
101 Innovation Drive
San Jose, CA 95134
www.altera.com

UG-01105-1.2

User Guide

Arria V Hard IP for PCI Express

Document last updated for Altera Complete Design Suite version:
Document publication date:

12.01
June 2012

Feedback Subscribe

Arria V Hard IP for PCI Express User Guide

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=UG-01097
mailto:TechDocFeedback@altera.com?subject=Feedback on UG-01105-1.1-<version> Arria V Hard IP for PCI Express User Guide)

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and
services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.

June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

June 2012 Altera Corporation
Contents
Chapter 1. Datasheet
Features . 1–1
Release Information . 1–4
Device Family Support . 1–4
Configurations . 1–4
Debug Features . 1–5
IP Core Verification . 1–6
Performance and Resource Utilization . 1–6
Recommended Speed Grades . 1–6

Chapter 2. Getting Started with the Arria V Hard IP for PCI Express
MegaWizard Plug-In Manager Design Flow . 2–3

Creating a Quartus II Project . 2–3
Customizing the Endpoint in the MegaWizard Plug-In Manager Design Flow 2–4
Understanding the Files Generated . 2–7

Qsys Design Flow . 2–10
Customizing the Endpoint in Qsys . 2–10

Specifying the Parameters for the Arria V Hard IP for PCI Express . 2–11
Specifying the Parameters for the Example Design . 2–13
Completing the Qsys System . 2–14

Generating the Testbench . 2–17
Simulating the Example Design . 2–18
 . 2–21
 . 2–21
Understanding Channel Placement Guidelines . 2–22

Quartus II Compilation . 2–22
Compiling the Design in the MegaWizard Plug-In Manager Design Flow . 2–22
Compiling the Design in the Qsys Design Flow . 2–23

Modifying the Example Design . 2–24

Chapter 3. Getting Started with the Avalon-MM Arria V Hard IP for PCI Express
Creating a Quartus II Project . 3–3
Running Qsys . 3–4
Customizing the Avalon-MM Arria V Hard IP for PCI Express IP Core . 3–4
Adding the Remaining Components to the Qsys System . 3–7
Completing the Connections in Qsys . 3–10
Specifying Clocks and Address Assignments . 3–11
Specifying Exported Interfaces . 3–11
Specifying Address Assignments . 3–11
Specifying Output Directories . 3–13
Simulating the Qsys System . 3–13
Understanding Channel Placement Guidelines . 3–13
Compiling the Design . 3–14
Programming a Device . 3–14
Modifying the Example Design . 3–15

Chapter 4. Parameter Settings for the Arria V Hard IP for PCI Express
System Settings . 4–1
Arria V Hard IP for PCI Express
User Guide

Port Functions . 4–3
Parameters Shared Across All Port Functions . 4–3

Device . 4–4
Error Reporting . 4–5
Link . 4–6
Slot . 4–6
Power Management . 4–7

Parameters Defined Separately for All Port Functions . 4–7
Base Address Registers for Function <n> . 4–8
Base and Limit Registers for Root Port Func <n> . 4–8
Device ID Registers for Function <n> . 4–9
PCI Express/PCI Capabilities for Func <n> . 4–10

Chapter 5. Parameter Settings for the Avalon-MM Arria V Hard IP for PCI Express
System Settings . 5–1
Base Address Registers . 5–2
Device Identification Registers . 5–3
PCI Express/PCI Capabilities . 5–3

Device . 5–4
Error Reporting . 5–5
Link . 5–5
Power Management . 5–6

Avalon Memory-Mapped System Settings . 5–7
Avalon to PCIe Address Translation Settings . 5–7

Chapter 6. IP Core Architecture
Key Interfaces . 6–2

Avalon-ST Interface . 6–3
RX Datapath . 6–3
TX Datapath . 6–3

Avalon-MM Interface . 6–3
Clocks and Reset . 6–4
Local Management Interface (LMI Interface) . 6–4
Transceiver Reconfiguration . 6–4
Interrupts . 6–4

Protocol Layers . 6–5
Transaction Layer . 6–5

Configuration Space . 6–6
Data Link Layer . 6–7
Physical Layer . 6–8

Multi-Function Support . 6–11
PCI Express Avalon-MM Bridge . 6–11

Avalon-MM-to-PCI Express Write Requests . 6–13
Avalon-MM-to-PCI Express Upstream Read Requests . 6–14
PCI Express-to-Avalon-MM Read Completions . 6–14
PCI Express-to-Avalon-MM Downstream Write Requests . 6–14
PCI Express-to-Avalon-MM Downstream Read Requests . 6–15
Avalon-MM-to-PCI Express Read Completions . 6–15
PCI Express-to-Avalon-MM Address Translation . 6–15
Avalon-MM-to-PCI Express Address Translation . 6–17

Single DWord Completer Endpoint . 6–19
RX Block . 6–19
Avalon-MM RX Master Block . 6–20

TX Block . 6–20
Interrupt Handler Block . 6–20

Chapter 7. IP Core Interfaces
Arria V Hard IP for PCI Express . 7–3

Avalon-ST Packets to PCI Express TLPs . 7–4
Avalon-ST RX Interface . 7–5

Data Alignment and Timing for the 64-Bit Avalon-ST RX Interface . 7–8
Data Alignment and Timing for the 128-Bit Avalon-ST RX Interface . 7–11

Avalon-ST TX Interface . 7–15
Data Alignment and Timing for the 64-Bit Avalon-ST TX Interface . 7–18
Data Alignment and Timing for the 128-Bit Avalon-ST TX Interface . 7–20
Root Port Mode Configuration Requests . 7–22
ECRC Forwarding . 7–23

Clock Signals . 7–23
Reset Signals . 7–23
ECC Error Signals . 7–26
Interrupts for Endpoints . 7–26
Interrupts for Root Ports . 7–27
Completion Side Band Signals . 7–27
Transaction Layer Configuration Space Signals . 7–29

Configuration Space Register Access Timing . 7–32
Configuration Space Register Access . 7–33

LMI Signals . 7–37
LMI Read Operation . 7–38
LMI Write Operation . 7–38

Power Management Signals . 7–39
Avalon-MM Hard IP for PCI Express . 7–41

32-Bit Non-Bursting Avalon-MM Control Register Access (CRA) Slave Signals 7–43
RX Avalon-MM Master Signals . 7–44
64- or 128-Bit Bursting TX Avalon-MM Slave Signals . 7–44

Physical Layer Interface Signals . 7–45
Transceiver Reconfiguration . 7–46
Serial Interface Signals . 7–46
PIPE Interface Signals . 7–50

Test Signals . 7–52

Chapter 8. Register Descriptions
Configuration Space Register Content . 8–1
PCI Express Avalon-MM Bridge Control Register Content . 8–5

Avalon-MM to PCI Express Interrupt Registers . 8–6
PCI Express Mailbox Registers . 8–7
Avalon-MM-to-PCI Express Address Translation Table . 8–8
PCI Express to Avalon-MM Interrupt Status and Enable Registers . 8–9
Avalon-MM Mailbox Registers . 8–10

Correspondence between Configuration Space Registers and the PCIe Spec 2.1 8–11

Chapter 9. Reset and Clocks
Reset . 9–1
Clocks . 9–5

p_clk . 9–6
coreclkout_hip . 9–7
pld_clk . 9–7

Transceiver Clock Signals . 9–7

Chapter 10. Transaction Layer Protocol (TLP) Details
Supported Message Types . 10–1
Transaction Layer Routing Rules . 10–3
Receive Buffer Reordering . 10–4

Chapter 11. Interrupts
Interrupts for Endpoints Using the Avalon-ST Application Interface . 11–1

MSI Interrupts . 11–1
MSI-X . 11–3
Legacy Interrupts . 11–4

Interrupts for Root Ports Using the Avalon-ST Interface to the Application Layer 11–4
Interrupts for Endpoints Using the Avalon-MM Interface to the Application Layer 11–5

Enabling MSI or Legacy Interrupts . 11–7
Generation of Avalon-MM Interrupts . 11–7

Chapter 12. Optional Features
ECRC . 12–1

ECRC on the RX Path . 12–1
ECRC on the TX Path . 12–2

Lane Initialization and Reversal . 12–2

Chapter 13. Flow Control
Throughput of Posted Writes . 13–1
Throughput of Non-Posted Reads . 13–3

Chapter 14. Error Handling
Physical Layer Errors . 14–2
Data Link Layer Errors . 14–2
Transaction Layer Errors . 14–3
Error Reporting and Data Poisoning . 14–5
Uncorrectable and Correctable Error Status Bits . 14–6

Chapter 15. Transceiver PHY IP Reconfiguration

Chapter 16. Testbench and Design Example
Endpoint Testbench . 16–2
Root Port Testbench . 16–4
Chaining DMA Design Examples . 16–4

Design Example BAR/Address Map . 16–9
Chaining DMA Control and Status Registers . 16–10
Chaining DMA Descriptor Tables . 16–12

Test Driver Module . 16–14
DMA Write Cycles . 16–15
DMA Read Cycles . 16–17

Root Port Design Example . 16–18
Root Port BFM . 16–20

BFM Memory Map . 16–22
Configuration Space Bus and Device Numbering . 16–22
Configuration of Root Port and Endpoint . 16–22
Issuing Read and Write Transactions to the Application Layer . 16–27

BFM Procedures and Functions . 16–28

BFM Read and Write Procedures . 16–28
ebfm_barwr Procedure . 16–28
ebfm_barwr_imm Procedure . 16–29
ebfm_barrd_wait Procedure . 16–30
ebfm_barrd_nowt Procedure . 16–30
ebfm_cfgwr_imm_wait Procedure . 16–31
ebfm_cfgwr_imm_nowt Procedure . 16–32
ebfm_cfgrd_wait Procedure . 16–33
ebfm_cfgrd_nowt Procedure . 16–33

BFM Configuration Procedures . 16–34
ebfm_cfg_rp_ep Procedure . 16–34
ebfm_cfg_decode_bar Procedure . 16–35

BFM Shared Memory Access Procedures . 16–35
Shared Memory Constants . 16–35
shmem_write . 16–36
shmem_read Function . 16–36
shmem_display Verilog HDL Function . 16–36
shmem_fill Procedure . 16–37
shmem_chk_ok Function . 16–37

BFM Log and Message Procedures . 16–37
ebfm_display Verilog HDL Function . 16–39
ebfm_log_stop_sim Verilog HDL Function . 16–39
ebfm_log_set_suppressed_msg_mask Verilog HDL Function . 16–39
ebfm_log_set_stop_on_msg_mask Verilog HDL Function . 16–40
ebfm_log_open Verilog HDL Function . 16–40
ebfm_log_close Verilog HDL Function . 16–40

Verilog HDL Formatting Functions . 16–40
himage1 . 16–41
himage2 . 16–41
himage4 . 16–41
himage8 . 16–41
himage16 . 16–42
dimage1 . 16–42
dimage2 . 16–42
dimage3 . 16–43
dimage4 . 16–43
dimage5 . 16–43
dimage6 . 16–43
dimage7 . 16–44

Procedures and Functions Specific to the Chaining DMA Design Example 16–44
chained_dma_test Procedure . 16–44
dma_rd_test Procedure . 16–45
dma_wr_test Procedure . 16–45
dma_set_rd_desc_data Procedure . 16–45
dma_set_wr_desc_data Procedure . 16–45
dma_set_header Procedure . 16–46
rc_mempoll Procedure . 16–46
msi_poll Procedure . 16–47
dma_set_msi Procedure . 16–47
find_mem_bar Procedure . 16–48
dma_set_rclast Procedure . 16–48
ebfm_display_verb Procedure . 16–48

Chapter 17. Debugging

Hardware Bring-Up Issues . 17–1
Link Training . 17–1
Link Hangs in L0 Due To Deassertion of tx_st_ready . 17–4

Check PIPE Interface . 17–5
Use Third-Party PCIe Analyzer . 17–8
BIOS Enumeration Issues . 17–8

Chapter A. Transaction Layer Packet (TLP) Header Formats
TLP Packet Format without Data Payload . A–i
TLP Packet Format with Data Payload . A–iii

Additional Information
Revision History . Info–i
How to Contact Altera . Info–ii
Typographic Conventions . Info–ii

June 2012 Altera Corporation

June 2012
UG-01110-1.2
1. Datasheet
This document describes the Altera® Arria® V Hard IP for PCI Express®. PCI Express
is a high-performance interconnect protocol for use in a variety of applications
including network adapters, storage area networks, embedded controllers, graphic
accelerator boards, and audio-video products. The PCI Express protocol is software
backwards-compatible with the earlier PCI and PCI-X protocols, but is significantly
different from its predecessors. It is a packet-based, serial, point-to-point interconnect
between two devices. The performance is scalable based on the number of lanes and
the generation that is implemented. Altera offers a configurable hard IP block in
Arria V devices for both Endpoints and Root Ports that complies with the PCI Express
Base Specification 2.1. Using a configurable hard IP block, rather than programmable
logic, saves significant FPGA resources. The hard IP block is available in ×1, ×4, and
×8 configurations. Table 1–1 shows the aggregate bandwidth of a PCI Express link for
the available configurations. The protocol specifies 2.5 giga-transfers per second for
Gen1 and 5 giga-transfers per second for Gen2. Table 1–1 provides bandwidths for a
single transmit (TX) or receive (RX) channel, so that the numbers double for duplex
operation. Because the PCI Express protocol uses 8B/10B encoding, there is a 20%
overhead which is included in the figures in Table 1–1 Arria

f Refer to the PCI Express High Performance Reference Design for more information about
calculating bandwidth for the hard IP implementation of PCI Express in many Altera
FPGAs.

Features
Altera’s Arria V Hard IP for PCI Express IP supports the following key features:

■ Complete protocol stack including the Transaction, Data Link, and Physical Layers
is hardened in the device.

■ Multi-function support for up to eight Endpoint functions.

■ Support for ×1, ×4, and ×8 Gen1 and Gen2 configurations for Root Ports and
Endpoints.

■ Dedicated 6 KByte receive buffer

■ Dedicated hard reset controller

■ MegaWizard Plug-In Manager and Qsys support using the Avalon® Streaming
(Avalon-ST) with a 64- or 128-bit interface to the Application Layer.

Table 1–1. PCI Express Bandwidth

Link Width (1)

×1 ×4 ×8

PCI Express Gen1 Gbps (1.x compliant) 2.5 10 20

PCI Express Gen2 Gbps (2.1 compliant) 5 20 —

Note to Table 1–1:

(1) You can create a ×2 variant by specifying a ×4 variant and down configuring to ×2.
Arria V Hard IP for PCI Express
User Guide

http://www.altera.com/literature/an/an456.pdf
http://www.pcisig.com/
http://www.pcisig.com/

1–2 Chapter 1: Datasheet
Features
■ Qsys support using the Avalon Memory-Mapped (Avalon-MM) with a 64- or
128-bit interface to the Application Layer

■ Extended credit allocation settings to better optimize the RX buffer space based on
application type.

■ Qsys walkthough demonstrating parameterization, design modules and
connectivity.

■ Optional end-to-end cyclic redundancy code (ECRC) generation and checking and
advanced error reporting (AER) for high reliability applications.

■ Easy to use:

■ Easy parameterization.

■ Substantial on-chip resource savings and guaranteed timing closure.

■ Easy adoption with no license requirement.

■ New features in the 12.0 release

■ ×1, ×4, and ×8 Gen1 support for Endpoints using the Avalon-MM interface

■ ×1 and ×4 Gen2 support for Endpoints using the Avalon-MM interface

■ Support for dynamic reconfiguration of transceiver settings

Table 1–2 summarizes the IP core’s features.

The Arria V Hard IP for PCI Express offers different features for the variants that use
the Avalon-ST interface to the Application Layer and the variants that use an
Avalon-MM interface to the Application Layer. Variants using the Avalon-ST interface
are available in both the MegaWizard Plug-In Manager and the Qsys design flows.
Variants using the Avalon-MM interface are only available in the Qsys design flow.
Variants using the Avalon-ST interfaces offer a richer feature set; however, if you are
not familiar with the PCI Express protocol, variants using the Avalon-MM interface
may be easier to understand. A PCI Express to Avalon-MM bridge translates the PCI
Express read, write and completion TLPs into standard Avalon-MM read and write
commands typically used by master and slave interfaces. Table 1–2 outlines these
differences in features between variants with Avalon-ST and Avalon-MM interfaces to
the Application Layer.

Table 1–2. Differences in Features Available Using the Avalon-MM and Avalon-ST Interfaces (Part 1 of 2)

Feature Avalon-ST Interface Avalon-MM Interface

Gen1 ×1, ×4, and ×8 ×1, ×4, and ×8

Gen2 (1) ×1, ×4 ×1, ×4
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 1: Datasheet 1–3
Features
f The purpose of the Arria V Hard IP for PCI Express User Guide is to explain how to use
the Arria V Hard IP for PCI Express and not to explain the PCI Express protocol.
Although there is inevitable overlap between these two purposes, this document
should be used in conjunction with an understanding of the following PCI Express
specifications: PHY Interface for the PCI Express Architecture PCI Express 2.0 and PCI
Express Base Specification 2.1.

Transaction Layer Packet Types (TLP) (2)

■ Memory Read Request

■ Memory Read Request-Locked

■ Memory Write Request

■ I/O Read Request

■ I/O Write Request

■ Configuration Read Request
(Root Port)

■ Configuration Write Request
(Root Port)

■ Message Request

■ Message Request with Data
Payload

■ Completion without Data

■ Completion with data

■ Completion for Locked Read
without Data

■ Memory Read Request

■ Memory Write Request

■ Completion without Data

■ Completion with Data

Endpoint Supported Supported

Root Port Supported Not Supported

Maximum payload size 128–512 bytes 128–256 bytes

Number of tags supported for non-posted
requests 32 or 64 8

Multi-function Supports up to 8 functions Supports single function only

ECRC forwarding on RX and TX Supported Not supported

MSI-X Supported Not supported

Expansion ROM Supported Not supported

Notes to Table 1–2:

(1) ×2 is supported by down training from ×4 or ×8 lanes.
(2) Refer to Appendix A, Transaction Layer Packet (TLP) Header Formats for the layout of TLP headers.

Table 1–2. Differences in Features Available Using the Avalon-MM and Avalon-ST Interfaces (Part 2 of 2)

Feature Avalon-ST Interface Avalon-MM Interface
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.intel.com
http://www.pcisig.com
http://www.pcisig.com

1–4 Chapter 1: Datasheet
Release Information
Release Information
Table 1–3 provides information about this release of the PCI Express Compiler.

Altera verifies that the current version of the Quartus® II software compiles the
previous version of each IP core. Any exceptions to this verification are reported in the
MegaCore IP Library Release Notes and Errata. Altera does not verify compilation with
IP core versions older than one release.

Device Family Support
Table 1–4 shows the level of support offered by the Arria V Hard IP for PCI Express.

Configurations
The Arria V Hard IP for PCI Express includes a full hard IP implementation of the PCI
Express stack including the following layers:

■ Physical (PHY)

■ Physical Media Attachment (PMA)

■ Physical Coding Sublayer (PCS)

■ Media Access Control (MAC)

■ Data Link Layer (DLL)

■ Transaction Layer (TL)

Table 1–3. PCI Express Compiler Release Information

Item Description

Version 12.0

Release Date June 2012

Ordering Codes No ordering code is required

Product IDs There are no encrypted files for the Arria V Hard IP for PCI
Express. The Product ID and Vendor ID are not required
because this IP core does not require a license.Vendor ID

Table 1–4. Device Family Support

Device Family Support

Arria V

Preliminary. The IP core is verified with preliminary timing
models. The IP core meets all functional requirements, but
is still undergoing characterization. It can be used in
production designs with caution.

Other device families

Refer to the following user guides for other device families:

■ IP Compiler for PCI Express User Guide

■ Stratix V Hard IP for PCI Express User Guide

■ Cyclone V Hard IP for PCI Express User Guide
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www.altera.com/literature/ug/ug_pci_express.pdf
http://www.altera.com/literature/ug/ug_s5_pcie.pdf
http://www.altera.com/literature/ug/ug_c5_pcie.pdf
http://www.altera.com/literature/rn/rn_ip.pdf

Chapter 1: Datasheet 1–5
Debug Features
Optimized for Altera devices, the Arria V Hard IP for PCI Express supports all
memory, I/O, configuration, and message transactions. It has a highly optimized
Application Layer interface to achieve maximum effective throughput. You can
customize the Hard IP to meet your design requirements using either the
MegaWizard Plug-In Manager or the Qsys design flow.

Figure 1–1 shows a PCI Express link between two Arria V FPGAs. One is configured
as a Root Port and the other as an Endpoint.

Figure 1–2 shows a PCI Express link between two Altera FPGAs. One is configured as
a Root Port and the other as a multi-function Endpoint. The FPGA serves as a custom
I/O hub for the host CPU. In the Arria V FPGA, each peripheral is treated as a
function with its own set of Configuration Space registers. Eight multiplexed
functions operate using a single PCI Express link.

Debug Features
The Arria V Hard IP for PCI Express includes debug features that allow observation
and control of the Hard IP for faster debugging of system-level problems. For more
information about debugging refer to Chapter 16, Debugging.

Figure 1–1. PCI Express Application with a Single Root Port and Endpoint

Altera FPGA

User Application
Logic

PCIe
Hard IP

RP

PCIe
Hard IP

EP

User Application
 LogicPCI Express Link

Altera FPGA

Figure 1–2. PCI Express Application with an Endpoint Using the Multi-Function Capability

Arria V or Cyclone V FPGA

PCIe Hard
IP Multi-
Function

EP

CAN GbE ATA PCI

Altera FPGA

PCIe
 Hard IP

RP

Host
CPU

Memory
Controller

Peripheral
Controller

Peripheral
Controller

USB SPI GPIO I2C

PCI Express Link
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

1–6 Chapter 1: Datasheet
IP Core Verification
IP Core Verification
To ensure compliance with the PCI Express specification, Altera performs extensive
validation of the Arria V Hard IP Core for PCI Express. The Gen1 ×8 and Gen2 ×4
Endpoints passed all PCI-SIG gold tests and interoperability tests with a wide
selection of motherboards and test equipment at the PCI-SIG Compliance Workshop
#79 in February 2012.

Altera’s simulation environment uses multiple testbenches that consist of
industry-standard BFMs driving the PCI Express link interface. A custom BFM
connects to the application-side interface.

Altera performs the following tests in the simulation environment:

■ Directed and pseudo random stimuli areArria applied to test the Application
Layer interface, Configuration space, and all types and sizes of TLPs.

■ Error injection tests that inject errors in the link, TLPs, and Data Link Layer
Packets (DLLPs), and check for the proper responses

■ PCI-SIG® Compliance Checklist tests that specifically test the items in the checklist

■ Random tests that test a wide range of traffic patterns

Performance and Resource Utilization
Because the IP core is implemented in hardened logic, it uses less than 1% of Arria V
resources.

Depending on the speed of the variant, soft calibration logic may be required, with
additional logic required for more lanes. The amount of additional logic for
calibration for the transceiver modules is pending characterization of the Arria V
device.

Recommended Speed Grades
Table 1–5 lists the recommended speed grades for the supported link widths and
Application Layer clock frequencies. The speed grades listed are the only speed
grades that close timing. Altera recommends setting the Quartus II Analysis &
Synthesis Settings Optimization Technique to Speed.

h Refer to “Setting Up and Running Analysis and Synthesis in Quartus II Help for
information about optimizing synthesis.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://quartushelp.altera.com/11.1/master.htm#mergedProjects/comp/comp/comp_pro_set_synthesis.htm

Chapter 1: Datasheet 1–7
Recommended Speed Grades
f Refer to Area and Timing Optimization in volume 2 of the Quartus II Handbook for more
information about how to effect the Optimization Technique setting.

f For details on installation, refer to the Altera Software Installation and Licensing Manual.

Table 1–5. Device Family Link Width Application Frequency Recommended Speed Grades

Link Speed Link Width
Application

Clock
Frequency (MHz)

Recommended
Speed Grades

Gen1–2.5 Gbps

×1 62.5 (1) –4, –5, –6 (2)

×1 125 –4, –5, –6

×4 125 –4, –5, –6

×8 125 –4, –5, –6 (2)

Gen2–5.0 Gbps

×1 62.5 (1) –4, –5, (2)

×1 125 –4, –5, (2)

×4 125 –4, –5, (2)

Notes to Table 1–5:

(1) This is a power-saving mode of operation.
(2) Final results pending characterization by Altera. Refer to the fit.rpt file generated by the Quartus II software.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

1–8 Chapter 1: Datasheet
Recommended Speed Grades
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

June 2012 Altera Corporation

June 2012
UG-01110-1.2
2. Getting Started with the Arria V Hard
IP for PCI Express
This section provides step-by-step instructions to help you quickly customize,
simulate, and compile the Arria V Hard IP for PCI Express using either the
MegaWizard Plug-In Manager or Qsys design flow. When you install the Quartus II
software you also install the IP Library. This installation includes the following
example designs for the Arria V Hard IP for PCI Express in
<install_dir>/ip/altera/altera_pcie/
altera_pcie_hip_ast_ed/example_design/av directory.

■ Gen1 ×4 Endpoint with a 64-bit Avalon-ST interface to the Application Layer

■ Gen1 ×8 Endpoint with a 128-bit Avalon-ST interface to the Application Layer

■ Gen1 ×4 Root Port with a 64-bit Avalon-ST interface to the Application Layer

■ Gen1 ×8 Root Port with a 128-bit Avalon-ST interface to the Application Layer

This walkthrough uses the Gen1 ×4 Endpoint. Figure 2–1 illustrates the top-level
modules of the testbench in which the DUT, a Gen1 ×4 Endpoint, connects to a
chaining DMA engine, labeled APPS in Figure 2–1, and a Root Port model.Simulation
can use a PIPE or serial interface.

For a detailed explanation of this example design, refer to Chapter 16, Testbench and
Design Example. If you choose the parameters specified in this chapter, you can run
all of the tests included in Chapter 16.

The Arria V Hard IP for PCI Express offers exactly the same feature set in both the
MegaWizard and Qsys design flows. Consequently, your choice of design flow
depends on whether you want to integrate the Arria V Hard IP for PCI Express using
RTL instantiation or using Qsys, which is a system integration tool available in the
Quartus II software.

Figure 2–1. Testbench for an Endpoint

L

APPS
altpcied_sv_hwtcl.v

Hard IP for PCI Express Testbench for Endpoints

Avalon-ST TX
Avalon-ST RX

reset
status

Avalon-ST TX
Avalon-ST RX
reset
status

DUT
altpcie_sv_hip_ast_hwtcl.v

Root Port Model
altpcie_tbed_sv_hwtcl.v

PIPE or
Serial

Interface

Root Port BFM
altpcietb_bfm_rpvar_64b_x4_pipen1b

Root Port Driver and Monitor
altpcietb_bfm_vc_intf
Arria V Hard IP for PCI Express
User Guide

2–2 Chapter 2: Getting Started with the Arria V Hard IP for PCI Express
f For more information about Qsys, refer to System Design with Qsys in the Quartus II
Handbook.

h For more information about the Qsys GUI, refer to About Qsys in Quartus II Help.

Figure 2–2 illustrates the steps necessary to customize the Arria V Hard IP for PCI
Express and run the example design.

The following sections provide step-by-step instructions for both design flows.
Steps 1 to 3 are different for each design flow and are described separately. Step 4 is
identical for both flows and is described once. You can also skip Step 4 and proceed
directly to Quartus II compilation. Step 5 and 6 are different for the two design flows
and are described separately. Step 7 is the same for both flows and is described once.

You can begin by selecting one of these two design flows:

■ MegaWizard Plug-In Manager Design Flow

■ Qsys Design Flow

Figure 2–2. MegaWizard Plug-In Manager and Qsys Design Flows

Select Design Flow

Customize the
 Hard IP for PCIe

Qsys Flow MegaWizard
Flow

Complete Qsys System

Perform
Simulation

Create Quartus II Project
Add Quartus IP File (.qip)

Create Quartus II Project

Generate the Simulation
Model in Qsys

Generate the Simulation
Model in Qsys

Compile the Design for the
Qsys Design Flow

Modify Example Design
to Meet Your Requirements

Compile the Design for the
MegaWizard Design Flow

Add Quartus IP File (.qip)
to Quartus II Project

Customize the
Hard IP for PCIe

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Yes

No

Simulating? Yes

No

Simulating?
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www.altera.com/literature/hb/qts/qsys_section.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/system/qsys/qsys_about_qsys.htm

Chapter 2: Getting Started with the Arria V Hard IP for PCI Express 2–3
MegaWizard Plug-In Manager Design Flow
MegaWizard Plug-In Manager Design Flow
This section guides you through the steps necessary to customize the Arria V Hard IP
for PCI Express and run the example testbench, starting with the creation of a
Quartus II project. It includes the following steps:

■ Creating a Quartus II Project

■ Customizing the Endpoint in the MegaWizard Plug-In Manager Design Flow

■ Understanding the Files Generated

■ Simulating the Example Design

■ Understanding Channel Placement Guidelines

■ Compiling the Design in the MegaWizard Plug-In Manager Design Flow

■ Modifying the Example Design

Creating a Quartus II Project
Follow these steps to copy the example design files and create a Quartus II project.

1. Choose Programs > Altera > Quartus II <version> (Windows Start menu) to run
the Quartus II software.

2. On the Quartus II File menu, click New, then New Quartus II Project, then OK.

3. Click Next in the New Project Wizard: Introduction (The introduction does not
display if you previously turned it off.)

4. On the Directory, Name, Top-Level Entity page, enter the following information:

a. The working directory for your project. This design example uses
<working_dir>/example_design

b. The name of the project. This design example uses pcie_de_gen1_x4_ast64

1 The Quartus II software specifies a top-level design entity that has the same
name as the project automatically. Do not change this name.

5. Click Next to display the Add Files page.

6. Click Yes, if prompted, to create a new directory.

7. Click Next to display the Family & Device Settings page.

8. On the Device page, choose the following target device family and options:

a. In the Family list, select Arria V (GT/GX).

b. In the Devices list, select Arria V GX Extended Features.

c. In the Available devices list, select 5AGXFB3H6F35C6ES.

9. Click Next to close this page and display the EDA Tool Settings page.

10. From the Simulation list, select ModelSim®. From the Format list, select the HDL
language you intend to use for simulation.

11. Click Next to display the Summary page.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

2–4 Chapter 2: Getting Started with the Arria V Hard IP for PCI Express
MegaWizard Plug-In Manager Design Flow
12. Check the Summary page to ensure that you have entered all the information
correctly.

13. Click Finish to create the Quartus II project.

Customizing the Endpoint in the MegaWizard Plug-In Manager Design Flow
This section guides you through the process of customizing the Endpoint in the
MegaWizard Plug-In Manager design flow.It specifies the same options that are
chosen in Chapter 16, Testbench and Design Example.

f For further information about the parameter settings, refer to Chapter 4, Parameter
Settings for the Arria V Hard IP for PCI Express.

Follow these steps to customize your variant in the MegaWizard Plug-In Manager:

1. On the Tools menu, click MegaWizard Plug-In Manager. The MegaWizard
Plug-In Manager appears.

2. Select Create a new custom megafunction variation and click Next.

3. In Which device family will you be using? Select the Arria V device family.

4. Expand the Interfaces directory under Installed Plug-Ins by clicking the + icon
left of the directory name, expand PCI Express, then click Arria V Hard IP for PCI
Express <version_number>

5. Select the output file type for your design. This walkthrough supports VHDL and
Verilog HDL. For this example, select Verilog HDL.

6. Specify a variation name for output files <working_dir>/example_design/
<variation name>. For this walkthrough, specify <working_dir>/example_design/
gen1_x4.

7. Click Next to open the parameter editor for the Arria V Hard IP for PCI Express.

8. Specify the System Settings values listed inTable 2–1.

Table 2–1. System Settings Parameters

Parameter Value
Number of Lanes ×4
Lane Rate Gen 1 (2.5 Gbps)
Port type Native endpoint
Application Layer interface Avalon-ST 64-bit
RX buffer credit allocation - performance for
received requests Low

Reference clock frequency 100 MHz
Use 62.5 MHz Application Layer clock for ×1 Leave this option off
Use deprecated RX Avalon-ST data byte enable
port (rx_st_be) Leave this option off

Number of functions 1
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 2: Getting Started with the Arria V Hard IP for PCI Express 2–5
MegaWizard Plug-In Manager Design Flow
1 Each function shares the parameter settings on the Device, Error Reporting, Link,
Slot, and Power Management tabs. Each function has separate parameter settings for
the Base Address Registers, Base and Limit Registers for Root Ports, Device
Identification Registers, and the PCI Express/PCI Capabilites parameters. When
you click on a Func<n> tab under the Port Functions heading, the tabs automatically
reflect the Func<n> tab selected.

9. Specify the Device parameters listed in Table 2–2.

10. On the Error Reporting tab, leave all options off.

11. Specify the Link settings listed in Table 2–7.

12. On the Slot Capabilities tab, leave the Slot register turned off.

13. Specify the Power Management parameters listed in Table 2–4.

14. Specify the BAR settings for Func0 listed in Table 2–5.

15. You can leave Func0 BAR3 through Func0 BAR5 and the Func0 Expansion ROM
Disabled.

Table 2–2. Device

Parameter Value

Maximum payload size 128 bytes

Number of tags supported 32

Completion timeout range ABCD

Implement completion timeout disable On

Table 2–3. Link Tab

Parameter Value

Link port number 1

Slot clock configuration On

Table 2–4. Power Management Parameters

Parameter Value

Endpoint L0s acceptable exit latency Maximum of 64 ns

Endpoint L1 acceptable latency Maximum of 1 µs

Table 2–5. Base Address Registers for Func0

Parameter Value
BAR0 Type 64-bit prefetchable memory
BAR0 Size 256 MBytes - 28 bits
BAR1 Type Disabled
BAR1 Size N/A
BAR2 Type 32-bit non-prefetchable memory
BAR2 Size 1 KByte - 10 bits
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

2–6 Chapter 2: Getting Started with the Arria V Hard IP for PCI Express
MegaWizard Plug-In Manager Design Flow
16. Under the Base and Limit Registers heading, disable both the Input/Output and
Prefetchable memory options. (These options are for Root Ports.)

17. Specify the Device ID Registers for Func0 listed in Table 2–6.

18. On the Func 0 Device tab, under PCI Express/PCI Capabilities for Func 0 turn
Function Level Reset (FLR) Off.

19. Table 2–7 lists settings for the Func0 Link tab.

20. On the Func0 MSI tab, for Number of MSI messages requested, select 4.

21. On the Func0 MSI-X tab, turn Implement MSI-X off.

22. On the Func0 Legacy Interrupt tab, select INTA.

23. Click Finish. The Generation dialog box appears.

24. Turn on Generate Example Design to generate the Endpoint, testbench, and
supporting files.

25. Click Exit.

26. Click Yes if you are prompted to add the Quartus II IP File (.qip) to the project.

The .qip is a file generated by the parameter editor contains all of the necessary
assignments and information required to process the IP core in the Quartus II
compiler. Generally, a single .qip file is generated for each IP core.

Table 2–6. Device ID Registers for Func0

Register Name Value

Vendor ID 0x00000000

Device ID 0x00000001

Revision ID 0x00000001

Class Code 0x00000000

Subsystem Vendor ID 0x00000000

Subsystem Device ID 0x00000000

Table 2–7. Link Capabilities

Parameter Value

Data link layer active reporting Off

Surprise down reporting Off
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 2: Getting Started with the Arria V Hard IP for PCI Express 2–7
MegaWizard Plug-In Manager Design Flow
Understanding the Files Generated
Figure 2–3 illustrates the directory structure created for this design after you generate
the Arria V Hard IP for PCI Express. Generation creates three directories:

■ <working_dir>/<variant_name> includes the files for synthesis.

■ <working_dir>/<variant_name>_sim/altera_pcie_av_hip_ast includes the
simulation files.

■ <working_dir>/<variant_name>_example_design/altera_pcie_av_hip_ast contains
a Qsys system that connects the Endpoint variant to a chaining DMA design
example for verification.

Figure 2–3 illustrates this directory structure.

Follow these steps to generate the chaining DMA testbench from the Qsys system
design example.

1. On the Quartus II File menu, click Open.

2. Navigate to the Qsys system in the altera_pcie_av_hip_ast subdirectory.

Figure 2–3. Directory Structure for Arria V Hard IP for PCI Express IP Simulation Model and Design Example

<working_dir>

<working_dir>/<variant_name> (gen1_x4_example_design)
includes Verilog HDL and SystemVerilog design files for synthesis

<variant_name>.v or .vhd = gen1_x4.v, the parameterized endpoint
<variant_name>.qip = lists all files used in the Gen1 x4 endpoint
<variant_name>.bsf = gen1_x4.bsf, a block symbol file for the parameterized endpoint

<working_dir> /<variant_name>_sim/altpcie_pcie_<device>_hip_ast
 (gen1_x4 _sim/altera_pcie_<device>_hip_ast)
includes plain text Verilog HDL and SystemVerilog design files for simulation

<working_dir> /<variant_name>_example_design/altpcie_pcie_<device>_hip_ast
 (example_design/gen1_x4 _example_design/altera_pcie_<device>_hip_ast)
includes a Qsys testbench connecting the endpoint (DUT) to the chaining DMA application (APPS)
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

2–8 Chapter 2: Getting Started with the Arria V Hard IP for PCI Express
MegaWizard Plug-In Manager Design Flow
3. Click pcie_de_gen1_x4_ast64.qsys to bring up the Qsys design. Figure 2–4
illustrates this Qsys system.

Figure 2–4. Qsys System Connecting the Endpoint Variant and Chaining DMA Testbench

Hard IP for PCI Express
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 2: Getting Started with the Arria V Hard IP for PCI Express 2–9
MegaWizard Plug-In Manager Design Flow
4. To display the parameters of the APPS component shown in Figure 2–4, click on it
and then select Edit from the right-mouse menu. Figure 2–5 illustrates this
component. Note that the values for the following parameters match those set in
the DUT component:

■ Targeted Device Family

■ Lanes

■ Lane Rate

■ Application Clock Rate

■ Port type

■ Application interface

■ Tags supported

■ Maximum payload size

■ Number of Functions

1 You can use this Qsys APPS component to test any Endpoint variant with
compatible values for these parameters.

5. To close the APPS component, click the X in the upper right-hand corner of the
parameter editor.

Go to “Simulating the Example Design” on page 2–18 for instructions on system
simulation.

Figure 2–5. Qsys Component Representing the Chaining DMA Design Example
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

2–10 Chapter 2: Getting Started with the Arria V Hard IP for PCI Express
Qsys Design Flow
Qsys Design Flow
This section guides you through the steps necessary to customize the Arria V Hard IP
for PCI Express and run the example testbench in Qsys. It includes the following
steps:

■ Customizing the Endpoint in Qsys

■ Understanding the Files Generated

■ Simulating the Example Design

■ Understanding Channel Placement Guidelines

■ Compiling the Design in the Qsys Design Flow

Customizing the Endpoint in Qsys
This section begins with the steps necessary to customize the Arria V Hard IP for PCI
Express. This section also guides you through steps to connect the chaining DMA
component testbench described in Chapter 16, Testbench and Design Example to the
Endpoint variant.

f For further details about the parameter settings, refer to Chapter 4, Parameter Settings
for the Arria V Hard IP for PCI Express.

Follow these steps to instantiate the Arria V Hard IP for PCI Express and chaining
DMA example design using the Qsys design flow:

1. Create a directory for your project. This example uses <working_dir>/pcie_qsys.

2. To start Qsys from the Quartus II software, on the File menu click New.

3. In the New dialog box, click Qsys System File, then click OK. Qsys appears.

4. On the Project Settings tab specify the settings listed in Table 2–8

5. On the Component Library tab, type the following text string in the search box:

PCI Ex r
Qsys filters the component library and shows all components matching the text
string you entered.

6. Click on Arria V Hard IP for PCI Express and then click the +Add button. The
parameter editor appears.

Table 2–8. Project Settings Parameters

Parameter Value
Device family Arria V
Clock crossing adapter type Handshake
Limit interconnect pipeline stages to (1) 0
Generation ID 0
Note to Table 2–8:

(1) This setting applies to designs that include Avalon-MM interfaces.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 2: Getting Started with the Arria V Hard IP for PCI Express 2–11
Qsys Design Flow
The following sections provide step-by-step instructions to create the example design
in Qsys. If you prefer, you can copy the completed system from the Quartus II
software installation, and then go to “Simulating the Example Design” on page 2–18.
The completed Qsys systems are located in the following directory:
<install_dir>/ip/altera/altera_pcie/altera_pcie_hip_ast_ed/example_design/av.

Specifying the Parameters for the Arria V Hard IP for PCI Express
This section guides you through the process of specifying parameters for the Arria V
Hard IP for PCI Express to create a Gen1 ×4 Endpoint.

1. Specify the System Settings parameters listed in Table 2–9.

1 Each function shares the parameter settings on the Device, Error Reporting, Link,
Slot, and Power Management tabs. Each function has separate parameter settings for
the Base Address Registers, Base and Limit Registers for Root Ports, Device
Identification Registers, and the PCI Express/PCI Capabilities parameters. When
you click on a Func<n> tab under the Port Functions heading, the tabs automatically
reflect the Func<n> tab selected.

2. Specify the Device parameters listed in Table 2–10.

3. On the Error Reporting tab, leave all options off.

Table 2–9. System Settings Parameters

Parameter Value
Number of Lanes ×4
Lane Rate Gen 1 (2.5 Gbps)
Port type Native endpoint
Application interface Avalon-ST 64-bit
RX buffer credit allocation - performance for
received requests Low

Reference clock frequency 100 MHz
Use 62.5 MHz Application Layer clock for ×1 Leave this option Off
Use deprecated RX Avalon-ST data byte enable
port (rx_st_be) Leave this option On.

Number of functions 1

Table 2–10. Device

Parameter Value

Maximum payload size 128 bytes

Number of tags supported 32

Completion timeout range ABCD

Implement completion timeout disable On
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

2–12 Chapter 2: Getting Started with the Arria V Hard IP for PCI Express
Qsys Design Flow
4. Specify the Link settings listed in Table 2–11.

5. Specify the Slot settings listed in Table 2–12.

6. Specify the Power Management settings listed in.Table 2–13.

7. Specify the BAR settings for Func0 listed in Table 2–14.

8. You can leave Func0 BAR3 through Func0 BAR5 and the Func0 Expansion ROM
Disabled.

9. Under the Base and Limit Registers heading, disable both the Input/Output and
Prefetchable memory options. (These options are for Root Ports.)

10. Specify the Device ID Registers for Func0 listed in Table 2–15.

Table 2–11. Link Tab

Parameter Value

Link port number 1

Slot clock configuration Enabled

Table 2–12. Slot Tab

Parameter Value

Use slot register Leave this option off.

Data link layer active reporting 0

Surprise down reporting 0

Slot clock configuration 0

Table 2–13. Power Management Parameters

Parameter Value

Endpoint L0s acceptable exit latency Maximum of 64 ns

Endpoint L1 acceptable latency Maximum of 1 µs

Table 2–14. Base Address Registers for Func0

Parameter Value
BAR0 Type 64-bit prefetchable memory
BAR0 Size 256 MBytes - 28 bits
BAR1 Type Disabled
BAR1 Size N/A
BAR2 Type 32-bit non-prefetchable memory
BAR2 Size 1 KByte - 10 bits

Table 2–15. Device Identification Registers for Func0 (Part 1 of 2)

Register Name Value

Vendor ID 0x00000000

Device ID 0x00000001

Revision ID 0x00000001
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 2: Getting Started with the Arria V Hard IP for PCI Express 2–13
Qsys Design Flow
11. On the Func 0 Device tab, under PCI Express/PCI Capabilities for Func 0 turn
Function Level Reset (FLR) On.

12. Specify the Link settings listed in Table 2–16.

13. On the Func0 MSI tab, for Number of MSI messages requested, select 4.

14. On the Func0 MSI-X tab, turn Implement MSI-X turned off.

15. On the Func0 Legacy Interrupt tab, keep the default option INTA for Legacy
Interrupt (INTx).

16. Click the Finish button.

17. To rename the Arria V hard IP for PCI Express, in the Name column of the
System Contents tab, right-click on the component name, select Rename, and
type DUT r

Specifying the Parameters for the Example Design
Follow these steps to add the Example design for Avalon-Streaming Hard IP for PCI
Express component to your Qsys system.

1. On the Component Library tab, click Example design for Avalon-Streaming
Hard IP for PCI Express and then click Add. The parameter editor appears.

2. Change the parameters to match those of the Gen1 ×4 Endpoint variant by
selecting the parameter values shown in Table 2–17.

3. Click Finish.

Class Code 0x00000000

Subsystem Vendor ID 0x00000000

Subsystem Device ID 0x00000000

Table 2–16. Link Capabilities

Parameter Value

Data link layer active reporting Off

Surprise down reporting Off

Table 2–17. Parameters for the Example Design

Parameter Value

Targeted device family Arria V

Lanes ×4

Lane rate Gen1 (2.5 Gbps)

Application Clock Rate 125 MHz

Port type Native Endpoint

Application interface Avalon-ST 64-bit

Tags supported 32

Maximum payload size 256

Number of functions 1

Table 2–15. Device Identification Registers for Func0 (Part 2 of 2)
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

2–14 Chapter 2: Getting Started with the Arria V Hard IP for PCI Express
Qsys Design Flow
4. To rename the Example design for Avalon-Streaming Arria V hard IP for PCI
Express component, right-click on the component name, select Rename, and type
APPSr

Completing the Qsys System
The APPS component interfaces connect to the Endpoint variant interfaces with
matching names. Most of these interfaces are of the Avalon Conduit type, which is a
point-to-point interface type that accommodates individual signals or groups of
signals that do not fit into any of the other Avalon types. You can connect conduit
interfaces to each other inside a Qsys system or export them to make connections to
other modules in the design or to FPGA pins.

f For more information about Avalon interfaces, refer to the Avalon Interface
Specifications.

Follow these steps to export Avalon Conduit interfaces that connect outside the Qsys
system.

1. To export the interface which is a power-on reset pin for the FPGA, click in the
Export column and type dut_npor which is the name of the exported interface.
Note that the Connections column now shows that the npor interface is no longer
available for internal connections in Qsys.

2. Export the following interfaces, using the same name in the Export Column that is
shown in the Name column of Qsys.

■ dut_hip_ctrl

■ dut_refclk

■ dut_hip_serial

■ dut_hip_pipe

■ reconfig_xcvr_clk (This interface is part of the APPS component)

1 You can select Undo Export Interface on the Edit menu if you accidentally
export an interface.

In this example design the Avalon-ST source interface of the DUT connects to the
Avalon-ST sink interface of the APPS component, and the Avalon-ST sink interface of
the DUT, connects to the Avalon-ST source interface of the APPS component. Follow
these steps to connect the Avalon-ST source and sink interfaces of these two
components:

1. To connect the Avalon-ST rx_st source interface of the DUT component to the
Avalon-ST rx_st sink interface of the APPS, in the Name column, right-click on
the rx_st interface and select and select Apps.rx_st from the DUT.rx_st
Connections list.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 2: Getting Started with the Arria V Hard IP for PCI Express 2–15
Qsys Design Flow
Figure 2–6 illustrates this procedure.

2. To connect the Avalon-ST tx_st source interface of the APPS component to the
tx_st sink interface of the DUT component, repeat the technique explained in
Step 1.

For conduit interface types, the APPS component interfaces connect to the DUT
interfaces with matching names.

1 The Avalon Conduit interface type is a point-to-point interface type that
accommodates individual signals or groups of signals that do not fit into any of the
other Avalon types. You can connect conduit interfaces to each other inside a Qsys
system or export them to make connections to other modules in the design or to
FPGA pins.

Figure 2–6. Connecting Signals Using the Right-Mouse Connections Menu
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

2–16 Chapter 2: Getting Started with the Arria V Hard IP for PCI Express
Qsys Design Flow
f For more information about Avalon interfaces, refer to the Avalon Interface
Specifications.

3. Connect the following Avalon Conduit interfaces using the technique described in
Step 1.

■ lmi

■ config_tl

■ power_mgmt

■ hip_status

■ rx_bar_be

■ tx_fifo

■ tx_cred

■ hip_rst

■ reconfig_to_xcvr

■ reconfig_from_xcvr

■ int_msi

4. Follow these steps to connect the clocks:

a. In the Clock column right-click on the DUT pld_clk interface and select
APPS.pld_clk_hip from the DUT.pld_clk Connections list.

b. To connect the APPS pld_clk_hip interface to the DUT pld_clk interface,
right-click on APPS.pld_clk_hip and select DUT.pld_clk from the
APPS.pld_clk_hip Connections list.

c. To connect the DUT coreclkout_hip interface to the APPS coreclkout_hip
interface, right-click on DUT.coreclkout_hip and select DUT.coreclkout_hip
from the DUT.coreclkout_hip Connections list. CHECK

d. To connect the DUT coreclkout_hip interface to the APPS coreclkout_hip
interface, right-click on DUT.coreclkout_hip and select APPS.coreclkout_hip
from the DUT.coreclkout_hip Connections list.

5. To remove the default clock, on the System Contents tab, click clk_0 and then click
the X button.

6. To save your Qsys system, on the File menu select Save. Type pcie_qsys in the
Save dialog box.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 2: Getting Started with the Arria V Hard IP for PCI Express 2–17
Qsys Design Flow
Figure 2–7 illustrates the complete Qsys system.

Generating the Testbench
Follow these steps to generate chaining DMA testbench:

1. On the Qsys Generation tab, specify the parameters listed in Table 2–18.

Figure 2–7. Complete Gen1 ×4 Endpoint (DUT) Connected to Example Design (APPS)

Table 2–18. Parameters to Specify on the Generation Tab in Qsys (Part 1 of 2)

Parameter Value

Simulation

Create simulation model Verilog

Create testbench Qsys system Standard, BFMs for standard Avalon interfaces

Create testbench simulation
model Verilog

Synthesis

Create HDL design files for
synthesis Turn this option on

Create block symbol file (.bsf) Turn this option on
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

2–18 Chapter 2: Getting Started with the Arria V Hard IP for PCI Express
Qsys Design Flow
2. Click the Generate button at the bottom of the Generation tab to create the
chaining DMA testbench.

Simulating the Example Design
Follow these steps to compile the testbench for simulation and run the chaining DMA
testbench.

1. Start your simulation tool. This example uses the ModelSim® software.

2. From the ModelSim transcript window, in the testbench directory, type the
following commands:

a. source msim_setup.tclr
b. hr (This is the ModelSim help command.)

c. ldr (This command compiles all design files and elaborates the top-level
design.)

d. run -all

Example 2–1 shows the a partial transcript from a successful simulation. As this
transcript illustrates, the simulation includes the following stages:

■ Link training

■ Configuration

■ DMA reads and writes

■ Root Port to Endpoint memory reads and writes

Output Directory

Path pcie_qsys/gen1_x8_example_design

Simulation Leave this option blank

Testbench (1) pcie_qsys/gen1_x8_example_design/testbench

Synthesis (2) pcie_qsys/gen1_x8_example_design/synthesis

Note to Table 2–18:

(1) Qsys automatically creates this path by appending testbench to the output directory/.
(2) Qsys automatically creates this path by appending synthesis to the output directory/.

Table 2–18. Parameters to Specify on the Generation Tab in Qsys (Part 2 of 2)

Parameter Value
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 2: Getting Started with the Arria V Hard IP for PCI Express 2–19
Qsys Design Flow
Example 2–1. Excerpts from Transcript of Successful Simulation Run

 Time: 56000 Instance: top_chaining_testbench.ep.epmap.pll_250mhz_to_500mhz.
Time: 0 Instance:
pcie_de_gen1_x8_ast128_tb.dut_pcie_tb.genblk1.genblk1.altpcietb_bfm_top_rp.rp.rp.nl00O
0i.Arriaii_pll.pll1
Note : Arria II PLL locked to incoming clock
Time: 25000000 Instance:
pcie_de_gen1_x8_ast128_tb.dut_pcie_tb.genblk1.genblk1.altpcietb_bfm_top_rp.rp.rp.nl00O
0i.Arriaii_pll.pll1
INFO: 464 ns Completed initial configuration of Root Port.
INFO: 3661 ns RP LTSSM State: DETECT.ACTIVE
INFO: 3693 ns RP LTSSM State: POLLING.ACTIVE
INFO: 3905 ns EP LTSSM State: DETECT.ACTIVE
INFO: 4065 ns EP LTSSM State: POLLING.ACTIVE
INFO: 6369 ns EP LTSSM State: POLLING.CONFIG
INFO: 6461 ns RP LTSSM State: POLLING.CONFIG
INFO: 7741 ns RP LTSSM State: CONFIG.LINKWIDTH.START
INFO: 7969 ns EP LTSSM State: CONFIG.LINKWIDTH.START
INFO: 8353 ns EP LTSSM State: CONFIG.LINKWIDTH.ACCEPT
INFO: 8781 ns RP LTSSM State: CONFIG.LINKWIDTH.ACCEPT
INFO: 8973 ns RP LTSSM State: CONFIG.LANENUM.WAIT
INFO: 9537 ns EP LTSSM State: CONFIG.LANENUM.WAIT
INFO: 9857 ns EP LTSSM State: CONFIG.LANENUM.ACCEPT
INFO: 9933 ns RP LTSSM State: CONFIG.LANENUM.ACCEPT
INFO: 10189 ns RP LTSSM State: CONFIG.COMPLETE
INFO: 10689 ns EP LTSSM State: CONFIG.COMPLETE
INFO: 12109 ns RP LTSSM State: CONFIG.IDLE
INFO: 13697 ns EP LTSSM State: CONFIG.IDLE
INFO: 13889 ns EP LTSSM State: L0
INFO: 13981 ns RP LTSSM State: L0
INFO: 17800 ns Configuring Bus 001, Device 001, Function 00
INFO: 17800 ns EP Read Only Configuration Registers:
INFO: 17800 ns Vendor ID: 1172
INFO: 17800 ns Device ID: E001
INFO: 17800 ns Revision ID: 01
INFO: 17800 ns Class Code: FF0000
INFO: 17800 ns Subsystem Vendor ID: 1172
INFO: 17800 ns Subsystem ID: E001
INFO: 17800 ns Interrupt Pin: INTA# used
INFO: 17800 ns
INFO: 20040 ns PCI MSI Capability Register:
INFO: 20040 ns 64-Bit Address Capable: Supported
INFO: 20040 ns Messages Requested: 4
INFO: 20040 ns

June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

2–20 Chapter 2: Getting Started with the Arria V Hard IP for PCI Express
Qsys Design Flow
Example 2-1 continued

 INFO: 31208 ns EP PCI Express Link Status Register (1081):
INFO: 31208 ns Negotiated Link Width: x8
INFO: 31208 ns Slot Clock Config: System Reference Clock Used
INFO: 33481 ns RP LTSSM State: RECOVERY.RCVRLOCK
INFO: 34321 ns EP LTSSM State: RECOVERY.RCVRLOCK
INFO: 34961 ns EP LTSSM State: RECOVERY.RCVRCFG
INFO: 35161 ns RP LTSSM State: RECOVERY.RCVRCFG
INFO: 36377 ns RP LTSSM State: RECOVERY.IDLE
INFO: 37457 ns EP LTSSM State: RECOVERY.IDLE
INFO: 37649 ns EP LTSSM State: L0
INFO: 37737 ns RP LTSSM State: L0
INFO: 39944 ns Current Link Speed: 2.5GT/s
INFO: 58904 ns Completed configuration of Endpoint BARs.
INFO: 61288 ns ---------
INFO: 61288 ns TASK:chained_dma_test
INFO: 61288 ns DMA: Read
INFO: 61288 ns ---------
INFO: 61288 ns TASK:dma_rd_test
INFO: 61288 ns ---------
INFO: 61288 ns TASK:dma_set_rd_desc_data
INFO: 61288 ns ---------
INFO: 61288 ns TASK:dma_set_msi READ
INFO: 61288 ns Message Signaled Interrupt Configuration
INFO: 61288 ns msi_address (RC memory)= 0x07F0
INFO: 63512 ns msi_control_register = 0x0084
INFO: 72440 ns msi_expected = 0xB0FC
INFO: 72440 ns msi_capabilities address = 0x0050
INFO: 72440 ns multi_message_enable = 0x0002
INFO: 72440 ns msi_number = 0000
INFO: 72440 ns msi_traffic_class = 0000
INFO: 72440 ns ---------
INFO: 72440 ns TASK:dma_set_header READ
INFO: 72440 ns Writing Descriptor header
INFO: 72480 ns data content of the DT header
INFO: 72480 ns
INFO: 72480 ns Shared Memory Data Display:
INFO: 72480 ns Address Data
INFO: 72480 ns ------- ----
INFO: 72480 ns 00000900 00000003 00000000 00000900 CAFEFADE
INFO: 72480 ns ---------
INFO: 72480 ns TASK:dma_set_rclast
INFO: 72480 ns Start READ DMA : RC issues MWr (RCLast=0002)
INFO: 72496 ns ---------
INFO: 72509 ns TASK:msi_poll Polling MSI Address:07F0---> Data:FADE......
INFO: 72693 ns TASK:rcmem_poll Polling RC Address0000090C current data
(0000FADE) expected data (00000002)
INFO: 80693 ns TASK:rcmem_poll Polling RC Address0000090C current data
(00000000) expected data (00000002)
INFO: 84749 ns TASK:msi_poll Received DMA Read MSI(0000) : B0FC
INFO: 84893 ns TASK:rcmem_poll Polling RC Address0000090C current data
(00000002) expected data (00000002)
INFO: 84893 ns TASK:rcmem_poll ---> Received Expected Data (00000002)
INFO: 84901 ns ---------
INFO: 84901 ns Completed DMA Read
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 2: Getting Started with the Arria V Hard IP for PCI Express 2–21
Qsys Design Flow
Example 2-1 continued

INFO: 84901 ns TASK:chained_dma_test
INFO: 84901 ns DMA: Write
INFO: 84901 ns ---------
INFO: 84901 ns TASK:dma_wr_test
INFO: 84901 ns DMA: Write
INFO: 84901 ns ---------
INFO: 84901 ns TASK:dma_set_wr_desc_data
INFO: 84901 ns ---------
INFO: 84901 ns TASK:dma_set_msi WRITE
INFO: 84901 ns Message Signaled Interrupt Configuration
INFO: 84901 ns msi_address (RC memory)= 0x07F0
INFO: 87109 ns msi_control_register = 0x00A5
INFO: 96005 ns msi_expected = 0xB0FD
INFO: 96005 ns msi_capabilities address = 0x0050
INFO: 96005 ns multi_message_enable = 0x0002
INFO: 96005 ns msi_number = 0001
INFO: 96005 ns msi_traffic_class = 0000
INFO: 96005 ns ---------
INFO: 96005 ns TASK:dma_set_header WRITE
INFO: 96005 ns Writing Descriptor header
INFO: 96045 ns data content of the DT header
INFO: 96045 ns
INFO: 96045 ns Shared Memory Data Display:
INFO: 96045 ns Address Data
INFO: 96045 ns ------- ----
INFO: 96045 ns 00000800 10100003 00000000 00000800 CAFEFADE
INFO: 96045 ns ---------
INFO: 96045 ns TASK:dma_set_rclast
INFO: 96045 ns Start WRITE DMA : RC issues MWr (RCLast=0002)
INFO: 96061 ns ---------
INFO: 96073 ns TASK:msi_poll Polling MSI Address:07F0---> Data:FADE......
INFO: 96257 ns TASK:rcmem_poll Polling RC Address0000080C current data
(0000FADE) expected data (00000002)
INFO: 101457 ns TASK:rcmem_poll Polling RC Address0000080C current data
(00000000) expected data (00000002)
INFO: 105177 ns TASK:msi_poll Received DMA Write MSI(0000) : B0FD
INFO: 105257 ns TASK:rcmem_poll Polling RC Address0000080C current data
(00000002) expected data (00000002)
INFO: 105257 ns TASK:rcmem_poll ---> Received Expected Data (00000002)
INFO: 105265 ns ---------
INFO: 105265 ns Completed DMA Write
INFO: 105265 ns ---------
INFO: 105265 ns TASK:check_dma_data
INFO: 105265 ns Passed : 0644 identical dwords.
INFO: 105265 ns ---------
INFO: 105265 ns TASK:downstream_loop
INFO: 107897 ns Passed: 0004 same bytes in BFM mem addr 0x00000040 and 0x00000840
INFO: 110409 ns Passed: 0008 same bytes in BFM mem addr 0x00000040 and 0x00000840
INFO: 113033 ns Passed: 0012 same bytes in BFM mem addr 0x00000040 and 0x00000840
INFO: 115665 ns Passed: 0016 same bytes in BFM mem addr 0x00000040 and 0x00000840
INFO: 118305 ns Passed: 0020 same bytes in BFM mem addr 0x00000040 and 0x00000840
INFO: 120937 ns Passed: 0024 same bytes in BFM mem addr 0x00000040 and 0x00000840
INFO: 123577 ns Passed: 0028 same bytes in BFM mem addr 0x00000040 and 0x00000840
INFO: 126241 ns Passed: 0032 same bytes in BFM mem addr 0x00000040 and 0x00000840
INFO: 128897 ns Passed: 0036 same bytes in BFM mem addr 0x00000040 and 0x00000840
INFO: 131545 ns Passed: 0040 same bytes in BFM mem addr 0x00000040 and 0x00000840
SUCCESS: Simulation stopped due to successful completion!
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

2–22 Chapter 2: Getting Started with the Arria V Hard IP for PCI Express
Quartus II Compilation
Understanding Channel Placement Guidelines
Arria V transceivers are organized in banks of three and six channels for 6-Gbps
operation and in banks of two channels for 10-Gbps operation. The transceiver bank
boundaries are important for clocking resources, bonding channels, and fitting. Refer
to “Channel Placement for ×1 Variants” on page 7–47 and “Channel Placement for ×8
Variants” on page 7–49 for information about channel placement for ×1, ×4, and ×8
variants.

f For more information about Arria V transceivers refer to the “Transceiver Banks”
section in the Transceiver Architecture in Arria V Devices.

