
101 Innovation Drive
San Jose, CA 95134
www.altera.com

NCO MegaCore Function
User Guide

Software Version: 11.0
Document Date: May 2011

http://www.altera.com

Copyright © 2011 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

UG-NCOCOMPILER-11.0

 © May 2011 Altera Corporation
Contents
Chapter 1. About This MegaCore Function
Features . 1–1
Release Information . 1–2
Device Family Support . 1–3
MegaCore Verification . 1–4
Performance and Resource Utilization . 1–4
Installation and Licensing . 1–5

OpenCore Plus Evaluation . 1–6
OpenCore Plus Time-Out Behavior . 1–7

Chapter 2. Getting Started
Design Flows . 2–1
DSP Builder Flow . 2–1
MegaWizard Plug-In Manager Flow . 2–2

Parameterize the MegaCore Function . 2–4
Generate the MegaCore Function . 2–5
Simulate the Design . 2–8

Simulating in Third-Party Simulation Tools Using NativeLink . 2–8
Simulating the Design in ModelSim . 2–9

Compile the Design and Program a Device . 2–9

Chapter 3. Parameter Settings
Setting Parameters . 3–1
Parameter Descriptions . 3–7

Chapter 4. Functional Description
Numerically Controlled Oscillators . 4–1

Spectral Purity . 4–1
Maximum Output Frequency . 4–2

Avalon-ST and Avalon-MM Interfaces . 4–2
Functional Description . 4–3

Architectures . 4–4
Large ROM Architecture . 4–4
Small ROM Architecture . 4–4
CORDIC Architecture . 4–5
Multiplier-Based Architecture . 4–6

Frequency Modulation . 4–7
Phase Modulation . 4–7
Phase Dithering . 4–8
Multi-Channel NCOs . 4–8
Frequency Hopping . 4–9
Timing Diagrams . 4–10

Signals . 4–12
Referenced Documents . 4–13
NCO MegaCore Function User Guide

iv Contents
Appendix A. Example Multichannel Design
Multichannel Design . A–1

Parameter Settings . A–3
Implementation Settings . A–4
Simulation Specification . A–4

Additional Information . Info–1
Revision History . Info–1
How to Contact Altera . Info–2
Typographic Conventions . Info–2
NCO MegaCore Function User Guide © May 2011 Altera Corporation

© May 2011 Altera Corporation
1. About This MegaCore Function
This document describes the Altera® NCO MegaCore® function. The Altera NCO
MegaCore function generates numerically controlled oscillators (NCOs) customized
for Altera devices.

You can use the IP Toolbench interface to implement a variety of NCO architectures,
including ROM-based, CORDIC-based, and multiplier-based. IP Toolbench also
includes time and frequency domain graphs that dynamically display the
functionality of the NCO, based on your parameter settings.

A numerically controlled oscillator synthesizes a discrete-time, discrete-valued
representation of a sinusoidal waveform. Designers typically use NCOs in
communication systems. In such systems, they are used as quadrature carrier
generators in I-Q mixers, in which baseband data is modulated onto the orthogonal
carriers in one of a variety of ways.

Figure 1–1 shows an NCO used in a simple modulator system.

Designers also use NCOs in all-digital phase-locked-loops for carrier synchronization
in communications receivers, or as standalone frequency shift keying (FSK) or phase
shift keying (PSK) modulators. In these applications, the phase or the frequency of the
output waveform varies directly according to an input data stream.

Features
The Altera NCO MegaCore function supports the following features:

■ Supports 32-bit precision for angle and magnitude

■ Source interface is compatible with the Avalon Interface Specification

■ IP functional simulation models for use in Altera-supported VHDL and Verilog
HDL simulators

Figure 1–1. Simple Modulator

Constellation
Mapper

IF Signal
NCO

Q

I FIR
Filter

FIR
Filter

cos(wt)

sin(wt)
NCO MegaCore Function User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

1–2 Chapter 1: About This MegaCore Function
Release Information
■ Supports multiple NCO architectures:

■ Multiplier-based implementation using DSP blocks or logic elements (LEs),
(single cycle and multi-cycle)

■ Parallel or serial CORDIC-based implementation

■ ROM-based implementation using embedded array blocks (EABs), embedded
system blocks (ESBs), or external ROM

■ Supports single or dual outputs (sine/cosine)

■ Allows variable width frequency modulation input

■ Allows variable width phase modulation input

■ Supports user-defined frequency resolution, angular precision, and magnitude
precision

■ Supports frequency hopping

■ Supports multichannel capability

■ Generates simulation files and architecture-specific testbenches for VHDL, Verilog
HDL and MATLAB

■ Includes dual-output oscillator and quaternary frequency shift keying (QFSK)
modulator example designs

■ Easy-to-use IP Toolbench interface

Release Information
Table 1–1 provides information about this release of the Altera NCO MegaCore

function.

f For more information about this release, refer to the MegaCore IP Library Release Notes
and Errata.

Altera verifies that the current version of the Quartus® II software compiles the
previous version of each MegaCore® function. The MegaCore IP Library Release Notes
and Errata report any exceptions to this verification. Altera does not verify
compilation with MegaCore function versions older than one release.

Table 1–1. NCO MegaCore Function Release Information

Item Description

Version 11.0

Release Date May 2011

Ordering Code IP-NCO

Product ID(s) 0014

Vendor ID(s) 6AF7
NCO MegaCore Function User Guide © May 2011 Altera Corporation

www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf

Chapter 1: About This MegaCore Function 1–3
Device Family Support
Device Family Support
Table 1–2 defines the device support levels for Altera IP cores.

Table 1–3 shows the level of support offered by the NCO MegaCore function to each
of the Altera device families.

Table 1–2. Altera IP Core Device Support Levels

FPGA Device Families HardCopy Device Families

Preliminary support—The IP core is verified with
preliminary timing models for this device family. The IPcore
meets all functional requirements, but might still be
undergoing timing analysis for the device family. It can be
used in production designs with caution.

HardCopy Companion—The IP core is verified with
preliminary timing models for the HardCopy companion
device. The IP core meets all functional requirements, but
might still be undergoing timing analysis for the HardCopy
device family. It can be used in production designs with
caution.

Final support—The IP core is verified with final timing
models for this device family. The IP core meets all
functional and timing requirements for the device family and
can be used in production designs.

HardCopy Compilation—The IP core is verified with final
timing models for the HardCopy device family. The IP core
meets all functional and timing requirements for the device
family and can be used in production designs.

Table 1–3. Device Family Support

Device Family Support

Arria™ GX Final

Arria II GX Final

Arria II GZ Final

Cyclone® Final

Cyclone II Final

Cyclone III Final

Cyclone III LS Final

Cyclone IV Final

HardCopy® II HardCopy Compilation

HardCopy III HardCopy Compilation

HardCopy IV E HardCopy Compilation

HardCopy IV GX HardCopy Compilation

Stratix® Final

Stratix II Final

Stratix II GX Final

Stratix III Final

Stratix IV GT Final

Stratix IV GX/E Final

Stratix V Preliminary

Stratix GX Final

Other device families No support
© May 2011 Altera Corporation NCO MegaCore Function User Guide

1–4 Chapter 1: About This MegaCore Function
MegaCore Verification
MegaCore Verification
Before releasing a version of the NCO MegaCore function, Altera runs comprehensive
regression tests to verify its quality and correctness.

First a custom variation of the NCO MegaCore function is created. Next, Verilog HDL
and VHDL IP functional simulation models are exercised by their appropriate
testbenches in ModelSim simulators and the results are compared to the output of a
bit-accurate model.

The regression suite covers various parameters such as architecture options,
frequency modulation, phase modulation, and precision.

Figure 1–2 shows the regression flow.

Performance and Resource Utilization
This section shows typical expected performance for a NCO MegaCore function using
the Quartus II software and a target fMAX set to 1GHz with Cyclone III and Stratix IV
devices.

1 Cyclone III devices use combinational look-up tables (LUTs) and logic registers;
Stratix IV devices use combinational adaptive look-up tables (ALUTs) and logic
registers. It may be possible to significantly reduce memory utilization by setting a
lower target fMAX.

Figure 1–2. Regression Flow

NCO Compiler
Wizard

Bit
Accurate

Model

Output
File

Verilog HDL

Output
File

VHDL

Output
File

Synthesis
Structure

Output
File

Perl
Script

Parameter
Sweep

Compare
Results

Testbench
All Languages
NCO MegaCore Function User Guide © May 2011 Altera Corporation

Chapter 1: About This MegaCore Function 1–5
Installation and Licensing
Table 1–4 shows performance figures for Cyclone III devices.

Table 1–5 shows performance figures for Stratix IV devices.

Installation and Licensing
The NCO MegaCore Function is part of the MegaCore IP Library, which is distributed
with the Quartus II software and downloadable from the Altera website,
www.altera.com.

f For system requirements and installation instructions, refer to the Altera Software
Installation and Licensing manual.

