instruction Register length for all Altera FPGAs and CPLDs is 10 bits long.
(2) The USER1 value is 0x0E and USER0 value is 0x0C for all Altera FPGAs and CPLDs.
(3) The Address bits contained in the DR scan shift of a VIR scan are determined by the Quartus II software.

Virtual IR Scan

Virtual DR Scan

IR Scan Shift

IR Scan Shift

DR Scan Shift

DR Scan Shift

USER1

USER0

VIR Value

VDR Value

Addr

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 00 0 0

1 1

1 1 0 01

1 1 10
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide © December 2008 Altera Corporation

Chapter 1: About This Megafunction 1–19
Description of the Virtual JTAG Interface (VJI)
1 The VIR value field in Figure 1–10 is four bits long, even though the VIR length is
configured to be three bits long. All USER1 DR chains must be of uniform length. The
length of the VIR value field length is determined by length of the longest VIR register
for all SLD nodes instantiated in the design. Because the SLD hub VIR is four bits
long, the minimum length for the VIR value field for all SLD nodes in the design is at
least four bits in length. The Quartus II Tcl API automatically sizes the shift
transaction to the correct length. The length of the VIR register is provided in the
Virtual JTAG settings compilation report. If you are driving the JTAG interface with a
custom controller, you must pay attention to size of the USER1 DR chain through the
information Virtual JTAG Settings Table, the values returned by the Tcl API, or via
the information provided in Appendix A, SLD_NODE Discovery and Enumeration.

The VDR shifts consist of a USER0 0x0C IR shift followed by a DR shift to the virtual
Data Register. The DR Scan shift consists of the value passed by the -dr_value
argument.

Virtual IR/DR Shift Transaction that Captures Current VIR/VDR Values
The Tcl commands in Example 1–3 and Example 1–4 show examples in which the
no_captured_value option is not set in the Virtual IR/DR shift commands and the
underlying JTAG shift commands associated with each. In the VIR shift command,
the command returns two device_dr_shift commands. Figure 1–11 further details
the transaction.

Example 1–3. Virtual IR Shift

device_virtual_ir_shift -instance_index 0 -ir_value 1 \
-no_captured_ir_value -show_equivalent_device_ir_dr_shift

Returns:
Info: Equivalent device ir and dr shift commands
Info: device_ir_shift -ir_value 14
Info: device_dr_shift –length 5 –dr_value 0B –value_in_hex
Info: device_dr_shift -length 5 -dr_value 11 -value_in_hex

Example 1–4. Virtual DR Shift

device_virtual_dr_shift -instance_index 0 -length 8 -dr_value \
04 -value_in_hex -show_equivalent_device_ir_dr_shift

Returns:
Info: Equivalent device ir and dr shift commands
Info: device_ir_shift -ir_value 12
Info: device_dr_shift -length 8 -dr_value 04 -value_in_hex
© December 2008 Altera Corporation Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

1–20 Chapter 1: About This Megafunction
Description of the Virtual JTAG Interface (VJI)
DR Scan Shift 1 is the VIR_CAPTURE command (shown in Figure 1–11). It targets the
VIR of the sld_hub. This command is an address cycle to select the active VIR chain to
shift after jtag_state_cir is asserted. The HUB_FORCE_IR capture must be issued
whenever you capture the VIR from a target SLD node that is different than the
current active node. The precise definition of the VIR_CAPTURE instruction and the
HUB_FORCE_IR instructions can be found in Appendix B, Capturing the Virtual IR
Instruction Register.

Appendix A, SLD_NODE Discovery and Enumeration, describes in detail the
discovery and enumeration process for all the SLD Nodes within a design. This
information can be used to determine the address scheme for each of the SLD nodes
dynamically within the SLD infrastructure.

1 If you are using an embedded processor as a controller for the JTAG chain and your
Virtual JTAG megafunction instances, consider using the JAM Standard Test and
Programming Language (STAPL). JAM STAPL is an industry-standard
flow-control-based language that supports JTAG communication transactions. JAM
STAPL is open source, with software downloads and source code available from the
Altera website (www.altera.com).

f For more information about JAM STAPL and using JAM STAPL with an embedded
processor, refer to the following pages on www.altera.com:

■ ISP & the Jam STAPL

■ Embedded Programming With Jam STAPL

Figure 1–11. Equivalent Bit Pattern Shifted into Device by VIR/VDR Shift Commands with Captured IR Values (Note 1), (2)

Notes to Figure 1–11:
(1) DR Scan Shift 1 targets the SLD hub VIR to force a captured value from Virtual JTAG instance 1. This command is known as the VIR_CAPTURE

command.
(2) DR Scan Shift 2 targets the VIR of Virtual JTAG instance 1.

