Avalon Verification IP Suite

User Guide

101 Innovation Drive
San Jose, CA 95134
www.altera.com

UG-01073-3.1 Document last updated for Altera Complete Design Suite version: 12.0
Document publication date: June 2012

a

Subscribe


http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=UG-01073

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat.
& Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective
holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance
with Altera’s standard Warran?r, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or
liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Xltera. Altera
customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or
services.

o

QUALITY
150 9001:2008

NSAI Certified

Avalon Verification IP Suite User Guide June 2012  Altera Corporation


http://www.altera.com/common/legal.html

QA | |:| —E DY/A ® Contents

Section I. Introduction to Avalon Verification IP Suite

Advantages of Using BFMs and Monitors ............. ... ... ... . . . il 1-1
Implementation of BEMS . ... ... . 1-1
Application Programming Interface . ............. ... . 1-2
Application Example of BEMs . ... ... 1-2
InThis User Guide ..........o i 1-3

Section Il. Clock, Reset, and Interrupt BFMs

Chapter 1. Clock Source BFM

Parameters . ... ... 1-1
Application Program Interface ........ ... . . . . 1-1
ClOCK _SEATE() « oo v ettt e e 1-1
clock stop() - oo oot 1-1
get_run_state() ....... ... 1-1
et _VErSION() .. ..ottt 12

Chapter 2. Reset Source BFM

Parameters ... ... e 2-1
Application Program Interface ......... ... ... ... .. 2-1
oL A= Y] <) o (T 2-1
TESEE_A@aSSOIT . .ottt 2-1
get_Version() ....... ... 2-1

Chapter 3. Avalon Interrupt Source and Interrupt Sink BFMs

Parameters . ..o 3-1
Application Program Interface ............ ... .. 3-1
clear_irq() ... ... 3-1
ZOE ATG() « oot 3-2
get_Version() ...... ... 3-2
Set_Arq() . ..o oo 3-2

Section Ill. Avalon-MM BFMs

Chapter 1. Avalon-MM Master BFM

Functional Description . ...... ... .. 1-1
TIMING .o 1-2
Block Diagram .. ... 1-5

Parameters . ..o e e 1-7

Application Program Interface ........ ... . . . . 1-9
all_transactions_complete() . .......... . 1-9
get_command_issued_queue_size() ........ ... .. 1-9
get_command_pending_queue_size() ............. i i 1-9
get_read_response_queue_size() ....... ... .. 1-9
get_response_address() ......... . 1-9
get_response_byte_enable() ........ ... .. 1-10
get_response_burst_Size() ........ ... 1-10

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



2 ContentsContents

get_response_data() ............ .. 1-10
get_response_latency() ........... .. 1-10
get_response_queue_SiZe() ............. i 1-10
get_response_read_id() ............ . 1-11
get_response_read_response() . ........... i 1-11
get_response_request() ........... .. 1-11
get_response_wait_time() ............. . 1-11
get_response_write_id() ......... .. 1-11
get_response_wWrite_reSponse() ........... ... 1-12
get_write_response_queue_size() .............. .. 1-12
et VerSiON() ... ... i 1-12
10 1-12
POP_TESPONSE() -« v vttt ettt e e et e 1-12
push_command() .......... . 1-13
Set_CIKEN() .ot e 1-13
set_command_address() .. ... ... e 1-13
set_command_arbiterlock() . ... ... . 1-13
set_command_byte_enable()............ . 1-13
set_command_burst_count() .. ... ... 1-14
set_command_burst_size() . ... ... ...t 1-14
set_command_data() ... .. ... 1-14
set_command_debugaccess() ............ 1-14
set_command_idle() . ... ... e 1-15
set_command_init_latency() ........... .. 1-15
set_command_LoCK() ... ..ot e 1-15
set_command_request() ............ . 1-15
set_command_timeout() ... ... ... .. e 1-15
set_command_transaction_id() ... ....... . 1-16
set_command_write_response_request() ......... ... ... 1-16
set_max_command_queue_size() ............ ... 1-16
set_min_command_queue_size() ............. .. 1-16
set_response_timeout() ......... ... ... 1-16
signal_all_transactions_complete ........ ... ... . ... 1-16
signal_command_issued .......... ... 1-17
signal_fatal error ....... ... ... 1-17
signal_max_command_queue_SiZe ................ ... 1-17
signal_min_command_queue_size ........... ... ... 1-17
signal_read_response_complete() ............ ... 1-17
signal_response_complete() ....... ... .. 1-18
signal_write_response_complete() ............ . 1-18

Chapter 2. Avalon-MM Master BFM with Avalon-ST APl Wrapper

Chapter 3. Avalon-MM Slave BFM

Functional Description . ...... ... .. 3-2
TIMING .o 3-3
Block Diagram . ..... ... o 3-6

Parameters . ... e e e e 3-8

Application Program Interface ....... ... ... ... . . 3-10
get_ClKen() ... o 3-10
get_command_address() .......... .. 3-10
get_command_arbiterlock() ...... .. ... 3-10
get_command_burst_count() ......... .. 3-10

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



ContentsContents 3

get_command_burst_cycle() ............ 3-11
get_command_byte_enable() ............. 3-11
get_.command_data() ............ 3-11
get_command_debugaccess() ............. 3-11
get_command_queue_size() ............. . 3-11
get_command_lock() ....... ... .. 3-12
get_command_request() ........... . 3-12
get_command_transaction_id() ........... .. . 3-12
get_command_write_response_request() .............. . 3-12
get_pending_read_latency_cycle() .............. .. 3-12
get_pending_write_latency_cycle() ............. . 3-13
get_response_queue_SiZe() ... 3-13
get_slave_bfm_status ............ .. . 3-13
et VerSion() ... ..o i 3-13
10V ) P 3-13
pop_command() .. ... ... 3-14
PUSh_IeSPONSe() .. ... ... 3-14
set_command_transaction_mode() . ... ... ... 3-14
set_interface_wait_time() .. ... ... ...t 3-14
set_max_response_queue_siZe() ............. i 3-14
set_min_response_queue_size() ... ... 3-15
set_read_response_id() .......... ... 3-15
set_read_response_status() .............. .. 3-15
set_response_burst_size() ........... .. 3-15
set_response_data() ........... ... 3-15
set_response_latency() ........... . 3-16
set_response_request() . ..... ... . e 3-16
set_response_timeout() ......... ... ... 3-16
set_write_response_id() .......... .. 3-16
set_write_response_status() ............. . 3-16
signal_command_received ............ ... 3-17
signal_error_exceed_max_pending_reads ............. ... ... i 3-17
signal_max_reSponse_qUEUE_SIZe ... ............uuunuinnnnnininniiiiiiiiiiiiiiiiiiaa 3-17
signal_min_command_queue_size ............. ... 3-17
signal_fatal error ....... ... ... 3-17
signal_response_issued ........... ... 3-18

Chapter 4. Avalon-MM Slave BFM with Avalon-ST APl Wrapper

Chapter 5. Avalon-MM Monitor

ParameterS . ..o e 5-2
Application Program Interface ......... ... ... .. . 54
Assertion Checking .......... .. 54
set_enable_a_address_align_with_data_width() ......... ... .. ... ... . i i il 5-4
set_enable_a_beginbursttransfer_exist() ............. .. . i il 5-4
set_enable_a_beginbursttransfer_legal() ........... ... ... .. . . L 5-4
set_enable_a_beginbursttransfer_single cycle() ............. ... ... L. 5-5
set_enable_a_begintransfer_exist() ............. . . 5-5
set_enable_a_begintransfer_legal() .......... ... ... . . i 5-5
set_enable_a_begintransfer_single_cycle() ........... ... ... . i il 5-5
set_enable_a_burst_legal() ........ ... .. 5-5
set_enable_a_byteenable_legal() .............. ... . 5-6
set_enable_a_constant_during burst() ........... ... .. oo 5-6

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



4 ContentsContents

set_enable_a_constant_during clk_disabled() ............... ... ... ... o ool 5-6
set_enable_a_constant_during waitrequest() ............. ... ... .o oo 5-6
set_enable_a_exclusive_read_write() ........ .ot e 5-6
set_enable_a_half cycle_reset legal() ............ ... ... .. il 5-7
set_enable_a_less_than_burstcount_max_size() ...........iiiiiiii i 5-7
set_enable_a_less_than_maximumpendingreadtransactions() ............................ 5-7
set_enable_a_no_readdatavalid_during reset() ............... ... ... ... oo 5-7
set_enable_a_no_read_during reset() ............ ... .. il 5-7
set_enable_a_no_write_during reset() ............. ... .. oo oo 5-8
set_enable_a_readid_sequence() ............. ... il 5-8
set_enable_a_read_response_sequence() ................ . il 5-8
set_enable_a_read_response_timeout() .............. ... oo 5-8
set_enable_a_register_incoming_signals() ............... ... ... o oo oo 5-8
set_enable_a_waitrequest_during reset() .......... ... ... . o il 59
set_enable_a_waitrequest_timeout() ........... ... ... il 59
set_enable_a_write_burst_timeout() . ... ... ... 59
set_enable_a_writeid_sequence() ........... ... . il 59
Coverage GIOUP .. ...t 5-10
set_enable_c_b2b_read_read() ... ... ... 5-10
set_enable_c_b2b_read_write() .. ... ... ... 5-10
set_enable_c_b2b_write_read() .. ... ... .. 5-10
set_enable_c_b2b_write_write() . ... ... .. 5-11
set_enable_c_continuous_read() . ... ... 5-11
set_enable_c_continuous_readdatavalid() ... ....... ... i 5-11
set_enable_c_continuous_waitrequest() ............. ... 5-11
set_enable_c_continuous_waitrequest_from_idle_to_read() ................. ... .. 5-11
set_enable_c_continuous_waitrequest_from_idle_to_write() ... 5-12
set_enable_c_continuous_write() ... ... ...t e 5-12
set_enable_c_idle_before_transaction() ..............c.. i i 5-12
set_enable_c_idle_in_read_response() ............... . 5-12
set_enable_c_idle_in_write_burst() .. ... ... 5-12
set_enable_c_pending read() ....... ... .. 5-13
set_enable_c_read() . ... ..ot e 5-13
set_enable_c_read_after_reset() .. ... ...t e 5-13
set_enable_c_read_burstcount() ..............oiiiiiii i e 5-13
set_enable_c_read_byteenable() ............. . . .. 5-13
set_enable_c_read_latency() ........ ... . 5-14
set_enable_c_read_response() ........... ... 5-14
set_enable_c_waitrequest_in_write_burst()............... 5-14
set_enable_c_waitrequested_read() ............ ... .. 5-14
set_enable_c_waitrequest_without_ command() ................ ... ... ... o ool 5-14
set_enable_c_waitrequested_write() ........... ... . 5-15
set_enable_C_WrIite() ... ...ttt 5-15
set_enable_c_write_with_and_without_writeresponserequest() .......................... 5-15
set_enable_c_write_after_reset() . ... ...t 5-15
set_enable_c_write_burstcount() . ... ... .. . 5-15
set_enable_c_write_byteenable() ............ ... . 5-16
set_enable_c_write_response() ............ ... 5-16
Transaction Monitoring ........ ... 5-16
get_clken() ... ..o i 5-16
et Version() . ... 5-16
get_command_address() ............ . 5-17
get_command_arbiterlock() ......... ... 5-17
get_command_burst_count() ............ 5-17

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



ContentsContents 5

get_command_burst_cycle() .......... .. 5-17
get_command_byte_enable() ............... 5-17
get_ command data() ............. 5-18
get_command_debugaccess() ............. . 5-18
get_command_issued_queue_size() .............. . 5-18
get_command_queue_size() .............. . 5-18
get_command_lock() ....... ... 5-18
get_command_request() ............ . 5-19
get_command_transaction_id() ........... ... 5-19
get_command_write_response_request() ............. ... i 5-19
get_read_response_queue_size() ........... . 5-19
get_response_address() ........... . 5-19
get_response_byte_enable() ............ ... . 5-20
get_response_burst_size() ............ .. 5-20
get_response_data() ............ . 5-20
get_response_latency() ......... ... 5-20
get_response_queue_SiZe() ... 5-20
get_response_read_id() ............ 5-21
get_response_read_response() ....... ... 5-21
get_response_request() .............. 5-21
get_response_wait_time() ............. . 5-21
get_response_write_id() ...... ... 5-21
get_response_write_TeSpOoNnse() ......... ...t 5-22
get_transaction_fifo_max() ............ . 5-22
get_transaction_fifo_threshold() ......... ... . . . 5-22
get_write_response_queue_size() .............. . 5-22
IEE() © vttt et e e e e 5-22
pop_command() .. ... 5-23
POP_TESPONSE() - v v vttt ettt e e 5-23
set_command_transaction_mode() . . ... ... e 5-23
set_transaction_fifo_max() ... ... ... 5-23
set_transaction_fifo_threshold() ............ .. i e 5-23
signal_command_received ......... ... . ... 5-24
signal_fatal error ...... ... ... 5-24
signal_read_response_complete ........ ... ... ... 5-24
signal_response_complete ......... ... ... 5-24
signal_transaction_fifo_overflow ........... ... . . . . 5-24
signal_transaction_fifo_threshold ................ .. ... .. . 5-25
signal_write_response_complete ............. ... 5-25

Section IV. Avalon-ST BFMs

Chapter 1. Avalon-ST Source BFM

Functional Description .......... ... ... 1-1
TIMING oo 1-2
Block Diagram .. ... ... .. 1-3

Parameters . ......... . 14

Application Program Interface ......... ... ... ... . . . 1-5
get_response_latency() ............ 1-5
get_response_queue_Size() ........... ... 1-5
get_src_ready() ... ... 1-5
get_src_transaction_complete() ........... . 1-5
get_transaction_queue_size() ............. . 1-5

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



6 ContentsContents

Get_VersioN() ...t 1-6
I ) ottt e e e e 1-6
POP_TESPONSE() .« .ottt 1-6
push_transaction() .......... ... 1-6
set_max_transaction_queue_size() . ........ ... 1-6
set_min_transaction_queue_size() .......... ... 1-7
set_response_timeout() .......... ... 1-7
set_transaction_channel() .. ... ... ... . i e 1-7
set_transaction_data() .. ...... .. 1-7
set_transaction_idles() . ... .. ...t e 1-7
set_transaction_eop() ...... ... 1-7
set_transaction_empty() ...... ... 1-8
Set_transactioN_€ITOT() . . ottt ettt e e e e 1-8
set_transaction_sop() ............ 1-8
signal_fatal error ........... . 1-8
signal_max_transaction_queue_size ............. ... . i oo 1-8
signal_min_transaction_queue_size .............. ... ... il 1-8
signal_response_done .............. . 1-9
signal_src_driving transaction............. ... .. . o o ool 1-9
signal_src not_ready ............ . . 1-9
signal_src_ready .......... . 1-9
signal_src_transaction_complete ............ ... 1-9

Chapter 2. Avalon-ST Source BFM with Avalon-ST APl Wrapper

Chapter 3. Avalon-ST Sink BFM

Functional Description . ...... ... ... 3-2
TIMING .o 3-2
Block Diagram . ..... ... o 3-3

Parameters . ... e e e 34

Application Program Interface ......... ... ... ... 3-5
get_transaction_channel() ........... . 3-5
get_transaction_data() .......... .. 3-5
get_transaction_idles() ......... . 3-5
get_transaction_eop() .. ...t 3-5
get_transaction_empty() ........... .. 3-5
get_transaction_error() .......... ... 3-6
get_transaction_queue_size() .......... ... 3-6
get_transaction_SOP() .. ... oottt 3-6
get_VErSION() .. ...ttt 3-6
INEE ) ottt e 3-6
POP_transaction() . ............ i 3-6
Set_ready() ... 3-7
signal_fatal error ........ .. 3-7
signal_sink_ready_assert........ ... 3-7
signal_sink_ready_deassert ........... ... 3-7
signal_transaction_received ............ .. 3-7

Chapter 4. Avalon-ST Sink BFM with Avalon-ST APl Wrapper

Chapter 5. Avalon-ST Monitor
Parameters . . o e 5-2
Application Program Interface ........... ... . . . . 5-3

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



ContentsContents 7

Assertion Checking .......... ... . . 5-3
set_enable_a_empty_ legal() ......... ... ... 5-3
set_enable_a_less_than_max_channel() ............ ... i 5-3
set_enable_a_no_data_outside_packet() .......... ... . 5-3
set_enable_a_non_missing endofpacket() ............ ... ... .o oo 54
set_enable_a_non_missing_startofpacket() ............. ... .. o oo oo 54
set_enable_a_valid_legal() ............. ... . 54

Coverage GIOUP .. .......uuii 5-5
set_enable_c_all_idle_beats() . ... ... ... 5-5
set_enable_c_all_valid_beats() ... ... ... ..t 5-5
set_enable_c_b2b_data_different_channel() ......... ... ... .. 5-5
set_enable_c_b2b_data_same_channel() ........... ... .. i 5-6
set_enable_c_b2b_packet_different channel() ................. ... ... ..o 5-6
set_enable_c_b2b_packet_in_different_transaction() ................ ... ... o ool 5-6
set_enable_c_b2b_packet_same_channel() ............ ... ... ... ool 5-6
set_enable_c_b2b_packet_within_single cycle() ............... ... ... ..o ool 5-6
set_enable_c_channel change_ in packet() ............... ... ... ... .ol 5-7
set_enable_c_empty() ... ... 5-7
set_enable_C_error() . ... ..ottt 5-7
set_enable_c_error_in_middle_of packet() ........... ... ... .. ool 5-7
set_enable_c_idle_beat_between_packet() ............ ... ... il 5-7
set_enable_c_multiple_packet_per_cycle() ............ ... ... il 5-8
set_enable_c_non_valid_ready() .......... ... . i 5-8
set_enable_c_non_valid non_ready()............ ... .. il 5-8
set_enable_c_packet() ........... . 5-8
set_enable_c_packet_no_idles_no_back_pressure() .............. ... ... 5-8
set_enable_c_packet_size() ......... ... 59
set_enable_c_packet_with_back pressure() ............ ... ... . o il 59
set_enable_c_packet with_idles() ......... ... ... . i i 59
set_enable_c_partial valid beats() ........... ... ... . i il 59
set_enable_c_single_packet per_cycle().......... ... .. il 59
set_enable_c_transfer() . ... ... ... 5-10
set_enable_c_transaction_after reset() ......... ... 5-10
set_enable_c_valid non_ready() ............ ... 5-10

Transaction Monitoring ................. . 5-10
get_transaction_channel() ............. .. . 5-10
get_transaction_data() ............. 5-11
get_transaction_empty() ........... . 5-11
get_transaction_eop() ....... ... 5-11
get_transaction_error() ........... ... 5-11
get_transaction_idles() ........... . 5-11
get_transaction_queue_size() ........ ... .. 5-11
get_transaction_sop() ........... .. 5-12
et VerSiON() .. ... i e 5-12
pop_transaction() .......... .. . 5-12
set_transaction_fifo_max() ... .. ... 5-12
set_transaction_fifo_threshold() ............. i i e 5-12
signal_fatal error .......... ... 5-13
signal_transaction_fifo_overflow ........... ... .. . . 5-13
signal_transaction_fifo_threshold .............. ... ... .. 5-13
signal_transaction_received ........ ... ... 5-13

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



8 ContentsContents

Section V. Conduit and External Memory BFMs

Chapter 1. Conduit BFM

Block Diagram . ........... . 1-1
Parameters . .. ... e 1-2
Application Program Interface ........... ... ... .. 1-3
get_<rolename>() ........ . 1-3
Get_Version() ...... ... i 1-3
SEL_<TOlE MATES() .« v o e ettt e e e e e e e e 1-3
Set_<role NAME>_0€() .« . . o oottt e 1-3
signal_input_<role name>_change .......... ... ... . . i i 1-3

Chapter 2. Tri-State Conduit BFM

Block Diagram . .......... .. 2-1
Parameters ... ... e 2-2
Application Program Interface ......... ... ... .. . . . 2-3
get_input_transaction_queue_size() ........... ... . il 2-3
get_output_transaction_queue_size() ............ ... i o 2-3
get_transaction_<rolename>_in() ......... ... .. 2-3
get_transaction_latency() .......... ... 2-3
get_Version() .......... 2-3
pop_transaction() ............. . 2-4
push_transaction() .............. . 2-4
set_max_transaction_queue_size() ............. . i i i 2-4
set_min_transaction_queue_size() ............ ... 2-4
set_num_of _transactions() ... .......... i e 2-4
set_transaction_<role name>_0Ut() .. ... ...t 2-5
set_transaction_<role name>_0Uten() . ... ...ttt e 2-5
set_transaction_idles() . ... ... ...t 2-5
set_valid_transaction_<role name>_0Ut() . .........u oottt e 2-5
signal_all_transactions_complete ........... .. ... 2-5
signal_fatal error ...... ... .. 2-5
signal_grant_deasserted_while_request_remain_asserted() ................ ... ... ... oL 2-6
signal_interface_granted ........ ... ... . 2-6
signal_max_transaction_queue_size .............. . . i i i i i i 2-6
signal_min_transaction_queue_size .............. . . i il il 2-6

Chapter 3. External Memory BFM

Functional Description . ...... ... .. 3-1
Block Diagram . ...... ... o 3-1
Initializing the Memory Content ........ ... .. . . . . . 3-2
Reading and Writing to the Memory Content ............ ... ... ... .. ... . ... .. 3-2

Reading from the Memory ...... ... ... . 3-2
Writing tothe Memory . ... 3-3

Parameters ... ...... ... 3-3

Application Program Interface ......... ... ... ... 3-5
5 3-5
TEAA() .« .ottt e 3-5
signal_api_call ... .. o 3-5
WIIEE() .« o e ettt e et e e e e e e 3-5

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



ContentsContents 9

Section VI. Nios Il Custom Instruction BFMs

Chapter 1. Nios Il Custom Instruction Master BFM

Block Diagram . ........... . 1-1
Parameters . ... e e e 1-2
Application Program Interface ........... ... ... .. 1-3
get_instruction_queue_size() .......... ... . 1-3
get_result delay() ........... 1-3
get_result_queue_size() ............. . 1-3
get_result_ value() ......... ... 1-3
et Version() ...... ... i 1-4
INSErt_INStruction() . .. ...ttt e e e 1-4
pop_result() ... 1-4
push_instruction() ........... 1-4
retrive_reSult() . . .. oo e 1-5
Set_Cl_CIK_eN() . oot 1-5
set_clock_enable_timeout() . .. ... ..ot 1-5
Set_INStruction_a() ... ...t e 1-5
set_Instruction_b() ... ... e 1-5
Set_INStrucCtON_C() ..ottt e 1-5
set_instruction_dataa() . . ... ... 1-6
set_instruction_datab() . ... ... 1-6
set_instruction_err_inject() ............ . 1-6
set_instruction_idle() ... ... ... e 1-6
set_INStruction_N() ... ...t e 1-6
set_instruction_readra() . . . ... ... e 1-6
set_instruction_readrb() . . ... ... . 1-7
set_instruction_timeout() .. ... ... e 1-7
set_INStruction_Writerc() . ... ...ttt e 1-7
set_max_instruction_queue_size() ............ ... i 1-7
set_max_result_queue_size() .......... ... 1-7
set_min_instruction_queue_size() ............ ... 1-7
set_min_result_queue_size() ........... ... . 1-8
set_result_timeout() . . ... ...t e 1-8
signal_unexpected_result_received .......... ... ... o o ool 1-8
signal_fatal error ........... . 1-8
signal_instructions_completed ......... ... . o 1-8
signal_instruction_start ........ ... .. 1-8
signal_max_instruction_queue_size ............ ... ... i i il 1-9
signal_max_result_queue_size ............ ... . 1-9
signal_min_instruction_queue_size........... ... ... oo i il ool 1-9
signal_min_result_queue_size ........... ... .. i 1-9
signal_result_received ........... . . 1-9

Chapter 2. Nios Il Custom Instruction Slave BFM

Block Diagram ......... ... . 2-1
Parameters . ..o 2-2
Application Program Interface ........... ... . . . 2-3
get_ciclk en() ... ... o 2-3
get_instruction_a() .......... . 2-3
get_instruction_b() ... ... 2-3
get_instruction_c() ...... ... .. 2-3
get_instruction_dataa() ............ .. 2-3

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



10 ContentsContents
get_instruction_datab() ......... ... . 2-4
get_instruction_idle() ......... ... 2-4
get_instruction_ n() ......... .. 2-4
get_instruction_readra() .......... ... . 2-4
get_instruction_readrb() ....... .. . 2-4
get_instruction_writerc() ........ ... . 2-4
et Version() ...... ... i 2-5
INSert_result() . ... .ot e 2-5
retrieve_instruction() . ... .. ...ttt 2-5
set_clock_enable_timeout() . .. ... .. ot 2-5
Set_INStruction_a() ... ...t e 2-6
set_InsStruction_b() ... ... 2-6
SEt_INSEIUCHON_C() + . vt ettt et e e e e e 2-6
set_instruction_timeout() .. ... ... ... 2-6
set_result_delay() ..... ... 2-6
set_result_err_inject() ............ .. 2-6
set_result_value() . ... ... e 2-7
signal_fatal error ........... . 2-7
signal_instructions_inconsistent .......... ... .. o o o i il 2-7
signal_known_instruction_received ............. ... .. o ool 2-7
signal_result_done .......... ... . 2-7
signal_result_driven ......... .. .. . 2-7
signal_unknown_instruction_received ........... ... ... o o o oo 2-8

Section VII. Tutorials

Chapter 1. SOPC Builder Tutorial

Software Requirements ........ ... ... . ... 1-1
Verifying Avalon-MM Slave DUT ......... ... . ... ... . 1-1
SettinguptheTest ... ... ... 1-3
Creating an SOPC Builder Testbench forthe DUT .......... ... ... ... ... ... ... ... 1-3
Connecting and Generating the SOPC Builder System ................... ... ... ... ... 1-5
Running the Simulation ......... ... .. . 1-5
Observing the Results .......... ... . 1-6
Verifying Avalon-MM Master DUT ............. ... . o i 1-7
Setting Upthe Test ..... ... . 1-7
Creating an SOPC Builder Testbench forthe DUT .......... ... ... .. .. ... .. ... .. 1-7
Connecting and Generating the SOPC Builder System ................................... 1-9
Running the Simulation ........... ... 1-10
Observing the Results ....... ... . . . 1-10

Chapter 2. Qsys Tutorial

Software Requirements .......... ... .. . 2-1
Verifying Avalon-STDUT .. ... 2-1
Settingup the Test ... ... .. 2-2
Creating a Qsys System for the DUT ......... .. ... ... . ... . .. i, 2-2
Generating a Qsys Testbench System .......... ... ... ... . ... ... .. L 2-3
Setting up the Simulation Environment .......... ... ... . . o o i i i il 2-5
Running the Simulation ......... ... . . 2-5
Observing the Results ...... ... . . 2-6

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



ContentsContents 1

Additional Information
Document Revision History
How to Contact Altera ... ...t e e Info-1
Typographic Conventions

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



12 ContentsContents

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



= o A Section I. Introduction to Avalon

o Verification IP Suite

The Avalon® Verification IP Suite provides bus functional models (BFMs) to simulate
the behavior and to facilitate the verification of IP that includes the following
interfaces and components:

m  Avalon Memory-Mapped (Avalon-MM) master and slave interfaces

m Avalon Streaming (Avalon-ST) source and sink interfaces

m Conduit interfaces and Avalon Tri-State conduit (Avalon-TC) interfaces
m Clock source and reset source

m Interrupt source and sink

m Custom instruction master and slave

m External memory

This suite also provides the following monitors to verify the respective Avalon
protocols:

® Avalon-MM monitor

® Avalon-ST monitor

Advantages of Using BFMs and Monitors

Using the Altera-provided BFMs and monitors has the following advantages:

m It accelerates the verification process by providing key components of the
verification testbench.

m [t provides Avalon BFM components that implement the standard Avalon-MM
and Avalon-ST protocols, serving as a reference for those protocols.

m For SystemVerilog users, it provides a platform that you can use to implement
constraint-driven randomized tests, including traffic scenario drivers, scoreboard
and coverage facilities, and assertion checkers.

Implementation of BFMs

The Avalon Verification IP Suite BEMs (excluding Clock Source and Reset Source
BFMs that are written in VHDL) are implemented in SystemVerilog. The BFM
components use primarily Verilog HDL with a few basic SystemVerilog constructs
that are supported by ModelSim®-Altera Edition (AE). The monitor components use
the SystemVerilog Assertion (SVA) language and are supported only by simulators
that support SVA, including: Modelsim-Altera Starter Edition (ASE), Synopsys VCS,
and Mentor Graphics® Questa.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



-2 Section I: Introduction to Avalon Verification IP Suite
Application Programming Interface

The Avalon Verification IP Suite also includes wrapper components so that the BEMs
can also be used in VHDL verification environments with simulators that support
mixed language simulation. These wrapper components are generated in SOPC
Builder only. Qsys does not support VHDL simulation with any BFMs other than the
Clock Source and Reset Source BFMs.

Application Programming Interface

Altera provides you with a set of application programming interface (API) for each
Avalon Verification IP Suite BFM that you can use to construct, instantiate, control,
and query signals in all BEM components. Your test programs must use only these

public access methods and events to communicate with each BFM.

"=~ While you can use methods other than the API, Altera does not guarantee continued
support or backwards compatibility of custom methods.

Application Example of BFMs

Figure 1-1 shows the top-level blocks in a typical testbench to verify components with
Avalon-MM and Avalon-ST interfaces.

Figure 1-1. Avalon Verification IP Suite Testhench

Testbench
Test Program
Traditional Verilog Implementation
initial() always() always() function() function() task()
SystemVerilog with VM OR
e . . generator generator generator
initial() transactor configuration object object object
instance instance instance
A A A A
\ 4 \ 4 \4 \ 4
Avalon-MM Avalon-MM
Avalon-MM il Avalon_-MM Avalon-MM Avalon_-MM read or Avalon-MM
Master BFM it Monitor DUT Monitor write Slave BFM
- -E B -0
v \ 4 v \ 4
Avalon-ST Avalon-ST Avalon-ST Avalon-ST Avalon-ST
Source BFM Monitor DUT Monitor Sink BFM

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Section I: Introduction to Avalon Verification IP Suite 1-3

In This User Guide

As Figure 1-1 illustrates, it is possible to write a testbench using a traditional Verilog
HDL implementation or using SystemVerilog with VMM. For illustration purposes,
Figure 1-1 shows an Avalon-MM design under test (DUT) that includes both
Avalon-MM master and slave interfaces, and an Avalon-ST DUT that includes both
source and sink interfaces, although typical components might include a single
Avalon interface.

When verifying a component with Avalon-MM or Avalon-ST interfaces, a monitor is
inserted between the master or source BEFM and the slave or sink interface of the DUT.
A second monitor can be interposed between the slave or sink BEM and the master or
source interface of the DUT. The monitors do not have to be placed between a BFM
component and another component. They can be inserted anywhere in the system to
provide protocol assertion checking and functional coverage reporting.

The test program drives the stimulus to the DUTs and determines whether the DUTs’
behavior is correct, by analyzing the responses. The BFMs translate the test program
stimuli, creating the signalling for the Avalon-MM and Avalon-ST protocols. The
monitors verify Avalon protocol compliance and provide test coverage reports.

In This User Guide

The Avalon Verification IP Suite User Guide provides a reference document for each of
the BFMs and Avalon Monitors. It includes the following sections:

m Section II, Clock, Reset, and Interrupt BEMs
This section contains chapters that describe the parameters and API of the Clock
Source, Reset Source, Interrupt Source, and the Interrupt Sink BFMs.

m Section III, Avalon-MM BFMs
This section contains chapters that describe the parameters, functional description,
and the API of the Avalon-MM Master and Slave BFMs. This section also includes
a tutorial on using the Avalon-MM BFMs.

m Section IV, Avalon-ST BFMs
This section contains chapters that describe the parameters, functional description,
and the API of the Avalon-ST Source and Sink BEMs. This section also includes a
tutorial on using the Avalon-ST BFMs.

m Section V, Conduit and External Memory BFMs
This section contains chapters that describe the blocks, parameters, and API of the
conduit, tri-state conduit, and the external memory BFMs.

m Section VI, Nios II Custom Instruction BFMs
This section contains chapters that describe the blocks, parameters, and API of the
Nios II custom instruction master and slave BFMs.

m Section VII, Tutorials
This section contains chapters that provide tutorials on how to use the BFMs to
verify IP interfaces and components in SOPC Builder and Qsys.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



-4 Section I: Introduction to Avalon Verification IP Suite
In This User Guide

Avalon Verification IP Suite User Guide June 2012 Altera Corporation



|:| =) Section Il. Clock, Reset, and Interrupt
/ANO[SRYA, BFMs

This section provides information about Clock Source, Reset Source, Avalon Interrupt
Source, and Avalon Interrupt Sink BEMs. This section includes the following chapters:

m Chapter 1, Clock Source BEM
m Chapter 2, Reset Source BEM
m Chapter 3, Avalon Interrupt Source and Interrupt Sink BEMs

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



-2 Section II: Clock, Reset, and Interrupt BFMs

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



1. Clock Source BFM

The Avalon Verification IP Suite includes a Clock Source BFM that you can use to
generate a clock signal for your testbench.

L=~ The Clock Source BFM is only supported in Qsys.

Parameters

Table 1-1 lists the parameter settings for the clock signal.

Table 1-1. Clock Source BFM Parameter Settings

Option Default Value

Legal Values

Description

Clock rate 10

Specifies the clock rate in MHz.

Application Program Interface
This section describes the API for the Clock Source BEM.

clock_start()

Prototype:
Arguments:
Returns:
Description:

clock_stop()

Prototype:
Arguments:
Returns:
Description:

get_run_state()

Prototype:
Arguments:
Returns:
Description:

June 2012  Altera Corporation

clock_start ().
None.

voi d.

Turns on the clock.

cl ock_stop().
None.

voi d.

Turns off the clock.

get _run_state().
None.
bit.

Returns the state of the clock source; 1=running, O=stop.

