
101 Innovation Drive
San Jose, CA 95134
www.altera.com

UG-01072-6.0

User Guide

FIR Compiler II MegaCore Function

Document last updated for Altera Complete Design Suite version:
Document publication date:

11.1
February 2012

Subscribe

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=UG-01072

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and
services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.

February 2012 Altera Corporation FIR Compiler II MegaCore Function
User Guide

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

February 2012 Altera Corporation
Contents
Chapter 1. About This MegaCore Function
Features . 1–2
Device Family Support . 1–2
MegaCore Verification . 1–3
Performance and Resource Utilization . 1–4
Release Information . 1–12

Chapter 2. Getting Started
Installation and Licensing . 2–1
MegaWizard Plug-In Manager Design Flow . 2–2

Specifying Parameters . 2–2
Simulating the Design . 2–4

Simulating in the ModelSim-Altera Software . 2–4
Simulating in MATLAB . 2–4
Simulating in Third-Party Simulation Tools Using NativeLink . 2–4

Compiling the Design and Programing a Device . 2–5

Chapter 3. Parameter Settings
Filter Specification Page . 3–1

Loading Coefficients from a File . 3–2
Input and Output Options Page . 3–3

Signed Fractional Binary . 3–4
MSB and LSB Truncation, Saturation, and Rounding . 3–4

Implementation Options Page . 3–5
Memory and Multiplier Trade-Offs . 3–6

Chapter 4. Functional Description
Architecture . 4–1
Interfaces . 4–1

Avalon-ST Sink and Source Interfaces . 4–2
Avalon-ST Sink Interface . 4–2

Avalon-ST Source Interface . 4–5
Clock and Reset Interfaces . 4–6

Time-Division Multiplexing . 4–7
Multichannel Operation . 4–8

Vectorized Inputs . 4–8
Channelization . 4–9
Channel Input/Output Format . 4–12

Example—Eight Channels on Three Wires . 4–12
Example—Four Channels on Four Wires . 4–12
Example—15 Channels with 15 Valid Cycles and 17 Invalid Cycles . 4–13
Example—22 Channels with 11 Valid Cycles and 9 Invalid Cycles . 4–15
Example—Super Sample Rate . 4–17

Multiple Coefficient Banks . 4–18
Coefficient Reloading . 4–19
Signals . 4–22

Additional Information
FIR Compiler II MegaCore Function
User Guide

iv Contents
Document Revision History . Info–1
How to Contact Altera . Info–1
Typographic Conventions . Info–2
FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

February 2012 Altera Corporation
1. About This MegaCore Function
This document describes the Altera® FIR Compiler II intellectual property (IP) core.
The FIR Compiler II MegaCore® function provides a fully integrated finite impulse
response (FIR) filter function optimized for use with Altera FPGA devices. The FIR
Compiler II MegaCore function has an interactive parameter editor that allows you to
easily create custom FIR filters. The parameter editor outputs IP functional simulation
model files for use with Verilog HDL and VHDL simulators.

You can use the parameter editor to implement a variety of filter types, including
single rate, decimation, interpolation, and fractional rate filters.

Many digital systems use signal filtering to remove unwanted noise, to provide
spectral shaping, or to perform signal detection or analysis. FIR filters and infinite
impulse response (IIR) filters provide these functions. Typical filter applications
include signal preconditioning, band selection, and low-pass filtering.

Figure 1–1 shows a FIR filter configured as a weighted, tapped delay line.

The filter design process involves identifying coefficients that match the frequency
response specified for the system. These coefficients determine the response of the
filter. You can change which signal frequencies pass through the filter by changing the
coefficient values in the parameter editor.

Figure 1–1. Basic FIR Filter

xin

yout

Z -1 Z -1 Z -1 Z -1 Tapped
Delay Line

Coefficient
Multipliers

Adder Tree

C01

C02

C11

C12

C21

C22

C31

C32
Coefficient
Banks
FIR Compiler II MegaCore Function
User Guide

1–2 Chapter 1: About This MegaCore Function
Features
Features
The Altera FIR Compiler II MegaCore function implements a finite impulse response
(FIR) filter and supports the following features:

■ Exploiting maximal designs efficiency through hardware optimizations such as:

■ Interpolation

■ Decimation

■ Symmetry

■ Decimation half-band

■ Time sharing

■ Easy system integration using Avalon® Streaming (Avalon-ST) interfaces.

■ Memory and multiplier trade-offs to balance the implementation between logic
elements (LEs) and memory blocks (M512, M4K, M9K, M10K, M20K, or M144K).

■ Support for run-time coefficient reloading capability and multiple coefficient
banks.

■ User-selectable output precision via truncation, saturation, and rounding.

Device Family Support
The MegaCore functions provide either final or preliminary support for target Altera
device families:

■ FPGA Device Families

■ Final support means the core is verified with final timing models for this
device family. The core meets all functional and timing requirements for the
device family and can be used in production designs.

■ Preliminary support means the core is verified with preliminary timing
models for this device family. The core meets all functional requirements, but
might still be undergoing timing analysis for the device family. It can be used
in production designs with caution.

■ HardCopy Device Families

■ HardCopy Compilation means the core is verified with final timing models for
the HardCopy device family. The core meets all functional and timing
requirements for the device family and can be used in production designs.

■ HardCopy Companion means the core is verified with preliminary timing
models for the HardCopy companion device. The core meets all functional
requirements, but might still be undergoing timing analysis for HardCopy
device family. It can be used in production designs with caution.
FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

Chapter 1: About This MegaCore Function 1–3
MegaCore Verification
Table 1–1 lists the level of support offered by the FIR Compiler II MegaCore function
for each Altera device family.

MegaCore Verification
Before releasing a version of the FIR Compiler II MegaCore function, Altera runs
comprehensive regression tests to verify its quality and correctness. Custom
variations of the FIR Compiler II MegaCore function are generated to exercise its
various parameter options, and the resulting simulation models are thoroughly
simulated with the results verified against master simulation models.

Table 1–1. Device Family Support

Device Family Support

Arria® GX Final

Arria II GX Final

Arria II GZ Final

Arria V Refer to the What’s New in Altera IP page of the
Altera website.

Cyclone® II Final

Cyclone III Final

Cyclone III LS Final

Cyclone IV GX Final

Cyclone V Refer to the What’s New in Altera IP page of the
Altera website.

HardCopy® II HardCopy Compilation

HardCopy III HardCopy Compilation

HardCopy IV HardCopy Compilation

Stratix® Final

Stratix II Final

Stratix II GX Final

Stratix III Final

Stratix IV Final

Stratix IV GT Final

Stratix IV GX Final

Stratix V Refer to the What’s New in Altera IP page of the
Altera website.

Other device families No support (1)

Note to Table 1–1:

(1) If you want to use HardCopy Stratix devices, select the Stratix family and then browse through the available
devices for <device>_HARDCOPY_FPGA_PROTOTYPE.
February 2012 Altera Corporation FIR Compiler II MegaCore Function
User Guide

http://www.altera.com/products/ip/news/ip-whats-new.html
http://www.altera.com/products/ip/news/ip-whats-new.html
http://www.altera.com/products/ip/news/ip-whats-new.html

1–4 Chapter 1: About This MegaCore Function
Performance and Resource Utilization
Performance and Resource Utilization
This section shows typical, expected performance of the FIR Compiler II MegaCore
function using the current version of Quartus II software.

Table 1–2 lists the parameter settings of the FIR filter used to generate the
performance and resource utilization data. Backpressure support is also disabled in
the FIR filter.

Table 1–2. Sample FIR filter Input Parameterization (1)

Variant Interpolation Decimation L-th Band No. of
Channels

Clock
Rate

Input Sample
Rate (MSPS)

Single channel, single rate 1 1 All Taps 1 300 300

Single channel, decimation 1 4 All Taps 1 300 300

Single channel, interpolation 4 1 All Taps 1 320 80

Single channel, fractional rate 3 2 All Taps 1 320 80

Single channel, single rate, half band 1 1 Half Band 1 300 300

Single channel, decimation, half band 1 2 Half Band 1 300 300

Single channel, interpolation,
half band 2 1 Half Band 1 300 150

Single channel, fractional rate,
half band 3 2 Half Band 1 320 80

Single channel, single rate,
super sample 1 1 All Taps 1 300 600

Single channel, interpolation,
super sample 1 4 All Taps 1 300 600

Single channel, single rate, multiple
coefficient banks 1 1 All Taps 1 300 600

Multi-channel, single wire, single rate 1 1 All Taps 8 300 300

Multi-channel, single wire, decimation 1 4 All Taps 8 300 300

Multi-channel, single wire, interpolation 4 1 All Taps 8 320 80

Multi-channel, single wire, fractional rate 3 2 All Taps 8 320 80

Multi-channel, single wire, decimation,
multiple coefficient banks 1 4 All Taps 8 300 300

Multi-channel, multi wire, single rate 1 1 All Taps 8 320 80

Multi-channel, multi wire, decimation 1 4 All Taps 8 320 320

Multi -channel, multi wire, interpolation 4 1 All Taps 8 320 80

Multi-channel, multi wire, fractional rate 3 2 All Taps 8 320 80

Multi-channel, multi wire, fractional rate,
output options 3 2 All Taps 8 320 80

Multi-channel, multi wire, interpolation,
multiple coefficient banks 4 1 All Taps 8 320 80

Note to Table 1–2:

(1) Super sample mode is only supported in single rate and interpolation filter.
FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

Chapter 1: About This MegaCore Function 1–5
Performance and Resource Utilization
Table 1–3 lists the estimated resource utilization and performance of the FIR filter for
the Cyclone III device family. The FIR filter is configured using the settings in
Table 1–2.

Table 1–3. FIR Compiler II Performance for Cyclone III Devices—EP3C80F780C6 Device (Part 1
of 2)

Combinational
look-up tables

(LUTs)
Logic Registers

Memory
Multipliers (9 × 9) Restricted

fMAX (MHz)Bits M9K

Single channel, single rate

1,489 6,514 0 0 24 250

Single channel, decimation

414 1,868 340 2 10 250

Single channel, interpolation

644 2,997 102 3 18 250

Single channel, fractional rate

588 2,224 544 4 10 250

Single channel, single rate, half band

723 3,811 0 0 16 250

Single channel, decimation, half band

444 1,761 935 4 10 250

Single channel, interpolation, half band

484 2,240 289 3 10 250

Single channel, fractional rate, half band

361 1,046 476 5 6 250

Single channel, single rate, super sample

2,930 12,082 0 0 48 250

Single channel, interpolation, super sample

3,322 12,450 0 0 76 250

Single channel, single rate, multiple coefficient banks

1,301 4,654 0 0 36 250

Multi-channel, single wire, single rate

1,571 12,384 0 0 24 250

Multi-channel, single wire, decimation

497 2,961 4,794 5 10 250

Multi-channel, single wire, interpolation

699 2,362 1,904 8 18 250

Multi-channel, single wire, fractional rate

854 3,218 9,962 7 16 250

Multi-channel, single wire, decimation, multiple coefficient banks

566 3,004 4,858 6 10 250

Multi-channel, multi wire, single rate

3,137 19,842 0 0 48 250
February 2012 Altera Corporation FIR Compiler II MegaCore Function
User Guide

1–6 Chapter 1: About This MegaCore Function
Performance and Resource Utilization
Table 1–4 lists the estimated resource utilization and performance of the FIR filter for
the Arria II GX device family. The FIR filter is configured using the settings in
Table 1–2.

