
101 Innovation Drive
San Jose, CA 95134
www.altera.com

UG-01090-2.0

User Guide

Reed-Solomon II MegaCore Function

Document last updated for Altera Complete Design Suite version:
Document publication date:

11.0
May 2011

Subscribe

Reed-Solomon II MegaCore Function User Guide

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=UG-01090

Reed-Solomon II MegaCore Function User Guide May 2011 Altera Corporation

© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat.
& Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective
holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance
with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or
liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera
customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or
services.

http://www.altera.com/common/legal.html

May 2011 Altera Corporation
Contents
Chapter 1. About This MegaCore
Features . 1–1
Device Family Support . 1–1
MegaCore Verification . 1–2
Performance and Resource Utilization . 1–3
Release Information . 1–4

Chapter 2. Getting Started
Installation and Licensing . 2–1
Evaluating an IP Core . 2–2

Open Core Plus Time-Out Behavior . 2–2
MegaWizard Plug-In Manager Design Flow . 2–3

Specifying Parameters . 2–3
Simulating the Design . 2–4
Compiling the Design and Programming a Device . 2–4

Parameter Settings . 2–5

Chapter 3. Functional Description
Architecture . 3–1
Interfaces . 3–1

Avalon-ST Input and Output Interfaces . 3–2
Clock and Reset Interfaces . 3–2
Status Interface . 3–2

RS II Encoder . 3–2
RS II Decoder . 3–3
Multi-Channel Codeword . 3–5
Signals . 3–7

Appendix A. Reed-Solomon Codes
RS Encoding . A–1

Field polynomial . A–1
Generator polynomial . A–2
Shortened Codewords . A–2

RS Decoding . A–3
Syndrome Polynomial . A–3
Error Polynomials . A–3
Error Location and Error Value . A–4

Additional Information
Document Revision History . Info–1
How to Contact Altera . Info–1
Typographic Conventions . Info–1
Reed-Solomon II MegaCore Function User Guide

May 2011 Altera Corporation
1. About This MegaCore
The Altera Reed-Solomon (RS) II MegaCore® function comprises a fully
parameterizable high-speed parallel encoder and decoder for forward error
correction applications. RS codes are widely used for error detection and correction in
a wide range of DSP applications for storage, retrieval, and transmission of data. The
MegaCore function supports multiple channels that reduces resource usage and
increases throughput.

Features
The RS II MegaCore function supports the following features:

■ High-performance encoder or decoder for error detection and correction

■ 1.28 Gbps per channel for Altera 40 nm device families (Arria® II)

■ Fully parameterized RS II MegaCore functions, including:

■ Number of symbols per codeword

■ Number of check symbols per codeword

■ Field polynomial

■ Multi-channel codeword

■ IP functional simulation models for use in Altera-supported VHDL and Verilog
HDL simulators

Device Family Support
Table 1–1 defines the device support levels for Altera IP cores.

Table 1–1. Altera IP Core Device Support Levels

FPGA Device Families HardCopy® Device Families

Preliminary support—The IP core is verified with
preliminary timing models for this device family. The IP core
meets all functional requirements, but might still be
undergoing timing analysis for the device family. It can be
used in production designs with caution.

HardCopy Companion—The IP core is verified with
preliminary timing models for the HardCopy companion
device. The IP core meets all functional requirements, but
might still be undergoing timing analysis for the HardCopy
device family. It can be used in production designs with
caution.

Final support—The IP core is verified with final timing
models for this device family. The IP core meets all
functional and timing requirements for the device family and
can be used in production designs.

HardCopy Compilation—The IP core is verified with final
timing models for the HardCopy device family. The IP core
meets all functional and timing requirements for the device
family and can be used in production designs.
Reed-Solomon II MegaCore Function User Guide

1–2 Chapter 1: About This MegaCore
MegaCore Verification
Table 1–2 shows the level of support the RS II MegaCore function offers to each of the
Altera device families.

MegaCore Verification
Before releasing a version of the RS II MegaCore function, Altera runs comprehensive
regression tests to verify its quality and correctness. Altera generates custom
variations of the RS II MegaCore function to exercise the various parameter options
and thoroughly simulates the resulting simulation models with the results verified
against master simulation models.

Table 1–2. Device Family Support

Device Family Support

Arria GX Final

Arria II GX Final

Arria II GZ Final

Cyclone® II Final

Cyclone III Final

Cyclone III LS Final

Cyclone IV GX Final

HardCopy II HardCopy Compilation

HardCopy III HardCopy Compilation

HardCopy IV E HardCopy Compilation

HardCopy IV GX HardCopy Compilation

Stratix® Final

Stratix GX Final

Stratix II Final

Stratix II GX Final

Stratix III Final

Stratix IV GT Final

Stratix IV GX/E Final

Stratix V Preliminary

Other device families No support
Reed-Solomon II MegaCore Function User Guide May 2011 Altera Corporation

Chapter 1: About This MegaCore 1–3
Performance and Resource Utilization
Performance and Resource Utilization

1 Arria II GX , Cyclone III, and Stratix III devices use combinational adaptive look-up
tables (ALUTs) and logic registers.