Table 1–4. NCO MegaCore Function Performance—Cyclone III Devices

Accumulator
Width

Angular
Precision

Magnitude
Precision

Combinational
LUTs

Logic
Registers

Memory
9×9

Blocks
fMAX

(MHz)Bits M9K

Large ROM (1)

32 12 12 156 149 98,304 12 — 336

Multiplier-Based (1)

32 16 16 321 240 12,288 2 8 212

Parallel CORDIC (1)

32 14 14 1,173 1,158 — — — 335

Small ROM (1)

32 14 16 363 298 61,440 8 — 320

Notes to Table 1–4:

(1) Using EP3C10F256C6 devices.

Table 1–5. NCO MegaCore Function Performance—Stratix IV Devices

Accumulator
Width

Angular
Precision

Magnitude
Precision

Combinational
ALUTs

Logic
Registers

 Memory
18×18
Blocks

fMAX

(MHz)Bits M9K

Large ROM (1)

32 12 12 69 149 98,304 12 — 653

Multiplier-Based (1)

32 16 16 117 206 12,288 2 4 467

Parallel CORDIC (1)

32 14 14 1,370 1,536 — — — 591

Small ROM (1)

32 14 16 189 298 61,440 8 — 612

Note to Table 1–5:

(1) Using EP4SGX70DF29C2X devices.
© May 2011 Altera Corporation NCO MegaCore Function User Guide

www.altera.com
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

1–6 Chapter 1: About This MegaCore Function
Installation and Licensing
Figure 1–3 shows the directory structure after you install the NCO MegaCore
Function, where <path> is the installation directory for the Quartus II software.

The default installation directory on Windows is c:\altera\<version>; or on Linux is
/opt/altera<version>.

OpenCore Plus Evaluation
With Altera’s free OpenCore Plus evaluation feature, you can perform the following
actions:

■ Simulate the behavior of a megafunction (Altera MegaCore function or AMPPSM
megafunction) within your system.

■ Verify the functionality of your design, as well as evaluate its size and speed
quickly and easily.

■ Generate time-limited device programming files for designs that include
megafunctions.

■ Program a device and verify your design in hardware.

You only need to purchase a license for the NCO MegaCore function when you are
completely satisfied with its functionality and performance, and want to take your
design to production.

After you purchase a license, you can request a license file from the Altera website at
www.altera.com/licensing and install it on your computer. When you request a
license file, Altera emails you a license.dat file. If you do not have Internet access,
contact your local Altera representative.

f For more information about OpenCore Plus hardware evaluation, refer to AN 320:
OpenCore Plus Evaluation of Megafunctions.

Figure 1–3. Directory Structure

lib
Contains encrypted lower-level design files.

ip
Contains the Altera MegaCore IP Library and third-party IP cores.

<path>
Installation directory.

altera
Contains the Altera MegaCore IP Library.

common
Contains shared components.
nco
Contains the NCO MegaCore function files.

example_designs
Contains example designs.

multi_channel
Contains the multichannel design.
NCO MegaCore Function User Guide © May 2011 Altera Corporation

http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/an/an320.pdf

Chapter 1: About This MegaCore Function 1–7
Installation and Licensing
OpenCore Plus Time-Out Behavior
OpenCore Plus hardware evaluation supports the following operation modes:

■ Untethered—the design runs for a limited time.

■ Tethered—requires a connection between your board and the host computer. If
tethered mode is supported by all megafunctions in a design, the device can
operate for a longer time or indefinitely.

All megafunctions in a device time-out simultaneously when the most restrictive
evaluation time is reached. If there is more than one megafunction in a design, a
specific megafunction’s time-out behavior might be masked by the time-out behavior
of the other megafunctions.

The untethered time-out for the NCO MegaCore function is one hour; the tethered
time-out value is indefinite.

The output of NCO MegaCore function is forced low by the internal hardware when
the hardware evaluation time expires.
© May 2011 Altera Corporation NCO MegaCore Function User Guide

1–8 Chapter 1: About This MegaCore Function
Installation and Licensing
NCO MegaCore Function User Guide © May 2011 Altera Corporation

© May 2011 Altera Corporation

2. Getting Started
Design Flows
The NCO MegaCore function supports the following design flows:

■ DSP Builder: Use this flow if you want to create a DSP Builder model that
includes a NCO MegaCore function variation.

■ MegaWizard™ Plug-In Manager: Use this flow if you would like to create an
NCO MegaCore function variation that you can instantiate manually in your
design.

This chapter describes how you can use a NCO MegaCore function in either of these
flows. The parameterization is the same in each flow and is described in Chapter 3,
Parameter Settings.

After parameterizing and simulating a design in either of these flows, you can
compile the completed design in the Quartus II software.

DSP Builder Flow
Altera’s DSP Builder product shortens digital signal processing (DSP) design cycles
by helping you create the hardware representation of a DSP design in an
algorithm-friendly development environment.

DSP Builder integrates the algorithm development, simulation, and verification
capabilities of The MathWorks MATLAB® and Simulink® system-level design tools
with Altera Quartus® II software and third-party synthesis and simulation tools. You
can combine existing Simulink blocks with Altera DSP Builder blocks and MegaCore
function variation blocks to verify system level specifications and perform simulation.

In DSP Builder, a Simulink symbol for the MegaCore function appears in the
MegaCore Functions library of the Altera DSP Builder Blockset in the Simulink library
browser.

You can use the NCO MegaCore function in the MATLAB/Simulink environment by
performing the following steps:

1. Create a new Simulink model.

2. Select the NCO block from the MegaCore Functions library in the Simulink Library
Browser, add it to your model, and give the block a unique name.

3. Double-click on the NCO MegaCore function block in your model to display IP
Toolbench and click Step 1: Parameterize to parameterize the MegaCore function
variation. For an example of how to set parameters for the NCO MegaCore
function, refer to Chapter 3, Parameter Settings.

4. Click Step 2: Generate in IP Toolbench to generate your NCO MegaCore function
variation. For information about the generated files, refer to Table 2–1 on page 2–7.

5. Connect your NCO MegaCore function variation block to the other blocks in your
model.
NCO MegaCore Function User Guide

2–2 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
6. Simulate the NCO MegaCore function variation in your DSP Builder model.

f For more information about the DSP Builder flow, refer to the Using MegaCore
Functions chapter in the DSP Builder User Guide.

1 When you are using the DSP Builder flow, device selection, simulation, Quartus II
compilation and device programming are all controlled within the DSP Builder
environment.

DSP Builder supports integration with SOPC Builder using Avalon®

Memory-Mapped (Avalon-MM) master or slave, and Avalon Streaming (Avalon-ST)
source or sink interfaces.

f For more information about these interface types, refer to the Avalon Interface
Specifications.

MegaWizard Plug-In Manager Flow
The MegaWizard Plug-in Manager flow allows you to customize a NCO MegaCore
function, and manually integrate the MegaCore function variation into a Quartus II
design.

To launch the MegaWizard Plug-in Manager, perform the following steps:

1. Create a new project using the New Project Wizard available from the File menu
in the Quartus II software.

2. Launch MegaWizard Plug-in Manager from the Tools menu, and select the option
to create a new custom megafunction variation (Figure 2–1).

Figure 2–1. MegaWizard Plug-In Manager
NCO MegaCore Function User Guide © May 2011 Altera Corporation

http://www.altera.com/literature/ug/ug_dsp_builder.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 2: Getting Started 2–3
MegaWizard Plug-In Manager Flow
3. Click Next and select NCO <version> from the Signal Generation section in the
Installed Plug-Ins tab. (Figure 2–2).

4. Verify that the device family is the same as you specified in the New Project
Wizard.

5. Select the top-level output file type for your design; the wizard supports VHDL
and Verilog HDL.

Figure 2–2. Selecting the MegaCore Function
© May 2011 Altera Corporation NCO MegaCore Function User Guide

2–4 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
6. Specify the top level output file name for your MegaCore function variation and
click Next to launch IP Toolbench (Figure 2–3).

Parameterize the MegaCore Function
To parameterize your MegaCore function variation, perform the following steps:

1. Click Step 1: Parameterize in IP Toolbench to display the Parameterize - NCO
page. Use this interface to specify the required parameters for the MegaCore
function variation.

For an example of how to set parameters for the NCO MegaCore function, refer to
Chapter 3, Parameter Settings.

Figure 2–3. IP Toolbench—Parameterize
NCO MegaCore Function User Guide © May 2011 Altera Corporation

Chapter 2: Getting Started 2–5
MegaWizard Plug-In Manager Flow
2. Click Step 2: Setup Simulation in IP Toolbench to display the Set Up Simulation -
NCO page (Figure 2–4).

3. Turn on Generate Simulation Model to create an IP functional model.

1 An IP functional simulation model is a cycle-accurate VHDL or Verilog
HDL model produced by the Quartus II software.

c Use the simulation models only for simulation and not for synthesis or any
other purposes. Using these models for synthesis creates a non-functional
design.

4. Select the required language from the Language list.

5. Some third-party synthesis tools can use a netlist that contains only the structure
of the MegaCore function, but not detailed logic, to optimize performance of the
design that contains the MegaCore function. If your synthesis tool supports this
feature, turn on Generate netlist.