Quartus II Compilation
This section provides step-by-step instructions for Quartus II compilation. To compile
your Endpoint and design example, complete the instructions in one of the following
two sections:

■ Compiling the Design in the MegaWizard Plug-In Manager Design Flow

■ Compiling the Design in the Qsys Design Flow

Compiling the Design in the MegaWizard Plug-In Manager Design Flow
Following these steps to compile your design:

1. Before compiling your design, you should define the refclk input to the Hard IP
for PCI Express IP Core in your top-level Synopsys Design Constraints File (.sdc).
Example 2–1 provides the required constraint.

2. To compile your design, on the Processing menu, select Start Compilation.

Before compiling the complete example design in the Quartus II software, you must
add the example design files that you generated in Qsys to your Quartus II project.
Follow these steps to add the Quartus II IP File (.qip) to the project:

1. On the Project menu, select Add/Remove Files in Project.

2. Click the browse button next the File name box and browse to the
gen1_x8_example_design/altera_pcie_sv_hip_ast/pcie_de_gen1_x8_ast128/
synthesis/ directory.

3. In the Files of type list, select IP Variation Files (*.qip).

4. Click pcie_de_ge1_x8_ast128.qip and then click Open.

5. On the Add Files page, click Add, then click OK.

6. On the Processing menu, select Start Compilation.

Example 2–1.

create_clock -period “100 MHz” -name {refclk_pci_express} {*refclk_*}
derive_pll_clocks
derive_clock_uncertainty
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www/literature/hb/arria-v/av_53001.pdf

Chapter 2: Getting Started with the Arria V Hard IP for PCI Express 2–23
Quartus II Compilation
Compiling the Design in the Qsys Design Flow
To compile the Qsys design example in the Quartus II software, you must create a
Quartus II project and add your Qsys files to that project.

Complete the following steps to create your Quartus II project:

1. Choose Programs > Altera > Quartus II <version> (Windows Start menu) to run
the Quartus II software.

2. Change to the directory that includes your Qsys project, <working_dir>\pcie_qsys.

3. On the Quartus II File menu, click New, then New Quartus II Project, then OK.

4. Click Next in the New Project Wizard: Introduction (The introduction does not
display if you previously turned it off.)

5. On the Directory, Name, Top-Level Entity page, enter the following information:

a. The working directory for your project. This design example uses
<working_dir>/pcie_qsys

b. The name of the project. Type the same name as your Qsys design
pcie_de_gen1_x4_ast64 r

1 If the top-level design entity and Qsys system names are identical, the
Quartus II software treats the Qsys system as the top-level design entity.

6. Click Next to display the Add Files page.

7. Perform the following steps to add the Quartus II IP File (.qip) to the project:

a. Click the browse button next the File name box and browse to
pcie_de_gen1_x4_ast64/synthesis/ directory.

b. In the Files of type list, select IP Variation Files (*.qip).

c. Click pcie_de_gen1_x4_ast64.qip and then click Open.

d. On the Add Files page, click Add, then click OK.

1 Click Yes, if prompted, to create a new directory.

8. Click Next to display the Device page.

9. On the Family & Device Settings page, choose the following target device family
and options:

a. In the Family list, select Arria V.

b. In the Devices list, select Arria V GX PCIe.

c. In the Available devices list, select 5AGXFB3H6F35C6ES.

10. Click Next to close this page and display the EDA Tool Settings page.

11. Click Next to display the Summary page.

12. Check the Summary page to ensure that you have entered all the information
correctly.

13. Click Finish to create the Quartus II project.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

2–24 Chapter 2: Getting Started with the Arria V Hard IP for PCI Express
Modifying the Example Design
14. Add the Synopsys Design Constraint (SDC) shown inExample 2–2, to the top-level
design file for your Quartus II project.

15. To compile your design using the Quartus II software, on the Processing menu,
click Start Compilation. The Quartus II software then performs all the steps
necessary to compile your design.

Modifying the Example Design
To use this example design as the basis of your own design, replace the Chaining
DMA Example shown in Figure 2–8 with your own Application Layer design. Then
modify the Root Port BFM driver to generate the transactions needed to test your
Application Layer.
.

Example 2–2. Synopsys Design Constraint

create_clock -period “100 MHz” -name {refclk_pci_express} {*refclk_*}
derive_pll_clocks
derive_clock_uncertainty

Figure 2–8. Testbench for PCI Express

PCB

Hard IP for PCI Express

Altera FPGA

PCB

 Transaction Layer

 Data Link Layer

PHY MAC Layer

x4 PCIe Link
(Physical Layer)

PHY IP Core for PCI Express

Lane 2

Lane 3

Lane 4

Lane 1

Lane 0

TX PLL

Transceiver Bank

S

 Reconfig
to and from
Transceiver

to and from
Embedded
Controller

(Avalon-MM
 slave interface)

Transceiver
Reconfiguration

Controller Root
Port
BFM

Reset

APPS DUT

Chaining DMA
(User Application)

 npor
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

June 2012 Altera Corporation

June 2012
UG-01110-1.2
3. Getting Started with the Avalon-MM
Arria V Hard IP for PCI Express
The Qsys design example provides detailed step-by-step instructions to generate a
Qsys system. When you install the Quartus II software you also install the IP Library.
This installation includes the following example designs for the Avalon-MM Arria V
Hard IP for PCI Express in the <install_dir>/ip/altera/altera_pcie/
altera_pcie_av_hip_avmm/example_designs/ directory:

■ Gen1 ×1 Endpoint with a 64-bit Avalon-MM interface to the Application Layer

■ Gen1 ×4 Endpoint with a 64-bit Avalon-MM interface to the Application Layer

■ Gen1 ×8 Endpoint with a 128-bit Avalon-MM interface to the Application Layer

■ Gen2 ×1 Endpoint with a 64-bit Avalon-MM interface to the Application Layer

■ Gen2 ×4 Endpoint with a 128-bit Avalon-MM interface to the Application Layer

This example contains the following components:

■ Avalon-MM Arria V Hard IP for PCI Express ×4 IP core

■ On-Chip memory

■ DMA controller

■ Transceiver reconfiguration controller

In the Qsys design flow you select the Avalon-MM Arria V Hard IP for PCI Express as
a component. This component supports PCI Express ×1, ×2, ×4, or ×8 Endpoint
applications with bridging logic to convert PCI Express packets to Avalon-MM
transactions and vice versa. The design example included in this chapter illustrates
the use of an endpoint with an embedded transceiver.

Figure 3–1 on page 3–2 provides a high-level block diagram of the design example
included in this release.
Arria V Hard IP for PCI Express
User Guide

3–2 Chapter 3: Getting Started with the Avalon-MM Arria V Hard IP for PCI Express
As this figure illustrates, this design example transfers data between an on-chip
memory buffer located on the Avalon-MM side and a PCI Express memory buffer
located on the root complex side. The data transfer uses the DMA component which is
programmed by the PCI Express software application running on the root complex
processor. The example design also includes the transceiver reconfiguration controller
which allows you to dynamically reconfigure transceiver settings. This component is
necessary for high performance transceiver designs.

This design example consists of the following steps:

1. Creating a Quartus II Project

2. Running Qsys

3. Customizing the Avalon-MM Arria V Hard IP for PCI Express IP Core

4. Adding the Remaining Components to the Qsys System

5. Completing the Connections in Qsys

6. Specifying Clocks and Address Assignments

7. Specifying Exported Interfaces

8. Specifying Output Directories

9. Simulating the Qsys System

10. Understanding Channel Placement Guidelines

11. Compiling the Design

12. Programming a Device

Figure 3–1. Qsys Generated Endpoint

Transaction,
Data Link,
and PHY
Layers

On-Chip
Memory

DMA

Qsys System Design for PCI Express

PCI Express

Link
PCI

Express
Avalon-MM

Bridge

 In
te

rc
on

ne
ct

Avalon-MM Hard IP for PCI Express

Transceiver
Reconfiguration

Controller
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 3: Getting Started with the Avalon-MM Arria V Hard IP for PCI Express 3–3
Creating a Quartus II Project
Creating a Quartus II Project
You can create a new Quartus II project with the New Project Wizard, which helps
you specify the working directory for the project, assign the project name, and
designate the name of the top-level design entity. To create a new project follow these
steps:

1. Choose Programs > Altera > Quartus II><version_number> (Windows Start
menu) to run the Quartus II software. Alternatively, you can also use the
Quartus II Web Edition software.

2. On the Quartus II File menu, click New Project Wizard.

3. Click Next in the New Project Wizard: Introduction (The introduction is not
displayed if you turned it off previously.)

4. In the Directory, Name, Top-Level Entity page, enter the following information:

a. Specify the working directory for your project. This design example uses the
directory \qsys_pcie.

b. Specify the name of the project. This design example uses pcie_top. You must
specify the same name for both the project and the top-level design entity.

1 The Quartus II software specifies a top-level design entity that has the same name as
the project automatically. Do not change this name.

1 Click Yes, if prompted, to create a new directory.

5. Click Next to display the Add Files page.

6. If you have any non-default libraries, add them by following these steps:

a. Click User Libraries.

b. Type <path>\ip in the Project library name box, where <path> is the directory
in which you installed the Hard IP for PCI Express IP core.

c. Click Add to add the path to the Quartus II project.

d. Click OK to save the library path in the project.

7. Click Next to display the Family & Device Settings page.

8. On the Family & Device Settings page, choose the following target device family
and options:

a. In the Family list, select Arria V (GT/GX).

b. In the Devices list, select Arria V GX Extended Features.

c. In the Target device box, select Specific device selected in ‘Available devices’
list.

d. In the Available devices list, select 5AGXFB3H6F40C6ES.

9. Click Next to close this page and display the EDA Tool Settings page.

10. Click Next to display the Summary page.

11. Check the Summary page to ensure that you have entered all the information
correctly.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

3–4 Chapter 3: Getting Started with the Avalon-MM Arria V Hard IP for PCI Express
Running Qsys
12. Click Finish to complete the Quartus II project.

Running Qsys
Follow these steps to launch the parameter editor in Qsys:

1. On the File menu, click New.

2. Select Qsys System File and click OK. Qsys appears.

3. To establish global settings, click the Project Settings tab.

4. Specify the settings in Table 3–1.

f Refer to Creating a System with Qsys in volume 1 of the Quartus II Handbook for more
information about how to use Qsys, including information about the Project Settings
tab.

h For an explanation of each Qsys menu item, refer to About Qsys in Quartus II Help.

1 This example design requires that you specify the same name for the Qsys system as
for the top-level project file. However, this naming is not required for your own
design. If you want to choose a different name for the system file, you must create a
wrapper HDL file of the same name as the project's top level and instantiate the
generated system.

5. To add modules from the Component Library tab, under Interface Protocols in
the PCI folder, click the Avalon-MM Arria V Hard IP for PCI Express component,
then click +Add.

Customizing the Avalon-MM Arria V Hard IP for PCI Express IP Core
The parameter editor uses bold headings to divide the parameters into separate
sections. You can use the scroll bar on the right to view parameters that are not
initially visible. Follow these steps to parameterize the Hard IP for PCI Express IP
core:

1. Under the System Settings heading, specify the settings in Table 3–2.

Table 3–1. Project Settings

Parameter Value

Device family Arria V

Clock crossing adapter type Handshake

Limit interconnect pipeline stages to 3

Generation Id 0

Table 3–2. System Settings (Part 1 of 2)

Parameter Value

Number of lanes ×4

Lane rate Gen1 (2.5 Gbps)
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www.altera.com/literature/hb/qts/qsys_intro.pdf
http://quartushelp.altera.com/11.1/master.htm#mergedProjects/system/qsys/qsys_about_qsys.htm

Chapter 3: Getting Started with the Avalon-MM Arria V Hard IP for PCI Express 3–5
Customizing the Avalon-MM Arria V Hard IP for PCI Express IP Core
2. Under the PCI Base Address Registers (Type 0 Configuration Space) heading,
specify the settings in Table 3–3.

1 You do not need to change the Bar Size from the default size of zero. Qsys calculates
the Bar Size from the size of the Avalon-MM slave port to which the BAR is
connected. You can use the Auto-Assign Base Addresses function on the System
menu to define the address map.

For more information about the use of BARs to translate PCI Express addresses to
Avalon-MM addresses, refer to “PCI Express-to-Avalon-MM Address Translation” on
page 5–15.

Port type Native endpoint

RX buffer credit allocation – performance for received requests Low

Reference clock frequency 100 MHz

Use 62.5 MHz application clock Off

Enable configuration via the PCIe link Off

ATX PLL Off

Table 3–2. System Settings (Part 2 of 2)

Parameter Value

Table 3–3. PCI Base Address Registers (Type 0 Configuration Space)

BAR BAR Type BAR Size

0 64-bit Prefetchable Memory 0

1 Not used 0

2 32 bit Non-Prefetchable 0

3–5 Not used 0
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

3–6 Chapter 3: Getting Started with the Avalon-MM Arria V Hard IP for PCI Express
Customizing the Avalon-MM Arria V Hard IP for PCI Express IP Core
1. Under the Device Identification Registers heading, specify the settings in
Table 3–4.

2. Under the PCI Express and PCI Capabilities heading, specify the settings in
Table 3–5.

Table 3–4. Device Identification Registers

Parameter Value

Vendor ID 0x00000000

Device ID 0x00000001

Revision ID 0x00000001

Class Code 0x00000000

Subsystem Vendor ID 0x00000000

Subsystem Device ID 0x00000000

Table 3–5. PCI Express and PCI Capabilities

Parameter Value

Device

Maximum payload size 128 Bytes

Completion timeout range ABCD

Implement completion timeout disable Turn on this option

Error Reporting

Advanced error reporting (AER) Turn off this option

ECRC checking Turn off this option

ECRC generation Turn off this option

Link

Link port number 1

Slot clock configuration Turn on this option

Power Management

Endpoint L0s acceptable latency Maximum of 64 ns

Endpoint L1 acceptable latency Maximum of 1 us
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 3: Getting Started with the Avalon-MM Arria V Hard IP for PCI Express 3–7
Adding the Remaining Components to the Qsys System
3. Under the Avalon-MM System Settings heading, specify the settings in Table 3–6.

4. Under the Avalon-MM to PCI Express Address Translation Settings, specify the
settings in Table 3–7.

Refer to “Avalon-MM-to-PCI Express Address Translation” on page 5–16 for more
information about address translation.

5. Click Finish.

1 Your system is not yet complete, so you can ignore any error messages generated by
Qsys at this stage.

1 Qsys displays the values for Posted header credit, Posted data credit, Non-posted
header credit, Completion header credit, and Completion data credit in the message
area. These values are computed based upon the values set for Maximum payload
size and Desired performance for received requests.

Adding the Remaining Components to the Qsys System
This section describes adding the DMA controller and on-chip memory to your
system.

1. On the Component Library tab, type the following text string in the search box:

DMA r
Qsys filters the component library and shows all components matching the text
string you entered.

2. Click DMA Controller and then click +Add. This component contains read and
write master ports and a control port slave.

Table 3–6. Avalon Memory-Mapped System Settings

Parameter Value

Avalon-MM width Avalon-MM 64 bits

Peripheral Mode Requester/Completer

Single DWord Completer Off

Enable control register access (CRA) Avalon Slave port On

Auto Enable PCIe Interrupt (enabled at power-on) Off

Table 3–7. Avalon-MM to PCI Express Translation Settings

Parameter Value

Number of address pages 1

Size of address pages 1 MByte - 20 bits
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

3–8 Chapter 3: Getting Started with the Avalon-MM Arria V Hard IP for PCI Express
Adding the Remaining Components to the Qsys System
3. In the DMA Controller parameter editor, specify the parameters and conditions
listed in Table 3–8.

4. Click Finish. The DMA Controller module is added to your Qsys system.

To meet the 250 MHz timing, you must add the Avalon-MM Pipeline Bridge
between the DMA Controller and the Avalon-MM Arria V Hard IP for PCI
Express IP core. On the Component Library tab, type the following text string in
the search box:
pipe r
Qsys filters the component library and shows all components matching the text
string you entered.

5. On the Component Library tab, type the following text string in the search box:

On Chip r
Qsys filters the component library and shows all components matching the text
string you entered.

6. Click On-Chip Memory (RAM or ROM) and then click +Add. Specify the
parameters listed in Table 3–9.

Table 3–8. DMA Controller Parameters

Parameter Value

Width of the DMA length register 13

Enable burst transfers Turn on this option

Maximum burst size Select 128

Data transfer FIFO depth Select 32

Construct FIFO from registers Turn off this option

Construct FIFO from embedded memory blocks Turn on this option

Table 3–9. On-Chip Memory Parameters (Part 1 of 2)

Parameter Value

Memory Type

Type Select RAM (Writeable)

Dual-port access Turn off this option

Read During Write Mode Not applicable

Block type Select Auto

Size

Data width Select 64

Total memory size Select 4096 Bytes

Minimize memory block usage (may impact fMAX) Not applicable

Read latency

Slave s1 latency Select 1 cycle

Slave s2 latency Not applicable
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 3: Getting Started with the Avalon-MM Arria V Hard IP for PCI Express 3–9
Adding the Remaining Components to the Qsys System
7. Click Finish.

8. The On-chip memory component is added to your Qsys system.

9. On the File menu, click Save and type the file name ep_g1x4.qsys. You should
save your work frequently as you complete the steps in this walkthrough.

10. On the Component Library tab, type the following text string in the search box:

recon r
Qsys filters the component library and shows all components matching the text
string you entered.

11. Click Transceiver Reconfiguration Controller and then click +Add. Specify the
parameters listed in Table 3–10.

1 Originally, you set the Number of reconfiguration interfaces to 5. Although you
must initially create a separate logical reconfiguration interface for each channel and
TX PLL in your design, when the Quartus II software compiles your design, it merges
logical channels. After compilation, the design has two reconfiguration interfaces, one
for the TX PLL and one for the channels; however, the number of logical channels is
still five.

12. Click Finish.

13. The Transceiver Reconfiguration Controller is added to your Qsys system.

f For more information about the Transceiver Reconfiguration Controller, refer to the
Transceiver Reconfiguration Controller chapter in the Altera Transceiver PHY IP Core User
Guide.

Memory initialization

Initialize memory content Turn off this option

Enable non-default initialization file Turn off this option

Enable In-System Memory Content Editor feature D Turn off this option

Instance ID Not required

Table 3–10. Transceiver Reconfiguration Controller Parameters

Parameter Value

Device family Arria V

Number of reconfiguration interfaces 5

Optional interface grouping Leave this entry blank

Enable offset cancellation Leave this option on

Enable duty cycle distortion calibration Leave this option off

Enable analog controls Leave this option off

Enable channel/PLL reconfiguration Leave this option off

Enable PLL reconfiguration support block Leave this option off

Table 3–9. On-Chip Memory Parameters (Part 2 of 2)

Parameter Value
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.altera.com/literature/ug/xcvr_user_guide.pdf
http://www.altera.com/literature/ug/xcvr_user_guide.pdf

3–10 Chapter 3: Getting Started with the Avalon-MM Arria V Hard IP for PCI Express
Completing the Connections in Qsys
Completing the Connections in Qsys
In Qsys, hovering the mouse over the Connections column displays the potential
connection points between components, represented as dots on connecting wires. A
filled dot shows that a connection is made; an open dot shows a potential connection
point. Clicking a dot toggles the connection status. If you make a mistake, you can
select Undo from the Edit menu or type Ctrl-z.

By default, Qsys filters some interface types to simplify the image shown on the
System Contents tab. Complete these steps to display all interface types:

1. Click the Filter tool bar button.

2. In the Filter list, select All interfaces.

3. Close the Filters dialog box.

To complete this design, create the following connections:

1. Connect the pcie_sv_hip_avmm_0 Rxm_BAR0 Avalon Memory-Mapped Master port
to the onchip_memory2_0 s1 Avalon Memory-Mapped slave port using the
following procedure:

a. Click the Rxm_BAR0 port, then hover in the Connections column to display
possible connections.

b. Click the open dot at the intersection of the onchip_mem2_0 s1 port and the
pci_express_compiler Rxm_BAR0 to create a connection.

2. Repeat step 1 to make the connections listed in Table 3–11.

Table 3–11. Qsys Connections

Make Connection From: To:

pcie_av_hip_avmm_0 nreset_status Reset Output onchip_mem reset1 Avalon slave port

pcie_av_hip_avmm_0 nreset_status Reset Output dma_0 reset Reset Input

pcie_av_hip_avmm_0 nreset_status Reset Output alt_xcvr_reconfig_0 mgmt_rst_reset Reset Input

pcie_av_hip_avmm_0 Rxm_BAR2 Avalon Memory Mapped
Master pcie_sv_hip_avmm_0 Cra Avalon Memory Mapped Slave

pcie_sv_hip_avmm_0 Rxm_BAR2 Avalon Memory Mapped
Master

dma_0 control_port_slave Avalon Memory Mapped
Slave

pcie_av_hip_avmm_0 RxmIrq Interrupt Receiver dma_0 irq Interrupt Sender

pcie_av_hip_avmm_0 reconfig_to_xcvr Conduit alt_xcvr_reconfig_0 reconfig_to_xcvr Conduit

pcie_av_hip_avmm_0 reconfig_busy Conduit alt_xcvr_reconfig_0 reconfig_busy Conduit

pcie_a_hip_avmm_0 reconfig_from_xcvr Conduit alt_xcvr_reconfig_0 reconfig_from_xcvr Conduit

pcie_av_hip_avmm_0 Txs Avalon Memory Mapped Slave dma_0 read_master Avalon Memory Mapped Master

pcie_av_hip_avmm_0 Txs Avalon Memory Mapped Slave dma_0 write_master Avalon Memory Mapped Master

onchip_memory2_0 s1 Avalon Memory Mapped Slave dma_0 read_master Avalon Memory Mapped Master
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 3: Getting Started with the Avalon-MM Arria V Hard IP for PCI Express 3–11
Specifying Clocks and Address Assignments
Specifying Clocks and Address Assignments
A single clock source, coreclkout_hip, connects to all of the clock inputs in this
system.

1. To remove the default clock, on the System Contents tab, click clk_0 and then click
the X button.

2. Complete the following steps to connect coreclkout to the onchip_memory and
dma_0 clock inputs:

a. Click in the Clock column next to the clock input. A list including the single
clock, pcie_av_hip_avmm_0_coreclkout, appears.

b. Click pcie_av_hip_avmm_0_coreclkout to connect the this clock to the clock
input signal.

3. To specify the interrupt number for DMA interrupt sender, irq, type a 0 in the IRQ
column next to the irq port.

4. On the File menu, click Save.

Specifying Exported Interfaces
Many interface signals in this design are connected to other modules outside the
design. Follow these steps to export an interface:

1. Click in the Export column.

2. Accept the default name that appears in the Export column.

Table 3–12 lists the interfaces that are exported.

Specifying Address Assignments
Qsys requires that you resolve the base addresses of all Avalon-MM slave interfaces in
the Qsys system. You can either use the auto-assign feature, or specify the base
addresses manually. To use the auto-assign feature, on the System menu, click Assign
Base Addresses. In the design example, you assign the base addresses manually.

The Avalon-MM Arria V Hard IP for PCI Express stores the base addresses in BARs.
The maximum supported size for a BAR is 4 GByte, or 32 bits.

Follow these steps to assign a base address to an Avalon-MM slave interface
manually:

Table 3–12. Exported Interfaces

Interface Name Exported Name

refclk pcie_sv_hip_avmm_0_refclk

npor pcie_sv_hip_avmm_0_npor

hip_ctrl pcie_sv_hip_avmm_0_hip_ctrl

reconfig_busy pcie_sv_hip_avmm_0_reconfig_busy

hip_serial pcie_sv_hip_avmm_0_hip_serial

hip_pipe pcie_sv_hip_avmm_0_hip_pipe

mgmt_clk_clk alt_xcvr_reconfig_0_mgmt_clk_clk
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

3–12 Chapter 3: Getting Started with the Avalon-MM Arria V Hard IP for PCI Express
Specifying Address Assignments
1. In the row for the Avalon-MM slave interface base address you want to specify,
click the Base column.

2. Type your preferred base address for the interface.

Assign the base addresses listed in Table 3–13.

Figure 3–2 illustrates the complete system.

For this example BAR1:0 is sized to 4 MBytes or 22 bits; PCI Express requests that this
BAR are able to access the Avalon addresses from 0x00200000– 0x00200FFF. BAR2 is
sized to 32 KBytes or 15 bits. The DMA control_port_slave is accessible at offsets
0x00004000 through 0x0000403F from the programmed BAR2 base address. The
pci_express CRA slave port is accessible at offsets 0x0000000–0x0003FFF from the
programmed BAR2 base address. Refer to Arria

Table 3–13. Base Address Assignments for Avalon-MM Slave Interfaces

Interface Name Exported Name

pcie_av_hip_avmm_0 Txs 0x00000000

pcie_av_hip_avmm_0 Cra 0x00000000

dma_0 control_port_slave 0x00004000

onchip_memory_0 s1 0x00200000

Figure 3–2. Complete Example Design for PCI Express
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 3: Getting Started with the Avalon-MM Arria V Hard IP for PCI Express 3–13
Specifying Output Directories
Specifying Output Directories
To generate the Qsys system, follow these steps:

1. On the Generation tab, in the Simulation section, set the following options:

■ For Create simulation model, select Verilog.

■ For Create testbench Qsys system, select Standard, BFMs for standard
Avalon interfaces.

■ For Create testbench simulation model, select Verilog.

2. In the Synthesis section, turn on Create HDL design files for synthesis.

3. Click the Generate button at the bottom of the tab.

4. After Qsys reports Generate Completed in the Generate progress box title, click
Close.

5. On the File menu, click Save. and type the file name a5_mm.qsys.

Table 3–14 lists the directories that are generated in your Quartus II project directory.

1 Note that Qsys automatically specifies subdirectories for Verilog Simulation and
synthesis.

Simulating the Qsys System
To simulate the example design you can include the simulation model in your own
testbench.

Understanding Channel Placement Guidelines
Arria V transceivers are organized in banks of three and six channels for 6-Gbps
operation and in banks of two channels for 10-Gbps operation. The transceiver bank
boundaries are important for clocking resources, bonding channels, and fitting. Refer
to “Channel Placement for ×1 Variants” on page 7–47 and “Channel Placement for ×8
Variants” on page 7–49 for information about channel placement for ×1, ×4, and ×8
variants.

f For more information about Arria V transceivers refer to the “Transceiver Banks”
section in the Transceiver Architecture in Arria V Devices.

Table 3–14. Qsys System Generated Directories

Directory Location

Qsys system <project_dir>/ep_g1x4

Simulation <project_dir>/ep_g1x4/simulation

Synthesis <project_dir>/ep_g1x4/synthesis
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www/literature/hb/arria-v/av_53001.pdf

3–14 Chapter 3: Getting Started with the Avalon-MM Arria V Hard IP for PCI Express
Compiling the Design
Compiling the Design
Follow these steps to compile your design:

1. In the Quartus II software, open the pcie_top.qpf project.

2. Add <project_dir>/ep_g1_x4/synthesis/ep_ge1_x4.qip to your Quartus II project.
This file lists all necessary files for Quartus II compilation.

3. Add the Synopsys Design Constraint (SDC) shown inExample 3–1, to the top-level
design file for your Quartus II project.

4. On the Processing menu, click Start Compilation.

5. After compilation, expand the TimeQuest Timing Analyzer folder in the
Compilation Report. Note whether the timing constraints are achieved in the
Compilation Report.

If your design does not initially meet the timing constraints, you can find the
optimal Fitter settings for your design by using the Design Space Explorer. To use
the Design Space Explorer, click Launch Design Space Explorer on the tools
menu.

Programming a Device
After you compile your design, you can program your targeted Altera device and
verify your design in hardware.

Example 3–1. Synopsys Design Constraint

create_clock -period “100 MHz” -name {refclk_pci_express} {*refclk_*}
derive_pll_clocks
derive_clock_uncertainty
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 3: Getting Started with the Avalon-MM Arria V Hard IP for PCI Express 3–15
Modifying the Example Design
Modifying the Example Design
To use this example design as the basis of your own design, replace the Chaining
DMA Example shown in Figure 3–3 with your own Application Layer design. Then
modify the Root Port BFM driver to generate the transactions needed to test your
Application Layer.
.

For more information about IP functional simulation models, see the Simulating Altera
Designs chapter in volume 3 of the Quartus II Handbook.

Figure 3–3. Testbench for PCI Express

PCB

 Avalon-MM slave

Reset

Hard IP for PCI Express

Altera FPGA

PCB

 Transaction Layer

 Data Link Layer

PHY MAC Layer

x8 PCIe Link
(Physical Layer)

Lane 7

(Unused)

(Unused)

Lane 6

Lane 5

TX PLL

PHY IP Core for PCI Express

Lane 2

Lane 3

Lane 4

Lane 1

Lane 0

TX PLL

Transceiver Bank

Transceiver Bank

S

 Reconfig
to and from
Transceiver

to and from
Embedded
Controller

(Avalon-MM
 slave interface)

Transceiver
Reconfiguration

Controller

Root
Port
BFM

 npor Reset

APPS DUT

Chaining DMA
(User Application)
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

3–16 Chapter 3: Getting Started with the Avalon-MM Arria V Hard IP for PCI Express
Modifying the Example Design
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

June 2012 Altera Corporation

June 2012
UG-01110-1.2
4. Parameter Settings for the Arria V
Hard IP for PCI Express
This chapter describes the parameters which you can set using the MegaWizard
Plug-In Manager or Qsys design flow to instantiate a Arria V Hard IP for PCI Express
IP core. The appearance of the GUI is identical for the two design flows.

1 In the following tables, hexadecimal addresses in green are links to additional
information in the “Register Descriptions” chapter.

System Settings
The first group of settings defines the overall system. Table 4–1 describes these
settings.

Table 4–1. System Settings for PCI Express (Part 1 of 3)

Parameter Value Description

Number of Lanes ×1, ×4, ×8 Specifies the maximum number of lanes supported.

Lane Rate
Gen1 (2.5 Gbps

)
Gen2 (5.0 Gbps)

Specifies the maximum data rate at which the link can operate.Arria V
supports Gen1 ×1, ×4, ×8 and Gen2 ×1 and ×4

Port type
Native Endpoint

Root Port
Legacy Endpoint

Specifies the function of the port. Altera recommends Native Endpoint
for all new Endpoint designs. Select Legacy Endpoint only when you
require I/O transaction support for compatibility.

The Endpoint stores parameters in the Type 0 Configuration Space which
is outlined in Table 8–2 on page 8–2. The Root Port stores parameters in
the Type 1 Configuration Space which is outlined in Table 8–3 on
page 8–2.

Application Interface 64-bit Avalon-ST
128-bit Avalon-ST

Specifies the interface between the PCI Express Transaction Layer and
the Application Layer. Refer to Table 9–2 on page 9–7 for a
comprehensive list of available link width, interface width, and frequency
combinations.
Arria V Hard IP for PCI Express
User Guide

4–2 Chapter 4: Parameter Settings for the Arria V Hard IP for PCI Express
System Settings
RX Buffer credit
allocation -
performance for
received requests

Minimum
Low

Balanced

High
Maximum

This setting determines the allocation of posted header credits, posted
data credits, non-posted header credits, completion header credits, and
completion data credits in the 6 KByte RX buffer. The 5 settings allow
you to adjust the credit allocation to optimize your system. The credit
allocation for the selected setting displays in the message pane.

Refer to Chapter 13, Flow Control, for more information about
optimizing performance. The Flow Control chapter explains how the RX
credit allocation and the Maximum payload size that you choose affect
the allocation of flow control credits. You can set the Maximum payload
size parameter in Table 4–2 on page 4–4.

■ Minimum–This setting configures the minimum PCIe specification
allowed non-posted and posted request credits, leaving most of the
RX Buffer space for received completion header and data. Select this
option for variations where application logic generates many read
requests and only infrequently receives single requests from the PCIe
link.

■ Low– This setting configures a slightly larger amount of RX Buffer
space for non-posted and posted request credits, but still dedicates
most of the space for received completion header and data. Select
this option for variations where application logic generates many read
requests and infrequently receives small bursts of requests from the
PCIe link. This option is recommended for typical endpoint
applications where most of the PCIe traffic is generated by a DMA
engine that is located in the endpoint application layer logic.

■ Balanced–This setting allocates approximately half the RX Buffer
space to received requests and the other half of the RX Buffer space
to received completions. Select this option for applications where the
received requests and received completions are roughly equal.

■ High–This setting configures most of the RX Buffer space for
received requests and allocates a slightly larger than minimum
amount of space for received completions. Select this option where
most of the PCIe requests are generated by the other end of the PCIe
link and the local application layer logic only infrequently generates a
small burst of read requests. This option is recommended for typical
root port applications where most of the PCIe traffic is generated by
DMA engines located in the endpoints.

■ Maximum–This setting configures the minimum PCIe specification
allowed amount of completion space, leaving most of the RX Buffer
space for received requests. Select this option when most of the PCIe
requests are generated by the other end of the PCIe link and the local
application layer logic never or only infrequently generates single
read requests. This option is recommended for control and status
endpoint applications that don't generate any PCIe requests of their
own and only are the target of write and read requests from the root
complex.

Table 4–1. System Settings for PCI Express (Part 2 of 3)

Parameter Value Description
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 4: Parameter Settings for the Arria V Hard IP for PCI Express 4–3
Port Functions
Port Functions
This section describes the parameter settings for port functions. It includes the
following sections:

■ Parameters Shared Across All Port Functions

■ Parameters Defined Separately for All Port Functions

Parameters Shared Across All Port Functions
This section defines the PCI Express and PCI capabilities parameters that are shared
for all port functions. It includes the following capabilities:

■ Device

■ Error Reporting

■ Link

■ Slot

■ Power Management

1 Some of these parameters are stored in the Common Configuration Space Header.
Text in green are links to these parameters stored in the Common Configuration Space
Header.

Reference clock
frequency

100 MHz
125 MHz

The PCI Express Base Specification 2.1 requires a
100 MHz ±300 ppm reference clock. The 125 MHz reference clock is
provided as a convenience for systems that include a 125 MHz clock
source.

Use 62.5 MHz
Application Layer
clock

On/Off This is a special power saving mode available only for Gen1 ×1 and Gen2
×1 variants.

Use deprecated RX
Avalon-ST data byte
enable port (rx_st_be)

On/Off
When enabled the variant includes the deprecated rx_st_be signals.
The byte enable signals may not be available in future releases. Altera
recommends that you leave this option Off for new designs.

Number of functions 1–8 Specifies the number of functions that share the same link.

Table 4–1. System Settings for PCI Express (Part 3 of 3)

Parameter Value Description
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com/

4–4 Chapter 4: Parameter Settings for the Arria V Hard IP for PCI Express
Port Functions
Device
Table 4–2 describes the shared device parameters.

Table 4–2. Capabilities Registers for Function <n> (Part 1 of 2)

Parameter Possible
Values

Default
Value Description

Device Capabilities

Maximum
payload size

128
bytes
256
bytes,
512
bytes,

128 bytes

Specifies the maximum payload size supported. This
parameter sets the read-only value of the max payload size
supported field of the Device Capabilities register (0x084) and
optimizes the IP core for this size payload. You should
optimize this setting based on your typical expected
transaction sizes.

Number of tags
supported
supported per
function

32
64 32

Indicates the number of tags supported for non-posted
requests transmitted by the Application Layer. This parameter
sets the values in the Device Capabilities register (0x084) of
the PCI Express Capability Structure described in Table 8–8
on page 8–4.

The Transaction Layer tracks all outstanding completions for
non-posted requests made by the Application Layer. This
parameter configures the Transaction Layer for the maximum
number to track. The Application Layer must set the tag
values in all non-posted PCI Express headers to be less than
this value. The Application Layer can only use tag numbers
greater than 31 if configuration software sets the Extended
Tag Field Enable bit of the Device Control register.
This bit is available to the Application Layer as
cfg_devcsr[8].

Completion
timeout range

ABCD
BCD
ABC
AB
B
A

None

ABCD

Indicates device function support for the optional completion
timeout programmability mechanism. This mechanism allows
system software to modify the completion timeout value. This
field is applicable only to Root Ports and Endpoints that issue
requests on their own behalf. This parameter sets the values
in the Device Capabilities 2 register (0xA4) of the PCI
Express Capability Structure Version 2.1 described in
Table 8–8 on page 8–4. For all other functions, the value is
None. Four time value ranges are defined:

■ Range A: 50 µs to 10 ms

■ Range B: 10 ms to 250 ms

■ Range C: 250 ms to 4 s

■ Range D: 4 s to 64 s

Bits are set to show timeout value ranges supported. 0x0000b
completion timeout programming is not supported and the
function must implement a timeout value in the range 50 s to
50 ms.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 4: Parameter Settings for the Arria V Hard IP for PCI Express 4–5
Port Functions
Error Reporting
Table 4–3 describes the Advanced Error Reporting (AER) and ECRC parameters.
These parameters are supported only in single function mode.

Completion
timeout range

(continued)

The following encodings are used to specify the range:

■ 0001 Range A

■ 0010 Range B

■ 0011 Ranges A and B

■ 0110 Ranges B and C

■ 0111 Ranges A, B, and C

■ 1110 Ranges B, C and D

■ 1111 Ranges A, B, C, and D

All other values are reserved. Altera recommends that the
completion timeout mechanism expire in no less than 10 ms.

Implement
completion
timeout disable

On/Off On

Sets the value of the Completion Timeout field of the Device
Control 2 register (0x0A8) which is For PCI Express
version 2.0 and higher Endpoints, this option must be On. The
timeout range is selectable. When On, the core supports the
completion timeout disable mechanism via the PCI Express
Device Control Register 2. The Application Layer logic
must implement the actual completion timeout mechanism
for the required ranges.

Table 4–2. Capabilities Registers for Function <n> (Part 2 of 2)

Parameter Possible
Values

Default
Value Description

Table 4–3. Error Reporting 0x800–0x834

Parameter Value Default
Value Description

 Advanced error
reporting (AER) On/Off Off When On, enables the AER capability.

ECRC checking On/Off Off

When On, enables ECRC checking. Sets the read-only value of the
ECRC check capable bit in the Advanced Error Capabilities
and Control Register. This parameter requires you to enable the
AER capability.

ECRC generation On/Off Off

When On, enables ECRC generation capability. Sets the read-only
value of the ECRC generation capable bit in the Advanced Error
Capabilities and Control Register. This parameter requires
you to enable the AER capability.

ECRC forwarding On/Off Off

When On, enables ECRC forwarding to the Application Layer. On the
Avalon-ST RX path, the incoming TLP contains the ECRC dword (1)
and the TD bit is set if an ECRC exists. On the transmit the TLP from
the Application Layer must contain the ECRC dword and have the TD
bit set.

Note to Table 4–3:

(1) Throughout The Arria V Hard IP for PCI Express User Guide, the terms word, dword and qword have the same meaning that they have in the
PCI Express Base Specification Revision 2.1. A word is 16 bits, a dword is 32 bits, and a qword is 64 bits.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com/home

4–6 Chapter 4: Parameter Settings for the Arria V Hard IP for PCI Express
Port Functions
Link
Table 4–4 describes the Link Capabilities parameters.

Slot
Table 4–12 describes the Slot Capabilities parameters.

Table 4–4. Link Capabilities 0x090

Parameter Value Description

Link port number
0x01

(default
value)

Sets the read-only value of the port number field in the Link Capabilities
register. This is an 8-bit field which you can specify.

Slot clock
configuration On/Off

When On, indicates that the Endpoint or Root Port uses the same physical reference
clock that the system provides on the connector. When Off, the IP core uses an
independent clock regardless of the presence of a reference clock on the connector.

Table 4–5. Slot Capabilities 0x094

Parameter Value Description

Use Slot register On/Off
The slot capability is required for Root Ports if a slot is implemented on the port. Slot
status is recorded in the PCI Express Capabilities Register. This parameter is
only valid for Root Port variants.

Defines the characteristics of the slot. You turn this option on by selecting. The
various bits of the Slot Capability register have the following definitions:

Slot power scale 0–3

Specifies the scale used for the Slot power limit. The following coefficients are
defined:

■ 0 = 1.0x

■ 1 = 0.1x

■ 2 = 0.01x

■ 3 = 0.001x

The default value prior to hardware and firmware initialization is b’0 or 1.0x. Writes
to this register also cause the port to send the Set_Slot_Power_Limit Message.

Refer to Section 6.9 of the PCI Express Base Specification Revision 2.1 for more
information.

31 19 18 17 16 15 14 7 6 5

Physical Slot Number

No Command Completed Support
Electromechanical Interlock Present

Slot Power Limit Scale
Slot Power Limit Value

Hot-Plug Capable
Hot-Plug Surprise

Power Indicator Present
Attention Indicator Present

MRL Sensor Present
Power Controller Present
Attention Button Present

04 3 2 1
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www.pcisig.com/home

Chapter 4: Parameter Settings for the Arria V Hard IP for PCI Express 4–7
Port Functions
Power Management
Table 4–6 describes the Power Management parameters.

Parameters Defined Separately for All Port Functions
You can specify parameter settings for up to eight functions. Each function has
separate settings for the following parameters:

■ Base Address Registers for Function <n>

■ Base and Limit Registers for Root Port Func <n>

■ Device ID Registers for Function <n>

■ PCI Express/PCI Capabilities for Func <n>

Slot power limit 0–255
In combination with the Slot power scale value, specifies the upper limit in watts on
power supplied by the slot. Refer to Section 7.8.9 of the PCI Express Base Specification
Revision 2.1 for more information.

Slot number 0-8191 Specifies the slot number.

Table 4–5. Slot Capabilities 0x094

Parameter Value Description

Table 4–6. Power Management Parameters

Parameter Value Description

Endpoint L0s
acceptable latency < 64 ns – > No limit

This design parameter specifies the maximum acceptable latency that the
device can tolerate to exit the L0s state for any links between the device and
the root complex. It sets the read-only value of the Endpoint L0s acceptable
latency field of the Device Capabilities register (0x084).

The Arria V Hard IP for PCI Express does not support the L0s or L1 states.
However, in a switched system there may be links connected to switches
that have L0s and L1 enabled. This parameter is set to allow system
configuration software to read the acceptable latencies for all devices in the
system and the exit latencies for each link to determine which links can
enable Active State Power Management (ASPM). This setting is disabled for
Root Ports.

The default value of this parameter is 64 ns. This is the safest setting for
most designs.

Endpoint L1
acceptable latency < 1 µs to > No limit

This value indicates the acceptable latency that an Endpoint can withstand
in the transition from the L1 to L0 state. It is an indirect measure of the
Endpoint’s internal buffering. It sets the read-only value of the Endpoint L1
acceptable latency field of the Device Capabilities register.

The Arria V Hard IP for PCI Express does not support the L0s or L1 states.
However, in a switched system there may be links connected to switches
that have L0s and L1 enabled. This parameter is set to allow system
configuration software to read the acceptable latencies for all devices in the
system and the exit latencies for each link to determine which links can
enable Active State Power Management (ASPM). This setting is disabled for
Root Ports.

The default value of this parameter is 1 .µs. This is the safest setting for
most designs.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com/home
http://www.pcisig.com/home

4–8 Chapter 4: Parameter Settings for the Arria V Hard IP for PCI Express
Port Functions
1 When you click on a Func<n> tab, the parameter settings automatically relate to the
function currently selected.

Base Address Registers for Function <n>
Table 4–7 describes the Base Address (BAR) register parameters.

Base and Limit Registers for Root Port Func <n>
If you specify a Root Port for function 0, the settings for Base and Limit Registers
required by Root Ports appear after the Base Address Register heading. These
settings are stored in the Type 1 Configuration Space for Root Ports. They are used for
TLP routing and specify the address ranges assigned to components that are
downstream of the Root Port or bridge. Function 0 is the only function that provides
the Root Port option for Port type.

f For more information, refer to the PCI-to-PCI Bridge Architecture Specification.

Table 4–7. Func0–Func7 BARs and Expansion ROM

Parameter Value Description

Type

0x010, 0x014,
0x018, 0x01C,
0x020, 0x024

Disabled
64-bit prefetchable memory

32-bit non-prefetchable memory
32-bit prefetchable memory

I/O address space

If you select 64-bit prefetchable memory, 2 contiguous BARs are
combined to form a 64-bit prefetchable BAR; you must set the
higher numbered BAR to Disabled. A non-prefetchable 64-bit BAR
is not supported because in a typical system, the Root Port Type 1
Configuration Space sets the maximum non-prefetchable memory
window to 32-bits. The BARs can also be configured as separate
32-bit prefetchable or non-prefetchable memories.

The I/O address space BAR is only available for the Legacy
Endpoint.

Size 16 Bytes–8 EBytes

The Endpoint and Root Port variants support the following memory
sizes:

■ ×1, ×4: 128 bytes–2 GBytes or 8 EBytes

■ ×8: 4 KBytes–2 GBytes or 8 EBytes (2 GBytes for 32-bit
addressing and 8 EBytes for 64-bit addressing)

The Legacy Endpoint supports the following I/O space BARs:

■ ×1, ×4:16 bytes–4 KBytes

■ ×8: 4 KBytes

Expansion ROM

Size Disabled
4 KBytes–16 MBytes Specifies the size of the optional ROM.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www.pcisig.com/home

Chapter 4: Parameter Settings for the Arria V Hard IP for PCI Express 4–9
Port Functions
Table 4–8 describes the Base and Limit registers parameters.

Device ID Registers for Function <n>
Table 4–9 lists the default values of the read-only Device ID registers. You can use the
parameter editor to change the values of these registers. At run time, you can change
the values of these registers using the reconfiguration block signals. For more
information, refer to “Hard IP Reconfiguration Interface” on page 6–44.

Table 4–8. Base and Limit Registers

Parameter Value Description

Input/Output
Disable

16-bit I/O addressing
32-bit I/O addressing

Specifies the address widths for the IO base and IO limit
registers.

Prefetchable memory
Disable

32-bit memory addressing
64-bit memory addressing

Specifies the address widths for the Prefetchable Memory
Base register and Prefetchable Memory Limit register.

Table 4–9. Device ID Registers for Function <n>

Register Name/
Offset Address Range Default

Value Description

Vendor ID

0x000
16 bits 0x00000000 Sets the read-only value of the Vendor ID register. This parameter can

not be set to 0xFFFF per the PCI Express Specification.

Device ID

0x000
16 bits 0x00000001 Sets the read-only value of the Device ID register.

Revision ID

0x008
8 bits 0x00000001 Sets the read-only value of the Revision ID register.

Class code

0x008
24 bits 0x00000000 Sets the read-only value of the Class Code register.

Subsystem
Vendor ID

0x02C
16 bits 0x00000000

Sets the read-only value of the Subsystem Vendor ID register. This
parameter cannot be set to 0xFFFF per the PCI Express Base
Specification 2.1. This register is available only for Endpoint designs
which require the use of the Type 0 PCI Configuration register.

Subsystem
Device ID

0x02C
16 bits 0x0000000

Sets the read-only value of the Subsystem Device ID register. This
register is only available for Endpoint designs, which require the use of
the Type 0 PCI Configuration Space.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com/home
http://www.pcisig.com/home

4–10 Chapter 4: Parameter Settings for the Arria V Hard IP for PCI Express
Port Functions
PCI Express/PCI Capabilities for Func <n>
The following sections describe the PCI Express and PCI Capabilities for each
function.

Device

Table 4–10 describes the Device Capabilities register parameters.

Link

Table 4–12 describes the Link Capabilities register parameters.

MSI

Table 4–12 describes the MSI Capabilities register parameters.

Table 4–10. Function Level Reset

Parameter Value Description

Function level reset On/Off Turn On this option to set the Function Level Reset Capability bit in the Device
Capabilities register. This parameter applies to Endpoints only.

Table 4–11. Link 0x090

Parameter Value Description

Data link layer active
reporting On/Off

Turn On this option for a downstream port, if the component supports the optional
capability of reporting the DL_Active state of the Data Link Control and
Management State Machine. For a hot-plug capable downstream port (as
indicated by the Hot-Plug Capable field of the Slot Capabilities register),
this option must be turned On. For upstream ports and components that do not
support this optional capability, turn Off this option. This parameter is only
supported in Root Port mode.

Surprise down
reporting On/Off

When this option is On, a downstream port supports the optional capability of
detecting and reporting the surprise down error condition. This parameter is only
supported in Root Port mode.

Table 4–12. MSI and MSI-X Capabilities 0x050–0x05C,

Parameter Value Description

MSI messages
requested

1, 2, 4,
8, 16

Specifies the number of messages the Application Layer can request. Sets the
value of the Multiple Message Capable field of the Message Control
register, 0x050[31:16].
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 4: Parameter Settings for the Arria V Hard IP for PCI Express 4–11
Port Functions
MSI-X

Table 4–12 describes the MSI-X Capabilities register parameters.

Legacy Interrupt

Table 4–14 describes the legacy interrupt options.

Table 4–13. MSI and MSI-X Capabilities 0x068–0x06C

Parameter Value Description

Implement MSI-X On/Off When On, enables the MSI-X functionality.

Bit Range

Table size

0x068[26:16]
[10:0]

System software reads this field to determine the MSI-X Table size <n>, which is
encoded as <n–1>. For example, a returned value of 2047 indicates a table size of
2048. This field is read-only. Legal range is 0–2047 (211).

Table Offset [31:0]
Points to the base of the MSI-X Table. The lower 3 bits of the table BAR indicator
(BIR) are set to zero by software to form a 32-bit qword-aligned offset. This field is
read-only. Legal range is 0–228.

Table BAR Indicator [2:0]
Specifies which one of a function’s BARs, located beginning at 0x10 in
Configuration Space, is used to map the MSI-X table into memory space. This field
is read-only. Legal range is 0–5.

Pending Bit Array
(PBA) Offset [31:0]

Used as an offset from the address contained in one of the function’s Base
Address registers to point to the base of the MSI-X PBA. The lower 3 bits of the
PBA BIR are set to zero by software to form a 32-bit qword-aligned offset. This
field is read-only. Legal range is 0–228.

PBA BAR Indicator
(BIR) [2:0]

Indicates which of a function’s Base Address registers, located beginning at 0x10
in Configuration Space, is used to map the function’s MSI-X PBA into memory
space. This field is read-only. Legal range is 0–5.

Table 4–14. MSI and MSI-X Capabilities 0x050–0x05C,

Parameter Value Description

Legacy Interrupt
(INTx)

INTA
INTB
INTC
INTD
None

When selected, allows you to drive legacy interrupts to the Application Layer.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

4–12 Chapter 4: Parameter Settings for the Arria V Hard IP for PCI Express
Port Functions
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

June 2012 Altera Corporation

June 2012
UG-01110-1.2
5. Parameter Settings for the Avalon-MM
Arria V Hard IP for PCI Express
This chapter describes the parameters which you can set using the Qsys design flow
to instantiate an Avalon-MM Arria V Hard IP for PCI Express IP core.

1 In the following tables, hexadecimal addresses in green are links to additional
information in the “Register Descriptions” chapter.

System Settings
The first group of settings defines the overall system. Table 5–1 describes these
settings.

Table 5–1. System Settings for PCI Express (Part 1 of 2)

Parameter Value Description

Number of Lanes ×1, ×4, ×8 Specifies the maximum number of lanes supported.

Lane Rate
Gen1 (2.5 Gbps)

Gen2 (5.0 Gbps)
Specifies the maximum data rate at which the link can operate.

Port type Native Endpoint
Specifies the function of the port.

Native Endpoints store parameters in the Type 0 Configuration Space
which is outlined in Table 8–2 on page 8–2.

RX Buffer credit
allocation -
performance for
received requests

Minimum
Low

Balanced

High
Maximum

This setting determines the allocation of posted header credits, posted
data credits, non-posted header credits, completion header credits, and
completion data credits in the 6 KByte RX buffer. The 5 settings allow
you to adjust the credit allocation to optimize your system. The credit
allocation for the selected setting displays in the message pane.

Refer to Chapter 13, Flow Control, for more information about
optimizing performance. The Flow Control chapter explains how the RX
credit allocation and the Maximum payload size that you choose affect
the allocation of flow control credits. You can set the Maximum payload
size parameter in Table 5–4 on page 5–4

■ Minimum–This setting configures the minimum PCIe specification
allowed non-posted and posted request credits, leaving most of the
RX Buffer space for received completion header and data. Select this
option for variations where application logic generates many read
requests and only infrequently receives single requests from the PCIe
link.

■ Low– This setting configures a slightly larger amount of RX Buffer
space for non-posted and posted request credits, but still dedicates
most of the space for received completion header and data. Select
this option for variations where application logic generates many read
requests and infrequently receives small bursts of requests from the
PCIe link. This option is recommended for typical endpoint
applications where most of the PCIe traffic is generated by a DMA
engine that is located in the endpoint application layer logic.
Arria V Hard IP for PCI Express
User Guide

5–2 Chapter 5: Parameter Settings for the Avalon-MM Arria V Hard IP for PCI Express
Base Address Registers
Base Address Registers
Table 5–2 describes the Base Address (BAR) register parameters.

RX Buffer credit
allocation -
performance for
received requests

(continued)

Minimum
Low

Balanced

High
Maximum

■ Balanced–This setting allocates approximately half the RX Buffer
space to received requests and the other half of the RX Buffer space
to received completions. Select this option for variations where the
received requests and received completions are roughly equal.

■ High–This setting configures most of the RX Buffer space for
received requests and allocates a slightly larger than minimum
amount of space for received completions. Select this option when
most of the PCIe requests are generated by the other end of the PCIe
link and the local application layer logic only infrequently generates a
small burst of read requests. This option is recommended for typical
root port applications where most of the PCIe traffic is generated by
DMA engines located in the endpoints.

■ Maximum–This setting configures the minimum PCIe specification
allowed amount of completion space, leaving most of the RX Buffer
space for received requests. Select this option when most of the PCIe
requests are generated by the other end of the PCIe link and the local
Application Layer never or only infrequently generates single read
requests. This option is recommended for control and status
endpoint applications that do not generate any PCIe requests of their
own and only are the target of write and read requests from the Root
Complex.

Reference clock
frequency

100 MHz
125 MHz

The PCI Express Base Specification 2.1 requires a
100 MHz ±300 ppm reference clock. The 125 MHz reference clock is
provided as a convenience for systems that include a 125 MHz clock
source.

Use 62.5 MHz
Application Layer
clock

On/Off This is a special power saving mode available only for Gen1 ×1 variants.

Enable configuration
via the PCIe link On/Off When On, the Quartus II software places the Endpoint in the location

required for configuration via protocol (CvP).

Table 5–1. System Settings for PCI Express (Part 2 of 2)

Parameter Value Description

Table 5–2. BARs and Expansion ROM

Parameter Value Description

Type

0x010, 0x014,
0x018, 0x01C,
0x020, 0x024

64-bit prefetchable memory
32-bit non-prefetchable memory

Not used

If you select 64-bit prefetchable memory, 2 contiguous BARs are
combined to form a 64-bit prefetchable BAR; you must set the
higher numbered BAR to Disabled. A non-prefetchable 64-bit BAR
is not supported because in a typical system, the Root Port Type 1
Configuration Space sets the maximum non-prefetchable memory
window to 32-bits. The BARs can also be configured as separate
32-bit non-prefetchable memories.

Size 16 Bytes–8 EBytes

Specifies the number of address bits required for address
translation. Qsys automatically calculates the BAR Size based on the
address range specified in your Qsys system. You cannot change
this value.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www.pcisig.com/

Chapter 5: Parameter Settings for the Avalon-MM Arria V Hard IP for PCI Express 5–3
Device Identification Registers
Device Identification Registers
Table 5–3 lists the default values of the read-only Device ID registers. You can edit
these values in the GUI. At run time, you can change the values of these registers
using the reconfiguration block signals. For more information, refer to “Hard IP
Reconfiguration Interface” on page 6–44.

PCI Express/PCI Capabilities
The PCI Express/PCI Capabilities tab includes the following capabilities:

■ “Device” on page 5–4

■ “Error Reporting” on page 5–5

■ “Link” on page 5–5

■ “Power Management” on page 5–6

Table 5–3. Device ID Registers for Function <n>

Register Name/
Offset Address Range Default

Value Description

Vendor ID

0x000
16 bits 0x00000000 Sets the read-only value of the Vendor ID register. This parameter can

not be set to 0xFFFF per the PCI Express Specification.

Device ID

0x000
16 bits 0x00000001 Sets the read-only value of the Device ID register.

Revision ID

0x008
8 bits 0x00000001 Sets the read-only value of the Revision ID register.

Class code

0x008
24 bits 0x00000000 Sets the read-only value of the Class Code register.

Subsystem
Vendor ID

0x02C
16 bits 0x00000000

Sets the read-only value of the Subsystem Vendor ID register. This
parameter cannot be set to 0xFFFF per the PCI Express Base
Specification 2.1. This register is available only for Endpoint designs
which require the use of the Type 0 PCI Configuration register.

Subsystem
Device ID

0x02C
16 bits 0x0000000

Sets the read-only value of the Subsystem Device ID register. This
register is only available for Endpoint designs, which require the use of
the Type 0 PCI Configuration Space.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com/home
http://www.pcisig.com/home

5–4 Chapter 5: Parameter Settings for the Avalon-MM Arria V Hard IP for PCI Express
PCI Express/PCI Capabilities
Device
Table 5–4 describes the device parameters.

1 Some of these parameters are stored in the Common Configuration Space Header.
Text in green are links to these parameters stored in the Common Configuration Space
Header.

Table 5–4. Capabilities Registers for Function <n> (Part 1 of 2)

Parameter Possible
Values

Default
Value Description

Device Capabilities

Maximum
payload size

0x084

128 bytes
256 bytes 128 bytes

Specifies the maximum payload size supported. This
parameter sets the read-only value of the max payload size
supported field of the Device Capabilities register (0x084[2:0])
and optimizes the IP core for this size payload. You should
optimize this setting based on your typical expected
transaction sizes.

