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1. About This MegaCore Function
The Altera® CPRI MegaCore® function implements the Common Public Radio 
Interface (CPRI) specification. CPRI is a high-speed serial interface designed for 
network radio equipment controllers (REC) to receive data from and provide data to 
remote radio equipment (RE). 

The CPRI IP core targets high-performance, remote, radio network applications. You 
can configure the CPRI IP core as an RE or an REC. Figure 1–1 shows an example 
system implementation with a two-hop daisy chain. Optical links between devices 
support high performance.

General Description
The Altera CPRI IP core implements Layer 1 and Layer 2 of the CPRI V4.2 
specification. It provides access to the Layer 2 access points through various 
interfaces:

■ IQ data access:

■ MAP antenna-carrier interfaces for easy IQ user data plane access based on 
pre-configured antenna-carrier channels.

■ Auxiliary interface for full access to the user data plane.

Figure 1–1. Typical CPRI Application on Altera Devices
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General Description
■ Ethernet channel access:

■ Auxiliary interface for full access to the Ethernet space in the CPRI frame.

■ Register support for loading and unloading the Ethernet frame.

■ MI interface port for Ethernet Frame access.

■ HDLC channel access:

■ Auxiliary interface for full access to the high level data link control (HDLC) 
space in the CPRI frame.

■ Register support for loading and unloading the HDLC frame.

■ Vendor-specific data (VSS):

■ Auxiliary interface for full access to control bytes.

■ Register support for loading and unloading VSS space.

■ Synchronization and Timing access:

■ Auxiliary interface for full access to synchronization and timing.

You configure the CPRI IP core to support either Ethernet communication with an 
Ethernet media access control (MAC) block included in the IP core, or communication 
with an external Ethernet module. The CPRI link line rate is configurable. For 
information about these interfaces and functionality, refer to Chapter 4, Functional 
Description. For information about configuration options, refer to Chapter 3, 
Parameter Settings.
CPRI MegaCore Function June 2012 Altera Corporation
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CPRI IP Core Features
Figure 1–2 shows the CPRI IP core interfaces. The IP core assembles the outbound 
CPRI frame control words and data from all of these interfaces, and unloads and 
routes control words and data from the inbound CPRI frame to the appropriate 
interfaces, based on configuration and register settings.

CPRI IP Core Features
The CPRI IP core has the following features:

■ Complies with the Common Public Radio Interface (CPRI) Specification V4.2 
(2010-09-29) Interface Specification for wireless base station submodule 
interconnections, without the full range of data sample widths.

■ Supports radio equipment controller (REC) and radio equipment (RE) module 
configurations, including RE master, RE slave, and REC master ports.

■ Supports Universal Mobile Telecommunication System (UMTS) Terrestrial Radio 
Access (UTRA) – frequency division duplexing (UTRA-FDD) (UMTS/Wideband 
Code Division Multiple Access (W-CDMA)), Evolved UTRA (E-UTRA) (3rd 
Generation Partnership Project (3GPP) Long Term Evolution (LTE) specification), 
and Worldwide interoperability for Microwave Access (WiMAX) (IEEE 802.16 
standard).

■ Full access to CPRI frame.

Figure 1–2. CPRI IP Core Interfaces

Notes to Figure 1–2:

(1) You can configure your CPRI IP core with zero, one, or multiple antenna-carrier interfaces. If you configure zero antenna-carrier interfaces, the 
MAP interface is not configured in your CPRI IP core. In that case you can communicate IQ data through the AUX interface to your user-defined 
routing layer.

(2) You can configure your CPRI IP core with or without a high-level data link control (HDLC) block.
(3) You can configure your CPRI IP core with an Ethernet MAC block or a media-independent (MI) interface (MII) block. The two options are mutually 

exclusive. 
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CPRI IP Core Features
■ Supports the following additional CPRI link features:

■ Programmable CPRI communication line rate (to 614.4, 1228.8, 2457.6, 3072.0, 
4915.2, 6144.0, or 9830.4 Mbps) using Altera on-chip high-speed transceivers.

■ Auto-rate negotiation support.

■ Scrambling and descrambling at 4915.2 Mbps, 6144.0 Mbps, and 9830.4 Mbps.

■ Rx delay measurement.

■ Tx delay calibration.

■ Programmable hardware processing of the reset request bit in the CPRI frame.

■ Vendor-specific subchannel (VSS) communication on the CPRI link.

■ Diagnostic parallel reverse loopback paths.

■ Includes the following additional interfaces:

■ Interface to external or on-chip processor, using the Altera Avalon® 
Memory-Mapped (Avalon-MM) interconnect specification.

■ Ethernet communication interfaces that support simultaneous Ethernet and 
HDLC communication to and from the CPRI link.

■ Optional configuration of Ethernet MAC.

■ Optional Media-Independent Interface for Ethernet frame access.

■ Optional configuration of HDLC block.

■ Auxiliary interface provides full access to CPRI frame.

■ Supports data transfer to and from custom mapping functions.

■ Supports data transfer from slave to master ports to implement daisy-chain 
topologies.

■ Supports custom IQ sample widths.

■ An IQ data interface with the following features:

■ Implements mapping methods in Sections 4.2.7.2.5 and 4.2.7.2.7 of the CPRI 
V4.2 Specification, and mapping Options 1 and 2 in Sections 4.2.7.2.3 and 
4.2.7.2.4 of the CPRI V4.2 Specification.

■ Implements WiMAX mapping methods described in Sections 4.2.7.2.2, 
4.2.7.2.5, and 4.2.7.2.7 of the CPRI V4.2 Specification.

■ Implements UMTS/LTE mapping methods described in Section 4.2.7.2 of 
the CPRI V4.2 Specification.

■ Implements WiMAX timing control methodology described in Section 
4.2.8.2 of the CPRI V4.2 Specification.

■ Supports as many as 24 antenna-carrier interfaces.

■ Supports clocking antenna-carrier interfaces with external data channel 
clocks or internal IP core clock.

■ Supports synchronous buffer or simple FIFO synchronization modes for 
externally clocked antenna-carrier interfaces. 

■ Supports independent sample rates for each antenna-carrier interface.
CPRI MegaCore Function June 2012 Altera Corporation
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Device Family Support
■ Supports 15- and 16-bit data sample widths on uplink and downlink using 
the Altera Avalon Streaming (Avalon-ST) interconnect specification.

Device Family Support
Table 1–1 defines the device support levels for Altera IP cores.

Table 1–2 lists the level of support offered by the CPRI IP core for each Altera device 
family.

MegaCore Verification
Before releasing a version of the CPRI IP core, Altera runs comprehensive regression 
tests in the current version of the Quartus® II software. These tests use the 
MegaWizard™ Plug-In Manager to create the instance files. Altera tests these files in 
simulation and hardware to confirm functionality.

Altera tests and verifies the CPRI IP core in hardware, especially the deterministic 
latency feature, for different platforms and environments. 

Table 1–1. Altera IP Core Device Support Levels

FPGA Device Families HardCopy Device Families

Preliminary support—The IP core is verified with 
preliminary timing models for this device family. The IP core 
meets all functional requirements, but might still be 
undergoing timing analysis for the device family. It can be 
used in production designs with caution.

HardCopy Companion—The IP core is verified with 
preliminary timing models for the HardCopy companion 
device. The IP core meets all functional requirements, but 
might still be undergoing timing analysis for the HardCopy 
device family. It can be used in production designs with 
caution.

Final support—The IP core is verified with final timing 
models for this device family. The IP core meets all 
functional and timing requirements for the device family and 
can be used in production designs.

HardCopy Compilation—The IP core is verified with final 
timing models for the HardCopy device family. The IP core 
meets all functional and timing requirements for the device 
family and can be used in production designs.

Table 1–2. Device Family Support

Device Family Support

Arria® II (GX and GZ variants) Final

Arria V (GX and GT variants) Refer to the What’s New in Altera IP page of 
the Altera website.

Cyclone® IV GX Final

HardCopy® IV GX HardCopy Compilation

Stratix® IV GX Final

Stratix V Refer to the What’s New in Altera IP page of 
the Altera website.

Other device families No support
June 2012 Altera Corporation CPRI MegaCore Function
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Performance and Resource Utilization
Performance and Resource Utilization 
This section contains tables showing IP core variation size and performance examples. 
For resource utilization information for additional CPRI IP core variations, refer to the 
reports the Quartus II software generates during compilation.

Table 1–3 lists the resources and expected performance for CPRI IP core variations 
configured with the following features:

■ Operate in REC master mode

■ Include autorate negotiation support if it is available at the relevant line rate in the 
device family (turned off in Arria V GT variations with CPRI line rate 
9830.4 Mbps)

■ Provide Ethernet access through the MI interface

■ Do not provide an HDLC block

■ Use Basic mapping mode

■ Clock the AxC channels with independent clocks (the Enable MAP interface 
synchronization with core clock parameter is turned off)

The numbers of combinational ALUTs and logic registers are rounded up to the 
nearest 100.

Table 1–3 lists results obtained with the Quartus II software v12.0 for the following 
devices:

■ Arria V GT (5AGTBD7E3F35I5)

■ Arria V GX (5AGXFB3H4F35C4 for 6144, 4915.2, and 3072 Mbps variations and 
5AGXFB3H6F35C6 for other variations)

■ Stratix V GX (5SGXMA5N2F40I2 for 9830.4 Mbps variations and 
5SGXMA5N2F40I4 for other variations) 

Table 1–3. CPRI IP Core FPGA Resource Utilization (Part 1 of 2)

Device

Parameters Memory

 Line Rate
(Mbps)

Number of 
Antenna-Carrier 

Interfaces
Combinational ALUTs Logic 

Registers

M10K or 
M20K 

Blocks (1)

Memory 
ALUTs

Arria V GT 9830.4

0 4300 4000 11 —

1 4800 4800 21 —

4 5400 5500 27 —

8 6000 6400 35 —
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Performance and Resource Utilization
Table 1–4 shows the slowest device family speed grade that supports each CPRI line 
rate in each device family. Lower speed grade numbers correspond to faster devices.

Arria V GX

614.4

0 3000 3100 5 —

1 3800 4000 15 —

2 3900 4200 17 —

3 4100 4500 19 —

4 4300 4800 21 —

1228.8,
2457.6,
3072,

4915.2,
6144

0 3000 3100 5 —

1 3800 4200 15 —

4 4300 4800 21 —

8 5000 5800 29 —

Stratix V GX

614.4

0 3000 3100 4 9

1 3800 4000 11 9

2 4000 4300 13 9

3 4100 4500 15 9

4 4300 4800 17 9

1228.8,
2457.6,
3072,

4915.2,
6144,

9830.4

0 3100 3200 5 —

1 3800 4300 11 —

4 4400 5100 17 —

8 5000 6200 25 —

Note to Table 1–3:

(1) M10K blocks in Arria V devices and M20K blocks in Stratix V devices.

Table 1–3. CPRI IP Core FPGA Resource Utilization (Part 2 of 2)

Device

Parameters Memory

 Line Rate
(Mbps)

Number of 
Antenna-Carrier 

Interfaces
Combinational ALUTs Logic 

Registers

M10K or 
M20K 

Blocks (1)

Memory 
ALUTs

Table 1–4. Slowest Recommended Device Family Speed Grades (1) (Part 1 of 2)

Device Family
or Variant

CPRI Line Rate (Mbps)

614.4 1228.8 2457.6 3072.0 4915.2 6144 9830.4

Arria II GX –6 –6 –6 –6 I3 (2) I3 (2) (3)

Arria II GZ –4 –4 –4 –4 –3 –3 (3)

Arria V GX C6 C6 C6 I5 I5 I5 (3)

Arria V GT C6 C6 C6 I5 I5 I5 I5

Cyclone IV GX C8, I7 C8, I7 C8, I7 –7 (3) (3) (3)

Stratix IV GX –4 –4 –4 –4 –4 –3 (3)
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Release Information
Release Information
Table 1–5 provides information about this release of the CPRI IP core.

Altera verifies that the current version of the Quartus II software compiles the 
previous version of each Altera IP core. Any exceptions to this verification are 
reported in the MegaCore IP Library Release Notes and Errata. Altera does not verify 
compilation with IP core versions older than the previous release.

Installation and Licensing
The CPRI IP core is part of the MegaCore IP Library, which is distributed with the 
Quartus II software. The combined software is downloadable from the Altera website, 
www.altera.com. 

Stratix V GX –4 –4 –4 –4 –4 –4 -2

Notes to Table 1–4:

(1) The entry –x indicates that both the industrial speed grade Ix and the commercial speed grade Cx are supported for this device family and CPRI 
line rate.

(2) Only the I3 speed grade is available for a CPRI IP core that runs at this line rate and targets the Arria II GX device family.
(3) This CPRI line rate is not supported for this device family.

Table 1–4. Slowest Recommended Device Family Speed Grades (1) (Part 2 of 2)

Device Family
or Variant

CPRI Line Rate (Mbps)

614.4 1228.8 2457.6 3072.0 4915.2 6144 9830.4

Table 1–5. CPRI Release Information

Item Description

Version 12.0

Release Date June 2012

Ordering Code IP-CPRI

Product ID 00CB

Vendor ID 6AF7
CPRI MegaCore Function June 2012 Altera Corporation
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Installation and Licensing
Figure 1–3 shows the directory structure after you install the CPRI IP core, where 
<path> is the installation directory. The default installation directory on Windows is 
C:\altera\<version number>; on Linux it is /opt/altera<version number>.

You can use Altera’s free OpenCore Plus evaluation feature to evaluate the CPRI IP 
core in simulation and in hardware before you purchase a license. You must purchase 
a license for the CPRI IP core only when you are satisfied with its functionality and 
performance, and you want to take your design to production. 

After you purchase a license for the CPRI IP core, you can request a license file from 
the Altera website at www.altera.com/licensing and install it on your computer. 
When you request a license file, Altera emails you a license.dat file. If you do not have 
internet access, contact your local Altera representative.

OpenCore Plus Evaluation
With the Altera free OpenCore Plus evaluation feature, you can perform the following 
actions:

■ Simulate the behavior of a megafunction (Altera IP core or AMPPSM 
megafunction) in your system using the Quartus II software and Altera-supported 
VHDL and Verilog HDL simulators

■ Verify the functionality of your design and evaluate its size and speed quickly and 
easily

■ Generate time-limited device programming files for designs that include Altera IP 
cores

■ Program a device and verify your design in hardware

Figure 1–3. Directory Structure

<path>

cpri
Contains the CPRI IP core files

constraints
Contains the Synopsys Design Constraints and Tcl constraints scripts for the CPRI IP core

cus_demo_tb
Contains the demonstration testbenches for the CPRI IP core

src
Contains the CPRI IP core encrypted lower-level design files

common
Contains shared components

Installation directory

ip
Contains the Altera MegaCore IP Library and third-party IP cores

altera
Contains the Altera MegaCore IP Library
June 2012 Altera Corporation CPRI MegaCore Function
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Installation and Licensing
OpenCore Plus Time-Out Behavior
OpenCore Plus hardware evaluation supports the following two operation modes:

■ Untethered—the design runs for a limited time. 

■ Tethered—requires a connection between your board and the host computer. If 
tethered mode is supported by all megafunctions in a design, the device can 
operate for a longer time or indefinitely. 

All megafunctions in a device time out simultaneously when the most restrictive 
evaluation time is reached. If there is more than one megafunction in a design, a 
specific megafunction's time-out behavior might be masked by the time-out behavior 
of the other megafunctions.

1 For Altera IP cores, the untethered time-out is 1 hour; the tethered time-out value is 
indefinite. 

Your design stops working after the hardware evaluation time expires.

The CPRI IP core then behaves as if the reset and cpu_reset signals are asserted: the 
CPRI link and the CPU interface reset. The transceivers do not reset, because the 
transceiver quad might be shared with other designs, IP cores, and megafunctions. 
The CPRI IP core cannot achieve frame synchronization, and cannot participate in 
further CPRI communication.

f For information about installation and licensing, refer to Altera Software Installation and 
Licensing. For information about the OpenCore Plus evaluation feature, refer to 
AN 320: OpenCore Plus Evaluation of Megafunctions.
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2. Getting Started
You can customize the CPRI IP core to support a wide variety of applications. You use 
the MegaWizard Plug-In Manager in the Quartus II software to parameterize a 
custom IP core variation in a CPRI parameter editor. The CPRI parameter editor lets 
you interactively set parameter values and select optional ports. 

MegaWizard Plug-In Manager Design Flow
Figure 2–1 shows the stages for creating a system with the CPRI IP core and the 
Quartus II software. Each stage is described in detail in subsequent sections.

The MegaWizard Plug-In Manager flow allows you to customize the CPRI IP core, 
and manually integrate the function in your design.

Specifying Parameters
To specify CPRI IP core parameters using the MegaWizard Plug-In Manager, perform 
the following steps:

1. Create a Quartus II project using the New Project Wizard available from the File 
menu.

Figure 2–1. CPRI Design Flow

MegaWizard Plug-In 
Manager Flow

Instantiate MegaCore 
In Design

Specify Constraints

Specify Parameters

Generate 
MegaCore Function

Compile Design

Program Device
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 Testbench
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MegaCore Function
CPRI MegaCore Function
User Guide



2–2 Chapter 2: Getting Started
MegaWizard Plug-In Manager Design Flow
2. Launch the MegaWizard Plug-In Manager from the Tools menu, and follow the 
prompts in the MegaWizard Plug-In Manager interface to create a custom CPRI IP 
core variation. 

To select the CPRI IP core, click 
Installed Plug-Ins > Interfaces > CPRI > CPRI v12.0.

3. Specify the parameters. For details about these parameters, refer to Chapter 3, 
Parameter Settings.

As you specify parameters, the CPRI parameter editor displays messages about 
the variation that your current settings define. If your settings define a variation 
for which a testbench is automatically generated when the CPRI IP core is 
generated, an information message tells you the name of the relevant testbench. 
For more information about the testbenches and the variations that provide them, 
refer to Chapter 8, Testbenches.

4. Click Finish to generate the CPRI IP core and supporting files. 

You might have to wait several minutes for file generation to complete.

5. When you are prompted to generate an example design, turn on Generate 
Example Design. You must turn on this option to generate the testbenches 
described in Chapter 8, Testbenches. 

6. Click Generate. Despite the moving progress bar, generation does not progress 
until you click this button.

7. If you generate the CPRI IP core instance in a Quartus II project, you are prompted 
to add the Quartus II IP File (.qip) to the current Quartus II project. You can also 
turn on Automatically add Quartus II IP Files to all projects.

The .qip file is generated by the parameter editor, and contains information about 
the generated IP core. In most cases, the .qip file contains all of the necessary 
assignments and information required to process the IP core or system in the 
Quartus II compiler. The parameter editor generates a single .qip file for each IP 
core.

Generating your custom CPRI IP core variation creates a set of HDL files and 
simulation models. You can now integrate your custom CPRI IP core variation in your 
design, simulate, and compile.
CPRI MegaCore Function June 2012 Altera Corporation
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MegaWizard Plug-In Manager Design Flow
When you integrate your CPRI IP core variation in your design, observe the following 
connection and I/O assignment requirements:

■ In Arria II, Cyclone IV GX, and Stratix IV GX designs:

■ Ensure that you connect the calibration clock (gxb_cal_blk_clk) to a clock 
signal with the appropriate frequency range of 10–125 MHz. The cal_blk_clk 
ports on other components that use transceivers must be connected to the same 
clock signal.

■ Add a dynamic reconfiguration block (altgx_reconfig) and connect it as 
specified in the Arria II Device Handbook, Cyclone IV Device Handbook, or 
Stratix IV Device Handbook. This block supports offset cancellation to 
compensate for analog voltages offset from required ranges due to process 
variations. The design compiles without the altgx_reconfig block, but it 
cannot function correctly in hardware. 

■ To support the correct signal connections from the CPRI IP core to the dynamic 
reconfiguration block, in the ALTGX MegaWizard Plug-In Manager, on the 
Reconfiguration Settings tab, turn on Analog controls.

■ In Arria V and Stratix V designs, add an Altera Transceiver Reconfiguration 
Controller and connect it as specified in the Altera Transceiver PHY IP Core User 
Guide. This block supports offset cancellation to compensate for analog voltages 
offset from required ranges due to process variations. The design does not compile 
without the Altera Transceiver Reconfiguration Controller, but it cannot function 
correctly in hardware.

Before you compile your system to generate a Programmable Object File (.pof) with 
which to configure your device, Altera recommends that you create assignments for 
the high-speed transceiver VCCH settings. 

To create assignments for the high-speed transceiver VCCH settings, perform the 
following steps:

1. In the Quartus II window, on the Assignments menu, click Assignment Editor.

2. In the <<new>> cell in the To column, type the top-level signal name for your 
CPRI IP core instance gxb_txdataout signal. 

3. Double-click in the Assignment Name column and click I/O Standard. 

4. Double-click in the Value column and click your standard (for example, 1.5-V 
PCML).

5. In the new <<new>> row, repeat steps 2 to 4 for your CPRI IP core instance 
gxb_rxdatain signal.

Simulation Files
Generating a CPRI IP core creates an <instance_name>_sim directory with a 
subdirectory for each of several different simulators. Each of the vendor-specific 
directories contains files and scripts to simulate your CPRI IP core with that vendor’s 
simulation tools.

The <instance_name>_sim/altera_cpri directory contains the top-level simulation file 
for your CPRI IP core.
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MegaWizard Plug-In Manager Design Flow
Generating a CPRI IP core creates a more complex directory structure for Arria V and 
Stratix V variations than for variations that target other device families, because the 
Arria V and Stratix V variations instantiate an Altera Deterministic Latency PHY IP 
core or an Altera Native PHY IP core. In an Arria V or Stratix V variation, your 
<instance_name>_sim directory contains multiple subdirectories, one for each of the 
various components in the Arria V or Stratix V CPRI IP core, and individual 
directories for vendors for three different simulators. Each of the vendor-specific 
directories contains files and scripts to simulate your CPRI IP core with that vendor’s 
simulation tools.

Figure 2–2 shows the directory structure of your CPRI IP core that contains a 
Deterministic Latency PHY IP core and generates a VHDL testbench. For information 
about the CPRI IP core variations that provide a VHDL testbench, refer to “Simulating 
the Design”.

The altera_xcvr_det_latency directory contains the files to simulate the Altera 
Deterministic Latency PHY IP core that is generated as part of your CPRI IP core. It 
also contains a mentor subdirectory with IEEE encrypted files to simulate the PHY IP 
core efficiently.

Simulating the Design 
During the design process, to check your design quickly, you can simulate your CPRI 
IP core with any of several Altera-supported EDA simulation tools. 

f For more information about these tools and how to simulate designs created using the 
Quartus II software, refer to the “Simulation” section in volume 3 of the Quartus II 
Handbook.

Figure 2–2. Generated CPRI IP Core Directory Structure for Most Arria V and Stratix V Variations

<working directory>

Vendor-specific directories contain simulation scripts

<instance name>_testbench
Contains the VHDL testbench simulation files

altera_cpri
Contains the lower-level testbench simulation files

altera_cpri_instance, altera_merlin_master_translator,
altera_merlin_slave_translator, altera_xcvr-det_latency
Contain the CPRI IP core instance lower-level simulation files

Quartus II project working directory

<instance name>_sim
CPRI IP core instance simulation files and scripts

<instance name>
CPRI IP core instance HDL files

altera_cpri
Contains the CPRI IP core instance top-level simulation file
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Specifying Constraints
You can simulate your CPRI IP core variation using its IP functional simulation model 
and VHDL demonstration testbench. The IP functional simulation model, and 
testbench files for the CPRI IP core variations that support demonstration testbenches, 
are generated in your project directory when you generate your CPRI IP core. The 
testbench files include scripts to compile and run the demonstration testbench. The 
testbench demonstrates how to instantiate a model in a design and includes simple 
stimuli to control the user interfaces of the CPRI IP core.

1 A Verilog HDL testbench is not generated. If you specify Verilog HDL in the 
MegaWizard Plug-In Manager, it generates a Verilog HDL IP functional simulation 
model for the CPRI IP core. If your CPRI IP core variation is listed in Table 2–1, the 
corresponding VHDL demonstration testbench is also generated. You can use this 
model with the VHDL demonstration testbench for simulation using a 
mixed-language simulator. 

For a complete list of models or libraries required to simulate the CPRI IP core, refer to 
the compile[_<variation>]_<HDL>.do scripts provided with the demonstration 
testbenches described in Chapter 8, Testbenches. 

Not all variations provide demonstration testbenches. To view example scripts and to 
run a demonstration testbench, you must generate a variation that provides a 
testbench. Table 2–1 lists the CPRI variations that provide a testbench. Refer to 
Chapter 8, Testbenches for information about the specific testbench generated for each 
variation in Table 2–1. In addition to the variations specified in Table 8–4 on page 8–7, 
you generate VHDL testbenches with the corresponding Verilog HDL IP core 
variations, as shown in Table 2–1.

f For information about IP functional simulation models, refer to the Simulating Altera 
Designs chapter in volume 3 of the Quartus II Handbook.

Specifying Constraints
Altera provides a Synopsys Design Constraints (.sdc) file that you must apply to 
ensure that the CPRI IP core meets design timing requirements. In most cases the 
script requires modification for your design. For modification guidelines, refer to 
Appendix E, Integrating the CPRI IP Core Timing Constraints in the Full Design.

Table 2–1. CPRI IP Core Variations that Provide a Demonstration Testbench 

Properties 
Common to all 
Variations with 

Testbench

Device Family
Enable 

Autorate 
Negotiation

Reference 
Clock 

Frequency

Include 
MAC Block

Number of 
Antenna-Carrier 

Interfaces

REC master 
clocking, 
0.6144 Gbps line 
rate, Include 
HDLC Block is 
Off, Enable MAP 
interface 
synchronization is 
Off

Arria II
Off — On or Off 3

Off — Off 0

Arria V, Stratix V

Off

61.44 MHz

On or Off 3

Off Off 0

On On 0

Cyclone IV GX, 
Stratix IV GX

Off — On or Off 3

Off — Off 0

On — On 0
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Compiling and Programming the Device
f For information about timing analyzers, refer to the Quartus II Help and the “Timing 
Analysis” section in volume 3 of the Quartus II Handbook.

Compiling and Programming the Device
You can use the Start Compilation command on the Processing menu in the 
Quartus II software to compile your design. After successfully compiling your design, 
program the targeted Altera device with the Programmer and verify the design in 
hardware.

1 Before compiling your CPRI IP core or other incomplete CPRI design in the Quartus II 
software, you must assign unconnected CPRI IP core signals to virtual pins.

f For information about compiling your design in the Quartus II software, refer to the 
Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in 
volume 1 of the Quartus II Handbook. For information about programming an Altera 
device, refer to the “Device Programming” section in volume 3 of the Quartus II 
Handbook.

Instantiating Multiple CPRI IP Cores
If you want to instantiate multiple CPRI IP cores in an Arria II, Cyclone IV GX, or 
Stratix IV GX device, you must observe a few additional requirements. 

When your design contains multiple IP cores, you must ensure that the 
gxb_cal_blk_clk input and gxb_powerdown signals are connected according to the 
requirements for your target device family, and that the instances each have different 
starting channel numbers.

You must ensure that a single calibration clock source drives the gxb_cal_blk_clk 
input to each CPRI IP core (or any other megafunction or user logic that uses the 
ALTGX megafunction). 

When you merge multiple CPRI IP cores in a single transceiver block, the same signal 
must drive gxb_powerdown to each of the CPRI IP core variations and other 
megafunctions, Altera IP cores, and user logic that use the ALTGX megafunction. 

Multiple CPRI IP cores in a single device must use distinct transceiver channels. You 
enforce this restriction by specifying different starting channel numbers for the 
distinct CPRI IP cores. The starting channel number is a parameter whose value you 
specify for each CPRI IP core in the CPRI parameter editor. Refer to Chapter 3, 
Parameter Settings.

To configure multiple CPRI IP cores in a single transceiver block, you must specify in 
your Quartus Settings File (.qsf) that these CPRI link data lines are configured in the 
same GXB_TX_PLL_RECONFIG_GROUP, using the following syntax for each outgoing CPRI 
link cN_gxb_txdataout:

set_instance_assignment -name GXB_TX_PLL_RECONFIG_GROUP 1 -to cN_gxb_txdataout
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3. Parameter Settings
You customize the CPRI IP core by specifying parameters in the CPRI parameter 
editor, which you access from the MegaWizard Plug-In Manager in the Quartus II 
software.

This chapter describes the parameters and how they affect the behavior of the CPRI IP 
core. You can modify parameter values to specify the following CPRI IP core 
properties:

■ Clocking mode—whether this CPRI IP core instance is configured with slave 
clocking mode (RE slave) or with master clocking mode (REC or RE master).

■ Line rate.

■ Autorate negotiation—whether this CPRI IP core instance supports the connection 
of external logic to implement autorate negotiation. 

■ Starting channel number.

■ Depth of the low-level receiver elastic buffer.

■ Transceiver reference clock frequency. This option is available only in Arria V and 
Stratix V devices.

■ Ethernet MAC—whether to include an internal Ethernet MAC block or provide an 
MII to connect to an external Ethernet module. These two options are mutually 
exclusive.

■ HDLC block—whether to include an internal HDLC block or not.

■ Number of antenna-carrier interfaces.

■ Whether the antenna-carrier interfaces are clocked by the CPRI IP core clock 
cpri_clkout or by external clocks.

Physical Layer Parameters
This section lists the parameters that affect the configuration of the physical layer of 
the CPRI IP core.

Operation Mode Parameter
The Operation mode parameter specifies whether the CPRI IP core is configured with 
slave clocking mode or with master clocking mode. An REC is configured with master 
clocking mode.
CPRI MegaCore Function
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Physical Layer Parameters
Line Rate Parameter
The Line rate parameter specifies the line rate on the CPRI link in gigabits per second 
(Gbps). Table 3–1 lists the CPRI line rates that each device family supports. A 
checkmark indicates a supported variation.

Enable Autorate Negotiation
Autorate negotiation is the process of stepping down from a higher target CPRI line 
rate to a lower target CPRI line rate if you are unable to establish a link at the higher 
line rate. If your CPRI IP core has autorate negotiation enabled, and you program it to 
step down from its highest target CPRI line rate to its lower target CPRI line rates 
when it does not achieve frame synchronization, your CPRI IP core achieves frame 
synchronization at the highest possible CPRI line rate in its range of potential line 
rates, depending on the capability of its CPRI partner.

For information about the autorate negotiation feature, refer to Appendix B, 
Implementing CPRI Link Autorate Negotiation. 

In the current release, CPRI IP core variations configured at the CPRI line rate of 
9830.4 Mbps that target an Arria V device do not support autorate negotiation. 

Turn on the Enable auto-rate negotiation parameter to specify that your CPRI IP core 
supports autorate negotiation. By default, this parameter is turned off.

Transceiver Starting Channel Number
You can specify the starting number for the CPRI IP core transceiver. For a CPRI IP 
core master, the Master transceiver starting channel number specifies the starting 
channel number for the transceiver. 

Table 3–1. Device Family Support for CPRI Line Rates

Device Family
or Variant

CPRI Line Rate (Mbps)

614.4 1228.8 2457.6 3072.0 4915.2 6144 9830.4

Arria II GX v v v v v (1) v (1) —

Arria II GZ v v v v v v —

Arria V GX v v v v v v —

Arria V GT v v v v v v v
Cyclone IV GX v v v v — — —

Stratix IV GX v v v v v v —

Stratix V GX v v v v v v v
Stratix V GT v v v v v v v
Note to Table 3–1:

(1) If you specify a CPRI line rate of 4.9152 or 6.144 Gbps for a variation that targets an Arria II GX device, your 
Quartus II project must target an I3 speed grade device. The parameter editor does not enforce this restriction. 
However, if you violate this restriction, compilation fails because the design cannot meet timing in hardware.
CPRI MegaCore Function June 2012 Altera Corporation
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Physical Layer Parameters
For a CPRI IP core configured with slave clocking mode, the Slave transmitter 
starting channel number and Slave receiver starting channel number are two 
separate parameters. Both must have values that are starting channel numbers 
available in your design. The two numbers must be different but the Quartus II 
software creates an FPGA configuration with a single slave transceiver.

If you instantiate multiple CPRI IP cores on the same device, you must ensure each 
uses distinct transceiver channels.

These parameters are not available in Arria V and Stratix V devices.

Rx Elastic Buffer Depth
You can specify the depth of the Rx elastic buffer in the CPRI Receiver block. The 
Receiver buffer depth value is the log2 of the Rx elastic buffer depth. Allowed values 
are 4 to 8, inclusive.

The default depth of the Rx elastic buffer is 64, specified by the Receiver buffer depth 
parameter default value of 6. For most systems, the default Rx elastic buffer depth is 
adequate to handle dispersion, jitter, and wander that can occur on the link while the 
system is running. However, the parameter is available for cases in which additional 
depth is required.

1 Altera recommends that you set Receiver buffer depth to 4 in CPRI RE slave 
variations.

CPRI IP core variations configured at a CPRI line rate of 9830.4 Mbps that target an 
Arria V GT device do not include an Rx elastic buffer. However, this parameter affects 
the depth of the RX buffer between the soft PCS and the Altera Transceiver Native 
PHY IP core, instead. Refer to Figure 4–4 on page 4–7.

f For information about the Altera Transceiver Native PHY IP core, refer to the Altera 
Transceiver PHY IP Core User Guide.

The value you specify for Receiver buffer depth is referred to as WIDTH_RX_BUF in 
this user guide.

For more information about the Rx elastic buffer, refer to “Rx Elastic Buffer” on 
page 4–49.

Transceiver Reference Clock Frequency
If your CPRI variation targets an Arria V or a Stratix V device, the Transceiver 
reference clock frequency parameter is available. Use this parameter to modify the 
expected frequency of the CPRI transceiver input reference clock to the frequency of 
an available clock for your design. 

The frequency you specify is an input parameter to the Altera Deterministic Latency 
PHY IP core that is included in your Arria V or Stratix V CPRI variation. Values 
available at each CPRI line rate are the reference clock frequencies for which the 
Deterministic Latency PHY IP core supports the target CPRI line rate. The default 
value is 122.88 MHz.
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Data Link Layer Parameters
f For more information about the Altera Deterministic Latency PHY IP core, refer to the 
Altera Transceiver PHY IP Core User Guide.

Data Link Layer Parameters
This section lists the parameter that affects the configuration of the data link layer of 
the CPRI IP core.

Include MAC Block
Turn on the Include MAC block parameter to specify that your CPRI IP core includes 
an internal Ethernet MAC block. By default, this parameter is not turned on. If this 
parameter is not turned on, the CPRI IP core implements the media-independent (MI) 
interface (MII) to your own external Ethernet MAC, instead.

If this parameter is not turned on in your CPRI IP core, your application cannot access 
the Ethernet registers. Attempts to access these registers read zeroes and do not write 
successfully, as for a reserved register address. 

For information about the internal Ethernet MAC block, refer to “Accessing the 
Ethernet Channel” on page 4–42.

For information about the MII, refer to “Media Independent Interface to an External 
Ethernet Block” on page 4–34.

Include HDLC Block
Turn on the Include HDLC block parameter to specify that your CPRI IP core 
includes an internal HDLC block. By default, this parameter is not turned on. 

If this parameter is not turned on in your CPRI IP core, your application cannot access 
the HDLC registers. Attempts to access these registers read zeroes and do not write 
successfully, as for a reserved register address. 

Application Layer Parameters
This section lists the parameters that affect the configuration of the application layer 
of the CPRI IP core.
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Application Layer Parameters
Mapping Mode
The Mapping mode(s) parameter specifies whether your CPRI IP core MAP interface 
supports a programmable AxC mapping mode or is configured with a specific 
mapping mode. Table 3–2 lists the supported values.

Table 3–2. MAP Interface AxC Mapping Mode Support

Value Description

All

If you select this value, you configure a CPRI IP core which you can program 
dynamically to be in any mapping mode. In this case, you determine the current 
mapping mode for your CPRI IP core by programming the map_mode field of the 
CPRI_MAP_CONFIG register (0x100). 

For backward compatibility with previous releases of the CPRI IP core, the value of 
All is the default value for this parameter. 

For information about the map_mode register field, refer to Table 7–31 on 
page 7–14.

Basic

Your CPRI IP core MAP interface is configured to function in basic mapping mode 
only. This mapping mode has the following features:

■ Conforms to the description in Sections 4.2.7.2.2 and 4.2.7.2.3 of the CPRI 
Specification V4.2 Interface Specification.

■ Supports communication that complies with the LTE/E-UTRA or UMTS/WCDMA 
standard.

For information about the basic mapping mode in the CPRI IP core, refer to “MAP 
Interface Mapping Modes” on page 4–11.

Advanced 1

Your CPRI IP core MAP interface is configured in a single AxC mapping mode only, 
a mode that has the following features:

■ Conforms to Method 1: IQ Sample Based described in Section 4.2.7.2.5 of the 
CPRI Specification V4.2 Interface Specification.

■ Supports communication that complies with the WiMAX standard. 

For information about this AxC mapping mode, refer to Appendix C, Advanced AxC 
Mapping Modes. 

Advanced 2

Your CPRI IP core MAP interface is configured in a single AxC mapping mode only, 
a mode that has the following features:

■ Conforms to Method 3: Backward Compatible described in Section 4.2.7.2.4 of 
the CPRI Specification V4.2 Interface Specification.

■ Supports communication that complies with the WiMAX or LTE/E-UTRA 
standard. 

For information about this AxC mapping mode, refer to Appendix C, Advanced AxC 
Mapping Modes. 

Advanced 3

Your CPRI IP core MAP interface is configured in a single AxC mapping mode only, 
a legacy mode that has the following features:

■ Conforms to Method 1: IQ Sample Based described in Section 4.2.7.2.5 of the 
CPRI Specification V4.2 Interface Specification.

■ Supports communication that complies with the LTE/E-UTRA standard.

This mode does not support 16-bit wide IQ data samples. Refer to Table 7–31 on 
page 7–14.

For information about this AxC mapping mode, refer to Appendix C, Advanced AxC 
Mapping Modes. 
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Number of Antenna-Carrier Interfaces
The Number of antenna/carrier interfaces parameter specifies the number of 
antenna-carrier interfaces, or data channels, in your CPRI IP core. The supported 
values are 0 to 24. Set this parameter to the maximum number of data channels you 
expect your CPRI IP core to use at the same time.

If you set this parameter to zero, your CPRI IP core does not implement the CPRI 
MAP interface. For example, you might use this option if your CPRI IP core passes IQ 
data samples through the AUX interface to an external custom mapping function that 
you provide.

You can specify in software that some of the antenna-carrier interfaces that you 
configure in your CPRI IP core are not active. This feature allows you to change the 
number of active and enabled data channels dynamically. 

The combination of CPRI IP core line rate, sampling width, and sampling rate restricts 
the number of active antenna-carrier interfaces your CPRI IP core can support. For 
example, if your CPRI IP core operates at line rate 3.072 Gbps, it can support as many 
as 20 active antenna-carrier interfaces, but if your CPRI IP core operates at line rate 
1.2288 Gbps, it can support a maximum of eight active antenna-carrier interfaces. For 
details, refer to Table 4–4 and Table 4–5 on page 4–14. 

1 The software configuration feature allows you to modify the number of active 
antenna-carrier interfaces; if you modify this number, you must keep in mind the 
restrictions for your current CPRI line rate. Otherwise, data is dropped in the 
mapping to and from the individual antenna-carrier interfaces.

If you set the map_ac field of the CPRI_MAP_CNT_CONFIG register to a number N that is 
lower than the value you specify for Number of antenna/carrier interfaces, then the 
first N data channels are active and the others are not. In addition, for each 
antenna-carrier interface you can use the relevant map_rx_enable bit of the 
CPRI_IQ_RX_BUF_CONTROL register and the relevant map_tx_enable bit of the 
CPRI_IQ_TX_BUF_CONTROL register to enable or disable the specific data channel and 
direction. A data channel must be configured, active, and enabled to function. If it is 
configured and active but not enabled, data to and from it is ignored.

The value you specify for Number of antenna/carrier interfaces is referred to as 
N_MAP in this user guide.

For more information about the antenna-carrier interfaces in a CPRI IP core, refer to 
“MAP Interface” on page 4–10.

Enable Internally-Clocked Synchronization Mode
If you configure one or more antenna-carrier interfaces, the option to Enable MAP 
interface synchronization with core clock is available. If you turn on this option, both 
the MAP receiver interface and the MAP transmitter interface are clocked with the 
CPRI IP core internal clock, cpri_clkout. If you turn off this option, these interfaces 
are clocked with individual Rx and Tx clocks for each antenna-carrier interface. 

If you turn on this option, the CPRI IP core coordinates communication on these 
interfaces in the internally-clocked synchronization mode. Turning on this option 
simplifies synchronization of data transfers to and from the antenna-carrier interfaces. 
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Application Layer Parameters
The Boolean value you specify for Enable MAP interface synchronization with core 
clock is referred to as SYNC_MAP in this user guide. Table 3–3 shows the 
correspondence between the parameter, the MAP interface synchronization mode, 
and the clocks that clock the antenna-carrier interfaces.

For more information about these clocks, refer to “Clocking Structure” on page 4–3. 
For more information about the synchronization modes for the Rx and Tx MAP 
interfaces, and how they vary depending on your selection of this option, refer to 
“MAP Interface” on page 4–10.

Table 3–3. Meaning of Enable Map Interface synchronization with core clock Parameter

Enable MAP interface 
synchronization with core clock SYNC_MAP MAP Interface 

Synchronization Mode Clocks for Antenna-Carrier Interfaces

On 1 Internally-clocked mode cpri_clkout

Off 0 Synchronous buffer or 
FIFO mode

mapN_rx_clk, mapN_tx_clk, for 
antenna-carrier interfaces N = 1 ... (N_MAP – 1)
June 2012 Altera Corporation CPRI MegaCore Function
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4. Functional Description
The CPRI protocol interface complies with the CPRI Specification V4.2. The 
specification divides the protocol into a two-layer hierarchy: a physical layer (layer 1) 
and a data link layer (layer 2). The specification describes the following three 
communication planes: 

■ User data

■ Control and management (C&M)

■ Timing synchronization information

f More detailed information about the CPRI specification is available from the CPRI 
website at www.cpri.info.

The Altera CPRI IP core implements layer 1 and layer 2 of the specification in the 
CPRI protocol interface module. This chapter describes the individual data and 
control interfaces available to you and how the data on these interfaces is loaded and 
unloaded from the CPRI frame.

This chapter contains the following sections:

■ Architecture Overview

■ Clocking Structure

■ Reset Requirements

■ MAP Interface

■ Auxiliary Interface

■ Media Independent Interface to an External Ethernet Block

■ CPU Interface

■ Accessing the Hyperframe Control Words

■ Accessing the Ethernet Channel

■ Accessing the HDLC Channel

■ CPRI Protocol Interface Layer (Physical Layer)
CPRI MegaCore Function
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Architecture Overview
Figure 4–1 shows the main blocks of the CPRI IP core.

The Altera CPRI IP core supports the following interfaces:

■ MAP Interface

■ Auxiliary Interface

■ Media Independent Interface to an External Ethernet Block

■ CPU Interface

■ CPRI link interface described in CPRI Protocol Interface Layer (Physical Layer)

Information about the signals on the individual interfaces is available in the following 
sections and in Chapter 6, Signals. 

The following sections describe the individual interfaces and clocks. 

Figure 4–1. CPRI IP Core Block Diagram

Notes to Figure 4–1:

(1) You can configure your CPRI IP core with zero, one, or multiple IQ data channels.
(2) You can configure your CPRI IP core with an Ethernet MAC block or an MII block. The two options are mutually exclusive. 
(3) You can configure your CPRI IP core with or without a High-Level Data Link Controller (HDLC) block.
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Clocking Structure
The CPRI IP core has a variable number of clock domains. The clock domains in your 
CPRI IP core variation depend on the following factors:

■ Number of antenna-carrier interfaces.

■ Whether the MII is configured.

■ Whether the antenna-carrier interfaces are clocked internally. Refer to “Enable 
Internally-Clocked Synchronization Mode” on page 3–6.

■ Target device family.

■ In one case, different CPRI line rates.

The input clock frequency requirements depend on the target device family and CPRI 
line rate. Refer to Table 4–2 on page 4–8 for these requirements.

You can configure a CPRI IP core in master or slave clocking mode, as described in 
“Operation Mode Parameter” on page 3–1. REC configurations and RE master 
configurations use master clocking mode, and RE slave configurations use slave 
clocking mode. Your design must handle some of the transceiver input clocks 
differently in the two different clocking modes.

Table 4–1 describes the individual clocks. The clocking diagrams in Figure 4–2 on 
page 4–5 to Figure 4–4 on page 4–7 show the clocks and clock domain boundaries. 
Table 4–2 on page 4–8 lists the clock frequencies for the different CPRI IP core 
variations.

CPRI IP Core Clocks
Table 4–1 describes the clock domains in the CPRI IP core.

For more information about these clocks, including driver requirements, refer to 
Chapter 6, Signals. For expected input clock frequencies refer to Chapter 6, Signals 
and to Table 4–2 on page 4–8.

Table 4–1. CPRI IP Core Clocks (Part 1 of 2)

Clock Name Direction Configuration 
Requirements Description

cpri_clkout Output Present in all 
CPRI IP cores

Main clock for the CPRI IP core. The CPRI IP core derives this clock 
from the transceiver transmit PLL, and the frequency of this clock 
depends on the CPRI line rate. For more information refer to “CPRI 
Communication Link Line Rates” on page 4–7.

mapN_tx_clk
for N in 
0..(N_MAP–1)

Input

Present in 
variations 
configured with 
N_MAP > 0 
antenna-carrier 
interfaces and 
with Enable MAP 
interface 
synchronization 
with core clock 
turned off

Expected rate of received data on antenna-carrier interface N. The 
frequency of this clock is the sample rate on the incoming 
antenna-carrier interface. For more information about data channel 
sample rates, refer to Table 4–4 and Table 4–5 on page 4–14.

mapN_rx_clk
for N in 
0..(N_MAP–1)

Input

Clocks the transmissions of antenna-carrier interface N. The 
frequency of this clock is the sample rate on the outgoing 
antenna-carrier interface. For more information about data channel 
sample rates, refer to Table 4–4 and Table 4–5 on page 4–14.
June 2012 Altera Corporation CPRI MegaCore Function
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Clock Diagrams for the CPRI IP Core
Figure 4–2 and Figure 4–3 show the clocking schemes for CPRI IP cores configured as 
RE slaves, RE masters, and REC masters that do not target an Arria V GT device or 
that are not configured with a CPRI line rate of 9830.4 Mbps.

clk_ex_delay Input Present in all 
CPRI IP cores

Clock for extended delay measurement. For more information refer to 
“Extended Rx Delay Measurement” on page D–5.

cpri_mii_txclk Output
Present in 
variations 
configured with 
an MI interface

Clocks the MII transmitter module. This clock has the same 
frequency as the cpri_clkout clock. The frequency depends on the 
CPRI line data rate. Refer to “CPRI Communication Link Line Rates” 
on page 4–7.

cpri_mii_rxclk Output

Clocks the MII receiver module. This clock has the same frequency as 
the cpri_clkout clock. The frequency depends on the CPRI line 
data rate. Refer to “CPRI Communication Link Line Rates” on 
page 4–7.

cpu_clk Input Present in all 
CPRI IP cores

Clock that controls the input to the CPU interface of the CPRI IP core 
and drives the CPU interface. Assumed to be asynchronous with the 
cpri_clkout clock. The maximum frequency is constrained by fMAX 
and can vary based on the device family and speed grade.

gxb_refclk Input Present in all 
CPRI IP cores

Reference clock for the transceiver PLLs. In master clocking mode, 
this clock drives both the receiver PLL and the transmitter PLL in the 
transceiver. In slave clocking mode, this clock drives the receiver 
PLL.

gxb_cal_blk_clk Input

Not present in 
variations that 
target an Arria V 
or Stratix V 
device

Transceiver calibration-block clock.

reconfig_clk Input Present in all 
CPRI IP cores Transceiver dynamic reconfiguration block clock.

gxb_pll_inclk Input Present in all 
CPRI IP cores

Input clock to the transmitter PLL in a CPRI IP core configured in 
slave clocking mode. If the CPRI IP core is configured in master 
clocking mode, it does not use this clock. In master clocking mode, 
you must tie this input low.

pll_clkout Output Present in all 
CPRI IP cores

Generated from transceiver clock data recovery circuit. Intended to 
connect to an external PLL for jitter clean-up in slave clocking mode.

usr_pma_clk Input
Present in 
variations 
configured at 
9830.4 Gbps that 
target an 
Arria V GT device

Extra clock signal required to drive the PMA in these CPRI IP core 
variations. Refer to Table 6–15 on page 6–17 for driver frequency and 
synchronization requirements.

usr_clk Input
Extra clock signal required to drive the PCS in these CPRI IP core 
variations. Refer to Table 6–15 on page 6–17 for driver frequency and 
synchronization requirements.