Avalon Verification IP Suite User Guide




1-2 Chapter 1: Clock Source BFM
Application Program Interface

get_version()

Prototype: string get _version().

Arguments: None.

Returns: String.

Description: Returns BFM version as a string of three integers separated by periods. For example,

version 10.1 sp1 is encoded as "10.1.1".

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



2. Reset Source BFM
fAN ISR

The Avalon Verification IP Suite includes a Reset Source BFM that you can use to
generate a reset signal in your testbench.

L=~ The Reset Source BFM is only supported in Qsys.

Parameters

Table 2-1 lists the parameter settings for the reset signal.

Table 2-1. Reset Source BFM Parameter Settings

Option Default Value Legal Values Description
. Specifies the polarity of the reset signal. Turn on this
Assert reset high On On/0ff option to set the reset signal active high.
Cycles of initial reset 0 L Specifies the number of cycles that the reset signal is

asserted at the initial stage of the simulation.

Application Program Interface
This section describes the API for the Reset Source BFM.

reset_assert

Prototype: reset _assert.
Arguments: None.

Returns: voi d.

Description: Asserts the reset signal.

reset_deassert

Prototype: reset deassert.
Arguments: None.

Returns: voi d.

Description: Deasserts the reset signal.

get_version()

Prototype: string get_version().

Arguments: None.

Returns: String.

Description: Returns BFM version as a string of three integers separated by periods. For example,

version 10.1 sp1 is encoded as "10.1.1".

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



2-2 Chapter 2: Reset Source BFM
Application Program Interface

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



3. Avalon Interrupt Source and
Interrupt Sink BFMs

The Avalon Verification IP Suite includes Avalon Interrupt Source and Avalon
Interrupt Sink BEMs for you to generate interrupt signals in your testbench.

[l =~ The Avalon Interrupt Source and Sink BFMs are only supported in Qsys.

Parameters

Table 3-1 lists the parameter settings for the interrupt signals.

Table 3-1. Avalon Interrupt Source and Avalon Interrupt Sink BFMs Parameter Settings

Option

Default Value

Legal Values

Description

Interrupt Source

Specifies the polarity of the interrupt source signal. Turn

Assert IRQ high On On/0ff on this option to change the name of the interrupt source
signal port fromirqtoirq_n.

IRQ width 1 1-32 Specifies the width of the interrupt source signal.
Specifies whether the interrupt signal is asserted or
deasserted immediately after an API call or one clock cycle
after an API call. Turn on this option to allow changes to

Asynchronous IRQ o On/Off the interrupt signal immediately after an API call or turn off
this option to allow changes to the interrupt signal on the
next clock edge.

Interrupt Sink
Specifies the polarity of the interrupt sink signal. Turn on

Assert IRQ high On On/Off this option to change the name of the interrupt sink signal
port fromirqgtoirq_n.

IRQ width 1 1-32 Specifies the width of the interrupt sink signal.

Application Program Interface

This section describes the API for the Avalon Interrupt Source and Avalon Interrupt
Sink BFMs.

clear_irq()

Prototype:
Arguments:
Returns:
Description:

June 2012  Altera Corporation

int clear_irq().

int interrupt_bit.

voi d.

Asserts the interrupt signal and sets the interrupt signal to 0, regardless of the value you
set for Assert IRQ high in the parameter editor.

Avalon Verification IP Suite User Guide




3-2

Chapter 3: Avalon Interrupt Source and Interrupt Sink BFMs
Application Program Interface

get_irq()

Prototype:
Arguments:
Returns:
Description:

get_version()

Prototype:
Arguments:
Returns:
Description:

set_irq()

Prototype:
Arguments:
Returns:
Description:

Avalon Verification IP Suite User Guide

get_irqg().

None.

| ogi c[AV_IRQ W1:0].

Returns the current value of the register holding the latched interrupt signal.

string get_version().
None.
String.

Returns BFM version as a string of three integers separated by periods. For example,
version 10.1 sp1 is encoded as "10.1.1".

set_irqg().
int interrupt_bit.
voi d.

Asserts the interrupt signal and sets the interrupt signal to 1, regardless of the value you
set for Assert IRQ high in the parameter editor.

June 2012  Altera Corporation



Section lll. Avalon-MM BFMs

This section provides information about Avalon-MM BFMs. This section includes the
following chapters:

June 2012  Altera Corporation

Chapter 1, Avalon-MM Master BFM

Chapter 2, Avalon-MM Master BEM with Avalon-ST API Wrapper

Chapter 3, Avalon-MM Slave BFM

Chapter 4, Avalon-MM Slave BFM with Avalon-ST API Wrapper

Chapter 5, Avalon-MM Monitor

Avalon Verification IP Suite User Guide



-2 Section lll: Avalon-MM BFMs

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



1. Avalon-MM Master BFM
fAN ISR

The Avalon-MM Master BFM implements the Avalon-MM interface protocol,
including: read, write, burst read, and burst write. Figure 1-1 shows the top-level
modules for a typical testbench that uses the Avalon-MM BFM to verify an
Avalon-MM slave component. In addition to the Altera-provided Avalon-MM Master
BFM component, the typical testbench includes a test program and the DUT that
includes an Avalon-MM slave interface. The Altera-provided Avalon-MM BFM
highlights any misinterpretation of the protocol implemented by the DUT that might
be missed in a testbench designed by a single engineer.

The BFMs allow illegal transactions so that you can test the error-handling

functionality of your DUT; consequently, the BEMs cannot be relied upon to guarantee
protocol compliance. The Avalon Monitors components verify protocol compliance.

Figure 1-1. Top-Level Module to Verify an Avalon-MM Slave Device

Testbench

Test Program

HDL HDL

DUT
Avalon-MM Avalon-MM
Master BFM —> Avalon-MM
Slave Component

For more information about the Avalon-MM specification supported in SOPC Builder,
refer to the Avalon Interface Specifications (version 1.3).

For more information about the Avalon-MM specification supported in Qsys, refer to
the Avalon Interface Specifications (version 2.0).

Functional Description

This section provides a functional description of the Avalon-MM Master BFM. It
includes the following topics:

® “Timing” on page 1-2

m “Block Diagram” on page 1-5

June 2012  Altera Corporation Avalon Verification IP Suite User Guide


http://www.altera.com/literature/manual/mnl_avalon_spec_1_3.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 1: Avalon-MM Master BFM
Functional Description

Timing

The timing diagram in Figure 1-2 illustrates the sequence of events for an Avalon-MM
Master BEM driving interleaved writes and reads when the r eaddat aval i d signal is
present. This diagram serves as a reference for the following discussion of API and
events.

Figure 1-2. Avalon-MM Master Driving Interleaved Write and Read Transactions

CLK

read

write

transactionid Tip_1 Tip_2 Tip_.
Twt 3
}1* Tr >—th§><
waitrequest 4/—\ / \
byteenable[3:0] | :

writeresponse

writeid

writeresponsevalid

writedata[31:0]

readresponse

readid

readdatavalid

readdata

transaction1 transaction2 trans3 trans4

s

h}ﬂ_WU_LFLIUm

SCLZ [
}VT idle ]

|

auw

o

init

A
v

w
o

i

Sci 3

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 1: Avalon-MM Master BFM 1-3
Functional Description

Table 1-1 lists the annotations used in Figure 1-2.

Table 1-1. Key to Annotations in Figure 1-2

Symbol Description
T The initial command latency, which is two cycles for transactions 1 and 2. This time is set by the API
init command set _conmmand_i ni t_| at ency.
The response wait time, which is three cycles. This time is determined by the number of cycles that the
Tut 1 wai t request signal is asserted by the slave.The program gets this value using the
get _response_wait_ti nme command.
Tur wai t request is always sampled #1 after the falling edge of cl k.
Tidte The idle time after each transaction. This time is set by the command set _conmand_i dl e.
The response latency for the first read, which is three cycles. This is the time between when the read
command is accepted, and the read response is provided by the slave. The program gets this time using the
T get _response_| at ency command.
= Note if the Avalon-MM slave component has defined a fixed read latency by defining the r eadLat ency
interface property, the r eaddat aval i d signal is not used. For more information refer to the Avalon Interface
Specifications.
T The response latency for the second read, which is three cycles. The program gets this time using the
2 get _response_| at ency command.
The write response latency for the first write, which is three cycles. This is the time between when the write
Tur_1 command is accepted, and the write response is provided by the slave. The program gets this time using the
get _response_| at ency command.
Sci.1=Sci.a | Signals when write or read commands are presented on the interface. The event name is
signal _command_i ssued.
Src 1,513 | Signals write responses. The event name is si gnal _r esponse_conpl et e.
Sic 2,51 4 | Signals read responses. The event name is si gnal _r esponse_conpl et e.
Satc Signals the end of the test. The event name is si gnal _al | _transactions_conpl ete
Tip 1—Tip 4 | Reference number to identify each read or write transaction.
ID_1, ID_3 | Reference number to identify each write transaction.
ID_2,1D_4 | Reference number to identify each read transaction.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide


http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

1-4 Chapter 1: Avalon-MM Master BFM
Functional Description

The timing diagram in Figure 1-3 shows the sequence of events for an Avalon-MM
Master BEM driving a write followed by a read when the r eaddat aval i d signal is not
present.

Figure 1-3. Avalon-MM Master Driving Write and Read Transactions with No readdatavalid Signal

transaction5 transaction6

byteenable[3:0] -
writedata[31:0] - D1

readdata

Table 1-2 lists the annotations used in Figure 1-3.

Tahle 1-2. Key to Annotations in Figure 1-3 (Part 1 of 2)

Symbol Description

The initial command latency, which is two cycles for transactions 1 and 2. This time is set by the API

T command set _conmand_i ni t _| at ency.

The response wait time, which is three cycles. This time is determined by the number of cycles that the
Tut 1 wai t request signal is asserted by the slave.The program gets this value using the
get _response_wait _time command.

The response wait time for the first read, which is two cycles. This time is determined by the number of

Tut 2 cycles that the wai t r equest signal is asserted by the slave.The program gets this value using the
get _response_wait_time command.

Tor wai t request is always sampled #1 after the falling edge of cl k.

Tidte The idle time after a transaction. This time is set by the command set _conmand_i dl e.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 1: Avalon-MM Master BFM 1-5
Functional Description

Tahle 1-2. Key to Annotations in Figure 1-3 (Part 2 of 2)

Symbol Description

Sy -S4 2 Sﬁgnals when write gnd read commands are presented on the interface. The event name is
- T signal _command_i ssued.

Sre 1 Signals the first read response. The event name is si gnal _r esponse_conpl et e.

Satc Signals the end of the test. The event name is si gnal _al | _transactions_conpl ete.

Block Diagram

Figure 1-4 shows a block diagram of the Avalon-MM Master BEM. As this figure
illustrates, the BFM includes the following major blocks:

B Avalon-MM Master API—Provides methods to create Avalon-MM transactions
and query the state of all queues.

m Command Descriptor—Accumulates the fields of an Avalon-MM command
transaction using the set _conmand API calls and inserts completed commands
onto the pending command queue.

B Avalon-MM Interface Driver—Issues transfers to the system interconnect fabric
and holds each transfer until wai t r equest is deasserted. For burst transfers, there
is a separate transfer for each word of the burst. The system interconnect fabric can
assert wai t request for each word of the burst, as necessary.

m Timestamp Counter—Records a timestamp with commands for use in timing
calculations. The driver and monitor both use the timestamp counter for timing
calculations.

m Avalon-MM Interface Monitor—Monitors the system interconnect fabric and
records responses for read transfers in the response queue.

m Response Descriptor—Collects information about completed transactions using
the get _response_<rolename> API calls. The testbench uses this information for
further analysis.

m Public Events—Provides status response that arrives together with the data. The
public event signals indicate the status of the Master’s request such as successful
completion, timeout, or error.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



Chapter 1: Avalon-MM Master BFM
Functional Description

Figure 1-4. Block Diagram of the Avalon-MM Master BFM

Test Program

A

Avalon Master BFM API
(Transaction Level Commands

A A

Command Descriptor Response Descriptor

Public Events

Pending
’ : Read and Write
Timestam
Pending o Response Queue Avalon-MM
Command Counter
Queue o Master BFM
A
g >
I >
v Issued
Avalon-MM Interface Command Avalon-MM Interface
Driver Queue Receiver
command waitrequest response waitrequest

Transfer Level

“ Avalon-MM Master Port
“ Avalon-MM Slave Port
I:I SystemVerilog

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 1: Avalon-MM Master BFM
Parameters

Parameters

The Avalon-MM BFM supports the full range of signals defined for the Avalon-MM
master interface. You can customize the Avalon-MM master interface using the
parameters described in Table 1-3.

Table 1-3. Parameters for the Avalon-MM Master BFM (Part 1 of 2)

Parameter D‘faflau“‘:t \;-:I?:els Description

Port Widths
Address width 32 — Address width in bits.
Symbol width 8 . E;tt:-?r/ir:nbtgldvzlrﬁé?f;nc:sifs. The symbol width should be 8 for
Read Response width — Read response signal width in bits.
Write Response width — Write response signal width in bits.

Parameters
Number of symbols — Number of symbols per word.
Burstcount width — The width of the burst count in bits.

Port Enables
Use the read signal On On/Off | When On, the interface includes a r ead pin.
Use the write signal On On/Off | When On, the interface includes awri t e pin.
Use the address signal On On/Off | When On, the interface includes addr ess pins.
Use the byteenable signal On On/0ff | When On, the interface includes byt eenabl e pins.
Use the burstcount signal On On/0ff | When On, the interface includes bur st count pins.
Use the readdata signal On On/0ff | When On, the interface includes a r eaddat a pin.
Use the readdatavalid signal On On/0ff | When On, the interface includes a r eaddat aval i d pin.
Use the writedata signal On On/0ff | When On, the interface includes a wri t edat a pin.
Use the begintransfer signal off On/0ff | When On, the interface includes wri t edat a pins
Use the beginburstiransfer signal off On/Off \é\i/::.n On, the interface includes a begi nbur st t r ansf er
Use the arbiterlock signal off On/0ff | When On, the interface includes an ar bi t er | ock pin.
Use the lock signal off On/Off | When On, the interface includes a | ock pin.
Use the debugaccess signal Off On/0ff | When On, the interface includes a debugaccess pin.
Use the waitrequest signal On On/0ff | When On, the interface includes a wai t r equest pin.
Use the transactionid signal Off On/0ff | When On, the interface includes atransacti oni d pin.
Use the write response signals off On/0ff | When On, the interface includes awri t er esponse pin.
Use the read response signals off On/Off | When On, the interface includes a r eadr esponse pin.
Use the clken signals off On/0ff | When On, the interface includes a cl ken pin.

Port Polarity
Assert reset high On On/Off | When On, r eset is asserted high.
Assert waitrequest high On On/Off | When On, wai t request is asserted high.
Assert read high On On/0ff | When On, r ead is asserted high.

June 2012  Altera Corporation

Avalon Verification IP Suite User Guide




Chapter 1: Avalon-MM Master BFM
Parameters

Tahle 1-3. Parameters for the Avalon-MM Master BFM (Part 2 of 2)

Default Legal -
Parameter Value Values Description
Assert write high On On/Off | When On, wri t e is asserted high.
Assert byteenable high On On/Off | When On, byt eenabl e is asserted high.
Assert readdatavalid high On On/Off | When On, r eaddat aval i d is asserted high.
Assert arbiterlock high On On/Off | When On, ar bi ter| ock is asserted high.
Assert lock high On On/0ff | When On, | ock is asserted high.
Burst Attributes
When On, the address for bursts wraps instead of an
incrementing. With a wrapping burst, when the address
Linewrap burst On On/Off | reaches a burst boundary, it wraps back to the previous burst
boundary such that only the low order bits need to be used
for addressing.
Burst on burst boundaries only On On/0ff | When On, memory bursts are aligned to the address size.
Miscellaneous
Maximum pending reads 1 o The maximum number of pending reads that can be queued
by the slave.
Fixed read latency (cycles) 1 . Sets the read latency for fixed-latency slaves. Not used on
VIcy interfaces that include the r eaddat aval i d signal.
Timing
For master interfaces that do not use the wai t r equest
Fixed read wait time (cycles) 1 . signal, the read wait time indicates the number of cycles
y before the master responds to a read. The timing is as if the
master asserted wai t r equest for this number of cycles.
For master interfaces that do not use the wai t r equest
Fixed write wait time (cycles) 0 — signal, the write wait time indicates the number of cycles
before the master accepts a write.
Registered waitrequest off On/Off | Specifies whether to turn on the register stage.
Registered Incoming Signals Off On/Off | Specifies whether to register incoming signals.
Interface Address Type
Set master interface address type WORDS/ .
to symbols or words WORDS SYMBOLS Sets slave interface address type to symbols or words.
API Streaming Interface (Note 1)
Width of API interface data signal 64 — The width of the data signal.
‘sAi’;[lllt:l of API return interface data 64 — The width of the return interface data signal.

Note to Table 1-3:

(1) This interface is required only for the Avalon-MM Master BFM with Avalon-ST APl Wrapper that is used in mixed language simulations.

Avalon Verification IP Suite User Guide

June 2012  Altera Corporation




Chapter 1: Avalon-MM Master BFM 1-9
Application Program Interface

Application Program Interface
This section describes the API for the Avalon-MM Master BFM.

all_transactions_complete()

Prototype: bit all_transactions_conplete().

Arguments: None.

Returns: bit.

Description: Queries the BFM component to determine whether all issued commands have been

completed. A return value of 1 means that there are no more transactions in the
transaction queue or in progress.

get_command_issued_queue_size()

Prototype: int get_command_i ssued_queue_si ze().

Arguments: None.

Returns: int.

Description: Queries the issued command queue to determine the number of commands that have

been driven to the system interconnect fabric, but not completed.

get_command_pending_queue_size()

Prototype: int get_conmand_pendi ng_queue_si ze().

Arguments: None.

Returns: int.

Description: Queries the command queue to determine number of pending commands waiting to be

driven out as Avalon requests.

get_read_response_queue_size()

Prototype: int get_read_response_queue_size().

Arguments: None.

Returns: int.

Description: Queries the read response queue to determine number of response descriptors currently

stored in the BFM. This is the number of responses the test program can immediately
remove from the response queue for further processing.

get_response_address|()

Prototype: bit [AV_ADDRESS W1:0] get_response_address().

Arguments: None.

Returns: bit.

Description: Returns the transaction address in the response descriptor that has been removed from

the response queue.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



1-10

Chapter 1: Avalon-MM Master BFM
Application Program Interface

get_response_hyte_enable()

Prototype:
Arguments:
Returns:
Description:

bit [AV_NUMBYMBOLS- 1: 0] get_response_byte_enabl e(int index).

i ndex.

bit.

Returns the value of the byte enables in the response descriptor that has been removed

from the response queue. Each cycle of a burst response is addressed individually by
the specified index.

get_response_hurst_size()

Prototype:
Arguments:
Returns:
Description:

bit [AV_BURSTCOUNT_W1: 0] get _response_burst_size ().

None.

bit.

Returns the size of the response transaction burst count in the response descriptor that
has been removed from the response queue.

get_response_data()

Prototype:
Arguments:
Returns:
Description:

bit [AV_DATA W1:0] get_response_data(int index).

i ndex.

bit.

Returns the transaction read data in the response descriptor that has been removed
from the response queue. Each cycle in a burst response is addressed individually by the
specified index. In the case of read responses, the data is the data captured on the

avm r eaddat a interface pin. In the case of write responses, the data on the driven
avm wri t edat a pin is captured and reflected here.

get_response_latency()

Prototype:
Arguments:
Returns:
Description:

int get_response_|latency(int index).

i ndex.

bit.

Returns the transaction read latency in the response descriptor that has been removed
from the response queue. Each cycle in a burst read has its own latency entry.

get_response_queue_size()

Prototype:
Arguments:
Returns:
Description:

Avalon Verification IP Suite User Guide

int get_response_queue_si ze().
None.
int.

Queries the response queue to determine number of response descriptors currently
stored in the BFM. This is the number of responses the test program can immediately
remove from the response queue for further processing.

June 2012  Altera Corporation



Chapter 1: Avalon-MM Master BFM

Application Program Interface

1-1

get_response_read _id()

Prototype:
Arguments:
Returns:
Description:

[ AV_TRANSACTI ONID W 1: 0] get_response_read_id().
None.
Aval onTransactionld_t.

Returns the read id of the transaction in the response descriptor that has been removed
from the response queue.

get_response_read_response()

Prototype:

Arguments:
Returns:
Description:

bi t [ 2**( AV_BURSTCOUNT_W 1) - 1: 0] [ AV_READRESPONSE W 1: 0]
get _response_read_response(int index).

int index.
Aval onReadResponse_t .

Returns the transaction read status in the response descriptor that has been removed
from the response queue.

get_response_request()

Prototype:

Arguments:
Returns:
Description:

enumint[REQ READ = 0, REQ W TE = 1, RED IDLE = 2]
get _response_request ().

None.
Request _t.

Returns the transaction command type in the response descriptor that has been
removed from the response queue.

get_response_wait_time()

Prototype:
Arguments:
Returns:
Description:

int get_response_wait _time(int index).

i ndex.

int.

Returns the wait latency for transaction in the response descriptor that has been
removed from the response queue. Each cycle in a burst has its own wait latency entry.

get_response_write_id()

Prototype:
Arguments:
Returns:
Description:

June 2012  Altera Corporation

bit [AV_TRANSACTI ONID W 1:0] get_response_wite_id().
None.
Aval onTransactionld_t.

Returns the write id of the transaction in the response descriptor that has been removed
from the response queue.

Avalon Verification IP Suite User Guide



1-12

Chapter 1: Avalon-MM Master BFM
Application Program Interface

get_response_write_response()

Prototype:

Arguments:
Returns:
Description:

bit [2**( AV_BURSTCOUNT_W1)-1:0] [AV_WRI TERESPONSE_W 1: 0]
get _response_write_response(int index).

int index.
Aval onW it eResponse_t.

Returns the transaction write status in the response descriptor that has been removed
from the response queue.

get_write_response_queue_size()

Prototype:
Arguments:
Returns:
Description:

get_version()

Prototype:
Arguments:
Returns:
Description:

init()

Prototype:
Arguments:
Returns:
Description:

pop_response()

Prototype:
Arguments:
Returns:
Description:

Avalon Verification IP Suite User Guide

int get_wite_response_queue_size().

None.

int.

Queries the write response queue to determine number of response descriptors

currently stored in the BFM. This is the number of responses the test program can
immediately pop off the response queue for further processing.

string get_version().
None.
String.

Returns BFM version as a string of three integers separated by periods. For example,
version 10.1 sp1 is encoded as "10.1.1".

init.
None.
voi d.
Initializes the Avalon-MM master interface.

voi d pop_response().
None.
voi d.

Removes the oldest response descriptor from the response queue, such that transaction
information is available using the get _response_<rolename> commands.

June 2012  Altera Corporation



Chapter 1: Avalon-MM Master BFM 1-13
Application Program Interface

push_command()

Prototype: voi d push_command().

Arguments: None.

Returns: voi d.

Description: Inserts the fully populated transaction descriptor onto the pending transaction

command queue.

set_clken()

Prototype: void set_clken(bit state).

Arguments: bit state.

Returns: voi d.

Description: Sets the assertion and deassertion of the clock enable signal.

set_command_address()

Prototype: voi d set_command_address(bit[ AV_ADDRESS W 1: 0] addr)
Arguments: addr.

Returns: voi d.

Description: Sets the transaction address in the command descriptor.

set_command_arhiterlock()

Prototype: voi d set_command_arbiterlock (bit state).

Arguments: bit state.

Returns: voi d.

Description: Controls the assertion or deassertion of the arbiterlock interface signal. The arbiterlock

control is on the transaction boundaries and is not used when the Avalon-MM Master
BFM is operating in burst mode.

set_command_hyte_enable()

Prototype: voi d set _conmand_byt e_enabl e(bi t [ AV_NUMSYMBOLS- 1: 0] byte_enable, int

i ndex) .
Arguments: byt e_enabl e.
i ndex.
Returns: voi d.
Description: Sets the transaction byte enable field for the cycle of the burst command descriptor

indicated by index. This field applies to both read and write operations.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



1-14 Chapter 1: Avalon-MM Master BFM
Application Program Interface

set_command_burst_count()

Prototype: voi d set_command_bur st _count (bi t[ AV_BURSTCOUNT_W1: 0] burst_count).
Arguments: bur st _count.

Returns: voi d.

Description: Sets the value driven on the Avalon interface bur st count pin. Generates a warning

message if the specified bur st _count is out of range. Not available if the
USE_BURSTCQUNT parameter is false.

set_command_hurst_size()

Prototype: voi d set_command_burst _size (bit[AV_BURSTCOUNT_W1:0] burst_size).
Arguments: burst _si ze.

Returns: voi d.

Description: Sets the transaction burst count in the command descriptor to determine the number of

words driven on the write burst command. The value might be different from the value
specified in set _conmand_bur st _count to generate illegal traffic for testing.
Generates a warning if the value is different.

set_command_data()

Prototype: voi d set_conmand_dat a( bi t [ AV_DATA W1:0] data, int index).
dat a.

Arguments: ]
i ndex.

Returns: voi d.

Description: Sets the transaction write data in the command descriptor. For burst transactions, the
command descriptor holds an array of data, with each element individually set by this
method.

set_command_debugaccess()

Prototype: voi d set_conmand_debugaccess.

Arguments: bit state.

Returns: voi d.

Description: Controls the assertion or deassertion of the debugaccess interface signal. The

debugaccess control is on transaction boundaries.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 1: Avalon-MM Master BFM 1-15
Application Program Interface

set_command_idle()

Prototype: void set_conmmand_idle(int idle, int index).
Arguments: int idle.
int index.
Returns: voi d.
Description: Sets idle cycles at the end of each transaction cycle. In the case of read commands, idle

cycles are inserted at the end of the command cycle. In the case of burst write
commands, idle cycles are inserted at the end of each write data cycle within the burst.

set_command_init_latency()

Prototype: void set_command_init_latency(int cycles).
Arguments: cycles.

Returns: voi d.

Description: Sets the number of cycles to postpone the start of a command.

set_command_lock()

Prototype: void set_command_l ock (hit state).

Arguments: bit state.

Returns: voi d.

Description: Controls the assertion or deassertion of the lock interface signal. The lock control is on

the transaction boundaries and is not used when the Avalon-MM Master BFM is
operating in burst mode.

set_command_request()

Prototype: voi d set_command_request (Request _t request).

Arguments: Request _t request.

Returns: voi d.

Description: Sets the transaction type to read or write in the command descriptor. The enumeration

type defines REQ READ= 0 and REQ WRITE=1.

set_command_timeout()

Prototype: voi d set_command_timeout (int cycles).

Arguments: int cycles.

Returns: voi d.

Description: Sets the number of elapsed cycles between waiting for a wai t r equest and when time

out is asserted. Disables time-out by setting the value to 0.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



1-16

Chapter 1: Avalon-MM Master BFM
Application Program Interface

set_command_transaction_id()

Prototype:
Arguments:
Returns:
Description:

voi d set_command_transaction_i d(bit[AV_TRANSACTIONID W1:0] id).
Aval onTransactionld_t id

voi d.

Sets the transaction id number in the command descriptor.

set_command_write_response_request()

Prototype:
Arguments:
Returns:
Description:

voi d set_command_write_response_request (| ogic request).
| ogi ¢ request.
voi d.

Sets the flag that enables or disables the write response requests in the command
descriptor.

set_max_command_queue_size()

Prototype:
Arguments:
Returns:
Description:

voi d set_max_comand_queue_si ze(int size).

int size.

voi d.

Sets the pending command queue size maximum threshold.

set_min_command_queue_size()

Prototype:
Arguments:
Returns:
Description:

voi d set_m n_comand_queue_si ze(int size).

int size.

voi d.

Sets the pending command queue size minimum threshold.

set_response_timeout()

Prototype:
Arguments:
Returns:
Description:

voi d set_response_timeout(int cycles).
int cycles.
voi d.

Sets the number of cycles that may elapse before response time out. Disable time-out by
setting the value to 0.

signal_all_transactions_complete

Prototype:
Arguments:
Returns:
Description:

Avalon Verification IP Suite User Guide

signal _all _transactions_conpl ete.

None.

voi d.

Signals that all queued transactions have completed.

June 2012  Altera Corporation



Chapter 1: Avalon-MM Master BFM 1-17
Application Program Interface

signal_command_issued

Prototype: si gnal _command_i ssued.

Arguments: None.

Returns: voi d.

Description: Signals that the currently pending command has been driven to the interface.

signal_fatal_error

Prototype: signal _fatal error.

Arguments: None.

Returns: voi d.

Description: Notifies the testbench that a fatal error has occured in this module.

signal_max_command_queue_size

Prototype: si gnal _max_command_queue_si ze.

Arguments: None.

Returns: voi d.

Description: Signals that the maximum pending transaction queue size threshold has been exceeded.

signal_min_command_queue_size

Prototype: signal _m n_command_queue_si ze.

Arguments: None.

Returns: voi d.

Description: Signals that the pending transaction queue size is below the minimum threshold.

signal_read_response_complete()

Prototype: signal _read_response_conpl ete.

Arguments: None.

Returns: voi d.

Description: Signals that the read response has been received and inserted into the response queue.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



1-18

Chapter 1: Avalon-MM Master BFM
Application Program Interface

signal_response_complete()

Prototype:
Arguments:
Returns:
Description:

si gnal _response_conpl et e.
None.
voi d.

Triggers when either si gnal _read_r esponse_conpl et e or
signal _write_response_conpl et e is triggered.

signal_write_response_complete()

Prototype:
Arguments:
Returns:
Description:

Avalon Verification IP Suite User Guide

signal _wite_response_conpl ete.

None.

voi d.

Signals that the write response has been received and inserted into the response queue.

June 2012  Altera Corporation



2. Avalon-MM Master BFM with
Avalon-ST API Wrapper

June 2012  Altera Corporation

I

The Avalon-MM Master BFM with Avalon-ST API Wrapper provides an alternative
way for the Avalon-MM Master BFM API to support VHDL testbenches. You can use
the Avalon-MM Master BFM with Avalon-ST API Wrapper in HDL simulators that
support mixed language simulation.

The API wrapper is only supported in SOPC Builder. The API wrapper cannot be
generated in Qsys to create VHDL simulation models.

The Avalon-MM Master BEM with Avalon-ST API Wrapper component is
implemented in SystemVerilog and uses an API wrapper to cast the Avalon-MM
Master BFM’s method calls and returns into signals that are carried on the call and
return interface ports. To call a method, the method identifier is inserted into the BEM
wrapper component via the channel field; the data is the arguments for the method.
After the method is complete, the data field transports the arguments for the method
call. The response is returned on the response Avalon-ST interface, and that
Avalon-ST data signal carries the return value. The wrapper is necessary because
VHDL can only access ports and does not support the method calls across hierarchical
boundaries used in the Avalon-MM Master BFEM field. Figure 2-1 provides a
high-level view the VHDL testbench communicating with the BFM.

Figure 2-1. Avalon-MM Master BFM with Avalon-ST Wrapper

Testbench Using Mixed-Language Simulator

Avalon-MM Master BFM with Avalon-ST Wrapper

API Call
Interface

Avalon-MM Master BFM Translator

API Methods
(Tasks & Functions
SystemVerilog)

API Calls and Returns
Ports to References

Avalon-ST Avalon-ST
Avalon-MM Function Function
Returns Calls

Avalon-MM Slave
VHDL

Test Program
VHDL

Avalon Verification IP Suite User Guide



2-2

Chapter 2: Avalon-MM Master BFM with Avalon-ST APl Wrapper

In Figure 2-1, the API call interface and Avalon-ST call and return interface operate in
separate clock domains with av_cl k synchronizing the FPGA logic and api _cl k
synchronizing the Avalon-ST translation interface. The Avalon-ST interface, which is
not part of the actual hardware design, operates at much higher frequencies than the
Avalon-MM Master BFM interface, enabling 1000 API calls and returns to be issued to
the BFM per Avalon clock cycle.

For every function call in the BFM, there is a channel identifier that stores the fixed
mapping between channel number and the function.
<$install_dir>/ip/altera/sopc_builder_ip/verification/lib/
altera_avalon_components_pkg.vhd defines the following function calls:

MM MBTR INI T

MM MBTR_SET_RESP_TI MEQUT

MM MSTR_SET_CNMD_TI MEQUT

MM MSTR_ALL_TRANS_COVPLETE
MM MSTR_GET_CMD_| SSUE_QUEUE_SI ZE
MM MSTR GET_CMD_PEND QUEUE_SI ZE
MM MSTR_GET_RESP_QUEUE_SI ZE
MV MSTR_PUSH_C\VD

MV MSTR POP_RESP

MV MSTR_SET_CMD_DATA

MV MSTR_SET_CNMD_ADDRESS

MV MSTR_SET_CNMD_BYTE_ENABLE
MV MSTR_SET_CMD_BURST_COUNT
MM MBTR_SET_CMD | DLE

MM MSTR_SET_CMD_REQUEST

MM MSTR_SET_CMD_RESERVED 1
MM MBTR_GET_RESP_REQUEST

MM MSTR_GET_RESP_DATA

MV MBTR_GET_RESP_ADDRESS

MV MSTR GET_RESP_BYTE_ENABLE
MV MBTR GET_RESP_BURST S| ZE
MV MSTR_GET_RESP_LATENCY

MM MSTR_GET_RESP_WAI T_TI ME
MV MSTR_SET_CNMD_I NI T_LATENCY
MV MSTR_SET_CNMD_BURST S| ZE

With the exception of the API wrapper, the Avalon-MM Master BFM with Avalon-ST
API Wrapper component is identical to the Avalon-MM Master BFM. For more
information about this component, refer to Chapter 1, Avalon-MM Master BFM.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



= o 3. Avalon-MM Slave BFM

June 2012

=

The Avalon-MM Slave BEM implements the slave side of the Avalon-MM interface
protocol. This is a standard memory-mapped protocol including reads and writes
typical of simple peripherals and the reads, writes, burst reads, and burst writes for
typical memory devices. This BFM also includes a procedural interface to monitor
incoming commands, pass these to the test program, accept response transactions
from the test program, and drive responses.

