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1. About This MegaCore Function
Release Information
Table 1–1 lists information about this release of the Altera® FFT MegaCore® function.

f For more information about this release, refer to the MegaCore IP Library Release Notes 
and Errata.

Altera verifies that the current version of the Quartus® II software compiles the 
previous version of each MegaCore® function. The MegaCore IP Library Release Notes 
and Errata report any exceptions to this verification. Altera does not verify 
compilation with MegaCore function versions older than one release.

Device Family Support
Table 1–2 lists the device support levels for Altera IP cores.

Table 1–1. FFT MegaCore Function Release Information

Item Description

Version 11.1

Release Date November 2011

Ordering Code IP-FFT

Product ID 0034

Vendor ID 6AF7 

Table 1–2. Altera IP Core Device Support Levels

FPGA Device Families HardCopy Device Families

Preliminary support—The IP core is verified with 
preliminary timing models for this device family. The IP core 
meets all functional requirements, but might still be 
undergoing timing analysis for the device family. It can be 
used in production designs with caution.

HardCopy Companion—The IP core is verified with 
preliminary timing models for the HardCopy companion 
device. The IP core meets all functional requirements, but 
might still be undergoing timing analysis for the HardCopy 
device family. It can be used in production designs with 
caution.

Final support—The IP core is verified with final timing 
models for this device family. The IP core meets all 
functional and timing requirements for the device family and 
can be used in production designs.

HardCopy Compilation—The IP core is verified with final 
timing models for the HardCopy device family. The IP core 
meets all functional and timing requirements for the device 
family and can be used in production designs.
FFT MegaCore Function
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1–2 Chapter 1: About This MegaCore Function
Features
Table 1–3 lists the level of support offered by the FFT MegaCore function to each of 
the Altera device families.

Features
The following lists the features of the FFT MegaCore function:

■ Bit-accurate MATLAB models

■ Enhanced variable streaming FFT: 

■ Single precision floating point or fixed point representation

■ Input and output orders include natural order, bit reversed or digit-reversed, 
and DC-centered (–N/2 to N/2)

■ Reduced memory requirements

■ Support for 8 to 32-bit data and twiddle width

■ Radix-4, mixed radix-4/2 implementations (for floating point FFT), and radix-22 
single delay feedback implementation (for fixed point FFT)

Table 1–3. Device Family Support

Device Family Support

Arria® GX Final

Arria II GX Final

Arria II GZ Final

Arria V Refer to the What’s New in Altera IP page of the Altera 
website.

Cyclone® Final

Cyclone II Final

Cyclone III Final

Cyclone III LS Final

Cyclone IV Final

Cyclone V Refer to the What’s New in Altera IP page of the Altera 
website.

HardCopy® II HardCopy Compilation

HardCopy III HardCopy Compilation

HardCopy IV E HardCopy Compilation

HardCopy IV GX HardCopy Compilation

Stratix® Final

Stratix II Final

Stratix II GX Final

Stratix III Final

Stratix IV GT Final

Stratix IV GX/E Final

Stratix V Preliminary

Stratix GX Final
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Chapter 1: About This MegaCore Function 1–3
General Description
■ Block floating-point architecture—maintains the maximum dynamic range of data 
during processing (not for variable streaming)

■ Uses embedded memory

■ Maximum system clock frequency more than 300 MHz

■ Optimized to use Stratix series DSP blocks and TriMatrix™ memory 
architecture

■ High throughput quad-output radix 4 FFT engine 

■ Support for multiple single-output and quad-output engines in parallel

■ Multiple I/O data flow modes: streaming, buffered burst, and burst

■ User control over optimization in DSP blocks or in speed in Stratix V devices, for 
streaming, buffered burst, and burst modes and for variable streaming fixed point 
mode

■ Avalon® Streaming (Avalon-ST) compliant input and output interfaces

■ Parameterization-specific VHDL and Verilog HDL testbench generation

■ Transform direction (FFT/IFFT) specifiable on a per-block basis

■ Easy-to-use IP Toolbench interface

■ IP functional simulation models for use in Altera-supported VHDL and Verilog 
HDL simulators

■ DSP Builder ready

f For more information about Avalon-ST interfaces, refer to the Avalon Interface 
Specifications.

General Description
The FFT MegaCore function is a high performance, highly-parameterizable Fast 
Fourier transform (FFT) processor. The FFT MegaCore function implements a 
complex FFT or inverse FFT (IFFT) for high-performance applications.

The FFT MegaCore function implements the following architectures:

■ Fixed transform size architecture

■ Variable streaming architecture

Fixed Transform Size Architecture
The fixed transform architecture FFT implements a radix-2/4 decimation-in-
frequency (DIF) FFT fixed-transform size algorithm for transform lengths of 2m where 
6  m 16. This architecture uses block-floating point representations to achieve the 
best trade-off between maximum signal-to-noise ratio (SNR) and minimum size 
requirements.
November 2011 Altera Corporation FFT MegaCore Function
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1–4 Chapter 1: About This MegaCore Function
MegaCore Verification
The fixed transform architecture accepts as an input a two’s complement format 
complex data vector of length N, where N is the desired transform length in natural 
order; the function outputs the transform-domain complex vector in natural order. An 
accumulated block exponent is output to indicate any data scaling that has occurred 
during the transform to maintain precision and maximize the internal signal-to-noise 
ratio. Transform direction is specifiable on a per-block basis via an input port. 

Variable Streaming Architecture
The variable streaming architecture FFT implements two different types of 
architecture. The variable streaming FFT variations implement either a radix-22 single 
delay feedback architecture, using a fixed-point representation, or a mixed radix-4/2 
architecture, using a single precision floating point representation. After you select 
your architecture type, you can configure your FFT variation during runtime to 
perform the FFT algorithm for transform lengths of 2m where 3 m 18. 

The fixed-point representation grows the data widths naturally from input through to 
output thereby maintaining a high SNR at the output. The single precision floating 
point representation allows a large dynamic range of values to be represented while 
maintaining a high SNR at the output.

f For more information about radix-22 single delay feedback architecture, refer to S. He 
and M. Torkelson, A New Approach to Pipeline FFT Processor, Department of Applied 
Electronics, Lund University, IPPS 1996.

The order of the input data vector of size N can be natural, bit- or digit-reversed, or 
–N/2 to N/2 (DC-centered). The fixed-point representation supports a natural, 
bit-reversed, or DC-centered order and the floating point representation supports a 
natural, digit-reversed, or DC-centered order. The architecture outputs the 
transform-domain complex vector in natural, bit-reversed, or digit-reversed order. 
The transform direction is specifiable on a per-block basis using an input port.

MegaCore Verification
Before releasing a version of the FFT MegaCore function, Altera runs comprehensive 
regression tests to verify its quality and correctness.

Custom variations of the FFT MegaCore function are generated to exercise its various 
parameter options, and the resulting simulation models are thoroughly simulated 
with the results verified against master simulation models.

Performance and Resource Utilization
Performance varies depending on the FFT engine architecture and I/O data flow. All 
data represents the geometric mean of a three seed Quartus II synthesis sweep.

1 Cyclone III devices use combinational look-up tables (LUTs) and logic registers; 
Stratix III devices use combinational adaptive look-up tables (ALUTs) and logic 
registers.
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Chapter 1: About This MegaCore Function 1–5
Performance and Resource Utilization
Cyclone III Devices
Table 1–4 lists the streaming data flow performance, using the 4 multipliers/2 adders 
complex multiplier structure, for width 16, for Cyclone III (EP3C10F256C6) devices.

Table 1–5 shows the variable streaming data flow performance, with in order inputs 
and bit-reversed outputs, for width 16 (32 for floating point), for Cyclone III 
(EP3C16F484C6) devices.

1 The variable streaming with fixed-point number representation uses natural word 
growth, therefore the multiplier requirement is larger compared with the equivalent 
streaming FFT with the same number of points.

If you want to significantly reduce M9K memory utilization, set a lower fMAX target.

Table 1–6 lists resource usage with buffered burst data flow architecture, using the 4 
multipliers/2 adders complex multiplier structure, for data and twiddle width 16, for 
Cyclone III (EP3C25F324C6) devices.

Table 1–4. Performance with the Streaming Data Flow Engine Architecture—Cyclone III Devices

Points Combinational 
LUTs

Logic 
Registers

Memory
(Bits)

Memory 
(M9K)

9 × 9 
Blocks

fMAX 
(MHz)

Clock 
Cycle 
Count

Transform 
Time (s)

256 3437 3906 39168 20 24 231 256 1.11

1024 3857 4650 155904 20 24 244 1024 4.19

4096 (1) 3719 4734 622848 76 24 234 4096 17.52

Note to Table 1–4:

(1) EP3C40F780C6 device.

Table 1–5. Performance with the Variable Streaming Data Flow Engine Architecture—Cyclone III Devices

Point Type Points Combinational 
LUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M9K)

9 × 9 
Blocks

fMAX 
(MHz)

Clock 
Cycle 
Count

Transform 
Time (s)

Fixed 256 3859 4373 9997 15 40 191 256 1.34

Fixed 1024 5243 5840 41940 21 56 193 1024 5.29

Fixed 4096 6725 7369 170335 40 72 198 4096 20.67

Floating (1) 256 20771 14158 34464 62 96 116 256 2.20

Floating (2) 1024 26573 17540 140410 93 128 116 1024 8.83

Floating (2) 4096 32428 20939 568163 148 160 116 4096 35.3

Note to Table 1–5:

(1) EP3C40F780C6 device.
(2) EP3C55F780C6 device.

Table 1–6. Resource Usage with Buffered Burst Data Flow Architecture—Cyclone III Devices (Part 1 of 2)

Points Number of 
Engines (1)

Combinational 
LUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M9K)

9 × 9 
Blocks

fMAX
(MHz)

256 (2) 1 3129 3778 30,76 16 24 247

1024 (2) 1 3234 3976 123136 16 24 241
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1–6 Chapter 1: About This MegaCore Function
Performance and Resource Utilization
Table 1–7 lists performance with buffered burst data flow architecture, using the 4 
multipliers/2 adders complex multiplier structure, for data and twiddle width 16, for 
Cyclone III (EP3C25F324C6) devices.

4096 1 3291 4160 491776 60 24 227

256 (3) 2 5161 5961 30976 31 48 225

1024 (3) 2 5270 6169 123136 31 48 207

4096 2 5337 6361 491776 60 48 215

256 4 9015 10738 30976 60 96 230

1024 4 9145 10963 123136 60 96 230

4096 4 9241 11169 491776 60 96 215

Notes to Table 1–6:

(1) When using the buffered burst architecture, you can specify the number of quad-output FFT engines in the FFT parameter editor.
(2) EP3C10F256C6 device.
(3) EP3C16F484C6 device.

Table 1–6. Resource Usage with Buffered Burst Data Flow Architecture—Cyclone III Devices (Part 2 of 2)

Points Number of 
Engines (1)

Combinational 
LUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M9K)

9 × 9 
Blocks

fMAX
(MHz)

Table 1–7. Performance with the Buffered Burst Data Flow Architecture—Cyclone III Devices

Points Number of 
Engines (1)

fMAX 
(MHz)

Transform Calculation 
Time (2)

Data Load & Transform 
Calculation

Block Throughput 
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 (4) 1 247 235 0.95 491 1.99 331 1.34

1024 (4) 1 241 1069 4.44 2093 8.69 1291 5.36

4096 1 227 5167 22.81 9263 40.9 6157 27.18

256 (5) 2 225 162 0.72 397 1.77 299 1.33

1024 (5) 2 207 557 2.69 1581 7.63 1163 5.61

4096 2 215 2,07 12.12 6703 31.17 5133 23.87

256 4 230 118 0.51 347 1.51 283 1.23

1024 4 230 340 1.48 1364 5.93 1099 4.78

4096 4 215 1378 6.4 5474 25.4 4633 21.5

Notes to Table 1–7:

(1) When using the buffered burst architecture, you can specify the number of quad-output engines in the FFT parameter editor. You may choose 
from one, two, or four quad-output engines in parallel. 

(2) In a buffered burst data flow architecture, transform time is defined as the time from when the N-sample input block is loaded until the first 
output sample is ready for output. Transform time does not include the additional N-1 clock cycle to unload the full output data block.

(3) Block throughput is the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.
(4) EP3C10F256C6 device.
(5) EP3C16F484C6 device.
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Chapter 1: About This MegaCore Function 1–7
Performance and Resource Utilization
Table 1–8 lists resource usage with burst data flow architecture, using the 
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16, 
for Cyclone III (EP3C10F256C6) devices.

Table 1–9 lists performance with burst data flow architecture, using the 
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16, 
for Cyclone III (EP3C10F256C6) devices. 

Table 1–8. Resource Usage with the Burst Data Flow Architecture—Cyclone III Devices 

Points Engine 
Architecture

Number of 
Engines (2)

Combinational 
LUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M9K)

9 × 9 
Blocks

fMAX
(MHz)

256 Quad Output 1 3120 3694 14592 8 24 232

1024 Quad Output 1 3227 3876 57600 8 24 246

4096 Quad Output 1 3277 4044 229632 28 24 215

256 Quad Output 2 5141 5872 14592 15 48 244

1024 Quad Output 2 5248 6064 57600 15 48 216

4096 Quad Output 2 5304 6240 229632 28 48 219

256 Quad Output 4 9012 10659 14592 28 96 225

1024 Quad Output 4 9144 10868 57600 28 96 202

4096 Quad Output 4 9241 11058 229632 28 96 204

256 Single Output 1 1449 1499 9472 3 8 250

1024 Single Output 1 1518 1545 37120 6 8 223

4096 Single Output 1 1598 1591 147712 19 8 227

256 Single Output 2 2131 2460 14592 9 16 235

1024 Single Output 2 2185 2536 57600 11 16 221

4096 Single Output 2 2237 2612 229632 28 16 219

Note to Table 1–8:

(1) When using the burst data flow architecture, you can specify the number of engines in the FFT parameter editor. You may choose from one to 
two single-output engines in parallel, or from one, two, or four quad-output engines in parallel.