Table 1–3 shows the typical performance for Arria II GX (EP2AGX45DF2513) device
using the Quartus® II software.

Table 1–4 shows the typical performance for Cyclone III (EP3C5F256C6) device using
the Quartus II software.

Table 1–5 shows the typical performance for Stratix III (EP3SL50F484C2) device using
the Quartus II software.

Table 1–3. Performance—Arria II GX Devices

Parameters

ALUTs Logic
Registers

Memory
(M9K)

fMAX
(MHz)Options Variant Field

Polynomial
 Symbols per
codeword (N)

Check symbols per
codeword (R)

Encoder

Channel 1 285 255 16 167 156 0 463

Channel 2 285 255 16 168 287 0 481

Channel 8 285 255 16 187 47 4 364

Decoder

Channel 1 285 255 16 1,537 939 1 278

Channel 2 285 255 16 1,579 1,748 2 306

Channel 8 285 255 16 1,663 877 24 271

Table 1–4. Performance—Cyclone III Devices

Parameters

ALUTs Logic
Registers

Memory
(M9K)

fMAX
(MHz)Options Variant Field

Polynomial
 Symbols per
codeword (N)

Check symbols per
codeword (R)

Encoder

Channel 1 285 255 16 202 156 0 353

Channel 2 285 255 16 314 287 0 308

Channel 8 285 255 16 218 44 4 245

Decoder

Channel 1 285 255 16 2,292 934 1 183

Channel 2 285 255 16 2,928 1,740 2 149

Channel 8 285 255 16 2,410 861 24 159

Table 1–5. Performance—Stratix III Devices (Part 1 of 2)

Parameters

ALUTs Logic
Registers

Memory
fMAX

(MHz)Options Variant Field
Polynomial

 Symbols per
codeword (N)

Check symbols
per codeword (R) M9K M144K

Encoder

Channel 1 285 255 16 166 156 0 0 521

Channel 2 285 255 16 167 287 0 0 516

Channel 8 285 255 16 188 47 4 0 480
May 2011 Altera Corporation Reed-Solomon II MegaCore Function User Guide

1–4 Chapter 1: About This MegaCore
Release Information
Release Information
Table 1–6 provides information about this release of the RS II MegaCore function.

f For more information about this release, refer to the MegaCore IP Library Release Notes
and Errata.

Altera verifies that the current version of the Quartus II software compiles the
previous version of each MegaCore function. The MegaCore IP Library Release Notes
and Errata report any exceptions to this verification. Altera does not verify
compilation with MegaCore function versions older than one release.

Decoder

Channel 1 285 255 16 1,519 937 1 0 365

Channel 2 285 255 16 1,585 1,754 2 0 337

Channel 8 285 255 16 1,668 877 24 0 332

Table 1–5. Performance—Stratix III Devices (Part 2 of 2)

Parameters

ALUTs Logic
Registers

Memory
fMAX

(MHz)Options Variant Field
Polynomial

 Symbols per
codeword (N)

Check symbols
per codeword (R) M9K M144K

Table 1–6. RS II Compiler Release Information

Item Description

Version 11.0

Release Date May 2011

Ordering Codes
IP-RSCODECII (Primary License)

IPR-RSCODECII (Renewal License)

Product IDs 00E5 (Encoder/Decoder)

Vendor ID 6AF7
Reed-Solomon II MegaCore Function User Guide May 2011 Altera Corporation

www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf

May 2011 Altera Corporation
2. Getting Started
This chapter provides a general overview of the Altera IP core design flow to help you
quickly get started with any Altera IP core. The Altera IP library is installed as part of
the Quartus II installation process. You can select and parameterize any Altera IP core
from the library. Altera provides an integrated parameter editor that allows you to
customize IP cores to support a wide variety of applications. The parameter editor
guides you through the setting of parameter values and selection of optional ports.

The following sections describe the general installation, design flow, evaluation, and
production use of Altera IP cores.

Installation and Licensing
The Altera IP Library is distributed with the Quartus II software and downloadable
from the Altera website, www.altera.com.

Figure 2–1 shows the directory structure after you install an Altera IP core, where
<path> is the installation directory. The default installation directory on Windows is
C:\altera\<version number>; on Linux it is /opt/altera<version number>.

You can evaluate an IP core in simulation and in hardware before you purchase a
license. For most Altera IP cores, you can use Altera’s free OpenCore Plus evaluation
feature for this purpose. Some Altera IP cores do not require the use of this special
feature for evaluation. You can evaluate the IP core until you are satisfied with its
functionality and performance. You must purchase a license for the IP core when you
want to take your design to production.