Generate the MegaCore Function
To generate your MegaCore function variation, perform the following steps:

1. Click Step 3: Generate in IP Toolbench to generate your MegaCore function
variation and supporting files. The generation phase may take several minutes to
complete. The generation progress and status is displayed in a report window.

Figure 2–4. Set Up Simulation
© May 2011 Altera Corporation NCO MegaCore Function User Guide

2–6 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
Figure 2–5 shows the generation report.

Figure 2–5. Generation Report - NCO MegaCore function
NCO MegaCore Function User Guide © May 2011 Altera Corporation

Chapter 2: Getting Started 2–7
MegaWizard Plug-In Manager Flow
Table 2–1 describes the generated files and other files that may be in your project
directory. The names and types of files specified in the report vary based on
whether you created your design with VHDL or Verilog HDL.

Table 2–1. IP Toolbench Files

Filename (Note 1), (Note 2) Description

<entity name>.v Generated synthesizable netlist. This file is required for Quartus II synthesis. It will be
added to your Quartus II project.

<variation name>_vho_msim.tcl

<variation name>_vo_msim.tcl

ModelSim TCL Script that runs the VHDL or Verilog HDL IP functional simulation model
and generated VHDL or Verilog testbench in the ModelSim simulation software.

<variation name>_tb.v or

<variation name>_tb.vhd

A VHDL or Verilog HDL testbench file for the MegaCore function variation. The VHDL file
is generated when a VHDL top level has been chosen or the Verilog HDL file when a
Verilog HDL top level has been chosen.

<variation name>.bsf Quartus II symbol file for the MegaCore function variation. You can use this file in the
Quartus II block diagram editor.

<variation name>.cmp A VHDL component declaration file for the MegaCore function variation. Add the
contents of this file to any VHDL architecture that instantiates the MegaCore function.

<variation name>.html A MegaCore function report file in hypertext markup language format.

<variation name>.qip A single Quartus II IP file is generated that contains all of the assignments and other
information required to process your MegaCore function variation in the Quartus II
compiler. You are prompted to add this file to the current Quartus II project when you
exit from the MegaWizard.

<variation name>.vec Quartus II vector File. This file provides simulation test vectors to be used for simulating
the customized NCO MegaCore function variation with the Quartus II software.

<variation name>.vhd or .v A VHDL or Verilog HDL file that defines a VHDL or Verilog HDL top-level description of
the custom MegaCore function variation. Instantiate the entity defined by this file inside
of your design. Include this file when compiling your design in the Quartus II software.

<variation name>.vho or
<variation name>.vo

A VHDL or Verilog HDL output file that defines the IP functional simulation model.

<variation name>_bb.v Verilog HDL black-box file for the MegaCore function variation. Use this file when using
a third-party EDA tool to synthesize your design.

<variation name>_cos_c.hex,
<variation name>_cos_f.hex,
<variation name>_sin_c.hex,
<variation name>_sin_f.hex

Memory initialization files in INTEL Hex format. These files are required both for
simulation with IP functional simulation models and synthesis using the Quartus II
software.

<variation name>_syn.v A timing and resource estimation netlist for use in some third-party synthesis tools.

<variation name>_model.m MATLAB m-file describing a MATLAB bit-accurate model.

<variation name>_nativelink.tcl A Tcl script that can be used to assign NativeLink simulation testbench settings to the
Quartus II project.

<variation name>_tb.m MATLAB testbench file.

<variation name>_wave.do ModelSim Waveform file.

Notes to Table 2–1:

(1) <variation name> is a prefix variation name supplied automatically by IP Toolbench.
(2) The <entity name> prefix is added automatically. The VHDL code for each MegaCore instance is generated dynamically when you click Finish

so that the <entity name> is different for every instance. It is generated from the <variation name> by appending _st.
© May 2011 Altera Corporation NCO MegaCore Function User Guide

2–8 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
The generation report also lists the ports defined in the MegaCore function
variation file (Figure 2–6). For a full description of the signals supported on
external ports for your MegaCore function variation, refer to Table 4–4 on
page 4–12.

2. After you review the generation report, click Exit to close IP Toolbench. Then click
Yes on the Quartus II IP Files prompt to add the .qip file describing your custom
MegaCore function variation to the current Quartus II project.

Simulate the Design
To simulate your design, use the IP functional simulation models generated by IP
Toolbench. The IP functional simulation model is either a .vo or .vho file, depending
on the output language you specified. Compile the .vo or .vho file in your simulation
environment to perform functional simulation of your custom variation of the
MegaCore function.

f For more information about IP functional simulation models, refer to the Simulating
Altera Designs chapter in volume 3 of the Quartus II Handbook.

Simulating in Third-Party Simulation Tools Using NativeLink
You can perform a simulation in a third-party simulation tool from within the
Quartus II software, using NativeLink.

The Tcl script file <variation name>_nativelink.tcl can be used to assign default
NativeLink testbench settings to the Quartus II project.

Figure 2–6. Port Lists in the Generation Report
NCO MegaCore Function User Guide © May 2011 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 2: Getting Started 2–9
MegaWizard Plug-In Manager Flow
To perform a simulation in the Quartus II software using NativeLink, perform the
following steps:

1. Create a custom MegaCore function variation as described earlier in this chapter
but ensure you specify your variation name to match the Quartus II project name.

2. Verify that the absolute path to your third-party EDA tool is set in the Options
page under the Tools menu in the Quartus II software.

3. On the Processing menu, point to Start and click Start Analysis & Elaboration.

4. On the Tools menu, click Tcl scripts. In the Tcl Scripts dialog box, select
<variation name>_nativelink.tcl and click Run. Check for a message confirming
that the Tcl script was successfully loaded.

5. On the Assignments menu, click Settings, expand EDA Tool Settings, and select
Simulation. Select a simulator under Tool name then in NativeLink Settings,
select Compile test bench and click Test Benches.

6. On the Tools menu, point to EDA Simulation Tool and click Run EDA RTL
Simulation.

The Quartus II software selects the simulator, and compiles the Altera libraries,
design files, and testbenches. The testbench runs and the waveform window
shows the design signals for analysis.

f For more information, refer to the Simulating Altera Designs chapter in volume 3 of the
Quartus II Handbook.

Simulating the Design in ModelSim
To simulate your design with the MegaWizard-generated ModelSim Tcl script, change
your ModelSim working directory to the project directory specified in “Selecting the
MegaCore Function” on page 2–3, and run the MegaWizard-generated Tcl script.

■ If you selected VHDL as your functional simulation language, run the Tcl script
<variation_name>_vho_msim.tcl.

■ If you selected Verilog HDL as your functional simulation language, run the Tcl
script <variation_name>_vo_msim.tcl.

1 The Tcl script creates a ModelSim project, maps the libraries, compiles the
top-level design and associated testbench, and then outputs the simulation
results to the waveform viewer.

Compile the Design and Program a Device
You can use the Quartus II software to compile your design.

To compile your design, follow these steps:

1. If you are using the Quartus II software to synthesize your design, skip to Step 3.

2. If you are using a third-party synthesis tool to synthesize your design, follow these
steps:

a. Set a black-box attribute for your MegaCore function custom variation before
you synthesize the design. Refer to Quartus II Help for instructions on setting
black-box attributes for synthesis tools.
© May 2011 Altera Corporation NCO MegaCore Function User Guide

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

2–10 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
b. Run the synthesis tool to produce an EDIF netlist file (.edf) or a Verilog
Quartus Mapping (VQM) file (.vqm) for input to the Quartus II software.

c. Add the EDIF or VQM file to your Quartus II project.

3. Select Start Compilation (Processing menu) in Quartus II software.

After a successful compilation, you can program the targeted Altera device and verify
the design in hardware.

f For instructions on compiling and programming your design, and more information
about the MegaWizard Plug-In Manager flow, refer to the Quartus II Help.
NCO MegaCore Function User Guide © May 2011 Altera Corporation

© May 2011 Altera Corporation
3. Parameter Settings
This chapter gives an example of how to parameterize an NCO MegaCore function
and describes the available parameters.

The Parameterize - NCO pages provide the same options whether they have been
opened from the DSP Builder or MegaWizard Plug-In Manager flow.

For information about opening the parameterization pages, refer to “Design Flows”
on page 2–1.

1 The user interface only allows you to select legal combinations of parameters, and
warns you of any invalid configurations.

Setting Parameters
To parameterize your NCO MegaCore function, follow these steps:

1. With the Parameters tab selected, specify the generation algorithm, precisions,
phase dithering, and generated output frequency parameters.

As you adjust these parameters, you can graphically view the effects on the NCO
MegaCore function in the Frequency Domain Response and Time Domain
Response tabs as shown in Figure 3–1 on page 3–2.

The NCO MegaCore function generates the spectral plot shown in Figure 3–1 by
computing a 2,048-point fast Fourier transform (FFT) of bit-accurate time-domain
data. Before performing the FFT, IP Toolbench applies a Kaiser window of length
2,048 to the data.