Table 1–9. Performance with the Burst Data Flow Architecture—Cyclone III Devices (Part 1 of 2)

Points Engine 
Architecture

Number of 
Engines (1)

fMAX 
(MHz)

Transform 
Calculation Time (2)

Data Load & Transform 
Calculation

Block Throughput 
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 Quad Output 1 232 235 1.01 491 2.12 331 1.43

1024 Quad Output 1 246 1069 4.35 2093 8.51 1291 5.25

4096 Quad Output 1 215 5167 24.07 9263 43.15 6157 28.68

256 Quad Output 2 244 162 0.66 397 1.63 299 1.23

1024 Quad Output 2 216 557 2.58 1581 7.31 1163 5.38

4096 Quad Output 2 219 2607 11.9 6703 30.59 5133 23.43

256 Quad Output 4 225 118 0.52 374 1.66 283 1.26

1024 Quad Output 4 202 340 1.68 1364 6.75 1099 5.43

4096 Quad Output 4 204 1378 6.76 5474 26.87 4633 22.74

256 Single Output 1 250 1115 4.45 1371 5.48 1628 6.5
November 2011 Altera Corporation FFT MegaCore Function
User Guide



1–8 Chapter 1: About This MegaCore Function
Performance and Resource Utilization
Stratix III Devices
Table 1–10 lists the streaming data flow performance, using the 4 multipliers/2 adders 
complex multiplier structure, for data and twiddle width 16, for Stratix III 
(EP3SE50F780C2) devices.

Table 1–11 lists the variable streaming data flow performance, with in order inputs 
and bit-reversed outputs, for width 16 (32 for floating point), for Stratix III 
(EP3SE50F780C2) devices.

1 The variable streaming with fixed-point number representation uses natural word 
growth, therefore the multiplier requirement is larger compared with the equivalent 
streaming FFT with the same number of points.

If you want to significantly reduce M9K memory utilization, set a lower fMAX target.

1024 Single Output 1 223 5230 23.43 6344 28.42 7279 32.6

4096 Single Output 1 227 24705 108.7 28801 126.73 32898 144.75

256 Single Output 2 235 585 2.49 841 3.58 1098 4.67

1024 Single Output 2 221 2652 12 3676 16.64 4701 21.28

4096 Single Output 2 219 12329 56.28 16495 75.3 20605 94.06

Notes to Table 1–9:

(1) In the burst I/O data flow architecture, you can specify the number of engines in the FFT parameter editor. You may choose from one to two 
single-output engines in parallel, or from one, two, or four quad-output engines in parallel. 

(2) Transform time is the time frame when the input block is loaded until the first output sample (corresponding to the input block) is output. 
Transform time does not include the time to unload the full output data block.

(3) Block throughput is defined as the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.

Table 1–9. Performance with the Burst Data Flow Architecture—Cyclone III Devices (Part 2 of 2)

Points Engine 
Architecture

Number of 
Engines (1)

fMAX 
(MHz)

Transform 
Calculation Time (2)

Data Load & Transform 
Calculation

Block Throughput 
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

Table 1–10. Performance with the Streaming Data Flow Engine Architecture—Stratix III Devices

Points Combinational 
ALUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M9K)

18 × 18 
Blocks

fMAX 
(MHz)

Clock 
Cycle 
Count

Transform 
Time (s)

256 2094 3715 39168 20 12 442 256 0.58

1024 2480 4458 155904 20 12 413 10024 2.48

4096 2357 4545 622848 76 12 388 4096 10.57

Table 1–11. Performance with the Variable Streaming Data Flow Engine Architecture—Stratix III Devices (Part 1 of 2)

Point Type Points Combinational 
ALUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M9K)

18 × 18 
Blocks

fMAX 
(MHz)

Clock 
Cycle 
Count

Transform 
Time (s)

Fixed 256 2511 3927 10239 16 20 341 256 0.75

Fixed 1024 3476 5244 42218 23 28 323 1024 3.17

Fixed 4096 4480 6628 170639 42 36 320 4096 12.8

Floating 256 14059 13424 34728 64 48 303 256 0.84
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Chapter 1: About This MegaCore Function 1–9
Performance and Resource Utilization
Table 1–12 lists resource usage with buffered burst data flow architecture, using the
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16, 
for Stratix III (EP3SE50F780C2) devices.

Table 1–13 lists performance with buffered burst data flow architecture, using the 
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16, 
for Stratix III (EP3SE50F780C2) devices.

Floating 1024 18019 16560 140750 95 64 286 1024 3.58

Floating (1) 4096 22026 19717 568579 150 80 286 4096 14.33

Note to Table 1–11:

(1) EP3SL70F780C2 device.

Table 1–11. Performance with the Variable Streaming Data Flow Engine Architecture—Stratix III Devices (Part 2 of 2)

Point Type Points Combinational 
ALUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M9K)

18 × 18 
Blocks

fMAX 
(MHz)

Clock 
Cycle 
Count

Transform 
Time (s)

Table 1–12. Resource Usage with Buffered Burst Data Flow Architecture—Stratix III Devices

Points Number of 
Engines (1)

Combinational 
ALUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M9K)

18 × 18 
Blocks

fMAX
(MHz)

256 1 1952 3586 30976 16 12 408

1024 1 1989 3784 123136 16 12 390

4096 1 2031 3968 491776 60 12 382

256 2 3261 5577 30976 31 24 365

1024 2 3306 5785 123136 31 24 369

4096 2 3348 5977 491776 60 24 390

256 4 5712 9971 30976 60 48 341

1024 4 5775 10195 123136 60 48 349

4096 4 5857 10403 491776 60 48 325

Note to Table 1–12:

(1) When using the buffered burst architecture, you can specify the number of quad-output FFT engines in the FFT parameter editor.

Table 1–13. Performance with the Buffered Burst Data Flow Architecture—Stratix III Devices (Part 1 of 2)

Points Number of 
Engines (1)

fMAX
(MHz))

Transform Calculation 
Time (2)

Data Load & Transform 
Calculation

Block Throughput 
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 1 408 235 0.58 491 1.2 331 0.81

1024 1 390 1069 2.74 2093 5..37 1291 3.31

4096 1 382 5167 13.54 9263 24.27 6157 16.13

256 2 365 162 0.44 397 1.09 299 0.82

1024 2 369 557 1.51 1581 4.29 1163 3.15

4096 2 390 2607 6.68 6703 17.17 5133 13.15

256 4 341 118 0.35 347 1.02 283 0.83

1024 4 349 340 0.98 1364 3.91 1099 3.15
November 2011 Altera Corporation FFT MegaCore Function
User Guide



1–10 Chapter 1: About This MegaCore Function
Performance and Resource Utilization
Table 1–14 lists resource usage with burst data flow architecture, using the 
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16, 
for Stratix III (EP3SE50F780C2) devices.

4096 4 325 1378 4.25 5474 16.87 4633 14.27

Notes to Table 1–13:

(1) When using the buffered burst architecture, you can specify the number of quad-output engines in the FFT parameter editor. You may choose 
from one, two, or four quad-output engines in parallel. 

(2) In a buffered burst data flow architecture, transform time is defined as the time from when the N-sample input block is loaded until the first 
output sample is ready for output. Transform time does not include the additional N-1 clock cycle to unload the full output data block.

(3) Block throughput is the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.

Table 1–13. Performance with the Buffered Burst Data Flow Architecture—Stratix III Devices (Part 2 of 2)

Points Number of 
Engines (1)

fMAX
(MHz))

Transform Calculation 
Time (2)

Data Load & Transform 
Calculation

Block Throughput 
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

Table 1–14. Resource Usage with the Burst Data Flow Architecture—Stratix III Devices 

Points Engine 
Architecture

Number of 
Engines (2)

Combinational 
ALUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M9K)

18 × 18 
Blocks

fMAX
(MHz)

256 Quad Output 1 1796 3502 14592 8 12 408

1024 Quad Output 1 1830 3686 57600 8 12 429

4096 Quad Output 1 1882 3852 229632 28 12 410

256 Quad Output 2 2968 5489 14592 15 24 382

1024 Quad Output 2 3015 5681 57600 15 24 388

4096 Quad Output 2 3054 5856 229632 28 24 386

256 Quad Output 4 5162 9891 14592 28 48 348

1024 Quad Output 4 5213 10100 57600 28 48 380

4096 Quad Output 4 5283 10290 229632 28 48 367

256 Single Output 1 704 1435 9472 3 4 438

1024 Single Output 1 740 1481 37120 6 4 414

4096 Single Output 1 805 1527 147712 19 4 404

256 Single Output 2 1037 2332 14592 9 8 413

1024 Single Output 2 1050 2408 57600 11 8 402

4096 Single Output 2 1092 2484 229632 28 8 406

Notes to Table 1–14:

(1) Represents data and twiddle factor precision.
(2) When using the burst data flow architecture, you can specify the number of engines in the FFT parameter editor. You may choose from one to 

two single-output engines in parallel, or from one, two, or four quad-output engines in parallel.
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Performance and Resource Utilization
Table 1–15 lists performance with burst data flow architecture, using the 
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16, 
for Stratix III (EP3SE50F780C2) devices. 

Stratix IV Devices
Table 1–16 lists the streaming data flow performance, using the 4 multipliers/2 adders 
complex multiplier structure, for data and twiddle width 16, for Stratix IV 
(EP4SGX70DF29C2X) devices.

Table 1–17 lists the variable streaming data flow performance, with in order inputs 
and bit-reversed outputs, for width 16 (32 for floating point), for Stratix IV 
(EP4SGX70DF29C2X) devices.

Table 1–15. Performance with the Burst Data Flow Architecture—Stratix III Devices

Points Engine 
Architecture

Number of 
Engines 

(1)

fmax 
(MHz)

Transform 
Calculation Time (2)

Data Load & 
Transform Calculation

Block Throughput 
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 Quad Output 1 408 235 0.58 491 1.2 331 0.81

1024 Quad Output 1 429 1069 2.49 2093 4.87 1291 3.01

4096 Quad Output 1 410 5167 12.6 9263 22.59 6157 15.02

256 Quad Output 2 382 162 0.42 397 1.04 299 0.78

1024 Quad Output 2 388 557 1.43 1581 4.07 1163 3.00

4096 Quad Output 2 386 2607 6.76 6703 17.39 5133 13.31

256 Quad Output 4 348 118 0.34 374 1.07 283 0.81

1024 Quad Output 4 380 340 0.9 1364 3.59 1099 2.9

4096 Quad Output 4 367 1378 3.76 5474 14.92 4633 12.63

256 Single Output 1 438 1115 2.54 1371 3.13 1628 3.72

1024 Single Output 1 414 5230 12.63 6344 15.31 7279 17.57

4096 Single Output 1 404 24705 61.22 28801 71.37 32898 81.52

256 Single Output 2 413 585 1.42 841 2.04 1098 2.66

1024 Single Output 2 402 2652 6.6 3676 9.15 4701 11.71

4096 Single Output 2 406 12329 30.34 16495 40.59 20605 50.71

Notes to Table 1–15:

(1) In the burst I/O data flow architecture, you can specify the number of engines in the FFT parameter editor. You may choose from one to two 
single-output engines in parallel, or from one, two, or four quad-output engines in parallel. 

(2) Transform time is the time frame when the input block is loaded until the first output sample (corresponding to the input block) is output. 
Transform time does not include the time to unload the full output data block.

(3) Block throughput is defined as the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.

Table 1–16. Performance with the Streaming Data Flow Engine Architecture—Stratix IV Devices

Points Combinational
ALUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M9K)

18 × 18 
Blocks

fMAX 
(MHz)

Clock 
Cycle 
Count

Transform 
Time (s)

256 2092 3714 39,68 20 12 436 256 0.59

1024 2480 4458 155904 20 12 437 1024 2.34

4096 2356 4545 622848 76 12 419 4096 9.78
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1 The variable streaming with fixed-point number representation uses natural word 
growth, therefore the multiplier requirement is larger compared with the equivalent 
streaming FFT with the same number of points.

If you want to significantly reduce M9K memory utilization, set a lower fMAX target.

Table 1–18 lists resource usage with buffered burst data flow architecture, using the
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16, 
for Stratix IV (EP4SGX70DF29C2X) devices.

Table 1–19 lists performance with buffered burst data flow architecture, using the 
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16, 
for Stratix IV (EP4SGX70DF29C2X) devices.

Table 1–17. Performance with the Variable Streaming Data Flow Engine Architecture—Stratix IV Devices

Point Type Points Combinational 
ALUTs

Logic 
Registers

Memory 18 × 18 
Blocks

fMAX 
(MHz)

Clock 
Cycle 
Count

Transform 
Time (s)Bits M9K

Fixed 256 2517 4096 10239 10 20 323 256 0.79

Fixed 1024 3489 5433 42218 15 28 329 1024 3.12

Fixed 4096 4503 6936 170639 33 36 327 4096 12.52

Floating 256 18024 16714 140750 61 48 320 256 0.8

Floating 1024 14063 13502 34728 89 64 314 1024 3.26

Floating 4096 22030 19806 568579 146 80 310 4096 13.23

Table 1–18. Resource Usage with Buffered Burst Data Flow Architecture—Stratix IV Devices

Points Number of 
Engines (1)

Combinational 
ALUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M9K)

18 × 18 
Blocks

fMAX
(MHz)

256 1 1951 3586 30976 16 12 443

1024 1 1990 3784 123136 16 12 441

4096 1 2034 3968 491776 60 12 421

256 2 3262 5577 30976 31 24 428

1024 2 3307 5785 123136 31 24 410

4096 2 3348 5977 491776 60 24 393

256 4 5712 9970 30976 60 48 368

1024 4 5774 10195 123136 60 48 362

4096 4 5856 10401 491776 60 48 368

Notes to Table 1–18:

(1) When using the buffered burst architecture, you can specify the number of quad-output FFT engines in the FFT parameter editor.