After you purchase a license for an Altera IP core, you can request a license file from
the Altera website at www.altera.com/licensing and install it on your computer.
When you request a license file, Altera emails you a license.dat file. If you do not have
internet access, contact your local Altera representative.

f For additional information about installation and licensing, refer to Altera Software
Installation and Licensing.

Figure 2–1. Directory Structure

src
Contains encrypted lower-level design files.

ip
Contains the Altera MegaCore IP Library and third-party IP cores.

<path>
Installation directory.

altera
Contains the Altera MegaCore IP Library.

rs_ii
Contains the Reed-Solomon II MegaCore files

altera_rs_ii
Contains top-level RS II MegaCore files.
Reed-Solomon II MegaCore Function User Guide

www.altera.com
www.altera.com/licensing
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

2–2 Chapter 2: Getting Started
Evaluating an IP Core
Evaluating an IP Core
The Altera IP library contains both free and individually licenced IP cores. With the
Altera free OpenCore Plus evaluation feature, you can evaluate separately licenced IP
cores in the following ways prior to purchasing a production license:

■ Simulate the behavior of an Altera IP core in your system using the Quartus II
software and Altera-supported VHDL and Verilog HDL simulators.

■ Verify the functionality of your design and evaluate its size and speed quickly and
easily.

■ Generate device programming files for designs that include IP cores. These files
are time-limited under the OpenCore Plus evaluation program.

■ Program a device and verify your design in hardware.

Open Core Plus Time-Out Behavior
OpenCore Plus hardware evaluation supports the following two operation modes:

■ Untethered—the design runs for a limited time.

■ Tethered—requires a connection between your board and the host computer. If all
Altera IP cores in a design support tethered mode, the device can operate for a
longer time or indefinitely.

All IP cores in a device time out simultaneously when the most restrictive evaluation
time is reached. If there is more than one IP core in a design, a specific IP core's
time-out behavior may be masked by the time-out behavior of the other IP cores.

1 For IP cores, the untethered time-out is 1 hour; the tethered time-out value
is indefinite.

Your design stops working after the hardware evaluation time expires.

1 The Quartus II software uses OpenCore Plus Files (.ocp) in your project
directory to identify your use of the OpenCore Plus evaluation program.
After you activate the feature, do not delete these files.

f For information about the OpenCore Plus evaluation program, refer to
AN320: OpenCore Plus Evaluation of Megafunctions.
Reed-Solomon II MegaCore Function User Guide May 2011 Altera Corporation

http://www.altera.com/literature/an/an320.pdf

Chapter 2: Getting Started 2–3
MegaWizard Plug-In Manager Design Flow
MegaWizard Plug-In Manager Design Flow
The MegaWizard™ Plug-in Manager flow allows you to customize a RS II MegaCore
function, and manually integrate the MegaCore function variation in a Quartus II
design.

Specifying Parameters
To specify parameters with the MegaWizard Plug-In Manager, follow these steps:

1. Create a Quartus II project using the New Project Wizard available from the File
menu.

2. In the Quartus II software, launch the MegaWizard Plug-in Manager from the
Tools menu, and follow the prompts in the MegaWizard Plug-In Manager
interface to create or edit a custom IP core variation.

3. To select a specific Altera IP core, click the IP core in the Installed Plug-Ins list in
the MegaWizard Plug-In Manager.

For example, to specify a Reed-Solomon II MegaCore function, click Installed
Plug-Ins > DSP >Error Detection/Correction > Reed Solomon II <version>.

4. Verify that the device family is the same as you specified in the New Project
Wizard.

5. Select the top-level output file type for your design; the MegaWizard Plug-In
Manager supports VHDL and Verilog HDL.

6. Specify the top-level output file name for your MegaCore function variation and
click Next to launch the IP Toolbench.

7. Specify the parameters on the Parameter Settings pages. For detailed explanations
of these parameters, refer to “Parameter Settings” on page 2–5.

8. Click the Finish button. The generation phase may take several minutes to
complete. The generation progress and status is displayed in a report window.
The parameter editor generates the top-level HDL code for your IP core, a
Quartus II IP file (.qip) file containing all of the necessary assignments and
information required to process the IP core in the Quartus II Compiler, and a
simulation directory which includes files for simulation.

You can now integrate your custom IP core instance in your design, simulate, and
compile. While integrating your IP core instance into your design, you must make
appropriate pin assignments. You can create virtual pins for top-level signals if you
want to avoid making specific pin assignments while simulating and not ready to
map the design to hardware.

1 For information about the Quartus II software, including virtual pins and the
MegaWizard Plug-In Manager, refer to Quartus II Help.
May 2011 Altera Corporation Reed-Solomon II MegaCore Function User Guide

2–4 Chapter 2: Getting Started
MegaWizard Plug-In Manager Design Flow
Simulating the Design
You can simulate your IP core variation with the functional simulation model. The
functional simulation model and testbench files are generated in your project
directory or a designated directory.

f For more information about simulating Altera IP cores, refer to Simulating Altera IP in
Third-Party Simulation Tools and Simulating Designs with EDA Tools in volume 3 of the
Quartus II Handbook.