You can zoom into the view by pressing the left mouse key on the plot drawing a
box around the area of interest. Right-click the plot to restore the view to its full
range.

Refer to “Architectures” on page 4–4 and “Phase Dithering” on page 4–8 for more
information about these parameter options.
NCO MegaCore Function User Guide

3–2 Chapter 3: Parameter Settings
Setting Parameters
2. Click the Implementation tab when you are finished setting the general
parameters.

3. With the Implementation tab selected, specify the frequency modulation, phase
modulation, and outputs; select the target device family.

For some algorithms (for example, multiplier-based), you can also make device-
specific settings such as whether to implement the NCO MegaCore function in
logic elements (LEs) or other hardware. The Implementation tab displays the
corresponding options available for the selected algorithm in the Parameters tab.

Figure 3–1. Parameterize Tab
NCO MegaCore Function User Guide © May 2011 Altera Corporation

Chapter 3: Parameter Settings 3–3
Setting Parameters
Figure 3–2 shows the implementation parameter options when you specify the
Small ROM or Large ROM algorithm.

Refer to “Frequency Modulation” on page 4–7 and “Phase Modulation” on
page 4–7 for more information about these parameter options.

c Do not change the Target device family in the Implementation page. The
device family is automatically set to the value that was specified in the
Quartus II software or the DSP Builder software, and the generated HDL for
your MegaCore function variation may be incorrect if this value is changed
in the IP Toolbench.

Figure 3–2. Implementation Tab - Small ROM or Large ROM Algorithm
© May 2011 Altera Corporation NCO MegaCore Function User Guide

3–4 Chapter 3: Parameter Settings
Setting Parameters
Figure 3–3 shows implementation parameter options when the CORDIC
algorithm is specified.

With the CORDIC algorithm, you can select a parallel or serial CORDIC
implementation.

Figure 3–3. Implementation Tab - CORDIC Algorithm
NCO MegaCore Function User Guide © May 2011 Altera Corporation

Chapter 3: Parameter Settings 3–5
Setting Parameters
Figure 3–4 shows the implementation parameter options when you specify the
Multiplier-Based algorithm.

1 The option to Use Dedicated Multipliers is not available if you target
the Cyclone device family. For all other supported devices, you can select
whether to implement the multiplier-based algorithm using logic elements
or dedicated multipliers.

Figure 3–4. Implementation Tab - Multiplier-Based Algorithm
© May 2011 Altera Corporation NCO MegaCore Function User Guide

3–6 Chapter 3: Parameter Settings
Setting Parameters
4. Click the Resource Estimate tab when you are finished setting the implementation
parameter options.

The NCO MegaCore function dynamically estimates the resource usage of your
custom NCO MegaCore function variation based on the parameters specified as
shown in Figure 3–5.

1 Arria GX, Arria II GX, Stratix II, Stratix II GX, Stratix III, Stratix IV, and
Stratix V devices use adaptive look-up tables (ALUTs); other devices use
logic elements (LEs).

5. Click Finish when you are finished viewing the resource estimates.

Figure 3–5. Resource Estimate Tab
NCO MegaCore Function User Guide © May 2011 Altera Corporation

Chapter 3: Parameter Settings 3–7
Parameter Descriptions
Parameter Descriptions
This section describes the NCO MegaCore function parameters, which can be set in
the user interface as described in “Setting Parameters” on page 3–1.

Table 3–1 shows the parameters that can be set in the Parameters page.

1 The default values for each parameter are shown in bold font in the tables.

Table 3–2 shows the parameters that can be set in the Implementation page.

Table 3–1. NCO MegaCore Function Parameters Page

Parameter Value Description

Generation Algorithm Small ROM, Large ROM,
CORDIC, Multiplier-Based

Select the required algorithm.

Phase Accumulator
Precision

4–64, Default = 32 Select the required phase accumulator precision. (1)

Angular Resolution 4–24 or 32, Default = 16 Select the required angular resolution. (2)

Magnitude Precision 10–32, Default = 18 Select the required magnitude precision.

Implement Phase Dithering On or Off Turn on to implement phase dithering.

Dither Level Min–Max When phase dithering is enabled you can use the slider control to
adjust the dither level between its minimum and maximum
values,

Clock Rate 1–999 MHz, kHz, Hz, mHz,
Default = 100 MHz

You can select the clock rate using units of MegaHertz, kiloHertz,
Hertz or milliHertz.

Desired Output Frequency 1–999 MHz, kHz, Hz, mHz,
Default = 1 MHz

You can select the desired output frequency using units of
MegaHertz, kiloHertz, Hertz or milliHertz.

Phase Increment Value — Displays the phase increment value calculated from the clock rate
and desired output frequency.

Real Output Frequency — Displays the calculated value of the real output frequency.

Notes to Table 3–1:

(1) The phase accumulator precision must be greater than or equal to the specified angular resolution.
(2) The maximum value is 24 for small and large ROM algorithms; 32 for CORDIC and multiplier-based algorithms.

Table 3–2. NCO MegaCore Function Implementation Page (Part 1 of 2)

Parameter Value Description

Frequency Modulation input On or Off You can optionally enable the frequency modulation input.

Modulator Resolution 4–64, Default = 32 Select the modulator resolution for the frequency modulation
input.

Modulator Pipeline Level 1, 2, Default = 1 Select the modulator pipeline level for the frequency modulation
input.

Phase Modulation Input On or Off You can optionally enable the phase modulation input.

Modulator Precision 4–32, Default = 16 Select the modulator precision for the phase modulation input.

Modulator Pipeline Level 1, 2, Default = 1 Select the modulator pipeline level for the phase modulation input.

Outputs Dual Output, Single
Output

Select whether to use a dual or single output.
© May 2011 Altera Corporation NCO MegaCore Function User Guide

3–8 Chapter 3: Parameter Settings
Parameter Descriptions
Table 3–3 shows the parameters that are displayed in the Resource Estimate page.

Device Family Target Stratix IV, Stratix III,
Stratix II, Stratix II GX,
Arria GX, Stratix,
Stratix GX, Cyclone III,
Cyclone II, Cyclone

Displays the target device family. The target device family is
preselected by the value specified in the Quartus II or DSP Builder
software. The HDL that is generated for your MegaCore function
variation may be incorrect if you change the device family target in
IP Toolbench.

Number of Channels 1–8, Default = 1 Select the number of channels when you want to implement a
multi-channel NCO.

Number of Bands 1–16, Default = 1 Select a number of bands greater than 1 to enable frequency
hopping. Frequency hopping is not supported in the serial CORDIC
architecture.

CORDIC Implementation Parallel, Serial When the CORDIC generation algorithm is selected on the
Parameters page, you can select a parallel (one output per clock
cycle) or serial (one output per 18 clock cycles) implementation.

Multiplier-Based Architecture Logic Elements,
Dedicated Multipliers

When the multiplier-based algorithm is selected on the Parameters
page, you can select logic elements or dedicated multipliers and
select the number of clock cycles per output. This option is not
available if you target the Cyclone device family.

Clock Cycles Per Output 1, 2, Default = 1 When the multiplier-based algorithm is selected on the Parameters
page, you can select 1 or 2 clock cycles per output.

Table 3–2. NCO MegaCore Function Implementation Page (Part 2 of 2)

Parameter Value Description

Table 3–3. NCO MegaCore Function Resource Estimate Page

Parameter Description

Number of ALUTs/LEs Displays the number of adaptive look-up tables or logic elements. (1)

Number of Memory Bits Displays the number of memory bits.

Number of M9Ks/M4Ks Displays the number of M20K, M9K, or M4K RAM blocks. (2)

Number of 9-bit DSP Elements Displays the number of 9-bit DSP elements.

Notes to Table 3–3:

(1) Stratix GX, Stratix, Cyclone III, Cyclone II and Cyclone devices use LEs; all other devices use ALUTs.
(2) Stratix V devices use M20K RAM blocks; Stratix IV, Stratix III, and Cyclone III devices use M9K RAM blocks; all other devices use M4K blocks.
NCO MegaCore Function User Guide © May 2011 Altera Corporation

© May 2011 Altera Corporation
4. Functional Description
Numerically Controlled Oscillators
A numerically controlled oscillator (NCO) synthesizes a discrete-time, discrete-valued
representation of a sinusoidal waveform.

There are many ways to synthesize a digital sinusoid. For example, a popular method
is to accumulate phase increments to generate an angular position on the unit circle
and then use the accumulated phase value to address a ROM look-up table that
performs the polar-to-cartesian transformation. You can reduce the ROM size by
using multipliers. Multipliers provide an exponential decrease in memory usage for a
given precision but require more logic.

Another method uses the coordinate rotation digital computer (CORDIC) algorithm
to determine, given a phase rotation, the sine and cosine values iteratively. The
CORDIC algorithm takes an accumulated phase value as input and then determines
the cartesian coordinates of that angle by a series of binary shifts and compares.

f For more information about the CORDIC algorithm, refer to A Survey of CORDIC
Algorithms for FPGAs by Andraka, Ray, FPGA ‘98 Proceedings of the ACM/SIGDA
Sixth International Symposium on Field Programmable Gate Arrays.