Table 4–1. CPRI IP Core Clocks (Part 2 of 2)

Clock Name Direction Configuration 
Requirements Description
CPRI MegaCore Function June 2012 Altera Corporation
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Figure 4–4 on page 4–7 shows the clocking schemes for CPRI IP cores configured as 
RE slaves, RE masters, and REC masters with a CPRI line rate of 9830.4 Mbps that 
target an Arria V GT device. These variations have no clock divider and no Tx elastic 
buffer or Rx elastic buffer. However, they require two additional synchronized input 
clocks, usr_pma_clk, which you must drive at the frequency of 122.88 MHz, and 
usr_clk, which you must drive at the frequency of 245.76 MHz. Recall that these 
variations do not support autorate negotiation.

Clock Diagrams for Most CPRI IP Core Variations
Figure 4–2 shows the clock diagram for a CPRI IP core configured as an RE slave, 
unless the IP core is configured with CPRI line rate 9.830.4 Mbps and targets an 
Arria V GT device.

Figure 4–2. CPRI IP Core Slave Clocking Except for Arria V GT 9.8 Gbps Variations

Note to Table 4–2:

(1) The clock divider factor depends on the device family. In device families with a factor of 1, the divider is not configured. Table 4–15 on page 4–53 
lists the datapath width and clock divider by device family.
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Figure 4–3 shows the clock diagram for a CPRI IP core configured as an REC master 
or as an RE master, unless the IP core is configured with CPRI line rate 9830.4 Mbps 
and targets an Arria V GT device.

Clock Diagram for CPRI IP Core Arria V GT Variations at 9830.4 Mbps
CPRI IP core variations with a CPRI line rate of 9830.4 Mbps that target an Arria V GT 
device have a different clocking scheme. These variations have no clock divider, and 
have neither an RX elastic buffer nor a TX elastic buffer. They use two additional input 
clock signals, usr_clk and usr_pma_clk. Table 6–15 on page 6–17 describes the 
requirements for these two input clock signals.

Figure 4–3. CPRI IP Core Master Clocking Except for Arria V GT 9.8 Gbps Variations

Note to Table 4–3:

(1) The clock divider factor depends on the device family. In device families with a factor of 1, the divider is not configured. Table 4–15 on page 4–53 
lists the datapath width and clock divider by device family.
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Clocking Structure
Figure 4–4 shows the clocking scheme for a CPRI IP core with a CPRI line rate of 
9830.4 Mbps that targets an Arria V GT device. The figure notes describe the 
differences between the input clock requirements for the REC and RE master 
variations, which are configured in master clocking mode, and the input clock 
requirements for the RE slave variations, which are configured in slave clocking 
mode.

CPRI Communication Link Line Rates
The CPRI specification specifies line rates of n × 614.4 Mbps for various values of n. 
The CPRI IP core supports different ranges of line rates in different device families. 
Table 3–1 on page 3–2 lists the CPRI line rate support available in the different device 
families.

Figure 4–4. CPRI IP Core Clocking in Arria V GT 9.8 Gbps Variations (1), (2), (3)

Notes to Figure 4–4:

(1) The cleanup PLL is relevant only for variations configured in slave clocking mode.
(2) In variations configured in slave clocking mode, the usr_clk and usr_pma_clk input clocks must be driven by a common source from the 

cleanup PLL. For additional constraints these clocks require, refer to Table 6–15 on page 6–17.
(3) In variations configured in master clocking mode, you must tie the gxb_pll_inclk input signal low.
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Table 4–2 shows the relationship between line rates, default transceiver reference 
clock (gxb_refclk) rates, parallel recovered clock (pll_clkout) rates, and internal 
clock (cpri_clkout) rates. 

The cpri_clkout frequency depends only on the CPRI line rate. The pll_clkout 
frequency depends on the CPRI line rate and on the datapath width through the 
transceiver, except in Arria V and Stratix V devices. The datapath width is determined 
by device family, as shown in Table 4–15 on page 4–53.

The gxb_refclk clock is the incoming reference clock for the device transceiver’s PLL. 
Altera allows you to program the transceiver to work with any of a set of gxb_refclk 
frequencies that the PLL in the transceiver can convert to the required internal clock 
speed for the CPRI IP core line rate. The parameter editor in which you configure the 
gxb_refclk frequency depends on the target device family for your CPRI IP core 
variation.

When you generate a CPRI IP core variation that targets an Arria II, Cyclone IV GX, or 
Stratix IV GX device, you generate an ALTGX megafunction with specific default 
settings. These default transceiver settings configure a transceiver that works 
correctly with the CPRI IP core when the input gxb_refclk clock has the frequency 
shown in Table 4–2. However, you can edit the ALTGX megafunction instance to 
specify a different gxb_refclk frequency that is more convenient for your design, for 
example, to enable you to use an existing clock in your system as the gxb_refclk 
reference clock. 

Table 4–2. CPRI Link Line Rates and Clock Rates for CPRI MegaCore Function (1)

Line Rate 
(Mbps)

Clock Frequency (MHz)

Default gxb_refclk Frequency
(If line rate is supported) cpri_clkout

Frequency
(If line rate is 

supported)

pll_clkout Frequency
(If line rate is supported)

Arria II GX 
and 

Cyclone IV GX 
Devices

Arria II GZ 
and 

Stratix IV GX 
Devices

Arria V
and 

Stratix V 
Devices

Arria II GX and 
Cyclone IV GX 

Devices

Arria II GZ, 
Arria V, and 
Stratix IV GX 

Devices

Stratix V 
Devices

614.4 61.44 61.44 122.88 15.36 61.44 61.44 61.44

1228.8 61.44 61.44 122.88 30.72 61.44 30.72 30.72

2457.6 122.88 61.44 122.88 61.44 122.88 61.44 61.44

3072 153.60 76.80 122.88 76.80 153.60 76.80 76.80

4915.2 (2) 245.76 122.88 122.88 122.88 245.76 122.88 122.88

6144 (2) 307.20 153.60 122.88 153.60 307.20 153.60 153.60

9830.4 (3) — — 122.88 245.76 — 122.88 245.76

Notes to Table 4–2:

(1) In this table, device families can be grouped with other device families that do not support all of the same CPRI line rates. The values apply only 
for supported CPRI line rates for each device family.

(2) The CPRI IP core does not support CPRI line rates 4915.2 Mbps and 6144 Mbps in variations that target Cyclone IV GX devices.
(3) The CPRI IP core supports CPRI line rate 9830.4 Mbps in variations that target Stratix V (GX or GT) and Arria V GT devices. The CPRI IP core 

does not support CPRI line rate 9830.4 Mbps for any other devices, including Arria V GX devices.
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Reset Requirements
When you generate a CPRI IP core variation that targets an Arria V or Stratix V 
device, you generate an Altera Deterministic Latency PHY IP core or Altera Native 
PHY IP core with specific default settings. However, you set the gxb_refclk 
frequency in the CPRI parameter editor. As described in Chapter 3, Parameter 
Settings, for these target devices the CPRI parameter editor provides a list of potential 
transceiver reference clock frequencies from which you select the frequency that is 
most convenient for your design.

Reset Requirements
The CPRI IP core has multiple independent reset signals.To reset the CPRI IP core 
completely, you must assert all the reset signals.

You can assert all reset signals asynchronously to any clock. However, each reset 
signal must be asserted for at least one full clock period of a specific clock, and be 
deasserted synchronously to the rising edge of that clock. For example, the CPU 
interface reset signal, cpu_reset, must be deasserted on the rising edge of cpu_clk. 
Table 4–3 lists the reset signals and their corresponding clock domains.

Table 4–3. Reset Signals and Corresponding Clock Domains

Reset Signal Clock Domain Description

reset reconfig_clk
Resets the CPRI protocol interface. Drives the 
reset controller.

gxb_powerdown —

Powers down and resets the high-speed 
transceiver block. For setup and hold times, 
refer to the relevant device handbook. This 
signal is not present in CPRI IP core variations 
that target an Arria V or Stratix V device.

reset_ex_delay clk_ex_delay Resets the extended delay measurement block.

config_reset cpri_clkout Resets the registers to their default values.

cpu_reset cpu_clk Resets the CPU interface.

mapN_rx_reset mapN_rx_clk
Resets the MAP Channel N receiver block in 
FIFO or synchronous buffer MAP 
synchronization mode.

mapN_tx_reset mapN_tx_clk
Resets the MAP Channel N transmitter block in 
FIFO or synchronous buffer MAP 
synchronization mode.
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You must implement logic to ensure the minimal hold time and synchronous 
deassertion of each reset input signal to the CPRI IP core. Figure 4–5 shows a circuit 
that ensures these conditions for one reset signal.

For more information about the requirements for reset signals, refer to Chapter 6, 
Signals.

The CPRI IP core has a dedicated reset control module to enforce the specific reset 
requirements of the high-speed transceiver module. This reset controller generates the 
recommended reset sequence for the transceiver. The reset signal controls the reset 
control module.

In Arria V and Stratix V devices, the Altera Deterministic Latency PHY IP core or 
Altera Native PHY IP core that is generated with the CPRI IP core implements the 
reset controller. In earlier device families, the reset control module is internal to the 
CPRI IP core, but external to the ALTGX megafunction instance generated with the 
CPRI IP core.

After reset, your software must perform link synchronization and other initialization 
tasks. For information about the required initialization sequence following CPRI IP 
core reset, refer to Appendix A, Initialization Sequence.

MAP Interface
The CPRI IP core MAP interface comprises the individual antenna-carrier interfaces, 
or data channels, through which the CPRI IP core transfers IQ sample data to and 
from the RF implementation. The MAP interface is implemented as an incoming and 
an outgoing Avalon-ST interface. The Avalon-ST interface provides a standard, 
flexible, and modular protocol for data transfers from a source interface to a sink 
interface.

f For information about the Avalon-ST interface, refer to Avalon Interface Specifications.

Figure 4–5. Circuit to Ensure Synchronous Deassertion of Reset Signal
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MAP Interface
The CPRI IP core communicates with the RF implementations (antenna-carriers) 
through multiple AxC interfaces, or data channels. A CPRI IP core configured with a 
MAP interface module can have as many as 24 data channels, and as few as one data 
channel. If a CPRI IP core is configured with zero data channels, it does not have a 
MAP interface module. The Number of antenna/carrier interfaces value you set in 
the parameter editor determines the number of channels in your CPRI IP core 
configuration. Each data channel communicates with the corresponding RF 
implementation using two 32-bit Avalon-ST interfaces, one interface for incoming 
communication and one interface for outgoing communication.

The MAP interface module controls transmission and reception of data on the AxC 
interfaces. 

This section contains the following topics:

■ MAP Interface Mapping Modes

■ MAP Receiver Interface

■ MAP Transmitter Interface

MAP Interface Mapping Modes
The CPRI IP core supports basic and advanced MAP interface mapping modes. 

In the basic mapping mode, all of the AxC interfaces use the same sample rate and 
sample width, and the uplink and downlink sample rates are identical.

In the advanced mapping modes, different data channels can use different sample 
rates, and the sample rates need not be integer multiples of 3.84 MHz. However, all 
data channels use the same sample width. 

If you select All as the value for Mapping mode(s) in the CPRI parameter editor, the 
map_mode field of the CPRI_MAP_CONFIG register determines the mapping mode your 
CPRI IP core implements currently. Otherwise, the value you specify for this 
parameter determines the single mapping mode your CPRI IP core implements. 

The CPRI IP core supports the following MAP interface mapping modes:

■ Basic mapping mode—This mode is programmed with the value of 2’b00 in the 
map_mode register field, and is described in the following section.

■ Advanced 1—This mode is programmed with the value of 2’b01 in the map_mode 
register field, and is described in Appendix C, Advanced AxC Mapping Modes.

■ Advanced 2—This mode is programmed with the value of 2’b10 in the map_mode 
register field, and is described in Appendix C, Advanced AxC Mapping Modes.

■ Advanced 3—This mode is programmed with the value of 2’b11 in the map_mode 
register field, and is described in Appendix C, Advanced AxC Mapping Modes.

Basic AxC Mapping Mode
The basic mapping mode supports the LTE/E-UTRA and UMTS/WCDMA 
standards. This mapping mode is implemented when you configure and program 
your CPRI IP core in either of the following ways:

■ If you select Basic as the value for Mapping mode(s) in the CPRI parameter editor.
June 2012 Altera Corporation CPRI MegaCore Function
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■ If you select All as the value for Mapping mode(s) in the CPRI parameter editor 
and you program the map_mode field of the CPRI_MAP_CONFIG register with the 
value of 2’b00. 

In this basic mapping mode, all of the AxC interfaces use the same sample rate and 
sample width. The CPRI IP core supports sample rates of 3.84 × 106 through 
30.72 × 106 (3.84 × 106 × 8) samples per second, in increments of 3.84 × 106, and sample 
widths of 15 bits and 16 bits. The uplink and downlink sample rates are identical.

In this mode, the map_ac field of the CPRI_MAP_CNT_CONFIG register specifies the 
number of active data channels, that is, those that have a corresponding AxC 
container in the IQ data block of each basic frame. This number must be less than or 
equal to the N_MAP value you selected for Number of antenna/carrier interfaces in 
the parameter editor, which is the number of channels configured in the CPRI IP core 
instance. The map_n_ac field of the CPRI_MAP_CNT_CONFIG register holds the 
oversampling factor for the data channels. This value is an integer from 1 to 8. The 
sample rate—number of samples per second—is the product of 3.84 × 106 and the 
oversampling factor.

In the basic mapping mode, AxC containers are packed in the IQ data block in the 
packed position (Option 1) illustrated in Section 4.2.7.2.3 of the CPRI V4.2 
Specification. Figure 4–6 shows how the AxC containers map to the individual active 
data channels. The oversampling factor is the number of 32-bit data words in each 
AxC container.

Figure 4–6. CPRI Basic Mapping Mode
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1 The CPRI IP core does not support AxC interface reordering. When the value of 
map_ac is less than N_MAP, the first map_ac AxC interfaces, of the existing N_MAP 
interfaces, are active. Note that an active AxC interface transmits and receives data on 
its data channel based on the values of the relevant map_rx_enable bit of the 
CPRI_IQ_RX_BUF_CONTROL register and the relevant map_tx_enable bit of the 
CPRI_IQ_TX_BUF_CONTROL register. Any data in an AxC container for an active but 
disabled channel is ignored, and an incoming AxC container designated from a 
disabled channel is ignored.

The map_15bit_mode field of the CPRI_MAP_CONFIG register specifies the sample width. 
The sample width is the number of significant bits —15 or 16—in each 16-bit half 
(originally, I- or Q-sample) of the 32-bit data word on the Avalon-ST data channel. In 
15-bit mode, the least significant bit in each half of the 32-bit word is ignored when 
received from the data channel on input signal mapN_tx_data[31:0], and is set to 0 
when transmitted on the data channel in output signal mapN_rx_data[31:0]. 
Therefore, bit 15 and bit 31 of the data word correspond to bit 14 of the I and Q 
samples, respectively; bit 1 and bit 17 of the data word correspond to bit 0 of the I and 
Q samples, respectively; and bits 0 and 16 of the data word are ignored. In 16-bit 
mode, bit 15 and bit 31 of the data word correspond to bit 15 of the I and Q samples, 
respectively, and bit 0 and bit 16 of the data word correspond to bit 0 of the I and Q 
samples, respectively. Figure 4–7 shows the bit correspondence for both sample 
widths.

You set the oversampling factor to match the frequency of your active data channels. 
The CPRI line rate determines the number of bits in the IQ data block of each basic 
frame. If your CPRI IP core has a high line rate and a low oversampling factor, it can 
accommodate a larger number of active data channels than if the line rate were lower 
or the oversampling factor higher. 

In 15-bit mode, inside the CPRI IP core, bits 0 and 16 of the Avalon-ST data are absent 
from the compact IQ data word representation. Therefore, despite the fact that in 
15-bit mode the IQ data goes out on the data channel in 32-bit words, formatted as 

Figure 4–7. Bit Correspondence Between IQ Sample and 32-Bit Avalon-ST Data

16-Bit Width IQ Sample:

Q: I:
15 1 0 15 2 1 0

Avalon-ST Data Word in AxC Container:

31 17 16 15 2 1 0

15-Bit Width IQ Sample:

Q: I:
14 0 14 2 1 0
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shown in Figure 4–7, the maximum number of active data channels is higher in 15-bit 
mode. Table 4–4 shows the correspondence between these frequency factors in 16-bit 
mode, and Table 4–5 shows the correspondence between these factors in 15-bit mode.

In 16-bit mode, the total number of bits in all the AxC containers in a basic frame is

2 × 16 × map_n_ac × map_ac

In 15-bit mode, the total number of bits in all the AxC containers in a basic frame is

2 × 15 × map_n_ac × map_ac

Table 4–4. Maximum Number of Active Data Channels in 16-Bit Mode

CPRI
Line Rate 

(Mbps)

Number of Bits
in

IQ Data Block

Maximum Number of Active Data Channels in 16-Bit Mode

Data Channel 
Bandwidth LTE 
(MHz)

2.5 5 10 15 20

Sample Rate
(106 Sample/Sec) 3.84 7.68 15.36 23.04 30.72

614.4 120 3 1 — — —

1228.8 240 7 3 2 1 —

2456.7 480 15 7 3 2 1

3072 600 18 9 4 3 2

4915.2 960 30 (1) 15 7 5 3

6144 1200 37 (1) 18 9 6 4

9830.4 1920 60 (1) 30 (1) 15 10 7

Note to Table 4–4:

(1) The maximum number of data channels supported by the CPRI IP core is 24. The numbers in the table that are larger than 24 are hypothetical; 
the CPRI IP core cannot implement them.

Table 4–5. Maximum Number of Active Data Channels in 15-Bit Mode

CPRI
Line Rate 

(Mbps)

Number of Bits
in

IQ Data Block

Maximum Number of Active Data Channels in 15-Bit Mode

Data Channel 
Bandwidth LTE 
(MHz)

2.5 5 10 15 20

Sample Rate
(106 Sample/Sec) 3.84 7.68 15.36 23.04 30.72

614.4 120 4 2 1 — —

1228.8 240 8 4 2 1 1

2456.7 480 16 8 4 2 2

3072 600 20 10 5 3 2

4915.2 960 32 (1) 16 8 5 4

6144 1200 40 (1) 20 10 6 5

9830.4 1920 64 (1) 32 (1) 16 10 8

Note to Table 4–5:

(1) The maximum number of data channels supported by the CPRI IP core is 24. The numbers in the table that are larger than 24 are hypothetical; 
the CPRI IP core cannot implement them.
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This value must be no larger than the number of bits in the IQ data block. The number 
of bits in an IQ data block depends on the CPRI line rate, as shown in Table 4–4 and 
Table 4–5. 

1 If the combination of CPRI line rate, map_n_ac value, and map_ac value requires more 
data bits than the number of data bits that fit in the IQ data block, the data for the first 
active data channels is transferred correctly, but the data for data channels beyond the 
number indicated in Table 4–4 or Table 4–5 is not transferred correctly.

The following CPRI IP core registers are ignored in basic mapping mode:

■ CPRI_MAP_TBL_CONFIG register (Table 7–33 on page 7–15)

■ CPRI_MAP_TBL_INDEX register (Table 7–34 on page 7–16)

■ CPRI_MAP_TBL_RX register (Table 7–35 on page 7–16)

■ CPRI_MAP_TBL_TX register (Table 7–36 on page 7–17)

Advanced AxC Mapping Modes
The CPRI IP core provides advanced AxC mapping modes to support the following 
mapping methods from the CPRI V4.2 Specification:

■ Method 1: IQ Sample Based, described in Section 4.2.7.2.5 of the CPRI V4.2 
Specification.

■ Method 3: Backward Compatible, described in Section 4.2.7.2.7 of the CPRI V4.2 
Specification.

In the advanced mapping modes, different data channels can use different sample 
rates, and the sample rates need not be integer multiples of 3.84 MHz. However, all 
data channels use the same sample width. 

Your CPRI IP core implements one of the advanced AxC mapping modes when you 
configure and program your CPRI IP core in any of the following ways:

■ If you select Advanced 1, Advanced 2, or Advanced 3 as the value for Mapping 
mode(s) in the CPRI parameter editor.

■ If you select All as the value for Mapping mode(s) in the CPRI parameter editor 
and you program the map_mode field of the CPRI_MAP_CONFIG register with the 
value of 2’b01, 2’b10, or 2’b11. 

For more information about the advanced AxC mapping modes in the Altera CPRI IP 
core, refer to Appendix C, Advanced AxC Mapping Modes.

MAP Receiver Interface
The CPRI IP core MAP receiver interface presents the IQ data that the CPRI IP core 
unloads from the CPRI frame received on the CPRI link. The MAP receiver 
implements an Avalon-ST interface protocol. Refer to “MAP Receiver Signals” on 
page 6–1 for details of the interface communication signals.
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The MAP receiver interface presents the IQ data on each antenna-carrier interface 
according to one of three different synchronization modes. The synchronization mode 
is determined by your selection in the CPRI parameter editor and by the value you 
program in the map_rx_sync_mode field of the CPRI_MAP_CONFIG register (Table 7–31 on 
page 7–14), as shown in Table 4–6.

Table 4–7 lists the clocks for the AxC interfaces in the different Rx synchronization 
modes.

You determine the AxC interface clocks when you turn the Enable MAP interface 
synchronization with core clock parameter on (SYNC_MAP = 1) or off (SYNC_MAP 
= 0) in the CPRI parameter editor before you generate your CPRI IP core.

MAP Receiver Interface Signals in Different Synchronization Modes
The different CPRI IP core MAP synchronization modes use different interface 
signals. Table 4–8 lists the MAP receiver interface signals used in each of these modes. 
Table notes indicate the correct interpretation of the different symbols.

Table 4–6. MAP Rx Synchronization Mode Determined by CPRI_MAP_CONFIG Register Bits

SYNC_MAP (1) map_rx_sync_mode
(register bit [2]) Rx Synchronization Mode

0 0 FIFO mode (page 4–17)

0 1 Synchronous buffer mode (page 4–18)

1 — (2) Internally-clocked mode (page 4–20)

Notes to Table 4–6:

(1) You determine the value of SYNC_MAP when you generate your CPRI IP core. Refer to Chapter 3, Parameter 
Settings.

(2) When SYNC_MAP has the value of 1, the value in the map_rx_sync_mode bit of the CPRI_MAP_CONFIG register 
is ignored.

Table 4–7. MAP Rx Interface Clocks Determined by Rx Synchronization Mode

Rx Synchronization Mode AxC Channel Clocks

FIFO mode Each AxC Rx interface is clocked by its own mapN_rx_clk clock 
driven by the application.Synchronous buffer mode

Internally-clocked mode Every AxC interface is clocked by the CPRI IP core clock, 
cpri_clkout.

Table 4–8. MAP Receiver Interface Signals by Synchronization Mode (1) (Part 1 of 2)

Signal Name Direction

Available in Synchronization Mode

FIFO Synchronous 
Buffer

Internally 
Clocked

map{23…0}_rx_clk Input v v — (2)

map{23…0}_rx_reset Input v v — (2)

map{23…0}_rx_ready Input v 1 (3) — (2), (4)

map{23…0}_rx_data[31:0] Output v v v
map{23…0}_rx_valid Output v — (2) v
map{23…0}_rx_resync Input — (2) v — (2)
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For descriptions of the signals in Table 4–8, refer to Table 6–1 on page 6–1 and to the 
following sections.

MAP Receiver in FIFO Mode
In FIFO mode, each data channel, or AxC interface, is clocked by an 
application-driven clock mapN_rx_clk, and has an output data-available signal, 
mapN_rx_valid. Each AxC interface N asserts its mapN_rx_valid signal when it has 
data available to send on this data channel—when the buffer level is above the 
threshold indicated in the CPRI_MAP_RX_READY_THR register. 

For details about the behavior of the individual signals in FIFO mode, refer to “MAP 
Receiver Signals” on page 6–1. Figure 4–8 shows the typical behavior of the MAP Rx 
signals in this synchronization mode.

When the application is ready to receive data on the data channel, it asserts the 
mapN_rx_ready signal. While the CPRI IP core asserts the mapN_rx_valid signal and 
the mapN_rx_ready signal is not asserted, the CPRI IP core holds the data value on 
mapN_rx_data[31:0]. The application must assert the mapN_rx_ready signal before the 
mapN Rx buffer overflows, to avoid data corruption. While the mapN_rx_ready signal 

map{23…0}_rx_start Output — (2) — (2) v
map{23…0}_rx_status_data
[2:0]

Output v v v
Notes to Table 4–8:

(1) A checkmark indicates the signal is used in a synchronization mode, and a dash indicates the signal is not used in 
that synchronization mode. 

(2) An entry with a dash indicates a signal that does not participate in the MAP receiver interface communication in 
this synchronization mode. The signal is either not present in the configuration or is ignored. An input signal that 
is ignored is ignored by the CPRI IP core. An output signal that is ignored should be ignored by the application. 
Refer to Table 6–1 on page 6–1 for information about the case that is relevant for each signal.

(3) A zero or one indicates the application must hold this input signal low or high, respectively. 
(4) Altera recommends that you tie the mapN_rx_ready signals high or low in your internally-clocked variation, rather 

than leave them floating.

Table 4–8. MAP Receiver Interface Signals by Synchronization Mode (1) (Part 2 of 2)

Signal Name Direction

Available in Synchronization Mode

FIFO Synchronous 
Buffer

Internally 
Clocked

Figure 4–8. MAP Receiver Interface in FIFO Mode

mapN_rx_clk

mapN_rx_ready

mapN_rx_valid

mapN_rx_data[31:0]
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is not yet asserted, the mapN Rx buffer continues to fill. When it overflows, the new 
data overwrites current data in the mapN Rx buffer. Each mapN Rx buffer is 
implemented as a circular buffer, so the data is overwritten starting at the current 
head of the mapN Rx buffer, that is, starting from the initial data not yet sent out on 
the data channel.

FIFO-based communication is simple but does not allow easy control of buffer delay. 
The delay through each mapN Rx buffer depends on your programmed threshold 
value and the application. Data is not sent to a data channel before the buffer 
threshold is reached, so the delay through the buffer depends on the fill level. Each 
AxC interface has the same buffer threshold, but each Rx buffer reaches that threshold 
independently. 

MAP Receiver in Synchronous Buffer Mode
In synchronous buffer mode, each AxC interface has a resynchronization signal, 
mapN_rx_resync. The application that controls the data channel asserts its 
resynchronization signal synchronously with the mapN_rx_clk clock. After the 
application asserts the resynchronization signal, it begins reading data on the 
mapN_rx_data[31:0] data bus for the individual AxC interface. 

In synchronous buffer mode, the application should ignore the mapN_rx_valid output 
signals and hold the mapN_rx_ready input signals high. The CPRI IP core does assert 
the mapN_rx_valid output signals in response to the mapN_rx_ready signals. If the 
application does not hold the mapN_rx_ready input signals high, the CPRI IP core 
MAP Rx interface does not function correctly.

For details about the behavior of the individual signals in synchronous buffer mode, 
refer to “MAP Receiver Signals” on page 6–1. 

Figure 4–9 shows the behavior of the MAP Rx signals in synchronous buffer mode. In 
this example, the CPRI line rate is 2457.6 Mbps. The cpri_rx_start signal is asserted 
for the duration of a single frame, and the CPRI line rate determines the duration of a 
basic frame in cpri_clkout cycles. At 2457.6 Mbps, a basic frame is 16 cpri_clkout 
cycles. At this line rate, as shown in Table 4–2 on page 4–8, the cpri_clkout frequency 
is 61.44 MHz. The mapN_rx_clk frequency is 7.68 MHz (oversampling rate 2), 
approximately 0.125 times the cpri_clkout frequency.

Figure 4–9. MAP Receiver Interface in Synchronous Buffer Mode

cpri_clkout

cpri_rx_start

mapN_rx_clk

mapN_rx_ready

mapN_rx_resync

mapN_rx_data[31:0]
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1 To ensure IP core control over the resynchronization signal timing, Altera 
recommends that your application trigger the mapN_rx_resync signal with the CPRI 
IP core output signal cpri_rx_start. The CPRI AUX interface asserts the 
cpri_rx_start signal according to the offset value specified in the 
user-programmable CPRI_START_OFFSET_RX register.

Asserting the resynchronization signal ensures correct alignment between the RF 
implementation and the CPRI basic frame at the appropriate offset from the start of 
the 10 ms radio frame. You control the mapN_rx_resync signals to ensure that the IP 
core accommodates your application-specific constraints.

Figure 4–10 shows the roles of the CPRI_START_OFFSET_RX and CPRI_MAP_OFFSET_RX 
registers in ensuring correct alignment.

The values programmed in the CPRI_START_OFFSET_RX register control the assertion of 
the cpri_rx_start signal. The values in the start_rx_offset_z, start_rx_offset_x, 
and start_rx_offset_seq fields specify a hyperframe number, basic frame number, 
and word number in the basic frame, respectively, within the 10 ms frame. 

The CPRI master transmitter loads the AxC container block on the CPRI link at a 
specific location in the 10 ms frame; the system programs the information for this 
location in the CPRI_START_OFFSET_RX register. The CPRI slave receiver learns the 
location of the AxC container block from the CPRI_START_OFFSET_RX register. 

For example, if the CPRI_START_OFFSET_RX register is programmed with the value 
0x00020001, the CPRI receiver asserts the cpri_rx_start signal at word index 2 of 
basic frame 1 of hyperframe 0 in the 10ms frame. The data channel application 
samples the cpri_rx_start signal, detects it is asserted, and then synchronizes the 
received IQ sample to the RX MAP AxC interface by asserting the mapN_rx_resync 
signal. Assertion of the mapN_rx_resync signal resets the read pointer of current 
antenna-carrier interface (mapN) Rx buffer to zero. The mapN_rx_data can safely be 
sampled by the data channel one cycle after the mapN_rx_resync signal is asserted.

The offset programmed in the CPRI_MAP_OFFSET_RX register tells the MAP receiver 
interface when to reset the write pointer of the Rx buffer: when the internal counters 
match the value in the CPRI_MAP_OFFSET_RX register, the write pointer resets. If the 
offset in this register has the value of zero, the write pointer resets at the start of every 
10 ms radio frame. After the MAP receiver block resets the write pointer, it begins 
transferring IQ data from the CPRI frame to the Rx buffer.

Figure 4–10. User-Controlled Delays to the AxC Data Channels in Rx Synchronous Buffer Mode

cpri_rx_start

cpri_rx_rfp / _hfp

mapN_rx_resync

CPRI_START_OFFSET_RX

CPRI_MAP_OFFSET_RX

sample 0 sample 1sample 2 sample 3 sample 4 sample 5 sample 6

sample 0 sample 1sample 2 sample 3 sample 4 sample 5 sample 6

Read from mapN Rx buffer in the first read cycle after the resync signal:

Write to mapN Rx buffer according to CPRI_MAP_OFFSET_RX value:
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1 In advanced mapping modes, the K counter is reset to zero at the same time, so that it 
advances from zero with the transfer of the data to the MAP Rx buffer, tracking the 
packing of the CPRI data contents into the AxC container block.

Because the mapN Rx buffer should not be read before it is written, the offset 
specified in the CPRI_MAP_OFFSET_RX register must precede the offset specified in the 
CPRI_START_OFFSET_RX register. The CPRI IP core informs you of buffer overflow and 
underflow (in the CPRI_IQ_RX_BUF_STATUS register described in Table 7–48 on 
page 7–21, as reported in the mapN_rx_status_data output signals described in 
Table 6–1 on page 6–1), but it does not prevent them from occurring. Altera 
recommends that you implement a separate tracking protocol to ensure you do not 
overflow or underflow the mapN Rx buffer.

You set the values in the CPRI_START_OFFSET_RX and CPRI_MAP_OFFSET_RX registers to 
specify the timeslot in the 10 ms radio frame in which your application expects to 
sample the data on the antenna-carrier interface.

In synchronous buffer mode, because programmed offsets control the mapN Rx 
buffer pointers, the delay through each mapN Rx buffer can be quantified. 

1 In synchronous buffer mode, Altera recommends that you use sample rates that are 
integer multiples of 3.84 MHz, or for implementing the WiMAX protocol, that you use 
sample rates that provide the exact frequency required.

MAP Receiver in the Internally-Clocked Mode
In the internally-clocked mode, cpri_clkout drives the antenna-carrier interfaces, in 
contrast to the other two synchronization modes in which the antenna-carrier 
interfaces are clocked by the input mapN_rx_clk clocks. Each AxC interface has only a 
two-stage buffer, and data passes quickly from the MAP block out to the individual 
data channels. Each AxC interface has a ready output signal, mapN_rx_start. Each 
AxC interface asserts its ready signal when it first has data ready to transmit on this 
data channel. 

The CPRI IP core asserts the mapN_rx_start and mapN_rx_valid signals 
simultaneously, synchronously with the cpri_clkout clock, when it makes data 
available on the mapN_rx_data[31:0] data bus for the individual AxC interface. It 
may also assert mapN_rx_valid before valid data is available. In that case, it does not 
assert mapN_rx_start. In each 10 ms radio frame, for each antenna-carrier channel N, 
the application should ignore the mapN_rx_valid and mapN_rx_data signals until the 
CPRI IP core asserts the mapN_rx_start signal. Refer to Figure 4–11 for an example.

For details about the behavior of the individual signals in the internally-clocked 
mode, refer to “MAP Receiver Signals” on page 6–1. 

Figure 4–11 shows an example of the behavior of the MAP Rx signals in this 
synchronization mode in the basic mapping mode (map_mode = 2’b00). The example 
CPRI IP core is configured and programmed with the following features:

■ CPRI line rate is 1228.8 Mbps. Therefore the duration of a basic frame is 8 
cpri_clkout cycles. 

■ Three active antenna-carrier interfaces.
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■ In the CPRI_MAP_OFFSET_RX register, the cpri_rx_offset_z field has the value of 3 
and the cpri_rx_offset_x field has the value of 4. 

In Figure 4–11, the map0_rx_start signal pulses synchronously with the first rising 
edge of map0_rx_valid following the CPRI frame offset specified in the 
CPRI_MAP_OFFSET_RX register. The mapN_rx_valid signals are asserted in round-robin 
order, following the basic mapping mode. 

The internally-clocked mode is useful only with the basic mapping mode. The 
advantage of the advanced mapping modes is their support for different clocks on 
different antenna-carrier interfaces, a feature not available with the internally-clocked 
synchronization mode.

MAP Transmitter Interface
The MAP transmitter interface receives data from the data channels and passes it to 
the CPRI protocol interface to transmit on the CPRI link. The MAP transmitter 
implements an Avalon-ST interface protocol. Refer to “MAP Transmitter Signals” on 
page 6–3 for details of the interface communication signals. 

Figure 4–11. MAP Receiver Interface in the internally-Clocked Mode
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MAP transmitter communication on the individual data map interfaces coordinates 
the transfer of data according to one of three different synchronization modes. The 
synchronization mode is determined by your selection in the CPRI parameter editor 
and by the value you program in the map_tx_sync_mode field of the CPRI_MAP_CONFIG 
register (Table 7–31 on page 7–14), as shown in Table 4–9.

Table 4–10 lists the clocks for the AxC interfaces in the different Tx synchronization 
modes.

You determine the AxC interface clocks when you turn the Enable MAP interface 
synchronization with core clock parameter on (SYNC_MAP = 1) or off (SYNC_MAP 
= 0) in the CPRI parameter editor before you generate your CPRI IP core.

MAP Transmitter Interface Signals in Different Synchronization Modes
The different CPRI IP core MAP synchronization modes use different interface 
signals. Table 4–11 lists the MAP transmitter interface signals used in each of these 
modes. Table notes indicate the correct interpretation of the different symbols.

Table 4–9. MAP Tx Synchronization Mode Determined by CPRI_MAP_CONFIG Register Bits

SYNC_MAP (1) map_tx_sync_mode
(register bit [3]) Tx Synchronization Mode

0 0 FIFO mode (page 4–23)

0 1 Synchronous buffer mode (page 4–24)

1 — (2) Internally-clocked mode (page 4–26)

Notes to Table 4–9:

(1) You determine the value of SYNC_MAP when you generate your CPRI IP core. Refer to Chapter 3, Parameter 
Settings.

(2) When SYNC_MAP has the value of 1, the value in the map_tx_sync_mode bit of the CPRI_MAP_CONFIG register 
is ignored.

Table 4–10. MAP Tx Interface Clocks Determined by Tx Synchronization Mode

Tx Synchronization Mode AxC Channel Clocks

FIFO mode Each AxC Tx interface is clocked by its own mapN_tx_clk clock 
driven by the application.Synchronous buffer mode

Internally-clocked mode Every AxC interface is clocked by the CPRI IP core clock, 
cpri_clkout.

Table 4–11. MAP Transmitter Interface Signals by Synchronization Mode (1) (Part 1 of 2)

Signal Name Direction

Available in Synchronization Mode

FIFO Synchronous 
Buffer

Internally 
Clocked

map{23…0}_tx_clk Input v v — (2)

map{23…0}_tx_reset Input v v — (2)

map{23…0}_tx_valid Input v v v
map{23…0}_tx_data[31:0] Input v v v
map{23…0}_tx_ready Output v — (2) v
map{23…0}_tx_resync Input — (2) v — (2)
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For descriptions of the signals in Table 4–11, refer to Table 6–2 on page 6–4 and to the 
following sections.

MAP Transmitter in FIFO Mode
In FIFO mode, each data channel, or AxC interface, has an output ready signal, 
mapN_tx_ready. Each AxC interface asserts its ready signal when it is ready to receive 
data on this data channel for transmission to the CPRI protocol interface—when the 
buffer level is at or below the threshold indicated in the CPRI_MAP_TX_READY_THR 
register. 

After the CPRI IP core asserts the mapN_tx_ready signal, the application is expected to 
respond by asserting the mapN_tx_valid signal and presenting data on mapN_tx_data. 
In every mapN_tx_clk cycle immediately following a mapN_tx_clk cycle in which 
mapN_tx_ready is (becomes or remains) asserted, the application can present valid 
data on mapN_tx_data, as prescribed by the Avalon-ST specification with 
READY_LATENCY value 1.

For details about the behavior of the individual signals in FIFO mode, refer to “MAP 
Transmitter Signals” on page 6–3. Figure 4–12 shows the expected typical behavior of 
the MAP Tx signals in this synchronization mode.

FIFO-based communication is simple but does not allow easy control of buffer delay. 
The delay through each mapN Tx buffer depends on your programmed threshold 
value and the application. Data is not read from the mapN Tx buffer until the buffer 
threshold is reached, so the delay through the buffer depends on the fill level. Each 
AxC interface has the same buffer threshold, but each Tx buffer reaches that threshold 
independently. 

map{23…0}_tx_status_data
[2:0]

Output v v v
Notes to Table 4–11:

(1) A checkmark indicates the signal is used in a synchronization mode, and a dash indicates the signal is not used in 
that synchronization mode. 

(2) An entry with a dash indicates a signal that does not participate in the MAP receiver interface communication in 
this synchronization mode. The signal is either not present in the configuration or is ignored. An input signal that 
is ignored is ignored by the CPRI IP core. An output signal that is ignored should be ignored by the application. 
Refer to Table 6–2 on page 6–4 for information about the case that is relevant for each signal.

Table 4–11. MAP Transmitter Interface Signals by Synchronization Mode (1) (Part 2 of 2)

Signal Name Direction

Available in Synchronization Mode

FIFO Synchronous 
Buffer

Internally 
Clocked

Figure 4–12. MAP Transmitter Interface in FIFO Mode
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MAP Transmitter in Synchronous Buffer Mode
In the synchronized communication, called synchronous buffer mode, each AxC 
interface has an incoming resynchronization signal, mapN_tx_resync. Application 
software asserts this resynchronization signal synchronously with the mapN_tx_clk 
clock. When the application software asserts the resynchronization signal, it also 
asserts the mapN_tx_valid signal and begins sending valid data on the 
mapN_tx_data[31:0] data bus for the individual AxC interface. 

In synchronous buffer mode, the application should ignore the mapN_tx_ready output 
signals. However, it should assert the mapN_tx_valid input signals when sending 
valid data. The CPRI IP core holds the mapN_tx_ready output signals high. The 
application must assert the mapN_tx_valid input signals when or immediately after it 
asserts the mapN_tx_resync signals. However, if the application does not assert the 
mapN_tx_valid input signals in the same cycle as the mapN_tx_resync signals, and 
subsequently reasserts mapN_tx_resync while mapN_tx_valid is still high, data in 
transition through the MAP Tx interface buffer is lost.

1 Altera recommends that your application assert the mapN_tx_valid input signals 
when it asserts the mapN_tx_resync signals.

For details about the behavior of the individual signals in synchronous buffer mode, 
refer to “MAP Transmitter Signals” on page 6–3. 

Figure 4–13 shows the expected typical behavior of the MAP Tx signals in this 
synchronization mode. In this example, the CPRI line rate is 2457.6 Mbps. The 
cpri_tx_start signal is asserted for the duration of a single frame, and the CPRI line 
rate determines the duration of a basic frame in cpri_clkout cycles. At 2457.6 Mbps, a 
basic frame is 16 cpri_clkout cycles. At this line rate, as shown in Table 4–2 on 
page 4–8, the cpri_clkout frequency is 61.44 MHz. The mapN_tx_clk frequency is 
7.68 MHz (oversampling rate 2), approximately 0.125 times the cpri_clkout 
frequency.

1 To ensure IP core control over the resynchronization signal timing, Altera 
recommends that your application trigger the mapN_tx_resync signal with the CPRI 
IP core output signal cpri_tx_start. The CPRI AUX interface asserts the 
cpri_tx_start signal according to the offset value specified in the 
user-programmable CPRI_START_OFFSET_TX register.

Figure 4–13. MAP Transmitter Interface in Synchronous Buffer Mode
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cpri_tx_start

mapN_tx_clk

mapN_tx_resync
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mapN_tx_data[31:0]
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Asserting the resynchronization signal ensures correct alignment between the RF 
implementation and the CPRI basic frame at the appropriate offset from the start of 
the 10 ms radio frame. In addition to ensuring that application-specific constraints are 
accommodated, the system can set the CPRI_START_OFFSET_TX register to an offset that 
precedes the desired frame position in the CPRI transmission, in anticipation of the 
delays through the antenna-carrier interface Tx buffer and out to the CPRI Tx frame 
buffer. For information about these delays, refer to “Tx Path Delay” on page D–9. 

Figure 4–14 shows the roles of the CPRI_START_OFFSET_TX and CPRI_MAP_OFFSET_TX 
registers in ensuring correct alignment.

The values programmed in the CPRI_START_OFFSET_TX register control the assertion of 
the cpri_tx_start signal by the CPRI transmitter. The values in the 
start_tx_offset_z, start_tx_offset_x, and start_tx_offset_seq fields specify a 
hyperframe number, basic frame number, and word (sequence) number in the basic 
frame, respectively, within the 10 ms frame. 

The system source of the AxC payload transmits the AxC container block on the data 
channel to target a specific location in the 10 ms frame; the system programs the 
information for this location in the CPRI_START_OFFSET_TX and CPRI_MAP_OFFSET_TX 
registers. The CPRI transmitter learns the location of the AxC container block on the 
AxC interface from the CPRI_START_OFFSET_TX register. For example, if the 
CPRI_START_OFFSET_TX register is programmed with the value 0x000595FE, the CPRI 
transmitter must assert the cpri_tx_start signal at word index 5 of basic frame 254 of 
hyperframe 149 in the 10ms frame. Altera recommends that the data channel 
application sample the cpri_tx_start signal, and when it detects the cpri_tx_start 
signal is asserted, assert the mapN_tx_resync signal to indicate that the samples on 
mapN_tx_data can begin to fill the data words at the specified position in the CPRI 
frame. Assertion of the mapN_tx_resync signal resets the write pointer of the current 
antenna-carrier interface (mapN) Tx buffer to zero, so that the entire buffer is 
available to receive the data from the data channel. The data on mapN_tx_data[31:0] 
can safely be loaded in the mapN Tx buffer in the same cycle that the mapN_tx_resync 
signal is asserted. 

Figure 4–14. User-Controlled Delays in Accepting Data From the AxC Data Channels in Synchronous Buffer Mode

cpri_tx_start

cpri_tx_rfp

cpri_tx_sync_rfp

mapN_tx_resync

CPRI_START_OFFSET_TX

CPRI_MAP_OFFSET_TX

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6

Write to mapN Tx buffer in the first write cycle after the resync signal:

Read from mapN Tx buffer according to CPRI_MAP_OFFSET_TX value:
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On the CPRI side of the mapN Tx buffer, the MAP transmitter interface reads data 
from the mapN Tx buffer and sends it to the CPRI transmitter interface. The offset 
programmed in the CPRI_MAP_OFFSET_TX register tells the MAP transmitter interface 
when to reset the read pointer of the mapN Tx buffer and start transferring data from 
the buffer to the CPRI transmitter interface. The K counter is reset to zero at the same 
time, so that it advances from zero with the transfer of the data to the CPRI 
transmitter interface, tracking the packing of the AxC container block contents into 
the CPRI frame.

Because the mapN Tx buffer should not be read before it is written, the offset specified 
in the CPRI_START_OFFSET_TX register must precede the offset specified in the 
CPRI_MAP_OFFSET_TX register. The CPRI IP core informs you of buffer overflow and 
underflow (in the CPRI_IQ_TX_BUF_STATUS register described in Table 7–49 on 
page 7–21 and as reported in the mapN_tx_status_data output vector described in 
Table 6–2 on page 6–4), but it does not prevent them from occurring. Altera 
recommends that you implement a separate tracking protocol to ensure you do not 
overflow or underflow the mapN Tx buffer.

In synchronous buffer mode, because programmed offsets control the mapN Tx buffer 
pointers, the delay through each mapN Tx buffer can be quantified. 

MAP Transmitter in the Internally-clocked Mode
In the internally-clocked mode, each data channel, or AxC interface, has an output 
ready signal, mapN_tx_ready. Each AxC interface asserts its ready signal when it is 
ready to receive data on this data channel for transmission to the CPRI protocol 
interface—when the buffer level is at or below the threshold indicated in the 
CPRI_MAP_TX_READY_THR register. 

After the CPRI IP core asserts the mapN_tx_ready signal, the application is expected to 
respond by asserting the mapN_tx_valid signal and presenting data on mapN_tx_data. 
In every cpri_clkout cycle in which mapN_tx_ready is asserted, the application can 
present valid data on mapN_tx_data, as prescribed by the Avalon-ST specification with 
READY_LATENCY value 1.

For details about the behavior of the individual signals in the internally-clocked 
mode, refer to “MAP Transmitter Signals” on page 6–3. 
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Figure 4–15 shows an example of the behavior of the MAP Tx signals in this 
synchronization mode in the basic mapping mode (map_mode = 2’b00).