Virtual IR Scan

Virtual DR Scan

IR Scan Shift

IR Scan Shift

DR Scan Shift 1

DR Scan Shift

USER1

USER0

VIR Value

VDR Value

Addr

0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 00 0 0

1 1

1 1 0 01

1 0 10

DR Scan Shift 2
VIR ValueAddr

0 0 01 1
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide © December 2008 Altera Corporation

http://www.altera.com/support/devices/tools/jam/tls-jam.html
http://www.altera.com/support/devices/tools/jam/embedded/tls-jam-embedded.html
http://www.altera.com
http://www.altera.com

Chapter 1: About This Megafunction 1–21
Applications
Reset Considerations when Using a Custom JTAG Controller
The SLD hub decodes TMS independently to determine the JTAG controller state.
Under normal operation, the SLD hub mirrors all of the JTAG TAP controller states
accurately. The JTAG pins (TCK, TMS, TDI, and TDO) are accessible to the core
programmable logic; however, the JTAG TAP controller outputs are not visible to the
core programmable logic. In addition, the hard JTAG TAP controller does not use any
reset signals as inputs from the core programmable logic. This can cause two
situations in which control states of the SLD hub and the JTAG TAP controller are not
in lock-step:

■ An assertion of the device wide global reset signal (DEV_CLRn)

■ An assertion of the TRST signal, if available on the device

DEV_CLRn resets the SLD hub but does not reset the hard TAP controller block. The
TAP controller is meant to be decoupled from USER mode device operation to run
boundary scan operations. Asserting the global reset signal does not disrupt
boundary-scan test (BST) operation.

Conversely, the TRST signal, if available, resets the JTAG TAP controller but does not
reset the SLD hub. The TRST signal does not route into the core programmable logic
of the PLD.

To guarantee that the states of the JTAG TAP controller and the SLD hub state
machine are properly synchronized, TMS should be held high for at least five clock
cycles after any intentional reset of either the TAP controller or the system logic. Both
the JTAG TAP controller and the sld_hub controller are guaranteed to be in the Test
Logic Reset state after five clock cycles of TMS held high.

Applications
Single or multiple instances of the Virtual JTAG megafunction can be instantiated in
your HDL code. During synthesis, the Quartus II software assigns unique IDs to each
instance, so each can be accessed individually. You can instantiate up to 128 instances
of the Virtual JTAG megafunction.
© December 2008 Altera Corporation Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

1–22 Chapter 1: About This Megafunction
Applications
Figure 1–12 shows a typical application in a design with multiple instances of the
Virtual JTAG megafunction.

The SLD hub automatically arbitrates between multiple applications that share a
single JTAG resource. As such, the Virtual JTAG megafunction can be used in tandem
with other on-chip debugging applications (such as the SignalTap II Embedded Logic
Analyzer), to increase debugging visibility. The Virtual JTAG megafunction can be
used to provide simple stimulus patterns to solicit a response from the design under
test during run-time.

The Virtual JTAG megafunction can be used in many applications, including the
following circumstances:

■ To diagnose, sample, and update the values of internal parts of your logic. With
this megafunction, you can easily sample and update the values of the internal
counters and state machines in your hardware device.

■ You can build your own custom software debugging IP using the Tcl commands
listed above to debug your hardware. This IP communicates with the instances of
the Virtual JTAG megafunction inside your design.

■ You can instrument your design to achieve virtual inputs and outputs in your
design.

■ If you are building a debugging solution for a system in which a microprocessor
controls the JTAG chain, the SignalTap II Embedded Logic Analyzer cannot be
used because the JTAG control has to be with the microprocessor. By learning the
low-level controls for the JTAG port from the Tcl commands, you can program
microprocessors to communicate with the Virtual JTAG megafunction inside the
device core.

Figure 1–12. Application Example

Logic

Logic

JTAG

sld_virtual_jtag

sld_virtual_jtag

tck

tms

trst

tdi

tdo
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide © December 2008 Altera Corporation

© December 2008 Altera Corporation
2. Getting Started
System and Software Requirements
The instructions in this section require the following hardware and software:

■ The Quartus® II software beginning with version 6.0

■ An Altera® download cable, such as a USB-Blaster™ cable

The download cable is required to communicate with the Virtual JTAG megafunction
from a host running the quartus_stp executable.

Using the MegaWizard Plug-In Manager
To create the Virtual JTAG megafunction in your design, you must use the
MegaWizard® Plug-In Manager within the Quartus II software. Perform the following
steps to generate the megafunction:

1. On the Tools menu, click MegaWizard Plug-In Manager. The MegaWizard
Plug-In Manager dialog box appears.

2. Select Create a new custom megafunction variation.

3. Click Next. Page 2a of the MegaWizard Plug-In Manager appears.

4. In the list of megafunctions, click the “+” icon to expand the JTAG-accessible
Extensions folder. Click Virtual JTAG.

5. Select the device family you are using.

6. Select the type of output file you want to create: Verilog HDL, VHDL, or AHDL.

7. Specify the name of the output file and its location.

8. Click Next. Page 3 of the MegaWizard Plug-In Manager appears.

9. Select the width (number of bits) of your Instruction Register.

10. Assign a unique ID to the instance of your Virtual JTAG megafunction. The
wizard can assign an ID automatically (recommended), or you can enter one
manually.
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

2–2 Chapter 2: Getting Started
Using the MegaWizard Plug-In Manager
11. Click Next. Page 4 of the MegaWizard Plug-In Manager appears (Figure 2–1).

12. Page 4 defines the stimuli that are used during the simulation of your
megafunction. A stimulus is either a Data Register shift (DR shift) or an
Instruction Register shift (IR shift). Each stimulus requires a time at which that
shift occurs, the number of bits you want to shift in or out, and the data value you
want to shift in during a shift-in operation. You can add multiple stimuli by
clicking the Add Stimulus button.

The stimuli specified on Page 4 of the wizard are written to the variation file. If
you want to change a stimulus after creating the megafunction, you can either edit
the variation file or create the megafunction again with a new stimulus. The
wizard provides an easy way to generate your stimuli. If you do not want to
generate the stimuli, you can skip this step. However, the stimuli are necessary if
you are performing simulation of your design.