Compiling the Design and Programming a Device
After using the MegaWizard Plug-In Manager to define and instantiate your IP core,
you must compile your design to create programming files to configure the FPGA.

Some Altera IP cores require that you apply constraints before compilation. These
constraint files make pin assignments and ensure that your IP core instance meets
design timing requirements.

After applying the constraint files if appropriate for your IP core, click Start
Compilation on the Processing menu in the Quartus II software to compile your
design. After successfully compiling your design, program the targeted Altera device
with the Programmer and verify the design in hardware.
Reed-Solomon II MegaCore Function User Guide May 2011 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53014.pdf
http://www.altera.com/literature/hb/qts/qts_qii53014.pdf
http://www.altera.com/literature/hb/qts/qts_qii53014.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 2: Getting Started 2–5
Parameter Settings
Parameter Settings
This section describes the parameters available in the RS II MegaCore function.

For information about using the parameter editor, refer to “MegaWizard Plug-In
Manager Design Flow” on page 2–3.

Table 2–1 lists the parameter settings for the RS II MegaCore function.

The RS II MegaCore function has the following fixed value parameters:

■ Number of bits per symbol = 8

■ Number of symbols per beat = 1

■ First root of generator polynomial = 0

■ Root spacing in generator polynomial = 1

Table 2–1. Parameter Settings for RS II MegaCore Function

Parameter Legal Values Default Value Description

Reed-Solomon Encoder or Decoder Encoder Specifies an encoder or a decoder.

Number of symbols per
codeword 204–255 255 Specifies the total number of symbols per

codeword (N).

Number of check symbols
per codeword 2–66 16 Specifies the number of check symbols per

codeword (R).

Field Polynomial Any valid polynomial (1) 285 Specifies the primitive polynomial defining
the Galois field.

Number of channels 1, 2, 8, 16 1 Specifies the number of input channels to
process. The channel pattern is fixed.

Note to Table 2–1:

(1) The parameter editor allows you to select only legal values. If you cannot find your intended field polynomial, contact Altera MySupport.
May 2011 Altera Corporation Reed-Solomon II MegaCore Function User Guide

May 2011 Altera Corporation
3. Functional Description
This chapter describes in detail about the RS II MegaCore function, its architecture,
interfaces, and interface signals.

Architecture
The RS II MegaCore function can act as an encoder or a decoder. The encoder receives
data packets and generates the check symbols, while the decoder detects and corrects
errors.

Figure 3–1 shows a high-level block diagram of the RS II MegaCore function.

Interfaces
The RS II MegaCore function includes the following interfaces:

■ Avalon® Streaming (Avalon-ST) input and output interfaces

■ Clock and reset interfaces

■ Status interface

Figure 3–1. RS II Block Diagram

Note to Figure 3–1:

(1) The in_channel and out_channel ports are available only when you configure the IP core to support multi-channels.

out_valid

out_ready

out_endofpacket

out_data

out_startofpacketAvalon-ST
Input
Interface

Reed-Solomon II MegaCore Functionin_valid

in_ready

in_endofpacket

in_data

in_startofpacket (Encoder / Decoder)

clk_clk

reset_reset_n

Avalon-ST
Output
Interface

Clock and
reset
Interface

in_channel out_channel

status_num_error_symbol

status_num_error_bit

status_num_error_value

out_error

Status
Interface

(1) (1)
Reed-Solomon II MegaCore Function User Guide

3–2 Chapter 3: Functional Description
RS II Encoder
Avalon-ST Input and Output Interfaces
The input and output interfaces of the MegaCore function implement the Avalon-ST
protocol, which is a unidirectional flow of data. The input interface is an Avalon-ST
sink and the output interface is an Avalon-ST source. The number of bits per symbol
on these interfaces is fixed to 8; the number of symbols per beat is 1. The ready latency
on the RS II Avalon-ST input interface is 0. The RS II Avalon-ST interface supports
packet transfers with packets interleaved across multiple channels. The Avalon-ST
interface inherently synchronizes multi-channel designs, which allows you to achieve
efficient, time-multiplexed implementations without having to implement complex
control logic.

The RS II Avalon-ST interface also supports backpressure, which is a flow control
mechanism, where a sink can signal to a source to stop sending data.

f For more information about the Avalon-ST interface, refer to the Avalon Interface
Specifications.

Clock and Reset Interfaces
The clock and reset interfaces drive or receive the clock and reset signal to
synchronize the Avalon-ST interfaces and provide reset connectivity. You must
deassert the reset signal synchronously to the clock signal.

Status Interface
The status interface is a conduit interface that consists of three error status signals for
a codeword. The decoder obtains the error value, total number of error symbols, and
total number of error bits in a codeword from the status signals.