In the internally-clocked mode the delay in the AxC interface block from each data 
channel can be quantified, because this delay is determined solely by the value in the 
CPRI_MAP_OFFSET_TX register. 

Auxiliary Interface
The CPRI auxiliary interface enables multi-hop routing applications and provides 
timing reference information for transmitted and received frames. 

The auxiliary (AUX) interface allows you to connect CPRI IP core instances and other 
system components together by supporting a direct connection to a user-defined 
routing layer or custom mapping block. You implement this routing layer, which is 
not defined in the CPRI V4.2 Specification, outside the CPRI IP core. The AUX 
interface supports the transmission and reception of IQ data and timing information 
between an RE slave and an RE master, allowing you to define a custom routing layer 
that enables daisy-chain configurations of RE master and slave ports. Your custom 
routing layer determines the IQ sample data to pass to other REs to support multi-hop 
network configurations or to bypass the CPRI IP core MAP interface to implement 
custom mapping algorithms outside the IP core. 

Figure 4–15. MAP Transmitter Interface in the Internally-Clocked Mode
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The CPRI IP core implements the AUX receiver and AUX transmitter interfaces as 
separate Avalon-ST interfaces. The AUX transmitter receives data to be transmitted on 
the outgoing CPRI link, and the AUX receiver transmits data received from the 
incoming CPRI link.

f For information about the Avalon-ST interface, refer to Avalon Interface Specifications.

AUX Receiver Module
The AUX receiver module transmits data that the CPRI IP core received on the CPRI 
link to the outgoing AUX Avalon-ST interface. In addition, it provides detailed 
information about the current state in the Rx CPRI frame synchronization state 
machine. This information is useful for custom user logic, including frame 
synchronization across hops in multihop configurations.

The AUX interface receiver module provides the following data and synchronization 
lines: 

■ cpri_rx_sync_state—when set, indicates that Rx, HFN, and BFN 
synchronization have been achieved in CPRI receiver frame synchronization

■ cpri_rx_start—asserted for the duration of the first basic frame following the 
offset defined in the CPRI_START_OFFSET_RX register

■ cpri_rx_rfp and cpri_rx_hfp—synchronization pulses for start of 10 ms radio 
frame and start of hyperframe

■ cpri_rx_bfn and cpri_rx_hfn—current radio frame and hyperframe numbers

■ cpri_rx_x—index number of the current basic frame in the current hyperframe

■ cpri_rx_seq—index number of the current 32-bit word in the current basic frame

■ cpri_rx_aux_data—outgoing data port for sending data and control words 
received on the CPRI link out on the AUX interface

The output synchronization signals are derived from the CPRI frame synchronization 
state machine. These signals are all fields in the aux_rx_status_data bus. For 
additional information about the AUX receiver signals, refer to Table 6–3 on page 6–6.
CPRI MegaCore Function June 2012 Altera Corporation
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Figure 4–16 shows the relationship between the synchronization pulses and numbers.

The AUX receiver presents data on the AUX interface in fixed 32-bit words. The 
mapping to 32-bit words depends on the CPRI IP core line rate. Figure 4–17 shows 
how the data received from the CPRI protocol interface module is mapped to the AUX 
Avalon-ST 32-bit interface. 

Figure 4–16. Synchronization Pulses and Numbers on the AUX Interfaces

cpri_{rx,tx}_rfp

cpri_{rx,tx}_bfn

cpri_{rx,tx}_hfp

cpri_{rx,tx}_hfn

cpri_{rx,tx}_x

cpri_{rx,tx}_seq 0 1 ... NUM_SEQ - 1

2 ...

...210

255

149

10

n n + 1 n + 2

Hyperframe

Radio Frame (10 ms)

Basic Frame

Figure 4–17. AUX Interface Data at Different CPRI Line Rates (Part 1 of 3)

614.4 Mbps
Line Rate:

Sequence number on AUX interface

0 1 2 3

[31:24]: #Z.X.0.0 (1) #Z.X.4.0 #Z.X.8.0 #Z.X.12.0

[23:16]: #Z.X.1.0 #Z.X.5.0 #Z.X.9.0 #Z.X.13.0

[15:8]: #Z.X.2.0 #Z.X.6.0 #Z.X.10.0 #Z.X.14.0

[7:0]: #Z.X.3.0 #Z.X.7.0 #Z.X.11.0 #Z.X.15.0
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1228.8 Mbps 
Line Rate:

Sequence number on AUX interface

0 1 2 ... 7

[31:24]: #Z.X.0.0 (1) #Z.X.2.0 #Z.X.4.0 ... #Z.X.14.0

[23:16]: #Z.X.0.1 (1) #Z.X.2.1 #Z.X.4.1 ... #Z.X.14.1

[15:8]: #Z.X.1.0 #Z.X.3.0 #Z.X.5.0 ... #Z.X.15.0

[7:0]: #Z.X.1.1 #Z.X.3.1 #Z.X.5.1 ... #Z.X.15.1

2457.6 Mbps 
Line Rate:

Sequence number on AUX interface

0 1 2 ... 15

[31:24]: #Z.X.0.0 (1) #Z.X.1.0 #Z.X.2.0 ... #Z.X.15.0

[23:16]: #Z.X.0.1 (1) #Z.X.1.1 #Z.X.2.1 ... #Z.X.15.1

[15:8]: #Z.X.0.2 (1) #Z.X.1.2 #Z.X.2.2 ... #Z.X.15.2

[7:0]: #Z.X.0.3 (1) #Z.X.1.3 #Z.X.2.3 ... #Z.X.15.3

3072.0 Mbps 
Line Rate:

Sequence number on AUX interface

0 1 2 ... 18 19

[31:24]: #Z.X.0.0 (1) #Z.X.0.4 (1) #Z.X.1.3 ... #Z.X.14.2 #Z.X.15.1

[23:16]: #Z.X.0.1 (1) #Z.X.1.0 #Z.X.1.4 ... #Z.X.14.3 #Z.X.15.2

[15:8]: #Z.X.0.2 (1) #Z.X.1.1 #Z.X.2.0 ... #Z.X.14.4 #Z.X.15.3

[7:0]: #Z.X.0.3 (1) #Z.X.1.2 #Z.X.2.1 ... #Z.X.15.0 #Z.X.15.4

4915.0 Mbps 
Line Rate:

Sequence number on AUX interface

0 1 2 ... 30 31

[31:24]: #Z.X.0.0 (1) #Z.X.0.4 (1) #Z.X.1.0 ... #Z.X.14.0 #Z.X.15.4

[23:16]: #Z.X.0.1 (1) #Z.X.0.5 (1) #Z.X.1.1 ... #Z.X.14.1 #Z.X.15.5

[15:8]: #Z.X.0.2 (1) #Z.X.0.6 (1) #Z.X.2.2 ... #Z.X.14.2 #Z.X.15.6

[7:0]: #Z.X.0.3 (1) #Z.X.0.7 (1) #Z.X.2.3 ... #Z.X.15.3 #Z.X.15.7

Figure 4–17. AUX Interface Data at Different CPRI Line Rates (Part 2 of 3)
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AUX Transmitter Module
The AUX transmitter module receives data on the incoming AUX Avalon-ST interface 
and sends it to the CPRI IP core physical layer to transmit on the CPRI link. In 
addition, it outputs CPRI link frame synchronization information, to enable 
synchronization of the AUX data. 

6144.0 Mbps 
Line Rate:

Sequence number on AUX interface

0 1 2 ... 38 39

[31:24]: #Z.X.0.0 (1) #Z.X.0.4 (1) #Z.X.0.8 (1) ... #Z.X.15.2 #Z.X.15.6

[23:16]: #Z.X.0.1 (1) #Z.X.0.5 (1) #Z.X.0.9 (1) ... #Z.X.15.3 #Z.X.15.7

[15:8]: #Z.X.0.2 (1) #Z.X.0.6 (1) #Z.X.1.0 ... #Z.X.15.4 #Z.X.15.8

[7:0]: #Z.X.0.3 (1) #Z.X.0.7 (1) #Z.X.1.1 ... #Z.X.15.5 #Z.X.15.9

9830.4 Mbps 
Line Rate:

Sequence number on AUX interface

0 1 2 3 ... 62 63

[31:24]: #Z.X.0.0 (1) #Z.X.0.4 (1) #Z.X.0.8 (1) #Z.X.0.12 (1) ... #Z.X.15.8 #Z.X.15.12

[23:16]: #Z.X.0.1 (1) #Z.X.0.5 (1) #Z.X.0.9 (1) #Z.X.0.13 (1) ... #Z.X.15.9 #Z.X.15.13

[15:8]: #Z.X.0.2 (1) #Z.X.0.6 (1) #Z.X.0.10 (1) #Z.X.0.14 (1) ... #Z.X.15.10 #Z.X.15.14

[7:0]: #Z.X.0.3 (1) #Z.X.0.7 (1) #Z.X.0.11 (1) #Z.X.0.15 (1) ... #Z.X.15.11 #Z.X.15.15

Note to Figure 4–17:

(1) Light blue table cells indicate control word bytes. White table cells indicate data word bytes.

Figure 4–17. AUX Interface Data at Different CPRI Line Rates (Part 3 of 3)
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The incoming data on the AUX interface must match the CPRI frame with a delay of 
exactly two cpri_clkout clock cycles. The cpri_tx_seq[5:0] value that you read at 
the AUX Tx interface is two cpri_clkout cycles ahead of the internal sequence 
number that tracks the CPRI frame. If you want your IQ sample to land at sequence 
number N of the CPRI frame, then you must present your sample at the AUX Tx 
interface when cpri_tx_seq[5:0] has the value of N+2. Figure 4–18 shows the 
expected timing on the incoming AUX connection in a variation with a CPRI line rate 
of 6144.4 Mbps. 

In Figure 4–18, the application presents data when cpri_tx_seq[5:0] has the value of 
4, and sets the value of cpri_tx_aux_mask, to ensure the data is loaded in the CPRI 
frame immediately following the control word. Because the CPRI line rate in this 
example is 6144.4 Mbps, the length of the control word is ten bytes. Therefore, the 
application presents the data when cpri_tx_seq[5:0] has the value of 4 to ensure the 
data is loaded in the CPRI frame at position 2.

In addition, to ensure the CPRI IP core transmits the incoming AUX data correctly on 
the CPRI link, you must format the incoming AUX data in the correct order to match 
the CPRI IP core internal data representation. If you connect two Altera CPRI IP cores 
through a routing layer, and your routing layer does not modify the data transmission 
order, then the correct order is guaranteed. However, if a different application 
transmits data to the CPRI IP core AUX interface, it must enforce the data order that 
the CPRI IP core expects. 

Incoming AUX data to the CPRI IP core appears on cpri_tx_aux_data[31:0], also 
called aux_tx_mask_data[64:32]. Byte [31:24] (64:56]) is transmitted first, and byte 
[7:0] (39:32]) is transmitted last: cpri_tx_aux_data[31:24] is byte 0 in the 
transmission order, and contains the least significant I- and Q-nibbles of the data 
sample. Figure 4–19 illustrates the required data order on this data bus.

Figure 4–18. Incoming AUX Link Synchronization

Note to Figure 4–18:

(1) The cpri_tx_aux_data and cpri_tx_aux_mask signals are fields in the aux_tx_mask_data input bus. Refer to Table 6–4 on page 6–7.

cpri_tx_seq[5:0]

internal tx_seq value[5:0] 

CPRI Frame 

210 3 4 3938

3638

Ctrl Ctrl {Ctrl,feed}

0 1 2 37 3839

  

cpri_tx_aux_mask[31:0] 

cpri_tx_aux_data[31:0] 

 (1)

 (1)

00000000 00000000 00000000 ffffffff ffffffff0000ffff

00000000 00000000

00000000

00000000 00000000 0000feed   

2 cpri_clkout cycles

Figure 4–19. Required Data Sample Order in aux_tx_mask_data[63:32] (cpri_tx_aux_data[31:0])
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The CPRI IP core passes the incoming AUX data through to the CPRI link 
unmodified. You must ensure that the incoming AUX data bits already include any 
CRC values expected by the application at the other end of the CPRI link.

The CPRI transmitter frame synchronization state machine provides the following 
data and synchronization signals on the AUX interface to enable the required precise 
frame timing:

■ cpri_tx_start—asserted for the duration of the first basic frame following the 
offset defined in the CPRI_START_OFFSET_TX register

■ cpri_tx_rfp and cpri_tx_hfp—synchronization pulses for start of 10 ms radio 
frame and start of hyperframe

■ cpri_tx_bfn and cpri_tx_hfn—current radio frame and hyperframe numbers

■ cpri_tx_x—index number of the current basic frame in the current hyperframe 

■ cpri_tx_seq—index number of the current 32-bit word in the current basic frame

■ cpri_tx_aux_data—incoming data port for data on the AUX link

■ cpri_tx_aux_mask—incoming bit mask for AUX link data that indicates bits that 
must be transmitted without changes to the CPRI link

The CPRI IP core layer 1 uses the cpri_tx_aux_mask to select the enabled bit 
values in the control transmit table. When mask bits are set, the corresponding 
data bits from the AUX interface fill the CPRI frame, overriding any 
internally-generated information. You must deassert all the mask bits during 
K28.5 character insertion in the outgoing CPRI frame (which occurs when Z=X=0). 
Otherwise, the CPRI IP core asserts an error signal cpri_tx_error on the 
following cpri_clkout clock cycle to indicate that the K28.5 character expected by 
the CPRI link protocol has been overwritten. You must also ensure you do not 
override synchronization counter values in the control word.

The AUX transmitter module also receives a synchronization pulse in an REC master. 
Application software can pulse the cpri_tx_sync_rfp input signal to resynchronize 
the 10 ms radio frame. Asserting this signal resets the frame synchronization machine 
in an REC master.

In response to the rising edge of its cpri_tx_sync_rfp input signal 
(aux_tx_mask_data[64]), a CPRI REC master IP core restarts the 10 ms radio frame. 
The rising edge of the cpri_tx_sync_rfp signal must be synchronous with the 
cpri_clkout clock. On the seventh cpri_clkout cycle following a cpri_tx_sync_rfp 
pulse, the cpri_tx_hfp and cpri_tx_rfp signals pulse, the cpri_tx_x and 
cpri_tx_hfn signals have the value 0, and the cpri_tx_bfn signal increments from its 
June 2012 Altera Corporation CPRI MegaCore Function
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previous value. Figure 4–20 illustrates the behavior of the CPRI IP core signals in 
response to the cpri_tx_sync_rfp pulse.

For more information about the relationships between the synchronization pulses and 
numbers, refer to Figure 4–16 on page 4–29. For the mapping of data between the 
AUX interface and the CPRI link, refer to Figure 4–17 on page 4–29.

The cpri_tx_aux_data and cpri_tx_aux_mask signals are fields of the 
aux_tx_mask_data bus. The other signals described in the preceding list are fields of 
the aux_tx_status_data bus. For additional information about the AUX transmitter 
signals, refer to Table 6–4 on page 6–7.

Media Independent Interface to an External Ethernet Block
The media independent (MI) interface, or MII, allows the CPRI IP core to 
communicate directly with an external Ethernet MAC block, replacing the internal 
Ethernet MAC. You specify in the CPRI parameter editor whether to implement this 
interface or to use the Ethernet MAC block available with the CPRI IP core. The two 
options are mutually exclusive.

If you configure the CPRI IP core with the MII, you must implement the Ethernet 
MAC block outside the CPRI IP core. 

The MI interface is not a true media-independent interface, because it is clocked by 
the cpri_clkout clock (which drives the cpri_mii_txclk and cpri_mii_rxclk clock 
signals directly), whose frequencies do not match the usual 2.5 MHz and 25 MHz 
frequencies of the media-independent protocol specification. If you use this interface, 
your external Ethernet block must communicate with the CPRI IP core synchronously 
with the cpri_mii_txclk and cpri_mii_rxclk clocks.

The MII supports the bandwidth described in the CPRI V4.2 Specification in Table 12, 
Achievable Ethernet bit rates. 

Figure 4–20. CPRI REC Master Response to cpri_tx_sync_rfp Resynchronization Pulse
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MII Transmitter
The MII transmitter module receives data from the external Ethernet MAC block and 
writes it to the CPRI transmitter module, which transmits it on the CPRI link. It 
performs 4B/5B encoding on the incoming data nibbles before sending them to the 
CPRI transmitter module.

After the CPRI IP core achieves frame synchronization, the MII transmitter module 
can accept incoming data on the MII. The MII transmitter module asserts the 
cpri_mii_txrd signal to indicate it is ready to accept data from the external Ethernet 
MAC block. After the cpri_mii_txrd signal is asserted, the external Ethernet block 
asserts the cpri_mii_txen signal to indicate it is ready to provide data. The MII 
transmitter module deasserts the cpri_mii_txrd signal in the cycle following each 
cycle in which it receives data. It may remain deasserted for multiple cycles, to 
prevent buffer overflow. While the cpri_mii_txrd signal remains low, the external 
Ethernet block must maintain the data value on cpri_mii_txd.

During the first cpri_mii_txclk cycle in which cpri_mii_txen is asserted, the MII 
module inserts an Ethernet J symbol (5’b11000) in the buffer of data to be transmitted 
to the CPRI link; during the second cycle in which cpri_mii_txen is asserted, the MII 
module inserts an Ethernet K symbol (5’b10001) in this buffer. These two symbols 
indicate Ethernet start-of-packet. While the CPRI MII transmitter is inserting the J and 
K symbols, it ignores incoming data on cpri_mii_txd. Refer to Figure 4–21.

Typically, the external Ethernet block asserts cpri_mii_txen one clock cycle after 
cpri_mii_txrd is asserted. While the cpri_mii_txen signal remains asserted, the MII 
transmitter module reads data on the cpri_mii_txd input data bus. Following this 
data sequence, in the first two cpri_mii_txclk cycles in which the cpri_mii_txen 
signal is not asserted, the MII module inserts an Ethernet end-of-packet symbol—T 
followed by R. While the CPRI MII transmitter is inserting the T and R symbols, it 
ignores incoming data on cpri_mii_txd. Refer to Figure 4–21.

While cpri_mii_txen is asserted, the cpri_mii_txer input signal indicates that the 
current nibble on cpri_mii_txd is suspect. Therefore, if the MII transmitter module 
observes that both cpri_mii_txen and cpri_mii_txer are asserted in the same 
cpri_mii_txclk cycle, the MII module inserts an Ethernet HALT symbol (5’b00100). 
Figure 4–23 on page 4–38 provides an example in which the cpri_mii_txer signal is 
asserted, and shows how the error indication propagates to the MII receiver module 
on the CPRI link slave.
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Figure 4–21 illustrates the MII transmitter protocol with no input errors. The 
cpri_mii_txen signal remains asserted for the duration of the packet transfer. 
Although cpri_mii_txrd can be reasserted every other cycle during transmission of 
an Ethernet packet on cpri_mii_txd, this need not always occur. The CPRI MII 
transmitter can deassert cpri_mii_txrd for more than one cycle to backpressure the 
external Ethernet block. In that case, the external Ethernet block must maintain the 
data value on cpri_mii_txd until the cycle following reassertion of cpri_mii_txrd. 

If cpri_mii_txen is deasserted while cpri_mii_txrd is deasserted, and is not 
reasserted in the cycle following the reassertion of cpri_mii_txrd, then the CPRI MII 
transmitter inserts a T symbol in the packet; therefore, the external Ethernet block 
must reassert cpri_mii_txen in the cycle following reassertion of cpri_mii_txrd, 
during transmission of an Ethernet packet on cpri_mii_txd. 

For more information about the MII transmitter module, refer to “CPRI MII 
Transmitter Signals” on page 6–10.

MII Receiver
The MII receiver module receives data from the CPRI link by reading it from the CPRI 
receiver module. It performs 4B/5B decoding on the 5-bit data values before 
transmitting them as 4-bit data values on the MII.

After the CPRI IP core achieves frame synchronization, the MII receiver module can 
send data to the external Ethernet block. The MII receiver module transmits the K 
nibble to indicate start-of-frame on the MII. The J nibble of the start-of-frame is 
consumed by the CPRI IP core, and is not transmitted on the MII.

Figure 4–21. CPRI MII Transmitter Example
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The MII receiver module transmits the K nibble and then the data to the cpri_mii_rxd 
output data bus and asserts the cpri_mii_rxdv signal to indicate that the data 
currently on cpri_mii_rxd is valid. It sends the K nibble and the data to the 
cpri_mii_rxd output data bus on the rising edge of the cpri_mii_rxclk clock. During 
the first cpri_mii_rxclk cycle of every new data value on cpri_mii_rxd, the MII 
receiver module asserts the cpri_mii_rxwr signal. After the MII receiver module 
completes sending data to the external Ethernet block, it deasserts the cpri_mii_rxdv 
signal.

While frame synchronization is not achieved, the cpri_mii_rxer signal remains 
asserted and cpri_mii_rxdv remains deasserted. 

Figure 4–22 illustrates the MII receiver protocol. 

Figure 4–22. CPRI MII Receiver Example
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Figure 4–23 shows an example timing diagram in which an input error is noted on the 
MII of a transmitting RE or REC master, and the data from the MII is transmitted on 
the CPRI link to a receiving RE slave. The timing diagram shows the MII signals on 
the transmitting master and the receiving slave. The data value captured on the MII 
transmitter module of the RE or REC master when cpri_mii_txer is asserted, is 
passed to the CPRI link as a 5-bit Ethernet HALT symbol (5’b00100). The RE slave MII 
receiver module decodes this symbol as an F (4’b1111) while the cpri_mii_rxer signal 
is asserted.

For more information about the MII receiver module, refer to “CPRI MII Receiver 
Signals” on page 6–10.

CPU Interface
Use the CPU interface to communicate the contents of the control word of a CPRI 
hyperframe — VSS, Ethernet, High-Level Data Link Controller (HDLC), and 
synchronization and timing information — and to access status and configuration 
information in the CPRI IP core registers. An on-chip processor such as the Nios II 
processor, or an external processor, can access the CPRI configuration address space 
using this interface. 

The CPU interface provides an Avalon-MM slave interface that accesses all registers in 
the CPRI IP core. The Avalon-MM slave executes transfers between the CPRI IP core 
and the user-defined logic in your design. 

f For information about the Avalon-MM interface, refer to Avalon Interface Specifications.

Figure 4–23. CPRI MII Signals on Transmitting RE or REC Master and on Receiving RE Slave

cpri_mii_txclk

cpri_mii_txrd

cpri_mii_txen

cpri_mii_txd[3:0]

cpri_mii_txer

cpri_mii_rxclk

cpri_mii_rxwr

cpri_mii_rxdv

cpri_mii_rxd[3:0]

D0 D1 D2 D3 D4 D5 D6 D7

D0K D1 D2 D3 F D5 D6 D7

cpri_mii_rxer
CPRI MegaCore Function June 2012 Altera Corporation
User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf


Chapter 4: Functional Description 4–39
CPU Interface
Each of the three sources of input to the CPU interface communicates with the CPRI 
IP core by reading and writing registers through a single Avalon-MM port on the CPU 
interface. Arbitration among the different sources must occur outside the CPRI IP 
core.

If the CPRI IP core is configured with an MII, the application cannot access the IP 
core’s Ethernet registers through the CPU interface. However, if the HDLC block is 
configured, you can access the IP core’s HDLC registers whether or not the MII is 
configured.

For more information about the CPRI IP core registers, refer to Chapter 7, Software 
Interface.

Accessing the Hyperframe Control Words
You can access the 256 control words in a hyperframe through the CPRI IP core CPU 
interface. The CPRI_CTRL_INDEX register (Table 7–7 on page 7–4) and the CPRI_RX_CTRL 
register (Table 7–8 on page 7–4) support your application in reading the incoming 
control words, and the CPRI_CONFIG register (Table 7–6 on page 7–3), 
CPRI_CTRL_INDEX register, and CPRI_TX_CTRL register (Table 7–9 on page 7–5) support 
the application in writing to outgoing control words. 

Register support only provides you access to the initial byte of each control word. You 
can access the full control words through the CPRI IP core AUX interface. 

Table 4–12 summarizes the relevant register fields. For complete information, refer to 
the register tables in Chapter 7, Software Interface.

Table 4–12. Register Support for Control Word Access

Register Register 
Bits Field Name Description

CPRI_CTRL_INDEX
(Table 7–7)

[7:0] cpri_ctrl_index

Index for CPRI control byte monitoring and insertion. The value 
in this field determines the control receive and control transmit 
table entries that appear in the CPRI_RX_CTRL and 
CPRI_TX_CTRL registers. 

CPRI_RX_CTRL
(Table 7–8) [7:0] rx_control_data

Most recent received CPRI control word from CPRI hyperframe 
position Z.x.0, where x is the index in the cpri_ctrl_index 
field of the CPRI_CTRL_INDEX register.

CPRI_TX_CTRL
(Table 7–9)

[8] tx_control_insert Control byte transmit enable.

[7:0] tx_control_data
CPRI control byte to be transmitted in CPRI hyperframe position 
Z.x.0, where x is the index in the cpri_ctrl_index field of the 
CPRI_CTRL_INDEX register.

CPRI_CONFIG
(Table 7–6) [0] tx_ctrl_insert_en

Master enable for insertion of tx_control_data contents in 
CPRI control word. This signal enables control bytes for which 
the tx_control_insert bit is high to be written to the CPRI 
frame. 
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Recording and Retrieving the Incoming Control Bytes
A control receive table contains a 1-byte entry for each of the 256 control words in the 
current hyperframe. To read a control byte, your application must write the control 
word number X to the CPRI_CTRL_INDEX register and then read the last received #Z.X.0 
control byte in the CPRI_RX_CTRL register. Because each table entry is a single byte, you 
can use this access method only to retrieve the first byte of a control word.

Writing the Outgoing Control Bytes
A control transmit table contains an entry for each of the 256 control words in the 
current hyperframe. Each control transmit table entry contains a control byte field and 
an enable bit. As the frame is created, if a control word entry is enabled, and the global 
tx_ctrl_insert_en bit in the CPRI_CONTROL register is set, the low-level transmitter 
writes the control byte to the first byte of the CPRI frame’s control word. 

To write a control byte in the control transmit table, write the control word number X 
to the CPRI_CTRL_INDEX register and then write the next intended #Z.X.0 control byte 
and set the tx_control_insert bit in the CPRI_TX_CTRL register. After you update the 
control transmit table, set the tx_ctrl_insert_en bit of the CPRI_CONFIG register to 
enable the CPRI IP core to write the values from the control transmit table to the 
control words in the outgoing CPRI frame. 

The tx_control_insert bit of the CPRI_TX_CTRL register enables or disables the 
transmission of the corresponding byte in the control transmit table in the CPRI 
frame. The tx_ctrl_insert_en bit of the CPRI_CONFIG register is the master enable: 
when it is set, the CPRI IP core writes all table entries with the tx_control_insert bit 
set into the CPRI frame.

Control Word Order
The entries in the control receive and control transmit tables match the organization of 
control words in subchannels from the CPRI specification. Figure 4–24 shows this 
word order. The figure is Figure 15 of the CPRI V4.2 Specification.

Figure 4–24. Illustration of Subchannels in a Hyperframe (Part 1 of 2)
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Figure 4–24 illustrates how the 256 control words in the hyperframe are organized as 
64 subchannels of four control words each. The figure illustrates why the index X of a 
control word is Ns + 64 × Xs, where Ns is the subchannel index and Xs is the index of 
the control word within the subchannel.

Control Word Transmission Example
To write to the vendor-specific portion of the control word in a transmitted 
hyperframe, perform the following steps:

1. Identify the indices for the vendor-specific portion of the transmit control table, 
using the formula X = Ns + 64 × Xs. 

In the example, Ns = 16 and Xs = 0,1,2, and 3. Therefore, the indices to be written 
are 16, 80, 144, and 208.

2. For each value X in 16, 80, 144, and 208, perform the following steps:

a. Write the value X to the cpri_ctrl_index field of the CPRI_CTRL_INDEX register.

b. Write the control byte to the tx_control_data field of the CPRI_TX_CTRL 
register and set the tx_control_insert field of the CPRI_TX_CTRL register to the 
value of 1.

3. After you update the control transmit table with the control bytes, to insert the 
data in the next outgoing CPRI frame, set the tx_ctrl_insert_en field of the 
CPRI_CONFIG register to the value of 1.

Control Word Retrieval Example
To retrieve the first byte of the vendor-specific portion of a control word in the most 
recent received hyperframe, perform the following steps:

1. Identify the indices for the vendor-specific portion of the transmit control table, 
using the formula X = Ns + 64 × Xs. 

In the example, Ns = 16 and Xs = 0,1,2, and 3. Therefore, the indices to be read are 
16, 80, 144, and 208.

2. For each value X in 16, 80, 144, and 208, perform the following steps:

a. Write the value X to the cpri_ctrl_index field of the CPRI_CTRL_INDEX register.

b. In the following cpu_clk cycle, read the control byte in the rx_control_data 
field of the CPRI_RX_CTRL register. 

19

20
Pointer P --->

20: Ethernet

...

62 62 126 190 254

63 63 127 191 255

Figure 4–24. Illustration of Subchannels in a Hyperframe (Part 2 of 2)
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Accessing the Ethernet Channel
If you turn on the Include MAC block parameter, your CPRI IP core includes an 
internal Ethernet Media Access Controller (MAC). If you turn off this parameter, an 
MII is available for you to connect to your own external Ethernet MAC. In that case, 
the internal Ethernet MAC is not available and your application cannot access the 
Ethernet registers. If the internal Ethernet MAC is turned off, attempts to access these 
registers read zeroes and do not write successfully, as for a reserved register address.

The Ethernet MAC is responsible for processing the Ethernet frame. The Ethernet 
MAC unloads the Ethernet frame from the CPRI frame and stages it in the Ethernet 
registers, where it is accessible through the CPU interface. The Ethernet MAC also 
handles the flow of Ethernet data to the CPRI frame, by loading it from the Ethernet 
registers into the Ethernet space in the CPRI hyperframe.

The CPRI specification dictates that a CPRI hyperframe that contains Ethernet data 
also contain a pointer to the start of that data in control byte Z.194.0. The pointer value 
0x0 indicates that no Ethernet channel is supported in the current hyperframe. A valid 
pointer holds a subchannel index value between 0x14 and 0x3F, inclusive. The length 
of the Ethernet data can extend beyond the end of the hyperframe; if a received 
Ethernet frame exceeds 1536 bytes, the Ethernet module resets, unless the 
rx_long_frame_en bit of the ETH_CONFIG_1 register is set.

The CPRI transmitter reads the pointer value from the tx_fast_cm_ptr field of the 
CPRI_CM_CONFIG register and writes it in CPRI control byte Z.194.0 in the outgoing 
CPRI hyperframe. The rx_fast_cm_ptr field of the CPRI_CM_STATUS register holds the 
current pointer value, determined during the software set-up sequence or by dynamic 
modification, in which the same new pointer value is received in CPRI control byte 
Z.194.0 four hyperframes in a row.

Software can configure the Ethernet channel by writing to the ETH_CONFIG_1 register 
through the CPRI IP core Avalon-MM CPU interface. For additional information 
about this register, refer to Chapter 7, Software Interface.

Transmitting Ethernet Traffic
To transmit an Ethernet frame, the CPRI IP core must load the frame in a Tx Ethernet 
buffer. Application software can direct the CPRI IP core to load the Ethernet frame in 
the Tx Ethernet buffer by reading and writing the following registers:

■ ETH_CONFIG_2 register at offset 0x20C (Table 7–54 on page 7–23)—Configure the 
CPRI IP core to automatically calculate the Frame check sequence and insert it at 
the end of the frame data, by setting the crc_enable field in bit 0 of this register.

■ ETH_TX_STATUS register at offset 0x204 (Table 7–52 on page 7–22)—Poll the 
tx_ready_block and tx_ready fields of this register. If the tx_ready field has a 
value of 1, you can load a 4-byte word to the Tx Ethernet buffer. If the 
tx_ready_block field has a value of 1, you can load a block of eight 4-byte entries 
to the Tx Ethernet buffer without polling the tx_block_ready or tx_ready bits 
between CPU write operations. 

■ ETH_TX_DATA register at offset 0x220 (Table 7–59 on page 7–24)—Load data in this 
register. To load a block of eight 4-byte entries to the Tx Ethernet buffer, you must 
execute eight CPU write operations to this register.
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■ ETH_TX_CONTROL register at offset 0x21C (Table 7–58 on page 7–24)—Before you 
load the final word of an Ethernet frame in the ETH_TX_DATA register (or 
ETH_TX_DATA_WAIT register (Table 7–60 on page 7–24)), set the tx_eop field and 
write the tx_length field of this register to indicate how many bytes in the final 
word are padding.

The Ethernet Tx buffer holds 64 4-byte entries, for a total of 256 bytes. When 
transmitting Ethernet frames larger than the capacity of the Tx Ethernet buffer, you 
must ensure you do not overflow or underflow the buffer. If the Ethernet transmitter 
module writes data to the ETH_TX_DATA register when the Ethernet Tx buffer is not 
ready, the tx_abort bit is set in the ETH_TX_STATUS register and the current Ethernet 
packet is aborted. To prevent the Ethernet transmitter module from aborting a frame, 
you can write the data to the ETH_TX_DATA_WAIT register. The ETH_TX_DATA_WAIT 
register can accept data when the Ethernet Tx buffer is not ready for new data. 

You must write each frame’s data to the ETH_TX_DATA register continuously. The 
Ethernet transmitter module ensures the correct bit order for transmission on the 
CPRI link. If the crc_enable field of the ETH_CONFIG_2 register has the value of 0, you 
must insert the CRC in the frame data, because the Ethernet receiver module checks 
CRC. In this case, you must reverse the bit order of the CRC bytes so that the most 
significant byte of the CRC is transmitted first. 

1 If you set the crc_enable field of the ETH_CONFIG_2 register to the value of 1, the Tx 
Ethernet automatically calculates the Frame check sequence and inserts it at the end of 
the Ethernet frame data in the Tx Ethernet buffer.

Software can set the tx_discard bit in the ETH_TX_CONTROL register, which in turn 
causes the tx_abort bit in the ETH_TX_STATUS register to be set. The Ethernet 
transmitter module can also set the tx_abort bit directly.

The Tx Ethernet controller reads the Tx Ethernet buffer after you set the tx_eop bit of 
the ETH_TX_CONTROL register and write the final word in the ETH_TX_DATA register. If 
you disable the store-and-forward feature by resetting the tx_st_fwd field of the 
ETH_FWD_CONFIG register at offset 0x244 (Table 7–64 on page 7–25), the Tx Ethernet 
controller also reads the Tx Ethernet buffer whenever the number of words in the Tx 
Ethernet buffer is above a programmable threshold. 

Interrupts

Software can enable interrupts by setting bits in the ETH_CONFIG_1 register at offset 
0x208 (Table 7–53 on page 7–23). The intr_en bit is the Ethernet global interrupt 
enable and intr_tx_en is the Ethernet Tx interrupt enable. If both of these two bits are 
set, software can use the status in the ETH_TX_STATUS register to generate interrupts. 
For example, using the tx_ready_block bit to generate an interrupt ensures that the 
CPU is interrupted only when a full 32-bit packet of data is ready to transfer to the 
Ethernet Tx buffer.

Receiving Ethernet Traffic
The Ethernet receiver module receives Ethernet data from the CPRI link by reading it 
from the Ethernet Rx buffer through an Ethernet register.
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This section describes how the Ethernet receiver module performs MAC address 
filtering according to the ETH_CONFIG_1, ETH_ADDR_LSB, and ETH_ADDR_MSB registers, 
provides status information to the CPU interface in the ETH_RX_STATUS register, and 
allows the CPU interface to insert wait states in the Ethernet channel. 

For additional information about the Ethernet receiver registers, refer to Chapter 7, 
Software Interface.

MAC Address Filtering

To enable MAC address checking, set the mac_check bit of the ETH_CONFIG_1 register. 
If the mac_check bit is reset to the value of zero, the Ethernet receiver accepts all 
received packets.

You can enable the following three MAC address filters:

■ Unicast filtering: check that the destination MAC address is the address specified 
in the ETH_ADDR_LSB and ETH_ADDR_MSB registers. If the mac_check bit is not set, this 
filter is disabled.

■ Multicast filtering: if the least significant bit of the first destination MAC address 
byte, the group address bit, is set to 1, use the ETH_HASH_TABLE register to 
determine whether to accept this destination MAC address. Because the hash 
algorithm might not filter the destination address as intended, you must 
implement full address validation in software if you enable multicast filtering. To 
enable multicast filtering, set the multicast_flt_en bit of the ETH_CONFIG_1 
register.

■ Broadcast filtering: accept all packets with destination MAC address 
0xFFFFFFFFFFFF, the Ethernet broadcast address. To enable broadcast filtering, set 
the broadcast_en bit of the ETH_CONFIG_1 register.

Ethernet Rx Buffer Status 

The CPRI IP core reports relevant Ethernet Rx buffer status to the CPU interface by 
updating the following fields of the ETH_RX_STATUS register:

■ The ETH_RX_STATUS rx_ready bit indicates that at least one word of data is 
available in the Ethernet Rx buffer and ready to be read.

■ The ETH_RX_STATUS rx_eop bit indicates that the next ready data word contains 
the end-of-packet byte.

■ The ETH_RX_STATUS rx_length field indicates the number of valid bytes in the 
end-of-packet word.

■ The ETH_RX_STATUS rx_abort bit indicates that the current received packet is 
aborted.

■ The ETH_RX_STATUS rx_ready_block bit indicates that the next block of packet 
data is ready to be read and does not contain the end-of-packet byte.

■ The ETH_RX_STATUS rx_ready_end bit indicates that the end-of-packet byte is 
ready in the Ethernet Rx buffer.

Software can set the ETH_RX_CONTROL rx_discard bit to abort the current received 
packet. The Ethernet receiver ensures that following read from the Ethernet Rx buffer 
is a start-of-packet word.
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Ethernet Data Transfer

The next ready data word is available in the ETH_RX_DATA and ETH_RX_DATA_WAIT 
registers. If no Ethernet data word is ready, reading from the ETH_RX_DATA_WAIT 
register inserts wait states in the Ethernet channel. If no Ethernet data word is ready, 
reading from the ETH_RX_DATA register causes the rx_abort bit to be set. The CPU 
interface receiver module reads the Ethernet packet data one word at a time from one 
of these registers.

Accessing the HDLC Channel
If you turn on the Include HDLC block parameter, your CPRI IP core includes an 
internal High-Level Data Link Controller (HDLC) block. If you turn off this 
parameter, the internal HDLC block is not available and your application cannot 
access the HDLC registers. If the internal HDLC block is turned off, attempts to access 
these registers read zeroes and do not write successfully, as for a reserved register 
address.

In the CPRI IP core, the HDLC block, or slow data link layer, passes HDLC data 
between the CPU interface and the CPRI receiver and transmitter interfaces to the 
CPRI link. The CPRI specification dictates that the HDLC channel rate is specified in 
the three lowest bits of control byte Z.66.0. The value 3’b000 indicates that no HDLC 
channel is supported in the current hyperframe. Table 4–13 shows the possible rate 
configurations.

The HDLC channel rate is determined during the software set-up sequence or by 
dynamic modification, in which the same new pointer value is received in CPRI 
control byte Z.66.0 four hyperframes in a row. The accepted receive rate is specified in 
the rx_slow_cm_rate field of the CPRI_CM_STATUS register, and the transmit rate is 
specified in the tx_slow_cm_rate field of the CPRI_CM_CONFIG register.

The CPU interface control for the HDLC channel is identical to the CPU interface 
control for the Ethernet channel, with the following exceptions:

Table 4–13. HDLC Channel Bit Rates  

Value in Z.66.0.0[2:0] HDLC Bit Rate
(Kbps)

Minimum CPRI Line Rate 
(Mbps)

000 — 614.4

001 240 614.4

010 480 614.4

011 960 1228.8

100 1920 2457.6

101 2400 3072.0

110

3840 4915.2

4800 6144.0

7680 9830.4

111 (1)

Note to Table 4–13:

(1) When Z.66.0.0[2:0] holds value 3’b111, the HDLC bit rate is the highest HDLC bit rate possible for the current CPRI 
line rate. You can derive that bit rate from the other entries in this table.
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■ HDLC register names replace ETH with HDLC

■ HDLC channel control has fewer configurations than the Ethernet channel control

■ HDLC channel control does not support address filtering

1 The CPRI IP core implements the CRCDT CRC-16 allowed by the HDLC specification, 
rather than the CRC-32.

CPRI Protocol Interface Layer (Physical Layer)
The physical layer of the CPRI protocol is also called layer 1. This layer controls the 
electrical characteristics of the CPRI link, the time-division multiplexing of the 
separate information flows in the protocol, and low-level signaling. The CPRI 
protocol interface module of the CPRI IP core incorporates Altera’s high-speed 
transceivers to implement layer 1. The transceivers are configured in deterministic 
latency mode, supporting the extended delay measurement requirements of the CPRI 
specification.

This section describes features and blocks of the CPRI protocol interface module. 
Figure 4–25 shows a high-level block diagram of this module.

Features
The physical layer has the following features:

■ Frame synchronization

■ Transmitter and receiver with the following features:

■ High-speed data serialization and deserialization

■ Clock and data recovery (receiver)

■ 8B/10B encoding and decoding

■ Frame and control word assembly and delineation

■ Error detection

■ Deterministic latency

■ Software interface (status and control registers)

■ Error reporting

■ Clock decoupling
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Physical Layer Architecture
Figure 4–25 shows the architecture of the physical layer.

Ensuring the Physical Layer Routes Your Data as Expected
Layer 1 routes data from the MAP, Auxiliary, and CPU interfaces to the outgoing 
CPRI frame, and routes data from the CPRI frame to the MAP, Auxiliary, and CPU 
interfaces. To ensure the data is routed as you intend, observe the following 
guidelines:

■ To configure a CPRI IP core variation that supports only the AUX interface, in the 
CPRI parameter editor, set the number of antenna-carrier interfaces to the value of 
0.

■ To program a subset of the configured antenna-carrier channels as active 
antenna-carrier channels, set the map_ac field of the CPRI_MAP_CNT_CONFIG register 
to the appropriate number of channels. Refer to “Number of Antenna-Carrier 
Interfaces” on page 3–6. The combination of CPRI line rate, MAP interface sample 
width (programmed in the map_15bit_mode field of the CPRI_MAP_CONFIG register), 
and sampling rate (programmed in the map_n_ac field of the CPRI_MAP_CNT_CONFIG 
register) restricts the number of active antenna-carrier interfaces your CPRI IP core 
can support without data corruption. Refer to Table 4–4 and Table 4–5 on 
page 4–14. Programming these register fields affects how your AxC samples are 
packed in the data channels. You can program these register fields, and they have 
the same effect on the MAP interface, whether or not your CPRI IP core variation 
uses the AUX interface.

Figure 4–25. Physical Layer High Level Block Diagram
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■ If your CPRI IP core variation and application support both an AUX interface and 
a MAP interface, use the cpri_tx_aux_mask mask signal (bits [31:0] of the 
aux_tx_mask_data[64:0] bus described in Table 6–4 on page 6–7) to override the 
MAP interface (data) and CPU interface (control words) write access to the CPRI 
frame data per data bit. The mask signal is a MUX select. Setting a bit in the mask 
ensures the corresponding data bit inserted in the outgoing CPRI frame is data 
from the AUX interface. Resetting a bit in the mask ensures the corresponding bit 
inserted in the outgoing CPRI frame is data from the MAP interface or control 
words from the CPU interface.

■ The AUX interface routes raw data. It passes control words unexamined as if they 
were data. Your application can separate the control and data words in the AUX 
stream if your application requires that they be separated.

■ When the source of the data for the CPRI frame is not the AUX interface, you must 
ensure you deassert the bits in cpri_tx_aux_mask to prevent AUX data from being 
inserted in the outgoing CPRI frame.

Receiver
The receiver in the low-level interface receives the input from the CPRI link, and 
performs the following tasks:

■ Converts the data to the main clock domain

■ Performs CPRI frame detection

■ Separates data and control words

■ Descrambles data at 4915.2 Mbps, 6144.0, and 9830.4 Mbps CPRI line rates 
(optional)

■ Separates data for the MAP interface block, the AUX module, the Ethernet MAC 
block or the MII module, and the HDLC module.

■ Detects loss of signal (LOS), loss of frame (LOF), remote alarm indication (RAI), 
and service access point (SAP) defect indication (SDI) errors

High-Speed Transceiver
The high-speed transceiver on the CPRI IP core CPRI protocol interface is configured 
with the Altera ALTGX megafunction in Arria II, Cyclone IV GX, and Stratix IV GX 
devices, with the Altera Deterministic Latency PHY IP core in Arria V and 
Stratix V GX devices and in some variations in Stratix V GT devices, and with the 
Altera Native PHY IP core in variations with a CPRI line rate of 9830.4 Mbps in 
Stratix V GT devices. 

The transceiver receiver implements 8B/10B decoding and the deterministic latency 
protocol. The deterministic latency protocol is designed to meet the 16.276 ns 
round-trip delay measurement accuracy requirements R21 and R21A of the CPRI 
specification.

f For information about the high-speed transceiver blocks, refer to volume 2 of the 
Arria II Device Handbook, to volume 2 of the Cyclone IV Device Handbook, or to volume 2 
and volume 3 of the Stratix IV Device Handbook.
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f For information about the Altera Deterministic Latency PHY IP core and the Altera 
Native PHY IP core, refer to the Altera Transceiver PHY IP Core User Guide.

Rx Elastic Buffer
The low-level interface receiver converts data from the transceiver clock domain and 
data width to the main CPRI IP core clock domain and data width using a 
synchronization FIFO called the Rx elastic buffer. The Rx elastic buffer data output is 
clocked with the cpri_clkout clock. The Rx elastic buffer data input is synchronous 
with the rx_clkout clock from the transceiver. The width of an Rx elastic buffer entry 
is 32 bits, and the rx_clkout clock clocks the transceiver data, which is 8, 16, or 32 bits 
wide. For details, refer to “Clock Diagrams for the CPRI IP Core” on page 4–4.

The default depth of the Rx elastic buffer is 64 32-bit entries. For most systems, the 
default Rx elastic buffer depth is adequate to handle dispersion, jitter, and wander 
that can occur on the link while the system is running. However, the Receiver buffer 
depth parameter is available for cases in which additional depth is required.

1 Altera recommends that you set Receiver buffer depth to 4 in CPRI RE slave 
variations, specifying a depth of 16 32-bit entries.

You must realign and resynchronize the Rx elastic buffer after a dynamic CPRI line 
rate change. Resynchronizing the Rx elastic buffer resets its pointers. Program the 
CPRI_RX_DELAY_CTRL register to realign and resynchronize the Rx elastic buffer.

The Rx elastic buffer adds variable delay to the Rx path through the CPRI IP core. 
Refer to “Extended Rx Delay Measurement” on page D–5.

Descrambling
If the tx_prot_version field of the CPRI_TX_PROT_VER register (Table 7–25 on 
page 7–12) holds the value 2, and the CPRI data rate is 4915.2 Mbps, 6144.0 Mbps, or 
9830.4 Mbps, the low-level CPRI receiver may need to descramble the incoming data, 
depending on the values in the CPRI_RX_SCR_SEED register. 

When the rx_scr_act_indication field of the CPRI_RX_SCR_SEED register (Table 7–27 
on page 7–12) is set, the low-level CPRI receiver descrambles the data words 
according to the CPRI V4.2 Specification, using the seed in the rx_scr_seed field of 
the CPRI_RX_SCR_SEED register. The seed value may be zero, indicating the incoming 
data is not scrambled.