Multi-channel, multi wire, decimation

3,670 16,406 2,856 16 80 250

Multi -channel, multi wire, interpolation

4,680 27,320 0 0 76 245.1

Multi-channel, multi wire, fractional rate

2,412 12,478 2,176 8 64 250

Multi-channel, multi wire, fractional rate, output options

2,691 12,605 2,176 8 64 250

Multi-channel, multi wire, interpolation, multiple coefficient banks

4,008 18,670 0 0 108 250

Table 1–3. FIR Compiler II Performance for Cyclone III Devices—EP3C80F780C6 Device (Part 2
of 2)

Combinational
look-up tables

(LUTs)
Logic Registers

Memory
Multipliers (9 × 9) Restricted

fMAX (MHz)Bits M9K

Table 1–4. FIR Compiler II Performance in Arria II GX Devices—EP2AGX65DF25C4 Device (Part 1 of 2)

Combinational
LUTs

Logic
Registers

Memory

Block Bits
(M9K/M144K)

MLAB
Bits

Multiplier
(18 × 18)

Restricted
fMAX (MHz)Bits

Adaptive
look-up
tables
(ALUTs)

M9K M144K

Single channel, single rate

459 1,495 0 0 0 0 0 0 20 260.01

Single channel, decimation

251 887 782 187 0 0 0 782 6 260.01

Single channel, interpolation

127 894 527 187 0 0 0 527 10 260.01

Single channel, fractional rate

294 919 748 170 0 0 0 748 6 260.01

Single channel, single rate, half band

242 1,120 0 0 0 0 0 0 10 260.01

Single channel, decimation, half band

286 906 1,275 187 0 0 0 1,275 6 260.01

Single channel, interpolation, half band

290 1,037 833 221 0 0 0 833 6 260.01

Single channel, fractional rate, half band

144 496 391 85 0 0 0 391 4 260.01

Single channel, single rate, super sample

918 2,336 68 34 0 0 0 68 40 260.01
FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

Chapter 1: About This MegaCore Function 1–7
Performance and Resource Utilization
Single channel, interpolation, super sample

1,084 2,679 0 0 0 0 0 0 52 260.01

Single channel, single rate, multiple coefficient banks

507 1,935 0 0 0 0 0 0 20 260.01

Multi-channel, single wire, single rate

493 2,222 4,284 612 0 0 0 4,284 20 260.01

Multi-channel, single wire, decimation

331 1,097 6,145 228 0 0 0 6,145 6 260.01

Multi-channel, single wire, interpolation

170 979 4,930 187 0 0 0 4,930 10 260.01

Multi-channel, single wire, fractional rate

597 1,843 10,735 305 0 0 0 10,735 10 260.01

Multi-channel, single wire, decimation, multiple coefficient banks

405 1,134 6,209 230 0 0 0 6,209 6 260.01

Multi-channel, multi wire, single rate

968 4,369 3,672 1,224 0 0 0 3,672 40 260.01

Multi-channel, multi wire, decimation

2,058 7,018 6,460 1,496 0 0 0 6,460 48 260.01

Multi -channel, multi wire, interpolation

1,652 7,584 4,054 1,466 0 0 0 4,054 52 260.01

Multi-channel, multi wire, fractional rate

1,175 5,027 6,333 914 0 0 0 6,333 32 260.01

Multi-channel, multi wire, fractional rate, output options

1,454 5,154 6,333 914 0 0 0 6,333 32 260.01

Multi-channel, multi wire, interpolation, multiple coefficient banks

1,435 8,229 4,058 1,468 0 0 0 4,058 64 260.01

Table 1–4. FIR Compiler II Performance in Arria II GX Devices—EP2AGX65DF25C4 Device (Part 2 of 2)

Combinational
LUTs

Logic
Registers

Memory

Block Bits
(M9K/M144K)

MLAB
Bits

Multiplier
(18 × 18)

Restricted
fMAX (MHz)Bits

Adaptive
look-up
tables
(ALUTs)

M9K M144K
February 2012 Altera Corporation FIR Compiler II MegaCore Function
User Guide

1–8 Chapter 1: About This MegaCore Function
Performance and Resource Utilization
Table 1–5 lists the estimated resource utilization and performance of the FIR filter for
the Stratix III device family. The FIR filter is configured using the settings in Table 1–2.

Table 1–5. FIR Compiler II Performance in Stratix III Devices—EP3SE50F780C2 Device (Part 1 of 2)

Combinational
LUTs

Logic
Registers

Memory Block Bits
(M9K/M144K)

MLAB
Bits

Multiplier
(18 × 18)

Restricted
fMAX (MHz)Bits ALUTs M9K M144K

Single channel, single rate

457 1,451 0 0 0 0 0 0 20 467.95

Single channel, decimation

246 842 782 187 0 0 0 782 6 431.59

Single channel, interpolation

123 834 527 187 0 0 0 527 10 470.15

Single channel, fractional rate

290 866 748 170 0 0 0 748 6 451.26

Single channel, single rate, half band

240 1,077 0 0 0 0 0 0 10 452.69

Single channel, decimation, half band

281 773 1,275 153 2 0 0 493 6 440.33

Single channel, interpolation, half band

285 991 816 221 0 0 0 816 6 454.55

Single channel, fractional rate, half band

141 454 391 85 0 0 0 391 4 490.2

Single channel, single rate, super sample

914 2,249 68 34 0 0 0 68 40 446.03

Single channel, interpolation, super sample

1,070 2,341 0 0 0 0 0 0 52 453.51

Single channel, single rate, multiple coefficient banks

499 1,881 0 0 0 0 0 0 20 456.41

Multi-channel, single wire, single rate

485 2,152 4,284 612 0 0 0 4,284 20 421.05

Multi-channel, single wire, decimation

335 800 6,111 126 5 0 0 1,317 6 446.43

Multi-channel, single wire, interpolation

152 881 1,411 187 0 0 0 1,411 10 469.92

Multi-channel, single wire, fractional rate

585 1,232 7,553 134 8 0 0 753 10 465.33

Multi-channel, single wire, decimation, multiple coefficient banks

407 823 6,175 126 6 0 0 1,317 6 444.64

Multi-channel, multi wire, single rate

952 4,230 3,672 1,224 0 0 0 3,672 40 406.01

Multi-channel, multi wire, decimation

2,025 6,594 6,460 1,496 0 0 0 6,460 48 399.68
FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

Chapter 1: About This MegaCore Function 1–9
Performance and Resource Utilization
Table 1–6 lists the estimated resource utilization and performance of the FIR filter for
the Stratix IV device family. The FIR filter is configured using the settings in Table 1–2.

Multi -channel, multi wire, interpolation

1,626 7,148 4,054 1,466 0 0 0 4,054 52 423.55

Multi-channel, multi wire, fractional rate

1,119 4,703 6,333 914 0 0 0 6,333 32 418.24

Multi-channel, multi wire, fractional rate, output options

1,399 4,830 6,333 914 0 0 0 6,333 32 385.21

Multi-channel, multi wire, interpolation, multiple coefficient banks

1,411 7,789 4,058 1,468 0 0 0 4,058 64 411.02

Table 1–5. FIR Compiler II Performance in Stratix III Devices—EP3SE50F780C2 Device (Part 2 of 2)

Combinational
LUTs

Logic
Registers

Memory Block Bits
(M9K/M144K)

MLAB
Bits

Multiplier
(18 × 18)

Restricted
fMAX (MHz)Bits ALUTs M9K M144K

Table 1–6. FIR Compiler II Performance in Stratix IV Devices—EP4SGX70DF29C2X Device (Part 1 of 2)

Combinational
LUTs

Logic
Registers

Memory Block Bits
(M9K/M144K)

MLAB
Bits

Multiplier
(18 × 18)

Restricted
fMAX (MHz)Bits ALUTs M9K M144K

Single channel, single rate

457 1,451 0 0 0 0 0 0 20 510.2

Single channel, decimation

246 842 782 187 0 0 0 782 6 481.7

Single channel, interpolation

123 834 527 187 0 0 0 527 10 510.2

Single channel, fractional rate

290 866 748 170 0 0 0 748 6 510.2

Single channel, single rate, half band

240 1,077 0 0 0 0 0 0 10 510.2

Single channel, decimation, half band

281 861 1,275 187 0 0 0 1,275 6 510.2

Single channel, interpolation, half band

285 991 816 221 0 0 0 816 6 510.2

Single channel, fractional rate, half band

141 454 391 85 0 0 0 391 4 510.2

Single channel, single rate, super sample

914 2,249 68 34 0 0 0 68 40 510.2

Single channel, interpolation, super sample

1,070 2,340 0 0 0 0 0 0 52 509.68

Single channel, single rate, multiple coefficient banks

499 1,881 0 0 0 0 0 0 20 509.42
February 2012 Altera Corporation FIR Compiler II MegaCore Function
User Guide

1–10 Chapter 1: About This MegaCore Function
Performance and Resource Utilization
Table 1–7 lists the estimated resource utilzation and performance of the FIR filter for
the Stratix V device family. The FIR filter is configured using the settings in Table 1–2.

Multi-channel, single wire, single rate

485 2,152 4,284 612 0 0 0 4,284 20 479.39

Multi-channel, single wire, decimation

317 1,029 6,145 228 0 0 0 6,145 6 510.2

Multi-channel, single wire, interpolation

166 919 4,930 187 0 0 0 4,930 10 510.2

Multi-channel, single wire, fractional rate

563 1,672 10,735 305 0 0 0 10,735 10 510.2

Multi-channel, single wire, decimation, multiple coefficient banks

391 1,066 6,209 230 0 0 0 6,209 6 504.54

Multi-channel, multi wire, single rate

952 4,230 3,672 1,224 0 0 0 3,672 40 466.2

Multi-channel, multi wire, decimation

2,025 6,594 6,460 1,496 0 0 0 6,460 48 457.04

Multi -channel, multi wire, interpolation

1,626 7,148 4,054 1,466 0 0 0 4,054 52 468.38

Multi-channel, multi wire, fractional rate

1,120 4,704 6,333 914 0 0 0 6,333 32 484.26

Multi-channel, multi wire, fractional rate, output options

1,400 4,831 6,333 914 0 0 0 6,333 32 495.54

Multi-channel, multi wire, interpolation, multiple coefficient banks

1,411 7,789 4,058 1,468 0 0 0 4,058 64 459.14

Table 1–6. FIR Compiler II Performance in Stratix IV Devices—EP4SGX70DF29C2X Device (Part 2 of 2)

Combinational
LUTs

Logic
Registers

Memory Block Bits
(M9K/M144K)

MLAB
Bits

Multiplier
(18 × 18)

Restricted
fMAX (MHz)Bits ALUTs M9K M144K

Table 1–7. FIR Compiler II Performance in Stratix V Devices—5SGSMD4H2F35C2 Device (Part 1 of 2)

Combinational
LUTs

Logic
Registers

Memory Block Bits
(M20K)

MLAB
Bits

DSP
Blocks

Restricted fMAX
(MHz)Bits ALUTs M20K

Single channel, single rate

1 698 0 0 0 0 0 10 450.05

Single channel, decimation

93 209 782 187 0 0 782 3 450.05

Single channel, interpolation

162 203 408 204 0 0 408 5 450.05

Single channel, fractional rate

400 720 1,156 119 0 0 1,156 3 450.05
FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

Chapter 1: About This MegaCore Function 1–11
Performance and Resource Utilization
Single channel, single rate, half band

7 279 272 136 0 0 272 5 450.05

Single channel, decimation, half band

129 247 1,156 187 0 0 1,156 3 450.05

Single channel, interpolation, half band

133 360 748 204 0 0 748 3 450.05

Single channel, fractional rate, half band

172 256 612 102 0 0 612 2 450.05

Single channel, single rate, super sample

143 424 5,406 918 0 0 5,406 20 450.05

Single channel, interpolation, super sample

95 881 1.190 340 0 0 1,190 32 450.05

Single channel, single rate, multiple coefficient banks

20 770 289 17 0 0 289 10 450.05

Multi-channel, single wire, single rate

30 147 4,284 612 0 0 4,284 10 450.05

Multi-channel, single wire, decimation

228 423 6,145 228 0 0 6,145 3 450.05

Multi-channel, single wire, interpolation

284 335 6,834 255 0 0 6,834 5 450.05

Multi-channel, single wire, fractional rate

703 1,068 10,624 308 0 0 10,624 5 450.05

Multi-channel, single wire, decimation, multiple coefficient banks

415 621 6,848 231 0 0 6,848 3 450.05

Multi-channel, multi wire, single rate

23 225 3,672 1,224 0 0 3,672 20 450.05

Multi-channel, multi wire, decimation

792 1,524 6,460 1,496 0 0 6,460 24 450.05

Multi -channel, multi wire, interpolation

549 2,315 3,510 1,466 0 0 3,510 32 450.05

Multi-channel, multi wire, fractional rate

934 2,395 6,673 914 0 0 6,673 16 450.05

Multi-channel, multi wire, fractional rate, output options

1,214 2,521 6,673 914 0 0 6,673 16 450.05

Multi-channel, multi wire, interpolation, multiple coefficient banks

568 2,571 3,752 1,502 0 0 3,752 32 450.05

Table 1–7. FIR Compiler II Performance in Stratix V Devices—5SGSMD4H2F35C2 Device (Part 2 of 2)

Combinational
LUTs

Logic
Registers

Memory Block Bits
(M20K)

MLAB
Bits

DSP
Blocks

Restricted fMAX
(MHz)Bits ALUTs M20K
February 2012 Altera Corporation FIR Compiler II MegaCore Function
User Guide

1–12 Chapter 1: About This MegaCore Function
Release Information
Release Information
Table 1–8 provides information about this release of the Altera FIR Compiler II
MegaCore function.

f For more information about this release, refer to the MegaCore IP Library Release Notes
and Errata.