Figure 3-1 shows the top-level modules for a testbench that uses the Avalon-MM
Slave BEM to verify an Avalon-MM Master device. In addition to the Altera-provided
Avalon-MM Slave BEM, the example testbench shown in Figure 3-1 includes a test
program and the DUT. The test program, written in HDL, programs the Avalon-MM
master to issue Avalon-MM transactions, programs the Avalon-MM Slave BFM to
respond, and analyzes the results.

The BFMs allow illegal response transactions so that you can test the error-handling

functionality of your DUT; consequently, the BEMs cannot be relied upon to guarantee
protocol compliance. The Avalon Monitors components verify protocol compliance.

Figure 3—1. Top-Level Module to Verify an Avalon-MM Master

Testbench
Test Program
y y
HDL HDL
\ \ 4
Avalon-MM
DUT read or write
] Avalon-MM
Avalon-MM < Slave BFM
Master response or
waitrequest

For more information about the Avalon-MM specification supported in SOPC Builder,
refer to the Avalon Interface Specifications (version 1.3).

For more information about the Avalon-MM specification supported in Qsys, refer to
the Avalon Interface Specifications (version 2.0).

Altera Corporation Avalon Verification IP Suite User Guide


http://www.altera.com/literature/manual/mnl_avalon_spec_1_3.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

3-2 Chapter 3: Avalon-MM Slave BFM
Functional Description

Functional Description

This section provides a functional description of the Avalon-MM Master BFM. It
includes the following topics:

m “Timing” on page 3-3

m “Block Diagram” on page 3-6

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 3: Avalon-MM Slave BFM 3-3
Functional Description

Timing
The timing diagram in Figure 3-2 illustrates the sequence of events for an Avalon-MM

Slave BFM responding to interleaved writes and reads when the r eaddat aval i d
signal is present.

Figure 3-2. Avalon-MM Slave Responding to Interleaved Write and Read Transactions

transaction1 transaction2 trans3 trans4
n Yt
E SCL4

:Scr_z /—\
N N L A
Scr_1 E SCL3 '—\
wiite | \/ \ : \
: / !
transactionid ¥ \

' "7 T wr ' thj.(

—

waitrequest

byteenable[3:0]

writeid i 0000000000000

]
]
! rc_3
i
]
1
T
]
:
]
]

writeresponsevalid 1

writedata[31:0]

readresponse

readid

.

rT ETT
: Src.4

Src_z

readdatavalid

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



34

Chapter 3: Avalon-MM Slave BFM
Functional Description

Table 3-1 lists the annotations used in Figure 3-2.

Table 3-1. Key to Annotations in Figure 3-2

Symbol Description
T The response wait time, which is three cycles. The slave sets this value using the
wi i set_interface wait _time command.
Tur wai t request is sampled #1 after the falling edge of cl k.
T The response wait time for the first read, which is two cycles. The slave sets this value using the
w2 set_interface wait _time command.
Ser 1=S¢r 2 | Signals when read commands were received. The event name is si gnal _command_r ecei ved.
T The response latency for the reads, which is three cycles. The slave sets this time using the
its7rl. 2 set_response_| at ency command.
The write response latency for the first write, which is three cycles. This is the time between when the write
Tvvrlj i i i i
command is accepted, and the write response is provided by the slave. T
Src 1,53 | Signals write responses. The event name is si gnal _r esponse_i ssued.
Sic 2,51 4 | Signals read responses. The event name is si gnal _r esponse_i ssued.
Tio1—Tip.4 | Reference number to identify each read or write transaction.
ID_1,1D_3 | Reference number to identify write transactions.
ID_2,ID_4 | Reference number to identify read transactions.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 3: Avalon-MM Slave BFM 3-5
Functional Description

The timing diagram in Figure 3-3 illustrates the sequence of events for an Avalon-MM
Slave BEM receiving a write followed by a read when the r eaddat aval i d signal is not
present.

Figure 3-3. Avalon-MM Slave Receiving Write and Read Commands with No readdatavalid Signal

transaction5 transaction6

CLK

read

Scr_1

wo L\

waitrequest

writedata[31:0] D1

byteenable[3:0] -

readdata

Table 3-2 lists the annotations used in Figure 3-3.

Tahle 3-2. Key to Annotations in Figure 3-3 (Part 1 of 2)

Symbol Description

T The initial command latency which is two cycles for transactions 1 and 2.
The response wait time which is three cycles. The master gets this value using the

T get _response_wait _time command.

T The response wait time for the first read, which is two cycles. The slave sets this value using the
w2 set_interface wait_time command.

Tor wai t request is sampled #1 after the falling edge of cl k.

T, The response latency for the first read, which is zero cycles. The master gets this time using the

get _response_| at ency command.

Ser 1, S¢r 2 Signals write and read commands. The event name is si gnal _command_i ssued.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



3-6

Chapter 3: Avalon-MM Slave BFM
Functional Description

Tahle 3-2. Key to Annotations in Figure 3-3 (Part 2 of 2)

Symbol Description
Sre 1 Signals the first read response. The event name is si gnal _r esponse_conpl et e.
Sate Signals the end of the test. The event name is si gnal _al | _transactions_conpl ete

Block Diagram

Figure 3—4 shows a block diagram of the Avalon-MM Slave BFM. The BFM includes
the following major blocks:

Avalon-MM Slave API—Provides methods to get commands and create responses
to commands from the Avalon-MM master (DUT).

Command Descriptor—Accumulates the fields of a command sent by the
Avalon-MM master and sends completed commands to the Avalon-MM Slave
BFM when requested.

Avalon-MM Interface Monitor—Monitors activity coming from the Avalon-MM
Master (DUT) and stores commands in the Client Command Queue.

Response Generator and Data Cache— In menory_node the Slave BFM models a
single port RAM. A write operation stores the data in an associative array and
generates no response. A read operation fetches data from the array and drives it
on the response side of the Avalon interface. This mode simplifies loopback
testing.

Avalon-MM Slave Interface Driver—Drives responses to the system interconnect
fabric. For burst transfers, there is a separate transfer for each word of the burst.
The client testbench can instruct the Slave BFM to assert wai t r equest for each
word of the burst to test the functionality of the Avalon-MM master.

Public Events—Provides status response that arrives together with the data. The
public event signals indicate the status of the Master’s request such as successful
completion, timeout, or error.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation




Chapter 3: Avalon-MM Slave BFM 3-7
Functional Description
Figure 3-4. Avalon-MM Slave BFM Block Diagram
HDL
Avalon-MM Slave BFM API
P> (Transaction Level Commands)
A A
\4
. Public Events X
Command Descriptor Response Descriptor
A Internal
Command
Queue
Client >
Command
Queue 4 Al Avalon-MM
Pending Slave BFM
Read and Write
Test Program Response Queue

(HDL)

command waitrequest

\ 4

Avalon-MM Slave
Interface Driver

response

System Interconnect Fabric
(Transfer Level)

waitrequest command

oL ]

A

Device Under Test (DUT)

> Avalon-MM Master Component

“ Avalon-MM Master Port
“ Avalon-MM Slave Port

I:I SystemVerilog

- SystemVerilog Testbench

June 2012  Altera Corporation

Avalon Verification IP Suite User Guide



3-8

Chapter 3: Avalon-MM Slave BFM
Parameters

Parameters

The Avalon-MM Slave BEM supports the full range of signals defined for the
Avalon-MM slave interface. You can customize the Avalon-MM slave interface using
the parameters described in Table 3-3.

Table 3-3. Parameters for the Avalon-MM Slave BFM (Part 1 of 2)

Parameter D‘faflau“‘:t \;.:I?IZL Description

Port Widths
Address width 32 — Address width in bits.
Symbal width I
Read Response width — Read status response width in bits.
Write Response width — Write status response width in bits.

Parameters
Number of symbols 4 — Number of symbols per word.
Burstcount width 3 — The width of the burst count in bits.

Port Enables
Use the read signal On On/Off | When On, the interface includes a r ead pin.
Use the write signal On On/Off | When On, the interface includes awri t e pin.
Use the address signal On On/Off | When On, the interface includes addr ess pins.
Use the byte enable signal On On/0ff | When On, the interface includes byt e_enabl e pins.
Use the burstcount signal On On/Off | When On, the interface includes bur st count pins.
Use the readdata signal On On/0ff | When On, the interface includes a r eaddat a pin.
Use the readdatavalid signal On On/Off | When On, the interface includes a r eaddat aval i d pin.
Use the writedata signal On On/0ff | When On, the interface includes a wr i t edat a pin.
Use the begintransfer signal off On/0ff | When On, the interface includes wri t edat a pins.
Use the beginbursttransfer signal Off On/Off | When On, the interface includes a begi nbur st t r ansf er pin.
Use the arbiterlock signal off On/0ff | When On, the interface includes an ar bi t er | ock pin.
Use the lock signal Off On/Off | When On, the interface includes a | ock pin.
Use the debugaccess signal Off On/0ff | When On, the interface includes a debugaccess pin.
Use the waitrequest signal On On/Off | When On, the interface includes a wai t r equest pin.
Use the transactionid signal Off On/Off | When On, the interface includes a t r ansacti oni d pin.
Use the write response signals off On/0ff | When On, the interface includes a wr i t er esponse pin.
Use the read response signals Off On/Off | When On, the interface includes a r eadr esponse pin.
Use the clken signals oft On/0ff | When On, the interface includes a cl ken pin.

Port Polarity
Assert reset high On On/0ff | When On, reset is asserted high.
Assert waitrequest high On On/Off | When On, wai t r equest is asserted high.
Assert read high On On/Off | When On, r ead is asserted high.
Assert write high On On/Off | When On, wi t e is asserted high.

Avalon Verification IP Suite User Guide

June 2012  Altera Corporation




Chapter 3: Avalon-MM Slave BFM
Parameters

3-9

Table 3-3. Parameters for the Avalon-MM Slave BFM (Part 2 of 2)

signal

Default Legal -
Parameter Value Values Description
Assert byteenable high On On/0ff | When On, byt eenabl e is asserted high.
Assert readdatavalid high On On/Off | When On, r eaddat aval i d is asserted high.
Assert arbiterlock high On On/Off | When On, ar bi t er| ock is asserted high.
Assert lock high On On/Off | When On, | ock is asserted high.
Burst Attributes
When On, the address for bursts wraps instead of an
incrementing. With a wrapping burst, when the address
Linewrap burst On On/Off | reaches a burst boundary, it wraps back to the previous burst
boundary such that only the low order bits need to be used
for addressing.
Burst on burst boundaries only On On/Off | When On, memory bursts are aligned to the address size.
Miscellaneous
. . The maximum number of pending reads which can be queued
Maximum pending reads 1 —
up by the slave.
Timing
Fixed read latency (cycles) 0 o Sets the read latency for fixed-latency slaves. Not used on
vicy interfaces that include the r eaddat aval i d signal.
For slave interfaces that do not use the wai t r equest signal,
. _— . the read wait time indicates the number of cycles before the
Fixed read wait time (cycles) 1 slave responds to a read. The timing is as if the slave asserted
wai t request for this number of cycles.
For slave interfaces that do not use the wai t r equest signal,
Fixed write wait time (cycles) 0 — the write wait time indicates the number of cycles before the
slave accepts a write.
Registered waitrequest On On/Off | Specifies whether to turn on the register stage.
Registered Incoming Signals On On/Off | Specifies whether to register incoming signals.
Interface Address Type
Set slave interface address type to WORDS/ .
symbols or words WORDS SYMBOLS Sets slave interface address type to symbols or words.
API Streaming Interface (Note 1)
Width of API interface data signal 64 — The width of the data signal.
Width of API return interface data 64 — The width of the return interface data signal.

Note to Table 3-3:

(1) This interface is required only for the Avalon-MM Slave BFM with Avalon-ST APl Wrapper that is used in mixed language simulations.

June 2012  Altera Corporation

Avalon Verification IP Suite User Guide




3-10 Chapter 3: Avalon-MM Slave BFM
Application Program Interface

Application Program Interface
This section describes the API for the Avalon-MM Slave BFM.

get_clken()

Prototype: [ ogic get_clken().

Arguments: None.

Returns: | ogic.

Description: Returns the clock enable signal status.

get_command_address()

Prototype: bit [AV_ADDRESS W1:0] get_conmand_address().
Arguments: None.

Returns: bit [ AV_ADDRESS W1:0].

Description: Queries the received command descriptor for the transaction address.

get_command_arbiterlock()

Prototype: bit get_command_arbiterlock().

Arguments: None.

Returns: bit.

Description: Queries the received command descriptor for the transaction arbiterlock.

get_command_hurst_count()

Prototype: [ AV_BURSTCOUNT_W 1:0] get_command_burst _count().
Arguments: None.

Returns: [ AV_BURSTCOUNT_W 1: 0] .

Description: Queries the received command descriptor for the transaction burst count.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 3: Avalon-MM Slave BFM 3-11
Application Program Interface

get_command_hurst_cycle()

Prototype: int get_command_burst_cycle().

Arguments: None.

Returns: Int.

Description: The slave BFM receives and processes write burst commands as a sequence of discrete

commands. The number of commands corresponds to the burst count. A separate
command descriptor is constructed for each write burst cycle, corresponding to a
partially completed burst. This method returns a burst cycle field that tells the testbench
which burst cycle was active when this descriptor was constructed. This facility enables
the testbench to query partially completed write burst operations. In other words, the
testbench can query the write data word on each burst cycle as it arrives and begin to
process it immediately rather than waiting until the entire burst has been received,
making it possible to perform pipelined write burst processing in the testbench.

get_command_hyte_enable()

Prototype: bit [AV_NUMSYMBOLS- 1:0] get_conmand_byte_enable (int index).
Arguments: i ndex.

Returns: bit [ AV_NUMBYMBOLS-1:0].

Description: Queries the received command descriptor for the transaction byte enable. For burst

commands with burst count greater than 1, the index selects the data cycle.

get_command_data()

Prototype: bit [AV_DATA W1:0] get_command_data(int index).

Arguments: i ndex.

Returns: bit [AV_DATA W1.0].

Description: Queries the received command descriptor for the transaction write data. For burst

commands with burst count greater than 1, the index selects the write data cycle.

get_command_debugaccess|()

Prototype: bit get_conmand_debugaccess().

Arguments: None.

Returns: bit.

Description: Queries the received command descriptor for the transaction debugaccess.

get_command_queue_size()

Prototype: int get_conmand_queue_si ze().

Arguments: None.

Returns: int.

Description: Queries the command queue to determine number of pending commands.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



312

Chapter 3: Avalon-MM Slave BFM
Application Program Interface

get_command_lock()

Prototype:
Arguments:
Returns:
Description:

bit get_command_| ock().

None.

bit.

Queries the received command descriptor for the transaction lock.

get_command_request()

Prototype:
Arguments:
Returns:
Description:

Request _t get _comand_request ().
None.
Request _t (enumerated type).

Gets the received command descriptor to determine command request type. A
command type may be REQ READ or REQ WRI TE. These type values are defined in the
enumerated type called Request _t, which is imported with the package named

al tera_aval on_nm pkg.

get_command_transaction_id()

Prototype:
Arguments:
Returns:
Description:

Aval onTransactionld_t get_conmand_transaction_id().
None.

Aval onTransactionld_t.

Queries the received command descriptor for the transaction ID.

get_command_write_response_request()

Prototype:
Arguments:
Returns:
Description:

Aval onTransactionld_t get_command_write_response_request ().
None.
Aval onTransactionld_t.

Queries the received command descriptor for the wri t e_r esponse_request field
value. A value of 1 indicates that the master has requested for a write response.

get_pending_read_latency_cycle()

Prototype:
Arguments:
Returns:
Description:

Avalon Verification IP Suite User Guide

int get_pending_read_| atency_cycle().

None.

int.

Queries the read command queue to determine the number of cycles needed for the

Slave BFM to complete the current read response. This method notifies the master when
the Slave BFM is ready to receive a command.

June 2012  Altera Corporation



Chapter 3: Avalon-MM Slave BFM 3-13
Application Program Interface

get_pending_write_latency_cycle()

Prototype: int get_pending_wite_|atency_cycle().

Arguments: None.

Returns: int.

Description: Queries the write command queue to determine the number of cycles needed for the

Slave BFM to complete the current write response.

get_response_queue_size()

Prototype: int get_response_queue_si ze().

Arguments: None.

Returns: int.

Description: Queries the response queue to determine number of response descriptors pending.

get_slave_bfm_status

Prototype: bit get_slave_bfm status.

Arguments: None.

Returns: bit.

Description: Queries the Slave BFM component to determine when the read transaction in the Slave

BFM has reached the maximum read transactions. A return value of 1 means that the
Slave BFM can no longer accept a new read command.

get_version()

Prototype: string get_version().

Arguments: None.

Returns: String.

Description: Returns BFM version as a string of three integers separated by periods. For example,

version 10.1 sp1 is encoded as "10.1.1".

init()
Prototype: init().
Arguments: None.
Returns: voi d.
Description: Initializes the Avalon-MM slave interface.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



3-14 Chapter 3: Avalon-MM Slave BFM
Application Program Interface

pop_command()

Prototype: voi d pop_conmand() .

Arguments: None.

Returns: voi d.

Description: Removes the command descriptor from the queue so that the testbench can query it

using the get _conmand methods.

push_response()

Prototype: voi d push_response().

Arguments: None.

Returns: voi d.

Description: Inserts the fully populated response transaction descriptor onto the response queue.

The BFM removes response descriptors off the queue as soon as they are available,
reads them, and drives the Avalon-MM interface response plane.

set_command_transaction_mode()

Prototype: voi d set_command_transaction_node (int node);

Arguments: mode.

Returns: voi d.

Description: By default, write burst commands are consolidated into a single command transaction

containing the write data for all burst cycles in that command. This mode is set when the
mode argument equals 0. When the mode argument is set to 1, the default is overridden
and write burst commands yield one command transaction per burst cycle.

set_interface_wait_time()

Prototype: voi d set_interface wait_tinme(int wait_cycles, int index).
Arguments: wai t _cycl es.
i ndex.
Returns: voi d.
Description: Specifies zero or more wait states to assert in each Avalon burst cycle by driving

wai t request active. With write burst commands, each write data cycle is forced to wait
the number of cycles corresponding to the cycle index. With read burst commands,
there is only one command cycle corresponding to index 0 which can be forced to wait.

set_max_response_queue_size()

Prototype: voi d set_max_response_queue_si ze(int size).
Arguments: int size.

Returns: voi d.

Description: Sets the maximum pending response queue size threshold.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 3: Avalon-MM Slave BFM 3-15
Application Program Interface

set_min_response_queue_size()

Prototype: voi d set_m n_response_queue_si ze(int size).
Arguments: int size.

Returns: voi d.

Description: Sets the minimum pending response queue size threshold.

set_read_response_id()

Prototype: voi d set_read_respose_i d(Aval onTransactionld_t id).
Arguments: Aval onTransactionld_t id.

Returns: voi d.

Description: Sets the transaction ID on the avs_readi d pin.

set_read_response_status()

voi d set_read_respose_st at us(Aval onReadResponse_t status, int

Prototype: i ndex) .

Arguments: Aval onReadResponse_t status.
int index.

Returns: voi d.

Description: Sets the read response status code.

set_response_hurst_size()

Prototype: voi d set_response_burst_size(bit [AV_BURSTCOUNT W1:0] burst_size).
Arguments: bur st _si ze.

Returns: voi d.

Description: Sets the transaction burst count in the response descriptor.

set_response_data()

Prototype: voi d set_response_data(bit [AV_DATA W1:0] data, int index).

Arguments: dat a.
i ndex.

Returns: voi d.

Description: Sets the transaction read data in the response descriptor. For burst transactions, the
command descriptor holds an array of data, with each element individually set by this
method.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



3-16

Chapter 3: Avalon-MM Slave BFM
Application Program Interface

set_response_latency()

Prototype:
Arguments:

Returns:
Description:

voi d set_response_| atency(bit [31:0]latency, int index).
| at ency.

i ndex.

voi d.

Sets the response latency for read commands. The response is driven out the specified
number of cycles after receiving the read command.

set_response_request()

Prototype:
Arguments:
Returns:
Description:

voi d set_response_request (Request _t request).
Request _t request.
voi d.

Sets the transaction type to read or write in the response descriptor. The enumeration
type defines REQ READ =0 and REQ WRI TE = 1.

set_response_timeout()

Prototype:
Arguments:
Returns:
Description:

voi d set_response_timeout(int cycles).

None.

voi d.

Sets the number of cycles that may elapse before timing out.

set_write_response_id()

Prototype:
Arguments:
Returns:
Description:

voi d set_wite_respose_i d(Aval onTransactionld_t id).
Aval onTransactionld_t id.

voi d.

Sets the transaction ID on the avs_wri t ei d pin.

set_write_response_status()

Prototype:

Arguments:

Returns:
Description:

Avalon Verification IP Suite User Guide

voi d set_wite_respose_status(Aval onWiteResponse_t status, int
i ndex) .

Aval onWiteResponse_t status.
int index.

voi d.

Sets the write response status code.

June 2012  Altera Corporation



Chapter 3: Avalon-MM Slave BFM 3-17
Application Program Interface

signal_command_received

Prototype: signal _command_r ecei ved.

Arguments: None.

Returns: voi d.

Description: Notifies the testbench that a command has been detected on an Avalon-MM port. The

testbench can respond with a set _conmand_wai t _ti me call on receiving this event to
dynamically back pressure the driving Avalon-MM master. Alternatively, the previously
setwai t _tinme might be used continuously for a set of transactions.

signal_error_exceed_max_pending_reads

Prototype: signal _error_exceed_max_pendi ng_r eads.

Arguments: None.

Returns: voi d.

Description: Notifies the testbench of the error condition, in which the slave has more than

max_pendi ng_r eads pipelined read commands queued and waiting to be processed.

signal_max_response_queue_size

Prototype: si gnal _max_response_queue_si ze.

Arguments: None.

Returns: voi d.

Description: Signals that the maximum pending transaction queue size threshold has been exceeded.

signal_min_command_queue_size

Prototype: signal _m n_response_queue_si ze.

Arguments: None.

Returns: voi d.

Description: Signals that the pending transaction queue size is below the minimum threshold.

signal_fatal_error

Prototype: signal _fatal _error.

Arguments: None.

Returns: voi d.

Description: Notifies the testbench that a fatal error has occurred in this module.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



3-18 Chapter 3: Avalon-MM Slave BFM
Application Program Interface

signal_response_issued

Prototype: si gnal _response_i ssued.

Arguments: None.

Returns: voi d.

Description: Notifies the testbench that a response has been driven out on the Avalon bus.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



4. Avalon-MM Slave BFM with Avalon-ST
APl Wrapper

June 2012  Altera Corporation

e

The Avalon-MM Slave BFM with Avalon-ST API Wrapper provides an alternative
way for the Avalon-MM Slave BFM API to support VHDL testbenches. You can use
the Avalon-MM Slave BEM with Avalon-ST API Wrapper in HDL simulators that
support mixed language simulation.

The API wrapper is only supported in SOPC Builder. The API wrapper cannot be
generated in Qsys to create VHDL simulation models.

The Avalon-MM Slave BFM with Avalon-ST API Wrapper component is implemented
in SystemVerilog and uses an API wrapper to cast the Avalon-MM BFM’s method
calls and returns into signals that are carried on the call and return interface ports. To
call a method, the method identifier is inserted into the wrapper component via the
channel field; the data is the arguments for the method. After the method is complete,
the data field transports the arguments for the method call. The response is returned
on the response Avalon-ST interface, and that Avalon-ST data signal carries the return
value. The wrapper is necessary because VHDL can only access ports and does not
support the method calls across hierarchical boundaries used in the Avalon-MM
Master BFM field. Figure 4-1 provides a high-level view of this VHDL testbench
communicating with the BFM.

Figure 4-1. Avalon-MM Slave BFM with Avalon-ST Wrapper

Testbench Using Mixed-Language Simulator

Avalon-MM Slave BFM with Avalon-ST Wrapper

API Call

Avalon-MM Slave BFM Interface

Translator

API Methods
(tasks & functions
SystemVerilog)

API Calls and Returns
Ports to References

Avalon-ST Avalon-ST
Avalon-MM Function Function
Calls Returns

Avalon-MM Master
VHDL

Test Program
VHDL

Avalon Verification IP Suite User Guide



4-2

Chapter 4: Avalon-MM Slave BFM with Avalon-ST APl Wrapper

In Figure 4-1, the API call interface and Avalon-ST call and return interface operate in
separate clock domains with av_cl k synchronizing the FPGA logic and api _cl k
synchronizing the Avalon-ST translation interface. The Avalon-ST interface, which is
not part of the actual hardware design, operates at a much faster frequency than the
Avalon-MM Slave BEM interface, enabling 1000 API calls and returns to be issued to
the BFM per Avalon clock cycle.

For every function call in the BFM, there is a channel identifier that stores the fixed
mapping between channel number and the function.
<$install_dir>/ip/altera/sopc_builder_ip/verification/lib/
altera_avalon_components_pkg.vhd defines the following function calls:

m MM SLV_SIGNAL_FATAL_ERROR

m MM SLV_SIGNAL_ERROR EXCEED MAX_PENDI NG READS
m MM SLV_SI GNAL_COVVAND RECEI VED

m MM SLV_SIGNAL_RESP | SSUED

m MM SLV_SI GNAL_RESERVED 4

m MM SLV_SI GNAL_RESERVED 5

m MM SLV_SI GNAL_RESERVED 6

m MM SLV_SI GNAL_RESERVED 7

With the exception of the API wrapper, the Avalon-MM Slave BFM with Avalon-ST
API Wrapper component is identical to the Avalon-MM Slave BFM. For more
information about this component, refer to Chapter 3, Avalon-MM Slave BFM.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



5. Avalon-MM Monitor
fAN ISR

The Avalon-MM Monitor verifies Avalon-MM interfaces using SystemVerilog
assertions. In addition, it provides test coverage reports so that you can determine
when your test vectors provide sufficient test coverage for your component’s
functionality.

The Avalon-MM Monitor is implemented in SystemVerilog and uses the
SystemVerilog Assertion (SVA) language. The SVA language is supported by the
Synopsys VCS, and Mentor Graphics Questa simulators. If you are using ModelSim,
the monitor component still compiles and simulates, but the assertion checking is
disabled.

Figure 5-1 shows a testbench that uses an Avalon-MM Monitor to test components
with Avalon-MM interfaces. The monitor’s Avalon-MM Master interface is connected
to a component’s Avalon-MM slave interface, and an Avalon-MM Slave interface is
connected to a component’s Avalon-MM master interface. The test program
communicates with the monitor. The test program can use the monitor’s assertion
checking and coverage groups to ensure that all legal parameter values for the DUT’s
Avalon-MM interface are tested. The Avalon-MM Monitor also includes a transaction
collector feature to collect and monitor transaction status.

Figure 5-1. Testhench Using an Avalon-MM Monitor with Avalon-MM Interfaces

Testbench

Test Program
System Verilog with VMM

generator generator generator
object object object
instance instance instance

configu-

initial() transactor .
ration

\/
Avalon-MM Monitor

Avalon-MM <> Avalon-MM
Master BFM Slave BFM

APl Methods
Assertion Test Transaction
Checking Coverage Collector

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



5-2

Chapter 5: Avalon-MM Monitor
Parameters

Parameters

The Avalon-MM Monitor supports the full range of signals defined for the Avalon-
MM master and slave interfaces. You can customize the Avalon-MM master and slave
interfaces using the parameters described in Table 5-1.

Table 5-1. Parameters for the Avalon-MM Monitor (Part 1 of 2)

Default

Legal

Parameter Value | Values Description

Port Widths
Address width 32 — Address width in bits.
Symbol width 8 . E;tt:-?r/ir:nbtgldvzlrﬁgr]f;ré:siTS. The symbol width should be 8 for
Number of symbols 4 — Numbers of symbols per word.
Burstcount width 3 — The width of the burst count in bits.
Readresponse width 8 — Read response signal width in bits.
Writeresponse width 8 — Write response signal width in bits.

Port Enables
Use the read signal On On/0ff | When On, the interface includes a r ead pin.
Use the write signal On On/0ff | When On, the interface includes awri t e pin.
Use the address signal On On/0ff | When On, the interface includes addr ess pins.
Use the byte enable signal On On/Off | When On, the interface includes byt e_enabl e pins.
Use the burstcount signal On On/Off | When On, the interface includes bur st count pins.
Use the readdata signal On On/Off | When On, the interface includes a r eaddat a pin.
Use the readdatavalid signal On On/Off | When On, the interface includes a r eaddat aval i d pin.
Use the writedata signal On On/Off | When On, the interface includes a wri t edat a pin.
Use the begintransfer signal Off On/0ff | When On, the interface includes wri t edat a pins.
Use the beginbursttransfer signal Off On/Off | When On, the interface includes a begi nbur st t r ansf er pins.
Use the waitrequest signal On On/Off | When On, the interface includes a wai t r equest pin.
Use the arbiterlock signal Off On/0ff | When On, the interface includes an ar bi t erl ock pin.
Use the lock signal off On/0ff | When On, the interface includes a | ock pin.
Use the debugaccess signal Off On/Off | When On, the interface includes a debugaccess pin.
Use the transactionid signal Off On/0ff | When On, the interface includes atransactioni d pin.
Use the writeresponse signal off On/0ff | When On, the interface includes a wri t er esponse pin.
Use the readresponse signal off On/Off | When On, the interface includes a r eadr esponse pin.
Use the clken signals off On/Off | When On, the interface includes a cl ken pin.

Avalon Verification IP Suite User Guide

June 2012  Altera Corporation




Chapter 5: Avalon-MM Monitor
Parameters

5-3

Tahle 5-1. Parameters for the Avalon-MM Monitor (Part 2 of 2)

Default | Legal -
Parameter Value | Values Description
Burst Attributes
When 0n, the address for bursts wraps instead of an
incrementing. With a wrapping burst, when the address reaches
Linewrap burst On On/Off | a burst boundary, it wraps back to the previous burst boundary
such that only the low order bits need to be used for
addressing.
Burst on burst houndaries only On On/0ff | When On, memory bursts are aligned to the address size.
Miscellaneous
Read response timeout (cycles) 100 | Specifies when a timeout occurs if r eaddat aval i d is not
asserted.
Avalon write timeout (cycles) 100 . Specifies when a timeout occurs if a burst write transfer has not
completed.
Waitrequest timeout (cycles) 1024 — Timeout period for the continuous assertion of wai t r equest .
Maximum pending reads 1 - Spec!ﬂes the maximum number of pipelined reads that can be
pending.
. | Sets the read latency for fixed-latency slaves. Not used on
Fixed read latency (cycles) 0 interfaces that include the r eaddat aval i d signal.
Maximum read latency (cycles) 100 o fSpec[ﬂes the maximum read latency in cycle for test coverage
unction
Maximum waitrequest read cycles 100 . Specifies the maximum wait time allowed for read cycle for
(for coverage) coverage.
Maximum waitrequest write cycles 100 — Maximum wait time allowed for write cycle for coverage.
(for coverage)
Maximum continuous read (cycles) 5 — Maximum continuous read time allowed for coverage.
Maximum continuous write 5 — | Maximum continuous write time allowed for coverage.
(cycles)
:v[:;zll::)'m continuous waitrequest 5 — | Maximum continuous wait request time allowed for coverage.
Maximum continuous . . .
readdatavalid (cycles) 5 — Maximum continuous readdatavalid time allowed for coverage.
Timing
For master interfaces that do not use the wai t r equest signal,
. _— the read wait time indicates the number of cycles before the
Fixed read wait time (cycles) 1 — A )
master responds to a read. The timing is as if the master
asserted wai t r equest for this number of cycles.
For master interfaces that do not use the wai t r equest signal,
Fixed write wait time (cycles) 0 — the write wait time indicates the number of cycles before the
master accepts a write.
Registered waitrequest Off On/Off | Specifies whether to turn on the register stage.
Registered Incoming Signals off On/Off | Specifies whether to register incoming signals.

June 2012  Altera Corporation

Avalon Verification IP Suite User Guide




5-4 Chapter 5: Avalon-MM Monitor
Application Program Interface

Application Program Interface
This section describes the API for the Avalon-MM Monitor.

Assertion Checking

For assertion checking, the enabl e_wai t r equest _t i meout method enables the logic
that verifies that the wai t r equest signal is asserted for fewer cycles than the

wai trequest timeout period. If the timeout period is violated, an error message
displays on the console running the simulation. Error flags are also displayed in the
waveform viewer. By default all assertions are enabled. However, depending on the
parameterization of the Avalon-MM interface, some assertions are automatically
disabled. For example, you might have to turn off some assertion checking to avoid
the monitors generating error messages when injecting protocol errors to test the
Avalon-MM component’s error handling capability. The names of all methods that
enable assertions begin with set _enabl e_a. By default, if your testbench includes the
Avalon-MM monitor, the checking function is enabled. You can disable checking with
the DI SABLE_ALTERA AVALON_SI M SVA macro.

set_enable_a_address_align_with_data_width()

Prototype: set_enabl e_a_address_align_with_data_width().

Arguments: Bool ean.

Returns: voi d.

Description: Enables an assertion that ensures the byte address that the master uses is

aligned with the data width.

set_enable_a_heginbursttransfer_exist()

Prototype: set _enabl e_a_begi nbursttransfer_exist().

Arguments: Bool ean.

Returns: voi d.

Description: Enables an assertion that ensures begi nbur st t ransf er is asserted

during a transfer. It is disabled when begi nbur st t r ansf er is not used.

set_enahle_a_bheginbursttransfer_legal()

Prototype: set _enabl e_a _begi nbursttransfer_legal ().

Arguments: Bool ean.

Returns: voi d.

Description: Enables an assertion that ensures begi nbur st t r ansf er is asserted with
aread orwrite signal. Itis disabled when begi nbur st t ransf er is not
used.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 5: Avalon-MM Monitor
Application Program Interface

55

set_enable_a_heginbursttransfer_single_cycle()

Prototype:
Arguments:
Returns:
Description:

set _enabl e_a_begi nbursttransfer_single_cycle().
Bool ean.
voi d.

