
101 Innovation Drive
San Jose, CA 95134
www.altera.com

UG-FFT-11.1

User Guide

FFT MegaCore Function

Subscribe

FFT MegaCore Function User Guide

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=UG-FFT

© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and
services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.

November 2011 Altera Corporation FFT MegaCore Function
User Guide

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

November 2011 Altera Corporation
Contents
Chapter 1. About This MegaCore Function
Release Information . 1–1
Device Family Support . 1–1
Features . 1–2
General Description . 1–3

Fixed Transform Size Architecture . 1–3
Variable Streaming Architecture . 1–4

MegaCore Verification . 1–4
Performance and Resource Utilization . 1–4

Cyclone III Devices . 1–5
Stratix III Devices . 1–8
Stratix IV Devices . 1–11
Stratix V Devices . 1–14

Installation and Licensing . 1–18
OpenCore Plus Evaluation . 1–18
OpenCore Plus Time-Out Behavior . 1–19

Chapter 2. Getting Started
Design Flows . 2–1
DSP Builder Flow . 2–1
MegaWizard Plug-In Manager Flow . 2–2

Parameterize the MegaCore Function . 2–3
Set Up Simulation . 2–10
Generate the MegaCore Function . 2–10

Simulate the Design . 2–12
Simulate in the MATLAB Software . 2–13

Fixed Transform Architectures . 2–13
Variable Streaming Architecture . 2–14

Simulate with IP Functional Simulation Models . 2–15
Simulating in Third-Party Simulation Tools Using NativeLink . 2–15

Compile the Design . 2–16
Fixed Transform Architecture . 2–16
Variable Streaming Architecture . 2–16

Program a Device . 2–16

Chapter 3. Functional Description
Buffered, Burst, & Streaming Architectures . 3–1
Variable Streaming Architecture . 3–2
The Avalon Streaming Interface . 3–3
FFT Processor Engine Architectures . 3–4

Radix-22 Single Delay Feedback Architecture . 3–4
Mixed Radix-4/2 Architecture . 3–5
Quad-Output FFT Engine Architecture . 3–5
Single-Output FFT Engine Architecture . 3–6

I/O Data Flow Architectures . 3–6
Streaming . 3–7

Streaming FFT Operation . 3–7
Enabling the Streaming FFT . 3–8
FFT MegaCore Function
User Guide

iv Contents
Variable Streaming . 3–8
Change the Block Size . 3–8
Enabling the Variable Streaming FFT . 3–9
Dynamically Changing the FFT Size . 3–10
The Effect of I/O Order . 3–10

Buffered Burst . 3–11
Burst . 3–13

Parameters . 3–14
Signals . 3–16

Appendix 4. Block Floating Point Scaling
Introduction . 4–1
Block Floating Point . 4–1
Calculating Possible Exponent Values . 4–2
Implementing Scaling . 4–2
Achieving Unity Gain in an IFFT+FFT Pair . 4–4

Additional Information
Revision History . Info–1
How to Contact Altera . Info–2
Typographic Conventions . Info–2
FFT MegaCore Function November 2011 Altera Corporation
User Guide

November 2011 Altera Corporation
1. About This MegaCore Function
Release Information
Table 1–1 lists information about this release of the Altera® FFT MegaCore® function.

f For more information about this release, refer to the MegaCore IP Library Release Notes
and Errata.

Altera verifies that the current version of the Quartus® II software compiles the
previous version of each MegaCore® function. The MegaCore IP Library Release Notes
and Errata report any exceptions to this verification. Altera does not verify
compilation with MegaCore function versions older than one release.

Device Family Support
Table 1–2 lists the device support levels for Altera IP cores.

Table 1–1. FFT MegaCore Function Release Information

Item Description

Version 11.1

Release Date November 2011

Ordering Code IP-FFT

Product ID 0034

Vendor ID 6AF7

Table 1–2. Altera IP Core Device Support Levels

FPGA Device Families HardCopy Device Families

Preliminary support—The IP core is verified with
preliminary timing models for this device family. The IP core
meets all functional requirements, but might still be
undergoing timing analysis for the device family. It can be
used in production designs with caution.

HardCopy Companion—The IP core is verified with
preliminary timing models for the HardCopy companion
device. The IP core meets all functional requirements, but
might still be undergoing timing analysis for the HardCopy
device family. It can be used in production designs with
caution.

Final support—The IP core is verified with final timing
models for this device family. The IP core meets all
functional and timing requirements for the device family and
can be used in production designs.

HardCopy Compilation—The IP core is verified with final
timing models for the HardCopy device family. The IP core
meets all functional and timing requirements for the device
family and can be used in production designs.
FFT MegaCore Function
User Guide

www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf

1–2 Chapter 1: About This MegaCore Function
Features
Table 1–3 lists the level of support offered by the FFT MegaCore function to each of
the Altera device families.

Features
The following lists the features of the FFT MegaCore function:

■ Bit-accurate MATLAB models

■ Enhanced variable streaming FFT:

■ Single precision floating point or fixed point representation

■ Input and output orders include natural order, bit reversed or digit-reversed,
and DC-centered (–N/2 to N/2)

■ Reduced memory requirements

■ Support for 8 to 32-bit data and twiddle width

■ Radix-4, mixed radix-4/2 implementations (for floating point FFT), and radix-22
single delay feedback implementation (for fixed point FFT)

Table 1–3. Device Family Support

Device Family Support

Arria® GX Final

Arria II GX Final

Arria II GZ Final

Arria V Refer to the What’s New in Altera IP page of the Altera
website.

Cyclone® Final

Cyclone II Final

Cyclone III Final

Cyclone III LS Final

Cyclone IV Final

Cyclone V Refer to the What’s New in Altera IP page of the Altera
website.

HardCopy® II HardCopy Compilation

HardCopy III HardCopy Compilation

HardCopy IV E HardCopy Compilation

HardCopy IV GX HardCopy Compilation

Stratix® Final

Stratix II Final

Stratix II GX Final

Stratix III Final

Stratix IV GT Final

Stratix IV GX/E Final

Stratix V Preliminary

Stratix GX Final
FFT MegaCore Function November 2011 Altera Corporation
User Guide

http://www.altera.com/products/ip/news/ip-whats-new.html
http://www.altera.com/products/ip/news/ip-whats-new.html

Chapter 1: About This MegaCore Function 1–3
General Description
■ Block floating-point architecture—maintains the maximum dynamic range of data
during processing (not for variable streaming)

■ Uses embedded memory

■ Maximum system clock frequency more than 300 MHz

■ Optimized to use Stratix series DSP blocks and TriMatrix™ memory
architecture

■ High throughput quad-output radix 4 FFT engine

■ Support for multiple single-output and quad-output engines in parallel

■ Multiple I/O data flow modes: streaming, buffered burst, and burst

■ User control over optimization in DSP blocks or in speed in Stratix V devices, for
streaming, buffered burst, and burst modes and for variable streaming fixed point
mode

■ Avalon® Streaming (Avalon-ST) compliant input and output interfaces

■ Parameterization-specific VHDL and Verilog HDL testbench generation

■ Transform direction (FFT/IFFT) specifiable on a per-block basis

■ Easy-to-use IP Toolbench interface

■ IP functional simulation models for use in Altera-supported VHDL and Verilog
HDL simulators

■ DSP Builder ready

f For more information about Avalon-ST interfaces, refer to the Avalon Interface
Specifications.

General Description
The FFT MegaCore function is a high performance, highly-parameterizable Fast
Fourier transform (FFT) processor. The FFT MegaCore function implements a
complex FFT or inverse FFT (IFFT) for high-performance applications.

The FFT MegaCore function implements the following architectures:

■ Fixed transform size architecture

■ Variable streaming architecture

Fixed Transform Size Architecture
The fixed transform architecture FFT implements a radix-2/4 decimation-in-
frequency (DIF) FFT fixed-transform size algorithm for transform lengths of 2m where
6  m 16. This architecture uses block-floating point representations to achieve the
best trade-off between maximum signal-to-noise ratio (SNR) and minimum size
requirements.
November 2011 Altera Corporation FFT MegaCore Function
User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

1–4 Chapter 1: About This MegaCore Function
MegaCore Verification
The fixed transform architecture accepts as an input a two’s complement format
complex data vector of length N, where N is the desired transform length in natural
order; the function outputs the transform-domain complex vector in natural order. An
accumulated block exponent is output to indicate any data scaling that has occurred
during the transform to maintain precision and maximize the internal signal-to-noise
ratio. Transform direction is specifiable on a per-block basis via an input port.

Variable Streaming Architecture
The variable streaming architecture FFT implements two different types of
architecture. The variable streaming FFT variations implement either a radix-22 single
delay feedback architecture, using a fixed-point representation, or a mixed radix-4/2
architecture, using a single precision floating point representation. After you select
your architecture type, you can configure your FFT variation during runtime to
perform the FFT algorithm for transform lengths of 2m where 3 m 18.

The fixed-point representation grows the data widths naturally from input through to
output thereby maintaining a high SNR at the output. The single precision floating
point representation allows a large dynamic range of values to be represented while
maintaining a high SNR at the output.

f For more information about radix-22 single delay feedback architecture, refer to S. He
and M. Torkelson, A New Approach to Pipeline FFT Processor, Department of Applied
Electronics, Lund University, IPPS 1996.

The order of the input data vector of size N can be natural, bit- or digit-reversed, or
–N/2 to N/2 (DC-centered). The fixed-point representation supports a natural,
bit-reversed, or DC-centered order and the floating point representation supports a
natural, digit-reversed, or DC-centered order. The architecture outputs the
transform-domain complex vector in natural, bit-reversed, or digit-reversed order.
The transform direction is specifiable on a per-block basis using an input port.

MegaCore Verification
Before releasing a version of the FFT MegaCore function, Altera runs comprehensive
regression tests to verify its quality and correctness.

Custom variations of the FFT MegaCore function are generated to exercise its various
parameter options, and the resulting simulation models are thoroughly simulated
with the results verified against master simulation models.

Performance and Resource Utilization
Performance varies depending on the FFT engine architecture and I/O data flow. All
data represents the geometric mean of a three seed Quartus II synthesis sweep.

1 Cyclone III devices use combinational look-up tables (LUTs) and logic registers;
Stratix III devices use combinational adaptive look-up tables (ALUTs) and logic
registers.
FFT MegaCore Function November 2011 Altera Corporation
User Guide

Chapter 1: About This MegaCore Function 1–5
Performance and Resource Utilization
Cyclone III Devices
Table 1–4 lists the streaming data flow performance, using the 4 multipliers/2 adders
complex multiplier structure, for width 16, for Cyclone III (EP3C10F256C6) devices.

Table 1–5 shows the variable streaming data flow performance, with in order inputs
and bit-reversed outputs, for width 16 (32 for floating point), for Cyclone III
(EP3C16F484C6) devices.

1 The variable streaming with fixed-point number representation uses natural word
growth, therefore the multiplier requirement is larger compared with the equivalent
streaming FFT with the same number of points.

If you want to significantly reduce M9K memory utilization, set a lower fMAX target.

Table 1–6 lists resource usage with buffered burst data flow architecture, using the 4
multipliers/2 adders complex multiplier structure, for data and twiddle width 16, for
Cyclone III (EP3C25F324C6) devices.

Table 1–4. Performance with the Streaming Data Flow Engine Architecture—Cyclone III Devices

Points Combinational
LUTs

Logic
Registers

Memory
(Bits)

Memory
(M9K)

9 × 9
Blocks

fMAX
(MHz)

Clock
Cycle
Count

Transform
Time (s)

256 3437 3906 39168 20 24 231 256 1.11

1024 3857 4650 155904 20 24 244 1024 4.19

4096 (1) 3719 4734 622848 76 24 234 4096 17.52

Note to Table 1–4:

(1) EP3C40F780C6 device.

Table 1–5. Performance with the Variable Streaming Data Flow Engine Architecture—Cyclone III Devices

Point Type Points Combinational
LUTs

Logic
Registers

Memory
(Bits)

Memory
(M9K)

9 × 9
Blocks

fMAX
(MHz)

Clock
Cycle
Count

Transform
Time (s)

Fixed 256 3859 4373 9997 15 40 191 256 1.34

Fixed 1024 5243 5840 41940 21 56 193 1024 5.29

Fixed 4096 6725 7369 170335 40 72 198 4096 20.67

Floating (1) 256 20771 14158 34464 62 96 116 256 2.20

Floating (2) 1024 26573 17540 140410 93 128 116 1024 8.83

Floating (2) 4096 32428 20939 568163 148 160 116 4096 35.3

Note to Table 1–5:

(1) EP3C40F780C6 device.
(2) EP3C55F780C6 device.

Table 1–6. Resource Usage with Buffered Burst Data Flow Architecture—Cyclone III Devices (Part 1 of 2)

Points Number of
Engines (1)

Combinational
LUTs

Logic
Registers

Memory
(Bits)

Memory
(M9K)

9 × 9
Blocks

fMAX
(MHz)

256 (2) 1 3129 3778 30,76 16 24 247

1024 (2) 1 3234 3976 123136 16 24 241
November 2011 Altera Corporation FFT MegaCore Function
User Guide

1–6 Chapter 1: About This MegaCore Function
Performance and Resource Utilization
Table 1–7 lists performance with buffered burst data flow architecture, using the 4
multipliers/2 adders complex multiplier structure, for data and twiddle width 16, for
Cyclone III (EP3C25F324C6) devices.

4096 1 3291 4160 491776 60 24 227

256 (3) 2 5161 5961 30976 31 48 225

1024 (3) 2 5270 6169 123136 31 48 207

4096 2 5337 6361 491776 60 48 215

256 4 9015 10738 30976 60 96 230

1024 4 9145 10963 123136 60 96 230

4096 4 9241 11169 491776 60 96 215

Notes to Table 1–6:

(1) When using the buffered burst architecture, you can specify the number of quad-output FFT engines in the FFT parameter editor.
(2) EP3C10F256C6 device.
(3) EP3C16F484C6 device.

Table 1–6. Resource Usage with Buffered Burst Data Flow Architecture—Cyclone III Devices (Part 2 of 2)

Points Number of
Engines (1)

Combinational
LUTs

Logic
Registers

Memory
(Bits)

Memory
(M9K)

9 × 9
Blocks

fMAX
(MHz)

Table 1–7. Performance with the Buffered Burst Data Flow Architecture—Cyclone III Devices

Points Number of
Engines (1)

fMAX
(MHz)

Transform Calculation
Time (2)

Data Load & Transform
Calculation

Block Throughput
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 (4) 1 247 235 0.95 491 1.99 331 1.34

1024 (4) 1 241 1069 4.44 2093 8.69 1291 5.36

4096 1 227 5167 22.81 9263 40.9 6157 27.18

256 (5) 2 225 162 0.72 397 1.77 299 1.33

1024 (5) 2 207 557 2.69 1581 7.63 1163 5.61

4096 2 215 2,07 12.12 6703 31.17 5133 23.87

256 4 230 118 0.51 347 1.51 283 1.23

1024 4 230 340 1.48 1364 5.93 1099 4.78

4096 4 215 1378 6.4 5474 25.4 4633 21.5

Notes to Table 1–7:

(1) When using the buffered burst architecture, you can specify the number of quad-output engines in the FFT parameter editor. You may choose
from one, two, or four quad-output engines in parallel.

(2) In a buffered burst data flow architecture, transform time is defined as the time from when the N-sample input block is loaded until the first
output sample is ready for output. Transform time does not include the additional N-1 clock cycle to unload the full output data block.