Altera verifies that the current version of the Quartus® II software compiles the
previous version of each MegaCore function. The MegaCore IP Library Release Notes
and Errata report any exceptions to this verification. Altera does not verify
compilation with MegaCore function versions older than one release.

Table 1–8. FIR Compiler II MegaCore Function Release Information

Item Description

Version 11.1

Release Date November 2011

Ordering Code IP-FIRII
IPR-FIRII (renewal)

Product ID 00D8

Vendor ID 6AF7
FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf

February 2012 Altera Corporation
2. Getting Started
This chapter provides a general overview of the Altera IP core design flow to help you
quickly get started with any Altera IP core. The Altera IP library is installed as part of
the Quartus II installation process. You can select and parameterize any Altera IP core
from the library. Altera provides an integrated parameter editor that allows you to
customize IP cores to support a wide variety of applications. The parameter editor
guides you through the setting of parameter values and selection of optional ports.

The following sections describe the general installation, design flow, evaluation, and
production use of Altera IP cores.

Installation and Licensing
The Altera IP Library is distributed with the Quartus II software and downloadable
from the Altera website, www.altera.com.

Figure 2–1 shows the directory structure after you install an Altera IP core, where
<path> is the installation directory. The default installation directory on Windows is
C:\altera\<version number>; on Linux it is /opt/altera<version number>.

You can evaluate an IP core in simulation and in hardware before you purchase a
license. For most Altera IP cores, you can use Altera’s free OpenCore Plus evaluation
feature for this purpose. Some Altera IP cores do not require use of this special feature
for evaluation. You can evaluate the IP core until you are satisfied with its
functionality and performance. You must purchase a license for the IP core when you
want to take your design to production.

After you purchase a license for an Altera IP core, you can request a license file from
the Altera website at www.altera.com/licensing and install it on your computer.
When you request a license file, Altera emails you a license.dat file. If you do not have
internet access, contact your local Altera representative.

Figure 2–1. Directory Structure

src
Contains the libraries.

ast_component
Contains the lower-level design files.

ip
Contains the Altera MegaCore IP Library and third-party IP cores.

<path>
Installation directory.

altera
Contains the Altera MegaCore IP Library.

common
Contains shared components.

fir_compiler_ii
Contains the FIR Compiler II MegaCore function files.
FIR Compiler II MegaCore Function
User Guide

www.altera.com
http://www.altera.com

2–2 Chapter 2: Getting Started
MegaWizard Plug-In Manager Design Flow
f For additional information about installation and licensing, refer to Altera Software
Installation and Licensing.

MegaWizard Plug-In Manager Design Flow
The MegaWizard™ Plug-in Manager flow allows you to customize a FIR Compiler II
MegaCore function, and manually integrate the MegaCore function variation in a
Quartus II design.

Specifying Parameters
To launch the MegaWizard Plug-In Manager, perform the following steps:

1. Create a new project using the New Project Wizard available from the File menu
in the Quartus II software.

2. Launch MegaWizard Plug-In Manager from the Tools menu, and select the option
to create a new custom megafunction variation.

3. Click Next and select FIR Compiler II under Filters under Installed Plug-Ins.

4. Verify the appropriate device family name.

5. Select the top-level output file type for your design; the wizard supports VHDL
and Verilog HDL.

6. Specify the top-level output file name for your MegaCore function variation and
click Next.

7. Specify the parameters on the Parameter Settings pages. For detailed explanations
of these parameters, refer to Chapter 3, Parameter Settings.

8. Click Finish. Generation might take several minutes to complete. The generation
progress and status is displayed in a report window. The parameter editor
generates the top-level HDL code for your IP core, a .qip file containing all of the
necessary assignments and information required to process the IP core in the
Quartus II Compiler, and a simulation directory which includes files for
simulation. The parameter editor also interface generates a MATLAB m-file that
contains functions you can use to analyze a FIR Compiler II MegaCore function
design in the MATLAB environment. A testbench is also generated.

You can now integrate your custom IP core instance in your design, simulate, and
compile. While integrating your IP core instance into your design, you must make
appropriate pin assignments. You can create virtual pin to avoid making specific pin
assignments for top-level signals while you are simulating and not ready to map the
design to hardware.

1 For information about the Quartus II software, including virtual pins and the
MegaWizard Plug-In Manager, refer to Quartus II Help.
FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

Chapter 2: Getting Started 2–3
MegaWizard Plug-In Manager Design Flow
Table 2–1 describes the files created in the project directory during generation of the
MegaCore function. The design synthesis and simulation files are generated in the
following two folders:

■ <variation name> folder — Contains files used for Quartus II synthesis

■ <variation name>_sim folder— Contains files used for simulation purposes

The names and types of files specified in the report vary based on whether you
selected the VHDL or Verilog HDL output format.

Table 2–1. Generated Files (Part 1 of 2) (1) (2)

Filename Description

Compilation files in the project directory

<variation name>.qip

Contains all of the assignments and other information required to process your
MegaCore function variation in the Quartus II Compiler. You are prompted to
add this file to the current Quartus II project when you exit from the parameter
editor.

<variation name>.vhd or .v

A VHDL or Verilog HDL file that defines a VHDL or Verilog HDL top-level
description of the custom MegaCore function variation. Instantiate the entity
defined by this file inside of your design. Include this file when compiling your
design in the Quartus II software.

<variation name>.bsf A Quartus II block symbol file for the MegaCore function variation. You can use
this file in the Quartus II block diagram editor.

Synthesis files in the <variation name> folder

<variation name>_<index>_ast.vhd A VHDL wrapper file for the Avalon-ST interface.

<variation name>_<index>.sdc This file contains timing constraints for FIR Compiler II IP core based on your
variation settings.

<variation name>.<index>.vhd A VHDL file that defines the design entity.

Simulation files in the <variation name>_sim folder

<variation name>_ast.vhd A VHDL wrapper file for the Avalon-ST interface.

<variation name>.vhd A VHDL file that defines the design entity.

<variation name>_nativelink.tcl A Tcl script that can be used to assign NativeLink simulation testbench settings
to the Quartus II project.

<variation name>_msim.tcl This Tcl script can be used to simulate the VHDL testbench together with the
simulation model of the customized FIR MegaCore function variation.

<variation name>_mlab.m This MATLAB m-file provides the kernel of the MATLAB simulation model for
the customized FIR II MegaCore function variation.

<variation name>_model.m This MATLAB m-file provides a MATLAB simulation model for the customized
FIR Compiler II MegaCore function variation.

<variation name>_input.txt
This text file provides input data and bank switching pattern (when multiple
coefficient banks are used) for the MATLAB model and the simulation
testbench.

<variation name>_param.txt This text file records the input and output parameters for customized FIR
Compiler II MegaCore function variation.

<variation name>_coef_int.txt This text file provides coefficient inputs for the testbench (incomplete
coefficients for symmetry/anti-symmetry filter).

<variation name>_coef_reload.txt This text file provides new random coefficients input for the MATLAB model
when the coefficient reloading option is enabled.
February 2012 Altera Corporation FIR Compiler II MegaCore Function
User Guide

2–4 Chapter 2: Getting Started
MegaWizard Plug-In Manager Design Flow
Simulating the Design
The FIR Compiler II MegaCore function generates a number of output files for design
simulation. After you have created a custom FIR filter, you can simulate your design
in the ModelSim®-Altera software, MATLAB, or another third-party simulation tool.

Simulating in the ModelSim-Altera Software
Use the Tcl script (<variation name>_msim.tcl) to load the VHDL testbench into the
ModelSim-Altera software.

This script uses the file <variation name>_input.txt to provide input data to the FIR
filter. The output from the simulation is stored in a file <variation name>_output.txt.

Simulating in MATLAB
To simulate in a MATLAB environment, run the <variation_name>_model.m
testbench m-file, which also is located in your design directory. This script also uses
the file <variation name>_input.txt to provide input data. The output from the
MATLAB simulation is stored in the file <variation name>_model_output.txt.

Simulating in Third-Party Simulation Tools Using NativeLink
You can perform a simulation in a third-party simulation tool from within the
Quartus II software, using NativeLink.

The Tcl script file <variation name>_nativelink.tcl can be used to assign default
NativeLink testbench settings to the Quartus II project.

To perform a simulation in the Quartus II software using NativeLink, perform the
following steps:

1. Create a custom MegaCore function variation as described earlier in this chapter
but ensure you specify a variation name that exactly matches the Quartus II
project name.

2. Verify that the absolute path to your third-party EDA tool is set in the Options
page under the Tools menu in the Quartus II software.

3. On the Processing menu, point to Start and click Start Analysis & Elaboration.

4. On the Tools menu, click Tcl scripts. In the Tcl Scripts dialog box, select
<variation name>_nativelink.tcl and click Run. A message indicates that the Tcl
script is successfully loaded.

<variation name>_coef_reload_rtl.txt

This text file contains the same coeffificient inputs as <variation
name>_coef_reload.txt. However, this file contains incomplete coefficients for
symmetry/anti-symmetry filter and is used for simulation testbench when the
coefficient reloading option is enabled.

Note to Table 2–1

(1) <variation name> is a prefix variation name supplied automatically.
(2) <index> is a variable that indicates the number of times a component has been used. For example, <variation name>_<index>_ast.vhd is

defined as FIR_0002_ast.vhd.

Table 2–1. Generated Files (Part 2 of 2) (1) (2)

Filename Description
FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

Chapter 2: Getting Started 2–5
MegaWizard Plug-In Manager Design Flow
5. On the Assignments menu, click Settings, expand EDA Tool Settings, and select
Simulation. Select a simulator under Tool name then in NativeLink Settings,
select Compile test bench and click Test Benches.

6. On the Tools menu, point to EDA Simulation Tool and click Run EDA RTL
Simulation.

The Quartus II software selects the simulator, and compiles the Altera libraries,
design files, and testbenches. The testbench runs and the waveform window
shows the design signals for analysis.

f For more information, refer to the Simulating Altera IP in Third-Party Simulation Tools
chapter in volume 3 of the Quartus II Handbook.

1 IP functional simulation models output correct data only when data storage is clear.
When data storage is not clear, functional simulation models will output non-relevant
data. The number of clock cycles it takes before relevant samples are available is N;
where N = (number of channels) × (number of coefficients) × (number of clock cycles
to calculate an output).

For a full list of files generated by the FIR Compiler II MegaCore function, refer to
Table 2–1 on page 2–3.

Compiling the Design and Programing a Device
After using the MegaWizard Plug-In Manager to define and instantiate your IP core,
you must compile your design to create programming files to configure the FPGA.

Some Altera IP cores require that you apply constraints before compilation. These
constraint files make pin assignments and ensure that your IP core instance meets
design timing requirements.

After applying constraint files if appropriate for your IP core, you can use the Start
Compilation command on the Processing menu in the Quartus II software to compile
your design. After successfully compiling your design, program the targeted Altera
device with the Programmer and verify the design in hardware.
February 2012 Altera Corporation FIR Compiler II MegaCore Function
User Guide

http://www.altera.com/literature/hb/qts/qts_qii53014.pdf

February 2012 Altera Corporation
3. Parameter Settings
This chapter describes the parameters available in the FIR Compiler II MegaCore
function.