Enables an assertion that ensures begi nbur st t r ansf er is asserted for a
single cycle regardless of the behavior of the wai t r equest signal. It is
disabled when begi nbur st t ransf er is not used.

set_enable_a_bhegintransfer_exist()

Prototype:
Arguments:
Returns:
Description:

set _enabl e_a_begi ntransfer_exist().
Bool ean.
voi d.

Enables an assertion that ensures begi nt r ansf er is asserted during any
single transfer. Disabled when either begi nt r ansf er is not supported.

set_enable_a_bhegintransfer_legal()

Prototype:
Arguments:
Returns:
Description:

set _enabl e_a_begi ntransfer_legal ().
Bool ean.
voi d.

Enables an assertion that ensures begi nt r ansf er is asserted together
with either read or wri t e. Disabled when either begi nt r ansf er is not
supported.

set_enable_a_bhegintransfer_single_cycle()

Prototype:
Arguments:
Returns:
Description:

set _enabl e_a_begi ntransfer_single_cycle().
Bool ean.
voi d.

Enables an assertion that ensures begi nt r ansf er is asserted for only 1
cycle and not reasserted for any single transfer, regardless of the status of
the wai t r equest signal.

set_enahle_a_bhurst_legal()

Prototype:
Arguments:
Returns:
Description:

June 2012  Altera Corporation

set_enable_a_burst_legal ().
Bool ean.
voi d.

Enables an assertion that ensures that the total number of assertions for
the wri t e and readdat aval i d is the same as the bur st count for any
burst transfer. Disabled when burst transfers are not supported.

Avalon Verification IP Suite User Guide



5-6

Chapter 5: Avalon-MM Monitor
Application Program Interface

set_enable_a_hyteenable_legal()

Prototype:
Arguments:
Returns:
Description:

set _enabl e_a_byteenabl e_| egal ().
Bool ean.
voi d.

Enables an assertion that ensures the byt eenabl e value is legal value as
specified by the Avalon Interface Specifications. Disabled when
byt eenabl e is not supported.

set_enable_a_constant_during_burst()

Prototype:
Arguments:
Returns:
Description:

set _enabl e_a_constant _during_burst().
Bool ean.
voi d.

Enables an assertion that ensures that addr ess and bur st count, and
byt eenabl e are held constant if a write burst transfer. Disabled when

wai t request is not supported. It is disabled when burst transfers are not
supported.

set_enable_a_constant_during_clk_disabled()

Prototype:
Arguments:
Returns:
Description:

set _enabl e_a_constant _during_cl k_di sabl ed().
Bool ean.
voi d.

Enables an assertion that ensures that all signals are held constant if
cl ken is deasserted.

set_enable_a_constant_during_waitrequest()

Prototype:
Arguments:
Returns:
Description:

set _enabl e_a_constant _during_wai trequest ().
Bool ean.
voi d.

Enables an assertion that ensures thatread, wite, witedata,
addr ess, bur st count, and byt eenabl e are held constant if
wai t request is asserted. Disabled when wai t r equest is not supported.

set_enable_a_exclusive_read_write()

Prototype:
Arguments:
Returns:
Description:

Avalon Verification IP Suite User Guide

set_enabl e_a_exclusive_read_wite().
Bool ean.
voi d.

Enables an assertion that ensures r ead and wri t e are not asserted
simultaneously. Disabled when either read or wri t e is not supported.

June 2012  Altera Corporation


http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 5: Avalon-MM Monitor 5-7
Application Program Interface

set_enable_a_half _cycle_reset_legal()

Prototype: set_enabl e_a_half_cycle_reset _legal ().

Arguments: Bool ean.

Returns: voi d.

Description: Enables an assertion that ensures r eset is asserted correctly.

set_enable_a_less_than_burstcount_max_size()

Prototype: set _enable_a | ess_than_burstcount _max_size().

Arguments: Bool ean.

Returns: voi d.

Description: Enables an assertion that ensures bur st count size is less than or equal to

the maximum burst size, 2** ( AV_BURSTCOUNT_W 1) . It is disabled when
either burst transfers are not supported or the bust size is less than 1.

set_enable_a_less_than_maximumpendingreadtransactions()

Prototype: set _enabl e_a_| ess_t han_maxi nunpendi ngr eadt r ansacti ons().
Arguments: Bool ean.

Returns: voi d.

Description: Enables an assertion that ensures that the number of pending read

transfers is less than maxi nunPendi ngReadTr ansact i ons. Disabled
when either r ead is not supported or
maxi nunPendi ngReadTr ansacti ons is less than 1.

set_enable_a_no_readdatavalid_during_reset()

Prototype: set _enabl e_a_no_readdataval i d_during_reset().

Arguments: Bool ean.

Returns: voi d.

Description: Enables an assertion that ensures that r eaddat aval i d is deasserted if

reset is asserted. Disabled when r eaddat aval i d is not supported.

set_enable_a_no_read_during_reset()

Prototype: set_enable_a_no_read_during_reset().

Arguments: Bool ean.

Returns: voi d.

Description: Enables an assertion that ensures r ead is deasserted if r eset is asserted.

Disabled when r ead is not supported.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



5-8 Chapter 5: Avalon-MM Monitor
Application Program Interface

set_enable_a_no_write_during_reset()

Prototype: set_enable_a no_wite_during_reset().

Arguments: Bool ean.

Returns: voi d.

Description: Enables an assertion that ensures wri t e is deasserted if r eset is

asserted. Disabled when wri t e is not supported.

set_enable_a_readid_sequence()

Prototype: set _enabl e_a_readi d_sequence().

Arguments: Bool ean.

Returns: voi d.

Description: Enables an assertion that verifies if the r eadi d sequence follows the

sequence of the t ransact i oni d.

set_enable_a_read_response_sequence()

Prototype: set _enabl e_a_read_response_sequence().

Arguments: Bool ean.

Returns: voi d.

Description: Enables an assertion that ensures r eaddat aval i d is asserted while read

is asserted for the same read transfer.

set_enable_a_read_response_timeout()

Prototype: set_enabl e_a_read_response_timeout ().

Arguments: Bool ean.

Returns: voi d.

Description: Enables an assertion that ensures r eaddat aval i d is asserted within

maximum allowed timeout period. Disabled when either r eaddat aval i d
is not supported or the maximum allowed timeout period is less than 1.

set_enable_a_register_incoming_signals()

Prototype: set _enabl e_a_regi ster_incomi ng_signal s().

Arguments: Bool ean.

Returns: voi d.

Description: Enables an assertion that ensures wai t r equest is asserted at all times

and deasserts a single clock cycle after a read or write transaction.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 5: Avalon-MM Monitor
Application Program Interface

5-9

set_enable_a_waitrequest_during_reset()

Prototype:
Arguments:
Returns:
Description:

set _enabl e_a_wai trequest _during_resetl ().
Bool ean.
voi d.

Enables an assertion that ensures that wai t r equest is asserted if r eset
is asserted. Disabled when wai t r equest is not supported.

set_enable_a_waitrequest_timeout()

Prototype:
Arguments:
Returns:
Description:

set_enabl e_a_wai trequest _timeout ().
Bool ean.
voi d.

Enables an assertion that ensures wai t r equest is not asserted
continuously for more than maximum allowed timeout period. Disabled
when either wai t r equest is not supported or the maximum timeout
period is less than 1.

set_enable_a_write_burst_timeout()

Prototype:
Arguments:
Returns:
Description:

set_enable_a_wite_burst_tinmeout().
Bool ean.
voi d.

Enables an assertion that ensures that the write burst transfer is completed
within maximum allowed timeout period. Disabled when either write burst
transfers are not supported or the write burst timeout period is less than 1
cycle.

set_enable_a_writeid_sequence()

Prototype:
Arguments:
Returns:
Description:

June 2012  Altera Corporation

set_enabl e_a_writeid_sequence().
Bool ean.
voi d.

Enables an assertion that verifies if the wri t ei d sequence follows the
sequence of the transacti oni d.

Avalon Verification IP Suite User Guide



5-10 Chapter 5: Avalon-MM Monitor
Application Program Interface

Coverage Group

Coverage group ensures that the verification suite tests all expected functionality of
the interface. For example, the cover _b2b_read_wri t e method ensures that the
verification suite includes a test for sequential read and write commands. The
Avalon-MM Monitor includes 30 coverage groups. By default all coverage groups are
enabled. However, depending on the parameterization of a the Avalon-MM interface,
some coverage groups are automatically disabled. For example, if the interface does
not allow burst transfers, the coverage groups that test burst transfers are
automatically disabled. The names of all methods that enable coverage functionality
begin with set _enabl e_c.

To generate the coverage report when using the Synopsys VCS simulator, use the
following command:

urg —dir sinmv.vdb «

To generate the coverage report when using the ModelSim-Altera software, use the
following command:

run —all <

coverage report —details —file report.rpt ¢

set_enable_c_bh2h_read_read()

Prototype: set _enabl e_c_b2b_read_read().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to test back-to-back read transfers. This method

is disabled when reads are not supported.

set_enable_c_b2h_read_write()

Prototype: set_enable_c_b2b read wite().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to test a read transfer immediately followed by a
write transfer. This method is disabled when reads or writes are not
supported.

set_enable_c_b2h_write_read()

Prototype: set_enable_c_b2b wite_read().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to test a write transfer immediately followed by a

read. This method is disabled if either reads or writes are not supported.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 5: Avalon-MM Monitor 5-11
Application Program Interface

set_enable_c_bh2h_write_write()

Prototype: set_enable_c_b2b wite wite().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to test back-to-back write transfers. This method

is disabled if writes are not supported.

set_enable_c_continuous_read()

Prototype: set _enabl e_c_continuous_read().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to test continuous read transfers from 2 cycles

until AV_MAX_CONTI NUQUS_READ. Continuous read cycles of more than
AV_MAX_CONTI NUQUS_READ goes to another bin.

set_enable_c_continuous_readdatavalid()

Prototype: set _enabl e_c_continuous_readdat aval i d() .

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to test continuous readdatavalid transfers from 2

cycles until AV_MAX_CONTI NUOUS_READDATAVALI D. Continuous read
cycles of more than AV_MAX_CONTI NUOUS_READDATAVALI D goes to
another bin.

set_enable_c_continuous_waitrequest()

Prototype: set _enabl e_c_conti nuous_wai trequest ().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to test continuous waitrequest transfers from 2

cycles until AV_MAX_CONTI NUOUS_WAI TREQUEST. Continuous read cycles
of more than AV_MAX_CONTI NUCUS_WAI TREQUEST goes to another bin.

set_enable_c_continuous_waitrequest_from_idle_to_read()

Prototype: set _enabl e_c_continuous_wai trequest_fromidle_to_read().
Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to test wai t r equest transfers from their idle

state until a wai t r equest read.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



5-12 Chapter 5: Avalon-MM Monitor
Application Program Interface

set_enable_c_continuous_waitrequest_from_idle_to_write()

Prototype: set _enabl e_c_continuous_wai trequest_fromidl e to wite().
Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to test wai t r equest transfers from their idle

state until a wai t r equest write.

set_enable_c_continuous_write()

Prototype: set_enable_c_continuous_wite().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to test continuous write transfers from two

cycles until AV_MAX_CONTI NUOUS_WRI TE. Continuous write cycles of
more than AV_MAX_CONTI NUCUS_WRI TE goes to another bin.

set_enable_c_idle_hefore_transaction()

Prototype: set_enable_c_idle_before_transaction().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to count idle cycles before read or write

transactions.

set_enable_c_idle_in_read_response()

Prototype: set_enable_c_idle_in_read_response().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to count idle cycles during a read burst
response. This method is disabled if reads or r eaddat aval i ds are not
supported.

set_enable_c_idle_in_write_burst()

Prototype: set_enable _c_idle_in wite_ burst().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to count idle cycles during a write burst

transaction. This method is disabled if writes are not supported.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 5: Avalon-MM Monitor 5-13
Application Program Interface

set_enable_c_pending_read()

Prototype: set _enabl e_c_pendi ng_read().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to test pending read support. It covers all values

for up to the maximum number of pending reads. This method is disabled
when either reads or pipelined reads are not supported.

set_enable_c_read()

Prototype: set_enable_c_read().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to test read transfers. This method is disabled

when reads are not supported.

set_enable_c_read_after_reset()

Prototype: set_enable_c_read_after_reset().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to test read transfers after reset.

set_enable_c_read_hurstcount()

Prototype: set _enabl e_c_read_burstcount ().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group tests different sizes of bur st count during read

burst transfers. It tests all possible values of bur st count . This method is
disabled when either burst transfers or reads are not supported, or the
maximum burst is less than 1.

set_enable_c_read_hyteenable()

Prototype: set _enabl e_c_read_byteenabl e().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group ensures all legal values of the byt eenabl e

signal are asserted during read transfers. It is disabled when either
byt eenabl e or r ead is not supported.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



5-14 Chapter 5: Avalon-MM Monitor
Application Program Interface

set_enable_c_read_latency()

Prototype: set _enable_c_read_| atency().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to test all values of the read latency parameter.

This method is disabled if r ead or r eaddat aval i ds are not supported, or
if the maximum read latency is less than 1.

set_enable_c_read_response()

Prototype: set _enabl e_c_read_response().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to test each bit of the valid readresponse that

represent dfferent status.

set_enable_c_waitrequest_in_write_hurst()

Prototype: set_enabl e_c_waitrequest _in_wite_burst().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to test the values of the wai t r equest parameter

during write burst transfers.

set_enable_c_waitrequested_read()

Prototype: set _enabl e_c_wai trequest ed_read().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to test all values of the wait request timeout

parameter during read transfers. This method is disabled if r ead or
wai t request are not supported, or if the wait request timeout period is
less than 1.

set_enable_c_waitrequest_without_command()

Prototype: set _enabl e_c_wai trequest _wi t hout _conmand().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to verify that no command is asserted between

the time when waitrequest is asserted until waitrequest is deasserted.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 5: Avalon-MM Monitor 5-15
Application Program Interface

set_enable_c_waitrequested_write()

Prototype: set_enabl e_c_waitrequested wite().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to test all values of the wait request timeout

parameter. This method is disabled if wri t e or wai t r equest are not
supported, or if the wait request timeout period is less than 1.

set_enable_c_write()

Prototype: set_enable c_wite().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to test write transfers. This method is disabled

when writes are not supported.

set_enable_c_write_with_and_without_writeresponserequest()

Prototype: set_enable_c_wite_with_and_w thout_witeresponserequest().
Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to test write transactions with or without

Wi teresponserequest .

set_enable_c_write_after_reset()

Prototype: set_enable_c_wite_after_reset().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to test write transfers after reset.

set_enable_c_write_burstcount()

Prototype: set_enable_c_wite_burstcount().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to test different sizes of bur st count during

write burst transfers. It tests all possible values of bur st count . This
method is disabled when either burst transfers or writes are not supported,
or the maximum burst is less than 1.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



5-16 Chapter 5: Avalon-MM Monitor
Application Program Interface

set_enable_c_write_hyteenable()

Prototype: set_enable_c_wite_byteenable().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group ensures all legal values of the byt eenabl e

signal are asserted during write transfers. It is disabled when either
byt eenabl e orwrit e is not supported.

set_enable_c_write_response()

Prototype: set_enable_c_wite_response().

Arguments: Bool ean.

Returns: voi d.

Description: Enables a coverage group to test each bit of the valid writeresponse that

represent dfferent status.

Transaction Monitoring

Transaction monitoring is carried out through the transaction collector module. The
transaction collector collects the transactions, encapsulates them into descriptors, and
inserts the transactions into queue. The API provides the mechanism to query the
transactions in queue and disposes them as they are processed. By default the
transaction collector module is disabled. You must define the
ENABLE_ALTERA_AVALON_TRANSACTI ON_RECORDI NG Verilog macro to enable this feature.
This macro is required to ensure backward compatibility and to avoid breaking
existing test cases.

get_clken()

Prototype: | ogic get_clken().

Arguments: None.

Returns: | ogic.

Description: Returns the clock enable signal status.

get_version()

Prototype: string get_version().

Arguments: None.

Returns: String.

Description: Returns BFM version as a string of three integers separated by periods. For

example, version 10.1 sp1 is encoded as "10.1.1".

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 5: Avalon-MM Monitor
Application Program Interface

5-17

get_command_address()

Prototype:
Arguments:
Returns:
Description:

bit [AV_ADDRESS W1:0] get_command_address().

None.

bit [ AV_ADDRESS W1:0].

Queries the received command descriptor for the transaction address.

get_command_arbiterlock()

Prototype:
Arguments:
Returns:
Description:

bit get_command_arbiterlock().

None.

bit.

Queries the received command descriptor for the transaction arbiterlock.

get_command_burst_count()

Prototype:
Arguments:
Returns:
Description:

[ AV_BURSTCOUNT_W1:0] get_conmand_burst _count().

None.

[ AV_BURSTCOUNT W 1: 0] .

Queries the received command descriptor for the transaction burst count.

get_command_burst_cycle()

Prototype:
Arguments:
Returns:
Description:

int get_command_burst _cycle().
None.
Int.

The slave BFM receives and processes write burst commands as a
sequence of discrete commands. The number of commands corresponds
to the burst count. A separate command descriptor is constructed for each
write burst cycle, corresponding to a partially completed burst. This
method returns a burst cycle field that tells the testbench which burst cycle
was active when this descriptor was constructed. This facility enables the
testbench to query partially completed write burst operations. In other
words, the testbench can query the write data word on each burst cycle as
it arrives and begin to process it immediately rather than waiting until the
entire burst has been received, making it possible to perform pipelined
write burst processing in the testbench.

get_command_hyte_enable()

Prototype:

Arguments:
Returns:
Description:

June 2012  Altera Corporation

bit [AV_NUMBYMBOLS-1:0] get_conmand_byte_enable (int
i ndex) .

i ndex.
bi t [ AV_NUVMSYMBOLS- 1: 0] .

Queries the received command descriptor for the transaction byte enable.
For burst commands with burst count greater than 1, the index selects the
data cycle.

Avalon Verification IP Suite User Guide



5-18 Chapter 5: Avalon-MM Monitor
Application Program Interface

get_command_data()

Prototype: bit [AV_DATA W1:0] get_command_data(int index).
Arguments: i ndex.

Returns: bi t [ AV_DATA W1:0].

Description: Queries the received command descriptor for the transaction write data.

For burst commands with burst count greater than 1, the index selects the
write data cycle.

get_command_debugaccess()

Prototype: bit get_command_debugaccess().

Arguments: None.

Returns: bit.

Description: Queries the received command descriptor for the transaction debugaccess.

get_command_issued_queue_size()

Prototype: int get_command_i ssued_queue_si ze().

Arguments: None.

Returns: int.

Description: Queries the command issued queue to determine number of pending
commands.

get_command_queue_size()

Prototype: int get_command_queue_si ze().

Arguments: None.

Returns: int.

Description: Queries the command queue to determine number of pending commands.

get_command_lock()

Prototype: bit get_command_| ock().

Arguments: None.

Returns: bit.

Description: Queries the received command descriptor for the transaction lock.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 5: Avalon-MM Monitor 5-19
Application Program Interface

get_command_request()

Prototype: Request _t get _command_request ().

Arguments: None.

Returns: Request _t (enumerated type).

Description: Gets the received command descriptor to determine command request

type. Acommand type may be REQ READ or REQ WRI TE. These type values
are defined in the enumerated type called Request _t, which is imported
with the package named al t er a_aval on_mm pkg.

get_command_transaction_id()

Prototype: Aval onTransactionld_t get_command_transaction_i d().
Arguments: None.

Returns: Aval onTransactionld_t.

Description: Queries the received command descriptor for the transaction ID.

get_command_write_response_request()

Prototype: Aval onTransacti onl d_t
get _conmmand_write_response_request().
Arguments: None.
Returns: Aval onTransactionld_t.
Description: Queries the received command descriptor for the

write_response_request field value. A value of 1 indicates that the
master has requested for a write response.

get_read_response_queue_size()

Prototype: int get_read_response_queue_size().

Arguments: None.

Returns: int.

Description: Queries the read response queue to determine number of response

descriptors currently stored in the BFM. This is the number of responses
the test program can immediately remove from the response queue for
further processing.

get_response_address()

Prototype: bit [AV_ADDRESS W1:0] get_response_address().

Arguments: None.

Returns: bi t [ AV_ADDRESS_W 1: 0] .

Description: Returns the transaction address in the response descriptor that has been

removed from the response queue.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



5-20 Chapter 5: Avalon-MM Monitor
Application Program Interface

get_response_hyte_enable()

Prototype: bit [AV_NUMSYMBOLS-1:0] get_response_byte_enabl e(int

i ndex) .
Arguments: i ndex.
Returns: bi t [ AV_NUMSYMBOLS- 1: 0] .
Description: Returns the value of the byte enables in the response descriptor that has

been removed from the response queue. Each cycle of a burst response is
addressed individually by the specified index.

get_response_burst_size()

Prototype: bit [ AV_BURSTCOUNT_W1: 0] get _response_burst_size ().
Arguments: None.

Returns: bi t [ AV_BURSTCOUNT_W 1: 0] .

Description: Returns the size of the response transaction burst count in the response

descriptor that has been removed from the response queue.

get_response_data()

Prototype: bit [AV_DATA W1:0] get_response_data(int index).
Arguments: i ndex.

Returns: bi t [ AV_DATA W1:0] .

Description: Returns the transaction read data in the response descriptor that has been

removed from the response queue. Each cycle in a burst response is
addressed individually by the specified index. In the case of read
responses, the data is the data captured on the avm r eaddat a interface
pin. In the case of write responses, the data on the driven avm wri t edat a
pin is captured and reflected here.

get_response_latency()

Prototype: int get_response_|l atency(int index).

Arguments: i ndex.

Returns: int.

Description: Returns the transaction read latency in the response descriptor that has

been removed from the response queue. Each cycle in a burst read has its
own latency entry.

get_response_queue_size()

Prototype: int get_response_queue_size().

Arguments: None.

Returns: automatic int.

Description: Queries the response queue to determine number of response descriptors

currently stored in the BFM. This is the number of responses the test
program can immediately remove from the response queue for further
processing.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 5: Avalon-MM Monitor 5-21
Application Program Interface

get_response_read_id()

Prototype: Aval onTransactionld_t get_response_read_id().

Arguments: None.

Returns: Aval onTransactionld_t.

Description: Returns the read id of the transaction in the response descriptor that has

been removed from the response queue.

get_response_read_response()

Prototype: Aval onReadResponse_t get _response_read_response(int
i ndex) .
Arguments: int index.
Returns: Aval onReadResponse_t .
Description: Returns the transaction read status in the response descriptor that has

been removed from the response queue.

get_response_request()

Prototype: Request _t get _response_request ().

Arguments: None.

Returns: Request _t.

Description: Returns the transaction command type in the response descriptor that has

been removed from the response queue.

get_response_wait_time()

Prototype: int get_response_wait_time(int index).

Arguments: i ndex.

Returns: int.

Description: Returns the wait latency for transaction in the response descriptor that has

been removed from the response queue. Each cycle in a burst has its own
wait latency entry.

get_response_write_id()

Prototype: Aval onTransactionld_t get_response wite_ id().

Arguments: None.

Returns: Aval onTransactionld_t.

Description: Returns the write id of the transaction in the response descriptor that has

been removed from the response queue.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



5-22 Chapter 5: Avalon-MM Monitor
Application Program Interface

get_response_write_response()

Prototype: Aval onWiteResponse_t get _response_write_response(int
i ndex) .
Arguments: i ndex.
Returns: Aval onWit eResponse_t .
Description: Returns the transaction write status in the response descriptor that has

been removed from the response queue.

get_transaction_fifo_max()

Prototype: int get_transaction_fifo_max().
Arguments: None.

Returns: int.

Description: Gets the maximum transaction FIFO depth.

get_transaction_fifo_threshold()

Prototype: int get_transaction_fifo_threshold().
Arguments: None.

Returns: int.

Description: Gets the transaction FIFO threshold level.

get_write_response_queue_size()

Prototype: int get_wite_response_queue_size().

Arguments: None.

Returns: int.

Description: Queries the write response queue to determine number of response

descriptors currently stored in the BFM. This is the number of responses
the test program can immediately remove from the response queue for
further processing.

init()

Prototype: init().

Arguments: None.

Returns: voi d.

Description: Initializes the counters and clears the queue.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 5: Avalon-MM Monitor
Application Program Interface

5-23

pop_command()

Prototype:
Arguments:
Returns:
Description:

pop_response()

Prototype:
Arguments:
Returns:
Description:

pop_conmand() .
None.
Voi d.

Removes the command descriptor from the queue so that the testbench
can query it with the get _comrand methods.

voi d pop_response().
None.
voi d.

Removes the transaction descriptor from the queue so that the testbench
can query it with the get _command methods. Sequence counter is
initialized to 1.

set_command_transaction_mode()

Prototype:
Arguments:
Returns:
Description:

set _command_transaction_node().
i nt node.
Voi d.

By default, write burst commands are consolidated into a single command
transaction containing the write data for all burst cycles in that command.
This mode is set when the mode argument equals 0. When the mode
argument is set to 1, the default is overridden and write burst commands
yield one command transaction per burst cycle.

set_transaction_fifo_max()

Prototype:
Arguments:
Returns:
Description:

set _transaction_fifo_max().
int level.
voi d.

Sets the maximum transaction level of the FIFO. The event
signal _transaction_fifo_max is triggered when this level is
exceeded.

set_transaction_fifo_threshold()

Prototype:
Arguments:
Returns:
Description:

June 2012  Altera Corporation

set _transaction_fifo_threshol d().
int level.
voi d.

Sets the threshold alert level of the FIFO. The event
signal _transaction_fifo_threshol distriggered when this level is
exceeded.

Avalon Verification IP Suite User Guide



5-24 Chapter 5: Avalon-MM Monitor
Application Program Interface

signal_command_received

Prototype: si gnal _conmand_r ecei ved.

Arguments: None.

Returns: voi d.

Description: Notifies the testbench that a command has been detected on the Avalon

port. The testbench responds with a set _interface wait _time call on
receiving this event to dynamically backpressure the driving Avalon master.

signal_fatal_error

Prototype: signal _fatal _error.

Arguments: None.

Returns: voi d.

Description: Notifies the testbench that a fatal error has occured in this module.

signal_read_response_complete

Prototype: signal _read_response_conpl ete.

Arguments: None.

Returns: voi d.

Description: Notifies the testbench that the read response has been received and

inserted into the response queue.

signal_response_complete

Prototype: signal _response_conpl et e.

Arguments: None.

Returns: voi d.

Description: Triggers when either si gnal _read_r esponse_conpl et e or

signal _wite_response_conpl et e is triggered indicating that either a
read or a write response has been received and inserted into the response
queue.

signal_transaction_fifo_overflow

Prototype: signal _transaction_fifo_overflow

Arguments: None.

Returns: voi d.

Description: Notifies the testbench that the FIFO is full and further transactions are
dropped.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 5: Avalon-MM Monitor 5-25
Application Program Interface

signal_transaction_fifo_threshold

Prototype: signal _transaction_fifo_threshol d.

Arguments: None.

Returns: voi d.

Description: Notifies the testbench that the transaction FIFO threshold level has
exceeded.

signal_write_response_complete

Prototype: signal _write_response_conpl ete.

Arguments: None.

Returns: voi d.

Description: Notifies the testbench that the write response has been received and

inserted into the response queue.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



5-26 Chapter 5: Avalon-MM Monitor
Application Program Interface

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Section IV. Avalon-ST BFMs

This section provides information about Avalon-ST BFMs. This section includes the

following chapters:

m Chapter 1, Avalon-ST Source BEM

m Chapter 2, Avalon-ST Source BEM with Avalon-ST API Wrapper

m Chapter 3, Avalon-ST Sink BFM

m Chapter 4, Avalon-ST Sink BFM with Avalon-ST API Wrapper

m  Chapter 5, Avalon-ST Monitor

December 2010  Altera Corporation

Avalon Verification IP Suite User Guide



V-2 Section IV: Avalon-ST BFMs

Avalon Verification IP Suite User Guide December 2010 Altera Corporation



QA | |:| -E 5 1. Avalon-ST Source BFM

The Avalon-ST Source BFM implements the Avalon-ST interface protocol, a protocol
that is point-to-point, packet oriented, and drives unidirectional data. This BEM
component includes a procedural interface to control signals on the Avalon-ST
interface, including: ready, start of packet, and end of packet.

Figure 1-1 shows the top-level modules for a testbench that uses the Avalon-ST
Source BEM to verify an Avalon-ST sink component. In addition to the Altera-
provided Avalon-ST Source BFM component, the testbench typically includes a test
program and the DUT.

The BFMs allow illegal transactions so that you can test the error-handling

functionality of your DUT; consequently, the BEMs cannot be relied upon to guarantee
protocol compliance. The Avalon Monitors components verify protocol compliance.

Figure 1-1. Top-Level Module to Verify an Avalon-ST Sink Device

Testbench API
Function

Calls

DUT

Avalon-ST Avalon-ST

Source BFM > Avalon-ST
Sink Component

Test Program

AAAAA
YYVYY

For more information about the Avalon-ST specification supported in SOPC Builder,
refer to the Avalon Interface Specifications (version 1.3).

For more information about the Avalon-ST specification supported in Qsys, refer to
the Avalon Interface Specifications (version 2.0).

Functional Description

This section provides a functional description of the Avalon-ST Source BEM. It
includes the following topics:

“Timing” on page 1-2
“Block Diagram” on page 1-3

June 2012  Altera Corporation Avalon Verification IP Suite User Guide


http://www.altera.com/literature/manual/mnl_avalon_spec_1_3.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

1-2 Chapter 1: Avalon-ST Source BFM
Functional Description

Timing
The timing diagram shown in Figure 1-2 illustrates the timing for an Avalon-ST
Source BFM sending data to a sink. In the first instance the sink is not ready when the

source has data. In the second instance, the sink is ready but the source does not
initially have valid data.

=~ The Avalon-ST BFM behaves differently depending on whether the sink’s
READY_LATENCY = 0 or READY_LATENCY > 0. When the ready latency is 0, the source
BFM holds its current transaction until the sink is ready. When the ready latency is
greater than 0, the BEM drives idles until the sink is ready, then it drives the
transaction. Figure 1-2 illustrates the timing when READY_LATENCY = 0.

Figure 1-2. Avalon-ST Source Sending Data to a Sink

Ssrc;rdy S src_rdy src_~rdy

WY v

D1 " 2

Table 1-1 explains the annotations used in Figure 1-2.

Table 1-1. Key to Annotations in Figure 1-2

Symbol Description

T The idle time before a transactions. This time is set by the command
idle set_transaction_idles.

T The response latency for the first source to sink transaction, which is three cycles. The
it source gets this time using the get _r esponse_| at ency command.

S Signals that the source is driving valid data. The event name is
sdr | signal _src_driving_transaction.

S Signals the source has received the assertion of r eady from the sink. The event name is
sief | sjgnal _src_ready.

S Signals the first transaction is complete. The event name is
te signal _src_transaction_conpl ete.

S Signals the source has received the deassertion of r eady from the sink. The event name
S~ | s sj gnal _src_not _r eady.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 1: Avalon-ST Source BFM 1-3

Functional Description

Block Diagram

Figure 1-3 shows a block diagram of the Avalon-ST Source BEM. This figure
illustrates, the BFM includes the following six major blocks:

Avalon-ST Source API—Provides methods to create Avalon-ST transactions and
query the state of all queues.

Transaction Descriptor—Accumulates the fields of an Avalon-ST command and
inserts completed commands onto the pending command queue.

Avalon-ST Physical Driver—Issues transfers and holds each transfer until r eady is
asserted.

Physical Bus Monitor—Monitors the physical layer and reports on the status of the
ready signal to the Physical Bus Driver and the Public Events module.

Public Events—Signals the events described in the APL

Response Descriptor—Collects information about completed transactions.

Figure 1-3. Block Diagram of the Avalon-ST Source BFM

Avalon-ST Source BFM API
(Transaction Level Commands)

A A A A A
\4 \ 4
Transaction Descriptor Response Descriptor
A
Pending
Transaction -~ Public e Response
Queue - Events gBackpressure Queue
g ; [ latency
; Signals :
push_transaction() Evea pop_transaction()
\4
Physical _ Backpressure (ready) Physical
Bus Driver h Bus Monior
A
\ 4
valid startofpacket ready
data Zﬂ%(r)fpacket Avalon-ST Interface
channel empty Physical Layer

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



1-4

Chapter 1: Avalon-ST Source BFM
Parameters

Parameters

The Avalon-ST Source BFM supports all the of the signals defined for the Avalon-MM
source interface. You can customize the Avalon-ST Source interface using the
parameters described in Table 1-2.

Table 1-2. Parameters for the Avalon-ST Source BFM

Default

Legal

signal

Parameter Value | Values Description
Port Enables
Include the signals to support off On/Off When On, the interface inclu.des the st art of packet,
packets endof packet , and enpt y signals.
Use the channel port off On/0ff | When On, the interface includes channel pin or pins.
Use the error port Off On/0ff | When On, the interface includes error pin or pins.
Use the ready port On On/0ff | When On, the interface includes a r eady pin.
Use the valid port On On/Off | When On, the interface includes a val i d pin.
Use the empty port off On/0ff | When On, the interface includes enpt y pins.
Port Widths
Symbol Width 8 1-1024 E;t’[:_?r/i?nq[gldviv[i](:;?f;rl :Sr[s The symbol width should be 8 for
Number of symbols 4 1-1024 | Specifies the number of symbols that are transferred per beat.
Width of the channel port 1 1-32 | Specifies the width of the channel signal.
Width of the error port 1 1-1024 | Specifies the width of the err or signal.
Width of the empty port 1 1-1024 | Specifies the width of the enpt y signal.

Timing Attributes
B
Number of beats per cycle 1 1-1024 | Specifies the number of beats per cycle.