Frame Synchronization
During frame synchronization, LOF is set to zero. LOS—the assertion of the gxb_los 
signal—resets the frame synchronization state machine. Figure 4–26 shows the frame 
synchronization state machine. If scrambling is configured in the CPRI link partner 
(based on the value at Z.2.0 in the incoming CPRI communication), additional actions 
and conditions apply on the state machine transitions, according to the CPRI V4.2 
Specification. The CPRI IP core sets the values in the CPRI_RX_SCR_SEED register 
according to these conditions.
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Alarm Indications
The CPRI IP core can detect and report the following alarms:

■ Loss of signal (LOS)—the CPRI IP core reports this alarm in the rx_los field of the 
CPRI_STATUS register at offset 0x4 (Table 7–5 on page 7–3).

■ Loss of frame (LOF)—the CPRI IP core reports this alarm by resetting the rx_state 
field of the CPRI_STATUS register at offset 0x4 (Table 7–5 on page 7–3).

Your application detects the following alarms by reading the last received #Z.130.0 
control byte in the CPRI_RX_CTRL register:

■ Remote alarm indication (RAI)

■ Service access point (SAP) defect indication (SDI) errors

■ Reset requests received over the CPRI link

Figure 4–26. CPRI Frame Synchronization Machine (1)

Notes to Figure 4–26:

(1) If the tx_prot_version field of the CPRI_TX_PROT_VER register (Table 7–25 on page 7–12) holds the value 1, scrambling is not turned on. In this 
case, the conditions when Y is in 2..5 are ignored.

(2) LOS=1 returns the state machine to the XACQ1 state. This transition has highest priority.
(3) Condition B is: Received byte not K28.5 when Y=W=X=0 or for some k in 2..5, received byte(unscrambled) not 0x50 when W=X=0 and Y=k.
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The frame synchronization machine detects LOS and LOF directly. You can program 
your application to detect and respond to RAI and SDI errors as appropriate. Refer to 
“Accessing the Hyperframe Control Words” on page 4–39 for information about 
retrieving these alarms from the hyperframe control word.

The CPRI IP core handles incoming reset requests on the CPRI link by signalling the 
application to assert the reset signal to reset the IP core. The application reads the 
requests using the CPU interface. The following section describes the additional 
support the CPRI IP core provides to process this special command.

Reset Control Word
A CPRI IP core in master clocking mode can send a reset request through the CPRI 
link and a CPRI IP core in slave clocking mode can receive a reset request through the 
CPRI link. As required by the CPRI specification, the reset control information is sent 
in bit 0 of the CPRI hyperframe control word Z.130.0. This reset bit communicates 
both reset request and reset acknowledge. 

Table 4–14 lists the signals and register fields that determine the CPRI IP core’s 
response to a reset request received on the CPRI link and that determine whether it 
sends a reset request on the CPRI link.

A CPRI IP core in master mode transmits a reset request to the RE slave nodes to 
which it is connected under either of the trigger conditions shown in Table 4–14. The 
behavior of a CPRI IP core in slave mode that receives a reset request on the CPRI link 
depends on the same enable fields in its own CPRI_HW_RESET register. For reset 
acknowledgements, as for the original reset request conditions, if the reset_hw_en bit 
is asserted, the reset_gen_en bit is ignored.

The CPRI specification requires that the Z.130.0 reset bit must be detected by the CPRI 
partner in ten consecutive hyperframes before the CPRI partner confirms the reset 
request. The reset generation request is in effect while the condition that triggered the 
reset request remains in effect, until the reset acknowledge control bit is detected on 
the incoming CPRI link. 

To abort a reset request, set or reset a register field to negate the condition. Specifically, 
to abort a reset request made by asserting the reset_gen_force bit in the 
CPRI_HW_RESET register, set the reset_gen_en bit of the CPRI_HW_RESET register to 0. To 
abort a reset request made by asserting the hw_reset_assert input signal, set the 
reset_hw_en bit of the CPRI_HW_RESET register to 0.

Table 4–14. Conditions That Trigger a Reset Request or Enable a Reset Acknowledge on the CPRI Link

Register or Signal 
Name Register Bits Field Name Trigger Conditions for Sending Reset

Request (Master) or ACK (Slave)

CPRI_HW_RESET
(Table 7–12)

[0] reset_gen_en 1 —

[1] reset_gen_force 1 —

[3] reset_hw_en 0 1

hw_reset_assert
(Table 6–15)

— — — 1
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To acknowledge the reset request, the CPRI transmitter must send a reset 
acknowledge on the CPRI link, by setting the Z.130.0 reset bit in five consecutive 
outgoing hyperframes. If one of the acknowledgement conditions in Table 4–14 holds, 
the CPRI transmitter sends the reset acknowledge on the CPRI link. If the 
reset_out_en bit of the CPRI_HW_RESET register is set, the CPRI IP core asserts the 
external hw_reset_req signal until the reset occurs. This signal informs the 
application layer of the low-level reset request. 

After it transmits the five consecutive reset acknowledge bits, the CPRI transmitter 
sets the reset_gen_done and reset_gen_done_hold bits of its own CPRI_HW_RESET 
register. If the reset_hw_en bit is set and the hw_reset_req signal is asserted, you must 
set the hw_reset_assert signal, to tell the CPRI transmitter to send a reset 
acknowledge on the CPRI link.

For more information about the CPRI_HW_RESET register, refer to Table 7–12 on 
page 7–5. For more information about the hw_reset_assert input signal, refer to 
Table 6–15 on page 6–17.

After reset, your software must perform link synchronization and other initialization 
tasks. For information about the required initialization sequence following CPRI IP 
core reset, refer to Appendix A, Initialization Sequence.

Transmitter
The transmitter in the low-level interface transmits output to the CPRI link. This 
module performs the following tasks:

■ Assembles data and control words in proper output format 

■ Transmits standard frame sequence

■ Optionally scrambles the outgoing data transmission at 4915.2 Mbps, 
6144.0 Mbps, and 9830.4 Mbps CPRI line rates

■ Inserts the following control words in their appropriate locations in the outgoing 
hyperframe:

■ Synchronization control byte (K28.5) and filler bytes (D16.2) in the 
synchronization control word

■ Hyperframe number (HFN)

■ Basic frame number (BFN)

■ HDLC bit rate

■ Pointer to start of Ethernet data in current frame

■ 4B/5B-encoded fast C&M Ethernet frames 

■ Bit-stuffed slow C&M HDLC frames

■ Enabled control transmit table entries

■ Converts the data to the transceiver clock domain.

When no data is available to transmit on the CPRI link, the transmitter transmits the 
standard frame sequence with zeroed control words and all-zero data.
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Scrambling
When the tx_prot_version field of the CPRI_TX_PROT_VER register (Table 7–25 on 
page 7–12) holds the value 2, the low-level CPRI transmitter scrambles the data words 
according to the CPRI V4.2 Specification, using the seed in the tx_scr_seed field of 
the CPRI_TX_SCR_SEED register (Table 7–26 on page 7–12). 

Tx Elastic Buffer
The low-level interface transmitter converts data from the main CPRI IP core clock 
domain and data width to the transceiver clock domain and data width using a 
synchronization FIFO called the Tx elastic buffer. The Tx elastic buffer data input is 
clocked with the cpri_clkout clock, and the buffer data output is clocked with the 
tx_clkout clock from the transceiver. Data in the Tx elastic buffer is 32 bits wide, and 
the data bus to the transceiver is 8, 16, or 32 bits wide, depending on the target device 
family and the CPRI line rate. The CPRI IP core derives the cpri_clkout clock from 
the Tx output clock of the transceiver, divided as necessary to support the data width 
conversion to and from the 32-bit wide elastic buffers. Table 4–15 shows the data bus 
widths and clock divisors for the different device families and CPRI line rates.

High-Speed Transceiver
The high-speed transceiver on the CPRI IP core CPRI protocol interface is configured 
with the Altera ALTGX megafunction in Arria II, Cyclone IV GX, and Stratix IV GX 
devices, with the Altera Deterministic Latency PHY IP core in Arria V and 
Stratix V GX devices and in some variations in Stratix V GT devices, and with the 
Altera Native PHY IP core in variations with a CPRI line rate of 9830.4 Mbps in 
Stratix V GT devices. 

The transceiver transmitter implements 8B/10B encoding and the deterministic 
latency protocol. It transforms the 16-bit parallel input data to the Arria II GX or 
Cyclone IV GX transmitter, or 32-bit parallel input data to the Arria II GZ, Arria V, 
Stratix IV GX, or Stratix V transmitter, to 8-bit data before 8B/10B encoding. The 10-
bit encoded data is then serialized and sent to the CPRI link differential output pins. 

The deterministic latency protocol is designed to meet the 16.276-ns round-trip delay 
measurement accuracy requirements R21 and R21A of the CPRI specification. 

f For information about the high-speed transceiver blocks, refer to volume 2 of the 
Arria II Device Handbook, to volume 2 of the Cyclone IV Device Handbook, or to volume 2 
and volume 3 of the Stratix IV Device Handbook.

f For information about the Altera Deterministic Latency PHY IP core and the Altera 
Native PHY IP core, refer to the Altera Transceiver PHY IP Core User Guide.

Table 4–15. Transceiver Datapath Width and tx_clkout Divider

CPRI Line Rate
(Mbps) Device Family Transceiver Datapath Width

(Bits) tx_clkout Divider

614.4 All 8 4

Greater than 614.4
Arria II GX, Cyclone IV GX 16 2

Arria II GZ, Arria V, 
Stratix IV GX, and Stratix V 32 1
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5. Testing Features
This chapter describes the loopback and PRBS testing features of the CPRI IP core.

Loopback Modes
The CPRI IP core supports multiple loopback modes to help you test your CPRI 
design. Figure 5–1 illustrates the supported loopback paths.

The following sections describe these loopback modes.

External Loopback
The CPRI IP core supports an external loopback configuration on the CPRI link. You 
can use this configuration to test the full Tx and Rx paths from an application, through 
the CPRI link, and back to the application.

The CPRI testbenches provided in your CPRI IP installation configure the DUT in this 
loopback mode. Refer to Chapter 8, Testbenches.

To configure this loopback mode, you connect a CPRI REC master’s CPRI Tx interface 
to its CPRI Rx interface by physically connecting the CPRI IP core’s high-speed 
transceiver output pins to its high-speed transceiver input pins. As for any CPRI link, 
the connection medium must support the data rate requirements of the CPRI IP core. 
Altera recommends that you implement this type of loopback connection through an 
SFP cable.

Only an REC master can function correctly in a CPRI link external loopback 
configuration. An RE slave in external loopback configuration cannot achieve frame 
synchronization, because the CPRI Rx interface must lock on to the K28.5 character 
before the CPRI Tx interface can begin sending K28.5 characters. Therefore, no K28.5 
character is ever transmitted on the RE slave loopback CPRI link. 

Figure 5–1. CPRI IP Core Supported Loopback Paths

Notes to Figure 5–1:

(1) External loopback mode to test a single CPRI REC master.
(2) Internal reverse loopback mode configured in an RE slave’s CPRI_PHY_LOOP register. 
(3) Internal reverse loopback mode configured in an RE slave’s CPRI_CONFIG register.
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Internal Reverse Loopback
The CPRI IP core supports two different internal reverse loopback paths that you can 
configure in software in a CPRI RE slave, and multiple loopback modes along those 
paths. The following sections describe these modes.

Physical Layer Loopback Mode
In the physical layer reverse loopback mode, a CPRI RE slave sends CPRI frames of 
incoming CPRI data and control words from the PHY module back through the PHY 
module in outgoing CPRI communication. The PHY reverse loopback path is labeled 
(2) in Figure 5–1.

In this mode, the PHY reverse loopback path is active whether or not frame 
synchronization has been achieved. The path includes 8B10B encoding and decoding, 
but only enough core CPRI functionality to handle the transition from the receiver 
clock domain to the transmitter clock domain.

You configure a CPRI RE slave in physical layer loopback mode by setting the 
loop_mode bit in the CPRI_PHY_LOOP register described in Table 7–13 on page 7–6. If 
this bit is set, the reverse loopback path through the CPRI Rx and Tx buffers is not 
active, irrespective of any setting that should activate that path.

Reverse Loopback Through CPRI Rx and Tx Buffers
The CPRI IP core provides support for an additional, more comprehensive testing 
loopback path in several different modes. The testing loopback modes activate a 
reverse loopback path that sends incoming CPRI communication from the CPRI Rx 
buffer back through the CPRI Tx buffer and the PHY module to the CPRI link in 
outgoing CPRI communication. This testing loopback path is labeled (3) in Figure 5–1.

Several loopback modes are available on this reverse loopback path. You can specify 
that full CPRI frames, including all incoming CPRI data and control words, are sent 
back in outgoing CPRI communication. You can also specify that only data be looped 
back, or that only certain categories of control words be looped back. In these modes, 
the CPRI RE slave generates the remainder of the outgoing CPRI frame content 
locally.

You configure a CPRI RE slave in testing loopback mode by setting the appropriate 
value in the loop_mode field of the CPRI_CONFIG register described in Table 7–6 on 
page 7–3. The register description includes the full encodings to specify the different 
loopback mode values.

PRBS Generation and Validation
The CPRI IP core supports generation and validation of several predetermined 
pseudo-random binary sequences (PRBS) for antenna-carrier interface and Rx and Tx 
path testing.

1 The MAP interface module generates and checks the PRBS. If you configure no 
antenna-carrier interfaces in your CPRI IP core, your IP core does not include a MAP 
block and therefore does not support PRBS testing.
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The value in the prbs_mode field of the CPRI_PRBS_CONFIG register (Table 7–44 on 
page 7–20) specifies whether the MAP interface module is in data mode or in PRBS 
mode, and the generated pattern for loopback mode. The value applies to all AxC 
interfaces. The following prbs_mode values are available:

■ 00: Indicates that data samples, and not a PRBS test pattern, are expected on the 
AxC interfaces. This value indicates the MAP interface module is not in PRBS 
mode.

■ 01: Indicates an incremental counter sequence, starting at zero at the start of a 
10 ms radio frame, and counting to 255 before rolling over. The counter value 
appears in both halves of the 32-bit data word.

■ 10: Indicates an inverted 223 – 1 PRBS sequence. Each pattern appears in both 
halves of the 32-bit data word.

The value 11 is reserved.

The CPRI_PRBS_STATUS register (Table 7–45 on page 7–20) records the PRBS error 
detection status for each AxC interface. 

You can perform PRBS testing with a single REC master across a CPRI link in 
loopback configuration, or across a CPRI link between two CPRI IP cores. To perform 
PRBS testing across a CPRI link between two CPRI IP cores, you must program the RE 
slave in reverse loopback mode and then program the REC master in PRBS mode. 

To perform PRBS testing across a CPRI link, perform the following steps:

1. In the CPRI slave, program one of these registers to set up an internal reverse 
loopback path:

■ Set the loop_mode field of the CPRI_PHY_LOOP register to the value of 1. This 
loopback mode and the register are described in “Loopback Modes” on 
page 5–1 and in Table 7–13 on page 7–6.

■ Set the loop_mode field of the CPRI_CONFIG register to the value of 2’b001 or 
2’b010. The value of 2’b001 specifies that all data and control words are looped 
back. The value of 2’b010 specifies that all data is looped back, and that the 
CPRI RE slave generates the outgoing control words locally. The PRBS pattern 
is restricted to the data words in the incoming CPRI frame, so either of these 
two loopback modes is adequate to send the full PRBS pattern back to the 
generating CPRI REC master. 

These loopback modes and the register are described in “Loopback Modes” on 
page 5–1 and in Table 7–6 on page 7–3.

2. In the CPRI master, program the prbs_mode field of the CPRI_PRBS_CONFIG register 
for your preferred PRBS pattern according to the information in this section and in 
Table 7–44 on page 7–20.

The internal loopback mode you select determines the extent of the Rx and Tx path 
testing in the RE slave IP core. For information about the two internal reverse 
loopback modes and the differences between them, refer to “Loopback Modes” on 
page 5–1.

To perform PRBS testing across a CPRI link in external loopback configuration, 
connect the CPRI IP core’s high-speed transceiver output to its high-speed transceiver 
input, and after the CPU interface is available for programming, perform step 2.
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Figure 5–2 shows the three different loopback modes that support PRBS testing.

Figure 5–2. CPRI IP Core Loopback Modes That Support PRBS Testing

Notes to Figure 5–2:

(1) External loopback mode to test a single CPRI REC master.
(2) Internal reverse loopback mode (physical layer loopback mode) configured in the RE slave’s CPRI_PHY_LOOP register. 
(3) Internal reverse loopback mode (testing loopback mode) configured in the RE slave’s CPRI_CONFIG register. 
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6. Signals
This chapter describes all the top-level signals of the Altera CPRI IP core. 

MAP Interface Signals
Table 6–1 and Table 6–2 list the signals used by the MAP interface modules of the 
CPRI IP core. The MAP interfaces are implemented as Avalon-ST interfaces. 

f Refer to the Avalon Interface Specifications for details about the Avalon-ST interface.

MAP Receiver Signals
The behavior of many of the MAP receiver interface signals depends on the CPRI IP 
core’s current MAP Rx synchronization mode. The mode is determined by your 
selection in the CPRI parameter editor and by the CPRI_MAP_CONFIG register 
(Table 7–31 on page 7–14), as shown in Table 4–6 on page 4–16.

“MAP Receiver Interface” on page 4–15 includes a description of signal handshaking 
in all three synchronization modes, and timing diagrams that illustrate the expected 
behavior of these signals.For a summary of signal availability in the different 
synchronization modes, refer to Table 4–8 on page 4–16.

Table 6–1 lists the MAP receiver interface signals.

Table 6–1. MAP Receiver Interface Signals (Part 1 of 3) 

Signal Direction Description

map{23…0}_rx_clk Input

Clock signal for each antenna-carrier interface. 

These clocks are not supported in the internally-clocked mode. In the 
interally-clocked mode, cpri_clkout clocks the antenna-carrier 
interfaces.

map{23…0}_rx_reset Input

Reset signal for each antenna-carrier interface in synchronous buffer 
mode and in FIFO mode. This reset is associated with the 
mapN_rx_clk clock.

These signals are not supported in the internally-clocked mode.

mapN_rx_reset can be asserted asynchronously, but must stay 
asserted at least one cycle of the associated clock and must be 
deasserted synchronously with that clock. Refer to Figure 4–5 on 
page 4–10 for a circuit that shows how to enforce synchronous 
deassertion of a reset signal.
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MAP Interface Signals
map{23…0}_rx_ready Input

Read-ready signal for each antenna-carrier interface, in FIFO mode. 
Indicates to the CPRI IP core that the application is ready to receive 
data on the corresponding data channel in the next clock cycle. 
Asserted by the sink to mark ready cycles, which are cycles in which 
transfers can occur. If ready is asserted on cycle N, the cycle 
(N+READY_LATENCY) is a ready cycle. The MAP receiver interface in 
FIFO mode is designed for READY_LATENCY equal to 1.

In synchronous buffer mode, the application must hold the 
mapN_rx_ready signals high continuously.

In the internally-clocked mode, the CPRI IP core ignores this signal. 

map{23…0}_rx_data[31:0] Output

32-bit read data being transmitted on each antenna-carrier interface. 
Bits [15:0] are the I component of the IQ sample. Bits [31:16] are the Q 
component of the IQ sample.

In FIFO mode, data is valid as early as one mapN_rx_clk clock cycle 
after the application asserts the read-ready input signal 
mapN_rx_ready, but is only valid while the CPRI IP core asserts the 
mapN_rx_valid signal. 

In synchronous buffer mode, data is valid one mapN_rx_clk clock 
cycle after the application asserts the mapN_rx_resync signal. To 
ensure valid data in synchronous buffer mode, the application should 
only assert the mapN_rx_resync signal after the CPRI IP core asserts 
the cpri_rx_start signal. However, the CPRI IP core does not 
enforce this requirement.

In the internally-clocked mode, data is valid one cpri_clkout clock 
cycle after the CPRI IP core asserts the mapN_rx_start output signal, 
but is only valid while the CPRI IP core asserts the mapN_rx_valid 
signal.

map{23…0}_rx_valid Output

Valid signal for FIFO mode and for the internally-clocked 
synchronization mode. 

In FIFO mode, this signal is asserted when the mapN Rx buffer 
exceeds the threshold level in the map_rx_ready_thr field of the 
CPRI_MAP_RX_READY_THR register. Although each data channel has 
its own mapN_rx_valid signal, all data channels use the same 
map_rx_ready_thr threshold value. This signal qualifies all the other 
output signals of the MAP receiver interface. On every rising edge of 
the clock at which mapN_rx_valid is high, mapN_rx_data can be 
sampled.

In the internally-clocked mode, the CPRI IP core asserts each 
mapN_rx_valid signal one cpri_clkout clock cycle after it asserts 
the corresponding mapN_rx_start signal.

In synchronous buffer mode,the map{23...0}_rx_valid signals do 
not participate in data transfer synchronization, and the application 
should ignore these signals.

Table 6–1. MAP Receiver Interface Signals (Part 2 of 3) 

Signal Direction Description
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MAP Transmitter Signals
The behavior of many of the MAP transmitter interface signals depends on the CPRI 
IP core’s current TX synchronization mode. The mode is determined by your selection 
in the CPRI parameter editor and by the CPRI_MAP_CONFIG register (Table 7–31 on 
page 7–14), as shown in Table 4–9 on page 4–22.

“MAP Transmitter Interface” on page 4–21 includes a description of signal 
handshaking in all three synchronization modes, and timing diagrams that illustrate 
the expected behavior of these signals. For a summary of signal availability in the 
different synchronization modes, refer to Table 4–11 on page 4–22.

map{23…0}_rx_resync Input

Resynchronization signal for use in synchronous buffer mode. When 
this signal is asserted, the read pointer of the mapN Rx buffer is reset 
to zero. This signal is synchronous to the mapN_rx_clk clock.

To ensure valid data in synchronous buffer mode, the application 
should only assert the mapN_rx_resync signal after the CPRI IP core 
asserts the cpri_rx_start signal. However, the CPRI IP core does 
not enforce this requirement.

In FIFO mode the map{23...0}_rx_resync signals do not participate 
in data transfer synchronization, and the CPRI IP core ignores these 
signals. In the internally-clocked mode, these signals are not present.

map{23…0}_rx_start Output

In the internally-clocked mode, the CPRI IP core asserts each 
mapN_rx_start signal to indicate the start of valid data on the 
corresponding antenna-carrier interface (mapN_rx_data) in the 
current 10 ms radio frame. This signal is synchronous with the 
cpri_clkout clock. When it asserts mapN_rx_start, the CPRI IP 
core also asserts the mapN_rx_valid signal and transmits valid data 
on the corresponding antenna-carrier interface. 

In FIFO mode and in synchronous buffer mode, the 
map{23...0}_rx_start signals do not participate in data transfer 
synchronization, and the application should ignore these signals. 

map{23…0}_rx_status_data[2:0] Output

This vector contains the following status bits:

[2] cpri_map_rx_overflow: Rx FIFO overflow indicator for this 
antenna-carrier interface. This signal is synchronous to the 
cpri_clkout clock, and is asserted following a write to a full 
buffer. This signal reflects the value in the appropriate bit of the 
buffer_rx_overflow field of the CPRI_IQ_RX_BUF_STATUS 
register (Table 7–48 on page 7–21).

[1] cpri_map_rx_underflow: Rx FIFO underflow indicator for 
this antenna-carrier interface. This signal is synchronous to the 
cpri_clkout clock, and is asserted following a read from an 
empty buffer. This signal reflects the value in the appropriate bit 
of the buffer_rx_underflow field of the 
CPRI_IQ_RX_BUF_STATUS register (Table 7–48 on page 7–21).

[0] cpri_map_rx_en: Indicates that this antenna-carrier interface 
is enabled. The value is determined in the 
CPRI_IQ_RX_BUF_CONTROL register. Use this signal to disable 
external logic for inactive AxC interfaces and to map interface 
clock gating to save power.

Table 6–1. MAP Receiver Interface Signals (Part 3 of 3) 

Signal Direction Description
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MAP Interface Signals
Table 6–2 lists the MAP transmitter interface signals.

Table 6–2. MAP Transmitter Interface Signals (Part 1 of 2) 

Signal Direction Description

map{23…0}_tx_clk Input
Clock signal for each antenna-carrier interface. 

These clocks are not supported in the internally-clocked mode. In the 
interally-clocked mode, cpri_clkout clocks the antenna-carrier interfaces.

map{23…0}_tx_reset Input

Reset signal for each antenna-carrier interface in synchronous buffer mode 
and in FIFO mode. This reset is associated with the mapN_tx_clk clock.

These signals are not supported in the internally-clocked mode.

mapN_tx_reset can be asserted asynchronously, but must stay asserted at 
least one cycle of the associated clock, and must be deasserted 
synchronously with that clock. Refer to Figure 4–5 on page 4–10 for a circuit 
that shows how to enforce synchronous deassertion of a reset signal.

map{23…0}_tx_valid Input

Write-valid signal for each antenna-carrier interface. This signal qualifies all 
the other Avalon-ST input signals of the MAP transmitter interface. On every 
rising edge of the clock at which mapN_tx_valid is high, data is sampled by 
the CPRI IP core. 

In FIFO mode, the application can assert mapN_tx_valid in any 
mapN_tx_clk cycle immediately following a mapN_tx_clk cycle in which 
the CPRI IP core asserts the mapN_tx_ready signal for the corresponding 
antenna-carrier interface.

In synchronous buffer mode, the application must assert the 
mapN_tx_valid signal at the same time as or immediately after it asserts 
the mapN_tx_resync resynchronization signal. However, Altera 
recommends that the application assert these two signals simultaneously. 
Refer to “MAP Transmitter in Synchronous Buffer Mode” on page 4–24.

In the internally-clocked mode, the application must wait at least one 
cpri_clkout cycle after the IP core asserts mapN_tx_ready before 
asserting the mapN_tx_valid signal; READY_LATENCY is 1. 

map{23…0}_tx_data[31:0] Input

32-bit write data from each antenna-carrier interface. Data is valid starting 
one mapN_tx_clk clock cycle (cpri_clkout clock cycle in the 
internally-clocked mode) after the write-valid bit is asserted. Bits [15:0] are 
the I component of the IQ sample. Bits [31:16] are the Q component of the IQ 
sample.
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Auxiliary Interface Signals
Auxiliary Interface Signals
Table 6–3 through Table 6–4 list the signals on the CPRI IP core auxiliary interface. All 
the signals in Table 6–3 through Table 6–4 are clocked by the internal clock visible on 
the cpri_clkout port.

map{23…0}_tx_ready Output

Ready signal for each antenna-carrier interface. 

In FIFO mode, the ready signal is asserted when the mapN Tx buffer falls 
below the threshold level in the map_tx_ready_thr field of the 
CPRI_MAP_TX_READY_THR register. Although each data channel has its own 
mapN_tx_ready signal, all data channels use the same map_tx_ready_thr 
threshold value. Indicates that the CPRI IP core is ready to receive data on 
the data channel in the current clock cycle. Asserted by the Avalon-ST sink to 
mark ready cycles, which are the cycles in which transfers can take place. If 
ready is asserted on cycle N, the cycle (N+READY_LATENCY) is a ready cycle.

In the MAP transmitter interface in FIFO mode, READY_LATENCY is equal to 
0, so the cycle on which mapN_tx_ready is asserted is the ready cycle.

In the internally-clocked mode, the CPRI IP core asserts the ready signal one 
cycle before the antenna-carrier interface is ready to receive data on the data 
channel. In this mode, READY_LATENCY is equal to 1.

In synchronous buffer mode, the map{23...0}_tx_ready signals do not 
participate in data transfer synchronization, and the application should ignore 
these signals.

map{23…0}_tx_resync Input

Resynchronization signal for use in synchronous buffer mode. This signal is 
synchronous to the mapN_tx_clk clock.

In FIFO mode the map{23...0}_tx_resync signals do not participate in 
data transfer synchronization, and the CPRI IP core ignores these signals. In 
the internally-clocked mode, these signals are not present.

map{23…0}_tx_status_data Output

This vector contains the following status bits:

[2] cpri_map_tx_overflow: Tx FIFO overflow indicator for this 
antenna-carrier interface. This signal is synchronous to the 
cpri_clkout clock, and is asserted following a write to a full 
buffer. This signal reflects the value in the appropriate bit of the 
buffer_tx_overflow field of the CPRI_IQ_TX_BUF_STATUS 
register (Table 7–49 on page 7–21).

[1] cpri_map_tx_underflow: Tx FIFO underflow indicator for this 
antenna-carrier interface. This signal is synchronous to the 
cpri_clkout clock, and is asserted following a read from an empty 
buffer. This signal reflects the value in the appropriate bit of the 
buffer_tx_underflow field of the CPRI_IQ_TX_BUF_STATUS 
register (Table 7–49 on page 7–21).

[0] cpri_map_tx_en: Indicates that this antenna-carrier interface is 
enabled. The value is determined in the CPRI_IQ_TX_BUF_CONTROL 
register. Use this signal to disable external logic for inactive AxC 
interfaces and to map interface clock gating to save power.

Table 6–2. MAP Transmitter Interface Signals (Part 2 of 2) 

Signal Direction Description
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Auxiliary Interface Signals
AUX Receiver Signals
Table 6–3 lists the signals on the AUX receiver interface. For additional information 
about these signals, refer to “AUX Receiver Module” on page 4–28.

Table 6–3. AUX Receiver Interface Signals  

Signal Direction Bit Description

aux_rx_status_data
[75:0]

Output [75] cpri_rx_rfp: Synchronization pulse for start of 10 ms radio frame. The 
pulse occurs at the start of the radio frame on the CPRI receiver interface. 

[74]

cpri_rx_start: Indicates the start of the first basic frame on the AUX 
interface, and can be used by an AxC software application to trigger the 
AxC-specific resynchronization signal used in the MAP interface 
synchronous buffer mode. The cpri_rx_start signal is asserted at the 
offset defined in the CPRI_START_OFFSET_RX register. The count to the 
offset starts at the cpri_rx_rfp or cpri_rx_hfp pulse, depending on 
values set in the register. Refer to Table 7–39 on page 7–18. The signal is 
asserted for the duration of the basic frame. 

[73] cpri_rx_hfp: Synchronization pulse for start of hyperframe. The pulse 
occurs at the start of the hyperframe on the CPRI receiver interface. 

[72:61] cpri_rx_bfn: Current radio frame number.

[60:53] cpri_rx_hfn: Current hyperframe number. Value is in the range 0–149.

[52:45] cpri_rx_x: Index number of the current basic frame in the current 
hyperframe. Value is in the range 0–255.

[44:39]

cpri_rx_k: Sample counting K counter. Counts the basic frame position of 
the AxC Container Block for mapping IQ samples when map_mode field in 
the CPRI_MAP_CONFIG register has value 01 or 10. This signal is not used 
when map_mode value is 00.

[38:33]

cpri_rx_seq: Index number of the current 32-bit word in the current 
basic frame being transmitted on the AUX link.
Depending on the CPRI line rate, this signal has the following range:

■ 614.4 Mbps line rate: range is 0 –3

■ 1228.8 Mbps line rate: range is 0–7

■ 2457.6 Mbps line rate: range is 0–15

■ 3072.2 Mbps line rate: range is 0–19

■ 4915.2 Mbps line rate: 0–31

■ 6144.0 Mbps line rate: 0–39

■ 9830.4 Mbps line rate: 0–63

[32]
cpri_rx_sync_state: When set, indicates that Rx, HFN, and BFN 
synchronization have been achieved in CPRI receiver frame 
synchronization.

[31:0]
cpri_rx_aux_data: Data transmitted on the AUX link. Data is transmitted 
in 32-bit words. Byte [31:24] is transmitted first, and byte [7:0] is 
transmitted last.
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AUX Transmitter Signals
Table 6–4 lists the signals on the AUX transmitter interface. For additional 
information about these signals, refer to “AUX Transmitter Module” on page 4–31.

Table 6–4.  AUX Transmitter Interface Signals (Part 1 of 2)

Signal Direction Bits Description

aux_tx_status_data
[43:0]

Output

[43]

cpri_tx_error: Indicates that in the previous cpri_clkout cycle, the 
cpri_tx_aux_mask[31:0] mask bits were not deasserted during K28.5 
character insertion in the outgoing CPRI frame (which occurs when 
Z=X=0). 

[42:37]

cpri_tx_seq: Index number of the current 32-bit word in the 
two-cycle-offset basic frame to be received on the AUX link.
Depending on the CPRI line rate, this signal has the following range:

■ 614.4 Mbps line rate: range is 0 –3

■ 1228.8 Mbps line rate: range is 0–7

■ 2457.6 Mbps line rate: range is 0–15

■ 3072.2 Mbps line rate: range is 0–19

■ 4915.2 Mbps line rate: 0–31

■ 6144.0 Mbps line rate: 0–39

■ 9830.4 Mbps line rate: 0–63

[36:31]

cpri_tx_k: Sample counting K counter. Counts the basic frame position 
of the AxC Container Block for mapping IQ samples when map_mode field 
in the CPRI_MAP_CONFIG register has value 01 or 10. This signal is not 
used when map_mode value is 00.

[30:23] cpri_tx_x: Index number of the current basic frame in the current 
hyperframe. Value is in the range 0–255.

[22:15] cpri_tx_hfn: Current hyperframe number. Value is in the range 0–149.

[14:3] cpri_tx_bfn: Current radio frame number.

[2] cpri_tx_hfp: Synchronization pulse for start of hyperframe. The pulse 
occurs at the start of the hyperframe on the CPRI transmitter interface.

[1]

cpri_tx_start: Indicates the start of the first basic frame on the AUX 
interface, and can be used by an AxC software application to trigger the 
AxC-specific resynchronization signal used in MAP synchronous buffer 
mode. The cpri_tx_start signal is asserted at the offset defined in the 
CPRI_START_OFFSET_TX register. The count to the offset starts at the 
cpri_tx_rfp or cpri_tx_hfp pulse, depending on values set in the 
register. Refer to Table 7–40 on page 7–18. The signal is asserted for the 
duration of the basic frame. 

[0]
cpri_tx_rfp: Synchronization pulse for start of 10 ms radio frame. The 
pulse occurs at the start of the radio frame on the CPRI transmitter 
interface. 
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aux_tx_mask_data
[64:0]

Input

[64]

cpri_tx_sync_rfp: Synchronization input used in REC master to control 
the start of a new 10 ms radio frame. Asserting this signal resets the frame 
synchronization machine. The CPRI IP core uses the rising edge of the 
pulse for synchronization. For information about the CPRI IP core 
response to a pulse on this signal, refer to Figure 4–20 on page 4–34 and 
surrounding text.

[63:32]

cpri_tx_aux_data: Data received on the AUX link, aligned with 
cpri_tx_seq with a delay of two cpri_clkout cycles. Data is 
transmitted in 32-bit words. Byte [31:24] is transmitted first, and byte 
[7:0] is transmitted last.

[31:0]

cpri_tx_aux_mask: Bit mask for insertion of data from 
cpri_tx_aux_data in the outgoing CPRI frame. Assertion of a bit in this 
mask overrides insertion of data to the corresponding bit in the outgoing 
CPRI frame from any other source. Therefore, the mask bits must be 
deasserted during K28.5 character insertion in the outgoing CPRI frame, 
which occurs when Z=X=0. If you do not deassert the mask bits during 
K28.5 character insertion in the outgoing CPRI frame, the 
cpri_tx_error output signal is asserted in the following cpri_clkout 
cycle.

Table 6–4.  AUX Transmitter Interface Signals (Part 2 of 2)

Signal Direction Bits Description
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Extended Rx Status Signals
Table 6–5 lists the signals on the extended Rx status interface. All of these signals 
report on the status of the CPRI receiver frame synchronization machine.

Table 6–5.  Extended Rx Status Signals

Signal Direction Bits Description

extended_rx_status_data
[11:0]

Output

[11]
cpri_rx_los: CPRI receiver LOS indication (active high). This 
bit reflects the value in the rx_los field of the CPRI_INTR 
register (Table 7–4 on page 7–2).

[10:8]
cpri_rx_lcv: Current CPRI receiver 8B/10B line code violation 
count in current clock cycle. This information enables CPRI link 
debug when the control word does not appear or is malformed.

[7]
cpri_rx_hfn_state: When set, indicates that hyperframe 
synchronization (HFN) has been achieved in CPRI receiver frame 
synchronization.

[6]
cpri_rx_bfn_state: When set, indicates that basic frame 
synchronization (BFN) has been achieved in CPRI receiver frame 
synchronization.

[5]

cpri_rx_freq_alarm: Frequency alarm. When set, indicates a 
frequency difference greater than four clock cycles between 
cpri_clkout and the recovered received clock from the CPRI 
receiver interface.

[4:2]

cpri_rx_cnt_sync: CPRI receiver frame synchronization state 
machine state number. Tracks the number of the current state in 
its state type. When the state machine is in state XACQ1, the 
value of cpri_rx_cnt_sync is 0; when the state is XACQ2, 
cpri_rx_cnt_sync has value 1; when the state is XSYNC1, 
cpri_rx_cnt_sync has value 0; and so on. Refer to 
Figure 4–26 on page 4–50.

[1:0]

cpri_rx_state: Indicates the type of state of the CPRI receiver 
frame synchronization state machine. The following values are 
defined:

00 - LOS state

01 - XACQ state

10 - XSYNC state

11 - HFNSYNC state

In the HFNSYNC state (cpri_rx_state has value 0x3 and 
cpri_rx_cnt_sync has value 0x1), Rx synchronization has 
been achieved, except for initialization of the hyperframe and 
basic frame numbers. You must wait for cpri_rx_hfn_state 
and cpri_rx_bfn_state to have value 1, indicating that the 
hyperframe number and basic frame number are initialized.
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CPRI MII Signals
Table 6–6 and Table 6–7 list the signals used by the CPRI MII module of the CPRI IP 
core. The CPRI MII is enabled if you turn off Include MAC block in the CPRI 
parameter editor. The CPRI MII signals are available only if you enable the CPRI MII. 
For information about the MII handshaking protocol implementation, refer to “Media 
Independent Interface to an External Ethernet Block” on page 4–34.

CPRI MII Receiver Signals
Table 6–6 lists the CPRI MII receiver signals. 

CPRI MII Transmitter Signals
Table 6–7 lists the CPRI MII transmitter signals. These signals are available if you 
exclude the MAC block from the CPRI IP core.

Table 6–6. CPRI MII Receiver Interface Signals  

Signal Direction Description

cpri_mii_rxclk Output Clocks the MII receiver interface. The cpri_clkout clock drives this signal.

cpri_mii_rxwr Output
Ethernet write signal. Indicates the presence of a new K nibble or data value on 
cpri_mii_rxd[3:0]. This signal is asserted during the first cpri_mii_rxclk 
cycle in which the K nibble or a new data value appears on cpri_mii_rxd[3:0].

cpri_mii_rxdv Output Ethernet receive data valid. Indicates the presence of valid data or initial K nibble on 
cpri_mii_rxd[3:0].

cpri_mii_rxer Output

Ethernet receive error. Indicates an error in the current nibble of cpri_mii_rxd or 
indicates that the CPRI link is not initialized, and therefore an error might be 
present in the frame being transferred to the external Ethernet block. This signal is 
deasserted at reset, and asserted after reset until the CPRI IP core achieves frame 
synchronization. 

cpri_mii_rxd[3:0] Output
Ethernet receive nibble data. Data bus for data from the CPRI IP core to the 
external Ethernet block. All bits are deasserted during reset, and all bits are 
asserted after reset until the CPRI IP core achieves frame synchronization.

Table 6–7. CPRI MII Transmitter Interface Signals (Part 1 of 2) 

Signal Direction Description

cpri_mii_txclk Output Clocks the MII transmitter interface. The cpri_clkout clock drives this signal.

cpri_mii_txen Input

Valid signal from the external Ethernet block, indicating the presence of valid data on 
cpri_mii_txd[3:0]. This signal is also asserted while the CPRI MII transmitter 
block inserts J and K nibbles in the data stream to form the start-of-packet symbol. 
This signal is typically asserted one cycle after cpri_mii_txrd is asserted. After that 
first cycle following the assertion of cpri_mii_txrd, if cpri_mii_txen is not yet asserted, 
the CPRI MII transmitter module inserts Idle cycles until the first cycle in which 
cpri_mii_txen is asserted. If cpri_mii_txen is asserted and subsequently 
deasserted while cpri_mii_txrd remains asserted, the CPRI MII transmitter module 
inserts the end-of-packet sequence.

cpri_mii_txer Input Ethernet transmit coding error. When this signal is asserted, the CPRI IP core inserts 
an Ethernet HALT symbol in the data it passes to the CPRI link.
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CPU Interface Signals 
Table 6–8 lists the CPU interface signals. The CPU interface is implemented as an 
Avalon-MM interface.

f Refer to the Avalon Interface Specifications for details about the Avalon-MM interface.

cpri_mii_txd[3:0] Input
Ethernet transmit nibble data. The data transmitted from the external Ethernet block to 
the CPRI IP core, for transmission on the CPRI link. This input bus is synchronous to 
the rising edge of the cpri_clkout clock.

cpri_mii_txrd Output

Ethernet read request. Indicates that the MII block is ready to read data on 
cpri_mii_txd[3:0]. Valid data is recognized 2 cpri_mii_txclk cycles after 
cpri_mii_txen is asserted in response to cpri_mii_txrd. The cpri_mii_txrd 
signal remains asserted for 2 cpri_mii_txclk cycles following deassertion of 
cpri_mii_txen. Deasserting cpri_mii_txrd while cpri_mii_txen is still 
asserted backpressures the external Ethernet block.

Table 6–7. CPRI MII Transmitter Interface Signals (Part 2 of 2) 

Signal Direction Description

Table 6–8. CPU Interface Signals (Part 1 of 2)

Signal Direction Description

cpu_clk Input CPU clock signal.

cpu_reset Input

CPU peripheral reset. This reset is associated with the cpu_clk clock. 
cpu_reset can be asserted asynchronously, but must stay asserted at least 
one cpu_clk cycle and must be de-asserted synchronously with cpu_clk. 
Refer to Figure 4–5 on page 4–10 for a circuit that shows how to enforce 
synchronous deassertion of a reset signal.

cpu_irq Output Merged CPU interrupt indicator. This signal is the OR of all the bits in the 
vector cpu_irq_vector.

cpu_irq_vector[4:0] Output

This vector contains the following interrupt bits:

[4] cpu_irq_cpri: Interrupt bit from CPRI_INTR register. This signal is 
the OR of all three interrupt bits in the CPRI_INTR register.

[3] cpu_irq_eth_rx: Interrupt from the Ethernet receiver module.

[2] cpu_irq_eth_tx: Interrupt from the Ethernet transmitter module.

[1] cpu_irq_hdlc_rx: Interrupt from the HDLC receiver module.

[0] cpu_irq_hdlc_tx: Interrupt from the HDLC transmitter module.

cpu_address[13:0] Input
CPU word address. Corresponds to bits [15:2] of a byte address with LSBs 
2’b00. If you connect an Avalon-MM interface to the CPU interface, connect 
bits [15:2] of the incoming Avalon-MM address to cpu_address. 

cpu_write Input CPU write request.

cpu_read Input CPU read request.
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Physical Layer Signals
Table 6–9 through Table 6–14 list the input and output signals of the physical layer of 
the CPRI IP core. Refer to Figure 4–25 on page 4–47 for details of the I/O signals.

CPRI Data Signals
Table 6–9 lists the CPRI data link signals.

Layer 1 Clock and Reset Signals
Table 6–10 lists the layer 1 clock and reset signals.

cpu_byteenable[3:0] Input

CPU data byteenable signal. Enables specific byte lanes during transfers on 
ports of width less than 32 bits. Each bit in the cpu_byteenable signal 
corresponds to a byte lane in cpu_writedata and cpu_readdata. The least 
significant bit of cpu_byteenable corresponds to the lowest byte of each 
data bus. The bit value 1 indicates an enabled byte lane, and the bit value 0 
indicates a disabled byte lane. Enabled byte lanes must be adjacent: valid 
values of cpu_byteenable include only a single sequence of 1’s. 

For more information, refer to the definition of the byteenable signal in the 
Avalon-MM specification in the Avalon Interface Specifications.

cpu_writedata[31:0] Input CPU write data.

cpu_readdata[31:0] Output CPU read data.

cpu_waitrequest Output Indicates that the CPU interface is busy executing an operation. When this 
signal is deasserted, the operation is complete and the data is valid.

Table 6–8. CPU Interface Signals (Part 2 of 2)

Signal Direction Description

Table 6–9. CPRI Protocol Interface 

Signal Direction Description

gxb_rxdatain Input Receive unidirectional serial data. This signal is connected over the CPRI link to the 
txdataout line of the transmitting device.

gxb_txdataout Output Transmit unidirectional serial data. This signal is connected over the CPRI link to the 
rxdatain line of the receiving device. 

Table 6–10. CPRI Reference Clock and Main Reset Signals

Signal Direction Description

gxb_refclk Input Transceiver reference clock. In master clocking mode, this clock generates the internal 
clock cpri_clkout for the CPRI IP core and custom logic.

reset Input

Transceiver reset. This reset is associated with the reconfig_clk clock. A reset controller 
module propagates this reset to the CPRI IP core cpri_clkout clock domain as well.

reset can be asserted asynchronously, but must stay asserted at least one clock cycle and 
must be de-asserted synchronously with the clock with which it is associated. Refer to 
Figure 4–5 on page 4–10 for a circuit that shows how to enforce synchronous deassertion 
of reset.

reset_done Output Indicates that the reset controller has completed the transceiver reset sequence.
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Layer 1 Error Signal
Table 6–11 lists the layer 1 error signal for the CPRI IP core.

Autorate Negotiation Signals
Table 6–12 lists the autorate negotiation signals for the CPRI IP core. These output 
signals enable the autorate negotiation hardware and software outside the CPRI IP 
core to quickly monitor autorate negotiation status, and are implemented in all device 
families.

In Cyclone IV GX devices, channel reconfiguration is enabled to support autorate 
negotiation. Table 6–13 lists the signals implemented in CPRI IP cores targeted to 
Cyclone IV GX devices to support scan-chain based reconfiguration.

Table 6–11. Layer 1 Error Signal

Signal Direction Description

gxb_los Input Loss of Signal (LOS) signal from small form-factor pluggable (SFP) module.

Table 6–12. Autorate Negotiation Signals

Signal Direction Description

datarate_en Output
Indicates whether autorate negotiation is enabled. This signal reflects the value in the 
i_datarate_en field of the AUTO_RATE_CONFIG register described in Table 7–21 on 
page 7–10.

datarate_set[4:0] Output

CPRI line rate to be used in next attempt to achieve frame synchronization. This signal 
reflects the value currently in the i_datarate_set field of the AUTO_RATE_CONFIG 
register described in Table 7–21 on page 7–10.

The CPRI line rate is encoded in this field with the following values:

00001: 614.4 Mbps

00010: 1228.8 Mbps

00100: 2457.6 Mbps

00101: 3072.0 Mbps

01000: 4915.0 Mbps (not supported for Cyclone IV GX devices)

01010: 6144.0 Mbps (not supported for Cyclone IV GX devices)

10000: 9830.4 Mbps (supported only for Stratix V devices)

Table 6–13. Scan-Chain Based Reconfiguration Interface Signals For CPRI Autorate Negotiation in Cyclone IV GX 
Devices

Signal Direction Description

pll_areset Input Resets the PLL. Signal must be asserted after PLL reconfiguration. Connect to the 
areset signal for the PLL.

pll_configupdate Input
When this signal is asserted, the PLL counters are updated with the contents of the 
scan chain. Signal is asserted for a single pll_scanclk cycle. Connect to the PLL 
reconfiguration scan chain configupdate signal.

pll_scanclk Input Clocks the shift registers in the PLL reconfiguration scan chain.The maximum 
frequency of this clock is 100 MHz.

pll_scanclkena Input Indicates scan data can be shifted in on the following pll_scanclk cycle. Connect 
to the PLL reconfiguration scan chain scanclkena signal.
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Table 6–14 lists the transceiver signals that are connected directly to the transceiver 
block. In many cases these signals must be shared by multiple transceiver blocks that 
are implemented in the same device

pll_scandata Input Serial data scanned into the scan chain. Connect to the PLL reconfiguration scan 
chain scandata signal.

pll_reconfig_done Output Indicates PLL reconfiguration is complete.

pll_scandataout Output Output stream shifted out of the scan chain.