Table 1–19. Performance with the Buffered Burst Data Flow Architecture—Stratix IV Devices (Part 1 of 2)

Points Number of 
Engines (1) fMAX (MHz)

Transform Calculation 
Time (2)

Data Load & Transform 
Calculation

Block Throughput 
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 1 443 235 0.53 491 1.11 331 0.75

1024 1 441 1069 2.42 2093 4.75 1291 2.93
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Performance and Resource Utilization
Table 1–20 lists resource usage with burst data flow architecture, using the 
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16, 
for Stratix IV (EP4SGX70DF29C2X) devices.

4096 1 421 5167 12.26 9263 21.98 6157 14.61

256 2 428 162 0.38 397 0.93 299 0.7

1024 2 410 557 1.36 1581 3.85 1163 2.84

4096 2 393 2607 6.64 6703 17.07 5133 13.07

256 4 368 118 0.32 347 0.94 283 0.77

1024 4 362 340 0.94 1364 3.77 1099 3.04

4096 4 368 1378 3.75 5474 14.89 4633 12.61

Notes to Table 1–19:

(1) When using the buffered burst architecture, you can specify the number of quad-output engines in the FFT parameter editor. You may choose 
from one, two, or four quad-output engines in parallel. 

(2) In a buffered burst data flow architecture, transform time is defined as the time from when the N-sample input block is loaded until the first 
output sample is ready for output. Transform time does not include the additional N-1 clock cycle to unload the full output data block.

(3) Block throughput is the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.

Table 1–19. Performance with the Buffered Burst Data Flow Architecture—Stratix IV Devices (Part 2 of 2)

Points Number of 
Engines (1) fMAX (MHz)

Transform Calculation 
Time (2)

Data Load & Transform 
Calculation

Block Throughput 
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

Table 1–20. Resource Usage with the Burst Data Flow Architecture—Stratix IV Devices 

Points Engine 
Architecture

Number of 
Engines (2)

Combinational 
ALUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M9K)

18 × 18 
Blocks

fMAX 
(MHz)

256 Quad Output 1 1794 3502 14592 8 12 436

1024 Quad Output 1 1829 3684 57600 8 12 446

4096 Quad Output 1 1881 3852 229632 28 12 443

256 Quad Output 2 2968 5489 14592 15 24 418

1024 Quad Output 2 3014 5680 57600 15 24 412

4096 Quad Output 2 3053 5856 229632 28 24 366

256 Quad Output 4 5160 9891 14592 28 48 369

1024 Quad Output 4 5218 10101 57600 28 48 385

4096 Quad Output 4 5284 10290 229632 28 48 380

256 Single Output 1 704 1436 9472 3 4 407

1024 Single Output 1 740 1482 37120 6 4 413

4096 Single Output 1 801 1528 147712 19 4 412

256 Single Output 2 1036 2332 14592 9 8 405

1024 Single Output 2 1052 2408 57600 11 8 431

4096 Single Output 2 1092 2484 229632 28 8 406

Notes to Table 1–20:

(1) Represents data and twiddle factor precision.
(2) When using the burst data flow architecture, you can specify the number of engines in the FFT parameter editor. You may choose from one to 

two single-output engines in parallel, or from one, two, or four quad-output engines in parallel.
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Table 1–21 lists performance with burst data flow architecture, using the 
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16, 
for Stratix IV (EP4SGX70DF29C2X) devices.

Stratix V Devices
Table 1–22 lists the streaming data flow performance, using the 4 multipliers/2 adders 
complex multiplier structure, for data and twiddle width 16, for Stratix V 
(5SGXEA7H3F35C2) devices.

Table 1–21. Performance with the Burst Data Flow Architecture—Stratix IV Devices

Points Engine 
Architecture

Number of 
Engines (1)

fMAX 
(MHz)

Transform 
Calculation Time (2)

Data Load & Transform 
Calculation

Block Throughput 
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 Quad Output 1 436 235 0.54 491 1.12 331 0.76

1024 Quad Output 1 446 1069 2.39 2093 4.69 1291 2.89

4096 Quad Output 1 443 5167 11.66 9263 20.9 6157 13.89

256 Quad Output 2 418 162 0.39 397 0.95 299 0.71

1024 Quad Output 2 412 557 1.35 1581 3.83 1163 2.82

4096 Quad Output 2 366 2607 7.12 6703 18.3 5133 14.01

256 Quad Output 4 369 118 0.32 374 1.01 283 0.77

1024 Quad Output 4 385 340 0.88 1364 3.55 1099 2.86

4096 Quad Output 4 380 1378 3.63 5474 14.42 4633 12.20

256 Single Output 1 407 1115 2.74 1371 3.37 1628 4.00

1024 Single Output 1 413 5230 12.66 6344 15.35 7279 17.62

4096 Single Output 1 412 24705 59.91 28801 69.84 32898 79.78

256 Single Output 2 405 585 1.45 841 2.08 1098 2.71

1024 Single Output 2 431 2652 6.16 3676 8.54 4701 10.92

4096 Single Output 2 406 12329 30.35 16495 40.61 20605 50.73

Notes to Table 1–21:

(1) In the burst I/O data flow architecture, you can specify the number of engines in the FFT parameter editor. You may choose from one to two 
single-output engines in parallel, or from one, two, or four quad-output engines in parallel. 

(2) Transform time is the time frame when the input block is loaded until the first output sample (corresponding to the input block) is output. 
Transform time does not include the time to unload the full output data block.

(3) Block throughput is defined as the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.

Table 1–22. Performance with the Streaming Data Flow Engine Architecture—Stratix V Devices

Points Combinational
ALUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M20K)

DSP 
Blocks

fMAX 
(MHz)

Clock 
Cycle 
Count

Transform 
Time (s)

256 2,093 3,944 39,168 20 6 395 256 0.65

1024 2,489 4,719 155,904 20 6 382 1,024 2.68

4096 2,352 4,801 622,848 38 6 370 4,096 11.08
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Performance and Resource Utilization
Table 1–23 lists the variable streaming data flow performance, with in order inputs 
and bit-reversed outputs, for width 16 (32 for floating point), for Stratix V 
(5SGXEA7H3F35C2) devices.

1 The variable streaming with fixed-point number representation uses natural word 
growth, therefore the multiplier requirement is larger compared with the equivalent 
streaming FFT with the same number of points.

If you want to significantly reduce M20K memory utilization, set a lower fMAX target.

Table 1–24 lists resource usage with buffered burst data flow architecture, using the 
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16, 
for Stratix V (5SGXEA7H3F35C2) devices.

Table 1–23. Performance with the Variable Streaming Data Flow Engine Architecture—Stratix V Devices

Point Type Points Combinational 
ALUTs

Logic 
Registers

Memory DSP 
Blocks

fMAX 
(MHz)

Clock 
Cycle 
Count

Transform 
Time (s)Bits M20K

Fixed 256 2,543 4,319 10,239 15 10 348 256 0.73

Fixed 1024 3,518 5,724 42,204 20 14 330 1,024 3.1

Fixed 4096 4,568 7,290 170,537 31 18 331 4,096 12.36

Floating 256 15,017 15,778 34,445 62 24 334 256 0.77

Floating 1024 19,239 19,551 141,114 91 32 323 1,024 3.17

Floating 4096 23,402 23,295 571,894 121 40 320 4,096 12.82

Table 1–24. Resource Usage with Buffered Burst Data Flow Architecture—Stratix IV Devices

Points Number of 
Engines (1)

Combinational 
ALUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M20K) DSP Blocks fMAX

(MHz)

256 1 1,958 3,828 30,976 16 6 430

1024 1 1,997 4,042 123,136 16 6 403

4096 1 2,031 4,235 491,776 30 6 402

256 2 3,264 6,053 30,976 30 12 380

1024 2 3,310 6,247 123,136 30 12 379

4096 2 3,344 6,462 491,776 30 12 366

256 4 5,715 10,897 30,976 59 24 337

1024 4 5,776 11,115 123,136 59 24 348

4096 4 5,857 11,341 491,776 59 24 312

Note to Table 1–24:

(1) When using the buffered burst architecture, you can specify the number of quad-output FFT engines in the FFT parameter editor.
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Table 1–25 lists performance with buffered burst data flow architecture, using the
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16, 
for Stratix V (5SGXEA7H3F35C2) devices.

Table 1–26 lists resource usage with burst data flow architecture, using the 
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16, 
for Stratix V (5SGXEA7H3F35C2) devices. 

Table 1–25. Performance with the Buffered Burst Data Flow Architecture—Stratix V Devices

Points Number of 
Engines (1) fMAX (MHz)

Transform Calculation 
Time (2)

Data Load & Transform 
Calculation

Block Throughput 
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 1 430 235 0.55 491 1.14 331 0.77

1024 1 403 1,069 2.65 2,093 5.19 1,291 3.2

4096 1 402 5,167 12.86 9,263 23.06 6,157 15.32

256 2 380 162 0.43 397 1.05 299 0.79

1024 2 379 557 1.47 1,581 4.17 1,163 3.07

4096 2 366 2,607 7.13 6,703 18.33 5,133 14.04

256 4 337 118 0.35 347 1.03 283 0.84

1024 4 348 340 0.98 1,364 3.92 1,099 3.16

4096 4 312 1,378 4.42 5,474 17.54 4,633 14.84

Notes to Table 1–25:

(1) When using the buffered burst architecture, you can specify the number of quad-output engines in the FFT parameter editor. You may choose 
from one, two, or four quad-output engines in parallel. 

(2) In a buffered burst data flow architecture, transform time is defined as the time from when the N-sample input block is loaded until the first 
output sample is ready for output. Transform time does not include the additional N-1 clock cycle to unload the full output data block.

(3) Block throughput is the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.

Table 1–26. Resource Usage with the Burst Data Flow Architecture—Stratix V Devices (Part 1 of 2)

Points Engine 
Architecture

Number of 
Engines (2)

Combinational 
ALUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M20K)

DSP
Blocks

fMAX 
(MHz)

256 Quad Output 1 1,801 3,717 14,592 8 6 414

1024 Quad Output 1 1,833 3,912 57,600 8 6 405

4096 Quad Output 1 1,878 4,078 229,632 14 6 395

256 Quad Output 2 2,970 5,914 14,592 14 12 385

1024 Quad Output 2 3,019 6,129 57,600 14 12 395

4096 Quad Output 2 3,048 6,319 229,632 14 12 374

256 Quad Output 4 5,164 10,743 14,592 27 24 353

1024 Quad Output 4 5,216 10,924 57,600 27 24 314

4096 Quad Output 4 5,280 11,129 229,632 27 24 346

256 Single Output 1 709 1,542 9,472 3 2 445

1024 Single Output 1 751 1,598 37,120 4 2 443

4096 Single Output 1 817 1,637 147,712 9 2 427

256 Single Output 2 1,037 2,521 14,592 8 4 401

1024 Single Output 2 1,052 2,622 57,600 8 4 443
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Table 1–27 lists performance with burst data flow architecture, using the 
4 multipliers/2 adders complex multiplier structure, for data and twiddle width 16, 
for Stratix V (5SGXEA7H3F35C2) devices.

4096 Single Output 2 1,093 2,700 229,632 14 4 366

Notes to Table 1–20:

(1) Represents data and twiddle factor precision.
(2) When using the burst data flow architecture, you can specify the number of engines in the FFT parameter editor. You may choose from one to 

two single-output engines in parallel, or from one, two, or four quad-output engines in parallel.

Table 1–26. Resource Usage with the Burst Data Flow Architecture—Stratix V Devices (Part 2 of 2)

Points Engine 
Architecture

Number of 
Engines (2)

Combinational 
ALUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M20K)

DSP
Blocks

fMAX 
(MHz)

Table 1–27. Performance with the Burst Data Flow Architecture—Stratix V Devices

Points Engine 
Architecture

Number of 
Engines (1)

fMAX 
(MHz)

Transform 
Calculation Time (2)

Data Load & Transform 
Calculation

Block Throughput 
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 Quad Output 1 414 235 0.57 491 1.18 331 0.8

1024 Quad Output 1 405 1,069 2.64 2,093 5.17 1,291 3.19

4096 Quad Output 1 395 5,167 13.08 9,263 23.44 6,157 15.58

256 Quad Output 2 385 162 0.42 397 1.03 299 0.78

1024 Quad Output 2 395 557 1.41 1,581 4 1,163 2.94

4096 Quad Output 2 374 2,607 6.98 6,703 17.94 5,133 13.74

256 Quad Output 4 353 118 0.33 374 1.06 283 0.8

1024 Quad Output 4 314 340 1.08 1,364 4.35 1,099 3.5

4096 Quad Output 4 346 1,378 3.99 5,474 15.84 4,633 13.4

256 Single Output 1 445 1,115 2.51 1,371 3.08 1,628 3.66

1024 Single Output 1 443 5,230 11.79 6,344 14.31 7,279 16.41

4096 Single Output 1 427 24,705 57.86 28,801 67.45 32,898 77.05

256 Single Output 2 401 585 1.46 841 2.1 1,098 2.74

1024 Single Output 2 443 2,652 5.99 3,676 8.3 4,701 10.61

4096 Single Output 2 366 12,239 33.67 16,495 45.05 20,605 56.27

Notes to Table 1–27:

(1) In the burst I/O data flow architecture, you can specify the number of engines in the FFT parameter editor. You may choose from one to two 
single-output engines in parallel, or from one, two, or four quad-output engines in parallel. 

(2) Transform time is the time frame when the input block is loaded until the first output sample (corresponding to the input block) is output. 
Transform time does not include the time to unload the full output data block.

(3) Block throughput is defined as the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.
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Installation and Licensing
Installation and Licensing
The FFT MegaCore function is part of the MegaCore® IP Library, which is distributed 
with the Quartus® II software and can be downloaded from the Altera® website, 
www.altera.com.

f For system requirements and installation instructions, refer to the Altera Software 
Installation and Licensing manual.