Channel Attributes
Max channel number 1 . Sgsggirei:the maximum number of channels that the interface

API Streaming Interface (Note 1)
Width of API interface data signal 64 — The width of the data signal.
Width of API return Interface data 64 — The width of the return interface data signal.

Note to Table 1-2:

(1) This interface is required only for the Avalon-ST Source BFM with Avalon-ST API Wrapper which is used in mixed language simulations.

Avalon Verification IP Suite User Guide

June 2012  Altera Corporation


http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 1: Avalon-ST Source BFM
Application Program Interface

Application Program Interface
This section describes the API for the Avalon-ST source BFM.

get_response_latency()

Prototype:
Arguments:
Returns:
Description:

get _response_| atency().
None.
int.

Returns the response latency in cycles due to back pressure for the most recently
removed transaction.

get_response_queue_size()

Prototype:
Arguments:
Returns:
Description:

get_src_ready()

Prototype:
Arguments:
Returns:
Description:

get _response_queue_si ze().

None.

int.

Returns the number of transactions in the response queues.

get _src_ready().

None.

bit.

Returns the value of the source ready port.

get_src_transaction_complete()

Prototype:
Arguments:
Returns:
Description:

get _src_transaction_conplete().
None.

bit.

Returns the transaction complete status.

get_transaction_queue_size()

Prototype:
Arguments:
Returns:
Description:

June 2012  Altera Corporation

get _transaction_queue_si ze().

None.

int.

Returns the number of transactions in the local queues.

Avalon Verification IP Suite User Guide



Chapter 1: Avalon-ST Source BFM
Application Program Interface

Avalon Verification IP Suite User Guide

get_version()

Prototype:
Arguments:
Returns:

Description:

init()

Prototype:
Arguments:
Returns:
Description:

pop_response()

Prototype:
Arguments:
Returns:
Description:

get _version().
None.
String.

Returns BFM version as a string of three integers separated by periods. For example,
version 10.1 SP1 is encoded as "10.1.1".

init().

None.

voi d.

Drives the interface to the idle state.

pop_response() .

None.

voi d.

Removes the response transaction from the queue before querying contents.

push_transaction()

Prototype:
Arguments:
Returns:
Description:

push_transaction().
None.
voi d.

Inserts the out-going transaction into the local transaction queue. The BFM drives the
appropriate signals to the Avalon-ST interface based on the transactions in its local
queue.

set_max_transaction_queue_size()

Prototype:
Arguments:
Returns:
Description:

voi d set_max_transaction_queue_size(int size).
int size.
voi d.

Sets the pending transaction queue size maximum threshold. The public event
signal _max_transaction_queue_si ze triggers when the threshold is exceeded.

June 2012  Altera Corporation



Chapter 1: Avalon-ST Source BFM 1-7
Application Program Interface

set_min_transaction_queue_size()

Prototype: voi d set_mn_transaction_queue_size(int size).

Arguments: int size.

Returns: voi d.

Description: Sets the pending transaction minimum queue size threshold. The public event

si gnal _m n_transaction_queue_si ze triggers when the queue size level is below
the minimum threshold.

set_response_timeout()

Prototype: set _response_timeout (int cycles).

Arguments: cycl es.

Returns: voi d.

Description: Sets the number of cycles that have to elapse before a response timeout is asserted.

Disable the time-out by setting the cycles argument to zero.

set_transaction_channel()

Prototype: set _transaction_channel (STChannel _t channel).
Arguments: channel .

Returns: voi d.

Description: Sets the channel identifier in the out-going transaction.

set_transaction_data()

Prototype: set_transaction_data(STData_t data).
Arguments: dat a.

Returns: voi d.

Description: Sets the value of dat a in the out-going transaction.

set_transaction_idles()

Prototype: set _transaction_idles(bit[31:0] idle_cycles).

Arguments: idle_cycles.

Returns: voi d.

Description: Sets the number of idle cycles to elapse before driving the out-going transaction.

set_transaction_eop|()

Prototype: set _transaction_eop(bit eop).

Arguments: eop.

Returns: voi d.

Description: Sets the status of the end of packet signal in the out-going transaction.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



Chapter 1: Avalon-ST Source BFM
Application Program Interface

set_transaction_empty()

Prototype:
Arguments:
Returns:
Description:

set _transaction_enpty(STEnpty_t enpty).
enpty.

voi d.

Sets the out-going transaction empty value.

set_transaction_error()

Prototype:
Arguments:
Returns:
Description:

set _transaction_error(STError_t error).
error.

voi d.

Sets the out-going transaction error value.

set_transaction_sop|()

Prototype:
Arguments:
Returns:
Description:

set _transaction_sop(bit sop).

sop.

voi d.

Sets the status of the start of packet signal in the out-going transaction.

signal_fatal_error

Prototype:
Arguments:
Returns:
Description:

signal _fatal _error.

None.

voi d.

Signals that a fatal error has occurred. It terminates the simulation.

signal_max_transaction_queue_size

Prototype:
Arguments:
Returns:
Description:

signal _max_transacti on_queue_si ze.

None.

voi d.

Signals that the pending transaction queue size threshold has been exceeded.

signal_min_transaction_queue_size

Prototype:
Arguments:
Returns:
Description:

Avalon Verification IP Suite User Guide

signal _m n_transaction_queue_si ze.

None.

voi d.

Signals that the pending transaction queue size is below the minimum threshold.

June 2012  Altera Corporation



Chapter 1: Avalon-ST Source BFM 1-9
Application Program Interface

signal_response_done

Prototype: si gnal _response_done.

Arguments: None.

Returns: voi d.

Description: Signals that the response to a driven data beat is available.

signal_src_driving_transaction

Prototype: signal _src_driving_transaction.

Arguments: None.

Returns: voi d.

Description: Signals when the source begins to drive a transaction to the interface.

signal_src_not_ready

Prototype: signal _src_not _ready.

Arguments: None.

Returns: voi d.

Description: Signals that the r eady signal is not asserted.

signal_src_ready

Prototype: si gnal _src_ready.

Arguments: None.

Returns: voi d.

Description: Signals that the r eady signal is asserted.

signal_src_transaction_complete

Prototype: signal _src_transaction_conpl ete.
Arguments: None.

Returns: voi d.

Description: Signals that all pending transactions have completed.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



1-10 Chapter 1: Avalon-ST Source BFM
Application Program Interface

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



2. Avalon-ST Source BFM with Avalon-ST
API Wrapper

June 2012  Altera Corporation

I

The Avalon-ST Source BFM with Avalon-ST API Wrapper provides VHDL support for
the Avalon-ST Source BEM. You can use the Avalon-ST Source BFM with Avalon-ST
API Wrapper in HDL simulators that support mixed language simulation.

The API wrapper is only supported in SOPC Builder. The API wrapper cannot be
generated in Qsys to create VHDL simulation models.

The Avalon-ST Source BFM with Avalon-ST API Wrapper component is implemented
in SystemVerilog and uses an API wrapper to cast the Avalon-ST Source BFM's
method calls and returns into signals that are carried on the call and return interface
ports. The wrapper is necessary because VHDL can only access ports and does not
support the method calls used in the Avalon-ST Source BFM. Figure 2-1 provides a
high-level view of this component.

Figure 2-1. Avalon-ST Source BFM with Avalon-ST Wrapper

Testbench Using Mixed-Language Simulator

Avalon-ST Source BFM with Avalon-ST Wrapper

API Call
Interface

Avalon-ST Source BFM Translator

API Methods
(Tasks & Functions
SystemVerilog)

API Calls and Returns
Ports to References

Avalon-ST Avalon-ST
Avalon-ST Function Function
Returns Calls

Avalon-ST Sink
VHDL

Test Program
VHDL

In Figure 21, the API call interface and Avalon-ST call and return interface operate in
separate clock domains with av_cl k synchronizing the FPGA logic and api _cl k
synchronizing the Avalon-ST translation interface. The Avalon-ST interface, which is
not part of the actual hardware design, operates at a much faster clock frequency than
the Avalon-ST Source BFM interface.

Avalon Verification IP Suite User Guide



2-2 Chapter 2: Avalon-ST Source BFM with Avalon-ST APl Wrapper

For every function call in the BEM, there is a channel identifier, which stores the fixed
mapping between channel number and the function.
<$install_dir>/ip/altera/sopc_builder_ip/verification/lib/
altera_avalon_components_pkg.vhd defines the following function calls:

m STSRCINT
m ST _SRC SET_RESP_TI MEQUT

m ST_SRC_PUSH TRANS

m ST _SRC GET_TRANS QUEUE S| ZE
m ST SRC GET_RESP_QUEUE SI ZE

m ST _SRC SET_TRANS DATA

m ST SRC SET_TRANS CHANNEL

m ST_SRC SET_TRANS | DLES

m ST_SRC SET_TRANS SOP

m ST_SRC SET_TRANS EOP

m ST_SRC SET_TRANS ERRCR

m ST_SRC SET_TRANS EMPTY

m ST_SRC POP_RESP

m ST _SRC GET_RESP_LATENCY

m ST SRC_GET_SRC_READY

m ST_SRC GET_SRC_TRANS COMPLETE

With the exception of the API wrapper, the Avalon-ST Source BFEM with Avalon-ST
API Wrapper component is identical to the Avalon-ST Source BFM. For more
information about this component refer to Chapter 1, Avalon-ST Source BEM.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



QA | |:| _E D 3. Avalon-ST Sink BFM

The Avalon-ST Sink BFM implements the Avalon-ST interface protocol, a protocol that
is point-to-point, packet oriented, and drives unidirectional data. This BEM
component also includes a procedural interface to respond to the DUT that includes
an Avalon-ST source interface. Figure 3-1 shows the top-level modules for testbench
that uses the Avalon-ST Sink BEM to verify an Avalon-ST source device. In addition to
the Altera-provided Avalon-ST Sink BFM component, the testbench includes a test
program and the DUT.

The BFMs allow illegal transactions so that you can test the error-handling

functionality of your DUT, consequently, the BEMs cannot be relied upon to guarantee
protocol compliance. The Avalon Monitors components verify protocol compliance.

Figure 3-1. Top-Level Module to Verify an Avalon-ST Source Device

Testbench
Verilog API
DuUT Avalon-ST R < >
Avalon-ST > /;Y,?Logps,\} < »| TestProgram
Source < >

For more information about the Avalon-ST specification supported in SOPC Builder,
refer to the Avalon Interface Specifications (version 1.3).

For more information about the Avalon-ST specification supported in Qsys, refer to
the Avalon Interface Specifications (version 2.0).

June 2012  Altera Corporation Avalon Verification IP Suite User Guide


http://www.altera.com/literature/manual/mnl_avalon_spec_1_3.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

3-2 Chapter 3: Avalon-ST Sink BFM
Functional Description

Functional Description

This section provides a functional description of the Avalon-ST Sink BFM. It includes
the following topics:

® “Timing” on page 3-2
m “Block Diagram” on page 3-3
Timing
The timing diagram shown in Figure 3-2 illustrates the timing for an Avalon-ST Sink
BFM signalling when it is ready to receive data from an Avalon-ST source. In the first

instance, the sink is not ready when the source has data. In the second instance, the
sink is ready but the source does not initially have valid data.

Figure 3-2. Avalon-ST Source and Sink Timing

S S S S

snk_rdya snk_rdyd = snk_rdya snk_rdyd
ready W \/ L
L— Tidle —'| F Tidle "l
Str
valid / \ /_\L

Table 3-1 describes the annotations used in Figure 3-2.

Table 3-1. Key to Annotations in Figure 3-2

Symbol Description

Tidte The idle time between transactions. This time is reported by the command get _transaction_i dl es.

Senk_rdya Signals the sink has asserted r eady. The event name is si gnal _snk_ready_assert.
Sir Signals the transaction has been received and queued. The event name is si gnal _transaction_recei ved.
Ssnk_rdyd Signals the sink is not r eady. The event name is si gnal _snk_r eady_deassert.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 3: Avalon-ST Sink BFM 3-3
Functional Description

Block Diagram

Figure 3-3 provides a block diagram of the Avalon-ST Sink BFM. This figure
illustrates that the BFM includes the following five major blocks:

B Avalon-ST Sink API—Provides methods to get Avalon-ST transactions and control
the r eady signal.

m Transaction Descriptor—Accumulates the fields of an Avalon-ST command.

m  Avalon-ST Physical Driver—Asserts and deasserts the r eady signal to the system
interconnect fabric.

m Physical Bus Monitor—Monitors the physical layer and collects transactions.

m Public Events—Signals the events described in the APL

Figure 3-3. Block Diagram of the Avalon-ST Sink BFM

Avalon-ST Source BFM API
(Transaction Level Commands)

A A A
get_transaction()
(API call)

A

Transaction Descriptor

A

Transaction < Public
Queue Events
pop_transaction() Signals
(API Call) Events
set_ready()
(API call)
y
Physical Physical
Bus Monitor Bus Driver
A
A4
Vel startofpacket ready
data  ©€ndofpacket Avalon-ST Interface
channel g:’rrﬁ)rty (Physical Layer)

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



34

Chapter 3: Avalon-ST Sink BFM
Parameters

Parameters

The Avalon-ST Sink BFM supports all of the of signals defined for the Avalon-MM
sink interface. You can customize the Avalon-ST sink interface using the parameters
described in Table 3-2.

Table 3-2. Parameters for the Avalon-ST Sink BFM

Default

Legal

signal

Parameter Value | Values Description
Port Enahles
Include the signals to support off On/Off When On, the interface includes the st art of packet ,
packets endof packet , and enpt y signals.
Use the channel port off On/0ff | When On, the interface includes channel pin or pins.
Use the error port Off On/0ff | When On, the interface includes error pin or pins.
Use the ready port On On/0ff | When On, the interface includes a r eady pin.
Use the valid port On On/Off | When On, the interface includes a val i d pin.
Use the empty port off On/0ff | When On, the interface includes enpt y pins.
Port Widths
. _ Data symbol width in bits. The symbol width should be 8 for

Symbol Width 8 1-1024 byte-oriented interfaces.
Number of symbols 4 1-1024 | Specifies the number of symbols that are transferred per beat.
Width of the channel port 1 1-32 | Specifies the width of the channel signal.
Width of the error port 1 1-1024 | Specifies the width of the err or signal.
Width of the empty port 1 1-1024 | Specifies the width of the enpt y signal.

Timing Attributes

. Specifies the delay between the r eady and val i d signals. Refer
Ready latency 0 0-8 to the Avalon Interface Specification for more information.
Number of beats per cycle 1 1-1024 | Specifies the number of beats per cycle.

Channel Attributes
Max channel number 1 __ | Specifies the maximum number of channels that the interface

supports.
API Streaming Interface (Note 1)

Width of API interface data signal 64 — The width of the data signal.
Width of API return interface data 64 — | The width of the return interface data signal.

Note to Table 3-2:

(1) This interface is required only for the Avalon-ST Sink BFM with Avalon-ST APl Wrapper, which is used in mixed language simulations.

Avalon Verification IP Suite User Guide

June 2012  Altera Corporation


http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 3: Avalon-ST Sink BFM
Application Program Interface

3-5

Application Program Interface
This section describes the API for the Avalon-ST Sink BFM.

get_transaction_channel()

Prototype:
Arguments:
Returns:
Description:

get _transaction_channel ().

None.

STChannel _t.

Returns the channel identifier for the most recently removed transaction.

get_transaction_data()

Prototype:
Arguments:
Returns:
Description:

get _transaction_data().

None.

STData_t.

Returns the data in the most recently removed transaction.

get_transaction_idles()

Prototype:
Arguments:
Returns:
Description:

get _transaction_idles().

None.

bit[31:0].

Returns the number of idle cycles in the most recently removed transaction.

get_transaction_eop|()

Prototype:
Arguments:
Returns:
Description:

get _transaction_eop().
None.
bit.

Returns the transaction end of packet status in the most recently removed transaction.

get_transaction_empty()

Prototype:
Arguments:
Returns:
Description:

June 2012  Altera Corporation

get _transaction_enpty().

None.

STEmpty t.

Returns the number of empty symbols in the most recently removed transaction.

Avalon Verification IP Suite User Guide



3-6 Chapter 3: Avalon-ST Sink BFM
Application Program Interface

get_transaction_error()

Prototype: get transaction_error().

Arguments: None.

Returns: STError t.

Description: Returns the error in the most recently removed transaction.

get_transaction_queue_size()

Prototype: get _transaction_queue_si ze().

Arguments: None.

Returns: int.

Description: Returns the length of the queue holding received transactions.

get_transaction_sop|()

Prototype: get _transaction_sop().

Arguments: None.

Returns: bit.

Description: Returns the transaction start of packet status in the most recently removed transaction.

get_version()

Prototype: get _version().

Arguments: None.

Returns: String.

Description: Returns BFM version as a string of three integers separated by periods. For example,

version 10.1 SP1 is encoded as "10.1.1".

init()
Prototype: init.
Arguments: None.
Returns: voi d.
Description: Drives the interface to the idle state.

pop_transaction()

Prototype: pop_transaction().

Arguments: None.

Returns: voi d.

Description: Removes the transaction descriptor from the queue so that the testbench can query it

using the get _transacti on methods.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 3: Avalon-ST Sink BFM 3-7
Application Program Interface

set_ready()

Prototype: set _ready().

Arguments: bit.

Returns: voi d.

Description: Sets the value of the interface r eady signal. To assert back pressure, deassert this

signal. The parameter USE_READY must be set to 1 to enable the r eady signal.

signal_fatal_error

Prototype: signal _fatal _error.

Arguments: None.

Returns: voi d.

Description: Signals that a fatal error has occurred. It terminates the simulation.

signal_sink_ready_assert

Prototype: signal _sink_ready_assert.

Arguments: None.

Returns: voi d.

Description: Signals that si nk_r eady is asserted, turning off back pressure.

signal_sink_ready_deassert

Prototype: signal _sink_ready_deassert.

Arguments: None.

Returns: voi d.

Description: Signals that si nk_r eady is deasserted, turning on back pressure.

signal_transaction_received

Prototype: signal _transaction_received.

Arguments: None.

Returns: voi d.

Description: Signals that the transaction has been received and queued.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



3-8 Chapter 3: Avalon-ST Sink BFM
Application Program Interface

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



= o A 4. Avalon-ST Sink BFM with Avalon-ST

® APl Wrapper

8=y

The Avalon-ST Sink BFM with Avalon-ST API Wrapper provides VHDL support for
the Avalon-ST Sink BEM. You can use the Avalon-ST Sink BEM with Avalon-ST API
Wrapper in HDL simulators that support mixed language simulation.

The API wrapper is only supported in SOPC Builder. The API wrapper cannot be
generated in Qsys to create VHDL simulation models.

The Avalon-ST Sink BFM with Avalon-ST API Wrapper component is implemented in
SystemVerilog and uses an API wrapper to cast the Avalon-ST Sink BFM’s method
calls and returns into signals that are carried on the call and return interface ports. The
wrapper is necessary because VHDL can only access ports and does not support the
method calls used in the Avalon-ST Sink BFM. Figure 4-1 provides a high-level view
of this component.

Figure 4-1. Avalon-ST Sink BFM with Avalon-ST Wrapper

Testbench Using Mixed-Language Simulator

Avalon-ST Sink BFM with Avalon-ST Wrapper

API Call

Avalon-ST Sink BFM Interface

Translator

API Methods
(Tasks & Functions
SystemVerilog)

API Calls and Returns
Ports to References

Avalon-ST Avalon-ST
Avalon-ST Function Function
Returns Calls
Avalon-ST Source Test Program
VHDL VHDL

In Figure 4-1, the API call interface and Avalon-ST call and return interface operate in
separate clock domains with av_cl k synchronizing the FPGA logic and api _cl k
synchronizing the Avalon-ST translation interface. The Avalon-ST interface, which is
not part of the actual hardware design, operates at a much higher frequency than the
Avalon-ST Sink BFM interface.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



4-2 Chapter 4: Avalon-ST Sink BFM with Avalon-ST APl Wrapper

For every function call in the BEM, there is a channel identifier, which stores the fixed
mapping between channel number and the function.
<$install_dir>/ip/altera/sopc_builder_ip/verification/lib/
altera_avalon_components_pkg.vhd defines the following function calls:

m STSINKINT
m ST SINK_SET_READY

m ST SINK_POP_TRANS

m ST SINK_GET_TRANS | DLES

m ST _SINK_GET_TRANS DATA

m ST SINK_GET_TRANS CHANNEL

m ST _SINK_GET_TRANS SOP

m  ST_SINK_GET_TRANS ECP

m ST_SINK_GET_TRANS ERROR

m  ST_SINK_GET_TRANS EMPTY

m  ST_SINK_GET_TRANS QUEUE_SI ZE

With the exception of the API wrapper, the Avalon-ST Sink BFM with Avalon-ST API
Wrapper component is identical to the Avalon-ST Sink BFM. For more information
about this component, refer to Chapter 3, Avalon-ST Sink BFM.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



= A 5. Avalon-ST Monitor

The Avalon-ST Monitor verifies Avalon-ST interfaces using SystemVerilog assertions.
In addition, it provides test coverage reports so that you can determine when your
test vectors provide sufficient test coverage for your DUT functionality.

The Avalon-ST Monitor is implemented in SystemVerilog and uses the SystemVerilog
Assertion (SVA) language. The SVA language is supported by the Synopsys VCS, and
Mentor Graphics Questa. If you are using ModelSim, the monitor component still
compiles and simulates, but the assertion checking is disabled.

Figure 5-1 shows a testbench that uses an Avalon-ST Monitor to test components with
Avalon-ST interfaces. This figure illustrates that the monitor’s Avalon-ST source
interface is connected to the DUT’s Avalon-ST sink interface, and an Avalon-ST sink
interface is connected to the DUT’s Avalon-ST source interface. The test program
communicates with the monitor. It uses the monitor’s assertion checking and
coverage groups to assure that all legal parameter values for the DUT’s Avalon-ST
interfaces are verified.

Figure 5-1. Testhbench Using an Avalon-ST Monitor with Avalon-ST Interfaces

Testbench

Test Program
confiu- generator | | generator | | generator
initial() transactor "9 object object object
ration . ) .
instance instance instance

\

Avalon-ST <> Avalon-ST
Source BFM Sink BFM

Avalon-ST Monitor

API Methods
Assertion Test Transaction
Checking Coverage Collector

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



5-2

Chapter 5: Avalon-ST Monitor
Parameters

Parameters

The Avalon-ST monitor supports the full range of signals defined for the Avalon-ST
source and sink interfaces. You can customize the Avalon-ST source and sink
interfaces using the parameters described in Table 5-1.

Table 5-1. Parameters for the Avalon-ST Monitor BFM

Default | Legal -
Parameter Value | Values Description
Port Widths

Symbol width 8 o Data sy'mbol vy|dth in bits. The symbol width should be 8 for

byte-oriented interfaces.
Number of symbols 4 — Numbers of symbols per word.
Width of the channel signal 1 — Specifies the width of the channel signal in bits.
Width of the error port 1 — Specifies the width of the err or signal in bits.
Width of the empty port 1 — Specifies the width of the empt y signal in bits.

Port Enables
Include the signals to support on On/Off When On, the interface includes a the st ar t of packet ,
packets endof packet , and enpt y signals.
Use the channel port On On/0ff | When On, the interface includes a channel pin.
Use the error port On On/Off | When On, the interface includes error pins.
Use the ready port On On/0ff | When On, the interface includes r eady pins.
Use the valid port On On/Off | When On, the interface includes val i d pins.
Use the empty port On On/0ff | When On, the interface includes a enpt y pin.
Timing Attributes

Specifies the r eadyLat ency parameter for data interfaces that
Ready latency 0 — support backpressure. Refer to the Avalon Interface

Specifications for more information.
Number of beats per cycle 1 1-1024 | Specifies the number of beats per cycle.

Channel Attributes

Max Channel Number 1 __ | Specifies when a timeout will occur if a burst write transfer has

not completed.

Miscellaneous Properties

Max Packet Size Covered

‘ Specifies the maximum packet size.

Avalon Verification IP Suite User Guide

June 2012  Altera Corporation



http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 5: Avalon-ST Monitor 5-3
Application Program Interface

Application Program Interface

This section describes the API for the Avalon-ST Monitor.

Assertion Checking

Assertion checking methods enable and disable protocol assertions that are used to
ensure protocol compliance. For example, the enabl e_a_no_dat a_out si de_packet
method enables the assertion that verifies that no data is transmitted between the
assertion of the endof packet and the next st art of packet signals. If a violation is
found, an error message is displayed on the console running the simulation. Error
flags also are displayed in the waveform viewer. By default all assertions are enabled.
However, depending on the parameterization of a the Avalon-ST interface, some
assertions are automatically disabled. For example, you might have to disable some
assertion checking to avoid generating error messages when injecting protocol errors
to test the Avalon-ST component’s error handling capability. The names of all
methods that implement assertions begin with set _enabl e_a. By default, if your
testbench includes the Avalon-ST monitor, the checking function is enabled. You can
disable checking with the DI SABLE_ALTERA_AVALON_SI M_SVA macro.

set_enahle_a_empty_legal()

Prototype: set_enable_a enpty_legal ().

Arguments: Bool ean.

Returns: Voi d.

Description: Enables an assertion that ensures enpt y is 0 except when endof packet is
asserted and that enpt y is always less than the number of symbols in a
packet.

set_enable_a_less_than_max_channel()

Prototype: set_enabl e_a_| ess_t han_max_channel ().

Arguments: Bool ean.

Returns: Voi d.

Description: Enables an assertion that ensures that the value of the channel signal is

less than the maximum number of channels.

set_enahle_a_no_data_outside_packet()

Prototype: set _enabl e_a_no_dat a_out si de_packet ().

Arguments: Bool ean.

Returns: Voi d.

Description: Enables an assertion that ensures val i d data is not transferred outside of

a packet when the interface uses packet transmission.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



Chapter 5: Avalon-ST Monitor
Application Program Interface

set_enable_a_non_missing_endofpacket()

Prototype:
Arguments:
Returns:
Description:

set _enabl e_a_non_nmi ssi ng_endof packet ().
Bool ean.
Voi d.

Enables an assertion that ensures that the st ar t of packet signal is
asserted between each two assertions of an endof packet signal.

set_enahle_a_non_missing_startofpacket()

Prototype:
Arguments:
Returns:
Description:

set _enabl e_a_non_mi ssi ng_st art of packet ().
Bool ean.
Voi d.

Enables an assertion that ensures that each assertion of the
startof packet signal is followed by the assertion of an endof packet
signal.

set_enahle_a_valid_legal()

Prototype:
Arguments:
Returns:
Description:

Avalon Verification IP Suite User Guide

set_enable_a valid_legal ().
Bool ean.
Voi d.

Enables an assertion that ensures val i d is deasserted r eadyLat ency
cycles after r eady is deasserted if the r eadyLat ency is greater than 0.

June 2012  Altera Corporation



Chapter 5: Avalon-ST Monitor 5-5
Application Program Interface

Coverage Group

Coverage group ensures that the verification suite tests all expected functionality of
the interface. For example, the cover _b2b_packet _di f f erent _channel method allows
each individual coverage point to be enabled or disabled. When coverage points are
disabled, they do not show up as missing coverage in the coverage report. By default
all coverage groups are enabled. However, depending on the parameterization of a
the Avalon-MM interface, some coverage groups are automatically disabled. For
example, if the interface does not use packets, the coverage groups that test packet
transfers are automatically disabled. The names of all methods that enable coverage
functionality begin with set _enabl e_c.

To generate the coverage report when using the Synopsys VCS simulator, use the
following command:

urg —dir sinmv.vdb «

To generate the coverage report when using the ModelSim-Altera software, use the
following command:

run —all <

coverage report —details —file report.rpt ¢

set_enable_c_all_idle_heats()

Prototype: set_enable_c_all _idle_beats().

Arguments: Bool ean.

Returns: Voi d.

Description: Enables a coverage point that ensures test coverage for number of

transaction with all idle beats.

set_enable_c_all_valid_heats()

Prototype: set_enable c_all _valid_beats().

Arguments: Bool ean.

Returns: Voi d.

Description: Enables a coverage point that ensures test coverage for number of

transaction with all valid beats.

set_enable_c_b2h_data_different_channel()

Prototype: set _enabl e_c_b2b_data_different_channel ().

Arguments: Bool ean.

Returns: Voi d.

Description: Enables a coverage point that ensures back-to-back val i d signals for

different channels. It is disabled when channels are not supported.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



5-6

Chapter 5: Avalon-ST Monitor
Application Program Interface

set_enable_c_b2h_data_same_channel()

Prototype:
Arguments:
Returns:
Description:

set _enabl e_c_b2b_data_sane_channel ().
Bool ean.
Voi d.

Enables a coverage point that ensures test coverage for back-to-back
val i d signals for the same channel. It is disabled when channels are not
supported.

set_enable_c_b2h_packet_different_channel()

Prototype:
Arguments:
Returns:
Description:

set _enabl e_c_b2b_packet _different_channel ().
Bool ean.
Voi d.

Enables a coverage point that ensures test coverage for back-to-back
packet transmission for different channels. It is disabled when packet
transmission or channels are not supported.

set_enable_c_b2b_packet_in_different_transaction()

Prototype:
Arguments:
Returns:
Description:

set _enabl e_c_b2b_packet _in_different_transaction().
Bool ean.
Voi d.

Enables a coverage point that ensures test coverage for back-to-back
packet transmission of different transactions. It is disabled when packet
transmission or channels are not supported.

set_enable_c_b2h_packet_same_channel()

Prototype:
Arguments:
Returns:
Description:

set _enabl e_c_b2b_packet _same_channel ().
Bool ean.
Voi d.

Enables a coverage point that ensures test coverage for back-to-back
packet transmission for the same channel. It is disabled when packet
transmission or channels are not supported.

set_enable_c_b2h_packet_within_single_cycle()

Prototype:
Arguments:
Returns:
Description:

Avalon Verification IP Suite User Guide

set _enabl e_c_b2b_packet _within_single_cycle().
Bool ean.
Voi d.

Enables a coverage point that ensures test coverage for back-to-back
packet transmission within a single cycle. It is disabled when packet
transmission or channels are not supported.

June 2012  Altera Corporation



Chapter 5: Avalon-ST Monitor
Application Program Interface

5-7

set_enable_c_channel_change_in_packet()

Prototype:
Arguments:
Returns:
Description:

set _enabl e_c_channel _change_i n_packet ().
Bool ean.
Voi d.

Enables a coverage point that ensures test coverage of a change of
channels within the packet transaction. It is disabled when either the
channel signal or packet transmission is not supported.

set_enable_c_empty()

Prototype:
Arguments:
Returns:
Description:

set_enable_c_enpty().
Bool ean.
Voi d.

Enables a coverage point that ensures test coverage of a enpt y signal. It is
disabled when packet transmission is not supported.

set_enable_c_error()

Prototype:
Arguments:
Returns:
Description:

set_enable_c_error().
Bool ean.
Voi d.

Enables a coverage point that ensures test coverage of all bits of the er r or
signal. It is disabled when the er r or signal is not supported.

set_enable_c_error_in_middle_of packet()

Prototype:
Arguments:
Returns:
Description:

set_enabl e_c_error_in_niddl e_of packet ().
Bool ean.
Voi d.

Enables a coverage point that ensures test coverage for the assertion of the
error signal in the middle of a packet. It is disabled when the er r or signal
is not supported.

set_enable_c_idle_heat_hetween_packet()

Prototype:
Arguments:
Returns:
Description:

June 2012  Altera Corporation

set _enabl e_c_idl e_beat _between_packet ().
Bool ean.
Voi d.

Enables a coverage point that ensures test coverage for packet transactions
that own idle beats in between. It is disabled when packet transmission is
not supported.

Avalon Verification IP Suite User Guide



5-8

Chapter 5: Avalon-ST Monitor
Application Program Interface

set_enable_c_multiple_packet_per_cycle()

Prototype:
Arguments:
Returns:
Description:

set_enabl e_c_multiple_packet per_cycle().
Bool ean.
Voi d.

Enables a coverage point that ensures test coverage for number of
transactions that carry multiple packets per single cycle. It is disabled
when packet transmission is not supported.

set_enable_c_non_valid_ready()

Prototype:
Arguments:
Returns:
Description:

set _enabl e_c_non_val i d_ready().
Bool ean.
Voi d.

Enables a coverage point that ensures test coverage for the assertion of
val i d signal with different values for readyLatency. Refer to the Avalon
Interface Specifications for more information.

set_enable_c_non_valid_non_ready()

Prototype:
Arguments:
Returns:
Description:

set _enabl e_c_non_valid_non_ready().
Bool ean.
Voi d.

Enables a coverage point that ensures test coverage for the deassertion of
both r eady and val i d. It is disabled when the r eady signal is not
supported.

set_enable_c_packet()

Prototype:
Arguments:
Returns:
Description:

set _enabl e_c_packet ().
Bool ean.
Voi d.

Enables a coverage point that ensures test coverage packet transmission
for different values of the channel signal. It is disabled when packet
transmission is not supported.

set_enable_c_packet_no_idles_no_back_pressure()

Prototype:
Arguments:
Returns:
Description:

Avalon Verification IP Suite User Guide

set _enabl e_c_packet _no_i dl es_no_back_pressure().
Bool ean.
Voi d.

Enables a coverage point that ensures test coverage of packet transaction
without back pressure and idle cycles. It is disabled when packet
transmission is not supported.

June 2012  Altera Corporation


http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 5: Avalon-ST Monitor 5-9
Application Program Interface

set_enable_c_packet_size()

Prototype: set _enabl e_c_packet _si ze().

Arguments: Bool ean.

Returns: Voi d.

Description: Enables a coverage point that ensures test coverage for different size of

packets. It is disabled when packet transmission is not supported.

set_enable_c_packet_with_back_pressure()

Prototype: set _enabl e_c_packet _wi t h_back_pressure().

Arguments: Bool ean.

Returns: Voi d.

Description: Enables a coverage point that ensures test coverage of packet transaction

with backpressure. It is disabled when either the r eady signal or packet
transmission is not supported.

set_enable_c_packet_with_idles()

Prototype: set _enabl e_c_packet _with_idles().

Arguments: Bool ean.