Table 6–13. Scan-Chain Based Reconfiguration Interface Signals For CPRI Autorate Negotiation in Cyclone IV GX 
Devices

Signal Direction Description

Table 6–14. Transceiver Signals (Part 1 of 3)

Signal Direction Description

gxb_cal_blk_clk Input

The Arria II GX, Arria II GZ, Cyclone IV GX, and Stratix IV GX transceivers’ 
on-chip termination resistors are calibrated by a single calibration block. 
This circuitry requires a calibration clock. The frequency range of the 
gxb_cal_blk_clk is 10–125 MHz. For more information, refer to the 
Transceiver Architecture for Arria II Devices chapter in volume 2 of the 
Arria II Device Handbook, the Cyclone IV Transceivers Architecture chapter 
in volume 2 of the Cyclone IV Device Handbook, or the Stratix IV Transceiver 
Architecture chapter in volume 2 of the Stratix IV Device Handbook.

This signal is not present in Arria V and Stratix V variations.

gxb_pll_inclk Input

Input clock to the transceiver PLL. If the CPRI IP core is configured in 
master clocking mode, it does not use this clock. In master clocking mode, 
you must tie this input to 0.

In slave clocking mode, the gxb_pll_inclk signal connects directly to the 
rx_cruclk input signal of the transceiver’s PLL.

reconfig_clk (1) Input Reference clock for the dynamic reconfiguration controller. The frequency 
range for this clock is 37.5–50 MHz.

reconfig_togxb_s_tx
[3:0]([139:0] for Arria V and 
Stratix V devices) (1) 

Input
Driven from an external dynamic reconfiguration block to the slave 
transmitter transceiver block. Supports the selection of multiple transceiver 
channels for dynamic reconfiguration.

reconfig_togxb_s_rx
[3:0]([69:0] for Arria V and 
Stratix V devices) (1) 

Input
Driven from an external dynamic reconfiguration block to the slave receiver 
transceiver block. Supports the selection of multiple transceiver channels 
for dynamic reconfiguration.

reconfig_togxb_m[3:0]
([139:0] for Arria V and 
Stratix V devices) (1) 

Input
Driven from an external dynamic reconfiguration block to the master 
transceiver block. Supports the selection of multiple transceiver channels 
for dynamic reconfiguration.

reconfig_fromgxb_s_tx
[16:0] ([4:0] for 
Cyclone IV GX devices;
[91:0] for Arria V and Stratix V 
devices)

Output
Driven to an external dynamic reconfiguration block from the slave 
transmitter transceiver block. The bus identifies the transceiver channel 
whose settings are being transmitted to the dynamic reconfiguration block.
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reconfig_fromgxb_s_rx
[16:0] ([4:0] for 
Cyclone IV GX devices;
[45:0] for Arria V and Stratix V 
devices)

Output
Driven to an external dynamic reconfiguration block from the slave receiver 
transceiver block. The bus identifies the transceiver channel whose settings 
are being transmitted to the dynamic reconfiguration block.

reconfig_fromgxb_m
[16:0] ([4:0] for 
Cyclone IV GX devices;
[91:0] for Arria V and Stratix V 
devices)

Output
Driven to an external dynamic reconfiguration block from the master 
transceiver block. The bus identifies the transceiver channel whose settings 
are being transmitted to the dynamic reconfiguration block.

reconfig_busy Input

Indicates the busy status of the dynamic reconfiguration controller. After the 
device powers up, this signal remains low for the first reconfig_clk clock 
cycle. It is then asserted and remains high while the dynamic 
reconfiguration controller performs offset cancellation on all the receiver 
channels connected to the ALTGX_RECONFIG instance. This signal is 
deasserted when offset cancellation completes successfully.

This signal is not present in Arria V and Stratix V variations. 

reconfig_write Input

Indicates the user is writing to the dynamic reconfiguration controller to 
implement the autorate negotiation feature. Asserting this signal instructs 
the CPRI reset controller to perform the reset sequence for dynamic 
reconfiguration of the transceiver. For details about dynamic 
reconfiguration, refer to the relevant device handbook.If you are not using 
the autorate configuration feature, you must tie this input to 0.

This signal is not present in Arria V variations configured at the CPRI line 
rate of 9830.4 Mbps, which do not support the autorate negotiation feature. 

reconfig_done Input

Indicates the dynamic reconfiguration controller has completed the 
reconfiguration operation. Asserting this signal instructs the CPRI reset 
controller to complete the reset sequence for dynamic reconfiguration of the 
transceiver. For details about dynamic reconfiguration, refer to the relevant 
device handbook. If you are not using the autorate negotiation feature, you 
must tie this input to 0.

This signal is not present in Arria V variations configured at the CPRI line 
rate of 9830.4 Mbps, which do not support the autorate negotiation feature. 

gxb_pll_locked Output Indicates the transceiver transmitter PLL is locked to the input reference 
clock. This signal is asynchronous.

gxb_rx_pll_locked Output Indicates the transceiver CDR is locked to the input reference clock. This 
signal is asynchronous.

gxb_rx_freqlocked Output
Transceiver clock data recovery (CDR) lock mode indicator. If this signal is 
high, the transceiver CDR is in lock-to-data (LTD) mode. If this signal is low, 
the transceiver CDR is in lock-to-reference clock (LTR) mode. 

Table 6–14. Transceiver Signals (Part 2 of 3)

Signal Direction Description
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In addition to customization of the transceiver through the transceiver parameter 
editor, you can use the transceiver reconfiguration block to dynamically modify the 
parameter interface. The dynamic reconfiguration block lets you reconfigure the 
following PMA settings:

■ Pre-emphasis

■ Equalization

■ Offset cancellation

■ VOD on a per channel basis 

1 You must configure the dynamic reconfiguration block in any CPRI design that 
targets an Arria II GX, Arria II GZ, Cyclone IV GX, or Stratix IV GX device.

f For more information about the transceiver reconfiguration block and about offset 
cancellation, refer to the appropriate device handbook.

gxb_powerdown Input

Transceiver block power down. This signal resets and powers down all 
analog and digital circuitry in the transceiver block, including physical 
coding sublayer (PCS), physical media attachment (PMA), clock multiplier 
unit (CMU) channels, and central control unit (CCU). This signal does not 
affect the gxb_refclk buffers and reference clock lines.

All the gxb_powerdown input signals of IP cores intended to be placed in 
the same quad must be tied together. The gxb_powerdown signal must be 
tied low or must remain asserted for at least 2 ms whenever it is asserted. 

This signal is not present in Arria V and Stratix V variations.

gxb_rx_disperr[1:0] Output Transceiver 8B/10B disparity error indicator. If either bit is high, a disparity 
error was detected on the associated received code group.

gxb_rx_errdetect[1:0] Output

Transceiver 8B/10B code group violation or disparity error indicator. If either 
bit is high, a code group violation or disparity error was detected on the 
associated received code group. Use the gxb_rx_disperr signal to 
determine whether this signal indicates a code group violation or a disparity 
error. For details, refer to the relevant device handbook.

Note to Table 6–14:

(1) Refer to“Instantiating Multiple CPRI IP Cores” on page 2–6 for information about how to successfully combine multiple high-speed transceiver 
channels—whether in two CPRI IP core instances or in a CPRI IP core and in another component—in the same quad.

Table 6–14. Transceiver Signals (Part 3 of 3)

Signal Direction Description
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Clock and Reset Interface Signals
Table 6–15 describes the CPRI IP core clock and reset signals not described in other 
sections with their associated modules.

Table 6–15. CPRI IP Core Clock and Reset Signals 

Signal Direction Description 

clk_ex_delay Input Extended delay measurement clock. This clock must be driven from a 
common source with the transceiver reference clock.

reset_ex_delay Input

Reset for extended delay measurement block.This reset is associated with the 
clk_ex_delay clock. 

reset_ex_delay can be asserted asynchronously, but must stay asserted at 
least one clock cycle and must be de-asserted synchronously with the clock 
with which it is associated. Refer to Figure 4–5 on page 4–10 for a circuit that 
shows how to enforce synchronous deassertion of a reset signal. 

config_reset Input

Register reset. This reset is associated with the cpri_clkout clock.

config_reset can be asserted asynchronously, but must stay asserted at 
least one clock cycle and must be de-asserted synchronously with the clock 
with which it is associated. Refer to Figure 4–5 on page 4–10 for a circuit that 
shows how to enforce synchronous deassertion of a reset signal.

pll_clkout Output Generated from transceiver clock data recovery circuit. Intended to connect to 
an external PLL for jitter clean-up.

cpri_clkout Output CPRI core clock. Provided for observation and debugging.

hw_reset_req Output

Hardware reset request detected from received reset control word. This signal 
is set after the received reset control word is set in ten consecutive basic 
frames, if the reset_out_en bit of the CPRI_HW_RESET register is set. This 
signal is cleared in reset. It can be used to inform the application layer of the 
low-level reset request.

hw_reset_assert Input

Indicates a reset request should be sent to the CPRI link partner on the CPRI 
link, using bit 0 of the CPRI hyperframe control word Z.130.0. If the 
reset_hw_en bit of the CPRI_HW_RESET register is set, the CPRI IP core 
sends the reset request on the CPRI link. The hw_reset_assert signal is 
detected on the rising edge of cpri_clkout.

usr_pma_clk Input

One of two extra clock signals required for CPRI IP core variations configured 
at 9830.4 Mbps that target an Arria V GT device. When configured at this 
CPRI line rate, a CPRI IP core that targets an Arria V GT device does not 
support autorate negotiation. 

The CPRI IP core requires that usr_pma_clk be driven at 122.88 MHz from a 
common source with, and synchronized with, the driver of usr_clk. In 
master clocking mode, it must have a common source with the gxb_refclk 
signal, and in slave clocking mode, it must be driven from the cleanup PLL.

usr_clk Input

One of two extra clock signals required for CPRI IP core variations configured 
at 9830.4 Mbps that target an Arria V GT device. When configured at this 
CPRI line rate, a CPRI IP core that targets an Arria V GT device does not 
support autorate negotiation. 

The CPRI IP core requires that usr_clk be driven at 245.76 MHz from a 
common source with, and synchronized with, the driver of usr_pma_clk. it 
must have a common source with the gxb_refclk signal, and in slave 
clocking mode, it must be driven from the cleanup PLL.
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7. Software Interface
The Altera CPRI IP core supports the following sets of registers that control the CPRI 
IP core or query its status:

■ CPRI Protocol Interface Registers

■ MAP Interface and AUX Interface Configuration Registers

■ Ethernet Registers

■ HDLC Registers

All of the registers are 32 bits wide and their addresses are shown as hexadecimal 
values. The registers can be accessed only on a 32-bit (4-byte) basis. The addressing for 
the registers therefore increments by units of 4.

1 Reserved fields are labelled in the register tables. These fields are reserved for future 
use and your design should not write to or rely on a specific value being found in any 
reserved field or bit.

A remote device can access these registers only by issuing read and write operations 
through the CPU interface. 

Table 7–1 lists the access codes that describe the type of register bits.

Table 7–2 lists the CPRI IP core register address ranges.

Table 7–1. Register Access Codes

Code Description 

RC Read to clear 

RO Read-only 

RW Read/write 

UR0 Unused bits/read as 0

WO Write-only; read as 0

Table 7–2. CPRI IP Core Register Address Ranges

Address Range Interface

0x00–0x68 CPRI Protocol Interface Registers

0x100–0x1A4 MAP Interface and AUX Interface Configuration Registers

0xF4–0x1FC Reserved

0x200–0x24C Ethernet Registers

0x250–0x2FC Reserved

0x300–0x334 HDLC Registers
CPRI MegaCore Function
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CPRI Protocol Interface Registers
This section lists the CPRI protocol interface registers. Table 7–3 provides a memory 
map for the CPRI protocol interface registers. Table 7–4 through Table 7–29 describe 
the CPRI protocol interface registers in the CPRI IP core.

Table 7–3. CPRI Protocol Interface Registers Memory Map

Address Name Expanded Name

0x0 CPRI_INTR Interrupt Control and Status

0x4 CPRI_STATUS CPRI Status

0x8 CPRI_CONFIG CPRI Configuration

0xC CPRI_CTRL_INDEX CPRI Control Word Index

0x10 CPRI_RX_CTRL CPRI Received Control Word

0x14 CPRI_TX_CTRL CPRI Transmit Control Word

0x18 CPRI_LCV CPRI Line Code Violation Counter

0x1C CPRI_RX_BFN CPRI Recovered Radio Frame Counter

0x20 CPRI_HW_RESET Hardware Reset From Control Word

0x24 CPRI_PHY_LOOP Physical Layer Loopback Control

0x28 CPRI_CM_CONFIG CPRI Control and Management Configuration

0x2C CPRI_CM_STATUS CPRI Control and Management Status

0x30 CPRI_RX_DELAY_CONTROL Receiver Delay Control

0x34 CPRI_RX_DELAY Receiver Delay

0x38 CPRI_ROUND_DELAY Round Trip Delay

0x3C CPRI_EX_DELAY_CONFIG Extended Delay Measurement Configuration

0x40 CPRI_EX_DELAY_STATUS Extended Delay Measurement Status

0x44 Reserved

0x48 AUTO_RATE_CONFIG Autorate Negotiation

0x4C CPRI_INTR_PEND Pending Interrupt Status

0x50 CPRI_N_LCV LCV Threshold

0x54 CPRI_T_LCV LCV Test Period

0x58 CPRI_TX_PROT_VER Tx Protocol Version

0x5C CPRI_TX_SCR_SEED Tx Scrambler Seed

0x60 CPRI_RX_SCR_SEED Rx Scrambler Support

0x64 CPRI_TX_BITSLIP Tx Bitslip

0x68 CPRI_AUTO_CAL Autocalibration

Table 7–4. CPRI_INTR—Interrupt Control and Status—Offset: 0x0 (Part 1 of 2)

Field Bits Access Function Default 

RSRV [31:6] UR0 Reserved. 31’h0

intr_los_lcv_en [5] RW los_lcv interrupt enable. 1’h0

RSRV [4:2] UR0 Reserved. 3’h0
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intr_hw_reset_en [1] RW
hw_reset interrupt enable. Controls whether a reset 
request received over the CPRI link raises an interrupt on 
the CPU IRQ line.

1’h0

intr_en [0] RW
CPRI protocol interface module interrupt enable. 

The Ethernet and HDLC modules have separate interrupt 
enable control bits.

1’h0

Table 7–4. CPRI_INTR—Interrupt Control and Status—Offset: 0x0 (Part 2 of 2)

Field Bits Access Function Default 

Table 7–5. CPRI_STATUS—CPRI Status—Offset: 0x4

Field Bits Access Function Default 

RSRV [31:12] UR0 Reserved. 20'h0

rx_rfp_hold [11] RC Radio frame pulse received. This bit is asserted every 10 ms. (1) 1’h0

rx_freq_alarm_
hold

[10] RC

CPRI receive clock is not synchronous with system clock 
(cpri_clkout). This alarm is asserted each time mismatches are found 
between the recovered CPRI receive clock and the system clock 
cpri_clkout. (1)

1’h0

rx_state_hold [9] RC Hold rx_state. (1) 1’h0

rx_los_hold [8] RC Hold rx_los. (1) 1’h0

RSRV [7:6] UR0 Reserved. 2'h0

los_lcv [5] RO

Loss of signal (LOS) detected. This alarm is asserted if excessive line 
code violations (LCVs) are detected, based on two counters and two 
programmable threshold values. The first counter counts up to the 
expected amount of time to CPRI link synchronization, during which the 
second counter does not count LCVs. The second counter counts LCVs 
up to the threshold—the number of LCVs after which this alarm is 
asserted. The CPRI_T_LCV register at offset 0x54 specifies the expected 
amount of time to CPRI link synchronization, and the CPRI_N_LCV 
register at offset 0x50 holds the threshold number of LCVs after which 
this alarm is asserted. 

1’h0

RSRV [4] UR0 Reserved. 1'h0

rx_bfn_state [3] RO Indicates BFN (Node B radio frame) synchronization has been achieved. 1’h0

rx_hfn_state [2] RO Indicates HFN synchronization has been achieved. 1’h0

rx_state [1] RO
When set, indicates that Rx HFN and BFN synchronization have been 
achieved in CPRI receiver frame synchronization. You can read this field 
to determine whether the Rx link is established.

1’h0

rx_los [0] RO Indicates either excessive 8B/10B violations (> 15) or incoming LOS 
signal on dedicated line from SFP optical module (gxb_los signal). 1’h0

Note to Table 7–5:

(1) This register field is a read-to-clear field. You must read the register twice to read the true value of the field after frame synchronization is 
achieved. If you observe this bit asserted during link initialization, read the register again after link initialization to confirm any errors.

Table 7–6. CPRI_CONFIG—CPRI Configuration—Offset: 0x8 (Part 1 of 2)

Field Bits Access Function Default

RSRV [31:6] UR0 Reserved. 26'h0

tx_enable [5] RW Enable transmission on CPRI link. 1’h0
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loop_mode [4:2] RW

Testing loopback mode. The reverse loopback paths specified in this 
register field include the transmission framing block, in contrast to the 
lower-level loopback path specified in the CPRI_PHY_LOOP register at 
offset 0x24. The loopback paths specified in this register field are only 
enabled after frame synchronization, and can only be activated in a 
CPRI RE slave. The following field values are defined:

000: No loopback.

001: Full CPRI frame loop. Incoming CPRI data and control words 
are sent back in outgoing CPRI communication.

010: IQ sample loop. Incoming CPRI data are sent back in outgoing 
CPRI communication; control words are generated locally.

011: Fast C&M loop. Incoming CPRI C&M control and data words 
are sent back in outgoing CPRI communication; remaining data and 
control words are generated locally.

100: Fast C&M and VSS loop. Incoming CPRI C&M and 
vendor-specific control words are sent back in outgoing CPRI 
communication; data and remaining control words are generated 
locally.

Note that this loopback mode is superseded by the 1-bit physical 
layer loop mode specified in the CPRI_PHY_LOOP register at offset 
0x24. If both register fields hold non-zero values, the value in the 
CPRI_PHY_LOOP register takes precedence.

3'h0

RSRV [1] RO Reserved. 1'h0

tx_ctrl_insert_en [0] RW
Master enable for insertion of tx_control_data contents in CPRI 
control word. This signal enables control bytes for which the 
tx_control_insert bit is high to be written to the CPRI frame.

1'h0

Table 7–6. CPRI_CONFIG—CPRI Configuration—Offset: 0x8 (Part 2 of 2)

Field Bits Access Function Default

Table 7–7. CPRI_CTRL_INDEX—CPRI Control Word Index—Offset: 0xC

Field Bits Access Function Default

RSRV [31:8] UR0 Reserved. 24'h0

cpri_ctrl_index [7:0] RW
Index for CPRI control byte monitoring and insertion. The value in this 
field determines the control receive and control transmit table entries 
that appear in the CPRI_RX_CTRL and CPRI_TX_CTRL registers. 

8'h0

Table 7–8. CPRI_RX_CTRL—CPRI Received Control Word—Offset: 0x10

Field Bits Access Function Default

RSRV [31:8] UR0 Reserved. 24'h0

rx_control_data [7:0] RW
Most recent received CPRI control word from CPRI hyperframe 
position Z.x.0, where x is the index in the cpri_ctrl_index 
field of the CPRI_CTRL_INDEX register.

8'h0
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Table 7–9. CPRI_TX_CTRL—CPRI Transmit Control Word—Offset: 0x14

Field Bits Access Function Default

RSRV [31:9] UR0 Reserved. 23'h0

tx_control_insert [8] RW Control byte transmit enable. 1’h0

tx_control_data [7:0] RW
CPRI control byte to be transmitted in CPRI hyperframe 
position Z.x.0, where x is the index in the cpri_ctrl_index 
field of the CPRI_CTRL_INDEX register.

8'h0

Table 7–10. CPRI_LCV—CPRI Line Code Violation Counter—Offset: 0x18

Field Bits Access Function Default

RSRV [31:8] UR0 Reserved. 24'h0

cpri_lcv [7:0] RO

Number of line code violations (LCVs) detected in the 8B/10B 
decoding block in the transceiver. Enables CPRI link 
debugging. This register saturates at the value 255; after it 
reaches 255, it maintains this value until reset.

This counter is not used to determine whether the N_LCV 
threshold (Table 7–23 on page 7–11) is reached, because it 
includes LCVs that occur during initialization—before T_LCV 
(Table 7–24 on page 7–11) is reached—and because it 
saturates.

8’h0

Table 7–11. CPRI_BFN—CPRI Recovered Radio Frame Counter—Offset: 0x1C

Field Bits Access Function Default

RSRV [31:12] UR0 Reserved. 20'h0

bfn [11:0] RO Current BFN (node B radio frame number) number. Value 
obtained from BFN alignment state machine. 12’h0

Table 7–12. CPRI_HW_RESET—Hardware Reset From Control Word—Offset: 0x20 (Part 1 of 2)

Field Bits Access Function Default

RSRV [31:8] UR0 Reserved. 24'h0

reset_gen_done_hold [7] RC Hold reset_done. 1’h0

reset_gen_done [6] RO Indicates that a reset request or acknowledgement has been 
successfully sent on the CPRI link by the CPRI transmitter. 1'h0

reset_detect_hold [5] RC (1) Hold reset_detect. 1'h0

reset_detect [4] RO Indicates that reset request has been detected in the incoming 
stream on the CPRI link by the CPRI receiver. 1'h0
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For additional information about the CPRI_HW_RESET register, refer to “Reset 
Requirements” on page 4–9. 

reset_hw_en [3] RW

Enable generation of reset request or acknowledge by CPRI 
transmitter, as indicated by the hw_reset_assert input signal. 
This enable bit has higher priority than the reset_gen_en bit; if 
this enable bit is set, the reset_gen_force bit is ignored.

Note that when a CPRI RE slave detects a reset request in 
incoming CPRI communication, and the reset_hw_en bit is 
set, the user must assert the hw_reset_assert input signal to 
the CPRI RE slave, to force it to send a reset acknowledge by 
setting the reset bit in outgoing CPRI communication at 
Z.130.0. 

1'h0

reset_out_en [2] RW Enable reset output. 1'h0

reset_gen_force [1] RW Force generation of reset request or acknowledge by CPRI 
transmitter. 1'h0

reset_gen_en [0] RW

Enable generation of reset request or acknowledge by CPRI 
transmitter, as indicated by the reset_gen_force bit. This 
enable bit has lower priority than the reset_hw_en bit; if the 
reset_hw_en bit is set, this bit and the reset_gen_force bit 
are ignored.

1'h0

Note to Table 7–12:

(1) This register field is a read-to-clear field. You must read the register twice to read the true value of the field after frame synchronization is 
achieved. If you observe this bit asserted during link initialization, read the register again after link initialization to confirm any errors.

Table 7–12. CPRI_HW_RESET—Hardware Reset From Control Word—Offset: 0x20 (Part 2 of 2)

Field Bits Access Function Default

Table 7–13. CPRI_PHY_LOOP—Physical Layer Loopback Control—Offset: 0x24 (Part 1 of 2)

Field Bits Access Function Default

RSRV [31:5] UR0 Reserved. 27'h0

loop_resync [4] RC (1)

Indicates that reset resynchronization is detected. This bit is 
typically set when the CPRI receiver clock and cpri_clkout 
have different frequencies, as measured in the physical layer 
internal loopback path. 

1’h0

RSRV [3:1] UR0 Reserved. 2'h0
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loop_mode [0] RW

Physical layer loopback mode. The following values are 
defined:

0: No loopback.

1: Full CPRI frame loop. Incoming CPRI data and control 
words are sent back as-is in outgoing CPRI 
communication. This low-level reverse loopback path is 
active whether or not frame synchronization has been 
achieved; the path includes 8B/10B encoding and 
decoding, but only enough core CPRI functionality to 
handle the transition from the receiver clock domain to the 
transmitter clock domain.

This loopback mode takes precedence over the 3-bit 
loop_mode specified in the CPRI_CONFIG register at offset 
0x8: if this field has value 1, the 3-bit loop_mode value is 
ignored.

2'h0

Note to Table 7–13:

(1) This register field is a read-to-clear field. You must read the register twice to read the true value of the field after frame synchronization is 
achieved. If you observe this bit asserted during link initialization, read the register again after link initialization to confirm any errors.

Table 7–13. CPRI_PHY_LOOP—Physical Layer Loopback Control—Offset: 0x24 (Part 2 of 2)

Field Bits Access Function Default

Table 7–14. CPRI_CM_CONFIG—CPRI Control and Management Configuration—Offset: 0x28

Field Bits Access Function Default

RSRV [31:11] UR0 Reserved. 20'h0

tx_slow_cm_rate [10:8] RW Rate configuration for slow C&M (HDLC). To be inserted in 
CPRI control byte Z.66.0. 3’h0

RSRV [7:6] UR0 Reserved. 2'h0

tx_fast_cm_ptr [5:0] RW Pointer to first CPRI control word used for fast C&M 
(Ethernet). To be inserted in CPRI control byte Z.194.0. 8'h14

Table 7–15. CPRI_CM_STATUS—CPRI Control and Management Status—Offset: 0x2C (Part 1 of 2)

Field Bits Access Function Default

RSRV [31:12] UR0 Reserved. 20’h0

rx_slow_cm_rate_valid [11] RO Indicates that a valid slow C&M rate has been accepted. 1'h0
June 2012 Altera Corporation CPRI MegaCore Function
User Guide



7–8 Chapter 7: Software Interface
CPRI Protocol Interface Registers
rx_slow_cm_rate [10:8] RO

Accepted receive slow C&M rate, as determined during 
the software set-up sequence, or by dynamic 
modification, in which the same new pointer value is 
received in incoming CPRI control byte Z.66.0 four 
hyperframes in a row.

The following values are defined:

000: No HDLC channel.

001: 240 Kbps

010: 480 Kbps

011: 960 Kbps

100: 1920 Kbps

101: 2400 Kbps

110: 3840, 4800, or 7680 Kbps, depending on the 
current CPRI line rate, as specified in Table 4–13 on 
page 4–45.

For information about compatible slow C&M rates and 
CPRI line rates, refer to Table 4–13 on page 4–45.

3’h0

RSRV [7] UR0 Reserved. 1'h0

rx_fast_cm_ptr_valid [6] RO Indicates that a valid fast C&M pointer has been accepted. 1'h0

rx_fast_cm_ptr [5:0] RO

Accepted receive fast C&M pointer, as determined during 
the software set-up sequence or by dynamic 
modification, in which the same new pointer value is 
received in incoming CPRI control byte Z.194.0 four 
hyperframes in a row. The value is between 0x24 and 
0x3F, inclusive.

6’h0

Table 7–15. CPRI_CM_STATUS—CPRI Control and Management Status—Offset: 0x2C (Part 2 of 2)

Field Bits Access Function Default

Table 7–16. CPRI_RX_DELAY_CTRL—Receiver Delay Control—Offset: 0x30

Field Bits Access Function Default

RSRV [31:17] UR0 Reserved. 15'h0

rx_buf_resync [16] RW

Force CPRI receiver buffer (Rx elastic 
buffer) realignment. Altera recommends 
that you resynchronize the Rx elastic 
buffer after a dynamic CPRI line rate 
change. Resynchronizing might lead to 
data loss or corruption.

1’h0

RSRV [15:WIDTH_RX_BUF] (1) UR0 Reserved. 0

rx_buf_int_delay [(WIDTH_RX_BUF-1):0] (1) RW

Initial buffer delay with which to align the 
Rx elastic buffer. After you modify the 
value of this field, you must set the 
rx_buf_resync bit to resynchronize the 
buffer.

2WIDTH_RX_BUF-1

Note to Table 7–16:

(1) WIDTH_RX_BUF is the value specified for the Receiver buffer depth parameter. This value is log2 of the depth of the Rx elastic buffer. By default, 
it is set to six, specifying a 64-entry buffer. Altera recommends that you set it to four, specifying a 16-entry buffer, in slave configurations.
CPRI MegaCore Function June 2012 Altera Corporation
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Table 7–17. CPRI_RX_DELAY—Receiver Delay—Offset: 0x34

Field Bits Access Function Default

RSRV [31:(WIDTH_RX_BUF+2)] (1) UR0 Reserved. 0

rx_buf_delay [(WIDTH_RX_BUF+1):2] (1) RO Current receive buffer fill level. Unit is 32-bit words. 
Maximum value is 2WIDTH_RX_BUF-1. 0

rx_byte_delay [1:0] RO

Current byte-alignment delay. This field was 
relevant for the Rx path delay calculation in 
previous releases of the CPRI IP core, but is not 
relevant for the Rx path delay calculation in the 
current release of the CPRI IP core. Refer to “Rx 
Path Delay Components” on page D–3. 

2'h0

Note to Table 7–17:

(1) WIDTH_RX_BUF is the value specified for the Receiver buffer depth parameter. This value is log2 of the depth of the Rx elastic buffer. By default, 
it is set to six, specifying a 64-entry buffer. Altera recommends that you set it to four, specifying a 16-entry buffer, in slave configurations.

Table 7–18. CPRI_ROUND_DELAY—Round Trip Delay—Offset: 0x38

Field Bits Access Function Default

RSRV [31:20] UR0 Reserved. 12'h0

rx_round_trip_delay [19:0] RO Measured round trip delay from cpri_tx_rfp to 
cpri_rx_rfp. Unit is cpri_clkout clock periods. 20'h0

Table 7–19. CPRI_EX_DELAY_CONFIG—Extended Delay Measurement Configuration—Offset: 0x3C

Field Bits Access Function Default

RSRV [31:25] UR0 Reserved. 7'h0

tx_ex_delay [24:16] RW

Integration period for Tx buffer extended delay measurement.

Program this field with the user-defined value N, where
M/N = clk_ex_delay period / cpri_clkout period. Refer to “CPRI 
Receive Buffer Delay Calculation Example” on page D–6.

9'h0

RSRV [15:9] UR0 Reserved. 7'h0

rx_ex_delay [8:0] RW

Integration period for Rx buffer extended delay measurement.

Program this field with the user-defined value N, where
M/N = clk_ex_delay period / cpri_clkout period. Refer to “CPRI 
Receive Buffer Delay Calculation Example” on page D–6.

9'h0

Table 7–20. CPRI_EX_DELAY_STATUS—Extended Delay Measurement Status—Offset: 0x40 (Part 1 of 2)

Field Bits Access Function Default

tx_ex_buf_delay_valid [31] RC Indicates that the tx_ex_buf_delay field 
has been updated. 1'h0

tx_ex_buf_delay [30:18] RO

Tx buffer extended delay measurement 
result. Unit is cpri_clkout clock periods. 
Refer to “Extended Tx Delay 
Measurement” on page D–11.

0

RSRV [17] UR0 Reserved. 1'h0

rx_ex_buf_delay_valid [16] RC Indicates that the rx_ex_buf_delay field 
has been updated. 1'h0
June 2012 Altera Corporation CPRI MegaCore Function
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RSRV [15:(WIDTH_RX_BUF+9)] (1) UR0 Reserved. 0

rx_ex_buf_delay [(WIDTH_RX_BUF+8):0] (1) RO

Rx buffer extended delay measurement 
result. Unit is cpri_clkout clock periods. 
Refer to “Extended Rx Delay 
Measurement” on page D–5.

0

Note to Table 7–20:

(1) WIDTH_RX_BUF is the value specified for the Receiver buffer depth parameter. This value is log2 of the depth of the Rx elastic buffer. By default, 
it is set to six, specifying a 64-entry buffer. Altera recommends that you set it to four, specifying a 16-entry buffer, in slave configurations.

Table 7–20. CPRI_EX_DELAY_STATUS—Extended Delay Measurement Status—Offset: 0x40 (Part 2 of 2)

Field Bits Access Function Default

Table 7–21. AUTO_RATE_CONFIG—Autorate Negotiation Register—Offset: 0x48  

Field Bits Access Function Default

RSRV [31:6] UR0 Reserved. 28’h0

i_datarate_en [5] RO

Indicates that autorate negotiation is enabled. (Value is 
1’b0 if autorate negotiation is not enabled; 1’b1 if 
autorate negotiation is enabled, in the CPRI parameter 
editor). Refer to Figure B–1 and Figure B–2 for an 
illustration of the autorate negotiation logic in the CPRI 
IP core and the autorate negotiation logic you must add 
to your design outside the CPRI IP core.

As specified in 
CPRI parameter 
editor

i_datarate_set [4:0] RW

CPRI line rate to be used in next attempt to achieve 
frame synchronization. You set the line rate in your 
implementation of the autorate negotiation hardware 
and software outside the CPRI IP core. Refer to 
Appendix B, Implementing CPRI Link Autorate 
Negotiation, for information about how to use the 
autorate negotiation logic implemented in the CPRI IP 
core.

Encode the CPRI line rate in this field with the following 
values:

00001: 614.4 Mbps

00010: 1228.8 Mbps

00100: 2457.6 Mbps

00101: 3072.0 Mbps

01000: 4915.0 Mbps (1)

01010: 6144.0 Mbps (1)

10000: 9830.4 Mbps (2)

4’h0

Notes to Table 7–21:

(1) This value is not valid for CPRI IP core variations that target a Cyclone IV GX device. This value is valid for CPRI MegaCore variations that target 
an Arria II GX device only if that device is an I3 speed grade device.

(2) This value is valid only for CPRI IP core variations that target a Stratix V device.
CPRI MegaCore Function June 2012 Altera Corporation
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Table 7–22. CPRI_INTR_PEND—Interrupt Pending Status—Offset: 0x4C 

Field Bits Access Function Default 

RSRV [31:6] UR0 Reserved. 26’h0

los_lcv_pending [5] RW Indicates an los_lcv interrupt is pending (the interrupt 
occurred but is not yet serviced). 1’h0

RSRV [4:2] UR0 Reserved. 4’h0

hw_reset_pending [1] RW

Indicates a hw_reset interrupt is pending (the interrupt 
occurred but is not yet serviced).

In an RE slave, this bit is set when a reset request is detected 
in incoming CPRI communication at Z.130.0, but neither the 
reset_gen_en bit nor the reset_hw_en bit in the 
CPRI_HW_RESET register is set (so that a reset acknowledge 
cannot be sent to the RE master), or when the CPRI RE slave 
sends a reset acknowledge on the outgoing CPRI link at 
Z.130.0.

In a master, this bit is set when a reset acknowledge is 
received on the incoming CPRI link at Z.130.0.

Software can count assertions of this bit to confirm the reset 
bit in Z.130.0 was asserted in ten consecutive hyperframes to 
complete a CPRI-compliant reset acknowledge.

Note that when a reset request is detected in incoming CPRI 
communication, and the reset_hw_en bit in the 
CPRI_HW_RESET register is set, the user must assert the 
hw_reset_assert input signal to the CPRI RE slave, to force 
it to send a reset acknowledge by setting the reset bit in 
outgoing CPRI communication at Z.130.0. After the reset bit is 
sent on the CPRI link, hw_reset_pending is asserted.

1’h1

RSRV [0] UR0 Reserved. 1’h0

Table 7–23. CPRI_N_LCV—LCV Threshold—Offset: 0x50 

Field Bits Access Function Default 

N_LCV [31:0] RW The number of LCVs that triggers the assertion of the 
cpri_rx_los signal. 32’h0

Table 7–24. CPRI_T_LCV—LCV Test Period—Offset: 0x54 

Field Bits Access Function Default 

T_LCV [31:0] RW
The number of bytes in the initialization period during which 
we do not yet count LCVs toward assertion of the 
cpri_rx_los signal.

32d’614400
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Table 7–25. CPRI_TX_PROT_VER— Tx Protocol Version —Offset: 0x58 

Field Bits Access Function Default 

RSRV [31:8] UR0 Reserved. 24’h0

tx_prot_version [7:0] RW

Transmit protocol version to be mapped to Z.2.0 to indicate 
whether or not the current hyperframe transmission is 
scrambled. The value 1 indicates it is not scrambled and the 
value 2 indicates it is scrambled.

8’h01

Table 7–26. CPRI_TX_SCR_SEED— Tx Scrambler Seed —Offset: 0x5C 

Field Bits Access Function Default 

RSRV [31] UR0 Reserved. 1’h0

tx_scr_seed [30:0] RW Transmitter scrambler seed. If the seed has value 0, the 
transmission is not scrambled. 31’h0

Table 7–27. CPRI_RX_SCR_SEED— Rx Scrambler Support —Offset: 0x60 

Field Bits Access Function Default 

rx_scr_act_indication [31] RO
Indicates that the incoming hyperframe is scrambled. The 
value 1 indicates that the incoming communication is 
scrambled, and the value 0 indicates that it is not scrambled.

1’h0

rx_scr_seed [30:0] RO Received scrambler seed. The receiver descrambles the 
incoming CPRI communication based on this seed. 31’h0

Table 7–28. CPRI_TX_BITSLIP— Tx Bitslip —Offset: 0x64 (1), (2), (3) (Part 1 of 2)

Field Bits Access Function Default 

RSRV [31:21] UR0 Reserved. 11’h0

rx_
bitslipboundaryselectout

[20:16] RO

Number of bits of delay (bitslip) detected at the receiver 
word-aligner. Value can change at frame synchronization, 
when the transceiver is resetting. Any K28.5 symbol position 
change that occurs when word alignment is activated 
changes the bitslip value.

5’h0

RSRV [15:9] UR0 Reserved. 7’h0

tx_bitslip_en [8] RW

Enable manual tx_bitslipboundaryselect updates. 
When this bit has the value of 0 in a CPRI RE slave, the CPRI 
RE slave determines the value in the 
tx_bitslipboundaryselect field, and adds 
tx_bitslipboundaryselect bits of delay in the 
transceiver transmitter to compensate for the variability in 
the Rx word aligner bitslip. The CPRI IP core ignores the 
value in the tx_bitslipboundaryselect field in a CPRI 
REC or RE master. When the tx_bitslip_en bit has the 
value of 1, the application can write a value to the 
tx_bitslipboundaryselect field to manually override the 
value the CPRI IP core would calculate. 

1’h0

RSRV [7:5] UR0 Reserved. 3’h0
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tx_bitslipboundaryselect [4:0] RW

Number of bits of delay (bitslip) the CPRI IP core adds at the 
CPRI Tx link to compensate for the variability in the Rx word 
aligner bitslip. The purpose of this added delay is to ensure 
the variability in the round-trip delay through this CPRI RE 
slave remains compliant with the R-20 and R-21 
deterministic latency requirements of the CPRI specification 
V4.2. The device family and CPRI line rate determine the 
following maximum values for this field:

■ Maximum value for all CPRI variations with line rate 
614.4 Mbps and for all variations that target an Arria II GX 
or Cyclone IV GX device: 9 bits.

■ Maximum value for all other variations: 19 bits.

The latency differences from different Tx bitslip delay values 
are observable only with an oscilloscope. 

5’h0

Notes to Table 7–28:

(1) In variations that target an Arria V or Stratix V device, the Tx bitslip functionality is included in the Altera Transceiver PHY IP core that is 
generated as part of the CPRI variation.

(2) CPRI variations with master clocking mode (CPRI REC and RE masters) do not support the automatic bitslip calibration functionality controlled 
by this register.

(3) For information about the CPRI IP core Tx bitslip feature, refer to “Tx Bitslip Delay” on page D–12.

Table 7–28. CPRI_TX_BITSLIP— Tx Bitslip —Offset: 0x64 (1), (2), (3) (Part 2 of 2)

Field Bits Access Function Default 

Table 7–29. CPRI_AUTO_CAL— Autocalibration (1), (2) —Offset: 0x68 

Field Bits Access Function Default 

RSRV [31:30] UR0 Reserved. 2’h0

cal_pointer [29:26] RO
Number of autocalibration pipeline stages currently in use. 
Each such stage adds one cpri_clkout cycle of delay in the 
Rx path.

4’h3

cal_status [25:24] RO

Calibration status. Valid values are:

00: Calibration is turned off

01: Calibration is running or falied with cal_rtd value too 
low

10: Calibration is running or failed with cal_rtd value too 
high

11: Calibration is successful

2’h0

RSRV [23:21] UR0 Reserved. 3’h0

cal_en [20] RW
Indicates that calibration mode is enabled. When the value in 
this field is 1, autocalibration is turned on. When the value in 
this field is 0, autocalibration is turned off.

1’h0

cal_rtd [19:0] RW Desired round-trip delay value. Unit is cpri_clkout cycles. 20’h0

Notes to Table 7–29:

(1) CPRI variations with slave clocking mode (CPRI RE slaves) do not support the functionality controlled by this register. 
(2) For information about the CPRI IP core autocalibration feature, refer to “Dynamic Pipelining for Automatic Round-Trip Delay Calibration” on 

page D–21.
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MAP Interface and AUX Interface Configuration Registers
This section lists the MAP interface configuration registers. Table 7–30 provides a 
memory map for the MAP interface configuration registers. Table 7–31 through 
Table 7–49 describe the MAP interface configuration registers in the CPRI IP core.

Table 7–30. MAP Interface Configuration Registers Memory Map

Address Name Expanded Name

0x100 CPRI_MAP_CONFIG CPRI Mapping Features Configuration

0x104 CPRI_MAP_CNT_CONFIG Basic UMTS/LTE Mapping Configuration

0x108 CPRI_MAP_TBL_CONFIG K Parameter Config for Advanced Table-Based Mapping

0x10C CPRI_MAP_TBL_INDEX Advanced Mapping Configuration Table Index

0x110 CPRI_MAP_TBL_RX Advanced Mapping Rx Configuration Table

0x114 CPRI_MAP_TBL_TX Advanced Mapping Tx Configuration Table

0x118 CPRI_MAP_OFFSET_RX MAP Rx Frame Offset

0x11C CPRI_MAP_OFFSET_TX MAP Tx Frame Offset

0x120 CPRI_START_OFFSET_RX Rx Start Frame Offset

0x124 CPRI_START_OFFSET_TX Tx Start Frame Offset

0x128 CPRI_MAP_RX_READY_THR CPRI Mapping Rx Ready Threshold

0x12C CPRI_MAP_TX_READY_THR CPRI Mapping Tx Ready Threshold

0x130 CPRI_MAP_TX_START_THR CPRI Mapping Tx Start Threshold

0x13C CPRI_PRBS_CONFIG PRBS Generation Pattern Configuration

0x140–0x144 CPRI_PRBS_STATUS PRBS Data Validation Status

0x150 CPRI_IQ_RX_BUF_CONTROL MAP Receiver FIFO Buffer Control

0x160 CPRI_IQ_TX_BUF_CONTROL MAP Transmitter FIFO Buffer Control

0x180–0x184 CPRI_IQ_RX_BUF_STATUS MAP Receiver FIFO Buffer Status

0x1A0–0x1A4 CPRI_IQ_TX_BUF_STATUS MAP Transmitter FIFO Buffer Status

Table 7–31. CPRI_MAP_CONFIG—CPRI Mapping Features Configuration—Offset: 0x100 (Part 1 of 2)

Field Bits Access Function Default

RSRV [31:5] UR0 Reserved. 27’h0

map_15bit_mode [4] RW

15-bit sample width. Values are:

0: 2 × 16-bit sample width

1: 2× 15-bit sample width

The Altera CPRI IP core does not support the map_15bit_mode 
value of 0 in the Advanced 3 mapping mode. For more 
information, refer to Appendix C, Advanced AxC Mapping Modes.

1’h0

map_tx_sync_mode [3] RW

Tx MAP synchronization mode if Enable MAP interface 
synchronization with core clock is turned off. Values are:

0: FIFO mode

1: Synchronous buffer mode

1’h0
CPRI MegaCore Function June 2012 Altera Corporation
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map_rx_sync_mode [2] RW

Rx MAP synchronization mode if Enable MAP interface 
synchronization with core clock is turned off. Values are:

0: FIFO mode

1: Synchronous buffer mode

1’h0

map_mode [1:0] RW/RO

AxC mapping mode. If you select All as the value for the Mapping 
mode(s) parameter in the CPRI IP core, this register field 
determines the current AxC mapping mode. If you select any 
other value for the Mapping mode(s) parameter, this register field 
is ignored (Read-only).

Register field values are:

2’h0

00: Basic mapping scheme (UMTS/LTE standard in which all 
MAP interfaces use the same sample rate, as described in 
the CPRI V4.2 Specification sections 4.2.7.2.2 and 
4.2.7.2.3).

01: CPRI V4.2 Specification section 4.2.7.2.5:
Method 1: IQ sample based.

New Method 1 implementation in the Quartus II software 
v11.1 release.

10: CPRI V4.2 Specification section 4.2.7.2.7:
Method 3: Backward compatible.

11: CPRI V4.2 Specification section 4.2.7.2.5:
Method 1: IQ sample based. 

This implementation is available in all pre-11.1 releases 
of the Altera CPRI IP core as advanced mapping mode 
2’b01.

Values 01, 10, and 11 indicate advanced AxC mapping modes in 
which each MAP interface can implement a different channel rate 
and radio standard.

Table 7–31. CPRI_MAP_CONFIG—CPRI Mapping Features Configuration—Offset: 0x100 (Part 2 of 2)

Field Bits Access Function Default

Table 7–32. CPRI_MAP_CNT_CONFIG—Basic UMTS/LTE Mapping Configuration—Offset: 0x104 (1)

Field Bits Access Function Default

RSRV [31:13] UR0 Reserved. 19’h0

map_ac [12:8] RW Number of active data channels (antenna-carrier interfaces). 5’h0

RSRV [7:5] UR0 Reserved. 3’h0

map_n_ac [4:0] RW Oversampling factor on each active data channel. 5’h0

Note to Table 7–32:

(1) This register applies only to map_mode 00, in which each antenna-carrier interface has the same sample rate.

Table 7–33. CPRI_MAP_TBL_CONFIG—K Parameter Config for Advanced Table-Based Mapping—
Offset: 0x0108 (1) (Part 1 of 2)

Field Bits Access Function Default

RSRV [31:WIDTH_K] UR0 Reserved. 0
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K [WIDTH_K-1:0] RW Number of basic frames in AxC container block. 0

Note to Table 7–33:

(1) This register applies only to map_mode 01, 10, or 11, the advanced mapping modes.

Table 7–33. CPRI_MAP_TBL_CONFIG—K Parameter Config for Advanced Table-Based Mapping—
Offset: 0x0108 (1) (Part 2 of 2)

Field Bits Access Function Default

Table 7–34. CPRI_MAP_TBL_INDEX—Advanced Mapping Configuration Table Index—Offset: 0x10C (1)

Field Bits Access Function Default

RSRV [31:11] UR0 Reserved. 21’h0

map_conf_index [10:0] RW

Index for configuring antenna-carrier interface information 
in the advanced mapping Rx and Tx tables. The value in this 
field determines the table entries that appear in the 
CPRI_MAP_TBL_RX and CPRI_MAP_TBL_TX registers.

11’h0

Note to Table 7–34:

(1) This register applies only to map_mode 01, 10, or 11, the advanced mapping modes.

Table 7–35. CPRI_MAP_TBL_RX—Advanced Mapping Rx Configuration Table—Offset: 0x110 (1)

Field Bits Access Function Default

RSRV [31:29] UR0 Reserved. 3’h0

width [28:24] RW

Width of IQ sample in timeslot. Specified as 1/2 the 
number of bits in the IQ sample.

This field is used in 15-bit mode with advanced mapping 
mode 01 and in 16-bit mode with all advanced mapping 
modes. In 15-bit mode with advanced mapping modes 10 
and 11, you must set this field to the value of 15 to indicate 
the full 30 bits of the 32-bit timeslot.

5'h0

RSRV 23:21] UR0 Reserved. 3’h0

position [20:16] RW

Starting bit position of IQ sample in timeslot. Specified as 
1/2 the bit position number.