RS II Encoder
When the encoder receives data symbols, it generates check symbols for a given
codeword and sends the input codeword together with the check symbols to the
output interface. The encoder backpressures the upstream component when it
generates the check symbols.

Figure 3–2 shows how a codeword is encoded.

Figure 3–2. Reed-Solomon II Encoding

1 238

Check Symbols

Data Symbol

2392 ... 237 1 238

Encoded Codeword

2392 ... 237 P1 ... P15 P16RS II Encoder
Reed-Solomon II MegaCore Function User Guide May 2011 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 3: Functional Description 3–3
RS II Decoder
Figure 3–3 shows the timing diagram of the RS II encoder with one channel.

The in_startofpacket signal starts a codeword; the in_endofpacket signals its
termination. An asserted in_valid signal indicates valid data. The in_startofpacket
signal is only valid when you assert the in_valid signal. For a 1-channel codeword,
assert the in_startofpacket and in_endofpacket signals for one clock cycle.

The encoder starts backpressure by deasserting the in_ready signal when it receives
the in_endofpacket signal. During this time, the encoder signals that it cannot accept
more incoming symbols and generates the check symbols for the current codeword.
The IP core does not verify if the number of symbols (N) exceeds the maximum
symbols per codeword. You must ensure that the codeword sent to the core has a
valid N. The reset_reset_n signal is active low and you can assert this signal
asynchronously. However, you have to deassert the reset_reset_n signal
synchronously with the clk_clk signal.

RS II Decoder
When the decoder receives the encoded codeword, it uses the check symbols to detect
errors, and corrects them.

Figure 3–4 shows how a codeword is decoded.

The received encoded codeword may differ from the original codeword due to the
noise in the channel. The decoder detects errors using several polynomials to locate
the error location and the error value.

Figure 3–3. Encoder Timing—One Channel

clk_clk

reset_reset_n

in_valid

in_startofpacket

in_endofpacket
in_data[7:0]

in_ready

out_valid

out_startofpacket

out_endofpacket
out_data[7:0]

out_ready

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 236 237 238 239 1 2 3 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 234 235 236 237 238 239 1 114 61 30 244 75 1 2

Figure 3–4. RS II Decoding

1 238

Decoded Codeword

239... 237 240 ... 255RS II Decoder

Encoded Codeword plus noise

... ...
May 2011 Altera Corporation Reed-Solomon II MegaCore Function User Guide

3–4 Chapter 3: Functional Description
RS II Decoder
f For more information about using polynomials to locate errors, refer to “RS
Decoding” on page A–3.

When the decoder obtains the error location and value, the decoder corrects the errors
in a codeword, and sends the codeword to the output. As the number of errors
increases, the decoder gets to a stage where it can no longer correct but only detect
errors, at which point the decoder asserts the out_error signal.

Table 3–1 lists how the decoder corrects and detects errors depending on the number
of check symbols (R).

Figure 3–5 shows the timing diagram of the RS II decoder with one channel.

The codeword starts when you assert the in_valid signal and the in_startofpacket
signal.The decoder accepts the data at in_data as valid data. The codeword ends
when you assert the in_endofpacket signal. For a 1-channel codeword, assert the
in_startofpacket and in_endofpacket signals for one clock cycle.

When the decoder deasserts the in_ready signal, the decoder cannot process any
more data until the decoder asserts the in_ready signal again.

At the output, the operation is identical. When the decoder asserts the out_valid
signal and the out_startofpacket signal, the decoder provides valid data on
out_data. The decoder asserts the out_startofpacket signal and the
out_endofpacket signal to indicate the start and end of a codeword. The decoder
automatically detects and corrects errors in a codeword and asserts the out_error
signal when it encounters a non-correctable codeword.

Table 3–1. Decoder Detection and Correction

Number of Errors Description

Errors  R/2 Decoder detects and corrects errors.

R/2  errors  R Decoder asserts error signal and can only detect errors.

Errors  R Unpredictable results.

Figure 3–5. Decoder Timing—One Channel

clk_clk

reset_reset_n

in_valid

in_startofpacket

in_endofpacket

in_data[7:0]

in_ready

out_valid

out_startofpacket

out_endofpacket

out_data[7:0]

out_ready

out_error

 0 1 2 3 4 5 6 105 216 193 137 138 139 140 141 245 246 247 248 249 250 251 252 253 254 245 246 247 248 249 250 251 252

0 X 1 2 3 4 5 6 105 216 193 137 138 139 140 1411

status_error_value[7:0] 0 0 0 0 0

status_num_error_symbol[3:0] 0 0 0 8

status_num_error_bit[6:0] 0 0 0 0
Reed-Solomon II MegaCore Function User Guide May 2011 Altera Corporation

Chapter 3: Functional Description 3–5
Multi-Channel Codeword
Multi-Channel Codeword
The RS II MegaCore function processes multiple input channels simultaneously. The
IP core receives codeword in a fixed pattern. Symbols coming in through the channels
are interlaced. The RS II MegaCore function samples the first symbol of channel one
on the first rising clock edge, then the first symbol of channel two on the second rising
clock edge, and so on. Both information and check symbols are output in the same
sequence.