(3) Block throughput is the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.
(4) EP3C10F256C6 device.
(5) EP3C16F484C6 device.
FFT MegaCore Function November 2011 Altera Corporation
User Guide

Chapter 1: About This MegaCore Function 1–7
Performance and Resource Utilization
Table 1–8 lists resource usage with burst data flow architecture, using the
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16,
for Cyclone III (EP3C10F256C6) devices.

Table 1–9 lists performance with burst data flow architecture, using the
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16,
for Cyclone III (EP3C10F256C6) devices.

Table 1–8. Resource Usage with the Burst Data Flow Architecture—Cyclone III Devices

Points Engine
Architecture

Number of
Engines (2)

Combinational
LUTs

Logic
Registers

Memory
(Bits)

Memory
(M9K)

9 × 9
Blocks

fMAX
(MHz)

256 Quad Output 1 3120 3694 14592 8 24 232

1024 Quad Output 1 3227 3876 57600 8 24 246

4096 Quad Output 1 3277 4044 229632 28 24 215

256 Quad Output 2 5141 5872 14592 15 48 244

1024 Quad Output 2 5248 6064 57600 15 48 216

4096 Quad Output 2 5304 6240 229632 28 48 219

256 Quad Output 4 9012 10659 14592 28 96 225

1024 Quad Output 4 9144 10868 57600 28 96 202

4096 Quad Output 4 9241 11058 229632 28 96 204

256 Single Output 1 1449 1499 9472 3 8 250

1024 Single Output 1 1518 1545 37120 6 8 223

4096 Single Output 1 1598 1591 147712 19 8 227

256 Single Output 2 2131 2460 14592 9 16 235

1024 Single Output 2 2185 2536 57600 11 16 221

4096 Single Output 2 2237 2612 229632 28 16 219

Note to Table 1–8:

(1) When using the burst data flow architecture, you can specify the number of engines in the FFT parameter editor. You may choose from one to
two single-output engines in parallel, or from one, two, or four quad-output engines in parallel.

Table 1–9. Performance with the Burst Data Flow Architecture—Cyclone III Devices (Part 1 of 2)

Points Engine
Architecture

Number of
Engines (1)

fMAX
(MHz)

Transform
Calculation Time (2)

Data Load & Transform
Calculation

Block Throughput
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 Quad Output 1 232 235 1.01 491 2.12 331 1.43

1024 Quad Output 1 246 1069 4.35 2093 8.51 1291 5.25

4096 Quad Output 1 215 5167 24.07 9263 43.15 6157 28.68

256 Quad Output 2 244 162 0.66 397 1.63 299 1.23

1024 Quad Output 2 216 557 2.58 1581 7.31 1163 5.38

4096 Quad Output 2 219 2607 11.9 6703 30.59 5133 23.43

256 Quad Output 4 225 118 0.52 374 1.66 283 1.26

1024 Quad Output 4 202 340 1.68 1364 6.75 1099 5.43

4096 Quad Output 4 204 1378 6.76 5474 26.87 4633 22.74

256 Single Output 1 250 1115 4.45 1371 5.48 1628 6.5
November 2011 Altera Corporation FFT MegaCore Function
User Guide

1–8 Chapter 1: About This MegaCore Function
Performance and Resource Utilization
Stratix III Devices
Table 1–10 lists the streaming data flow performance, using the 4 multipliers/2 adders
complex multiplier structure, for data and twiddle width 16, for Stratix III
(EP3SE50F780C2) devices.

Table 1–11 lists the variable streaming data flow performance, with in order inputs
and bit-reversed outputs, for width 16 (32 for floating point), for Stratix III
(EP3SE50F780C2) devices.

1 The variable streaming with fixed-point number representation uses natural word
growth, therefore the multiplier requirement is larger compared with the equivalent
streaming FFT with the same number of points.

If you want to significantly reduce M9K memory utilization, set a lower fMAX target.

1024 Single Output 1 223 5230 23.43 6344 28.42 7279 32.6

4096 Single Output 1 227 24705 108.7 28801 126.73 32898 144.75

256 Single Output 2 235 585 2.49 841 3.58 1098 4.67

1024 Single Output 2 221 2652 12 3676 16.64 4701 21.28

4096 Single Output 2 219 12329 56.28 16495 75.3 20605 94.06

Notes to Table 1–9:

(1) In the burst I/O data flow architecture, you can specify the number of engines in the FFT parameter editor. You may choose from one to two
single-output engines in parallel, or from one, two, or four quad-output engines in parallel.

(2) Transform time is the time frame when the input block is loaded until the first output sample (corresponding to the input block) is output.
Transform time does not include the time to unload the full output data block.

(3) Block throughput is defined as the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.

Table 1–9. Performance with the Burst Data Flow Architecture—Cyclone III Devices (Part 2 of 2)

Points Engine
Architecture

Number of
Engines (1)

fMAX
(MHz)

Transform
Calculation Time (2)

Data Load & Transform
Calculation

Block Throughput
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

Table 1–10. Performance with the Streaming Data Flow Engine Architecture—Stratix III Devices

Points Combinational
ALUTs

Logic
Registers

Memory
(Bits)

Memory
(M9K)

18 × 18
Blocks

fMAX
(MHz)

Clock
Cycle
Count

Transform
Time (s)

256 2094 3715 39168 20 12 442 256 0.58

1024 2480 4458 155904 20 12 413 10024 2.48

4096 2357 4545 622848 76 12 388 4096 10.57

Table 1–11. Performance with the Variable Streaming Data Flow Engine Architecture—Stratix III Devices (Part 1 of 2)

Point Type Points Combinational
ALUTs

Logic
Registers

Memory
(Bits)

Memory
(M9K)

18 × 18
Blocks

fMAX
(MHz)

Clock
Cycle
Count

Transform
Time (s)

Fixed 256 2511 3927 10239 16 20 341 256 0.75

Fixed 1024 3476 5244 42218 23 28 323 1024 3.17

Fixed 4096 4480 6628 170639 42 36 320 4096 12.8

Floating 256 14059 13424 34728 64 48 303 256 0.84
FFT MegaCore Function November 2011 Altera Corporation
User Guide

Chapter 1: About This MegaCore Function 1–9
Performance and Resource Utilization
Table 1–12 lists resource usage with buffered burst data flow architecture, using the
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16,
for Stratix III (EP3SE50F780C2) devices.

Table 1–13 lists performance with buffered burst data flow architecture, using the
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16,
for Stratix III (EP3SE50F780C2) devices.

Floating 1024 18019 16560 140750 95 64 286 1024 3.58

Floating (1) 4096 22026 19717 568579 150 80 286 4096 14.33

Note to Table 1–11:

(1) EP3SL70F780C2 device.

Table 1–11. Performance with the Variable Streaming Data Flow Engine Architecture—Stratix III Devices (Part 2 of 2)

Point Type Points Combinational
ALUTs

Logic
Registers

Memory
(Bits)

Memory
(M9K)

18 × 18
Blocks

fMAX
(MHz)

Clock
Cycle
Count

Transform
Time (s)

Table 1–12. Resource Usage with Buffered Burst Data Flow Architecture—Stratix III Devices

Points Number of
Engines (1)

Combinational
ALUTs

Logic
Registers

Memory
(Bits)

Memory
(M9K)

18 × 18
Blocks

fMAX
(MHz)

256 1 1952 3586 30976 16 12 408

1024 1 1989 3784 123136 16 12 390

4096 1 2031 3968 491776 60 12 382

256 2 3261 5577 30976 31 24 365

1024 2 3306 5785 123136 31 24 369

4096 2 3348 5977 491776 60 24 390

256 4 5712 9971 30976 60 48 341

1024 4 5775 10195 123136 60 48 349

4096 4 5857 10403 491776 60 48 325

Note to Table 1–12:

(1) When using the buffered burst architecture, you can specify the number of quad-output FFT engines in the FFT parameter editor.

Table 1–13. Performance with the Buffered Burst Data Flow Architecture—Stratix III Devices (Part 1 of 2)

Points Number of
Engines (1)

fMAX
(MHz))

Transform Calculation
Time (2)

Data Load & Transform
Calculation

Block Throughput
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 1 408 235 0.58 491 1.2 331 0.81

1024 1 390 1069 2.74 2093 5..37 1291 3.31

4096 1 382 5167 13.54 9263 24.27 6157 16.13

256 2 365 162 0.44 397 1.09 299 0.82

1024 2 369 557 1.51 1581 4.29 1163 3.15

4096 2 390 2607 6.68 6703 17.17 5133 13.15

256 4 341 118 0.35 347 1.02 283 0.83

1024 4 349 340 0.98 1364 3.91 1099 3.15
November 2011 Altera Corporation FFT MegaCore Function
User Guide

1–10 Chapter 1: About This MegaCore Function
Performance and Resource Utilization
Table 1–14 lists resource usage with burst data flow architecture, using the
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16,
for Stratix III (EP3SE50F780C2) devices.

4096 4 325 1378 4.25 5474 16.87 4633 14.27

Notes to Table 1–13:

(1) When using the buffered burst architecture, you can specify the number of quad-output engines in the FFT parameter editor. You may choose
from one, two, or four quad-output engines in parallel.

(2) In a buffered burst data flow architecture, transform time is defined as the time from when the N-sample input block is loaded until the first
output sample is ready for output. Transform time does not include the additional N-1 clock cycle to unload the full output data block.

(3) Block throughput is the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.

Table 1–13. Performance with the Buffered Burst Data Flow Architecture—Stratix III Devices (Part 2 of 2)

Points Number of
Engines (1)

fMAX
(MHz))

Transform Calculation
Time (2)

Data Load & Transform
Calculation

Block Throughput
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

Table 1–14. Resource Usage with the Burst Data Flow Architecture—Stratix III Devices

Points Engine
Architecture

Number of
Engines (2)

Combinational
ALUTs

Logic
Registers

Memory
(Bits)

Memory
(M9K)

18 × 18
Blocks

fMAX
(MHz)

256 Quad Output 1 1796 3502 14592 8 12 408

1024 Quad Output 1 1830 3686 57600 8 12 429

4096 Quad Output 1 1882 3852 229632 28 12 410

256 Quad Output 2 2968 5489 14592 15 24 382

1024 Quad Output 2 3015 5681 57600 15 24 388

4096 Quad Output 2 3054 5856 229632 28 24 386

256 Quad Output 4 5162 9891 14592 28 48 348

1024 Quad Output 4 5213 10100 57600 28 48 380

4096 Quad Output 4 5283 10290 229632 28 48 367

256 Single Output 1 704 1435 9472 3 4 438

1024 Single Output 1 740 1481 37120 6 4 414

4096 Single Output 1 805 1527 147712 19 4 404

256 Single Output 2 1037 2332 14592 9 8 413

1024 Single Output 2 1050 2408 57600 11 8 402

4096 Single Output 2 1092 2484 229632 28 8 406

Notes to Table 1–14:

(1) Represents data and twiddle factor precision.
(2) When using the burst data flow architecture, you can specify the number of engines in the FFT parameter editor. You may choose from one to

two single-output engines in parallel, or from one, two, or four quad-output engines in parallel.
FFT MegaCore Function November 2011 Altera Corporation
User Guide

Chapter 1: About This MegaCore Function 1–11
Performance and Resource Utilization
Table 1–15 lists performance with burst data flow architecture, using the
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16,
for Stratix III (EP3SE50F780C2) devices.

Stratix IV Devices
Table 1–16 lists the streaming data flow performance, using the 4 multipliers/2 adders
complex multiplier structure, for data and twiddle width 16, for Stratix IV
(EP4SGX70DF29C2X) devices.

Table 1–17 lists the variable streaming data flow performance, with in order inputs
and bit-reversed outputs, for width 16 (32 for floating point), for Stratix IV
(EP4SGX70DF29C2X) devices.

Table 1–15. Performance with the Burst Data Flow Architecture—Stratix III Devices

Points Engine
Architecture

Number of
Engines

(1)

fmax
(MHz)

Transform
Calculation Time (2)

Data Load &
Transform Calculation

Block Throughput
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 Quad Output 1 408 235 0.58 491 1.2 331 0.81

1024 Quad Output 1 429 1069 2.49 2093 4.87 1291 3.01

4096 Quad Output 1 410 5167 12.6 9263 22.59 6157 15.02

256 Quad Output 2 382 162 0.42 397 1.04 299 0.78

1024 Quad Output 2 388 557 1.43 1581 4.07 1163 3.00

4096 Quad Output 2 386 2607 6.76 6703 17.39 5133 13.31

256 Quad Output 4 348 118 0.34 374 1.07 283 0.81

1024 Quad Output 4 380 340 0.9 1364 3.59 1099 2.9

4096 Quad Output 4 367 1378 3.76 5474 14.92 4633 12.63

256 Single Output 1 438 1115 2.54 1371 3.13 1628 3.72

1024 Single Output 1 414 5230 12.63 6344 15.31 7279 17.57

4096 Single Output 1 404 24705 61.22 28801 71.37 32898 81.52

256 Single Output 2 413 585 1.42 841 2.04 1098 2.66

1024 Single Output 2 402 2652 6.6 3676 9.15 4701 11.71

4096 Single Output 2 406 12329 30.34 16495 40.59 20605 50.71

Notes to Table 1–15:

(1) In the burst I/O data flow architecture, you can specify the number of engines in the FFT parameter editor. You may choose from one to two
single-output engines in parallel, or from one, two, or four quad-output engines in parallel.

(2) Transform time is the time frame when the input block is loaded until the first output sample (corresponding to the input block) is output.
Transform time does not include the time to unload the full output data block.

(3) Block throughput is defined as the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.

Table 1–16. Performance with the Streaming Data Flow Engine Architecture—Stratix IV Devices

Points Combinational
ALUTs

Logic
Registers

Memory
(Bits)

Memory
(M9K)

18 × 18
Blocks

fMAX
(MHz)

Clock
Cycle
Count

Transform
Time (s)

256 2092 3714 39,68 20 12 436 256 0.59

1024 2480 4458 155904 20 12 437 1024 2.34

4096 2356 4545 622848 76 12 419 4096 9.78
November 2011 Altera Corporation FFT MegaCore Function
User Guide

1–12 Chapter 1: About This MegaCore Function
Performance and Resource Utilization
1 The variable streaming with fixed-point number representation uses natural word
growth, therefore the multiplier requirement is larger compared with the equivalent
streaming FFT with the same number of points.

If you want to significantly reduce M9K memory utilization, set a lower fMAX target.

Table 1–18 lists resource usage with buffered burst data flow architecture, using the
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16,
for Stratix IV (EP4SGX70DF29C2X) devices.

Table 1–19 lists performance with buffered burst data flow architecture, using the
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16,
for Stratix IV (EP4SGX70DF29C2X) devices.

Table 1–17. Performance with the Variable Streaming Data Flow Engine Architecture—Stratix IV Devices

Point Type Points Combinational
ALUTs

Logic
Registers

Memory 18 × 18
Blocks

fMAX
(MHz)

Clock
Cycle
Count

Transform
Time (s)Bits M9K

Fixed 256 2517 4096 10239 10 20 323 256 0.79

Fixed 1024 3489 5433 42218 15 28 329 1024 3.12

Fixed 4096 4503 6936 170639 33 36 327 4096 12.52

Floating 256 18024 16714 140750 61 48 320 256 0.8

Floating 1024 14063 13502 34728 89 64 314 1024 3.26

Floating 4096 22030 19806 568579 146 80 310 4096 13.23

Table 1–18. Resource Usage with Buffered Burst Data Flow Architecture—Stratix IV Devices

Points Number of
Engines (1)

Combinational
ALUTs

Logic
Registers

Memory
(Bits)

Memory
(M9K)

18 × 18
Blocks

fMAX
(MHz)

256 1 1951 3586 30976 16 12 443

1024 1 1990 3784 123136 16 12 441

4096 1 2034 3968 491776 60 12 421

256 2 3262 5577 30976 31 24 428

1024 2 3307 5785 123136 31 24 410

4096 2 3348 5977 491776 60 24 393

256 4 5712 9970 30976 60 48 368

1024 4 5774 10195 123136 60 48 362

4096 4 5856 10401 491776 60 48 368

Notes to Table 1–18:

(1) When using the buffered burst architecture, you can specify the number of quad-output FFT engines in the FFT parameter editor.