In all methods, the frequency at which the phase increment accumulates and the size
of that input phase increment relative to the maximum size of the accumulator
directly determines the normalized sinusoidal frequency. (Refer to the equation on
page 4–3.)

When deciding which NCO implementation to use in programmable logic, you
should consider several parameters, including the spectral purity, frequency
resolution, performance, throughput, and required device resources. Often, you need
to consider the trade-offs between some or all of these parameters.

Spectral Purity
Typically, the spectral purity of an oscillator is measured by its signal-to-noise ratio
(SNR) and its spurious free dynamic range (SFDR).

The SNR of a digitally synthesized sinusoid is a ratio of the signal power relative to
the unavoidable quantization noise inherent in its discrete-valued representation.
SNR is a direct result of the finite precision with which NCO represents the output
sine and cosine waveforms. Increasing the output precision results in an increased
SNR.

The following equation estimates the SNR of a given sinusoid with output precision b:

Each additional bit of output precision leads to an additional 6 dB in SNR.

SNR 6b 1.8–= db()
NCO MegaCore Function User Guide

4–2 Chapter 4: Functional Description
Avalon-ST and Avalon-MM Interfaces
The SFDR of a digital sinusoid is the power of the primary or desired spectral
component relative to the power of its highest-level harmonic component in the
spectrum. Harmonic components manifest themselves as spikes or spurs in the
spectral representation of a digital sinusoid and occur at regular intervals and are also
a direct consequence of finite precision. However, the effect of the spurs is often
severe because they can cause substantial inter-modulation products and undesirable
replicas of the mixed signal in the spectrum, leading to poor reconstruction of the
signal at the receiver.

The direct effect of finite precision varies between architectures, but the effect is
augmented because, due to resource usage constraints, the NCO does not usually use
the full accumulator precision in the polar-to-cartesian transformation. You can
mitigate truncation effects with phase dithering, in which the truncated phase value is
randomized by a sequence. This process removes some of the periodicity in the phase,
reducing the spur magnitude in the sinusoidal spectrum by up to 12 dB.

The NCO MegaCore function’s graphical spectral analysis allows you to view the
effects as you change parameters without regenerating the IP Toolbench output files
and re-running simulation.

Refer to “Setting Parameters” on page 3–1 for information about how you can view
the effects of changing the generation algorithm, precision, phase dithering and
generated output frequency parameters.

Maximum Output Frequency
The maximum frequency sinusoid that an NCO can generate is bounded by the
Nyquist criterion to be half the operating clock frequency. Additionally, the
throughput affects the maximum output frequency of the NCO. If the NCO outputs a
new set of sinusoidal values every clock cycle, the maximum frequency is the Nyquist
frequency. If, however, the implementation requires additional clock cycles to
compute the values, the maximum frequency must be further divided by the number
of cycles per output.

Avalon-ST and Avalon-MM Interfaces
The Avalon-ST interface defines a standard, flexible, and modular protocol for data
transfers from a source interface to a sink interface and simplifies the process of
controlling the flow of data in a datapath.

Avalon-ST interface signals can describe traditional streaming interfaces supporting a
single stream of data without knowledge of channels or packet boundaries. Such
interfaces typically contain data, ready, and valid signals. The NCO MegaCore
function is an Avalon-ST source and does not support backpressure.

The Avalon-MM interface provides a means to control the frequency hopping feature
at run time.

f For more information about the Avalon-MM and Avalon-ST interfaces including
integration with other Avalon-ST components which may support backpressure, refer
to the Avalon Interface Specifications.
NCO MegaCore Function User Guide © May 2011 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 4: Functional Description 4–3
Functional Description
Functional Description
Figure 4–1 shows a block diagram of a generic NCO.

The NCO MegaCore function allows you to generate a variety of NCO architectures.
You can create your custom NCO using an IP Toolbench-driven interface that includes
both time- and frequency-domain analysis tools. The custom NCO outputs a
sinusoidal waveform in two’s complement representation.

The waveform for the generated sine wave is defined by the following equation:

where:

■ T is the operating clock period

■ fO is the unmodulated output frequency based on the input value φINC

■ fFM is a frequency modulating parameter based on the input value φFM

■ φPM is derived from the phase modulation input value P and the number of bits
(Pwidth) used for this value by the equation:

■ φDITH is the internal dithering value

■ A is 2N-1 where N is the magnitude precision (and N is an integer in the range
10–32)

The generated output frequency, fo for a given phase increment, φinc is determined by
the following equation:

where M is the accumulator precision and fclk is the clock frequency

Figure 4–1. NCO Block Diagram

sine

cosine

INC

FM

Internal
Dither

DITH

Waveform
Generation

Unit

Phase Accumulator

Phase
Increment

Frequency
Modulation

Input

PM

Phase
Modulation

Input

Dither
Generator

D

Required

Optional

s nT() A 2π fO fFM+()nT φPM φDITH+ +()sin=

φPM
P

2
Pwidth

--------------=

fo
φinc fclk

2M
------------------ Hz=
© May 2011 Altera Corporation NCO MegaCore Function User Guide

4–4 Chapter 4: Functional Description
Functional Description
The minimum possible output frequency waveform is generated for the case where
φinc= 1. This case is also the smallest observable frequency at the output of the NCO,
also known as the frequency resolution of the NCO, fres given in Hz by the following
equation:

For example, if a 100 MHz clock drives an NCO with an accumulator precision of 32
bits, the frequency resolution of the oscillator is 0.0233 Hz. For an output frequency of
6.25 MHz from this oscillator, you should apply an input phase increment of:

The NCO MegaCore function automatically calculates this value, using the specified
parameters. IP Toolbench also sets the value of the phase increment in all testbenches
and vector source files it generates.

Similarly, the generated output frequency, fFM for a given frequency modulation
increment, φFM is determined by the following equation:

where F is the modulator resolution

The angular precision of an NCO is the phase angle precision before the polar-to-
cartesian transformation. The magnitude precision is the precision to which the sine
and/or cosine of that phase angle can be represented. The effects of reduction or
augmentation of the angular, magnitude, accumulator precision on the synthesized
waveform vary across NCO architectures and for different fo/fclk ratios.

You can view these effects in the NCO time and frequency domain graphs as you
change the NCO MegaCore function parameters.

Architectures
The NCO MegaCore function supports large ROM, small ROM, CORDIC, and
multiplier-based architectures.

Large ROM Architecture
Use the large ROM architecture if your design requires very high speed sinusoidal
waveforms and your design can use large quantities of internal memory.

In this architecture, the ROM stores the full 360 degrees of both the sine and cosine
waveforms. The output of the phase accumulator addresses the ROM.

Because the internal memory holds all possible output values for a given angular and
magnitude precision, the generated waveform has the highest spectral purity for that
parameter set (assuming no dithering). The large ROM architecture also uses the
fewest logic elements (LEs) for a given set of precision parameters.

Small ROM Architecture
If low LE usage and high output frequency are a high priority for your system, use the
small ROM architecture to reduce your internal memory usage.

fres

fclk

2M
-------- Hz=

6.25 106×

100 106×
------------------------- 232× 268435456=

fFM

φFM fclk

2F
------------------ Hz=
NCO MegaCore Function User Guide © May 2011 Altera Corporation

Chapter 4: Functional Description 4–5
Functional Description
In a small ROM architecture, the device memory only stores 45 degrees of the sine and
cosine waveforms. All other output values are derived from these values based on the
position of the rotating phasor on the unit circle as shown in Table 4–1 and Figure 4–2.

Because a small ROM implementation is more likely to have periodic value repetition,
the resulting waveform’s SFDR is lower than that of the large ROM architecture.
However, you can often mitigate this reduction in SFDR by using phase dithering. For
information about this option, refer to “Phase Dithering” on page 4–8.

CORDIC Architecture
The CORDIC algorithm, which can calculate trigonometric functions such as sine and
cosine, provides a high-performance solution for very-high precision oscillators in
systems where internal memory is at a premium.

The CORDIC algorithm is based on the concept of complex phasor rotation by
multiplication of the phase angle by successively smaller constants. In digital
hardware, the multiplication is by powers of two only. Therefore, the algorithm can be
implemented efficiently by a series of simple binary shift and additions/subtractions.

Table 4–1. Derivation of Output Values

Position in Unit Circle Range for Phase x sin(x) cos(x)

1 0 <= x < p/4 sin(x) cos(x)

2 p/4 <= x < p/2 cos(p/4x) sin(p/2-x)

3 p/2 <= x < 3p/4 cos(x-p/2) -sin(x-p/2)

4 3p/4 <= x < p sin(p-x) -cos(p-x)

5 p <= x < 5p/4 -sin(x-p) -cos(x-p)

6 5p/4 <= x < 3p/2 -cos(3p/2-x) -sin(3p/2-x)

7 3p/2 <= x < 7p/4 -cos(x-3p/2) sin(x-3p/2)

8 7p/4 <= x < 2p -sin(2p-x) cos(2p-x)

Figure 4–2. Derivation of output Values
© May 2011 Altera Corporation NCO MegaCore Function User Guide

4–6 Chapter 4: Functional Description
Functional Description
In an NCO, the CORDIC algorithm computes the sine and cosine of an input phase
value by iteratively shifting the phase angle to approximate the cartesian coordinate
values for the input angle. At the end of the CORDIC iteration, the x and y coordinates
for a given angle represent the cosine and sine of that angle, respectively (Figure 4–3).