Figure 3–6 shows a codeword with k channels and N symbols. The channel signal
indicates the channel associated to the current symbol. The channel sequence is fixed.
startofpacket indicates the first symbol of a codeword per channel. For a k-channel
codeword, startofpacket must be high for k consecutive cycles. endofpacket
indicates the last symbol of a codeword per channel. For a k-channel codeword,
endofpacket must be high for k consecutive cycles.

1 startofpacket and endofpacket governs the number of symbols per codeword, N.
The core does not verify if N exceeds the maximum symbols per codeword. The core
also does not verify the channel or data pattern. You must ensure that the codeword
sent to the core has a valid N and a valid pattern.

Figure 3–7 shows the timing diagram of an encoder with two channels. For a
2-channel codeword, the encoder asserts the in_startofpacket and in_endofpacket
signals for two consecutive cycles.

Figure 3–6. Codeword for k Channels and N Symbols

valid

startofpacket

endofpacket

channel

data

Codeword 1Codeword 0

10 k-12

ch 1. 0ch 0. 0

k-2 0k-1 1...

...

...

...ch 2.0 ch k-1.0

0

ch 0. 1

...

...

...

...

k-1

ch k-1. N-2

0

ch 0 . N-1

...

... ch k-1.N-1 ch 0.0ch k-1.N-1 ch 1.0

Figure 3–7. Encoder Timing—Two Channels

clk_clk

reset_reset_n

in_valid

in_startofpacket

in_endofpacket

in_data[7:0]

in_channel

in_ready

out_valid

out_startofpacket

out_endofpacket

out_data[7:0]

out_channel

out_ready

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

0 1 2 3 4 5 6 7 8 9 10 11 12 13 215 216 217 218 219 220 221 222 163 211 153 119 68 157 153 239 209 70 223 224 225 226 227 228 229 230

223
May 2011 Altera Corporation Reed-Solomon II MegaCore Function User Guide

3–6 Chapter 3: Functional Description
Multi-Channel Codeword
Figure 3–8 shows the timing diagram of the RS II decoder with two channels. For a
2-channel codeword, the decoder asserts the in_startofpacket and in_endofpacket
signals for two consecutive cycles.

Figure 3–8. Decoder Timing—Two Channels

clk_clk

reset_reset_n

in_valid

in_startofpacket

in_endofpacket

in_data[7:0]

in_channel

in_ready

out_valid

out_startofpacket

out_endofpacket

out_data[7:0]

out_channel

out_ready

out_error

0 1 2 3 4 5 6 19 124 84 44 237 174 55 192 193 194 195 196 197 198 153154 155 156 157 158 159 160 161 162 163 86 87 88 89 90 91 92 93 94 95 96 97

0 X 1 2 3 4 5 6 19 124 84 44 237 174 55 192 193 194195 1961

status_error_value[7:0] 0 0 00

status_num_error_symbol[3:0] 0 0 8 90

status_num_error_bit[6:0] 0 0 0
Reed-Solomon II MegaCore Function User Guide May 2011 Altera Corporation

Chapter 3: Functional Description 3–7
Signals
Signals
Table 3–2 lists the clock and reset signals.

Table 3–3 lists the signals on the RS II Avalon-ST input and output interfaces.

Table 3–2. Clock and Reset Signals

Name Avalon-ST Type Direction Description

clk_clk clk Input clk_clk is the main system clock. The whole MegaCore function
operates on the rising edge of clk_clk.

reset_reset_n reset_n Input

An active low signal that resets the entire system when asserted.
You can assert this signal asynchronously. However, you must
deassert it synchronous to the clk_clk signal. When the
MegaCore function recovers from reset, ensure that the data
received by the MegaCore function is a complete packet. Altera
recommends that you stop the datapath by not sending anymore
valid data before you reset the MegaCore function and send the
next complete packet.

Table 3–3. RS II Avalon-ST Input and Output Interface Signals (Part 1 of 2)

Name Avalon-ST Type Direction Description

in_ready ready Output

Data transfer ready signal to indicate that the sink is ready to
accept data. The sink interface drives the in_ready signal to
control the flow of data across the interface. The sink interface
captures the data interface signals on the current clk rising edge.

in_valid valid Input

Data valid signal to indicate the validity of the data signals. When
you assert the in_valid signal, the Avalon-ST data interface
signals are valid. When you deassert the in_valid signal, the
Avalon-ST data interface signals are invalid and must be
disregarded. You can assert the in_valid signal whenever data is
available, however the sink only captures the data from the source
only when the MegaCore function asserts the in_ready signal.