13. Click Next. Page 5 of the MegaWizard Plug-In Manager appears. In this example,
the page shows that you need the altera_mf library to simulate the Virtual JTAG
megafunction in your design.

There is no input required from you on this page.

14. Click Next. Page 6 of the MegaWizard Plug-In Manager appears.

Figure 2–1. MegaWizard Plug-In Manager, Page 4
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide © December 2008 Altera Corporation

Chapter 2: Getting Started 2–3
Instantiating the Virtual JTAG Megafunction in Your Design
15. Select any other files you need in addition to the megafunction variation file and
the megafunction black box file.

16. Click Finish to create the Virtual JTAG megafunction. This action creates the files
you need in your project.

The output from the MegaWizard Plug-In Manager is a variation file. Example output
files for the Virtual JTAG megafunction variation file are provided in Appendix B,
Capturing the Virtual IR Instruction Register.

Instantiating the Virtual JTAG Megafunction in Your Design
To properly connect the Virtual JTAG megafunction in your design, you should
follow these basic connection rules:

■ The tck output from the Virtual JTAG megafunction is the clock used for shifting
the data in and out on the TDI and TDO pins.

■ The TMS output of the Virtual JTAG megafunction reflects the TMS input to the
main JTAG circuit.

■ The ir_in output port of the Virtual JTAG megafunction is the parallel output of
the contents that get shifted into the virtual IR of the Virtual JTAG instance. This
port is used for decoding logic to select the active virtual DR chain.

You can use the following Verilog HDL template as a guide for instantiating and
connecting various signals of the megafunctions in your design.

The purpose of instantiating a Virtual JTAG instance in this example is to load
my_counter through the JTAG port using a software application built with Tcl
commands and the quartus_stp executable. In this design, the Virtual JTAG
instance is called my_vji. Whenever a Virtual JTAG megafunction is instantiated in a
design, three logic blocks are usually needed: a decode logic block, a TDO logic block,
and a Data Register block. Example 2–1 combines the Virtual JTAG instance, the
decode logic, the TDO logic and the Data Register blocks.

Example 2–1. (Part 1 of 2)

module counter (clock, my_counter);
input clock;
output [3:0] my_counter;
reg [3:0] my_counter;
always @ (posedge clock)
 if (load && e1dr) // decode logic: used to load the counter my_counter
 my_counter <= tmp_reg;
 else
 my_counter <= my_counter + 1;
// Signals and registers declared for VJI instance
wire tck, tdi;
reg tdo;
wire cdr, eldr, e2dr, pdr, sdr, udr, uir, cir;
wire [1:0] ir_in;
© December 2008 Altera Corporation Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

2–4 Chapter 2: Getting Started
Instantiating the Virtual JTAG Megafunction in Your Design
The decode logic is produced by defining a wire load to be active high whenever the
IR of the Virtual JTAG megafunction is 01. The IR scan shift is used to load the data
into the IR of the Virtual JTAG megafunction. The ir_in output port reflects the IR
contents.

The Data Register logic contains a 4-bit shift register named tmp_reg. The always
blocks shown for the Data Register logic also contain the decode logic consisting of
the load and sdr signals. The sdr signal is the output of the Virtual JTAG
megafunction that is asserted high during a DR scan shift operation. The time during
which the sdr output is asserted high is the time in which the data on tdi is valid.
During that time period, the data is shifted into the tmp_reg shift register. Therefore,
tmp_reg gets the data from the Virtual JTAG megafunction on the tdi output port
during a DR scan operation.

There is a 1-bit register named bypass_reg whose output is connected with tdo
logic to maintain the continuity of the scan chain during idle or IR scan shift operation
of the Virtual JTAG megafunction. The tdo logic consists of outputs coming from
tmp_reg and bypass_reg and connecting to the tdo input of the Virtual JTAG
megafunction. The tdo logic passes the data from tmp_reg to the Virtual JTAG
megafunction during DR scan shift operations.

// Instantiation of VJI
my_vji VJI_INST(
 .tdo (tdo),
 .tck (tck),
 .tdi (tdi),
 .tms(),
 .ir_in(ir_in),
 .ir_out(),
 .virtual_state_cdr (cdr),
 .virtual_state_e1dr(e1dr),
 .virtual_state_e2dr(e2dr),
 .virtual_state_pdr (pdr),
 .virtual_state_sdr (sdr),
 .virtual_state_udr (udr),
 .virtual_state_uir (uir),
 .virtual_state_cir (cir)
);
// Declaration of data register
reg [3:0] tmp_reg;
// Deocde Logic Block
// Making some decode logic from ir_in output port of VJI
wire load = ir_in[1] && ~ir_in[0];
// Bypass used to maintain the scan chain continuity for
// tdi and tdo ports

bypass_reg <= tdi;
// Data Register Block
always @ (posedge tck)
 if (load && sdr)
 tmp_reg <= {tdi, tmp_reg[3:1]};
// tdo Logic Block
always @ (tmp_reg[0] or bypass_reg)
 if(load)
 tdo <= tmp_reg[0]
 else
 tdo <= bypass_reg;
endmodule

Example 2–1. (Part 2 of 2)
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide © December 2008 Altera Corporation

Chapter 2: Getting Started 2–5
Simulation Support
The always block of a 4-bit counter also consists of some decode logic. This decode
logic uses the load signal and e1dr output signal of the Virtual JTAG megafunction
to load the counter with the contents of tmp_reg. The Virtual JTAG output signal
e1dr is asserted high during a DR scan shift operation when all the data is completely
shifted into the tmp_reg and sdr has been de-asserted. In addition to sdr and e1dr,
there are other outputs from the Virtual JTAG megafunction that are asserted high to
show various states of the TAP controller and internal states of the Virtual JTAG
megafunction. All of these signals can be used to perform different logic operations as
needed in your design. Figure 1–7 on page 1–11 shows all of the input and output
ports of the Virtual JTAG megafunction.