Returns: Voi d.

Description: Enables a coverage point that ensures test coverage of packet transaction

with idle cycles. It is disabled when packet transmission is not supported.

set_enable_c_partial_valid_heats()

Prototype: set_enable_c_partial _valid_beats().

Arguments: Bool ean.

Returns: Voi d.

Description: Enables a coverage point that ensures test coverage for number of

transaction with partially valid beats.

set_enable_c_single_packet_per_cycle()

Prototype: set _enabl e_c_singl e_packet _per_cycle().

Arguments: Bool ean.

Returns: Voi d.

Description: Enables a coverage point that ensures test coverage for number of

transactions that carry a single packet per cycle. It is disabled when packet
transmission is not supported.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



5-10 Chapter 5: Avalon-ST Monitor
Application Program Interface

set_enable_c_transfer()

Prototype: set_enable_c_transfer().

Arguments: Bool ean.

Returns: Voi d.

Description: Enables a coverage point that ensures test coverage of a val i d signal is

asserted correctly for different channels. It is disabled when the r eady or
val i d signals are not supported.

set_enable_c_transaction_after_reset()

Prototype: set_enable_c_transaction_after_reset().

Arguments: Bool ean.

Returns: Voi d.

Description: Enables a coverage point that ensures test coverage for transaction on the

first cycle after reset.

set_enable_c_valid_non_ready()

Prototype: set _enabl e_c_valid_non_ready().

Arguments: Bool ean.

Returns: Voi d.

Description: Enables a coverage point that ensures test coverage for val i d signal when
ready is deasserted. It is disabled when the r eadyLat ency is greater than
0.

Transaction Monitoring

Transaction monitoring is carried out through the transaction collector module. The
transaction collector collects the transactions, encapsulates them into descriptors, and
inserts the transactions into queue. The API provides the mechanism to query the
transactions in queue and disposes them as they are processed. By default, the
transaction collector module is disabled. You must define the

ENABLE ALTERA AVALON TRANSACTI ON_RECORDI NG Verilog macro to enable this feature.
This macro is required to ensure backward compatibility and to avoid breaking
existing test cases.

get_transaction_channel()

Prototype: get _transaction_channel ().

Arguments: None.

Returns: STChannel _t.

Description: Returns the channel identifier for the most recently removed transaction.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 5: Avalon-ST Monitor 5-11
Application Program Interface

get_transaction_data()

Prototype: get _transaction_data().

Arguments: None.

Returns: STData_t .

Description: Returns the data in the most recently removed transaction.

get_transaction_empty()

Prototype: get _transaction_enpty().

Arguments: None.

Returns: STEmpty_t.

Description: Returns the number of empty symbols in the most recently removed

transaction.

get_transaction_eop()

Prototype: get _transaction_eop().

Arguments: None.

Returns: bit.

Description: Returns the transaction end of packet status in the most recently removed

transaction.

get_transaction_error()

Prototype: get _transaction_error().

Arguments: None.

Returns: STError _t.

Description: Returns the error in the most recently removed transaction.

get_transaction_idles()

Prototype: get _transaction_idles().

Arguments: None.

Returns: bit[31:0].

Description: Returns the number of idle cycles in the most recently removed

transaction.
get_transaction_queue_size()

Prototype: get _transaction_queue_si ze().

Arguments: None.
Returns: int.
Description: Returns the length of the queue holding received transactions.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



5-12 Chapter 5: Avalon-ST Monitor
Application Program Interface

get_transaction_sop()

Prototype: get _transaction_sop().

Arguments: None.

Returns: bit.

Description: Returns the transaction start of packet status in the most recently removed

transaction.

get_version()

Prototype: string get_version().

Arguments: None.

Returns: String.

Description: Returns BFM version as a string of three integers separated by periods. For

example, version 10.1 sp1 is encoded as "10.1.1".

pop_transaction()

Prototype: voi d pop_transaction().

Arguments: None.

Returns: voi d.

Description: Removes the transaction descriptor from the queue so that the testbench

can query it with the get _t ransact i on methods.

set_transaction_fifo_max()

Prototype: set _transaction fifo_max().

Arguments: int level.

Returns: Voi d.

Description: Sets the maximum transaction level of the FIFQ. The event
signal _transaction_fifo_max is triggered when this level is
exceeded.

set_transaction_fifo_threshold()

Prototype: set _transaction_fifo_threshol d().

Arguments: int level.

Returns: Voi d.

Description: Sets the threshold alert level of the FIFO. The event
signal _transaction_fifo_threshol distriggered when this level is
exceeded.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 5: Avalon-ST Monitor
Application Program Interface

5-13

signal_fatal_error

Prototype:
Arguments:
Returns:
Description:

signal _fatal _error.

None.

voi d.

Notifies the testbench that a fatal error has occured in this module.

signal_transaction_fifo_overflow

Prototype:
Arguments:
Returns:
Description:

signal _transaction_fifo_overflow
None.
voi d.

Notifies the testbench that the FIFO is full and further transactions are
dropped.

signal_transaction_fifo_threshold

Prototype:
Arguments:
Returns:
Description:

signal _transaction_fifo_threshol d.
None.
voi d.

Notifies the testbench that the transaction FIFO threshold level has
exceeded.

signal_transaction_received

Prototype:
Arguments:
Returns:
Description:

June 2012  Altera Corporation

signal _transaction_received.
None.
voi d.

Notifies the testbench that a transaction has been received and queued.

Avalon Verification IP Suite User Guide



5-14 Chapter 5: Avalon-ST Monitor
Application Program Interface

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



A |:| = 0)/) Section V. Conduit and External Memory
A — ® BFMs

This section provides information about conduit and external memory BFMs. This
section includes the following chapters:

m Chapter 1, Conduit BEM
m Chapter 2, Tri-State Conduit BFM
m Chapter 3, External Memory BFM

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



V-2 Section V: Conduit and External Memory BFMs

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



=N 1. Conduit BFM

You can use Conduit BEMs to verify the following aspects of Avalon Conduit
interfaces:

m Port compatibility and polarity
m  Legal port widths

Conduit BFMs are only supported in Qsys.

Block Diagram

Figure 1-1 shows a block diagram of a Conduit BFM.

Figure 1-1. Conduit BFM Block Diagram

Top Level Design

BFM Component Design Component
role: “black” role: “black”
dir: output > dir: input
width: 32 width: 32
role: “red” - role: “red”
dir: input ~ dir: output
width: 17 width: 17

External Component

role: “export”

dir: bidir < > "
M < > role: “export’

width: 8 dir: bidir

width: 8

An Avalon Conduit interface can have an arbitrary number of ports. Each port can be
an input, output, or bidirectional port. Legal port widths range from 1 through 1024
bits in size. Each port has an associated role name. This role name is an arbitrary
string. Qsys uses these names to check for conduit interconnect compatibility between
components. A connection is legal when two conduit interconnected components
have the same port role names and complementary directions. For example, when an
input connects with an output, the connection is legal. A port can also have a specific
role named export . Ports with this role name are exported from the current system
design module to the Conduit BFM module 1/0O.

A set of functions forming the API are used to construct or deconstruct transactions.
Outgoing transactions are driven out on the physical conduit interface and vice versa.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



Chapter 1: Conduit BFM
Parameters

Parameters

At the beginning of the simulation, registers that store the data that is sent to the
output ports are empty. The Conduit BEM drives ‘x” to the output port until you
rewrite the registers by calling the set _<rol e name> API. Initially, bidirectional ports
work as input ports. You can change its functionality by calling the

set _<rol e name>_oe APIL The Conduit BEM prints out a message when the behavior
of the bidirectional port changes from an input port to an output port and vice versa.
Bidirectional ports drive register values to the interface when this API is set to 1.
Otherwise, bidirectional ports work as input ports. You can call the get _<rol e name>
API to obtain the value coming from the input and bidirectional ports.

The Conduit BEM supports signals that interface to external memory devices, such as
address, data, and control signals that have the signal type export.

For more information about Avalon Conduit interfaces supported in Qsys, refer to the
Awvalon Interface Specifications (version 2.0).

Table 1-1 lists the parameter settings for the Conduit BFM.

Table 1-1. Conduit BFM Parameter Settings

Option Default Value Legal Values Description
Role — Any string Specifies the role name of each port.
Width 1 1-1024 Specifies the port width.
Direction input l"llu:;igiur‘lluh Specifies the direction of the signal.

Avalon Verification IP Suite User Guide

June 2012  Altera Corporation


http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 1: Conduit BFM 1-3
Application Program Interface

Application Program Interface
This section describes the API for the Conduit BEM.

get_<role name>()

Prototype: int <<width of the role nane port> get_<role nane>().
Arguments: None.

Returns: Int <width of the role nanme port>.

Description: Returns interface signal value from the input/bidirectional port.

get_version()

Prototype: string get_version().

Arguments: None.

Returns: String.

Description: Returns BFM version as a string of three integers separated by periods. For example,

version 10.1 sp1 is encoded as "10.1.1".

set_<role name>()

Prototype: void set_<role name>().

Arguments: new val ue.

Returns: voi d.

Description: Rewrites the registers inside the BFMs that are driven to the <r ol e nanme> output ports.

set_<role name>_oe()

Prototype: void set_<role name>_oe().

Arguments: bit enable.

Returns: voi d

Description: Enables the bidirectional ports when the value is set to 1.

signal_input_<role name>_change

Prototype: signal _i nput _<rol e name>_change.

Arguments: None.

Returns: voi d.

Description: Triggers when the input signal for a particular port changes its value. For a bidirectional

port, this event is only triggered if its input value defers from its last input value.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



1-4 Chapter 1: Conduit BFM
Application Program Interface

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



2. Tri-State Conduit BFM

You can use the Tri-State Conduit BFM to verify the following aspects of Avalon-TC
interfaces:

m Port compatibility and polarity

m  Legal port widths

[l =~ The Tri-State Conduit BFM is only supported in Qsys.

Block Diagram

Figure 2-1 shows a block diagram of a Tri-State Conduit BFM connected to an

external component using an Avalon-TC interface.

Figure 2-1. Conduit BFM Block Diagram

Top Level Design

role: “request”

Tri-State Conduit BFM Component

Avalon-TC Interface

External Component

role: “request”

dir: output p-| dir: input

width: 32 width: 32

role: “grant” role: “grant”

dir: input < dir: output

width: 17 width: 17
role: “red_out” role: “red_out”
dir: output o | dirinput
width: 8 71 width: 8
role: “red_outen” role: “red_outen”
dir: output > dir: input
width: 8 width: 8
role: “red_in" role: “red_in"
dir: input < dir: output
width: 8 width: 8
role: “blue_out” role: “blue_out”
dir: output p| dir:input
width: 8 width: 8
role: “blue_outen” role: “blue_outen”
dir: output P> dir: input
width: 8 width: 8
role: “blue_in” o role: “blue_in"
dir: input Il dir: output
width: 8 width: 8

A A

Clock

June 2012  Altera Corporation

Avalon Verification IP Suite User Guide



2-2 Chapter 2: Tri-State Conduit BFM
Parameters

An Avalon-TC interface can have an arbitrary number of ports. Each port has an
associated role name. This role name is an arbitrary string. The difference between
conduit interfaces and Avalon-TC interface is the way in which bidirectional ports are
handled. In Avalon-TC interfaces, a bidirectional port is decomposed into three
distinct unidirectional port signals with role names having the following suffixes:
B <role name>_in
B <role name>_out
B <role nane>_outen
The set of bidirectional ports in the Avalon-TC interface are grouped together. The
Avalon-TC interface also includes the r equest port, the gr ant port, and an associated
clock. These request and grant signals are the control signals to and from the arbiter
that controls access to the shared media.
The following port combinations are not legal:
B In and out roles (without a <rol e nanme>_out en role)
® In and outen roles (without a <rol e name>_out role)
®  Only an outen role (without a <rol e nane>_out role)

Parameters

=
&

The Tri-State Conduit BFM supports signals that interface to multiple external
memory devices.

For more information about the Avalon-TC interface supported in Qsys, refer to the
Avalon Interface Specifications (version 2.0).

Table 2-1 lists the parameter settings for the Tri-State Conduit BFM.

Table 2-1. Tri-State Conduit BFM Parameter Settings

Option Default Value Legal Values Description

Role — Any string Specifies the role name of each port.

Width 1 1-1024 Specifies the port width.

USE_INPUT 1 Oor1 Specifies an input port.

USE_OUTPUT 1 Oor1 Specifies an output port.

USE_OUTPUTENABLE 1 Oor1 Specifies an output enable port.
Specifies the maximum transactions of data

MAX_MULTIPLE_TRANSACTION 1024 — while request and grant signals are asserted.
The value is constraint by the number of roles.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 2: Tri-State Conduit BFM 2-3
Application Program Interface

Application Program Interface
This section describes the API for the Tri-State Conduit BEM.

get_input_transaction_queue_size()

Prototype: int get_input_transaction_queue_size().
Arguments: None.

Returns: [nt.

Description: Returns the size of the queued input transaction in the BFM.

get_output_transaction_queue_size()

Prototype: int get_output_transaction_queue_size().
Arguments: None.

Returns: Int.

Description: Returns the size of the queued output transaction in the BFM.

get_transaction_<role name>_in()

Prototype: int <width of the role name port>get_transaction_<role nane>_in().
Arguments: None.

Returns: Int <width of the role nanme port>.

Description: Returns the interface signal value from the <r ol e nanme>_i n input ports.

get_transaction_latency()

Prototype: int get_transaction_|latency().

Arguments: None.

Returns: Int.

Description: Returns the latency field value from the input transaction.

get_version()

Prototype: string get _version().

Arguments: None.

Returns: String.

Description: Returns the BFM version as a string of three integers separated by periods. For example,

version 10.1 sp1 is encoded as "10.1.1".

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



2-4

Chapter 2: Tri-State Conduit BFM
Application Program Interface

pop_transaction()

Prototype:
Arguments:
Returns:
Description:

voi d pop_transaction().
None.
voi d.

Returns the input transaction queued inside the BFM. A fatal error triggers if you remove
a transaction from an empty queue.

push_transaction()

Prototype:
Arguments:
Returns:
Description:

voi d push_transaction().
None.
voi d.

Registers an output transaction into the BFM. All registered output transactions are put
into transaction queue. A fatal error triggers if you insert a transaction while the BFM is
reset.

set_max_transaction_queue_size()

Prototype:
Arguments:
Returns:
Description:

voi d set_max_transaction_queue_size(int size).
int size.
voi d.

Sets the maximum size of the queued transactions. The BFM triggers an event when the
queued transactions goes above the maximum size.

set_min_transaction_queue_size()

Prototype:
Arguments:
Returns:
Description:

int set_min_transaction_queue_size().
None.
voi d.

Sets the minimum size of the queued transactions. The BFM triggers an event when the
queued transactions falls below the minimum size.

set_num_of_transactions()

Prototype:
Arguments:
Returns:
Description:

Avalon Verification IP Suite User Guide

int set_numof transactions().

int nultiple_transaction_num

voi d.

Sets the number of transactions to the DUT.

June 2012  Altera Corporation



Chapter 2: Tri-State Conduit BFM 2-5
Application Program Interface

set_transaction_<role name>_out()

Prototype: voi d set_transaction_<role name>_ out().

Arguments: int index.

Returns: voi d.

Description: Sets the value of the transaction to the <rol e nanme>_out output ports.

set_transaction_<role name>_outen()

Prototype: string set_transaction_<rol e nanme>_outen().
Arguments: int index.
bit outen.
Returns: voi d.
Description: Sets the value of the transaction to the <r ol e name>_out en output ports.

set_transaction_idles()

Prototype: void set_transaction_idl es().

Arguments: bit[31:0] idle_cycles.

Returns: voi d.

Description: Sets the number of idle cycles that elapse before driving the out-going transaction.

set_valid_transaction_<role name>_out()

Prototype: voi d set_valid_transaction_<role nane>_out().

Arguments: int index.

Returns: voi d.

Description: Sets the value of the valid transaction to the <r ol e nanme>_out output port.

signal_all_transactions_complete

Prototype: signal _all _transactions_conpl ete.

Arguments: None.

Returns: voi d

Description: Triggers when all the queued output and input transactions are completely retrieved.

signal_fatal_error

Prototype: signal fatal _error.

Arguments: None.

Returns: voi d.

Description: Notifies the testbench that a fatal error has occured in this module.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



2-6

Chapter 2: Tri-State Conduit BFM
Application Program Interface

signal_grant_deasserted_while_request_remain_asserted()

Prototype:
Arguments:
Returns:
Description:

signal _grant _deasserted_while_request_renmain_asserted.
None.
voi d.

Triggers when the grant signal changes value from high to low while the request signal
remains asserted.

signal_interface_granted

Prototype:
Arguments:
Returns:
Description:

signal _interface_granted.

None.

voi d

Triggers when the grant signal is asserted.

signal_max_transaction_queue_size

Prototype:
Arguments:
Returns:
Description:

si gnal _max_transacti on_queue_si ze.

None.

voi d.

Triggers when the size of the pending queue exceeds the maximum size.

signal_min_transaction_gqueue_size

Prototype:
Arguments:
Returns:
Description:

Avalon Verification IP Suite User Guide

signal _m n_transacti on_queue_si ze.

None.

voi d.

Triggers when the size of the pending queue falls below the minimum size.

June 2012  Altera Corporation



A |:| ==/ 3. External Memory BFM

You can use external memory BFMs to verify the following aspects of external
memory interfaces:

m Read and write operations

B Memory initialization

['=~ External Memory BFMs are only supported in Qsys.

Functional Description

This section provides a functional description of the external memory BFM. It
includes the following topics:

m “Block Diagram”
m “Initializing the Memory Content” on page 3-2

m “Reading and Writing to the Memory Content” on page 3-2

Block Diagram

Figure 3-1 shows a block diagram of how to use the external memory BFM with
tristate components.

Figure 3-1. Usage of External Memory BFM with Tristate Components

Printed Circuit Board

Altera FPGA
Virtual Connection
Gergric Tr:lstate = o External
ontroller Memory
e s | (soRAV) i (sg;'le)
Tristate <
Tristate ; Conduit
Nios Il Conduit Tr|statg
Processor _ Pin m J e %O_r:jd“'t ICM 4”@ In\F/’?r:se
<« Sharer riage Sharer <—
Generic Tristate Bl
Controller
Memo
Fesh M i B
memory) Virtual Connection | (Flash memory)
n Avalon-MM Master Avalon-TC Master
Avalon-MM Slave Avalon-TC Slave

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



3-2 Chapter 3: External Memory BFM
Functional Description

Table 3-2 lists the function of the external memory BFM and its related components.

Table 3-1. External Memory BFM and Related Components

Component Description

Represents the external RAM. The external memory BFM is a
memory model with an Avalon-TC interface. The BFM also models a
set of memories that are supported by the generic tristate controller
component.

External memory BFM

Tristate Conduit Bridge Converts Avalon-TG signals into conduit signals.

Tristate Conduit Pin Sharer
Tristate Conduit Inverse Pin | Carries the shared address bus and data.
Sharer

Controls the external memory BFM. The generic tristate controller
Generic Tristate Controller accepts read and write requests and converts these requests into
necessary SDRAM and bank management commands.

“ e For more information about tristate conduit bridge, refer to “Tristate Conduit Bridge”

section in the Qsys Interconnect chapter of the Quartus Il Handbook.

For more information about tristate conduit pin sharer, refer to “Tristate Conduit Pin
Sharer” section in the Qsys Interconnect chapter of the Quartus II Handbook.

For more information about generic tristate controller, refer to “Generic Tristate
Controller” section in the Qsys Interconnect chapter of the Quartus II Handbook.

Initializing the Memory Content

At the beginning of the simulation, the external memory BFM loads the memory
initialization file (I NI T_FI LE) to initialize its memory content. For example, if the
memory file has a memory size of 50, the BFM fills its memory content with addresses
0-49. However, if you do not provide the memory initialization file, the memory
content of the BEM remains blank.

Reading and Writing to the Memory Content

You can read or write to the memory content through the APIs or the interface signals.

Reading from the Memory

The BFM uses cdt _dat a_i 0 as a bidirectional data port. During read transfers, this
port acts as an output port and drives the corresponding address memory content
when the BFM asserts or deasserts the following signals:

m Asserts cdt _out put _enabl e signal
m Asserts cdt _read signal

m Deasserts cdt _write signal

m Asserts cdt _chi p_sel ect signal

Otherwise, the cdt _dat a_i 0 port acts as an inactive input port and is held in high
impedance state.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation


http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf
http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf
http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf

Chapter 3: External Memory BFM 3-3
Parameters
Writing to the Memory
The BEM overwrites its memory content when the BEM asserts the following signals:
m cdt_witesignal
m cdt_chi p_sel ect signal
Parameters

Table 3-2 lists the parameter settings for the external memory BFM.

Table 3-2. External Memory BFM Parameter Settings (Part 1 of 2)

. Legal _—
Option Default Value Values Description
Port Enables
. When 0On, the interface includes a byt eenabl e

Usa the byteanabla signal On On/0ft pin to enable specific byte lanes during transfer.
When 0On, the interface includes a chi psel ect
pin. When present, the slave port ignores all

Use the chip select signal On On/0ff Avalon-MM signals unless chi psel ect is
asserted. chi psel ect is always present in
combination withread orwite.

Use the write signal On On/Off When On, the |nterface mcludeg awite pin
that enables the write-request signal.

. When On, the interface includes ar ead pin that

Use the read signal On On/0H gnables the read-request signal.

U'se the output enable on On/Off When 0n, the |ntqrface includes an

signal out put enabl e pin.

Use the begintransfer signal On On/Off \éthn On, the mterface includes a

egi ntransf er pin.

Use the reset input signal off On/Off When On, the interface includes a r eset pin.

Use the active low off On/Off When 0n, the interface includes an active low

byteenable signal byt eenabl e pin.

Use the active low When On, the interface includes an active low

. . off On/Off . .

chipselect signal chi psel ect _n pin.

U_se the active low write off On/Off When On, ’ghe interface includes an active low

signal wri te_n pin.

U_se the active low read off On/Off When On,. the interface includes an active low

signal read_n pin.

Use the active low off On/Off When 0n, the interface includes an active low

outputenable signal out put enabl e_n pin.

Use the active low When On, the interface includes an active low

. . Off On/Off . .

begintransfer signal begi nt ransf er _n pin.

U_se the active low reset off On/Off When On, t'he interface includes an active low

signal reset _n pin.

June 2012  Altera Corporation

Avalon Verification IP Suite User Guide




34

Chapter 3: External Memory BFM
Parameters

Tahle 3-2. External Memory BFM Parameter Settings (Part 2 of 2)

Option

Default Value

Legal
Values

Description

Interface Signals Nam

Address Role

cdt_address

Data Role cdt_data_io —
Write Role cdt_write —
Read Role cdt_read —

Byteenable Role

cdt_byteenable

Chip Select Role

cdt_chipselect

Outputenable Role

cdt_outputenable

Begintransfer Role

cdt_begintransfer

Specifies the conduit interface role name that
matches the role name on the external memory

Reset Role cdt_reset —
Port Widths
Address width 1-32 Specifies the address width in bits.
Symbol width 1-1024 | Specifies the data symbol width in bits.
1,2,4,8,
Number of symbols 4 16, 32, 64, | Specifies the number of symbols in a data.
128

Memory Contents

Memory Initialization

altera_external_memory_
bfm.hex

Specifies the file to initialize the memory
content at the beginning of the simulation. The
BFM supports only one memory file.

Interface Timing

Read Latency of Interface

Specifies the read latency of the interface.

Avalon Verification IP Suite User Guide

June 2012  Altera Corporation




Chapter 3: External Memory BFM 3-5
Application Program Interface

Application Program Interface

This section describes the API for the external memory BFM.

fill()

Prototype: fill().

Arguments: | ogi c[ DATA W 1: 0] dat a.
bi t [ DATA W 1: 0] i ncrement.
bi t [ CDT_ADDRESS W 1: 0] address | ow.
bi t [ CDT_ADDRESS W 1: 0] address hi gh.

Returns: voi d.

Description: Overwrites the memory content at the starting address specified by addr ess_| ow until
the ending address specified by addr ess_hi gh. The dat a field indicates the data value.
The i ncrenent field indicates the data value increment from one address to the next
address. For example, fill (dat a[ 1], i ncrenment [ 2], addr ess_| ow| 10] ,
address_hi gh[ 12] ) fills the memory as follows:
m nenor y[ addr ess=10] is filled with data value 1
m nenory[ address=11] is filled with data value 3
m nenor y[ address=12] is filled with data value 5

read()

Prototype: read().

Arguments: bi t [ COT_ADDRESS W 1:0] address.

Returns: | ogi c[ DATA_W 1: 0] .

Description: Retrieves the memory content from an address you specify.

signal_api_call

Prototype: signal _api _call.
Arguments: None.
Returns: voi d.
Description: Triggers when a client make an API call.
write()
Prototype: wite().
Arguments: bi t [ COT_ADDRESS W 1:0] address.
| ogi c[ DATA W 1:0] data.
Returns: voi d.
Description: Overwrites the memory content at an address you specify.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



3-6 Chapter 3: External Memory BFM
Application Program Interface

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



|:| = o Section VI. Nios Il Custom Instruction
AITERAN BFMs

This section provides information about Nios II Custom Instruction Master and Slave
BFMs. This section includes the following chapters:

m Chapter 1, Nios II Custom Instruction Master BEM
m Chapter 2, Nios II Custom Instruction Slave BFM

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



VI-2 Section VI: Nios Il Custom Instruction BFMs

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



1. Nios Il Custom Instruction Master BFM

You can use Nios II Custom Instruction Master BFM to verify the following aspects of
the Nios II custom instruction master interface:

m Combinational and multicycle master custom instructions

m Extended instructions

"=~ The Nios II Custom Instruction Master BFM is only supported in Qsys.

Block Diagram

Figure 1-1 shows a block diagram of a Nios II Custom Instruction Master BFM.

Figure 1-1. Custom Instructions Master BFM Block Diagram

Test Program

Avalon Custom Instruction Master BFM API
(Transaction Level Commands)

A 4

Client Instruction Client Result
A
Public Events
Pending
Pending Timestamp gszﬂg
Instruction Counter
Queue
A
> >
—>
> >
v Issued
Instruction
) . ueue
Physical Instruction Q Physical Result
A
Master Interface Master Interface
Driver Receiver
instruction A result A
Y
DUT

June 2012  Altera Corporation

Avalon Verification IP Suite User Guide



Chapter 1: Nios Il Custom Instruction Master BFM
Parameters

The Nios II Custom Instruction Master BEM uses queues to manage instructions. You
can create instructions and push them into the instruction queue. The BFM then
removes the instructions out one-by-one and drives them on the interface. You can
insert the instructions simultaneously at the beginning of the simulation. If there is no
instruction to execute, the BEM drives unknown (X), except on the r eadr a, r eadr b,
and wri t er ¢ control ports which are driven high.

The result is sampled based on the driven instruction and inserted into a result queue.
You can remove the result on an event basis, or at the end of the simulation.

Parameters

Table 1-1 lists the parameter settings for the custom instruction master BFM interface.

Table 1-1. Custom Instruction Master BFM Parameter Settings

Option D‘f;fu";t \;-;aaels Description
General
Specifies the number of operands to use.
0: no operands are used
Number of Operands to Use 2 0,1,2
1: use dataa port only
2: use dataa and datab ports
:/:)::1: Length for Multi-cycle 2 — Specifies the fixed length for multi-cycle mode.
Port Enables
Use Result Port On On/Off When On, the interface includes a resul t pin.
When On, the interface can include a start pin, a done pin,
both pins, or neither pins. The result returns in any of the
following conditions:
m With astart signal—Result returns together with an
Use Multi-cycle Mode off On/0ff instruction.
m Without a st art signal—Result returns with instruction on
the bus at every clock cycle.
m With a done signal—Result returns at any time.
m Without a done signal—Result returns at a fixed cycle.
Using start port On On/0ff When 0n, the interface includes a start pin.
Using done port On On/Off When On, the interface includes a done pin.
Use Extended Port off On/0ff When 0n, the interface includes a n pin.
Extended Port Width 1 — Specifies the width of the extended n port.
Use Internal Register a off On/Off When 0On, the interface includes the r eadr a and a pins.
Use Internal Register b Off On/Off When 0On, the interface includes the r eadr b and b pins.
Use Internal Register ¢ off On/Off When 0On, the interface includes the r eadr ¢ and ¢ pins.

Avalon Verification IP Suite User Guide

June 2012  Altera Corporation




Chapter 1: Nios Il Custom Instruction Master BFM 1-3
Application Program Interface

Application Program Interface

This section describes the API for the Nios II Custom Instruction Master BEM.

get_instruction_queue_size()

Prototype: int get_instruction_queue_size(int size).
Arguments: None.

Returns: int size.

Description: Returns the number of instructions in the queue.

get_result_delay()

Prototype: int get_result_delay().
Arguments: None.
Returns: Width of the data (ci _data_t) that can contain the following variables:

m [Vord_width-1:0]

m [Ext_width-1:0]

m [Addr_width-1:0]
Description: Returns the result delay.

get_result_queue_size()

Prototype: int get_result_queue_size(int size).
Arguments: None.

Returns: int size.

Description: Returns the number of results in the queue.

get_result_value()

Prototype: string get_result_value().
Arguments: None.
Returns: Width of the data (ci _dat a_t ) that can contain the following variables:

m [Vord_width-1:0]

m Ext_width-1:0]

» [Addr_width-1: 0]
Description: Returns the instruction result.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



1-4 Chapter 1: Nios Il Custom Instruction Master BFM
Application Program Interface

get_version()

Prototype: string get _version().

Arguments: None.

Returns: String.

Description: Returns BFM version as a string of three integers separated by periods. For example,

version 10.1 sp1 is encoded as "10.1.1".

insert_instruction()

Prototype: void insert_instruction().
Arguments: ci _data_t dataa.
ci _data_t datab.
ci_nt n.
ci _addr_t a.
ci _addr_t b.
ci _addr _t c.
| ogi ¢ readra.
[ ogi ¢ readrhb.
logic witerc.
ci _data_t idle.

int err_inj.
Returns: voi d.
Description: A simplified API to set and push instructions.
pop_result()
Prototype: voi d pop_result().
Arguments: None.
Returns: voi d..
Description: Removes the result instruction from the queue before querying the contents.

push_instruction()

Prototype: voi d push_instruction().
Arguments: None.

Returns: voi d.

Description: Inserts a new instruction into the queue.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 1: Nios Il Custom Instruction Master BFM

Application Program Interface

retrive_result()

Prototype:
Arguments:

Returns:
Description:

set_ci_clk_en()

Prototype:
Arguments:
Returns:
Description:

void retrive_result.

output ci_data_t val ue.

output ci_data_t delay.

voi d.

A simplified API to remove and retrieve results.

voi d set_ci_clk_en().
bit enable.
voi d.

Sets the ci _cl k_en signal synchronously with the clock.

set_clock_enable_timeout()

Prototype:
Arguments:
Returns:
Description:

set_instruction_

Prototype:
Arguments:
Returns:
Description:

set_instruction

Prototype:
Arguments:
Returns:
Description:

set_instruction_

Prototype:
Arguments:
Returns:
Description:

June 2012  Altera Corporation

voi d set_cl ock_enabl e_tineout ().
int tinmeout.
voi d.

Sets the timeout value for the clock enable. Sets the value to 0 (zero)to disable timeouts.

a()

voi d set_instruction_a().
ci _addr _t address.
voi d.

Sets the instruction register file address a value.

b()

voi d set_instruction_b().
ci _addr t address.
voi d.

Sets the instruction register file address b value.

¢()

voi d set_instruction_c().
ci _addr _t address.
voi d.

Sets the instruction register file address ¢ value.

Avalon Verification IP Suite User Guide



Chapter 1: Nios Il Custom Instruction Master BFM

Application Program Interface

set_instruction_dataa()

Prototype:
Arguments:
Returns:
Description:

set_instruction

Prototype:
Arguments:
Returns:
Description:

set_instruction

Prototype:
Arguments:
Returns:
Description:

set_instruction

Prototype:
Arguments:
Returns:
Description:

set_instruction_

Prototype:
Arguments:
Returns:
Description:

set_instruction |

Prototype:
Arguments:
Returns:
Description:

Avalon Verification IP Suite User Guide

voi d set_instruction_dataa().

ci _data_t data.

voi d.

Sets the instruction dat aa operand value.

datah()

voi d set_instruction_datab().

ci _data t data.

voi d.

Sets the instruction dat ab operand value.

err_inject()

voi d set_instruction_err_inject().
int err_inj.
voi d.

Sets the instruction to execute in pre-defined error.

idle()

voi d set_instruction_idle().
ci_data t idle.

voi d.

Sets the instruction i dl e value.

n()

voi d set_instruction_n().

ci _n_t code.

voi d.

Sets the instruction extended opcode value n.

readra()

voi d set_instruction_readra().

[ ogi ¢ enabl e.

voi d.

Sets the instruction register file read a value.

June 2012  Altera Corporation



Chapter 1: Nios Il Custom Instruction Master BFM 1-7

Application Program Interface

set_instruction_readrh()

Prototype:
Arguments:
Returns:
Description:

voi d set_instruction_readrb().

| ogi ¢ enabl e.

voi d.

Sets the instruction register file read b value.

set_instruction_timeout()

Prototype:
Arguments:
Returns:
Description:

voi d set_instruction_timeout().
int tinmeout.
voi d.

Sets the timeout value for an instruction. Sets the value to 0 (zero) to disable the
timeout.

set_instruction_writerc()

Prototype:
Arguments:
Returns:
Description:

voi d set_instruction_witerc().

| ogi ¢ enabl e.

voi d.

Sets the instruction register file write ¢ value.

set_max_instruction_queue_size()

Prototype:
Arguments:
Returns:
Description:

voi d set_max_instruction_queue_size(int size).
int size.

voi d.

Sets the pending instruction queue size maximum threshold.

set_max_result_queue_size()

Prototype:
Arguments:
Returns:
Description:

voi d set_max_resul t _queue_size(int size).
int size.

voi d.