Figure 1–1 shows the directory structure after you install the FFT MegaCore function, 
where <path> is the installation directory for the Quartus II software. 

The default installation directory on Windows is c:\altera\<version> and on Linux is 
/opt/altera<version>.

OpenCore Plus Evaluation
With Altera’s free OpenCore Plus evaluation feature, you can perform the following 
actions:

■ Simulate the behavior of a megafunction (Altera MegaCore function or AMPPSM 
megafunction) within your system.

■ Verify the functionality of your design, as well as evaluate its size and speed 
quickly and easily.

■ Generate time-limited device programming files for designs that include 
megafunctions.

■ Program a device and verify your design in hardware.

You only need to purchase a license for the FFT MegaCore function when you are 
completely satisfied with its functionality and performance, and want to take your 
design to production. After you purchase a license, you can request a license file from 
the Altera website at www.altera.com/licensing and install it on your computer. 
When you request a license file, Altera emails you a license.dat file. If you do not have 
Internet access, contact your local Altera representative.

f For more information about OpenCore Plus hardware evaluation, refer to AN 320: 
OpenCore Plus Evaluation of Megafunctions.

Figure 1–1. Directory Structure

lib
Contains encrypted lower-level files.

ip
Contains the Altera MegaCore IP Library and third-party IP cores. 

<path>
Installation directory.

altera
Contains the Altera MegaCore IP Library.

common
Contains shared components.
fft
Contains the FFT MegaCore function files.  
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OpenCore Plus Time-Out Behavior
OpenCore Plus hardware evaluation supports the following operation modes:

■ —the design runs for a limited time.

■ —requires a connection between your board and the host computer. If 
tethered mode is supported by all megafunctions in a design, the device can 
operate for a longer time or indefinitely.

All megafunctions in a device time-out simultaneously when the most restrictive 
evaluation time is reached. If there is more than one megafunction in a design, a 
specific megafunction’s time-out behavior might be masked by the time-out behavior 
of the other megafunctions.

The untethered time-out for the FFT MegaCore function is one hour; the tethered 
time-out value is indefinite.

The signals source_real, source_imag, and source_exp are forced low when the 
evaluation time expires.
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2. Getting Started
Design Flows
The FFT MegaCore function supports the following design flows:

■ DSP Builder: Use this flow if you want to create a DSP Builder model that 
includes a FFT MegaCore function variation.

■ MegaWizard™ Plug-In Manager: Use this flow if you would like to create a FFT 
MegaCore function variation that you can instantiate manually in your design.

This chapter describes how you can use a FFT MegaCore function in either of these 
flows. The parameterization provides the same options in each flow and is described 
in “Parameterize the MegaCore Function” on page 2–3.

After parameterizing and simulating a design in either of these flows, you can 
compile the completed design in the Quartus II software.

DSP Builder Flow
Altera’s DSP Builder product shortens digital signal processing (DSP) design cycles 
by helping you create the hardware representation of a DSP design in an 
algorithm-friendly development environment. 

DSP Builder integrates the algorithm development, simulation, and verification 
capabilities of The MathWorks MATLAB® and Simulink® system-level design tools 
with Altera Quartus® II software and third-party synthesis and simulation tools. You 
can combine existing Simulink blocks with Altera DSP Builder blocks and MegaCore 
function variation blocks to verify system level specifications and perform simulation.

In DSP Builder, a Simulink symbol for the MegaCore function appears in the 
MegaCore Functions library of the Altera DSP Builder Blockset in the Simulink library 
browser.

You can use the FFT MegaCore function in the MATLAB/Simulink environment by 
performing the following steps:

1. Create a new Simulink model.

2. Select the fft_< > block from the MegaCore Functions library in the 
Simulink Library Browser, add it to your model, and give the block a unique 
name.

3. Double-click on the fft_< > block in your model to display the parameter 
editor and parameterize the MegaCore function variation. For an example of 
setting parameters for the FFT MegaCore function, refer to “Parameterize the 
MegaCore Function” on page 2–3.

4. Click Finish in the parameter editor to complete the parameterization and 
generate your FFT MegaCore function variation. For information about the 
generated files, refer to Table 2–1 on page 2–11.

5. Connect your FFT MegaCore function variation to the other blocks in your model.
FFT MegaCore Function
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6. Simulate the MegaCore function variation in your DSP Builder model.

f For more information about the DSP Builder flow, refer to the 
 chapter in the DSP Builder User Guide.

1 When you are using the DSP Builder flow, device selection, simulation, Quartus II 
compilation and device programming are all controlled within the DSP Builder 
environment.

DSP Builder supports integration with SOPC Builder using Avalon® Memory-
Mapped (Avalon-MM) master/slave and Avalon Streaming (Avalon-ST) source/sink 
interfaces.

f For more information about these interface types, refer to the Avalon Interface 
Specifications.

MegaWizard Plug-In Manager Flow
The MegaWizard™ Plug-in Manager flow allows you to customize an FFT MegaCore 
function, and manually integrate the MegaCore function variation into a Quartus II 
design.

Follow the steps below to use the MegaWizard Plug-in Manager flow.

1. Create a new project using the New Project Wizard available from the File menu 
in the Quartus II software.

2. Launch MegaWizard Plug-in Manager from the Tools menu, and select the option 
to create a new custom megafunction variation (Figure 2–1).

3. Click Next and select FFT <version> from the DSP>Transforms section in the 
Installed Plug-Ins tab.

4. Verify that the device family is the same as you specified in the New Project 
Wizard.

Figure 2–1. MegaWizard Plug-In Manager
FFT MegaCore Function November 2011 Altera Corporation
User Guide

http://www.altera.com/literature/ug/ug_dsp_builder.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf


Chapter 2: Getting Started 2–3
MegaWizard Plug-In Manager Flow
5. Select the top-level output file type for your design; the wizard supports VHDL 
and Verilog HDL.

6. The MegaWizard Plug-In Manager shows the project path that you specified in the 
New Project Wizard. Append a variation name for the MegaCore function output 
files <project path>\<variation name>. Figure 2–2 shows the wizard after you have 
made these settings.

7. Click Next to launch IP Toolbench.

Parameterize the MegaCore Function
To parameterize your MegaCore function, follow these steps:

Figure 2–2. Select the MegaCore Function
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1. Click Step 1: Parameterize in IP Toolbench (Figure 2–3 on page 2–4).

Figure 2–3. IP Toolbench—Parameterize
FFT MegaCore Function November 2011 Altera Corporation
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2. Do not change the Target Device Family The device family is automatically set to 
the value that was specified in your Quartus II project and the generated HDL for 
your MegaCore function variation may be incorrect if this value is changed 
(Figure 2–4). 

3. Choose the Transform length, Data precision, and Twiddle precision.

1 The twiddle factor precision must be less than or equal to the data 
precision.

Figure 2–4. Parameters Tab
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4. Click the Architecture tab (Figure 2–5).

5. Choose the FFT engine architecture, number of parallel FFT engines, and the I/O 
data flow. 

If you select the Streaming I/O data flow, the FFT MegaCore function 
automatically generates a design with a Quad Output FFT engine architecture and 
the minimum number of parallel FFT engines for the required throughput.

1 A single FFT engine architecture provides enough performance for up to a 
1,024-point streaming I/O data flow FFT.

If you select Variable Streaming I/O data flow, the Transform length (specified 
on the Parameters Tab) represents the maximum transform length that can be 
performed. All transforms of length 2m where 6  m  log2(transform length) can be 
performed at runtime.

Figure 2–5. Architecture Tab
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1 If you select Variable Streaming and Floating Point on the Architecture 
tab, the precision (on the Parameters tab) is automatically set to 32, and the 
reverse I/O order options (on the Architecture tab) are Digit Reverse 
Order.

If you select Variable Streaming I/O data flow, options to set the I/O order and 
data representation are visible. The Input Order option allow you to select the 
order in which the samples are presented to the FFT. If you select Natural Order, 
the FFT expects the order of the input samples to be sequential (1, 2 …, n – 1, n) 
where n is the size of the current transform. For Bit Reverse Order, the FFT expects 
the input samples to be in bit-reversed order. For Digit Reverse Order, the FFT 
expects the input samples to be in digit-reversed order. For –N/2 to N/2, the FFT 
expects the input samples to be in the order –N/2 to (N/2) – 1 (also known as DC-
centered order). Similarly the Output Order option specifies the order in which 
the FFT generates the output. Whether you can select Bit Reverse Order or Digit 
Reverse Order depends on your Data Representation selection. You can select 
Fixed Point or Floating Point data representation. If you select Fixed Point, the 
FFT variation implements the radix-22 architecture and the reverse I/O order 
option is Bit Reverse Order; if you select Floating Point, the FFT variation 
implements the mixed radix-4/2 architecture and the reverse I/O order option is 
Digit Reverse Order.

For sample digit-reversed order, if n is a power of four, the order is radix-4 
digit-reversed order, in which two-bit digits in the sample number are units in the 
reverse ordering. For example, if n = 16, sample number 4 becomes the second 
sample in the sample stream (by reversal of the digits in 0001, the location in the 
sample stream, to 0100). However, in mixed radix-4/2 architecture, n need not be a 
power of four. If n is not a power of four, the two-bit digits are grouped from the 
least significant bit, and the most significant bit becomes the least significant bit in 
the digit-reversed order. For example, if n = 512, the sample at location 
[8][76][54][32][10] in the digit-reversed sample stream is sample number 
[10][32][54][76][8] in the natural ordering. The 261st sample in the stream, at 
location 260 (100000100), is the sample that is number 33 (000100001) in the natural 
ordering.
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6. Click the Implementation Options tab (Figure 2–6).

7. Choose the complex multiplier implementation.

You can choose a Structure with three multipliers and five adders or four 
multipliers and two adders. You can also choose to Implement Multipliers in DSP 
blocks only, logic cells only or both DSP blocks and logic cells. If your FFT 
variation targets a Stratix V device, you can turn on DSP Resource Optimization. 
This option optimizes for area rather than speed by utilizing the new Stratix V 
DSP block complex 18 × 25 and 27 × 27 multiplication modes. In the variable 
streaming architecture using the floating point representation, the option utilizes 
the DSP block complex 27 × 27 multiplication mode at the potential expense of 
lower accuracy. 

Figure 2–6. Implementation Options Tab
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1 The complex multiplier implementation options Structure and Implement 
Multipliers in are not available for the variable streaming architecture. The 
complex multiplier implementation option DSP Resource Optimization is 
available only in Stratix V devices.

If you turn on DSP Resource Optimization, and your variation has data precision 
between 18 and 25 bits, inclusive, and twiddle precision less than or equal to 18 
bits, the FFT MegaCore function configures the DSP blocks in complex 18 × 25 
multiplication mode. If you turn on DSP Resource Optimization and your 
variation does not meet these criteria, the FFT MegaCore function configures the 
DSP blocks based on the criteria it uses when you do not turn on the option. The 
FFT MegaCore function configures the Stratix V device according to the following 
criteria when you turn off the option or it is not available:

■ If data precision and twiddle precision are both less than or equal to 27 bits, 
configures 3/4 of a DSP block in complex 27 × 27 multiplication mode. This 
configuration uses only three of the four DSP rows in a single DSP block.

■ If data precision is greater than 27 bits and twiddle precision is less than or 
equal to 18 bits, configures one DSP block in sum of two 18 × 36 multiplication 
mode. This configuration uses four DSP rows.

■ Otherwise, configures two DSP blocks in 36 × 36 multiplication mode. This 
configuration uses eight DSP rows in two DSP blocks.

f For more information about the Stratix V DSP block modes, refer to the 
Variable Precision DSP Blocks in Stratix V Devices chapter in the Stratix V 
Device Handbook.

8. Turn on Global Clock Enable, if you want to add a global clock enable to your 
design.

9. Specify the memory options.

You can set memory use balance with the Twiddle ROM Distribution, turn on 
Use M-RAM Blocks, and turn on Implement appropriate logic functions in 
RAM. If your FFT variation targets an appropriate device family, the Use M144K 
Blocks option replaces the Use M-RAM Blocks option.

1 The memory options are not available for the variable streaming 
architecture. The memory options Twiddle ROM Distribution and Use 
M-RAM Blocks are not available in the Cyclone series of device families 
(the Cyclone, Cyclone II, Cyclone III, Cyclone III LS, and Cyclone IV device 
families).

10. Click Finish when the implementation options are set.

f For more information about the FFT MegaCore function parameters, refer to Table 3–3 
on page 3–14.
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Set Up Simulation
An IP functional simulation model is a cycle-accurate VHDL or Verilog HDL model 
produced by the Quartus II software. The model allows for fast functional simulation 
of IP using industry-standard VHDL and Verilog HDL simulators.

c You may only use these simulation model output files for simulation purposes and 
expressly not for synthesis or any other purposes. Using these models for synthesis 
creates a nonfunctional design.

To generate an IP functional simulation model for your MegaCore function, follow 
these steps:

1. Click Step 2: Set Up Simulation in IP Toolbench (Figure 2–3 on page 2–4).

2. Turn on Generate Simulation Model (Figure 2–7 on page 2–10).

3. Choose the required language in the Language list.

4. Some third-party synthesis tools can use a netlist that contains only the structure 
of the MegaCore function, but not detailed logic, to optimize performance of the 
design that contains the MegaCore function. If your synthesis tool supports this 
feature, turn on Generate netlist.

5. Click OK.

Generate the MegaCore Function
To generate your MegaCore function, follow these steps:

Figure 2–7. Generate Simulation Model
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1. Click Step 3: Generate in IP Toolbench (Figure 2–3 on page 2–4).

The generation phase may take several minutes to complete. The generation 
progress and status is displayed in a report window.

Figure 2–8 shows the generation report.