Simulation Support
Virtual JTAG interface operations can be simulated using all Altera-supported
simulators. The simulation support is for DR and IR scan shift operations. For
simulation purposes, a behavioral simulation model of the megafunction is provided
in both VHDL and Verilog HDL in the altera_mf libraries. The I/O structure of the
model is the same as the megafunction.

In its implementation, the Virtual JTAG megafunction connects to your design on one
side and to the JTAG port through the JTAG hub on the other side. However, a
simulation model connects only to your design. There is no simulation model for the
JTAG circuit. Therefore, no stimuli can be provided from the JTAG ports of the device
to imitate the scan shift operations of the Virtual JTAG megafunction in simulation.

The scan operations in simulation are realized using the simulation model. The
simulation model consists of a signal generator, a model of the SLD hub, and the
Virtual JTAG model. The stimuli defined in the wizard are passed as parameters to
this simulation model from the variation file. The simulation parameters are listed in
Table 2–1. The signal generator then produces the necessary signals for Virtual JTAG
megafunction outputs such as tck, tdi, tms, and so forth.

The model is parameterized to allow the simulation of an unlimited number of
Virtual JTAG instances. The parameter sld_sim_action defines the strings used for
IR and DR scan shifts. Each Virtual JTAG’s variation file passes these parameters to
the Virtual JTAG component. The Virtual JTAG’s variation file can always be edited
for generating different stimuli, though the preferred way to specify stimuli for DR
and IR scan shifts is to use the MegaWizard Plug-In Manager.

Table 2–1. Description of Simulation Parameters (Part 1 of 2)

Parameter Comments

SLD_SIM_N_SCAN Specifies the number of shifts in the simulation model.
© December 2008 Altera Corporation Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

2–6 Chapter 2: Getting Started
Simulation Support
Simulation has the following limitations:

■ Scan shifts (IR or DR) must be at least 1 ms apart in simulation time.

■ Only behavioral or functional level simulation support is present for this
megafunction. There is no gate level or timing level simulation support.

■ For behavioral simulation, the stimuli tell the signal generator model in the Virtual
JTAG model to generate the sequence of signals needed to produce the necessary
outputs for tck, tms, tdi, and so forth. You cannot provide the stimulus at the
JTAG pins of the device.

■ The tck clock period used in simulation is 10 MHz with a 50% duty cycle. In
hardware, the period of the tck clock cycle may vary.

■ In a real system, each instance of the Virtual JTAG megafunction works
independently. In simulation, multiple instances can work at the same time. For
example, if you define a scan shift for Virtual JTAG instance number 1 to happen
at 3 ms and a scan shift for Virtual JTAG instance number 2 to happen at the same
time, the simulation works correctly.

If you are using the ModelSim-Altera simulator, the altera_mf.v and altera_mf.vhd
libraries are provided in precompiled form with the simulator.

SLD_SIM_TOTAL_LENGTH The total number of bits to be shifted in either an IR shift or a DR shift. This value
should be equal to the sum of all the length values specified in the
SLD_SIM_ACTION string.

SLD_SIM_ACTION The string has the following format:

((time,type,value,length),
(time,type,value,length),
...

(time,type,value,length))

where:

■ time—A 32-bit value in milliseconds that represents the start time of the shift
relative to the completion of the previous shift.

■ type—A 4-bit value that determines whether the shift is a DR shift or an IR shift.

■ value—The data associated with the shift. For IR shifts, it is a 32-bit value. For DR
shifts, the length is determined by length.

■ length—A 32-bit value that specifies the length of the data being shifted. This
value should be equal to SLD_NODE_IR_WIDTH; otherwise, the value field may
be padded or truncated. 0 is invalid.

Entries are in hexadecimal format.

Table 2–1. Description of Simulation Parameters (Part 2 of 2)

Parameter Comments
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide © December 2008 Altera Corporation

Chapter 2: Getting Started 2–7
Simulation Support
The inputs and outputs of the Virtual JTAG megafunction during a typical IR scan
shift operation are shown in Figure 2–2.

Figure 2–3 shows the inputs and outputs of the Virtual JTAG megafunction during a
typical DR scan shift operation.

Figure 2–2. IR Shift Waveform

Figure 2–3. DR Shift Waveform
© December 2008 Altera Corporation Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

2–8 Chapter 2: Getting Started
Compiling the Design
Compiling the Design
You can instantiate a maximum of 128 instances of the Virtual JTAG megafunction.
After compilation, each instance has a unique ID, as shown on the Virtual JTAG
Settings page of the Analysis & Synthesis section of the Compilation Report
(Figure 2–4).

These unique IDs are necessary for Quartus II Tcl API to properly address each
instance of the megafunction.