For information about using the parameter editor, refer to “MegaWizard Plug-In
Manager Design Flow” on page 2–2.

The Parameter Settings contains the following three pages:

■ Filter Specification Page

■ Input and Output Options Page

■ Implementation Options Page

Filter Specification Page
A FIR filter is defined by its coefficients. The FIR Compiler II MegaCore function
provides the following options for obtaining coefficients:

■ You can specify the filter settings and coefficient options in the parameter editor.
The FIR Compiler II MegaCore function provides a default 37-tap coefficient set
regardless of the configurations from filter settings. The scaled value and fixed
point value are recalculated based on the coefficient bit width setting. The higher
the coefficient bit width, the closer the fixed frequency response is to the intended
original frequency response with the expense of higher resource usage.

■ You can load the coefficients from a file. For example, you can create the
coefficients in another application such as MATLAB or a user-created program,
save the coefficients to a file, and import them into the FIR Compiler II MegaCore
function. For more information, refer to “Loading Coefficients from a File” on
page 3–2.

Table 3–1 lists the filter specification parameters.

Table 3–1. Filter Specification Parameters (Part 1 of 2)

Parameter Value Description

Filter Settings

Filter Type

Single Rate

Decimation

Interpolation

Fractional Rate

Specifies the type of FIR filter. The default value is Single
Rate.

Interpolation Factor 1–64 Specifies the number of extra points to generate between
the original samples. The default value is 1.

Decimation Factor 1–64 Specifies the number of data points to remove between the
original samples. The default value is 1.

L-th Band Filter

All taps

Half band

3rd–5th

Specifies the apropriate L-band Nyquist filters. Every Lth
coefficient of these filters is zero, counting out from the
center tap. The default value is All taps.
FIR Compiler II MegaCore Function
User Guide

3–2 Chapter 3: Parameter Settings
Filter Specification Page
Loading Coefficients from a File
To load a coefficient set from a file, perform the following steps:

1. In the File Path box, specify the name of the .txt file containing the coefficient set.

The contents of your coefficient file must have each coefficient on a separate line
and no carriage returns at the end of the file. You can use floating-point or
fixed-point numbers, as well as scientific notation. Multiple coefficient sets is
supported by specifying an array of coefficient sets. The number of rows specifies
the number of banks needed. All coefficient sets must have the same symmetry
type and number of taps.

Figure 3–1 shows an example of two symmetrical coefficient sets with 5 taps.

Number of Channels 1–128 Specifies the number of unique input channels to process.
The default is 1.

Coefficient Options

Coefficient Scaling
Auto

None

Specifies the coefficient scaling mode. Select Auto to apply
a scaling factor in which the maximum coefficient value
equals the maximum possible value for a given number of
bits. Select None to read in pre-scaled integer values for
the coefficients and disable scaling.

Coefficient Data Type
Signed Binary

Signed Fractional Binary

Specifies the coefficient input data type. Select Signed
Fractional Binary to monitor which bits are preserved and
which bits are removed during the filtering process.

Coefficient Bit Width 2–32 Specifies the width of the coefficients. The default value is
8 bits.

Coefficient Fractional Bit
Width 0–32

Specifies the width of the coefficient data input into the
filter when you select Signed Fractional Binary as your
coefficient data type.

Frequency Response Display

Show Coeffificient Bank 0–Number of coefficient bank -1 Specifies the coefficient bank to display in the coefficient
table and frequency response graph.

File Path

File Path URL Specifes the file from which to load coefficients. Refer to
“Loading Coefficients from a File”.

Table 3–1. Filter Specification Parameters (Part 2 of 2)

Parameter Value Description

Figure 3–1. Coefficient File Format (2 Symmetrical Coefficient Sets with 5 Taps)
FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

Chapter 3: Parameter Settings 3–3
Input and Output Options Page
1 Do not insert additional carriage returns at the end of the file. The FIR
Compiler II MegaCore function interprets each carriage return as an extra
coefficient with the value of the most recent past coefficient. The file must
have a minimum of five non-zero coefficients.

2. In the Filter Specification tab of the parameter editor, click Apply to import the
coefficient set.

When you import a coefficient set, the frequency response of the floating-point
coefficients is displayed in blue and the frequency response of the fixed-point
coefficients is displayed in red.

The FIR Compiler II MegaCore function supports scaling on the coefficient set.

Input and Output Options Page
Table 3–2 lists the parameter options.

Table 3–2. Input and Output Options

Parameter Value Description

Input Options

Input Data Type
Signed Binary

Signed Fractional Binary

Specifies whether the input data is in a signed binary or a
signed fractional binary format. Select Signed Fractional
Binary if you would like to monitor which bits are
preserved and which bits are removed during the filtering
process.

Input Bit Width 1–32 Specifies the width of the input data sent to the filter. The
default value is 8 bits.

Input Fractional Bit Width 0–32
Specifies the width of the data input into the filter when you
select Signed Fractional Binary as your input data type.
The default value is 0 bits.

Output Options

Output Data Type
Signed Binary

Signed Fractional Binary

Specifies whether the output data is in a signed binary or a
signed fractional binary format. Select Signed Fractional
Binary if you would like to monitor which bits are
preserved and which bits are removed during the filtering
process.

Output Bit Width 0–32 Specifies the width of the output data (with limited
precision) from the filter.

Output Fractional Bit Width 0–32
Specifies the width of the output data (with limited
precision) from the filter when you select Signed
Fractional Binary as your output data.

Output MSB rounding Truncation/ Saturating Specifies whether to truncate or saturate the most
significant bit (MSB).

MSB Bits to Remove 0–32
Specifies the number of MSB bits to truncate or saturate.
The value must not be greater than its coressponding
integer bits or fractional bits.
February 2012 Altera Corporation FIR Compiler II MegaCore Function
User Guide

3–4 Chapter 3: Parameter Settings
Input and Output Options Page
Signed Fractional Binary
The FIR Compiler II supports two’s complement, signed fractional binary notation,
which allows you to monitor which bits are preserved and which bits are removed
during filtering. A signed binary fractional number has the format:

<sign> <integer bits>.<fractional bits>

A signed binary fractional number is interpreted as shown below:

<sign> <x1 integer bits>.<y1 fractional bits> Original input data

<sign> <x2 integer bits>.<y2 fractional bits> Original coefficient data

<sign> <i integer bits>.<y1 + y2 fractional bits> Full precision after FIR calculation

<sign> <x3 integer bits>.<y3 fractional bits> Output data after limiting precision

where i = ceil(log2(number of coefficients)) + x1 + x2

For example, if the number has 3 fractional bits and 4 integer bits plus a sign bit, the
entire 8-bit integer number is divided by 8, which yields a number with a binary
fractional component.

The total number of bits equals to the sign bits + integer bits + fractional bits. The sign
+ integer bits is equal to Input Bit Width – Input Fractional Bit Width with a constraint
that at least 1 bit must be specified for the sign.

MSB and LSB Truncation, Saturation, and Rounding
The output options on the parameter editor allows you to truncate or saturate the
MSB and to truncate or round the LSB. Saturation, truncation, and rounding are
non-linear operations.

Table 3–1 lists the options for limiting the precision of your filter.

Output LSB rounding Truncation/ Rounding Specifies whether to truncate or round the least significant
bit (LSB).

LSB Bits to Remove 0–32
Specifies the number of LSB bits to truncate or round. The
value must not be greater than its coressponding integer
bits or fractional bits.

Table 3–2. Input and Output Options

Parameter Value Description

Table 3–1. Options for Limiting Precision

Bit Range Option Result

MSB Truncate In truncation, the filter disregards specified bits. (Figure 3–1).

Saturate In saturation, if the filtered output is greater than the maximum positive
or negative value that can be represented, the output is forced (or
saturated) to the maximum positive or negative value.

LSB Truncate Same process as for MSB.

Round The output is rounded away from zero.
FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

Chapter 3: Parameter Settings 3–5
Implementation Options Page
Figure 3–1 shows an example of removing bits from the MSB and LSB.

Implementation Options Page
Table 3–3 lists the implementation options.

Figure 3–1. Removing Bits from the MSB and LSB

D15
D14
D13
D12
D11
D10
D9
D8
.
.
D0

D9
D8
.
.
D0

Bits Removed from MSB

Full
Precision

Limited
Precision

D15
D14
.
.
.
.
D4
D3
D2
D1
D0

D11
D10
.
.
.
D1
D0

Bits Removed from LSB

Full
Precision

Limited
Precision

D15
D14
D13
D12
.
.
.
D3
D2
D1
D0

D10
D9
.
.
.
D1
D0

Bits Removed from both MSB & LSB

Full
Precision

Limited
Precision

Table 3–3. Implementation Options (Part 1 of 2)

Parameter Value Description

Frequency Specification

Clock Frequency (MHz) 1–500 Specifies the frequency of the input clock. The default value is
100 MHz.

Clock Slack Integer
Enables you to control the amount of pipelining independently
of the clock frequency and therefore independently of the clock
to sample rate ratio. The default value is 0.

Input Sample Rate (MSPS) Integer Specifies the sample rate of the incoming data. The default is
100.

Speed Grade

Fast

Medium

Slow

Specifies the speed grade of the target device to balance the
size of the hardware against the resources required to meet the
clock frequency. The default value is Medium.

Symmetry Option

Symmetry Mode

Non Symmetry

Symmetrical

Anti-Symmetrical

Specifies whether your filter design uses non-symmetric,
symmetric, or anti-symmetric coefficients. The default value is
Non Symmetry.

Coefficients Reload Options

Coefficients Reload —

Turn on this option to allow coefficient reloading. This option
allows you to change coefficient values during run time. When
this option is turned on, additional input ports are added to the
filter.

Base Address Integer Specifies the base address of the memory-mapped
coefficients.

Read/Write mode

Read

Write

Read/Write

Specifies the read and write mode that determines the type of
address decode to build.
February 2012 Altera Corporation FIR Compiler II MegaCore Function
User Guide

3–6 Chapter 3: Parameter Settings
Implementation Options Page
Memory and Multiplier Trade-Offs
When your design is synthesized to logic, delay blocks are often created. The FIR
Compiler II MegaCore function tries to balance the implementation between logic
elements (LEs) and memory blocks (M512, M4K, M9K, or M144K). The exact trade-off
depends on the target FPGA family, but generally the trade-off attempts to minimize
the absolute silicon area used. For example, if a block of RAM occupies the silicon area
of two logic array blocks (LABs), a delay requiring more than 20 LEs (two LABs) is
implemented as a block of RAM. This is usually appropriate, but there might be cases
when you want to influence this trade-off.

Table 3–4, Table 3–5, Table 3–6, and Table 3–7 list the memory and multiplier
threshold trade-offs, and provide some usage examples.

Flow Control

Back Pressure Support —

Turn on this option to enable backpressure support. When this
option is turned on, the sink signals the source to stop the flow
of data when its FIFOs are full or when there is congestion on
its output port.

Resource Optimization Settings

Device Family Menu of supported devices Specifies the target device family.

LEs / Small RAM Block
Threshold Integer

Specifies the balance of resources between LEs/Small RAM
block threshold in bits. The default value is 20. For more
information, refer to “Memory and Multiplier Trade-Offs” on
page 3–6.

Small / Medium RAM
Block Threshold Integer

Specifies the balance of resources between small to medium
RAM block threshold in bits.The default value is 1280. For
more information, refer to “Memory and Multiplier Trade-Offs”
on page 3–6.

Medium / Large RAM
Block Threshold Integer

Specifies the balance of resources between medium to large
RAM block threshold in bits. The default value is 1000000. For
more information, refer to “Memory and Multiplier Trade-Offs”
on page 3–6.

LEs / DSP Block Multiplier
Threshold Integer

Specifies the balance of resources between LEs/ DSP block
multiplier threshold in bits. The default value is -1. For more
information, refer to “Memory and Multiplier Trade-Offs” on
page 3–6.

Table 3–3. Implementation Options (Part 2 of 2)

Parameter Value Description

Table 3–4. CDelay RAM Block Threshold (Part 1 of 2)

Description Trade-off between simple delay LEs and small ROM blocks. If any delay’s size is such that the number of
LEs used is greater than this parameter, the delay is implemented as block RAM.