Table 2–1 describes the generated files and other files that may be in your project 
directory. The names and types of files specified in the IP Toolbench report vary 
based on whether you created your design with VHDL or Verilog HDL

Figure 2–8. Generation Report 

Table 2–1. Generated Files (Part 1 of 2)  (1) & (2)

Filename Description

<variation name>_imag_input.txt The text file contains input imaginary component random data. This file is read by 
the generated VHDL or Verilog HDL MATLAB testbenches. 

variation name real_input.txt Test file containing real component random data. This file is read by the generated 
VHDL or Verilog HDL and MATLAB testbenches. 

variation name .bsf Quartus II symbol file for the MegaCore function variation. You can use this file in 
the Quartus II block diagram editor.

<variation name>.cmp
A VHDL component declaration file for the MegaCore function variation. Add the 
contents of this file to any VHDL architecture that instantiates the MegaCore 
function.

<variation name>.html A MegaCore function report file in hypertext markup language format.

<variation name>.qip

A single Quartus II IP file is generated that contains all of the assignments and 
other information required to process your MegaCore function variation in the 
Quartus II compiler. You are prompted to add this file to the current Quartus II 
project when you exit from the MegaWizard. 

<variation name>.vo or .vho VHDL or Verilog HDL IP functional simulation model.
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2. After you review the generation report, click Exit to close IP Toolbench. Then click 
Yes on the Quartus II IP Files prompt to add the .qip file describing your custom 
MegaCore function to the current Quartus II project.

f Refer to the Quartus II Help for more information about the MegaWizard Plug-In 
Manager.

You can now integrate your custom MegaCore function variation into your design 
and simulate and compile.

Simulate the Design 
This section describes the following simulation techniques:

■ Simulate in the MATLAB Software

■ Simulate with IP Functional Simulation Models

<variation name>.vhd, or .v

A MegaCore function variation file, which defines a VHDL or Verilog HDL top-level 
description of the custom MegaCore function. Instantiate the entity defined by 
this file inside of your design. Include this file when compiling your design in the 
Quartus II software.

variation name _1n1024cos.hex,
variation name _2n1024cos.hex,
variation name _3n1024cos.hex

Intel hex-format ROM initialization files (not generated for variable streaming 
FFT).

variation name _1n1024sin.hex,
variation name _2n1024sin.hex,
variation name _3n1024sin.hex

Intel hex-format ROM initialization files (not generated for variable streaming 
FFT).

variation name _model.m MATLAB m-file describing a MATLAB bit-accurate model.

variation name _tb.m MATLAB testbench.

variation name _syn.v or 
variation name _syn.vhd

A timing and resource netlist for use in some third-party synthesis tools.

<variation name>_tb.v or 

<variation name>_tb.vhd
Verilog HDL or VHDL testbench file.

<variation name>_nativelink.tcl 
Tcl Script that sets up NativeLink in the Quartus II software to natively simulate 
the design using selected EDA tools. Refer to “Simulating in Third-Party 
Simulation Tools Using NativeLink” on page 2–15.

<variation name>_twr1_opt.hex, 
<variation name>_twi1_opt.hex, 
<variation name>_twr2_opt.hex, 
<variation name>_twi2_opt.hex, 
<variation name>_twr3_opt.hex, 
<variation name>_twi3_opt.hex, 
<variation name>_twr4_opt.hex, 
<variation name>_twi4_opt.hex,

Intel hex-format ROM initialization files (variable streaming FFT only).

Notes to Table 2–1:

(1) These files are variation dependent, some may be absent or their names may change.
(2) <variation name> is a prefix variation name supplied automatically by IP Toolbench.

Table 2–1. Generated Files (Part 2 of 2)  (1) & (2)

Filename Description
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■ Simulating in Third-Party Simulation Tools Using NativeLink

Simulate in the MATLAB Software
This section discusses fixed-transform and variable streaming architecture 
simulations.

Fixed Transform Architectures
The FFT MegaCore function outputs a bit-accurate MATLAB model <variation 
name>_model.m, which you can use to model the behavior of your custom FFT 
variation in the MATLAB software. The model takes a complex vector as input and it 
outputs the transform-domain complex vector and corresponding block exponent 
values. The length and direction of the transform (FFT/IFFT) are also passed as inputs 
to the model.

If the input vector length is an integral multiple of N, the transform length, the length 
of the output vector(s) is equal to the length of the input vector. However, if the input 
vector is not an integral multiple of N, it is zero-padded to extend the length to be so.

f For additional information about exponent values, refer to AN 404: FFT/IFFT Block 
Floating Point Scaling.

The wizard also creates the MATLAB testbench file <variation name>_tb.m. This file 
creates the stimuli for the MATLAB model by reading the input complex random data 
from IP Toolbench-generated.

If you selected Floating point data representation, the input data is generated in 
hexadecimal format.

To model your fixed-transform architecture FFT MegaCore function variation in the 
MATLAB software, follow these steps:

1. Run the MATLAB software.

2. In the MATLAB command window, change to the working directory for your 
project.

3. Perform the simulation:

a. Type help <variation name>_model at the command prompt to view the 
input and output vectors that are required to run the MATLAB model as a 
standalone M-function. Create your input vector and make a function call to 
< >_model. For example:

N=2048;
INVERSE = 0; % 0 => FFT 1=> IFFT
x = (2^12)*rand(1,N) + j*(2^12)*rand(1,N);
[y,e] = <variation name>_model(x,N,INVERSE);

or

b. Run the provided testbench by typing the name of the testbench, <
>_tb at the command prompt.

f For more information about MATLAB and Simulink, refer to the MathWorks web site 
at www.mathworks.com.
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Variable Streaming Architecture
The FFT MegaCore function outputs a bit-accurate MATLAB model <

>_model.m, which you can use to model the behavior of your custom FFT 
variation in the MATLAB software. The model takes a complex vector as input and it 
outputs the transform-domain complex vector. The lengths and direction of the 
transforms (FFT/IFFT) (specified as one entry per block) are also passed as an input to 
the model. 

You must ensure that the length of the input vector is at least as large as the sum of the 
transform sizes for the model to function correctly.

The wizard also creates the MATLAB testbench file < >_tb.m. This file 
creates the stimuli for the MATLAB model by reading the input complex random data 
from files generated by IP Toolbench. 

To model your variable streaming architecture FFT MegaCore function variation in 
the MATLAB software, follow these steps:

1. Run the MATLAB software.

2. In the MATLAB command window, change to the working directory for your 
project.

3. Perform the simulation:

a. Type help <variation name>_model at the command prompt to view the input 
and output vectors that are required to run the MATLAB model as a 
standalone M-function. Create your input vector and make a function call to 
< >_model. For example:

nps=[256,2048];
inverse = [0,1]; % 0 => FFT 1=> IFFT
x = (2^12)*rand(1,sum(nps)) + j*(2^12)*rand(1,sum(nps));
[y] = <variation name>_model(x,nps,inverse);

or

b. Run the provided testbench by typing the name of the testbench, <
>_tb at the command prompt.

1 If you select bit-reversed output order, you can reorder the data with the 
following MATLAB code:

y = y(bit_reverse(0:(FFTSIZE-1), log2(FFTSIZE)) + 1);

where bit_reverse is:

function y = bit_reverse(x, n_bits)
y = bin2dec(fliplr(dec2bin(x, n_bits)));

1 If you select digit-reversed output order, you can reorder the data with the 
following MATLAB code:

y = y(digit_reverse(0:(FFTSIZE-1), log2(FFTSIZE)) + 1);

where digit_reverse is:
FFT MegaCore Function November 2011 Altera Corporation
User Guide



Chapter 2: Getting Started 2–15
Simulate the Design
function y = digit_reverse(x, n_bits)
if mod(n_bits,2)

z = dec2bin(x, n_bits);
for i=1:2:n_bits-1

p(:,i) = z(:,n_bits-i);
p(:,i+1) = z(:,n_bits-i+1);

end

p(:,n_bits) = z(:,1);
y=bin2dec(p);

else
y=digitrevorder(x,4);

end

Simulate with IP Functional Simulation Models
To simulate your design, use the IP functional simulation models generated by IP 
Toolbench. The IP functional simulation model is the .vo or .vho file generated as 
specified in “Set Up Simulation” on page 2–10. Compile the .vo or .vho file in your 
simulation environment to perform functional simulation of your custom variation of 
the MegaCore function.

f For more information about IP functional simulation models, refer to the 
 chapter in volume 3 of the Quartus II Handbook.

Simulating in Third-Party Simulation Tools Using NativeLink
You can perform a simulation in a third-party simulation tool from within the 
Quartus II software, using NativeLink.

f For more information about NativeLink, refer to the  chapter 
in volume 3 of the Quartus II Handbook.

You can use the Tcl script file <variation name>_nativelink.tcl to assign default 
NativeLink testbench settings to the Quartus II project. 

To set up simulation in the Quartus II software using NativeLink, follow these steps:

1. Create a custom variation but ensure you specify your variation name to match the 
Quartus II project name.

2. Check that the absolute path to your third-party simulator executable is set. On the 
Tools menu click Options and select EDA Tools Options.

3. On the Processing menu, point to Start and click Start Analysis & Elaboration.

4. On the Tools menu, click Tcl scripts. Select the <variation name>_nativelink.tcl Tcl 
script and click Run. Check for a message confirming that the Tcl script was 
successfully loaded.

5. On the Assignments menu, click Settings, expand EDA Tool Settings and select 
Simulation. Select a simulator under Tool Name and in NativeLink Settings, 
select Test Benches. 

6. On the Tools menu, point to EDA Simulation Tool and click Run EDA RTL 
Simulation.
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Compile the Design
Use the Quartus II software to synthesize and place and route your design. Refer to 
Quartus II Help for instructions on performing compilation. 

To compile your fixed-transform architecture design, follow these steps:

1. If you are using the Quartus II software to synthesize your design, skip to step 2. If 
you are using a third-party synthesis tool to synthesize your design, follow these 
steps:

a. Set a black box attribute for your FFT MegaCore function custom variation 
before you synthesize the design. Refer to Quartus II Help for instructions on 
setting black-box attributes per synthesis tool.

b. Run the synthesis tool to produce an EDIF Netlist File (.edf) or Verilog Quartus 
Mapping (VQM) file (.vqm) for input to the Quartus II software.

c. Add the EDIF or VQM file to your Quartus II project.

1 The .qip file supersedes the files you had to add to the project explicitly in previous 
versions of the Quartus II software. The .qip file contains the information about the 
MegaCore function that the Quartus II software requires.

2. On the Processing menu, click Start Compilation.

To compile your variable streaming architecture design, follow these steps:

1. If you are using the Quartus II software to synthesize your design, skip to step 2. If 
you are using a third-party synthesis tool to synthesize your design, follow these 
steps:

a. Set a black-box attribute for your FFT MegaCore function custom variation 
before you synthesize the design. Refer to Quartus II Help for instructions on 
setting black-box attributes per synthesis tool.

b. Run the synthesis tool to produce an EDIF Netlist File (.edf) or Verilog Quartus 
Mapping (VQM) file (.vqm) for input to the Quartus II software.

c. Add the EDIF or VQM file to your Quartus II project.

2. On the Project menu, click Add/Remove Files in Project.

3. You can see a list of files in the project. If no files are listed, browse to the \lib 
directory, then select and add all files with the prefix auk_dspip_r22sdf. Browse to 
the <project> directory and select all files with prefix auk_dspip.

4. On the Processing menu, click Start Compilation.

After you have compiled your design, program your targeted Altera device, and 
verify your design in hardware. 
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Program a Device
With Altera's free OpenCore Plus evaluation feature, you can evaluate the FFT 
MegaCore function before you purchase a license. OpenCore Plus evaluation allows 
you to generate an IP functional simulation model, and produce a time-limited 
programming file. 

f For more information about IP functional simulation models, refer to the Simulating 
Altera Designs chapter in volume 3 of the Quartus II Handbook.

You can simulate the FFT in your design, and perform a time-limited evaluation of 
your design in hardware.

f For more information about OpenCore Plus hardware evaluation using the FFT, refer 
to “OpenCore Plus Evaluation” on page 1–18 and AN 320: OpenCore Plus Evaluation of 
Megafunctions.
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3. Functional Description
The discrete Fourier transform (DFT), of length N, calculates the sampled Fourier 
transform of a discrete-time sequence at N evenly distributed points k = 2k/N on 
the unit circle. 

The following equation shows the length-N forward DFT of a sequence x(n):

where k = 0, 1, ... N – 1 

The following equation shows the length-N inverse DFT:

where n = 0, 1, ... N – 1

The complexity of the DFT direct computation can be significantly reduced by using 
fast algorithms that use a nested decomposition of the summation in equations one 
and two—in addition to exploiting various symmetries inherent in the complex 
multiplications. One such algorithm is the Cooley-Tukey radix-r decimation-in-
frequency (DIF) FFT, which recursively divides the input sequence into N/r sequences 
of length r and requires logrN stages of computation. 

Each stage of the decomposition typically shares the same hardware, with the data 
being read from memory, passed through the FFT processor and written back to 
memory. Each pass through the FFT processor is required to be performed logrN 
times. Popular choices of the radix are r = 2, 4, and 16. Increasing the radix of the 
decomposition leads to a reduction in the number of passes required through the FFT 
processor at the expense of device resources. 

1 The MegaCore function does not apply the scaling factor 1/N required for a length-N 
inverse DFT. You must apply this factor externally. 

Buffered, Burst, & Streaming Architectures
A radix-4 decomposition, which divides the input sequence recursively to form 
four-point sequences, has the advantage that it requires only trivial multiplications in 
the four-point DFT and is the chosen radix in the Altera FFT MegaCore function. This 
results in the highest throughput decomposition, while requiring non-trivial complex 
multiplications in the post-butterfly twiddle-factor rotations only. In cases where N is 
an odd power of two, the FFT MegaCore automatically implements a radix-2 pass on 
the last pass to complete the transform.

X k  x n e
j2nk–  N

n 0=

N 1–

=

x n  1 N  X k e j2nk  N

k 0=

N 1–

=
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Variable Streaming Architecture
To maintain a high signal-to-noise ratio throughout the transform computation, the 
FFT MegaCore function uses a block-floating-point architecture, which is a trade-off 
point between fixed-point and full-floating point architectures. 