Figure 2–4. IDs of Virtual JTAG Instances

ID of sid_virtual_jtag
instances
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide © December 2008 Altera Corporation

Chapter 2: Getting Started 2–9
Design Example 1
The addition of Virtual JTAG megafunctions uses logic resources in your design. The
Fitter Resource Section in the Compilation Report shows the logic resource utilization
(Figure 2–5).

f For more information about compiling designs with the Quartus II software or
compilation flows, refer to Volume 2: Design Implementation and Optimization, and
Volume 3: Verification of the Quartus II Handbook.

Third-Party Synthesis Support
In addition to the variation file, the MegaWizard Plug-In Manager creates a black box
file for the Virtual JTAG megafunction you created. For example, if you create a
my_vji.v file, a my_vji_bb.v file is also created. In third-party synthesis, you include
this black box file along with your design files to synthesize your project. A VQM file
is usually produced by third-party synthesis tools. This VQM netlist and the Virtual
JTAG megafunction’s variation files are input to the Quartus II software for further
compilation.

Design Example 1
The Tcl API that ships with the Virtual JTAG megafunction makes it an ideal solution
for developing command-line scripts that can be used to either update data values or
toggle control bits at run time. This visibility into the FPGA can help expedite debug
closure during the prototyping phase of the design, especially when external
equipment is not available to provide a stimulus. This design example demonstrates
the use of the Virtual JTAG megafunction and a command-line script to dynamically
modify the contents of a DCFIFO at runtime.

Figure 2–5. Logic Resources Utilized
© December 2008 Altera Corporation Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

http://www.altera.com/literature/hb/qts/qts_qii5v2.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3.pdf

2–10 Chapter 2: Getting Started
Design Example 1
1 The files for this design example are located in the User Guide page in the Literature
section of the Altera website (www.altera.com). The design files are targeted to a
Cyclone III starter kit.

This design example consists of a Quartus II project file that implements a DCFIFO
and a command-line script that is used to modify the contents of the FIFO at runtime.

The RTL consists of a single instantiation of the Virtual JTAG megafunction to
communicate with the JTAG circuitry. Both read and write ports of the DCFIFO are
clocked at 50 MHz. A SignalTap II Embedded Logic Analyzer instance taps the data
output bus of the DCFIFO to read burst transactions from the DCFIFO. The following
sections discuss the RTL implementation and the runtime control of the DCFIFO
using the Tcl API.

Write Logic
Figure 2–6 describes the implementation for the write side logic for this design
example. The RTL uses a single instance of the Virtual JTAG megafunction to decode
both the instructions for the write side and read side logic. The IR register is three bits
wide, with the three instructions decoded in the RTL, as shown in Table 2–2.

The IR decode logic shifts the Push_in virtual DR chain when the PUSH instruction
is on the IR port and virtual_state_sdr is asserted. A write enable pulse,
synchronized to the write_clock, asserts after the virtual_state_udr signal
goes high. The virtual_state_udr signal guarantees stability from the virtual DR
chain.

Table 2–2. Instruction Register Values Used in Design Example 1

Instruction Register Value Function

PUSH Instruction to write a single value to the write side logic of the DCFIFO

POP Instruction to read a single value from the read side logic of the
DCFIFO

FLUSH Instruction to perform a burst read transaction from the FIFO until
empty.

Figure 2–6. Write Side Logic for DCFIFO Design Example

DCFIFO

IR Decode/State
Decode Logic

IR_register

State
Information

TDI

TDO
Write_req

Data[7:0]
Write_clock

Read_req

Read_clock

Q[7:0]

Rd_empty

Data_out

Vi
rtu

al
_D

R
(P

us
h_

in
)

VJI Instance
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide © December 2008 Altera Corporation

http://www.altera.com
http://www.altera.com/literature/lit-ug.jsp

Chapter 2: Getting Started 2–11
Design Example 1
Read Logic
Figure 2–7 describes the implementation of the read side logic for this design
example. There are two runtime instructions that this example implements for
reading contents out of the FIFO. The IR decode logic selects the Push_out virtual
DR chain and generates a single read pulse to the read logic when the POP instruction
is active. The Push_out DR chain is parallel loaded upon the assertion of
virtual_state_cdr and shifted out to TDO upon the assertion of
virtual_state_sdr.

When the FLUSH instruction is shifted into the Virtual JTAG instance, the IR decode
logic asserts the read_req line until the FIFO is empty. The bypass register is
selected when the FLUSH instruction is active to maintain TDI-to-TDO connectivity.

Runtime Communication
The Tcl script, dc_fifo_vji.tcl, contains three procedures—each corresponding to one
of the virtual JTAG instructions. Table 2–3 describes each of the procedures.

Figure 2–7. Read Side Logic for DCFIFO Design Example

IR Decode/State
Decode Logic

IR_register

State
Information

TDO

TDO

Write_req

Data[7:0]

Write_clock

Read_req

Read_clock

Q[7:0]

Rd_empty

Data_out

VJI Instance

Virtual DR
(Push_out)

SignalTap II
Embedded Logic

Analyzer

Table 2–3. Example 2–1 Run-Time Communication Tcl Procedures

Procedure Description

push [value] IR shift the PUSH instruction, followed by a DR shift of the value argument. Value
must be an integer less than 256.

pop IR shift the POP instruction, followed by a DR shift of 8 bits.

flushfifo IR shift the FLUSH instruction.
© December 2008 Altera Corporation Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

2–12 Chapter 2: Getting Started
Design Example 2
Figure 2–8 shows runtime execution of eight values pushed into the DCFIFO and a
flushfifo command. Figure 2–9 shows a SignalTap II Embedded Logic Analyzer
capture triggering on a flush operation.