With the NCO MegaCore function, you can select parallel (unrolled) or serial
(iterative) CORDIC architectures:

■ You an use the parallel CORDIC architecture to create a very high-performance,
high-precision oscillator—implemented entirely in logic elements—with a
throughput of one output sample per clock cycle. With this architecture, there is a
new output value every clock cycle.

■ The serial CORDIC architecture uses fewer resources than the parallel CORDIC
architecture. However, its throughput is reduced by a factor equal to the
magnitude precision. For example, if you select a magnitude precision of N bits in
the NCO MegaCore function, the output sample rate and the Nyquist frequency is
reduced by a factor of N. This architecture is implemented entirely in logic
elements and is useful if your design requires low frequency, high precision
waveforms. With this architecture, the adder stages are stored internally and a
new output value is produced every N clock cycles.

For more information about the parallel and serial CORDIC architectures, refer to
“Implementation Tab - CORDIC Algorithm” on page 3–4.

Multiplier-Based Architecture
The multiplier-based architecture uses multipliers to reduce memory usage. You can
choose to implement the multipliers in either:

■ Logic elements (Cyclone series of devices) or combinational ALUTs (Stratix series
of devices).

■ Dedicated multiplier circuitry (for example, dedicated DSP blocks) in device
families that support this feature (Stratix V, Stratix IV, Stratix III, Stratix II, Stratix
GX, Stratix, or Arria GX devices).

Figure 4–3. CORDIC Rotation for Sine & Cosine Calculation

ø
sin ø

cos ø

y

x

dø

dx

dy
NCO MegaCore Function User Guide © May 2011 Altera Corporation

Chapter 4: Functional Description 4–7
Functional Description
1 When you specify a dual output multiplier-based NCO, the MegaCore
function provides an option to output a sample every two clock cycles. This
setting reduces the throughput by a factor of two and halves the resources
required by the waveform generation unit. For more information refer to
“Implementation Tab - Multiplier-Based Algorithm” on page 3–5.

Table 4–2 summarizes the advantages of each algorithm.

Frequency Modulation
In the NCO MegaCore function, you can add an optional frequency modulator to
your custom NCO variation. You can use the frequency modulator to vary the
oscillator output frequency about a center frequency set by the input phase increment.
This option is useful for applications in which the output frequency is tuned relative
to a free-running frequency, for example in all-digital phase-lock-loops.

You can also use the frequency modulation input to switch the output frequency
directly.

You can set the frequency modulation resolution input in the NCO MegaCore
function. The specified value must be less than or equal to the phase accumulator
precision.

The NCO MegaCore function also provides an option to increase the modulator
pipeline level; however, the effect of the increase on the performance of the NCO
MegaCore function varies across NCO architectures and variations.

Phase Modulation
You can use the NCO MegaCore function to add an optional phase modulator to your
MegaCore function variation, allowing dynamic phase shifting of the NCO output
waveforms. This option is particularly useful if you want an initial phase offset in the
output sinusoid.

You can also use the option to implement efficient phase shift keying (PSK)
modulators in which the input to the phase modulator varies according to a data
stream. You set the resolution and pipeline level of the phase modulator in the NCO
MegaCore function. The input resolution must be greater than or equal to the
specified angular precision.

Table 4–2. Architecture Comparison

Architecture Advantages

Large ROM Good for high speed and when a large quantity of internal memory is available.
Gives the highest spectral purity and uses the fewest logic elements for a given
parameterization.

Small ROM Good for high output frequencies with reduced internal memory usage when a
lower SFDR is acceptable.

CORDIC High performance solution when internal memory is at a premium. The serial
CORDIC architecture uses fewer resources than parallel although the throughput
is reduced.

Multiplier-Based Reduced memory usage by implementing multipliers in logic elements or
dedicated circuitry.
© May 2011 Altera Corporation NCO MegaCore Function User Guide

4–8 Chapter 4: Functional Description
Functional Description
Phase Dithering
All digital sinusoidal synthesizers suffer from the effects of finite precision, which
manifests itself as spurs in the spectral representation of the output sinusoid. Because
of angular precision limitations, the derived phase of the oscillator tends to be
periodic in time and contributes to the presence of spurious frequencies. You can
reduce the noise at these frequencies by introducing a random signal of suitable
variance into the derived phase, thereby reducing the likelihood of identical values
over time. Adding noise into the data path raises the overall noise level within the
oscillator, but tends to reduce the noise localization and can provide significant
improvement in SFDR.

The extent to which you can reduce spur levels is dependent on many factors. The
likelihood of repetition of derived phase values and resulting spurs, for a given
angular precision, is closely linked to the ratio of the clock frequency to the desired
output frequency. An integral ratio clearly results in high-level spurious frequencies,
while an irrational relationship is less likely to result in highly correlated noise at
harmonic frequencies.

The Altera NCO MegaCore function allows you to finely tune the variance of the
dither sequence for your chosen algorithm, specified precision, and clock frequency to
output frequency ratio, and dynamically view the effects on the output spectrum
graphically.

For an example using phase dithering and its effect on the spectrum of the output
signal, refer to the “Multichannel Design” on page A–1.

Multi-Channel NCOs
The NCO MegaCore function allows you to implement multi-channel NCOs. This
allows for multiple sinusoids of independent frequency and phase to be generated at
a very low cost in additional resources. The resulting waveforms have an output
sample-rate of fclk/M where M is the number of channels. You can select 1 to 8
channels.

Multi-channel implementations are available for all single-cycle generation
algorithms. The input phase increment, frequency modulation value and phase
modulation input are input sequentially to the NCO with the input values
corresponding to channel 0 first and channel (M–1) last. The inputs to channel 0
should be input on the rising clock edge immediately following the de-assertion of the
NCO reset.

On the output side, the first output sample for channel 0 is output concurrent with the
assertion of out_valid and the remaining outputs for channels 1 to (M–1) are output
sequentially. Refer to “Multi-Channel NCO Timing Diagram” on page 4–12 for details
of how the data is provided to and received from a multi-channel NCO.

If a multi-channel implementation is selected, the NCO MegaCore function generates
VHDL and Verilog test benches that time-division-multiplex the inputs into a single
stream and de-multiplex the output streams into their respective down-sampled
channelized outputs.

For an example of a multi-channel NCO, refer to “Multichannel Design” on page A–1.
NCO MegaCore Function User Guide © May 2011 Altera Corporation

Chapter 4: Functional Description 4–9
Functional Description
Frequency Hopping
The NCO MegaCore function supports frequency hopping in all architectures except
the serial CORDIC architecture. Frequency hopping allows control and configuration
of the NCO MegaCore function at run time so that carriers with different frequencies
can be generated and held for a specified period of time at specified slot intervals.

The MegaCore function supports multiple phase increment registers that you can
load using an Avalon-MM bus. You select the phase increment register using an
external hardware signal; changes on this signal take effect on the next clock cycle.
The maximum number of phase increment registers is 16.

1 During frequency hopping, the phase of the carrier should not experience
discontinuous change. Discontinuous carrier phase changes may cause spectral
emission problems.

Figure 4–4 shows the frequency hopping implementation.

The RAM stores all hopping frequencies. The RAM size is <width>×<depth>, where
<width> is the number of bits required to specify the phase accumulator value to the
precision you select in the parameter editor, and <depth> is the number of bands you
select in the parameter editor.

Figure 4–4. Frequency Hopping Block Diagram

Numerically
Controlled
Oscillator

fcos_o

out_valid

Avalon-MM
Interface

clk

reset_n

reset_n

address

write_sig
phi_inc_i

freq_sel_sig

16 to 1
MUX

clken

RAM fsin_0

phi_inc_i

clken

clk

NCO MegaCore Function
© May 2011 Altera Corporation NCO MegaCore Function User Guide

4–10 Chapter 4: Functional Description
Functional Description
Timing Diagrams
Figure 4–5 shows the timing with a single clock cycle per output sample.

All NCO architectures—except for serial CORDIC and multi-cycle multiplier-based
architectures—output a sample every clock cycle. After the clock enable is asserted,
the oscillator outputs the sinusoidal samples at a rate of one sample per clock cycle,
following an initial latency of L clock cycles. The exact value of L varies across
architectures and parameterizations.

1 For the non-single-cycle per output architectures, the optional phase and frequency
modulation inputs need to be valid at the same time as the corresponding phase
increment value. The values should be sampled every 2 cycles for the two-cycle
multiplier-based architecture and every N cycles for the serial CORDIC architecture,
where N is the magnitude precision.

Figure 4–6 shows the timing diagram for a two-cycle multiplier-based NCO
architecture.