Completion
timeout range

ABCD
BCD
ABC
AB
B
A

None

ABCD

Indicates device function support for the optional completion
timeout programmability mechanism. This mechanism allows
system software to modify the completion timeout value. This
field is applicable only to Root Ports and Endpoints that issue
requests on their own behalf. Completion timeouts are
specified and enabled in the Device Control 2 register (0x0A8)
of the PCI Express Capability Structure Version 2.0 described
in Table 8–8 on page 8–4. For all other functions this field is
reserved and must be hardwired to 0x0000b. Four time value
ranges are defined:

■ Range A: 50 µs to 10 ms

■ Range B: 10 ms to 250 ms

■ Range C: 250 ms to 4 s

■ Range D: 4 s to 64 s

Bits are set to show timeout value ranges supported. 0x0000b
completion timeout programming is not supported and the
function must implement a timeout value in the range 50 s to
50 ms.

The following encodings are used to specify the range:

■ 0001 Range A

■ 0010 Range B

■ 0011 Ranges A and B

■ 0110 Ranges B and C

■ 0111 Ranges A, B, and C

■ 1110 Ranges B, C and D

■ 1111 Ranges A, B, C, and D
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 5: Parameter Settings for the Avalon-MM Arria V Hard IP for PCI Express 5–5
PCI Express/PCI Capabilities
Error Reporting
Table 5–5 describes the Advanced Error Reporting (AER) and ECRC parameters.

Link
Table 5–6 describes the Link Capabilities parameters.

Completion
timeout range

(continued)

All other values are reserved. Altera recommends that the
completion timeout mechanism expire in no less than 10 ms.

Implement
completion
timeout
disable

0x0A8

On/Off On

For PCI Express version 2.0 and higher Endpoints, this option
must be On. The timeout range is selectable. When On, the
core supports the completion timeout disable mechanism via
the PCI Express Device Control Register 2. The
Application Layer logic must implement the actual completion
timeout mechanism for the required ranges.

Table 5–4. Capabilities Registers for Function <n> (Part 2 of 2)

Parameter Possible
Values

Default
Value Description

Table 5–5. Error Reporting 0x800–0x834

Parameter Value Default
Value Description

 Advanced error
reporting (AER) On/Off Off When On, enables the AER capability.

ECRC checking On/Off Off

When On, enables ECRC checking. Sets the read-only value of the
ECRC check capable bit in the Advanced Error Capabilities
and Control Register. This parameter requires you to enable the
AER capability.

ECRC generation On/Off Off

When On, enables ECRC generation capability. Sets the read-only
value of the ECRC generation capable bit in the Advanced Error
Capabilities and Control Register. This parameter requires
you to enable the AER capability.

Note to Table 5–5:

(1) Throughout The Arria V Hard IP for PCI Express User Guide, the terms word, dword and qword have the same meaning that they have in the
PCI Express Base Specification Revision 2.1 or 3.0. A word is 16 bits, a dword is 32 bits, and a qword is 64 bits.

Table 5–6. Link Capabilities 0x090

Parameter Value Description

Link port number
0x01

(Default
value)

Sets the read-only value of the port number field in the Link Capabilities
register. This is an 8-bit field which you can specify.

Slot clock
configuration On/Off

When On, indicates that the Endpoint or Root Port uses the same physical reference
clock that the system provides on the connector. When Off, the IP core uses an
independent clock regardless of the presence of a reference clock on the connector.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com/home

5–6 Chapter 5: Parameter Settings for the Avalon-MM Arria V Hard IP for PCI Express
PCI Express/PCI Capabilities
Power Management
Table 5–7 describes the Power Management parameters.

Table 5–7. Power Management Parameters

Parameter Value Description

Endpoint L0s
acceptable latency < 64 ns – > No limit

This design parameter specifies the maximum acceptable latency that the
device can tolerate to exit the L0s state for any links between the device and
the root complex. It sets the read-only value of the Endpoint L0s acceptable
latency field of the Device Capabilities register (0x084).

The Arria V Hard IP for PCI Express does not support the L0s or L1 states.
However, in a switched system there may be links connected to switches
that have L0s and L1 enabled. This parameter is set to allow system
configuration software to read the acceptable latencies for all devices in the
system and the exit latencies for each link to determine which links can
enable Active State Power Management (ASPM). This setting is disabled for
Root Ports.

The default value of this parameter is 64 ns. This is the safest setting for
most designs.

Endpoint L1
acceptable latency < 1 µs to > No limit

This value indicates the acceptable latency that an Endpoint can withstand
in the transition from the L1 to L0 state. It is an indirect measure of the
Endpoint’s internal buffering. It sets the read-only value of the Endpoint L1
acceptable latency field of the Device Capabilities register.

The Arria V Hard IP for PCI Express does not support the L0s or L1 states.
However, in a switched system there may be links connected to switches
that have L0s and L1 enabled. This parameter is set to allow system
configuration software to read the acceptable latencies for all devices in the
system and the exit latencies for each link to determine which links can
enable Active State Power Management (ASPM). This setting is disabled for
Root Ports.

The default value of this parameter is 1 µs. This is the safest setting for
most designs.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 5: Parameter Settings for the Avalon-MM Arria V Hard IP for PCI Express 5–7
Avalon Memory-Mapped System Settings
Avalon Memory-Mapped System Settings
Table 5–8 lists the Avalon-MM system parameter registers.

Avalon to PCIe Address Translation Settings
Table 5–9 lists the Avalon-MM PCI Express address translation parameter registers.

Table 5–8. Avalon Memory-Mapped System Settings

Parameter Value Description

Avalon-MM width 64-bit Avalon-MM
128-bit Avalon-MM

Specifies the interface width between the PCI Express Transaction Layer
and the Application Layer. Refer to Table 9–2 on page 9–7 for a
comprehensive list of available link width, interface width, and frequency
combinations.

Peripheral Mode Requester/Completer,
Completer-Only

Specifies whether the Avalon-MM Arria V Hard IP for PCI Express is
capable of sending requests to the upstream PCI Express devices.

Requester/Completer—In this mode, the Hard IP can send request
packets on the PCI Express TX link and receive request packets on the
PCI Express RX link.

Completer-Only—In this mode, the Hard IP can receive requests, but
cannot initiate upstream requests. However, it can transmit completion
packets on the PCI Express TX link. This mode removes the Avalon-MM
TX slave port and thereby reduces logic utilization.

Single dword
completer On/Off

This is a non-pipelined version of Completer-Only mode. At any time, only
a single request can be outstanding. Single dword completer uses fewer
resources than Completer-Only. This variant is targeted for systems that
require simple read and write register accesses from a host CPU. If you
select this option, the width of the data for RXM BAR masters is always 32
bits, regardless of the Avalon-MM width.

Control Register
Access (CRA) Avalon
slave port

On/Off

Allows read and write access to bridge registers from the interconnect
fabric using a specialized slave port. This option is required for
Requester/Completer variants and optional for Completer-Only variants.
Enabling this option allows read and write access to bridge registers. This
option is not available for the Single dword completer.

Auto Enable PCIe
interrupt (enabled at
power-on)

On/Off

Turning on this option enables the Avalon-MM Arria V Hard IP for PCI
Express interrupt register at power-up. Turning off this option disables the
interrupt register at power-up. The setting does not affect run-time
configuration of the interrupt enable register.

Table 5–9. Avalon Memory-Mapped System Settings

Parameter Value Description

Number of address
pages

1,2,4,8,16,32,64,
128,256,512

Specifies the number of pages required to translate Avalon-MM addresses
to PCI Express addresses before a request packet is sent to the Transaction
Layer. Each of the 512 possible entries corresponds to a base address of
the PCI Express memory segment of a specific size.

Size of address
pages 4 KByte –4 GBytes

Specifies the size of each memory segment. Each memory segment must
be the same size. Refer to “Avalon-MM-to-PCI Express Address
Translation” on page 6–17 for more information about address translation.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

5–8 Chapter 5: Parameter Settings for the Avalon-MM Arria V Hard IP for PCI Express
Avalon to PCIe Address Translation Settings
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

June 2012 Altera Corporation

June 2012
UG-01110-1.2
6. IP Core Architecture
This chapter describes the architecture of the Arria V Hard IP for PCI Express. The
Arria V Hard IP for PCI Express implements the complete PCI Express protocol stack
as defined in the PCI Express Base Specification 2.1. The protocol stack includes the
following layers:

■ Transaction Layer—The Transaction Layer contains the Configuration Space, the RX
and TX channels, the RX buffer, and flow control credits.

■ Data Link Layer—The Data Link Layer, located between the Physical Layer and the
Transaction Layer, manages packet transmission and maintains data integrity at
the link level. Specifically, the Data Link Layer performs the following tasks:

■ Manages transmission and reception of Data Link Layer Packets (DLLPs)

■ Generates all transmission cyclical redundancy code (CRC) values and checks
all CRCs during reception

■ Manages the retry buffer and retry mechanism according to received
ACK/NAK Data Link Layer packets

■ Initializes the flow control mechanism for DLLPs and routes flow control
credits to and from the Transaction Layer

■ Physical Layer—The Physical Layer initializes the speed, lane numbering, and lane
width of the PCI Express link according to packets received from the link and
directives received from higher layers.

Figure 6–1 provides a high-level block diagram of the Arria V Hard IP for PCI
Express.

Figure 6–1. Arria V Hard IP for PCI Express with Avalon-ST Interface

Clock
Domain
Crossing

(CDC)

Data
Link

Layer
(DLL)

Transaction Layer (TL)

PHYMAC

Hard IP for PCI Express

Avalon-ST TX

Avalon-ST RX

Side Band

Local
Management
Interface (LMI)

PIPE

Application
Layer

Clock & Reset
Selection

Configuration
SpacePCSPMA

Physical Layer
(Transceivers)

RX Buffer

PHY IP Core for
PCI Express (PIPE)
Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com

6–2 Chapter 6: IP Core Architecture
Key Interfaces
As Figure 6–1 illustrates, an Avalon-ST interface provides access to the Application
Layer which can be either 64 or 128 bits. Table 6–1 provides the Application Layer
clock frequencies.

The following interfaces provide access to the Application Layer’s Configuration
Space Registers:

■ The LMI interface

■ For Root Ports, you can also access the Configuration Space Registers with a
Configuration Type TLP using the Avalon-ST interface. A Type 0 Configuration
TLP is used to access the Root Port Configuration Space Registers, and a Type 1
Configuration TLP is used to access the Configuration Space Registers of
downstream components, typically Endpoints on the other side of the link.

The Hard IP includes dedicated clock domain crossing logic (CDC) between the
PHYMAC and Data Link Layers.

This chapter provides an overview of the architecture of the Arria V Hard IP for PCI
Express. It includes the following sections:

■ Key Interfaces

■ Protocol Layers

■ Multi-Function Support

Key Interfaces
The following sections introduce the functionality of the interfaces shown in
Figure 6–2.
.

Table 6–1. Application Layer Clock Frequencies

Lanes Gen1 Gen2

×1 125 MHz @ 64 bits or
62.5 MHz @ 64 bits 125 MHz @ 64 bits

×4 125 MHz @ 64 bits 125 MHz @ 128 bits

×8 125 MHz @ 128 bits —

Figure 6–2. Block Diagram

PMAPCS

Hard IP for
PCI Express

Altera FPGA

Avalon-ST or Avalon-MM

Interrupts

Clocks and Reset

LMI

PHY IP Core for
PCI Express (PIPE)

PIPE Interface
Serial Interface

Transceiver
 Reconfiguration
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 6: IP Core Architecture 6–3
Key Interfaces
Avalon-ST Interface
An Avalon-ST interface connects the Application Layer and the Transaction Layer.
This is a point-to-point, streaming interface designed for high throughput
applications. The Avalon-ST interface includes the RX and TX datapaths.

f For more information about the Avalon-ST interface, including timing diagrams, refer
to the Avalon Interface Specifications.

RX Datapath
The RX datapath transports data from the Transaction Layer to the Application
Layer’s Avalon-ST interface. Masking of non-posted requests is partially supported.
Refer to the description of the rx_st_mask signal for further information about
masking. For more detailed information about the RX datapath, refer to “Avalon-ST
RX Interface” on page 7–5.

TX Datapath
The TX datapath transports data from the Application Layer's Avalon-ST interface to
the Transaction Layer. The Hard IP provides credit information to the Application
Layer for posted headers, posted data, non-posted headers, non-posted data,
completion headers and completion data.

The Application Layer may track credits consumed and use the credit limit
information to calculate the number of credits available. However, to enforce the PCI
Express Flow Control (FC) protocol, the Hard IP also checks the available credits
before sending a request to the link, and if the Application Layer violates the available
credits for a TLP it transmits, the Hard IP blocks that TLP and all future TLPs until
credits become available. By tracking the credit consumed information and
calculating the credits available, the Application Layer can optimize performance by
selecting for transmission only the TLPs that have credits available. Refer to “Avalon-
ST TX Interface” on page 7–15 for more information about the signals in this interface.

Avalon-MM Interface
In Qsys, the Arria V Hard IP for PCI Express is available with either an Avalon-ST
interface or an Avalon-MM interface to the Application Layer. When you select the
Avalon-MM Arria V Hard IP for PCI Express, an Avalon-MM bridge module connects
the PCI Express link to the system interconnect fabric. If you are not familiar with the
PCI Express protocol, variants using the Avalon-MM interface may be easier to
understand. A PCI Express to Avalon-MM bridge translates the PCI Express read,
write and completion TLPs into standard Avalon-MM read and write commands
typically used by master and slave interfaces. The PCI Express to Avalon-MM bridge
also translates Avalon-MM read, write and read data commands to PCI Express read,
write and completion TLPs.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

6–4 Chapter 6: IP Core Architecture
Key Interfaces
Clocks and Reset
The PCI Express Base Specification requires an input reference clock, which is called
refclk in this design. Although the PCI Express Base Specification stipulates that the
frequency of this clock be 100 MHz, the Hard IP also accepts a 125 MHz reference
clock as a convenience. You can specify the frequency of your input reference clock
using the parameter editor under the System Settings heading.

The PCI Express Base Specification 2.1, requires the following three reset types:

■ cold reset—A hardware mechanism for setting or returning all port states to the
initial conditions following the application of power.

■ warm reset—A hardware mechanism for setting or returning all port states to the
initial conditions without cycling the supplied power.

■ hot reset —A reset propagated across a PCIe link using a Physical Layer
mechanism.

The PCI Express Base Specification also requires a system configuration time of 100 ms.
To meet this specification, the Arria V Hard IP for PCI Express includes an embedded
hard reset controller. For more information about clocks and reset, refer to the “Clock
Signals” on page 7–23 and “Reset Signals” on page 7–23.

Local Management Interface (LMI Interface)
The LMI bus provides access to the PCI Express Configuration Space in the
Transaction Layer. For more LMI details, refer to “LMI Signals” on page 7–37.

Transceiver Reconfiguration
The transceiver reconfiguration interface allows you to dynamically reconfigure the
values of analog settings in PMA block of the transceiver. Dynamic reconfiguration is
necessary to compensate for process variations. The Altera Transceiver
Reconfiguration Controller IP core provides access to these analog settings. This
component is included in the example designs in the
<install_dir>/ip/altera/altera_pcie/altera_pcie_hip_ast_ed/
example_design directory. For more information about the transceiver
reconfiguration signals refer to “Transceiver Reconfiguration” on page 7–46.

Interrupts
The Arria V Hard IP for PCI Express offers three interrupt mechanisms:

■ Message Signaled Interrupts (MSI)— MSI uses the Transaction Layer's
request-acknowledge handshaking protocol to implement interrupts. The MSI
Capability structure is stored in the Configuration Space and is programmable
using Configuration Space accesses.

■ MSI-X—The Transaction Layer generates MSI-X messages which are single dword
memory writes. In contrast to the MSI capability structure, which contains all of
the control and status information for the interrupt vectors, the MSI-X Capability
structure points to an MSI-X table structure and MSI-X PBA structure which are
stored in memory.

■ Legacy interrupts—The app_int_sts input port controls legacy interrupt
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www.pcisig.com
http://www.pcisig.com

Chapter 6: IP Core Architecture 6–5
Protocol Layers
generation. When app_int_sts is asserted, the Hard IP generates an
Assert_INT<n> message TLP. For more detailed information about interrupts,
refer to “Interrupt Signals for Endpoints” on page 7–26.

Protocol Layers
This section describes the Transaction Layer, Data Link Layer, and Physical Layer in
more detail.

Transaction Layer
The Transaction Layer is located between the Application Layer and the Data Link
Layer. It generates and receives Transaction Layer Packets.

Figure 6–3 illustrates the Transaction Layer. As Figure 6–3 illustrates, the Transaction
Layer includes three sub-blocks: the TX datapath, the Configuration Space, and the
RX datapath.

Tracing a transaction through the RX datapath includes the following steps:

1. The Transaction Layer receives a TLP from the Data Link Layer.

2. The Transaction Layer determines whether the TLP is well formed and directs the
packet based on traffic class (TC).

Figure 6–3. Architecture of the Transaction Layer: Dedicated Receive Buffer

Transaction Layer TX Datapath

Transaction Layer RX Datapath

Avalon-ST
RX Control

Configuration Space

TLPs to
Data Link Layer

RX Transaction
 Layer Packet

Avalon-ST RX Data

Avalon-ST
TX Data

to Application Layer

Configuration Requests

Reordering

RX Buffer

Posted & Completion

Non-Posted

Flow Control Update

Transaction Layer
Packet FIFO

Width
Adapter
(<128
bits)

Packet
Alignment

TX
Control

RX
Control

TX Flow
 Control
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

6–6 Chapter 6: IP Core Architecture
Protocol Layers
3. TLPs are stored in a specific part of the RX buffer depending on the type of
transaction (posted, non-posted, and completion).

4. The TLP FIFO block stores the address of the buffered TLP.

5. The receive reordering block reorders the queue of TLPs as needed, fetches the
address of the highest priority TLP from the TLP FIFO block, and initiates the
transfer of the TLP to the Application Layer.

6. When ECRC generation and forwarding are enabled, the Transaction Layer
forwards the ECRC dword to the Application Layer.

Tracing a transaction through the TX datapath involves the following steps:

1. The Transaction Layer informs the Application Layer that sufficient flow control
credits exist for a particular type of transaction using the TX credit signals. The
Application Layer may choose to ignore this information.

2. The Application Layer requests permission to transmit a TLP. The Application
Layer must provide the transaction and must be prepared to provide the entire
data payload in consecutive cycles.

3. The Transaction Layer verifies that sufficient flow control credits exist and
acknowledges or postpones the request.

4. The Transaction Layer forwards the TLP to the Data Link Layer.

Configuration Space
The Configuration Space implements the following Configuration Space Registers
and associated functions:

■ Type 0 Configuration Settings

■ Type 1 Configuration Settings

■ MSI Capability Structure

■ MSI-X Capability Structure

■ PCI Power Management Capability Structure

■ PCI Express Capability Structure

■ SSID / SSVID Capability Structure

■ Virtual Channel Capability Structure

■ Advance Error Reporting Capability Structure

The Configuration Space also generates all messages (PME#, INT, Error, Slot Power
Limit), MSI requests, and completion packets from configuration requests that flow in
the direction of the root complex, except Slot Power Limit messages, which are
generated by a downstream port. All such transactions are dependent upon the
content of the PCI Express Configuration Space as described in the PCI Express Base
Specification Revision 2.1.

Refer To “Configuration Space Register Content” on page 8–1 or Chapter 7 in the PCI
Express Base Specification 2.1 for the complete content of these registers.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www.pcisig.com/home
http://www.pcisig.com/home
http://www.pcisig.com/home
http://www.pcisig.com/home

Chapter 6: IP Core Architecture 6–7
Protocol Layers
Data Link Layer
The Data Link Layer (DLL) is located between the Transaction Layer and the Physical
Layer. It maintains packet integrity and for communicates (by DLL packet
transmission) at the PCI Express link level (as opposed to component communication
by TLP transmission in the interconnect fabric).

The DLL implements the following functions:

■ Link management through the reception and transmission of DLL packets (DLLP),
which are used for the following functions:

■ For power management of DLLP reception and transmission

■ To transmit and receive ACK/NACK packets

■ Data integrity through generation and checking of CRCs for TLPs and DLLPs

■ TLP retransmission in case of NAK DLLP reception using the retry buffer

■ Management of the retry buffer

■ Link retraining requests in case of error through the Link Training and Status State
Machine (LTSSM) of the Physical Layer

Figure 6–4 illustrates the architecture of the DLL.

Figure 6–4. Data Link Layer

To Transaction Layer

Tx Transaction Layer
Packet Description & Data Transaction Layer

Packet Generator

Retry Buffer

To Physical Layer

Tx Packets

Ack/Nack
Packets

RX Datapath

TX Datapath

Rx Packets

DLLP
Checker

Transaction Layer
Packet Checker

DLLP
Generator

Tx Arbitration

Data Link Control
and Management

State Machine

Control
& Status

Configuration Space

Tx Flow Control Credits

Rx Flow Control Credits

Rx Transation Layer
Packet Description & Data

Power
Management

Function
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

6–8 Chapter 6: IP Core Architecture
Protocol Layers
The DLL has the following sub-blocks:

■ Data Link Control and Management State Machine—This state machine is
synchronized with the Physical Layer’s LTSSM state machine and also connects to
the Configuration Space Registers. It initializes the link and flow control credits
and reports status to the Configuration Space.

■ Data Link Layer Packet Generator and Checker—This block is associated with the
DLLP’s 16-bit CRC and maintains the integrity of transmitted packets.

■ Transaction Layer Packet Generator—This block generates transmit packets,
generating a sequence number and a 32-bit CRC (LCRC). The packets are also sent
to the retry buffer for internal storage. In retry mode, the TLP generator receives
the packets from the retry buffer and generates the CRC for the transmit packet.

■ Retry Buffer—The retry buffer stores TLPs and retransmits all unacknowledged
packets in the case of NAK DLLP reception. For ACK DLLP reception, the retry
buffer discards all acknowledged packets.

■ ACK/NAK Packets—The ACK/NAK block handles ACK/NAK DLLPs and
generates the sequence number of transmitted packets.

■ Transaction Layer Packet Checker—This block checks the integrity of the received
TLP and generates a request for transmission of an ACK/NAK DLLP.

■ TX Arbitration—This block arbitrates transactions, prioritizing in the following
order:

a. Initialize FC Data Link Layer packet

b. ACK/NAK DLLP (high priority)

c. Update FC DLLP (high priority)

d. PM DLLP

e. Retry buffer TLP

f. TLP

g. Update FC DLLP (low priority)

h. ACK/NAK FC DLLP (low priority)

Physical Layer
The Physical Layer is the lowest level of the Arria V Hard IP for PCI Express. It is the
layer closest to the link. It encodes and transmits packets across a link and accepts and
decodes received packets. The Physical Layer connects to the link through a
high-speed SERDES interface running at 2.5 Gbps for Gen1 implementations and at
2.5 or 5.0 Gbps for Gen2 implementations.

The Physical Layer is responsible for the following actions:

■ Initializing the link

■ Scrambling/descrambling and 8B/10B encoding/decoding of 2.5 Gbps (Gen1) or
5.0 Gbps (Gen2)

■ Serializing and deserializing data

■ Operating the PIPE 2.0 Interface
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 6: IP Core Architecture 6–9
Protocol Layers
■ Implementing auto speed negotiation

■ Transmitting and decoding the training sequence

■ Providing hardware autonomous speed control

■ Implementing auto lane reversal

Figure 6–5 illustrates the Physical Layer architecture.

The Physical Layer is subdivided by the PIPE Interface Specification into two layers
(bracketed horizontally in Figure 6–5):

■ Media Access Controller (MAC) Layer—The MAC layer includes the LTSSM and
the scrambling/descrambling and multilane deskew functions.

■ PHY Layer—The PHY layer includes the 8B/10B encode/decode functions, elastic
buffering, and serialization/deserialization functions.

The Physical Layer integrates both digital and analog elements. Intel designed the
PIPE interface to separate the MAC from the PHY. The Arria V Hard IP for PCI
Express complies with the PIPE interface specification.

Figure 6–5. Physical Layer

Scrambler
8B10B

Encoder

Lane n
Tx+ / Tx-

Scrambler
8B10B

Encoder

Lane 0
Tx+ / Tx-

Descrambler
8B10B

Decoder

Lane n
Rx+ / Rx-Elastic

Buffer

LTSSM
State Machine

SKIP
Generation

Control & Status
PIPE

Emulation Logic

Li
nk

 S
er

ia
l i

ze
r

Li
nk

 S
er

ia
l i

ze
r

Tx Packets

Rx MAC
Lane

 D
ev

ic
e

 T
ra

ns
ce

iv
er

 (
pe

r
La

ne
)

w
ith

 2
.5

 o
r

5.
0

 G
bp

s
S

E
R

D
E

S
 &

 P
LL

Descrambler
8B10B

Decoder

Lane 0
Rx+ / Rx-Elastic

Buffer

Rx MAC
Lane

PIPE
Interface

M
ul

til
an

e
D

es
ke

w

Rx Packets

Transmit
Data Path

Receive
Data Path

MAC Layer PHY layer

To LinkTo Data Link Layer
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

6–10 Chapter 6: IP Core Architecture
Protocol Layers
The PHYMAC block is divided in four main sub-blocks:

■ MAC Lane—Both the RX and the TX path use this block.

■ On the RX side, the block decodes the Physical Layer Packet and reports to the
LTSSM the type and number of TS1/TS2 ordered sets received.

■ On the TX side, the block multiplexes data from the DLL and the LTSTX
sub-block. It also adds lane specific information, including the lane number
and the force PAD value when the LTSSM disables the lane during
initialization.

■ LTSSM—This block implements the LTSSM and logic that tracks what is received
and transmitted on each lane.

■ For transmission, it interacts with each MAC lane sub-block and with the
LTSTX sub-block by asserting both global and per-lane control bits to generate
specific Physical Layer packets.

■ On the receive path, it receives the Physical Layer Packets reported by each
MAC lane sub-block. It also enables the multilane deskew block and the delay
required before the TX alignment sub-block can move to the recovery or low
power state. A higher layer can direct this block to move to the recovery,
disable, hot reset or low power states through a simple request/acknowledge
protocol. This block reports the Physical Layer status to higher layers.

■ LTSTX (Ordered Set and SKP Generation)—This sub-block generates the Physical
Layer Packet. It receives control signals from the LTSSM block and generates
Physical Layer Packet for each lane. It generates the same Physical Layer Packet
for all lanes and PAD symbols for the link or lane number in the corresponding
TS1/TS2 fields.

The block also handles the receiver detection operation to the PCS sub-layer by
asserting predefined PIPE signals and waiting for the result. It also generates a
SKP Ordered Set at every predefined timeslot and interacts with the TX alignment
block to prevent the insertion of a SKP Ordered Set in the middle of packet.

■ Deskew—This sub-block performs the multilane deskew function and the RX
alignment between the number of initialized lanes and the 64-bit data path.

The multilane deskew implements an eight-word FIFO for each lane to store
symbols. Each symbol includes eight data bits, one disparity bit, and one control
bit. The FIFO discards the FTS, COM, and SKP symbols and replaces PAD and
IDL with D0.0 data. When all eight FIFOs contain data, a read can occur.

When the multilane lane deskew block is first enabled, each FIFO begins writing
after the first COM is detected. If all lanes have not detected a COM symbol after
seven clock cycles, they are reset and the resynchronization process restarts, or
else the RX alignment function recreates a 64-bit data word which is sent to the
DLL.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 6: IP Core Architecture 6–11
Multi-Function Support
Multi-Function Support
The Arria V Hard IP for PCI Express supports up to eight functions for Endpoints.
You set up the each function under the Port Functions heading in the parameter
editor. You can configure Arria V devices to include both Native and Legacy
Endpoints. Each function replicates the Configuration Space Registers, including logic
for Tag Tracking and Error detection.

Because the Configuration Space is replicated for each function, some Configuration
Space Register settings may conflict. Arbitration logic resolves differences when
settings contain different values across multiple functions. The arbitration logic
implements the rules for resolving conflicts as specified in the PCI Express Base
Specification 2.1. Examples of settings that require arbitration include the following
features:

■ Link Control settings

■ Error detection and logging for non-function-specific errors

■ Error message collapsing

■ Maximum payload size (All functions use the largest specified maximum payload
setting.)

1 Altera strongly recommends that your software configure the Maximum payload size
(in the Device Control register) with the same value across all functions.

■ Interrupt message collapsing

You can access the Configuration Space Registers for the active function using the
LMI interface. In Root Port mode, you can also access the Configuration Space
Registers using a Configuration Type TLP. Refer to “Configuration Space Register
Content” on page 8–1 for more information about the Configuration Space Registers.

PCI Express Avalon-MM Bridge
In Qsys, the Arria V Hard IP for PCI Express is available with either an Avalon-ST and
Avalon-MM interface to the Application Layer. When you select the Avalon-MM
Arria V Hard IP for PCI Express, an Avalon-MM bridge module connects the PCI
Express link to the system interconnect fabric. The bridge facilitates the design of
Endpoints that include Qsys components.

The full-featured Avalon-MM bridge provides three possible Avalon-MM ports: a
bursting master, an optional bursting slave, and an optional non-bursting slave. The
Avalon-MM bridge comprises the following three modules:

■ TX Slave Module—This optional 64- or 128-bit bursting, Avalon-MM dynamic
addressing slave port propagates read and write requests of up to 4 KBytes in size
from the interconnect fabric to the PCI Express link. The bridge translates requests
from the interconnect fabric to PCI Express request packets.

■ RX Master Module—This 64- or 128-bit bursting Avalon-MM master port
propagates PCI Express requests, converting them to bursting read or write
requests to the interconnect fabric. If you select the Single dword variant, this is a
32-bit non-bursting master port.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com/
http://www.pcisig.com/

6–12 Chapter 6: IP Core Architecture
PCI Express Avalon-MM Bridge
■ Control Register Access (CRA) Slave Module—This optional, 32-bit Avalon-MM
dynamic addressing slave port provides access to internal control and status
registers from upstream PCI Express devices and external Avalon-MM masters.
Implementations that use MSI or dynamic address translation require this port.

When you select the Single dword completer in the GUI for the Avalon-MM Hard IP
for PCI Express, Qsys substitutes a unpipelined, 32-bit RX master port for the 64- or
128-bit full-featured RX master port. For more information about the 32-bit RX master
refer to “Avalon-MM RX Master Block” on page 6–20.

Figure 6–6 shows the block diagram of a PCI Express Avalon-MM bridge.

Figure 6–6. PCI Express Avalon-MM Bridge

Tr
an

sa
ct

io
n

La
ye

r
PCI Express
Tx Controller

PCI Express
Rx Controller

Da
ta

 L
in

k
La

ye
r

Ph
ys

ic
al

 L
ay

er

PCI Express MegaCore Function

Tx Slave Module

Control & Status
Reg (CSR)

Sync

Avalon Clock Domain PCI Express Clock Domain

Rx Master ModuleRx Master Module

PCI Express Avalon-MM Bridge

Sy
st

em
 In

te
rc

on
ne

ct
 F

ab
ric

PCI Link

CRA Slave Module

Address
Translator

Avalon-MM
Tx Read

Response

Avalon-MM
Tx Slave

Avalon-MM
Rx Read

Response

Avalon-MM
Rx Master

MSI or
Legacy Interrupt

Generator
Control Register

Access Slave

Address
Translator
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 6: IP Core Architecture 6–13
PCI Express Avalon-MM Bridge
The PCI Express Avalon-MM bridge supports the following TLPs:

■ Memory write requests

■ Received downstream memory read requests of up to 512 bytes in size

■ Transmitted upstream memory read requests of up to 256 bytes in size

■ Completions

The bridge has the following additional characteristics:

■ Type 0 and Type 1 vendor-defined incoming messages are discarded

■ Completion-to-a-flush request is generated, but not propagated to the interconnect
fabric

Each PCI Express base address register (BAR) in the Transaction Layer maps to a
specific, fixed Avalon-MM address range. You can use separate BARs to map to
various Avalon-MM slaves connected to the RX Master port.

The following sections describe the supported modes of operation:

■ Avalon-MM-to-PCI Express Write Requests

■ Avalon-MM-to-PCI Express Upstream Read Requests

■ PCI Express-to-Avalon-MM Read Completions

■ PCI Express-to-Avalon-MM Downstream Write Requests

■ PCI Express-to-Avalon-MM Downstream Read Requests

■ PCI Express-to-Avalon-MM Read Completions

■ Avalon-MM-to-PCI Express Address Translation

Avalon-MM-to-PCI Express Write Requests
The Avalon-MM bridge accepts Avalon-MM burst write requests with a burst size of
up to 512 Bytes at the Avalon-MM TX slave interface. The Avalon-MM bridge
converts the write requests to one or more PCI Express write packets with 32– or
64-bit addresses based on the address translation configuration, the request address,
and the maximum payload size.

The Avalon-MM write requests can start on any address in the range defined in the
PCI Express address table parameters. The bridge splits incoming burst writes that
cross a 4 KByte boundary into at least two separate PCI Express packets. The bridge
also considers the root complex requirement for maximum payload on the PCI
Express side by further segmenting the packets if needed.

The bridge requires Avalon-MM write requests with a burst count of greater than one
to adhere to the following byte enable rules:

■ The Avalon-MM byte enables must be asserted in the first qword of the burst.

■ All subsequent byte enables must be asserted until the deasserting byte enable.

■ The Avalon-MM byte enables may deassert, but only in the last qword of the burst.

1 To improve PCI Express throughput, Altera recommends using an Avalon-MM burst
master without any byte-enable restrictions.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

6–14 Chapter 6: IP Core Architecture
PCI Express Avalon-MM Bridge
Avalon-MM-to-PCI Express Upstream Read Requests
The PCI Express Avalon-MM bridge converts read requests from the system
interconnect fabric to PCI Express read requests with 32-bit or 64-bit addresses based
on the address translation configuration, the request address, and the maximum read
size.

The Avalon-MM TX slave interface of a PCI Express Avalon-MM bridge can receive
read requests with burst sizes of up to 512 bytes sent to any address. However, the
bridge limits read requests sent to the PCI Express link to a maximum of 256 bytes.
Additionally, the bridge must prevent each PCI Express read request packet from
crossing a 4 KByte address boundary. Therefore, the bridge may split an Avalon-MM
read request into multiple PCI Express read packets based on the address and the size
of the read request.

For Avalon-MM read requests with a burst count greater than one, all byte enables
must be asserted. There are no restrictions on byte enables for Avalon-MM read
requests with a burst count of one. An invalid Avalon-MM request can adversely
affect system functionality, resulting in a completion with the abort status set. An
example of an invalid request is one with an incorrect address.

PCI Express-to-Avalon-MM Read Completions
The PCI Express Avalon-MM bridge returns read completion packets to the initiating
Avalon-MM master in the issuing order. The bridge supports multiple and
out-of-order completion packets.

PCI Express-to-Avalon-MM Downstream Write Requests
When the PCI Express Avalon-MM bridge receives PCI Express write requests, it
converts them to burst write requests before sending them to the interconnect fabric.
The bridge translates the PCI Express address to the Avalon-MM address space based
on the BAR hit information and on address translation table values configured during
the IP core parameterization. Malformed write packets are dropped, and therefore do
not appear on the Avalon-MM interface.

For downstream write and read requests, if more than one byte enable is asserted, the
byte lanes must be adjacent. In addition, the byte enables must be aligned to the size
of the read or write request.

As an example, Table 6–2 lists the byte enables for 32-bit data.

Table 6–2. Valid Byte Enable Configurations

Byte Enable Value Description

4’b1111 Write full 32 bits

4’b0011 Write the lower 2 bytes

4’b1100 Write the upper 2 bytes

4’b0001 Write byte 0 only

4’b0010 Write byte 1 only

4’b0100 Write byte 2 only

4’b1000 Write byte 3 only
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 6: IP Core Architecture 6–15
PCI Express Avalon-MM Bridge
In burst mode, the Arria V Hard IP for PCI Express supports only byte enable values
that correspond to a contiguous data burst. For the 32-bit data width example, valid
values in the first data phase are 4’b1111, 4’b1100, and 4’b1000, and valid values in the
final data phase of the burst are 4’b1111, 4’b0011, and 4’b0001. Intermediate data
phases in the burst can only have byte enable value 4’b1111.

PCI Express-to-Avalon-MM Downstream Read Requests
The PCI Express Avalon-MM bridge sends PCI Express read packets to the
interconnect fabric as burst reads with a maximum burst size of 512 bytes. The bridge
converts the PCI Express address to the Avalon-MM address space based on the BAR
hit information and address translation lookup table values. You can set up the
Address Translation Table Configuration in the GUI. Unsupported read requests
generate a completer abort response.

Avalon-MM-to-PCI Express Read Completions
The PCI Express Avalon-MM bridge converts read response data from the external
Avalon-MM slave to PCI Express completion packets and sends them to the
Transaction Layer.

A single read request may produce multiple completion packets based on the
Maximum payload size and the size of the received read request. For example, if the
read is 512 bytes but the Maximum payload size 128 bytes, the bridge produces four
completion packets of 128 bytes each. The bridge does not generate out-of-order
completions. You can specify the Maximum payload size parameter on the Device
tab under the PCI Express/PCI Capabilities heading of the parameter editor. Refer to
“PCI Express/PCI Capabilities” on page 5–3.

PCI Express-to-Avalon-MM Address Translation
The PCI Express Avalon-MM Bridge translates the system-level physical addresses,
typically up to 64 bits, to the 32-bit byte addresses used by the Application Layer. You
can specify up to six BARs for address translation when you customize your Hard IP
for PCI Express as described in “Base Address Registers for Function <n>” on
page 4–8. The PCI Express Avalon-MM Bridge also translates the 32-bit byte
addresses used by the Application Layer to system-level physical addresses as
described in “Avalon-MM-to-PCI Express Address Translation” on page 6–17.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

6–16 Chapter 6: IP Core Architecture
PCI Express Avalon-MM Bridge
Figure 6–7 provides a high-level view of address translation in both directions.

The Avalon-MM RX master module port has an 8-byte datapath in 64-bit mode and a
16-byte datapath in 128-bit mode. The Qsys interconnect fabric handles mismatched
port widths transparently.

In the TX direction, the PCI Express to Avalon-MM Bridge uses the MSB of the PCI
Express address to identify one of the six BARs and then drives the unchanged LSB to
the Application Layer. Each enabled BAR corresponds to an Rxm Master Port. The
PCI Express address of a received request packet is decoded for a BAR hit before
routed to the associated Rxm Master port, and the offset from the BAR is passed to the
Avalon-MM fabric unchanged.

Figure 6–8 illustrates the PCI Express Avalon-MM bridge address translation process.
The variables in Figure 6–8 have the following meanings:

■ N—the number of pass-through bits (BAR specific)

■ M—the number of Avalon-MM address bits

■ P—the number of PCI Express address bits (32 or 64).

Figure 6–7. Address Translation in TX and RX Directions

Transaction,
Data Link,
and PHY

DMA

Avalon-MM
32-Bit Byte Address

Avalon-MM
32-Bit Byte Address

PCIe TLP
Address

PCIe TLP
Address

Qsys Generated Endpoint with DMA Controller and On-Chip RAM

TX
PCIe
Link

RX
PCIe
Link

PCI Express Avalon-MM Bridge Interconnect

Avalon-MM Hard IP for PCI Express

Number of address pages (1-512)
Size of address pages

Address Translation Table Parameters
Avalon-MM-to-PCIe Address Translation

BAR (0-5)
BAR Type
BAR Size

PCI Base Address Registers (BAR)
PCIe-to-Avalon-MM Address Translation

On-
Chip
RAM

M

S

= RX Avalon-MM Master= TX Avalon-MM SlaveS M
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 6: IP Core Architecture 6–17
PCI Express Avalon-MM Bridge
Avalon-MM-to-PCI Express Address Translation
The Avalon-MM address of a received request on the TX Slave Module port is
translated to the PCI Express address before the request packet is sent to the
Transaction Layer. This address translation process proceeds by replacing the MSB
bits of the Avalon-MM address with the value from a specific translation table entry;
the LSB bits remain unchanged. The number of MSB bits to be replaced is calculated
based on the total address space of the upstream PCI Express devices that the
Avalon-MM Hard IP for PCI Express can access.

The address translation table contains up to 512 possible address translation entries
that you can configure. Each entry corresponds to a base address of the PCI Express
memory segment of a specific size. The segment size of each entry must be identical.
The total size of all the memory segments is used to determine the number of address
MSB bits to be replaced. In addition, each entry has a 2-bit field, Sp[1:0], that
specifies 32-bit or 64-bit PCI Express addressing for the translated address. Refer to
Figure 6–9 on page 6–18. The most significant bits of the Avalon-MM address are used
by the system interconnect fabric to select the slave port and are not available to the
slave. The next most significant bits of the Avalon-MM address index the address
translation entry to be used for the translation process of MSB replacement.

For example, if the IP core is configured with an address translation table with the
following attributes:

■ Number of Address Pages—16

■ Size of Address Pages—1 MByte

■ PCI Express Address Size—64 bits

then the values in Figure 6–9 are:

■ N = 20 (due to the 1 MByte page size)

■ Q = 16 (number of pages)

■ M = 24 (20 + 4 bit page selection)

Figure 6–8. PCI Express Avalon-MM Bridge Address Translation

Inside Avalon-MM Hard IP for PCI Express

Matched BAR
selects Avalon-MM

address
RMX Master

N-1 bits

PCI Express Address

P-1 N N-1 0

High Low

BAR0 (or 0:1)

BAR1

BAR2

BAR3

BAR4

BAR5

P-1 to N bits select
Avalon-MM Master

Avalon-MM Master B0

Avalon-MM Master B1

Avalon-MM Master B2

Avalon-MM Master B3

Avalon-MM Master B4

Avalon-MM Master B5
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

6–18 Chapter 6: IP Core Architecture
PCI Express Avalon-MM Bridge
■ P = 64

In this case, the Avalon address is interpreted as follows:

■ Bits [31:24] select the TX slave module port from among other slaves connected to
the same master by the system interconnect fabric. The decode is based on the base
addresses assigned in Qsys.

■ Bits [23:20] select the address translation table entry.

■ Bits [63:20] of the address translation table entry become PCI Express address bits
[63:20].

■ Bits [19:0] are passed through and become PCI Express address bits [19:0].

The address translation table is dynamically configured at run time. The address
translation table is implemented in memory and can be accessed through the CRA
slave module. This access mode is useful in a typical PCI Express system where
address allocation occurs after BIOS initialization.

For more information about how to access the dynamic address translation table
through the control register access slave, refer to the “Avalon-MM-to-PCI Express
Address Translation Table 0x1000–0x1FFF” on page 8–8.

Figure 6–9 depicts the Avalon-MM-to-PCI Express address translation process. The
variables in Figure 6–9 have the following meanings:

■ N—the number of pass-through bits (BAR specific)

■ M—the number of Avalon-MM address bits

■ P—the number of PCI Express address bits (32 or 64).

■ Q—the number of translation table entries

■ Sp[1:0]—the space indication for each entry.

Figure 6–9. Avalon-MM-to-PCI Express Address Translation

PCIe Address Q-1 SpQ-1

Space Indication

PCI Express address from Table Entry
becomes High PCI Express address bits

PCI Express Address

High Low

P-1 N N-1 0

Low address bits unchanged

Avalon-MM-to-PCI Express
Address Translation Table

(Q entries by P-N bits wide)

PCIe Address 0 Sp0

PCIe Address 1 Sp1

Avalon-MM Address

HighSlave Base
Address

Low

M-131 M N N-1 0

Table updates from
control register port

High Avalon-MM Address
Bits Index table
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 6: IP Core Architecture 6–19
Single DWord Completer Endpoint
Single DWord Completer Endpoint
The single dword completer Endpoint is intended for applications that use the PCI
Express protocol to perform simple read and write register accesses from a host CPU.
The single dword completer Endpoint is a hard IP implementation available for Qsys
systems, and includes an Avalon-MM interface to the Application Layer. The
Avalon-MM interface connection in this variation is 32 bits wide. This Endpoint is not
pipelined; at any time a single request can be outstanding.

The single dword Endpoint completer supports the following requests:

■ Read and write requests of a single dword (32 bits) from the Root Complex

■ Completion with Completer Abort status generation for other types of non-posted
requests

■ INTX or MSI support with one Avalon-MM interrupt source

Figure 6–10 shows Qsys system that includes a completer-only single dword
endpoint.

As this figure illustrates, the completer-only single dword Endpoint connects to PCI
Express Root Complex. A bridge component includes the Arria V Hard IP for PCI
Express TX and RX blocks, an Avalon-MM RX master, and an interrupt handler. The
bridge connects to the FPGA fabric using an Avalon-MM interface. The following
sections provide an overview of each block in the bridge.

RX Block
The RX Block control logic interfaces to the hard IP block to respond to requests from
the root complex. It supports memory reads and writes of a single dword. It generates
a completion with Completer Abort (CA) status for reads greater than four bytes and
discards all write data without further action for write requests greater than four
bytes.

Figure 6–10. Qsys Design Including Completer Only Single DWord Endpoint for PCI Express

Qsys System

PCI Express
Root Complex

PCIe Link

to Host
CPU

Avalon-MM

Interconnect
Fabric

Avalon-MM
Slave

Avalon-MM
Slave

Avalon-MM
Hard IP
for PCIe

 Avalon-MM
Master RX

Interrupt
Handler

RX Block

TX Block

Single DWord Completer Only Endpoint
Qsys Component

.

.

.

Bridge
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

6–20 Chapter 6: IP Core Architecture
Single DWord Completer Endpoint
The RX block passes header information to the Avalon-MM master, which generates
the corresponding transaction to the Avalon-MM interface. The bridge accepts no
additional requests while a request is being processed. While processing a read
request, the RX block deasserts the ready signal until the TX block sends the
corresponding completion packet to the hard IP block. While processing a write
request, the RX block sends the request to the Avalon-MM interconnect fabric before
accepting the next request.

Avalon-MM RX Master Block
The 32-bit Avalon-MM master connects to the Avalon-MM interconnect fabric. It
drives read and write requests to the connected Avalon-MM slaves, performing the
required address translation. The RX master supports all legal combinations of byte
enables for both read and write requests.

f For more information about legal combinations of byte enables, refer to Chapter 3,
Avalon Memory-Mapped Interfaces in the Avalon Interface Specifications.

TX Block
The TX block sends completion information to the Avalon-MM Hard IP for PCI
Express which sends this information to the root complex. The TX completion block
generates a completion packet with Completer Abort (CA) status and no completion
data for unsupported requests. The TX completion block also supports the
zero-length read (flush) command.

Interrupt Handler Block
The interrupt handler implements both INTX and MSI interrupts. The msi_enable bit
in the configuration register specifies the interrupt type. The msi_enable_bit is part
of MSI message control portion in MSI Capability structure. It is bit[16] of 0x050 in the
Configuration Space registers. If the msi_enable bit is on, an MSI request is sent to the
Arria V Hard IP for PCI Express when received, otherwise INTX is signaled. The
interrupt handler block supports a single interrupt source, so that software may
assume the source. You can disable interrupts by leaving the interrupt signal
unconnected in the IRQ column of Qsys. When the MSI registers in the Configuration
Space of the completer only single dword Arria V Hard IP for PCI Express are
updated, there is a delay before this information is propagated to the Bridge module
shown in Figure 6–10. You must allow time for the Bridge module to update the MSI
register information. Under normal operation, initialization of the MSI registers
should occur substantially before any interrupt is generated. However, failure to wait
until the update completes may result in any of the following behaviors:

■ Sending a legacy interrupt instead of an MSI interrupt

■ Sending an MSI interrupt instead of a legacy interrupt

■ Loss of an interrupt request
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

June 2012 Altera Corporation

June 2012
UG-01110-1.2
7. IP Core Interfaces
This chapter describes the signals that are part of the Arria V Hard IP for PCI Express
IP core. It describes the top-level signals in the following IP cores:

■ Arria V Hard IP for PCI Express

■ Avalon-MM Hard IP for PCI Express

Variants using the Avalon-ST interface are available in both the MegaWizard Plug-In
Manager and the Qsys design flows. Variants using the Avalon-MM interface are only
available in the Qsys design flow. Variants using the Avalon-ST interfaces offer a
richer feature set; however, if you are not familiar with the PCI Express protocol,
variants using the Avalon-MM interface may be easier to understand. The
Avalon-MM variants include a PCI Express to Avalon-MM bridge that translates the
PCI Express read, write and completion Transaction Layer Packets (TLPs) into
standard Avalon-MM read and write commands typically used by master and slave
interfaces to access memories and registers. Consequently, you do not need a detailed
understanding of the PCI Express TLPs to use the Avalon-MM variants. Refer to
“Differences in Features Available Using the Avalon-MM and Avalon-ST Interfaces”
on page 1–2 to learn about the difference in the features available for the Avalon-ST
and Avalon-MM interfaces.

Because the Arria V Hard IP for PCI Express offers exactly the same feature set in the
MegaWizard Plug-In Manager and Qsys design flows, your decision about which
design flow to use depends on whether you want to integrate the Arria V Hard IP for
PCI Express using RTL instantiation or Qsys. The Qsys system integration tool
automatically generates the interconnect logic between the IP components in your
system, saving time and effort. Refer to “MegaWizard Plug-In Manager Design Flow”
on page 2–3 and “Qsys Design Flow” on page 2–10 for a description of the steps
involved in the two design flows.

Table 7–1 lists each interface and provides a link to the subsequent sections that
describe each signal. The signals are described in the order in which they are shown in
Figure 7–2.

Table 7–1. Signal Groups in the Arria V Hard IP for PCI Express (Part 1 of 2)

Signal Group Description

Logical

Avalon-ST RX “Avalon-ST RX Interface” on page 7–5

Avalon-ST TX “Avalon-ST TX Interface” on page 7–15

Clock “Clock Signals” on page 7–23

Reset and link training “Reset Signals” on page 7–23

ECC error “ECC Error Signals” on page 7–26

Interrupt “Interrupts for Endpoints” on page 7–26

Interrupt and global error “Interrupts for Root Ports” on page 7–27

Configuration space “Transaction Layer Configuration Space Signals” on page 7–29

LMI “LMI Signals” on page 7–37
Arria V Hard IP for PCI Express
User Guide

7–2 Chapter 7: IP Core Interfaces
1 When you are parameterizing your IP core, you can use the Show signals option in
the Block Diagram to see how changing the parameterization changes the top-level
signals.

Figure 7–1 illustrates this option.

Completion “Completion Side Band Signals” on page 7–27

Power management “Power Management Signals” on page 7–39

Physical and Test

Transceiver control “Transceiver Reconfiguration” on page 7–46

Serial “Serial Interface Signals” on page 7–46

PIPE (1) “PIPE Interface Signals” on page 7–50

Test “Test Signals” on page 7–52

Note to Table 7–1:

(1) Provided for simulation only

Table 7–1. Signal Groups in the Arria V Hard IP for PCI Express (Part 2 of 2)

Signal Group Description

Figure 7–1. Show Signal Option for the Block Diagram
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 7: IP Core Interfaces 7–3
Arria V Hard IP for PCI Express
Arria V Hard IP for PCI Express
Figure 7–2 illustrates the top-level signals in Arria V Hard IP for PCI Express IP core.
Signal names that include <a> also exist for functions 1 to 7.

Figure 7–2. Signals in the Arria V Hard IP for PCI Express with Avalon-ST Interface

rx_st_data[63:0], [127:0]
rx_st_sop
rx_st_eop
rx_st_empty
rx_st_ready
rx_st_valid
rx_st_err
rx_st_mask
rx_st_bar[7:0]
rx_st_be[7:0], [15:0]
rx_bar_dec_func_num[2:0]

Arria V Hard IP for PCI Express, Avalon-ST Interface

Test
Interface

 RX Port

tx_st_data[63:0], [127:0]
tx_st_sop
tx_st_eop
tx_st_ready
tx_st_valid
tx_st_empty
tx_st_err

tx_fifo_empty
tx_cred_datafccp[11:0]
tx_cred_datafcnp[11:0]
tx_cred_datafcp[11:0]
tx_cred_fchipons[5:0]
tx_cred_fcinfinite[5:0]
tx_cred_hdrfccp[7:0]
tx_cred_hdrfcnp[7:0]
tx_cred_hdrfcp[7:0]
ko_cpl_spc_header[7:0]
ko_cpl_spc_data[11:0]

Clocks

Power
Managementt

TX Port

Transaction Layer
Configuration

ECC Error

Completion
Interface

LMI

txdata0[7:0]
txdatak0

txdetectrx0
txelecidle0

txcompl0
rxpolarity0

powerdown0[1:0]
txdeemph

rxdata0[7:0]
rxdatak0
rxvalid0

phystatus0
eidleinferset0[[2:0]

rxelecidle0
rxstatus0[2:0]

txswing
txmargin[2:0]

sim_ltssmstate[4:0]
sim_pipe_rate[1:0]

sim_pipe_pclk_in

8-bit
PIPE

PIPE
Interface

Simulation
Only

test_in[31:0]
simu_mode_pipe

lane_act[3:0]

tl_cfg_add[6:0]
tl_cfg_ctl[31:0]

tl_cfg_ctl_wr
tl_cfg_sts[122:0]

tl_cfg_sts_wr
tl_hpg_ctrl_er[4:0]

lmi_dout[31:0]
lmi_rden
lmi_wren

lmi_ack
lmi_addr[14:0]

lmi_din[31:0]

reconfig_fromxcvr[(<n>46-1):0]
reconfig_toxcvr[(<n>70-1):0]

busy_xcvr_reconfig

Transceiver
Reconfiguration

for internal PHY
<x> lanes

tx_out[<x>-1:0]
rx_in[<x>-1:0]

Serial IF to PIPE

Avalon-ST

Avalon-ST

Component
Specific

Component
Specific

TX
Credit

derr_cor_ext_rcv0
derr_rpl
derr_cor_ext_rpl0

Interrupts
(Root Port)

int_status[3:0]
aer_msi_num[4:0]
pex_msi_num[4:0]
serr_out

cpl_err[6:0]
cpl_err_func[2:0]
cpl_pending[7:0]

Interrupt

app_msi_req
app_msi_ack
app_msi_tc[2:0]
app_msi_num[4:0]
app_msi_func[2:0]
app_int_sts_vec[7:0]

pme_to_cr
pme_to_sr
pm_event

pm_event_func[2:0]
pm_data[9:0]

pm_auxpwr

refclk
pld_clk
coreclkout_hip

npor
reset_status
pin_perst
sedes_pll_locked
fixedclk_locked
pld_core_ready
pld_clk_inuse
dlup
dlup_exit
ev128ns
ev1us
hotrst_exit
l2_exit
dl_current_speed[1:0]
dl_ltssm[4:0]

Reset &
Lock Status
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

7–4 Chapter 7: IP Core Interfaces
Arria V Hard IP for PCI Express
Avalon-ST Packets to PCI Express TLPs
The Hard IP for PCI Express IP Core maps Avalon-ST packets to PCI Express TLPs.
These mappings apply to all types of TLPs, including posted, non-posted, and
completion TLPs. Message TLPs use the mappings shown for four dword headers.
TLP data is always address-aligned on the Avalon-ST interface whether or not the
lower dwords of the header contains a valid address as may be the case with TLP type
message request with data payload.

Table 7–2 shows the byte ordering for TLP header and data packets.

f For additional information about the format of TLP packet headers, refer to
Appendix A, Transaction Layer Packet (TLP) Header Formats and Section 2.2.1
Common Packet Header Fields in the PCI Express Base Specification 2.1.

To facilitate the interface to 64-bit memories, the Arria V Hard IP for PCI Express
aligns data to the qword or 64 bits by default; consequently, if the header presents an
address that is not qword aligned, the Hard IP block shifts the data within the qword
to achieve the correct alignment. Figure 7–3 shows how an address that is not qword
aligned, 0x4, is stored in memory. The byte enables only qualify data that is being
written. This means that the byte enables are undefined for 0x0–0x3. This example
corresponds to Figure 7–4 on page 7–8. Qword alignment applies to all types of
request TLPs with data, including memory writes, configuration writes, and I/O
writes. The alignment of the request TLP depends on bit 2 of the request address. For
completion TLPs with data, alignment depends on bit 2 of the lower address field.
This bit is always 0 (aligned to qword boundary) for completion with data TLPs that
are for configuration read or I/O read requests

Table 7–2. Mapping Avalon-ST Packets to PCI Express TLPs

Packet TLP

Header0 pcie_hdr_byte0, pcie_hdr _byte1, pcie_hdr _byte2, pcie_hdr _byte3

Header1 pcie_hdr _byte4, pcie_hdr _byte5, pcie_hdr byte6, pcie_hdr _byte7

Header2 pcie_hdr _byte8, pcie_hdr _byte9, pcie_hdr _byte10, pcie_hdr _byte11

Header3 pcie_hdr _byte12, pcie_hdr _byte13, header_byte14, pcie_hdr _byte15

Data0 pcie_data_byte3, pcie_data_byte2, pcie_data_byte1, pcie_data_byte0

Data1 pcie_data_byte7, pcie_data_byte6, pcie_data_byte5, pcie_data_byte4

Data2 pcie_data_byte11, pcie_data_byte10, pcie_data_byte9, pcie_data_byte8

Data<n> pcie_data_byte<4n+3>, pcie_data_byte<4n+2>, pcie_data_byte<4n+1>, pcie_data_byte<n>
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www.pcisig.com/
http://www.pcisig.com/

Chapter 7: IP Core Interfaces 7–5
Arria V Hard IP for PCI Express
.

1 The PCI Express Base Specification 2.1 states that receivers may optionally check the
address translation (AT) bits in byte 2 of the header and flag the received TLP as
malformed if AT is not equal to is 2b’00. The Arria V Hard IP for PCI Express IP core
does not perform this optional check.

Avalon-ST RX Interface
Table 7–3 describes the signals that comprise the Avalon-ST RX Datapath. The RX data
signal can be 64 or 128 bits.

Figure 7–3. Qword Alignment

.

.

.

0x0

0x8

0x10

0x18

Header Addr = 0x4

64 bits
PCB Memory

Valid Data

Valid Data

Table 7–3. 64- or 128-Bit Avalon-ST RX Datapath (Part 1 of 4)

Signal Width Dir Avalon-ST
Type Description

rx_st_data
64

128 O data

Receive data bus. Refer to the figures below for the mapping of
the Transaction Layer’s TLP information to rx_st_data and
examples of the timing of this interface. Note that the position
of the first payload dword depends on whether the TLP address
is qword aligned. The mapping of message TLPs is the same as
the mapping of TLPs with 4 dword headers. When using a 64-
bit Avalon-ST bus, the width of rx_st_data is 64. When using
a 128-bit Avalon-ST bus, the width of rx_st_data is 128.

rx_st_sop 1 O start of
packet

Indicates that this is the first cycle of the TLP when
rx_st_valid is asserted.

rx_st_eop 1 O end of
packet

Indicates that this is the last cycle of the TLP when
rx_st_valid is asserted.

rx_st_empty 1 O empty

Indicates the number of empty qwords in rx_st_data. Not
used when rx_st_data is 64 bits.

When asserted, indicates that the upper qword is empty, does
not contain valid data.

rx_st_ready 1 I ready

Indicates that the Application Layer is ready to accept data. The
Application Layer deasserts this signal to throttle the data
stream.

If rx_st_ready is asserted by the Application Layer on cycle
<n>, then <n + readyLatency> is a ready cycle, during which
the Transaction Layer may assert valid and transfer data.

The RX interface supports a readyLatency of 2 cycles.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

7–6 Chapter 7: IP Core Interfaces
Arria V Hard IP for PCI Express
rx_st_valid 1 O valid

Clocks rx_st_data into the Application Layer. Deasserts
within 2 clocks of rx_st_ready deassertion and reasserts
within 2 clocks of rx_st_ready assertion if more data is
available to send. rx_st_valid can be deasserted between the
rx_st_sop and rx_st_eop even if rx_st_ready is asserted.

rx_st_err 1 O error

Indicates that there is an uncorrectable ECC error in the internal
RX buffer. Active when ECC is enabled. ECC is automatically
enabled by the Quartus II assembler. ECC corrects single-bit
errors and detects double-bit errors on a per byte basis.