Design Example 2
Because the Quartus II software ships with an installation of Tcl/Tk, you can use the
Tk package to build a custom GUI to interact with your design. In many cases, the
JTAG port is a convenient interface to use, since it is present in most designs for
debug purposes. By leveraging Tk and the virtual JTAG interface, you perform rapid
prototyping such as creating virtual front panels or creating simple software
applications.

Figure 2–8. Runtime Execution, Example 1

Figure 2–9. SignalTap II Embedded Logic Analyzer Capture Triggering on a Flush Operation
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide © December 2008 Altera Corporation

Chapter 2: Getting Started 2–13
Design Example 2
This second example demonstrates a simple example where a GUI is used to offload
revision information that is hardwired into a design. The GUI offloads the time that
the design was compiled, the USERCODE from the device, and compile number that
tracks the number of compile iterations that have been performed. Figure 2–10 shows
the organization of the design.

A Tcl script creates and updates the verilog file containing the hard-coded version
control information every time the project goes through a full compile. The Tcl script
is executed automatically by adding the following assignment to the project’s .qsf file.

The USERCODE value shifted out by this design example is a user-configurable 32-bit
JTAG register. This value is configured in the Quartus II software using the Device
and Pin Options dialog box. To configure this setting, perform the following steps:

1. On the Assignment menu, click Settings. The Settings dialog box appears.

2. In the Category list, click Device. The Device dialog box appears.

3. Click the Device and Pin Options button. The Device and Pin Options dialog box
appears.

4. On the General tab, the JTAG user code appears about halfway down. Type the
user code in 32-bit hexadecimal format (Figure 2–11).

5. Click OK.

Figure 2–10. Version Control Design Example Using the Virtual JTAG Megafunction

Top-Level Design

JTAG
Version
Control

Information
VJI

USERCODE
© December 2008 Altera Corporation Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

2–14 Chapter 2: Getting Started
Conclusion
A separate script generates the GUI and is executed with the quartus_stp
command line executable. During runtime, the GUI queries the device for the version
information and formats it for display within the message box.

1 This design example uses the Tcl example scripts on the Altera website for generating
an automatic version control number. The example section has additional examples
for generating version information for an FPGA, and can be used for customizing this
design example to suit your needs. Tcl design examples on the Altera website can be
found on the following web page at www.altera.com:

■ Quartus II Tcl Example: Automatic Version Number

1 The files for these design examples are located on the User Guide page in the
Literature section of the Altera website (www.altera.com). The design files are
targeted to a Cyclone III starter kit.

Conclusion
The Virtual JTAG megafunction gives you the ability to create your own software
solution for monitoring, updating, and debugging your designs through the JTAG
port without using any I/O pins on the device. It allows you to instrument your
design for efficient, fast, and productive debugging solutions. These debugging
solutions can be part of an evaluation test where you use other logic analyzers to

Figure 2–11. Configuring the JTAG User Code
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide © December 2008 Altera Corporation

http://www.altera.com
http://www.altera.com/support/examples/tcl/tcl-version-number.html
http://www.altera.com
http://www.altera.com/literature/lit-ug.jsp

Chapter 2: Getting Started 2–15
Conclusion
debug your design or as part of a production test where you do not have a host
running an embedded logic analyzer. In addition to helping in debugging, the Virtual
JTAG megafunction can be used to provide a single channel or multiple serial
channels through the JTAG port of the device. These serial channels can be used in
many applications to capture data or to force data to various parts of your logic.
© December 2008 Altera Corporation Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

2–16 Chapter 2: Getting Started
Conclusion
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide © December 2008 Altera Corporation

© December 2008 Altera Corporation
Appendix A. SLD_NODE Discovery and
Enumeration
This appendix describes the transactions necessary to enumerate all Virtual JTAG
megafunction instances from your design at runtime. This process can be used by an
custom JTAG controller to discover all available Virtual JTAG instances within a
design.

All SLD nodes and the virtual JTAG registers that they contain are targeted by two
Instruction Register values, USER0 and USER1. These values are shown in Table A–1.

The USER1 instruction targets the virtual IR of either the sld_hub or a SLD node. That
is, when the USER1 instruction is issued to the device, the subsequent DR scans target
a specific virtual IR chain based on an address field contained within the DR scan.
Table A–2 shows how the virtual IR, the DR target of the USER1 instruction, is
interpreted.

The ADDR bits act as address values to signal the active SLD node that the virtual IR
shift targets. The ADDR field is n bits in length, where n bits must be long enough to
encode all SLD nodes within the design (Equation A–1).

The SLD hub is always 0 in the address map (Equation A–2).

The VIR_VALUE in Table A–2 is the virtual IR value for the target SLD Node. The
width of this field is m bits in length, where m is the length of the largest VIR for all of
the SLD nodes in the design. All SLD nodes with VIR lengths of fewer than m bits
must pad the VIR_VALUE field with zeros up to a length of m.

Discovery and enumeration of the SLD instances within a design requires
interrogation of the sld_hub to determine the dimensions of the USER1 DR (m and n)
and associating each SLD instance, specifically the Virtual JTAG megafunction
instances, with an address value contained within the ADDR bits of the USER1 DR.