After the clock enable is asserted, the oscillator outputs the sinusoidal samples at a
rate of one sample for every two clock cycles, following an initial latency of L clock
cycles. The exact value of L depends on the parameters that you set.

Figure 4–5. Single-Cycle Per Output Timing Diagram

clk

clken

phi_inc_i

reset_n

fsin_0

fcos_0

out_valid

42949673

0 -3 2057 41... 61.... 8148 10... 12... 13.... 15...

0 32767 32... 32... 32... 32... 31... 31... 30... 29... 28

Figure 4–6. Two-Cycle Multiplier-Based Architecture Timing Diagram

clk

clken

reset_n

fsin_0

fcos_0

out_valid

0 -3 41... 81... 12.... 15... 19... 22... 25...

0 32766 32... 32... 31... 30... 28... 26... 23... 20...

phi_inc_i 85899346

27... 29... 31... 32.... 32... 32... 32...

17... 13... 10... 61.... 20... -2... -6...

31...

-1...

29...

-1...
NCO MegaCore Function User Guide © May 2011 Altera Corporation

Chapter 4: Functional Description 4–11
Functional Description
Figure 4–7 shows the timing diagram for a serial CORDIC NCO architecture.

1 Note that the fsin_0 and fcos_0 values can change while out_valid is low.

After the clock enable is asserted, the oscillator outputs sinusoidal samples at a rate of
one sample per N clock cycles, where N is the magnitude precision set in the NCO
MegaCore function. Figure 4–7 shows the case where N = 8. There is also an initial
latency of L clock cycles; the exact value of L depends on the parameters that you set.

Table 4–3 shows typical latency values for the different architectures.

Figure 4–8 shows the timing diagram for a multi-channel NCO in the case where the
number of channels, M is set to 4. The input phase increments for each channel, Pk are
interleaved and loaded sequentially.

Figure 4–7. Serial CORDIC Timing Diagram

clk

clken

reset_n

fsin_0

fcos_0

out_valid

0 3 1404

0 2047

phi_inc_i 31457

-20112043 1574 257 -1201

1490 -383129 -1308 -2030 -16572046

Table 4–3. Latency Values

Architecture Variation

Latency (2), (3)

Base Minimum Maximum

Small ROM all 7 7 13

Large ROM all 4 4 10

Multiplier-Based Throughput = 1, Logic cells 11 11 17

Multiplier-Based Throughput = 1, Dedicated, Special case (1) 8 8 14

Multiplier-Based Throughput = 1, Dedicated, Not special case 10 10 16

Multiplier-Based Throughput = 1/2 15 15 26

CORDIC Parallel 2N + 4 20 (4) 74 (5)

CORDIC Serial CORDIC 2N + 2 18 (4) 258 (5)

Notes for Table 4–3:

(1) Special case: (9 <= N <= 18 && WANT_SIN_AND_COS).
(2) Latency = base latency + dither latency+ frequency modulation pipeline + phase modulation pipeline (×N for serial CORDIC).
(3) Dither latency = 0 (dither disabled) or 2 (dither enabled).
(4) Minimum latency assumes N = 8.
(5) Maximum latency assumes N = 32
© May 2011 Altera Corporation NCO MegaCore Function User Guide

4–12 Chapter 4: Functional Description
Signals
The phase increment for channel 0 is the first value read in on the rising edge of the
clock following the de-assertion of reset_n (assuming clken is asserted) followed
by the phase increments for the next (M-1) channels. The output signal out_valid is
asserted when the first valid sine and cosine outputs for channel 0, S0, C0, respectively
are available.

The output values Sk and Ck corresponding to channels 1 through (M-1) are output
sequentially by the NCO. The outputs are interleaved so that a new output sample for
channel k is available every M cycles.

Signals
The NCO MegaCore function supports the input and output signals shown in
Table 4–4.

Figure 4–8. Multi-Channel NCO Timing Diagram

Table 4–4. NCO MegaCore FunctionSignals

Signal Direction Description

address[2:0] Input Address of the 16 phase increment registers when frequency hopping is enabled.

clk Input Clock.

clken Input Active-high clock enable.

freq_mod_i [F-1:0] Input Optional frequency modulation input. You can specify the modulator resolution F
in IP Toolbench.

freq_sel[log2N-1:0] input Use to select one of the phase increment registers (that is to select the hopping
frequencies), when frequency hopping is enabled. N is the depth.

phase_mod_i [P-1:0] Input Optional phase modulation input. You can specify the modulator precision P in IP
Toolbench.

phi_inc_i [A-1:0] Input Input phase increment. You can specify the accumulator precision A in IP
Toolbench.

reset_n Input Active-low asynchronous reset.

write_sig Input Active-high write signal when frequency hopping is enabled.

fcos_o [M-1:0] Output Optional output cosine value (when dual output is selected). You can specify the
magnitude precision M in IP Toolbench.

fsin_o [M-1:0] Output Output sine value. You can specify the magnitude precision M in IP Toolbench.

out_valid Output Data valid signal. Asserted by the MegaCore function when there is valid data to
output.
NCO MegaCore Function User Guide © May 2011 Altera Corporation

Chapter 4: Functional Description 4–13
Referenced Documents
Referenced Documents
Altera application notes, white papers, and user guides providing more detailed
explanations of how to effectively design with MegaCore functions and the Quartus II
software are available at the Altera web site (www.altera.com).

Refer also to the following references:

■ Andraka, Ray. A Survey of CORDIC Algorithms for FPGAs, FPGA ‘98 Proceedings of
the ACM/SIGDA Sixth International Symposium on Field Programmable Gate
Arrays

■ MegaCore IP Library Release Notes and Errata

■ Altera Software Installation and Licensing manual

■ AN320: OpenCore Plus Evaluation of Megafunctions

■ DSP Builder User Guide

■ Avalon Interface Specifications

■ Simulating Altera Designs chapter in volume 3 of the Quartus II Handbook
© May 2011 Altera Corporation NCO MegaCore Function User Guide

www.altera.com/literature/rn/rn_ip.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/ug/ug_dsp_builder.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com
http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/ug/ug_dsp_builder.pdf

4–14 Chapter 4: Functional Description
Referenced Documents
NCO MegaCore Function User Guide © May 2011 Altera Corporation

© May 2011 Altera Corporation
A. Example Multichannel Design
Multichannel Design
Often in a system where the clock frequency of the design is much higher than the
sampling frequency, it is possible to time share some of the hardware.

Consider a system with a clock frequency of 200 MHz and a sampling rate of 50 MSPS
(Megasamples per second). You can actually generate four complex sinusoids using a
single instance of the NCO MegaCore function. This example design demonstrates
how you can achieve this using the multi-channel feature.

Example design 3 generates four multiplexed and de-multiplexed streams of complex
sinusoids, which can be used in a digital up or down converter design (Figure A–1).

The design also generates five output signals (valid, startofpacket,
endfopacket, fsin_o and fcos_o) that are used by the Avalon-ST interface as
shown in Figure A–1.

There are separate top-level design files (named multichannel_example.v and
multichannel_example.vhd) for Verilog HDL and VHDL in the directories:

<IP install path>\nco\example_designs\multi_channel\verilog

<IP install path>\nco\example_designs\multi_channel\vhdl

Figure A–1. Multi-Channel NCO Example Design

Counter

phi_ch0
phi_ch1
phi_ch2
phi_ch3

fmod_ch0
fmod_ch1
fmod_ch2
fmod_ch3

pmod_ch0
pmod_ch1
pmod_ch2
pmod_ch3

sin_ch0

sin_ch1

sin_ch2

sin_ch3

cos_ch0

cos_ch1

cos_ch2

cos_ch3

startofpacket
endofpacket

valid

fsin_o
fcos_o

phi_inc_i

req_mode_i

phase_mod_i

fsin_o

fcos_o

out_valid

Avalon-Streaming

Counter

NCO
NCO MegaCore Function User Guide

A–2 Appendix A: Example Multichannel Design
Multichannel Design
To open the multichannel example design perform the following steps:

1. Browse to the appropriate example design directory. There is a choice between
VHDL and Verilog HDL files.

2. Create a new Quartus II project in the example design directory.

3. Add the Verilog HDL or VHDL files to the project and specify the top level entity
to be multichannel_example.

4. On the Tools menu, click MegaWizard Plug-In Manager. In the MegaWizard
Plug-In Manager dialog box, select Edit an existing custom megafunction
variation and select the nco.vhd file with Megafunction name NCO v10.1.

5. Click Next to display IP Toolbench, Click Parameterize to review the parameters,
then click Generate.

6. Open ModelSim, and change the directory to the appropriate multiple channel
example design verilog or vhdl directory.

7. Select TCL > Execute Macro from the Tools menu in ModelSim. Select the
multichannel_example_ver_msim.tcl script for the Verilog HDL design or the
multichannel_example_vhdl_msim.tcl script for the VHDL design.