Default (-1) 20 bits
FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

Chapter 3: Parameter Settings 3–7
Implementation Options Page
Usage

To make more delays using block RAM, enter a lower number, such as a value in the range of 20–30.

To use fewer block memories, enter a larger number, such as 100.

To never use block memory for simple delays, enter a very large number, such as 10000.

Notes
Delays of less than three cycles must be implemented in LEs due to the nature of the block RAM behavior.

This threshold only applies to implementing simple delays in memory blocks or logic elements. Dual
memories cannot be pushed back into logic elements.

Table 3–4. CDelay RAM Block Threshold (Part 2 of 2)

Table 3–5. CDualMem Dist RAM Threshold

Description

Trade-off between small and medium RAM blocks. This threshold is similar to the CDelay RAM Block
Threshold except that it applies only to the dual-port memories.

Any dual-port memory is always implemented in a block memory rather than logic elements, but for
some device families there might be different sizes of block memory available. The threshold value
determines which medium-size RAM memory blocks are used instead of small-memory RAM blocks. For
example, the threshold that determines whether to use M9K blocks rather than MLAB blocks on Stratix III
and Stratix IV devices.

Default (-1) 1,280 bits

Usage

Using Stratix III devices with the default threshold value (-1), dual memories greater than 1,280 bits are
implemented as M9K blocks and dual memories less than or equal to 1,280 bits are implemented as
MLABs. If you change this threshold to a lower value such as 200, dual memories greater than 200 bits
are implemented as M9K blocks and dual memories less than or equal to 200 bits are implemented as
MLAB blocks.

Notes For device families with only one type of memory block (for example, Cyclone II devices with only M4K
blocks or Cyclone III devices with only M9K blocks), this threshold has no effect.

Table 3–6. M-RAM Threshold

Description Trade-off between medium and large RAM blocks. For larger delays, memory can be implemented in
medium-block RAM (M4K, M9K) or using larger M-RAM blocks (M512K, M144K).

Default (-1) 1,000,000 bits

Usage
If the number of bits in a memory or delay is greater than this threshold, M-RAM is used for the
implementation. If you set a large value such as the default of 1,000,000 bits, M-RAM blocks are never
used.

Table 3–7. Hard Multiplier Threshold (Part 1 of 2)

Description

Trade-off between hard and soft multipliers. For devices that support hard multipliers or DSP blocks,
these resources can be used instead of a soft multiplier made from LEs. For example, a 2-bit × 10-bit
multiplier consumes very few LEs. The hard multiplier threshold value corresponds to the number of logic
elements that are used to save a multiplier. If the hard multiplier threshold value is 100, you are allowing
100 LEs. Therefore, an 18 × 18 multiplier (that requires approximately 182–350 LEs) is not transferred to
LEs because it requires more LEs than the threshold value. However, a 16 × 4 multiplier that requires
approximately 64 LEs is implemented as a soft multiplier with this setting.

Default (-1) —
February 2012 Altera Corporation FIR Compiler II MegaCore Function
User Guide

3–8 Chapter 3: Parameter Settings
Implementation Options Page
Usage

The default (-1) means to always use hard multipliers. With this value, a 24 × 18 multiplier is
implemented as two 18 × 18 multipliers.

Set a value of approximately 300 to keep 18 × 18 multipliers hard, but transform smaller multipliers to
LEs. Note that a 24 × 18 multiplier is implemented as a 6 × 18 multiplier and an 18 × 18 multiplier, so this
setting builds the hybrid multipliers that are required.

Set a value of approximately 1000 to implement the multipliers entirely as LEs. Essentially you are
allowing a high number (1000) of LEs to save using an 18 × 18 multiplier.

Set a value of approximately 10 to implement a 24 × 16 multiplier as a 36 × 36 multiplier. With the value,
you are not even allowing the adder to combine two multipliers. Therefore, the system has to burn a
36 × 36 multiplier in a single DSP block.

Notes

Multipliers with a single constant input are converted into balanced adder trees. This occurs automatically
when the depth of the tree is not greater than 2. If the depth is greater than 2, the hard multiplier
threshold is compared with the estimated size of the adder tree. This is usually much lower than the size
of a full soft multiplier.

If two non-constant multipliers followed by an adder are combined into a single DSP block, the multiplier
is not converted into LEs no matter how large the threshold.

Table 3–7. Hard Multiplier Threshold (Part 2 of 2)
FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

February 2012 Altera Corporation
4. Functional Description
This chapter describes in detail about the FIR Compiler II MegaCore function, its
architecture, interfaces, features, and interface signals.

Architecture
Figure 4–1 shows a high-level block diagram of the FIR Compiler II MegaCore
function with the Avalon-ST interface. The FIR Compiler II MegaCore function
generates the Avalon-ST register transfer level (RTL) wrapper.

Interfaces
The FIR Compiler II MegaCore function includes the following interfaces:

■ Avalon Streaming (Avalon-ST) source and sink interfaces

■ Clock and reset interfaces

The MegaCore function also consists of an interface controller for the Avalon-ST
wrapper that handles the flow control mechanism. The control signals between the
sink interface, FIR filter, and source interface are communicated via the controller.

Figure 4–1. High Level Block Diagram of FIR Compiler II with Avalon-ST Interface

FIR
Filter

xln_v

bankln_0[]

xln_(n-1)[]

xOut_v

xOut_c

xOut_0[]

xOut_(m-1)[]

ast_sink_valid

ast_sink_data[]

ast_sink_sop

ast_sink_eop

ast_sink_error

ast_source_valid

ast_source_data[]

ast_source_sop

ast_source_eop

ast_source_error

ast_source_channel

Controller

ast_sink_ready ast_source_ready

FIR Compiler II MegaCore Function

Sink Source

control signals control signals

control signals

xln_0[]

bankln_(n-1)[]
FIR Compiler II MegaCore Function
User Guide

4–2 Chapter 4: Functional Description
Interfaces
Avalon-ST Sink and Source Interfaces
The sink and source interfaces of the MegaCore function implements the Avalon-ST
protocol, which is a unidirectional flow of data. The number of bits per symbol
represents the data width and the number of symbols per beat is the number of
channel wires. The MegaCore function symbol type supports signed and unsigned
binary format. The ready latency on the FIR Compiler II MegaCore function is 0.

When designing a datapath that includes the FIR Compiler II MegaCore function, you
might not need backpressure if you know the downstream components can always
receive data. You might achieve a higher clock rate by driving the ast_source_ready
signal of the FIR Compiler II MegaCore function high, and not connecting the
ast_sink_ready signal.

f For more information about the Avalon-ST interface properties, protocol and the data
transfer timing, refer to the Avalon Interface Specifications.

Avalon-ST Sink Interface
The sink interface is capable of handling single or multiple channels on a single wire
as well as multiple channels on multiple wires.

Single Channel on Single Wire

Figure 4–2 shows the connection between the sink interface and the FIR Compiler II
MegaCore function when transferring a single channel of 8-bit data.

Figure 4–2. Single Channel on Single Wire (Sink -> FIR Compiler II)

FIR Filter

xln_v

xln_0[7:0]
ast_sink_valid

ast_sink_data[7:0]

Controller

ast_sink_ready

FIR Compiler II MegaCore Function

Sink

sink_ready

control signals
FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 4: Functional Description 4–3
Interfaces
Multiple Channels on Single Wire

Figure 4–3 shows the connection between the sink interface and the FIR Compiler II
MegaCore function when transferring a packet of data over multiple channels on a
single wire. The data width of each channel is 8 bits.

Multiple Channels on Multiple Wires

Figure 4–4 and Figure 4–5 show the connection between the sink interface and the FIR
Compiler II MegaCore function when transferring a packet of data over multiple
channels on multiple wires. The data width of each channel is 8 bits. Consider a case
when the number of channels = 6, clock rate = 200 MHz, and sample rate = 100 MHz.

Figure 4–3. Multiple Channels on Single Wire (Sink -> FIR Compiler II)

FIR Filter

xln_v

xln_0[7:0]
ast_sink_valid

ast_sink_data[7:0]

Controller

ast_sink_ready

FIR Compiler II MegaCore Function

Sink

sink_ready

control signals

ast_sink_eop

ast_sink_sop

ast_sink_error

packet error

Avalon
Streaming
Interface

Signals Check
February 2012 Altera Corporation FIR Compiler II MegaCore Function
User Guide

4–4 Chapter 4: Functional Description
Interfaces
In this example, hardware optimization produces a TDM factor of 2, number of
channel wires = 3, and channels per wire = 2.

Figure 4–4. Multiple Channels on Multiple Wires

FIR Filter

xln_v

xln_0[7:0]

ast_sink_valid

ast_sink_data[23:0]

Controller

ast_sink_ready

FIR Compiler II MegaCore Function

Sink

xln_1[7:0]

xln_2[7:0]

control signals

ast_sink_eop

ast_sink_sop

ast_sink_error

sink_ready

packet error

Avalon
Streaming
Interface

Signals Check

Figure 4–5. Timing Diagram of Multiple Channels on Multiple Wires

clk

ast_sink_valid

ast_sink_data[7:0]

ast_sink_data[15:8]

ast_sink_data[23:16]

ast_sink_sop

ast_sink_eop

xln_v[7:0]

xln_0[7:0]

xln_1[7:0]

xln_2[7:0]

A0 B0 A1 B1 A2 B2

C0 D0 C1 D1 C2 D2

E0 F0 E1 F1 E2 F2

A0 B0 A1 B1 A2 B2

C0 D0 C1 D1 C2 D2

E0 F0 E1 F1 E2 F2

X

X

X

FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

Chapter 4: Functional Description 4–5
Interfaces
Avalon-ST Source Interface
The source interface is capable of handling single or multiple channels on a single
wire as well as multiple channels on multiple wires. An Avalon-ST FIFO is included in
the source wrapper when the backpressure support feature is turned on. The
Avalon-ST FIFO controls the backpressure mechanism and catch the extra cycles of
data from the FIR Compiler II MegaCore function after backpressure. On the input
side of the FIR Compiler II MegaCore function, driving the enable_i signal low
causes the FIR Compiler II MegaCore function to stop. From the output side,
backpressure drives the enable_i signal of the FIR Compiler II MegaCore function. If
the downstream module can accept data again, the FIR Compiler II MegaCore
function is instantly re-enabled.

When the packet size is greater than one (multichannel), the source interface expects
the user’s application to supply the count of data starting from 1 to the packet size.
When the source interface receives the valid flag together with the data_count = 1, it
starts sending out data by driving both the ast_source_sop and ast_source_valid
signals high. When data_count equals the packet size, the ast_source_eop signal is
driven high together with the ast_source_valid signal.

If the downstream components are not ready to accept any data, the source interface
drives the source_stall signal high to tell the design to stall.

Figure 4–6 and Figure 4–7 show the connection between the FIR Compiler II
MegaCore function and the source interface when transferring a packet of data over
multiple channels on multiple wires.

Figure 4–6. Multiple Channels on Multiple Wires

FIR Filter

xOut_v

xOut_c

xOut_0[7:0]

ast_source_valid

ast_source_data

ast_source_sop

ast_source_eop

ast_source_error

ast_source_channel

Controller

ast_source_ready

FIR Compiler II MegaCore Function

Source

enable_i

xOut_1[7:0]

xOut_2[7:0]

source_stall

source_valid

Avalon
Streaming
SCFIFO

(Only available
when

backpressure
is turned on)
February 2012 Altera Corporation FIR Compiler II MegaCore Function
User Guide

4–6 Chapter 4: Functional Description
Interfaces
Clock and Reset Interfaces
The clock and reset interfaces drive or receive the clock and reset signals to
synchronize the Avalon-ST interfaces and provide reset connectivity.