Table A–1. USER1 and USER2 Instruction Values

Instruction Binary Pattern

USER0 00 0000 1100

USER1 00 0000 1110

Table A–2. USER1 DR

m + n – 1 m m – 1 0

ADDR [(n – 1)..0] VIR_VALUE [(m – 1)..0]

Equation A–1.

Equation A–2.

n CEIL log2 Number of SLD_nodes 1+()()=

ADDR n 1–()..0[] 0=
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

Appendix A: SLD_NODE Discovery and Enumeration A–2
Issuing the HUB_INFO Instruction
The discovery and enumeration process consists of the following steps:

1. Interrogate the SLD hub with the HUB_INFO instruction.

2. Shift out the 32-bit HUB IP Configuration Register to determine the number of
SLD nodes in the design and the dimensions of the USER1 DR.

3. Associate the Virtual JTAG instance index to a ADDR value by shifting out the
32-bit SLD node info register for each SLD node in the design.

Issuing the HUB_INFO Instruction
The SLD hub contains the HUB IP Configuration Register and SLD_NODE_INFO
register for each SLD node in the design. The HUB IP configuration register provides
information needed to determine the dimensions of the USER1 DR chain. The
SLD_NODE_INFO register is used to determine the address mapping for Virtual
JTAG instance in your design. This register set is shifted out by issuing the
HUB_INFO instruction. Both the ADDR bits for the SLD hub and the HUB_INFO
instruction is 0 × 0.

Because m and n are unknown at this point, the DR register
(ADDR bits + VIR_VALUE) must be filled with zeros. Shifting a sequence of 64 zeroes
into the USER1 DR is sufficient to cover the most conservative case for m and n.

HUB IP Configuration Register
When the USER1/HUB_INFO instruction sequence is issued, the USER0 instruction
must be applied to enable the target register of the HUB_INFO instruction. The HUB
IP configuration register is shifted out using eight four-bit nibble scans of the DR
register. Each four-bit scan must pass through the UPDATE_DR state before the next
four-bit scan. The 8 scans are assembled into a 32-bit value with the definitions shown
in Table A–3.

The dimensions of the USER1 DR chain can be determined from the SUM (m, n) and
N (number of nodes in the design). Equation A–3 shows the values of m and n.

SLD_NODE Info Register
Because the number of SLD nodes is now known, the Nodes on the hub can be
enumerated by repeating the 8 four-bit nibble scans, once for each Node, to yield the
SLD_NODE_INFO register of each Node. The DR nibble shifts are a continuation of the
HUB_INFO DR shift used to shift out the Hub IP Configuration register.

Table A–3. Hub IP Configuration Register

Nibble7 Nibble6 Nibble5 Nibble4 Nibble3 Nibble2 Nibble1 Nibble0

31 27 26 19 18 8 7 0

HUB IP version N ALTERA_MFG_ID (0 × 06E) SUM (m, n)

Equation A–3.

n CEIL log2 N 1+()()=

m SUM m n,() n–=
© December 2008 Altera Corporation Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

Appendix A: SLD_NODE Discovery and Enumeration A–3
HUB IP Configuration Register
The order of the Nodes as they are shifted out determines the ADDR values for the
Nodes, beginning with , for the first Node SLD_NODE_INFO shifted
out, up to and including , for the last node on the hub.

Table A–5 summarizes the function of each field.

You can identify each Virtual JTAG instance within the design by decoding the
NODE ID and NODE_INST_ID fields. The Virtual JTAG megafunction uses a NODE
ID of 8. The NODE INST ID corresponds to the instance index that you configured
within the Megawizard Plug-In Manager. The ADDR bits for each Virtual JTAG node
is then determined by matching each Virtual JTAG instance to the sequence number
in which the SLD_NODE_INFO register is shifted out.

Table A–4. SLD_NODE_INFO register

31 27 26 19 18 8 7 0

Node Version NODE ID NODE MFG_ID NODE INST ID

Table A–5. Needs title

Field Function

Node Version Identifies the version of the SLD node

Node ID Identifies the type of NODE IP (0x8 for the Virtual JTAG megafunction)

Node MFG_ID SLD Node Manufacturer ID (0x6E for Virtual JTAG megafunction)

NODE_INST_ID Used to distinguish multiple instances of the same IP. Corresponds to the
instance index assigned in the MegaWizard Plug-In Manager.

ADDR n 1..0–[] 1=
ADDR n 1..0–[] N=
© December 2008 Altera Corporation Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

Appendix A: SLD_NODE Discovery and Enumeration A–4
HUB IP Configuration Register
© December 2008 Altera Corporation Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

© December 2008 Altera Corporation
Appendix B. Capturing the Virtual IR
Instruction Register
In applications that contain multiple SLD nodes, capturing the value of the VIR may
require issuing an instruction to the SLD hub to target a SLD node. This appendix
describes the method to query for a VIR using the VIR_CAPTURE instruction.

This appendix describes the instruction to return the VIR value of a particular SLD
node. Each SLD NODE VIR register acts as a parallel hold rank register to the USER1
DR chain. The sld_hub uses the bits prepended to the VIR shift value to
target the correct SLD NODE VIR register. After the SLD_state_machine asserts
virtual_update_IR, the active SLD node latches VIR_VALUE of the USER1 DR
register. Figure B–1 shows a functional model of the interaction of the USER1 DR
register and the SLD node VIR.