in_data[] data Input Data input for each codeword, symbol by symbol. Valid only when
you assert the in_valid signal.

in_channel channel Input
Specifies the channel number for data being transferred on the
current cycle. The in_channel signal is available only when you
configure the MegaCore function to support multi-channels.

in_startofpacket sop Input Start of packet (codeword) signal.

in_endofpacket eop Input End of packet (codeword) signal.

out_startofpacket sop Output

Start of packet (codeword) signal. This signal indicates the
codeword boundaries on the in_data[] bus. When the MegaCore
function drives this signal high, it indicates that the start of packet
is present on the in_data[] bus. The MegaCore function asserts
this signal on the first transfer of every codeword.

out_endofpacket eop Output

End of packet (codeword) signal. This signal indicates the packet
boundaries on the in_data[] bus. When the MegaCore function
drives this signal high, it indicates that the end of packet is present
on the in_data[] bus. The MegaCore function asserts this signal
on the last transfer of every packet.
May 2011 Altera Corporation Reed-Solomon II MegaCore Function User Guide

3–8 Chapter 3: Functional Description
Signals
Table 3–4 lists the status interface signals.

1 The value for these status interface signals are valid when the codeword contains
errors that can be corrected by the decoder. Otherwise, these signals contain any
value.

out_ready ready Input

Data transfer ready signal to indicate that the downstream module
is ready to accept data. The source provides new data (if available)
when you assert the out_ready signal and stops providing new
data when you deassert the out_ready signal. If the source is
unable to provide new data, it deasserts out_valid for one or
more clock cycles until it is prepared to drive valid data interface
signals.

out_valid valid Output

Data valid signal. The MegaCore function asserts the out_valid
signal high, whenever there is a valid output on out_data; the
MegaCore function deasserts the signal when there is no valid
output on out_data.

out_data data Output
The out_data signal contains decoded output when the MegaCore
function asserts the out_valid signal. The corrected symbols are
in the same order that they were entered.

out_channel channel Output
Specifies the channel whose result is presented at out_data. The
out_channel signal is available only when you configure the
MegaCore function to support multi-channels.

out_error error Output Indicates non-correctable codeword (decoder only). This signal is
valid when the MegaCore function asserts out_endofpacket.

Table 3–3. RS II Avalon-ST Input and Output Interface Signals (Part 2 of 2)

Name Avalon-ST Type Direction Description

Table 3–4. Status Interface Signals

Name Avalon-ST Type Direction Description

status_num_error_symbol conduit Output
Number of error symbols in a codeword. This signal is
valid when the MegaCore function asserts the
out_endofpacket.

status_num_error_bit conduit Output
Number of error bits in a codeword. This signal is valid
when the MegaCore function asserts the
out_endofpacket.

status_error_value conduit Output Error correction value for every valid data symbol.
Reed-Solomon II MegaCore Function User Guide May 2011 Altera Corporation

May 2011 Altera Corporation
A. Reed-Solomon Codes
RS Encoding
To use RS codes, a data stream is first broken into a series of codewords. Each
codeword consists of several information symbols followed by several check symbols
(also known as parity symbols or redundant symbols). Symbols can contain an
arbitrary number of bits. In an error correction system, the encoder adds check
symbols to the data stream prior to its transmission over a communication channel.
When the decoder receives the data, the decoder checks for and corrects any errors.

Figure A–1 shows an example of a RS codeword.

RS codes are described as (N,K), where N is the total number of symbols per
codeword and K is the number of information symbols. R is the number of check
symbols (N – K). Errors are defined on a symbol basis. Any number of bit errors
within a symbol is considered as only one error.

A Reed-Solomon code is characterized by the following two polynomials:

■ Field polynomial

■ Generator polynomial

Field polynomial
The field polynomial is based on finite-field (Galois field) arithmetic, of which any
arithmetic operation (addition, subtraction, multiplication, and division) on a field
element gives a result that is an element of the field. The size of the Galois field is
determined by the number of bits per symbol—specifically, the field has 2m elements,
where m is the number of bits per symbol. A specific Galois field is defined by a
polynomial, which is user-defined for the RS II MegaCore function.

Figure A–1. RS Codeword Example

0010 0110 1010 0011 0111 1011

Information symbols, which
contain the original data.

Check symbols, added by
the RS encoder before
transmission over a
communications channel.

Symbol Codeword

4 to 10 bits
per symbol.
Reed-Solomon II MegaCore Function User Guide

A–2 Appendix A: Reed-Solomon Codes
RS Encoding
Generator polynomial
The generator polynomial defines how the check symbols are generated. The
maximum number of symbols in a codeword is limited by the size of the finite field to
2m – 1.

The following equation represents the generator polynomial of the code:

where:

i0 is the first root of the generator polynomial
a is the rootspace
R is the number of check symbols
 is a root of the polynomial.