Table 1–19. Performance with the Buffered Burst Data Flow Architecture—Stratix IV Devices (Part 1 of 2)

Points Number of
Engines (1) fMAX (MHz)

Transform Calculation
Time (2)

Data Load & Transform
Calculation

Block Throughput
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 1 443 235 0.53 491 1.11 331 0.75

1024 1 441 1069 2.42 2093 4.75 1291 2.93
FFT MegaCore Function November 2011 Altera Corporation
User Guide

Chapter 1: About This MegaCore Function 1–13
Performance and Resource Utilization
Table 1–20 lists resource usage with burst data flow architecture, using the
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16,
for Stratix IV (EP4SGX70DF29C2X) devices.

4096 1 421 5167 12.26 9263 21.98 6157 14.61

256 2 428 162 0.38 397 0.93 299 0.7

1024 2 410 557 1.36 1581 3.85 1163 2.84

4096 2 393 2607 6.64 6703 17.07 5133 13.07

256 4 368 118 0.32 347 0.94 283 0.77

1024 4 362 340 0.94 1364 3.77 1099 3.04

4096 4 368 1378 3.75 5474 14.89 4633 12.61

Notes to Table 1–19:

(1) When using the buffered burst architecture, you can specify the number of quad-output engines in the FFT parameter editor. You may choose
from one, two, or four quad-output engines in parallel.

(2) In a buffered burst data flow architecture, transform time is defined as the time from when the N-sample input block is loaded until the first
output sample is ready for output. Transform time does not include the additional N-1 clock cycle to unload the full output data block.

(3) Block throughput is the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.

Table 1–19. Performance with the Buffered Burst Data Flow Architecture—Stratix IV Devices (Part 2 of 2)

Points Number of
Engines (1) fMAX (MHz)

Transform Calculation
Time (2)

Data Load & Transform
Calculation

Block Throughput
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

Table 1–20. Resource Usage with the Burst Data Flow Architecture—Stratix IV Devices

Points Engine
Architecture

Number of
Engines (2)

Combinational
ALUTs

Logic
Registers

Memory
(Bits)

Memory
(M9K)

18 × 18
Blocks

fMAX
(MHz)

256 Quad Output 1 1794 3502 14592 8 12 436

1024 Quad Output 1 1829 3684 57600 8 12 446

4096 Quad Output 1 1881 3852 229632 28 12 443

256 Quad Output 2 2968 5489 14592 15 24 418

1024 Quad Output 2 3014 5680 57600 15 24 412

4096 Quad Output 2 3053 5856 229632 28 24 366

256 Quad Output 4 5160 9891 14592 28 48 369

1024 Quad Output 4 5218 10101 57600 28 48 385

4096 Quad Output 4 5284 10290 229632 28 48 380

256 Single Output 1 704 1436 9472 3 4 407

1024 Single Output 1 740 1482 37120 6 4 413

4096 Single Output 1 801 1528 147712 19 4 412

256 Single Output 2 1036 2332 14592 9 8 405

1024 Single Output 2 1052 2408 57600 11 8 431

4096 Single Output 2 1092 2484 229632 28 8 406

Notes to Table 1–20:

(1) Represents data and twiddle factor precision.
(2) When using the burst data flow architecture, you can specify the number of engines in the FFT parameter editor. You may choose from one to

two single-output engines in parallel, or from one, two, or four quad-output engines in parallel.
November 2011 Altera Corporation FFT MegaCore Function
User Guide

1–14 Chapter 1: About This MegaCore Function
Performance and Resource Utilization
Table 1–21 lists performance with burst data flow architecture, using the
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16,
for Stratix IV (EP4SGX70DF29C2X) devices.

Stratix V Devices
Table 1–22 lists the streaming data flow performance, using the 4 multipliers/2 adders
complex multiplier structure, for data and twiddle width 16, for Stratix V
(5SGXEA7H3F35C2) devices.

Table 1–21. Performance with the Burst Data Flow Architecture—Stratix IV Devices

Points Engine
Architecture

Number of
Engines (1)

fMAX
(MHz)

Transform
Calculation Time (2)

Data Load & Transform
Calculation

Block Throughput
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 Quad Output 1 436 235 0.54 491 1.12 331 0.76

1024 Quad Output 1 446 1069 2.39 2093 4.69 1291 2.89

4096 Quad Output 1 443 5167 11.66 9263 20.9 6157 13.89

256 Quad Output 2 418 162 0.39 397 0.95 299 0.71

1024 Quad Output 2 412 557 1.35 1581 3.83 1163 2.82

4096 Quad Output 2 366 2607 7.12 6703 18.3 5133 14.01

256 Quad Output 4 369 118 0.32 374 1.01 283 0.77

1024 Quad Output 4 385 340 0.88 1364 3.55 1099 2.86

4096 Quad Output 4 380 1378 3.63 5474 14.42 4633 12.20

256 Single Output 1 407 1115 2.74 1371 3.37 1628 4.00

1024 Single Output 1 413 5230 12.66 6344 15.35 7279 17.62

4096 Single Output 1 412 24705 59.91 28801 69.84 32898 79.78

256 Single Output 2 405 585 1.45 841 2.08 1098 2.71

1024 Single Output 2 431 2652 6.16 3676 8.54 4701 10.92

4096 Single Output 2 406 12329 30.35 16495 40.61 20605 50.73

Notes to Table 1–21:

(1) In the burst I/O data flow architecture, you can specify the number of engines in the FFT parameter editor. You may choose from one to two
single-output engines in parallel, or from one, two, or four quad-output engines in parallel.

(2) Transform time is the time frame when the input block is loaded until the first output sample (corresponding to the input block) is output.
Transform time does not include the time to unload the full output data block.

(3) Block throughput is defined as the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.

Table 1–22. Performance with the Streaming Data Flow Engine Architecture—Stratix V Devices

Points Combinational
ALUTs

Logic
Registers

Memory
(Bits)

Memory
(M20K)

DSP
Blocks

fMAX
(MHz)

Clock
Cycle
Count

Transform
Time (s)

256 2,093 3,944 39,168 20 6 395 256 0.65

1024 2,489 4,719 155,904 20 6 382 1,024 2.68

4096 2,352 4,801 622,848 38 6 370 4,096 11.08
FFT MegaCore Function November 2011 Altera Corporation
User Guide

Chapter 1: About This MegaCore Function 1–15
Performance and Resource Utilization
Table 1–23 lists the variable streaming data flow performance, with in order inputs
and bit-reversed outputs, for width 16 (32 for floating point), for Stratix V
(5SGXEA7H3F35C2) devices.

1 The variable streaming with fixed-point number representation uses natural word
growth, therefore the multiplier requirement is larger compared with the equivalent
streaming FFT with the same number of points.

If you want to significantly reduce M20K memory utilization, set a lower fMAX target.

Table 1–24 lists resource usage with buffered burst data flow architecture, using the
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16,
for Stratix V (5SGXEA7H3F35C2) devices.

Table 1–23. Performance with the Variable Streaming Data Flow Engine Architecture—Stratix V Devices

Point Type Points Combinational
ALUTs

Logic
Registers

Memory DSP
Blocks

fMAX
(MHz)

Clock
Cycle
Count

Transform
Time (s)Bits M20K

Fixed 256 2,543 4,319 10,239 15 10 348 256 0.73

Fixed 1024 3,518 5,724 42,204 20 14 330 1,024 3.1

Fixed 4096 4,568 7,290 170,537 31 18 331 4,096 12.36

Floating 256 15,017 15,778 34,445 62 24 334 256 0.77

Floating 1024 19,239 19,551 141,114 91 32 323 1,024 3.17

Floating 4096 23,402 23,295 571,894 121 40 320 4,096 12.82

Table 1–24. Resource Usage with Buffered Burst Data Flow Architecture—Stratix IV Devices

Points Number of
Engines (1)

Combinational
ALUTs

Logic
Registers

Memory
(Bits)

Memory
(M20K) DSP Blocks fMAX

(MHz)

256 1 1,958 3,828 30,976 16 6 430

1024 1 1,997 4,042 123,136 16 6 403

4096 1 2,031 4,235 491,776 30 6 402

256 2 3,264 6,053 30,976 30 12 380

1024 2 3,310 6,247 123,136 30 12 379

4096 2 3,344 6,462 491,776 30 12 366

256 4 5,715 10,897 30,976 59 24 337

1024 4 5,776 11,115 123,136 59 24 348

4096 4 5,857 11,341 491,776 59 24 312

Note to Table 1–24:

(1) When using the buffered burst architecture, you can specify the number of quad-output FFT engines in the FFT parameter editor.
November 2011 Altera Corporation FFT MegaCore Function
User Guide

1–16 Chapter 1: About This MegaCore Function
Performance and Resource Utilization
Table 1–25 lists performance with buffered burst data flow architecture, using the
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16,
for Stratix V (5SGXEA7H3F35C2) devices.

Table 1–26 lists resource usage with burst data flow architecture, using the
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16,
for Stratix V (5SGXEA7H3F35C2) devices.

Table 1–25. Performance with the Buffered Burst Data Flow Architecture—Stratix V Devices

Points Number of
Engines (1) fMAX (MHz)

Transform Calculation
Time (2)

Data Load & Transform
Calculation

Block Throughput
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 1 430 235 0.55 491 1.14 331 0.77

1024 1 403 1,069 2.65 2,093 5.19 1,291 3.2

4096 1 402 5,167 12.86 9,263 23.06 6,157 15.32

256 2 380 162 0.43 397 1.05 299 0.79

1024 2 379 557 1.47 1,581 4.17 1,163 3.07

4096 2 366 2,607 7.13 6,703 18.33 5,133 14.04

256 4 337 118 0.35 347 1.03 283 0.84

1024 4 348 340 0.98 1,364 3.92 1,099 3.16

4096 4 312 1,378 4.42 5,474 17.54 4,633 14.84

Notes to Table 1–25:

(1) When using the buffered burst architecture, you can specify the number of quad-output engines in the FFT parameter editor. You may choose
from one, two, or four quad-output engines in parallel.

(2) In a buffered burst data flow architecture, transform time is defined as the time from when the N-sample input block is loaded until the first
output sample is ready for output. Transform time does not include the additional N-1 clock cycle to unload the full output data block.

(3) Block throughput is the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.

Table 1–26. Resource Usage with the Burst Data Flow Architecture—Stratix V Devices (Part 1 of 2)

Points Engine
Architecture

Number of
Engines (2)

Combinational
ALUTs

Logic
Registers

Memory
(Bits)

Memory
(M20K)

DSP
Blocks

fMAX
(MHz)

256 Quad Output 1 1,801 3,717 14,592 8 6 414

1024 Quad Output 1 1,833 3,912 57,600 8 6 405

4096 Quad Output 1 1,878 4,078 229,632 14 6 395

256 Quad Output 2 2,970 5,914 14,592 14 12 385

1024 Quad Output 2 3,019 6,129 57,600 14 12 395

4096 Quad Output 2 3,048 6,319 229,632 14 12 374

256 Quad Output 4 5,164 10,743 14,592 27 24 353

1024 Quad Output 4 5,216 10,924 57,600 27 24 314

4096 Quad Output 4 5,280 11,129 229,632 27 24 346

256 Single Output 1 709 1,542 9,472 3 2 445

1024 Single Output 1 751 1,598 37,120 4 2 443

4096 Single Output 1 817 1,637 147,712 9 2 427

256 Single Output 2 1,037 2,521 14,592 8 4 401

1024 Single Output 2 1,052 2,622 57,600 8 4 443
FFT MegaCore Function November 2011 Altera Corporation
User Guide

Chapter 1: About This MegaCore Function 1–17
Performance and Resource Utilization
Table 1–27 lists performance with burst data flow architecture, using the
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16,
for Stratix V (5SGXEA7H3F35C2) devices.

4096 Single Output 2 1,093 2,700 229,632 14 4 366

Notes to Table 1–20:

(1) Represents data and twiddle factor precision.
(2) When using the burst data flow architecture, you can specify the number of engines in the FFT parameter editor. You may choose from one to

two single-output engines in parallel, or from one, two, or four quad-output engines in parallel.

Table 1–26. Resource Usage with the Burst Data Flow Architecture—Stratix V Devices (Part 2 of 2)

Points Engine
Architecture

Number of
Engines (2)

Combinational
ALUTs

Logic
Registers

Memory
(Bits)

Memory
(M20K)

DSP
Blocks

fMAX
(MHz)

Table 1–27. Performance with the Burst Data Flow Architecture—Stratix V Devices

Points Engine
Architecture

Number of
Engines (1)

fMAX
(MHz)

Transform
Calculation Time (2)

Data Load & Transform
Calculation

Block Throughput
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 Quad Output 1 414 235 0.57 491 1.18 331 0.8

1024 Quad Output 1 405 1,069 2.64 2,093 5.17 1,291 3.19

4096 Quad Output 1 395 5,167 13.08 9,263 23.44 6,157 15.58

256 Quad Output 2 385 162 0.42 397 1.03 299 0.78

1024 Quad Output 2 395 557 1.41 1,581 4 1,163 2.94

4096 Quad Output 2 374 2,607 6.98 6,703 17.94 5,133 13.74

256 Quad Output 4 353 118 0.33 374 1.06 283 0.8

1024 Quad Output 4 314 340 1.08 1,364 4.35 1,099 3.5

4096 Quad Output 4 346 1,378 3.99 5,474 15.84 4,633 13.4

256 Single Output 1 445 1,115 2.51 1,371 3.08 1,628 3.66

1024 Single Output 1 443 5,230 11.79 6,344 14.31 7,279 16.41

4096 Single Output 1 427 24,705 57.86 28,801 67.45 32,898 77.05

256 Single Output 2 401 585 1.46 841 2.1 1,098 2.74

1024 Single Output 2 443 2,652 5.99 3,676 8.3 4,701 10.61

4096 Single Output 2 366 12,239 33.67 16,495 45.05 20,605 56.27

Notes to Table 1–27:

(1) In the burst I/O data flow architecture, you can specify the number of engines in the FFT parameter editor. You may choose from one to two
single-output engines in parallel, or from one, two, or four quad-output engines in parallel.

(2) Transform time is the time frame when the input block is loaded until the first output sample (corresponding to the input block) is output.
Transform time does not include the time to unload the full output data block.

(3) Block throughput is defined as the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.
November 2011 Altera Corporation FFT MegaCore Function
User Guide

Installation and Licensing
Installation and Licensing
The FFT MegaCore function is part of the MegaCore® IP Library, which is distributed
with the Quartus® II software and can be downloaded from the Altera® website,
www.altera.com.

f For system requirements and installation instructions, refer to the Altera Software
Installation and Licensing manual.

Figure 1–1 shows the directory structure after you install the FFT MegaCore function,
where <path> is the installation directory for the Quartus II software.