In a fixed-point architecture, the data precision needs to be large enough to 
adequately represent all intermediate values throughout the transform computation. 
For large FFT transform sizes, an FFT fixed-point implementation that allows for 
word growth can make either the data width excessive or can lead to a loss of 
precision. 

In a floating-point architecture each number is represented as a mantissa with an 
individual exponent—while this leads to greatly improved precision, floating-point 
operations tend to demand increased device resources.

In a block-floating point architecture, all of the values have an independent mantissa 
but share a common exponent in each data block. Data is input to the FFT function as 
fixed point complex numbers (even though the exponent is effectively 0, you do not 
enter an exponent). 

The block-floating point architecture ensures full use of the data width within the FFT 
function and throughout the transform. After every pass through a radix-4 FFT, the 
data width may grow up to log2 (42) = 2.5 bits. The data is scaled according to a 
measure of the block dynamic range on the output of the previous pass. The number 
of shifts is accumulated and then output as an exponent for the entire block. This 
shifting ensures that the minimum of least significant bits (LSBs) are discarded prior 
to the rounding of the post-multiplication output. In effect, the block-floating point 
representation acts as a digital automatic gain control. To yield uniform scaling across 
successive output blocks, you must scale the FFT function output by the final 
exponent. 

1 In comparing the block-floating point output of the Altera FFT MegaCore function to 
the output of a full precision FFT from a tool like MATLAB, you must scale the output 
by 2 (–exponent_out) to account for the discarded LSBs during the transform. (Refer to 
“Block Floating Point Scaling” on page 4–1.)

f For more information about exponent values, refer to AN 404: FFT/IFFT Block Floating 
Point Scaling.

Variable Streaming Architecture
The variable streaming architecture uses two different types of architecture, 
depending on whether you select the fixed-point data representation or the floating 
point representation. If you select the fixed-point data representation, the FFT 
variation uses a radix 22 single delay feedback architecture, which is a fully pipelined 
architecture. If you select the floating point representation, the FFT variation uses a 
mixed radix-4/2 architecture. For a length N transform, log4(N) stages are 
concatenated together. The radix 22 algorithm has the same multiplicative complexity 
of a fully pipelined radix-4 architecture, but the butterfly unit retains a radix-2 
architecture. In the radix-4/2 algorithm, a combination of radix-4 and radix-2 
architectures are implemented to achieve the computational advantage of the radix-4 
architecture while supporting FFT computation with a wider range of transform 
lengths. The butterfly units use the DIF decomposition.
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The Avalon Streaming Interface
Fixed point representation allows for natural word growth through the pipeline. The 
maximum growth of each stage is 2 bits. After the complex multiplication the data is 
rounded down to the expanded data size using convergent rounding. The overall bit 
growth is less than or equal to log2(N)+1.

The floating point internal data representation is single precision floating point 
(32-bit, IEEE 754 representation). Floating point operations provide more precise 
computation results but are costly in hardware resources. To reduce the amount of 
logic required for floating point operations, the variable streaming FFT uses "fused" 
floating point kernels. The reduction in logic occurs by fusing together several 
floating point operations and reducing the number of normalizations that need to 
occur.

You can select input and output orders generated by the FFT. Table 3–1 shows the 
input and output order options.

Some applications for the FFT require an FFT > user operation > IFFT chain. In this 
case, choosing the input order and output order carefully can lead to significant 
memory and latency savings. For example, consider where the input to the first FFT is 
in natural order and the output is in bit-reversed order (FFT is operating in engine-
only mode). In this example, if the IFFT operation is configured to accept bit-reversed 
inputs and produces natural order outputs (IFFT is operating in engine-only mode), 
only the minimum amount of memory is required, which provides a saving of N 
complex memory words, and a latency saving of N clock cycles, where N is the size of 
the current transform.

The Avalon Streaming Interface 
The Avalon-ST interface defines a standard, flexible, and modular protocol for data 
transfers from a source interface to a sink interface and simplifies the process of 
controlling the flow of data in a datapath. 

The Avalon-ST interface signals can describe traditional streaming interfaces 
supporting a single stream of data without knowledge of channels or packet 
boundaries. Such interfaces typically contain data, ready, and valid signals. The 
Avalon-ST interface can also support more complex protocols for burst and packet 
transfers with packets interleaved across multiple channels. 

The Avalon-ST interface inherently synchronizes multi-channel designs, which allows 
you to achieve efficient, time-multiplexed implementations without having to 
implement complex control logic.

Table 3–1. Input & Output Order Options

Input Order Output Order Mode Comments

Natural Bit reversed

Engine-only Requires minimum memory and minimum latency.Bit reversed Natural

DC-centered Bit-reversed

Natural Natural
Engine with 
bit-reversal

At the output, requires an extra N complex memory 
words and an additional N clock cycles latency, 
where N is the size of the transform.

Bit reversed Bit reversed

DC-centered Natural
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FFT Processor Engine Architectures
The Avalon-ST interface supports backpressure, which is a flow control mechanism in 
which a sink can signal to a source to stop sending data. The sink typically uses 
backpressure to stop the flow of data when its FIFO buffers are full or when there is 
congestion on its output. When designing a datapath that includes an FFT MegaCore 
function, you may not need backpressure if you know the downstream components 
can always receive data. You may achieve a higher clock rate by driving the source 
ready signal source_ready of the FFT high, and not connecting the sink ready signal 
sink_ready.

The FFT MegaCore function has a READY_LATENCY value of zero.

f For more information about the Avalon-ST interface, refer to the Avalon Interface 
Specifications.

FFT Processor Engine Architectures
The FFT MegaCore function can be parameterized to use either quad-output or 
single-output engine architecture. To increase the overall throughput of the FFT 
MegaCore function, you may also use multiple parallel engines of a variation. This 
section discusses the following topics:

■ Radix 22 single-delay feedback architecture for fixed-point variable streaming 
variations

■ Mixed radix-4/2 architecture for floating point variable streaming variations

■ Quad-output FFT engine architecture for streaming, buffered burst, and burst 
variations

■ Single-output FFT engine architecture for buffered burst and burst variations

Radix-22 Single Delay Feedback Architecture
Radix-22 single delay feedback architecture is a fully pipelined architecture for 
calculating the FFT of incoming data. It is similar to radix-2 single delay feedback 
architectures. However, the twiddle factors are rearranged such that the 
multiplicative complexity is equivalent to a radix-4 single delay feedback architecture. 

There are log2(N) stages with each stage containing a single butterfly unit and a 
feedback delay unit that delays the incoming data by a specified number of cycles, 
halved at every stage. These delays effectively align the correct samples at the input of 
the butterfly unit for the butterfly calculations. Every second stage contains a 
modified radix-2 butterfly whereby a trivial multiplication by –j is performed before 
the radix-2 butterfly operations. The output of the pipeline is in bit-reversed order. 

The following scheduled operations occur in the pipeline for an FFT of length N = 16.

1. For the first 8 clock cycles, the samples are fed unmodified through the butterfly 
unit to the delay feedback unit.

2. The next 8 clock cycles perform the butterfly calculation using the data from the 
delay feedback unit and the incoming data. The higher order calculations are sent 
through to the delay feedback unit while the lower order calculations are sent to 
the next stage.
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3. The next 8 clock cycles feed the higher order calculations stored in the delay 
feedback unit unmodified through the butterfly unit to the next stage.

Subsequent data stages use the same principles. However, the delays in the feedback 
path are adjusted accordingly.

Mixed Radix-4/2 Architecture
Mixed radix-4/2 architecture combines the advantages of using radix-2 and radix-4 
butterflies. 

The architecture has ceiling(log4(N)) stages. If transform length is an integral power 
of four, all of the log4(N) stages are implemented using a radix-4 architecture. If 
transform length is not an integral power of four, the architecture implements 
ceiling(log4(N)) – 1 of the stages in a radix-4 architecture, and implements the 
remaining stage using a radix-2 architecture.

Each stage contains a single butterfly unit and a feedback delay unit. The feedback 
delay unit delays the incoming data by a specified number of cycles; in each stage the 
number of cycles of delay is one quarter of the number of cycles of delay in the 
previous stage. The delays align the butterfly input samples correctly for the butterfly 
calculations. The output of the pipeline is in index-reversed order.

Quad-Output FFT Engine Architecture
For applications in which transform time is to be minimized, a quad-output FFT 
engine architecture is optimal. The term quad-output refers to the throughput of the 
internal FFT butterfly processor. The engine implementation computes all four radix-4 
butterfly complex outputs in a single clock cycle. 

Figure 3–1 shows a diagram of the quad-output FFT engine.

Figure 3–1. Quad-Output FFT Engine
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Complex data samples x[k,m] are read from internal memory in parallel and 
re-ordered by switch (SW). Next, the ordered samples are processed by the radix-4 
butterfly processor to form the complex outputs G[k,m]. Because of the inherent 
mathematics of the radix-4 DIF decomposition, only three complex multipliers are 
required to perform the three non-trivial twiddle-factor multiplications on the outputs 
of the butterfly processor. To discern the maximum dynamic range of the samples, the 
four outputs are evaluated in parallel by the block-floating point units (BFPU). The 
appropriate LSBs are discarded and the complex values are rounded and re-ordered 
before being written back to internal memory.

Single-Output FFT Engine Architecture
For applications in which the minimum-size FFT function is desired, a single-output 
engine is most suitable. The term single-output again refers to the throughput of the 
internal FFT butterfly processor. In the engine architecture, a single butterfly output is 
computed per clock cycle, requiring a single complex multiplier (Figure 3–2 on 
page 3–6).

I/O Data Flow Architectures
This section describes and illustrates the following I/O data flow architectural 
options supported by the FFT MegaCore function:

■ Streaming

■ Variable Streaming

■ Buffered Burst

■ Burst

f For information about setting the architectural parameters in IP Toolbench, refer to 
“Parameterize the MegaCore Function” on page 2–3. 

Figure 3–2. Single-Output FFT Engine Architecture
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Streaming
The streaming I/O data flow FFT architecture allows continuous processing of input 
data, and outputs a continuous complex data stream without the requirement to halt 
the data flow in or out of the FFT function. 

Streaming FFT Operation
Figure 3–3 on page 3–7 shows an example simulation waveform.

Following the deassertion of the system reset, the data source asserts sink_valid to 
indicate to the FFT function that valid data is available for input. A successful data 
transfer occurs when both the sink_valid and the sink_ready are asserted. 

When the data transfer is complete, sink_sop is deasserted and the data samples are 
loaded in natural order. 

For more information about the signals, refer to Table 3–4 on page 3–16.

f For more information about the Avalon-ST interface, refer to the Avalon Interface 
Specifications.

Figure 3–4 shows the input flow control. When the final sample is loaded, the source 
asserts sink_eop and sink_valid for the last data transfer.

Figure 3–3. FFT Streaming Data Flow Architecture Simulation Waveform

Figure 3–4. FFT Streaming Data Flow Architecture Input Flow Control
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To change direction on a block-by-block basis, assert or deassert inverse 
(appropriately) simultaneously with the application of the sink_sop pulse (concurrent 
with the first input data sample of the block). 

When the FFT has completed the transform of the input block, it asserts source_valid 
and outputs the complex transform domain data block in natural order. The FFT 
function asserts source_sop to indicate the first output sample. Figure 3–5 shows the 
output flow control.

After N data transfers, source_eop is asserted to indicate the end of the output data 
block (Figure 3–3 on page 3–7).

Enabling the Streaming FFT
The sink_valid signal must be asserted for source_valid to be asserted (and a valid 
data output). To extract the final frames of data from the FFT, you need to provide 
several frames where the sink_valid signal is asserted and apply the sink_sop and 
sink_eop signals in accordance with the Avalon-ST specification.

Variable Streaming
The variable streaming architecture allows continuous streaming of input data and 
produces a continuous stream of output data similar to the streaming architecture.

Change the Block Size
You change the size of the FFT on a block-by-block basis by changing the value of the 
fftpts simultaneously with the application of the sink_sop pulse (concurrent with 
the first input data sample of the block). fftpts uses a binary representation of the 
size of the transform, therefore for a block with maximum transfer size of 1,024. 
Table 3–2 shows the value of the fftpts signal and the equivalent transform size.

Figure 3–5. FFT Streaming Data Flow Architecture Output Flow Control
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Table 3–2.  fftpts and Transform Size

fftpts Transform Size

10000000000 1,024

01000000000 512

00100000000 256

00010000000 128

00001000000 64
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I/O Data Flow Architectures
To change direction on a block-by-block basis, assert or deassert inverse 
(appropriately) simultaneously with the application of the sink_sop pulse (concurrent 
with the first input data sample of the block). When the FFT has completed the 
transform of the input block, it asserts source_valid and outputs the complex 
transform domain data block. The FFT function asserts the source_sop to indicate the 
first output sample. The order of the output data depends on the output order that 
you select in IP Toolbench. The output of the FFT may be in natural order or bit-
reversed order. Figure 3–6 shows the output flow control when the output order is bit-
reversed. If the output order is natural order, data flow control remains the same, but 
the order of samples at the output is in sequential order 1..N. 

Enabling the Variable Streaming FFT
The FFT processes data when there is valid data transferred to the module 
(sink_valid asserted). Figure 3–7 shows the FFT behavior when sink_valid is 
deasserted. 

When sink_valid is deasserted during a frame, the FFT stalls and no data is 
processed until sink_valid is reasserted. This implies that any previous frames that 
are still in the FFT also stall. 

If sink_valid is deasserted between frames, the data currently in the FFT continues to 
be processed and transferred to the output. Figure 3–7 shows the FFT behavior when 
sink_valid is deasserted between frames and within a frame.

The FFT may optionally be disabled by deasserting the clk_en signal. 