Shortened Codewords
The RS II MegaCore function supports shortened codewords. A shortened codeword
contains fewer symbols than the maximum value of N, which is 2m –1. A shortened
codeword is mathematically equivalent to a maximum-length code with the extra
data symbols at the start of the codeword set to 0.

For example, (204,188) is a shortened codeword of (255,239). Both of these codewords
use the same number of check symbols, 16.

To use shortened codewords with the Altera RS II encoder and decoder, use the
parameter editor to set the codeword length to the correct value, in the example, 204.

 R – 1

g(x) = (x – a.i + i
0)

 i = 0
Reed-Solomon II MegaCore Function User Guide May 2011 Altera Corporation

Appendix A: Reed-Solomon Codes A–3
RS Decoding
RS Decoding
The input codeword represents the received codeword, R(x), which consists of the
transmitted codeword T(x) and the error introduced during transmission, E(x). The
received codeword is represented in the following equation:

R(x) can also be represented in a polynomial form:

where, A is the input symbol (AN-1 is the first symbol) and N is the codeword length

The decoder performs the following steps to decode a received codeword:

1. Generates the syndrome polynomial.

2. Generates two error polynomials based on the syndrome polynomial.

3. Solves the two error polynomials to locate errors and calculate error values.

Syndrome Polynomial
The syndrome generator generates the syndrome polynomial in the first step of the
decoding process.

The equation of the syndrome polynomial is given by,

where 2t = Number of check symbols

The syndrome generator uses the Horner’s method to generate the syndrome
polynomial.

Error Polynomials
After generating the syndrome polynomial, the next step in the decoding process is to
use the Berlekamp-Massey (BM) algorithm to find the following two error
polynomials:

■ Error locator polynomial,

■ Error evaluator polynomial,

The equation of the error locator polynomial is given by,

The equation of the error evaluator polynomial is given by,

where t = Number of check symbols/2

The BM algorithm is a technique of forming an initial error locator polynomial,
followed by multiple iterations of the same polynomial to improve and eventually
identify the correct polynomial.

R x  T x  E x +=

R x  AN 1– xN 1– AN 2– xN 1–  A1x A0+ + + +=

S x  S2t 1– x2t 1–  S1x S0+ + +=

 x 

 x 

 x  tx
t t 1– xt 1–  1x 1+ + + +=

 x  t 1– xt 1–  1x 0+ + +=
May 2011 Altera Corporation Reed-Solomon II MegaCore Function User Guide

A–4 Appendix A: Reed-Solomon Codes
RS Decoding
Error Location and Error Value
After the decoder forms the error locator polynomial, the decoder solves the
polynomial to find the error location. The decoder determines the the roots of the
polynomial through a trial and error method, known as the Chien search. The
decoder substitutes every possible root , where e represents the location in a
codeword, into the error locator polynomial. A zero result indicates that the
corresponding location contains an error.

After the decoder obtains the error locations, the decoder calculates the error values
using the Forney’s equation,

where is the derivative of for

 e–

Y j  Xj X 1– j 

 X 1– j 
----------------------=

 X 1– j   x  x X 1– j=
Reed-Solomon II MegaCore Function User Guide May 2011 Altera Corporation

May 2011 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

Document Revision History
The following table shows the revision history for this document.

How to Contact Altera
To locate the most up-to-date information about Altera® products, refer to the
following table.

Typographic Conventions
The following table shows the typographic conventions this document uses.

Date Version Changes

May 2011 2.0
■ Updated Chapter 1, About This MegaCore with new device family support.

■ Updated Chapter 3, Functional Description with new status ports and timing diagrams.

December 2010 1.0 Initial release.

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.
Reed-Solomon II MegaCore Function User Guide

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information
Typographic Conventions
Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

h A question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.

Visual Cue Meaning
Reed-Solomon II MegaCore Function User Guide May 2011 Altera Corporation

https://www.altera.com/subscriptions/email/signup/eml-index.jsp

	Reed-Solomon II MegaCore Function User Guide
	1. About This MegaCore
	Features
	Device Family Support
	MegaCore Verification
	Performance and Resource Utilization
	Release Information

	2. Getting Started
	Installation and Licensing
	Evaluating an IP Core
	Open Core Plus Time-Out Behavior

	MegaWizard Plug-In Manager Design Flow
	Specifying Parameters
	Simulating the Design
	Compiling the Design and Programming a Device

	Parameter Settings

	3. Functional Description
	Architecture
	Interfaces
	Avalon-ST Input and Output Interfaces
	Clock and Reset Interfaces
	Status Interface

	RS II Encoder
	RS II Decoder
	Multi-Channel Codeword
	Signals

	A. Reed-Solomon Codes
	RS Encoding
	Field polynomial
	Generator polynomial
	Shortened Codewords

	RS Decoding
	Syndrome Polynomial
	Error Polynomials
	Error Location and Error Value

	Document Revision History
	How to Contact Altera
	Typographic Conventions