The default installation directory on Windows is c:\altera\<version> and on Linux is
/opt/altera<version>.

OpenCore Plus Evaluation
With Altera’s free OpenCore Plus evaluation feature, you can perform the following
actions:

■ Simulate the behavior of a megafunction (Altera MegaCore function or AMPPSM
megafunction) within your system.

■ Verify the functionality of your design, as well as evaluate its size and speed
quickly and easily.

■ Generate time-limited device programming files for designs that include
megafunctions.

■ Program a device and verify your design in hardware.

You only need to purchase a license for the FFT MegaCore function when you are
completely satisfied with its functionality and performance, and want to take your
design to production. After you purchase a license, you can request a license file from
the Altera website at www.altera.com/licensing and install it on your computer.
When you request a license file, Altera emails you a license.dat file. If you do not have
Internet access, contact your local Altera representative.

f For more information about OpenCore Plus hardware evaluation, refer to AN 320:
OpenCore Plus Evaluation of Megafunctions.

Figure 1–1. Directory Structure

lib
Contains encrypted lower-level files.

ip
Contains the Altera MegaCore IP Library and third-party IP cores.

<path>
Installation directory.

altera
Contains the Altera MegaCore IP Library.

common
Contains shared components.
fft
Contains the FFT MegaCore function files.
FFT MegaCore Function November 2011 Altera Corporation
User Guide

www.altera.com
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/an/an320.pdf

Chapter 1: About This MegaCore Function 1–19
Installation and Licensing
OpenCore Plus Time-Out Behavior
OpenCore Plus hardware evaluation supports the following operation modes:

■ —the design runs for a limited time.

■ —requires a connection between your board and the host computer. If
tethered mode is supported by all megafunctions in a design, the device can
operate for a longer time or indefinitely.

All megafunctions in a device time-out simultaneously when the most restrictive
evaluation time is reached. If there is more than one megafunction in a design, a
specific megafunction’s time-out behavior might be masked by the time-out behavior
of the other megafunctions.

The untethered time-out for the FFT MegaCore function is one hour; the tethered
time-out value is indefinite.

The signals source_real, source_imag, and source_exp are forced low when the
evaluation time expires.
November 2011 Altera Corporation FFT MegaCore Function
User Guide

1–20 Chapter 1: About This MegaCore Function
Installation and Licensing
FFT MegaCore Function November 2011 Altera Corporation
User Guide

November 2011 Altera Corporation
2. Getting Started
Design Flows
The FFT MegaCore function supports the following design flows:

■ DSP Builder: Use this flow if you want to create a DSP Builder model that
includes a FFT MegaCore function variation.

■ MegaWizard™ Plug-In Manager: Use this flow if you would like to create a FFT
MegaCore function variation that you can instantiate manually in your design.

This chapter describes how you can use a FFT MegaCore function in either of these
flows. The parameterization provides the same options in each flow and is described
in “Parameterize the MegaCore Function” on page 2–3.

After parameterizing and simulating a design in either of these flows, you can
compile the completed design in the Quartus II software.

DSP Builder Flow
Altera’s DSP Builder product shortens digital signal processing (DSP) design cycles
by helping you create the hardware representation of a DSP design in an
algorithm-friendly development environment.

DSP Builder integrates the algorithm development, simulation, and verification
capabilities of The MathWorks MATLAB® and Simulink® system-level design tools
with Altera Quartus® II software and third-party synthesis and simulation tools. You
can combine existing Simulink blocks with Altera DSP Builder blocks and MegaCore
function variation blocks to verify system level specifications and perform simulation.

In DSP Builder, a Simulink symbol for the MegaCore function appears in the
MegaCore Functions library of the Altera DSP Builder Blockset in the Simulink library
browser.

You can use the FFT MegaCore function in the MATLAB/Simulink environment by
performing the following steps:

1. Create a new Simulink model.

2. Select the fft_< > block from the MegaCore Functions library in the
Simulink Library Browser, add it to your model, and give the block a unique
name.

3. Double-click on the fft_< > block in your model to display the parameter
editor and parameterize the MegaCore function variation. For an example of
setting parameters for the FFT MegaCore function, refer to “Parameterize the
MegaCore Function” on page 2–3.

4. Click Finish in the parameter editor to complete the parameterization and
generate your FFT MegaCore function variation. For information about the
generated files, refer to Table 2–1 on page 2–11.

5. Connect your FFT MegaCore function variation to the other blocks in your model.
FFT MegaCore Function
User Guide

2–2 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
6. Simulate the MegaCore function variation in your DSP Builder model.

f For more information about the DSP Builder flow, refer to the
 chapter in the DSP Builder User Guide.

1 When you are using the DSP Builder flow, device selection, simulation, Quartus II
compilation and device programming are all controlled within the DSP Builder
environment.

DSP Builder supports integration with SOPC Builder using Avalon® Memory-
Mapped (Avalon-MM) master/slave and Avalon Streaming (Avalon-ST) source/sink
interfaces.

f For more information about these interface types, refer to the Avalon Interface
Specifications.

MegaWizard Plug-In Manager Flow
The MegaWizard™ Plug-in Manager flow allows you to customize an FFT MegaCore
function, and manually integrate the MegaCore function variation into a Quartus II
design.

Follow the steps below to use the MegaWizard Plug-in Manager flow.

1. Create a new project using the New Project Wizard available from the File menu
in the Quartus II software.

2. Launch MegaWizard Plug-in Manager from the Tools menu, and select the option
to create a new custom megafunction variation (Figure 2–1).

3. Click Next and select FFT <version> from the DSP>Transforms section in the
Installed Plug-Ins tab.

4. Verify that the device family is the same as you specified in the New Project
Wizard.

Figure 2–1. MegaWizard Plug-In Manager
FFT MegaCore Function November 2011 Altera Corporation
User Guide

http://www.altera.com/literature/ug/ug_dsp_builder.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 2: Getting Started 2–3
MegaWizard Plug-In Manager Flow
5. Select the top-level output file type for your design; the wizard supports VHDL
and Verilog HDL.

6. The MegaWizard Plug-In Manager shows the project path that you specified in the
New Project Wizard. Append a variation name for the MegaCore function output
files <project path>\<variation name>. Figure 2–2 shows the wizard after you have
made these settings.

7. Click Next to launch IP Toolbench.

Parameterize the MegaCore Function
To parameterize your MegaCore function, follow these steps:

Figure 2–2. Select the MegaCore Function
November 2011 Altera Corporation FFT MegaCore Function
User Guide

2–4 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
1. Click Step 1: Parameterize in IP Toolbench (Figure 2–3 on page 2–4).

Figure 2–3. IP Toolbench—Parameterize
FFT MegaCore Function November 2011 Altera Corporation
User Guide

Chapter 2: Getting Started 2–5
MegaWizard Plug-In Manager Flow
2. Do not change the Target Device Family The device family is automatically set to
the value that was specified in your Quartus II project and the generated HDL for
your MegaCore function variation may be incorrect if this value is changed
(Figure 2–4).

3. Choose the Transform length, Data precision, and Twiddle precision.

1 The twiddle factor precision must be less than or equal to the data
precision.

Figure 2–4. Parameters Tab
November 2011 Altera Corporation FFT MegaCore Function
User Guide

2–6 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
4. Click the Architecture tab (Figure 2–5).

5. Choose the FFT engine architecture, number of parallel FFT engines, and the I/O
data flow.

If you select the Streaming I/O data flow, the FFT MegaCore function
automatically generates a design with a Quad Output FFT engine architecture and
the minimum number of parallel FFT engines for the required throughput.

1 A single FFT engine architecture provides enough performance for up to a
1,024-point streaming I/O data flow FFT.

If you select Variable Streaming I/O data flow, the Transform length (specified
on the Parameters Tab) represents the maximum transform length that can be
performed. All transforms of length 2m where 6  m  log2(transform length) can be
performed at runtime.

Figure 2–5. Architecture Tab
FFT MegaCore Function November 2011 Altera Corporation
User Guide

Chapter 2: Getting Started 2–7
MegaWizard Plug-In Manager Flow
1 If you select Variable Streaming and Floating Point on the Architecture
tab, the precision (on the Parameters tab) is automatically set to 32, and the
reverse I/O order options (on the Architecture tab) are Digit Reverse
Order.

If you select Variable Streaming I/O data flow, options to set the I/O order and
data representation are visible. The Input Order option allow you to select the
order in which the samples are presented to the FFT. If you select Natural Order,
the FFT expects the order of the input samples to be sequential (1, 2 …, n – 1, n)
where n is the size of the current transform. For Bit Reverse Order, the FFT expects
the input samples to be in bit-reversed order. For Digit Reverse Order, the FFT
expects the input samples to be in digit-reversed order. For –N/2 to N/2, the FFT
expects the input samples to be in the order –N/2 to (N/2) – 1 (also known as DC-
centered order). Similarly the Output Order option specifies the order in which
the FFT generates the output. Whether you can select Bit Reverse Order or Digit
Reverse Order depends on your Data Representation selection. You can select
Fixed Point or Floating Point data representation. If you select Fixed Point, the
FFT variation implements the radix-22 architecture and the reverse I/O order
option is Bit Reverse Order; if you select Floating Point, the FFT variation
implements the mixed radix-4/2 architecture and the reverse I/O order option is
Digit Reverse Order.

For sample digit-reversed order, if n is a power of four, the order is radix-4
digit-reversed order, in which two-bit digits in the sample number are units in the
reverse ordering. For example, if n = 16, sample number 4 becomes the second
sample in the sample stream (by reversal of the digits in 0001, the location in the
sample stream, to 0100). However, in mixed radix-4/2 architecture, n need not be a
power of four. If n is not a power of four, the two-bit digits are grouped from the
least significant bit, and the most significant bit becomes the least significant bit in
the digit-reversed order. For example, if n = 512, the sample at location
[8][76][54][32][10] in the digit-reversed sample stream is sample number
[10][32][54][76][8] in the natural ordering. The 261st sample in the stream, at
location 260 (100000100), is the sample that is number 33 (000100001) in the natural
ordering.
November 2011 Altera Corporation FFT MegaCore Function
User Guide

2–8 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
6. Click the Implementation Options tab (Figure 2–6).

7. Choose the complex multiplier implementation.

You can choose a Structure with three multipliers and five adders or four
multipliers and two adders. You can also choose to Implement Multipliers in DSP
blocks only, logic cells only or both DSP blocks and logic cells. If your FFT
variation targets a Stratix V device, you can turn on DSP Resource Optimization.
This option optimizes for area rather than speed by utilizing the new Stratix V
DSP block complex 18 × 25 and 27 × 27 multiplication modes. In the variable
streaming architecture using the floating point representation, the option utilizes
the DSP block complex 27 × 27 multiplication mode at the potential expense of
lower accuracy.

Figure 2–6. Implementation Options Tab
FFT MegaCore Function November 2011 Altera Corporation
User Guide

Chapter 2: Getting Started 2–9
MegaWizard Plug-In Manager Flow
1 The complex multiplier implementation options Structure and Implement
Multipliers in are not available for the variable streaming architecture. The
complex multiplier implementation option DSP Resource Optimization is
available only in Stratix V devices.

If you turn on DSP Resource Optimization, and your variation has data precision
between 18 and 25 bits, inclusive, and twiddle precision less than or equal to 18
bits, the FFT MegaCore function configures the DSP blocks in complex 18 × 25
multiplication mode. If you turn on DSP Resource Optimization and your
variation does not meet these criteria, the FFT MegaCore function configures the
DSP blocks based on the criteria it uses when you do not turn on the option. The
FFT MegaCore function configures the Stratix V device according to the following
criteria when you turn off the option or it is not available:

■ If data precision and twiddle precision are both less than or equal to 27 bits,
configures 3/4 of a DSP block in complex 27 × 27 multiplication mode. This
configuration uses only three of the four DSP rows in a single DSP block.

■ If data precision is greater than 27 bits and twiddle precision is less than or
equal to 18 bits, configures one DSP block in sum of two 18 × 36 multiplication
mode. This configuration uses four DSP rows.

■ Otherwise, configures two DSP blocks in 36 × 36 multiplication mode. This
configuration uses eight DSP rows in two DSP blocks.

f For more information about the Stratix V DSP block modes, refer to the
Variable Precision DSP Blocks in Stratix V Devices chapter in the Stratix V
Device Handbook.

8. Turn on Global Clock Enable, if you want to add a global clock enable to your
design.

9. Specify the memory options.

You can set memory use balance with the Twiddle ROM Distribution, turn on
Use M-RAM Blocks, and turn on Implement appropriate logic functions in
RAM. If your FFT variation targets an appropriate device family, the Use M144K
Blocks option replaces the Use M-RAM Blocks option.

1 The memory options are not available for the variable streaming
architecture. The memory options Twiddle ROM Distribution and Use
M-RAM Blocks are not available in the Cyclone series of device families
(the Cyclone, Cyclone II, Cyclone III, Cyclone III LS, and Cyclone IV device
families).

10. Click Finish when the implementation options are set.

f For more information about the FFT MegaCore function parameters, refer to Table 3–3
on page 3–14.
November 2011 Altera Corporation FFT MegaCore Function
User Guide

http://www.altera.com/literature/hb/stratix-v/stx5_51004.pdf

2–10 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
Set Up Simulation
An IP functional simulation model is a cycle-accurate VHDL or Verilog HDL model
produced by the Quartus II software. The model allows for fast functional simulation
of IP using industry-standard VHDL and Verilog HDL simulators.

c You may only use these simulation model output files for simulation purposes and
expressly not for synthesis or any other purposes. Using these models for synthesis
creates a nonfunctional design.

To generate an IP functional simulation model for your MegaCore function, follow
these steps:

1. Click Step 2: Set Up Simulation in IP Toolbench (Figure 2–3 on page 2–4).

2. Turn on Generate Simulation Model (Figure 2–7 on page 2–10).

3. Choose the required language in the Language list.

4. Some third-party synthesis tools can use a netlist that contains only the structure
of the MegaCore function, but not detailed logic, to optimize performance of the
design that contains the MegaCore function. If your synthesis tool supports this
feature, turn on Generate netlist.

5. Click OK.

Generate the MegaCore Function
To generate your MegaCore function, follow these steps:

Figure 2–7. Generate Simulation Model
FFT MegaCore Function November 2011 Altera Corporation
User Guide

Chapter 2: Getting Started 2–11
MegaWizard Plug-In Manager Flow
1. Click Step 3: Generate in IP Toolbench (Figure 2–3 on page 2–4).

The generation phase may take several minutes to complete. The generation
progress and status is displayed in a report window.

Figure 2–8 shows the generation report.

Table 2–1 describes the generated files and other files that may be in your project
directory. The names and types of files specified in the IP Toolbench report vary
based on whether you created your design with VHDL or Verilog HDL

Figure 2–8. Generation Report

Table 2–1. Generated Files (Part 1 of 2) (1) & (2)

Filename Description

<variation name>_imag_input.txt The text file contains input imaginary component random data. This file is read by
the generated VHDL or Verilog HDL MATLAB testbenches.

variation name real_input.txt Test file containing real component random data. This file is read by the generated
VHDL or Verilog HDL and MATLAB testbenches.

variation name .bsf Quartus II symbol file for the MegaCore function variation. You can use this file in
the Quartus II block diagram editor.

<variation name>.cmp
A VHDL component declaration file for the MegaCore function variation. Add the
contents of this file to any VHDL architecture that instantiates the MegaCore
function.

<variation name>.html A MegaCore function report file in hypertext markup language format.