Sets the pending result queue size maximum threshold.

set_min_instruction_queue_size()

Prototype:
Arguments:
Returns:
Description:

June 2012  Altera Corporation

voi d set_mn_instruction_queue_size(int size).
int size.

voi d.

Sets the pending instruction queue size minimum threshold.

Avalon Verification IP Suite User Guide



1-8 Chapter 1: Nios Il Custom Instruction Master BFM
Application Program Interface

set_min_result_queue_size()

Prototype: voi d set_mn_result_queue_size(int size).
Arguments: int size.

Returns: voi d.

Description: Sets the pending result queue size minimum threshold.

set_result_timeout()

Prototype: void set_result_timeout().

Arguments: int timeout.

Returns: voi d.

Description: Sets the timeout value for a result. Set the value to 0 to disable timeout.

signal_unexpected_result_received

Prototype: si gnal _unexpected_resul t _recei ved.

Arguments: None.

Returns: voi d.

Description: Signals that a result has been received without an instruction.

signal_fatal_error

Prototype: signal _fatal _error.

Arguments: None.

Returns: voi d.

Description: Notifies the testbench that a fatal error has occured in this module.

signal_instructions_completed

Prototype: signal _instructions_conpl et ed.

Arguments: None.

Returns: voi d.

Description: Signals that all instructions in the BFM has been executed.

signal_instruction_start

Prototype: signal _instruction_start.

Arguments: None.

Returns: voi d.

Description: Signals that an instruction has been driven to the interface.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 1: Nios Il Custom Instruction Master BFM 1-9
Application Program Interface

signal_max_instruction_queue_size

Prototype: signal _max_i nstruction_queue_si ze.

Arguments: None.

Returns: voi d.

Description: Signals that the maximum pending instruction queue size threshold has been exceeded.

signal_max_result_queue_size

Prototype: signal _max_resul t _queue_si ze.

Arguments: None.

Returns: voi d.

Description: Signals that the maximum pending result queue size threshold has been exceeded.

signal_min_instruction_queue_size

Prototype: signal _m n_instruction_queue_si ze.

Arguments: None.

Returns: voi d.

Description: Signals that the pending instruction queue size is below the minimum threshold.

signal_min_result_qgueue_size

Prototype: signal _m n_result_queue_si ze.

Arguments: None.

Returns: voi d.

Description: Signals that the pending result queue size is below the minimum threshold.

signal_result_received

Prototype: signal _result_received.
Arguments: None.

Returns: voi d.

Description: Signals that a result has been received.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



1-10 Chapter 1: Nios Il Custom Instruction Master BFM
Application Program Interface

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



m_b DA 2. Nios Il Custom Instruction Slave BFM

You can use Nios II Custom Instruction Slave BFM to verify the following aspects of
the Nios II custom instruction slave interface:

m Combinational and multicycle slave custom instructions

m Extended instructions

['=~ The Nios II Custom Instruction Slave BFM is only supported in Qsys.

Block Diagram

Figure 2-1 shows a block diagram of a Nios II Custom Instruction Slave BFM.

Figure 2-1. Custom Instructions Slave BFM Block Diagram

Test Program

Avalon Custom Instruction Slave BFM API
(Transaction Level Commands)

A
A\
Physical Instruction Physical Result
A
| Public Events
\4 \ 4
Slave Interface Slave Interface
Receiver Driver
A
instruction v result 4

DUT

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



2-2

Chapter 2: Nios Il Custom Instruction Slave BFM
Parameters

The Nios II Custom Instruction Slave BEM does not use queues to manage the
instructions or results. Without queues, the BEM uses events to retrieve the
instructions and to drive results. This method allows greater flexibility in controlling
the output result (for example, driving a result when the interface is unknown). If
there is an instruction and you do not provide the result, the BFM drives the old result
onto the interface. If there is no instruction at all, the BFM drives unknown (X) on the
interface.

Parameters

Table 2-1 lists the parameter settings for the custom instruction master BEM interface.

Table 2-1. Custom Instruction Master BFM Parameter Settings

Option D‘fa'fu";t \;-:I?uzls Description
General
Specifies the number of operands to use.
0: no operands are used.
Number of Operands to Use 2 0,1,2
1: use dataa port only.
2: use dataa and datab ports.
ng Length for Multi-cycle 2 — Specifies the fixed length for multi-cycle mode.
Port Enables
Use Result Port On On/Off When On, the interface includes a resul t pin.
When On, the interface can include a start pin, a done pin,
both pins, or neither pins. The result returns in any of the
following conditions:
m With astart signal—Result returns together with an
Use Multi-cycle Mode off On/Off instruction.
m Without a start signal—Result returns with instruction on
the bus at every clock cycle.
m With a done signal—Result returns at any time.
m Without a done signal—Result returns at a fixed cycle.
Using start port On On/Off When On, the interface includes a start pin.
Using done port On On/Off When On, the interface includes a done pin.
Use Extended Port off On/0ff When On, the interface includes a n pin.
Extended Port Width 1 — Specifies the width of the extended n port.
Use Internal Register a off On/Off When 0On, the interface includes the r eadr a and a pins.
Use Internal Register b Off On/Off When 0On, the interface includes the r eadr b and b pins.
Use Internal Register ¢ off On/Off When 0On, the interface includes the r eadr ¢ and ¢ pins.

Avalon Verification IP Suite User Guide

June 2012  Altera Corporation




Chapter 2: Nios Il Custom Instruction Slave BFM

Application Program Interface

2-3

Application Program Interface

This section describes the API for the Nios II Custom Instruction Slave BEM.

get_ci_clk_en()

Prototype:
Arguments:
Returns:
Description:

voi d get_ci_clk _en(bit enable).
None.

bit enabl e.

Retrieves the clock enable signal.

get_instruction_a()

Prototype:
Arguments:
Returns:
Description:

get_instruction_

Prototype:
Arguments:
Returns:
Description:

get_instruction_

Prototype:
Arguments:
Returns:
Description:

get_instruction_

Prototype:
Arguments:
Returns:
Description:

June 2012  Altera Corporation

string get_instruction_a().
None.
ci _addr _t.

Retrieves the instruction register file address a value.

b()

string get_instruction_b().
None.
ci _addr t.

Retrieves the instruction register file address b value.

¢()

string get_instruction_c().
None.
ci _addr _t.

Retrieves the instruction register file address c value.

dataa()

voi d get _instruction_dataa().

None.

ci _data_t data.

Retrieves the instruction dat aa operand value.

Avalon Verification IP Suite User Guide



2-4

Chapter 2: Nios Il Custom Instruction Slave BFM

Application Program Interface

get_instruction_datah|()

Prototype:
Arguments:
Returns:
Description:

voi d get _instruction_datab().

None.

ci _data_t data.

Retrieves the instruction dat ab operand value.

get_instruction_idle()

Prototype:
Arguments:
Returns:
Description:

voi d get _instruction_idle().
None.

ci _data_t.

Retrieves the pre-instruction i dl e value.

get_instruction_n()

Prototype:
Arguments:
Returns:
Description:

voi d get _instruction_n().
None.
ci_n_t

Retrieves the instruction extended opcode value n.

get_instruction_readra()

Prototype:
Arguments:
Returns:
Description:

| ogic get_instruction_readra().

None.

| ogi c.

Retrieves the instruction register file read a value.

get_instruction_readrh()

Prototype:
Arguments:
Returns:
Description:

[ ogi c get_instruction_readrb().

None.

| ogi c.

Retrieves the instruction register file read b value.

get_instruction_writerc()

Prototype:
Arguments:
Returns:
Description:

Avalon Verification IP Suite User Guide

logic get_instruction_ witerc().

None.

| ogi c.

Retrieves the instruction register file write ¢ value.

June 2012  Altera Corporation



Chapter 2: Nios Il Custom Instruction Slave BFM

Application Program Interface

2-5

get_version()

Prototype:
Arguments:
Returns:
Description:

insert_result()

Prototype:
Arguments:

Returns:
Description:

string get_version().
None.
String.

Returns BFM version as a string of three integers separated by periods. For example,

version 10.1 sp1 is encoded as "10.1.1".

void insert_result().

ci _data_t val ue.

ci _data_t delay.

int err_inj.

voi d.

A simplified API to set results.

retrieve_instruction()

Prototype:
Arguments:

Returns:
Description:

void retrieve_instruction.
output ci_data_t dataa.
output ci_data_t datab.
output ci_n_t n.

output ci_addr_t a.

out put ci_addr_t b.

output ci_addr_t c.

out put |ogic readra.
output logic readrb.
output logic witerc.
output ci_data_t idle.

voi d.

A simplified API to retrieve instruction.

set_clock_enable_timeout()

Prototype:
Arguments:
Returns:
Description:

June 2012  Altera Corporation

voi d set_clock_enable_tineout ().
int timeout.
voi d.

Sets the timeout value for the clock enable. Set the value to 0 to disable timeout.

Avalon Verification IP Suite User Guide



2-6

Chapter 2: Nios Il Custom Instruction Slave BFM

Application Program Interface

set_instruction_a()

Prototype:
Arguments:
Returns:
Description:

voi d set_instruction_a().
ci _addr _t address.
voi d.

Sets the instruction register file address a value.

set_instruction_h()

Prototype:
Arguments:
Returns:
Description:

voi d set_instruction_h().
ci _addr t address.
voi d.

Sets the instruction register file address b value.

set_instruction_c()

Prototype:
Arguments:
Returns:
Description:

voi d set_instruction_c().
ci _addr _t address.
voi d.

Sets the instruction register file address ¢ value.

set_instruction_timeout()

Prototype:
Arguments:
Returns:
Description:

voi d set_instruction_timeout().
int tinmeout.
voi d.

Sets the timeout value for an instruction. Set the value to 0 to disable timeouts.

set_result_delay()

Prototype:
Arguments:
Returns:
Description:

voi d set_result_delay().
ci _data_t del ay.

voi d.

Sets the instruction result delay.

set_result_err_inject()

Prototype:
Arguments:
Returns:
Description:

Avalon Verification IP Suite User Guide

voi d set_result_err_inject().
int err_inj.
voi d.

Sets the instruction result to execute in pre-defined error.

June 2012  Altera Corporation



Chapter 2: Nios Il Custom Instruction Slave BFM 2-7
Application Program Interface

set_result_value()

Prototype: voi d set_result_val ue().
Arguments: ci_data_t val ue.

Returns: voi d.

Description: Sets the instruction result.

signal_fatal_error

Prototype: signal _fatal error.

Arguments: None.

Returns: voi d.

Description: Notifies the testbench that a fatal error has occured in this module.

signal_instructions_inconsistent

Prototype: signal _instructions_inconsistent.

Arguments: None.

Returns: voi d.

Description: Signals that an instruction has changed while the previous instruction has not
completed.

signal_known_instruction_received

Prototype: si gnal _known_i nstruction_received.

Arguments: None.

Returns: voi d.

Description: Signals that a change has occured on the instruction interface and there is no unknown
value.

signal_result_done

Prototype: signal _result_done.

Arguments: None.

Returns: voi d.

Description: Signals that a result has been received by the master.

signal_result_driven

Prototype: signal _result_driven.

Arguments: None.

Returns: voi d.

Description: Signals that a result has been driven from the slave interface.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



2-8

Chapter 2: Nios Il Custom Instruction Slave BFM
Application Program Interface

signal_unknown_instruction_received

Prototype:
Arguments:
Returns:
Description:

Avalon Verification IP Suite User Guide

si gnal _unknown_i nstruction_received.
None.
voi d.

Signals that a change has occured on the instruction interface and there is an unknown
value.

June 2012  Altera Corporation



Section VII. Tutorials
fAS ISR

This section describes the Avalon Verification IP tutorials for SOPC Builder and Qsys.
This section includes the following chapters:

m Chapter 1, SOPC Builder Tutorial
m Chapter 2, Qsys Tutorial

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



Vil-2 Section VII: Tutorials

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



= o A 1. SOPC Builder Tutorial

This chapter demonstrates how to use the Avalon-MM Master and Slave BFMs to
verify Avalon-MM master and slave components in an SOPC Builder design. In the
first example, the DUT is an on-chip RAM that includes an Avalon-MM slave port. Its
behavior is verified using the Avalon-MM Master BFM component. The second
example verifies an Avalon-MM master DUT using the Avalon-MM Slave BEM
component.

Software Requirements

The following software and file are required to run the test:
B Quartus II software, version 12.0 or later.
m ModelSim-AE software that you installed with the Quartus II software.

m The ug avalon_verification.zip file. This design example file is available for
download at www.altera.com/literature/ug/ug_avalon_verification.zip.

Verifying Avalon-MM Slave DUT

Figure 1-1 illustrates the top-level testbench to verify an Avalon-MM slave
component. An on-chip RAM component is connected to the Avalon-MM Master
BEM in SOPC Builder. The test program initializes the Avalon-MM Master BEM. After
the initialization and system reset complete, the test program instructs the master
BFM to write random data to the slave DUT. The write data is also saved into a local
array for future reference. The Avalon-MM Master BEM reads back the data written,
compares it to the data stored in the local array, and reports mismatches. The test
passes if all the read data is correct.

Figure 1-1. Top-Level Testhench for an Avalon-MM Slave Component

Top-level File

SOPC Builder

Avalon-MM »| On-Chip RAM
Master Avalon-MM
BFM Slave

Test
Prorgam

June 2012  Altera Corporation Avalon Verification IP Suite User Guide


http://www.altera.com/literature/ug/ug_avalon_verification.zip

1-2 Chapter 1: SOPC Builder Tutorial
Verifying Avalon-MM Slave DUT

Example 1-1 shows an excerpt from the test program that demonstrates the use of the
Avalon-MM Master API. Example 1-1 shows the following two tasks:

m master_set_and_push_commands—Sets the fields of the command descriptor and
inserts it on to the command queue.

m master_pop_and_get _response—Pops or removes the response received by the
Avalon-MM Master BFM.

As these tasks illustrate, use the set _comand_<f i el d> methods to define the
command and the push_conmand method to add the command to the queue. Use the
pop_r esponse method to get a response and the get _r esponse_<f i el d> to retrieve
the fields of the response.

Example 1-1. Verilog Tasks lllustrating the Avalon-MM Master BFM API

//this task sets the conmand descriptor for master BFM and push it to the queue
task naster_set_and_push_conmand;

..
begin
" MSTR_BFM set _command_r equest (request) ;
" MSTR_BFM set _conmand_addr ess(addr) ;
" MSTR_BFM set _comand_byt e_enabl e( byt e_enabl e, * | NDEX_ZERO) ;
"MSTR_BFM set _command_i dl e(idle, "1 NDEX ZERO);
"MSTR_BFM set _command_init_| atency(init_I| atency);
if (request == REQ WRI TE)
begi n
" MBTR_BFM set _commuand_dat a(data, | NDEX_ZERO);
end
" MSTR_BFM push_command() ;
end
endt ask

//this task pops the response received by master BFM from queue
task master_pop_and_get _response;
/.
begin
" MSTR_BFM pop_r esponse();
request = Request_t' (" MSTR_BFM get _response_request());

addr = *MSTR_BFM get _response_address();

data = *MSTR_BFM get _response_dat a( " | NDEX_ZERO) ;
end
endt ask

“ e For more information about the methods that the Avalon-MM Master BEM uses, refer

to the “Application Program Interface” on page 1-9 in the Avalon Memory-Mapped
Master BEM.

L=~ Although this testbench is written in Verilog HDL, the Avalon Verification IP Suite
supports VHDL by providing wrappers for the Avalon-MM Master and Slave BFMs.
You can include the BFMs with wrappers in simulators that support mixed language
simulation. For more information, refer to Chapter 2, Avalon-MM Master BFM with
Avalon-ST API Wrapper and Chapter 4, Avalon-MM Slave BEM with Avalon-ST API
Wrapper.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 1: SOPC Builder Tutorial
Verifying Avalon-MM Slave DUT

Setting up the Test

This section describes the steps to build a test system in the SOPC Builder to verify the

on-chip RAM using the Avalon-MM Master BEM.

Creating an SOPC Builder Testhench for the DUT

Before you run the design file, unzip the ug_avalon_verification.zip file to a working
directory on your hard drive. This location is referred to as <working_directory>.

Follow these steps to create an SOPC Builder testbench:

1. On the Windows Start menu, point to All Programs, then Altera, and click
Quartus II><version number> to run the Quartus II software.

2. Open the master_bfm_project.qpf file located in

<working_directory>\ug_avalon_verification\sopc_builder\tutorial_master_bfm.

3. On the Tools menu, click SOPC Builder to launch the SOPC Builder tool.

4. Type “Avalon MM Master BEM” in the search box located in the Component
Library panel. From the search results, double-click on the Avalon MM Master

BFM component.

5. In the parameter editor, change the parameter values to match the values listed in

Table 1-1.

Tahle 1-1. Master BFM Parameter Values (Part 1 of 2)

Parameter Value
Port Widths
Address width 16
Symbol width
Read Response width
Write Response width
Parameters
Number of symbols
Burstcount width
Port Enables
Use the read signal On
Use the write signal On
Use the address signal On
Use the byteenable signal On
Use the burstcount signal off
Use the readdata signal On
Use the readdatavalid signal On
Use the writedata signal On
Use the begintransfer signal off
Use the beginbursttransfer signal off
Use the arbiterlock signal oft

June 2012  Altera Corporation

Avalon Verification IP Suite User Guide




1-4

Chapter 1: SOPC Builder Tutorial
Verifying Avalon-MM Slave DUT

Table 1-1. Master BFM Parameter Values (Part 2 of 2)

Parameter Value
Use the lock signal off
Use the debugaccess signal off
Use the waitrequest signal On
Use the clken signals off
Port Polarity
Assert reset high On
Assert waitrequest high On
Assert read high On
Assert write high On
Assert byteenable high On
Assert readdatavalid high On
Assert arbiterlock high Off
Assert lock high off
Burst Attributes
Constant burst behavior Off
Linewrap burst Off
Burst on burst boundaries only Off
Miscellaneous
Maximum pending reads 1
Fixed read latency (cycles) 0
Timing
Fixed read wait time (cycles) 0
Fixed write wait time (cycles) 0
Registered waitrequest Off
Registered Incoming Signals off
Interface Address Type
\?l?r (rII;aster interface address type to symbols or SYMBOLS

6. Click Finish.

7. Right-click on the component and select Rename. Rename the component name to

master _bfm

8. In the search box located in the Component Library panel, type onchi p nenory.
From the search results, double-click the On-Chip Memory (RAM or ROM)

component.

9. Retain the default settings for the on-chip RAM, and click Finish.

10. Right-click on the RAM and click Rename. Rename the component name to ram

Avalon Verification IP Suite User Guide

June 2012  Altera Corporation




Chapter 1: SOPC Builder Tutorial 1-5
Verifying Avalon-MM Slave DUT

Connecting and Generating the SOPC Builder System

To connect and generate the SOPC Builder system, follow these steps:

1. Connect the master_bfm n0 Avalon-MM master port to the onchip_mem sl
Avalon-MM slave port using the following procedure:

a. Click on the nD port then hover in the Connections column to display possible
connections.

b. Click on the open dot at the intersection of the onchip_mem s1 port and the
master_bfm nD to create a connection.

2. Click Generate. Save the system if you are prompted to do so.

Running the Simulation

In this section you run a simulation in the ModelSim-Altera software for the testbench
that you created. To complete this simulation you use the test program provided in
the design files to provide simulation stimulus.

1. Start the ModelSim-Altera software.
2. On the File menu click Change Directory.

3. Navigate to
<working_directory>\ug_avalon_verification\sopc_builder\tutorial_master_bfm
and click OK.

On the Compile menu, click Compile Options.
Click the Verilog & SystemVerilog tab.
In the Language Syntax box, select Use SystemVerilog and click OK.

N e

On the File menu, click Load.

=~ Ensure you activate your cursor on the ModelSim-Altera Transcript
window, otherwise the Load function is disabled.

8. Select script.do, and click Open. The script creates a new working library,
compiles all source files, runs simulation, and loads signals into the ModelSim
waveform viewer.

I'=" If you are running ModelSim-SE you must use the - novopt option to prevent

ModelSim from optimizing the design, making the signals specified in for the wave
viewer unavailable.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



Chapter 1: SOPC Builder Tutorial
Verifying Avalon-MM Slave DUT

Observing the Results

In this test, the Avalon-MM Master BFM writes five words of random data to the
on-chip memory (DUT). The Avalon-MM Master BFM then reads back the five words
and compares the data read to the expected values. If simulation is successful, the
message shown in Example 1-2 appears.

Example 1-2. Message in ModelSim Transcript Console when Running Simulation for Avalon-MM
Slave DUT

960000: INFO naster_bfmth: Test has conpleted. 5 pass, 0 fail

Figure 1-2 shows the waveform when the Avalon-MM Master BFM writes and reads
to the slave DUT.

Figure 1-2. Master BFM writing to and reading from the Slave DUT

master_bfm_tb.tb.
DUT.the_master_bfm

clk

reset
waitrequest
address[15:0]
write
writedata[31:0]
read
readdata[31:0]
readdatavalid

byteenable[3:0]

master_bfm_tb.th.

DUT.the_ram
clk

clken
address[9:0]
chipselect
wren

write
writedata[31:0]
readdata[31:0]
byteenable[3:0]

| NN Y U A Y B S G S G S U D G e S

—{ 0000 | 0004 | 0008 ] 000C ] 0010 J 0000 ) 0004 | 0008 | o0ooC J 0010 }—
I \
— 00000004 | 00000001 ] 00000003 ] 00000005 }

[ | I

—— 00000004 | 00000001 ] 00000003 | 00000005 | 00000004 | 00000001 ] 00000003 ] 00000005 }——

I I

— E —

e e I e e e o o e e S o s I S D S D S RS R

—A 000 [ 001 | 002 | 003 | 004 ] 000 | o001 | o002 | o003 | o004 }—mm

| I
_ 1 \
] \
— 00000004 | 00000001 | 00000003] 00000005 }
——— 00000004 00000001 [ 00000003 | 00000005 ] 00000004 | 00000001 /00000003 ] 00000005 }——

F

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 1: SOPC Builder Tutorial 1-7
Verifying Avalon-MM Master DUT

Verifying Avalon-MM Master DUT

Figure 1-3 illustrates the top-level testbench to verify an Avalon-MM master
component using an Avalon-MM Slave BFM. The Avalon-MM master DUT is a simple
write-read master that writes data to a slave component and reads back the data
written.

Figure 1-3. Top-Level Testhench for Avalon-MM Master Component

Top-level File
SOPC Builder

Test Avalon-MM Avalon-MM

Program Slave
BFM

Master

The amount of data written is specified by the master’s BLOCKS| ZE parameter. The
default value for this parameter is 4. When all data is written, the master DUT reads
the data back from the slave BFM and checks it against the expected data. If a
mismatch occurs, the master DUT asserts its exported error signal.

The Avalon-MM Slave BFEM component responds to the master’s commands when
the si gnal _command_r ecei ved event is triggered. The test program takes the master
command from the slave BEM component’s client command queue. If the command is
a write, the write data is saved to a local array. For read commands, data is read out of
the local array. The test program then constructs a response descriptor with the read
data. The slave BFM drives the response to the master DUT. The test ends after the
master DUT has received all responses from the slave BFM. The test passes if the
master DUT does not assert its err or signal.

For more information on the methods used by the Avalon-MM Slave BFM to construct
commands, refer to the “Application Program Interface” on page 3-10 of the Avalon
Memory-Mapped Slave BFM.

Setting Up the Test

This section describes the steps to build a test system in the SOPC Builder to verify the
Avalon-MM master using the Avalon-MM Slave BFM.

Creating an SOPC Builder Testhench for the DUT

Before you run the design file, unzip the ug_avalon_verification.zip file to a working
directory on your hard drive. This location is referred to as <working_directory>.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



1-8 Chapter 1: SOPC Builder Tutorial
Verifying Avalon-MM Master DUT

Follow these steps to create an SOPC Builder testbench:

1. Open the slave_bfm_project.qpf file located in
<working_directory>\ug_avalon_verification\sopc_builder\tutorial_slave_bfm.

2. On the Tools menu, click SOPC Builder.

3. To create the design, in the System Contents tab, expand BFM Tutorial and click
Write-Read Master and then click Add.

4. Retain the default values given in the configuration wizard and click Finish to add
this component to your system.

5. Right-click on the component and click Rename. Rename the component name to
master.

6. In the search box located in the Component Library panel, type Aval on nm sl ave
bf m From the search results, double-click the Altera Avalon-MM Slave BFM
component.

7. In the parameter editor, change the parameter values to match the values listed in
Table 1-2.

Table 1-2. Avalon-MM Slave BFM Parameter Values (Part 1 of 2)

Parameter Value

Port Widths
Address width 16
Symbol width
Read Response width
Write Response width

Parameters

Number of symbols
Burstcount width 3

Port Enables

Use the read signal On
Use the write signal On
Use the address signal On
Use the bytenable signal On
Use the burstcount signal Off
Use the readdata signal On
Use the readdatavalid signal On
Use the writedata signal On
Use the begintransfer signal off
Use the beginbursttransfer signal off
Use the arbiterlock signal Off
Use the lock signal off
Use the debugaccess signal off
Use the waitrequest signal On

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 1: SOPC Builder Tutorial 1-9
Verifying Avalon-MM Master DUT

Table 1-2. Avalon-MM Slave BFM Parameter Values (Part 2 of 2)

Parameter Value
Use the clken signals off
Port Polarity
Assert reset high On
Assert waitrequest high On
Assert read high On
Assert write high On
Assert byteenable high On
Assert readdatavalid high On
Assert arbiterlock high Off
Assert lock high Off
Burst Attributes
Linewrap burst off
Burst on burst boundaries only off
Miscellaneous
Maximum pending reads 2
Timing
Fixed read latency (cycles) 0
Fixed read wait time (cycles) 1
Fixed write wait time (cycles) 0
Registered waitrequest off
Registered Incoming Signals Off
Interface Address Type
Set slave interface address type to symbols or words WORDS

8. Click Finish.

9. Right-click on the component and select Rename. Rename the component name to
sl ave_bfm

Connecting and Generating the SOPC Builder System

To connect and generate the SOPC Builder system, follow these steps:

1. Connect the master 0 port to the slave_bfm s0 Avalon slave port using the
following procedure:

a. Click on the master mD port then hover in the Connections column to display
possible connections.

b. Click on the open dot at the intersection of the slave_bfm s0 port and the
port to create a connection.

2. Click Generate. Save the system if you are prompted to do so.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



1-10

Chapter 1: SOPC Builder Tutorial

Verifying Avalon-MM Master DUT

Running the Simulation

Follow these steps, to run the simulation:

1. Start the ModelSim-Altera software.

2. On the File menu, click Change Directory.

3. Navigate to

<working_directory>\ug_avalon_verification\sopc_builder\tutorial_slave_bfm
and click OK.

N 9o

On the Compile menu, click Compile Options.

Click the Select Verilog & SystemVerilog tab.

In the Language Syntax box, select Use SystemVerilog and click OK.
On the File menu, click Load to open the ModelSim script file, script.do.

The script file creates a new working library, compiles all source files, runs
simulation, and loads signals into the ModelSim wave viewer.

If you are running ModelSim-SE you must use the - novopt option to prevent
ModelSim from optimizing the design, making the signals specified in for the wave
viewer unavailable.

Observing the Results

In this example, the master DUT writes four data words to the Avalon-MM Slave BEM
component and reads them back. The test program displays the simulation results in
the ModelSim transcript console every time the Avalon-MM Slave BFM component
receives master command. Example 1-3 shows a partial transcript from a successful

HHHH

run.

Example 1-3. Simulation Results in the ModelSim Transcript Console when Running Simulation for Avalon-MM Master

DUT

# 251000: INFO slave_bfmtbh: Master Wite request to address 0000 with data 00000000
# 291000: INFO slave_bfmtb: Master Wite request to address 0001 with data 00000002
# 331000: INFO slave bfmthbh: Master Wite request to address 0002 with data 00000006
# 371000: INFO slave_bfmtb: Master Wite request to address 0003 with data 0000000e
# 411000: INFO slave_bfmtb: Master Read request from address 0000

# 451000: INFO slave_bfmtb: Master Read request from address 0001

# 491000: INFO slave_bfmtb: Master Read request from address 0002

# 531000: INFO slave_bfmtb: Master Read request from address 0003

Avalon Verification IP Suite User Guide

June 2012  Altera Corporation



Chapter 1: SOPC Builder Tutorial
Verifying Avalon-MM Master DUT

1-1

Figure 1-4 shows the waveforms for the Avalon-MM master DUT write and reads to

the Avalon-MM Slave BFM component.

Figure 1-4. Avalon-MM Master Writes and Reads to Avalon-MM Slave BFM

Master DUT
(slave_bfm_th.th.
DUT.the_master)

clk

reset

error
master_waitrequest
master_address[31:0]
master_write
master_writedata[31:0]
master_read
master_readdata[31:0]
master_readd lid

T Y [ Y Y Y U VY VY Y VY VY L VY Y VY VY I Y Y VY I Y O
1

I [\ [\ [\ [\ 1 1 1
0 [a ) 2 ) ) a2 [ 8 12 I 16
[ | |
0 [ 2 6 I 14

/ |

X ) I 2 Ix [6  Ix [14 T x

master_byteenable[3:0]

Slave BFM

(slave_bfm_tb.tb.

DUT.the_slave_bfm)
clk

reset
avs_address[15:0]
avs_byteenable[3:0]
avs_waitrequest
avs_write
avs_writedata[31:0]
avs_read
avs_readdata[31:0]
avs_readdatavalid

U [ Y [ V[ VY VY [ VY VY o Y Y U Y U [ V[ V[ V[ VY [ VY B Y Y

1

I 0001 I 0002 I 0003 I 0000 I 0001

[

0002 I 0003 I 000¢

E

| |
0 [ 2 e I 14
/
X o Ix 2 x 6 Ix [14 T x

June 2012  Altera Corporation

Avalon Verification IP Suite User Guide



1-12 Chapter 1: SOPC Builder Tutorial
Verifying Avalon-MM Master DUT

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



i §| 2. Qsys Tutorial

This chapter demonstrates how to use the Avalon-ST Source and Sink BFMs to verify
the functionality of an Avalon-ST component using a Qsys-generated testbench. In
this example, the Avalon-ST Single-Clock FIFO buffer is the DUT. The testbench
includes both the Avalon-ST Source and Sink BEMs to verify the DUT behavior.

Software Requirements

The following software and file are required to run the test:
® Quartus II software, version 12.0 or later.
m ModelSim-AE software that you installed with the Quartus II software.

m The ug_avalon_verification.zip file. This design example file is available for
download at www.altera.com/literature/ug/ug_avalon_verification.zip.

Verifying Avalon-ST DUT

Figure 2-1 shows the test setup to verify the Avalon-ST Single-Clock FIFO buffer
using the Avalon-ST Source and Sink BFMs. The Avalon Clock Source and Reset
Source BFMs provide clock and reset functions to the DUT. The Avalon-ST Source
BFM connects to the DUT and drives transactions. The Avalon-ST Sink BFM monitors
transactions from the Avalon-ST Single-Clock FIFO bulffer. The test program controls
the BFMs using the BEM API to drive and monitor transactions.

Figure 2-1. Top-Level Testhench for Avalon-ST DUT Component

Top-level File

Qsys Generated Testbench

Avalon Clock > Avalon-ST
Source BFM Source BFM

Avalon-ST
Test Single-Clock
Program FIFO Buffer
(DUT)
Avalon Reset > Avalon-ST
Source BFM Sink BFM

June 2012  Altera Corporation Avalon Verification IP Suite User Guide


http://www.altera.com/literature/ug/ug_avalon_verification.zip

2-2

Chapter 2: Qsys Tutorial
Verifying Avalon-ST DUT

The test flow includes the following steps:

1.
2.

The test program initializes the BFMs.
The test program runs the following three parallel processes:

a. Creates and sends four test transactions to the source BEM. The transactions
consists of six Avalon-ST signals—dat a, channel , error, enpty, st art of packet,
endof packet , and a BFM-related parameter, i dl e. The Avalon-ST Source BFM
drives the transactions to the Avalon-ST Single-Clock FIFO buffer. In addition,
the Avalon-ST Source BEM keeps a local copy of the transactions for future
reference, and prints the transaction values in the ModelSim transcript console.

b. Controls the Avalon-ST Sink BFM. When the Avalon-ST Sink BFM receives a
transaction, the Avalon-ST Sink BFM reads the transaction values, prints the
transaction values on the ModelSim transcript console, and compares the
values it receives to the values from the Avalon-ST Source BFM. The Avalon-ST
Sink BFM reports any mismatch in values as failures. During this process, the
Avalon-ST Sink BEM backpressures the Avalon-ST Single-Clock FIFO bulffer.

c. Measures the response latency when the Avalon-ST Single-Clock FIFO buffer
backpressures the Avalon-ST Source BFM. The Avalon-ST Source BFM prints
the transaction values on the ModelSim transcript console.

The parallel processes terminate when the Avalon-ST Source and Sink BFM
transaction queues are empty and all four transactions are complete.

The test program prints a pass or fail message in the ModelSim transcript console.
The test passes if all of the transactions that the Avalon-ST Source BFM sends to
the Avalon-ST Single-Clock FIFO buffer match the transactions that the Avalon-ST
Sink BFM receives from the Avalon-ST Single-Clock FIFO buffer.

Setting up the Test

In this section you generate a testbench system in Qsys for the DUT.

Creating a Qsys System for the DUT

Before you run the design file, unzip the ug_avalon_verification.zip file to a working
directory on your hard drive. This location is referred to as <working_directory>.

1.

On the Windows Start menu, point to All Programs, then Altera, and click
Quartus II><version number> to run the Quartus II software.

On the File menu, click Open. Select st_bfm_project.qpf located in
<working_directory>\ug_avalon_verification\qsys.

On the Tools menu, click Qsys.

When prompted to open a file, select st_bfm_qsys_tutorial.qsys, and click Open
to open the blank Qsys system provided.