This field is used in 15-bit mode with advanced mapping 
mode 01 and in 16-bit mode with all advanced mapping 
modes. In 15-bit mode with advanced mapping modes 10 
and 11, you must set this field to the offset of the next 
available bit for your 30-bit sample in the current 32-bit 
timeslot.

5'h0

RSRV [15:WIDTH_N_MAP+8] UR0 Reserved. 0

ac [WIDTH_N_MAP +7:8] RW AxC interface number. 0

RSRV [7:1] UR0 Reserved. 7'h0

enable [0] RW Enable mapping of IQ sample into current timeslot. 1'h0

Note to Table 7–35:

(1) Currently configurable entry in the advanced mapping Rx table. This register applies only to map_mode 01, 10, or 11, the advanced mapping 
modes.
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Table 7–36. CPRI_MAP_TBL_TX—Advanced Mapping Tx Configuration Table—Offset: 0x114 (1)

Field Bits Access Function Default

RSRV [31:29] UR0 Reserved. 3’h0

width [28:24] RW

Width of IQ sample in timeslot. Specified as 1/2 the 
number of bits in the IQ sample.

This field is used in 15-bit mode with advanced mapping 
mode 01 and in 16-bit mode with all advanced mapping 
modes. In 15-bit mode with advanced mapping modes 10 
and 11, you must set this field to the value of 15 to indicate 
the full 30 bits of the 32-bit timeslot.

5'h0

RSRV 23:21] UR0 Reserved. 3’h0

position [20:16] RW

Starting bit position of IQ sample in timeslot. Specified as 
1/2 the bit position number.

This field is used in 15-bit mode with advanced mapping 
mode 01 and in 16-bit mode with all advanced mapping 
modes. In 15-bit mode with advanced mapping modes 10 
and 11, you must set this field to the offset of the next 
available bit for your 30-bit sample in the current 32-bit 
timeslot.

5'h0

RSRV [15:WIDTH_N_MAP+8] UR0 Reserved. 0

ac [WIDTH_N_MAP +7:8] RW AxC interface number. 0

RSRV [7:1] UR0 Reserved. 7'h0

enable [0] RW Enable mapping of IQ sample into current timeslot. 1'h0

Note to Table 7–36:

(1) Currently configurable entry in the advanced mapping Tx table. This register applies only to map_mode 01, 10, or 11, the advanced mapping 
modes.

Table 7–37. CPRI_MAP_OFFSET_RX—MAP Rx Frame Offset (1), (2)—Offset: 0x118

Field Bits Access Function Default

RSRV [31:17] UR0 Reserved. 15'h0

map_rx_hf_resync [16] RW Enables synchronization every hyperframe instead of every radio 
frame. When asserted, the map_rx_offset_z field is ignored. 1’h0

map_rx_offset_z [15:8] RW Hyperframe number for start of MAP receiver AxC container block 
write to each enabled mapN Rx buffer. 8’h0

map_rx_offset_x [7:0] RW Basic frame number for start of MAP receiver AxC container block 
write to each enabled mapN Rx buffer. 8’h0

Notes to Table 7–37:

(1) In synchronous buffer mode, the offset specified in this register must precede (be less than) the offset specified in the CPRI_START_OFFSET_RX 
register described in Table 7–39. For an explanation of this requirement and an overview of the considerations in determining the value in this 
register, refer to “MAP Receiver in Synchronous Buffer Mode” on page 4–18 and to “Rx Path Delay” on page D–3. If your register values do not 
comply with this requirement, your CPRI IP core will experience data corruption on the active data channels in the synchronous buffer 
synchronization mode.

(2) This register does not participate in data transfer synchronization on the antenna-carrier interfaces in FIFO mode.
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Table 7–38. CPRI_MAP_OFFSET_TX—MAP Tx Frame Offset (1), (2)—Offset: 0x11C

Field Bits Access Function Default

RSRV [31:17] UR0 Reserved. 15'h0

map_tx_hf_resync [16] RW Enables synchronization every hyperframe instead of every radio 
frame. When asserted, the map_tx_offset_z field is ignored. 1’h0

map_tx_offset_z [15:8] RW

Hyperframe number for start of read of MAP transmitter AxC 
container block from each enabled mapN Tx buffer. The CPRI IP 
core reads the data from the mapN Tx buffer and routes it to the 
CPRI frame buffer to be prepared for transmission on the CPRI link.

8’h0

map_tx_offset_x [7:0] RW

Basic frame number for start of read of MAP transmitter AxC 
container block from each enabled mapN Tx buffer. The CPRI IP 
core reads the data from the mapN Tx buffer and routes it to the 
CPRI frame buffer to be prepared for transmission on the CPRI link.

8’h0

Notes to Table 7–38:

(1) In synchronous buffer mode, the offset specified in this register must follow (be greater than) the offset specified in the 
CPRI_START_OFFSET_TX register described in Table 7–40. For an explanation of this requirement and an overview of the considerations in 
determining the value in this register, refer to “MAP Transmitter in Synchronous Buffer Mode” on page 4–24 and to “Tx Path Delay” on 
page D–9. If your register values do not comply with this requirement, your CPRI IP core will experience data corruption on the active data 
channels in the synchronous buffer synchronization mode.

(2) This register does not participate in data transfer synchronization on the antenna-carrier interfaces in FIFO mode.

Table 7–39. CPRI_START_OFFSET_RX—Rx Start Frame Offset (1), (2)—Offset: 0x120

Field Bits Access Function Default

RSRV [31:25] UR0 Reserved. 7'h0

start_rx_hf_resync [24] RW
Enables synchronization every hyperframe instead of every 
radio frame. When asserted, the start_rx_offset_z field is 
ignored.

1’h0

RSRV [23:22] UR0 Reserved. 2'h0

start_rx_offset_seq [21:16] RW Sequence number for start of cpri_rx_start 
synchronization output. 6’h0

start_rx_offset_z [15:8] RW Hyperframe number for start of cpri_rx_start 
synchronization output. 8’h0

start_rx_offset_x [7:0] RW Basic frame number for start of cpri_rx_start 
synchronization output. 8’h0

Notes to Table 7–39:

(1) In synchronous buffer mode, the offset specified in this register must follow (be greater than) the offset specified in the CPRI_MAP_OFFSET_RX 
register described in Table 7–37. For an explanation of this requirement and an overview of the considerations in determining the value in this 
register, refer to “MAP Receiver in Synchronous Buffer Mode” on page 4–18 and to “Rx Path Delay” on page D–3. If your register values do not 
comply with this requirement, your CPRI IP core will experience data corruption on the active data channels in the synchronous buffer 
synchronization mode.

(2) This register does not participate in data transfer synchronization on the antenna-carrier interfaces in FIFO mode or in the internally-clocked 
mode.

Table 7–40. CPRI_START_OFFSET_TX—Tx Start Frame Offset (1), (2)—Offset: 0x124 (Part 1 of 2)

Field Bits Access Function Default

RSRV [31:25] UR0 Reserved. 7'h0

start_tx_hf_resync [24] RW
Enables synchronization every hyperframe instead of every 
radio frame. When asserted, the start_tx_offset_z field is 
ignored.

1’h0
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RSRV [23:22] UR0 Reserved. 2'h0

start_tx_offset_seq [21:16] RW Sequence number for start of cpri_tx_start 
synchronization output. 6’h0

start_tx_offset_z [15:8] RW Hyperframe number for start of cpri_tx_start 
synchronization output. 8’h0

start_tx_offset_x [7:0] RW Basic frame number for start of cpri_tx_start 
synchronization output. 8’h0

Notes to Table 7–40:

(1) In synchronous buffer mode, the offset specified in this register must precede (be less than) the offset specified in the CPRI_MAP_OFFSET_TX 
register described in Table 7–38. For an explanation of this requirement and an overview of the considerations in determining the value in this 
register, refer to “MAP Transmitter in Synchronous Buffer Mode” on page 4–24 and to “Tx Path Delay” on page D–9. If your register values do 
not comply with this requirement, your CPRI IP core will experience data corruption on the active data channels in the synchronous buffer 
synchronization mode.

(2) This register does not participate in data transfer synchronization on the antenna-carrier interfaces in FIFO mode or in the internally-clocked 
mode.

Table 7–40. CPRI_START_OFFSET_TX—Tx Start Frame Offset (1), (2)—Offset: 0x124 (Part 2 of 2)

Field Bits Access Function Default

Table 7–41. CPRI_MAP_RX_READY_THR—CPRI Mapping Rx Ready Threshold—Offset: 0x128

Field Bits Access Function Default

RSRV [31:4] UR0 Reserved. 28’h0

map_rx_ready_thr [3:0] RW

Threshold for assertion of the mapN_rx_valid signal in FIFO 
mode, for all data channels N. The mapN_rx_valid signal is 
asserted only when the MAP Rx buffer for data channel N fills 
beyond this threshold value. All the MAP Rx buffers have the same 
depth, 16.

4’h8

Table 7–42. CPRI_MAP_TX_READY_THR—CPRI Mapping Tx Ready Threshold—Offset: 0x12C

Field Bits Access Function Default

RSRV [31:4] UR0 Reserved. 28’h0

map_tx_ready_thr [3:0] RW

Threshold for assertion of the mapN_tx_ready signal in FIFO 
mode, for all data channels N. The mapN_tx_ready signal is 
asserted only after the Map Tx buffer for data channel N empties to 
a level below this threshold value. All the MAP Tx buffers have the 
same depth, 16.

4’h8

Table 7–43. CPRI_MAP_TX_START_THR—CPRI Mapping Tx Start Threshold—Offset: 0x130

Field Bits Access Function Default

RSRV [31:4] UR0 Reserved. 28’h0

map_tx_start_thr [3:0] RW

In FIFO mode, threshold for starting transmission from the MAP Tx 
buffers for all data channels N to the CPRI transmitter interface. 
Data transmission from each MAP Tx buffer starts only after that 
MAP Tx buffer fills beyond this threshold value. All the MAP Tx 
buffers have the same depth, 16. 

This register does not participate in data transfer coordination in 
synchronous buffer mode or in the internally-clocked 
synchronization mode.

4’h7
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Table 7–44. CPRI_PRBS_CONFIG—PRBS Generation Pattern Configuration—Offset: 0x13C

Field Bits Access Function Default

RSRV [31:2] UR0 Reserved. 30'h0

prbs_mode [1:0] RW

PRBS loopback and pattern mode. Values are:

00: Normal mode (IQ samples, no loopback)

01: Counter sequence (internal loopback path)

10: PRBS 223-1 inverted (internal loopback path)

11: Reserved

The PRBS mode is common to all antenna-carrier 
interfaces.

2'h0

Table 7–45. CPRI_PRBS_STATUS—PRBS Data Validation Status—Offset: 0x140–0x144 (1)

Field Bits Access Function Default

PRBS_error [(N_MAP+15):16] RC Indicates PRBS error detected on the 
corresponding antenna-carrier interfaces. 16'h0

PRBS_valid [(N_MAP-1):0]] RC Indicates a valid PRBS pattern on the 
corresponding antenna-carrier receiver interfaces. 16'h0

Note to Table 7–45:

(1) If this CPRI IP core has more than 16 antenna-carrier interfaces (N_MAP > 16), the status for antenna-carrier interfaces 0 through 15 is in the 
register at offset 0x140, and the status for antenna-carrier interfaces 16 and up is in the register at offset 0x144. The maximum number of 
antenna-carrier interfaces in the CPRI IP core is 24.

Table 7–46. CPRI_IQ_RX_BUF_CONTROL—MAP Receiver FIFO Buffer Control—Offset: 0x150

Field Bits Access Function Default

RSRV [31:N_MAP] UR0 Reserved. 0

map_rx_enable [(N_MAP-1):0]] RW

Enables or disables the corresponding 
antenna-carrier receiver interfaces. The 
bits of this field propagate to the 
corresponding cpri_map_rx_en output 
signals.

(N_MAP)’h7F
(all 1s)

Table 7–47. CPRI_IQ_TX_BUF_CONTROL—MAP Transmitter FIFO Buffer Control—Offset: 0x160

Field Bits Access Function Default

RSRV [31:N_MAP] UR0 Reserved. 0

map_tx_enable [(N_MAP-1):0]] RW

Enables or disables the corresponding 
antenna-carrier transmitter interfaces. 
The bits of this field propagate to the 
corresponding cpri_map_tx_en output 
signals.

(N_MAP)’h7F
(all 1s)
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Ethernet Registers
This section lists the Ethernet registers. Table 7–50 provides a memory map for the 
Ethernet registers. Table 7–51 through Table 7–66 describe the Ethernet registers in the 
CPRI IP core.

1 If you turn off the Include MAC block parameter, your application cannot access the 
Ethernet registers. In that case, attempts to access these registers read zeroes and do 
not write successfully, as for a Reserved register address.

For more information about these registers, refer to “Accessing the Ethernet Channel” 
on page 4–42.

Table 7–48. CPRI_IQ_RX_BUF_STATUS—MAP Receiver FIFO Buffer Status—Offset: 0x180–0x184 (1), (2)

Field Bits Access Function Default

buffer_rx_underflow [(N_MAP+15):16] RC Indicates MAP Rx buffer underflow in the 
corresponding antenna-carrier interfaces. 16'h0

buffer_rx_overflow [(N_MAP-1):0]] RC Indicates MAP Rx buffer overflow in the 
corresponding antenna-carrier interfaces. 16'h0

Notes to Table 7–48:

(1) If this CPRI IP core has more than 16 antenna-carrier interfaces (N_MAP > 16), the status for antenna-carrier interfaces 0 through 15 is in the 
register at offset 0x180, and the status for antenna-carrier interfaces 16 and up is in the register at offset 0x184. The maximum number of 
antenna-carrier interfaces in the CPRI IP core is 24.

(2) This register does not participate in data transfer synchronization on the antenna-carrier interfaces in the internally-clocked mode.

Table 7–49. CPRI_IQ_TX_BUF_STATUS—MAP Transmitter FIFO Buffer Status—Offset: 0x1A0–0x1A4 (1), (2)

Field Bits Access Function Default

buffer_tx_underflow [(N_MAP+15):16] RC Indicates MAP Tx buffer underflow in the 
corresponding antenna-carrier interfaces. 16'h0

buffer_tx_overflow [(N_MAP-1):0]] RC Indicates MAP Tx buffer overflow in the 
corresponding antenna-carrier interfaces. 16'h0

Notes to Table 7–49:

(1) If this CPRI IP core has more than 16 antenna-carrier interfaces (N_MAP > 16), the status for antenna-carrier interfaces 0 through 15 is in the 
register at offset 0x1A0, and the status for antenna-carrier interfaces 16 and up is in the register at offset 0x1A4. The maximum number of 
antenna-carrier interfaces in the CPRI IP core is 24.

(2) This register does not participate in data transfer synchronization on the antenna-carrier interfaces in the internally-clocked mode.

Table 7–50. CPRI Ethernet Registers Memory Map (Part 1 of 2)

Address Name Expanded Name

0x200 ETH_RX_STATUS Ethernet Receiver Module Status

0x204 ETH_TX_STATUS Ethernet Transmitter Module Status

0x208 ETH_CONFIG_1 Ethernet Feature Configuration 1

0x20C ETH_CONFIG_2 Ethernet Feature Configuration 2

0x210 ETH_RX_CONTROL Ethernet Rx Control

0x214 ETH_RX_DATA Ethernet Rx Data

0x218 ETH_RX_DATA_WAIT Ethernet Rx Data With Wait-State Insertion

0x21C ETH_TX_CONTROL Ethernet Tx Control
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0x220 ETH_TX_DATA Ethernet Tx Data

0x224 ETH_TX_DATA_WAIT Ethernet Tx Data With Wait-State Insertion

0x228 Reserved

0x22C ETH_MAC_ADDR_MSB Ethernet MAC Address MSB (16 bits)

0x230 ETH_MAC_ADDR_LSB Ethernet MAC Address LSB (32 bits)

0x234 ETH_HASH_TABLE Ethernet Multicast Filtering Hash Table

0x238–0x240 Reserved

0x244 ETH_FWD_CONFIG Ethernet Forwarding Configuration

0x248 ETH_CNT_RX_FRAME Ethernet Receiver Module Frame Counter

0x24C ETH_CNT_TX_FRAME Ethernet Transmitter Module Frame Counter

Table 7–50. CPRI Ethernet Registers Memory Map (Part 2 of 2)

Address Name Expanded Name

Table 7–51. ETH_RX_STATUS—Ethernet Receiver Module Status—Offset: 0x200

Field Bits Access Function Default

RSRV [31:7] UR0 Reserved. 25'h0

rx_ready_block [6] RO Indicates that an 8-word block of Ethernet data is available to be 
transmitted on the Ethernet channel. 1’h0

rx_ready_end [5] RO Indicates the end-of-packet (EOP) is available in the Ethernet Rx 
buffer, ready to be transmitted on the Ethernet channel. 1’h0

rx_length [4:3] RO

Length of the final word in the packet. Values are:

00: 1 valid byte

01: 2 valid bytes

10: 3 valid bytes

11: 4 valid bytes

2’h0

rx_abort [2] RO Indicates the current Ethernet Rx packet is aborted. 1’h0

rx_eop [1] RO Indicates that the next ready data word contains the end-of-packet 
byte. 1’h0

rx_ready [0] RO Indicates that at least one 32-bit word of Ethernet data is available in 
the Ethernet Rx buffer and ready to be read. 1’h0

Table 7–52. ETH_TX_STATUS—Ethernet Transmitter Module Status—Offset: 0x204

Field Bits Access Function Default

RSRV [31:3] UR0 Reserved. 29'h0

tx_ready_block [2] RO Indicates that the Ethernet Tx module is ready to receive an 8-word 
block of data. 1’h0

tx_abort [1] RO Indicates the current Ethernet Tx packet is aborted. 1’h0

tx_ready [0] RO Indicates that the Ethernet Tx module is ready to receive at least one 
32-bit word of data. 1’h0
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Table 7–53. ETH_CONFIG_1—Ethernet Feature Configuration 1—Offset: 0x208

Field Bits Access Function Default

RSRV [31:20] UR0 Reserved. 11'h0

intr_tx_ready_block_en [19] RW
Indicates an interrupt is generated when 
tx_ready_block is asserted, if intr_en and 
intr_tx_en are asserted.

1’h0

intr_tx_abort_en [18] RW Indicates an interrupt is generated when tx_abort is 
asserted, if intr_en and intr_tx_en are asserted. 1’h0

intr_tx_ready_en [17] RW Indicates an interrupt is generated when tx_ready is 
asserted, if intr_en and intr_tx_en are asserted. 1’h0

intr_rx_ready_block_en [16] RW
Indicates an interrupt is generated when 
rx_ready_block is asserted, if intr_en and 
intr_rx_en are asserted.

1’h0

intr_rx_ready_end_en [15] RW Indicates an interrupt is generated when rx_ready_end is 
asserted, if intr_en and intr_rx_en are asserted. 1’h0

intr_rx_abort_en [14] RW Indicates an interrupt is generated when rx_abort is 
asserted, if intr_en and intr_rx_en are asserted. 1’h0

intr_rx_ready_en [13] RW Indicates an interrupt is generated when rx_ready is 
asserted, if intr_en and intr_rx_en are asserted. 1’h0

intr_tx_en [12] RW Ethernet Tx interrupt enable. 1’h0

intr_rx_en [11] RW Ethernet Rx interrupt enable. 1’h0

intr_en [10] RW Ethernet global interrupt enable. 1’h0

rx_long_frame_en [9] RW Enable reception of Rx Ethernet frames longer than 1536 
bytes. 1’h0

rx_preamble_abort_en [8] RW Indicates that Rx frames with an illegal preamble nibble 
before the SFD are discarded. 1’h0

broadcast_en [7] RW Enable reception of Ethernet broadcast packets. 1’h0

multicast_flt_en [6] RW Enable reception of multicast Ethernet packets allowed by 
the hash function. 1’h0

mac_check [5] RW Enable check of Rx Ethernet MAC address. 1’h0

length_check [4] RW Indicates that a length check is performed on Rx packets, 
and those with length less than 64 bytes are discarded. 1’h0

mac_reset [3] RW Reset the Ethernet MAC. 1’h1

RSRV [2] RO Reserved. 1’h0

little_endian [1] RW Indicates that the Ethernet channel receive and transmit 
data is formatted in little endian byte order. 1’h0

RSRV [0] RO Reserved. 1'h0

Table 7–54. ETH_CONFIG_2—Ethernet Feature Configuration 2—Offset: 0x20C

Field Bits Access Function Default

RSRV [31:1] UR0 Reserved. 31'h0

crc_enable [0] RW Enables insertion of Ethernet frame check sequence (FCS) at the end 
of the Ethernet frame. 1'h0
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Table 7–55. ETH_RX_CONTROL—Ethernet Rx Control—Offset: 0x210

Field Bits Access Function Default

RSRV [31:1] RO Reserved. 31'h0

rx_discard [0] WO Indicates that the Ethernet receiver module should discard the 
current Ethernet Rx frame. 1'h0

Table 7–56. ETH_RX_DATA—Ethernet Rx Data—Offset: 0x214

Field Bits Access Function Default

rx_data [31:0] RO Ethernet Rx frame data. 1'h0

Table 7–57. ETH_RX_DATA_WAIT—Ethernet Rx Data with Wait-State Insertion—Offset: 0x218

Field Bits Access Function Default

rx_data [31:0] RO Ethernet Rx frame data. 1'h0

Table 7–58. ETH_TX_CONTROL—Ethernet Tx Control—Offset: 0x21C

Field Bits Access Function Default

RSRV [31:4] UR0 Reserved. 28'h0

tx_length [3:2] WO

Length of the final word in the packet. Values are:

00: 1 valid byte

01: 2 valid bytes

10: 3 valid bytes

11: 4 valid bytes

This field is valid when the tx_eop bit is asserted.

2’h0

tx_discard [1] WO Indicates that the Ethernet transmitter module should discard the 
current Ethernet Tx frame. 1'h0

tx_eop [0] WO
Indicates that the next data word to be written to the ETH_TX_DATA 
or ETH_TX_DATA_WAIT register contains the end-of-packet byte for 
this Tx packet.

1’h0

Table 7–59. ETH_TX_DATA—Ethernet Tx Data—Offset: 0x220

Field Bits Access Function Default

tx_data [31:0] RW
Ethernet Tx frame data. If the tx_ready bit of the ETH_TX_READY 
register is zero when tx_data is loaded, the Ethernet transmitter 
module aborts the packet.

32'h0

Table 7–60. ETH_TX_DATA_WAIT—Ethernet Tx Data with Wait-State Insertion—Offset: 0x224

Field Bits Access Function Default

tx_data [31:0] RW
Ethernet Tx frame data. If the Ethernet transmitter module writes 
Ethernet data to this register, it waits until data is ready, unless the 
CPU times out the operation.

1'h0
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Table 7–61. ETH_ADDR_MSB—Ethernet MAC Address MSB—Offset: 0x22C

Field Bits Access Function Default

RSRV [31:16] UR0 Reserved. 16'h0

mac[47:32] [15:0] RW Most significant bits (16 bits) of local Ethernet MAC 
address. 16'h0

Table 7–62. ETH_ADDR_LSB—Ethernet MAC Address LSB—Offset: 0x230

Field Bits Access Function Default

mac[31:0] [31:0] RW Least significant bits (32 bits) of local Ethernet MAC 
address. 32'h0

Table 7–63. ETH_HASH_TABLE—Ethernet Multicast Filtering Hash Table—Offset: 0x234

Field Bits Access Function Default

hash [31:0] RW

32-bit hash table for multicast filtering. If the group 
address bit of the destination MAC address is set, and 
multicast address filtering is enabled, this register 
filters the packets to be accepted and discarded, as 
follows:

If every bit set in this register is also set in the lower 32 
bits of the destination MAC address, the packet is 
accepted. Otherwise, the packet is discarded.

32'h0

Table 7–64. ETH_FWD_CONFIG—Ethernet Forwarding Configuration—Offset: 0x244

Field Bits Access Function Default

RSRV [31:17] UR0 Reserved. 15’h0

tx_start_thr [16:1] RW
Transmit start threshold. If store-and-forward mode is disabled, 
transmission to the CPRI link starts when this number of 32-bit 
words are stored in the Tx buffer.

16’h0004

tx_st_fwd [0] RW
Transmit store-and-forward mode. In store-and-forward mode, a 
full packet is stored in the Tx buffer before transmission starts. 
Packets longer than the Tx buffer are aborted.

1'h0

Table 7–65. ETH_CNT_RX_FRAME—Ethernet Receiver Module Frame Counter—Offset: 0x248

Field Bits Access Function Default

eth_cnt_rx_frame [31:0] RO Number of frames received from the CPRI receiver. 32'h0

Table 7–66. ETH_CNT_TX_FRAME—Ethernet Transmitter Module Frame Counter—Offset: 0x24C

Field Bits Access Function Default

eth_cnt_tx_frame [31:0] RO Number of frame transmitted to the CPRI transmitter. 32'h0
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HDLC Registers
This section lists the HDLC registers. Table 7–67 provides a memory map for the 
HDLC registers. Table 7–68 through Table 7–81 describe the HDLC registers in the 
CPRI IP core.

1 If you turn off the Include HDLC block parameter, your application cannot access the 
HDLC registers. In that case, attempts to access these registers read zeroes and do not 
write successfully, as for a Reserved register address.

For more information about these registers, refer to “Accessing the HDLC Channel” 
on page 4–45.

Table 7–67. CPRI HDLC Registers Memory Map

Address Name Expanded Name

0x300 HDLC_RX_STATUS HDLC Receiver Module Status

0x304 HDLC_TX_STATUS HDLC Transmitter Module Status

0x308 HDLC_CONFIG_1 HDLC Feature Configuration 1

0x30C HDLC_CONFIG_2 HDLC Feature Configuration 2

0x310 HDLC_RX_CONTROL HDLC Rx Control

0x314 HDLC_RX_DATA HDLC Rx Data

0x318 HDLC_RX_DATA_WAIT HDLC Rx Data With Wait-State Insertion

0x31C HDLC_TX_CONTROL HDLC Tx Control

0x320 HDLC_TX_DATA HDLC Tx Data

0x324 HDLC_TX_DATA_WAIT HDLC Tx Data With Wait-State Insertion

0x328 HDLC_RX_EX_STATUS HDLC Rx Additional Status

0x32C HDLC_CONFIG_3 HDLC Feature Configuration 3

0x330 HDLC_CNT_RX_FRAME HDLC Receiver Module Frame Counter

0x334 HDLC_CNT_TX_FRAME HDLC Transmitter Module Frame Counter

Table 7–68. HDLC_RX_STATUS—HDLC Receiver Module Status—Offset: 0x300 (Part 1 of 2)

Field Bits Access Function Default

RSRV [31:7] UR0 Reserved. 25'h0

rx_ready_block [6] RO Indicates that an eight-word block of HDLC data is available in the 
HDLC Rx buffer to be transmitted on the HDLC channel. 1’h0

rx_ready_end [5] RO Indicates the end-of-packet (EOP) is available in the HDLC Rx buffer, 
ready to be transmitted on the HDLC channel. 1’h0

rx_length [4:3] RO

Length of the final word in the packet. Values are:

00: 1 valid byte

01: 2 valid bytes

10: 3 valid bytes

11: 4 valid bytes

2’h0

rx_abort [2] RO Indicates the current HDLC Rx packet is aborted. 1’h0
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rx_eop [1] RO Indicates that the next ready data word contains the end-of-packet 
byte. 1’h0

rx_ready [0] RO Indicates that at least one 32-bit word of HDLC data is available in the 
HDLC Rx buffer. 1’h0

Table 7–68. HDLC_RX_STATUS—HDLC Receiver Module Status—Offset: 0x300 (Part 2 of 2)

Field Bits Access Function Default

Table 7–69. HDLC_TX_STATUS—HDLC Transmitter Module Status—Offset: 0x304

Field Bits Access Function Default

RSRV [31:3] UR0 Reserved. 29'h0

tx_ready_block [2] RO Indicates that the HDLC Tx module is ready to receive an 8-word block 
of data. 1’h0

tx_abort [1] RO Indicates the current HDLC Tx packet is aborted. 1’h0

tx_ready [0] RO Indicates that the HDLC Tx module is ready to receive at least one 
32-bit word of data. 1’h0

Table 7–70. HDLC_CONFIG—HDLC Feature Configuration 1—Offset: 0x308 (Part 1 of 2)

Field Bits Access Function Default

RSRV [31:20] UR0 Reserved. 11'h0

intr_tx_ready_block_en [19] RW
Indicates an interrupt is generated when 
tx_ready_block is asserted, if intr_en and 
intr_tx_en are asserted.

1’h0

intr_tx_abort_en [18] RW Indicates an interrupt is generated when tx_abort is 
asserted, if intr_en and intr_tx_en are asserted. 1’h0

intr_tx_ready_en [17] RW Indicates an interrupt is generated when tx_ready is 
asserted, if intr_en and intr_tx_en are asserted. 1’h0

intr_rx_ready_block_en [16] RW
Indicates an interrupt is generated when 
rx_ready_block is asserted, if intr_en and 
intr_rx_en are asserted.

1’h0

intr_rx_ready_end_en [15] RW Indicates an interrupt is generated when rx_ready_end is 
asserted, if intr_en and intr_rx_en are asserted. 1’h0

intr_rx_abort_en [14] RW Indicates an interrupt is generated when rx_abort is 
asserted, if intr_en and intr_rx_en are asserted. 1’h0

intr_rx_ready_en [13] RW Indicates an interrupt is generated when rx_ready is 
asserted, if intr_en and intr_rx_en are asserted. 1’h0

intr_tx_en [12] RW HDLC Tx interrupt enable. 1’h0

intr_rx_en [11] RW HDLC Rx interrupt enable. 1’h0

intr_en [10] RW HDLC global interrupt enable. 1’h0

rx_long_frame_en [9] RW Enable reception of Rx HDLC frames longer than 1536 
bytes. 1’h0

RSRV [8:5] UR0 Reserved. 4’h0

length_check [4] RW Indicates that a length check is performed on Rx packets, 
and those with length less than 64 bytes are discarded. 1’h0

RSRV [3:2] UR0 Reserved. 2’h0
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little_endian [1] RW Indicates that the HDLC channel receive and transmit data 
is formatted in little endian byte order. 1’h0

RSRV [0] UR0 Reserved. 1'h0

Table 7–70. HDLC_CONFIG—HDLC Feature Configuration 1—Offset: 0x308 (Part 2 of 2)

Field Bits Access Function Default

Table 7–71. HDLC_CONFIG_2—HDLC Feature Configuration 2—Offset: 0x30C

Field Bits Access Function Default

RSRV [31:1] UR0 Reserved. 31'h0

crc_enable [0] RW Enables insertion of HDLC CRC at the end of the HDLC frame. 1'h0

Table 7–72. HDLC_RX_CONTROL—HDLC Rx Control—Offset: 0x310

Field Bits Access Function Default

RSRV [31:1] RO Reserved. 31'h0

rx_discard [0] WO Indicates that the HDLC receiver module should discard the current 
HDLC Rx frame. 1'h0

Table 7–73. HDLC_RX_DATA—HDLC Rx Data—Offset: 0x314

Field Bits Access Function Default

rx_data [31:0] RO
HDLC Rx frame data. If the HDLC receiver module takes HDLC data 
from this register, if data is not ready when the module expects it, the 
HDLC receiver module aborts the packet.

1'h0

Table 7–74. HDLC_RX_DATA_WAIT—HDLC Rx Data with Wait-State Insertion—Offset: 0x318

Field Bits Access Function Default

rx_data [31:0] RO
HDLC Rx frame data. If the HDLC receiver module takes HDLC data 
from this register, it inserts wait states on the HDLC channel until 
data is ready, unless the CPU times out the operation.

1'h0

Table 7–75. HDLC_TX_CONTROL—HDLC Tx Control—Offset: 0x31C

Field Bits Access Function Default

RSRV [31:4] UR0 Reserved. 28'h0

tx_length [3:2] RW

Length of the final word in the packet. Values are:

00: 1 valid byte

01: 2 valid bytes

10: 3 valid bytes

11: 4 valid bytes

This field is valid when the tx_eop bit is asserted.

1’h0

tx_discard [1] WO Indicates that the HDLC transmitter module should discard the 
current HDLC Tx frame. 1'h0

tx_eop [0] RW
Indicates that the next data word to be written to the HDLC_TX_DATA 
or HDLC_TX_DATA_WAIT register contains the end-of-packet byte for 
this Tx packet.

1’h0
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Table 7–76. HDLC_TX_DATA—HDLC Tx Data—Offset: 0x320

Field Bits Access Function Default

tx_data [31:0] RW
HDLC Tx frame data. If the HDLC transmitter module writes HDLC 
data to this register, if data is not ready when the module expects it, 
the HDLC transmitter module aborts the packet.

1'h0

Table 7–77. HDLC_TX_DATA_WAIT—HDLC Tx Data with Wait-State Insertion—Offset: 0x324

Field Bits Access Function Default

tx_data [31:0] RW
HDLC Tx frame data. If the HDLC transmitter module writes HDLC 
data to this register, it waits until data is ready, unless the CPU times 
out the operation.

1'h0

Table 7–78. HDLC_RX_EX_STATUS—HDLC Rx Additional Status—Offset: 0x328

Field Bits Access Function Default

RSRV [31:7] UR0 Reserved. 25'h0

CRC_error [6] RC Indicates that an HDLC frame with a CRC error was received. 1'h0

RSRV [5:0] UR0 Reserved. 6'h0

Table 7–79. HDLC_CONFIG_3—HDLC Feature Configuration 3—Offset: 0x32C

Field Bits Access Function Default

RSRV [31:17] UR0 Reserved. 15’h0

tx_start_thr [16:8] RW
Transmit start threshold. If store-and-forward mode is disabled, 
transmission to the CPRI link starts when this number of 32-bit 
words are stored in the Tx buffer.

9’h004

RSRV [7:2] UR0 Reserved. 5’h0

rx_crc_en [1] RW Indicates that CRC checking is enabled. 1'h0

tx_st_fwd [0] RW
Transmit store-and-forward mode. In store-and-forward mode, a 
full packet is stored before transmission starts. Packets longer 
than the Tx buffer are aborted.

1'h0

Table 7–80. HDLC_CNT_RX_FRAME—HDLC Receiver Module Frame Counter—Offset: 0x330

Field Bits Access Function Default

hdlc_cnt_rx_frame [31:0] RO Number of frames received from the CPRI receiver. 32'h0

Table 7–81. HDLC_CNT_TX_FRAME—HDLC Transmitter Module Frame Counter—Offset: 0x334

Field Bits Access Function Default

hdlc_cnt_tx_frame [31:0] RO Number of frame transmitted to the CPRI transmitter. 32'h0
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8. Testbenches
The Altera CPRI IP core includes nine demonstration testbenches for your use. The 
testbenches provide examples of how to use the Avalon-MM and Avalon-ST interfaces 
to generate and process CPRI transactions using the MII, MAP, and AUX interfaces 
and how to perform autorate negotiation.

1 The testbenches are available only if you turn on Generate Example Design when 
prompted during generation of the CPRI IP core. Refer to “Specifying Parameters” on 
page 2–1.

All nine demonstration testbenches demonstrate the following functions:

■ Writing to the registers

■ Frame synchronization process

■ Transmission and reception of CPRI link data

The individual testbenches demonstrate the additional functions listed in Table 8–1.

The first three testbench types are each available in two versions. One version tests an 
Arria II, Cyclone IV GX, or Stratix IV GX DUT, and the other version, with the _phy 
suffix, tests an Arria V or Stratix V DUT. 

The tb_altera_cpri_autorate.vhd testbench tests a Stratix IV GX DUT and the 
tb_altera_cpri_c4gx_autorate.vhd testbench tests a Cyclone IV GX DUT. The 
tb_altera_cpri_autorate_phy.vhd testbench that is generated automatically tests a 
Stratix V DUT. 

You can generate any _phy testbench for an Arria V variation, but in that case you 
must modify the library file names in the .do file to test the Arria V DUT. 

Table 8–1. Additional Functions Demonstrated by Individual Testbenches

Testbench 
Transmission and Reception of Data on Interface Autorate 

Negotiation of CPRI 
Line RateAntenna-Carrier MII AUX

tb_altera_cpri.vhd v — v —

tb_altera_cpri_phy.vhd v — v —

tb_altera_cpri_mii.vhd v v v —

tb_altera_cpri_mii_phy.vhd v v v —

tb_altera_cpri_mii_noiq.vhd — v v —

tb_altera_cpri_mii_noiq_phy.vhd — v v —

tb_altera_cpri_autorate.vhd — — — v
tb_altera_cpri_c4gx_autorate.vhd — — — v
tb_altera_cpri_autorate_phy.vhd — — — v
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Each testbench consists of a CPRI IP core and a testbench that initializes the CPRI IP 
core and sends the generated data to the CPRI IP core interfaces listed in Table 8–1. In 
the testbenches, the CPRI IP core’s high-speed transceiver output is looped back to its 
high-speed transceiver input. The testbench module provides clocking, reset, and 
initialization control, and processes to write to and read from the IP core’s interfaces. 
The initialization process requires that the testbench module write to and read from 
the CPRI IP core registers through its CPU interface.

Figure 8–1 shows the non-MII testbenches, tb_altera_cpri.vhd and 
tb_altera_cpri_phy.vhd. Figure 8–2 shows the MII testbenches, 
tb_altera_cpri_mii.vhd and tb_altera_cpri_mii_phy.vhd. Figure 8–3 shows the MII, 
no IQ interfaces testbenches, tb_altera_cpri_mii_noiq.vhd and 
tb_altera_cpri_mii_noiq_phy.vhd. Figure 8–4, Figure 8–5, and Figure 8–6 show the 
autorate negotiation testbenches, tb_altera_cpri_autorate.vhd, which targets a 
Stratix IV GX device, tb_altera_cpri_c4gx_autorate.vhd, which targets a 
Cyclone IV GX device, and tb_altera_cpri_autorate_phy.vhd, which targets an 
Arria V or Stratix V device.

Figure 8–1. CPRI IP Core Non-MII Demonstration Testbenches (tb_altera_cpri.vhd and tb_altera_cpri_phy.vhd)
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Figure 8–2. CPRI IP Core MII Demonstration Testbenches (tb_altera_cpri_mii.vhd and tb_altera_cpri_mii_phy.vhd)
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Figure 8–3. CPRI IP Core MII No IQ Demonstration Testbenches (tb_altera_cpri_mii_noiq[_phy].vhd)
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Figure 8–4. CPRI IP Core Autorate Negotiation Demonstration Testbench (tb_altera_cpri_autorate.vhd)
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Figure 8–5. CPRI IP Core Cyclone IV GX Autorate Negotiation Testbench (tb_altera_cpri_c4gx_autorate.vhd)
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The testbench starts by resetting the CPRI IP core. Table 8–2 lists the frequencies of the 
clock inputs to the CPRI IP core. 

After coming out of the reset state, the CPRI IP core starts the frame synchronization 
process to detect the presence of a partner and establish frame synchronization. 

The tb_altera_cpri, tb_altera_cpri_mii, and tb_altera_cpri_mii_noiq testbenches and 
their _phy equivalents then perform the following actions:

■ Sends a predetermined data sequence to the AUX interface, and checks that the 
data appears on the outgoing AUX interface after loopback through the CPRI link.

Figure 8–6. CPRI IP Core Autorate Negotiation Arria V or Stratix V Testbench (tb_altera_cpri_autorate_phy.vhd)
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Table 8–2. Clock Frequencies for CPRI IP Core Under Test

Clock Frequency (MHz)

gxb_refclk 61.44

cpu_clk 30.72

clk_ex_delay 30.96

mapN_tx_clk 3.84
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■ Generates a sequence of 32-bit words and sends the data sequence to each 
antenna-carrier interface that is enabled. The tb_altera_cpri and 
tb_altera_cpri_mii testbenches and their _phy equivalents support three 
antenna-carrier interfaces; the tb_altera_cpri_autorate, 
tb_altera_cpri_c4gx_autorate, and tb_altera_cpri_mii_noiq testbenches and their 
_phy equivalents support no antenna-carrier interfaces. 

Each testbench with antenna-carrier interfaces enabled then checks that the data 
sent to the mapN interfaces appears on the outgoing antenna-carrier interface data 
channels, after loopback through the CPRI link.

■ If relevant, sends a predetermined data sequence to the MII, and checks that the 
data appears as expected on the outgoing MII after loopback through the CPRI 
link (tb_altera_cpri_mii and tb_altera_cpri_mii_noiq testbenches and their _phy 
equivalents only).

This test also checks the MII handling of the input error indication signal. The 
signal is asserted during parts of the incoming data sequence, and the expected 
output data reflects the correct handling of data in this case. 

All testbenches perform self-checking and output the pass/fail results to your 
Modelsim session. In addition, each testbench includes simulator files that allow you 
to observe the signals in and out of the AUX interface, antenna-carrier interfaces, and 
MII if relevant. 

Reset, Frame Synchronization, and Initialization
The reset sequence is simple—all of the reset signals for the DUT except 
gxb_powerdown and reset_ex_delay are asserted at the beginning of the simulation, 
are kept high for 500 ns, and are then deasserted. The following reset signals are 
asserted:

■ reset

■ cpu_reset

■ config_reset

■ mapN_tx_reset for N={1...3}

■ mapN_rx_reset for N={1...3}

When frame synchronization completes, the value on the cpri_rx_state output port 
(bits [1:0] of the extended_rx_status_data bus) is 0x3 and the value on the 
cpri_rx_cnt_sync port (bits [4:2] of the extended_rx_status_data bus) is 0x1. 
Following the appearance of these values, the value of the cpri_rx_hfn_state output 
signal transitions to value 1, and then value of the cpri_rx_bfn_state output signal 
transitions to value 1. When these values appear in the waveform display, the CPRI 
link is up and ready to receive and send data.
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Next, basic programming of the internal registers is performed in the DUT to allow 
CPRI communication. Table 8–3 shows the registers that are programmed in the 
tb_altera_cpri and tb_altera_cpri_mii (and _phy equivalents) DUTs. For a full 
description of each register, refer to Chapter 7, Software Interface.

The autorate negotiation testbench performs autorate negotiation. Refer to 
Appendix B, Implementing CPRI Link Autorate Negotiation for details.

Running the Testbenches
To run the CPRI IP core testbenches, perform the following steps:

1. In the Quartus II software, create a project using the New Project Wizard on the 
File menu. Name the project cpri_top_level. If you change this name you must edit 
the testbench simulation .do file. The project targets the same device as your 
intended DUT. Refer to Table 8–4. 

2. Generate the CPRI IP core DUT instance with the properties shown in Table 8–4. 
When you are prompted to generate an example design, you must turn on 
Generate Example Design and click Generate.

Table 8–3. Testbench Registers

Register 
Address Register Name Description Value

0x0008 CPRI_CONFIG
Enable CPRI control word insertion, set the CPRI MegaCore to 
use master clocking mode, set loop_mode to No internal 
loopback, and enable transmission on the CPRI link.

0x00000021

0x0104 CPRI_MAP_CNT_CONFIG
Set number of active data channels to 3 and the oversampling 
factor to 1. 0x00000301

0x0100 CPRI_MAP_CONFIG
Set map_mode to basic mapping scheme, set MAP transmitter 
and receiver synchronization mode to non-FIFO mode, and use 
16-bit sample width.

0x0000000C

Table 8–4. MegaWizard Plug-In Manager Options for CPRI IP Core DUT (Part 1 of 2)

Parameter Value

Device family

tb_altera_cpri_autorate: Stratix IV GX

tb_altera_cpri_c4gx_autorate: Cyclone IV GX

All non-PHY testbenches: Arria II, Cyclone IV GX, or 
Stratix IV GX

All PHY testbenches: Stratix V (or Arria V (1))

Language VHDL

File name (2) <working directory>\cpri_top_level

Operation mode Master (3)

Line rate 0.6144 Gbps

Enable auto-rate negotiation

tb_altera_cpri_autorate[_phy] and 
tb_altera_cpri_c4gx_autorate: On

All other testbenches: Off
June 2012 Altera Corporation CPRI MegaCore Function
User Guide



8–8 Chapter 8: Testbenches
Running the Testbenches
Transceiver reference clock frequency
(Arria V and Stratix V variations only) All PHY testbenches: 61.44 MHz

Include MAC block
tb_altera_cpri[_phy], tb_altera_cpri_autorate[_phy], 
and tb_altera_cpri_c4gx_autorate: On

All other testbenches: Off

Include HDLC block All testbenches: Off

Number of antenna-carrier interfaces

tb_altera_cpri[_phy] and tb_altera_cpri_mii[_phy]: 3

tb_altera_cpri_mii_noiq[_phy], 
tb_altera_cpri_autorate[_phy], and 
tb_altera_cpri_c4gx_autorate: 0

Enable MAP interface synchronization 
with core clock All testbenches: Off

Notes to Table 8–4:

(1) If you generate a _phy testbench for an Arria V DUT, you must edit the compile_<variation>.do file to refer to the 
corresponding files for the Arria V device family. The compile_<variation>.do file that is generated automatically 
is correct for a Stratix V DUT.

(2) If you use a different path or file name, you must edit the compile_<variation>.do file to refer to the correct file 
for the DUT.

(3) Altera does not support an example testbench for an RE slave DUT. An RE slave in loopback configuration cannot 
achieve frame synchronization, because the receive CPRI protocol interface must lock on to the K28.5 character 
before the transmit CPRI protocol interface can begin sending K28.5 characters. Therefore, no K28.5 character is 
ever transmitted on the RE slave loopback CPRI link. To simulate an RE slave, you must connect the RE slave DUT 
to an RE master or REC CPRI IP core.

Table 8–4. MegaWizard Plug-In Manager Options for CPRI IP Core DUT (Part 2 of 2)

Parameter Value
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3. If you are running the tb_altera_cpri_autorate or tb_altera_cpri_c4gx_autorate 
testbench, you must generate the appropriate Memory Initialization Files (.mif) to 
configure the altgx_reconfig block. If you are running the 
tb_altera_cpri_c4gx_autorate testbench, the following steps also generate the 
appropriate .mif files to configure the altpll_reconfig block. To generate the files, 
perform the following steps:

a. On the Assignments menu, click Settings.

b. In the Settings dialog box, under Category, click Fitter Settings.

c. Click More Settings.

d. Turn on Generate GXB Reconfig MIF.

e. Click OK.

f. Click Apply.

g. Click OK.

h. On the Processing menu, click Start Compilation. 

After compilation completes, the following newly generated .mif files are 
available, depending on your target device: 
reconfig_mif/cyclone4gx_<rate>_m.mif, cyclone4gx_<rate>_m_rx_pll1.mif, 
cyclone4gx_<rate>_m_tx_pll0.mif, reconfig_mif/stratix4gx_<rate>_m.mif.

i. In the MegaWizard Plug-In Manager, edit the existing CPRI DUT, change its 
data rate to 1.2288 Gbps, and regenerate. When you are prompted to generate 
an example design, turn off Generate Example Design and click Generate. 
You generate this variation only for its .mif files.

j. Repeat step h. A new set of .mif files is generated for the new data rate.

k. Move all of the .mif files from the reconfig_mif subdirectory to your testbench 
directory, <working directory>/cpri_top_level_testbench/altera_cpri.

l. In the MegaWizard Plug-In Manager, edit the existing CPRI DUT to return it to 
its original data rate of 0.6144 Gbps, and regenerate. When you are prompted 
to generate an example design, turn off Generate Example Design and click 
Generate. You already generated the testbench when you generated the 
original DUT.