<variation name>.qip

A single Quartus II IP file is generated that contains all of the assignments and
other information required to process your MegaCore function variation in the
Quartus II compiler. You are prompted to add this file to the current Quartus II
project when you exit from the MegaWizard.

<variation name>.vo or .vho VHDL or Verilog HDL IP functional simulation model.
November 2011 Altera Corporation FFT MegaCore Function
User Guide

2–12 Chapter 2: Getting Started
Simulate the Design
2. After you review the generation report, click Exit to close IP Toolbench. Then click
Yes on the Quartus II IP Files prompt to add the .qip file describing your custom
MegaCore function to the current Quartus II project.

f Refer to the Quartus II Help for more information about the MegaWizard Plug-In
Manager.

You can now integrate your custom MegaCore function variation into your design
and simulate and compile.

Simulate the Design
This section describes the following simulation techniques:

■ Simulate in the MATLAB Software

■ Simulate with IP Functional Simulation Models

<variation name>.vhd, or .v

A MegaCore function variation file, which defines a VHDL or Verilog HDL top-level
description of the custom MegaCore function. Instantiate the entity defined by
this file inside of your design. Include this file when compiling your design in the
Quartus II software.

variation name _1n1024cos.hex,
variation name _2n1024cos.hex,
variation name _3n1024cos.hex

Intel hex-format ROM initialization files (not generated for variable streaming
FFT).

variation name _1n1024sin.hex,
variation name _2n1024sin.hex,
variation name _3n1024sin.hex

Intel hex-format ROM initialization files (not generated for variable streaming
FFT).

variation name _model.m MATLAB m-file describing a MATLAB bit-accurate model.

variation name _tb.m MATLAB testbench.

variation name _syn.v or
variation name _syn.vhd

A timing and resource netlist for use in some third-party synthesis tools.

<variation name>_tb.v or

<variation name>_tb.vhd
Verilog HDL or VHDL testbench file.

<variation name>_nativelink.tcl
Tcl Script that sets up NativeLink in the Quartus II software to natively simulate
the design using selected EDA tools. Refer to “Simulating in Third-Party
Simulation Tools Using NativeLink” on page 2–15.

<variation name>_twr1_opt.hex,
<variation name>_twi1_opt.hex,
<variation name>_twr2_opt.hex,
<variation name>_twi2_opt.hex,
<variation name>_twr3_opt.hex,
<variation name>_twi3_opt.hex,
<variation name>_twr4_opt.hex,
<variation name>_twi4_opt.hex,

Intel hex-format ROM initialization files (variable streaming FFT only).

Notes to Table 2–1:

(1) These files are variation dependent, some may be absent or their names may change.
(2) <variation name> is a prefix variation name supplied automatically by IP Toolbench.

Table 2–1. Generated Files (Part 2 of 2) (1) & (2)

Filename Description
FFT MegaCore Function November 2011 Altera Corporation
User Guide

Chapter 2: Getting Started 2–13
Simulate the Design
■ Simulating in Third-Party Simulation Tools Using NativeLink

Simulate in the MATLAB Software
This section discusses fixed-transform and variable streaming architecture
simulations.

Fixed Transform Architectures
The FFT MegaCore function outputs a bit-accurate MATLAB model <variation
name>_model.m, which you can use to model the behavior of your custom FFT
variation in the MATLAB software. The model takes a complex vector as input and it
outputs the transform-domain complex vector and corresponding block exponent
values. The length and direction of the transform (FFT/IFFT) are also passed as inputs
to the model.

If the input vector length is an integral multiple of N, the transform length, the length
of the output vector(s) is equal to the length of the input vector. However, if the input
vector is not an integral multiple of N, it is zero-padded to extend the length to be so.

f For additional information about exponent values, refer to AN 404: FFT/IFFT Block
Floating Point Scaling.

The wizard also creates the MATLAB testbench file <variation name>_tb.m. This file
creates the stimuli for the MATLAB model by reading the input complex random data
from IP Toolbench-generated.

If you selected Floating point data representation, the input data is generated in
hexadecimal format.

To model your fixed-transform architecture FFT MegaCore function variation in the
MATLAB software, follow these steps:

1. Run the MATLAB software.

2. In the MATLAB command window, change to the working directory for your
project.

3. Perform the simulation:

a. Type help <variation name>_model at the command prompt to view the
input and output vectors that are required to run the MATLAB model as a
standalone M-function. Create your input vector and make a function call to
< >_model. For example:

N=2048;
INVERSE = 0; % 0 => FFT 1=> IFFT
x = (2^12)*rand(1,N) + j*(2^12)*rand(1,N);
[y,e] = <variation name>_model(x,N,INVERSE);

or

b. Run the provided testbench by typing the name of the testbench, <
>_tb at the command prompt.

f For more information about MATLAB and Simulink, refer to the MathWorks web site
at www.mathworks.com.
November 2011 Altera Corporation FFT MegaCore Function
User Guide

www.mathworks.com
http://www.altera.com/literature/an/an404.pdf
http://www.altera.com/literature/an/an404.pdf

2–14 Chapter 2: Getting Started
Simulate the Design
Variable Streaming Architecture
The FFT MegaCore function outputs a bit-accurate MATLAB model <

>_model.m, which you can use to model the behavior of your custom FFT
variation in the MATLAB software. The model takes a complex vector as input and it
outputs the transform-domain complex vector. The lengths and direction of the
transforms (FFT/IFFT) (specified as one entry per block) are also passed as an input to
the model.

You must ensure that the length of the input vector is at least as large as the sum of the
transform sizes for the model to function correctly.

The wizard also creates the MATLAB testbench file < >_tb.m. This file
creates the stimuli for the MATLAB model by reading the input complex random data
from files generated by IP Toolbench.

To model your variable streaming architecture FFT MegaCore function variation in
the MATLAB software, follow these steps:

1. Run the MATLAB software.

2. In the MATLAB command window, change to the working directory for your
project.

3. Perform the simulation:

a. Type help <variation name>_model at the command prompt to view the input
and output vectors that are required to run the MATLAB model as a
standalone M-function. Create your input vector and make a function call to
< >_model. For example:

nps=[256,2048];
inverse = [0,1]; % 0 => FFT 1=> IFFT
x = (2^12)*rand(1,sum(nps)) + j*(2^12)*rand(1,sum(nps));
[y] = <variation name>_model(x,nps,inverse);

or

b. Run the provided testbench by typing the name of the testbench, <
>_tb at the command prompt.

1 If you select bit-reversed output order, you can reorder the data with the
following MATLAB code:

y = y(bit_reverse(0:(FFTSIZE-1), log2(FFTSIZE)) + 1);

where bit_reverse is:

function y = bit_reverse(x, n_bits)
y = bin2dec(fliplr(dec2bin(x, n_bits)));

1 If you select digit-reversed output order, you can reorder the data with the
following MATLAB code:

y = y(digit_reverse(0:(FFTSIZE-1), log2(FFTSIZE)) + 1);

where digit_reverse is:
FFT MegaCore Function November 2011 Altera Corporation
User Guide

Chapter 2: Getting Started 2–15
Simulate the Design
function y = digit_reverse(x, n_bits)
if mod(n_bits,2)

z = dec2bin(x, n_bits);
for i=1:2:n_bits-1

p(:,i) = z(:,n_bits-i);
p(:,i+1) = z(:,n_bits-i+1);

end

p(:,n_bits) = z(:,1);
y=bin2dec(p);

else
y=digitrevorder(x,4);

end

Simulate with IP Functional Simulation Models
To simulate your design, use the IP functional simulation models generated by IP
Toolbench. The IP functional simulation model is the .vo or .vho file generated as
specified in “Set Up Simulation” on page 2–10. Compile the .vo or .vho file in your
simulation environment to perform functional simulation of your custom variation of
the MegaCore function.

f For more information about IP functional simulation models, refer to the
 chapter in volume 3 of the Quartus II Handbook.

Simulating in Third-Party Simulation Tools Using NativeLink
You can perform a simulation in a third-party simulation tool from within the
Quartus II software, using NativeLink.

f For more information about NativeLink, refer to the chapter
in volume 3 of the Quartus II Handbook.

You can use the Tcl script file <variation name>_nativelink.tcl to assign default
NativeLink testbench settings to the Quartus II project.

To set up simulation in the Quartus II software using NativeLink, follow these steps:

1. Create a custom variation but ensure you specify your variation name to match the
Quartus II project name.

2. Check that the absolute path to your third-party simulator executable is set. On the
Tools menu click Options and select EDA Tools Options.

3. On the Processing menu, point to Start and click Start Analysis & Elaboration.

4. On the Tools menu, click Tcl scripts. Select the <variation name>_nativelink.tcl Tcl
script and click Run. Check for a message confirming that the Tcl script was
successfully loaded.

5. On the Assignments menu, click Settings, expand EDA Tool Settings and select
Simulation. Select a simulator under Tool Name and in NativeLink Settings,
select Test Benches.

6. On the Tools menu, point to EDA Simulation Tool and click Run EDA RTL
Simulation.
November 2011 Altera Corporation FFT MegaCore Function
User Guide

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Compile the Design
Use the Quartus II software to synthesize and place and route your design. Refer to
Quartus II Help for instructions on performing compilation.

To compile your fixed-transform architecture design, follow these steps:

1. If you are using the Quartus II software to synthesize your design, skip to step 2. If
you are using a third-party synthesis tool to synthesize your design, follow these
steps:

a. Set a black box attribute for your FFT MegaCore function custom variation
before you synthesize the design. Refer to Quartus II Help for instructions on
setting black-box attributes per synthesis tool.

b. Run the synthesis tool to produce an EDIF Netlist File (.edf) or Verilog Quartus
Mapping (VQM) file (.vqm) for input to the Quartus II software.

c. Add the EDIF or VQM file to your Quartus II project.

1 The .qip file supersedes the files you had to add to the project explicitly in previous
versions of the Quartus II software. The .qip file contains the information about the
MegaCore function that the Quartus II software requires.

2. On the Processing menu, click Start Compilation.

To compile your variable streaming architecture design, follow these steps:

1. If you are using the Quartus II software to synthesize your design, skip to step 2. If
you are using a third-party synthesis tool to synthesize your design, follow these
steps:

a. Set a black-box attribute for your FFT MegaCore function custom variation
before you synthesize the design. Refer to Quartus II Help for instructions on
setting black-box attributes per synthesis tool.

b. Run the synthesis tool to produce an EDIF Netlist File (.edf) or Verilog Quartus
Mapping (VQM) file (.vqm) for input to the Quartus II software.

c. Add the EDIF or VQM file to your Quartus II project.

2. On the Project menu, click Add/Remove Files in Project.

3. You can see a list of files in the project. If no files are listed, browse to the \lib
directory, then select and add all files with the prefix auk_dspip_r22sdf. Browse to
the <project> directory and select all files with prefix auk_dspip.

4. On the Processing menu, click Start Compilation.

After you have compiled your design, program your targeted Altera device, and
verify your design in hardware.
FFT MegaCore Function November 2011 Altera Corporation
User Guide

Program a Device
With Altera's free OpenCore Plus evaluation feature, you can evaluate the FFT
MegaCore function before you purchase a license. OpenCore Plus evaluation allows
you to generate an IP functional simulation model, and produce a time-limited
programming file.

f For more information about IP functional simulation models, refer to the Simulating
Altera Designs chapter in volume 3 of the Quartus II Handbook.

You can simulate the FFT in your design, and perform a time-limited evaluation of
your design in hardware.

f For more information about OpenCore Plus hardware evaluation using the FFT, refer
to “OpenCore Plus Evaluation” on page 1–18 and AN 320: OpenCore Plus Evaluation of
Megafunctions.
November 2011 Altera Corporation FFT MegaCore Function
User Guide

http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Program a Device
FFT MegaCore Function November 2011 Altera Corporation
User Guide

November 2011 Altera Corporation
3. Functional Description
The discrete Fourier transform (DFT), of length N, calculates the sampled Fourier
transform of a discrete-time sequence at N evenly distributed points k = 2k/N on
the unit circle.

The following equation shows the length-N forward DFT of a sequence x(n):

where k = 0, 1, ... N – 1

The following equation shows the length-N inverse DFT:

where n = 0, 1, ... N – 1

The complexity of the DFT direct computation can be significantly reduced by using
fast algorithms that use a nested decomposition of the summation in equations one
and two—in addition to exploiting various symmetries inherent in the complex
multiplications. One such algorithm is the Cooley-Tukey radix-r decimation-in-
frequency (DIF) FFT, which recursively divides the input sequence into N/r sequences
of length r and requires logrN stages of computation.

Each stage of the decomposition typically shares the same hardware, with the data
being read from memory, passed through the FFT processor and written back to
memory. Each pass through the FFT processor is required to be performed logrN
times. Popular choices of the radix are r = 2, 4, and 16. Increasing the radix of the
decomposition leads to a reduction in the number of passes required through the FFT
processor at the expense of device resources.

1 The MegaCore function does not apply the scaling factor 1/N required for a length-N
inverse DFT. You must apply this factor externally.

Buffered, Burst, & Streaming Architectures
A radix-4 decomposition, which divides the input sequence recursively to form
four-point sequences, has the advantage that it requires only trivial multiplications in
the four-point DFT and is the chosen radix in the Altera FFT MegaCore function. This
results in the highest throughput decomposition, while requiring non-trivial complex
multiplications in the post-butterfly twiddle-factor rotations only. In cases where N is
an odd power of two, the FFT MegaCore automatically implements a radix-2 pass on
the last pass to complete the transform.

X k  x n e
j2nk–  N

n 0=

N 1–

=

x n  1 N  X k e j2nk  N

k 0=

N 1–

=
FFT MegaCore Function
User Guide

3–2 Chapter 3: Functional Description
Variable Streaming Architecture
To maintain a high signal-to-noise ratio throughout the transform computation, the
FFT MegaCore function uses a block-floating-point architecture, which is a trade-off
point between fixed-point and full-floating point architectures.

In a fixed-point architecture, the data precision needs to be large enough to
adequately represent all intermediate values throughout the transform computation.
For large FFT transform sizes, an FFT fixed-point implementation that allows for
word growth can make either the data width excessive or can lead to a loss of
precision.

In a floating-point architecture each number is represented as a mantissa with an
individual exponent—while this leads to greatly improved precision, floating-point
operations tend to demand increased device resources.

In a block-floating point architecture, all of the values have an independent mantissa
but share a common exponent in each data block. Data is input to the FFT function as
fixed point complex numbers (even though the exponent is effectively 0, you do not
enter an exponent).

The block-floating point architecture ensures full use of the data width within the FFT
function and throughout the transform. After every pass through a radix-4 FFT, the
data width may grow up to log2 (42) = 2.5 bits. The data is scaled according to a
measure of the block dynamic range on the output of the previous pass. The number
of shifts is accumulated and then output as an exponent for the entire block. This
shifting ensures that the minimum of least significant bits (LSBs) are discarded prior
to the rounding of the post-multiplication output. In effect, the block-floating point
representation acts as a digital automatic gain control. To yield uniform scaling across
successive output blocks, you must scale the FFT function output by the final
exponent.

1 In comparing the block-floating point output of the Altera FFT MegaCore function to
the output of a full precision FFT from a tool like MATLAB, you must scale the output
by 2 (–exponent_out) to account for the discarded LSBs during the transform. (Refer to
“Block Floating Point Scaling” on page 4–1.)

f For more information about exponent values, refer to AN 404: FFT/IFFT Block Floating
Point Scaling.