Figure 4–7. Timing Diagram of Multiple Channels on Multiple Wires

clk

xOut_v

xOut_c[7:0]

xOut_0[7:0]

xOut_1[7:0]

xOut_2[7:0]

ast_source_valid

ast_source_data[7:0]

ast_source_data[15:8]

ast_source_data[23:16]

ast_source_sop

ast_source_eop

ast_source_channel

ast_source_error

A0 B0 A1 B1 A2 B2

C0 D0 C1 D1 C2 D2

E0 F0 E1 F1 E2 F2

0 1 0 1 0 1

A0 B0 A1 B1 A2 B2

C0 D0 C1 D1 C2 D2

E0 F0 E1 F1 E2 F2

0 1 0 1 0 1

X

X

X

X

00
FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

Chapter 4: Functional Description 4–7
Time-Division Multiplexing
Time-Division Multiplexing
Hardware utilization is optimized by using time-division multiplexing (TDM). The
TDM factor (or folding factor) is the ratio of the clock rate to the sample rate.

By clocking a FIR Compiler II MegaCore function faster than the sample rate, you can
reuse the same hardware. For example, by implementing a filter with a TDM factor of
2 and an internal clock multiplied by 2, you can halve the required hardware, as
shown in Figure 4–8.

To achieve TDM, a serializer and deserializer are required before and after the reused
hardware block to control the timing. The ratio of system clock frequency to sample
rate determines the amount of resource saving except for a small amount of additional
logic for the serializer and deserializer.

Table 4–1 shows the estimated resources required for a 49-tap symmetric FIR filter.

When the sample rate equals the clock rate, the filter is symmetric and you only need
25 multipliers. When the clock rate is increased to twice the sample rate, the number
of multipliers required drops to 13. When the clock rate is set to 4 times the sample
rate, the number of multipliers required drops to 7. If the clock rate stays the same
while the new data sample rate is only 36 MSPS (million samples per second), the
resource consumption is the same as twice the sample rate case.

Figure 4–8. Time-Division Multiplexing to Save Hardware Resources

Table 4–1. Estimated Resources Required for a 49-Tap Single Rate FIR Compiler II Filter

Clock Rate
(MHz)

Sample Rate
(MSPS) Logic Multipliers Memory Bits TDM Factor

72 72 2230 25 0 1

144 72 1701 13 468 2

288 72 1145 7 504 4

72 36 1701 13 468 2

Clock Rate = Sample Rate

Clock Rate = 2 x Sample Rate

Read

Read

Write

WriteSerialize Deserialize
February 2012 Altera Corporation FIR Compiler II MegaCore Function
User Guide

4–8 Chapter 4: Functional Description
Multichannel Operation
Multichannel Operation
You can build multichannel systems directly using the required channel count, rather
than creating a single channel system and scaling it up. The MegaCore function uses
vectors of wires to scale without having to cut and paste multiple blocks.

The FIR Compiler II MegaCore function can be vectorized, meaning that if data going
into the block is a vector requiring multiple instances of a FIR filter, then multiple FIR
blocks are created in parallel behind a single FIR Compiler II block. If a decimating
filter requires a smaller vector on the output, the data from individual filters is
automatically time-division multiplexed onto the output vector. This feature relieves
the necessity of gluing filters together with custom logic.

Vectorized Inputs
The data inputs and outputs for the FIR Compiler II blocks can be vectors. This
capability is used when the clock rate is insufficiently high to carry the total aggregate
data. For example, 10 channels at 20 MSPS require 10 × 20 = 200 MSPS aggregate data
rate. If the system clock rate is set to 100 MHz, two wires are required to carry this
data, and so the FIR Compiler II uses a vector of width 2.

This approach is unlike traditional methods because you do not need to manually
instantiate two FIR filters and pass a single wire to each in parallel. Each FIR
Compiler II block internally vectorizes itself. For example, a FIR Compiler II block can
build two FIR filters in parallel and wire one element of the vector up to each FIR. The
same paradigm is used on outputs, where high data rates on multiple wires are
represented as vectors.

The input and output wire counts are determined by each FIR Compiler II MegaCore
function, based on the clock rate, sample rate, and number of channels.

The output wire count is also affected by any rate changes in the FIR Compiler II
MegaCore function. If there is a rate change, such interpolating by two, the output
aggregate sample rate doubles. The output channels are then packed into the fewest
number of wires (vector width) that will support that rate. For example, an interpolate
by two FIR Compiler II filters might have two wires at the input, but three wires at the
output.

Any necessary multiplexing and packing is performed by the FIR Compiler II
MegaCore function. The blocks connected to the inputs and outputs must have the
same vector widths. Vector width errors can usually be resolved by carefully changing
the sample rates.
FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

Chapter 4: Functional Description 4–9
Multichannel Operation
Channelization
The number of wires and the number of channels carried on each wire are determined
by parameterization, which you can specify using the following variables:

■ clockRate is the system clock frequency (MHz).

■ inputRate is the data sample rate per channel (MSPS).

■ inputChannelNum is the number of channels. Channels are enumerated from 0 to
inputChannelNum–1.

■ The period (or TDM factor) is the ratio of the clock rate to the sample rate and
determines the number of available time slots.

■ ChanWireCount is the number of channel wires required to carry all the channels. It
can be calculated by dividing the number of channels by the TDM factor. More
specifically:

■ PhysChanIn = Number of channel input wires

■ PhysChanOut = Number of channel output wires

■ ChanCycleCount is the number of channels carried per wire. It is calculated by
dividing the number of channels by the number of channels per wire. The channel
signal counts from 0 to ChanCycleCount–1. More specifically:

■ ChansPerPhyIn = Number of channels per input wire

■ ChansPerPhyOut = Number of channels per output wire

If the number of channels is greater than the clock period, multiple wires are required.
Each FIR Compiler II MegaCore function in your design is internally vectorized to
build multiple FIR filters in parallel.

Figure 4–9 shows how a TDM factor of 3 combines two input channels into a single
output wire. (inputChannelNum = 2, ChanWireCount = 1, ChanCycleCount = 2).

Figure 4–9. Channelization of Two Channels with a TDM Factor of 3 (1)

Note to Figure 4–9:

(1) In this example, there are three available time slots in the output channel and every third time slot has a ‘don't care’ value when the valid signal is
low. The value of the channel signal while the valid signal is low does not matter.

clock

input_valid

input_data_channel_0

input_data_channel_1

input_channel

output_valid

TDM_output_data

output_channel

c0(0) c0(1) c0(2)

c1(0) c1(1) c2(2)

c0(0) c1(0) don’t care c0(0) c1(0) don’t care c0(0) c1(0)
February 2012 Altera Corporation FIR Compiler II MegaCore Function
User Guide

4–10 Chapter 4: Functional Description
Multichannel Operation
Figure 4–10 shows how a TDM factor of 3 combines four input channels into two
wires (inputChannelNum = 4, ChanWireCount = 2, ChanCycleCount = 2).

The channel signal is used for synchronization and scheduling of data. It specifies the
channel data separation per wire. Note that the channel signal counts from 0 to
ChanCycleCount–1 in synchronization with the data. Thus, for ChanCycleCount = 1, the
channel signal is the same as the channel count, enumerated from 0 to
inputChannelNum–1.

For a case with single wire, the channel signal is the same as a channel count. For
example, Figure 4–11 shows the case for four channels of data on one data wire with
no invalid cycles.

For ChanWireCount > 1, the channel signal specifies the channel data separation per
wire, rather than the actual channel number. The channel signal counts from 0 to
ChanCycleCount–1 rather than 0 to inputChannelNum–1. Figure 4–12 shows the case for
four channels on two wires with no invalid cycles.

Figure 4–10. Channelization for Four Channels with a TDM Factor of 3 (1)

Note to Figure 4–10:

(1) In this example, two wires are required to carry the four channels and the cycle count is two on each wire. The channels are evenly distributed on
each wire leaving the third time slot as don't care on each wire.

clock

input_valid

input_data_channel_0

input_data_channel_1

input_data_channel_2

input_data_channel_3

input_channel

output_valid

output_data_wire_1

output_data_wire_2

output_channel

c0(0) c0(1) c0(2)

c1(0) c1(1) c1(2)

c2(0) c2(1) c2(2)

c3(0) c3(1) c3(2)

c0(0) c0(1) c0(2)c1(0) c1(1) c1(2)

c2(0) c2(1) c2(2)c3(0) c3(1) c3(2)

don’t care

don’t care

don’t care

don’t care

Figure 4–11. Four Channels on One Wire

valid

channel

data0

0 1 2 3 0 1 2 3

c0(0) c1(0) c2(0) c3(0) c0(1) c1(1) c2(1) c3(1)

Figure 4–12. Four Channels on Two Wires

valid

channel

data0

data1

0 1 0 1 0 1 0 1

c0(0) c1(0) c0(1) c1(1) c0(2) c1(2) c0(3) c1(3)

c2(0) c3(0) c2(1) c3(1) c2(2) c3(2) c2(3) c2(3)
FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

Chapter 4: Functional Description 4–11
Multichannel Operation
Notice that the channel signal remains a single wire, not a wire for each data wire. It
counts from 0 to ChanCycleCount–1. Figure 4–13 shows the case with four channels
simultaneously on four wires.

Figure 4–13. Four Channels on Four Wires

valid

channel

data0

data0

data1

data1

c0(0) c0(1) c0(2) c0(3) c0(4) c0(5) c0(6) c0(7)

0

c1(0) c1(1) c1(2) c1(3) c1(4) c1(5) c1(6) c1(7)

c2(0) c2(1) c2(2) c2(3) c2(4) c2(5) c2(6) c2(7)

c3(0) c3(1) c3(2) c3(3) c3(4) c3(5) c3(6) c3(7)
February 2012 Altera Corporation FIR Compiler II MegaCore Function
User Guide

4–12 Chapter 4: Functional Description
Multichannel Operation
Channel Input/Output Format
The FIR Compiler II MegaCore function requires the inputs and the outputs to be in
the same format when the number of input channel is more than one. The input data
to the MegaCore must be arranged horizontally according to the channels and
vertically according to the wires. The outputs should then come out in the same order,
counting along horizontal row first, vertical column second.

Example—Eight Channels on Three Wires
Figure 4–14 shows the input format for eight channels on three wires.

Figure 4–15 shows the expected output format for eight channels on three wires.

Example—Four Channels on Four Wires
Figure 4–16 shows the input format for four channels on four wires.

Figure 4–14. Eight Channels on Three Wires (Input)

Figure 4–15. Eight Channels on Three Wires (Output)

Figure 4–16. Four Channels on Four Wires (Input)

clk

xln_v

xln_0

xln_1

xln_2

C0 C1 C2

C3 C4 C5

C6 C7 --

clk

xOut_v

xOut_1

xOut_2

xOut_0 C0 C1 C2

C3 C4 C5

C6 C7 --

clk

xln_v

xln_0

xln_1

xln_2

C0

C1

C2

xln_3 C3
FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

Chapter 4: Functional Description 4–13
Multichannel Operation
Figure 4–17 shows the expected output format for four channels on four wires.

This result appears to be vertical, but that is because the number of cycles is 1, so on
each wire there is only space for one piece of data.

Figure 4–18 and Figure 4–19 show the input and output format when the clock rate is
doubled and the sample rate remains the same.

Example—15 Channels with 15 Valid Cycles and 17 Invalid Cycles
Sometimes invalid cycles are inserted between the input data. Consider an example
where the clock rate = 320, sample rate = 10, which yields a TDM factor of 32,
inputChannelNum = 15, and interpolation factor is 10. In this case, the TDM factor is
greater than inputChannelNum. The optimization produces a filter with PhysChanIn =
1, ChansPerPhyIn = 15, PhysChanOut = 5, and ChansPerPhyOut = 3.

Figure 4–17. Four Channels on Four Wires (Output)

Figure 4–18. Four Channels on Four Wires with Double Clock Rate (Input)

Figure 4–19. Four Channels on Four Wires with Double Clock Rate (Output)

clk

xOut_v

xOut_0

xOut_1

xOut_2

C0

C1

C2

xOut_3 C3

clk

xln_v

xln_0

xln_1

C0 C1

C2 C3

clk

xOut_v

xOut_0

xOut_1

C0 C1

C2 C3
February 2012 Altera Corporation FIR Compiler II MegaCore Function
User Guide

4–14 Chapter 4: Functional Description
Multichannel Operation
The input data format in this case is 32 cycles long, which comes from the TDM factor.
The number of channels is 15, so the filter expects 15 valid cycles together in a block,
followed by 17 invalid cycles. Refer to Figure 4–20. If the number of invalid cycles is
less than 17, the output format is incorrect, as shown in Figure 4–21. You can insert
extra invalid cycles at the end, but they must not interrupt the packets of data after the
process has started. Refer to Figure 4–22. If the input sample rate is less than the clock
rate, the pattern is always the same: a repeating cycle, as long as the TDM factor, with
the number of channels as the number of valid cycles required, and the remainder as
invalid cycles.