Alternatively, for efficiency when generating the .mif files, you can first generate 
the DUT variation with CPRI data rate 1.2288 Gbps, without generating the 
testbench, then perform step a through step h and edit the DUT to change its data 
rate to 0.6144 Gbps. When you regenerate the DUT after editing, generate the 
testbench. Perform step j, and you have generated all the .mif files while 
minimizing the number of regeneration steps.
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4. If you are running the tb_altera_cpri_autorate_phy testbench, full compilation 
automatically generates the appropriate Memory Initialization Files (.mif) to 
configure the Altera Transceiver Reconfiguration Controller. However, you must 
perform the full compilation at the 614.4 Mbps CPRI line rate, to generate the .mif 
for the lower line rate, before you run the testbench at the 1228.8 Mbps line rate. 

This testbench was tested on a 5SGXEA7K2F40C2 device using the 64-bit 
Quartus II software. Altera recommends that you compile Stratix V designs with 
the 64-bit Quartus II software.

To generate the .mif and prepare for simulation, perform the following steps:

a. On the Processing menu, click Start Compilation. 

After compilation completes, the newly generated .mif files 
inst_xcvr_channel.mif and inst_xcvr_txpll0.mif are available in the 
reconfig_mif subdirectory of the project. 

b. In the MegaWizard Plug-In Manager, edit the existing CPRI DUT, change its 
CPRI line rate to 1.2288 Gbps, and regenerate. When you are prompted to 
generate an example design, turn off Generate Example Design and click 
Generate.

c. In the MegaWizard Plug-In Manager, generate an Altera Transceiver 
Reconfiguration Controller (Interfaces > Transceiver PHY > Transceiver 
Reconfiguration Controller v12.0) in the file xcvr_reconfig_cpri.vhd, with 
Enable channel/PLL reconfiguration turned on.

d. Copy the new <working directory>/xcvr_reconfig_cpri_sim directory into 
<working directory>/cpri_top_level_testbench/altera_cpri/.

5. If you are using the ModelSim SE or ModelSim AE simulator, turn off simulation 
optimization by performing the following steps:

a. In the ModelSim simulator, on the Compile menu, click Compile Options. The 
Compiler Options dialog box appears.

b. Perform one of the following actions:

i. If you are using the ModelSim SE simulator, on the VHDL tab and on the 
Verilog & System Verilog tab, turn off Use vopt flow and turn on Disable 
optimizations by using -O0.

ii. If you are using the ModelSim AE simulator, on the VHDL tab and on the 
Verilog & System Verilog tab, turn on Disable optimizations by using 
-O0.

c. Click Apply.

d. Click OK.

6. In the ModelSim simulator, change directories to your testbench directory, 
<working directory>/cpri_top_level_testbench/altera_cpri. 

7. If your DUT is an Arria V device, edit the file compile[_<variation>]_<HDL>.do to 
refer to the correct library file directories for an Arria V device. Refer to
<working directory>/cpri_top_level_sim/mentor/msim_setup.tcl for the correct 
library file directory names.
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8. To compile and run the appropriate testbench for the DUT you generated in step 2, 
using the ModelSim simulator, type the following command:

do compile[_<variation>]_<HDL>.do r
The input to and subsequent output data from each of the AUX, map0, and MI 
interfaces is visible in the waveform for testbenches that have the relevant interface.
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A. Initialization Sequence
This appendix describes the most basic initialization sequence for an Altera CPRI IP 
core.

To initialize the CPRI IP core, perform the following steps:

1. To configure the Altera FPGA with your design, download your .sof file to the 
FPGA.

2. Perform the following two actions simultaneously:

■ Perform a global CPRI IP core reset by asserting the following reset signals 
simultaneously, holding them asserted for at least three cycles of the slowest 
associated clock, and deasserting each as soon as possible thereafter:

■ config_reset

■ cpu_reset

■ reset

■ reset_ex_delay

■ mapN_rx_reset, for the appropriate values of N

■ mapN_tx_reset, for the appropriate values of N

■ To reset, power down, and power back up the high-speed transceiver in 
variations that include an ALTGX megafunction, assert the gxb_powerdown 
signal. This signal is not available in variations that target an Arria V or 
Stratix V device. 

3. Write the value 0x21 to the CPRI_CONFIG register (0x8). This CPRI_CONFIG register 
setting enables the CPRI IP core to start sending K28.5 symbols on the CPRI link.

4. Observe the cpri_rx_state output signal as it transitions from value 0x0 to value 
0x2 to value 0x3. When it has value 0x3, and the cpri_rx_cnt_sync output signal 
has value 0x1, the CPRI IP core CPRI receiver interface is in the HFNSYNC state. 
The cpri_rx_state output signal appears on extended_rx_status_data[1:0] and 
the cpri_rx_cnt_sync output signal appears on extended_rx_status_data[4:2].

5. Observe the cpri_rx_hfn_state output signal as it transitions to value 1. When it 
has value 1, the hyperframe number is initialized. The cpri_rx_hfn_state output 
signal appears on extended_rx_status_data[7].

6. Observe the cpri_rx_bfn_state output signal as it transitions to value 1. When it 
has value 1, the basic frame number is initialized. The cpri_rx_bfn_state output 
signal appears on extended_rx_status_data[6].

The CPRI IP core can now receive and transmit data on the CPRI link, on the 
antenna-carrier interfaces, and on the auxiliary AUX interface.

To access the registers, the system requires an Avalon-MM master, for example a 
Nios II processor. The Avalon-MM master can program these registers.
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B. Implementing CPRI Link Autorate
Negotiation
The CPRI IP core supports autorate negotiation. This feature allows you to specify 
that the CPRI IP core should determine the CPRI line rate at startup dynamically, by 
stepping down to successively slower line rates if the low-level receiver cannot 
achieve frame synchronization with the current line rate. You can provide input to the 
low-level CPRI protocol interface receiver to implement this capability in your design, 
with the help of logic connected outside the CPRI IP core. 

Variations that target an Arria V device support autorate negotiation to and from 
CPRI line rates up to 6.144 Gbps only. In these variations, you cannot modify the CPRI 
line rate dynamically to or from 9.8 Gbps.

If you configure your CPRI IP core for autorate negotiation, the IP core includes two 
output status signals and a register to collect the status information, in addition to the 
internal support to change CPRI line rate according to your design’s input to the 
transceiver dynamic reconfiguration block. In Cyclone IV GX designs, the external 
logic must also provide line rate information to the ALTPLL_RECONFIG 
megafunction connected to the transceiver.

This appendix describes the steps you must follow and the external logic you must 
include in your design to implement CPRI line rate auto-negotiation.

Design Implementation
To use the autorate negotiation feature, you must perform the following actions:

■ In the CPRI parameter editor, enable autorate negotiation.

■ In the CPRI parameter editor, set the transceiver to run at the highest CPRI line 
rate that participates in autorate negotiation in this device family.

■ Include additional external data and logic in your design, such as input data to the 
ALTGX_RECONFIG megafunction, or Altera Transceiver Reconfiguration 
Controller for Arria V and Stratix V devices, for each CPRI line rate to be checked. 
Refer to Figure B–1 and Figure B–2.

■ For Cyclone IV GX devices, you must implement logic to perform autorate 
negotiation by reconfiguring the transceiver directly, using the compulsory 
ALTGX_RECONFIG megafunction. Refer to Figure B–1 and Figure B–2.

In Cyclone IV GX devices, autorate negotiation is implemented by performing 
scan-chain based PLL reconfiguration of the MPLL associated with the relevant 
transceiver channel. Designs that target a Cyclone IV GX device therefore require an 
ALTPLL_RECONFIG megafunction to perform PLL reconfiguration of the MPLL.

f For information about the Cyclone IV GX transceiver blocks and MPLLs, refer to 
volume 2 of the Cyclone IV Device Handbook. For information about the 
ALTPLL_RECONFIG megafunction, refer to the Phase-Locked Loops Reconfiguration 
(ALTPLL_RECONFIG) Megafunction User Guide.
CPRI MegaCore Function
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Design Implementation
Figure B–1 and Figure B–2 show example autorate negotiation logic block diagrams 
for CPRI IP cores in slave clocking mode and master clocking mode, respectively. The 
diagrams show all the potential CPRI line rates for an Arria II GX, Arria II GZ, 
Arria V, or Stratix IV GX device. However, if you remove the options for the two 
highest CPRI line rates, the examples are functional for Cyclone IV GX devices. If you 
add an option for the 9.8 Gbps CPRI line rate, the example is functional for a Stratix V 
device. The examples clarify the functionality provided by the CPRI IP core, and the 
logic and data you must configure in your design outside the CPRI IP core.

Figure B–1. Autorate Negotiation in Slave Clocking Mode

Notes for Figure B–1:

(1) Optional clock switching logic determines the value of gxb_refclk, depending on the desired transceiver frequency setting.
(2) You must reset the cleanup PLL configuration for different incoming and outgoing clock frequencies when the CPRI line rate changes.
(3) The number of ROMs and the rate requirements are design dependent.
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Configuring the CPRI IP Core for Autorate Negotiation
Configuring the CPRI IP Core for Autorate Negotiation
To ensure that the CPRI IP core implements autorate negotiation correctly, while 
configuring your CPRI IP core, enable autorate negotiation and set the CPRI line rate 
to the maximum line rate supported for autorate negotiation by the device family.

Running Autorate Negotiation
After your CPRI IP core is configured on the device, the autorate negotiation logic you 
configured in your design outside the CPRI IP core must perform certain steps to 
activate the autorate negotiation support logic in the CPRI IP core. This section 
describes these steps.

To start autorate negotiation in your CPRI IP core, in addition to its own initialization 
outside the CPRI IP core, your hardware and software must perform the following 
steps:

1. Confirm that the i_datarate_en bit of the AUTO_RATE_CONFIG register is set to 1. 
The AUTO_RATE_CONFIG register is described in Table 7–21 on page 7–10. You can 
read this value on the datarate_en output signal.

Figure B–2. Autorate Negotiation in Master Clocking Mode

Notes for Figure B–2:

(1) Optional clock switching logic determines the value of gxb_refclk, depending on the desired transceiver frequency setting.
(2) The number of ROMs and the rate requirements are design dependent.
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Running Autorate Negotiation
2. Set the logic that feeds the gxb_refclk input to the CPRI IP core to the correct 
value for the next CPRI line rate at which you want to try to achieve frame 
synchronization.

3. Configure the ALTGX_RECONFIG megafunction, or the Altera Transceiver 
Reconfiguration Controller for Arria V and Stratix V variations, with the .mif file 
for the desired CPRI line rate. In Arria V and Stratix V variations, alternatively, 
you can perform direct writes in streamer-based reconfiguration mode. 

4. For a Cyclone IV GX device, configure the ALTPLL_RECONFIG megafunction 
with the .mif file for the desired CPRI line rate, by performing the following steps:

a. Assert the write_from_rom input signal to the ALTPLL_RECONFIG megafunction. 
The megafunction busy output signal is asserted and remains asserted while 
the megafunction writes to the scan cache.

b. After the megafunction busy output signal is deasserted, assert the 
megafunction reconfig signal. While PLL reconfiguration is in progress, the 
busy signal is again asserted.

c. After the CPRI IP core pll_reconfig_done signal is deasserted, assert the 
megafunction reset_rom_address signal.

5. Set the i_datarate_set field of the AUTO_RATE_CONFIG register to the correct value 
for the next CPRI line rate at which you want to try to achieve frame 
synchronization.

6. Confirm the field is set by monitoring the datarate_set output signal.

7. Optionally, to enable confirmation of frame synchronization at the new CPRI line 
rate, reset the tx_enable bit of the CPRI_CONFIG register to 0.

The frame synchronization machine shown in Figure 4–26 on page 4–50 attempts 
to achieve frame synchronization at the specified CPRI line rate.

8. If you reset the tx_enable bit of the CPRI_CONFIG register in step 7, after 
extended_rx_status_data[1:0] changes value to 0x1, set the tx_enable bit of the 
CPRI_CONFIG register. 

The value 0x3 on the extended_rx_status_data[1:0] signal confirms that the 
CPRI receiver has achieved frame synchronization. 
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C. Advanced AxC Mapping Modes
The advanced AxC mapping modes are implemented when map_mode has value 2’b01, 
2’b10, or 2’b11 (and you specify All as the value for Mapping mode(s) in the CPRI 
parameter editor), or if you specify Advanced 1, Advanced 2, or Advanced 3 as the 
value for Mapping mode(s) in the CPRI parameter editor. In these modes, different 
data channels can use different sample rates, and the sample rates need not be integer 
multiples of 3.84 MHz. However, all data channels use the same sample width. 

1 Altera recommends that you use sample rates that are integer multiples of 3.84 MHz. 
However, for implementing the WiMAX protocol, Altera recommends that you use 
the exact WiMAX input sample rates. WiMAX applications require that your CPRI IP 
core implement an advanced AxC mapping mode.

The CPRI IP core supports the following advanced AxC mapping modes:

■ When map_mode has the value of 2’b01 or 2’b11 (Advanced 1 or Advanced 3), AxC 
mapping conforms to Method 1: IQ Sample Based, described in Section 4.2.7.2.5 of 
the CPRI V4.2 Specification.

■ When map_mode has the value of 2’b10 (Advanced 2), AxC mapping conforms to 
Method 3: Backward Compatible, described in Section 4.2.7.2.7 of the CPRI V4.2 
Specification.

For a list of the standards supported by the various advanced mapping modes, refer 
to Table 3–2 on page 3–5.

Backward Compability
The CPRI IP core supports one new advanced mapping mode in the Quartus II 
software 11.1 and later releases. To support the new advanced mapping mode, 
advanced mapping mode encodings changed in the Quartus II software 11.1 release. 
Table C–1 shows the correspondence between the advanced mapping mode map_mode 
encodings in the software 11.1 and later releases and the encodings in previous 
software releases. The 2’b01 encoding has a different meaning in the software 11.1 and 
later releases than in previous releases.

Table C–1. Advanced Mapping Mode map_mode Encodings in Software Releases

Mode CPRI Parameter Editor 
Mapping mode(s) Value

map_mode Encoding

In Quartus II Software 
Releases 11.1 and 12.0

 In Quartus II Software 
Release

11.0 and Earlier

New implementation of 
Method 1: IQ Sample Based Advanced 1 2’b01 —

Conforms to Method 3: 
Backward Compatible Advanced 2 2’b10 2’b10

Conforms to Method 1:
IQ Sample Based Advanced 3 2’b11 2’b01
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Advanced Mapping Mode Similarities and Differences
All of the advanced AxC mapping modes comply with the description in Section 
4.2.7.2.4 of the CPRI V4.2 Specification. Advanced mapping modes 01 and 11 comply 
with two different interpretations of Section 4.2.7.2.5. Advanced mapping mode 11 is 
available in Quartus II software releases prior to release 11.1 as advanced mapping 
mode 01, and the current advanced mapping mode 01 is new in the Quartus II 
software release 11.1. 

In the Advanced 1 and Advanced 2 mapping modes, each IQ data sample is 
considered a different AxC container, for backward compatibility with earlier 
versions of the CPRI specification. However, multiple consecutive 32-bit words in the 
same frame may contain data samples from or for the same AxC interface. In other 
words, data to or from the same AxC interface may appear in consecutive timeslots, 
even though these IQ data samples are considered individual AxC containers. IQ data 
samples do not span frames. Spare bytes not assigned to an AxC container become 
reserved bits. These reserved bits are located at the end of the basic frame. 

Advanced Mapping Mode Similarities and Differences
This section describes the similarities and differences between the different advanced 
mapping modes. In each advanced mapping mode, the behavior is different in the 
15-bit and 16-bit modes. Figure C–1 on page C–4 illustrates an example in this section 
that describes the differences between the advanced mapping modes in 15-bit mode, 
and Figure C–2 on page C–5 illustrates an example of the supported advanced 
mapping modes in 16-bit mode.

In the advanced mapping modes, AxC containers are packed in the IQ data block in a 
flexible position (Option 2), as illustrated in Section 4.2.7.2.3 of the CPRI V4.2 
Specification. Configuration tables define the mapping of AxC containers to offsets in 
the AxC interface timeslots. 

You specify the flexible position of the start of an AxC container in its timeslot using 
the Rx and Tx mapping tables. You configure the Rx and Tx mapping tables through 
the CPU interface. You can configure one mapping table entry at a time. The table 
index specified in the map_conf_index field of the CPRI_MAP_TBL_INDEX register 
determines the Rx and Tx mapping table entries that appear in the CPRI_MAP_TBL_RX 
and CPRI_MAP_TBL_TX registers, respectively.The CPRI_MAP_TBL_RX register holds the 
currently configurable entry in the Rx mapping table, and the CPRI_MAP_TBL_TX 
register holds the currently configurable entry in the Tx mapping table. You must 
configure these tables prior to data transmission on the MAP interface, otherwise data 
loss may occur.

Each table entry corresponds to an IQ data sample in one AxC container block. Each 
table entry has an enable bit and a field in which to specify the AxC interface number 
for the current IQ data sample, in addition to a position field which specifies the 
starting bit position of the IQ sample in the timeslot — the current 32-bit word on the 
AxC interface — and a width field to specify the number of bits in the current data 
sample.

The application can specify an offset for the start of an AxC container in a timeslot; the 
position field of the table entry that corresponds to the timeslot in which that AxC 
container begins transmission (in the CPRI Rx direction) or appears on the data 
channel (in the CPRI Tx direction), holds this offset. The offset is specified in bits.
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1 Some table entries are not available, depending on the CPRI line rate and on K. In the 
example illustrated in Figure C–2, the table entries 7 and 15 are not available.

In 16-bit mode in all advanced mapping modes, and in 15-bit mode in advanced 
mapping mode 2’b01, you can use the width field to specify the size of the sample that 
starts in the bit position indicated in the position field, allowing you to pack a second 
sample immediately following the first sample in the timeslot, or to specify a sample 
width larger than the timeslot. In the case of a sample that spills into the following 
timeslot, you must enable the following timeslot in the Rx or Tx mapping table. 

In 15-bit width mode in advanced mapping modes 2’b10 and 2’b11, you must set 
width to the value of 15 (indicating a 30-bit IQ sample), and you must set position to 
specify the offset of the next available bit in the current 32-bit timeslot, because the IQ 
samples are packed in the timeslots with no intervening spare bits.

You can calculate the number of timeslots that correspond to a CPRI frame. Only the 
data bytes pass through the AxC interface; the control bytes in a CPRI frame do not 
pass through the AxC interface. Refer to the Number of Bits column in Table 4–4 on 
page 4–14 or Table 4–5 on page 4–14 for the number of data bits in a CPRI frame 
at each CPRI line data rate. The calculation depends on the presence and values of any 
position offsets, on whether the CPRI IP core is in 15-bit width mode or in 16-bit 
width mode, and on how remainder bytes are handled. The following discussion 
focuses on the cases with position fields all set to zero. You can increment the 
timeslot counts as needed to accommodate unused leading timeslot bits specified 
with position offsets.

Fifteen-Bit Width Mode
In 15-bit width mode, you either pack the 30-bit data samples in the 32-bit words (in 
advanced mapping modes Advanced 2 (2’b10) and Advanced 3 (2’b11)), or you 
selectively allow gaps, specifying them with the position and width fields of the table 
entry (in the new Advanced 1 mapping mode (2’b01)). In 15-bit width mode, 
advanced AxC mapping modes 2’b10 and 2’b11 act identically, packing the data into 
consecutive bits. Because the number of bits in the IQ data block of every CPRI frame 
is a multiple of 30, packed 15-bit I- and Q-samples fill an AxC container—and one or 
more CPRI frames—with no spare bytes remaining. However, in the Advanced 1 
mapping mode, you can specify an offset in the position field, potentially leaving 
spare bytes in the IQ data block. 

Figure C–1 shows the contrast between these advanced mapping modes. In this 15-bit 
mode example, the CPRI data rate is 1228.8 Gbps and the value of K is two. For a 
CPRI IP core running at CPRI data rate 1228.8 Gbps, the number of data bits in a CPRI 
basic frame is 240. (Refer to Table 4–5 on page 4–14). If K (specified in the K field of the 
June 2012 Altera Corporation CPRI MegaCore Function
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CPRI_MAP_TBL_CONFIG register) has the value of two, 480 bits, or 60 bytes, of data are 
sent or received on the data channel.

The example shows the mapping to timeslots, assuming a single AxC interface is 
active, or more concretely, the contents of the Tx or Rx advanced mapping table. In 
Advanced 1 mode, the Tx or Rx mapping table entries 7 and 15 are not available. In 
contrast, in the other two advanced mapping modes, the Tx or Rx mapping table 
entries 0 through 15 are valid.

Sixteen-Bit Width Mode
In 16-bit width mode, when map_mode has the value of 2’b01 or 2’b10, the initial 32-bit 
sets of data in the CPRI frame pass through the AxC interface. However, the spare 
bytes—bytes at the end of an IQ data block that do not fill another complete 32-bit 
word in the CPRI frame, or bytes at the end of a CPRI frame that do not fill another 
complete timeslot—are dropped in the outgoing data channel, and become reserved 
bits in the CPRI frame after the data arrives on the incoming data channel; these bits 
are expected to not contain valid AxC data in the CPRI frame. 

Figure C–1. Example of Differences Between the AxC Advanced Mapping Modes in 15-Bit Mode

Note to Figure C–1:

(1) This figure uses the following conventions:
* Each column illustrates two bytes in the CPRI frame.
* The label “c” indicates a control byte.
* A numerical label indicates the index of the corresponding table entry in the Rx or Tx advanced mapping table.
* The label “r” indicates a reserved bit or set of bits. Specifically in this example, this label indicates either two bits or a full byte of reserved bits.
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1 The Altera CPRI IP core does not support the Advanced 3 mapping mode in 16-bit 
width mode. Advanced 3 mapping mode does not support spare bytes. Therefore, all 
of the data bits in a CPRI frame should theoretically pass through the AxC interface to 
or from the CPRI IP core. However, in the 16-bit mode, this requirement would force a 
single timeslot to contain information from two CPRI frames, an arrangement the 
Altera CPRI IP core does not support.

Figure C–2 shows the mapping between CPRI frames and the advanced mapping 
tables for a 16-bit mode example. In this example, the CPRI data rate is 1228.8 Gbps 
and the value of K is two. For a CPRI IP core running at CPRI data rate 1228.8 Gbps, 
the number of data bits in a CPRI basic frame is 240. (Refer to Table 4–4 on page 4–14). 
If K (specified in the K field of the CPRI_MAP_TBL_CONFIG register) has the value of two, 
480 bits, or 60 bytes, of data are sent or received on the data channel. The figure shows 
how the Advanced 1 and Advanced 2 mapping modes map these 60 bytes in 16-bit 
mode. 

In the example, the final two bytes of the data from or for each of the first and second 
CPRI frames are dropped or assumed reserved. The Rx or Tx mapping table entries 7 
and 15 are not valid table entries, as the corresponding IQ data sample is invalid. If 
the CPRI IP core has a single active AxC interface, the eighth and sixteenth timeslots 
are empty. 

Figure C–2. Example of Mapping in 16-Bit Mode

Note to Figure C–2:

(1) This figure uses the following conventions:
* Each column illustrates two bytes in the CPRI frame.
* The label “c” indicates a control byte.
* A numerical label indicates the index of the corresponding table entry in the Rx or Tx advanced mapping table.
* The label “r” indicates a byte of reserved bits
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D. Delay Measurement and Calibration
This appendix describes the RX delay measurement and TX calibration features of the 
CPRI IP core.

Altera Delay Measurement and Calibration Features
For system configuration and correct synchronization, the CPRI IP core must meet the 
CPRI V4.2 Specification measurement and delay requirements. The CPRI IP core 
provides the following support for accurate delay measurement:

■ Provides current Rx delay measurement values in the CPRI_RX_DELAY and 
CPRI_EX_DELAY_STATUS delay registers.

■ Provides current Tx delay calibration values in the CPRI_TX_BITSLIP register.

■ Provides current round-trip delay value in the CPRI_ROUND_DELAY register.

■ Supports user control over delay measurement accuracy by the following 
methods:

■ Allows you to control the degree of delay accuracy in the status registers by 
programming the CPRI_RX_DELAY_CTRL and CPRI_EX_DELAY_CONFIG registers.

■ Provides an optional automatic calibration process that takes your input for the 
desired round-trip delay and adjusts internal delays in an attempt to match the 
desired value. The automatic calibration process reports its current success 
status in the CPRI_AUTO_CAL register.

The following sections describe the delay requirements and how you can use these 
registers to ensure that your application conforms to the CPRI V4.2 Specification 
delay requirements.

Delay Requirements
CPRI V4.2 Specification requirements R-17, R-18, and R-18A address jitter and 
frequency accuracy in the RE core clock for radio transmission. The relevant clock 
synchronization is performed using an external clean-up PLL that is not included in 
the CPRI IP core.

The CPRI IP core complies with CPRI V4.2 Specification requirements R-19, R-20, 
R-20A, R-21, and R-21A.

CPRI V4.2 Specification requirement R-20A addresses the maximum allowed delay in 
switching between receiving and transmitting on the AxC interface. Because the CPRI 
IP core provides duplex communication on the AxC interfaces, this switch requires 
only the programming of the relevant AxC interface Tx or Rx enable bit in the 
CPRI_IQ_TX_BUF_CONTROL or CPRI_IQ_RX_BUF_CONTROL register, and no delay calculation 
is required.
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Delay Requirements
Requirement R-19 specifies that the link delay accuracy for the downlink between the 
synchronization master SAP and the synchronization slave SAP, excluding the cable 
length, be within ±8.138 ns. Requirements R-20 and R-21 extrapolate this requirement 
to single-hop round-trip delay accuracy. R-20 requires that the accuracy of the 
round-trip delay, excluding cables, be within ±16.276 ns, and R-21 requires that the 
round-trip cable delay measurement accuracy be within the same range. Requirement 
R-21A extrapolates this requirement further, to multihop round-trip delay accuracy. In 
calculating these delays, Altera assumes that the downlink and uplink cable delays 
have the same duration.

Figure D–1 shows the reference points you can use to determine the CPRI IP core 
delay measurements for single-hop CPRI configurations.

CPRI requirement R-21 addresses the accuracy of the round-trip cable delay, which is 
the sum of the T12 and T34 delays. The T12 and T34 delays are assumed to have the 
same duration. 

Figure D–2 shows the reference points you can use to determine the CPRI IP core 
delay measurements for multihop CPRI configurations. The duration of TBdelay 
depends on your routing layer implementation.

The following sections describe the delay through the CPRI IP core on the Rx path and 
on the Tx path to the SAP—the AUX interface—and the deterministic values for 
transceiver latency and delay through the IP core. They describe the calculation of the 
round-trip cable delay T14, the Toffset delay, and the round-trip (SAP to SAP) delay in 
the single-hop and multihop cases, and describe the CPRI IP core optional round-trip 
delay calibration feature and how to activate it.

Figure D–1. Single-Hop CPRI Configuration Delay Measurement Reference Points
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Figure D–2. Multihop CPRI Configuration Delay Measurement Reference Points
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Rx Path Delay
1 The “Rx Path Delay” and “Tx Path Delay” sections do not discuss the delays through 
the AxC blocks, because the round-trip delay calculations and the multihop 
configuration delay calculations do not take the AxC blocks into account. For 
purposes of these calculations, the relevant SAP is the AUX interface. For information 
about the delays through the AxC blocks, refer to “MAP Receiver Interface” on 
page 4–15 and “MAP Transmitter Interface” on page 4–21.

Rx Path Delay
The Rx path delay is the cumulative delay from the arrival of the first bit of a 10 ms 
radio frame on the CPRI Rx interface to the start of transmission of the radio frame on 
the AUX interface.

Rx Path Delay Components
The CPRI specification defines requirements on the path to an SAP. The CPRI IP core 
has one relevant SAP, the AUX interface. This section provides the information to 
calculate the Rx path delay to output on the AUX interface. 

The delay to—but not through—the AxC blocks, that is, the delay through the MAP 
interface module, is the same as the delay to the AUX interface. Figure D–3 shows the 
Rx path delay components in all CPRI IP core variations except the variation shown in 
Figure D–4. Figure D–4 shows the Rx path delay components in a CPRI IP core 
variation with the CPRI line rate of 9.8 Gbps that targets an Arria V GT device. Both 
figures show the relation between the two Rx paths. 

Figure D–3. Rx Path Delay to AUX Output and Through MAP Interface Block in Most CPRI IP Core Variations
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Figure D–4. Rx Path Delay to AUX Output and Through MAP Interface Block in Arria V GT 9.8 Gbps Variations
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Rx Path Delay
The Rx path delay to the AUX interface or through the MAP interface module in most 
CPRI IP core variations is the sum of the following delays:

1. The link delay is the delay between the arrival of the first bit of a 10 ms radio 
frame on the CPRI Rx interface and the CPRI IP core internal transmission of the 
radio frame pulse from the CPRI protocol interface Rx module. The link delay 
includes the following delays:

a. Transceiver latency is a fixed delay through the deterministic latency path of 
the transceiver. Its duration depends on the device family and on the path 
direction (Rx or Tx). This delay includes comma alignment. Refer to “Rx 
Transceiver Latency” on the following pages. 

b. Delay through the clock synchronization FIFO, as well as the phase difference 
between the recovered receive clock and the core RE clock cpri_clkout. The 
“Extended Rx Delay Measurement” section shows how to calculate the delay 
in the CPRI Rx elastic buffer, which includes the phase alignment delay.

c. Fixed two cycle byte alignment delay (two cpri_clkout clock cycles). The 
CPRI IP core now compensates for the byte alignment delay that can occur as 
data is shifted out of the Rx elastic buffer with a compensatory pipeline stage 
that ensures this delay is constant. This delay is included in the fixed 
component of the Rx delay listed in Table D–3 on page D–8, as described in 
“Fixed Rx Core Delay Component” on page D–8. 

d. Variable delay introduced by round-trip delay calibration feature. Refer to 
“Round-Trip Calibration Delay in Rx Path” on page D–7 and “Dynamic 
Pipelining for Automatic Round-Trip Delay Calibration” on page D–21.

2. Delay from the CPRI low-level receiver block to the AUX interface (or through the 
MAP interface block). This delay depends on the device family and CPRI data 
rate. This delay is T_R1 in Figure D–1 on page D–2. Refer to “Fixed Rx Core Delay 
Component” on page D–8. 

In the CPRI IP core variations with a CPRI line rate of 9.8 Gbps that target an 
Arria V GT device, the link delay (1.) includes the following delays:

a. Fixed delay through the PMA configured with the Altera Native PHY IP core. 

b. Delay through an Rx buffer between the PMA and the PCS. The “Extended Rx 
Delay Measurement” section shows how to calculate this delay.

c. Fixed delay through the PCS.

d. Variable delay introduced by round-trip delay calibration feature. Refer to 
“Round-Trip Calibration Delay in Rx Path” on page D–7 and “Dynamic 
Pipelining for Automatic Round-Trip Delay Calibration” on page D–21. This 
delay component is common to all CPRI IP core variations.

The following sections describe the individual delays and how to calculate them.

Rx Transceiver Latency
In most CPRI IP core variations, the delay through the Rx transceiver is a fixed delay. 
In Arria V GT variations with a CPRI line rate of 9.8 Gbps, the Rx transceiver latency 
includes fixed delays through the PMA and PCS, and a variable delay through a 
buffer. 
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Rx Path Delay
The following sections describe the Rx transceiver delay in both types of CPRI IP core 
variations.

Rx Transceiver Latency in Most CPRI IP Core Variations
The Altera high-speed transceiver is implemented using the deterministic latency 
protocol, which ensures that delays in comma alignment and in byte alignment within 
the transceiver are consistent. 

Table D–1 shows the fixed latency through the transceiver in the receive side of the 
CPRI IP core. These values correspond to T_txv_RX in Figure D–1.

The clean-up PLL shown in Figure 4–2 on page 4–5 uses the recovered clock as input 
to the PLL that generates the gxb_pll_inclk signal, to ensure frequency match. To 
preserve the T_txv_RX latency in Table D–1, you must ensure that the reference clock 
to the clean-up PLL contains no asynchronous dividers.

Rx Transceiver Latency in Arria V GT Variations at CPRI Line Rate 9.8 Gbps
In CPRI IP core variations with a CPRI line rate of 9.8 Gbps that target an Arria V GT 
device, the Altera high-speed transceiver is configured with a hard PMA and a soft 
PCS and a buffer between them. 

The fixed delay through the PMA is 3.075 cpri_clkout cycles.

The “Extended Rx Delay Measurement” section shows how to calculate the variable 
delay through the Rx buffer between the PMA and the PCS.

The fixed delay through the PCS is 19 cpri_clkout cycles.

The clean-up PLL shown in Figure 4–4 on page 4–7 uses the recovered clock as input 
to the PLL that generates the gxb_pll_inclk, usr_clk, and usr_pma_clk signals, to 
ensure frequency match. To preserve the latencies listed in this section, you must 
ensure that the reference clock to the clean-up PLL contains no asynchronous 
dividers.

Extended Rx Delay Measurement 
The second component of the link delay is the delay through the CPRI Receive buffer. 
The latency of the CPRI Receive buffer depends on the number of 32-bit words 
currently stored in the buffer, and the phase difference between the recovered receive 
clock, which is used to write data to the buffer, and the system clock cpri_clkout, 
which is used to read data from the buffer. The CPRI IP core uses a dedicated clock, 
clk_ex_delay, to measure the Rx buffer delay to your desired precision. The 
rx_ex_delay field of the CPRI_EX_DELAY_CONFIG register contains the value N, such 

Table D–1. Fixed Latency T_txv_RX Through Receiver Transceiver 

Latency Through Transceiver in cpri_clkout Clock Cycles

Arria II GX or 
Cyclone IV GX 

Device

Arria II GZ or Stratix IV GX Device Arria V or Stratix V Device

Data Rate 614.4 Mbps Data Rate > 614.4 Mbps Data Rate 614.4 Mbps Data Rate > 614.4 Mbps

4.65 10.4 7.2 13.3 10.65
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that N clock periods of the clk_ex_delay clock are equal to some whole number M of 
cpri_clkout periods. For example, N may be a multiple of M, or the M/N frequency 
ratio may be slightly greater than 1, such as 64/63 or 128/127. The application layer 
specifies N to ensure the accuracy your application requires. The accuracy of the Rx 
buffer delay measurement is N/least_common_multiple(N,M) cpri_clkout periods.

The rx_buf_delay field of the CPRI_RX_DELAY register indicates the number of 32-bit 
words currently in the Rx buffer. After you program the rx_ex_delay field of the 
CPRI_EX_DELAY_CONFIG register with the value of N, the rx_ex_buf_delay field of the 
CPRI_EX_DELAY_STATUS register holds the current measured delay through the Rx 
buffer. The unit of measurement is cpri_clkout periods. The rx_ex_buf_delay_valid 
field indicates that a new measurement has been written to the rx_ex_buf_delay field 
since the previous register read. The following sections explain how you set and use 
these register values to derive the extended Rx delay measurement information.

M/N Ratio Selection
As your selected M/N ratio approaches 1, the accuracy provided by the use of the 
clk_ex_delay clock increases. Table D–2 shows some example M/N ratios and the 
resolutions they provide, for a CPRI IP core that runs at data rate 3072 Mbps and 
targets a Stratix IV GX device. 

Arria V GT Variations with CPRI Line Rate 9.8 Gbps
CPRI IP core variations with a CPRI line rate of 9.8 Gbps that target an Arria V GT 
device do not have an Rx elastic buffer outside the transceiver. In these variations, the 
same calculation applies to the Rx buffer inside the transceiver, instead.

CPRI Receive Buffer Delay Calculation Example
This section walks you through an example that shows you how to calculate the 
frequency at which to run clk_ex_delay, and how to program and use the registers to 
determine the delay through the CPRI Receive buffer.

For example, assume your CPRI IP core runs at data rate 3072 Mbps. In this case, 
Table 4–2 on page 4–8 shows that the cpri_clkout frequency is 76.80 MHz, so a 
cpri_clkout cycle is 1/(76.80 MHz). 

Refer to Table D–2 for the accuracy resolution provided by some sample M/N ratios. 
If your accuracy resolution requirements are satisfied by an M/N ratio of 128/127, 
perform the following steps: 

1. Program the value N=127 in the rx_ex_delay field of the CPRI_EX_DELAY_CONFIG 
register at offset 0x3C (Table 7–19 on page 7–9).

Table D–2. Resolution as a Function of M/N Ratio at 3072 Mbps on a Stratix IV GX Device

M N cpri_clkout Period (1) clk_ex_delay Period (2) Resolution

128 127
13.02 ns

(1/76.80 MHz)

13.12 ns ±100 ps

64 63 13.22 ns ±200 ps

1 4 3.25 ns ±3.25 ns

Notes to Table D–2:

(1) Table 4–2 on page 4–8 lists the cpri_clkout frequency for each CPRI data rate and device family.
(2) “CPRI Receive Buffer Delay Calculation Example” shows you how to calculate the clk_ex_delay clock period for a given M, N, and 

cpri_clkout period.
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2. Perform the following calculation to determine the clk_ex_delay frequency that 
supports your desired accuracy resolution:

clk_ex_delay period = (M/N) cpri_clkout period
= (128/127) (1/(76.80 MHz))
= (128/127)(13.02083 ns)
= 13.123356 ns

Based on this calculation, the frequency of clk_ex_delay is 

1/(13.123356 ns) = 76.20 MHz

The following steps assume that you run clk_ex_delay at this frequency.

3. Read the value of the CPRI_EX_DELAY_STATUS register at offset 0x40 (Table 7–20 on 
page 7–9). 

If the rx_ex_buf_delay_valid field of the register is set to 1, the value in the 
rx_ex_buf_delay field has been updated, and you can use it in the following 
calculations. For this example, assume the value read from the rx_ex_buf_delay 
field is 0x107D, which is decimal 4221.

4. Perform the following calculation to determine the delay through the Rx elastic 
buffer:

Delay through Rx elastic buffer = (rx_ex_buf_delay × cpri_clkout period) / N
= (4221 × 13.02083 ns) / 127
= 432.7632 ns

This delay comprises (432.7632 ns / 13.02083 ns) = 33.236 cpri_clkout clock 
cycles.

These numbers provide you the result for this particular example. For illustration, 
the preceding calculation shows the result in nanoseconds. You can derive the 
result in cpri_clkout clock cycles by dividing the preceding result by the 
cpri_clkout clock period. Alternatively, you can calculate the number of 
cpri_clkout clock cycles of delay through the Rx elastic buffer directly, as 
rx_ex_buf_delay / N.

Round-Trip Calibration Delay in Rx Path
The new dynamic pipelining feature for round-trip delay calibration introduces a 
delay in the Rx path in an RE slave. In CPRI IP core variations other than the 
Arria V GT 9.8 Gbps variations, this delay is introduced to the Rx path immediately 
following the Rx elastic buffer. In the Arria V GT 9.8 Gbps variations, this delay is 
introduced in the CPRI Rx block. The feature introduces the new delay to maintain a 
round-trip delay measurement as close as possible to the anticipated round-trip delay 
you provide to the CPRI IP core. The CPRI_AUTO_CAL register holds the anticipated 
delay that you program, an enable bit you turn on to activate the feature, and a status 
field in which the CPRI IP core reports its relative success in maintaining the 
round-trip delay you requested. 

The register also contains a field, cal_pointer, that the CPRI IP core updates 
dynamically with the current number of cpri_clkout cycles of delay that this feature 
adds. You must include this register field value in your Rx path delay calculation. If 
the enable bit of the CPRI_AUTO_CAL register has the value of 0, the delay is 3 
cpri_clkout cycles.
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For more information about this feature, refer to “Dynamic Pipelining for Automatic 
Round-Trip Delay Calibration” on page D–21 and to Table 7–29 on page 7–13.

Fixed Rx Core Delay Component
In the Rx path, the delay from the CPRI low-level receiver block to the AUX interface 
or through the MAP interface block is fixed. This delay depends on the device family 
and CPRI data rate. This delay is labeled T_R1 in Figure D–1 on page D–2

This delay includes a fixed two cpri_clkout cycle delay that compensates for a 
potential byte alignment delay that can occur as data is shifted out of the Rx elastic 
buffer. The fixed two cycle delay is labeled (1c) in Figure D–3 on page D–3. The 
variable delay appears in the rx_byte_delay field of the CPRI_RX_DELAY register — 
when the value in rx_byte_delay is non-zero, a byte alignment delay of one 
cpri_clkout cycle occurs in the Rx path. However, a compensatory pipeline stage 
ensures this delay is constant, at one cpri_clkout cycle. The value in this register field 
is no longer relevant to the Rx path delay, and the constant delay is included in the 
fixed component of the Rx delay. 

Table D–3 shows the fixed delays between the low-level receiver block and the AUX 
interface.

Rx Path Delay to AUX Output: Calculation Example
This section shows you how to calculate the Rx path delay to the AUX output, based 
on the example shown in “CPRI Receive Buffer Delay Calculation Example” on 
page D–6. This example walks through the calculation for the case of a CPRI IP core 
that runs at CPRI data rate 3072 Mbps and targets an Arria II GX device. The cal_en 
field of the CPRI_AUTO_CAL register has the value of 0.

To calculate the Rx path delay, perform the following steps:

1. Consult Table D–1 on page D–5 for the correct value of T_txv_RX for your device 
family. For the example, the table yields T_txv_RX = 4.65 cpri_clkout clock cycles.

2. Calculate the latency through the Rx Receive buffer, including phase alignment, by 
following the steps in “CPRI Receive Buffer Delay Calculation Example” on 
page D–6 for your CPRI IP core instance. For the example, the calculations shown 
in “CPRI Receive Buffer Delay Calculation Example” yield a delay through the Rx 
Receive buffer of 33.236 cpri_clkout clock cycles.

3. Read the value of the cal_pointer field of the CPRI_AUTO_CAL register. In this case, 
the value in this field is 3. This value is consistent with the fact that the cal_en field 
of the CPRI_AUTO_CAL register has the value of 0.

Table D–3. Fixed Latency T_R1 From Low-Level Receiver to AUX Interface in cpri_clkout Cycles

Data Rate 614.4 Mbps Data Rate > 614.4 Mbps
Arria V GT Device at 

Data Rate 
9.8304 GbpsAll Device Families Arria II GX or 

Cyclone IV GX Device

Arria II GZ, Arria V, 
Stratix IV GX, or 
Stratix V Device

4.25 4.5 5 4
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4. Consult Table D–3 on page D–8 to determine the delay through the CPRI IP core to 
the AUX interface. For the example, the duration of this delay is 4.5 cpri_clkout 
clock cycles.

5. Calculate the full Rx path delay to the AUX interface by adding the values you 
derived in step 1 through step 4. For the example, calculate the Rx path delay as 
follows:

Rx path delay = T_txv_RX + <delay through Rx Receive buffer>
+ <cal_pointer value> + <delay to AUX IF>

= 4.65 + 33.236 + 3 + 4.5 cpri_clkout clock cycles
= 45.386 cpri_clkout clock cycles

Tx Path Delay
The Tx path delay is the cumulative delay from the arrival of the first bit of a 10 ms 
radio frame on the CPRI AUX interface to the start of transmission of this data on the 
CPRI link. This section provides the information to calculate the Tx path delay. 

The delay through the MAP interface module to the CPRI link is the same as the delay 
from the AUX interface. Figure D–5 shows the Tx path delay components in all CPRI 
IP core variations except the variation shown in Figure D–6. Figure D–6 shows the Tx 
path delay components in a CPRI IP core variation with the CPRI line rate of 9.8 Gbps 
that targets an Arria V GT device. Both figures show the relation between the two Tx 
paths. 

Figure D–5. Tx Path Delay from AUX Interface or Through MAP Interface Block to CPRI Link in Most Variations
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In the CPRI IP core the delay from the AUX interface has a fixed component and a 
variable component. The variable component results from the Tx elastic buffer and 
the Tx bitslip delay compensation feature.

The Tx path delay from the AUX interface in most CPRI IP core variations comprises 
the following delays:

1. Fixed delay from the AUX interface through the CPRI low-level transmitter to the 
Tx elastic buffer. This delay depends on the device family and CPRI data rate. This 
delay is T_T4 in Figure D–1 on page D–2 and in Table D–4 on page D–11. Refer to 
“Fixed Tx Core Delay Component” on page D–11. 

2. Variable delay through the Tx elastic buffer, as well as the phase difference 
between the core clock and the transceiver tx_clkout clock. The “Extended Tx 
Delay Measurement” section shows how to calculate the delay in the CPRI Tx 
elastic buffer, which includes the phase alignment delay. 

3. Variable Tx bitslip delay in CPRI RE slaves. Refer to “Tx Bitslip Delay” on 
page D–12.

4. Link delay through the transceiver. This delay is T_txv_TX in Table D–5 on 
page D–13.

In the CPRI IP core variations with a CPRI line rate of 9.8 Gbps that target an 
Arria V GT device, the Tx path delay from the AUX interface comprises the following 
delays:

1. Fixed delay from the AUX interface through the CPRI low-level transmitter to the 
transceiver PCS. Refer to “Fixed Tx Core Delay Component” on page D–11.

Figure D–6. Tx Path Delay to CPRI Link in Arria V GT 9.8 Gbps Variations
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2. Delay through the transceiver. This delay has the following components:

a. Variable Tx bitslip delay in CPRI RE slaves. Refer to “Tx Bitslip Delay” on 
page D–12.

b. Fixed delay through the soft PCS. Refer to “Tx Transceiver Latency in 
Arria V GT Variations at CPRI Line Rate 9.8 Gbps” on page D–13.

c. Variable delay through the Tx buffer between the soft PCS and the PMA. The 
“Extended Tx Delay Measurement” section shows how to calculate this delay.

d. Fixed delay through the PMA configured with the Altera Native PHY IP core. 
Refer to “Tx Transceiver Latency in Arria V GT Variations at CPRI Line Rate 
9.8 Gbps” on page D–13. 

Fixed Tx Core Delay Component
In the Tx path in CPRI IP core variations other than the Arria V GT 9.8 Gbps 
variations, the delay from the AUX interface to the Tx elastic buffer is fixed. This delay 
depends on the device family and CPRI data rate. This delay is labeled T_T4 in 
Figure D–1 on page D–2. 

Table D–4 shows the fixed delay between the AUX interface and the Tx elastic buffer 
in these variations.

In CPRI IP core variations with a CPRI line rate of 9.8 Gbps that target an Arria V GT 
device, the fixed Tx core delay component extends to the transceiver. The duration of 
this delay in this variation is 6 cpri_clkout cycles.

Extended Tx Delay Measurement
The latency of the Tx elastic buffer depends on the number of 32-bit words currently 
stored in the buffer, and the phase difference between the system clock cpri_clkout, 
which is used to write data to the buffer, and the transceiver clock tx_clkout, which is 
used to read data from the buffer.

The calculation of the extended Tx delay is identical to the description and example of 
extended Rx delay measurement in “Extended Rx Delay Measurement” on page D–5, 
with the substitution of tx for rx in all the register field names. 

As for the extended Rx delay measurement, this same calculation applies to the Tx 
buffer inside the transceiver in CPRI IP core variations with a CPRI line rate of 
9.8 Gbps that target an Arria V GT device.

Table D–4. Fixed Latency T_T4 From AUX Interface to Tx Elastic Buffer in cpri_clkout Cycles

Data Rate 614.4 Mbps Data Rate > 614.4 Mbps

Arria II GX 
Device

(ARN En/Dis) (1)

All Other 
Device 

Families

Arria II GX 
Device

(ARN En/Dis) (1)

Arria II GZ or Stratix IV GX 
Device (1)

Arria V or Stratix V 
Device

Cyclone IV GX 
Device

3.75/3.5 3.75 5.5/5.0 6 6 4.5

Note to Table D–4:

(1) In Arria II GX devices, the latency depends on whether the CPRI IP core is configured with autorate negotiation enabled. The latency is presented 
as A/B, where A is the latency when autorate negotiation is enabled, and B is the latency when autorate negotiation is disabled.
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Tx Path Delay
Tx Bitslip Delay
To increase the consistency of the round-trip delay, the CPRI RE slave introduces a 
variable bitslip on the Tx path to complement the variability in the word aligner on 
the Rx path. The word aligner is encapsulated in the transceiver block. The 
compensation is a small number of bits — below the threshold to affect the number of 
cpri_clkout cycles—and introduces delay variability well within the R-19 
requirement. The Rx bitslip value being compensated remains constant until frame 
resynchronization.