When an uncorrectable ECC error is detected, rx_st_err is
asserted for at least 1 cycle while rx_st_valid is asserted. If
the error occurs before the end of a TLP payload, the packet
may be terminated early with an rx_st_eop and with
rx_st_valid deasserted on the cycle after the eop.

Altera recommends resetting the Arria V Hard IP for PCI
Express IP core when an uncorrectable (double-bit) ECC error
is detected.

Component Specific Signals

rx_st_mask 1 I component
specific

The Application Layer asserts this signal to tell the Hard IP to
stop sending non-posted requests. This signal can be asserted
at any time. This signal does not affect non-posted requests
that have already been transferred from the Transaction Layer
to the application interface. The total number of non-posted
requests that can be transferred to the application after
rx_st_mask is asserted not more than 14 for 64-bit mode.,
and is not more than 26 for 128-bit mode.

Table 7–3. 64- or 128-Bit Avalon-ST RX Datapath (Part 2 of 4)

Signal Width Dir Avalon-ST
Type Description
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 7: IP Core Interfaces 7–7
Arria V Hard IP for PCI Express
rx_st_bar 8 O component
specific

The decoded BAR bits for the TLP. Valid for MRd, MWr, IOWR, and
IORD TLPs; ignored for the completion or message TLPs. Valid
during the cycle in which rx_st_sop is asserted. Figure 7–7
illustrates the timing of this signal for 64-bit data. Figure 7–10
illustrates the timing of this signal for 128-bit data.

The following encodings are defined for Endpoints:

■ Bit 0: BAR 0

■ Bit 1: BAR 1

■ Bit 2: Bar 2

■ Bit 3: Bar 3

■ Bit 4: Bar 4

■ Bit 5: Bar 5

■ Bit 6: Expansion ROM

■ Bit 7: Reserved

The following encodings are defined for Root Ports:

■ Bit 0: BAR 0

■ Bit 1: BAR 1

■ Bit 2: Primary Bus number

■ Bit 3: Secondary Bus number

■ Bit 4: Secondary Bus number to Subordinate Bus number
window

■ Bit 5: I/O window

■ Bit 6: Non-Prefetchable window

■ Bit 7: Prefetchable window

Table 7–3. 64- or 128-Bit Avalon-ST RX Datapath (Part 3 of 4)

Signal Width Dir Avalon-ST
Type Description
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

7–8 Chapter 7: IP Core Interfaces
Arria V Hard IP for PCI Express
f For more information about the Avalon-ST protocol, refer to the Avalon Interface
Specifications.

Data Alignment and Timing for the 64-Bit Avalon-ST RX Interface
Figure 7–4 illustrates the mapping of Avalon-ST RX packets to PCI Express TLPs for a
three dword header with non-qword aligned addresses with a 64-bit bus. In this
example, the byte address is unaligned and ends with 0x4, causing the first data to
correspond to rx_st_data[63:32].

1 The Avalon-ST protocol, as defined in Avalon Interface Specifications, is big endian,
while the Hard IP for PCI Express packs symbols into words in little endian format.
Consequently, you cannot use the standard data format adapters available in Qsys.

rx_st_be
8
16 O component

specific

Byte enables corresponding to the rx_st_data. The byte
enable signals only apply to PCI Express TLP payload fields.
When using 64-bit Avalon-ST bus, the width of rx_st_be is 8
bits. This signal is optional. You can derive the same
information by decoding the FBE and LBE fields in the TLP
header. The byte enable bits correspond to data bytes as
follows:
rx_st_data[127:120] = rx_st_be[15]
rx_st_data[119:112] = rx_st_be[14]
rx_st_data[111:104] = rx_st_be[13]
rx_st_data[103:96] = rx_st_be[12]
rx_st_data[95:88] = rx_st_be[11]
rx_st_data[87:80] = rx_st_be[10]
rx_st_data[79:72] = rx_st_be[9]
rx_st_data[71:64] = rx_st_be[8]
rx_st_data[63:56] = rx_st_be[7]
rx_st_data[55:48] = rx_st_be[6]
rx_st_data[47:40] = rx_st_be[5]
rx_st_data[39:32] = rx_st_be[4]
rx_st_data[31:24] = rx_st_be[3]
rx_st_data[23:16] = rx_st_be[2]
rx_st_data[15:8] = rx_st_be[1]
rx_st_data[7:0] = rx_st_be[0]

This signal is deprecated.

rx_bar_dec_func_num 3 O component
specific

Specifies which function the rx_st_bar signal applies to.

Table 7–3. 64- or 128-Bit Avalon-ST RX Datapath (Part 4 of 4)

Signal Width Dir Avalon-ST
Type Description

Figure 7–4. 64-Bit Avalon-ST rx_st_data<n> Cycle Definition for 3-Dword Header TLP with Non-Qword Aligned Address

coreclkout

rx_st_data[63:32]

rx_st_data[31:0]

rx_st_sop

rx_st_eop

Header1 Data0 Data2

Header0 Header2 Data1
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 7: IP Core Interfaces 7–9
Arria V Hard IP for PCI Express
Figure 7–5 illustrates the mapping of Avalon-ST RX packets to PCI Express TLPs for a
three dword header with qword aligned addresses. Note that the byte enables
indicate the first byte of data is not valid and the last dword of data has a single valid
byte.

Figure 7–6 shows the mapping of Avalon-ST RX packets to PCI Express TLPs for TLPs
for a four dword header with qword aligned addresses with a 64-bit bus.

Figure 7–5. 64-Bit Avalon-ST rx_st_data<n> Cycle Definition for 3-Dword Header TLP with Qword Aligned Address

rx_st_data[63:32]

rx_st_data[31:0]

rx_st_sop

rx_st_eop

rx_st_be[7:4]

rx_st_be[3:0]

Header 1 Data1 Data3

Header 0 Header2 Data0 Data2

F 1

FE

coreclkout

Figure 7–6. 64-Bit Avalon-ST rx_st_data<n> Cycle Definitions for 4-Dword Header TLP with Qword Aligned Address

coreclkout

rx_st_data[63:32]

rx_st_data[31:0]

rx_st_sop

rx_st_eop

rx_st_be[7:4]

rx_st_be[3:0]

header1 header3 data1

header0 header2 data0

F

F

June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

7–10 Chapter 7: IP Core Interfaces
Arria V Hard IP for PCI Express
Figure 7–7 shows the mapping of Avalon-ST RX packet to PCI Express TLPs for TLPs
for a four dword header with non-qword addresses with a 64-bit bus. Note that the
address of the first dword is 0x4. The address of the first enabled byte is 0x6. This
example shows one valid word in the first dword, as indicated by the rx_st_be signal.

Figure 7–8 illustrates the timing of the RX interface when the Application Layer
backpressures the Arria V Hard IP for PCI Express by deasserting rx_st_ready. The
rx_st_valid signal must deassert within three cycles after rx_st_ready is deasserted.
In this example, rx_st_valid is deasserted in the next cycle. rx_st_data is held until
the Application Layer is able to accept it.

Figure 7–7. 64-Bit Avalon-ST rx_st_data<n> Cycle Definitions for 4-Dword Header TLP with Non-Qword Address (1)

Note to Figure 7–7:

(1) rx_st_be[7:4] corresponds to rx_st_data[63:32]. rx_st_be[3:0] corresponds to rx_st_data[31:0].

coreclkout

rx_st_data[63:32]

rx_st_data[31:0]

rx_st_sop

rx_st_eop

rx_st_bar[7:0]

rx_st_be[7:4]

rx_st_be[3:0]

header1 header3 data0 data2

header0 header2 data1

10

C F

F

Figure 7–8. 64-Bit Application Layer Backpressures Transaction Layer for RX Transactions

rx_st_data[63:0]

rx_st_sop

rx_st_eop

rx_st_ready

rx_st_valid

000 . 010 . CCCC0002CCCC0001 CC . CC . CC . CC . CC . CC .
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 7: IP Core Interfaces 7–11
Arria V Hard IP for PCI Express
Figure 7–9 illustrates back-to-back transmission on the 64-bit Avalon-ST RX interface
with no idle cycles between the assertion of rx_st_eop and rx_st_sop.

Data Alignment and Timing for the 128-Bit Avalon-ST RX Interface
Figure 7–10 shows the mapping of 128-bit Avalon-ST RX packets to PCI Express TLPs
for TLPs with a three dword header and qword aligned addresses.

Figure 7–9. 64-Bit Avalon-ST Interface Back-to-Back Receive TLPs

coreclkout

rx_st_data[63:0]

rx_st_sop

rx_st_eop

rx_st_empty

rx_st_ready

rx_st_valid

C. C. C. C. CCCC008347890. C.

Figure 7–10. 128-Bit Avalon-ST rx_st_data<n> Cycle Definition for 3-Dword Header TLP with Qword Aligned Address

coreclkout

rx_st_valid

rx_st_data[127:96]

rx_st_data[95:64]

rx_st_data[63:32]

rx_st_data[31:0]

rx_st_bar[7:0]

rx_st_sop

rx_st_eop

rx_st_empty

data3

header2 data2

header1 data1 data<n>

header0 data0 data<n-1>

01
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

7–12 Chapter 7: IP Core Interfaces
Arria V Hard IP for PCI Express
Figure 7–11 shows the mapping of 128-bit Avalon-ST RX packets to PCI Express TLPs
for TLPs with a 3 dword header and non-qword aligned addresses. In this case,
bits[127:96] represent Data0 because address[2] is set.

Figure 7–12 shows the mapping of 128-bit Avalon-ST RX packets to PCI Express TLPs
for a four dword header with non-qword aligned addresses. In this example,
rx_st_empty is low because the data ends in the upper 64 bits of rx_st_data.

Figure 7–11. 128-Bit Avalon-ST rx_st_data<n> Cycle Definition for 3-Dword Header TLP with non-Qword Aligned
Address

coreclkout

rx_st_valid

rx_st_data[127:96]

rx_st_data[95:64]

rx_st_data[63:32]

rx_st_data[31:0]

rx_st_sop

rx_st_eop

rx_st_empty

Data0 Data 4

Header 2 Data 3

Header 1 Data 2 Data (n)

Header 0 Data 1 Data (n-1)

Figure 7–12. 128-Bit Avalon-ST rx_st_data Cycle Definition for 4-Dword Header TLP with non-Qword Aligned Address

coreclkout

rx_st_valid

rx_st_data[127:96]

rx_st_data[95:64]

rx_st_data[63:32]

rx_st_data[31:0]

rx_st_sop

rx_st_eop

rx_st_empty

Header 3 Data 2

Header 2 Data 1 Data n

Header 1 Data 0 Data n-1

Header 0 Data n-2
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 7: IP Core Interfaces 7–13
Arria V Hard IP for PCI Express
Figure 7–13 shows the mapping of 128-bit Avalon-ST RX packets to PCI Express TLPs
for a four dword header with qword aligned addresses.

Figure 7–14 illustrates the timing of the RX interface when the Application Layer
backpressures the Hard IP by deasserting rx_st_ready. The rx_st_valid signal must
deassert within three cycles after rx_st_ready is deasserted. In this example,
rx_st_valid is deasserted in the next cycle.

Figure 7–13. 128-Bit Avalon-ST rx_st_data Cycle Definition for 4-Dword Header TLP with Qword Aligned Address

coreclkout

rx_st_valid

rx_st_data[127:96]

rx_st_data[95:64]

rx_st_data[63:32]

rx_st_data[31:0]

rx_st_sop

rx_st_eop

rx_st_empty

Header3 Data3 Data n

Header 2 Data 2 Data n-1

Header 1 Data 1 Data n-2

Header 0 Data 0 Data n-3

Figure 7–14. 128-Bit Application Layer Backpressures Hard IP Transaction Layer for RX Transactions

coreclkout

rx_st_data[127:0]

rx_st_sop

rx_st_eop

rx_st_empty

rx_st_ready

rx_st_valid

4562 . . . c19a . . . 0217b . . . 134c . . . 8945 . . .3458ce. . . 2457ce. . .000a7896c000bc34. .
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

7–14 Chapter 7: IP Core Interfaces
Arria V Hard IP for PCI Express
Figure 7–15 illustrates back-to-back transmission on the 128-bit Avalon-ST RX
interface with no idle cycles between the assertion of rx_st_eop and rx_st_sop.

Figure 7–16 illustrates a two-cycle packet with valid data in the lower qword
(rx_st_data[63:0]) and a one-cycle packet where the rx_st_sop and rx_st_eop occur
in the same cycle.

f For a complete description of the TLP packet header formats, refer to Appendix A,
Transaction Layer Packet (TLP) Header Formats.

Figure 7–15. 128-Bit Avalon-ST Interface Back-to-Back Receive TLPs

coreclkout

rx_st_data[127:0]

rx_st_sop

rx_st_eop

rx_st_empty

rx_st_ready

rx_st_valid

rx_st_err

.. BB . BB . BB . BB . BB . BB . BB . BB . BB . BB . BB . BB . BB .

Figure 7–16. 128-Bit Packet Example Use of rx_st_empty and Single-Cycle Packet

coreclkout

rx_st_data[127:0]

rx_st_sop

rx_st_eop

rx_st_empty

rx_st_ready

rx_st_valid

0000090 . 1C0020000F00000001000044329CF300 1C0020000F45612CCFA2003451009...
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 7: IP Core Interfaces 7–15
Arria V Hard IP for PCI Express
Avalon-ST TX Interface
Table 7–4 describes the signals that comprise the Avalon-ST TX Datapath. The TX data
signal can be 64 or 128 bits.

Table 7–4. 64- or 128-Bit Avalon-ST TX Datapath (Part 1 of 3)

Signal Width Dir Avalon-ST
Type Description

tx_st_data
64,

128
I data

Data for transmission. Transmit data bus. Refer to
Figure 7–17 through Figure 7–21 for the mapping of TLP
packets to tx_st_data and examples of the timing of the
64-bit interface. Refer to Figure 7–22 through Figure 7–27
for the mapping of TLP packets to tx_st_data and
examples of the timing of the 128-bit interface.

The Application Layer must provide a properly formatted
TLP on the TX interface. The mapping of message TLPs is
the same as the mapping of Transaction Layer TLPs with 4
dword headers. The number of data cycles must be correct
for the length and address fields in the header. Issuing a
packet with an incorrect number of data cycles results in
the TX interface hanging and unable to accept further
requests.

tx_st_sop 1 I start of
packet

Indicates first cycle of a TLP when asserted in the same
cycle with tx_st_valid.

tx_st_eop 1 I end of
packet

Indicates last cycle of a TLP when asserted in the same
cycle with tx_st_valid.

tx_st_ready (1) 1 O ready

Indicates that the Transaction Layer is ready to accept data
for transmission. The core deasserts this signal to throttle
the data stream. tx_st_ready may be asserted during
reset. The Application Layer should wait at least 2 clock
cycles after the reset is released before issuing packets on
the Avalon-ST TX interface. The reset_status signal can
also be used to monitor when the Hard IP has come out of
reset.

If tx_st_ready is asserted by the Transaction Layer on
cycle <n>, then <n + readyLatency> is a ready cycle,
during which the Application Layer may assert valid and
transfer data.

When tx_st_ready, tx_st_valid and tx_st_data are
registered (the typical case), Altera recommends a
readyLatency of 2 cycles to facilitate timing closure;
however, a readyLatency of 1 cycle is possible.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

7–16 Chapter 7: IP Core Interfaces
Arria V Hard IP for PCI Express
tx_st_valid (1) 1 I valid

Clocks tx_st_data to the Hard IP when tx_st_ready is
also asserted. Between tx_st_sop and tx_st_eop,
tx_st_valid can be asserted only if tx_st_ready is
asserted. When tx_st_ready deasserts, this signal must
deassert within 1 or 2 clock cycles. When tx_st_ready
reasserts, and tx_st_data is in mid-TLP, this signal must
reassert within 2 cycles. Refer to Figure 7–20 on
page 7–19 for the timing of this signal.

To facilitate timing closure, Altera recommends that you
register both the tx_st_ready and tx_st_valid signals.
If no other delays are added to the ready-valid latency, the
resulting delay corresponds to a readyLatency of 2.

tx_st_empty 1 I empty

Indicates the number of qwords that are empty during
cycles that contain the end of a packet. When asserted, the
empty qwords are in the high-order bits. Valid only when
tx_st_eop is asserted.

Not used when tx_st_data is 64 bits. When asserted,
indicates that the upper qword is empty, does not contain
valid data.

tx_st_err 1 I error

Indicates an error on transmitted TLP. This signal is used to
nullify a packet. It should only be applied to posted and
completion TLPs with payload. To nullify a packet, assert
this signal for 1 cycle after the SOP and before the EOP.
When a packet is nullified, the following packet should not
be transmitted until the next clock cycle. tx_st_err is not
available for packets that are 1 or 2 cycles long. The error
signal must be asserted while the valid signal is asserted.

Component Specific Signals

tx_fifo_empty 1 O component
specific

When asserted high, indicates that the TX FIFO is empty.

tx_cred_datafccp 12 O component
specific

Data credit limit for transmission of completions. Each
credit is 16 bytes.

tx_cred_datafcnp 12 O component
specific

Data credit limit for transmission of non-posted requests.
Each credit is 16 bytes.

tx_cred_datafcp 12 O component
specific

Data credit limit for transmission of posted writes. Each
credit is 16 bytes.

Table 7–4. 64- or 128-Bit Avalon-ST TX Datapath (Part 2 of 3)

Signal Width Dir Avalon-ST
Type Description
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 7: IP Core Interfaces 7–17
Arria V Hard IP for PCI Express
tx_cred_fchipcons 6 O component
specific

Asserted for 1 cycle each time the Hard IP consumes a
credit. The 6 bits of this vector correspond to the following
6 types of credit types:

■ [5]: posted headers

■ [4]: posted data

■ [3]: non-posted header

■ [2]: non-posted data

■ [1]: completion header

■ [0]: completion data

During a single cycle, the Hard IP can consume either a
single header credit or both a header and a data credit.

tx_cred_fc_infinite 6 O component
specific

When asserted, indicates that the corresponding credit
type has infinite credits available and does not need to
calculate credit limits. The 6 bits of this vector correspond
to the following 6 types of credit types:

■ [5]: posted headers

■ [4]: posted data

■ [3]: non-posted header

■ [2]: non-posted data

■ [1]: completion header

■ [0]: completion data

tx_cred_hdrfccp 8 O component
specific

Header credit limit for transmission of completions. Each
credit is 20 bytes.

tx_cred_hdrfcnp 8 O component
specific

Header limit for transmission of non-posted requests. Each
credit is 20 bytes.

tx_cred_hdrfcp 8 O component
specific

Header credit limit for transmission of posted writes. Each
credit is 20 bytes.

ko_cpl_spc_header 8 O component
specific

ko_cpl_spc_header is a static signal that indicates the
total number of completion headers that can be stored in
the RX buffer. The Application Layer can use this signal to
build circuitry to prevent RX buffer overflow for completion
headers. Endpoints must advertise infinite space for
completion headers; however, RX buffer space is finite.

ko_cpl_spc_data 12 O component
specific

ko_cpl_spc_data is a static signal that reflects the total
number of 16 byte completion data units that can be stored
in the completion RX buffer. The total read data from all
outstanding MRd requests must be less than this value to
prevent RX FIFO overflow. The Application Layer can use
this signal to build circuitry to prevent RX buffer overflow
for completion data. Endpoints must advertise infinite
space for completion data; however, RX buffer space is
finite.

Note to Table 7–4:

(1) To be Avalon-ST compliant, your application have a readyLatency of 1 or 2 cycles.

Table 7–4. 64- or 128-Bit Avalon-ST TX Datapath (Part 3 of 3)

Signal Width Dir Avalon-ST
Type Description
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

7–18 Chapter 7: IP Core Interfaces
Arria V Hard IP for PCI Express
Data Alignment and Timing for the 64-Bit Avalon-ST TX Interface
Figure 7–17 illustrates the mapping between Avalon-ST TX packets and PCI Express
TLPs for 3 dword header TLPs with non-qword aligned addresses with a 64-bit bus.
(Figure 7–3 on page 7–5 illustrates the storage of non-qword aligned data.)
Non-qword aligned addresses occur when address[2] is set. When address[2] is set,
tx_st_data[63:32]contains Data0 and tx_st_data[31:0] contains dword header2.

Figure 7–18 illustrates the mapping between Avalon-ST TX packets and PCI Express
TLPs for a four dword header with qword aligned addresses with a 64-bit bus.

Figure 7–19 illustrates the mapping between Avalon-ST TX packets and PCI Express
TLPs for four dword header with non-qword aligned addresses with a 64-bit bus.

Figure 7–17. 64-Bit Avalon-ST tx_st_data Cycle Definition for 3-Dword Header TLP with Non-Qword Aligned Address

coreclkout

tx_st_data[63:32]

tx_st_data[31:0]

tx_st_sop

tx_st_eop

Header1 Data0 Data2

Header0 Header2 Data1

Figure 7–18. 64-Bit Avalon-ST tx_st_data Cycle Definition for 4-Dword TLP with Qword Aligned Address

coreclkout

tx_st_data[63:32]

tx_st_data[31:0]

tx_st_sop

tx_st_eop

Header1 Header3 Data1

Header0 Header2 Data0

Figure 7–19. 64-Bit Avalon-ST tx_st_data Cycle Definition for TLP 4-Dword Header with Non-Qword Aligned Address

coreclkout

tx_st_data[63:32]

tx_st_data[31:0]

tx_st_sop

tx_st_eop

Header 1 Header3 Data0 Data2

Header 0 Header2 Data1
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 7: IP Core Interfaces 7–19
Arria V Hard IP for PCI Express
Figure 7–20 illustrates the timing of the TX interface when the Arria V Hard IP for PCI
Express IP core backpressures the Application Layer by deasserting tx_st_ready.
Because the readyLatency is two cycles, the Application Layer deasserts tx_st_valid
after two cycles and holds tx_st_data until two cycles after tx_st_ready is asserted.

Figure 7–21 illustrates back-to-back transmission of 64-bit packets with no intervening
dead cycles between the assertion of tx_st_eop and tx_st_sop.

Figure 7–20. 64-Bit Transaction Layer Backpressures the Application Layer

coreclkout

tx_st_sop

tx_st_eop

tx_st_ready

tx_st_valid

tx_st_data[63:0].. 00. . 00 ... BB... BB ... BBBB0306BBB0305A BB ... BB ... BB ... BB ... BB....

readyLatency readyLatency

Figure 7–21. 64-Bit Back-to-Back Transmission on the TX Interface

coreclkout

tx_st_sop

tx_st_eop

tx_st_ready

tx_st_valid

tx_st_data[63:0] 01 . 00 . BB . BB . BB . BB . B . . BB . 01 . 00 . CC . CC . CC . CC . CC . CC .
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

7–20 Chapter 7: IP Core Interfaces
Arria V Hard IP for PCI Express
Data Alignment and Timing for the 128-Bit Avalon-ST TX Interface
Figure 7–22 shows the mapping of 128-bit Avalon-ST TX packets to PCI Express TLPs
for a three dword header with qword aligned addresses.

Figure 7–23 shows the mapping of 128-bit Avalon-ST TX packets to PCI Express TLPs
for a 3 dword header with non-qword aligned addresses. It also shows tx_st_err
assertion.

Figure 7–22. 128-Bit Avalon-ST tx_st_data Cycle Definition for 3-Dword Header TLP with Qword Aligned Address

Data3

Header2 Data 2

Header1 Data1 Data(n)

Header0 Data0 Data(n-1)

coreclkout

tx_st_valid

tx_st_data[127:96]

tx_st_data[95:64]

tx_st_data[63:32]

tx_st_data[31:0]

tx_st_sop

tx_st_eop

tx_st_empty

Figure 7–23. 128-Bit Avalon-ST tx_st_data Cycle Definition for 3-Dword Header TLP with non-Qword Aligned Address

coreclkout

tx_st_valid

tx_st_data[127:96]

tx_st_data[95:64]

tx_st_data[63:32]

tx_st_data[31:0]

tx_st_sop

tx_st_err

tx_st_eop

tx_st_empty

Data0 Data 4

Header 2 Data 3

Header 1 Data 2 Data (n)

Header 0 Data 1 Data (n-1)
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 7: IP Core Interfaces 7–21
Arria V Hard IP for PCI Express
Figure 7–24 shows the mapping of 128-bit Avalon-ST TX packets to PCI Express TLPs
for a four dword header TLP with qword aligned data.

Figure 7–25 shows the mapping of 128-bit Avalon-ST TX packet s to PCI Express TLPs
for a four dword header TLP with non-qword aligned addresses. In this example,
tx_st_empty is low because the data ends in the upper 64 bits of tx_st_data.

Figure 7–24. 128-Bit Avalon-ST tx_st_data Cycle Definition for 4-Dword Header TLP with Qword Aligned Address

coreclkout

tx_st_data[127:96]

tx_st_data[95:64]

tx_st_data[63:32]

tx_st_data[31:0]

tx_st_sop

tx_st_eop

tx_st_empty

Header 3 Data 3

Header 2 Data 2

Header 1 Data 1

Header 0 Data 0 Data 4

tx_st_valid

Figure 7–25. 128-Bit Avalon-ST tx_st_data Cycle Definition for 4-Dword Header TLP with non-Qword Aligned Address

Header 3 Data 2

Header 2 Data 1 Data n

Header 1 Data 0 Data n-1

Header 0 Data n-2

coreclkout

tx_st_valid

tx_st_data[127:96]

tx_st_data[95:64]

tx_st_data[63:32]

tx_st_data[31:0]

tx_st_sop

tx_st_eop

tx_st_empty
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

7–22 Chapter 7: IP Core Interfaces
Arria V Hard IP for PCI Express
Figure 7–26 illustrates back-to-back transmission of 128-bit packets with no idle cycles
between the assertion of tx_st_eop and tx_st_sop.

Figure 7–27 illustrates the timing of the TX interface when the Arria V Hard IP for PCI
Express IP core backpressures the Application Layer by deasserting tx_st_ready.
Because the readyLatency is two cycles, the Application Layer deasserts tx_st_valid
after two cycles.

Root Port Mode Configuration Requests
If your Application Layer implements ECRC forwarding, it should not apply ECRC
forwarding to Configuration Type 0 packets that it issues on the Avalon-ST interface.
There should be no ECRC appended to the TLP, and the TD bit in the TLP header
should be set to 0. These packets are processed internally by the Hard IP block and
are not transmitted on the PCI Express link.

Figure 7–26. 128-Bit Back-to-Back Transmission on the Avalon-ST TX Interface

coreclkout

tx_st_data[127:0]

tx_st_sop

tx_st_eop

tx_st_empty

tx_st_ready

tx_st_valid

tx_st_err

.. .

Figure 7–27. 128-Bit Hard IP Backpressures the Application Layer

coreclkout

tx_st_data[127:0]

tx_st_sop

tx_st_eop

tx_st_empty

tx_st_ready

tx_st_valid

tx_st_err

000 CC... CC... CC... . CC... CC... CC... CC... CC... CC... CC... CC...
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 7: IP Core Interfaces 7–23
Arria V Hard IP for PCI Express
To ensure proper operation when sending Configuration Type 0 transactions in Root
Port mode, the application should wait for the Configuration Type 0 transaction to be
transferred to the Hard IP for PCI Express Configuration Space before issuing another
packet on the Avalon-ST TX port. You can do this by waiting for the core to respond
with a completion on the Avalon-ST RX port before issuing the next Configuration
Type 0 transaction.

ECRC Forwarding
On the Avalon-ST interface, the ECRC field follows the same alignment rules as
payload data. For packets with payload, the ECRC is appended to the data as an extra
dword of payload. For packets without payload, the ECRC field follows the address
alignment as if it were a one dword payload. Depending on the address alignment,
Figure 7–6 on page 7–9 through Figure 7–13 on page 7–13 illustrate the position of the
ECRC data for RX data. Figure 7–17 on page 7–18 through Figure 7–25 on page 7–21
illustrate the position of ECRC data for TX data. For packets with no payload data, the
ECRC corresponds to the position of Data0 in these figures.

Clock Signals
Table 7–5 describes the clock signals that comprise the clock interface.

Refer to Chapter 9, Reset and Clocks for more information about the clock interface.

Reset Signals
Table 7–6 describes the reset signals.

Table 7–5. Clock Signals Hard IP Implementation (1)

Signal I/O Description

refclk I Reference clock for the Arria V Hard IP for PCI Express. It must have the frequency specified
under the System Settings heading in the parameter editor.

pld_clk I Clocks the Application Layer. You must drive this clock with coreclkout_hip.

coreclkout_hip O
This is a fixed frequency clock used by the Data Link and Transaction Layers. To meet PCI
Express link bandwidth constraints, this clock has minimum frequency requirements as listed
in Table 9–2 on page 9–7.

Note to Table 7–5:

(1) Figure 9–5 on page 9–6 illustrates these clock signals.

Table 7–6. Reset and Link Training Signals (Part 1 of 3)

Signal I/O Description

npor I
Active low reset signal. It is the OR of pin_perst and the local_rstn signal coming from
software Application Layer. If you do not drive a soft reset signal from the Application Layer,
this signal must be derived from pin_perst. You cannot disable this signal.

reset_status O

Active high reset status signal. When asserted, this signal indicates that the Hard IP clock is
in reset. The reset_status signal is synchronous to the pld_clk clock and is deasserted
only when the npor is deasserted and the Hard IP for PCI Express is not in reset
(reset_status_hip = 0). You should use reset_status to drive the reset of your
application.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

7–24 Chapter 7: IP Core Interfaces
Arria V Hard IP for PCI Express
pin_perstn I

Active low reset from the PCIe reset pin of the device. This reset signal is an input to the
embedded reset controller for PCI Express in Arria V devices. It resets the datapath and
control registers. This signal is required for CvP.

Although CvP is not supported in the current release, Altera is providing the following
information about the placement of the pin_perstn pins to facilitate advanced layout of
PCBs. Arria V devices have 1 or 2 instances of the Hard IP for PCI Express. Each instance
has its own pin_perst signal.

Every Arria V devices has 2 nPERST pins, even devices with fewer than 2 instances of the
Hard IP for PCI Express. These pins have the following locations:

■ nPEcRSTL0: bottom left Hard IP and CvP blocks

■ nPERSTL1: top left Hard IP block

For maximum use of the Arria V device, Altera recommends that you use the bottom left
Hard IP first. This is the only location that supports CvP over a PCIe link.

Refer to the appropriate Arria V device pinout for correct pin assignment for more detailed
information about these pins. The PCI Express Card Electromechanical Specification 2.0
specifies this pin to require 3.3 V. You can drive this 3.3V signal to the pin_perst pin even
if the VCCIO of the bank is not 3.3V if the following 2 conditions are met:

■ The input signal meets the VIH and VIL specification for LVTTL.

■ The input signal meets the overshoot specification for 100°C operation as specified by the
“Maximum Allowed Overshoot and Undershoot Voltage” section in the Device Datasheet
for Arria V Devices in volume 1 of the Arria Device Handbook.

Refer to Figure 7–28 on page 7–25 for a timing diagram illustrating the use of this signal.

serdes_pll_locked O When asserted, indicates that the PLL that generates the coreclkout_hip clock signal is
locked. In pipe simulation mode this signal is always asserted.

pld_core_ready I
When asserted, indicates that the Application Layer is ready for operation and is providing a
stable clock to the pld_clk input. If the coreclkout_hip Hard IP output clock is sourcing
the pld_clk Hard IP input, this input can be connected to the serdes_pll_locked output.

pld_clk_inuse O

When asserted, indicates that the Hard IP Transaction Layer is using the pld_clk as its
clock and is ready for operation with the Application Layer. For reliable operation, hold the
Application Layer in reset until pld_clk_inuse is asserted.

Do not drive data input to the Hard IP before pld_clk_inuse is asserted. pld_clk_inuse
and pld_core_ready are typically used as handshaking signals after programming the
FPGA fabric with CvP. These handshaking signals ensure a reliable Hard IP clock switchover
from an internal clock used during the CvP operation to the pld_clk Hard IP input clock.

dlup_exit O

This signal is active for one pld_clk cycle when the IP core exits the DLCMSM DL_Up state,
indicating that the Data Link Layer has lost communication with the other end of the PCIe
link and left the Up state. This signal should cause the Application Layer to assert a global
reset. This signal is active low and otherwise remains high.

ev128ns O Asserted every 128 ns to create a time base aligned activity.

ev1us O Asserted every 1 µs to create a time base aligned activity.

hotrst_exit O
Hot reset exit. This signal is asserted for 1 clock cycle when the LTSSM exits the hot reset
state. This signal should cause the Application Layer to assert a global reset to its logic. This
signal is active low and otherwise remains high.

l2_exit O L2 exit. This signal is active low and otherwise remains high. It is asserted for one cycle
(changing value from 1 to 0 and back to 1) after the LTSSM transitions from l2_idl to detect.

Table 7–6. Reset and Link Training Signals (Part 2 of 3)

Signal I/O Description
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www.pcisig.com/home
http://www.altera.com/literature/hb/arria-v/av_51002.pdf
http://www.altera.com/literature/hb/arria-v/av_51002.pdf

Chapter 7: IP Core Interfaces 7–25
Arria V Hard IP for PCI Express
Figure 7–28 illustrates the timing relationship between npor and the LTSSM L0 state.

dl_ltssm[4:0] O

LTSSM state: The LTSSM state machine encoding defines the following states:

■ 00000: detect.quiet
■ 00001: detect.active
■ 00010: polling.active
■ 00011: polling.compliance
■ 00100: polling.configuration
■ 00101: polling.speed
■ 00110: config.linkwidthstart
■ 00111: config.linkaccept
■ 01000: config.lanenumaccept
■ 01001: config.lanenumwait
■ 01010: config.complete
■ 01011: config.idle
■ 01100: recovery.rcvlock
■ 01101: recovery.rcvconfig
■ 01110: recovery.idle
■ 01111: L0
■ 10000: disable
■ 10001: loopback.entry
■ 10010: loopback.active
■ 10011: loopback.exit
■ 10100: hot.reset
■ 10101: L0s
■ 10110: L1.entry
■ 10111: L1.idle
■ 11000: L2.idle
■ 11001: L2.transmit.wake
■ 11010: recovery.speed

Table 7–6. Reset and Link Training Signals (Part 3 of 3)

Signal I/O Description

Figure 7–28. 100 ms Requirement

npor

IO_POF_Load

PCIe_LinkTraining_Enumeration

dl_ltssm[4:0]
detect.
quiet detect.active polling.active L0

100 ms (maximum)
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

7–26 Chapter 7: IP Core Interfaces
Arria V Hard IP for PCI Express
ECC Error Signals
Table 7–7 describes the ECC error signals. When a correctable ECC error occurs, the
Arria V Hard IP for PCI Express recovers without any loss of information. No
Application Layer intervention is required. In the case of uncorrectable ECC error, the
data in retry buffer is cleared. Altera recommends that you reset the Hard IP for PCI
Express IP Core.

Interrupts for Endpoints
Table 7–8 describes the IP core’s interrupt signals for Endpoints. These signals are
level sensitive. Refer to Chapter 11, Interrupts for descriptions of all interrupt
mechanisms.

Table 7–7. ECC Error Signals for Hard IP Implementation (1)

Signal I/O Description

derr_cor_ext_rcv0 O

Indicates a corrected error in the RX buffer. This signal is for debug only. It
is not valid until the RX buffer is filled with data. This is a pulse, not a level,
signal. Internally, the pulse is generated with the 250 MHz clock. A pulse
extender extends the signal so that the FPGA fabric running at 125 MHz
can capture it. Because the error was corrected by the IP core, no
Application Layer intervention is required. (2)

derr_rpl O Indicates an uncorrectable error in the retry buffer. This signal is for debug
only. (2)

derr_cor_ext_rpl O
Indicates a corrected ECC error in the retry buffer. This signal is for debug
only. Because the error was corrected by the IP core, no Application Layer
intervention is required. (2)

Note to Table 7–7:

(1) The Avalon-ST rx_st_err described in Table 7–3 on page 7–5 indicates an uncorrectable error in the RX buffer.
(2) Debug signals are not rigorously verified and should only be used to observe behavior..

Table 7–8. Interrupt Signals for Endpoints (Part 1 of 2)

Signal I/O Description

app_msi_req I

Application Layer MSI request. Assertion causes an MSI posted write TLP to be generated
based on the MSI configuration register values and the tl_app_msi_tc and app_msi_num
input ports. In Root Port mode, the core generates an MSI TLP to the Root Port over the
Avalon-ST RX interface. In this case, the header bit[127] of rx_st_data is set to 1 to
indicate that the TLP being forwarded to the Application Layer was generated in response
to an assertion of the app_msi_req pin; otherwise, bit[127] is set to 0.

app_msi_ack O Application Layer MSI acknowledge. This signal acknowledges the Application Layer's
request for an MSI interrupt.

app_msi_tc[2:0] I Application Layer MSI traffic class. This signal indicates the traffic class used to send the
MSI (unlike INTX interrupts, any traffic class can be used to send MSIs).

app_msi_num[4:0] I

MSI number of the Application Layer. This signal provides the low order message data
bits to be sent in the message data field of MSI messages requested by tl_app_msi_req.
Only bits that are enabled by the MSI Message Control register apply. Refer to Table 7–15
on page 7–36 for more information.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 7: IP Core Interfaces 7–27
Arria V Hard IP for PCI Express
Interrupts for Root Ports
Table 7–9 describes the signals available to a Root Port to handle interrupts.

Completion Side Band Signals
Table 7–10 describes the signals that comprise the completion side band signals for the
Avalon-ST interface. The Arria V Hard IP for PCI Express provides a completion error
interface that the Application Layer can use to report errors, such as programming
model errors. When the Application Layer detects an error, it can assert the
appropriate cpl_err bit to indicate what kind of error to log. The Hard IP sets the
appropriate status bits for the errors in the Configuration Space, and automatically
sends error messages in accordance with the PCI Express Base Specification. Note that
the Application Layer is responsible for sending the completion with the appropriate
completion status value for non-posted requests. Refer to Chapter 14, Error Handling
for information on errors that are automatically detected and handled by the Hard IP.

app_msi_func[2:0] I Indicates which function is asserting an interrupt with 0 corresponding to function 0, 1
corresponding to function 1, and so on.

app_int_sts_vec[7:0] I

Level active interrupt signal. Bit 0 corresponds to function 0, and so on. Drives the INTx
line for that function. The core maps this status to INT A/B/C/D according to each
function’s Interrupt_Pin register. The core internally wire-ORs the INT requests from
all sources, and generates INT MSGs on the rising/falling edges of the wire-ORed result.
The core logs the tl_app_int_sts_vec status in each functions’ PCI Status register.

Table 7–8. Interrupt Signals for Endpoints (Part 2 of 2)

Signal I/O Description

Table 7–9. Interrupt Signals for Root Ports

Signal I/O Description

int_status[3:0] O

These signals drive legacy interrupts to the Application Layer as follows:

■ int_status[0]: interrupt signal A

■ int_status[1]: interrupt signal B

■ int_status[2]: interrupt signal C

■ int_status[3]: interrupt signal D

aer_msi_num[4:0] I

Advanced error reporting (AER) MSI number. Provides the low-order message data bits to
be sent in the message data field of the MSI messages associated with the AER capability
structure. Only bits that are enabled by the MSI Message Control register are used. For
Root Ports only.

pex_msi_num[4:0] I

Power management MSI number. This signal provides the low-order message data bits to
be sent in the message data field of MSI messages associated with the PCI Express
capability structure. Only bits that are enabled by the MSI Message Control register are
used. For Root Ports only.

serr_out O

System Error: This signal only applies to Root Port designs that report each system error
detected, assuming the proper enabling bits are asserted in the Root Control register
and the Device Control register. If enabled, serr_out is asserted for a single clock
cycle when a system error occurs. System errors are described in the PCI Express Base
Specification 1.1 or 2.0. in the Root Control register.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com/home
http://www.pcisig.com/home
http:/www.pcisig.com

7–28 Chapter 7: IP Core Interfaces
Arria V Hard IP for PCI Express
Table 7–10. Completion Signals for the Avalon-ST Interface (Part 1 of 2)

Signal I/O Description

cpl_err[6:0] I

Completion error. This signal reports completion errors to the Configuration
Space. When an error occurs, the appropriate signal is asserted for one cycle.

■ cpl_err[0]: Completion timeout error with recovery. This signal should be
asserted when a master-like interface has performed a non-posted request
that never receives a corresponding completion transaction after the 50 ms
timeout period when the error is correctable. The Hard IP automatically
generates an advisory error message that is sent to the Root Complex.

■ cpl_err[1]: Completion timeout error without recovery. This signal should
be asserted when a master-like interface has performed a non-posted request
that never receives a corresponding completion transaction after the 50 ms
time-out period when the error is not correctable. The Hard IP automatically
generates a non-advisory error message that is sent to the Root Complex.

■ Completer abort error. The Application Layer asserts this signal to respond to
a non-posted request with a Completer Abort (CA) completion. The
Application Layer generates and sends a completion packet with Completer
Abort (CA) status to the requestor and then asserts this error signal to the
Hard IP. The Hard IP automatically sets the error status bits in the
Configuration Space register and sends error messages in accordance with
the PCI Express Base Specification, Rev. 2.1.

■ cpl_err[3]: Unexpected completion error. This signal must be asserted
when an Application Layer master block detects an unexpected completion
transaction. Many cases of unexpected completions are detected and reported
internally by the Transaction Layer. For a list of these cases, refer to
“Transaction Layer Errors” on page 14–3.

■ cpl_err[4]: Unsupported Request (UR) error for posted TLP. The
Application Layer asserts this signal to treat a posted request as an
Unsupported Request. The Hard IP automatically sets the error status bits in
the Configuration Space register and sends error messages in accordance
with the PCI Express Base Specification. Many cases of Unsupported
Requests are detected and reported internally by the Transaction Layer. For a
list of these cases, refer to “Transaction Layer Errors” on page 14–3.

■ cpl_err[5]: Unsupported Request error for non-posted TLP. The Application
Layer asserts this signal to respond to a non-posted request with an
Unsupported Request (UR) completion. In this case, the Application Layer
sends a completion packet with the Unsupported Request status back to the
requestor, and asserts this error signal. The Hard IP automatically sets the
error status bits in the Configuration Space Register and sends error
messages in accordance with the PCI Express Base Specification. Many
cases of Unsupported Requests are detected and reported internally by the
Transaction Layer. For a list of these cases, refer to “Transaction Layer Errors”
on page 14–3.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www.pcisig.com
http://www.pcisig.com
http://www.pcisig.com

Chapter 7: IP Core Interfaces 7–29
Arria V Hard IP for PCI Express
f For a description of the completion rules, the completion header format, and
completion status field values, refer to Section 2.2.9 of the PCI Express Base
Specification, Rev. 2.1.

Transaction Layer Configuration Space Signals
Table 7–11 describes the Transaction Layer Configuration Space signals.

cpl_err[6:0]
(continued)

■ cpl_err[6]: Log header. If header logging is required, this bit must be set in
every cycle in which any of cpl_err[2], cpl_err[3], cpl_err[4], or
cpl_err[5]is asserted. The Application Layer presents the header to the
Hard IP by writing the following values to the following 4 registers using LMI
before asserting cpl_err[6]:

■ lmi_addr: 12'h81C, lmi_din: err_desc_func0[127:96]

■ lmi_addr: 12'h820, lmi_din: err_desc_func0[95:64]

■ lmi_addr: 12'h824, lmi_din: err_desc_func0[63:32]

■ lmi_addr: 12'h828, lmi_din: err_desc_func0[31:0]

Refer to the “LMI Signals” on page 7–37 for more information about LMI
signalling.

Due to clock-domain synchronization circuitry, cpl_err is limited to at most 1
assertion every 8 pld_clk cycles. Whenever cpl_err is asserted,
cpl_err_func[2:0] should be updated in the same cycle.

cpl_err_func[2:0] I

Specifies which function is requesting the cpl_err. Must be asserted when
cpl_err asserts. Due to clock-domain synchronization circuitry, cpl_err is
limited to at most 1 assertion every 8 pld_clk cycles. Whenever cpl_err is
asserted, cpl_err_func[2:0] should be updated in the same cycle.

cpl_pending[7:0] I

Completion pending. The Application Layer must assert this signal when a
master block is waiting for completion, for example, when a transaction is
pending. This is a level sensitive input. A bit is provided for each function, where
bit 0 corresponds to function 0, and so on.

Table 7–10. Completion Signals for the Avalon-ST Interface (Part 2 of 2)

Signal I/O Description

Table 7–11. Configuration Space Signals (Hard IP Implementation) (Part 1 of 2)

Signal Dir Description

tl_cfg_add[6:0] 0

Address of the register that has been updated. This signal is an index indicating which
Configuration Space register information is being driven onto tl_cfg_ctl. The indexing
is defined inTable 7–13 on page 7–33.The index increments every 8 coreclkout_hip
cycles. The index consists of the following 2 pars:

■ [6:4] - indicates the function number whose information is being presented on
tl_cfg_ctl

■ [3:0] - the tl_cfg_ctl multiplexor index

tl_cfg_ctl[31:0] 0
The tl_cfg_ctl signal is multiplexed and contains the contents of the Configuration
Space registers. The information presented on this bus depends on the tl_cfg_add index
according toTable 7–13 on page 7–33.

tl_cfg_ctl_wr 0
Write signal. This signal toggles when tl_cfg_ctl has been updated (every 8 core_clk
cycles). The toggle edge marks where the tl_cfg_ctl data changes. You can use this
edge as a reference to determine when the data is safe to sample.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com
http://www.pcisig.com

7–30 Chapter 7: IP Core Interfaces
Arria V Hard IP for PCI Express
tl_cfg_sts[122:0] 0

Configuration status bits. This information updates every pld_clk cycle. Bits[52:0] record
status information for function0. Bits[62:53] record information for function1. Bits[72:63]
record information for function 2, and so on. Refer to Table 7–12 for a detailed description
of the status bits.

tl_cfg_sts_wr 0
Write signal. This signal toggles when tl_cfg_sts has been updated (every 8 core_clk
cycles). The toggle marks the edge where tl_cfg_sts data changes. You can use this
edge as a reference to determine when the data is safe to sample.

tl_hpg_ctrl_er[4:0] I

The tl_hpg_ctrl_er signals are only available in Root Port mode and when the Slot
Capability register is enabled. Refer to the Use Slot register parameter in Table 4–5 on
page 4–6. For Endpoint variations the tl_hpg_ctrl_er input should be hardwired to 0s.
The bits have the following meanings:

■ [0]: Attention button pressed. This signal should be asserted when the attention button
is pressed. If no attention button exists for the slot, this bit should be hardwired to 0,
and the Attention Button Present bit (bit[0]) in the Slot Capability register is set
to 0.

■ [1]: Presence detect. This signal should be asserted when a presence detect circuit
detects a presence change in the slot.

■ [2]: Manually-operated retention latch (MRL) sensor changed. This signal should be
asserted when an MRL sensor indicates that the MRL is Open. If an MRL Sensor does
not exist for the slot, this bit should be hardwired to 0, and the MRL Sensor Present bit
(bit[2]) in the Slot Capability register is to 0.

■ [3]:Power fault detected. This signal should be asserted when the power controller
detects a power fault for this slot. If this slot has no power controller, this bit should be
hardwired to 0, and the Power Controller Present bit (bit[1]) in the Slot Capability
register is set to 0.

■ [4]: Power controller status. This signal is used to set the command completed bit of
the Slot Status register. Power controller status is equal to the power controller
control signal. If this slot has no power controller, this bit should be hardwired to 0 and
the Power Controller Present bit (bit[1]) in the Slot Capability register is set to 0.

Table 7–11. Configuration Space Signals (Hard IP Implementation) (Part 2 of 2)

Signal Dir Description
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 7: IP Core Interfaces 7–31
Arria V Hard IP for PCI Express
Table 7–12 describes the bits of the tl_cfg_sts bus for all eight functions. Refer to
Table 7–13 on page 7–33 for the layout of the configuration control and status
information.

Table 7–12. Mapping Between tl_cfg_sts and Configuration Space Registers (Part 1 of 2)

tl_cfg_sts Configuration Space Register Description

[62:59] Func1
[72:69] Func2
[82:79] Func3
[92:89] Func4
[102:99] Func5
[112:109] Func6
[122:119] Func7

Device Status Reg[3:0]

Records the following errors:

■ Bit 3: unsupported request

■ Bit 2: fatal error

■ Bit 1: non-fatal error

■ Bit 0: correctable error

[58:54] Func1
[68:64] Func2
[78:74] Func3
[88:84] Func4
[98:94] Func5
[108:104] Func6
[118:114] Func7

Link Status Reg[15:11]

Link status bits as follows:

■ Bit 15: link autonomous bandwidth status

■ Bit 14: link bandwidth management status

■ Bit 13: Data Link Layer link active

■ Bit 12: slot clock configuration

■ Bit 11: link training

[53] Func1
[63] Func2
[73] Func3
[83] Func4
[93] Func5
[103] Func6
[113] Func7

Secondary Status Register[8] 6th primary command status error bit. Master data parity error.

[52:49] Device Status Register[3:0]

Records the following errors:

■ Bit 3: unsupported request detected

■ Bit 2: fatal error detected

■ Bit 1: non-fatal error detected

■ Bit 0: correctable error detected

[48] Slot Status Register[8] Data Link Layer state changed

[47] Slot Status Register[4] Command completed. (The hot plug controller completed a
command.)

[46:31] Link Status Register[15:0]

Records the following link status information:

■ Bit 15: link autonomous bandwidth status

■ Bit 14: link bandwidth management status

■ Bit 13: Data Link Layer link active

■ Bit 12: Slot clock configuration

■ Bit 11: Link Training

■ Bit 10: Undefined

■ Bits[9:4]: Negotiated Link Width

■ Bits[3:0] Link Speed

[30] Link Status 2 Register[0] Current de-emphasis level.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

7–32 Chapter 7: IP Core Interfaces
Arria V Hard IP for PCI Express
Configuration Space Register Access Timing
Figure 7–29 shows typical traffic on the tl_cfg_ctl bus. The tl_cfg_add index
update every eight coreclkout_hip, specifying which Configuration Space register
information is being driven onto tl_cfg_ctl.

[29:25]
 Status Register[15:11]

Records the following 5 primary command status errors:

■ Bit 15: detected parity error

■ Bit 14: signaled system error

■ Bit 13: received master abort

■ Bit 12: received target abort

■ Bit 11: signalled target abort

[24]
Secondary Status Register[8]

Master data parity error

[23:6]
Root Status Register[17:0]

Records the following PME status information:

■ Bit 17: PME pending

■ Bit 16: PME status

■ Bits[15:0]: PME request ID[15:0]

[5:1] Secondary Status Register[15:11]

Records the following 5 secondary command status errors:

■ Bit 15: detected parity error

■ Bit 14: received system error

■ Bit 13: received master abort

■ Bit 12: received target abort

■ Bit 11: signalled target abort

[0] Secondary Status Register[8] Master Data Parity Error

Table 7–12. Mapping Between tl_cfg_sts and Configuration Space Registers (Part 2 of 2)

tl_cfg_sts Configuration Space Register Description

Figure 7–29. tl_cfg_ctl Timing

coreclkout_hip

tl_cfg_add[3:0]

tl_cfg_ctl[31:0]

D E F 0 1 2 3

00000084 00000000 28100000 08000000 00000002
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 7: IP Core Interfaces 7–33
Arria V Hard IP for PCI Express
Configuration Space Register Access
The tl_cfg_ctl signal is a multiplexed bus that contains the contents of
Configuration Space registers as shown in Table 7–11. Information stored in the
Configuration Space is accessed in round robin order where tl_cfg_add indicates
which register is being accessed. Table 7–13 shows the layout of configuration
information that is multiplexed on tl_cfg_ctl.

Table 7–14 describes the Configuration Space registers referred to in Table 7–11 and
Table 7–13.

Table 7–13. Multiplexed Configuration Register Information Available on tl_cfg_ctl (1)

Index 31:24 23:16 15:8 7:0

0
cfg_dev_ctrl_func<n>[15:0]

cfg_dev_ctrl2[15:0]

cfg_dev_ctrl[14:12]=
Max Read Req Size (2)

cfg_dev_ctrl[7:5]=
Max Payload (2)

1 16’h0000 cfg_slot_ctrl[15:0]

2 cfg_link_ctrl[15:0] cfg_link_ctrl2[15:0]

3 8’h00 cfg_prm_cmd_func<n>[15:0] cfg_root_ctrl[7:0]

4 cfg_sec_ctrl[15:0] cfg_secbus[7:0] cfg_subbus[7:0]

5 cfg_msi_addr[11:0] cfg_io_bas[19:0]

6 cfg_msi_addr[43:32] cfg_io_lim[19:0]

7 8h’00 cfg_np_bas[11:0] cfg_np_lim[11:0]

8 cfg_pr_bas[31:0]

9 cfg_msi_addr[31:12] cfg_pr_bas[43:32]

A cfg_pr_lim[31:0]

B cfg_msi_addr[63:44] cfg_pr_lim[43:32]

C cfg_pmcsr[31:0]

D cfg_msixcsr[15:0] cfg_msicsr[15:0]

E
6’h00,

tx_ecrcgen[25], (3)
rx_ecrccheck[24]

cfg_tcvcmap[23:0]

F cfg_msi_data[15:0] 3’b000 cfg_busdev[12:0]

Notes to Table 7–13:

(1) Items in blue are only available for Root Ports.
(2) This field is encoded as specified in Section 7.8.4 of the PCI Express Base Specification. (3’b000–3’b101 correspond to 128–4096 bytes).
(3) rx_ecrccheck and tx_ecrcgen are bit s 24 and 25 of tl_cfg_ctl, respectively. (Other bit specifications in this table indicate the bit location

within the Configuration Space register.)

Table 7–14. Configuration Space Register Descriptions (Part 1 of 4)

Register Width Dir Description Register
Reference

cfg_dev_ctrl_func<n> 16 O cfg_dev_ctrl_func<n>[15:0] is Device Control
register for the PCI Express capability structure.

Table 8–7 on
page 8–4

cfg_dev_ctrl2 16 O cft_dev_ctrl2[31:16] is Device Control register 2 for
the PCI Express capability structure.

Table 8–8 on
page 8–4
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com/home

7–34 Chapter 7: IP Core Interfaces
Arria V Hard IP for PCI Express
cfg_slot_ctrl 16 O
cfg_slotcsr[15:0] is the Slot Control register of the PCI
Express capability structure. This register is only available
in Root Port mode.

Table 8–7 on
page 8–4
Table 8–8 on
page 8–4

cfg_link_ctrl 16 O cfg_link_ctrl[15:0]is the primary Link Control
register of the PCI Express capability structure.

Table 8–7 on
page 8–4
Table 8–8 on
page 8–4

cfg_link_ctrl2 16 O

cfg_link2csr[15:0]is the secondary Link Control
register of the PCI Express capability structure for Gen2
operation.

When tl_cfg_addr=2, tl_cfg_ctl returns the primary
and secondary Link Control registers,
{cfg_link_ctrl[15:0], cfg_link_ctrl2[15:0]},
the primary Link Status register contents is available on
tl_cfg_sts[46:31].

For Gen1 variants, the link bandwidth notification bit is
always set to 0. For Gen2 variants, this bit is set to 1.

Table 8–8 on
page 8–4

cfg_prm_cmd_func<n> 16 O Base/Primary Command and Status register for the PCI
Configuration Space.

Table 8–2 on
page 8–2
0x004 (Type 0)
Table 8–3 on
page 8–2
0x004 (Type 1)

cfg_root_ctrl 8 O Root Control register of the PCI-Express capability. This
register is only available in Root Port mode.

Table 8–7 on
page 8–4
Table 8–8 on
page 8–4

cfg_sec_ctrl 16 O Secondary bus Control register of the PCI-Express
capability. This register is only available in Root Port mode.

Table 8–3 on
page 8–2
0x01C

cfg_secbus 8 O Secondary bus number. Available in Root Port mode.
Table 8–3 on
page 8–2
0x018

cfg_subbus 8 O Subordinate bus number. Available in Root Port mode.
Table 8–3 on
page 8–2
0x018

cfg_msi_addr[31:0] 32 O Maps to the lower 32 bits of the MSI address of the MSI
Capability Structure.

Table 8–4 on
page 8–3
0x050

cfg_msi_addr[63:32] 32 O Maps to the upper 32 bits of the MSI address of the MSI
Capability Structure

Table 8–4 on
page 8–3
0x050

cfg_io_bas 20 O
The upper 20 bits of the IO limit registers of the Type1
Configuration Space. This register is only available in Root
Port mode.

Table 8–3 on
page 8–2
0x01C

Table 7–14. Configuration Space Register Descriptions (Part 2 of 4)

Register Width Dir Description Register
Reference
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 7: IP Core Interfaces 7–35
Arria V Hard IP for PCI Express
cfg_io_lim 20 O
The upper 20 bits of the IO limit registers of the Type1
Configuration Space. This register is only available in Root
Port mode.

Table 8–8 on
page 8–4
0x01C

cfg_np_bas 12 O
The upper 12 bits of the memory base register of the Type1
Configuration Space. This register is only available in Root
Port mode.

Table 4–7 on
page 4–8
EXP ROM

cfg_np_lim 12 O
The upper 12 bits of the memory limit register of the Type1
Configuration Space. This register is only available in Root
Port mode.

Table 4–7 on
page 4–8
EXP ROM

cfg_pr_bas 44 O
The upper 44 bits of the prefetchable base registers of the
Type1 Configuration Space. This register is only available in
Root Port mode.

Table 8–3 on
page 8–2
0x024 and

Table 4–7 on
page 4–8
Prefetchable
memory

cfg_pr_lim 44 O The upper 44 bits of the prefetchable limit registers of the
Type1 Configuration Space. Available in Root Port mode.

Table 8–3 on
page 8–2
0x024 and

Table 4–7 on
page 4–8
Prefetchable
memory

cfg_pmcsr 32 O
cfg_pmcsr[31:16] is Power Management Control and
cfg_pmcsr[15:0]is the Power Management Status
register.

Table 8–6 on
page 8–4
0x07C

cfg_msix_ctrl 16 O MSI-X message control.
Table 8–5 on
page 8–3
0x068

cfg_msi_ctrl 16 O MSI message control. Refer to Table 7–15 for the fields of
this register.

Table 8–4 on
page 8–3
0x050

cfg_tcvcmap 24 O

Configuration traffic class (TC)/virtual channel (VC)
mapping. The Application Layer uses this signal to generate
a TLP mapped to the appropriate channel based on the
traffic class of the packet.

cfg_tcvcmap[2:0]: Mapping for TC0 (always 0).
cfg_tcvcmap[5:3]: Mapping for TC1.
cfg_tcvcmap[8:6]: Mapping for TC2.
cfg_tcvcmap[11:9]: Mapping for TC3.
cfg_tcvcmap[14:12]: Mapping for TC4.
cfg_tcvcmap[17:15]: Mapping for TC5.
cfg_tcvcmap[20:18]: Mapping for TC6.
cfg_tcvcmap[23:21]: Mapping for TC7.

—

Table 7–14. Configuration Space Register Descriptions (Part 3 of 4)

Register Width Dir Description Register
Reference
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

7–36 Chapter 7: IP Core Interfaces
Arria V Hard IP for PCI Express
f Refer to the PCI Local Bus Specification for descriptions of the Control registers.

Table 7–15 describes the use of the various fields of the Configuration MSI Control
and Status Register.

cfg_msi_data 16 O cfg_msi_data[15:0] is message data for MSI.
Table 7–4 on
page 7–3
0x050

cfg_busdev 13 O Bus/Device Number captured by or programmed in the
Hard IP.

Table A–5 on
page A–ii
0x08

Table 7–14. Configuration Space Register Descriptions (Part 4 of 4)

Register Width Dir Description Register
Reference

Table 7–15. Configuration MSI Control Register Field Descriptions

Bit(s) Field Description

[15:9] reserved —

[8] mask
capability

Per vector masking capable. This bit is hardwired to 0 because the functions do not
support the optional MSI per vector masking using the Mask_Bits and
Pending_Bits registers defined in the PCI Local Bus Specification, Rev. 3.0. Per
vector masking can be implemented using Application Layer registers.