Figure 3–6. Output Flow Control—Bit Reversed Order
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Figure 3–7. FFT Behavior When sink_valid is Deasserted
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Dynamically Changing the FFT Size
When the size of the incoming FFT changes, the FFT stalls the incoming data 
(deasserts the sink_ready signal) until all of the previous FFT frames of the previous 
FFT size have been processed and transferred to the output. Figure 3–8 shows 
dynamically changing the FFT size for engine-only mode.

The Effect of I/O Order
The order of samples entering and leaving the FFT is determined by your selection in 
the Architecture tab under I/O Order. This selection also determines if the FFT is 
operating in engine-only mode or engine with bit-reversal or digit-reversal mode. 

If the FFT operates in engine-only mode, the output data is available after 
approximately N + latency clocks cycles after the first sample was input to the FFT. 
Latency represents a small latency through the FFT core and depends on the 
transform size. For engine with bit-reversal mode, the output is available after 
approximately 2N + latency cycles.

Figure 3–9 shows the data flow output when the FFT is operating in engine-only 
mode.

Figure 3–8. Dynamically Changing the FFT Size
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Figure 3–9. Data Flow—Engine-Only Mode
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Figure 3–10 shows the data flow output when the FFT is operating in engine with 
bit-reversal or digit-reversal mode, respectively

Buffered Burst
The buffered burst I/O data flow architecture FFT requires fewer memory resources 
than the streaming I/O data flow architecture, but the tradeoff is an average block 
throughput reduction. 

Figure 3–11 on page 3–11 shows an example simulation waveform.

Following the deassertion of the system reset, the data source asserts sink_valid to 
indicate to the FFT function that valid data is available for input. A successful data 
transfer occurs when both the sink_valid and the sink_ready are asserted. 

The data source loads the first complex data sample into the FFT function and 
simultaneously asserts sink_sop to indicate the start of the input block. On the next 
clock cycle, sink_sop is deasserted and the following N – 1 complex input data 
samples must be loaded in natural order. On the last complex data sample, sink_eop 
must be asserted.

Figure 3–10. Data Flow—Engine with Bit-Reversal or Digit-Reversal Mode
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Figure 3–11. FFT Buffered Burst Data Flow Architecture Simulation Waveform
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When the input block is loaded, the FFT function begins computing the transform on 
the stored input block. The sink_ready signal is held high as you can transfer the first 
few samples of the subsequent frame into the small FIFO at the input. If this FIFO is 
filled, the core deasserts the sink_ready signal. It is not mandatory to transfer samples 
during sink_ready cycles. Figure 3–12 shows the input flow control.

Following the interval of time where the FFT processor reads the input samples from 
an internal input buffer, it re-asserts sink_ready indicating it is ready to read in the 
next input block. The beginning of the subsequent input block must be demarcated by 
the application of a pulse on sink_sop aligned in time with the first input sample of 
the next block. 

As in all data flow architectures, the logical level of inverse for a particular block is 
registered by the FFT function at the time of the assertion of the start-of-packet signal, 
sink_sop. 

When the FFT has completed the transform of the input block, it asserts the 
source_valid and outputs the complex transform domain data block in natural order 
(Figure 3–13).

Signals source_sop and source_eop indicate the start-of-packet and end-of-packet for 
the output block data respectively (Figure 3–11).

1 The sink_valid signal must be asserted for source_valid to be asserted (and a valid 
data output). You must therefore leave sink_valid signal asserted at the end of data 
transfers to extract the final frames of data from the FFT.

f For information about enabling the buffered burst FFT, refer to “Enabling the 
Streaming FFT” on page 3–8.

Figure 3–12. FFT Buffered Burst Data Flow Architecture Input Flow Control
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Figure 3–13. FFT Buffered Burst Data Flow Architecture Output Flow Control
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Burst
The burst I/O data flow architecture operates similarly to the buffered burst 
architecture, except that the burst architecture requires even lower memory resources 
for a given parameterization at the expense of reduced average throughput. 
Figure 3–14 shows the simulation results for the burst architecture. Again, the signals 
source_valid and sink_ready indicate, to the system data sources and slave sinks 
either side of the FFT, when the FFT can accept a new block of data and when a valid 
output block is available on the FFT output.

In a burst I/O data flow architecture, the core can process a single input block only. 
There is a small FIFO buffer at the sink of the block and sink_ready is not deasserted 
until this FIFO buffer is full. Thus you can provide a small number of additional input 
samples associated with the subsequent input block. It is not mandatory to provide 
data to the FFT during sink_ready cycles. The burst architecture can load the rest of 
the subsequent FFT frame only when the previous transform has been fully unloaded. 

f For information about enabling the buffered burst FFT, refer to “Enabling the 
Streaming FFT” on page 3–8.

Figure 3–14. FFT Burst Data Flow Architecture Simulation Waveform
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Parameters
Table 3–3 lists the FFT MegaCore function’s parameters. 

Table 3–3. Parameters (Part 1 of 3)

Parameter Value Description

Target Device Family <device family>

Displays the target device family. The device family is normally 
preselected by the project specified in the Quartus II software.

The generated HDL for your MegaCore function variation may 
be incorrect if this value does not match the value specified in 
the Quartus II project.

The device family must be the same as your Quartus II project 
device family.

Transform Length

64, 128, 256, 512, 
1024, 2048, 4096, 
8192, 16384, 32768, or 
65536. Variable 
streaming also allows 8, 
16, 32, 131072, and 
262144.

The transform length. For variable streaming, this value is the 
maximum FFT length.

Data Precision 8, 10, 12, 14, 16, 18, 
20, 24, 28, 32

The data precision. The values 28 and 32 are available for 
variable streaming only.

Twiddle Precision
8, 10, 12, 14, 16, 18, 
20, 24, 28, 32

The twiddle precision. The values 28 and 32 are available for 
variable streaming only. Twiddle factor precision must be less 
than or equal to data precision.

FFT Engine Architecture Quad Output, 
Single Output

For both the Buffered Burst and Burst I/O data flow 
architectures, you can choose between one, two, and four 
quad-output FFT engines working in parallel. Alternatively, if 
you have selected a single-output FFT engine architecture, you 
may choose to implement one or two engines in parallel. 
Multiple parallel engines reduce the FFT MegaCore function’s 
transform time at the expense of device resources—which 
allows you to select the desired area and throughput trade-off 
point.

For more information about device resource and transform 
time trade-offs, refer to ““Parameters” on page 3–14. Not 
available for variable streaming or streaming architecture.

Number of Parallel FFT Engines 1, 2, 4

I/O Data Flow

Streaming
Variable Streaming
Buffered Burst
Burst

Choose the FFT architecture.

I/O Order
Bit Reverse Order, Digit 
Reverse Order, Natural 
Order, –N/2 to N/2

The input and output order for data entering and leaving the 
FFT (variable streaming architecture only). The Digit Reverse 
Order option replaces the Bit Reverse Order in variable 
streaming floating point variations.

Data Representation
Fixed Point or Floating 
Point

The internal data representation type (variable streaming 
architecture only), either fixed point with natural bit-growth or 
single precision floating point.
FFT MegaCore Function November 2011 Altera Corporation
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Structure 3 Mults/5 Adders
4 Mults/2 Adders

You can implement the complex multiplier structure with four 
real multipliers and two adders/subtracters, or three 
multipliers, five adders, and some additional delay elements. 
The 4 Mults/2 Adders structure uses the DSP block structures 
to minimize logic usage, and maximize the DSP block usage. 
This option may also improve the push button fMAX. The 
5 Mults/3 Adders structure requires fewer DSP blocks, but 
more LEs to implement. It may also produce a design with a 
lower fMAX. Not available for variable streaming architecture or 
in Arria V, Cyclone V, and Stratix V devices.

Implement Multipliers in
DSP Blocks/Logic Cells
Logic Cells Only
DSP Blocks Only

Each real multiplication can be implemented in DSP blocks or 
LEs only, or using a combination of both. If you use a 
combination of DSP blocks and LEs, the FFT MegaCore 
function automatically extends the DSP block 18 × 18 
multiplier resources with LEs as needed. Not available for 
variable streaming architecture or in Arria V, Cyclone V, and 
Stratix V devices.

DSP Resource Optimization On or Off

This option is available in Stratix V devices for all architectures 
and representations. You can turn on this option to implement 
the complex multiplier structure using Stratix V DSP block 
complex 18 × 25 multiplication mode or complex 27 × 27 
multiplication mode for better DSP resource utilization, at the 
possible expense of speed. In the variable streaming 
architecture using the floating point representation, this option 
implements the complex multiplier structure using Stratix V 
DSP block complex 27 × 27 multiplication mode at the possible 
expense of accuracy.

Global clock enable On or Off Turn on if you want to add a global clock enable to your design.

Twiddle ROM Distribution
100% M4K to 100% 
M512 or 100% M9K to 
100% MLAB

High-throughput FFT parameterizations can require multiple 
shallow ROMs for twiddle factor storage. If your target device 
family supports M512 RAM blocks (or MLAB blocks in 
Stratix III, Stratix IV, and Stratix V devices), you can choose to 
distribute the ROM storage requirement between M4K (M9K in 
Stratix III and Stratix IV devices) RAM and M512 (MLAB) RAM 
blocks by adjusting the slider bar. Set the slider bar to the far 
left to implement the ROM storage completely in M4K (M9K) 
RAM blocks; set the slider bar to the far right to implement the 
ROM completely in M512 (MLAB) RAM blocks. In Stratix V 
devices, replace M4K (M9K) with M20K memory blocks.

Implementing twiddle ROM in M512 (MLAB) RAM blocks can 
lead to a more efficient device internal memory bit usage. 
Alternatively, this option can be used to conserve M4K (M9K) 
RAM blocks used for the storage of FFT data or other storage 
requirements in your system.

Not available for variable streaming architecture or in the 
Cyclone series of device families.

Table 3–3. Parameters (Part 2 of 3)

Parameter Value Description
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Table 3–4 lists the Avalon-ST interface signals.

f For more information about the Avalon-ST interface, refer to the Avalon Streaming 
Interface Specification.

Use M-RAM or M144K blocks On or Off

Implements suitable data RAM blocks within the FFT MegaCore 
function in M-RAM (M144K in Stratix III and Stratix IV devices) 
to reduce M4K (M9K) RAM block usage, in device families that 
support M-RAM blocks.

Not available for variable streaming architecture, or in the 
Cyclone series of device families, or in Stratix V devices.

Implement appropriate logic 
functions in RAM

On or Off

Uses embedded RAM blocks to implement internal logic 
functions, for example, tapped delay lines in the FFT MegaCore 
function. This option reduces the overall logic element count.

Not available for variable streaming architecture.

Table 3–3. Parameters (Part 3 of 3)

Parameter Value Description

Table 3–4. Avalon-ST Signals (Part 1 of 2)

Signal Name Direction Avalon-ST Type Size Description

clk Input clk 1 Clock signal that clocks all internal FFT engine 
components.

reset_n Input reset_n 1

Active-low asynchronous reset signal.This signal 
can be asserted asynchronously, but must remain 
asserted at least one clk clock cycle and must be 
deasserted synchronously with clk. 

Refer to the Recommended Design Practices 
chapter in volume 1 of the Quartus II Handbook for 
a sample circuit that ensures synchronous 
deassertion of an active-low reset signal.

sink_eop Input endofpacket 1 Indicates the end of the incoming FFT frame.

sink_error Input error 2

Indicates an error has occurred in an upstream 
module, because of an illegal usage of the 
Avalon-ST protocol. The following errors are 
defined (refer to Table 3–6):

■ 00 = no error

■ 01 = missing start of packet (SOP)

■ 10 = missing end of packet (EOP)

■ 11 = unexpected EOP

If this signal is not used in upstream modules, set 
to zero.

sink_imag Input data
data precision 
width

Imaginary input data, which represents a signed 
number of data precision bits.
FFT MegaCore Function November 2011 Altera Corporation
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sink_ready Output ready 1
Asserted by the FFT engine when it can accept 
data. It is not mandatory to provide data to the FFT 
during ready cycles.

sink_real Input data
data precision 
width

Real input data, which represents a signed number 
of data precision bits.

sink_sop Input startofpacket 1 Indicates the start of the incoming FFT frame. 

sink_valid Input valid 1

Asserted when data on the data bus is valid. When 
sink_valid and sink_ready are asserted, a data 
transfer takes place. Refer to “Enabling the 
Variable Streaming FFT” on page 3–9.

source_eop Output endofpacket 1 Marks the end of the outgoing FFT frame. Only 
valid when source_valid is asserted.

source_error Output error 2

Indicates an error has occurred either in an 
upstream module or within the FFT module 
(logical OR of sink_error with errors generated 
in the FFT). Refer to Table 3–6 for error codes.

source_exp Output data 6
Streaming, burst, and buffered burst architectures 
only. Signed block exponent: Accounts for scaling 
of internal signal values during FFT computation.

source_imag Output data
(data precision 
width + growth) 
(1)

Imaginary output data. For burst, buffered burst, 
streaming, and variable streaming floating point 
FFTs, the output data width is equal to the input 
data width. For variable streaming fixed point FFTs, 
the size of the output data is dependent on the 
number of stages defined for the FFT and is 2 bits 
per radix 22 stage. 

source_ready Input ready 1 Asserted by the downstream module if it is able to 
accept data. 

source_real Output data
(data precision 
width + growth) 
(1)

Real output data. For burst, buffered burst, 
streaming, and variable streaming floating point 
FFTs, the output data width is equal to the input 
data width. For variable streaming fixed point FFTs, 
the size of the output data is dependent on the 
number of stages defined for the FFT and is 2 bits 
per radix 22 stage. 

source_sop Output startofpacket 1 Marks the start of the outgoing FFT frame. Only 
valid when source_valid is asserted.

source_valid Output valid 1 Asserted by the FFT when there is valid data to 
output.

Note to Table 3–4:

(1) Variable streaming fixed point FFT only. Growth is log2(N) + 1.

Table 3–4. Avalon-ST Signals (Part 2 of 2)

Signal Name Direction Avalon-ST Type Size Description
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Table 3–5 shows the component specific signals.