The CPRI IP core reports the Rx bitslip through the word aligner in the 
rx_bitslipboundaryselectout field of the CPRI_TX_BITSLIP register, and 
compensates for this variable delay by adding a bitslip in the Tx path. The current size 
of this bitslip in bits is available in the tx_bitslipboundaryselect field of the 
CPRI_TX_BITSLIP register. When you leave the tx_bitslip_en field at its default value 
of 0, this feature is active. The tx_bitslipboundaryselect value complements the 
rx_bitslipboundaryselectout value to ensure that the round-trip delay through the 
CPRI RE slave maintains acceptable proximity to a certain target value. The CPRI IP 
core calibrates this target value internally and adjusts tx_bitslipboundaryselect in 
response to changes in the rx_bitslipboundaryselectout value.

The Tx bitslip feature ensures stability in the round-trip delay through a CPRI RE 
core, but introduces a variable component in each of the Tx and Rx paths when 
considered independently. In CPRI IP cores in master clocking mode, the 
tx_bitslipboundaryselect field has the constant value of 0. 

If you set the value of the tx_bitslip_en field to 1, you can override the current 
tx_bitslipboundaryselect value to control the Tx bitslip delay manually. Altera does 
not recommend implementing the manual override.

In CPRI IP core variations that target an Arria V or Stratix V device, the Tx bitslip 
functionality is included in the Altera Deterministic Latency PHY IP core that is 
generated with the CPRI IP core. These variations include the CPRI_TX_BITSLIP 
register to support manual override of the Tx bitslip delay.

1 Altera does not recommend implementing the manual override for the Tx bitslip.

Tx Transceiver Latency
In most CPRI IP core variations, the delay through the Tx transceiver is a fixed delay. 
In Arria V GT variations with a CPRI line rate of 9.8 Gbps, the Tx transceiver latency 
includes fixed delays through the PMA and PCS, and a variable delay through a 
buffer. 

The following sections describe the Tx transceiver delay in both types of CPRI IP core 
variations.

Tx Transceiver Latency in Most CPRI IP Core Variations
The Altera high-speed transceiver is implemented using the deterministic latency 
protocol, which ensures that delays in comma alignment (word alignment) and in 
byte alignment within the transceiver are consistent.
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Table D–5 shows the fixed latency through the transceiver in the transmit side of the 
CPRI IP core. These values correspond to T_txv_TX in Figure D–1 on page D–2.

Tx Transceiver Latency in Arria V GT Variations at CPRI Line Rate 9.8 Gbps
In CPRI IP core variations with a CPRI line rate of 9.8 Gbps that target an Arria V GT 
device, the Altera high-speed transceiver is configured with a soft PCS and a hard 
PMA and a buffer between them. 

In these variations, the delay through the Tx transceiver has the following 
components:

■ The fixed delay through the PCS is 8 cpri_clkout cycles.

■ The “Extended Rx Delay Measurement” section shows how to calculate the 
variable delay through the Tx buffer between the PCS and the PMA.

■ The fixed delay through the PMA is 4.075 cpri_clkout cycles.

Therefore, the Tx transceiver latency in these variations is 12.075 cpri_clkout cycles 
plus the variable extended Rx delay.

T14, Toffset, Round-Trip Delay, and Round-Trip Cable Delay 
Calculations

The round-trip cable delay is the delay from the REC end of the CPRI downlink to the 
REC end of the CPRI uplink. This round-trip cable delay is shown as T14 in 
Figure D–1 on page D–2. The CPRI V4.2 Specification requirement R-21 requires that 
we ensure an accuracy of ±16.276 ns in the measurement of the round-trip cable delay 
in a single-hop configuration. 

In contrast, the rx_round_trip_delay field of the CPRI_ROUND_DELAY register records 
the total round-trip delay from the start of the internal transmit radio frame in the 
REC to the start of the internal receive radio frame in the REC, that is, from SAP to 
SAP. The register value is only available in CPRI REC and RE masters. 

You must subtract the internal delays through the RE or REC master from this register 
value to determine the value of T14, the round-trip cable delay, for the current hop. 

CPRI V4.2 Specification requirements R-20 and R-21 address the round-trip delay. 
Requirement R-20 addresses the measurement without including the cable delay, and 
requirement R-21 includes the cable delay. Both requirements state that the variation 
must be no more than ±16.276 ns. 

Table D–5. Fixed Latency T_txv_TX Through Transmitter Transceiver

Latency Through Transceiver in cpri_clkout Clock Cycles

Arria II GX or 
Cyclone IV GX Device

Arria II GZ or Stratix IV GX Device Arria V or Stratix V Device

Data Rate 
614.4 Mbps

Data Rate
> 614.4 Mbps

Data Rate 
614.4 Mbps

Data Rate
> 614.4 Mbps

3.35 7.4 3.6 5.3 4.15
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The CPRI IP core supports two approaches to these requirements. In the first 
approach, you perform calculations based on register values to determine the current 
delay, and check periodically to confirm that the variation in measurements over time 
is small enough that the requirements are met. Although extended Rx and Tx delay 
measurements and the Tx bitslip feature compensate for voltage and temperature 
variations, the fixed delays do not. 

In the second approach, you activate the new dynamic pipelining feature to perform 
round-trip delay calibration. This feature enables the CPRI IP core to compensate 
dynamically for variations from a predetermined round-trip delay value that you 
select.

The following sections describe these two approaches.

Because the CPRI REC master and the CPRI RE slave might be on different devices, 
the following formulas specify the source CPRI IP core (REC or RE) for the delays in 
each calculation.

Round-Trip and Cable Delay Calculations for a Single-Hop Configuration
The rx_round_trip_delay field of the CPRI_ROUND_DELAY register records the delay 
between the outgoing cpri_tx_rfp signal and the outgoing cpri_rx_rfp signal. The 
cpri_tx_rfp signal is bit [0] of the aux_tx_status_data output signal bus, asserted in 
response to the assertion of the incoming signal cpri_tx_sync_rfp, which is bit [64] of 
the aux_tx_mask_data input signal, or in response to the 10 ms radio frame start based 
on the internal frame count in the CPRI transmitter interface. The cpri_rx_rfp signal 
is bit [75] of the aux_rx_status_data output signal bus, asserted in response to the 
start of the 10 ms radio frame on the CPRI receiver interface. In a single-hop system, 
shown in Figure D–1 on page D–2, the round-trip cable delay T14 has the following 
components:

■ T12—the delay from CPRI REC to CPRI RE

■ The sum of the Rx and Tx path delays in the CPRI RE

■ One cycle of delay for the internal loopback on the SAP in the RE slave (loopback 
path (3) in Figure 5–1 on page 5–1)

■ T34—the delay from CPRI RE to CPRI REC

However, the CPRI IP core does not provide the values of T12 and T34. Instead, use 
the following formula to calculate the round-trip cable delay T14 in cpri_clkout 
cycles:

T14 = rx_round_trip_delay – <REC Rx path delay> – <REC Tx path delay>

where 

■ rx_round_trip_delay is the value in the CPRI_ROUND_DELAY register at offset 
0x38 (Table 7–18 on page 7–9)

■ <REC Rx path delay> is the Rx path delay, described in “Rx Path Delay” on 
page D–3, for the values in the CPRI REC master

■ <REC Tx path delay> is the Tx path delay, described in “Tx Path Delay” on 
page D–9, for the values in the CPRI REC master
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Use the following formula to calculate the Toffset delay:

Toffset = <RE Rx path delay> + <RE Tx path delay> + <loopback delay>,
for the path delay values in the RE slave

The formula to calculate the round-trip cable delay in a single-hop system is

Round-trip cable delay = T14 – Toffset

Tx Bitslip Delay in the Round-Trip Delay Calculation
The Tx bitslip delay that a CPRI RE slave adds to the delay through the transceiver 
transmitter compensates for the word aligner bitslip delay in the transceiver receiver. 
The total of these two bit values should be added to a detailed round-trip delay 
calculation. However, the total of these two bit values does not reach the duration of a 
single cpri_clkout cycle, nor does it reach the threshold of the CPRI specification 
R-20 and R-21 requirements. The bitslip delay is noticeable only with an oscilloscope.

Refer to “Tx Bitslip Delay” on page D–12 for the details of this feature.

Single-Hop Round-Trip and Cable Delay Calculation Examples
This section shows you how to calculate the round-trip cable delay in your system. 
The CPRI_ROUND_DELAY register value and the Rx and Tx elastic buffer delays in 
Example 1 are derived from hardware. The CPRI_ROUND_DELAY register value and the 
Rx and Tx elastic buffer delays in the other three examples are not derived from 
hardware. 

Round-Trip and Cable Delay Calculation Example 1: Two Stratix IV GX Devices

The example walks through the calculation for the case of two link partner CPRI IP 
cores configured on Stratix IV GX devices, in a single-hop configuration, running at 
CPRI data rate 6.144 Gbps. In both devices, the cal_en field of the CPRI_AUTO_CAL 
register has the value of 0.

To calculate the round-trip cable delay in this system, perform the following steps:

1. Read the value in the rx_round_trip_delay field of the CPRI_ROUND_DELAY register 
(at register offset 0x38) of the REC master. For the example, the value is 0x6E, 
which is decimal 110. 

2. For each of the REC master and the RE slave, read the value in the 
rx_ex_buf_delay field of the CPRI_EX_DELAY_STATUS register (at register offset 
0x40) and the value in the rx_ex_delay field of the CPRI_EX_DELAY_CONFIG register. 
Read the rx_ex_buf_delay field only after the rx_ex_buf_delay_valid bit in the 
register is high.

3. For each of the REC master and the RE slave, divide the value in the 
rx_ex_buf_delay register field by the value in the rx_ex_delay register field. The 
result is the current Rx elastic buffer delay in cpri_clkout cycles. In this example, 
the Rx elastic buffer delay in the REC master is 33.5 cpri_clkout cycles, and the Rx 
elastic buffer delay in the RE slave is 10.5 cpri_clkout cycles.
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4. Calculate the Rx path delay through the RE slave, by following the steps in “Rx 
Path Delay to AUX Output: Calculation Example” on page D–8. According to 
Table D–1 on page D–5, the correct value of T_txv_RX is 7.2 cpri_clkout cycles. 
According to Table D–3 on page D–8, the correct value of T_R1 is 5 cpri_clkout 
cycles. The Rx buffer delay is 10.5 cpri_clkout cycles, and the cal_pointer 
register field value is 3, yielding a total delay of 25.7 cpri_clkout cycles.

25.7 = <fixed transceiver delay> + <Rx buffer delay> + 3 + <fixed core delay>
 = 7.2 + 10.5 + 3 + 5

5. Calculate the Rx path delay through the REC master, by following the steps in “Rx 
Path Delay to AUX Output: Calculation Example” on page D–8. The Rx buffer 
delay is 33.5 cpri_clkout cycles, yielding a total delay of 48.25 cpri_clkout cycles. 

48.2 = <fixed transceiver delay> + <Rx buffer delay> + 3 + <fixed core delay>
 = 7.2 + 33.5 + 3 + 5

6. For each of the REC master and the RE slave, read the value in the 
tx_ex_buf_delay field of the CPRI_EX_DELAY_STATUS register (at register offset 
0x40) and the value in the tx_ex_delay field of the CPRI_EX_DELAY_CONFIG register. 
Read the tx_ex_buf_delay field only after the tx_ex_buf_delay_valid bit in the 
register is high.

7. For each of the REC master and the RE slave, divide the value in the 
tx_ex_buf_delay register field by the value in the tx_ex_delay register field. The 
result is the current Tx elastic buffer delay in cpri_clkout cycles. In this example, 
the Tx elastic buffer delay in the REC master is 7.5 cpri_clkout cycles, and the Tx 
elastic buffer delay in the RE slave is 7.5 cpri_clkout cycles. 

8. Calculate the Tx path delay through the REC master. According to Table D–4 on 
page D–11, the correct value of T_T4 is 6 cpri_clkout cycles, and according to 
Table D–5 on page D–13, the correct value of T_txv_TX is 3.6 cpri_clkout cycles. 
You calculated the Tx elastic buffer delay in steps 6 and 7.

Tx path delay = T_T4 + <Tx elastic buffer delay> + T_txv_TX = 6 + 7.5 + 3.6 = 17.1

9. Calculate the Tx path delay through the RE slave. Because the device family is the 
same for the REC master and the RE slave in this example, they have the same 
T_T4 and T_txv_TX delays. You calculated the Tx elastic buffer delay in steps 6 
and 7. It is the same as the Tx elastic buffer delay in the REC master, so the total Tx 
path delay in the RE slave is identical to the Tx path delay in the REC master in 
this case.

Tx path delay = T_T4 + <Tx elastic buffer delay> + T_txv_TX = 6 + 7.5 + 3.6 = 17.1

10. Calculate 
T14 = rx_round_trip_delay – <REC Rx path delay> – <REC Tx path delay>

= 110 – 48.2 – 17.1 
= 44.7 cpri_clkout cycles

11. Calculate
Toffset = <RE Rx path delay> + <RE Tx path delay> + <loopback delay>,

= 25.7 + 17.1 + 1
= 43.8 cpri_clkout cycles
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12. Perform the final calculation. Calculate
Round-trip cable delay = T14 – Toffset

= 44.7 – 43.8
= 0.9 cpri_clkout cycles

Round-Trip and Cable Delay Calculation Example 2: Two Arria II GX Devices 

This example shows the calculation for the case of two link partner CPRI IP cores 
configured with autorate negotiation enabled on Arria II GX devices, in a single-hop 
configuration, running at CPRI data rate 3.072 Gbps. In both devices, the cal_en field 
of the CPRI_AUTO_CAL register has the value of 0.

The calculation is identical to the calculation in Example 1, except that the fixed and 
transceiver delays are different in Arria II GX devices than in Stratix IV GX devices. In 
addition, Example 2 has a different value in the rx_round_trip_delay register field. In 
your own system, the Rx elastic buffer and Tx elastic buffer delays may also vary. 

To calculate the round-trip cable delay in this system, perform the following steps:

1. Read the value in the rx_round_trip_delay field of the CPRI_ROUND_DELAY register 
(at register offset 0x38) of the REC master. For the example, the value is 0x7F, 
which is decimal 127. 

2. For each of the REC master and the RE slave, read the value in the 
rx_ex_buf_delay field of the CPRI_EX_DELAY_STATUS register (at register offset 
0x40) and the value in the rx_ex_delay field of the CPRI_EX_DELAY_CONFIG register. 
Read the rx_ex_buf_delay field only after the rx_ex_buf_delay_valid bit in the 
register is high.

3. For each of the REC master and the RE slave, divide the value in the 
rx_ex_buf_delay register field by the value in the rx_ex_delay register field. The 
result is the current Rx elastic buffer delay in cpri_clkout cycles. In this example, 
the Rx elastic buffer delay in the REC master is 32.25 cpri_clkout cycles, and the 
Rx elastic buffer delay in the RE slave is 8.9 cpri_clkout cycles.

4. Calculate the Rx path delay through the RE slave, by following the steps in “Rx 
Path Delay to AUX Output: Calculation Example” on page D–8. According to 
Table D–1 on page D–5, the correct value of T_txv_RX is 4.65 cpri_clkout cycles. 
According to Table D–3 on page D–8, the correct value of T_R1 is 4.5 cpri_clkout 
cycles. The Rx buffer delay is 8.9 cpri_clkout cycles, and the cal_pointer register 
field value is 3, yielding a total delay of 21.05 cpri_clkout cycles.

21.05 = <fixed transceiver delay> + <Rx buffer delay> + 3 + <fixed core delay>
 = 4.65 + 8.9 + 3 + 4.5

5. Calculate the Rx path delay through the REC master, by following the steps in “Rx 
Path Delay to AUX Output: Calculation Example” on page D–8. The Rx buffer 
delay is 32.25 cpri_clkout cycles, and the cal_pointer register field value is 3, 
yielding a total delay of 43.75 cpri_clkout cycles. 

44.4 = <fixed transceiver delay> + <Rx buffer delay> + 3 + <fixed core delay>
 = 4.65 + 32.25 + 3 + 4.5
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6. For each of the REC master and the RE slave, read the value in the 
tx_ex_buf_delay field of the CPRI_EX_DELAY_STATUS register (at register offset 
0x40) and the value in the tx_ex_delay field of the CPRI_EX_DELAY_CONFIG register. 
Read the tx_ex_buf_delay field only after the tx_ex_buf_delay_valid bit in the 
register is high.

7. For each of the REC master and the RE slave, divide the value in the 
tx_ex_buf_delay register field by the value in the tx_ex_delay register field. The 
result is the current Tx elastic buffer delay in cpri_clkout cycles. In this example, 
the Tx elastic buffer delay in the REC master is 32.25 cpri_clkout cycles, and the 
Tx elastic buffer delay in the RE slave is 8.9 cpri_clkout cycles.

8. Calculate the Tx path delay through the REC master. According to Table D–4 on 
page D–11, the correct value of T_T4 is 5.5 cpri_clkout cycles, and according to 
Table D–5 on page D–13, the correct value of T_txv_TX is 3.35 cpri_clkout cycles. 

Tx path delay = T_T4 + <Tx buffer delay> + T_txv_TX = 5.5 + 32.25 + 3.35 = 41.1

9. Calculate the Tx path delay through the RE slave. Because the device family is the 
same for the REC master and the RE slave in this example, they have the same 
T_T4 and T_txv_TX delays. You calculated the Tx elastic buffer delay in steps 6 
and 7.

Tx path delay = T_T4 + <Tx buffer delay> + T_txv_TX = 5.5 + 8.9 + 3.35 = 17.75

10. Calculate 
T14 = rx_round_trip_delay – <REC Rx path delay> – <REC Tx path delay>

= 127 – 44.4 – 41.1 
= 41.5 cpri_clkout cycles

11. Calculate
Toffset = <RE Rx path delay> + <RE Tx path delay> + <loopback delay>,

= 21.5 + 17.75 + 1
= 40.25 cpri_clkout cycles

12. Perform the final calculation. Calculate
Round-trip cable delay = T14 – Toffset

= 41.5 – 40.25
= 1.25 cpri_clkout cycles

Round-Trip and Cable Delay Calculation Example 3: Two Different Device Families

This example shows the calculation for the case of two link partner CPRI IP cores 
configured with autorate negotiation enabled in a single-hop configuration, running 
at CPRI data rate 3.072 Gbps. The REC master is configured on a Stratix IV GX device 
and the RE slave is configured on an Arria II GX device. In both devices, the cal_en 
field of the CPRI_AUTO_CAL register has the value of 0.

The calculation is identical to the calculation in Examples 1 and 2, except that the fixed 
and transceiver delays are different for the two different devices, so the fixed parts of 
the Rx path delay and Tx path delay are different on the two devices. In addition, 
Example 3 has a different value in the rx_round_trip_delay register field. In your 
own system, the Rx elastic buffer delay and Tx elastic buffer delay may also vary. 
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To calculate the round-trip cable delay in this system, perform the following steps:

1. Read the value in the rx_round_trip_delay field of the CPRI_ROUND_DELAY register 
(at register offset 0x38) of the REC master. For the example, the value is 0x84, 
which is decimal 132. 

2. For each of the REC master and the RE slave, read the value in the 
rx_ex_buf_delay field of the CPRI_EX_DELAY_STATUS register (at register offset 
0x40) and the value in the rx_ex_delay field of the CPRI_EX_DELAY_CONFIG register. 
Read the rx_ex_buf_delay field only after the rx_ex_buf_delay_valid bit in the 
register is high.

3. For each of the REC master and the RE slave, divide the value in the 
rx_ex_buf_delay register field by the value in the rx_ex_delay register field. The 
result is the current Rx elastic buffer delay in cpri_clkout cycles. In this example, 
the Rx elastic buffer delay in the REC master is 32.25 cpri_clkout cycles, and the 
Rx elastic buffer delay in the RE slave is 8.9 cpri_clkout cycles.

4. Calculate the Rx path delay through the RE slave, by following the steps in “Rx 
Path Delay to AUX Output: Calculation Example” on page D–8. According to 
Table D–1 on page D–5, the correct value of T_txv_RX is 4.65 cpri_clkout cycles. 
According to Table D–3 on page D–8, the correct value of T_R1 is 4.5 cpri_clkout 
cycles. The Rx buffer delay is 8.9 cpri_clkout cycles, yielding a total delay of 21.05 
cpri_clkout cycles.

21.05 = <fixed transceiver delay> + <Rx buffer delay> + 3 + <fixed core delay>
 = 4.65 + 8.9 + 3 + 4.5 

5. Calculate the Rx path delay through the REC master, by following the steps in “Rx 
Path Delay to AUX Output: Calculation Example” on page D–8. The Rx buffer 
delay is 32.25 cpri_clkout cycles, yielding a total delay of 47.45 cpri_clkout 
cycles. 

47.45 = <fixed transceiver delay> + <Rx buffer delay> + 3 + <fixed core delay>
 = 7.2 + 32.25 + 3 + 5

6. For each of the REC master and the RE slave, read the value in the 
tx_ex_buf_delay field of the CPRI_EX_DELAY_STATUS register (at register offset 
0x40) and the value in the tx_ex_delay field of the CPRI_EX_DELAY_CONFIG register. 
Read the tx_ex_buf_delay field only after the tx_ex_buf_delay_valid bit in the 
register is high.

7. For each of the REC master and the RE slave, divide the value in the 
tx_ex_buf_delay register field by the value in the tx_ex_delay register field. The 
result is the current Tx elastic buffer delay in cpri_clkout cycles. In this example, 
the Tx elastic buffer delay in the REC master is 32.25 cpri_clkout cycles, and the 
Tx elastic buffer delay in the RE slave is 8.9 cpri_clkout cycles.

8. Calculate the Tx path delay through the REC master. According to Table D–4 on 
page D–11, the correct value of T_T4 is 6 cpri_clkout cycles, and according to 
Table D–5 on page D–13, the correct value of T_txv_TX is 3.6 cpri_clkout cycles. 

Tx path delay = T_T4 + <Tx buffer delay> + T_txv_TX = 6 + 32.25 + 3.6 = 41.85
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9. Calculate the Tx path delay through the RE slave. According to Table D–4 on 
page D–11, the correct value of T_T4 is 5.5 cpri_clkout cycles, and according to 
Table D–5 on page D–13, the correct value of T_txv_TX is 3.35 cpri_clkout cycles. 

Tx path delay = T_T4 + <Tx buffer delay> + T_txv_TX = 5.5 + 8.9 + 3.35 = 17.75

10. Calculate 
T14 = rx_round_trip_delay – <REC Rx path delay> – <REC Tx path delay>

= 132 – 47.45 – 41.85 
= 42.7 cpri_clkout cycles

11. Calculate
Toffset = <RE Rx path delay> + <RE Tx path delay> + <loopback delay>

= 21.05 + 17.75 + 1
= 39.8 cpri_clkout cycles

12. Perform the final calculation. Calculate
Round-trip cable delay = T14 – Toffset

= 42.7 – 39.8
= 2.9 cpri_clkout cycles

Round-Trip and Cable Delay Calculation Example 4: Two Different Device Families

This example describes the calculation for the case of two link partner CPRI IP cores 
configured with autorate negotiation enabled in a single-hop configuration, running 
at CPRI data rate 3.072 Gbps. The REC master is configured on an Arria II GX device 
and the RE slave is configured on a Stratix IV GX device.

The calculation is identical to the calculation in Example 3, except that the fixed and 
transceiver delays on the REC master in Example 3 are the delays on the RE slave in 
Example 4, and the fixed and transceiver delays on the RE slave in Example 3 are the 
delays on the REC master in Example 4, because these delays depend on the device 
family. In addition, Example 4 has a different value in the rx_round_trip_delay 
register field. In your own system, the Rx elastic buffer delay and Tx elastic buffer 
delay may also vary. 

For the example, the two CPRI IP cores have the following register values:

■ The rx_round_trip_delay field of the CPRI_ROUND_DELAY register (at register offset 
0x38) of the REC master holds the value 0x62, which is decimal 98. 

■ In the REC master, the rx_ex_delay field of the CPRI_EX_DELAY_CONFIG register (at 
register offset 0x3C) holds the value 0x4.

■ In the REC master, after the rx_ex_buf_delay_valid bit in the register is high, the 
rx_ex_buf_delay field of the CPRI_EX_DELAY_STATUS register (at register offset 
0x40) holds the value 0x81, which is decimal 129.

■ In the RE slave, the rx_ex_delay field of the CPRI_EX_DELAY_CONFIG register (at 
register offset 0x3C) holds the value 0x7F, which is decimal 127.

■ In the RE slave, after the rx_ex_buf_delay_valid bit in the register is high, the 
rx_ex_buf_delay field of the CPRI_EX_DELAY_STATUS register (at register offset 
0x40) holds the value 0x46A, which is decimal 1130.

From these register values, a similar calculation for the Tx elastic buffer delay, and the 
information in Table D–1 on page D–5, Table D–3 on page D–8, Table D–4 on 
page D–11, and Table D–5 on page D–13, you can calculate the following values:
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1. The REC master Rx elastic buffer delay is 129 / 4 = 32.25 cpri_clkout cycles.

2. The RE slave Rx elastic buffer delay is 1130 / 127 = 8.9 cpri_clkout cycles.

3. The REC master Rx path delay is 4.65 + 32.25 + 3 + 4.5= 44.4 cpri_clkout cycles.

4. The RE slave Rx path delay is 7.2 + 8.9 +3 + 5 = 24.1 cpri_clkout cycles.

5. The Tx elastic buffer delay in the REC master is 4.5 cpri_clkout cycles. Therefore, 
the REC master Tx path delay is 5.5 + 4.5 + 3.35 = 13.35 cpri_clkout cycles.

6. The Tx elastic buffer delay in the RE slave is 3.2 cpri_clkout cycles. Therefore, the 
RE slave Tx path delay is 6 + 3.2 + 3.6 = 12.8 cpri_clkout cycles.

7. T14 = rx_round_trip_delay – <REC Rx path delay> – <REC Tx path delay>
= 98 – 44.4 – 13.35 
= 40.25 cpri_clkout cycles

8. Toffset = <RE Rx path delay> + <RE Tx path delay> + <loopback delay>,
= 24.1 + 12.8 + 1
= 37.9 cpri_clkout cycles

9. Round-trip cable delay = T14 – Toffset
= 40.25 – 37.9
= 2.35 cpri_clkout cycles

Dynamic Pipelining for Automatic Round-Trip Delay Calibration
The CPRI IP core provides an additional, optional mechanism to help minimize the 
variation in the round-trip delay through a CPRI REC or RE master. The CPRI IP core 
is configured with a set of n (currently five) pipelined registers following the Rx 
elastic buffer in the Rx path. If the cal_en bit in the CPRI_AUTO_CAL register has the 
value of 1, the autocalibration feature is active. The user programs the cal_rtd field of 
the CPRI_AUTO_CAL register with the expected number of cpri_clkout cycles of 
round-trip delay. The CPRI IP core adjusts the number of pipeline registers the data 
passes through (in contrast to the number of registers it bypasses) to compensate for 
mismatches between the desired round-trip delay programmed in the cal_rtd field, 
and the actual round-trip delay recorded in the CPRI_ROUND_DELAY register. 

The cal_status field reports whether the CPRI IP core is successful in keeping the 
round-trip delay at the value you prescribed in the cal_rtd field. The value of the 
cal_status bits should remain at 2’b11. If the value does not remain at 2’b11, you 
should adjust the value in the cal_rtd field.Refer to Table 7–29 on page 7–13 for the 
full encoding of these status bits and how to determine whether to increase or 
decrease the value of cal_rtd.

Initially, the number of pipeline registers the CPRI IP core uses is one half the total 
number n of available register stages. This initial setting allows the CPRI IP core to 
adjust the number up or down as required, and adds n/2+1 latency cycles to the Rx 
path delay and the round-trip delay. The number of available register stages is five 
and the default number of register stages of delay is three.

Figure D–7 shows two example behaviors of the autocalibration feature. In the 
examples, the CPRI IP core changes the value of the pipeline read pointer in response 
to a change in the measured actual round-trip delay through the IP core. Figure D–7 
shows the CPRI IP core in the following three states:
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1. In the initial state, the CPRI IP core sets the read pointer for the pipeline registers 
to the middle register. 

2. In Case 1, the application writes the value of 60 in the cal_rtd field. When the 
CPRI IP core measures the actual round-trip delay and sets the 
rx_round_trip_delay field in the CPRI_ROUND_DELAY register to the value of 61, the 
CPRI IP core responds by moving the read pointer to decrease the pipeline length, 
and therefore the measured round-trip delay value, by one cpri_clkout cycle. The 
adjustment achieves the desired effect: the measured round-trip delay value 
changes to 60.

3. In Case 2, the application writes the value of 62 in the cal_rtd field, instead. When 
the CPRI IP core measures the actual round-trip delay and sets the 
rx_round_trip_delay field in the CPRI_ROUND_DELAY register to the value of 61, the 
CPRI IP core responds by moving the read pointer to increase the pipeline length, 
and therefore the measured round-trip delay value, by one cpri_clkout cycle. The 
adjustment achieves the desired effect: the measured round-trip delay value 
changes to 62.

Round-Trip Calculations for a Multihop Configuration
In a multihop system, you must combine the delays between and through the 
different CPRI masters and CPRI RE slaves to determine the round-trip delay. 

Multihop Round-Trip Delay Calculation
The value in the rx_round_trip_delay field of the CPRI_ROUND_DELAY register is 
meaningful only in CPRI REC and RE masters. It records the round-trip delay for the 
current hop only, as shown in Figure D–1 on page D–2. 

To determine the round-trip delay of a full multihop system, you must add together 
the values in the CPRI_ROUND_DELAY registers of the REC and RE masters in the system, 
plus the delays through the external routers, and subtract the loopback delay from all 
the hops except the final hop. Use the following calculation, based on the labels in 
Figure D–2 on page D–2:

Round-trip delay =  rx_round_trip_delay (hop i) +  (TBdelayUL + TBdelayDL)(j)
– n

where the REC and RE masters in the configuration are labeled i=0,1,...,n and the 
routing layers in the configuration, and their uplink and downlink delays, are labeled 
j=0,1,...,(n-1). 

Figure D–7. Round-Trip Delay Autocalibration Examples

Initial state: Case 1: Case 2:

Measured RTD = 61 Measured RTD = 61

cal_rtd = 60 cal_rtd = 62

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

—
>

—
>

—
>

Rd pointer at 3 Rd pointer decrements to 2 Rd pointer increments to 4

—> Measured RTD = 60 —> Measured RTD = 62
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As the equation shows, you must omit the loopback delay of one cpri_clkout cycle 
from the single-hop calculation for all but the final pair of CPRI link partners. The 
loopback delay is only relevant at the turnaround point of the full multihop path. 

Multihop Round-Trip Cable Delay Calculation
To determine the local round-trip cable delay at each hop, use the method described 
in “Round-Trip and Cable Delay Calculations for a Single-Hop Configuration”, for the 
REC or RE master and the RE slave at the current hop. Half of the resulting value is 
assumed to be the cable delay in each direction at the current hop.

The round-trip cable delay is the sum of all the local round-trip cable delays in the 
multihop path.

Two-Hop Round-Trip and Cable Delay Calculation Example
This section walks through an example calculation for the system shown in 
Figure D–8. 

In the example, all of the four CPRI IP cores are configured with autorate negotiation 
enabled and are running at CPRI data rate 3.072 Gbps.

Example calculations for the first hop appear in “Round-Trip and Cable Delay 
Calculation Example 3: Two Different Device Families” on page D–18. Example 
calculations for the second hop appear in “Round-Trip and Cable Delay Calculation 
Example 2: Two Arria II GX Devices” on page D–17. 

Assuming the multihop system has the same register values as in these two 
single-hop examples, you calculate the multihop round-trip delay and total cable 
delay as follows:

Round-trip delay =  rx_round_trip_delay (hop i) +  (TBdelayUL + TBdelayDL)(j)
– n

= (132 + 127) + TBdelayUL + TBdelayDL – 1

= 258 cpri_clkout cycles + TBdelayUL + TBdelayDL

Total round-trip CPRI-link cable delay = 2.9 + 1.25 = 4.15 cpri_clkout cycles

The CPRI IP core does not provide a mechanism to measure the delays through the 
external routing layer.

Figure D–8. Two-Hop System for Multihop Delay Calculation Example
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E. Integrating the CPRI IP Core Timing
Constraints in the Full Design
When you generate your CPRI IP core variation, the Quartus II software generates a 
Synopsys Design Constraints File (.sdc) that specifies the timing constraints for the 
input clocks to your IP core. At the time you generate the CPRI IP core, the design is 
not yet complete and the CPRI IP core is not yet connected in the design. The final 
clock names and paths are not yet known, and therefore the Quartus II software 
cannot incorporate the final signal names in the .sdc file it generates automatically.

Instead, you must modify the clock signal names in this file manually to integrate 
these constraints with the timing constraints for your full design.

This appendix describes by example how to integrate the timing constraints that the 
Quartus II software generates with your CPRI IP core into the timing constraints for 
your design.

For a list of the input clocks to the CPRI IP core, refer to Table 4–1 on page 4–3.

In the Quartus II software release v12.0, the automatically generated altera_cpri.sdc 
file contains the CPRI IP core timing constraints.

For a CPRI IP core with a single antenna-carrier interface that runs at the CPRI line 
rate of 3.072 Gbps and targets an Arria II GX device, the Quartus II software v12.0 
generates an altera_cpri.sdc file with the following timing constraints:

#ALTGX Transceiver Reference Clock
create_clock -name gxb_refclk -period 6.510 -waveform {0.000 3.255} [get_ports 
gxb_refclk]

#Clock from Clean-Up PLL (RE slave only)
create_clock -name gxb_pll_inclk -period 6.510 -waveform {0.000 3.255} [get_ports 
gxb_pll_inclk]

#ALTGX Calibration Block Clock (10MHz to 125 MHz)
create_clock -name gxb_cal_blk_clk -period 8.000 -waveform {0.000 4.000} 
[get_ports gxb_cal_blk_clk]

#ALTGX_RECONFIG Clock (37.5MHz to 50MHz)
create_clock -name reconfig_clk -period 20.000 -waveform {0.000 10.000} 
[get_ports reconfig_clk]

#CPRI CPU Clock
create_clock -name cpu_clk -period 32.552 -waveform {0.000 16.276} [get_ports 
cpu_clk]

#Extended Delay Measurement Clock
create_clock -name clk_ex_delay -period 13.123 -waveform {0.000 6.562} [get_ports 
clk_ex_delay]

#Data Mapping Clock
create_clock -name map0_tx_clk -period 260.416 -waveform {0.000 130.208} 
[get_ports map0_tx_clk]

create_clock -name map0_rx_clk -period 260.416 -waveform {0.000 130.208} 
[get_ports map0_rx_clk]

derive_pll_clocks

derive_clock_uncertainty
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set_false_path -from * -to *sync
set_false_path -from * -to *sync[*]
set_false_path -from * -to *sync1
set_false_path -from * -to *sync1[*]
set_false_path -from * -to *s0
set_false_path -from * -to *s0[*]

create_generated_clock -name txclk_div2 -source [get_pins -compatibility_mode 
*transmit_pcs0|clkout] -divide_by 2 [get_registers *txclk_div2]

derive_clock_uncertainty

set_clock_groups -exclusive -group txclk_div2 -group *receive_pcs0|clkout
set_clock_groups -exclusive -group *transmit_pcs0|clkout -group 
*receive_pcs0|clkout
set_clock_groups -asynchronous -group cpu_clk -group txclk_div2
set_clock_groups -asynchronous -group map*_clk -group txclk_div2
set_clock_groups -asynchronous -group clk_ex_delay -group {txclk_div2 
*transmit_pcs0|clkout *receive_pcs0|clkout}
set_clock_groups -asynchronous -group reconfig_clk -group txclk_div2

When you embed your CPRI IP core variation in your full design, you drive the CPRI 
IP core clocks directly from the top-level signals of the design or indirectly through 
internal logic. The timing constraints for your full design must reference the clock 
names relative to the full design hierarchy. 

Figure E–1 shows an example design that contains the example CPRI IP core 
variation. 

Table E–1 lists the correspondence between the clock names in the .sdc file and the 
signal names in the full design. 

Figure E–1. Clocks Driving CPRI IP Core Clocks in Example Full Design

Table E–1. Stand-Alone IP Core Clock Names and Example Design Clock Names

Stand-Alone IP Core Clock Name Full Design Clock Name

gxb_refclk cpri_ref_clk

gxb_pll_inclk cleaned_clkin

gxb_cal_blk_clk clkin_50mhz

reconfig_clk clkin_50mhz

gxb_refclk CPRI IP Corecpri_ref_clk

gxb_pll_inclk

gxb_cal_blk_clk

reconfig_clk

cpu_clk

clk_ex_delay

map0_tx_clk

map0_rx_clk

cleaned_clkin

clkin_50mhz

PLL2

PLL1

cpri_0_inst
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After you complete your design, you must modify the clock names in the .sdc file to 
the full-design clock names, taking into account both the CPRI IP core instance name 
in the full design, and the design hierarchy. After you make the required 
modifications, the example .sdc file contains the following substitute timing 
constraints:

#ALTGX Transceiver Reference Clock
create_clock -name cpri_ref_clk -period 6.510 -waveform {0.000 3.255} [get_ports 
cpri_ref_clk]

#Clock from Clean-Up PLL (RE slave only)
create_clock -name cleaned_clkin -period 6.510 -waveform {0.000 3.255} [get_ports 
cleaned_clkin]

#50MHz Clock to Drive Calibration Block Clock, CPU Clock, and Reconfig Clock
create_clock -name clkin_50mhz -period 20.000 -waveform {0.000 10.000} [get_ports 
clkin_50mhz]

derive_pll_clocks

derive_clock_uncertainty

set_false_path -from * -to *cpri_0_inst*sync
set_false_path -from * -to *cpri_0_inst*sync[*]
set_false_path -from * -to *cpri_0_inst*sync1
set_false_path -from * -to *cpri_0_inst*sync1[*]
set_false_path -from * -to *cpri_0_inst*s0
set_false_path -from * -to *cpri_0_inst*s0[*]

create_generated_clock -name txclk_div2 -source [get_pins -compatibility_mode 
*cpri_0_inst*transmit_pcs0|clkout] -divide_by 2 [get_registers 
*cpri_0_inst*txclk_div2]

derive_clock_uncertainty

set_clock_groups -exclusive -group txclk_div2 -group 
*cpri_0_inst*receive_pcs0|clkout
set_clock_groups -exclusive -group *cpri_0_inst*transmit_pcs0|clkout -group 
*cpri_0_inst*receive_pcs0|clkout
set_clock_groups -asynchronous -group clkin_50mhz -group txclk_div2
set_clock_groups -asynchronous -group pll1|clk[0] -group txclk_div2
set_clock_groups -asynchronous -group pll2|clk[0] -group {txclk_div2 
*cpri_0_inst*transmit_pcs0|clkout *cpri_0_inst*receive_pcs0|clkout}

The example illustrates the following guidelines you must follow when finalizing the 
.sdc file for your design:

■ The CPRI IP core clock ports are not in one-to-one correspondence with the full 
design input clock ports. You must use the correspondence between the 
stand-alone IP core clocks and the full design clocks to define the integrated 
design timing constraints for the external clocks that drive CPRI IP core clocks 
directly.

cpu_clk clkin_50mhz

clk_ex_delay pll1|clk[0]

map0_tx_clk pll2|clk[0]

map0_rx_clk pll2|clk[0]

Table E–1. Stand-Alone IP Core Clock Names and Example Design Clock Names

Stand-Alone IP Core Clock Name Full Design Clock Name
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■ To integrate timing constraints with wild cards that identify lower level nodes in 
the CPRI IP core, you must modify each lower level node designator with the 
CPRI IP core instance name to ensure the new file constraints the correct design 
instance of each CPRI IP core signal name.

After you perform the manual mapping and custmize the .sdc file according to this 
correspondence, your file contains the correct timing constraints for the CPRI IP core 
in your full design.
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F. Porting a CPRI IP Core from the
Previous Version of the Software
This appendix describes how to port your CPRI IP core from the previous version of 
the Quartus II software

To upgrade your CPRI IP core that you developed and generated using the Quartus II 
software v11.1, to the IP core v12.0, perform the following steps:

1. Open the Quartus II software v12.0.

2. On the File menu, click Open Project.

3. Navigate to the location of the .qpf file you generated with the Quartus II software 
v11.1.

4. Select the .qpf file and click Open.

5. Open the existing IP core for editing in the MegaWizard Plug-In Manager.

6. For true backward compatibility, set Mapping mode(s) to All. However, if you 
program your IP core variation consistently to a single mapping mode, you can 
select the corresponding parameter value to improve resource utilization.

7. Turn on Include HDLC block.

8. Click Finish.

9. Proceed with simulation and compilation of your design.
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Additional Information
This chapter provides additional information about the document and Altera.

Document Revision History
The following table shows the revision history for this user guide.
.

Date Version Changes Made

May 2012 12.0

■ Added CPRI line rate of 9.8 Gbps in Arria V GT and Stratix V devices.

■ Added support for autorate negotiation up to 6.144 Gbps in Arria V devices.

■ Added support for autorate negotiation up to 9.8 Gbps in Stratix V devices.

■ Added new parameter to specify inclusion or exclusion of an HDLC block.

■ Added new parameter to specify the MAP interface mapping mode.

■ Updated Figure 4–26 on page 4–50, CPRI Frame Synchronization Machine, to include 
the descrambling conditions and remove a redundant state.

■ Updated Figure 4–13 on page 4–24 and discussion of MAP interface TX synchronous 
buffer mode to encourage the application to assert mapN_tx_resync and 
mapN_tx_valid simultaneously.

■ Updated clocks presentation in “Clocking Structure” on page 4–3 and separated from 
reset signals presentation.

■ Updated Chapter 8, Testbenches with new testbenches for Arria V and Stratix V devices.

■ Moved information about loopback modes and PRBS generation and testing from 
Chapter 4, Functional Description to new Chapter 5, Testing Features.

■ Moved information about the advanced AxC mapping modes from Chapter 4, Functional 
Description to new appendix Appendix C, Advanced AxC Mapping Modes and updated 
the presentation.

■ Moved information about the RX delay measurement and TX delay calibration from 
Chapter 4, Functional Description to new appendix Appendix D, Delay Measurement and 
Calibration.

■ Added new appendix Appendix E, Integrating the CPRI IP Core Timing Constraints in the 
Full Design.

■ Reordered sections in Chapter 4, Functional Description to emphasize the MAP and AUX 
interfaces and to group together the modules accessed through the CPU interface.

■ Reordered presentation of signals in Chapter 6, Signals to reflect order in Chapter 4, 
Functional Description.

■ Enhanced description of control word access through CPU interface in new section 
“Accessing the Hyperframe Control Words” on page 4–39.

■ Updated description of Ethernet communication through the CPU interface in 
“Accessing the Ethernet Channel” on page 4–42.

■ Moved “Reset Control Word” on page 4–51 from Reset section of “Reset 
Requirements” on page 4–9 to “CPRI Protocol Interface Layer (Physical Layer)” on 
page 4–46.
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Document Revision History
November 2011 11.1

■ Added support for Arria V and Stratix V devices.

■ Added information about new transceiver IP (the Altera Deterministic Latency PHY IP 
core) in Arria V and Stratix V variations.

■ Added Tx elastic buffer and Tx extended delay measurement information.

■ Updated clocking diagrams with Tx elastic buffer and removal of divider on 
transceiver-side clock before clocking Rx and Tx elastic buffers. Consolidated from six 
figures to two.

■ Added information about new delay measurement features to enhance the consistency 
of the round-trip delay through a CPRI RE slave: Tx bitslip, autocalibration.

■ Added new registers CPRI_TX_BITSLIP and CPRI_AUTO_CAL to support new features.

■ Removed use of the rx_byte_delay field in the CPRI_RX_DELAY register from the RX 
path delay calculation.

■ Added new advanced Method 1 mapping mode and updated map_mode encodings.

■ Added new parameter to enable clocking AxC interfaces with cpri_clkout. The 
resulting new synchronization mode requires a new signal, mapN_rx_start, per AxC 
interface.

■ Added timing diagrams for three synchronization modes on MAP interface and for 
cpri_tx_sync_rfp response behavior.

■ Added information about data order on the AUX interface.

■ Enhanced PRBS mode description.

■ Added Loopback Modes section in Functional Description chapter.

■ Updated Appendix C, Porting a CPRI IP Core from the Previous Version of the Software.

■ Refered to new What’s New in Altera IP page for information about IP core support level 
for some device families.

May 2011 11.0

■ Upgraded to final support for Arria II GZ and Cyclone IV GX devices.

■ Upgraded to HardCopy Compilation support for HardCopy IV GX devices.

■ Added byte-enable signal.

■ Added parameter to control WIDTH_RX_BUF.

■ Enhanced delay measurement and cpri_tx_sync_rfp signal descriptions.

■ Modified MII and frame synchronization machine descriptions.

■ Miscellaneous small fixes, including:

■ Updated address range for MAP and AUX interface configuration registers in 
Table 6–2 on page 6–1 to match individual register addresses as updated for v10.1.

■ Updated descriptions of frame synchronization machine and cpri_rx_cnt_sync 
signal.

■ Added Appendix C, Porting a CPRI IP Core from the Previous Version of the Software.

Date Version Changes Made
CPRI MegaCore Function June 2012 Altera Corporation
User Guide

http://www.altera.com/products/ip/news/ip-whats-new.html


Additional InformationAdditional Information Info–3
How to Contact Altera
How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the 
following table.

Typographic Conventions
The following table shows the typographic conventions this document uses.

December 2010 10.1

■ Added support for Arria II GZ devices.

■ Added support for additional CPRI data rates in Arria II GX devices.

■ Updated register addresses.

■ Added scrambler/descrambler support.

■ Enhanced descriptions of offset registers and delay calculations.

■ Added CPU interrupt for remote hardware reset.

■ Enhanced testbench suite to include one new testbench, to demonstrate autorate 
negotiation in Cyclone IV GX devices.

July 2010 10.0

■ Added support for Cyclone IV GX devices.

■ Added GUI parameter to enable autorate negotiation and two signals to support visibility 
of the feature status.

■ Enhanced descriptions of MII, MAP interface synchronous buffer mode, and use of AUX 
interface mask.

■ Enhanced testbench suite to include two new testbenches, to demonstrate operation 
with no MAP interface and to demonstrate autorate negotiation.

February 2010 9.1 SP1 Initial release.

Date Version Changes Made

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Nontechnical support (general) Email nacomp@altera.com

(software licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative. 

Visual Cue Meaning

Bold Type with Initial Capital 
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI 
labels. For example, Save As dialog box. For GUI elements, capitalization matches 
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name 
extensions, software utility names, and GUI labels. For example, \qdesigns 
directory, D: drive, and chiptrip.gdf file.
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Typographic Conventions
Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and 
<project name>.pof file. 

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the 
Options menu. 

“Subheading Title” Quotation marks indicate references to sections in a document and titles of 
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1, 
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it 
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf. 

Also indicates sections of an actual file, such as a Report File, references to parts of 
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for 
example, TRI). 

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important, 
such as the steps listed in a procedure. 

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important. 

1 The hand points to information that requires special attention. 

h The question mark directs you to a software help system with related information. 

f The feet direct you to another document or website with related information. 

m The multimedia icon directs you to a related multimedia presentation. 

c A caution calls attention to a condition or possible situation that can damage or 
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you 
injury.

The envelope links to the Email Subscription Management Center page of the Altera 
website, where you can sign up to receive update notifications for Altera documents.

The feedback icon allows you to submit feedback to Altera about the document. 
Methods for collecting feedback vary as appropriate for each document.
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