[7]
64-bit
address

capability

64-bit address capable

■ 1: function capable of sending a 64-bit message address

■ 0: function not capable of sending a 64-bit message address

[6:4]
multiples
message
enable

Multiple message enable: This field indicates permitted values for MSI signals. For
example, if “100” is written to this field 16 MSI signals are allocated

■ 000: 1 MSI allocated

■ 001: 2 MSI allocated

■ 010: 4 MSI allocated

■ 011: 8 MSI allocated

■ 100: 16 MSI allocated

■ 101: 32 MSI allocated

■ 110: Reserved

■ 111: Reserved

[3:1]
multiple
message
capable

Multiple message capable: This field is read by system software to determine the
number of requested MSI messages.

■ 000: 1 MSI requested

■ 001: 2 MSI requested

■ 010: 4 MSI requested

■ 011: 8 MSI requested

■ 100: 16 MSI requested

■ 101: 32 MSI requested

■ 110: Reserved

[0] MSI Enable If set to 0, this component is not permitted to use MSI.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www.pcisig.com/home
http://www.pcisig.com

Chapter 7: IP Core Interfaces 7–37
Arria V Hard IP for PCI Express
LMI Signals
LMI interface is used to write log error descriptor information in the TLP header log
registers. The LMI access to other registers is intended for debugging, not normal
operation.

Figure 7–30 illustrates the LMI interface.

The LMI interface is synchronized to pld_clk and runs at frequencies up to 250 MHz.
The LMI address is the same as the Configuration Space address. The read and write
data are always 32 bits. The LMI interface provides the same access to Configuration
Space registers as Configuration TLP requests. Register bits have the same attributes,
(read only, read/write, and so on) for accesses from the LMI interface and from
Configuration TLP requests. For more information about the Configuration Space
signals, refer to “Transaction Layer Configuration Space Signals” on page 7–29.

When a LMI write has a timing conflict with configuration TLP access, the
configuration TLP accesses have higher priority. LMI writes are held and executed
when configuration TLP accesses are no longer pending. An acknowledge signal is
sent back to the Application Layer when the execution is complete.

All LMI reads are also held and executed when no configuration TLP requests are
pending. The LMI interface supports two operations: local read and local write. The
timing for these operations complies with the Avalon-MM protocol described in the
Avalon Interface Specifications. LMI reads can be issued at any time to obtain the
contents of any Configuration Space register. LMI write operations are not
recommended for use during normal operation. The Configuration Space registers are
written by requests received from the PCI Express link and there may be unintended
consequences of conflicting updates from the link and the LMI interface. LMI Write
operations are provided for AER header logging, and debugging purposes only.

c In Root Port mode, do not access the Configuration Space using TLPs and the LMI bus
simultaneously.

Figure 7–30. Local Management Interface

Configuration Space
128 32-bit registers

(4 KBytes)

LMI

32lmi_dout

lmi_ack

12lmi_addr

32lmi_din

lmi_rden

lmi_wren

pld_clk

 Hard IP for
PCI Express
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

7–38 Chapter 7: IP Core Interfaces
Arria V Hard IP for PCI Express
Table 7–16 describes the signals that comprise the LMI interface.

LMI Read Operation
Figure 7–31 illustrates the read operation.

LMI Write Operation
Figure 7–32 illustrates the LMI write. Only writeable configuration bits are
overwritten by this operation. Read-only bits are not affected. LMI write operations
are not recommended for use during normal operation with the exception of AER
header logging.

Table 7–16. LMI Interface

Signal Width Dir Description

lmi_dout 32 O Data outputs

lmi_rden 1 I Read enable input

lmi_wren 1 I Write enable input

lmi_ack 1 O Write execution done/read data valid

lmi_addr 15 I Address inputs, [1:0] not used

lmi_din 32 I Data inputs

Figure 7–31. LMI Read

Figure 7–32. LMI Write

pld_clk

lmi_rden

lmi_addr[14:0]

lmi_dout[31:0]

lmi_ack

coreclkout

lmi_wren

lmi_din[31:0]

lmi_addr[14:0]

lmi_ack
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 7: IP Core Interfaces 7–39
Arria V Hard IP for PCI Express
Power Management Signals
Table 7–17 describes the power management signals.

Table 7–17. Power Management Signals

Signal I/O Description

pme_to_cr I

Power management turn off control register.

Root Port—When this signal is asserted, the Root Port sends the PME_turn_off message.

Endpoint—This signal is asserted to acknowledge the PME_turn_off message by sending
pme_to_ack to the Root Port.

pme_to_sr O

Power management turn off status register.

Root Port—This signal is asserted for 1 clock cycle when the Root Port receives the
pme_turn_off acknowledge message.

Endpoint—This signal is asserted for 1 cycle when the Endpoint receives the
PME_turn_off message from the Root Port.

pm_event I

Power Management Event. This signal is only available for Endpoints.

The Endpoint initiates a a power_management_event message (PM_PME) that is sent to
the Root Port. If the Hard IP is in a low power state, the link exists from the low-power state
to send the message. This signal is positive edge-sensitive.

pm_event_func[2:0] I Specifies the function associated with a Power Management Event.

pm_data[9:0] I

Power Management Data.

This bus indicates power consumption of the component. This bus can only be
implemented if all three bits of AUX_power (part of the Power Management Capabilities
structure) are set to 0. This bus includes the following bits:

■ pm_data[9:2]: Data Register: This register maintains a value associated with the power
consumed by the component. (Refer to the example below)

■ pm_data[1:0]: Data Scale: This register maintains the scale used to find the power
consumed by a particular component and can include the following values:

b’00: unknown

b’01: 0.1 ×

b’10: 0.01 ×

b’11: 0.001 ×

For example, the two registers might have the following values:

■ pm_data[9:2]: b’1110010 = 114

■ pm_data[1:0]: b’10, which encodes a factor of 0.01

To find the maximum power consumed by this component, multiply the data value by the
data Scale (114 × .01 = 1.14). 1.14 watts is the maximum power allocated to this
component in the power state selected by the data_select field.

pm_auxpwr I Power Management Auxiliary Power: This signal can be tied to 0 because the L2 power
state is not supported.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

7–40 Chapter 7: IP Core Interfaces
Arria V Hard IP for PCI Express
Table 7–18 shows the layout of the Power Management Capabilities register.

Table 7–19 describes the use of the various fields of the Power Management
Capabilities register.

Figure 7–33 illustrates the behavior of pme_to_sr and pme_to_cr in an Endpoint. First,
the Hard IP receives the PME_turn_off message which causes pme_to_sr to assert.
Then, the Application Layer sends the PME_to_ack message to the Root Port by
asserting pme_to_cr.

Table 7–18. Power Management Capabilities Register

31 24 22 16 15 14 13 12 9 8 7 2 1 0

data
register

rsvd PME_status data_scale data_select PME_EN rsvd PM_state

Table 7–19. Power Management Capabilities Register Field Descriptions

Bits Field Description

[31:24] Data register This field indicates in which power states a function can assert the PME# message.

[22:16] reserved —

[15] PME_status
When set to 1, indicates that the function would normally assert the PME# message
independently of the state of the PME_en bit.

[14:13] data_scale
This field indicates the scaling factor when interpreting the value retrieved from the data
register. This field is read-only.

[12:9] data_select
This field indicates which data should be reported through the data register and the
data_scale field.

[8]6
PME_EN

1: indicates that the function can assert PME#
0: indicates that the function cannot assert PME#

[7:2] reserved —

[1:0] PM_state

Specifies the power management state of the operating condition being described. The
following encodings are defined:

■ 2b’00 D0

■ 2b’01 D1

■ 2b’10 D2

■ 2b’11 D3

A device returns 2b’11 in this field and Aux or PME Aux in the type register to specify
the D3-Cold PM state. An encoding of 2b’11 along with any other type register value
specifies the D3-Hot state.

Figure 7–33. pme_to_sr and pme_to_cr in an Endpoint IP core

pme_to_sr

pme_to_cr

hard
IP
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 7: IP Core Interfaces 7–41
Avalon-MM Hard IP for PCI Express
Avalon-MM Hard IP for PCI Express
Figure 7–34 illustrates the signals of the full-featured Arria V Hard IP for PCI Express
using the Avalon-MM interface available in the Qsys design flow.

Figure 7–34. Signals in the Qsys Full-Featured Avalon-MM Arria V Hard IP for PCI Express

tx_out0[<n>:0]
rx_in0[<n>:0]

1-Bit Serial

CraReadData_o[31:0]
CraWaitRequest_o

CraByteEnable_i[3:0]
CraChipSelect_i

CraAddress_i[11:0]

CraRead
CraWrite
CraWriteData_i[31:0]

TxsWriteData[<w>-1:0]_i
TxsBusrtCount[6 or 5:0]_i

TxsChipSelect_i
TxsRead_i
TxsWrite_i

TxsAddress[<w>-1:0]_i
TxsByteEnable[<w>-1/8:0]_i
TxsReadDataValid_o
TxsReadData[<w>-1:0]_o
TxsWaitRequest_o

32-Bit
Avalon-MM

CRA
Slave Port
(Optional)

64-Bit
 Avalon-MM TX

Slave Port

Avalon-MM Hard IP for PCI Express
(Full-Featured Qsys)

Test
Interface

test_in[31:0]
simu_mode_pipe

RxmWrite_<n>_o
RxmAddress_<n>_o[31:0]
RxmWriteData_<n>_o[<w>-1:0]
RxmByteEnable_<n>_o[<w>-1/8:0]
RxmBurstCount_<n>_o[6 or 5:0]
RxmWaitRequest_<n>_o
RxmRead_<n>_o
RxmReadData_<n>[<w>-1:0]_i
RxmReadDataValid_<n>_i
RxmIrq[<m>:0]_i, <m> < 16

64-Bit
Avalon-MM TX
Master Port

reconfig_fromxcvr[<n>69-1:0]
reconfig_toxcvr[<n>45-1:0]

busy_xcvr_reconfig

reconfig_mgmt_address[6:0]
reconfig_mgmt_read

reconfig_mgmt_readdata[31:0]
reconfig_mgmt_waitrequest

reconfig_mgmt_write
reconfig_mgmt_writedata[31:0]

mgmt_rst_reset
mgmt_clk_clk

Transceiver
Reconfiguration

Reconfiguration
Management

Interface

txdatak0
txdata0[7:0]

txdetectrx0
txelectidle0

rxpolarity0
txcompl0

powerdown0[1:0]
tx_deemph0

rxdatak0
rxdata0[7:0]

rxvalid0
phystatus0

eidleinfersel0[2:0]
rxelectidle0

rxstatus0[2:0]
sim_ltssmstate[4:0]
sim_pipe_rate0[1:0]

sim_pipe_pclk_in
txswing0

txmargin0[2:0]

PIPE Interface
Simulation Only

8-Bit PIPE

Clocks

npor
reset_status
pin_perst
fixedclk_locked

Reset &
Lock Status

refclk
coreclkout

CraIrq_o
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

7–42 Chapter 7: IP Core Interfaces
Avalon-MM Hard IP for PCI Express
Figure 7–35 illustrates the signals of a completer-only Arria V Hard IP for PCI Express
using the Avalon-MM interface available in the Qsys design flow. This Endpoint can
only accept requests from up-stream devices.

Table 7–20 lists the interfaces for these IP cores with links to the sections that describe
them.

Figure 7–35. Signals in the Qsys Avalon-MM Completer-Only Arria V Hard IP for PCI Express

tx_out0[<n>:0]
rx_in0[<n>:0]

1-Bit Serial

 Hard IP for PCI Express IP Core
Completer-Only Single DWord

Test
Interface

test_in[31:0]
simu_mode_pipe

RxmWrite_<n>_o
RxmAddress_<n>_o[31:0]
RxmWriteData_<n>_o[<w>-1:0]
RxmByteEnable_<n>_o[<w>-1/8:0]
RxmBurstCount_<n>_o[6 or 5:0]
RxmWaitRequest_<n>_o
RxmRead_<n>_o
RxmReadData_<n>[<w>-1:0]_i
RxmReadDataValid_<n>_i
RxmIrq[<m>:0]_i, <m> < 16

64-Bit
Avalon-MM TX
Master Port

reconfig_fromxcvr[<n>69-1:0]
reconfig_toxcvr[<n>45-1:0]

busy_xcvr_reconfig

reconfig_mgmt_address[6:0]
reconfig_mgmt_read

reconfig_mgmt_readdata[31:0]
reconfig_mgmt_waitrequest

reconfig_mgmt_write
reconfig_mgmt_writedata[31:0]

mgmt_rst_reset
mgmt_clk_clk

Transceiver
Reconfiguration

Reconfiguration
Management

Interface

txdatak0
txdata0[7:0]

txdetectrx0
txelectidle0

rxpolarity0
txcompl0

powerdown0[1:0]
tx_deemph0

rxdatak0
rxdata0[7:0]

rxvalid0
phystatus0

eidleinfersel0[2:0]
rxelectidle0

rxstatus0[2:0]
sim_ltssmstate[4:0]
sim_pipe_rate0[1:0]

sim_pipe_pclk_in
txswing0

txmargin0[2:0]

PIPE Interface
Simulation Only

8-Bit PIPE

Clocks

npor
reset_status
pin_perst
fixedclk_locked

Reset &
Lock Status

refclk
coreclkout

Table 7–20. Signal Groups in the Avalon-MM Arria V Hard IP for PCI Express Variants (Part 1 of 2)

Signal Group Full
Featured

Completer
Only Single

DWord
Description

Logical

Avalon-MM CRA Slave v — “32-Bit Non-Bursting Avalon-MM Control Register Access (CRA)
Slave Signals” on page 7–43

Avalon-MM RX Master v v “RX Avalon-MM Master Signals” on page 7–44

Avalon-MM TX Slave v — “64- or 128-Bit Bursting TX Avalon-MM Slave Signals” on
page 7–44
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 7: IP Core Interfaces 7–43
Avalon-MM Hard IP for PCI Express
f Variations with Avalon-MM interface implement the Avalon-MM protocol described
in the Avalon Interface Specifications. Refer to this specification for information about
the Avalon-MM protocol, including timing diagrams.

32-Bit Non-Bursting Avalon-MM Control Register Access (CRA) Slave
Signals

The optional CRA port for the full-featured IP core allows upstream PCI Express
devices and external Avalon-MM masters to access internal control and status
registers. Table 7–21 describes the CRA slave signals.

Clock v v “Clock Signals” on page 7–23

Reset and Status v v “Reset Signals” on page 7–23

Physical and Test

Transceiver Control v v “Transceiver Reconfiguration” on page 7–46

Serial v v “Serial Interface Signals” on page 7–46

Pipe v v “PIPE Interface Signals” on page 7–50

Test v v “Test Signals” on page 7–52

Table 7–20. Signal Groups in the Avalon-MM Arria V Hard IP for PCI Express Variants (Part 2 of 2)

Signal Group Full
Featured

Completer
Only Single

DWord
Description

Table 7–21. Avalon-MM CRA Slave Interface Signals

Signal Name I/O Type Description

CraIrq O Irq Interrupt request. A port request for an Avalon-MM interrupt.

CraReadData_o[31:0] O Readdata Read data lines.

CraWaitRequest_o O Waitrequest Wait request to hold off more requests.

CraAddress_i[11:0] I Address

An address space of 16,384 bytes is allocated for the control registers.
Avalon-MM slave addresses provide address resolution down to the
width of the slave data bus. Because all addresses are byte addresses,
this address logically goes down to bit 2. Bits 1 and 0 are 0.

CraByteEnable_i[3:0] I Byteenable Byte enable.

CraChipSelect_i I Chipselect Chip select signal to this slave.

CraRead I Read Read enable.

CraWrite_i I Write Write request.

CraWriteData_i[31:0] I Writedata Write data.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

7–44 Chapter 7: IP Core Interfaces
Avalon-MM Hard IP for PCI Express
RX Avalon-MM Master Signals
This Avalon-MM master port propagates PCI Express requests to the Qsys
interconnect fabric. A separate Avalon-MM master port corresponds to each BAR for
up to six BARs. For the full-featured IP core, the Avalon-MM master port propagates
requests as bursting reads or writes. Table 7–22 lists the RX Master interface signals. In
Table 7–22, <n> is the BAR number.

64- or 128-Bit Bursting TX Avalon-MM Slave Signals
This optional Avalon-MM bursting slave port propagates requests from the
interconnect fabric to the full-featured Avalon-MM Arria V Hard IP for PCI Express.
Requests from the interconnect fabric are translated into PCI Express request packets.
Incoming requests can be up to 512 bytes. For better performance, Altera recommends
using smaller read request size (a maximum of 512 bytes).

Table 7–23 lists the TX slave interface signals.

Table 7–22. Avalon-MM RX Master Interface Signals

Signal Name I/O Description

RxmWrite_<n>_o O Asserted by the core to request a write to an Avalon-MM slave.

RxmAddress_<n>_o[31:0] O The address of the Avalon-MM slave being accessed.

RxmWriteData_<n>_o[<w>-1:0] O RX data being written to slave. <w> = 64 or 128 for the full-featured IP
core. <w> = 32 for the completer-only IP core.

RxmByteEnable_<n>_o[15:0 or
7:0]

O Byte enable for write data.

RxmBurstCount_<n>_o[6:0 or 5:0] O

The burst count, measured in qwords, of the RX write or read request. The
width indicates the maximum data that can be requested. Because the
maximum data per burst is 512 bytes, RxmBurstCount is 6 bits for the
64-bit interface and 5 bits for the 128-bit interface.

RxmWaitRequest_<n>_o I Asserted by the external Avalon-MM slave to hold data transfer.

RxmRead_<n>_o O Asserted by the core to request a read.

RxmReadData_<n>_i[<w>-1:0] I
Read data returned from Avalon-MM slave in response to a read request.
This data is sent to the IP core through the TX interface. <w> = 64 or 128
for the full-featured IP core. <w> = 32 for the completer-only IP core.

RxmReadDataValid_<n>_i I Asserted by the system interconnect fabric to indicate that the read data on
is valid.

RxmIrq_<n>_i[<m>:0] I
Indicates an interrupt request asserted from the system interconnect fabric.
This signal is only available when the CRA port is enabled. Qsys-generated
variations have as many as 16 individual interrupt signals (<m> ≤ 15).

Table 7–23. Avalon-MM TX Slave Interface Signals (Part 1 of 2)

Signal Name I/O Description

TxsChipSelect_i I The system interconnect fabric asserts this signal to select the TX
slave port.

TxsRead_i I Read request asserted by the system interconnect fabric to
request a read.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 7: IP Core Interfaces 7–45
Physical Layer Interface Signals
Physical Layer Interface Signals
This section describes the global PHY support signals for the internal PHY. The
MegaWizard Plug-In Manager generates a SERDES variation file,
<variation>_serdes.<v or vhd >, in addition of the Hard IP variation file,
<variation>.<v or vhd>. For Arria V GX devices the SERDES entity is included in the
library files for PCI Express.

TxsWrite_i I

Write request asserted by the system interconnect fabric to
request a write.

The Avalon-MM Arria V Hard IP for PCI Express requires that the
Avalon-MM master assert this signal continuously from the first
data phase through the final data phase of the burst. The
Avalon-MM master Application Layer must guarantee the data
can be passed to the interconnect fabric with no pauses. This
behavior is most easily implemented with a store and forward
buffer in the Avalon-MM master.

TxsWritedata_i[63:0 or 127:0] I Write data sent by the external Avalon-MM master to the TX slave
port.

TxsBurstCount_i[6:0 or 5:0] I

Asserted by the system interconnect fabric indicating the amount
of data requested. The count unit is the amount of data that is
transferred in a single cycle, that is, the width of the bus. Because
the maximum data per burst is 512 bytes, TxmBurstCount is 6
bits for the 64-bit interface and 5 bits for the 128-bit interface.

TxsAddress_i[<w>-1:0] I

Address of the read or write request from the external Avalon-MM
master. This address translates to 64-bit or 32-bit PCI Express
addresses based on the translation table. The <w> value is
determined when the system is created.

TxsBytEnable_i[7:0 or 15:0] I

Write byte enable for data. A burst must be continuous. Therefore
all intermediate data phases of a burst must have a byte enable
value of 0xFF. The first and final data phases of a burst can have
other valid values.

TxsReadDataValid_o O Asserted by the bridge to indicate that read data is valid.

TxsReadData_o[63:0 or 128:0] O
The bridge returns the read data on this bus when the RX read
completions for the read have been received and stored in the
internal buffer.

TxsWaitrequest_o O

 Asserted by the bridge to hold off write data when running out of
buffer space. If this signal is asserted during an operation, the
master should maintain the txs_Read signal (or txs_Write
signal and txs_WriteData) stable until after txs_WaitRequest
is deasserted.

Table 7–23. Avalon-MM TX Slave Interface Signals (Part 2 of 2)

Signal Name I/O Description
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

7–46 Chapter 7: IP Core Interfaces
Physical Layer Interface Signals
Transceiver Reconfiguration
Table 7–24 describes the transceiver support signals. In Table 7–24, <n> is the number
of lanes.

f For more information about the Transceiver Reconfiguration Controller, refer to the
“Transceiver Reconfiguration Controller” chapter in the Altera Transceiver PHY IP Core
User Guide.

The following sections describe signals for the serial or parallel PIPE interfaces. The
PIPE interface is only available for simulation.

Serial Interface Signals
Table 7–25 describes the serial interface signals.

f Refer to Pin-out Files for Altera Devices for pin-out tables for all Altera devices in
.pdf, .txt, and .xls formats.

Table 7–24. Transceiver Control Signals

Signal Name I/O Description

reconfig_fromxcvr[(<n>70)-1:0]

reconfig_toxcvr[(<n>46)-1:0]
O

These are the parallel transceiver dynamic reconfiguration buses.
Dynamic reconfiguration is required to compensate for variations due to
process, voltage and temperature (PVT). Among the analog settings that
you can reconfigure are: VOD, pre-emphasis, and equalization.

You can use the Altera Transceiver Reconfiguration Controller to
dynamically reconfigure analog settings in Arria V devices. For more
information about instantiating the Altera Transceiver Reconfiguration
Controller IP core refer to Chapter 15, Transceiver PHY IP
Reconfiguration.

busy_xcvr_reconfig I When asserted, indicates that the a reconfiguration operation is in
progress.

Table 7–25. 1-Bit Interface Signals

Signal I/O Description

tx_out[<n-1>:0] (1) O Transmit input. These signals are the serial outputs.

rx_in[<n-1>:0] (1) I Receive input. These signals are the serial inputs.

Note to Table 7–25:

(1) <n> = 1 for the ×1 IP core. <n> = 4 for the ×4 IP core. <n> = 8 for the ×8 IP core.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www.altera.com/literature/ug/xcvr_user_guide.pdf
http://www.altera.com/literature/ug/xcvr_user_guide.pdf
http://www.altera.com/literature/lit-dp.jsp

Chapter 7: IP Core Interfaces 7–47
Physical Layer Interface Signals
Figure 7–36 shows the channel placement for ×1 variants.

f For more information about Arria V transceivers refer to the “Transceiver Banks”
section in the Transceiver Architecture in Arria V Devices.

Figure 7–36. Channel Placement for ×1 Variants

 x1
Transceiver Bank

LCD

LCD = Local Clock Divider

Channel 0 -
Data

Channel 1 - CMU PLL

Channel 2 - Data

Channel 4

Channel 5

PCI Express Lane 0

Channel 3

 Other
Protocols

PCS Clock and
Control Signals
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www/literature/hb/arria-v/av_53001.pdf

7–48 Chapter 7: IP Core Interfaces
Physical Layer Interface Signals
Figure 7–37 shows the channel placement for ×4 variants.

Figure 7–37. Channel Placement for ×4 Variants

 x4

Channel 0 - Data

 Other
Protocols

Channel 1 - Data

Channel 2 - Data

Channel 4 - CMU PLL

Channel 5

Channel 3 - Data

Transceiver Bank

PCI Express Lane 0

PCI Express Lane 1

PCI Express Lane 2

PCI Express Lane 3

PCS Clock and
Control Signals
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 7: IP Core Interfaces 7–49
Physical Layer Interface Signals
Figure 7–38 shows the channel placement for ×8 variants.

Figure 7–38. Channel Placement for ×8 Variants

Channel 0 -Data

Channel 1 - Data

Channel 2 - Data

Channel 4
- CMU PLL

Channel 5 - Data

Channel 3 - Data

Transceiver Bank 1

Gen1 x8

Transceiver Bank 0

Channel 6 - Data

Available
for Other
Protocols

Channel 7 - Data

Channel 8 - Data

Channel 10

Channel 11

PCS Clock and
Control Signals

Channel 9

CCD

CCD = Central Clock Divider

PCI Express Lane 0

PCI Express Lane 1

PCI Express Lane 2

PCI Express Lane 3

PCI Express Lane 4

PCI Express Lane 5

PCI Express Lane 6

PCI Express Lane 7
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

7–50 Chapter 7: IP Core Interfaces
Physical Layer Interface Signals
PIPE Interface Signals
The PIPE signals are available so that you can simulate using either the one-bit or the
PIPE interface. Simulation is much faster using the PIPE interface. You can use the 8-
bit PIPE interface for simulation even though your actual design includes the serial
interface to the internal transceivers. However, it is not possible to use the Hard IP
PIPE interface in an actual device. Table 7–26 describes the PIPE interface signals used
for a standard 16-bit SDR or 8-bit SDR interface. In Table 7–26, signals that include
lane number 0 also exist for lanes 1-7. In Qsys, the signals that are part of the PIPE
interface have the prefix, hip_pipe. The signals which are included to simulate the PIPE
interface have the prefix, hip_pipe_sim_pipe.

Table 7–26. PIPE Interface Signals (Part 1 of 3)

Signal I/O Description

txdata0[7:0] O Transmit data <n>. This bus transmits data on lane <n>.

txdatak0 (1) O Transmit data control <n>. This signal serves as the control bit for
txdata<n>.

txdetectrx0 (1) O Transmit detect receive <n>. This signal tells the PHY layer to start a
receive detection operation or to begin loopback.

txelecidle (1) O Transmit electrical idle <n>. This signal forces the TX output to electrical
idle.

txcompl0 (1) O Transmit compliance <n>. This signal forces the running disparity to
negative in compliance mode (negative COM character).

rxpolarity0 (1) O Receive polarity <n>. This signal instructs the PHY layer to invert the
polarity of the 8B/10B receiver decoding block.

powerdown0[1:0] (1) O Power down <n>. This signal requests the PHY to change its power state
to the specified state (P0, P0s, P1, or P2).

tx_deemph0 O

Transmit de-emphasis selection. The Arria V Hard IP for PCI Express sets
the value for this signal based on the indication received from the other
end of the link during the Training Sequences (TS). You do not need to
change this value.

rxdata0[7:0] (1) (2) I Receive data <n>. This bus receives data on lane <n>.

rxdatak0[1:0] (1) (2) I Receive data control <n>. This signal separates control and data
symbols.

rxvalid0 (1) (2) I Receive valid <n>. This symbol indicates symbol lock and valid data on
rxdata<n> and rxdatak<n>.

phystatus0 (1) (2) I PHY status <n>. This signal communicates completion of several PHY
requests.

eidleinfersel0[2:0] O

Electrical idle entry inference mechanism selection. The following
encodings are defined:

■ 3'b0xx: Electrical Idle Inference not required in current LTSSM state

■ 3'b100: Absence of COM/SKP Ordered Set the in 128 us window for
Gen1 or Gen2

■ 3'b101: Absence of TS1/TS2 Ordered Set in a 1280 UI interval for
Gen1 or Gen2

■ 3'b110: Absence of Electrical Idle Exit in 2000 UI interval for Gen1 and
16000 UI interval for Gen2

■ 3'b111: Absence of Electrical idle exit in 128 us window for Gen1
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 7: IP Core Interfaces 7–51
Physical Layer Interface Signals
rxelecidle0 (1) (2) I Receive electrical idle <n>. This signal forces the receive output to
electrical idle.

rxstatus0[2:0] (1) (2) I Receive status <n>. This signal encodes receive status and error codes
for the receive data stream and receiver detection.

ltssmstate0[4:0]

LTSSM state: The LTSSM state machine encoding defines the following
states:

■ 00000: detect.quiet
■ 00001: detect.active
■ 00010: polling.active
■ 00011: polling.compliance
■ 00100: polling.configuration
■ 00101: polling.speed
■ 00110: config.linkwidthstart
■ 00111: config.linkaccept
■ 01000: config.lanenumaccept
■ 01001: config.lanenumwait
■ 01010: config.complete
■ 01011: config.idle
■ 01100: recovery.rcvlock
■ 01101: recovery.rcvconfig
■ 01110: recovery.idle
■ 01111: L0
■ 10000: disable
■ 10001: loopback.entry
■ 10010: loopback.active
■ 10011: loopback.exit
■ 10100: hot.reset
■ 10101: LOs
■ 11001: L2.transmit.wake
■ 11010: speed.recovery

O

sim_pipe_rate[1:0] O

 Specifies the lane rate. The 2-bit encodings have the following
meanings:

■ 2’b00: Gen1 rate (2.5 Gbps)

■ 2’b01: Gen2 rate (5.0 Gbps)

■ 2’b1X: Reserved.

sim_pipe_pclk_in I This clock is used for PIPE simulation only, and is derived from the
refclk. It is the PIPE interface clock used for PIPE mode simulation.

txswing0 O Specifies the following TX voltage swing levels. A value of 0 specifies full
swing. A value of 1 specifies half swing.

Table 7–26. PIPE Interface Signals (Part 2 of 3)

Signal I/O Description
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

7–52 Chapter 7: IP Core Interfaces
Test Signals
Test Signals
The test_in bus provides run-time control and monitoring of the internal state of the
Arria V Hard IP for PCI Express. Table 7–27 describes the test signals.

c Altera recommends that you use the test_in signals for debug or non-critical status
monitoring purposes such as LED displays of PCIe link status. They should not be
used for design function purposes. Use of these signals will make it more difficult to
close timing on the design. The test signals have not been rigorously verified and will
not function as documented in some corner cases.

The debug signals provided on test_out are not available in the current release.

Table 7–27 describes the test_in bus signals. In Qsys these signals have the prefix,
hip_ctrl_.

txmargin0[2:0] O

Selects the TX VOD settings. The following settings are defined:

■ 3'b000: Normal operating range

■ 3'b001: Full swing: 800 - 1200 mV, Half swing: 400 - 700 mV

■ 3'b010: Reserved

■ 3'b011: Reserved

■ 3'b100: Full swing: 200 - 400 mV Half swing: 100 - 200 mV if the last
value or vendor defined

■ 3'b101: Full swing: 200 - 400 mV Half swing: 100 - 200 mV

■ 3'b110: Full swing: 200 - 400 mV Half swing: 100 - 200 mV

■ 3'b111: Full swing: 200 - 400 mV, Half swing: 100 - 200 mV

Notes to Table 7–26:

(1) Signals that include lane number 0 also exist for lanes 1-7.
(2) These signals are for simulation only. For Quartus II software compilation, these pipe signals can be left floating.

Table 7–26. PIPE Interface Signals (Part 3 of 3)

Signal I/O Description

Table 7–27. Test Interface Signals (1), (2)

Signal I/O Description

test_in[31:0] I

[0]–Simulation mode. This signal can be set to 1 to accelerate
initialization by reducing the value of many initialization counters.

[4:1] Reserved. These signals are not supported in the current
release. You must drive them to all 0s.

[6:5] Compliance test mode. Disable/force compliance mode:

■ bit 0–When set, prevents the LTSSM from entering compliance
mode. Toggling this bit controls the entry and exit from the
compliance state, enabling the transmission of Gen1 and Gen2
compliance patterns.

■ bit 1–Forces compliance mode. Forces entry to compliance mode
when timeout is reached in polling.active state (and not all lanes
have detected their exit condition).

■ [31:7] Reserved.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 7: IP Core Interfaces 7–53
Test Signals
simu_mode_pipe O When set to 1, the PIPE interface is in simulation mode.

lane_act[3:0] O

Lane Active Mode: This signal indicates the number of lanes that
configured during link training. The following encodings are defined:

■ 4’b0001: 1 lane

■ 4’b0010: 2 lanes

■ 4’b0100: 4 lanes

■ 4’b1000: 8 lanes

Notes to Table 7–27:

(1) All signals are per lane.
(2) Refer to “PIPE Interface Signals” on page 7–50 for definitions of the PIPE interface signals.

Table 7–27. Test Interface Signals (1), (2)

Signal I/O Description
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

7–54 Chapter 7: IP Core Interfaces
Test Signals
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

June 2012 Altera Corporation

June 2012
UG-01110-1.2
8. Register Descriptions
This section describes registers that you can access the PCI Express Configuration
Space. It includes the following sections:

■ Configuration Space Register Content

■ Correspondence between Configuration Space Registers and the PCIe Spec 2.1

Configuration Space Register Content
Table 8–1 shows the common Configuration Space header. The following tables
provide more details.

1 To facilitate finding additional information about these PCI Express registers, the
following tables provide the name of the corresponding section in the PCI Express Base
Specification Revision 2.1.

f For comprehensive information about these registers, refer to Chapter 7 of the PCI
Express Base Specification Revision 2.1.

Table 8–1. Common Configuration Space Header

Byte Offset Register Set

0x000:0x03C PCI Type 0 Configuration Space Header (Refer to Table 8–2 for details) or PCI Type 1 Configuration
Space Header (Refer to Table 8–3 for details.)

0x040:0x04C Reserved.

0x050:0x05C MSI Capability Structure (Refer to Table 8–4 for details.)

0x060:0x064 Reserved

0x068:0x070 MSI-X Capability Structure (Refer to Table 8–5 for details.)

0x071:0x074 Reserved

0x078:0x07C Power Management Capability Structure (Refer to Table 8–6 for details.)

0x080:0x0BC PCI Express Capability Structure (Refer to Table 8–8 for details.)

0x0C0:0x0C4 Reserved

0x0C8-0x7FC Reserved

0x800:0x834 Advanced error reporting (AER) (optional)

0x838:0xFFF Reserved

0x100:0x16C Virtual Channel Capability Structure for Function 0, Vendor Specific Extended Capability for Functions
1–7
Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com/home
http://www.pcisig.com/home
http://www.pcisig.com/home
http://www.pcisig.com/home
http://www.pcisig.com/home
http://www.pcisig.com/home

8–2 Chapter 8: Register Descriptions
Configuration Space Register Content
Table 8–2 describes the Type 0 Configuration settings.

1 In the following tables, the names of fields that are defined by parameters in the
parameter editor are links to the description of that parameter. These links appear as
green text.

Table 8–3 describes the Type 1 Configuration settings.

Table 8–2. PCI Type 0 Configuration Space Header (Endpoints), Rev2.1

Byte Offset 31:24 23:16 15:8 7:0

0x000 Device ID Vendor ID

0x004 Status Command

0x008 Class code Revision ID

0x00C 0x00
Header Type
(Port type) 0x00 Cache Line Size

0x010 Func0–Func7 BARs and Expansion ROM

0x014 Func0–Func7 BARs and Expansion ROM

0x018 Func0–Func7 BARs and Expansion ROM

0x01C Func0–Func7 BARs and Expansion ROM

0x020 Func0–Func7 BARs and Expansion ROM

0x024 Func0–Func7 BARs and Expansion ROM

0x028 Reserved

0x02C Subsystem Device ID Subsystem Vendor ID

0x030 Expansion ROM base address

0x034 Reserved Capabilities Pointer

0x038 Reserved

0x03C 0x00 0x00 Interrupt Pin Interrupt Line

Note to Table 8–2:

(1) Refer to Table 8–22 on page 8–11 for a comprehensive list of correspondences between the Configuration Space registers and the PCI Express
Base Specification 2.1.

Table 8–3. PCI Type 1 Configuration Space Header (Root Ports) (Part 1 of 2)

Byte Offset 31:24 23:16 15:8 7:0

0x0000 Device ID Vendor ID

0x004 Status Command

0x008 Class code Revision ID

0x00C BIST Header Type
Primary Latency

Timer
Cache Line Size

0x010 Reserved

0x014 Reserved

0x018 Secondary Latency
Timer

Subordinate Bus
Number

Secondary Bus
Number

Primary Bus Number

0x01C Secondary Status I/O Limit I/O Base

0x020 Memory Limit Memory Base
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www.pcisig.com/
http://www.pcisig.com/

Chapter 8: Register Descriptions 8–3
Configuration Space Register Content
Table 8–4 describes the MSI Capability structure.

Table 8–5 describes the MSI-X Capability structure.

0x024 Prefetchable Memory Limit Prefetchable Memory Base

0x028 Prefetchable Base Upper 32 Bits

0x02C Prefetchable Limit Upper 32 Bits

0x030 I/O Limit Upper 16 Bits I/O Base Upper 16 Bits

0x034 Reserved Capabilities
Pointer

0x038 Expansion ROM Base Address

0x03C Bridge Control Interrupt Pin Interrupt Line

Note to Table 8–3:

(1) Refer to Table 8–22 on page 8–11 for a comprehensive list of correspondences between the Configuration Space registers and the PCI Express
Base Specification 2.1.

Table 8–3. PCI Type 1 Configuration Space Header (Root Ports) (Part 2 of 2)

Byte Offset 31:24 23:16 15:8 7:0

Table 8–4. MSI Capability Structure, Rev2.1 Spec: MSI Capability Structures

Byte Offsets (1) 31:24 23:16 15:8 7:0

0x050
Message Control

Configuration MSI Control Register Field
Descriptions

Next Cap Ptr Capability ID

0x054 Message Address

0x058 Message Upper Address

0x05C Reserved Message Data

Note to Table 8–4:

(1) Specifies the byte offset within Arria V Hard IP for PCI Express IP core’s address space.
(2) Refer to Table 8–22 on page 8–11 for a comprehensive list of correspondences between the Configuration Space registers and the PCI Express

Base Specification 2.1.

Table 8–5. MSI-X Capability Structure, Rev2.1 Spec: MSI-X Capability Structures

Byte Offset 31:24 23:16 15:8 7:3 2:0

0x068 Message Control Next Cap Ptr Capability ID

0x06C MSI-X Table Offset
MSI-X Table Offset BIR

0x070
PBA Offset

Pending Bit Array (PBA) Offset

Note to Table 8–5:

(1) Refer to Table 8–22 on page 8–11 for a comprehensive list of correspondences between the Configuration Space registers and the PCI Express
Base Specification 2.1.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com/
http://www.pcisig.com/
http://www.pcisig.com/
http://www.pcisig.com/
http://www.pcisig.com/
http://www.pcisig.com/

8–4 Chapter 8: Register Descriptions
Configuration Space Register Content
Table 8–6 describes the Power Management Capability structure.

Table 8–7 describes the PCI Express AER Extended Capability structure.

Table 8–8 describes the PCI Express Capability Structure.

Table 8–6. Power Management Capability Structure, Rev2.1 Spec

Byte Offset 31:24 23:16 15:8 7:0

0x078 Capabilities Register Next Cap PTR Cap ID

0x07C Data PM Control/Status
Bridge Extensions Power Management Status & Control

Note to Table 8–6:

(1) Refer to Table 8–22 on page 8–11 for a comprehensive list of correspondences between the Configuration Space registers and the PCI Express
Base Specification 2.1.

Table 8–7. PCI Express Advanced Error Reporting Extended Capability Structure, Rev2.1 Spec: Advanced Error Reporting
Capability

Byte Offset 31:24 23:16 15:8 7:0

0x800 PCI Express Enhanced Capability Header

0x804 Uncorrectable Error Status Register

0x808 Uncorrectable Error Mask Register

0x80C Uncorrectable Error Severity Register

0x810 Correctable Error Status Register

0x814 Correctable Error Mask Register

0x818 Advanced Error Capabilities and Control Register

0x81C Header Log Register

0x82C Root Error Command

0x830 Root Error Status

0x834 Error Source Identification Register Correctable Error Source ID Register

Note to Table 8–7:

(1) Refer to Table 8–22 on page 8–11 for a comprehensive list of correspondences between the Configuration Space registers and the PCI Express
Base Specification 2.1.

Table 8–8. PCIe Capability Structure 2.1, Rev2.1 Spec (Part 1 of 2)

Byte Offset 31:16 15:8 7:0

0x080 PCI Express Capabilities Register Next Cap Pointer PCI Express Cap ID

0x084 Device Capabilities

0x088 Device Status Device Control 2

0x08C Link

0x090 Link Status Link Control

0x094 Slot

0x098 Slot Status Slot Control

0x09C Root Capabilities Root Control

0x0A0 Root Status

0x0A4 Device Capabilities 2
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www.pcisig.com/
http://www.pcisig.com/
http://www.pcisig.com/
http://www.pcisig.com/

Chapter 8: Register Descriptions 8–5
PCI Express Avalon-MM Bridge Control Register Content
PCI Express Avalon-MM Bridge Control Register Content
Control and status registers in the PCI Express Avalon-MM bridge are implemented
in the CRA slave module. The control registers are accessible through the Avalon-MM
slave port of the CRA slave module. This module is optional; however, you must
include it to access the registers.

The control and status register space is 16 KBytes. Each 4 KByte sub-region contains a
specific set of functions, which may be specific to accesses from the PCI Express Root
Complex only, from Avalon-MM processors only, or from both types of processors.
Because all accesses come across the interconnect fabric —requests from the
Avalon-MM Arria V Hard IP for PCI Express are routed through the interconnect
fabric— hardware does not enforce restrictions to limit individual processor access to
specific regions. However, the regions are designed to enable straight-forward
enforcement by processor software.

Table 8–9 describes the four subregions.

1 The data returned for a read issued to any undefined address in this range is
unpredictable.

Table 8–10 lists complete address map for the PCI Express Avalon-MM bridge
registers.

0x0A8 Device Status 2 Device Control 2

0x0AC Link Capabilities 2

0x0B0 Link Status 2 Link Control 2

0x0B4 Slot Capabilities 2

0x0B8 Slot Status 2 Slot Control 2

Note to Table 8–8:

(1) Registers not applicable to a device are reserved.
(2) Refer to Table 8–22 on page 8–11 for a comprehensive list of correspondences between the Configuration Space registers and the PCI Express

Base Specification 2.1.

Table 8–8. PCIe Capability Structure 2.1, Rev2.1 Spec (Part 2 of 2)

Byte Offset 31:16 15:8 7:0

Table 8–9. Avalon-MM Control and Status Register Address Spaces

Address
Range Address Space Usage

0x0000-0x0FFF
Registers typically intended for access by PCI Express processors only. This includes PCI Express
interrupt enable controls, write access to the PCI Express Avalon-MM bridge mailbox registers, and
read access to Avalon-MM-to-PCI Express mailbox registers.

0x1000-0x1FFF Avalon-MM-to-PCI Express address translation tables. Depending on the system design these may be
accessed by PCI Express processors, Avalon-MM processors, or both.

0x2000-0x2FFF Reserved.

0x3000-0x3FFF
Registers typically intended for access by Avalon-MM processors only. These include Avalon-MM
interrupt enable controls, write access to the Avalon-MM-to-PCI Express mailbox registers, and read
access to PCI Express Avalon-MM bridge mailbox registers.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com/
http://www.pcisig.com/

8–6 Chapter 8: Register Descriptions
PCI Express Avalon-MM Bridge Control Register Content
1 In Table 8–10 the text in green links to the detailed register description.

Avalon-MM to PCI Express Interrupt Registers
The registers in this section contain status of various signals in the PCI Express
Avalon-MM bridge logic and allow PCI Express interrupts to be asserted when
enabled. Only Root Complexes should access these registers; however, hardware does
not prevent other Avalon-MM masters from accessing them.

Table 8–11 shows the status of all conditions that can cause a PCI Express interrupt to
be asserted.

Table 8–10. PCI Express Avalon-MM Bridge Register Map

Address Range Register

0x0040 Avalon-MM to PCI Express Interrupt Status Register 0x0040

0x0050 Avalon-MM to PCI Express Interrupt Enable Register 0x0050

0x0060 Avalon-MM Interrupt Vector Register 0x0060

0x0800-0x081F PCI Express-to-Avalon-MM Mailbox Registers 0x0800–0x081F

0x0900-0x091F Avalon-MM-to-PCI Express Mailbox Registers 0x0900–0x091F

0x1000-0x1FFF Avalon-MM-to-PCI Express Address Translation Table 0x1000–0x1FFF

0x3060 PCI Express to Avalon-MM Interrupt Status Register 0x3060

0x3070 PCI Express to Avalon-MM Interrupt Enable Register 0x3070

0x3A00-0x3A1F Avalon-MM-to-PCI Express Mailbox Registers 0x3A00–0x3A1F

0x3B00-0x3B1F PCI Express-to-Avalon-MM Mailbox Registers 0x3B00–0x3B1F

Table 8–11. Avalon-MM to PCI Express Interrupt Status Register 0x0040

Bit Name Access Description

31:24 Reserved — —

23 A2P_MAILBOX_INT7 RW1C 1 when the A2P_MAILBOX7 is written to

22 A2P_MAILBOX_INT6 RW1C 1 when the A2P_MAILBOX6 is written to

21 A2P_MAILBOX_INT5 RW1C 1 when the A2P_MAILBOX5 is written to

20 A2P_MAILBOX_INT4 RW1C 1 when the A2P_MAILBOX4 is written to

19 A2P_MAILBOX_INT3 RW1C 1 when the A2P_MAILBOX3 is written to

18 A2P_MAILBOX_INT2 RW1C 1 when the A2P_MAILBOX2 is written to

17 A2P_MAILBOX_INT1 RW1C 1 when the A2P_MAILBOX1 is written to

16 A2P_MAILBOX_INT0 RW1C 1 when the A2P_MAILBOX0 is written to

[15:0] AVL_IRQ_ASSERTED[15:0] RO

Current value of the Avalon-MM interrupt (IRQ) input
ports to the Avalon-MM RX master port:

■ 0 – Avalon-MM IRQ is not being signaled.

■ 1 – Avalon-MM IRQ is being signaled.

A Qsys-generated IP Compiler for PCI Express has as
many as 16 distinct IRQ input ports. Each
AVL_IRQ_ASSERTED[] bit reflects the value on the
corresponding IRQ input port.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 8: Register Descriptions 8–7
PCI Express Avalon-MM Bridge Control Register Content
A PCI Express interrupt can be asserted for any of the conditions registered in the PCI
Express Interrupt Status Register by setting the corresponding bits in the
Avalon-MM-to-PCI Express Interrupt Enable Register (Table 8–12). Either MSI or
legacy interrupts can be generated as explained in the section “Enabling MSI or
Legacy Interrupts” on page 11–7.

Table 8–12 describes the Avalon-MM to PCI Express Interrupt Enable Register.

Table 8–13 describes the Avalon-MM Interrupt Vector Register.

PCI Express Mailbox Registers
The PCI Express root complex typically requires write access to a set of PCI
Express-to-Avalon-MM mailbox registers and read-only access to a set of
Avalon-MM-to-PCI Express mailbox registers. There are eight mailbox registers
available.

The PCI Express-to-Avalon-MM mailbox registers are writable at the addresses shown
in Table 8–14. Writing to one of these registers causes the corresponding bit in the
Avalon-MM interrupt status register to be set to a one.

Table 8–12. Avalon-MM to PCI Express Interrupt Enable Register 0x0050

Bits Name Access Description

[31:25] Reserved — —

[23:16] A2P_MB_IRQ RW
Enables generation of PCI Express interrupts when a
specified mailbox is written to by an external
Avalon-MM master.

[15:0] AVL_IRQ[15:0] RX

Enables generation of PCI Express interrupts when a
specified Avalon-MM interrupt signal is asserted. Your
Qsys system may have as many as 16 individual input
interrupt signals.

Table 8–13. Avalon-MM Interrupt Vector Register 0x0060

Bits Name Access Description

[31:5] Reserved — —

[4:0] AVALON_IRQ_VECTOR RO
Stores the interrupt vector of the system interconnect
fabric. The host software should read this register after
being interrupted and determine the servicing priority.

Table 8–14. PCI Express-to-Avalon-MM Mailbox Registers 0x0800–0x081F

Address Name Access Description

0x0800 P2A_MAILBOX0 RW PCI Express-to-Avalon-MM Mailbox 0

0x0804 P2A_MAILBOX1 RW PCI Express-to-Avalon-MM Mailbox 1

0x0808 P2A_MAILBOX2 RW PCI Express-to-Avalon-MM Mailbox 2

0x080C P2A_MAILBOX3 RW PCI Express-to-Avalon-MM Mailbox 3

0x0810 P2A_MAILBOX4 RW PCI Express-to-Avalon-MM Mailbox 4

0x0814 P2A_MAILBOX5 RW PCI Express-to-Avalon-MM Mailbox 5
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

8–8 Chapter 8: Register Descriptions
PCI Express Avalon-MM Bridge Control Register Content
The Avalon-MM-to-PCI Express mailbox registers are read at the addresses shown in
Table 8–15. The PCI Express Root Complex should use these addresses to read the
mailbox information after being signaled by the corresponding bits in the PCI Express
Interrupt Status Register.

Avalon-MM-to-PCI Express Address Translation Table
The Avalon-MM-to-PCI Express address translation table is writable using the CRA
slave port if dynamic translation is enabled.

Each entry in the PCI Express address translation table (Table 8–16) is 8 bytes wide,
regardless of the value in the current PCI Express address width parameter. Therefore,
register addresses are always the same width, regardless of PCI Express address
width.

0x0818 P2A_MAILBOX6 RW PCI Express-to-Avalon-MM Mailbox 6

0x081C P2A_MAILBOX7 RW PCI Express-to-Avalon-MM Mailbox 7

Table 8–14. PCI Express-to-Avalon-MM Mailbox Registers 0x0800–0x081F

Address Name Access Description

Table 8–15. Avalon-MM-to-PCI Express Mailbox Registers 0x0900–0x091F

Address Name Access Description

0x0900 A2P_MAILBOX0 RO Avalon-MM-to-PCI Express Mailbox 0

0x0904 A2P_MAILBOX1 RO Avalon-MM-to-PCI Express Mailbox 1

0x0908 A2P_MAILBOX2 RO Avalon-MM-to-PCI Express Mailbox 2

0x090C A2P_MAILBOX3 RO Avalon-MM-to-PCI Express Mailbox 3

0x0910 A2P_MAILBOX4 RO Avalon-MM-to-PCI Express Mailbox 4

0x0914 A2P_MAILBOX5 RO Avalon-MM-to-PCI Express Mailbox 5

0x0918 A2P_MAILBOX6 RO Avalon-MM-to-PCI Express Mailbox 6

0x091C A2P_MAILBOX7 RO Avalon-MM-to-PCI Express Mailbox 7

Table 8–16. Avalon-MM-to-PCI Express Address Translation Table (Part 1 of 2) 0x1000–0x1FFF

Address Bits Name Access Description

0x1000
[1:0] A2P_ADDR_SPACE0 RW Address space indication for entry 0. Refer to Table 8–17

for the definition of these bits.

[31:2] A2P_ADDR_MAP_LO0 RW Lower bits of Avalon-MM-to-PCI Express address map
entry 0.

0x1004 [31:0] A2P_ADDR_MAP_HI0 RW Upper bits of Avalon-MM-to-PCI Express address map
entry 0.

0x1008

[1:0] A2P_ADDR_SPACE1 RW Address space indication for entry 1. Refer to Table 8–17
for the definition of these bits.

[31:2] A2P_ADDR_MAP_LO1 RW

Lower bits of Avalon-MM-to-PCI Express address map
entry 1.

This entry is only implemented if number of table entries
is greater than 1.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 8: Register Descriptions 8–9
PCI Express Avalon-MM Bridge Control Register Content
The format of the address space field (A2P_ADDR_SPACEn) of the address
translation table entries is shown in Table 8–17.

PCI Express to Avalon-MM Interrupt Status and Enable Registers
The registers in this section contain status of various signals in the PCI Express
Avalon-MM bridge logic and allow Avalon interrupts to be asserted when enabled. A
processor local to the system interconnect fabric that processes the Avalon-MM
interrupts can access these registers. These registers must not be accessed by the PCI
Express Avalon-MM bridge master ports; however, there is nothing in the hardware
that prevents this.

The interrupt status register (Table 8–18) records the status of all conditions that can
cause an Avalon-MM interrupt to be asserted.

0x100C [31:0] A2P_ADDR_MAP_HI1 RW

Upper bits of Avalon-MM-to-PCI Express address map
entry 1.

This entry is only implemented if the number of table
entries is greater than 1.

Note to Table 8–16:

(1) These table entries are repeated for each address specified in the Number of address pages parameter. If Number of address pages is set to
the maximum of 512, 0x1FF8 contains A2P_ADDR_MAP_LO511 and 0x1FFC contains A2P_ADDR_MAP_HI511.

Table 8–16. Avalon-MM-to-PCI Express Address Translation Table (Part 2 of 2) 0x1000–0x1FFF

Address Bits Name Access Description

Table 8–17. PCI Express Avalon-MM Bridge Address Space Bit Encodings

Value
(Bits 1:0) Indication

00
Memory Space, 32-bit PCI Express address. 32-bit header is generated.

Address bits 63:32 of the translation table entries are ignored.

01 Memory space, 64-bit PCI Express address. 64-bit address header is generated.

10 Reserved.

11 Reserved.

Table 8–18. PCI Express to Avalon-MM Interrupt Status Register (Part 1 of 2) 0x3060

Bits Name Access Description

0 ERR_PCI_WRITE_
FAILURE RW1C

When set to 1, indicates a PCI Express write failure of. This bit can
also be cleared by writing a 1 to the same bit in the Avalon-MM to
PCI Express Interrupt Status Register.

[14:2] Reserved — —

[16] P2A_MAILBOX_INT0 RW1C 1 when the P2A_MAILBOX0 is written

[17] P2A_MAILBOX_INT1 RW1C 1 when the P2A_MAILBOX1 is written

[18] P2A_MAILBOX_INT2 RW1C 1 when the P2A_MAILBOX2 is written

[19] P2A_MAILBOX_INT3 RW1C 1 when the P2A_MAILBOX3 is written

[20] P2A_MAILBOX_INT4 RW1C 1 when the P2A_MAILBOX4 is written

[21] P2A_MAILBOX_INT5 RW1C 1 when the P2A_MAILBOX5 is written
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

8–10 Chapter 8: Register Descriptions
PCI Express Avalon-MM Bridge Control Register Content
An Avalon-MM interrupt can be asserted for any of the conditions noted in the
Avalon-MM Interrupt Status Register by setting the corresponding bits in the
interrupt enable register (Table 8–19).

PCI Express interrupts can also be enabled for all of the error conditions described.
However, it is likely that only one of the Avalon-MM or PCI Express interrupts can be
enabled for any given bit. There is typically a single process in either the PCI Express
or Avalon-MM domain that is responsible for handling the condition reported by the
interrupt.

Avalon-MM Mailbox Registers
A processor local to the interconnect fabric typically requires write access to a set of
Avalon-MM-to-PCI Express Mailbox Registers and read-only access to a set of PCI
Express-to-Avalon-MM Mailbox Registers. Eight mailbox registers are available.

The Avalon-MM-to-PCI Express Mailbox Registers are writable at the addresses
shown in Table 8–20. When the Avalon-MM processor writes to one of these registers
the corresponding bit in the PCI Express Interrupt Status Register is set to 1.

[22] P2A_MAILBOX_INT6 RW1C 1 when the P2A_MAILBOX6 is written

[23] P2A_MAILBOX_INT7 RW1C 1 when the P2A_MAILBOX7 is written

[31:24] Reserved — —

Table 8–18. PCI Express to Avalon-MM Interrupt Status Register (Part 2 of 2) 0x3060

Bits Name Access Description

Table 8–19. PCI Express to Avalon-MM Interrupt Enable Register 0x3070

Bits Name Access Description

[31:0]
PCI Express to
Avalon-MM Interrupt
Enable

RW

When set to 1, enables the interrupt for the corresponding bit in
the PCI Express to Avalon-MM Interrupt Status
Register to cause the Avalon Interrupt signal (cra_Irq_o) to be
asserted.

Only bits implemented in the PCI Express to Avalon-MM
Interrupt Status Register are implemented in the Enable
register. Unimplemented bits cannot be set to a 1.

Table 8–20. Avalon-MM-to-PCI Express Mailbox Registers 0x3A00–0x3A1F

Address Name Access Description

0x3A00 A2P_MAILBOX0 RW Avalon-MM-to-PCI Express mailbox 0

0x3A04 A2P _MAILBOX1 RW Avalon-MM-to-PCI Express mailbox 1

0x3A08 A2P _MAILBOX2 RW Avalon-MM-to-PCI Express mailbox 2

0x3A0C A2P _MAILBOX3 RW Avalon-MM-to-PCI Express mailbox 3

0x3A10 A2P _MAILBOX4 RW Avalon-MM-to-PCI Express mailbox 4

0x3A14 A2P _MAILBOX5 RW Avalon-MM-to-PCI Express mailbox 5

0x3A18 A2P _MAILBOX6 RW Avalon-MM-to-PCI Express mailbox 6

0x3A1C A2P_MAILBOX7 RW Avalon-MM-to-PCI Express mailbox 7
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 8: Register Descriptions 8–11
Correspondence between Configuration Space Registers and the PCIe Spec 2.1
The PCI Express-to-Avalon-MM Mailbox Registers are read-only at the addresses
shown in Table 8–21. The Avalon-MM processor reads these registers when the
corresponding bit in the Avalon-MM Interrupt Status Register is set to 1.

Correspondence between Configuration Space Registers and the PCIe
Spec 2.1

Table 8–22 provides a comprehensive correspondence between the Configuration
Space registers and their descriptions in the PCI Express Base Specification 2.1.

Table 8–21. PCI Express-to-Avalon-MM Mailbox Registers 0x3B00–0x3B1F

Address Name Access
Mode Description

0x3B00 P2A_MAILBOX0 RO PCI Express-to-Avalon-MM mailbox 0.