Variable Streaming Architecture
The variable streaming architecture uses two different types of architecture,
depending on whether you select the fixed-point data representation or the floating
point representation. If you select the fixed-point data representation, the FFT
variation uses a radix 22 single delay feedback architecture, which is a fully pipelined
architecture. If you select the floating point representation, the FFT variation uses a
mixed radix-4/2 architecture. For a length N transform, log4(N) stages are
concatenated together. The radix 22 algorithm has the same multiplicative complexity
of a fully pipelined radix-4 architecture, but the butterfly unit retains a radix-2
architecture. In the radix-4/2 algorithm, a combination of radix-4 and radix-2
architectures are implemented to achieve the computational advantage of the radix-4
architecture while supporting FFT computation with a wider range of transform
lengths. The butterfly units use the DIF decomposition.
FFT MegaCore Function November 2011 Altera Corporation
User Guide

http://www.altera.com/literature/an/an404.pdf
http://www.altera.com/literature/an/an404.pdf

Chapter 3: Functional Description 3–3
The Avalon Streaming Interface
Fixed point representation allows for natural word growth through the pipeline. The
maximum growth of each stage is 2 bits. After the complex multiplication the data is
rounded down to the expanded data size using convergent rounding. The overall bit
growth is less than or equal to log2(N)+1.

The floating point internal data representation is single precision floating point
(32-bit, IEEE 754 representation). Floating point operations provide more precise
computation results but are costly in hardware resources. To reduce the amount of
logic required for floating point operations, the variable streaming FFT uses "fused"
floating point kernels. The reduction in logic occurs by fusing together several
floating point operations and reducing the number of normalizations that need to
occur.

You can select input and output orders generated by the FFT. Table 3–1 shows the
input and output order options.

Some applications for the FFT require an FFT > user operation > IFFT chain. In this
case, choosing the input order and output order carefully can lead to significant
memory and latency savings. For example, consider where the input to the first FFT is
in natural order and the output is in bit-reversed order (FFT is operating in engine-
only mode). In this example, if the IFFT operation is configured to accept bit-reversed
inputs and produces natural order outputs (IFFT is operating in engine-only mode),
only the minimum amount of memory is required, which provides a saving of N
complex memory words, and a latency saving of N clock cycles, where N is the size of
the current transform.

The Avalon Streaming Interface
The Avalon-ST interface defines a standard, flexible, and modular protocol for data
transfers from a source interface to a sink interface and simplifies the process of
controlling the flow of data in a datapath.

The Avalon-ST interface signals can describe traditional streaming interfaces
supporting a single stream of data without knowledge of channels or packet
boundaries. Such interfaces typically contain data, ready, and valid signals. The
Avalon-ST interface can also support more complex protocols for burst and packet
transfers with packets interleaved across multiple channels.

The Avalon-ST interface inherently synchronizes multi-channel designs, which allows
you to achieve efficient, time-multiplexed implementations without having to
implement complex control logic.

Table 3–1. Input & Output Order Options

Input Order Output Order Mode Comments

Natural Bit reversed

Engine-only Requires minimum memory and minimum latency.Bit reversed Natural

DC-centered Bit-reversed

Natural Natural
Engine with
bit-reversal

At the output, requires an extra N complex memory
words and an additional N clock cycles latency,
where N is the size of the transform.

Bit reversed Bit reversed

DC-centered Natural
November 2011 Altera Corporation FFT MegaCore Function
User Guide

3–4 Chapter 3: Functional Description
FFT Processor Engine Architectures
The Avalon-ST interface supports backpressure, which is a flow control mechanism in
which a sink can signal to a source to stop sending data. The sink typically uses
backpressure to stop the flow of data when its FIFO buffers are full or when there is
congestion on its output. When designing a datapath that includes an FFT MegaCore
function, you may not need backpressure if you know the downstream components
can always receive data. You may achieve a higher clock rate by driving the source
ready signal source_ready of the FFT high, and not connecting the sink ready signal
sink_ready.

The FFT MegaCore function has a READY_LATENCY value of zero.

f For more information about the Avalon-ST interface, refer to the Avalon Interface
Specifications.

FFT Processor Engine Architectures
The FFT MegaCore function can be parameterized to use either quad-output or
single-output engine architecture. To increase the overall throughput of the FFT
MegaCore function, you may also use multiple parallel engines of a variation. This
section discusses the following topics:

■ Radix 22 single-delay feedback architecture for fixed-point variable streaming
variations

■ Mixed radix-4/2 architecture for floating point variable streaming variations

■ Quad-output FFT engine architecture for streaming, buffered burst, and burst
variations

■ Single-output FFT engine architecture for buffered burst and burst variations

Radix-22 Single Delay Feedback Architecture
Radix-22 single delay feedback architecture is a fully pipelined architecture for
calculating the FFT of incoming data. It is similar to radix-2 single delay feedback
architectures. However, the twiddle factors are rearranged such that the
multiplicative complexity is equivalent to a radix-4 single delay feedback architecture.

There are log2(N) stages with each stage containing a single butterfly unit and a
feedback delay unit that delays the incoming data by a specified number of cycles,
halved at every stage. These delays effectively align the correct samples at the input of
the butterfly unit for the butterfly calculations. Every second stage contains a
modified radix-2 butterfly whereby a trivial multiplication by –j is performed before
the radix-2 butterfly operations. The output of the pipeline is in bit-reversed order.

The following scheduled operations occur in the pipeline for an FFT of length N = 16.

1. For the first 8 clock cycles, the samples are fed unmodified through the butterfly
unit to the delay feedback unit.

2. The next 8 clock cycles perform the butterfly calculation using the data from the
delay feedback unit and the incoming data. The higher order calculations are sent
through to the delay feedback unit while the lower order calculations are sent to
the next stage.
FFT MegaCore Function November 2011 Altera Corporation
User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 3: Functional Description 3–5
3. The next 8 clock cycles feed the higher order calculations stored in the delay
feedback unit unmodified through the butterfly unit to the next stage.

Subsequent data stages use the same principles. However, the delays in the feedback
path are adjusted accordingly.

Mixed Radix-4/2 Architecture
Mixed radix-4/2 architecture combines the advantages of using radix-2 and radix-4
butterflies.

The architecture has ceiling(log4(N)) stages. If transform length is an integral power
of four, all of the log4(N) stages are implemented using a radix-4 architecture. If
transform length is not an integral power of four, the architecture implements
ceiling(log4(N)) – 1 of the stages in a radix-4 architecture, and implements the
remaining stage using a radix-2 architecture.

Each stage contains a single butterfly unit and a feedback delay unit. The feedback
delay unit delays the incoming data by a specified number of cycles; in each stage the
number of cycles of delay is one quarter of the number of cycles of delay in the
previous stage. The delays align the butterfly input samples correctly for the butterfly
calculations. The output of the pipeline is in index-reversed order.

Quad-Output FFT Engine Architecture
For applications in which transform time is to be minimized, a quad-output FFT
engine architecture is optimal. The term quad-output refers to the throughput of the
internal FFT butterfly processor. The engine implementation computes all four radix-4
butterfly complex outputs in a single clock cycle.

Figure 3–1 shows a diagram of the quad-output FFT engine.

Figure 3–1. Quad-Output FFT Engine

ROM
0

FFT Engine H[k,0]

H[k,1]

H[k,2]

H[k,3]

G[k,0]

G[k,1]

G[k,2]

G[k,3]

x[k,0]

x[k,1]

x[k,2]

x[k,3]

-j
-1

j
-1

-1

j
-1

-j

RAM
A1

RAM
A0

RAM
A2

RAM
A3

BFPU

BFPU

BFPU

BFPU

SW SW

RAM
A1

RAM
A0

RAM
A2

RAM
A3

ROM
1

ROM
2

3–6 Chapter 3: Functional Description
Complex data samples x[k,m] are read from internal memory in parallel and
re-ordered by switch (SW). Next, the ordered samples are processed by the radix-4
butterfly processor to form the complex outputs G[k,m]. Because of the inherent
mathematics of the radix-4 DIF decomposition, only three complex multipliers are
required to perform the three non-trivial twiddle-factor multiplications on the outputs
of the butterfly processor. To discern the maximum dynamic range of the samples, the
four outputs are evaluated in parallel by the block-floating point units (BFPU). The
appropriate LSBs are discarded and the complex values are rounded and re-ordered
before being written back to internal memory.

Single-Output FFT Engine Architecture
For applications in which the minimum-size FFT function is desired, a single-output
engine is most suitable. The term single-output again refers to the throughput of the
internal FFT butterfly processor. In the engine architecture, a single butterfly output is
computed per clock cycle, requiring a single complex multiplier (Figure 3–2 on
page 3–6).

I/O Data Flow Architectures
This section describes and illustrates the following I/O data flow architectural
options supported by the FFT MegaCore function:

■ Streaming

■ Variable Streaming

■ Buffered Burst

■ Burst

f For information about setting the architectural parameters in IP Toolbench, refer to
“Parameterize the MegaCore Function” on page 2–3.

Figure 3–2. Single-Output FFT Engine Architecture

H[k,m]

G[k,0]

G[k,1]

G[k,2]

G[k,3]

x[k,0]

x[k,1]

x[k,2]

x[k,3]

-j
-1

j

-1

-1

j
-1

-j

RAM RAM

ROM

FFT Engine

BFPU

Chapter 3: Functional Description 3–7
Streaming
The streaming I/O data flow FFT architecture allows continuous processing of input
data, and outputs a continuous complex data stream without the requirement to halt
the data flow in or out of the FFT function.

Streaming FFT Operation
Figure 3–3 on page 3–7 shows an example simulation waveform.

Following the deassertion of the system reset, the data source asserts sink_valid to
indicate to the FFT function that valid data is available for input. A successful data
transfer occurs when both the sink_valid and the sink_ready are asserted.

When the data transfer is complete, sink_sop is deasserted and the data samples are
loaded in natural order.

For more information about the signals, refer to Table 3–4 on page 3–16.

f For more information about the Avalon-ST interface, refer to the Avalon Interface
Specifications.

Figure 3–4 shows the input flow control. When the final sample is loaded, the source
asserts sink_eop and sink_valid for the last data transfer.

Figure 3–3. FFT Streaming Data Flow Architecture Simulation Waveform

Figure 3–4. FFT Streaming Data Flow Architecture Input Flow Control

clk
reset_n

sink_valid
sink_ready

sink_sop
sink_eop

inverse
sink_real

sink_imag
source_real

source_imag
source_exp

source_ready
source_valid
source_sop
source_eop

EXP0 EXP1 EXP2 EXP3

clk
reset_n

sink_valid
sink_ready

sink_sop
inverse

sink_real
sink_imag

xr(0) xr(1) xr(2) xr(3) xr(4) xr(5) xr(6) xr(7)

xi(0) xi(1) xi(2) xi(3) xi(4) xi(5) xi(6) xi(7)

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

3–8 Chapter 3: Functional Description
To change direction on a block-by-block basis, assert or deassert inverse
(appropriately) simultaneously with the application of the sink_sop pulse (concurrent
with the first input data sample of the block).

When the FFT has completed the transform of the input block, it asserts source_valid
and outputs the complex transform domain data block in natural order. The FFT
function asserts source_sop to indicate the first output sample. Figure 3–5 shows the
output flow control.

After N data transfers, source_eop is asserted to indicate the end of the output data
block (Figure 3–3 on page 3–7).

Enabling the Streaming FFT
The sink_valid signal must be asserted for source_valid to be asserted (and a valid
data output). To extract the final frames of data from the FFT, you need to provide
several frames where the sink_valid signal is asserted and apply the sink_sop and
sink_eop signals in accordance with the Avalon-ST specification.

Variable Streaming
The variable streaming architecture allows continuous streaming of input data and
produces a continuous stream of output data similar to the streaming architecture.

Change the Block Size
You change the size of the FFT on a block-by-block basis by changing the value of the
fftpts simultaneously with the application of the sink_sop pulse (concurrent with
the first input data sample of the block). fftpts uses a binary representation of the
size of the transform, therefore for a block with maximum transfer size of 1,024.
Table 3–2 shows the value of the fftpts signal and the equivalent transform size.

Figure 3–5. FFT Streaming Data Flow Architecture Output Flow Control

clk
source_real

source_imag
exponent_out
source_ready
source_valid
source_sop
source_eop

Xr[0] Xr[1] Xr[2] Xr[3] Xr[5] Xr[6] Xr[7] Xr[8] Xr[10] Xr[11] Xr[12]Xr[9]

Xi[0] Xi[1] Xi[2] Xi[3] Xi[5] Xi[6] Xi[7] Xi[8] Xi[11] Xi[12]

EXP0

Xi[4] Xi[9]

Xr[4]

Xi[10]

Table 3–2. fftpts and Transform Size

fftpts Transform Size

10000000000 1,024

01000000000 512

00100000000 256

00010000000 128

00001000000 64

Chapter 3: Functional Description 3–9
I/O Data Flow Architectures
To change direction on a block-by-block basis, assert or deassert inverse
(appropriately) simultaneously with the application of the sink_sop pulse (concurrent
with the first input data sample of the block). When the FFT has completed the
transform of the input block, it asserts source_valid and outputs the complex
transform domain data block. The FFT function asserts the source_sop to indicate the
first output sample. The order of the output data depends on the output order that
you select in IP Toolbench. The output of the FFT may be in natural order or bit-
reversed order. Figure 3–6 shows the output flow control when the output order is bit-
reversed. If the output order is natural order, data flow control remains the same, but
the order of samples at the output is in sequential order 1..N.

Enabling the Variable Streaming FFT
The FFT processes data when there is valid data transferred to the module
(sink_valid asserted). Figure 3–7 shows the FFT behavior when sink_valid is
deasserted.

When sink_valid is deasserted during a frame, the FFT stalls and no data is
processed until sink_valid is reasserted. This implies that any previous frames that
are still in the FFT also stall.

If sink_valid is deasserted between frames, the data currently in the FFT continues to
be processed and transferred to the output. Figure 3–7 shows the FFT behavior when
sink_valid is deasserted between frames and within a frame.

The FFT may optionally be disabled by deasserting the clk_en signal.

Figure 3–6. Output Flow Control—Bit Reversed Order

clock

source_sop

source_eop

source_valid

source_ready

source_real

source_imag

x0 x512 x256 x768 x128 x640 x384 x896

x0 x512 x256 x768 x128 x640 x384 x896

x1023

x1023

Figure 3–7. FFT Behavior When sink_valid is Deasserted

Clock

Frame 1 Frame 2

Input Data

The input data stops,
but the output continues

Output Data

sink_valid

source_valid

When the FFT is stopped within
a frame, the output pauses
November 2011 Altera Corporation FFT MegaCore Function
User Guide

3–10 Chapter 3: Functional Description
I/O Data Flow Architectures
Dynamically Changing the FFT Size
When the size of the incoming FFT changes, the FFT stalls the incoming data
(deasserts the sink_ready signal) until all of the previous FFT frames of the previous
FFT size have been processed and transferred to the output. Figure 3–8 shows
dynamically changing the FFT size for engine-only mode.

The Effect of I/O Order
The order of samples entering and leaving the FFT is determined by your selection in
the Architecture tab under I/O Order. This selection also determines if the FFT is
operating in engine-only mode or engine with bit-reversal or digit-reversal mode.

If the FFT operates in engine-only mode, the output data is available after
approximately N + latency clocks cycles after the first sample was input to the FFT.
Latency represents a small latency through the FFT core and depends on the
transform size. For engine with bit-reversal mode, the output is available after
approximately 2N + latency cycles.

Figure 3–9 shows the data flow output when the FFT is operating in engine-only
mode.