Figure 4–20. Correct Input Format (15 valid cycles, 17 invalid cycles)

areset

clk

xin_v[0]

xin_c[7:0]

xin_0[7:0]

xout_v[0]

xout_c[7:0]

xout_0[17:0]

xout_1[17:0]

xout_2[17:0]

xout_3[17:0]

xout_4[17:0]

1 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 8

1 0

1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0

8 16 24 6

32 40 48 24 3

56 64 72 42

80 88 96 60

104 112 120 78

Figure 4–21. Incorrect Input Format (15 valid cycles, 0 invalid cycles)

areset

clk

xin_v[0]

xin_c[7:0]

xin_0[7:0]

xout_v[0]

xout_c[7:0]

xout_0[17:0]

xout_1[17:0]

xout_2[17:0]

xout_3[17:0]

xout_4[17:0]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1

1 0

1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1

8 1

32 4

56 6

80 8

104 1
FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

Chapter 4: Functional Description 4–15
Multichannel Operation
Example—22 Channels with 11 Valid Cycles and 9 Invalid Cycles
Consider another example where the clock rate = 200, sample rate = 10, which yields a
TDM factor of 20, inputChannelNum = 22 and interpolation factor is 10. In this case, the
TDM factor is less than inputChannelNum. The optimization produces a filter with
PhysChanIn = 2, ChansPerPhyIn = 11, PhysChanOut = 11, and ChansPerPhyOut = 2.

The input format in this case is 20 cycles long, which comes from the TDM factor. The
number of channels is 22, so the filter expects 11 (ChansPerPhyIn) valid cycles,
followed by 9 invalid cycles (TDM factor – ChansPerPhyIn = 20 – 11) (refer to
Figure 4–23). If the number of invalid cycles is less than 17, the output format is
incorrect, as shown in Figure 4–24. You can insert extra invalid cycles at the end,
which mean the number of invalid cycles can be greater than 9, but they must not
interrupt the packets of data after the process has started (Figure 4–25).

Figure 4–22. Correct Input Format (15 valid cycles, 20 invalid cycles)

areset

clk

xin_v[0]

xin_c[7:0]

xin_0[7:0]

xout_v[0]

xout_c[7:0]

xout_0[17:0]

xout_1[17:0]

xout_2[17:0]

xout_3[17:0]

xout_4[17:0]

1 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 8

1 0

1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1

8 16 24 6 1

32 40 48 24 3

56 64 72 42 4

80 88 96 60 6

104 112 120 78 8

Figure 4–23. Correct Input Format (11 valid cycles, 9 invalid cycles)

areset

clk

xin_v[0]

xin_c[7:0]

xin_0[7:0]

xin_1[7:0]

xout_v[0]

xout_c[7:0]

xout_0[17:0]

xout_1[17:0]

xout_2[17:0]

xout_3[17:0]

xout_4[17:0]

xout_5[17:0]

xout_6[17:0]

xout_7[17:0]

xout_8[17:0]

xout_9[17:0]

xout_10[17:0]

1 0

1 2 3 4 5 6 7 8 9 10 11 4 1 2

12 13 14 15 16 17 18 19 20 21 22 15 12 13

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

8

24

40

56

72

88

104

120

136

152

168
February 2012 Altera Corporation FIR Compiler II MegaCore Function
User Guide

4–16 Chapter 4: Functional Description
Multichannel Operation
Figure 4–24. Incorrect Input Format (11 valid cycles, 0 invalid cycles)

areset

clk

xin_v[0]

xin_c[7:0]

xin_0[7:0]

xin_1[7:0]

xout_v[0]

xout_c[7:0]

xout_0[17:0]

xout_1[17:0]

xout_2[17:0]

xout_3[17:0]

xout_4[17:0]

xout_5[17:0]

xout_6[17:0]

xout_7[17:0]

xout_8[17:0]

xout_9[17:0]

xout_10[17:0]

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 0 150 186 177

12 13 14 15 16 17 18 19 20 21 22 12 13 14 15 16 17 18 19 20 21 22 0 206 172 212

0

00 01 00 01 00 01 00 01 00 01 0

Figure 4–25. Correct Input Format (11 valid cycles, 11 invalid cycles)

clk

areset

xin_v[0]

xin_c[7:0]

xin_0[7:0]

xin_1[7:0]

xout_v[0]

xout_c[7:0]

xout_0[17:0]

xout_1[17:0]

xout_2[17:0]

xout_3[17:0]

xout_4[17:0]

xout_5[17:0]

xout_6[17:0]

xout_7[17:0]

xout_8[17:0]

xout_9[17:0]

xout_10[17:0]

1 0

2 3 4 5 6 7 8 9 10 11 4 1

13 14 15 16 17 18 19 20 21 22 15 12

11 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

8 16

24 32

40 48

56 64

72 80

88 96

104 112

120 128

136 144

152 160

168 176

1

12
FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

Chapter 4: Functional Description 4–17
Multichannel Operation
Example—Super Sample Rate
Consider an example of a “super sample rate” filter where the sample rate is greater
than the clock rate. In this example, clock rate = 100, sample rate = 200,
inputChannelNum = 1, and single rate. The optimization produces a filter with
PhysChanIn = 2, ChansPerPhyIn = 1, PhysChanOut = 2, and ChansPerPhyOut = 1.

The input format expected by the FIR filter is shown in Figure 4–26. A0 is the first
sample of channel A, A1 is the second sample of channel A, and so forth.

If inputChannelNum = 2, then the expected input format is shown in Figure 4–27.

Figure 4–26. Super Sample Rate Filter (clkRate=100, inputRate=200) with inChans=1

clk

xln_v

xln_0

xln_1

xOut_v

xOut_c

xOut_0

xOut_1

A0 A2 A4 A6 A8 A10 A12 A14 A16 A18 A20 A22 A24 A26 A28

A1 A3 A5 A7 A9 A11 A13 A15 A17 A19 A21 A23 A25 A27 A29

A0 A2 A4 A6 A8 A10 A12 A14

A1 A3 A5 A7 A9 A11 A13 A15

00

00

Figure 4–27. Super Sample Rate Filter (clkRate=100, inputRate=200) with inChans=2

clk

xln_v

xln_0

xln_1

xOut_v

xOut_c

xOut_0

xOut_1

xOut_2

xOut_3

xln_2

xln_3

A0 A2 A4 A6 A8 A10 A12 A14 A16 A18 A20 A22 A24 A26 A28

A1 A3 A5 A7 A9 A11 A13 A15 A17 A19 A21 A23 A25 A27 A29

A0 A2 A4 A6 A8 A10 A12 A14 A16 A18 A20 A22 A24 A26 A28

A1 A3 A5 A7 A9 A11 A13 A15 A17 A19 A21 A23 A25 A27 A29

A0 A2 A4 A6 A8 A10 A12 A14

A1 A3 A5 A7 A9 A11 A13 A15

A0 A2 A4 A6 A8 A10 A12 A14

A1 A3 A5 A7 A9 A11 A13 A15

00

00

00

00
February 2012 Altera Corporation FIR Compiler II MegaCore Function
User Guide

4–18 Chapter 4: Functional Description
Multiple Coefficient Banks
Multiple Coefficient Banks
The FIR Compiler II MegaCore function supports multiple coefficient banks. The FIR
filter can switch between different coefficient banks dynamically, which enables the
filter to switch between infinite number of coefficient sets. Therefore, while the filter
uses one coefficient set, you can update other coefficient sets.You can also set different
coefficient banks for different channels and use the channel signal to switch between
coefficient sets.

The MegaCore function uses multiple coefficient banks when you load multiple sets
of coefficients from a file. Refer to “Loading Coefficients from a File” on page 3–2.
Based on the number of coefficient banks you specify, the MegaCore function extends
the width of the ast_sink_data signal to support two additional signals— bank signal
(bankIn) and input data (xIn) signal. The most significant bits represent the bank
signals and the least significant bits represent the input data.

Figure 4–28 shows a timing diagram for a single-channel filter with four coefficient
banks. You can switch the coefficient bank from 0–3 using the bankIn signal when the
filter runs.

Figure 4–29 shows a timing diagram for a four-channel filter with four coefficient
banks and each channel has a separate corresponding coefficient set. The bank inputs
for different channels are driven with their channel number respectively throughout
the filter operation.

Figure 4–28. Timing Diagram of a Single-Channel Filter with 4 Coefficient Banks

clk

ast_sink_valid

ast_sink_data[9:0]

bankin_0[1:0]

xin_0[7:0]

xout_v[0]

xout_0[21:0]

256 -478 -179 118 408 -259 -159 135 427 -433 -79 122 481 -396 -15 48 429 -262

1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2

34 77 118 -104 -3 97 -121 -85 79 -79 122 -31 116 -15 48 -83 -6

411 279

0

0

0

0

0

1

Figure 4–29. Timing Diagram of a Four-Channel Filter with 4 Coefficient Banks

clk
ast_sink_valid

ast_sink_data[39:0]
bankin_0[1:0]

xin_0[7:0]
bankin_1[1:0]

xin_1[7:0]
bankin_2[1:0]

xin_2[7:0]
bankin_3[1:0]

xin_3[7:0]
xout_v[0]

xout_0[21:0]
xout_1[21:0]
xout_2[21:0]
xout_3[21:0]

-15... -17... -55... -20... -23... -30... -30... -16... -21... -24... -14... -14... -12... -41... -25... -17... -26...

-41 24 29 -65 -109 34 -15 18 77 -82 25 127 -42 -18 -96 -4 79

52 67 71 -78 -82 -22 55 115 120 -51 -28 -124 -81 -16 67 -104

46 -37 22 29 -102 -125 -12 -10 -21 -48 56 15 32 31 -23 125 -105

109 96 -52 67 33 -29 99 57 29 125 122 -114 -39 21 88 4

-82 -75 7 -12 -261 -1
104 186 157 -4

46 -83 -
109 -13 -1

0
0
0
0

0
0
0

0
0

0 1
0

0
0
0

1

2

3

FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

Chapter 4: Functional Description 4–19
Coefficient Reloading
Coefficient Reloading
The internal data coefficients are accessed via a memory-mapped interface that
consists of the input address, write data, write enable, read data, and read valid
signals. The Avalon Memory-Mapped (Avalon-MM) interfaces function as read/write
interfaces on the master and slave components in a memory-mapped system. The
memory-mapped system components include microprocessors, memories, UARTs,
timers, and a system interconnect fabric that connects the master and slave interfaces.
The Avalon-MM interfaces describe a wide variety of components, from an SRAM
that supports simple, fixed -cycle read/write transfers to a complex, pipelined
interface capable of burst transfers. In Read mode, the memory-mapped coefficients
are read over a specified address range while in Write mode, the coefficients are
written over a specified address range. In Read/Write mode, the coefficients can be
read or written over a specified address range. You can use a separate bus clock for
this interface. When coefficient reloading option is not enabled, the processor cannot
access the specified address range, and the coefficient data is not read or written.

Coefficient reloading starts anytime during the filter run time. However, you must
reload the coefficients only after all the desired output data are obtained to avoid
unpredictable results. If you are using multiple coefficient banks, you can reload
coefficient banks that are not used and switch over to the new coefficient set when
coefficient reloading is completed. You must toggle the coeff_in_areset signal before
reloading the coefficient with new data. The new coefficient data is read out after
coefficient reloading to verify whether the coefficient reloading process is successful.
When the coefficient reloading ends by deasserting the coeff_in_we, the input data is
inserted immediately to the filter that is reloaded with the new coefficients.

The symmetrical or anti-symmetrical filters have fewer genuine coefficients, use
fewer registers, and require fewer writes to reload the coefficients. For example, only
the first 19 addresses must be written for a 37-tap symmetrical filter. When you write
to all 37 addresses, the last 18 addresses are ignored because they are not part of the
address space of the filter. Similarly, reading coefficient data from the last 18 addresses
is also ignored.