0x3B04 P2A_MAILBOX1 RO PCI Express-to-Avalon-MM mailbox 1

0x3B08 P2A_MAILBOX2 RO PCI Express-to-Avalon-MM mailbox 2

0x3B0C P2A_MAILBOX3 RO PCI Express-to-Avalon-MM mailbox 3

0x3B10 P2A_MAILBOX4 RO PCI Express-to-Avalon-MM mailbox 4

0x3B14 P2A_MAILBOX5 RO PCI Express-to-Avalon-MM mailbox 5

0x3B18 P2A_MAILBOX6 RO PCI Express-to-Avalon-MM mailbox 6

0x3B1C P2A_MAILBOX7 RO PCI Express-to-Avalon-MM mailbox 7

Table 8–22. Correspondence Configuration Space Registers and PCIe Base Specification Rev. 2.1 (Part 1 of 3)

Byte Address Hard IP Configuration Space Register Corresponding Section in PCIe Specification

Table 6-1. Common Configuration Space Header

0x000:0x03C PCI Header Type 0 Configuration Registers Type 0 Configuration Space Header

0x000:0x03C PCI Header Type 1 Configuration Registers Type 1 Configuration Space Header

0x040:0x04C Reserved

0x050:0x05C MSI Capability Structure MSI and MSI-X Capability Structures

0x068:0x070 MSI Capability Structure MSI and MSI-X Capability Structures

0x070:0x074 Reserved

0x078:0x07C Power Management Capability Structure PCI Power Management Capability Structure

0x080:0x0B8 PCI Express Capability Structure PCI Express Capability Structure

0x080:0x0B8 PCI Express Capability Structure PCI Express Capability Structure

0x0B8:0x0FC Reserved

0x094:0x0FF Root Port

0x100:0x16C Virtual Channel Capability Structure (Reserved) Virtual Channel Capability

0x170:0x17C Reserved

0x180:0x1FC Virtual channel arbitration table (Reserved) VC Arbitration Table

0x200:0x23C Port VC0 arbitration table (Reserved) Port Arbitration Table

0x240:0x27C Port VC1 arbitration table (Reserved) Port Arbitration Table

0x280:0x2BC Port VC2 arbitration table (Reserved) Port Arbitration Table

0x2C0:0x2FC Port VC3 arbitration table (Reserved) Port Arbitration Table
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com/

8–12 Chapter 8: Register Descriptions
Correspondence between Configuration Space Registers and the PCIe Spec 2.1
0x300:0x33C Port VC4 arbitration table (Reserved) Port Arbitration Table

0x340:0x37C Port VC5 arbitration table (Reserved) Port Arbitration Table

0x380:0x3BC Port VC6 arbitration table (Reserved) Port Arbitration Table

0x3C0:0x3FC Port VC7 arbitration table (Reserved) Port Arbitration Table

0x400:0x7FC Reserved PCIe spec corresponding section name

0x800:0x834 Advanced Error Reporting AER (optional) Advanced Error Reporting Capability

0x838:0xFFF Reserved

Table 6-2. PCI Type 0 Configuration Space Header (Endpoints), Rev2.1

0x000 Device ID Vendor ID Type 0 Configuration Space Header

0x004 Status Command Type 0 Configuration Space Header

0x008 Class Code Revision ID Type 0 Configuration Space Header

0x00C BIST Header Type Master Latency Time Cache Line
Size Type 0 Configuration Space Header

0x010 Base Address 0 Base Address Registers (Offset 10h - 24h)

0x014 Base Address 1 Base Address Registers (Offset 10h - 24h)

0x018 Base Address 2 Base Address Registers (Offset 10h - 24h)

0x01C Base Address 3 Base Address Registers (Offset 10h - 24h)

0x020 Base Address 4 Base Address Registers (Offset 10h - 24h)

0x024 Base Address 5 Base Address Registers (Offset 10h - 24h)

0x028 Reserved Type 0 Configuration Space Header

0x02C Subsystem Device ID Subsystem Vendor ID Type 0 Configuration Space Header

0x030 Expansion ROM base address Type 0 Configuration Space Header

0x034 Reserved Capabilities PTR Type 0 Configuration Space Header

0x038 Reserved Type 0 Configuration Space Header

0x03C Max_Lat Min_Gnt Interrupt Pin Interrupt Line Type 0 Configuration Space Header

Table 6-3. PCI Type 1 Configuration Space Header (Root Ports)

0x000 Device ID Vendor ID Type 1 Configuration Space Header

0x004 Status Command Type 1 Configuration Space Header

0x008 Class Code Revision ID Type 1 Configuration Space Header

0x00C BIST Header Type Primary Latency Timer Cache
Line Size Type 1 Configuration Space Header

0x010 Base Address 0 Base Address Registers (Offset 10h/14h)

0x014 Base Address 1 Base Address Registers (Offset 10h/14h)

0x018
Secondary Latency Timer Subordinate Bus
Number Secondary Bus Number Primary Bus
Number

Secondary Latency Timer (Offset 1Bh)/Type 1
Configuration Space Header/ /Primary Bus Number
(Offset 18h)

0x01C Secondary Status I/O Limit I/O Base Secondary Status Register (Offset 1Eh) / Type 1
Configuration Space Header

0x020 Memory Limit Memory Base Type 1 Configuration Space Header

0x024 Prefetchable Memory Limit Prefetchable Memory
Base Prefetchable Memory Base/Limit (Offset 24h)

Table 8–22. Correspondence Configuration Space Registers and PCIe Base Specification Rev. 2.1 (Part 2 of 3)

Byte Address Hard IP Configuration Space Register Corresponding Section in PCIe Specification
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 8: Register Descriptions 8–13
Correspondence between Configuration Space Registers and the PCIe Spec 2.1
0x028 Prefetchable Base Upper 32 Bits Type 1 Configuration Space Header

0x02C Prefetchable Limit Upper 32 Bits Type 1 Configuration Space Header

0x030 I/O Limit Upper 16 Bits I/O Base Upper 16 Bits Type 1 Configuration Space Header

0x034 Reserved Capabilities PTR Type 1 Configuration Space Header

0x038 Expansion ROM Base Address Type 1 Configuration Space Header

0x03C Bridge Control Interrupt Pin Interrupt Line Bridge Control Register (Offset 3Eh)

Table 6-4.MSI Capability Structure, Rev2.1 Spec: MSI Capability Structures

0x050 Message Control Next Cap Ptr Capability ID MSI and MSI-X Capability Structures

0x054 Message Address MSI and MSI-X Capability Structures

0x058 Message Upper Address MSI and MSI-X Capability Structures

0x05C Reserved Message Data MSI and MSI-X Capability Structures

Table 6-5. MSI-X Capability Structure, Rev2.1 Spec: MSI-X Capability Structures

0x68 Message Control Next Cap Ptr Capability ID MSI and MSI-X Capability Structures

0x6C MSI-X Table Offset BIR MSI and MSI-X Capability Structures

0x70 Pending Bit Array (PBA) Offset BIR MSI and MSI-X Capability Structures

Table 6-6. Power Management Capability Structure, Rev2.1 Spec

0x078 Capabilities Register Next Cap PTR Cap ID PCI Power Management Capability Structure

0x07C Data PM Control/Status Bridge Extensions Power
Management Status & Control PCI Power Management Capability Structure

Table 6-7 PCI Express Advanced Error Reporting Extended Capability Structure, Rev2.1 Spec: Advanced Error Reporting
Capability

0x800 PCI Express Enhanced Capability Header Advanced Error Reporting Enhanced Capability
Header

0x804 Uncorrectable Error Status Register Uncorrectable Error Status Register

0x808 Uncorrectable Error Mask Register Uncorrectable Error Mask Register

0x80C Uncorrectable Error Severity Register Uncorrectable Error Severity Register

0x810 Correctable Error Status Register Correctable Error Status Register

0x814 Correctable Error Mask Register Correctable Error Mask Register

0x818 Advanced Error Capabilities and Control Register Advanced Error Capabilities and Control Register

0x81C Header Log Register Header Log Register

0x82C Root Error Command Root Error Command Register

0x830 Root Error Status Root Error Status Register

0x834 Error Source Identification Register Correctable
Error Source ID Register Error Source Identification Register

Table 8–22. Correspondence Configuration Space Registers and PCIe Base Specification Rev. 2.1 (Part 3 of 3)

Byte Address Hard IP Configuration Space Register Corresponding Section in PCIe Specification
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

8–14 Chapter 8: Register Descriptions
Correspondence between Configuration Space Registers and the PCIe Spec 2.1
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

June 2012 Altera Corporation

June 2012
UG-01110-1.2
9. Reset and Clocks
This chapter covers the functional aspects of the reset and clock circuitry for the
Arria V Hard IP for PCI Express. It includes the following sections:

■ Reset

■ Clocks

For descriptions of the available reset and clock signals refer to “Reset Signals” on
page 7–23 and “Clock Signals” on page 7–23.

Reset
Hard IP for PCI Express includes two types of embedded reset controllers. One reset
controller is implemented in soft logic. A second reset controller is implemented in
hard logic. Software selects the appropriate reset controller depending on the
configuration you specify. Both reset controllers reset the Hard IP for PCI Express IP
Core and provide sample reset logic in the example design. Figure 9–1 on page 9–2
provides a simplified view of the logic that implements both reset controllers.
Table 9–1 summarizes their functionality.

1 Contact Altera if you are designing with a Gen1 variant and want to use the soft reset
controller.

1 Your Application Layer should instantiate a module similar to altpcie_rs_hip.v as
shown in Figure 9–1 on page 9–2 to generate app_rstn which resets the Application
Layer logic.

Table 9–1. Use of Hard and Soft Reset Controllers

Reset Controller Used Description

Hard Reset Controller

pin_perst from the input pin of the FPGA resets the Hard IP for PCI
Express IP Core. npor is asserted if either pin_perst or
local_rstn is asserted. Application Layer logic generates the
optional local_rstn signal. app_rstn which resets the Application
Layer logic is derived from npor. This reset controller is used for
Gen1 ES devices and Gen 1 and Gen2 production devices.

Soft Reset Controller

Either pin_perst from the input pin of the FPGA or npor which is
derived from pin_perst or local_rstn can reset the Hard IP for
PCI Express IP Core. Application Layer logic generates the optional
local_rstn signal. app_rstn which resets the Application Layer
logic is derived from npor. This reset controller is used for Gen2 ES
devices and Gen3 ES and production devices.
Arria V Hard IP for PCI Express
User Guide

9–2 Chapter 9: Reset and Clocks
Reset
Figure 9–1. Reset Controller

Example Design

Transceiver Hard
Reset Logic/Soft Reset

Controller

Configuration Space
Sticky Registers

Datapath State
 Machines of

 Hard IP Core

SERDES

Configuration Space
Non-Sticky Registers

reset_status

pin_perst

npor

refclk srst
rst

l2_exit

pll_locked

hotrst_exit

dlup_exit

pld_clk_inuse

pld_clk_inuse

Hard IP for PCI Express

fixed_clk
(100 or 125 MHz)

reconfig_xcvr_clk

phy_mgmt_reset

Reset HIP Cntrl
altpcie_rs_hip.v

npor_core

pld_clk

Transceiver
Reconfiguration

Controller

altpcie_rs_serdes.v

coreclkout_hip

coreclkout_hip

app_rstn

top.v

tx_digitalrst
rx_analogrst
rx_digitalrst
rx_freqlock
rx_signaldetect
rx_pll_locked
pll_locked

altpcie_<dev>_hip_ast_hwtcl.v

altpcied_<dev>_hwtcl.sv

altpcie_<dev>_hip_128_pipe128_atom.v

reconfig_xcvr_clk

free running clock or

refclk if CvP is used

reconfig_locked GPLL
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 9: Reset and Clocks 9–3
Reset
Figure 9–2 illustrates the reset sequence for the Hard IP for PCI Express IP core and
the Application Layer logic.

As Figure 9–2 illustrates, this reset sequence includes the following steps:

1. After pin_perst or npor is released, the Hard IP soft reset controller waits for
pld_clk_inuse to be asserted.

2. csrt and srst are released 32 cycles after pld_clk_inuse is asserted.

3. The Hard IP for PCI Express deasserts the reset_status output to the Application
Layer.

4. The Application Layer deasserts app_rstn 32 cycles after reset_status is
released.

Figure 9–2. Hard IP for PCI Express and Application Logic Rest Sequence

pin_perst

pld_clk_inuse

serdes_pll_locked

crst

32 cycles

32 cycles

srst

reset_status

app_rstn
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

9–4 Chapter 9: Reset and Clocks
Reset
Figure 9–3 illustrates the RX transceiver reset sequence.

As Figure 9–3 illustrates, the RX transceiver reset includes the following steps:

1. After busy_xcvr_reconfig is deasserted and rx_pll_locked is asserted, the
LTSSM state machine transitions from the Detect.Quiet to the Detect.Active state.

2. When the pipe_phystatus pulse is asserted and pipe_rxstatus[2:0] = 3, the
receiver detect operation has completed.

3. The LTSSM state machine transitions from the Detect.Active state to the
Polling.Active state.

4. The Hard IP for PCI Express asserts rx_digitalreset. The rx_digitalreset
signal is deasserted after rx_signaldetect is stable for a minimum of 3 ms.

Figure 9–4 illustrates the TX transceiver reset sequence.

Figure 9–3. RX Transceiver Reset Sequence

busy_xcvr_reconfig

rx_pll_locked

rx_analogreset

ltssmstate[4:0]

txdetectrx_loopback

pipe_phystatus

pipe_rxstatus[2:0]

rx_signaldetect

rx_freqlocked

rx_digitalreset

3 0

01

Figure 9–4. TX Transceiver Reset Sequence

npor

pll_locked

npor_serdes

127 cycles

tx_digitalreset
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 9: Reset and Clocks 9–5
Clocks
As Figure 9–4 illustrates, the RX transceiver reset includes the following steps:

1. After npor is deasserted, the core deasserts the npor_serdes input to the TX
transceiver.

2. The SERDES reset controller waits for pll_locked to be stable for a minimum of
127 cycles before deasserting tx_digitalreset.

1 The Arria V embedded reset sequence meets the 100 ms configuration time specified
in the PCI Express Base Specification 2.1.

Clocks
In accordance with the PCI Express Base Specification 2.1, you must provide a 100 MHz
reference clock that is connected directly to the transceiver. As a convenience, you
may also use a 125 MHz input reference clock as input to the TX PLL. The output of
the transceiver drives coreclkout_hip. coreclkout_hip must be connected back to
the pld_clk input clock, possibly through a clock distribution circuit required by the
specific application. For Application Layers running at 250 MHz, Altera recommends
using a PLL to ease timing closure.

The Hard IP contains a clock domain crossing (CDC) synchronizer at the interface
between the PHY/MAC and the DLL layers which allows the Data Link and
Transaction Layers to run at frequencies independent of the PHY/MAC and provides
more flexibility for the user clock interface. Depending on system requirements, you
can use this additional flexibility to enhance performance by running at a higher
frequency for latency optimization or at a lower frequency to save power.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com/
http://www.pcisig.com/

9–6 Chapter 9: Reset and Clocks
Clocks
Figure 9–5 illustrates the clock domains.

As Figure 9–5 indicates, there are three clock domains:

■ p_clk

■ coreclkout_hip

■ pld_clk

p_clk
The transceiver derives p_clk from the 100 MHz refclk signal that you must provide
to the device. The PCI Express Base Specification 2.1 requires that the refclk signal
frequency be 100 MHz ±300 PPM; however, as a convenience, you can also use a
reference clock that is 125 MHz ±300 PPM.

For designs that transition between Gen1 and Gen2, p_clk can be turned off for the
entire 1 ms timeout assigned for the PHY to change the clock rate; however, p_clk
should be stable before the 1 ms timeout expires.

The CDC module implements the asynchronous clock domain crossing between the
PHY/MAC p_clk domain and the Data Link Layer coreclk domain.

Figure 9–5. Arria V Hard IP for PCI Express Clock Domains

Note to Figure 9–5:

(1) CvP is not supported in the 12.0 release. It is shown here to facilitate layout of PCBs.

100 MHz
(or 125 MHz)

100 MHz
(or 125 MHz)

Required for CvP

Hard IP for PCI Express

PHY/MAC

Clock
Domain
Crossing

(CDC)

Data Link
 and

Transaction
Layers

125 or 250 MHz
p_clk

refclk

reconfig_clk

data

PHY IP
Core for
PCIe

top_serdes.v

altpcie_a5_hwtcl.v

top.v

top_hw.v

(coreclkout derived from p_clk)

reconfig_fromxcvr[<n> -1:0] reconfig_toxcvr[<n> -1:0]

reconfig_busy

(1)

rs_serdes

mgmt_clk_clk

coreclkout_hip
(62.5 or 125 MHz)

coreclkout

Application
Layer

Transceiver
Reconfiguration

Controller

pld_clk

(TX/RX
PCS/PMA)

Reset
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www.pcisig.com/

Chapter 9: Reset and Clocks 9–7
Clocks
coreclkout_hip
The coreclkout_hip signal is derived from p_clk. Table 9–2 lists frequencies for
coreclkout _hip which are a function of the link width, data rate, and the width of the
Avalon-ST bus.

The frequencies and widths specified in Table 9–2 are maintained throughout
operation. If the link downtrains to a lesser link width or changes to a different
maximum link rate, it maintains the frequencies it was originally configured for as
specified in Table 9–2. (The Hard IP throttles the interface to achieve a lower
throughput.) If the link also downtrains from Gen2 to Gen1, it maintains the
frequencies from the original link width, for either Gen1 or Gen2.

pld_clk
This clock drives the Transaction Layer, Data Link Layer, part of the PHY/MAC
Layer, and the Application Layer. Ideally, the pld_clk drives all user logic in the
Application Layer, including other instances of the Arria V Hard IP for PCI Express
and memory interfaces. Using a single clock simplifies timing. You should derive the
pld_clk clock from the coreclkout_hip output clock pin. pld_clk does not have to be
phase locked to coreclkout_hip because the clock domain crossing logic handles this
timing issue.

Transceiver Clock Signals
As Figure 9–5 indicates, there are two clock inputs to the PHY IP Core for PCI Express
IP core transceiver.

■ refclk—You must provide this 100 MHz or 125 MHz reference clock to the
Arria V Hard IP for PCI Express IP core.

■ reconfig_clk—You must provide this 100 MHz or 125 MHz reference clock to the
transceiver PLL. You can either use the same reference clock for both the refclk
and reconfig_clk or provide separate input clocks. The PHY IP Core for PCI
Express IP core derives fixedclk used for receiver detect from reconfig_clk.

Table 9–2. coreclkout_hip Values for All Parameterizations

Link Width Max Link Rate Avalon Interface Width coreclkout_hip

×1 Gen1 64 125 MHz

×1 Gen1 64 62.5 MHz (1)

×4 Gen1 64 125 MHz

×8 Gen1 128 125 MHz

×1 Gen2 64 62.5 MHz (1)

×1 Gen2 64 125 MHz

×4 Gen2 128 125 MHz

Note to Table 9–2:

(1) This mode saves power.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

9–8 Chapter 9: Reset and Clocks
Clocks
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

June 2012 Altera Corporation

June 2012
UG-01110-1.2
10. Transaction Layer Protocol (TLP)
Details
This chapter provides detailed information about the Arria V Hard IP for PCI Express.
TLP handling. It includes the following sections:

■ Supported Message Types

■ Transaction Layer Routing Rules

■ Receive Buffer Reordering

Supported Message Types
Table 10–1 describes the message types supported by the Hard IP.

Table 10–1. Supported Message Types (2) (Part 1 of 3)

Message Root
Port Endpoint

Generated by

CommentsApp
Layer Core

Core (with
App Layer

input)

INTX Mechanism Messages
For Endpoints, only INTA messages are
generated.

Assert_INTA Receive Transmit No Yes No
For Root Port, legacy interrupts are translated
into message interrupt TLPs which triggers
the int_status[3:0] signals to the
Application Layer.

■ int_status[0]: Interrupt signal A

■ int_status[1]: Interrupt signal B

■ int_status[2]: Interrupt signal C

■ int_status[3]: Interrupt signal D

Assert_INTB Receive Transmit No No No

Assert_INTC Receive Transmit No No No

Assert_INTD Receive Transmit No No No

Deassert_INTA Receive Transmit No Yes No

Deassert_INTB Receive Transmit No No No

Deassert_INTC Receive Transmit No No No

Deassert_INTD Receive Transmit No No No

Power Management Messages

PM_Active_State_Nak Transmit Receive No Yes No

PM_PME Receive Transmit No No Yes

PME_Turn_Off Transmit Receive No No Yes

The pme_to_cr signal sends and
acknowledges this message:

■ Root Port: When pme_to_cr is asserted,
the Root Port sends the PME_turn_off
message.

■ Endpoint: When pme_to_cr is asserted,
the Endpoint acknowledges the
PME_turn_off message by sending a
pme_to_ack message to the Root Port.

PME_TO_Ack Receive Transmit No No Yes
Arria V Hard IP for PCI Express
User Guide

10–2 Chapter 10: Transaction Layer Protocol (TLP) Details
Supported Message Types
Error Signaling Messages

ERR_COR Receive Transmit No Yes No

In addition to detecting errors, a Root Port
also gathers and manages errors sent by
downstream components through the
ERR_COR, ERR_NONFATAL, AND ERR_FATAL
Error Messages. In Root Port mode, there are
two mechanisms to report an error event to
the Application Layer:

■ serr_out output signal. When set,
indicates to the Application Layer that an
error has been logged in the AER capability
structure

■ aer_msi_num input signal. When the
Implement advanced error reporting
option is turned on, you can set
aer_msi_num to indicate which MSI is
being sent to the root complex when an
error is logged in the AER Capability
structure.

ERR_NONFATAL Receive Transmit No Yes No

ERR_FATAL Receive Transmit No Yes No

Locked Transaction Message

Unlock Message Transmit Receive Yes No No

Slot Power Limit Message

Set Slot Power
Limit (2)

Transmit
Receive No Yes No In Root Port mode, through software. (2)

Vendor-defined Messages

Vendor Defined Type 0 Transmit
Receive

Transmit
Receive Yes No No

Vendor Defined Type 1 Transmit
Receive

Transmit
Receive Yes No No

Table 10–1. Supported Message Types (2) (Part 2 of 3)

Message Root
Port Endpoint

Generated by

CommentsApp
Layer Core

Core (with
App Layer

input)
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 10: Transaction Layer Protocol (TLP) Details 10–3
Transaction Layer Routing Rules
Transaction Layer Routing Rules
Transactions adhere to the following routing rules:

■ In the receive direction (from the PCI Express link), memory and I/O requests that
match the defined base address register (BAR) contents and vendor-defined
messages with or without data route to the receive interface. The Application
Layer logic processes the requests and generates the read completions, if needed.

■ In Endpoint mode, received Type 0 Configuration requests from the PCI Express
upstream port route to the internal Configuration Space and the Arria V Hard IP
for PCI Express generates and transmits the completion.

■ The Hard IP handles supported received message transactions (Power
Management and Slot Power Limit) internally. The Endpoint also supports the
Unlock and Type 1 Messages. The Root Port supports Interrupt, Type 1 and error
Messages.

■ Vendor-defined Type 0 Message TLPs are passed to the Application Layer.

■ The Transaction Layer treats all other received transactions (including memory or
I/O requests that do not match a defined BAR) as Unsupported Requests. The
Transaction Layer sets the appropriate error bits and transmits a completion, if
needed. These Unsupported Requests are not made visible to the Application
Layer; the header and data is dropped.

Hot Plug Messages

Attention_indicator On Transmit Receive No Yes No

As per the recommendations in the PCI
Express Base Specification Revision 2.1,
these messages are not transmitted to the
Application Layer.

Attention_Indicator
Blink Transmit Receive No Yes No

Attention_indicator_
Off Transmit Receive No Yes No

Power_Indicator On Transmit Receive No Yes No

Power_Indicator Blink Transmit Receive No Yes No

Power_Indicator Off Transmit Receive No Yes No

Attention
Button_Pressed (1) Receive Transmit No No Yes

Notes to Table 10–1:

(1) In Endpoint mode.
(2) In the PCI Express Base Specification Revision 2.1, this message is no longer mandatory after link training.

Table 10–1. Supported Message Types (2) (Part 3 of 3)

Message Root
Port Endpoint

Generated by

CommentsApp
Layer Core

Core (with
App Layer

input)
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com/home
http://www.pcisig.com/home
http://www.pcisig.com/home

10–4 Chapter 10: Transaction Layer Protocol (TLP) Details
Receive Buffer Reordering
■ For memory read and write request with addresses below 4 GBytes, requestors
must use the 32-bit format. The Transaction Layer interprets requests using the
64-bit format for addresses below 4 GBytes as an Unsupported Request and does
not send them to the Application Layer. If Error Messaging is enabled, an error
Message TLP is sent to the Root Port. Refer to “Errors Detected by the Transaction
Layer” on page 14–3 for a comprehensive list of TLPs the Hard IP does not
forward to the Application Layer.

■ The Transaction Layer sends all memory and I/O requests, as well as completions
generated by the Application Layer and passed to the transmit interface, to the
PCI Express link.

■ The Hard IP can generate and transmit power management, interrupt, and error
signaling messages automatically under the control of dedicated signals.
Additionally, it can generate MSI requests under the control of the dedicated
signals.

■ In Root Port mode, the Application Layer can issue Type 0 or Type 1 Configuration
TLPs on the Avalon-ST TX bus.

■ The Type 0 Configuration TLPs are only routed to the Configuration Space of
the Hard IP and are not sent downstream on the PCI Express link.

■ The Type 1 Configuration TLPs are sent downstream on the PCI Express link. If
the bus number of the Type 1 Configuration TLP matches the Secondary Bus
Number register value in the Root Port Configuration Space, the TLP is
converted to a Type 0 TLP.

f For more information on routing rules in Root Port mode, refer to “Section
7.3.3 Configuration Request Routing Rules” in the PCI Express Base
Specification 2.1.

Receive Buffer Reordering
The RX datapath implements a RX buffer reordering function that allows posted and
completion transactions to pass non-posted transactions (as allowed by PCI Express
ordering rules) when the Application Layer is unable to accept additional non-posted
transactions.

The Application Layer dynamically enables the RX buffer reordering by asserting the
rx_mask signal. The rx_mask signal blocks non-posted request transactions made to
the Application Layer interface so that only posted and completion transactions are
presented to the Application Layer. Table 10–2 lists the transaction ordering rules.

Table 10–2. Transaction Ordering Rules (1)– (9) (Part 1 of 2)

Row Pass Column Posted Request Non Posted Request Completion

Memory Write or
Message
Request

Read Request I/O or Cfg Write
Request Read Completion I/O or Cfg Write

Completion

Spec
(10) Hard IP Spec Hard IP Spec Hard IP Spec Hard IP Spec Hard IP
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www.pcisig.com/
http://www.pcisig.com/

Chapter 10: Transaction Layer Protocol (TLP) Details 10–5
Receive Buffer Reordering
1 MSI requests are conveyed in exactly the same manner as PCI Express memory write
requests and are indistinguishable from them in terms of flow control, ordering, and
data integrity.

Po
st

ed Memory Write or
Message
Request

N (11)

Y/N (12)

N (11)

N (12)
Y Y Y Y

Y/N (11)

Y (12)

N (11)

N (12)

Y/N (11)

Y (12)

N (11)

N (12)

No
nP

os
te

d Read Request N N Y/N N (11) Y/N N (12) Y/N N Y/N N

I/O or
Configuration
Write Request

N N Y/N N (13) Y/N N (14) Y/N N Y/N N

Co
m

pl
et

io
n Read Completion

N (11)

Y/N (12)

N (11)

N (12)
Y Y Y Y

Y/N (11)

N (12)

N (11)

N (12)
Y/N N

I/O or
Configuration
Write
Completion

Y/N N Y Y Y Y Y/N N Y/N N

Notes to Table 10–2:

(1) A Memory Write or Message Request with the Relaxed Ordering Attribute bit clear (b’0) must not pass any other Memory Write or Message
Request.

(2) A Memory Write or Message Request with the Relaxed Ordering Attribute bit set (b’1) is permitted to pass any other Memory Write or Message
Request.

(3) Endpoints, Switches, and Root Complex may allow Memory Write and Message Requests to pass Completions or be blocked by Completions.

(4) Memory Write and Message Requests can pass Completions traveling in the PCI Express to PCI directions to avoid deadlock.
(5) If the Relaxed Ordering attribute is not set, then a Read Completion cannot pass a previously enqueued Memory Write or Message Request.
(6) If the Relaxed Ordering attribute is set, then a Read Completion is permitted to pass a previously enqueued Memory Write or Message Request.

(7) Read Completion associated with different Read Requests are allowed to be blocked by or to pass each other.
(8) Read Completions for Request (same Transaction ID) must return in address order.
(9) Non-posted requests cannot pass other non-posted requests.
(10) Refers to the PCI Express Base Specification 3.0.
(11) CfgRd0 can pass IORd or MRd.
(12) CfgWr0 can IORd or MRd.
(13) CfgRd0 can pass IORd or MRd.
(14) CfrWr0 can pass IOWr.

Table 10–2. Transaction Ordering Rules (1)– (9) (Part 2 of 2)
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com/

10–6 Chapter 10: Transaction Layer Protocol (TLP) Details
Receive Buffer Reordering
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

June 2012 Altera Corporation

June 2012
UG-01110-1.2
11. Interrupts
This chapter describes interrupts for the following configurations:

■ Interrupts for Endpoints Using the Avalon-ST Application Interface

■ Interrupts for Root Ports Using the Avalon-ST Interface to the Application Layer

■ Interrupts for Endpoints Using the Avalon-MM Interface to the Application Layer

Refer to “Interrupts for Endpoints” on page 7–26 and “Interrupts for Root Ports” on
page 7–27 for descriptions of the interrupt signals.

Interrupts for Endpoints Using the Avalon-ST Application Interface
The Arria V Hard IP for PCI Express provides support for PCI Express legacy
interrupts, MSI, and MSI-X interrupts when configured in Endpoint mode. The MSI,
MSI-X, and legacy interrupts are mutually exclusive. After power up, the Hard IP block
starts in INTX mode, after which time software decides whether to switch to MSI
mode by programming the msi_enable bit of the MSI message control register
(bit[16] of 0x050) to 1 or to MSI-X mode if you turn on Implement MSI-X under the
PCI Express/PCI Capabilities tab using the parameter editor. If you turn on the
Implement MSI-X option, you should implement the MSI-X table structures at the
memory space pointed to by the BARs.

f Refer to section 6.1 of PCI Express 2.1 Base Specification for a general description of PCI
Express interrupt support for Endpoints.

MSI Interrupts
MSI interrupts are signaled on the PCI Express link using a single dword memory
write TLPs generated internally by the Arria V Hard IP for PCI Express. The
app_msi_req input port controls MSI interrupt generation. When the input port
asserts app_msi_req, it causes a MSI posted write TLP to be generated based on the
MSI configuration register values and the app_msi_tc and app_msi_num input ports.
Software uses configuration requests to program the MSI registers. To enable MSI
interrupts, software must first set the MSI enable bit (Table 7–15 on page 7–36) and
then disable legacy interrupts by setting the Interrupt Disable (Table 8–2 on
page 8–2) bit.
Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com/home

11–2 Chapter 11: Interrupts
Interrupts for Endpoints Using the Avalon-ST Application Interface
Figure 11–1 illustrates the architecture of the MSI handler block.

Figure 11–2 illustrates a possible implementation of the MSI handler block with a per
vector enable bit. A global Application Layer interrupt enable can also be
implemented instead of this per vector MSI.

Figure 11–1. MSI Handler Block

Figure 11–2. Example Implementation of the MSI Handler Block

MSI Handler
Block

app_msi_req
app_msi_ack
app_msi_tc
app_msi_num
pex_msi_num
app_int_sts

cfg_msicsr[15:0]

app_int_en0

app_int_sts0

app_msi_req0

app_int_en1

app_int_sts1

app_msi_req1

app_int_sts

MSI
Arbitration

msi_enable & Master Enable

app_msi_req
app_msi_ack

Vector 1

Vector 0

R/W

R/W
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 11: Interrupts 11–3
Interrupts for Endpoints Using the Avalon-ST Application Interface
There are 32 possible MSI messages. The number of messages requested by a
particular component does not necessarily correspond to the number of messages
allocated. For example, in Figure 11–3, the Endpoint requests eight MSIs but is only
allocated two. In this case, you must design the Application Layer to use only two
allocated messages.

Figure 11–4 illustrates the interactions among MSI interrupt signals for the Root Port
in Figure 11–3. The minimum latency possible between app_msi_req and app_msi_ack
is one clock cycle.

MSI-X
You can enable MSI-X interrupts by turning on Implement MSI-X on the MSI-X tab
under the PCI Express/PCI Capabilities heading using the parameter editor. If you
turn on the Implement MSI-X option, you should implement the MSI-X table
structures at the memory space pointed to by the BARs as part of your Application
Layer.

MSI-X TLPs are generated by the Application Layer and sent through the TX
interface. They are single dword memory writes so that Last DW Byte Enable in the
TLP header must be set to 4b’0000. MSI-X TLPs should be sent only when enabled by
the MSI-X enable and the function mask bits in the message control for MSI-X
Configuration register. These bits are available on the tl_cfg_ctl output bus.

Figure 11–3. MSI Request Example

Figure 11–4. MSI Interrupt Signals Waveform (1)

Note to Figure 11–4:

(1) app_msi_req can extend beyond app_msi_ack before deasserting. F

Endpoint

8 Requested
2 Allocated

Root Complex

CPU

Interrupt Register

Root
Port

Interrupt
Block

coreclkout

app_msi_req

app_msi_tc[2:0]

app_msi_num[4:0]

app_msi_ack

1 2 3 5 64

valid

valid
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

11–4 Chapter 11: Interrupts
Interrupts for Root Ports Using the Avalon-ST Interface to the Application Layer
f For more information about implementing the MSI-X capability structure, refer
Section 6.8.2. of the PCI Local Bus Specification, Revision 3.0.

Legacy Interrupts
Legacy interrupts are signaled on the PCI Express link using message TLPs that are
generated internally by the Arria V Hard IP for PCI Express IP core. The
tl_app_int_sts_vec input port controls interrupt generation. To use legacy
interrupts, you must clear the Interrupt Disable bit, which is bit 10 of the Command
register (Table 8–2 on page 8–2). Then, turn off the MSI Enable bit (Table 7–15 on
page 7–36.)

Table 11–1 describes 3 example implementations; 1 in which all 32 MSI messages are
allocated and 2 in which only 4 are allocated.

MSI interrupts generated for Hot Plug, Power Management Events, and System
Errors always use TC0. MSI interrupts generated by the Application Layer can use
any Traffic Class. For example, a DMA that generates an MSI at the end of a
transmission can use the same traffic control as was used to transfer data.

Interrupts for Root Ports Using the Avalon-ST Interface to the
Application Layer

In Root Port mode, the Arria V Hard IP for PCI Express IP core receives interrupts
through two different mechanisms:

■ MSI—Root Ports receive MSI interrupts through the Avalon-ST RX TLP of type
MWr. This is a memory mapped mechanism.

■ Legacy—Legacy interrupts are translated into TLPs of type Message Interrupt
which is sent to the Application Layer using the int_status[3:0] pins.

Normally, the Root Port services rather than sends interrupts; however, in two
circumstances the Root Port can send an interrupt to itself to record error conditions:

■ When the AER option is enabled, the aer_msi_num[4:0] signal indicates which
MSI is being sent to the root complex when an error is logged in the AER
Capability structure. This mechanism is an alternative to using the serr_out
signal. The aer_msi_num[4:0] is only used for Root Ports and you must set it to a
constant value. It cannot toggle during operation.

■ If the Root Port detects a Power Management Event, the pex_msi_num[4:0] signal
is used by Power Management or Hot Plug to determine the offset between the
base message interrupt number and the message interrupt number to send
through MSI. The user must set pex_msi_num[4:0] to a fixed value.

Table 11–1. MSI Messages Requested, Allocated, and Mapped

MSI
Allocated

32 4 4

System error 31 3 3

Hot plug and power management event 30 2 3

Application Layer 29:0 1:0 2:0
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www.pcisig.com/home

Chapter 11: Interrupts 11–5
Interrupts for Endpoints Using the Avalon-MM Interface to the Application Layer
The Root Error Status register reports the status of error messages. The Root Error
Status register is part of the PCI Express AER Extended Capability structure. It is
located at offset 0x830 of the Configuration Space registers.

Interrupts for Endpoints Using the Avalon-MM Interface to the
Application Layer

The PCI Express Avalon-MM bridge supports MSI or legacy interrupts. The completer
only single dword variant includes an interrupt generation module. For other variants
with the Avalon-MM interface, interrupt support requires instantiation of the CRA
slave module where the interrupt registers and control logic are implemented.

The PCI Express Avalon-MM bridge supports the Avalon-MM individual requests
interrupt scheme: multiple input signals indicate incoming interrupt requests, and
software must determine priorities for servicing simultaneous interrupts the
Avalon-MM Arria V Hard IP for PCI Express receives.

The RX master module port has as many as 16 Avalon-MM interrupt input signals
(RXmirq_irq[<n>:0], where <n> < 16)) . Each interrupt signal indicates a distinct
interrupt source. Assertion of any of these signals, or a PCI Express mailbox register
write access, sets a bit in the PCI Express interrupt status register. Multiple bits can be
set at the same time; software determines priorities for servicing simultaneous
incoming interrupt requests. Each set bit in the PCI Express interrupt status register
generates a PCI Express interrupt, if enabled, when software determines its turn.

Software can enable the individual interrupts by writing to the“PCI Express to
Avalon-MM Interrupt Enable Register 0x3070” on page 8–10 through the CRA slave.

When any interrupt input signal is asserted, the corresponding bit is written in the
“Avalon-MM to PCI Express Interrupt Status Register 0x0040” on page 8–6. Software
reads this register and decides priority on servicing requested interrupts.

After servicing the interrupt, software must clear the appropriate serviced interrupt
status bit and ensure that no other interrupts are pending. For interrupts caused by
“Avalon-MM to PCI Express Interrupt Status Register 0x0040” on page 8–6 mailbox
writes, the status bits should be cleared in the “Avalon-MM to PCI Express Interrupt
Status Register 0x0040” on page 8–6. For interrupts due to the incoming interrupt
signals on the Avalon-MM interface, the interrupt status should be cleared in the
Avalon-MM component that sourced the interrupt. This sequence prevents interrupt
requests from being lost during interrupt servicing.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

11–6 Chapter 11: Interrupts
Interrupts for Endpoints Using the Avalon-MM Interface to the Application Layer
Figure 11–5 shows the logic for the entire interrupt generation process.

The PCI Express Avalon-MM bridge selects either MSI or legacy interrupts
automatically based on the standard interrupt controls in the PCI Express
Configuration Space registers. The Interrupt Disable bit, which is bit 10 of the
Command register (at Configuration Space offset 0x4) can be used to disable legacy
interrupts. The MSI Enable bit, which is bit 0 of the MSI Control Status register in the
MSI capability register (bit 16 at configuration space offset 0x50), can be used to
enable MSI interrupts.

Only one type of interrupt can be enabled at a time. However, to change the selection
of MSI or legacy interrupts during operation, software must ensure that no interrupt
request is dropped. Therefore, software must first enable the new selection and then
disable the old selection. To set up legacy interrupts, software must first clear the
Interrupt Disable bit and then clear the MSI enable bit. To set up MSI interrupts,
software must first set the MSI enable bit and then set the Interrupt Disable bit.

Figure 11–5. Avalon-MM Interrupt Propagation to the PCI Express Link

SET

CLR

D Q

Q

Interrupt Disable
(Configuration Space Command Register [10])

Avalon-MM-to-PCI-Express
Interrupt Status and Interrupt
Enable Register Bits

A2P_MAILBOX_INT7
A2P_MB_IRQ7

A2P_MAILBOX_INT6
A2P_MB_IRQ6

A2P_MAILBOX_INT5
A2P_MB_IRQ5

A2P_MAILBOX_INT4
A2P_MB_IRQ4

A2P_MAILBOX_INT3
A2P_MB_IRQ3

A2P_MAILBOX_INT2
A2P_MB_IRQ2

A2P_MAILBOX_INT1
A2P_MB_IRQ1

A2P_MAILBOX_INT0
A2P_MB_IRQ0

AV_IRQ_ASSERTED
AVL_IRQ

MSI Enable
(Configuration Space Message Control Register[0])

MSI Request

PCI Express Virtual INTA signalling
(When signal rises ASSERT_INTA Message Sent)
(When signal falls DEASSERT_INTA Message Sent)
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 11: Interrupts 11–7
Interrupts for Endpoints Using the Avalon-MM Interface to the Application Layer
Enabling MSI or Legacy Interrupts
The PCI Express Avalon-MM bridge selects either MSI or legacy interrupts
automatically based on the standard interrupt controls in the PCI Express
Configuration Space registers. Software can write the Interrupt Disable bit, which is
bit 10 of the Command register (at Configuration Space offset 0x4) to disable legacy
interrupts. Software can write the MSI Enable bit, which is bit 0 of the MSI Control
Status register in the MSI capability register (bit 16 at configuration space offset
0x50), to enable MSI interrupts.

Software can only enable one type of interrupt at a time. However, to change the
selection of MSI or legacy interrupts during operation, software must ensure that no
interrupt request is dropped. Therefore, software must first enable the new selection
and then disable the old selection. To set up legacy interrupts, software must first
clear the Interrupt Disable bit and then clear the MSI enable bit. To set up MSI
interrupts, software must first set the MSI enable bit and then set the Interrupt
Disable bit.

Generation of Avalon-MM Interrupts
Generation of Avalon-MM interrupts requires the instantiation of the CRA slave
module where the interrupt registers and control logic are implemented. The CRA
slave port has an Avalon-MM Interrupt, CRAIrq_o, output signal. A write access to an
Avalon-MM mailbox register sets one of the P2A_MAILBOX_INT<n> bits in the “PCI
Express to Avalon-MM Interrupt Status Register 0x3060” on page 8–9and asserts the,
if enabled. Software can enable the interrupt by writing to the “PCI Express to
Avalon-MM Interrupt Enable Register 0x3070” on page 8–10 through the CRA slave.
After servicing the interrupt, software must clear the appropriate serviced interrupt
status bit in the PCI-Express-to-Avalon-MM Interrupt Status register and ensure
that there is no other interrupt pending.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

11–8 Chapter 11: Interrupts
Interrupts for Endpoints Using the Avalon-MM Interface to the Application Layer
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

June 2012 Altera Corporation

June 2012
UG-01110-1.2
12. Optional Features
This chapter provides information on several additional topics. It includes the
following sections:

■ ECRC

■ Lane Initialization and Reversal

ECRC
ECRC ensures end-to-end data integrity for systems that require high reliability. You
can specify this option under the Error Reporting heading. The ECRC function
includes the ability to check and generate ECRC. In addition, the ECRC function can
also forward the TLP with ECRC to the RX port of the Application Layer. When using
ECRC forwarding mode, the ECRC check and generate are performed in the
Application Layer.

You must turn on Advanced error reporting (AER), ECRC checking, ECRC
generation, and ECRC forwarding under the PCI Express/PCI Capabilities page of
the parameter editor to enable this functionality.

f For more information about error handling, refer to the Error Signaling and Logging
which is Section 6.2 of the PCI Express Base Specification, Rev. 2.1.

ECRC on the RX Path
When the ECRC generation option is turned on, errors are detected when receiving
TLPs with a bad ECRC. If the ECRC generation option is turned off, no error
detection occurs. If the ECRC forwarding option is turned on, the ECRC value is
forwarded to the Application Layer with the TLP. If the ECRC forwarding option is
turned off, the ECRC value is not forwarded.

Table 12–1 summarizes the RX ECRC functionality for all possible conditions.

Table 12–1. ECRC Operation on RX Path (Part 1 of 2)

ECRC
Forwarding

ECRC
Check

Enable (1)

ECRC
Status Error TLP Forward to Application Layer

No

No

none No Forwarded

good No Forwarded without its ECRC

bad No Forwarded without its ECRC

Yes

none No Forwarded

good No Forwarded without its ECRC

bad Yes Not forwarded
Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com/home

12–2 Chapter 12: Optional Features
Lane Initialization and Reversal
ECRC on the TX Path
When the ECRC generation option is on, the TX path generates ECRC. If you turn on
ECRC forwarding, the ECRC value is forwarded with the TLP. Table 12–2
summarizes the TX ECRC generation and forwarding. In this table, if TD is 1, the TLP
includes an ECRC. TD is the TL digest bit of the TL packet described in Appendix A,
Transaction Layer Packet (TLP) Header Formats.

Lane Initialization and Reversal
Connected components that include IP blocks for PCI Express need not support the
same number of lanes. The ×4 variations support initialization and operation with
components that have 1, 2, or 4 lanes. The ×8 variant supports initialization and
operation with components that have 1, 2, 4, or 8 lanes.

Yes

No

none No Forwarded

good No Forwarded with its ECRC

bad No Forwarded with its ECRC

Yes

none No Forwarded

good No Forwarded with its ECRC

bad Yes Not forwarded

Note to Table 12–1:

(1) The ECRC Check Enable is in the Configuration Space Advanced Error Capabilities and Control
Register.

Table 12–1. ECRC Operation on RX Path (Part 2 of 2)

ECRC
Forwarding

ECRC
Check

Enable (1)

ECRC
Status Error TLP Forward to Application Layer

Table 12–2. ECRC Generation and Forwarding on TX Path (1)

ECRC
Forwarding

ECRC
Generation
Enable (2)

TLP on Application
Layer TLP on Link Comments

No

No

TD=0, without ECRC TD=0, without ECRC

TD=1, without ECRC TD=0, without ECRC

Yes

TD=0, without ECRC TD=1, with ECRC

ECRC is generatedTD=1, without ECRC TD=1, with ECRC

Yes

No

TD=0, without ECRC TD=0, without ECRC

Core forwards the
ECRC

TD=1, with ECRC TD=1, with ECRC

Yes

TD=0, without ECRC TD=0, without ECRC

TD=1, with ECRC TD=1, with ECRC

Notes to Table 12–2:

(1) All unspecified cases are unsupported and the behavior of the Hard IP is unknown.
(2) The ECRC Generation Enable is in the Configuration Space Advanced Error Capabilities and

Control Register.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 12: Optional Features 12–3
Lane Initialization and Reversal
The Arria V Hard IP for PCI Express supports lane reversal, which permits the logical
reversal of lane numbers for the ×1, ×2, ×4, and ×8 configurations. Lane reversal
allows more flexibility in board layout, reducing the number of signals that must cross
over each other when routing the PCB.

Table 12–3 summarizes the lane assignments for normal configuration.

Table 12–4 summarizes the lane assignments with lane reversal.

Figure 12–1 illustrates a PCI Express card with ×4 IP Root Port and a ×4 Endpoint on
the top side of the PCB. Connecting the lanes without lane reversal creates routing
problems. Using lane reversal, solves the problem.

Table 12–3. Lane Assignments without Lane Reversal

Lane Number 7 6 5 4 3 2 1 0

×8 IP core 7 6 5 4 3 2 1 0

×4 IP core — — — — 3 2 1 0

×1 IP core — — — — — — — 0

Table 12–4. Lane Assignments with Lane Reversal

Core Config 8 4 1

Slot Size 8 4 2 1 8 4 2 1 8 4 2 1

Lane
assignments

7:0,6:1,5:2,4:3,3:4,
2:5,1:6,0:7

3:4,2:5,

1:6,0:7

1:6,

0:7
0:7

7:0,6:1,

5:2,4:3

3:0,2:1,

1:2,0:3

3:0,

2:1
3:0 7:0 3:0 1:0 0:0

Figure 12–1. Using Lane Reversal to Solve PCB Routing Problems

0
1
2
3

Root Port

3
2
1
0

Endpoint

0
1
2
3

Root Port

0
1
2
3

Endpoint

No Lane Reversal
Results in PCB Routing Challenge

With Lane Reversal
Signals Route Easily

lane
reversal

no lane
reversal
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

12–4 Chapter 12: Optional Features
Lane Initialization and Reversal
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

June 2012 Altera Corporation

June 2012
UG-01110-1.2
13. Flow Control
Throughput analysis requires that you understand the Flow Control Loop, shown in
“Flow Control Update Loop” on page 13–2. This chapter discusses the Flow Control
Loop and strategies to improve throughput. It covers the following topics:

■ Throughput of Posted Writes

■ Throughput of Non-Posted Reads

Throughput of Posted Writes
The throughput of posted writes is limited primarily by the Flow Control Update loop
shown in Figure 13–1. If the write requester sources the data as quickly as possible,
and the completer consumes the data as quickly as possible, then the Flow Control
Update loop may be the biggest determining factor in write throughput, after the
actual bandwidth of the link.

Figure 13–1 shows the main components of the Flow Control Update loop with two
communicating PCI Express ports:

■ Write Requester

■ Write Completer

As the PCI Express Base Specification 2.1 describes, each transmitter, the write requester
in this case, maintains a Credit Limit Register and a Credits Consumed Register.
The Credit Limit Register is the sum of all credits issued by the receiver, the write
completer in this case. The Credit Limit Register is initialized during the flow
control initialization phase of link initialization and then updated during operation by
Flow Control (FC) Update DLLPs. The Credits Consumed Register is the sum of all
credits consumed by packets transmitted. Separate Credit Limit and Credits
Consumed Registers exist for each of the six types of Flow Control:

■ Posted Headers

■ Posted Data

■ Non-Posted Headers

■ Non-Posted Data

■ Completion Headers

■ Completion Data
Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com/

13–2 Chapter 13: Flow Control
Throughput of Posted Writes
Each receiver also maintains a credit allocated counter which is initialized to the total
available space in the RX buffer (for the specific Flow Control class) and then
incremented as packets are pulled out of the RX buffer by the Application Layer. The
value of this register is sent as the FC Update DLLP value.

The following numbered steps describe each step in the Flow Control Update loop.
The corresponding numbers on Figure 13–1 show the general area to which they
correspond.

1. When the Application Layer has a packet to transmit, the number of credits
required is calculated. If the current value of the credit limit minus credits
consumed is greater than or equal to the required credits, then the packet can be
transmitted immediately. However, if the credit limit minus credits consumed is
less than the required credits, then the packet must be held until the credit limit is
increased to a sufficient value by an FC Update DLLP. This check is performed
separately for the header and data credits; a single packet consumes only a single
header credit.

2. After the packet is selected for transmission the Credits Consumed Register is
incremented by the number of credits consumed by this packet. This increment
happens for both the header and data Credit Consumed Registers.

3. The packet is received at the other end of the link and placed in the RX buffer.

4. At some point the packet is read out of the RX buffer by the Application Layer.
After the entire packet is read out of the RX buffer, the Credit Allocated Register
can be incremented by the number of credits the packet has used. There are
separate Credit Allocated Registers for the header and data credits.

5. The value in the Credit Allocated Registers is used to create an FC Update
DLLP.

Figure 13–1. Flow Control Update Loop

Credits

Consumed
Counter

Credit

Limit

Data Packet

Flow

Control
Gating

Logic

(Credit

Check)

Allow

Incr

Rx

Buffer
Data Packet

Credit

Allocated

FC
Update

DLLP

Generate

FC
Update

DLLP
Decode

FC Update DLLP

App

Layer

Transaction

Layer

Data Link

Layer

Physical

Layer

Incr

Physical

Layer

Data Link

Layer

Transaction

Layer

App

Layer

Data Source

PCI

Express

Link

Data Sink

1 2

7

6

5

3

4

Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 13: Flow Control 13–3
Throughput of Non-Posted Reads
6. After an FC Update DLLP is created, it arbitrates for access to the PCI Express link.
The FC Update DLLPs are typically scheduled with a low priority; consequently, a
continuous stream of Application Layer TLPs or other DLLPs (such as ACKs) can
delay the FC Update DLLP for a long time. To prevent starving the attached
transmitter, FC Update DLLPs are raised to a high priority under the following
three circumstances:

a. When the last sent credit allocated counter minus the amount of received data
is less than maximum payload and the current credit allocated counter is
greater than the last sent credit counter. Essentially, this means the data sink
knows the data source has less than a full maximum payload worth of credits,
and therefore is starving.

b. When an internal timer expires from the time the last FC Update DLLP was
sent, which is configured to 30 µs to meet the PCI Express Base Specification for
resending FC Update DLLPs.

c. When the credit allocated counter minus the last sent credit allocated counter is
greater than or equal to 25% of the total credits available in the RX buffer, then
the FC Update DLLP request is raised to high priority.

After arbitrating, the FC Update DLLP that won the arbitration to be the next item
is transmitted. In the worst case, the FC Update DLLP may need to wait for a
maximum sized TLP that is currently being transmitted to complete before it can
be sent.

7. The FC Update DLLP is received back at the original write requester and the credit
limit value is updated. If packets are stalled waiting for credits, they can now be
transmitted.

To allow the write requester to transmit packets continuously, the credit allocated
and the credit limit counters must be initialized with sufficient credits to allow
multiple TLPs to be transmitted while waiting for the FC Update DLLP that
corresponds to the freeing of credits from the very first TLP transmitted.

You can use the RX Buffer space allocation - Desired performance for received
requests to configure the RX buffer with enough space to meet the credit
requirements of your system.

Throughput of Non-Posted Reads
To support a high throughput for read data, you must analyze the overall delay from
the time the Application Layer issues the read request until all of the completion data
is returned. The Application Layer must be able to issue enough read requests, and
the read completer must be capable of processing these read requests quickly enough
(or at least offering enough non-posted header credits) to cover this delay.

However, much of the delay encountered in this loop is well outside the Arria V Hard
IP for PCI Express and is very difficult to estimate. PCI Express switches can be
inserted in this loop, which makes determining a bound on the delay more difficult.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com/home

13–4 Chapter 13: Flow Control
Throughput of Non-Posted Reads
Nevertheless, maintaining maximum throughput of completion data packets is
important. Endpoints must offer an infinite number of completion credits. Endpoints
must buffer this data in the RX buffer until the Application Layer can process it.
Because the Endpoint is no longer managing the RX buffer through the flow control
mechanism, the Application Layer must manage the RX buffer by the rate at which it
issues read requests.

To determine the appropriate settings for the amount of space to reserve for
completions in the RX buffer, you must make an assumption about the length of time
until read completions are returned. This assumption can be estimated in terms of an
additional delay, beyond the FC Update Loop Delay, as discussed in the section
“Throughput of Posted Writes” on page 13–1. The paths for the read requests and the
completions are not exactly the same as those for the posted writes and FC Updates in
the PCI Express logic. However, the delay differences are probably small compared
with the inaccuracy in the estimate of the external read to completion delays.

With multiple completions, the number of available credits for completion headers
must be larger than the completion data space divided by the maximum packet size.
Instead, the credit space for headers must be the completion data space (in bytes)
divided by 64, because this is the smallest possible read completion boundary. Setting
the RX Buffer space allocation – Desired performance for received completions to
High under the System Settings heading when specifying parameter settings
configures the RX buffer with enough space to meet this requirement. You can adjust
this setting up or down from the High setting to tailor the RX buffer size to your
delays and required performance.

You can also control the maximum amount of outstanding read request data. This
amount is limited by the number of header tag values that can be issued by the
Application Layer and by the maximum read request size that can be issued. The
number of header tag values that can be in use is also limited by the Arria V Hard IP
for PCI Express. You can specify 32 or 64 tags though configuration software to
restrict the Application Layer to use only 32 tags. In commercial PC systems, 32 tags
are usually sufficient to maintain optimal read throughput.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

June 2012 Altera Corporation

June 2012
UG-01110-1.2
14. Error Handling
Each PCI Express compliant device must implement a basic level of error
management and can optionally implement advanced error management. The Altera
Arria V Hard IP for PCI Express implements both basic and advanced error reporting.
Given its position and role within the fabric, error handling for a Root Port is more
complex than that of an Endpoint.

The PCI Express Base Specification 2.1 defines three types of errors, outlined in
Table 14–1.

The following sections describe the errors detected by the three layers of the PCI
Express protocol and error logging. It includes the following sections:

■ Physical Layer Errors

■ Data Link Layer Errors

■ Transaction Layer Errors

■ Error Reporting and Data Poisoning

■ Uncorrectable and Correctable Error Status Bits

Table 14–1. Error Classification

Type Responsible
Agent Description

Correctable Hardware While correctable errors may affect system performance, data integrity is
maintained.

Uncorrectable, non-fatal Device software
Uncorrectable, non-fatal errors are defined as errors in which data is lost,
but system integrity is maintained. For example, the fabric may lose a
particular TLP, but it still works without problems.

Uncorrectable, fatal System software

Errors generated by a loss of data and system failure are considered
uncorrectable and fatal. Software must determine how to handle such
errors: whether to reset the link or implement other means to minimize
the problem.
Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com/

14–2 Chapter 14: Error Handling
Physical Layer Errors
Physical Layer Errors
Table 14–2 describes errors detected by the Physical Layer.
P

Data Link Layer Errors
Table 14–3 describes errors detected by the Data Link Layer.

Table 14–2. Errors Detected by the Physical Layer (1)

Error Type Description

Receive port error Correctable

This error has the following 3 potential causes:

■ Physical coding sublayer error when a lane is in L0 state. These errors
are reported to the Hard IP block via the per lane PIPE interface input
receive status signals, rxstatus<lane_number>[2:0] using the
following encodings:
100: 8B/10B Decode Error
101: Elastic Buffer Overflow
110: Elastic Buffer Underflow
111: Disparity Error

■ Deskew error caused by overflow of the multilane deskew FIFO.

■ Control symbol received in wrong lane.

Note to Table 14–2:

(1) Considered optional by the PCI Express specification.

Table 14–3. Errors Detected by the Data Link Layer

Error Type Description

Bad TLP Correctable This error occurs when a LCRC verification fails or when a sequence
number error occurs.

Bad DLLP Correctable This error occurs when a CRC verification fails.

Replay timer Correctable This error occurs when the replay timer times out.

Replay num rollover Correctable This error occurs when the replay number rolls over.

Data Link Layer protocol Uncorrectable
(fatal)

This error occurs when a sequence number specified by the Ack/Nak
block in the Data Link Layer (AckNak_Seq_Num) does not correspond to
an unacknowledged TLP. (Refer to “Data Link Layer” on page 6–7.)
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 14: Error Handling 14–3
Transaction Layer Errors
Transaction Layer Errors
Table 14–4 describes errors detected by the Transaction Layer.

Table 14–4. Errors Detected by the Transaction Layer (Part 1 of 3)

Error Type Description

Poisoned TLP received Uncorrectable
(non-fatal)

This error occurs if a received Transaction Layer packet has the EP
poison bit set.

The received TLP is passed to the Application Layer and the Application
Layer logic must take appropriate action in response to the poisoned
TLP. Refer to “2.7.2.2 Rules for Use of Data Poisoning” in the PCI
Express Base Specification 2.1 for more information about poisoned
TLPs.

ECRC check failed (1) Uncorrectable
(non-fatal)

This error is caused by an ECRC check failing despite the fact that the
TLP is not malformed and the LCRC check is valid.

The Hard IP block handles this TLP automatically. If the TLP is a
non-posted request, the Hard IP block generates a completion with
completer abort status. In all cases the TLP is deleted in the Hard IP
block and not presented to the Application Layer.

Unsupported Request for
Endpoints

Uncorrectable
(non-fatal)

This error occurs whenever a component receives any of the following
Unsupported Requests:

■ Type 0 Configuration Requests for a non-existing function.

■ Completion transaction for which the Requester ID does not match
the bus/device.

■ Unsupported message.

■ A Type 1 Configuration Request TLP for the TLP from the PCIe link.

■ A locked memory read (MEMRDLK) on Native Endpoint.

■ A locked completion transaction.

■ A 64-bit memory transaction in which the 32 MSBs of an address are
set to 0.

■ A memory or I/O transaction for which there is no matching BAR.

■ A memory transaction when the Memory Space Enable bit (bit [1] of
the PCI Command register at Configuration Space offset 0x4) is set to
0.

■ A poisoned configuration write request (CfgWr0)

If the TLP is a non-posted request, the Hard IP block generates a
completion with Unsupported Request status. In all cases the TLP is
deleted in the Hard IP block and not presented to the Application Layer.

Unsupported Requests for
Root Port Uncorrectable fatal

This error occurs whenever a component receives an Unsupported
Request including:

■ Unsupported message

■ A Type 0 Configuration Request TLP

■ A 64-bit memory transaction which the 32 MSBs of an address are
set to 0.

■ A memory transaction that does not match a Windows address
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

14–4 Chapter 14: Error Handling
Transaction Layer Errors
Completion timeout Uncorrectable
(non-fatal)

This error occurs when a request originating from the Application Layer
does not generate a corresponding completion TLP within the
established time. It is the responsibility of the Application Layer logic to
provide the completion timeout mechanism. The completion timeout
should be reported from the Transaction Layer using the cpl_err[0]
signal.

Completer abort (1) Uncorrectable
(non-fatal)

The Application Layer reports this error using the cpl_err[2]signal
when it aborts receipt of a TLP.

Unexpected completion Uncorrectable
(non-fatal)

This error is caused by an unexpected completion transaction. The Hard
IP block handles the following conditions:

■ The Requester ID in the completion packet does not match the
Configured ID of the Endpoint.

■ The completion packet has an invalid tag number. (Typically, the tag
used in the completion packet exceeds the number of tags specified.)

■ The completion packet has a tag that does not match an outstanding
request.

■ The completion packet for a request that was to I/O or Configuration
Space has a length greater than 1 dword.

■ The completion status is Configuration Retry Status (CRS) in
response to a request that was not to Configuration Space.

In all of the above cases, the TLP is not presented to the Application
Layer; the Hard IP block deletes it.

The Application Layer can detect and report other unexpected
completion conditions using the cpl_err[2] signal. For example, the
Application Layer can report cases where the total length of the received
successful completions do not match the original read request length.

Receiver overflow (1) Uncorrectable
(fatal)

This error occurs when a component receives a TLP that violates the FC
credits allocated for this type of TLP. In all cases the hard IP block
deletes the TLP and it is not presented to the Application Layer.

Flow control protocol error
(FCPE) (1)

Uncorrectable
(fatal)

This error occurs when a component does not receive update flow
control credits with the 200 μs limit.

Malformed TLP Uncorrectable
(fatal)

This error is caused by any of the following conditions:

■ The data payload of a received TLP exceeds the maximum payload
size.

■ The TD field is asserted but no TLP digest exists, or a TLP digest
exists but the TD bit of the PCI Express request header packet is not
asserted.