Figure 3–8. Dynamically Changing the FFT Size

clock

reset_n

sink_valid

sink_ready

sink_sop

sink_eop

inverse

sink_real

sink_imag

source_real

source_imag

source_ready

source_valid

source_sop

source_eop

 fftps

Figure 3–9. Data Flow—Engine-Only Mode

clk
reset_n

sink_valid
sink_ready

sink_sop
sink_eop
sink_real

sink_imag
source_real

source_imag
source_valid
source_sop
source_eop
FFT MegaCore Function November 2011 Altera Corporation
User Guide

Chapter 3: Functional Description 3–11
I/O Data Flow Architectures
Figure 3–10 shows the data flow output when the FFT is operating in engine with
bit-reversal or digit-reversal mode, respectively

Buffered Burst
The buffered burst I/O data flow architecture FFT requires fewer memory resources
than the streaming I/O data flow architecture, but the tradeoff is an average block
throughput reduction.

Figure 3–11 on page 3–11 shows an example simulation waveform.

Following the deassertion of the system reset, the data source asserts sink_valid to
indicate to the FFT function that valid data is available for input. A successful data
transfer occurs when both the sink_valid and the sink_ready are asserted.

The data source loads the first complex data sample into the FFT function and
simultaneously asserts sink_sop to indicate the start of the input block. On the next
clock cycle, sink_sop is deasserted and the following N – 1 complex input data
samples must be loaded in natural order. On the last complex data sample, sink_eop
must be asserted.

Figure 3–10. Data Flow—Engine with Bit-Reversal or Digit-Reversal Mode

clk
reset_n

sink_valid
sink_ready

sink_sop
sink_eop
sink_real

sink_imag
source_real

source_imag
source_valid
source_sop
source_eop

Figure 3–11. FFT Buffered Burst Data Flow Architecture Simulation Waveform

clk
reset_n

sink_vaild
sink_ready

sink_sop
sink_eop

inverse
sink_real

sink_imag
source_real

source_imag
source_exp

source_ready
source_valid
source_sop
source_eop

-13609 -47729 271 31221 -21224

-13609 -47729 271 31221 -21224

EXP3EXP2EXP1EXP0
November 2011 Altera Corporation FFT MegaCore Function
User Guide

3–12 Chapter 3: Functional Description
I/O Data Flow Architectures
When the input block is loaded, the FFT function begins computing the transform on
the stored input block. The sink_ready signal is held high as you can transfer the first
few samples of the subsequent frame into the small FIFO at the input. If this FIFO is
filled, the core deasserts the sink_ready signal. It is not mandatory to transfer samples
during sink_ready cycles. Figure 3–12 shows the input flow control.

Following the interval of time where the FFT processor reads the input samples from
an internal input buffer, it re-asserts sink_ready indicating it is ready to read in the
next input block. The beginning of the subsequent input block must be demarcated by
the application of a pulse on sink_sop aligned in time with the first input sample of
the next block.

As in all data flow architectures, the logical level of inverse for a particular block is
registered by the FFT function at the time of the assertion of the start-of-packet signal,
sink_sop.

When the FFT has completed the transform of the input block, it asserts the
source_valid and outputs the complex transform domain data block in natural order
(Figure 3–13).

Signals source_sop and source_eop indicate the start-of-packet and end-of-packet for
the output block data respectively (Figure 3–11).

1 The sink_valid signal must be asserted for source_valid to be asserted (and a valid
data output). You must therefore leave sink_valid signal asserted at the end of data
transfers to extract the final frames of data from the FFT.

f For information about enabling the buffered burst FFT, refer to “Enabling the
Streaming FFT” on page 3–8.

Figure 3–12. FFT Buffered Burst Data Flow Architecture Input Flow Control

clk
reset_n

sink_valid
sink_ready

sink_sop
inverse

sink_real
sink_imag

xr(0) xr(1) xr(2) xr(3) xr(4) xr(5) xr(6) xr(7) xr(8) xr(9)

xi(0) xi(1) xi(2) xi(3) xi(4) xi(5) xi(6) xi(7) xi(8) xi(9)

Figure 3–13. FFT Buffered Burst Data Flow Architecture Output Flow Control

clk
source_realt
source_imag

source_exp
source_ready

master_source_valid
source_sop
source_eop

EXP0

Xr[0] Xr[1] Xr[2] Xr[3] Xr[4] Xr[5] Xr[6] Xr[7] Xr[8] Xr[9] Xr[10]

Xi[0] Xi[1] Xi[2] Xi[3] Xi[4] Xi[5] Xi[6] Xi[7] Xi[8] Xi[9] Xi[10]
FFT MegaCore Function November 2011 Altera Corporation
User Guide

Chapter 3: Functional Description 3–13
I/O Data Flow Architectures
Burst
The burst I/O data flow architecture operates similarly to the buffered burst
architecture, except that the burst architecture requires even lower memory resources
for a given parameterization at the expense of reduced average throughput.
Figure 3–14 shows the simulation results for the burst architecture. Again, the signals
source_valid and sink_ready indicate, to the system data sources and slave sinks
either side of the FFT, when the FFT can accept a new block of data and when a valid
output block is available on the FFT output.

In a burst I/O data flow architecture, the core can process a single input block only.
There is a small FIFO buffer at the sink of the block and sink_ready is not deasserted
until this FIFO buffer is full. Thus you can provide a small number of additional input
samples associated with the subsequent input block. It is not mandatory to provide
data to the FFT during sink_ready cycles. The burst architecture can load the rest of
the subsequent FFT frame only when the previous transform has been fully unloaded.

f For information about enabling the buffered burst FFT, refer to “Enabling the
Streaming FFT” on page 3–8.

Figure 3–14. FFT Burst Data Flow Architecture Simulation Waveform

-47729 271

-47729 271

EXP0 EXP1 EXP2

clk
reset_n

sink_valid
sink_ready

sink_sop
sink_eop

inverse
sink_real

sink_imag
source_real

source_imag
source_exp

source_ready
source_valid
source_sop
source_eop
November 2011 Altera Corporation FFT MegaCore Function
User Guide

3–14 Chapter 3: Functional Description
Parameters
Parameters
Table 3–3 lists the FFT MegaCore function’s parameters.

Table 3–3. Parameters (Part 1 of 3)

Parameter Value Description

Target Device Family <device family>

Displays the target device family. The device family is normally
preselected by the project specified in the Quartus II software.

The generated HDL for your MegaCore function variation may
be incorrect if this value does not match the value specified in
the Quartus II project.

The device family must be the same as your Quartus II project
device family.

Transform Length

64, 128, 256, 512,
1024, 2048, 4096,
8192, 16384, 32768, or
65536. Variable
streaming also allows 8,
16, 32, 131072, and
262144.

The transform length. For variable streaming, this value is the
maximum FFT length.

Data Precision 8, 10, 12, 14, 16, 18,
20, 24, 28, 32

The data precision. The values 28 and 32 are available for
variable streaming only.

Twiddle Precision
8, 10, 12, 14, 16, 18,
20, 24, 28, 32

The twiddle precision. The values 28 and 32 are available for
variable streaming only. Twiddle factor precision must be less
than or equal to data precision.

FFT Engine Architecture Quad Output,
Single Output

For both the Buffered Burst and Burst I/O data flow
architectures, you can choose between one, two, and four
quad-output FFT engines working in parallel. Alternatively, if
you have selected a single-output FFT engine architecture, you
may choose to implement one or two engines in parallel.
Multiple parallel engines reduce the FFT MegaCore function’s
transform time at the expense of device resources—which
allows you to select the desired area and throughput trade-off
point.

For more information about device resource and transform
time trade-offs, refer to ““Parameters” on page 3–14. Not
available for variable streaming or streaming architecture.

Number of Parallel FFT Engines 1, 2, 4

I/O Data Flow

Streaming
Variable Streaming
Buffered Burst
Burst

Choose the FFT architecture.

I/O Order
Bit Reverse Order, Digit
Reverse Order, Natural
Order, –N/2 to N/2

The input and output order for data entering and leaving the
FFT (variable streaming architecture only). The Digit Reverse
Order option replaces the Bit Reverse Order in variable
streaming floating point variations.

Data Representation
Fixed Point or Floating
Point

The internal data representation type (variable streaming
architecture only), either fixed point with natural bit-growth or
single precision floating point.
FFT MegaCore Function November 2011 Altera Corporation
User Guide

Chapter 3: Functional Description 3–15
Parameters
Structure 3 Mults/5 Adders
4 Mults/2 Adders

You can implement the complex multiplier structure with four
real multipliers and two adders/subtracters, or three
multipliers, five adders, and some additional delay elements.
The 4 Mults/2 Adders structure uses the DSP block structures
to minimize logic usage, and maximize the DSP block usage.
This option may also improve the push button fMAX. The
5 Mults/3 Adders structure requires fewer DSP blocks, but
more LEs to implement. It may also produce a design with a
lower fMAX. Not available for variable streaming architecture or
in Arria V, Cyclone V, and Stratix V devices.

Implement Multipliers in
DSP Blocks/Logic Cells
Logic Cells Only
DSP Blocks Only

Each real multiplication can be implemented in DSP blocks or
LEs only, or using a combination of both. If you use a
combination of DSP blocks and LEs, the FFT MegaCore
function automatically extends the DSP block 18 × 18
multiplier resources with LEs as needed. Not available for
variable streaming architecture or in Arria V, Cyclone V, and
Stratix V devices.

DSP Resource Optimization On or Off

This option is available in Stratix V devices for all architectures
and representations. You can turn on this option to implement
the complex multiplier structure using Stratix V DSP block
complex 18 × 25 multiplication mode or complex 27 × 27
multiplication mode for better DSP resource utilization, at the
possible expense of speed. In the variable streaming
architecture using the floating point representation, this option
implements the complex multiplier structure using Stratix V
DSP block complex 27 × 27 multiplication mode at the possible
expense of accuracy.

Global clock enable On or Off Turn on if you want to add a global clock enable to your design.

Twiddle ROM Distribution
100% M4K to 100%
M512 or 100% M9K to
100% MLAB

High-throughput FFT parameterizations can require multiple
shallow ROMs for twiddle factor storage. If your target device
family supports M512 RAM blocks (or MLAB blocks in
Stratix III, Stratix IV, and Stratix V devices), you can choose to
distribute the ROM storage requirement between M4K (M9K in
Stratix III and Stratix IV devices) RAM and M512 (MLAB) RAM
blocks by adjusting the slider bar. Set the slider bar to the far
left to implement the ROM storage completely in M4K (M9K)
RAM blocks; set the slider bar to the far right to implement the
ROM completely in M512 (MLAB) RAM blocks. In Stratix V
devices, replace M4K (M9K) with M20K memory blocks.

Implementing twiddle ROM in M512 (MLAB) RAM blocks can
lead to a more efficient device internal memory bit usage.
Alternatively, this option can be used to conserve M4K (M9K)
RAM blocks used for the storage of FFT data or other storage
requirements in your system.

Not available for variable streaming architecture or in the
Cyclone series of device families.

Table 3–3. Parameters (Part 2 of 3)

Parameter Value Description
November 2011 Altera Corporation FFT MegaCore Function
User Guide

3–16 Chapter 3: Functional Description
Signals
Signals
Table 3–4 lists the Avalon-ST interface signals.

f For more information about the Avalon-ST interface, refer to the Avalon Streaming
Interface Specification.

Use M-RAM or M144K blocks On or Off

Implements suitable data RAM blocks within the FFT MegaCore
function in M-RAM (M144K in Stratix III and Stratix IV devices)
to reduce M4K (M9K) RAM block usage, in device families that
support M-RAM blocks.

Not available for variable streaming architecture, or in the
Cyclone series of device families, or in Stratix V devices.

Implement appropriate logic
functions in RAM

On or Off

Uses embedded RAM blocks to implement internal logic
functions, for example, tapped delay lines in the FFT MegaCore
function. This option reduces the overall logic element count.

Not available for variable streaming architecture.

Table 3–3. Parameters (Part 3 of 3)

Parameter Value Description

Table 3–4. Avalon-ST Signals (Part 1 of 2)

Signal Name Direction Avalon-ST Type Size Description

clk Input clk 1 Clock signal that clocks all internal FFT engine
components.

reset_n Input reset_n 1

Active-low asynchronous reset signal.This signal
can be asserted asynchronously, but must remain
asserted at least one clk clock cycle and must be
deasserted synchronously with clk.

Refer to the Recommended Design Practices
chapter in volume 1 of the Quartus II Handbook for
a sample circuit that ensures synchronous
deassertion of an active-low reset signal.

sink_eop Input endofpacket 1 Indicates the end of the incoming FFT frame.

sink_error Input error 2

Indicates an error has occurred in an upstream
module, because of an illegal usage of the
Avalon-ST protocol. The following errors are
defined (refer to Table 3–6):

■ 00 = no error

■ 01 = missing start of packet (SOP)

■ 10 = missing end of packet (EOP)

■ 11 = unexpected EOP

If this signal is not used in upstream modules, set
to zero.

sink_imag Input data
data precision
width

Imaginary input data, which represents a signed
number of data precision bits.
FFT MegaCore Function November 2011 Altera Corporation
User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

Chapter 3: Functional Description 3–17
Signals
sink_ready Output ready 1
Asserted by the FFT engine when it can accept
data. It is not mandatory to provide data to the FFT
during ready cycles.

sink_real Input data
data precision
width

Real input data, which represents a signed number
of data precision bits.

sink_sop Input startofpacket 1 Indicates the start of the incoming FFT frame.

sink_valid Input valid 1

Asserted when data on the data bus is valid. When
sink_valid and sink_ready are asserted, a data
transfer takes place. Refer to “Enabling the
Variable Streaming FFT” on page 3–9.

source_eop Output endofpacket 1 Marks the end of the outgoing FFT frame. Only
valid when source_valid is asserted.

source_error Output error 2

Indicates an error has occurred either in an
upstream module or within the FFT module
(logical OR of sink_error with errors generated
in the FFT). Refer to Table 3–6 for error codes.

source_exp Output data 6
Streaming, burst, and buffered burst architectures
only. Signed block exponent: Accounts for scaling
of internal signal values during FFT computation.

source_imag Output data
(data precision
width + growth)
(1)

Imaginary output data. For burst, buffered burst,
streaming, and variable streaming floating point
FFTs, the output data width is equal to the input
data width. For variable streaming fixed point FFTs,
the size of the output data is dependent on the
number of stages defined for the FFT and is 2 bits
per radix 22 stage.

source_ready Input ready 1 Asserted by the downstream module if it is able to
accept data.

source_real Output data
(data precision
width + growth)
(1)

Real output data. For burst, buffered burst,
streaming, and variable streaming floating point
FFTs, the output data width is equal to the input
data width. For variable streaming fixed point FFTs,
the size of the output data is dependent on the
number of stages defined for the FFT and is 2 bits
per radix 22 stage.

source_sop Output startofpacket 1 Marks the start of the outgoing FFT frame. Only
valid when source_valid is asserted.

source_valid Output valid 1 Asserted by the FFT when there is valid data to
output.

Note to Table 3–4:

(1) Variable streaming fixed point FFT only. Growth is log2(N) + 1.

Table 3–4. Avalon-ST Signals (Part 2 of 2)

Signal Name Direction Avalon-ST Type Size Description
November 2011 Altera Corporation FFT MegaCore Function
User Guide

3–18 Chapter 3: Functional Description
Signals
Table 3–5 shows the component specific signals.