When multiple coefficient banks are used, the addresses of all the coefficients are
arranged in consecutive order according to the bank number.
The following example shows a 37-tap symmetrical/anti-symmetrical filter with four
coefficient banks:

Address 0–18: Bank 0

Address 19–37: Bank 1

Address 38–56: Bank 2

Address 57–75: Bank 3

The following example shows a 37-tap non-symmetrical/anti-symmetrical filter with
2 coefficient banks:

Address 0–36: Bank 0

Address 37–73: Bank 1

If the coefficient bit width parameter is equal to or less than 16 bits, the width of the
write data is fixed at 16 bits. If the coefficient bit width parameter is more than 16 bits,
the width of the write data is fixed at 32 bits.
February 2012 Altera Corporation FIR Compiler II MegaCore Function
User Guide

4–20 Chapter 4: Functional Description
Coefficient Reloading
Figure 4–30 shows the timing diagram for a coefficient reloading configuration with
Read/Write mode. There are a total of nine coefficients in this configuration. A write
cycle of 9 clock cycles are performed to reload the whole coefficient data set shown in
Figure 4–30. To complete the write cycle, assert the coeff_in_we signal, and provide
the address (from base address to the max address) together with the new coefficient
data. Then, load the new coefficient data into the memory corresponding to the
address of the coefficient. The new coefficient data is read during the write cycle when
you deassert the coeff_in_we signal. When the coeff_out_valid signal is high, the
read data is available on coeff_out_data.

Figure 4–31 shows the timing diagram of a coefficient reloading configuration in
Write mode. In this mode, one coefficient data is reloaded. The new coefficient data
(123) is loaded into a single address (7).

Figure 4–30. Timing Diagram of Coefficient Reloading in Read or Write mode

clk

coeff_in_areset

coeff_in_address[11:0]

coeff_in_data[15:0]

coeff_in_we[0]

coeff_out_data[15:0]

coeff_out_valid[0]

-1 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

-1

0 -26 45

-1

45 -50 7 -121 -32 49 -1 108 124 -1

-25 13 80 127 80 0 -26 0 -50 7 -1 -32 49 -1 108 124 45

Figure 4–31. Timing Diagram of Coefficient Reloading in Write mode

clk

coeff_in_areset

coeff_in_address[11:0]

coeff_in_data[15:0]

coeff_in_we[0]

-1 7

0 123

-1

0

FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

Chapter 4: Functional Description 4–21
Coefficient Reloading
Figure 4–32 shows the timing diagram of a coefficient reloading configuration in Read
mode. When the coeff_in_address is 3, the coefficient data at the location is read, the
coefficient data 80 is available on coeff_out_data when the coeff_out_valid signal is
high.

Figure 4–33 shows the timing diagram of a filter with multiple coefficient banks and
writable coefficients. It is a symmetry, 13-tap filter. The coefficients data of bank 1
(address 7-13) is reloaded while the filter is running on bank 0. When the coefficient
reloading is completed, bank 1 is used to produce an impulse response of the filter
and the new coefficient data (-58,18,106…) from bank 1 can be observed on the filter
output.

Figure 4–32. Timing Diagram of Coefficient Reloading in Read mode

clk

coeff_in_areset

coeff_in_address[11:0]

coeff_out_data[15:0]

coeff_out_valid[0]

-1 3

0 0 80

-1

Figure 4–33. Timing Diagram of Multiple Coefficient Banks

clk

xin_v[0]

bankin_0[0]

xin_0[7:0]

coeff_in_data[15:0]

coeff_in_address[11:0]

coeff_in_we[0]

xout_v[0]

xout_0[19:0]

51 -14 -48 33 112 125 -10 -71 119 40 -105 -125 -114 0 1 0

-58 18 106 -34 119 112 105 -1

7 8 9 10 11 12 13

342 1530 3636 5490 6400 8064 11 16 20 20 23 28 30 26 16 12 -14 12 -22 -51 -27 -26 -13 5198 6612 0 -58 18 106 119 112 105 112

-1

6

0

-1

-13 -82 -34
February 2012 Altera Corporation FIR Compiler II MegaCore Function
User Guide

4–22 Chapter 4: Functional Description
Signals
Signals
Table 4–2 lists the input and output signals for the FIR Compiler II MegaCore function
with the Avalon-ST interface.

Table 4–2. FIR Compiler II Signals with Avalon-ST Interface (Part 1 of 3)

Signal Direction Width Description

clk Input 1 Clock signal used to clock all internal FIR Compiler II filter
registers.

reset_n Input 1 Asynchronous active low reset signal. Resets the FIR
Compiler II filter control circuit on the rising edge of clk.

coeff_in_clk Input 1 Clock signal for the coefficient reloading mechanism. This
clock can have a lower rate than the system clock.

coeff_in_areset Input 1 Asynchronous active high reset signal for the coefficient
reloading mechanism.

ast_sink_ready Output 1
FIR filter asserts this signal when it is able to accept data in
the current clock cycle. When backpressure is turned off, it is
always asserted.

ast_sink_valid Input 1
Assert this signal when the input data is valid. When
ast_sink_valid is not asserted, the FIR processing stops
until you re-assert the ast_sink_valid signal.

ast_sink_data Input

(Data width +
Bank width) ×
the number of
channel input
wires
(PhysChanIn)

where,

Bank width=
Log2(Number of
coefficient sets)

Sample input data. For a multichannel operation (number of
channel input wires > 1), the least significant bits of
ast_sink_data are mapped to xln_0 of the FIR Compiler II
filter (refer to Figure 4–5).

For example:

ast_sink_data[7:0] --> xln_0[7:0]

ast_sink_data[15:8] --> xln_1[7:0]

ast_sink_data[23:16] --> xln_2[7:0]

For multiple coefficient banks, the most significant bits of the
channel data are mapped to the bank input signal and the
least significant bits of the channel data are mapped to the
data input signal.

For example,

Single channel with 4 coefficient banks:

ast_sink_data[9:8] --> BankIn_0

ast_sink_data[7:0] --> xln_0

Multi-channel (4 channels) with 4 coefficient banks:

ast_sink_data[9:8] --> BankIn_0

ast_sink_data[7:0] --> xln_0

ast_sink_data[19:18] --> BankIn_1

ast_sink_data[17:10] --> xln_1

ast_sink_data[29:28] --> BankIn_2

ast_sink_data[27:20] --> xln_2

ast_sink_data[39:38] --> BankIn_3

ast_sink_data[37:30] --> xln_3
FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

Chapter 4: Functional Description 4–23
Signals
ast_sink_sop Input 1 Marks the start of the incoming sample group. The start of
packet (SOP) is interpreted as a sample from channel 0.

ast_sink_eop Input 1

Marks the end of the incoming sample group. If there is data
associated with N channels, the end of packet (EOP) must be
driven high when the sample belonging to the last channel
(that is, channel N-1), is presented at the data input.

ast_sink_error Input 2

Error signal indicating Avalon-ST protocol violations on the
sink side:

■ 00: No error

■ 01: Missing SOP

■ 10: Missing EOP

■ 11: Unexpected EOP

Other types of errors are also marked as 11.

ast_source_ready Input 1
The downstream module asserts this signal if it is able to
accept data. When backpressure is turned off, FIR output
does not stop and the ast_source_ready signal is ignored.

ast_source_valid Output 1 The MegaCore function assserts this signal when there is
valid data to output.

ast_source_channel Output
Log2(number of
channels per
wire)

Indicates the index of the channel whose result is presented at
the data output.

ast_source_data Output

Data width ×
number of
channel output
wires
(PhysChanOut)

FIR Compiler II filter output. For a multichannel operation
(number of channel output wires > 1), the least significant
bits of ast_source_data are mapped to xOut_0 of the FIR
Compiler II filter (refer to Figure 4–7).

For example:

xOut_0[7:0] --> ast_source_data[7:0]

xOut_1[7:0] --> ast_source_data[15:8]

xOut_2[7:0]--> ast_source_data[23:16]

ast_source_sop Output 1 Marks the start of the outgoing FIR Compiler II filter result
group. If '1', a result corresponding to channel 0 is output.

ast_source_eop Output 1
Marks the end of the outgoing FIR Compiler II filter result
group. If '1', a result corresponding to channels per wire N-1
is output, where N is the number of channels per wire.

ast_source_error Output 2

Error signal indicating Avalon-ST protocol violations on the
source side:

■ 00: No error

■ 01: Missing SOP

■ 10: Missing EOP

■ 11: Unexpected EOP

Other types of errors are also marked as 11.

coeff_in_address Input Number of
coefficients Address input to write new coefficient data.

coeff_in_we Input 1 Write enable for memory-mapped coefficients.

Table 4–2. FIR Compiler II Signals with Avalon-ST Interface (Part 2 of 3)

Signal Direction Width Description
February 2012 Altera Corporation FIR Compiler II MegaCore Function
User Guide

4–24 Chapter 4: Functional Description
Signals
coeff_in_data Input Coefficient width Data coefficient input.

coeff_out_valid Output 1 Coefficient read valid signal.

coeff_out_data Output Coefficient width Data coefficient output. The coefficient in memory at the
address specified by coeff_in_address.

Table 4–2. FIR Compiler II Signals with Avalon-ST Interface (Part 3 of 3)

Signal Direction Width Description
FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

February 2012 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

Document Revision History
The following table shows the revision history for this document.

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the
following table.

Date Version Changes

February 2012 11.1 Added a new parameter.

November 2011 11.1 Updated Chapter 1, About This MegaCore Function with new resource utilization information
for Stratix V and Cyclone III.

May 2011 11.0
■ Updated Chapter 1, About This MegaCore Function with new resource utilization

information for Stratix V.

■ Updated Chapter 3, Parameter Settings.

December 2010 10.1

■ Updated Chapter 3, Parameter Settings and Chapter 4, Functional Description to include
new output options and multiple coefficient bands.

■ Updated Chapter 1, About This MegaCore Function with new resource utilization
information.

July 2010 10.0 Updated Chapter 3, Parameter Settings and Chapter 4, Functional Description with
backpressure and coefficient reloading features.

January 2010 9.1 SP1 Initial release.

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Nontechnical support (general) Email nacomp@altera.com

(software licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.
FIR Compiler II MegaCore Function
User Guide

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information
Typographic Conventions
Typographic Conventions
The following table shows the typographic conventions this document uses.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections in a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

h The question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.
FIR Compiler II MegaCore Function February 2012 Altera Corporation
User Guide

https://www.altera.com/subscriptions/email/signup/eml-index.jsp

	Contents
	1. About This MegaCore Function
	Features
	Device Family Support
	MegaCore Verification
	Performance and Resource Utilization
	Release Information

	2. Getting Started
	Installation and Licensing
	MegaWizard Plug-In Manager Design Flow
	Specifying Parameters
	Simulating the Design
	Simulating in the ModelSim-Altera Software
	Simulating in MATLAB
	Simulating in Third-Party Simulation Tools Using NativeLink

	Compiling the Design and Programing a Device

	3. Parameter Settings
	Filter Specification Page
	Loading Coefficients from a File

	Input and Output Options Page
	Signed Fractional Binary
	MSB and LSB Truncation, Saturation, and Rounding

	Implementation Options Page
	Memory and Multiplier Trade-Offs

	4. Functional Description
	Architecture
	Interfaces
	Avalon-ST Sink and Source Interfaces
	Avalon-ST Sink Interface

	Avalon-ST Source Interface
	Clock and Reset Interfaces

	Time-Division Multiplexing
	Multichannel Operation
	Vectorized Inputs
	Channelization
	Channel Input/Output Format
	Example—Eight Channels on Three Wires
	Example—Four Channels on Four Wires
	Example—15 Channels with 15 Valid Cycles and 17 Invalid Cycles
	Example—22 Channels with 11 Valid Cycles and 9 Invalid Cycles
	Example—Super Sample Rate

	Multiple Coefficient Banks
	Coefficient Reloading
	Signals

	Additional Information
	Document Revision History
	How to Contact Altera
	Typographic Conventions