■ A TLP violates a byte enable rule. The Hard IP block checks for this
violation, which is considered optional by the PCI Express
specifications.

■ A TLP in which the type and length fields do not correspond with
the total length of the TLP.

■ A TLP in which the combination of format and type is not specified by
the PCI Express specification.

Table 14–4. Errors Detected by the Transaction Layer (Part 2 of 3)

Error Type Description
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 14: Error Handling 14–5
Error Reporting and Data Poisoning
Error Reporting and Data Poisoning
How the Endpoint handles a particular error depends on the configuration registers
of the device.

f Refer to the PCI Express Base Specification 2.1 for a description of the device signaling
and logging for an Endpoint.

The Hard IP block implements data poisoning, a mechanism for indicating that the
data associated with a transaction is corrupted. Poisoned TLPs have the
error/poisoned bit of the header set to 1 and observe the following rules:

■ Received poisoned TLPs are sent to the Application Layer and status bits are
automatically updated in the Configuration Space.

■ Received poisoned Configuration Write TLPs are not written in the Configuration
Space.

■ The Configuration Space never generates a poisoned TLP; the error/poisoned bit
of the header is always set to 0.

Poisoned TLPs can also set the parity error bits in the PCI Configuration Space Status
register. Table 14–5 lists the conditions that cause parity errors.

Poisoned packets received by the Hard IP block are passed to the Application Layer.
Poisoned transmit TLPs are similarly sent to the link.

Malformed TLP
(continued)

Uncorrectable
(fatal)

■ A request specifies an address/length combination that causes a
memory space access to exceed a 4 KByte boundary. The Hard IP
block checks for this violation, which is considered optional by the
PCI Express specification.

■ Messages, such as Assert_INTX, Power Management, Error
Signaling, Unlock, and Set Power Slot Limit, must be transmitted
across the default traffic class.

The Hard IP block deletes the malformed TLP; it is not presented to the
Application Layer.

Note to Table 14–4:

(1) Considered optional by the PCI Express Base Specification Revision 2.1.

Table 14–4. Errors Detected by the Transaction Layer (Part 3 of 3)

Error Type Description

Table 14–5. Parity Error Conditions

Status Bit Conditions

Detected parity error (status register bit 15) Set when any received TLP is poisoned.

Master data parity error (status register bit 8)

This bit is set when the command register parity enable bit is set and one of
the following conditions is true:

■ The poisoned bit is set during the transmission of a Write Request TLP.

■ The poisoned bit is set on a received completion TLP.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com/home
http://www.pcisig.com/home

14–6 Chapter 14: Error Handling
Uncorrectable and Correctable Error Status Bits
Uncorrectable and Correctable Error Status Bits
The following section is reprinted with the permission of PCI-SIG. Copyright 2010
PCI-SIGR.

Figure 14–1 illustrates the Uncorrectable Error Status register. The default value of all
the bits of this register is 0. An error status bit that is set indicates that the error
condition it represents has been detected. Software may clear the error status by
writing a 1 to the appropriate bit.

Figure 14–2 illustrates the Correctable Error Status register. The default value of all the
bits of this register is 0. An error status bit that is set indicates that the error condition
it represents has been detected. Software may clear the error status by writing a 1 to
the appropriate bit.0

Figure 14–1. Uncorrectable Error Status Register

Rsvd Rsvd Rsvd

TLP Prefix Blocked Error Status
AtomicOp Egress Blocked Status

MC Blocked TLP Status
Uncorrectable Internal Error Status

ACS Violation Status
Unsupported Request Error Status

ECRC Error Status
Malformed TLP Status

Receiver Overflow Status
Unexpected Completion Status

Completer Abort Status
Completion Timeout Status

Flow Control Protocol Status
Poisoned TLP Status

Surprise Down Error Status
Data Link Protocol Error Status

Undefined

22 21 20 1926 25 24 23 18 17 16 15 14 13 12 11 6 5 4 3 1 031

Figure 14–2. Correctable Error Status Register

Rsvd Rsvd Rsvd

Header Log Overflow Status
Corrected Internal Error Status

Advisory Non-Fatal Error Status
Replay Timer Timeout Status

REPLAY_NUM Rollover Status
Bad DLLP Status

Bad TLP Status
Receiver Error Status

16 15 14 13 12 11 9 8 7 6 5 1 031
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

June 2012 Altera Corporation

June 2012
UG-01110-1.2
15. Transceiver PHY IP Reconfiguration
As silicon progresses towards smaller process nodes, circuit performance is affected
more by variations due to process, voltage, and temperature (PVT). These process
variations result in analog voltages that can be offset from required ranges. You must
compensate for this variation by including the Transceiver Reconfiguration Controller
IP Core in your design. You can instantiate this component using the MegaWizard
Plug-In Manager or Qsys. It is available for Arria V devices and can be found in the
Interfaces/Transceiver PHY category for the MegaWizard design flow. In Qsys, you
can find the Transceiver Reconfiguration Controller in the Interface
Protocols/Transceiver PHY category. When you instantiate your Transceiver
Reconfiguration Controller IP core the Enable offset cancellation block option is On
by default. This feature is all that is required to ensure that the transceivers operate
within the required ranges, but you can choose to enable other features such as the
Enable analog/PMA reconfiguration block option if your system requires this.

Initially, the Arria V Hard IP for PCI Express requires a separate reconfiguration
interface for each lane and each TX PLL. It reports this number in the message pane of
its GUI. You must take note of this number so the you can enter it as a parameter in
the Transceiver Reconfiguration Controller. Figure 15–1 illustrates the messages
reported for a Gen2 ×4 variant. The variant requires five interfaces: one for each lane
and one for the TX PLL.

Figure 15–1. Number of External Reconfiguration Controller Interfaces
Arria V Hard IP for PCI Express
User Guide

15–2 Chapter 15: Transceiver PHY IP Reconfiguration
When you instantiate the Transceiver Reconfiguration Controller, you must specify 5
for the Number of reconfiguration interfaces as illustrates.

The Transceiver Reconfiguration Controller includes an Optional interface grouping
parameter. Arria V devices include six channels in a transceiver bank. For a ×4
variant, no special interface grouping is required because all 4 lanes and the TX PLL
fit in one bank.

1 Although you must initially create a separate logical reconfiguration interface for each
lane and TX PLL in your design, when the Quartus II software compiles your design,
it reduces original number of logical interfaces by merging them. Allowing the
Quartus II software to merge reconfiguration interfaces gives the Fitter more
flexibility in placing transceiver channels.

1 You cannot use SignalTapTM to observe the reconfiguration interfaces.

Figure 15–2.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 15: Transceiver PHY IP Reconfiguration 15–3
Figure 15–3 shows the connections between the Transceiver Reconfiguration
Controller instance and the PHY IP Core for PCI Express instance.

f For more information about using the Transceiver Reconfiguration Controller, refer to
the “Transceiver Reconfiguration Controller” chapter in the Altera Transceiver PHY IP
Core User Guide.

Figure 15–3. ALTGX_RECONFIG Connectivity (1)

Notes to Figure 15–3:

(1) The example design described in the Chapter 2, Getting Started with the Arria V Hard IP for PCI Express includes the Transceiver Reconfiguration
Controller.

 Avalon-MM
Slave Interface

PHY IP Core for PCI Express

Lane 2

Lane 3

Lane 1

Lane 0

TX PLL

Transceiver Bank

to and from
Embedded
Controller

100-125 MHz

Transceiver Reconfiguration Controller
(Unused)

mgmt_clk
mgmt_rst
mgmt_address[6:0]
mgmt_writedata[31:0]
mgmt_readdata[31:0]
mgmt_write
mgmt_read
mgmt_waitrequest

reconfig_toxcvr
reconfig_fromxcvr

reconfig_busy

reconfig_toxcvr
reconfig_fromxcvr

reconfig_busy

Hard IP for PCI Express
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.altera.com/literature/ug/xcvr_user_guide.pdf
http://www.altera.com/literature/ug/xcvr_user_guide.pdf

15–4 Chapter 15: Transceiver PHY IP Reconfiguration
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

June 2012 Altera Corporation

June 2012
UG-01110-1.2
16. Testbench and Design Example
This chapter introduces the Root Port or Endpoint design example including a
testbench, BFM, and a test driver module. You can create this design example using
the designs described in Chapter 2, Getting Started with the Arria V Hard IP for PCI
Express and Chapter 3, Getting Started with the Avalon-MM Arria V Hard IP for PCI
Express.

When configured as an Endpoint variation, the testbench instantiates a design
example and a Root Port BFM, which provides the following functions:

■ A configuration routine that sets up all the basic configuration registers in the
Endpoint. This configuration allows the Endpoint application to be the target and
initiator of PCI Express transactions.

■ A Verilog HDL procedure interface to initiate PCI Express transactions to the
Endpoint.

The testbench uses a test driver module, altpcietb_bfm_driver_chaining to exercise
the chaining DMA of the design example. The test driver module displays
information from the Endpoint Configuration Space registers, so that you can
correlate to the parameters you specified using the parameter editor.

When configured as a Root Port, the testbench instantiates a Root Port design example
and an Endpoint model, which provides the following functions:

■ A configuration routine that sets up all the basic configuration registers in the Root
Port and the Endpoint BFM. This configuration allows the Endpoint application to
be the target and initiator of PCI Express transactions.

■ A Verilog HDL procedure interface to initiate PCI Express transactions to the
Endpoint BFM.

The testbench uses a test driver module, altpcietb_bfm_driver_rp, to exercise the
target memory and DMA channel in the Endpoint BFM. The test driver module
displays information from the Root Port Configuration Space registers, so that you
can correlate to the parameters you specified using the parameter editor. The
Endpoint model consists of an Endpoint variation combined with the chaining DMA
application described above.

1 The Altera testbench and Root Port or Endpoint BFM provide a simple method to do
basic testing of the Application Layer logic that interfaces to the variation. However,
the testbench and Root Port BFM are not intended to be a substitute for a full
verification environment. To thoroughly test your Application Layer, Altera suggests
that you obtain commercially available PCI Express verification IP and tools, or do
your own extensive hardware testing or both.
Arria V Hard IP for PCI Express
User Guide

16–2 Chapter 16: Testbench and Design Example
Endpoint Testbench
Your Application Layer design may need to handle at least the following scenarios
that are not possible to create with the Altera testbench and the Root Port BFM:

■ It is unable to generate or receive Vendor Defined Messages. Some systems
generate Vendor Defined Messages and the Application Layer must be designed
to process them. The Hard IP block passes these messages on to the Application
Layer which, in most cases should ignore them.

■ It can only handle received read requests that are less than or equal to the
currently set Maximum payload size option specified under PCI Express/PCI
Capabilites heading under the Device tab using the parameter editor. Many
systems are capable of handling larger read requests that are then returned in
multiple completions.

■ It always returns a single completion for every read request. Some systems split
completions on every 64-byte address boundary.

■ It always returns completions in the same order the read requests were issued.
Some systems generate the completions out-of-order.

■ It is unable to generate zero-length read requests that some systems generate as
flush requests following some write transactions. The Application Layer must be
capable of generating the completions to the zero length read requests.

■ It uses fixed credit allocation.

■ It does not support parity.

Endpoint Testbench
After you install the Quartus II software for 11.1, you can copy andy of the five
example designs from the <install_dir>/ip/altera/altera_pcie/altera_pcie_hip_ast_ed
/example_design directory. You can generate the testbench from the example design
as was shown in Chapter 2, Getting Started with the Arria V Hard IP for PCI Express.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 16: Testbench and Design Example 16–3
Endpoint Testbench
This testbench simulates up to an ×8 PCI Express link using either the PIPE interfaces
of the Root Port and Endpoints or the serial PCI Express interface. The testbench
design does not allow more than one PCI Express link to be simulated at a time.
Figure 16–1 presents a high level view of the design example.

The top-level of the testbench instantiates four main modules:

■ <qsys_systemname>— This is the example Endpoint design. For more
information about this module, refer to “Chaining DMA Design Examples” on
page 16–4.

■ altpcietb_bfm_top_rp.v—This is the Root Port PCI Express BFM. For more
information about this module, refer to“Root Port BFM” on page 16–20.

■ altpcietb_pipe_phy—There are eight instances of this module, one per lane. These
modules interconnect the PIPE MAC layer interfaces of the Root Port and the
Endpoint. The module mimics the behavior of the PIPE PHY layer to both MAC
interfaces.

■ altpcietb_bfm_driver_chaining—This module drives transactions to the Root
Port BFM. This is the module that you modify to vary the transactions sent to the
example Endpoint design or your own design. For more information about this
module, refer to “Root Port Design Example” on page 16–18.

In addition, the testbench has routines that perform the following tasks:

■ Generates the reference clock for the Endpoint at the required frequency.

■ Provides a PCI Express reset at start up.

1 One parameter, serial_sim_hwtcl, in the altprice_tbed_sv_hwtcl.v file, controls
whether the testbench simulates in PIPE mode or serial mode. When is set to 0, the
simulation runs in PIPE mode; when set to 1, it runs in serial mode.

Figure 16–1. Design Example for Endpoint Designs

APPS
altpcied_sv_hwtcl.v

Hard IP for PCI Express Testbench for Endpoints

Avalon-ST TX
Avalon-ST RX

reset
status

Avalon-ST TX
Avalon-ST RX
reset
status

DUT
altpcie_sv_hip_ast_hwtcl.v

Root Port Model
altpcie_tbed_sv_hwtcl.v

PIPE or
Serial

Interface

Root Port BFM
altpcietb_bfm_rpvar_64b_x4_pipen1b

Root Port Driver and Monitor
altpcietb_bfm_vc_intf
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

16–4 Chapter 16: Testbench and Design Example
Root Port Testbench
Root Port Testbench
This testbench simulates up to an ×8 PCI Express link using either the PIPE interfaces
of the Root Port and Endpoints or the serial PCI Express interface. The testbench
design does not allow more than one PCI Express link to be simulated at a time. The
top-level of the testbench instantiates four main modules:

■ <qsys_systemname>— Name of Root Port This is the example Root Port design. For
more information about this module, refer to “Root Port Design Example” on
page 16–18.

■ altpcietb_bfm_ep_example_chaining_pipen1b—This is the Endpoint PCI
Express mode described in the section “Chaining DMA Design Examples” on
page 16–4.

■ altpcietb_pipe_phy—There are eight instances of this module, one per lane. These
modules connect the PIPE MAC layer interfaces of the Root Port and the Endpoint.
The module mimics the behavior of the PIPE PHY layer to both MAC interfaces.

■ altpcietb_bfm_driver_rp—This module drives transactions to the Root Port BFM.
This is the module that you modify to vary the transactions sent to the example
Endpoint design or your own design. For more information about this module, see
“Test Driver Module” on page 16–14.

The testbench has routines that perform the following tasks:

■ Generates the reference clock for the Endpoint at the required frequency.

■ Provides a reset at start up.

1 One parameter, serial_sim_hwtcl, in the altprice_tbed_sv_hwtcl.v file, controls
whether the testbench simulates in PIPE mode or serial mode. When is set to 0, the
simulation runs in PIPE mode; otherwise, it runs in serial mode.

Chaining DMA Design Examples
This design examples shows how to create a chaining DMA Native Endpoint which
supports simultaneous DMA read and write transactions. The write DMA module
implements write operations from the Endpoint memory to the root complex (RC)
memory. The read DMA implements read operations from the RC memory to the
Endpoint memory.

When operating on a hardware platform, the DMA is typically controlled by a
software application running on the root complex processor. In simulation, the
generated testbench, along with this design example, provides a BFM driver module
in Verilog HDL that controls the DMA operations. Because the example relies on no
other hardware interface than the PCI Express link, you can use the design example
for the initial hardware validation of your system.

The design example includes the following two main components:

■ The Root Port variation

■ An Application Layer design example
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 16: Testbench and Design Example 16–5
Chaining DMA Design Examples
The end point or Root Port variant is generated in the language (Verilog HDL or
VHDL) that you selected for the variation file. The testbench files are only generated
in Verilog HDL in the current release. If you choose to use VHDL for your variant, you
must have a mixed-language simulator to run this testbench.

1 The chaining DMA design example requires setting BAR 2 or BAR 3 to a minimum of
256 bytes. To run the DMA tests using MSI, you must set the Number of MSI
messages requested parameter under the PCI Express/PCI Capabilities page to at
least 2.

The chaining DMA design example uses an architecture capable of transferring a
large amount of fragmented memory without accessing the DMA registers for every
memory block. For each block of memory to be transferred, the chaining DMA design
example uses a descriptor table containing the following information:

■ Length of the transfer

■ Address of the source

■ Address of the destination

■ Control bits to set the handshaking behavior between the software application or
BFM driver and the chaining DMA module

1 The chaining DMA design example only supports dword-aligned accesses. The
chaining DMA design example does not support ECRC forwarding for Arria V.

The BFM driver writes the descriptor tables into BFM shared memory, from which the
chaining DMA design engine continuously collects the descriptor tables for DMA
read, DMA write, or both. At the beginning of the transfer, the BFM programs the
Endpoint chaining DMA control register. The chaining DMA control register indicates
the total number of descriptor tables and the BFM shared memory address of the first
descriptor table. After programming the chaining DMA control register, the chaining
DMA engine continuously fetches descriptors from the BFM shared memory for both
DMA reads and DMA writes, and then performs the data transfer for each descriptor
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

16–6 Chapter 16: Testbench and Design Example
Chaining DMA Design Examples
Figure 16–2 shows a block diagram of the design example connected to an external
RC CPU.

The block diagram contains the following elements:

■ Endpoint DMA write and read requester modules.

■ The chaining DMA design example connects to the Avalon-ST interface of the
Arria V Hard IP for PCI Express. The connections consist of the following
interfaces:

■ The Avalon-ST RX receives TLP header and data information from the Hard IP
block

■ The Avalon-ST TX transmits TLP header and data information to the Hard IP
block

■ The Avalon-ST MSI port requests MSI interrupts from the Hard IP block

■ The sideband signal bus carries static information such as configuration
information

■ The descriptor tables of the DMA read and the DMA write are located in the BFM
shared memory.

■ A RC CPU and associated PCI Express PHY link to the Endpoint design example,
using a Root Port and a north/south bridge.

Figure 16–2. Top-Level Chaining DMA Example for Simulation (1)

Note to Figure 16–2:

(1) For a description of the DMA write and read registers, refer to Table 16–2 on page 16–10.

Root Complex

 CPU

Root Port

 Memory

Write
Descriptor

Table

Data

Chaining DMA

Endpoint Memory

Avalon-MM
interfaces

Hard IP for
PCI Express

DMA Control/Status Register

DMA Read

Avalon-ST

Configuration

PCI Express
DMA Write

DMA Wr Cntl (0x0-4)

DMA Rd Cntl (0x10-1C)

RC Slave

Read
Descriptor

Table
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 16: Testbench and Design Example 16–7
Chaining DMA Design Examples
The example Endpoint design Application Layer accomplishes the following
objectives:

■ Shows you how to interface to the Arria V Hard IP for PCI Express using the
Avalon-ST protocol.

■ Provides a chaining DMA channel that initiates memory read and write
transactions on the PCI Express link.

■ If the ECRC forwarding functionality is enabled, provides a CRC Compiler IP core
to check the ECRC dword from the Avalon-ST RX path and to generate the ECRC
for the Avalon-ST TX path.

■ If the PCI Express reconfiguration block functionality is enabled, provides a test
that increments the Vendor ID register to demonstrate this functionality.

The following modules are included in the design example and located in the
subdirectory <qsys_systemname>/testbench/<qsys_system_anme>_tb
/simulation/submodules:

■ <qsys_systemname> —This module is the top level of the example Endpoint design
that you use for simulation.

This module provides both PIPE and serial interfaces for the simulation
environment. This module has debug ports named test_out and test_in. Refer to
“Test Signals” on page 7–52 which allow you to monitor and control internal states
of the Hard IP.

For synthesis, the top level module is <qsys_systemname>’synthesis/submodules.
This module instantiates the top-level module and propagates only a small sub-set
of the test ports to the external I/Os. These test ports can be used in your design.

■ <variation name>.v or <variation name>.vhd— Because Altera provides five sample
parameterizations, you may have to edit one of the provided examples to create a
simulation that matches your requirements.

The chaining DMA design example hierarchy consists of these components:

■ A DMA read and a DMA write module

■ An on-chip Endpoint memory (Avalon-MM slave) which uses two Avalon-MM
interfaces for each engine

■ The RC slave module is used primarily for downstream transactions which target
the Endpoint on-chip buffer memory. These target memory transactions bypass
the DMA engines. In addition, the RC slave module monitors performance and
acknowledges incoming message TLPs.

Each DMA module consists of these components:

■ Control register module—The RC programs the control register (four dwords)
to start the DMA.

■ Descriptor module—The DMA engine fetches four dword descriptors from
BFM shared memory which hosts the chaining DMA descriptor table.

■ Requester module—For a given descriptor, the DMA engine performs the
memory transfer between Endpoint memory and the BFM shared memory.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

16–8 Chapter 16: Testbench and Design Example
Chaining DMA Design Examples
The following modules are provided in both Verilog HDL and VHDL, and reflect each
hierarchical level:

■ altpcierd_example_app_chaining—This top level module contains the logic
related to the Avalon-ST interfaces as well as the logic related to the sideband
bus. This module is fully register bounded and can be used as an incremental
re-compile partition in the Quartus II compilation flow.

■ altpcierd_cdma_ast_rx, altpcierd_cdma_ast_rx_64,
altpcierd_cdma_ast_rx_128—These modules implement the Avalon-ST receive
port for the chaining DMA. The Avalon-ST receive port converts the Avalon-ST
interface of the IP core to the descriptor/data interface used by the chaining
DMA submodules. altpcierd_cdma_ast_rx is used with the descriptor/data IP
core (through the ICM). altpcierd_cdma_ast_rx_64 is used with the 64-bit
Avalon-ST IP core. altpcierd_cdma_ast_rx_128 is used with the 128-bit Avalon-
ST IP core.

■ altpcierd_cdma_ast_tx, altpcierd_cdma_ast_tx_64,
altpcierd_cdma_ast_tx_128—These modules implement the Avalon-ST
transmit port for the chaining DMA. The Avalon-ST transmit port converts the
descriptor/data interface of the chaining DMA submodules to the Avalon-ST
interface of the IP core. altpcierd_cdma_ast_tx is used with the descriptor/data
IP core (through the ICM). altpcierd_cdma_ast_tx_64 is used with the 64-bit
Avalon-ST IP core. altpcierd_cdma_ast_tx_128 is used with the 128-bit Avalon-
ST IP core.

■ altpcierd_cdma_ast_msi—This module converts MSI requests from the
chaining DMA submodules into Avalon-ST streaming data.

■ alpcierd_cdma_app_icm—This module arbitrates PCI Express packets for the
modules altpcierd_dma_dt (read or write) and altpcierd_rc_slave.
alpcierd_cdma_app_icm instantiates the Endpoint memory used for the DMA
read and write transfer.

■ altpcierd_compliance_test.v—This module provides the logic to perform CBB
via a push button.

■ altpcierd_rc_slave—This module provides the completer function for all
downstream accesses. It instantiates the altpcierd_rxtx_downstream_intf and
altpcierd_reg_access modules. Downstream requests include programming of
chaining DMA control registers, reading of DMA status registers, and direct
read and write access to the Endpoint target memory, bypassing the DMA.

■ altpcierd_rx_tx_downstream_intf—This module processes all downstream
read and write requests and handles transmission of completions. Requests
addressed to BARs 0, 1, 4, and 5 access the chaining DMA target memory
space. Requests addressed to BARs 2 and 3 access the chaining DMA control
and status register space using the altpcierd_reg_access module.

■ altpcierd_reg_access—This module provides access to all of the chaining DMA
control and status registers (BAR 2 and 3 address space). It provides address
decoding for all requests and multiplexing for completion data. All registers
are 32-bits wide. Control and status registers include the control registers in the
altpcierd_dma_prg_reg module, status registers in the
altpcierd_read_dma_requester and altpcierd_write_dma_requester modules,
as well as other miscellaneous status registers.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 16: Testbench and Design Example 16–9
Chaining DMA Design Examples
■ altpcierd_dma_dt—This module arbitrates PCI Express packets issued by the
submodules altpcierd_dma_prg_reg, altpcierd_read_dma_requester,
altpcierd_write_dma_requester and altpcierd_dma_descriptor.

■ altpcierd_dma_prg_reg—This module contains the chaining DMA control
registers which get programmed by the software application or BFM driver.

■ altpcierd_dma_descriptor—This module retrieves the DMA read or write
descriptor from the BFM shared memory, and stores it in a descriptor FIFO.
This module issues upstream PCI Express TLPs of type Mrd.

■ altpcierd_read_dma_requester, altpcierd_read_dma_requester_128—For each
descriptor located in the altpcierd_descriptor FIFO, this module transfers data
from the BFM shared memory to the Endpoint memory by issuing MRd PCI
Express transaction layer packets. altpcierd_read_dma_requester is used with
the 64-bit Avalon-ST IP core. altpcierd_read_dma_requester_128 is used with
the 128-bit Avalon-ST IP core.

■ altpcierd_write_dma_requester, altpcierd_write_dma_requester_128—For
each descriptor located in the altpcierd_descriptor FIFO, this module transfers
data from the Endpoint memory to the BFM shared memory by issuing MWr
PCI Express transaction layer packets. altpcierd_write_dma_requester is used
with the 64-bit Avalon-ST IP core. altpcierd_write_dma_requester_128 is used
with the 128-bit Avalon-ST IP core.ls

■ altpcierd_cpld_rx_buffer—This modules monitors the available space of the
RX Buffer; It prevents RX Buffer overflow by arbitrating memory read request
issued by the Application Layer.

■ altpcierd_cplerr_lmi—This module transfers the err_desc_func0 from the
Application Layer to the Hard IP block using the LMI interface. It also retimes
the cpl_err bits from the Application Layer to the Hard IP block.

■ altpcierd_tl_cfg_sample—This module demultiplexes the Configuration Space
signals from the tl_cfg_ctl bus from the Hard IP block and synchronizes this
information, along with the tl_cfg_sts bus to the user clock (pld_clk)
domain.

Design Example BAR/Address Map
The design example maps received memory transactions to either the target memory
block or the control register block based on which BAR the transaction matches. There
are multiple BARs that map to each of these blocks to maximize interoperability with
different variation files. Table 16–1 shows the mapping.

Table 16–1. Design Example BAR Map

Memory BAR Mapping

32-bit BAR0

32-bit BAR1

64-bit BAR1:0

Maps to 32 KByte target memory block. Use the rc_slave module to bypass the chaining DMA.

32-bit BAR2

32-bit BAR3

64-bit BAR3:2

Maps to DMA Read and DMA write control and status registers, a minimum of 256 bytes.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

16–10 Chapter 16: Testbench and Design Example
Chaining DMA Design Examples
Chaining DMA Control and Status Registers
The software application programs the chaining DMA control register located in the
Endpoint application. Table 16–2 describes the control registers which consists of four
dwords for the DMA write and four dwords for the DMA read. The DMA control
registers are read/write.

Table 16–3 describes the control fields of the of the DMA read and DMA write control
registers.

32-bit BAR4

32-bit BAR5
64-bit BAR5:4

Maps to 32 KByte target memory block. Use the rc_slave module to bypass the chaining DMA.

Expansion ROM BAR Not implemented by design example; behavior is unpredictable.

I/O Space BAR (any) Not implemented by design example; behavior is unpredictable.

Table 16–1. Design Example BAR Map

Table 16–2. Chaining DMA Control Register Definitions (1)

Addr
(2) Register Name 3124 2316 150

0x0 DMA Wr Cntl DW0 Control Field (refer to Table 16–3) Number of descriptors in descriptor table

0x4 DMA Wr Cntl DW1 Base Address of the Write Descriptor Table (BDT) in the RC Memory–Upper DWORD

0x8 DMA Wr Cntl DW2 Base Address of the Write Descriptor Table (BDT) in the RC Memory–Lower DWORD

0xC DMA Wr Cntl DW3 Reserved RCLAST–Idx of last descriptor to process

0x10 DMA Rd Cntl DW0 Control Field (refer to Table 16–3) Number of descriptors in descriptor table

0x14 DMA Rd Cntl DW1 Base Address of the Read Descriptor Table (BDT) in the RC Memory–Upper DWORD

0x18 DMA Rd Cntl DW2 Base Address of the Read Descriptor Table (BDT) in the RC Memory–Lower DWORD

0x1C DMA Rd Cntl DW3 Reserved RCLAST–Idx of the last descriptor to process

Note to Table 16–2:

(1) Refer to Figure 16–2 on page 16–6 for a block diagram of the chaining DMA design example that shows these registers.
(2) This is the Endpoint byte address offset from BAR2 or BAR3.

Table 16–3. Bit Definitions for the Control Field in the DMA Write Control Register and DMA Read Control Register

Bit Field Description

16 Reserved —

17 MSI_ENA
Enables interrupts of all descriptors. When 1, the Endpoint DMA module issues an
interrupt using MSI to the RC when each descriptor is completed. Your software
application or BFM driver can use this interrupt to monitor the DMA transfer status.

18 EPLAST_ENA
Enables the Endpoint DMA module to write the number of each descriptor back to
the EPLAST field in the descriptor table. Table 16–7 describes the descriptor table.

[24:20] MSI Number

When your RC reads the MSI capabilities of the Endpoint, these register bits map
to the back-end MSI signals app_msi_num [4:0]. If there is more than one MSI, the
default mapping if all the MSIs are available, is:

■ MSI 0 = Read

■ MSI 1 = Write
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 16: Testbench and Design Example 16–11
Chaining DMA Design Examples
Table 16–4 defines the DMA status registers. These registers are read only.

Table 16–5 describes the fields of the DMA write status register. All of these fields are
read only.

[30:28] MSI Traffic Class
When the RC application software reads the MSI capabilities of the Endpoint, this
value is assigned by default to MSI traffic class 0. These register bits map to the
back-end signal app_msi_tc[2:0].

31 DT RC Last Sync

When 0, the DMA engine stops transfers when the last descriptor has been
executed. When 1, the DMA engine loops infinitely restarting with the first
descriptor when the last descriptor is completed. To stop the infinite loop, set this
bit to 0.

Table 16–3. Bit Definitions for the Control Field in the DMA Write Control Register and DMA Read Control Register

Bit Field Description

Table 16–4. Chaining DMA Status Register Definitions

Addr (2) Register Name 3124 2316 150

0x20 DMA Wr Status Hi For field definitions refer to Table 16–5

0x24 DMA Wr Status Lo
Target Mem Address

Width

Write DMA Performance Counter. (Clock cycles from
time DMA header programmed until last descriptor
completes, including time to fetch descriptors.)

0x28 DMA Rd Status Hi For field definitions refer to Table 16–6

0x2C DMA Rd Status Lo Max No. of Tags

Read DMA Performance Counter. The number of clocks
from the time the DMA header is programmed until the
last descriptor completes, including the time to fetch
descriptors.

0x30 Error Status Reserved

Error Counter. Number of bad
ECRCs detected by the
Application Layer. Valid only
when ECRC forwarding is
enabled.

Note to Table 16–4:

(1) This is the Endpoint byte address offset from BAR2 or BAR3.

Table 16–5. Fields in the DMA Write Status High Register

Bit Field Description

[31:28] CDMA version Identifies the version of the chaining DMA example design.

[27:24] Reserved —

[23:21] Max payload size

The following encodings are defined:

■ 001 128 bytes

■ 001 256 bytes

■ 010 512 bytes

■ 011 1024 bytes

■ 100 2048 bytes

[20:17] Reserved —

16 Write DMA descriptor FIFO empty Indicates that there are no more descriptors pending in the write DMA.

[15:0] Write DMA EPLAST Indicates the number of the last descriptor completed by the write DMA.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

16–12 Chapter 16: Testbench and Design Example
Chaining DMA Design Examples
Table 16–6 describes the fields in the DMA read status high register. All of these fields
are read only.

Chaining DMA Descriptor Tables
Table 16–7 describes the Chaining DMA descriptor table which is stored in the BFM
shared memory. It consists of a four-dword descriptor header and a contiguous list of
<n> four-dword descriptors. The Endpoint chaining DMA application accesses the
Chaining DMA descriptor table for two reasons:

■ To iteratively retrieve four-dword descriptors to start a DMA

■ To send update status to the RP, for example to record the number of descriptors
completed to the descriptor header

Each subsequent descriptor consists of a minimum of four dwords of data and
corresponds to one DMA transfer. (A dword equals 32 bits.)

Table 16–6. Fields in the DMA Read Status High Register

Bit Field Description

[31:24] Reserved —

[23:21] Max Read Request Size

The following encodings are defined:

■ 001 128 bytes

■ 001 256 bytes

■ 010 512 bytes

■ 011 1024 bytes

■ 100 2048 bytes

[20:17] Negotiated Link Width

The following encodings are defined:

■ 0001 ×1

■ 0010 ×2

■ 0100 ×4

■ 1000 ×8

16 Read DMA Descriptor FIFO Empty Indicates that there are no more descriptors pending in the read DMA.

[15:0] Read DMA EPLAST Indicates the number of the last descriptor completed by the read DMA.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 16: Testbench and Design Example 16–13
Chaining DMA Design Examples
1 Note that the chaining DMA descriptor table should not cross a 4 KByte boundary.

Table 16–8 shows the layout of the descriptor fields following the descriptor header.

Table 16–9 shows the layout of the control fields of the chaining DMA descriptor.

Table 16–7. Chaining DMA Descriptor Table

Byte Address Offset to
Base Source Descriptor Type Description

0x0

Descriptor Header

Reserved

0x4 Reserved

0x8 Reserved

0xC

EPLAST - when enabled by the EPLAST_ENA bit
in the control register or descriptor, this location
records the number of the last descriptor
completed by the chaining DMA module.

0x10

Descriptor 0

Control fields, DMA length

0x14 Endpoint address

0x18 RC address upper dword

0x1C RC address lower dword

0x20

Descriptor 1

Control fields, DMA length

0x24 Endpoint address

0x28 RC address upper dword

0x2C RC address lower dword

. . .

0x ..0

Descriptor <n>

Control fields, DMA length

0x ..4 Endpoint address

0x ..8 RC address upper dword

0x ..C RC address lower dword

Table 16–8. Chaining DMA Descriptor Format Map

3122 21 16 150

Reserved Control Fields (refer to Table 16–9) DMA Length

Endpoint Address

RC Address Upper DWORD

RC Address Lower DWORD

Table 16–9. Chaining DMA Descriptor Format Map (Control Fields)

2118 17 16

Reserved EPLAST_ENA MSI
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

16–14 Chapter 16: Testbench and Design Example
Test Driver Module
Each descriptor provides the hardware information on one DMA transfer. Table 16–10
describes each descriptor field.

Test Driver Module
The BFM driver module, altpcietb_bfm_driver_chaining.v is configured to test the
chaining DMA example Endpoint design. The BFM driver module configures the
Endpoint Configuration Space registers and then tests the example Endpoint chaining
DMA channel. This file is stored in the
<working_dir>testbench/<variation_name>/simulation/submodules directory.

The BFM test driver module performs the following steps in sequence:

1. Configures the Root Port and Endpoint Configuration Spaces, which the BFM test
driver module does by calling the procedure ebfm_cfg_rp_ep, which is part of
altpcietb_bfm_configure.

2. Finds a suitable BAR to access the example Endpoint design Control Register
space. Either BARs 2 or 3 must be at least a 256-byte memory BAR to perform the
DMA channel test. The find_mem_bar procedure in the
altpcietb_bfm_driver_chaining does this.

Table 16–10. Chaining DMA Descriptor Fields

Descriptor Field Endpoint
Access RC Access Description

Endpoint Address R R/W A 32-bit field that specifies the base address of the memory transfer on the
Endpoint site.

RC Address

Upper DWORD
R R/W Specifies the upper base address of the memory transfer on the RC site.

RC Address

Lower DWORD
R R/W Specifies the lower base address of the memory transfer on the RC site.

DMA Length R R/W Specifies the number of DMA DWORDs to transfer.

EPLAST_ENA R R/W

This bit is OR’d with the EPLAST_ENA bit of the control register. When
EPLAST_ENA is set, the Endpoint DMA module updates the EPLAST field of
the descriptor table with the number of the last completed descriptor, in the
form <0 – n>. (Refer to Table 16–7.)

MSI_ENA R R/W
This bit is OR’d with the MSI bit of the descriptor header. When this bit is set
the Endpoint DMA module sends an interrupt when the descriptor is
completed.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 16: Testbench and Design Example 16–15
Test Driver Module
3. If a suitable BAR is found in the previous step, the driver performs the following
tasks:

■ DMA read—The driver programs the chaining DMA to read data from the
BFM shared memory into the Endpoint memory. The descriptor control fields
(Table 16–3) are specified so that the chaining DMA completes the following
steps to indicate transfer completion:

a. The chaining DMA writes the EPLast bit of the “Chaining DMA Descriptor
Table” on page 16–13 after finishing the data transfer for the first and last
descriptors.

b. The chaining DMA issues an MSI when the last descriptor has completed.

■ DMA write—The driver programs the chaining DMA to write the data from its
Endpoint memory back to the BFM shared memory. The descriptor control
fields (Table 16–3) are specified so that the chaining DMA completes the
following steps to indicate transfer completion:

c. The chaining DMA writes the EPLast bit of the “Chaining DMA Descriptor
Table” on page 16–13 after completing the data transfer for the first and last
descriptors.

d. The chaining DMA issues an MSI when the last descriptor has completed.

e. The data written back to BFM is checked against the data that was read from
the BFM.

f. The driver programs the chaining DMA to perform a test that demonstrates
downstream access of the chaining DMA Endpoint memory.

DMA Write Cycles
The procedure dma_wr_test used for DMA writes uses the following steps:

1. Configures the BFM shared memory. Configuration is accomplished with three
descriptor tables (Table 16–11, Table 16–12, and Table 16–13).

Table 16–11. Write Descriptor 0

Offset in BFM
Shared Memory Value Description

DW0 0x810 82 Transfer length in dwords and control bits as described in
Table 16–3 on page 16–10

DW1 0x814 3 Endpoint address

DW2 0x818 0 BFM shared memory data buffer 0 upper address value

DW3 0x81c 0x1800 BFM shared memory data buffer 1 lower address value

Data
Buffer 0 0x1800 Increment by 1 from

0x1515_0001
Data content in the BFM shared memory from address:
0x01800–0x1840
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

16–16 Chapter 16: Testbench and Design Example
Test Driver Module
2. Sets up the chaining DMA descriptor header and starts the transfer data from the
Endpoint memory to the BFM shared memory. The transfer calls the procedure
dma_set_header which writes four dwords, DW0:DW3 (Table 16–14), into the
DMA write register module.

After writing the last dword, DW3, of the descriptor header, the DMA write starts
the three subsequent data transfers.

3. Waits for the DMA write completion by polling the BFM share memory location
0x80c, where the DMA write engine is updating the value of the number of
completed descriptor. Calls the procedures rcmem_poll and msi_poll to determine
when the DMA write transfers have completed.

Table 16–12. Write Descriptor 1

Offset in BFM
Shared Memory Value Description

DW0 0x820 1,024 Transfer length in dwords and control bits as described in on
page 16–14

DW1 0x824 0 Endpoint address

DW2 0x828 0 BFM shared memory data buffer 1 upper address value

DW3 0x82c 0x2800 BFM shared memory data buffer 1 lower address value

Data
Buffer 1 0x02800 Increment by 1 from

0x2525_0001 Data content in the BFM shared memory from address: 0x02800

Table 16–13. Write Descriptor 2

Offset in BFM
Shared Memory Value Description

DW0 0x830 644 Transfer length in dwords and control bits as described in
Table 16–3 on page 16–10

DW1 0x834 0 Endpoint address

DW2 0x838 0 BFM shared memory data buffer 2 upper address value

DW3 0x83c 0x057A0 BFM shared memory data buffer 2 lower address value

Data
Buffer 2 0x057A0 Increment by 1 from

0x3535_0001 Data content in the BFM shared memory from address: 0x057A0

Table 16–14. DMA Control Register Setup for DMA Write

Offset in DMA
Control Register

(BAR2)
Value Description

DW0 0x0 3 Number of descriptors and control bits as described in Table 16–2 on
page 16–10

DW1 0x4 0 BFM shared memory descriptor table upper address value

DW2 0x8 0x800 BFM shared memory descriptor table lower address value

DW3 0xc 2 Last valid descriptor
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 16: Testbench and Design Example 16–17
Test Driver Module
DMA Read Cycles
The procedure dma_rd_test used for DMA read uses the following three steps:

1. Configures the BFM shared memory with a call to the procedure
dma_set_rd_desc_data which sets three descriptor tables (Table 16–15,
Table 16–16, and Table 16–17).

Table 16–15. Read Descriptor 0

Offset in BFM
Shared Memory Value Description

DW0 0x910 82 Transfer length in dwords and control bits as described in on
page 16–14

DW1 0x914 3 Endpoint address value

DW2 0x918 0 BFM shared memory data buffer 0 upper address value

DW3 0x91c 0x8DF0 BFM shared memory data buffer 0 lower address value

Data
Buffer 0 0x8DF0 Increment by 1 from

0xAAA0_0001 Data content in the BFM shared memory from address: 0x89F0

Table 16–16. Read Descriptor 1

Offset in BFM
Shared Memory Value Description

DW0 0x920 1,024 Transfer length in dwords and control bits as described in on
page 16–14

DW1 0x924 0 Endpoint address value

DW2 0x928 10 BFM shared memory data buffer 1 upper address value

DW3 0x92c 0x10900 BFM shared memory data buffer 1 lower address value

Data
Buffer 1 0x10900 Increment by 1 from

0xBBBB_0001
Data content in the BFM shared memory from address:
0x10900

Table 16–17. Read Descriptor 2

Offset in BFM Shared
Memory Value Description

DW0 0x930 644 Transfer length in dwords and control bits as described in
on page 16–14

DW1 0x934 0 Endpoint address value

DW2 0x938 0 BFM shared memory upper address value

DW3 0x93c 0x20EF0 BFM shared memory lower address value

Data
Buffer 2 0x20EF0 Increment by 1 from

0xCCCC_0001
Data content in the BFM shared memory from address:
0x20EF0
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

16–18 Chapter 16: Testbench and Design Example
Root Port Design Example
2. Sets up the chaining DMA descriptor header and starts the transfer data from the
BFM shared memory to the Endpoint memory by calling the procedure
dma_set_header which writes four dwords, DW0:DW3, (Table 16–18) into the
DMA read register module.

After writing the last dword of the Descriptor header (DW3), the DMA read starts
the three subsequent data transfers.

3. Waits for the DMA read completion by polling the BFM shared memory location
0x90c, where the DMA read engine is updating the value of the number of
completed descriptors. Calls the procedures rcmem_poll and msi_poll to
determine when the DMA read transfers have completed.

Root Port Design Example
The design example includes the following primary components:

■ Root Port variation (<qsys_systemname>.

■ Avalon-ST Interfaces (altpcietb_bfm_vc_intf_ast)—handles the transfer of TLP
requests and completions to and from the Arria V Hard IP for PCI Express
variation using the Avalon-ST interface.

■ Root Port BFM tasks—contains the high-level tasks called by the test driver,
low-level tasks that request PCI Express transfers from altpcietb_bfm_vc_intf_ast,
the Root Port memory space, and simulation functions such as displaying
messages and stopping simulation.

Table 16–18. DMA Control Register Setup for DMA Read

Offset in DMA Control
Registers (BAR2) Value Description

DW0 0x0 3 Number of descriptors and control bits as described in Table 16–2 on
page 16–10

DW1 0x14 0 BFM shared memory upper address value

DW2 0x18 0x900 BFM shared memory lower address value

DW3 0x1c 2 Last descriptor written
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 16: Testbench and Design Example 16–19
Root Port Design Example
■ Test Driver (altpcietb_bfm_driver_rp.v)—the chaining DMA Endpoint test driver
which configures the Root Port and Endpoint for DMA transfer and checks for the
successful transfer of data. Refer to the “Test Driver Module” on page 16–14 for a
detailed description.

You can use the example Root Port design for Verilog HDL simulation. All of the
modules necessary to implement the example design with the variation file are
contained in altpcietb_bfm_ep_example_chaining_pipen1b.v.

The top-level of the testbench instantiates the following key files:

■ altlpcietb_bfm_top_ep.v— this is the Endpoint BFM. This file also instantiates the
SERDES and PIPE interface.

■ altpcietb_pipe_phy.v—used to simulate the PIPE interface.

■ altpcietb_bfm_ep_example_chaining_pipen1b.v—the top-level of the Root Port
design example that you use for simulation. This module instantiates the Root Port
variation, <variation_name>.v, and the Root Port application
altpcietb_bfm_vc_intf_<application_width>. This module provides both PIPE and
serial interfaces for the simulation environment. This module has two debug ports
named test_out_icm (which is the test_out signal from the Hard IP) and
test_in which allows you to monitor and control internal states of the Hard IP
variation. (Refer to “Test Signals” on page 7–52.)

Figure 16–3. Root Port Design Example

 Root Port
Variation

(variation_name.v)

Avalon-ST Interface
(altpcietb_bfm_vc_intf)

Test Driver
(altpcietb_bfm_

driver_rp.v)

BFM Shared Memory
(altpcietb_bfm_shmem

_common)

BFM Read/Write Shared Request Procedures

BFM Configuration Procedures

BFM Request Interface
(altpcietb_bfm_req_intf_common)BFM Log Interface

(altpcietb_bfm_log
_common)

PCI Express
Link

Root Port BFM Tasks and Shared Memory

altpcietb_bfm_ep_example_chaining_pipe1b.v

Avalon-ST
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

16–20 Chapter 16: Testbench and Design Example
Root Port BFM
■ altpcietb_bfm_vc_intf_ast.v—a wrapper module which instantiates either
altpcietb_vc_intf_64 or altpcietb_vc_intf_<application_width> based on the type of
Avalon-ST interface that is generated.

■ altpcietb_vc_intf__<application_width>.v—provide the interface between the
Arria V Hard IP for PCI Express variant and the Root Port BFM tasks. They
provide the same function as the altpcietb_bfm_vc_intf.v module, transmitting
requests and handling completions. Refer to the “Root Port BFM” on page 16–20
for a full description of this function. This version uses Avalon-ST signalling with
either a 64- or 128-bit data bus interface.

■ altpcierd_tl_cfg_sample.v—accesses Configuration Space signals from the
variant. Refer to the “Chaining DMA Design Examples” on page 16–4 for a
description of this module.

Files in subdirectory <qsys_systemname>/testbench/simulation/submodules:

■ altpcietb_bfm_ep_example_chaining_pipen1b.v—the simulation model for the
chaining DMA Endpoint.

■ altpcietb_bfm_driver_rp.v–this file contains the functions to implement the
shared memory space, PCI Express reads and writes, initialize the Configuration
Space registers, log and display simulation messages, and define global constants.

Root Port BFM
The basic Root Port BFM provides a Verilog HDL task-based interface for requesting
transactions that are issued to the PCI Express link. The Root Port BFM also handles
requests received from the PCI Express link. Figure 16–4 provides an overview of the
Root Port BFM.

Figure 16–4. Root Port BFM

m

BFM Shared Memory
(altpcietb_bfm_shmem

_common)

BFM Log Interface
(altpcietb_bfm_log

_common)

Root Port RTL Model (altpcietb_bfm_rp_top_x8_pipen1b)

IP Functional Simulation
Model of the Root

Port Interface
(altpcietb_bfm_driver_rp)

Avalon-ST Interface
(altpcietb_bfm_vc_intf)

Root Port BFM

BFM Read/Write Shared Request Procedures

BFM Configuration Procedures

BFM Request Interface
(altpcietb_bfm_req_intf_common)
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 16: Testbench and Design Example 16–21
Root Port BFM
The functionality of each of the modules included in Figure 16–4 is explained below.

■ BFM shared memory (altpcietb_bfm_shmem_common Verilog HDL include
file)—The Root Port BFM is based on the BFM memory that is used for the
following purposes:

■ Storing data received with all completions from the PCI Express link.

■ Storing data received with all write transactions received from the PCI Express
link.

■ Sourcing data for all completions in response to read transactions received
from the PCI Express link.

■ Sourcing data for most write transactions issued to the PCI Express link. The
only exception is certain BFM write procedures that have a four-byte field of
write data passed in the call.

■ Storing a data structure that contains the sizes of and the values programmed
in the BARs of the Endpoint.

A set of procedures is provided to read, write, fill, and check the shared memory from
the BFM driver. For details on these procedures, see “BFM Shared Memory Access
Procedures” on page 16–35.

■ BFM Read/Write Request Functions(altpcietb_bfm_driver_rp.v)—These
functions provide the basic BFM calls for PCI Express read and write requests. For
details on these procedures, see “BFM Read and Write Procedures” on page 16–28.

■ BFM Configuration Functions(altpcietb_bfm_driver_rp.v)—These functions
provide the BFM calls to request configuration of the PCI Express link and the
Endpoint Configuration Space registers. For details on these procedures and
functions, see “BFM Configuration Procedures” on page 16–34.

■ BFM Log Interface(altpcietb_bfm_driver_rp.v)—The BFM log functions provides
routines for writing commonly formatted messages to the simulator standard
output and optionally to a log file. It also provides controls that stop simulation on
errors. For details on these procedures, see “BFM Log and Message Procedures”
on page 16–37.

■ BFM Request Interface(altpcietb_bfm_driver_rp.v)—This interface provides the
low-level interface between the altpcietb_bfm_rdwr and
altpcietb_bfm_configure procedures or functions and the Root Port RTL Model.
This interface stores a write-protected data structure containing the sizes and the
values programmed in the BAR registers of the Endpoint, as well as, other critical
data used for internal BFM management. You do not need to access these files
directly to adapt the testbench to test your Endpoint application.

■ Avalon-ST Interfaces (altpcietb_bfm_vc_intf.v)—These interface modules handle
the Root Port interface model. They take requests from the BFM request interface
and generate the required PCI Express transactions. They handle completions
received from the PCI Express link and notify the BFM request interface when
requests are complete. Additionally, they handle any requests received from the
PCI Express link, and store or fetch data from the shared memory before
generating the required completions.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

16–22 Chapter 16: Testbench and Design Example
Root Port BFM
BFM Memory Map
The BFM shared memory is configured to be two MBytes. The BFM shared memory is
mapped into the first two MBytes of I/O space and also the first two MBytes of
memory space. When the Endpoint application generates an I/O or memory
transaction in this range, the BFM reads or writes the shared memory. For illustrations
of the shared memory and I/O address spaces, refer to Figure 16–5 on page 16–25 –
Figure 16–7 on page 16–27.

Configuration Space Bus and Device Numbering
The Root Port interface is assigned to be device number 0 on internal bus number 0.
The Endpoint can be assigned to be any device number on any bus number (greater
than 0) through the call to procedure ebfm_cfg_rp_ep. The specified bus number is
assigned to be the secondary bus in the Root Port Configuration Space.

Configuration of Root Port and Endpoint
Before you issue transactions to the Endpoint, you must configure the Root Port and
Endpoint Configuration Space registers. To configure these registers, call the
procedure ebfm_cfg_rp_ep, which is included in altpcietb_bfm_driver_rp.v.

The ebfm_cfg_rp_ep executes the following steps to initialize the Configuration
Space:

1. Sets the Root Port Configuration Space to enable the Root Port to send transactions
on the PCI Express link.

2. Sets the Root Port and Endpoint PCI Express Capability Device Control registers
as follows:

a. Disables Error Reporting in both the Root Port and Endpoint. BFM does not
have error handling capability.

b. Enables Relaxed Ordering in both Root Port and Endpoint.

c. Enables Extended Tags for the Endpoint, if the Endpoint has that capability.

d. Disables Phantom Functions, Aux Power PM, and No Snoop in both the Root Port
and Endpoint.

e. Sets the Max Payload Size to what the Endpoint supports because the Root Port
supports the maximum payload size.

f. Sets the Root Port Max Read Request Size to 4 KBytes because the example
Endpoint design supports breaking the read into as many completions as
necessary.

g. Sets the Endpoint Max Read Request Size equal to the Max Payload Size
because the Root Port does not support breaking the read request into multiple
completions.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 16: Testbench and Design Example 16–23
Root Port BFM
3. Assigns values to all the Endpoint BAR registers. The BAR addresses are assigned
by the algorithm outlined below.

a. I/O BARs are assigned smallest to largest starting just above the ending
address of BFM shared memory in I/O space and continuing as needed
throughout a full 32-bit I/O space. Refer to Figure 16–7 on page 16–27 for more
information.

b. The 32-bit non-prefetchable memory BARs are assigned smallest to largest,
starting just above the ending address of BFM shared memory in memory
space and continuing as needed throughout a full 32-bit memory space.

c. Assignment of the 32-bit prefetchable and 64-bit prefetchable memory BARS
are based on the value of the addr_map_4GB_limit input to the
ebfm_cfg_rp_ep. The default value of the addr_map_4GB_limit is 0.

If the addr_map_4GB_limit input to the ebfm_cfg_rp_ep is set to 0, then the
32-bit prefetchable memory BARs are assigned largest to smallest, starting at
the top of 32-bit memory space and continuing as needed down to the ending
address of the last 32-bit non-prefetchable BAR.

However, if the addr_map_4GB_limit input is set to 1, the address map is
limited to 4 GByte, the 32-bit and 64-bit prefetchable memory BARs are
assigned largest to smallest, starting at the top of the 32-bit memory space and
continuing as needed down to the ending address of the last 32-bit non-
prefetchable BAR.

d. If the addr_map_4GB_limit input to the ebfm_cfg_rp_ep is set to 0, then the 64-
bit prefetchable memory BARs are assigned smallest to largest starting at the 4
GByte address assigning memory ascending above the 4 GByte limit
throughout the full 64-bit memory space. Refer to Figure 16–6 on page 16–26.

If the addr_map_4GB_limit input to the ebfm_cfg_rp_ep is set to 1, then the 32-
bit and the 64-bit prefetchable memory BARs are assigned largest to smallest
starting at the 4 GByte address and assigning memory by descending below
the 4 GByte address to addresses memory as needed down to the ending
address of the last 32-bit non-prefetchable BAR. Refer to Figure 16–5 on
page 16–25.

The above algorithm cannot always assign values to all BARs when there are a few
very large (1 GByte or greater) 32-bit BARs. Although assigning addresses to all
BARs may be possible, a more complex algorithm would be required to effectively
assign these addresses. However, such a configuration is unlikely to be useful in
real systems. If the procedure is unable to assign the BARs, it displays an error
message and stops the simulation.

4. Based on the above BAR assignments, the Root Port Configuration Space address
windows are assigned to encompass the valid BAR address ranges.

5. The Endpoint PCI control register is set to enable master transactions, memory
address decoding, and I/O address decoding.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

16–24 Chapter 16: Testbench and Design Example
Root Port BFM
The ebfm_cfg_rp_ep procedure also sets up a bar_table data structure in BFM shared
memory that lists the sizes and assigned addresses of all Endpoint BARs. This area of
BFM shared memory is write-protected, which means any user write accesses to this
area cause a fatal simulation error. This data structure is then used by subsequent
BFM procedure calls to generate the full PCI Express addresses for read and write
requests to particular offsets from a BAR. This procedure allows the testbench code
that accesses the Endpoint Application Layer to be written to use offsets from a BAR
and not have to keep track of the specific addresses assigned to the BAR. Table 16–19
shows how those offsets are used.

The configuration routine does not configure any advanced PCI Express capabilities
such as the AER capability.

Table 16–19. BAR Table Structure

Offset (Bytes) Description

+0 PCI Express address in BAR0

+4 PCI Express address in BAR1

+8 PCI Express address in BAR2

+12 PCI Express address in BAR3

+16 PCI Express address in BAR4

+20 PCI Express address in BAR5

+24 PCI Express address in Expansion ROM BAR

+28 Reserved

+32 BAR0 read back value after being written with all 1’s (used to compute size)

+36 BAR1 read back value after being written with all 1’s

+40 BAR2 read back value after being written with all 1’s

+44 BAR3 read back value after being written with all 1’s

+48 BAR4 read back value after being written with all 1’s

+52 BAR5 read back value after being written with all 1’s

+56 Expansion ROM BAR read back value after being written with all 1’s

+60 Reserved
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 16: Testbench and Design Example 16–25
Root Port BFM
Besides the ebfm_cfg_rp_ep procedure inaltpcietb_bfm_driver_rp.v, routines to read
and write Endpoint Configuration Space registers directly are available in the Verilog
HDL include file. After the ebfm_cfg_rp_ep procedure is run the PCI Express I/O and
Memory Spaces have the layout as described in the following three figures. The
memory space layout is dependent on the value of the addr_map_4GB_limit input
parameter. If addr_map_4GB_limit is 1 the resulting memory space map is shown in
Figure 16–5.

Figure 16–5. Memory Space Layout—4 GByte Limit

Root Complex Shared
Memory

0x0000 0000

Configuration Scratch
Space

Used by BFM routines,
not writable by user calls

or endpoint

0x001F FF80

BAR Table
Used by BFM routines ,

not writable by user calls
or endpoint

0x001F FFC0

Endpoint Non -
Prefetchable Memory

Space BARs
Assigned Smallest to

Largest

0x0020 0000

0xFFFF FFFF

Endpoint Memory Space
BARs

(Prefetchable 32 -bit and
64- bit)

Assigned Smallest to
Largest

Unused

Addr
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

16–26 Chapter 16: Testbench and Design Example
Root Port BFM
If addr_map_4GB_limit is 0, the resulting memory space map is shown in
Figure 16–6.

Figure 16–6. Memory Space Layout—No Limit

Root Complex Shared
Memory

0x0000 0000

Configuration Scratch
Space

Used by BFM routines
not writable by user calls

or endpoint

0x001F FF80

BAR Table
Used by BFM routines

not writable by user calls
or endpoint

0x001F FFC0

Endpoint Non -
Prefetchable Memory

Space BARs
Assigned Smallest to

Largest

0x0000 0001 0000 0000

Endpoint Memory Space
BARs

(Prefetchable 32 bit)
Assigned Smallest to

Largest

Unused

BAR size dependent

BAR size dependent

Endpoint Memory Space
BARs

(Prefetchable 64 bit)
Assigned Smallest to

Largest

Unused

BAR size dependent

0xFFFF FFFF FFFF FFFF

0x0020 0000

Addr
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 16: Testbench and Design Example 16–27
Root Port BFM
Figure 16–7 shows the I/O address space.

Issuing Read and Write Transactions to the Application Layer
Read and write transactions are issued to the Endpoint Application Layer by calling
one of the ebfm_bar procedures in altpcietb_bfm_driver_rp.v. The procedures and
functions listed below are available in the Verilog HDL include file
altpcietb_bfm_driver_rp.v. The complete list of available procedures and functions is
as follows:

■ ebfm_barwr—writes data from BFM shared memory to an offset from a specific
Endpoint BAR. This procedure returns as soon as the request has been passed to
the VC interface module for transmission.

■ ebfm_barwr_imm—writes a maximum of four bytes of immediate data (passed in a
procedure call) to an offset from a specific Endpoint BAR. This procedure returns
as soon as the request has been passed to the VC interface module for
transmission.

■ ebfm_barrd_wait—reads data from an offset of a specific Endpoint BAR and stores
it in BFM shared memory. This procedure blocks waiting for the completion data
to be returned before returning control to the caller.

Figure 16–7. I/O Address Space

Root Complex Shared
Memory

0x0000 0000

Configuration Scratch

Used by BFM routines
not writable by user calls

or endpoint

0x001F FF80

BAR Table
Used by BFM routines

not writable by user calls
or endpoint

0x001F FFC0

/O Space
BARs

Assigned Smallest to
Largest

0x0020 0000

0xFFFF FFFF

Unused

BAR size dependent

Endpoint

Space

Addr
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

16–28 Chapter 16: Testbench and Design Example
BFM Procedures and Functions
■ ebfm_barrd_nowt—reads data from an offset of a specific Endpoint BAR and stores
it in the BFM shared memory. This procedure returns as soon as the request has
been passed to the VC interface module for transmission, allowing subsequent
reads to be issued in the interim.