Incorrect usage of the Avalon-ST interface protocol on the sink interface results in a
error on source_error. Table 3–6 defines the behavior of the FFT when an incorrect
Avalon-ST transfer is detected. If an error occurs, the behavior of the FFT is undefined
and you must reset the FFT with reset_n.

Table 3–5. Component Specific Signals

Signal Name Direction Size Description

fftpts_in Input
log2(maximum
number of points)

The number of points in this FFT frame. If this value is not specified, the
FFT can not be a variable length. The default behavior is for the FFT to
have fixed length of maximum points. Only sampled at SOP.

fftpts_out Output log2(maximum
number of points)

The number of points in this FFT frame synchronized to the Avalon-ST
source interface. Variable streaming only.

inverse Input 1 Inverse FFT calculated if asserted. Only sampled at SOP.

clk_ena Input 1 Active-high global clock enable input. If deasserted, the FFT is disabled.

Table 3–6. Error Handling Behavior

Error source_error Description

Missing SOP 01 Asserted when valid goes high, but there is no start of frame.

Missing EOP 10 Asserted if the FFT accepts N valid samples of an FFT frame, but there is no EOP signal.

Unexpected EOP 11 Asserted if EOP is asserted before N valid samples are accepted.
FFT MegaCore Function November 2011 Altera Corporation
User Guide

November 2011 Altera Corporation
4. Block Floating Point Scaling
Introduction
The FFT MegaCore function uses block-floating-point (BFP) arithmetic internally to
perform calculations. BFP architecture is a trade-off between fixed-point and full
floating-point architecture.

Unlike an FFT block that uses floating point arithmetic, a block-floating-point FFT
block does not provide an input for exponents. Internally, a complex value integer
pair is represented with a single scale factor that is typically shared among other
complex value integer pairs. After each stage of the FFT, the largest output value is
detected and the intermediate result is scaled to improve the precision. The exponent
records the number of left or right shifts used to perform the scaling. As a result, the
output magnitude relative to the input level is:

output*2-exponent

For example, if exponent = –3, the input samples are shifted right by three bits, and
hence the magnitude of the output is output*23.

Block Floating Point
After every pass through a radix-2 or radix-4 engine in the FFT core, the addition and
multiplication operations cause the data bits width to grow. In other words, the total
data bits width from the FFT operation grows proportionally to the number of passes.
The number of passes of the FFT/IFFT computation depends on the logarithm of the
number of points. Table 4–1 on page 4–2 shows the possible exponents for
corresponding bit growth.

A fixed-point architecture FFT needs a huge multiplier and memory block to
accommodate the large bit width growth to represent the high dynamic range.
Though floating-point is powerful in arithmetic operations, its power comes at the
cost of higher design complexity such as a floating-point multiplier and a floating-
point adder. BFP arithmetic combines the advantages of floating-point and fixed-
point arithmetic. BFP arithmetic offers a better signal-to-noise ratio (SNR) and
dynamic range than does floating-point and fixed-point arithmetic with the same
number of bits in the hardware implementation.

In a block-floating-point architecture FFT, the radix-2 or radix-4 computation of each
pass shares the same hardware, with the data being read from memory, passed
through the core engine, and written back to memory. Before entering the next pass,
each data sample is shifted right (an operation called "scaling") if there is a carry-out
bit from the addition and multiplication operations. The number of bits shifted is
based on the difference in bit growth between the data sample and the maximum data
sample detected in the previous stage. The maximum bit growth is recorded in the
exponent register. Each data sample now shares the same exponent value and data bit
width to go to the next core engine. The same core engine can be reused without
incurring the expense of a larger engine to accommodate the bit growth.
FFT MegaCore Function
User Guide

4–2 Chapter :
Calculating Possible Exponent Values
The output SNR depends on how many bits of right shift occur and at what stages of
the radix core computation they occur. In other words, the signal-to-noise ratio is data
dependent and you need to know the input signal to compute the SNR.

Calculating Possible Exponent Values
Depending on the length of the FFT/IFFT, the number of passes through the radix
engine is known and therefore the range of the exponent is known. The possible
values of the exponent are determined by the following equations:

P = ceil{log4N}, where N is the transform length

R = 0 if log2N is even, otherwise R = 1

Single output range = (–3P+R, P+R–4)

Quad output range = (–3P+R+1, P+R–7)

These equations translate to the values in Table 4–1.

Implementing Scaling
To implement the scaling algorithm, follow these steps:

1. Determine the length of the resulting full scale dynamic range storage register. To
get the length, add the width of the data to the number of times the data is shifted
(the max value in Table 4–1). For example, for a 16-bit data, 256-point Quad
Output FFT/IFFT with Max = –11 and Min = –3. The Max value indicates 11 shifts
to the left, so the resulting full scaled data width is 16 + 11, or 27 bits.

Table 4–1. Exponent Scaling Values for FFT / IFFT (1)

N P
Single Output Engine Quad Output Engine

Max (2) Min (2) Max (2) Min (2)

64 3 –9 –1 –8 –4

128 4 –11 1 –10 –2

256 4 –12 0 –11 –3

512 5 –14 2 –13 –1

1,024 5 –15 1 –14 –2

2,048 6 –17 3 –16 0

4,096 6 –18 2 –17 –1

8,192 7 –20 4 –19 1

16,384 7 –21 3 –20 0

Note to Table 4–1:

(1) This table lists the range of exponents, which is the number of scale events that occurred internally. For IFFT, the
output must be divided by N externally. If more arithmetic operations are performed after this step, the division by
N must be performed at the end to prevent loss of precision.

(2) The maximum and minimum values show the number of times the data is shifted. A negative value indicates shifts
to the left, while a positive value indicates shifts to the right.
FFT MegaCore Function November 2011 Altera Corporation
User Guide

Chapter : 4–3
Implementing Scaling
2. Map the output data to the appropriate location within the expanded dynamic
range register based upon the exponent value. To continue the above example, the
16-bit output data [15..0] from the FFT/IFFT is mapped to [26..11] for an exponent
of –11, to [25..10] for an exponent of –10, to [24..9] for an exponent of –9, and so on.

3. Sign extend the data within the full scale register.

A sample of Verilog HDL code that illustrates the scaling of the output data (for
exponents –11 to –9) with sign extension is shown in the following example:

case (exp)
6'b110101 : //-11 Set data equal to MSBs

begin
full_range_real_out[26:0] <= {real_in[15:0],11'b0};
full_range_imag_out[26:0] <= {imag_in[15:0],11'b0};

end
6'b110110 : //-10 Equals left shift by 10 with sign extension

begin
full_range_real_out[26] <= {real_in[15]};
full_range_real_out[25:0] <= {real_in[15:0],10'b0};
full_range_imag_out[26] <= {imag_in[15]};
full_range_imag_out[25:0] <= {imag_in[15:0],10'b0};

end
6'b110111 : //-9 Equals left shift by 9 with sign extension

begin
full_range_real_out[26:25] <= {real_in[15],real_in[15]};
full_range_real_out[24:0] <= {real_in[15:0],9'b0};
full_range_imag_out[26:25] <= {imag_in[15],imag_in[15]};
full_range_imag_out[24:0] <= {imag_in[15:0],9'b0};

end
.
.
.

endcase

In this example, the output provides a full scale 27-bit word. You must choose how
many and which bits must be carried forward in the processing chain. The choice of
bits determines the absolute gain relative to the input sample level.

Figure 4–1 on page 4–4 demonstrates the effect of scaling for all possible values for the
256-point quad output FFT with an input signal level of 0x5000. The output of the FFT
is 0x280 when the exponent = –5. The figure illustrates all cases of valid exponent
values of scaling to the full scale storage register [26..0]. Because the exponent is –5,
you must check the register values for that column. This data is shown in the last two
columns in the figure. Note that the last column represents the gain compensated data
after the scaling (0x0005000), which agrees with the input data as expected. If you
want to keep 16 bits for subsequent processing, you can choose the bottom 16 bits that
result in 0x5000. However, if you choose a different bit range, such as the top 16 bits,
the result is 0x000A. Therefore, the choice of bits affects the relative gain through the
processing chain.
November 2011 Altera Corporation FFT MegaCore Function
User Guide

4–4 Chapter :
Achieving Unity Gain in an IFFT+FFT Pair
Because this example has 27 bits of full scale resolution and 16 bits of output
resolution, choose the bottom 16 bits to maintain unity gain relative to the input
signal. Choosing the LSBs is not the only solution or the correct one for all cases. The
choice depends on which signal levels are important. One way to empirically select
the proper range is by simulating test cases that implement expected system data. The
output of the simulations must tell what range of bits to use as the output register. If
the full scale data is not used (or just the MSBs), you must saturate the data to avoid
wraparound problems.

Achieving Unity Gain in an IFFT+FFT Pair
Given sufficiently high precision, such as with floating-point arithmetic, it is
theoretically possible to obtain unity gain when an IFFT and FFT are cascaded.
However, in BFP arithmetic, special attention must be paid to the exponent values of
the IFFT/FFT blocks to achieve the unity gain. This section explains the steps required
to derive a unity gain output from an Altera IFFT/FFT MegaCore pair, using BFP
arithmetic.

Because BFP arithmetic does not provide an input for the exponent, you must keep
track of the exponent from the IFFT block if you are feeding the output to the FFT
block immediately thereafter and divide by N at the end to acquire the original signal
magnitude.

Figure 4–1. Scaling of Input Data Sample = 0x5000
FFT MegaCore Function November 2011 Altera Corporation
User Guide

Chapter : 4–5
Achieving Unity Gain in an IFFT+FFT Pair
Figure 4–2 on page 4–5 shows the operation of IFFT followed by FFT and derives the
equation to achieve unity gain.

where:

x0 = Input data to IFFT

X0 = Output data from IFFT

N = number of points

data1 = IFFT output data and FFT input data

data2 = FFT output data

exp1 = IFFT output exponent

exp2 = FFT output exponent

IFFTa = IFFT

FFTa = FFT

Any scaling operation on X0 followed by truncation loses the value of exp1 and does
not result in unity gain at x0. Any scaling operation must be done on X0 only when it
is the final result. If the intermediate result X0 is first padded with exp1 number of
zeros and then truncated or if the data bits of X0 are truncated, the scaling information
is lost.

One way to keep unity gain is by passing the exp1 value to the output of the FFT
block. The other way is to preserve the full precision of data1×2–exp1 and use this
value as input to the FFT block. The disadvantage of the second method is a large size
requirement for the FFT to accept the input with growing bit width from IFFT
operations. The resolution required to accommodate this bit width will, in most cases,
exceed the maximum data width supported by the core.

f For more information, refer to the Achieving Unity Gain in Block Floating Point
IFFT+FFT Pair design example under DSP Design Examples at www.altera.com.

Figure 4–2. Derivation to Achieve IFFT/FFT Pair Unity Gain

 IFFT

x0 X0 = IFFT(x0)

 =
N

1
× IFFTa(x0)

 =
N

1
× data1 × 2–exp1

 FFT

x0 = FFT(X0)

 = FFT(
N

1
 × data1 × 2–exp1)

 =
N

1
× 2–exp1× FFTa(data1)

 =
N

1
× 2–exp1× data2 × 2–exp2

 =
N

1
× 2 –exp2–exp1 × data2
November 2011 Altera Corporation FFT MegaCore Function
User Guide

4–6 Chapter :
Achieving Unity Gain in an IFFT+FFT Pair
FFT MegaCore Function November 2011 Altera Corporation
User Guide

November 2011 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

Revision History
The following table shows the revision history for this user guide.

Date Version Changes Made

November 2011 11.1

■ Updated Table 1–1.

■ Added Arria V and Cyclone V device support in Table 1–3.

■ Added Stratix V in the “Performance and Resource Utilization” section.

■ Updated Table 3–3 to include 8-point FFT.

May 2011 11.0

■ Added user-controlled parameter for DSP resource optimization in Stratix V devices.

■ Changed device support level from Preliminary to Final for Arria II GX, Arria II GZ,
Cyclone III LS, and Cyclone IV devices.

■ Changed device support level from HardCopy Companion to HardCopy Compilation for
HardCopy III E, HardCopy IV E, and HardCopy IV GX devices.

December 2010 10.1
■ Added preliminary support for Arria II GZ devices.

■ Updated support level to final support for Stratix IV GT devices.

July 2010 10.0
■ Added preliminary support for Stratix V devices.

■ Added new Transform Length values.

November 2009 9.1
■ Maintenance update.

■ Added preliminary support for Cyclone III LS, Cyclone IV, and HardCopy IV GX devices.

March 2009 9.0 Added Arria II GX device support.

November 2008 8.1 No changes.

May 2008 8.0
■ Added Stratix IV device support.

■ Changed descriptions of the behavior of sink_valid and sink_ready.

October 2007 7.2
■ Corrected timing diagrams.

■ Added single precision floating point data representation information.

May 2007 7.1
■ Added support for Arria GX devices.

■ Added new generated files.

December 2006 7.0 Added support for Cyclone III devices.

December 2006 6.1
■ Changed interface information.

■ Added variable streaming information.
FFT MegaCore Function
User Guide

Info–2 Additional Information
How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the
following table.

The following table shows the typographic conventions this document uses.

(1)

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Nontechnical support (general) Email nacomp@altera.com

(software licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections in a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.
FFT MegaCore Function November 2011 Altera Corporation
User Guide

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

Typographic Conventions
 The question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

 The multimedia icon directs you to a related multimedia presentation.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.
November 2011 Altera Corporation FFT MegaCore Function
User Guide

https://www.altera.com/subscriptions/email/signup/eml-index.jsp

Typographic Conventions
FFT MegaCore Function November 2011 Altera Corporation
User Guide

	FFT MegaCore Function User Guide
	Contents
	1. About This MegaCore Function
	Release Information
	Device Family Support
	Features
	General Description
	Fixed Transform Size Architecture
	Variable Streaming Architecture

	MegaCore Verification
	Performance and Resource Utilization
	Cyclone III Devices
	Stratix III Devices
	Stratix IV Devices
	Stratix V Devices

	Installation and Licensing
	OpenCore Plus Evaluation
	OpenCore Plus Time-Out Behavior

	2. Getting Started
	Design Flows
	DSP Builder Flow
	MegaWizard Plug-In Manager Flow
	Parameterize the MegaCore Function
	Set Up Simulation
	Generate the MegaCore Function

	Simulate the Design
	Simulate in the MATLAB Software
	Fixed Transform Architectures
	Variable Streaming Architecture

	Simulate with IP Functional Simulation Models
	Simulating in Third-Party Simulation Tools Using NativeLink

	Compile the Design
	Fixed Transform Architecture
	Variable Streaming Architecture

	Program a Device

	3. Functional Description
	Buffered, Burst, & Streaming Architectures
	Variable Streaming Architecture
	The Avalon Streaming Interface
	FFT Processor Engine Architectures
	Radix-22 Single Delay Feedback Architecture
	Mixed Radix-4/2 Architecture
	Quad-Output FFT Engine Architecture
	Single-Output FFT Engine Architecture

	I/O Data Flow Architectures
	Streaming
	Streaming FFT Operation
	Enabling the Streaming FFT

	Variable Streaming
	Change the Block Size
	Enabling the Variable Streaming FFT
	Dynamically Changing the FFT Size
	The Effect of I/O Order

	Buffered Burst
	Burst

	Parameters
	Signals
	Introduction
	Block Floating Point
	Calculating Possible Exponent Values
	Implementing Scaling
	Achieving Unity Gain in an IFFT+FFT Pair

	Additional Information
	Revision History
	How to Contact Altera
	Typographic Conventions