8. Observe the behavior of the design in the ModelSim Wave window.

The oscillator meets the following specifications:

■ SFDR: 110 dB

■ Output Sample Rate: 200 MSPS (50 MSPS per channel)

■ Output Frequency: 5MHz, 2MHz, 1MHz, 500KHz

■ Output Phase: 0, π/4, π/2, π

■ Frequency Resolution: 0.047 Hz

The design operates with a 200MHz clock rate and the number of channels option set
to 4. This means that the resulting waveforms have an output sample-rate of fclk/4.
Therefore, the maximum output clock frequency is 50MHz. In this case, the output
signal would have only one sample for a cycle. Figure A–2 shows the timing
relationship between Avalon-ST signals, a generated multiplexed signal stream and
de-multiplexed signal streams.

Figure A–2. Multi-Channel NCO Output Signals

clk

valid

startofpacket

endofpacket

sin_o

sin_ch0

sin_ch1

sin_ch2

sin_ch3

A0 B0 C0 D0 A1 B1 C1 D1 A2 B2 C2 D2

A0

B0

C0

D0

A1

B1

C1

D1
NCO MegaCore Function User Guide © May 2011 Altera Corporation

Appendix A: Example Multichannel Design A–3
Multichannel Design
Parameter Settings
To meet the specification, the design uses the following parameter settings:

■ Multiplier-based algorithm—By using the dedicated multiplier circuitry in Stratix
devices, the NCO architectures that implement this algorithm can provide very
high performance.

■ Clock rate of 200 MHz and 32-bit phase accumulator precision—These settings yield a
frequency resolution of 47 mHz.

■ Angular and magnitude precision—These settings are critical to meet the SFDR
requirement, while minimizing the required device resources. Setting the angular
precision to 17 bits and the magnitude precision to 18 bits results in the spectrum
shown in Figure A–3.

■ Dither level—The specified angular and magnitude precision settings yield an
SFDR of approximately 100.05 dB, which is clearly not sufficient to meet the
specification. Using the dither control in the NCO MegaCore function, the
variance of the dithering sequence is increased until the trade-off point between
spur reduction and noise level augmentation is reached for these particular clock
frequency to output frequency ratio and precision settings. At a dithering level of
3, the SFDR is approximately 110.22 dB, which exceeds the specification as shown
in Figure A–4.

Figure A–3. Spectrum After Setting Angular and Magnitude Precision

Figure A–4. Spectrum After the Addition of Dithering
© May 2011 Altera Corporation NCO MegaCore Function User Guide

A–4 Appendix A: Example Multichannel Design
Multichannel Design
Implementation Settings
The design uses the following implementation settings:

■ Frequency modulation—The frequency modulation setting allows the use of an
external frequency for modulating input signal. The modulator resolution is 32
bits and the modulator pipeline level is 1.

■ Phase modulation— A phase modulation input is necessary with 32 bits for
modulator precision and the modulator pipeline level is 1.

■ Output—Dual output is used for generating both the sine and cosine outputs.

■ Multi-Channels NCO—The number of channels is 4.

Simulation Specification
The provided ModelSim simulation script generates signals with different frequencies
and phases in four separate channels as shown in Table A–1. The table also shows the
parameter settings that are needed to generate the required signals in four separate
channels.

Table A–1. ModelSim Simulation Map

Channel Generated Signal Settings

Frequency 5 MHz f0 5 MHz

0 Phase 0 fMOD 0

pMOD 0

Frequency 2 MHz f0 500 KHz

1 Phase π/4 fMOD 1,500 KHz

pMOD π/4

Frequency 1 MHz f0 100 KHz

2 Phase π/2 fMOD 900 KHz

pMOD π/2

Frequency 500 KHz f0 10 KHz

3 Phase π fMOD 490 KHz

pMOD π
NCO MegaCore Function User Guide © May 2011 Altera Corporation

© May 2011 Altera Corporation
Additional Information
Revision History
The following table displays the revision history for this user guide.

Date Version Changes Made

May 2011 11.0 ■ Updated support level to final support for Arria II GX, Arria II GZ, Cyclone III LS, and
Cyclone IV GX devices.

■ Updated support level to HardCopy Compilation for HardCopy III, HardCopy IV E, and
HardCopy IV GX devices.

December 2010 10.1 ■ Added preliminary support for Arria II GZ devices.

■ Updated support level to final support for Stratix IV GT devices.

July 2010 10.0 ■ Added preliminary support for Stratix V devices.

November 2009 9.1 ■ Added parameter editor support for frequency hopping feature.

■ Removed frequency hopping design example.

■ Preliminary support for Cyclone III LS, Cyclone IV, and HardCopy IV GX devices.

March 2009 9.0 ■ Preliminary support for Arria® II GX device family.

■ Added new frequency hopping design example.

November 2008 8.1 ■ Full support for Stratix® III device family.

■ Replaced old design examples by new multichannel design.

■ Applied new documentation style.

■ Withdrawn support for UNIX.

May 2008 8.0 ■ Separated the design flows and parameter setting sections.

■ Full support for Cyclone® III device family.

■ Preliminary support for Stratix IV device family.

October 2007 7.2 ■ Updated NCO block diagram.

■ Added multi-channel description and timing diagram.

■ Added latency table.

■ Updated GUI screenshots.

■ Full support for Arria GX device family.

May 2007 7.1 ■ Added 32-bit precision for angle & magnitude.

■ Preliminary support for Arria GX device family.

■ Full support for Stratix II GX and HardCopy II devices.

December 2006 7.0 ■ Preliminary support for Cyclone III device family.

December 2006 6.1 ■ Preliminary support for Stratix III device family.

■ Minor updates throughout the user guide.

April 2006 2.3.1 ■ Maintenance release; updated screen shots and format

October 2005 2.3.0 ■ Maintenance release; updated screen shots and format.

■ Preliminary support for HardCopy® II, HardCopy Stratix, and Stratix II GX device families.

■ Removed Mercury and Excalibur device support.
NCO MegaCore Function User Guide

Info–2 Additional Information
How to Contact Altera
How to Contact Altera
For the most up-to-date information about Altera® products, refer to the following
table.

Typographic Conventions
This document uses the typographic conventions shown in the following table.

June 2004 2.2.0 ■ Added Cyclone II support.

■ Updated functional description, tutorial instructions and screenshots.

February 2004 2.1.0 ■ Enhancements include support for Stratix II devices; support for easy-to-use IP
Toolbench; IP functional simulation models for use in Altera®-supported VHDL and Verilog
HDL simulators; support for UNIX and Linux operating systems.

November 2002 2.0.2 ■ Updated the screen shots; made some formatting and organization changes; minor
wording changes to several sections.

July 2002 2.0.1 ■ NCO MegaCore functions now display a single DSP Builder library for OpenCore and
OpenCore Plus in the Simulink Library Browser.

May 2002 2.0.0 ■ Updated functional description. Added DSP Builder, OpenCore Plus, and licensing
information. Removed reference designs and replaced with example designs. Updated all
screen shots. Made formatting and organization changes.

April 2000 1.0 ■ Version 1.0 of this user guide.

Date Version Changes Made

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to table:

(1) You can also contact your local Altera sales office or sales representative.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicates command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box.

bold type Indicates directory names, project names, disk drive names, file names, file name
extensions, and software utility names. For example, \qdesigns directory, d: drive,
and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicates document titles. For example: AN 519: Stratix IV Design Guidelines.

Italic type Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.
NCO MegaCore Function User Guide © May 2011 Altera Corporation

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

Additional Information Info–3
Typographic Conventions
Initial Capital Letters Indicates keyboard keys and menu names. For example, Delete key and the Options
menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. Active-low signals are denoted by suffix n. Example: resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

1., 2., 3., and
a., b., c., and so on.

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

r The angled arrow instructs you to press the enter key.

f The feet direct you to more information about a particular topic.

Visual Cue Meaning
© May 2011 Altera Corporation NCO MegaCore Function User Guide

Info–4 Additional Information
Typographic Conventions
NCO MegaCore Function User Guide © May 2011 Altera Corporation

	NCO MegaCore Function User Guide
	Contents
	1. About This MegaCore Function
	Features
	Release Information
	Device Family Support
	MegaCore Verification
	Performance and Resource Utilization
	Installation and Licensing
	OpenCore Plus Evaluation
	OpenCore Plus Time-Out Behavior

	2. Getting Started
	Design Flows
	DSP Builder Flow
	MegaWizard Plug-In Manager Flow
	Parameterize the MegaCore Function
	Generate the MegaCore Function
	Simulate the Design
	Compile the Design and Program a Device

	3. Parameter Settings
	Setting Parameters
	Parameter Descriptions

	4. Functional Description
	Numerically Controlled Oscillators
	Spectral Purity
	Maximum Output Frequency

	Avalon-ST and Avalon-MM Interfaces
	Functional Description
	Architectures
	Frequency Modulation
	Phase Modulation
	Phase Dithering
	Multi-Channel NCOs
	Frequency Hopping
	Timing Diagrams

	Signals
	Referenced Documents

	A. Example Multichannel Design
	Multichannel Design
	Parameter Settings
	Implementation Settings
	Simulation Specification

	Additional Information
	Revision History
	How to Contact Altera
	Typographic Conventions