The ADDR bits target the selection muxes in Figure B–1 after the sld_hub FSM has
exited the virtual_update_IR state. Upon the next USER1 DR transaction, the
USER1 DR chain will latch the VIR of the last active SLD_NODE to shift out of TDO.
Thus, if you need to capture the VIR of an SLD node that is different than the one
addressed in the previous shift cycle, you must issue the VIR_CAPTURE instruction.
The VIR_CAPTURE instruction to the sld_hub acts as an address cycle to force an
update to the muxes in Figure B–1.

ADDR n 1..0–[]

Figure B–1. Functional Model Interaction between USER1 DR CHAIN and SLD Node VIRs

TDI TDOADDR[n - 1..0] VIR_value

msb lsb

ADDR[n - 1..0]

ADDR[n - 1..0]

SL
D

 N
O

D
E 1 V

IR

SL
D

 N
O

D
E 2 V

IR

SL
D

 N
O

D
E

N
 V

IR

USER1 DR

SLD Nodes
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

B–2 Appendix B: Capturing the Virtual IR Instruction Register
To form the VIR_CAPTURE instruction, use the instruction format shown in
Equation B–1:

Equation B–1.

Notes to Equation B–1:

In this equation, the following variables are:
(1) ZERO[] is an array of zeros
(2) ## is the concatenation operator.
(3) m is the width of the VIR_VALUE field
(4) n is the width of the ADDR bit. Both m and n are defined in Appendix A, SLD_NODE Discovery and Enumeration.

VIR_CAPTURE ZERO m 4–()..0[] ## ADDR n 1–()..0[] ## 011=
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide © December 2008 Altera Corporation

© December 2008 Altera Corporation
Additional Information
Revision History
The following table shows the revision history for this user guide.

Referenced Documents
This user guide references the following documents:

■ AN 39: IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices

■ Quartus II Scripting Reference Manual

■ Section V: In-System Design Debugging in volume 3 of the Quartus II Handbook

■ Volume 2: Design Implementation and Optimization of the Quartus II Handbook

■ Volume 3: Verification of the Quartus II Handbook

■ The following pages on www.altera.com:

■ ISP & the Jam STAPL

■ Embedded Programming With Jam STAPL

How to Contact Altera
For the most up-to-date information about Altera products, see the following table.

Document Revision History

Date and
Version Changes Made Summary of Changes

December 2008

v.2.0

■ Expanded description of the system-level debugging (SLD)
infrastructure

■ Added two new design examples

■ Updated instructions for using the Tcl API to query for the bit
transactions

■ Included two new appendices that describe the enumerations and
discovery process for use with a custom JTAG controller

Major re-write.

June 2006

v.1.0

Initial release —

Contact (Note 1)
Contact
Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com

Altera literature services Email literature@altera.com
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
mailto:literature@altera.com
http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com
http://www.altera.com/support/devices/tools/jam/tls-jam.html
http://www.altera.com/support/devices/tools/jam/embedded/tls-jam-embedded.html
http://www.altera.com/literature/hb/qts/qts_qii5v2.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3.pdf

Info–2 Additional Information
Typographic Conventions
The following table shows the typographic conventions that this document uses.

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note:

(1) You can also contact your local Altera sales office or sales representative.

Contact (Note 1)
Contact
Method Address

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicates command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type Indicates directory names, project names, disk drive names, file names, file name
extensions, dialog box options, software utility names, and other GUI labels. For
example, \qdesigns directory, d: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicates document titles. For example, AN 519: Stratix IV Design Guidelines.

Italic type Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicates keyboard keys and menu names. For example, Delete key and the Options
menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. Active-low signals are denoted by suffix n. For example,
resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

1., 2., 3., and
a., b., c., and so on.

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

r The angled arrow instructs you to press Enter.

f The feet direct you to more information about a particular topic.
Virtual JTAG (sld_virtual_jtag) Megafunction User Guide © December 2008 Altera Corporation

mailto:nacomp@altera.com
mailto:authorization@altera.com

	Virtual JTAG (sld_virtual_jtag) Megafunction User Guide
	Contents
	1. About This Megafunction
	Device Family Support
	Introduction
	The JTAG Protocol
	System-Level Debugging Infrastructure

	Description of the Virtual JTAG Interface (VJI)
	Design Flow
	Simulation Model
	Run-Time Communication with the Virtual JTAG Megafunction
	Run-Time Communication without Using an Altera Programming Cable
	Virtual IR/DR Shift Transaction without Returning Captured IR/DR Values
	Virtual IR/DR Shift Transaction that Captures Current VIR/VDR Values
	Reset Considerations when Using a Custom JTAG Controller

	Applications

	2. Getting Started
	System and Software Requirements
	Using the MegaWizard Plug-In Manager
	Instantiating the Virtual JTAG Megafunction in Your Design
	Simulation Support
	Compiling the Design
	Third-Party Synthesis Support

	Design Example 1
	Write Logic
	Read Logic
	Runtime Communication

	Design Example 2
	Conclusion

	Appendix A. SLD_NODE Discovery and Enumeration
	Issuing the HUB_INFO Instruction
	HUB IP Configuration Register
	SLD_NODE Info Register

	Appendix B. Capturing the Virtual IR Instruction Register
	Additional Information
	Revision History
	Referenced Documents
	How to Contact Altera
	Typographic Conventions