Type fif o in the search box located in the Component Library panel. From the
search results, double-click on the Avalon-ST Single Clock FIFO component.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 2: Qsys Tutorial
Verifying Avalon-ST DUT

2-3

6. Inthe parameter editor, change the parameter values to match the values listed in

Table 2-1.

Table 2-1. Avalon-ST Single Clock FIFO Parameter Values

Parameters Value
Symbols per beat 4
Bits per symbol 8
FIFO depth 2
Channel width 3
Error width 3
Use packets On
Use fill level Off
Use store and forward off
Use almost full status Off
Use almost empty status off

7. Click Finish.

8. Right-click on the sc_fi f 0_0 component and select Rename. Rename the

component to dut .

9. On the System Contents tab, in the Export column, rename the exported interface
names to match the names listed in Table 2-2.

Tahle 2-2. Avalon-ST Single Clock FIFO Exported Interface Names

Interface Name Description Export Name
clk Clock Input clk
clk_reset Reset Input reset
in Avalon Streaming Sink st_in
out Avalon Streaming Source st_out

Generating a Qsys Testhench System
Follow these steps to generate a testbench system for the DUT:

1. On the Generation tab, change the parameter values to match the values listed in

Table 2-3.

Table 2-3. Generation Tab Parameter Values

Parameters

Value

Simulation

Create simulation model

None

Create testbench Qsys system

Standard, BFMs for standard Avalon Interfaces

Create testbench simulation model Verilog
Synthesis

Create HDL design files for synthesis Turned off

Create block symbol file (.bsf) Turned off

June 2012  Altera Corporation

Avalon Verification IP Suite User Guide




2-4

Chapter 2: Qsys Tutorial
Verifying Avalon-ST DUT

Table 2-3. Generation Tab Parameter Values

Parameters Value

o

utput Directory

Path

<working_directory>\ug_avalon_verification\qsys\st_
bfm_qsys_tutorial

. Click Generate. Save the system if you are prompted to do so. Do not close the

Qsys window after successful generation.

. To view information about the generated testbench file, open

st_bfm_qsys_tutorial_tb.html located in the following directory:
<working_directory>\ug_avalon_verification\qsys\st_bfm_gqsys_tutorial\
testbench.

. In the st_bfm_qsys_tutorial_tb.html file, verify that the names of the generated

BFMs match the instance names in Table 2—4.

Table 2-4. Generated BFM Instance Names

BFM Type Instance Name
altera_avalon_clock_source st_bfm_gsys_tutorial_inst_clk_bfm
altera_avalon_reset_source st_bfm_qgsys_tutorial_inst_reset_bfm
altera_avalon_st_source_bfm st_bfm_gsys_tutorial_inst_st_in_bfm
altera_avalon_st_sink_bfm st_bfm_gsys_tutorial_inst_st_out_bfm

5. Use the instance names listed in Table 2—4 to define and access the APIs of the

corresponding BFMs in your test program. Figure 2-2 shows a code example that
uses instance names to define a particular BFM in the test program.

Figure 2-2. Using Instance Names to Define BFMs

!! test_program - Notepad

File Edit Format Miew Help

A7 wonsole messaging level
"define VERBOZITY VERBOZITY INFO

~#+BFM hierachy

“define CLE th.st_hfm gsvs_tutorial_inst_clk hbifm
"define EST th.st_hfm gsvs tutorial_inst_reset _bim
"define ZRC th.st_hfm gsvs tutorial_inst_st_in bim
"define SHE th.st_hfm gsvs_tutorial_inst_st_out_bim

The test program for this tutorial is located in
<working_directory>\ug_avalon_verification\qsys\user_test_program.

Avalon Verification IP Suite User Guide June 2012  Altera Corporation




Chapter 2: Qsys Tutorial
Verifying Avalon-ST DUT

2-5

Setting up the Simulation Environment

To set up the simulation environment for your test program, open your ModelSim
script file (.tcl or .do) and set the hierarchy variables used in the Qsys-generated
simulation script (msim_setup.tcl). The ModelSim script file (load_sim.tcl) included
with this tutorial has the correct hierarchy variable settings. However, if you would
like to know how to set up the correct hierarchical variables used in the
Qsys-generated simulation model, refer to Table 2-5 for the coding examples.

Table 2-5. Coding Examples to Set Hierarchy Variables

Hierarchy Variables Coding Example Description

Sets the name of the top level file
that instantiates the
Qsys-generated testbench system
and the test program.

set TOP_LEVEL_NAME “top”

Sets the Qsys simulation path to
the directory that includes the
ModelSim script. You must set
set QBYS SIMDIR'../st_bfmgsys_tutorial/testbench |this path when your ModelSim
script file (msim_setup.tcl) and
test program are located in
different directories.

The hierarchy variables enable the ModelSim script to source the msim_setup.tcl and
use the command aliases defined in the Qsys-generated simulation script to compile
the device library files and SystemVerilog design files (test_program.sv and top.sv)
that instantiate the test program and the Qsys-generated testbench simulation model.
The ModelSim script (load_sim.tcl) then uses the command alias to elaborate the
top-level simulation design and loads the wave.do file that sets up the waveform
view in the ModelSim-Altera software.

Running the Simulation

In this section, you run a simulation in the ModelSim-Altera software on the testbench
that you created. To complete this simulation, use the test program provided in the
design files to provide the stimulus. By default, msim_setup.tcl compiles the BEM
source files into different libraries. In this tutorial, the BFM source files must be in a
single library.

Complete the following steps to compile the source files to a single directory:
1. In Qsys, on the Tools menu click Nios II Command Shell.

2. In Nios II Command Shell, change the directory to
<working_directory>\ug_avalon_verification\qsys

3. Type the following command and hit enter:

i p- make-sinscript --spd=st_bfmqsys_tutorial th.spd --output-
directory=./st_bfmaqsys_tutorial/testbench/ --conpile-to-work

To run the simulation, follow these steps:
1. Start the ModelSim-Altera software.

2. On the File menu click Change Directory.

June 2012  Altera Corporation Avalon Verification IP Suite User Guide



2-6 Chapter 2: Qsys Tutorial
Verifying Avalon-ST DUT

3. Navigate to <working_directory>\ug_avalon_verification\qsys\
user_test_program directory, and click OK.

On the Compile menu, click Compile Options.
Click the Verilog & System Verilog tab.
In the Language Syntax box, select Use SystemVerilog and click OK.

N g e

On the File menu, click Load.

=" Ensure you activate your cursor on the ModelSim-Altera Transcript
window, otherwise the Load function is disabled.

8. Select load_sim.tcl, and click Open. The Tcl file creates a new working library,
compiles all source files, runs simulation, and loads signals into the ModelSim
waveform viewer.

9. To run the simulation, type the following command in the ModelSim-Altera
transcript console:

run 1200 ns ¢

=" You can run the h command to show the available options for the
msim_setup.tcl macro script.

Observing the Results

You can view the simulation results in the following two ways:
m In the ModelSim transcript console

B In the waveforms window

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Chapter 2: Qsys Tutorial
Verifying Avalon-ST DUT

2-7

Example 2-1 shows an extract of the simulation results.

Example 2-1. Extract of the Simulation Results in the ModelSim Transcript Console

# 990000: | NFO
deasserted

# 990000: | NFO
# 990000: | NFO
# 990000: | NFO
# 990000: | NFO
# 990000: | NFO
# 990000: | NFO
# 990000: | NFO
# 990000: | NFO
# 990000: | NFO
# 990000: | NFQO
# 990000: | NFO
# 990000: | NFO
# 990000: | NFQO
# 990000: | NFO
# 990000: | NFO
# 990000: | NFO
# 990000: | NFO
# 990000: | NFO
# 990000: | NFQO
# 990000: | NFO
# 990000: | NFO
# 990000: | NFO
# 990000: | NFO
# 990000: | NFO
# 990000: | NFO
# 990000: | NFO
# 990000: | NFO
# 990000: | NFQO
# 990000: | NFO
# 990000: | NFO
# 990000: | NFO
# 990000: | NFO
# 1030000: | NFO
# 1050000: | NFO
# 1090000: | NFO
# 1090000: | NFQO
# 1090000: | NFO
# 1090000: | NFO
# 1090000: | NFQO
# 1090000: | NFC
# 1090000: | NFO
# 1090000: | NFQO
# 1090000: | NFO
# 1090000: | NFO
# 1110000: | NFC
# 1130000: | NFO
# 1130000: | NFO
# 1130000:

# 1130000:

t op.

t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.

tb.st_bfmagsys_tutorial _inst_reset_bfmreset_deassert:

pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri

nt _transacti

on:
on:

nt _transacti
nt _transacti
nt _transacti
nt _transacti
nt _transacti
nt _transacti
nt _transacti
nt _transacti
nt _transacti
nt _transacti
nt _transacti
nt _transacti
nt _transacti
nt _transacti
nt _transacti
nt _transacti
nt _transacti
nt _transacti
nt _transacti
nt _transacti
nt_transacti
nt _transacti
nt _transacti
nt_transacti
nt _transacti
nt _transacti
nt_transacti
nt _transacti
nt _transacti
nt_transacti
nt _transacti

on:
on:
on:
on:
on:
on:
on:
on:
on:
on:
on:
on:
on:
on:
on:
on:
on:
on:
on:
on:
on:
on:
on:
on:
on:
on:
on:
on:
on:
on:

Source BFM Send transaction O

Data: O
ldles: 0
SOP: 1
ECP: 0
Channel : 0
Error: 0
Enpty: 0
Source BFM Send transaction 1
Data: 1
Idles: 0O
SOP: 0
EOP: 0
Channel: 0
Error: 0
Enpt y: 0
Source BFM Send transaction 2
Data: 2
Idles: 0
SOP: 0
EOP: 0
Channel : 0
Error: 0
Enpty: 0
Source BFM Send transaction 3
Data: 3
ldles: O
SOP: 0
ECP: 1
Channel: 0
Error: 0
Enpty: 0

Reset

top. pgmtest _threads. source_response_thread: Source response |atency 0
top. pgmtest_threads. source_response_t hread: Source response | atency 0
top. pgmtest_threads. source_response_t hread: Source response |latency 1

t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.
t op.

pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri
pgm pri

nt _transacti
nt_transacti
nt _transacti
nt _transacti
nt_transacti
nt _transacti
nt _transacti
nt _transacti

on:
on:
on:
on:
on:
on:
on:
on:
pgm conpar e_t ransacti on:

Sink BFM Receive transaction O

Data: O
ldles: 3
SOP: 1
EOP: 0
Channel: 0
Error: 0
Enpt y: 0

Transaction O conpare OK

top. pgmtest _threads. source_response_thread: Source response |atency 0

top. pgm print_transaction:
top. pgm print_transaction:
INFO top.pgmprint_transaction:
INFO top.pgm print_transaction:

Sink BFM Receive transaction 1

Dat a: 1
Idles: O
SOP: 0

June 2012  Altera Corporation

Avalon Verification IP Suite User Guide



2-8

Chapter 2: Qsys Tutorial
Verifying Avalon-ST DUT

HHEHHFHHFHHFHEHFHEHFHEHRHEHEHRHEHFHHFRR

1130000:
1130000:
1130000:
1130000:
1130000:
1150000:
1150000:
1150000:
1150000:
1150000:
1150000:
1150000:
1150000:
1150000:
1190000:
1190000:
1190000:
1190000:
1190000:
1190000:
1190000:
1190000:
1190000:
1190000:

I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO

top. pgm print_transaction: EOP: 0

top. pgm print_transaction: Channel: 0

top. pgm print_transaction: Error: 0

top. pgm print_transaction: Enpty: 0

top. pgm conpar e_transacti on: Transaction 1 conmpare OK
top. pgm print_transaction: Sink BFM Receive transaction 2
top. pgm print_transaction: Data: 2

top. pgm print_transacti on: Idles: 0

top. pgm print_transaction: SOP: 0

top. pgm print_transaction: EOP: 0

top. pgm print_transacti on: Channel : 0

top. pgm print_transaction: Error: 0

top. pgm print_transaction: Enpty: 0

t op. pgm conpar e_transacti on: Transaction 2 conmpare OK
top. pgm print_transaction: Sink BFM Receive transaction 3
top. pgm print_transaction: Data: 3

top. pgm print_transacti on: Idles: 0

top. pgm print_transaction: SOP: 0

top. pgm print_transaction: EOP: 1

top. pgm print_transacti on: Channel : 0

top. pgm print_transaction: Error: 0

top. pgm print_transaction: Enpty: 0

top. pgm conpar e_transacti on: Transaction 3 conmpare OK
top. pgm Test Passed

As Example 2-1 illustrates, when the Avalon-ST source BEM drives a transaction, it
also prints the transaction to the ModelSim transcript window, creating a record of the
test. The Avalon-ST Sink BFEM also prints the transactions it receives on the transcript
window. The Avalon-ST Sink BFM compares the transaction it receives with the one
sent by the Avalon-ST Source BFM, and the results of the comparison are printed on
the transcript window.

In Example 2-1 the i dI es values for the source and sink are different. The Avalon-ST
Source BFM sets the number of idle cycles to zero using the set _transaction_i dl es
function. The Avalon-ST Sink BFM waits for three cycles before receiving the first
transaction because it takes three cycles for the transaction to propagate from the
input port to the output port of the Avalon-ST Single-Clock FIFO buffer. The
difference in values for the i dl e field is not an error because the Avalon-ST interface
protocol allows source and sink components to have different latencies.

Example 2-2 shows the ModelSim transcript for the source response latency, which is
the number of clock cycles the Avalon-ST Single-Clock FIFO buffer takes when the
Avalon-ST Single-Clock FIFO buffer backpressures the Avalon-ST Source BEM. The
third response shows a non-zero response latency. During the third transaction, the
Avalon-ST Single-Clock FIFO buffer is full so it is not able to receive the transaction.
As a result, the Avalon-ST Single-Clock FIFO buffer backpressures the Avalon-ST
Source BFM.

Example 2-2. Response Latency

# 1030000:
# 1050000:
# 1090000:
# 1110000:

I NFO
I NFO
I NFO
I NFO

top. pgmtest _threads. source_response_thread: Source response |atency 0
top. pgmtest _threads. source_response_t hread: Source response | atency O
top. pgmtest_threads. source_response_t hread: Source response |latency 1
top. pgmtest _threads. source_response_t hread: Source response |atency O

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



uonelodion eialy  ZL0z aunp

8pINg 18S() 8HNS d| UOEDNLISA UOJeAY

Figure 2-3 shows the simulation waveforms in the ModelSim-Altera software wave window.

Figure 2-3. Using Instance Names to Define BFMs

ok /]

reset_bfm.reset \
ckbimekok \/ \_/ \_/ /[ /[ \/ /U]
reset_bfm_reset_reset \
Source BFM
src_data[31:0] X X X 0000000: X X XXXXXXXX
src_channel[2:0] X 0 X ‘bXXX
src_valid /
sre_starofpacket. I\ e
stc_endofpaciet I M e
src_error{2:0] X 0 X ‘bXXX
src_empty[1:0] X 0 X ‘bXX
src_ready \ / v/
DUT ( SC FIFO)
st_in_data[31:0] X X X 00000002 X X XXXXXXXX
st_in_valid /
st_in_ready \ / -/
st_in_startofpacket Y\ A
st_in_endofpacket [
st_in_empty[1:0] X X bXX
st_in_error[2:0] X 0 X ‘bXXX
st_in_channel[2:0] X X DXXX
st_out_data[31:0] X XXXXXXXX X X___00000001 X 00000003
st_out_valid /
st_out_ready / -/ -
st_out_startofpacket Y\
st_out_endofpacket R M
st_out_empty[1:0] X XX X 0
st_out_error[2:0] X XXX X 0
st_out_channel[2:0] X ‘bXXX X 0
Sink BFM
sink_data[31:0] X XXXXXXXX X 00000001 ) ) 00000003
sink_channel[2:0] X HXXX X 0
sink_valid /
sink_startofpacket R\
sink_endofpacket [ /e
sink_error[2:0] X ‘bXXX X 0
sink_empty[1:0] X ‘bXX X 0
sink_ready / \ / \ /

1Nna 1S-uofeay BuiAjiiap
Jerion] sfsp :g 13ydeyg

6-¢



2-10 Chapter 2: Qsys Tutorial
Verifying Avalon-ST DUT

Avalon Verification IP Suite User Guide June 2012  Altera Corporation



Additional Information
fAN ISR

This chapter provides additional information about the document and Altera.

Document Revision History

The following table shows the revision history for this document.

Date Version Changes

m Updated SOPC Tutorial chapter.

m Updated Qsys Tutorial chapter.

m Added External Memory BFM chapter.

m Updated Avalon-MM Master and Slave BFMs chapters.

May 2011 3.0 m Updated Avalon-MM Monitor chapter.

m Updated SOPC Tutorial chapter.

m Added Qsys Tutorial chapter.

m Added Clock Source BFM and Reset Source BFM chapters.

m Added Interrupt Source BFM and Interrupt Sink BFM chapters.
m Added Conduit BFM and Tri-State Conduit BFM chapters.

m Added Custom Instructions Master and Custom Instructions Slave BFMs chapters.

June 2012 3.1

January 2011 2.0
m Updated Avalon-MM Master and Slave BFMs chapters.
m Updated Avalon-ST Source and Sink BFMs chapters.
m Updated Avalon-MM and Avalon-ST Monitor chapters.
m Updated Avalon-MM and Avalon-ST Tutorial chapters.
August 2010 1.2 Updated Avalon Verification IP Suite Design Files for the Quartus Il 10.0 release.
December 2009 1.1 Added Avalon-ST Tutorial chapter.
November 2009 1.0 Initial release covering 9.1 Avalon Verification IP Suite User Guide.

How to Contact Altera

To locate the most up-to-date information about Altera products, refer to the

following table.
Contact (7) Contact Method Address
Technical support Website www.altera.com/support
) n Website www.altera.com/training
Technical training - .
Email custrain@altera.com
Product literature Website www.altera.com/literature
Non-technical support (General) Email nacomp@altera.com

June 2012  Altera Corporation Avalon Verification IP Suite User Guide


http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com

Info-2

Additional InformationAdditional Information
Typographic Conventions

Contact (7) Contact Method Address
(Software Licensing) Email authorization@altera.com

Note to Table:
(1) You can also contact your local Altera sales office or sales representative.

Typographic Conventions

The following table shows the typographic conventions this document uses.

Visual Cue

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type

Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters | Indicate document titles. For example, Stratix IV Design Guidelines.

italic type

Indicates variables. For example, n+ 1.

Variable names are enclosed in angle brackets (< >). For example, <file name>and
<project name>.pof file.

Initial Capital Letters

Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title”

Quotation marks indicate references to sections within a document and titles of
Quartus Il Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, dat al,
tdi, and i nput. The suffix n denotes an active-low signal. For example, r eset n.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\ gqdesi gns\tut ori al \ chi ptri p. gdf .

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESI GQN), and logic function names (for
example, TRI ).

t

An angled arrow instructs you to press the Enter key.

., 2., 3., and
., D, c.,andsoon

O

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

Bullets indicate a list of items when the sequence of the items is not important.

=

s

U -
| |

The hand points to information that requires special attention.

A question mark directs you to a software help system with related information.

The feet direct you to another document or website with related information.

CAUTION

A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

>

WARNING

A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.

Avalon Verification IP Suite User Guide

June 2012  Altera Corporation


https://www.altera.com/subscriptions/email/signup/eml-index.jsp
mailto:authorization@altera.com

	Avalon Verification IP Suite User Guide
	Contents
	Section I. Introduction to Avalon Verification IP Suite
	Advantages of Using BFMs and Monitors
	Implementation of BFMs
	Application Programming Interface
	Application Example of BFMs
	In This User Guide

	Section II. Clock, Reset, and Interrupt BFMs
	1. Clock Source BFM
	Parameters
	Application Program Interface
	clock_start()
	clock_stop()
	get_run_state()
	get_version()


	2. Reset Source BFM
	Parameters
	Application Program Interface
	reset_assert
	reset_deassert
	get_version()


	3. Avalon Interrupt Source and Interrupt Sink BFMs
	Parameters
	Application Program Interface
	clear_irq()
	get_irq()
	get_version()
	set_irq()


	Section III. Avalon-MM BFMs
	1. Avalon-MM Master BFM
	Functional Description
	Timing
	Block Diagram

	Parameters
	Application Program Interface
	all_transactions_complete()
	get_command_issued_queue_size()
	get_command_pending_queue_size()
	get_read_response_queue_size()
	get_response_address()
	get_response_byte_enable()
	get_response_burst_size()
	get_response_data()
	get_response_latency()
	get_response_queue_size()
	get_response_read_id()
	get_response_read_response()
	get_response_request()
	get_response_wait_time()
	get_response_write_id()
	get_response_write_response()
	get_write_response_queue_size()
	get_version()
	init()
	pop_response()
	push_command()
	set_clken()
	set_command_address()
	set_command_arbiterlock()
	set_command_byte_enable()
	set_command_burst_count()
	set_command_burst_size()
	set_command_data()
	set_command_debugaccess()
	set_command_idle()
	set_command_init_latency()
	set_command_lock()
	set_command_request()
	set_command_timeout()
	set_command_transaction_id()
	set_command_write_response_request()
	set_max_command_queue_size()
	set_min_command_queue_size()
	set_response_timeout()
	signal_all_transactions_complete
	signal_command_issued
	signal_fatal_error
	signal_max_command_queue_size
	signal_min_command_queue_size
	signal_read_response_complete()
	signal_response_complete()
	signal_write_response_complete()


	2. Avalon-MM Master BFM with Avalon-ST API Wrapper
	3. Avalon-MM Slave BFM
	Functional Description
	Timing
	Block Diagram

	Parameters
	Application Program Interface
	get_clken()
	get_command_address()
	get_command_arbiterlock()
	get_command_burst_count()
	get_command_burst_cycle()
	get_command_byte_enable()
	get_command_data()
	get_command_debugaccess()
	get_command_queue_size()
	get_command_lock()
	get_command_request()
	get_command_transaction_id()
	get_command_write_response_request()
	get_pending_read_latency_cycle()
	get_pending_write_latency_cycle()
	get_response_queue_size()
	get_slave_bfm_status
	get_version()
	init()
	pop_command()
	push_response()
	set_command_transaction_mode()
	set_interface_wait_time()
	set_max_response_queue_size()
	set_min_response_queue_size()
	set_read_response_id()
	set_read_response_status()
	set_response_burst_size()
	set_response_data()
	set_response_latency()
	set_response_request()
	set_response_timeout()
	set_write_response_id()
	set_write_response_status()
	signal_command_received
	signal_error_exceed_max_pending_reads
	signal_max_response_queue_size
	signal_min_command_queue_size
	signal_fatal_error
	signal_response_issued


	4. Avalon-MM Slave BFM with Avalon-ST API Wrapper
	5. Avalon-MM Monitor
	Parameters
	Application Program Interface
	Assertion Checking
	set_enable_a_address_align_with_data_width()
	set_enable_a_beginbursttransfer_exist()
	set_enable_a_beginbursttransfer_legal()
	set_enable_a_beginbursttransfer_single_cycle()
	set_enable_a_begintransfer_exist()
	set_enable_a_begintransfer_legal()
	set_enable_a_begintransfer_single_cycle()
	set_enable_a_burst_legal()
	set_enable_a_byteenable_legal()
	set_enable_a_constant_during_burst()
	set_enable_a_constant_during_clk_disabled()
	set_enable_a_constant_during_waitrequest()
	set_enable_a_exclusive_read_write()
	set_enable_a_half_cycle_reset_legal()
	set_enable_a_less_than_burstcount_max_size()
	set_enable_a_less_than_maximumpendingreadtransactions()
	set_enable_a_no_readdatavalid_during_reset()
	set_enable_a_no_read_during_reset()
	set_enable_a_no_write_during_reset()
	set_enable_a_readid_sequence()
	set_enable_a_read_response_sequence()
	set_enable_a_read_response_timeout()
	set_enable_a_register_incoming_signals()
	set_enable_a_waitrequest_during_reset()
	set_enable_a_waitrequest_timeout()
	set_enable_a_write_burst_timeout()
	set_enable_a_writeid_sequence()

	Coverage Group
	set_enable_c_b2b_read_read()
	set_enable_c_b2b_read_write()
	set_enable_c_b2b_write_read()
	set_enable_c_b2b_write_write()
	set_enable_c_continuous_read()
	set_enable_c_continuous_readdatavalid()
	set_enable_c_continuous_waitrequest()
	set_enable_c_continuous_waitrequest_from_idle_to_read()
	set_enable_c_continuous_waitrequest_from_idle_to_write()
	set_enable_c_continuous_write()
	set_enable_c_idle_before_transaction()
	set_enable_c_idle_in_read_response()
	set_enable_c_idle_in_write_burst()
	set_enable_c_pending_read()
	set_enable_c_read()
	set_enable_c_read_after_reset()
	set_enable_c_read_burstcount()
	set_enable_c_read_byteenable()
	set_enable_c_read_latency()
	set_enable_c_read_response()
	set_enable_c_waitrequest_in_write_burst()
	set_enable_c_waitrequested_read()
	set_enable_c_waitrequest_without_command()
	set_enable_c_waitrequested_write()
	set_enable_c_write()
	set_enable_c_write_with_and_without_writeresponserequest()
	set_enable_c_write_after_reset()
	set_enable_c_write_burstcount()
	set_enable_c_write_byteenable()
	set_enable_c_write_response()

	Transaction Monitoring
	get_clken()
	get_version()
	get_command_address()
	get_command_arbiterlock()
	get_command_burst_count()
	get_command_burst_cycle()
	get_command_byte_enable()
	get_command_data()
	get_command_debugaccess()
	get_command_issued_queue_size()
	get_command_queue_size()
	get_command_lock()
	get_command_request()
	get_command_transaction_id()
	get_command_write_response_request()
	get_read_response_queue_size()
	get_response_address()
	get_response_byte_enable()
	get_response_burst_size()
	get_response_data()
	get_response_latency()
	get_response_queue_size()
	get_response_read_id()
	get_response_read_response()
	get_response_request()
	get_response_wait_time()
	get_response_write_id()
	get_response_write_response()
	get_transaction_fifo_max()
	get_transaction_fifo_threshold()
	get_write_response_queue_size()
	init()
	pop_command()
	pop_response()
	set_command_transaction_mode()
	set_transaction_fifo_max()
	set_transaction_fifo_threshold()
	signal_command_received
	signal_fatal_error
	signal_read_response_complete
	signal_response_complete
	signal_transaction_fifo_overflow
	signal_transaction_fifo_threshold
	signal_write_response_complete



	Section IV. Avalon-ST BFMs
	1. Avalon-ST Source BFM
	Functional Description
	Timing
	Block Diagram

	Parameters
	Application Program Interface
	get_response_latency()
	get_response_queue_size()
	get_src_ready()
	get_src_transaction_complete()
	get_transaction_queue_size()
	get_version()
	init()
	pop_response()
	push_transaction()
	set_max_transaction_queue_size()
	set_min_transaction_queue_size()
	set_response_timeout()
	set_transaction_channel()
	set_transaction_data()
	set_transaction_idles()
	set_transaction_eop()
	set_transaction_empty()
	set_transaction_error()
	set_transaction_sop()
	signal_fatal_error
	signal_max_transaction_queue_size
	signal_min_transaction_queue_size
	signal_response_done
	signal_src_driving_transaction
	signal_src_not_ready
	signal_src_ready
	signal_src_transaction_complete


	2. Avalon-ST Source BFM with Avalon-ST API Wrapper
	3. Avalon-ST Sink BFM
	Functional Description
	Timing
	Block Diagram

	Parameters
	Application Program Interface
	get_transaction_channel()
	get_transaction_data()
	get_transaction_idles()
	get_transaction_eop()
	get_transaction_empty()
	get_transaction_error()
	get_transaction_queue_size()
	get_transaction_sop()
	get_version()
	init()
	pop_transaction()
	set_ready()
	signal_fatal_error
	signal_sink_ready_assert
	signal_sink_ready_deassert
	signal_transaction_received


	4. Avalon-ST Sink BFM with Avalon-ST API Wrapper
	5. Avalon-ST Monitor
	Parameters
	Application Program Interface
	Assertion Checking
	set_enable_a_empty_legal()
	set_enable_a_less_than_max_channel()
	set_enable_a_no_data_outside_packet()
	set_enable_a_non_missing_endofpacket()
	set_enable_a_non_missing_startofpacket()
	set_enable_a_valid_legal()

	Coverage Group
	set_enable_c_all_idle_beats()
	set_enable_c_all_valid_beats()
	set_enable_c_b2b_data_different_channel()
	set_enable_c_b2b_data_same_channel()
	set_enable_c_b2b_packet_different_channel()
	set_enable_c_b2b_packet_in_different_transaction()
	set_enable_c_b2b_packet_same_channel()
	set_enable_c_b2b_packet_within_single_cycle()
	set_enable_c_channel_change_in_packet()
	set_enable_c_empty()
	set_enable_c_error()
	set_enable_c_error_in_middle_of_packet()
	set_enable_c_idle_beat_between_packet()
	set_enable_c_multiple_packet_per_cycle()
	set_enable_c_non_valid_ready()
	set_enable_c_non_valid_non_ready()
	set_enable_c_packet()
	set_enable_c_packet_no_idles_no_back_pressure()
	set_enable_c_packet_size()
	set_enable_c_packet_with_back_pressure()
	set_enable_c_packet_with_idles()
	set_enable_c_partial_valid_beats()
	set_enable_c_single_packet_per_cycle()
	set_enable_c_transfer()
	set_enable_c_transaction_after_reset()
	set_enable_c_valid_non_ready()

	Transaction Monitoring
	get_transaction_channel()
	get_transaction_data()
	get_transaction_empty()
	get_transaction_eop()
	get_transaction_error()
	get_transaction_idles()
	get_transaction_queue_size()
	get_transaction_sop()
	get_version()
	pop_transaction()
	set_transaction_fifo_max()
	set_transaction_fifo_threshold()
	signal_fatal_error
	signal_transaction_fifo_overflow
	signal_transaction_fifo_threshold
	signal_transaction_received



	Section V. Conduit and External Memory BFMs
	1. Conduit BFM
	Block Diagram
	Parameters
	Application Program Interface
	get_<role name>()
	get_version()
	set_<role name>()
	set_<role name>_oe()
	signal_input_<role name>_change


	2. Tri-State Conduit BFM
	Block Diagram
	Parameters
	Application Program Interface
	get_input_transaction_queue_size()
	get_output_transaction_queue_size()
	get_transaction_<role name>_in()
	get_transaction_latency()
	get_version()
	pop_transaction()
	push_transaction()
	set_max_transaction_queue_size()
	set_min_transaction_queue_size()
	set_num_of_transactions()
	set_transaction_<role name>_out()
	set_transaction_<role name>_outen()
	set_transaction_idles()
	set_valid_transaction_<role name>_out()
	signal_all_transactions_complete
	signal_fatal_error
	signal_grant_deasserted_while_request_remain_asserted()
	signal_interface_granted
	signal_max_transaction_queue_size
	signal_min_transaction_queue_size


	3. External Memory BFM
	Functional Description
	Block Diagram
	Initializing the Memory Content
	Reading and Writing to the Memory Content
	Reading from the Memory
	Writing to the Memory


	Parameters
	Application Program Interface
	fill()
	read()
	signal_api_call
	write()


	Section VI. Nios II Custom Instruction BFMs
	1. Nios II Custom Instruction Master BFM
	Block Diagram
	Parameters
	Application Program Interface
	get_instruction_queue_size()
	get_result_delay()
	get_result_queue_size()
	get_result_value()
	get_version()
	insert_instruction()
	pop_result()
	push_instruction()
	retrive_result()
	set_ci_clk_en()
	set_clock_enable_timeout()
	set_instruction_a()
	set_instruction_b()
	set_instruction_c()
	set_instruction_dataa()
	set_instruction_datab()
	set_instruction_err_inject()
	set_instruction_idle()
	set_instruction_n()
	set_instruction_readra()
	set_instruction_readrb()
	set_instruction_timeout()
	set_instruction_writerc()
	set_max_instruction_queue_size()
	set_max_result_queue_size()
	set_min_instruction_queue_size()
	set_min_result_queue_size()
	set_result_timeout()
	signal_unexpected_result_received
	signal_fatal_error
	signal_instructions_completed
	signal_instruction_start
	signal_max_instruction_queue_size
	signal_max_result_queue_size
	signal_min_instruction_queue_size
	signal_min_result_queue_size
	signal_result_received


	2. Nios II Custom Instruction Slave BFM
	Block Diagram
	Parameters
	Application Program Interface
	get_ci_clk_en()
	get_instruction_a()
	get_instruction_b()
	get_instruction_c()
	get_instruction_dataa()
	get_instruction_datab()
	get_instruction_idle()
	get_instruction_n()
	get_instruction_readra()
	get_instruction_readrb()
	get_instruction_writerc()
	get_version()
	insert_result()
	retrieve_instruction()
	set_clock_enable_timeout()
	set_instruction_a()
	set_instruction_b()
	set_instruction_c()
	set_instruction_timeout()
	set_result_delay()
	set_result_err_inject()
	set_result_value()
	signal_fatal_error
	signal_instructions_inconsistent
	signal_known_instruction_received
	signal_result_done
	signal_result_driven
	signal_unknown_instruction_received


	Section VII. Tutorials
	1. SOPC Builder Tutorial
	Software Requirements
	Verifying Avalon-MM Slave DUT
	Setting up the Test
	Creating an SOPC Builder Testbench for the DUT
	Connecting and Generating the SOPC Builder System

	Running the Simulation
	Observing the Results

	Verifying Avalon-MM Master DUT
	Setting Up the Test
	Creating an SOPC Builder Testbench for the DUT
	Connecting and Generating the SOPC Builder System

	Running the Simulation
	Observing the Results


	2. Qsys Tutorial
	Software Requirements
	Verifying Avalon-ST DUT
	Setting up the Test
	Creating a Qsys System for the DUT
	Generating a Qsys Testbench System

	Setting up the Simulation Environment
	Running the Simulation
	Observing the Results


	Additional Information
	Document Revision History
	How to Contact Altera
	Typographic Conventions