Incorrect usage of the Avalon-ST interface protocol on the sink interface results in a 
error on source_error. Table 3–6 defines the behavior of the FFT when an incorrect 
Avalon-ST transfer is detected. If an error occurs, the behavior of the FFT is undefined 
and you must reset the FFT with reset_n.

Table 3–5. Component Specific Signals

Signal Name Direction Size Description

fftpts_in Input
log2(maximum 
number of points)

The number of points in this FFT frame. If this value is not specified, the 
FFT can not be a variable length. The default behavior is for the FFT to 
have fixed length of maximum points. Only sampled at SOP.

fftpts_out Output log2(maximum 
number of points)

The number of points in this FFT frame synchronized to the Avalon-ST 
source interface. Variable streaming only.

inverse Input 1 Inverse FFT calculated if asserted. Only sampled at SOP.

clk_ena Input 1 Active-high global clock enable input. If deasserted, the FFT is disabled.

Table 3–6. Error Handling Behavior

Error source_error Description

Missing SOP 01 Asserted when valid goes high, but there is no start of frame.

Missing EOP 10 Asserted if the FFT accepts N valid samples of an FFT frame, but there is no EOP signal.

Unexpected EOP 11 Asserted if EOP is asserted before N valid samples are accepted.
FFT MegaCore Function November 2011 Altera Corporation
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4. Block Floating Point Scaling
Introduction
The FFT MegaCore function uses block-floating-point (BFP) arithmetic internally to 
perform calculations. BFP architecture is a trade-off between fixed-point and full 
floating-point architecture.

Unlike an FFT block that uses floating point arithmetic, a block-floating-point FFT 
block does not provide an input for exponents. Internally, a complex value integer 
pair is represented with a single scale factor that is typically shared among other 
complex value integer pairs. After each stage of the FFT, the largest output value is 
detected and the intermediate result is scaled to improve the precision. The exponent 
records the number of left or right shifts used to perform the scaling. As a result, the 
output magnitude relative to the input level is:

output*2-exponent

For example, if exponent = –3, the input samples are shifted right by three bits, and 
hence the magnitude of the output is output*23.

Block Floating Point
After every pass through a radix-2 or radix-4 engine in the FFT core, the addition and 
multiplication operations cause the data bits width to grow. In other words, the total 
data bits width from the FFT operation grows proportionally to the number of passes. 
The number of passes of the FFT/IFFT computation depends on the logarithm of the 
number of points. Table 4–1 on page 4–2 shows the possible exponents for 
corresponding bit growth.

A fixed-point architecture FFT needs a huge multiplier and memory block to 
accommodate the large bit width growth to represent the high dynamic range. 
Though floating-point is powerful in arithmetic operations, its power comes at the 
cost of higher design complexity such as a floating-point multiplier and a floating-
point adder. BFP arithmetic combines the advantages of floating-point and fixed-
point arithmetic. BFP arithmetic offers a better signal-to-noise ratio (SNR) and 
dynamic range than does floating-point and fixed-point arithmetic with the same 
number of bits in the hardware implementation.

In a block-floating-point architecture FFT, the radix-2 or radix-4 computation of each 
pass shares the same hardware, with the data being read from memory, passed 
through the core engine, and written back to memory. Before entering the next pass, 
each data sample is shifted right (an operation called "scaling") if there is a carry-out 
bit from the addition and multiplication operations. The number of bits shifted is 
based on the difference in bit growth between the data sample and the maximum data 
sample detected in the previous stage. The maximum bit growth is recorded in the 
exponent register. Each data sample now shares the same exponent value and data bit 
width to go to the next core engine. The same core engine can be reused without 
incurring the expense of a larger engine to accommodate the bit growth. 
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The output SNR depends on how many bits of right shift occur and at what stages of 
the radix core computation they occur. In other words, the signal-to-noise ratio is data 
dependent and you need to know the input signal to compute the SNR.

Calculating Possible Exponent Values
Depending on the length of the FFT/IFFT, the number of passes through the radix 
engine is known and therefore the range of the exponent is known. The possible 
values of the exponent are determined by the following equations:

P = ceil{log4N}, where N is the transform length

R = 0 if log2N is even, otherwise R = 1

Single output range = (–3P+R, P+R–4)

Quad output range = (–3P+R+1, P+R–7)

These equations translate to the values in Table 4–1.

Implementing Scaling 
To implement the scaling algorithm, follow these steps: 

1. Determine the length of the resulting full scale dynamic range storage register. To 
get the length, add the width of the data to the number of times the data is shifted 
(the max value in Table 4–1). For example, for a 16-bit data, 256-point Quad 
Output FFT/IFFT with Max = –11 and Min = –3. The Max value indicates 11 shifts 
to the left, so the resulting full scaled data width is 16 + 11, or 27 bits.

Table 4–1. Exponent Scaling Values for FFT / IFFT (1)

N P
Single Output Engine Quad Output Engine

Max (2) Min (2) Max (2) Min (2)

64 3 –9 –1 –8 –4

128 4 –11 1 –10 –2

256 4 –12 0 –11 –3

512 5 –14 2 –13 –1

1,024 5 –15 1 –14 –2

2,048 6 –17 3 –16 0

4,096 6 –18 2 –17 –1

8,192 7 –20 4 –19 1

16,384 7 –21 3 –20 0

Note to Table 4–1:

(1) This table lists the range of exponents, which is the number of scale events that occurred internally. For IFFT, the 
output must be divided by N externally. If more arithmetic operations are performed after this step, the division by 
N must be performed at the end to prevent loss of precision.

(2) The maximum and minimum values show the number of times the data is shifted. A negative value indicates shifts 
to the left, while a positive value indicates shifts to the right.
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2. Map the output data to the appropriate location within the expanded dynamic 
range register based upon the exponent value. To continue the above example, the 
16-bit output data [15..0] from the FFT/IFFT is mapped to [26..11] for an exponent 
of –11, to [25..10] for an exponent of –10, to [24..9] for an exponent of –9, and so on.

3. Sign extend the data within the full scale register.

A sample of Verilog HDL code that illustrates the scaling of the output data (for 
exponents –11 to –9) with sign extension is shown in the following example:

case (exp)
6'b110101 : //-11 Set data equal to MSBs 

begin 
full_range_real_out[26:0] <= {real_in[15:0],11'b0};
full_range_imag_out[26:0] <= {imag_in[15:0],11'b0};

end
6'b110110 : //-10 Equals left shift by 10 with sign extension 

begin 
full_range_real_out[26] <= {real_in[15]};
full_range_real_out[25:0] <= {real_in[15:0],10'b0};
full_range_imag_out[26] <= {imag_in[15]};
full_range_imag_out[25:0] <= {imag_in[15:0],10'b0};

end
6'b110111 : //-9 Equals left shift by 9 with sign extension

begin 
full_range_real_out[26:25] <= {real_in[15],real_in[15]};
full_range_real_out[24:0] <= {real_in[15:0],9'b0};
full_range_imag_out[26:25] <= {imag_in[15],imag_in[15]};
full_range_imag_out[24:0] <= {imag_in[15:0],9'b0};

end
.
.
.

endcase

In this example, the output provides a full scale 27-bit word. You must choose how 
many and which bits must be carried forward in the processing chain. The choice of 
bits determines the absolute gain relative to the input sample level.

Figure 4–1 on page 4–4 demonstrates the effect of scaling for all possible values for the 
256-point quad output FFT with an input signal level of 0x5000. The output of the FFT 
is 0x280 when the exponent = –5. The figure illustrates all cases of valid exponent 
values of scaling to the full scale storage register [26..0]. Because the exponent is –5, 
you must check the register values for that column. This data is shown in the last two 
columns in the figure. Note that the last column represents the gain compensated data 
after the scaling (0x0005000), which agrees with the input data as expected. If you 
want to keep 16 bits for subsequent processing, you can choose the bottom 16 bits that 
result in 0x5000. However, if you choose a different bit range, such as the top 16 bits, 
the result is 0x000A. Therefore, the choice of bits affects the relative gain through the 
processing chain. 
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4–4 Chapter :
Achieving Unity Gain in an IFFT+FFT Pair
Because this example has 27 bits of full scale resolution and 16 bits of output 
resolution, choose the bottom 16 bits to maintain unity gain relative to the input 
signal. Choosing the LSBs is not the only solution or the correct one for all cases. The 
choice depends on which signal levels are important. One way to empirically select 
the proper range is by simulating test cases that implement expected system data. The 
output of the simulations must tell what range of bits to use as the output register. If 
the full scale data is not used (or just the MSBs), you must saturate the data to avoid 
wraparound problems.

Achieving Unity Gain in an IFFT+FFT Pair
Given sufficiently high precision, such as with floating-point arithmetic, it is 
theoretically possible to obtain unity gain when an IFFT and FFT are cascaded. 
However, in BFP arithmetic, special attention must be paid to the exponent values of 
the IFFT/FFT blocks to achieve the unity gain. This section explains the steps required 
to derive a unity gain output from an Altera IFFT/FFT MegaCore pair, using BFP 
arithmetic.

Because BFP arithmetic does not provide an input for the exponent, you must keep 
track of the exponent from the IFFT block if you are feeding the output to the FFT 
block immediately thereafter and divide by N at the end to acquire the original signal 
magnitude.

Figure 4–1. Scaling of Input Data Sample = 0x5000
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Chapter : 4–5
Achieving Unity Gain in an IFFT+FFT Pair
Figure 4–2 on page 4–5 shows the operation of IFFT followed by FFT and derives the 
equation to achieve unity gain.

where: 

x0 = Input data to IFFT

X0 = Output data from IFFT

N = number of points

data1 = IFFT output data and FFT input data

data2 = FFT output data

exp1 = IFFT output exponent

exp2 = FFT output exponent

IFFTa = IFFT

FFTa = FFT

Any scaling operation on X0 followed by truncation loses the value of exp1 and does 
not result in unity gain at x0. Any scaling operation must be done on X0 only when it 
is the final result. If the intermediate result X0 is first padded with exp1 number of 
zeros and then truncated or if the data bits of X0 are truncated, the scaling information 
is lost.

One way to keep unity gain is by passing the exp1 value to the output of the FFT 
block. The other way is to preserve the full precision of data1×2–exp1 and use this 
value as input to the FFT block. The disadvantage of the second method is a large size 
requirement for the FFT to accept the input with growing bit width from IFFT 
operations. The resolution required to accommodate this bit width will, in most cases, 
exceed the maximum data width supported by the core.

f For more information, refer to the Achieving Unity Gain in Block Floating Point 
IFFT+FFT Pair design example under DSP Design Examples at www.altera.com.

Figure 4–2. Derivation to Achieve IFFT/FFT Pair Unity Gain

 
 IFFT  

x0 X0 = IFFT(x0)

      = 
N

1
× IFFTa(x0)  

      = 
N

1
× data1 × 2–exp1  

 
  FFT  

x0 = FFT(X0)  

     = FFT(
N

1
 × data1 × 2–exp1) 

     = 
N

1
× 2–exp1× FFTa(data1) 

     = 
N

1
× 2–exp1× data2 × 2–exp2

     = 
N

1
× 2 –exp2–exp1 × data2 
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Achieving Unity Gain in an IFFT+FFT Pair
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November 2011 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

Revision History
The following table shows the revision history for this user guide.

Date Version Changes Made

November 2011 11.1

■ Updated Table 1–1.

■ Added Arria V and Cyclone V device support in Table 1–3.

■ Added Stratix V in the “Performance and Resource Utilization” section.

■ Updated Table 3–3 to include 8-point FFT.

May 2011 11.0

■ Added user-controlled parameter for DSP resource optimization in Stratix V devices.

■ Changed device support level from Preliminary to Final for Arria II GX, Arria II GZ, 
Cyclone III LS, and Cyclone IV devices.

■ Changed device support level from HardCopy Companion to HardCopy Compilation for 
HardCopy III E, HardCopy IV E, and HardCopy IV GX devices.

December 2010 10.1
■ Added preliminary support for Arria II GZ devices.

■ Updated support level to final support for Stratix IV GT devices.

July 2010 10.0
■ Added preliminary support for Stratix V devices.

■ Added new Transform Length values.

November 2009 9.1
■ Maintenance update.

■ Added preliminary support for Cyclone III LS, Cyclone IV, and HardCopy IV GX devices.

March 2009 9.0 Added Arria II GX device support.

November 2008 8.1 No changes.

May 2008 8.0
■ Added Stratix IV device support.

■ Changed descriptions of the behavior of sink_valid and sink_ready.

October 2007 7.2
■ Corrected timing diagrams.

■ Added single precision floating point data representation information.

May 2007 7.1
■ Added support for Arria GX devices.

■ Added new generated files.

December 2006 7.0 Added support for Cyclone III devices.

December 2006 6.1
■ Changed interface information.

■ Added variable streaming information.
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Info–2 Additional Information
How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the 
following table.

The following table shows the typographic conventions this document uses.

(1)

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Nontechnical support (general) Email nacomp@altera.com

(software licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative. 

Bold Type with Initial Capital 
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI 
labels. For example, Save As dialog box. For GUI elements, capitalization matches 
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name 
extensions, software utility names, and GUI labels. For example, \qdesigns 
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and 
<project name>.pof file. 

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the 
Options menu. 

“Subheading Title” Quotation marks indicate references to sections in a document and titles of 
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1, 
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it 
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf. 

Also indicates sections of an actual file, such as a Report File, references to parts of 
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for 
example, TRI). 

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important, 
such as the steps listed in a procedure. 

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important. 

1 The hand points to information that requires special attention. 
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Typographic Conventions
 The question mark directs you to a software help system with related information. 

f The feet direct you to another document or website with related information. 

 The multimedia icon directs you to a related multimedia presentation. 

c A caution calls attention to a condition or possible situation that can damage or 
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you 
injury.

The envelope links to the Email Subscription Management Center page of the Altera 
website, where you can sign up to receive update notifications for Altera documents.
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