These routines take as parameters a BAR number to access the memory space and the
BFM shared memory address of the bar_table data structure that was set up by the
ebfm_cfg_rp_ep procedure. (Refer to “Configuration of Root Port and Endpoint” on
page 16–22.) Using these parameters simplifies the BFM test driver routines that
access an offset from a specific BAR and eliminates calculating the addresses assigned
to the specified BAR.

The Root Port BFM does not support accesses to Endpoint I/O space BARs.

For further details on these procedure calls, refer to the section “BFM Read and Write
Procedures” on page 16–28.

BFM Procedures and Functions
This section describes the interface to all of the BFM procedures, functions, and tasks
that the BFM driver uses to drive Endpoint application testing.

1 The last subsection describes procedures that are specific to the chaining DMA design
example.

BFM Read and Write Procedures
This section describes the procedures used to read and write data among BFM shared
memory, Endpoint BARs, and specified configuration registers.

The following procedures and functions are available in the Verilog HDL include file
altpcietb_bfm_driver.v. These procedures and functions support issuing memory and
configuration transactions on the PCI Express link.

ebfm_barwr Procedure
The ebfm_barwr procedure writes a block of data from BFM shared memory to an
offset from the specified Endpoint BAR. The length can be longer than the configured
MAXIMUM_PAYLOAD_SIZE; the procedure breaks the request up into multiple
transactions as needed. This routine returns as soon as the last transaction has been
accepted by the VC interface module.

Table 16–20. ebfm_barwr Procedure (Part 1 of 2)

Location altpcietb_bfm_rdwr.v

Syntax ebfm_barwr(bar_table, bar_num, pcie_offset, lcladdr, byte_len, tclass)

Arguments bar_table

Address of the Endpoint bar_table structure in BFM shared memory. The bar_table
structure stores the address assigned to each BAR so that the driver code does not need
to be aware of the actual assigned addresses only the Application Layer specific offsets
from the BAR.

bar_num Number of the BAR used with pcie_offset to determine PCI Express address.

pcie_offset Address offset from the BAR base.

lcladdr BFM shared memory address of the data to be written.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 16: Testbench and Design Example 16–29
BFM Procedures and Functions
ebfm_barwr_imm Procedure
The ebfm_barwr_imm procedure writes up to four bytes of data to an offset from the
specified Endpoint BAR.

byte_len
Length, in bytes, of the data written. Can be 1 to the minimum of the bytes remaining in
the BAR space or BFM shared memory.

tclass Traffic class used for the PCI Express transaction.

Table 16–20. ebfm_barwr Procedure (Part 2 of 2)

Table 16–21. ebfm_barwr_imm Procedure

Location altpcietb_bfm_driver_rp.v

Syntax ebfm_barwr_imm(bar_table, bar_num, pcie_offset, imm_data, byte_len, tclass)

Arguments bar_table

Address of the Endpoint bar_table structure in BFM shared memory. The bar_table
structure stores the address assigned to each BAR so that the driver code does not need
to be aware of the actual assigned addresses only the Application Layer specific offsets
from the BAR.

bar_num Number of the BAR used with pcie_offset to determine PCI Express address.

pcie_offset Address offset from the BAR base.

imm_data

Data to be written. In Verilog HDL, this argument is reg [31:0].In both languages, the
bits written depend on the length as follows:

Length Bits Written

4 31 downto 0

3 23 downto 0

2 15 downto 0

1 7 downto 0

byte_len Length of the data to be written in bytes. Maximum length is 4 bytes.

tclass Traffic class to be used for the PCI Express transaction.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

16–30 Chapter 16: Testbench and Design Example
BFM Procedures and Functions
ebfm_barrd_wait Procedure
The ebfm_barrd_wait procedure reads a block of data from the offset of the specified
Endpoint BAR and stores it in BFM shared memory. The length can be longer than the
configured maximum read request size; the procedure breaks the request up into
multiple transactions as needed. This procedure waits until all of the completion data
is returned and places it in shared memory.

ebfm_barrd_nowt Procedure
The ebfm_barrd_nowt procedure reads a block of data from the offset of the specified
Endpoint BAR and stores the data in BFM shared memory. The length can be longer
than the configured maximum read request size; the procedure breaks the request up
into multiple transactions as needed. This routine returns as soon as the last read
transaction has been accepted by the VC interface module, allowing subsequent reads
to be issued immediately.

Table 16–22. ebfm_barrd_wait Procedure

Location altpcietb_bfm_driver_rp.v

Syntax ebfm_barrd_wait(bar_table, bar_num, pcie_offset, lcladdr, byte_len, tclass)

Arguments bar_table

Address of the Endpoint bar_table structure in BFM shared memory. The
bar_table structure stores the address assigned to each BAR so that the driver code
does not need to be aware of the actual assigned addresses only the Application
Layer specific offsets from the BAR.

bar_num Number of the BAR used with pcie_offset to determine PCI Express address.

pcie_offset Address offset from the BAR base.

lcladdr BFM shared memory address where the read data is stored.

byte_len
Length, in bytes, of the data to be read. Can be 1 to the minimum of the bytes
remaining in the BAR space or BFM shared memory.

tclass Traffic class used for the PCI Express transaction.

Table 16–23. ebfm_barrd_nowt Procedure

Location altpcietb_bfm_driver_rp.v

Syntax ebfm_barrd_nowt(bar_table, bar_num, pcie_offset, lcladdr, byte_len, tclass)

Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.

bar_num Number of the BAR used with pcie_offset to determine PCI Express address.

pcie_offset Address offset from the BAR base.

lcladdr BFM shared memory address where the read data is stored.

byte_len
Length, in bytes, of the data to be read. Can be 1 to the minimum of the bytes
remaining in the BAR space or BFM shared memory.

tclass Traffic Class to be used for the PCI Express transaction.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 16: Testbench and Design Example 16–31
BFM Procedures and Functions
ebfm_cfgwr_imm_wait Procedure
The ebfm_cfgwr_imm_wait procedure writes up to four bytes of data to the specified
configuration register. This procedure waits until the write completion has been
returned.

Table 16–24. ebfm_cfgwr_imm_wait Procedure

Location altpcietb_bfm_driver_rp.v

Syntax ebfm_cfgwr_imm_wait(bus_num, dev_num, fnc_num, imm_regb_ad, regb_ln, imm_data,
compl_status

Arguments bus_num PCI Express bus number of the target device.

dev_num PCI Express device number of the target device.

fnc_num Function number in the target device to be accessed.

regb_ad Byte-specific address of the register to be written.

regb_ln
Length, in bytes, of the data written. Maximum length is four bytes. The regb_ln and
the regb_ad arguments cannot cross a DWORD boundary.

imm_data

Data to be written.

This argument is reg [31:0].

The bits written depend on the length:

Length Bits Written

4 31 downto 0

3 23 downto 0

2 5 downto 0

1 7 downto 0

compl_status

This argument is reg [2:0].

This argument is the completion status as specified in the PCI Express specification:

Compl_Status Definition

000 SC— Successful completion

001 UR— Unsupported Request

010 CRS — Configuration Request Retry Status

100 CA — Completer Abort
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

16–32 Chapter 16: Testbench and Design Example
BFM Procedures and Functions
ebfm_cfgwr_imm_nowt Procedure
The ebfm_cfgwr_imm_nowt procedure writes up to four bytes of data to the specified
configuration register. This procedure returns as soon as the VC interface module
accepts the transaction, allowing other writes to be issued in the interim. Use this
procedure only when successful completion status is expected.

Table 16–25. ebfm_cfgwr_imm_nowt Procedure

Location altpcietb_bfm_driver_rp.v

Syntax ebfm_cfgwr_imm_nowt(bus_num, dev_num, fnc_num, imm_regb_adr, regb_len, imm_data)

Arguments

bus_num PCI Express bus number of the target device.

dev_num PCI Express device number of the target device.

fnc_num Function number in the target device to be accessed.

regb_ad Byte-specific address of the register to be written.

regb_ln
Length, in bytes, of the data written. Maximum length is four bytes, The regb_ln the
regb_ad arguments cannot cross a DWORD boundary.

imm_data

Data to be written

This argument is reg [31:0].

In both languages, the bits written depend on the length:

Length Bits Written

4 [31:0]

3 [23:0]

2 [15:0]

1 [7:0]
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 16: Testbench and Design Example 16–33
BFM Procedures and Functions
ebfm_cfgrd_wait Procedure
The ebfm_cfgrd_wait procedure reads up to four bytes of data from the specified
configuration register and stores the data in BFM shared memory. This procedure
waits until the read completion has been returned.

ebfm_cfgrd_nowt Procedure
The ebfm_cfgrd_nowt procedure reads up to four bytes of data from the specified
configuration register and stores the data in the BFM shared memory. This procedure
returns as soon as the VC interface module has accepted the transaction, allowing
other reads to be issued in the interim. Use this procedure only when successful
completion status is expected and a subsequent read or write with a wait can be used
to guarantee the completion of this operation.

Table 16–26. ebfm_cfgrd_wait Procedure

Location altpcietb_bfm_driver_rp.v

Syntax ebfm_cfgrd_wait(bus_num, dev_num, fnc_num, regb_ad, regb_ln, lcladdr, compl_status)

Arguments

bus_num PCI Express bus number of the target device.

dev_num PCI Express device number of the target device.

fnc_num Function number in the target device to be accessed.

regb_ad Byte-specific address of the register to be written.

regb_ln
Length, in bytes, of the data read. Maximum length is four bytes. The regb_ln and the
regb_ad arguments cannot cross a DWORD boundary.

lcladdr BFM shared memory address of where the read data should be placed.

compl_status

Completion status for the configuration transaction.

This argument is reg [2:0].

In both languages, this is the completion status as specified in the PCI Express
specification:

Compl_Status Definition

000 SC— Successful completion

001 UR— Unsupported Request

010 CRS — Configuration Request Retry Status

100 CA — Completer Abort

Table 16–27. ebfm_cfgrd_nowt Procedure

Location altpcietb_bfm_driver_rp.v

Syntax ebfm_cfgrd_nowt(bus_num, dev_num, fnc_num, regb_ad, regb_ln, lcladdr)

Arguments bus_num PCI Express bus number of the target device.

dev_num PCI Express device number of the target device.

fnc_num Function number in the target device to be accessed.

regb_ad Byte-specific address of the register to be written.

regb_ln
Length, in bytes, of the data written. Maximum length is four bytes. The regb_ln and
regb_ad arguments cannot cross a DWORD boundary.

lcladdr BFM shared memory address where the read data should be placed.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

16–34 Chapter 16: Testbench and Design Example
BFM Procedures and Functions
BFM Configuration Procedures
The following procedures are available in altpcietb_bfm_driver_rp.v. These
procedures support configuration of the Root Port and Endpoint Configuration Space
registers.

All Verilog HDL arguments are type integer and are input-only unless specified
otherwise.

ebfm_cfg_rp_ep Procedure
The ebfm_cfg_rp_ep procedure configures the Root Port and Endpoint Configuration
Space registers for operation. Refer to Table 16–28 for a description the arguments for
this procedure.

Table 16–28. ebfm_cfg_rp_ep Procedure

Location altpcietb_bfm_driver_rp.v

Syntax ebfm_cfg_rp_ep(bar_table, ep_bus_num, ep_dev_num, rp_max_rd_req_size,
display_ep_config, addr_map_4GB_limit)

Arguments bar_table

Address of the Endpoint bar_table structure in BFM shared memory. This
routine populates the bar_table structure. The bar_table structure stores
the size of each BAR and the address values assigned to each BAR. The address
of the bar_table structure is passed to all subsequent read and write
procedure calls that access an offset from a particular BAR.

ep_bus_num
PCI Express bus number of the target device. This number can be any value
greater than 0. The Root Port uses this as its secondary bus number.

ep_dev_num
PCI Express device number of the target device. This number can be any value.
The Endpoint is automatically assigned this value when it receives its first
configuration transaction.

rp_max_rd_req_size

Maximum read request size in bytes for reads issued by the Root Port. This
parameter must be set to the maximum value supported by the Endpoint
Application Layer. If the Application Layer only supports reads of the
MAXIMUM_PAYLOAD_SIZE, then this can be set to 0 and the read request size
will be set to the maximum payload size. Valid values for this argument are 0,
128, 256, 512, 1,024, 2,048 and 4,096.

display_ep_config

When set to 1 many of the Endpoint Configuration Space registers are displayed
after they have been initialized, causing some additional reads of registers that
are not normally accessed during the configuration process such as the Device
ID and Vendor ID.

addr_map_4GB_limit
When set to 1 the address map of the simulation system will be limited to 4
GBytes. Any 64-bit BARs will be assigned below the 4 GByte limit.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 16: Testbench and Design Example 16–35
BFM Procedures and Functions
ebfm_cfg_decode_bar Procedure
The ebfm_cfg_decode_bar procedure analyzes the information in the BAR table for
the specified BAR and returns details about the BAR attributes.

BFM Shared Memory Access Procedures
The following procedures and functions are in the Verilog HDL include file
altpcietb_bfm_driver.v. These procedures and functions support accessing the BFM
shared memory.

Shared Memory Constants
The following constants are defined in altpcietb_bfm_driver.v. They select a data
pattern in the shmem_fill and shmem_chk_ok routines. These shared memory
constants are all Verilog HDL type integer.

Table 16–29. ebfm_cfg_decode_bar Procedure

Location altpcietb_bfm_driver_rp.v

Syntax ebfm_cfg_decode_bar(bar_table, bar_num, log2_size, is_mem, is_pref, is_64b)

Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.

bar_num BAR number to analyze.

log2_size
This argument is set by the procedure to the log base 2 of the size of the BAR. If the BAR is
not enabled, this argument will be set to 0.

is_mem
The procedure sets this argument to indicate if the BAR is a memory space BAR (1) or I/O
Space BAR (0).

is_pref
The procedure sets this argument to indicate if the BAR is a prefetchable BAR (1) or non-
prefetchable BAR (0).

is_64b
The procedure sets this argument to indicate if the BAR is a 64-bit BAR (1) or 32-bit BAR
(0). This is set to 1 only for the lower numbered BAR of the pair.

Table 16–30. Constants: Verilog HDL Type INTEGER

Constant Description

SHMEM_FILL_ZEROS Specifies a data pattern of all zeros

SHMEM_FILL_BYTE_INC Specifies a data pattern of incrementing 8-bit bytes (0x00, 0x01, 0x02, etc.)

SHMEM_FILL_WORD_INC Specifies a data pattern of incrementing 16-bit words (0x0000, 0x0001, 0x0002, etc.)

SHMEM_FILL_DWORD_INC
Specifies a data pattern of incrementing 32-bit dwords (0x00000000, 0x00000001,
0x00000002, etc.)

SHMEM_FILL_QWORD_INC
Specifies a data pattern of incrementing 64-bit qwords (0x0000000000000000,
0x0000000000000001, 0x0000000000000002, etc.)

SHMEM_FILL_ONE Specifies a data pattern of all ones
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

16–36 Chapter 16: Testbench and Design Example
BFM Procedures and Functions
shmem_write
The shmem_write procedure writes data to the BFM shared memory.

shmem_read Function
The shmem_read function reads data to the BFM shared memory.

shmem_display Verilog HDL Function
The shmem_display Verilog HDL function displays a block of data from the BFM
shared memory.

Table 16–31. shmem_write Verilog HDL Task

Location altpcietb_bfm_driver_rp.v

Syntax shmem_write(addr, data, leng)

Arguments addr BFM shared memory starting address for writing data

data

Data to write to BFM shared memory.

This parameter is implemented as a 64-bit vector. leng is 1–8 bytes. Bits 7 downto 0 are
written to the location specified by addr; bits 15 downto 8 are written to the addr+1
location, etc.

leng Length, in bytes, of data written

Table 16–32. shmem_read Function

Location altpcietb_bfm_driver_rp.v

Syntax data:= shmem_read(addr, leng)

Arguments addr BFM shared memory starting address for reading data

leng Length, in bytes, of data read

Return data

Data read from BFM shared memory.

 This parameter is implemented as a 64-bit vector. leng is 1- 8 bytes. If leng is less than 8
bytes, only the corresponding least significant bits of the returned data are valid.

 Bits 7 downto 0 are read from the location specified by addr; bits 15 downto 8 are read from
the addr+1 location, etc.

Table 16–33. shmem_display Verilog Function

Location altpcietb_bfm_driver_rp.v

Syntax Verilog HDL: dummy_return:=shmem_display(addr, leng, word_size, flag_addr, msg_type);

Arguments addr BFM shared memory starting address for displaying data.

leng Length, in bytes, of data to display.

word_size
Size of the words to display. Groups individual bytes into words. Valid values are 1, 2, 4, and
8.

flag_addr
Adds a <== flag to the end of the display line containing this address. Useful for marking
specific data. Set to a value greater than 2**21 (size of BFM shared memory) to suppress the
flag.

msg_type
Specifies the message type to be displayed at the beginning of each line. See “BFM Log and
Message Procedures” on page 16–37 for more information about message types. Set to one
of the constants defined in Table 16–36 on page 16–38.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 16: Testbench and Design Example 16–37
BFM Procedures and Functions
shmem_fill Procedure
The shmem_fill procedure fills a block of BFM shared memory with a specified data
pattern.

shmem_chk_ok Function
The shmem_chk_ok function checks a block of BFM shared memory against a specified
data pattern.

BFM Log and Message Procedures
The following procedures and functions are available in the Verilog HDL include file
altpcietb_bfm_driver_rp.v.

These procedures provide support for displaying messages in a common format,
suppressing informational messages, and stopping simulation on specific message
types.

The following constants define the type of message and their values determine
whether a message is displayed or simulation is stopped after a specific message.
Each displayed message has a specific prefix, based on the message type in
Table 16–36.

Table 16–34. shmem_fill Procedure

Location altpcietb_bfm_driver_rp.v

Syntax shmem_fill(addr, mode, leng, init)

Arguments addr BFM shared memory starting address for filling data.

mode
Data pattern used for filling the data. Should be one of the constants defined in section
“Shared Memory Constants” on page 16–35.

leng
Length, in bytes, of data to fill. If the length is not a multiple of the incrementing data pattern
width, then the last data pattern is truncated to fit.

init

Initial data value used for incrementing data pattern modes. This argument is reg [63:0].

The necessary least significant bits are used for the data patterns that are smaller than 64
bits.

Table 16–35. shmem_chk_ok Function

Location altpcietb_bfm_shmem.v

Syntax result:= shmem_chk_ok(addr, mode, leng, init, display_error)

Arguments

addr BFM shared memory starting address for checking data.

mode
Data pattern used for checking the data. Should be one of the constants defined in
section “Shared Memory Constants” on page 16–35.

leng Length, in bytes, of data to check.

init
This argument is reg [63:0].The necessary least significant bits are used for the data
patterns that are smaller than 64-bits.

display_error
When set to 1, this argument displays the mis-comparing data on the simulator standard
output.

Return Result
Result is 1-bit.
1’b1 — Data patterns compared successfully
1’b0 — Data patterns did not compare successfully
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

16–38 Chapter 16: Testbench and Design Example
BFM Procedures and Functions
You can suppress the display of certain message types. The default values
determining whether a message type is displayed are defined in Table 16–36. To
change the default message display, modify the display default value with a
procedure call to ebfm_log_set_suppressed_msg_mask.

Certain message types also stop simulation after the message is displayed.
Table 16–36 shows the default value determining whether a message type stops
simulation. You can specify whether simulation stops for particular messages with the
procedure ebfm_log_set_stop_on_msg_mask.

All of these log message constants type integer.

Table 16–36. Log Messages

Constant (Message Type) Description Mask
Bit No

Display
by Default

Simulation
Stops by
Default

Message
Prefix

EBFM_MSG_DEBUG Specifies debug messages. 0 No No DEBUG:

EBFM_MSG_INFO

Specifies informational messages,
such as configuration register
values, starting and ending of
tests.

1 Yes No INFO:

EBFM_MSG_WARNING
Specifies warning messages, such
as tests being skipped due to the
specific configuration.

2 Yes No WARNING:

EBFM_MSG_ERROR_INFO

Specifies additional information for
an error. Use this message to
display preliminary information
before an error message that stops
simulation.

3 Yes No ERROR:

EBFM_MSG_ERROR_CONTINUE
Specifies a recoverable error that
allows simulation to continue. Use
this error for data miscompares.

4 Yes No ERROR:

EBFM_MSG_ERROR_FATAL

Specifies an error that stops
simulation because the error leaves
the testbench in a state where
further simulation is not possible.

N/A
Yes

Cannot
suppress

Yes

Cannot
suppress

FATAL:

EBFM_MSG_ERROR_FATAL_TB_ERR

Used for BFM test driver or Root
Port BFM fatal errors. Specifies an
error that stops simulation because
the error leaves the testbench in a
state where further simulation is
not possible. Use this error
message for errors that occur due
to a problem in the BFM test driver
module or the Root Port BFM, that
are not caused by the Endpoint
Application Layer being tested.

N/A
Y

Cannot
suppress

Y

Cannot
suppress

FATAL:
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 16: Testbench and Design Example 16–39
BFM Procedures and Functions
ebfm_display Verilog HDL Function
The ebfm_display procedure or function displays a message of the specified type to
the simulation standard output and also the log file if ebfm_log_open is called.

A message can be suppressed, simulation can be stopped or both based on the default
settings of the message type and the value of the bit mask when each of the
procedures listed below is called. You can call one or both of these procedures based
on what messages you want displayed and whether or not you want simulation to
stop for specific messages.

■ When ebfm_log_set_suppressed_msg_mask is called, the display of the message
might be suppressed based on the value of the bit mask.

■ When ebfm_log_set_stop_on_msg_mask is called, the simulation can be stopped
after the message is displayed, based on the value of the bit mask.

ebfm_log_stop_sim Verilog HDL Function
The ebfm_log_stop_sim procedure stops the simulation.

ebfm_log_set_suppressed_msg_mask Verilog HDL Function
The ebfm_log_set_suppressed_msg_mask procedure controls which message types
are suppressed.

Table 16–37. ebfm_display Procedure

Location altpcietb_bfm_driver_rp.v

Syntax Verilog HDL: dummy_return:=ebfm_display(msg_type, message);

Argument msg_type
Message type for the message. Should be one of the constants defined in Table 16–36 on
page 16–38.

message
The message string is limited to a maximum of 100 characters. Also, because Verilog HDL does
not allow variable length strings, this routine strips off leading characters of 8’h00 before
displaying the message.

Return always 0 Applies only to the Verilog HDL routine.

Table 16–38. ebfm_log_stop_sim

Location altpcietb_bfm_driver_rp.v

Syntax Verilog VHDL: return:=ebfm_log_stop_sim(success);

Argument success

When set to a 1, this process stops the simulation with a message indicating successful
completion. The message is prefixed with SUCCESS:.

Otherwise, this process stops the simulation with a message indicating unsuccessful
completion. The message is prefixed with FAILURE:.

Return Always 0 This value applies only to the Verilog HDL function.

Table 16–39. ebfm_log_set_suppressed_msg_mask

Location altpcietb_bfm_driver_rp.v

Syntax bfm_log_set_suppressed_msg_mask (msg_mask)

Argument msg_mask

This argument is reg [EBFM_MSG_ERROR_CONTINUE: EBFM_MSG_DEBUG].

 A 1 in a specific bit position of the msg_mask causes messages of the type corresponding to
the bit position to be suppressed.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

16–40 Chapter 16: Testbench and Design Example
BFM Procedures and Functions
ebfm_log_set_stop_on_msg_mask Verilog HDL Function
The ebfm_log_set_stop_on_msg_mask procedure controls which message types stop
simulation. This procedure alters the default behavior of the simulation when errors
occur as described in the Table 16–36 on page 16–38.

ebfm_log_open Verilog HDL Function
The ebfm_log_open procedure opens a log file of the specified name. All displayed
messages are called by ebfm_display and are written to this log file as simulator
standard output.

ebfm_log_close Verilog HDL Function
The ebfm_log_close procedure closes the log file opened by a previous call to
ebfm_log_open.

Verilog HDL Formatting Functions
The following procedures and functions are available in the
altpcietb_bfm_driver_rp.v. This section outlines formatting functions that are only
used by Verilog HDL. All these functions take one argument of a specified length and
return a vector of a specified length.

Table 16–40. ebfm_log_set_stop_on_msg_mask

Location altpcietb_bfm_driver_rp.v

Syntax ebfm_log_set_stop_on_msg_mask (msg_mask)

Argument msg_mask

This argument is
reg [EBFM_MSG_ERROR_CONTINUE:EBFM_MSG_DEBUG].

A 1 in a specific bit position of the msg_mask causes messages of the type corresponding to
the bit position to stop the simulation after the message is displayed.

Table 16–41. ebfm_log_open

Location altpcietb_bfm_driver_rp.v

Syntax ebfm_log_open (fn)

Argument fn This argument is type string and provides the file name of log file to be opened.

Table 16–42. ebfm_log_close Procedure

Location altpcietb_bfm_driver_rp.v

Syntax ebfm_log_close

Argument NONE
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 16: Testbench and Design Example 16–41
BFM Procedures and Functions
himage1
This function creates a one-digit hexadecimal string representation of the input
argument that can be concatenated into a larger message string and passed to
ebfm_display.

himage2
This function creates a two-digit hexadecimal string representation of the input
argument that can be concatenated into a larger message string and passed to
ebfm_display.

himage4
This function creates a four-digit hexadecimal string representation of the input
argument can be concatenated into a larger message string and passed to
ebfm_display.

himage8
This function creates an 8-digit hexadecimal string representation of the input
argument that can be concatenated into a larger message string and passed to
ebfm_display.

Table 16–43. himage1

Location altpcietb_bfm_driver_rp.v

syntax string:= himage(vec)

Argument vec Input data type reg with a range of 3:0.

Return range string
Returns a 1-digit hexadecimal representation of the input argument. Return data is type
reg with a range of 8:1

Table 16–44. himage2

Location altpcietb_bfm_driver_rp.v

syntax string:= himage(vec)

Argument range vec Input data type reg with a range of 7:0.

Return range string
Returns a 2-digit hexadecimal presentation of the input argument, padded with leading
0s, if they are needed. Return data is type reg with a range of 16:1

Table 16–45. himage4

Location altpcietb_bfm_driver_rp.v

syntax string:= himage(vec)

Argument range vec Input data type reg with a range of 15:0.

Return range Returns a four-digit hexadecimal representation of the input argument, padded with leading
0s, if they are needed. Return data is type reg with a range of 32:1.

Table 16–46. himage8

Location altpcietb_bfm_driver_rp.v

syntax string:= himage(vec)
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

16–42 Chapter 16: Testbench and Design Example
BFM Procedures and Functions
himage16
This function creates a 16-digit hexadecimal string representation of the input
argument that can be concatenated into a larger message string and passed to
ebfm_display.

dimage1
This function creates a one-digit decimal string representation of the input argument
that can be concatenated into a larger message string and passed to ebfm_display.

dimage2
This function creates a two-digit decimal string representation of the input argument
that can be concatenated into a larger message string and passed to ebfm_display.

Argument range vec Input data type reg with a range of 31:0.

Return range string
Returns an 8-digit hexadecimal representation of the input argument, padded with leading
0s, if they are needed. Return data is type reg with a range of 64:1.

Table 16–46. himage8

Table 16–47. himage16

Location altpcietb_bfm_driver_rp.v

syntax string:= himage(vec)

Argument range vec Input data type reg with a range of 63:0.

Return range string
Returns a 16-digit hexadecimal representation of the input argument, padded with leading
0s, if they are needed. Return data is type reg with a range of 128:1.

Table 16–48. dimage1

Location altpcietb_bfm_driver_rp.v

syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string

Returns a 1-digit decimal representation of the input argument that is padded with leading
0s if necessary. Return data is type reg with a range of 8:1.

Returns the letter U if the value cannot be represented.

Table 16–49. dimage2

Location altpcietb_bfm_driver_rp.v

syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string

Returns a 2-digit decimal representation of the input argument that is padded with leading
0s if necessary. Return data is type reg with a range of 16:1.

Returns the letter U if the value cannot be represented.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 16: Testbench and Design Example 16–43
BFM Procedures and Functions
dimage3
This function creates a three-digit decimal string representation of the input argument
that can be concatenated into a larger message string and passed to ebfm_display.

dimage4
This function creates a four-digit decimal string representation of the input argument
that can be concatenated into a larger message string and passed to ebfm_display.

dimage5
This function creates a five-digit decimal string representation of the input argument
that can be concatenated into a larger message string and passed to ebfm_display.

dimage6
This function creates a six-digit decimal string representation of the input argument
that can be concatenated into a larger message string and passed to ebfm_display.

Table 16–50. dimage3

Location altpcietb_bfm_driver_rp.v

syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string
Returns a 3-digit decimal representation of the input argument that is padded with leading
0s if necessary. Return data is type reg with a range of 24:1.

Returns the letter U if the value cannot be represented.

Table 16–51. dimage4

Location altpcietb_bfm_driver_rp.v

syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string

Returns a 4-digit decimal representation of the input argument that is padded with
leading 0s if necessary. Return data is type reg with a range of 32:1.

Returns the letter U if the value cannot be represented.

Table 16–52. dimage5

Location altpcietb_bfm_driver_rp.v

syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string

Returns a 5-digit decimal representation of the input argument that is padded with leading
0s if necessary. Return data is type reg with a range of 40:1.

Returns the letter U if the value cannot be represented.

Table 16–53. dimage6

Location altpcietb_bfm_log.v

syntax string:= dimage(vec)
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

16–44 Chapter 16: Testbench and Design Example
BFM Procedures and Functions
dimage7
This function creates a seven-digit decimal string representation of the input
argument that can be concatenated into a larger message string and passed to
ebfm_display.

Procedures and Functions Specific to the Chaining DMA Design Example
This section describes procedures that are specific to the chaining DMA design
example. These procedures are located in the Verilog HDL module file
altpcietb_bfm_driver_rp.v.

chained_dma_test Procedure
The chained_dma_test procedure is the top-level procedure that runs the chaining
DMA read and the chaining DMA write

Argument range vec Input data type reg with a range of 31:0.

Return range string

Returns a 6-digit decimal representation of the input argument that is padded with leading
0s if necessary. Return data is type reg with a range of 48:1.

Returns the letter U if the value cannot be represented.

Table 16–53. dimage6

Table 16–54. dimage7

Location altpcietb_bfm_log.v

syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string

Returns a 7-digit decimal representation of the input argument that is padded with
leading 0s if necessary. Return data is type reg with a range of 56:1.

Returns the letter <U> if the value cannot be represented.

Table 16–55. chained_dma_test Procedure

Location altpcietb_bfm_driver_rp.v

Syntax chained_dma_test (bar_table, bar_num, direction, use_msi, use_eplast)

Arguments

bar_table Address of the Endpoint bar_table structure in BFM shared memory.

bar_num BAR number to analyze.

direction
When 0 the direction is read.

When 1 the direction is write.

Use_msi When set, the Root Port uses native PCI Express MSI to detect the DMA completion.

Use_eplast When set, the Root Port uses BFM shared memory polling to detect the DMA completion.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 16: Testbench and Design Example 16–45
BFM Procedures and Functions
dma_rd_test Procedure
Use the dma_rd_test procedure for DMA reads from the Endpoint memory to the
BFM shared memory.

dma_wr_test Procedure
Use the dma_wr_test procedure for DMA writes from the BFM shared memory to the
Endpoint memory.

dma_set_rd_desc_data Procedure
Use the dma_set_rd_desc_data procedure to configure the BFM shared memory for
the DMA read.

dma_set_wr_desc_data Procedure
Use the dma_set_wr_desc_data procedure to configure the BFM shared memory for
the DMA write.

Table 16–56. dma_rd_test Procedure

Location altpcietb_bfm_driver_rp.v

Syntax dma_rd_test (bar_table, bar_num, use_msi, use_eplast)

Arguments

bar_table Address of the Endpoint bar_table structure in BFM shared memory.

bar_num BAR number to analyze.

Use_msi When set, the Root Port uses native PCI express MSI to detect the DMA completion.

Use_eplast When set, the Root Port uses BFM shared memory polling to detect the DMA completion.

Table 16–57. dma_wr_test Procedure

Location altpcietb_bfm_driver_rp.v

Syntax dma_wr_test (bar_table, bar_num, use_msi, use_eplast)

Arguments

bar_table Address of the Endpoint bar_table structure in BFM shared memory.

bar_num BAR number to analyze.

Use_msi When set, the Root Port uses native PCI Express MSI to detect the DMA completion.

Use_eplast When set, the Root Port uses BFM shared memory polling to detect the DMA completion.

Table 16–58. dma_set_rd_desc_data Procedure

Location altpcietb_bfm_driver_rp.v

Syntax dma_set_rd_desc_data (bar_table, bar_num)

Arguments
bar_table Address of the Endpoint bar_table structure in BFM shared memory.

bar_num BAR number to analyze.

Table 16–59. dma_set_wr_desc_data_header Procedure

Location altpcietb_bfm_driver_rp.v

Syntax dma_set_wr_desc_data_header (bar_table, bar_num)
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

16–46 Chapter 16: Testbench and Design Example
BFM Procedures and Functions
dma_set_header Procedure
Use the dma_set_header procedure to configure the DMA descriptor table for DMA
read or DMA write.

rc_mempoll Procedure
Use the rc_mempoll procedure to poll a given dword in a given BFM shared memory
location.

Arguments
bar_table Address of the Endpoint bar_table structure in BFM shared memory.

bar_num BAR number to analyze.

Table 16–59. dma_set_wr_desc_data_header Procedure

Table 16–60. dma_set_header Procedure

Location altpcietb_bfm_driver_rp.v

Syntax dma_set_header (bar_table, bar_num, Descriptor_size, direction, Use_msi, Use_eplast,
Bdt_msb, Bdt_lab, Msi_number, Msi_traffic_class, Multi_message_enable)

Arguments

bar_table Address of the Endpoint bar_table structure in BFM shared memory.

bar_num BAR number to analyze.

Descriptor_size Number of descriptor.

direction
When 0 the direction is read.

When 1 the direction is write.

Use_msi
When set, the Root Port uses native PCI Express MSI to detect the DMA
completion.

Use_eplast
When set, the Root Port uses BFM shared memory polling to detect the
DMA completion.

Bdt_msb BFM shared memory upper address value.

Bdt_lsb BFM shared memory lower address value.

Msi_number
When use_msi is set, specifies the number of the MSI which is set by the
dma_set_msi procedure.

Msi_traffic_class
When use_msi is set, specifies the MSI traffic class which is set by the
dma_set_msi procedure.

Multi_message_enable
When use_msi is set, specifies the MSI traffic class which is set by the
dma_set_msi procedure.

Table 16–61. rc_mempoll Procedure

Location altpcietb_bfm_driver_rp.v

Syntax rc_mempoll (rc_addr, rc_data, rc_mask)

Arguments

rc_addr Address of the BFM shared memory that is being polled.

rc_data Expected data value of the that is being polled.

rc_mask Mask that is logically ANDed with the shared memory data before it is
compared with rc_data.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 16: Testbench and Design Example 16–47
BFM Procedures and Functions
msi_poll Procedure
The msi_poll procedure tracks MSI completion from the Endpoint.

dma_set_msi Procedure
The dma_set_msi procedure sets PCI Express native MSI for the DMA read or the
DMA write.

Table 16–62. msi_poll Procedure

Location altpcietb_bfm_driver_rp.v

Syntax msi_poll(max_number_of_msi,msi_address,msi_expected_dmawr,msi_expected_dmard,dma_wri
te,dma_read)

Arguments

max_number_of_msi Specifies the number of MSI interrupts to wait for.

msi_address The shared memory location to which the MSI messages will be written.

msi_expected_dmawr
When dma_write is set, this specifies the expected MSI data value for the
write DMA interrupts which is set by the dma_set_msi procedure.

msi_expected_dmard
When the dma_read is set, this specifies the expected MSI data value for the
read DMA interrupts which is set by the dma_set_msi procedure.

Dma_write When set, poll for MSI from the DMA write module.

Dma_read When set, poll for MSI from the DMA read module.

Table 16–63. dma_set_msi Procedure

Location altpcietb_bfm_driver_rp.v

Syntax dma_set_msi(bar_table, bar_num, bus_num, dev_num, fun_num, direction, msi_address,
msi_data, msi_number, msi_traffic_class, multi_message_enable, msi_expected)

Arguments

bar_table Address of the Endpoint bar_table structure in BFM shared memory.

bar_num BAR number to analyze.

Bus_num Set configuration bus number.

dev_num Set configuration device number.

Fun_num Set configuration function number.

Direction
When 0 the direction is read.

When 1 the direction is write.

msi_address
Specifies the location in shared memory where the MSI message data
will be stored.

msi_data
The 16-bit message data that will be stored when an MSI message is
sent. The lower bits of the message data will be modified with the
message number as per the PCI specifications.

Msi_number Returns the MSI number to be used for these interrupts.

Msi_traffic_class Returns the MSI traffic class value.

Multi_message_enable Returns the MSI multi message enable status.

msi_expected
Returns the expected MSI data value, which is msi_data modified by the
msi_number chosen.
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

16–48 Chapter 16: Testbench and Design Example
BFM Procedures and Functions
find_mem_bar Procedure
The find_mem_bar procedure locates a BAR which satisfies a given memory space
requirement.

dma_set_rclast Procedure
The dma_set_rclast procedure starts the DMA operation by writing to the Endpoint
DMA register the value of the last descriptor to process (RCLast).

ebfm_display_verb Procedure
The ebfm_display_verb procedure calls the procedure ebfm_display when the global
variable DISPLAY_ALL is set to 1.

Table 16–64. find_mem_bar Procedure

Location altpcietb_bfm_driver_rp.v

Syntax Find_mem_bar(bar_table,allowed_bars,min_log2_size, sel_bar)

Arguments

bar_table Address of the Endpoint bar_table structure in BFM shared memory

allowed_bars One hot 6 bits BAR selection

min_log2_size Number of bit required for the specified address space

sel_bar BAR number to use

Table 16–65. dma_set_rclast Procedure

Location altpcietb_bfm_driver_rp.v

Syntax Dma_set_rclast(bar_table, setup_bar, dt_direction, dt_rclast)

Arguments

bar_table Address of the Endpoint bar_table structure in BFM shared memory

setup_bar BAR number to use

dt_direction When 0 read, When 1 write

dt_rclast Last descriptor number

Table 16–66. ebfm_display_verb Procedure

Location altpcietb_bfm_driver_chaining.v

Syntax ebfm_display_verb(msg_type, message)

Arguments

msg_type
Message type for the message. Should be one of the constants

defined in Table 16–36 on page 16–38.

message
The message string is limited to a maximum of 100 characters. Also, because
Verilog HDL does not allow variable length strings, this routine strips off leading
characters of 8'h00 before displaying the message.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

June 2012 Altera Corporation

June 2012
UG-01110-1.2
17. Debugging
As you bring up your PCI Express system, you may face a number of issues related to
FPGA configuration, link training, BIOS enumeration, data transfer, and so on. This
chapter suggests some strategies to resolve the common issues that occur during
hardware bring-up.

Hardware Bring-Up Issues
Typically, PCI Express hardware bring-up involves the following steps:

1. System reset

2. Linking training

3. BIOS enumeration

The following sections, describe how to debug the hardware bring-up flow. Altera
recommends a systematic approach to diagnosing bring-up issues as illustrated in
Figure 17–1.

Link Training
The Physical Layer automatically performs link training and initialization without
software intervention. This is a well-defined process to configure and initialize the
device's Physical Layer and link so that PCIe packets can be transmitted. If you
encounter link training issues, viewing the actual data in hardware should help you
determine the root cause. You can use the following tools to provide hardware
visibility:

■ SignalTap® II Embedded Logic Analyzer

■ Third-party PCIe analyzer

Figure 17–1. Debugging Link Training Issues

No

system reset
Does Link

Train
 Correctly?

Check PIPE
Interface

Use PCIe
 Analyzer

Soft Reset System to
 Force Enumeration

Check Configuration
Space

Check LTSSM
Status

YesYes

No

Successful
OS/BIOS

Enumeration?
Arria V Hard IP for PCI Express
User Guide

17–2 Chapter 17: Debugging
Link Training
You can use SignalTap II Embedded Logic Analyzer to diagnose the LTSSM state
transitions that are occurring and the PIPE interface. The ltssmstate[4:0] bus
encodes the status of LTSSM. The LTSSM state machine reflects the Physical Layer’s
progress through the link training process. For a complete description of the states
these signals encode, refer to “Reset and Link Training Signals” on page 6–28. When
link training completes successfully and the link is up, the LTSSM should remain
stable in the L0 state.

When link issues occur, you can monitor ltssmstate[4:0] to determine one of two
cases:

■ The link training fails before reaching the L0 state. Refer to Table 17–1 for possible
causes of the failure to reach L0.

■ The link is initially established (L0), but then stalls with tx_st_ready deasserted
for more than 100 cycles. Refer to Table 17–2 on page 17–4 for possible causes.

Table 17–1. Link Training Fails to Reach L0 (Part 1 of 2)

Possible Causes Symptoms and Root Causes Workarounds and Solutions

Link fails the Receiver
Detect sequence.

LTSSM toggles between
Detect.Quiet(0) and Detect.Active(1)
states

Check the following termination settings:

■ The on-chip termination (OCT) must be set to
100 ohm, with 100 uF capacitors on the TX
pins.

■ Link partner RX pins must also have 100 ohm
termination.

Link fails with LTSSM stuck
in Detect.Active state (1)

This behavior may be caused by a PMA
issue if the host interrupts the Electrical
Idle state as indicated by high to low
transitions on the RxElectIdle
(rxelecidle)signal when
TxDetectRx=0 (txdetectrx0) at PIPE
interface. Check if OCT is turned off by
a Quartus Settings File (.qsf)
command. PCIe requires that OCT must
be used for proper Receiver Detect with
a value of 100 Ohm. You can debug this
issue using SignalTap II and
oscilloscope.

A workaround is implemented in the reset
sequence.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 17: Debugging 17–3
Link Training
Link fails with the LTSSM
toggling between:
Detect.Quiet (0),
Detect.Active (1), and
Polling.Active (2),

or:

Detect.Quiet (0),
Detect.Active (1), and
Polling.Configuration (4)

On the PIPE interface extracted from
the test_out bus, confirm that the
Hard IP for PCI Express IP Core is
transmitting valid TS1 in the
Polling.Active(2) state or TS1 and TS2
in the Polling.Configuration (4) state on
txdata0. The Root Port should be
sending either the TS1 Ordered Set or a
compliance pattern as seen on
rxdata0. These symptoms indicate
that the Root Port did not receive the
valid training Ordered Set from
Endpoint because the Endpoint
transmitted corrupted data on the link.
You can debug this issue using
SignalTap II. Refer to “PIPE Interface
Signals” on page 17–6 for a list of the
test_out bus signals.

The following are some of the reasons the
Endpoint might send corrupted data:

■ Signal integrity issues. Measure the TX eye and
check it against the eye opening requirements
in the PCI Express Base Specification, Rev 2.1.
Adjust the transceiver pre-emphasis and
equalization settings to open the eye.

■ Bypass the Transceiver Reconfiguration
Controller IP Core to see if the link comes up at
the expected data rate without this component.
If it does, make sure the connection to
Transceiver Reconfig Controller IP Core is
correct.

■ Make sure that the busy_xcvr_reconfig
signal is deasserted. If it is asserted, the
Transceiver Reconfiguration Controller IP Core
reset is not debounced and synchronized to
reconfig_clk domain. Check that the system
reset sequence to waits for
busy_xcvr_reconfig to be deasserted
before taking pin_perst out of reset.

Link fails due to unstable
rx_signaldetect

Confirm that rx_signaldetect bus of
the active lanes is all 1’s. If all active
lanes are driving all 1’s, the LTSSM
state machine toggles between
Detect.Quiet(0), Detect.Active(1), and
Polling.Active(2) states. You can debug
this issue using SignalTap II. Refer to
“PIPE Interface Signals” on page 17–6
for a list of the test_out bus signals.

This issue may be caused by mismatches between
the expected power supply to RX side of the
receiver and the actual voltage supplied to the
FPGA from your boards.

Link fails because the
LTSSM state machine enters
Compliance

Confirm that the LTSSM state machine
is in Polling.Compliance(3) using
SignalTap II.

Possible causes include the following:

■ Setting test_in[6]=1 forces entry to
Compliance mode when a timeout is reached in
the Polling.Active state.

■ Differential pairs are incorrectly connected to
the pins of the device. For example, the
Endpoint’s TX signals are connected to the RX
pins and the Endpoint’s RX signals are to the TX
pins.

Link fails because LTSSM
state machine unexpectedly
transitions to Recovery

A framing error is detected on the link
causing LTSSM to enter the Recovery
state.

In simulation, set test_in[1]=1 to speed up
simulation. This solution only solves this problem
for simulation. For hardware, customer must set
test_in[1]=0.

Table 17–1. Link Training Fails to Reach L0 (Part 2 of 2)

Possible Causes Symptoms and Root Causes Workarounds and Solutions
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

17–4 Chapter 17: Debugging
Link Hangs in L0 Due To Deassertion of tx_st_ready
Link Hangs in L0 Due To Deassertion of tx_st_ready
There are many reasons that link may stop transmitting data. Table 17–2 lists some
possible causes.

Table 17–2. Link Hangs in L0 (Part 1 of 2)

Possible Causes Symptoms and Root Causes Workarounds and Solutions

Avalon-ST signalling
violates Avalon-ST protocol

Avalon-ST protocol violations include
the following errors:

■ More than one tx_st_sop per
tx_st_eop.

■ Two or more tx_st_eop’s without
a corresponding tx_st_sop.

■ rx_st_valid is not asserted with
tx_st_sop or tx_st_eop.

These errors are applicable to both
simulation and hardware.

Add logic to detect situations where tx_st_ready
remains deasserted for more than 100 cycles. Set
post-triggering conditions to check for the
Avalon-ST signalling of last two TLPs to verify
correct tx_st_sop and tx_st_eop signalling.

 Incorrect payload size

Determine if the length field of the last
TLP transmitted by End Point is greater
than the InitFC credit advertised by the
link partner. For simulation, refer to the
log file and simulation dump. For
hardware, use a third-party logic
analyzer trace to capture PCIe
transactions.

If the payload is greater than the initFC credit
advertised, you must either increase the InitFC of
the posted request to be greater than the max
payload size or reduce the payload size of the
requested TLP to be less than the InitFC value.

Flow control credit
overflows

Determine if the credit field associated
with the current TLP type in the
tx_cred bus is less than the requested
credit value. When insufficient credits
are available, the core waits for the link
partner to release the correct credit
type. Sufficient credits may be
unavailable if the link partner
increments credits more than expected,
creating a situation where the Arria V
Hard IP for PCI Express IP Core credit
calculation is out-of-sink with its link
partner.

Add logic to detect conditions where the
tx_st_ready signal remains deasserted for more
than 100 cycles. Set post-triggering conditions to
check the value of the tx_cred* and tx_st_*
interfaces. Add a FIFO status signal to determine if
the TXFIFO is full.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 17: Debugging 17–5
Link Hangs in L0 Due To Deassertion of tx_st_ready
f For more information about link training, refer to the “Link Training and Status State
Machine (LTSSM) Descriptions” section of PCI Express Base Specification 2.1.

f For more information about SignalTap, refer to the Design Debugging Using the
SignalTap II Embedded Logic Analyzer chapter in volume 3 of the Quartus II Handbook.

Check PIPE Interface
Because the LTSSM signals reflect the behavior of one side of the PCI Express link,
you may find it difficult to determine the root cause of the link issue solely by
monitoring these signals. Monitoring the PIPE interface signals in addition to the
ltssmstate bus provides greater visibility.

Malformed TLP is
transmitted

Refer to the log file to find the last good
packet transmitted on the link. Correlate
this packet with TLP sent on Avalon-ST
interface. Determine if the last TLP sent
has any of the following errors:

■ The actual payload sent does not
match the length field.

■ The byte enable signals violate rules
for byte enables as specified in the
Avalon Interface Specifications.

■ The format and type fields are
incorrectly specified.

■ TD field is asserted, indicating the
presence of a TLP digest (ECRC),
but the ECRC dword is not present at
the end of TLP.

■ The payload crosses a 4KByte
boundary.

Revise the Application Layer logic to correct the
error condition.

Insufficient Posted credits
released by Root Port

If a Memory Write TLP is transmitted
with a payload greater than the
maximum payload size, the Root Port
may release an incorrect posted data
credit to the End Point in simulation. As
a result, the End Point does not have
enough credits to send additional
Memory Write Requests.

Make sure Application Layer sends Memory Write
Requests with a payload less than or equal the
value specified by the maximum payload size.

Missing completion packets
or dropped packets

The RX Completion TLP might cause
the RX FIFO to overflow. Make sure that
the total outstanding read data of all
pending Memory Read Requests is
smaller than the allocated completion
credits in RX buffer.

You must ensure that the data for all outstanding
read requests does not exceed the completion
credits in the RX buffer.

Table 17–2. Link Hangs in L0 (Part 2 of 2)

Possible Causes Symptoms and Root Causes Workarounds and Solutions
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

http://www.pcisig.com/
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

17–6 Chapter 17: Debugging
Link Hangs in L0 Due To Deassertion of tx_st_ready
The PIPE interface is specified by Intel. This interface defines the MAC/PCS
functional partitioning and defines the interface signals for these two sublayers. Using
the SignalTap logic analyzer to monitor the PIPE interface signals provides more
information about the devices that form the link.

During link training and initialization, different pre-defined Physical Layer Packets
(PLPs), known as ordered sets are exchanged between the two devices on all lanes. All
of these ordered sets have special symbols (K codes) that carry important information
to allow two connected devices to exchange capabilities, such as link width, link data
rate, lane reversal, lane-to-lane de-skew, and so on. You can track the ordered sets in
the link initialization and training on both sides of the link to help you diagnose link
issues. You can use SignalTap logic analyzer to determine the behavior.

Table 17–3 lists the PIPE interface signals for a two-lane simulation that you can
monitor on the test_out bus.

Table 17–3. PIPE Interface Signals (Part 1 of 3)

Signal Name Lane 0 Lane 1 Description

reserved[57:0] [159:102] [319:262] —

lanereversalenable

[101] [261]

When asserted, enables lanes reversal. The following
encodings are defined:

■ 0: Lanes not reversed

■ 1: Lanes reversed

eidleinfersel[2:0]

[100:98] [260]

Electrical idle entry inference mechanism selection. The
following encodings are defined:

■ 3'b0xx: Electrical Idle Inference not required in current
LTSSM state

■ 3'b100: Absence of COM/SKP Ordered Set the in 128
us window for Gen1 or Gen2

■ 3'b101: Absence of TS1/TS2 Ordered Set in a 1280 UI
interval for Gen1 or Gen2

■ 3'b110: Absence of Electrical Idle Exit in 2000 UI
interval for Gen1 and 16000 UI interval for Gen2

■ 3'b111: Absence of Electrical idle exit in 128 us
window for Gen1

txdeemph

[97] [257]

Transmit de-emphasis selection. The Arria V Hard IP for
PCI Express sets the value for this signal based on the
indication received from the other end of the link during
the Training Sequences (TS).

txmargin[2:0] [96:94] [256:254] Transmit VOD margin selection.

rate[1:0]

[93:92] [253:252]

The 2-bit encodings have the following meanings:

■ 2’b01: Gen1 rate (2.5 Gbps)

■ 2’b10: Gen2 rate (5.0 Gbps)

■ 2’b13: Gen3 rate (8.0 Gbps)

■ 2’b00: reserved
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter 17: Debugging 17–7
Link Hangs in L0 Due To Deassertion of tx_st_ready
rxstatus0[2:0]

[91:89] [251:249]

Receive status <n>. This signal encodes receive status
and error codes for the receive data stream and receiver
detection. The following encodings are defined:

■ 3’b000: Received data OK.

■ 3’b001: 1 SKP added.

■ 3’b010: 1 SKP removed.

■ 3’b011: Received detected.

■ 3’b100: Both 8B/10B decode error and Receive
Disparity error.

■ 3’b101: Elastic Buffer overflow.

■ 3’b110: Elastic Buffer underflow.

■ 3’b111: Reserved.

rxelecidle0 [88] [248] Indicates receiver detection of an electrical idle.

phystatus0
[87] [247]

This signal communicates completion of several PHY
requests.

rxvalid0
[86] [246]

Indicates symbol lock and valid data on rxdata0[31:0] and
rxdatak0[3:0]

rxblkst0 [85] [245] For Gen3 operation, indicates the start of a block.

rxsynchd0[1:0]

[84:83] [244:243]

For Gen3 operation, specifies the block type. The
following encodings are defined:

■ 2'b01: Ordered Set Block

■ 2'b10: Data Block

rxdataskip0

[82] [242]

For Gen3 operation. Allows the PCS to instruct the RX
interface to ignore the RX data interface for one clock
cycle. The following encodings are defined:

■ 1’b0: RX data is invalid

■ 1’b1: RX data is valid

rxdatak0[3:0] [81:78] [241:238] These signals show the data and control received by Hard
P block from the other device.rxdata0[31:0] [77:46] [237:206]

powerdown0[1:0]

[45:44] [205:204]

The 4 encodings of these signals have the following
meanings:

■ 2’b00: Phy is transmitting data.

■ 2’b01: PHY is in electrical idle.

■ 2’b10: PHY is in loopback mode.

■ 2’b11: Illegal. Not defined.

rxpolarity0 [43] [203] When asserted, the PHY must invert the received data.

txcompl0
[42] [202]

This signal forces the running disparity to negative in
compliance mode (negative COM character).

txelecidle0 [41] [201] This signal forces the TX output to electrical idle.

txdetectrx0
[40] [200]

This signal tells the PHY layer to start a receive detection
operation or to begin loopback.

txblkst0 [39] [199] For Gen3 operation, indicates the start of a block.

Table 17–3. PIPE Interface Signals (Part 2 of 3)

Signal Name Lane 0 Lane 1 Description
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

17–8 Chapter 17: Debugging
Link Hangs in L0 Due To Deassertion of tx_st_ready
f The PHY Interface for PCI Express Architecture specification is available on the Intel
website (www.intel.com).

Use Third-Party PCIe Analyzer
A third-party logic analyzer for PCI Express records the traffic on the physical link
and decodes traffic, saving you the trouble of translating the symbols yourself. A
third-party s logic analyzer can show the two-way traffic at different levels for
different requirements. For high-level diagnostics, the analyzer shows the LTSSM
flows for devices on both side of the link side-by-side. This display can help you see
the link training handshake behavior and identify where the traffic gets stuck. A
traffic analyzer can display the contents of packets so that you can verify the contents.
For complete details, refer to the third-party documentation.

BIOS Enumeration Issues
Both FPGA programming (configuration) and the initialization of a PCIe link require
time. There is some possibility that Altera FPGA including a Hard IP block for PCI
Express may not be ready when the OS/BIOS begins enumeration of the device tree.
If the FPGA is not fully programmed when the OS/BIOS begins its enumeration, the
OS does not include the Hard IP for PCI Express in its device map. To eliminate this
issue, you can do a soft reset of the system to retain the FPGA programming while
forcing the OS/BIOS to repeat its enumeration.

txsynchd0[1:0]

[38:37] [198:197]

For Gen3 operation, specifies the block type. The
following encodings are defined:

■ 2'b01: Ordered Set Block

■ 2'b10: Data Block

txdataskip0

[36] [196]

For Gen3 operation. Allows the MAC to instruct the TX
interface to ignore the TX data interface for one clock
cycle. The following encodings are defined:

■ 1’b0: TX data is invalid

■ 1’b1: TX data is valid

txdatak0[3:0] [35:32] [195:192] These signals show the data and control being
transmitted from the Arria V Hard IP for PCI Express to
the other device.

txdata0[31:0] [31:0] [191:160]

Table 17–3. PIPE Interface Signals (Part 3 of 3)

Signal Name Lane 0 Lane 1 Description
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www.intel.com

June 2012 Altera Corporation

June 2012
UG-01110-1.2
A. Transaction Layer Packet (TLP) Header
Formats
Table A–1 through Table A–9 show the header format for TLPs without a data
payload.

TLP Packet Format without Data Payload

\

Table A–1. Memory Read Request, 32-Bit Addressing

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 0 0 0 0 0 TC 0 0 0 0 TD EP Attr AT Length

Byte 4 Requester ID Tag Last BE First BE

Byte 8 Address[31:2] 0 0

Byte 12 Reserved

Table A–2. Memory Read Request, Locked 32-Bit Addressing

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 0 0 0 1 0 TC 0 0 0 0 TD EP Attr AT Length

Byte 4 Requester ID Tag Last BE First BE

Byte 8 Address[31:2] 0 0

Byte 12 Reserved

Table A–3. Memory Read Request, 64-Bit Addressing

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 1 0 0 0 0 0 0 TC 0 0 0 0 TD EP
Att
r

AT Length

Byte 4 Requester ID Tag Last BE First BE

Byte 8 Address[63:32]

Byte 12 Address[31:2] 0 0

Table A–4. Memory Read Request, Locked 64-Bit Addressing

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 1 0 0 0 0 1 0 TC 0 0 0 0 T EP
Att
r

AT Length

Byte 4 Requester ID Tag Last BE First BE

Byte 8 Address[63:32]

Byte 12 Address[31:2] 0 0
Arria V Hard IP for PCI Express
User Guide

A–ii Chapter A: Transaction Layer Packet (TLP) Header Formats
TLP Packet Format without Data Payload
Table A–5. Configuration Read Request Root Port (Type 1)

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 R 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 TD EP 0 0 AT 0 0 0 0 0 0 0 0 0 1

Byte 4 Requester ID Tag 0 0 0 0 First BE

Byte 8 Bus Number Device No Func 0 0 0 0 Ext Reg Register No 0 0

Byte 12 Reserved

Table A–6. I/O Read Request

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 TD EP 0 0 AT 0 0 0 0 0 0 0 0 0 1

Byte 4 Requester ID Tag 0 0 0 0 First BE

Byte 8 Address[31:2] 0 0

Byte 12 Reserved

Table A–7. Message without Data

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 1 1 0 r
2

r
1

r
0 0 TC 0 0 0 0 TD EP 0 0 AT 0 0 0 0 0 0 0 0 0 0

Byte 4 Requester ID Tag Message Code

Byte 8 Vendor defined or all zeros

Byte 12 Vendor defined or all zeros

Notes to Table A–7:

(1) Not supported in Avalon-MM.

Table A–8. Completion without Data

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 1 0 1 0 0 TC 0 0 0 0 TD EP Attr AT Length

Byte 4 Completer ID Status B Byte Count

Byte 8 Requester ID Tag 0 Lower Address

Byte 12 Reserved

Table A–9. Completion Locked without Data

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 1 0 1 1 0 TC 0 0 0 0 TD EP Attr AT Length

Byte 4 Completer ID Status B Byte Count

Byte 8 Requester ID Tag 0 Lower Address

Byte 12 Reserved
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

Chapter A: Transaction Layer Packet (TLP) Header Formats A–iii
TLP Packet Format with Data Payload
TLP Packet Format with Data Payload
Table A–10 through Table A–16 show the content for TLPs with a data payload.

Table A–10. Memory Write Request, 32-Bit Addressing

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 0 0 0 0 0 TC 0 0 0 0 TD EP Attr AT Length

Byte 4 Requester ID Tag Last BE First BE

Byte 8 Address[31:2] 0 0

Byte 12 Reserved

Table A–11. Memory Write Request, 64-Bit Addressing

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 1 0 0 0 0 0 0 TC 0 0 0 0 TD EP Attr AT Length

Byte 4 Requester ID Tag Last BE First BE

Byte 8 Address[63:32]

Byte 12 Address[31:2] 0 0

Table A–12. Configuration Write Request Root Port (Type 1)

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 R 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 TD EP 0 0 AT 0 0 0 0 0 0 0 0 0 1

Byte 4 Requester ID Tag 0 0 0 0 First BE

Byte 8 Bus Number Device No 0 0 0 0 Ext Reg Register No 0 0

Byte 12 Reserved

Table A–13. I/O Write Request

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 TD EP 0 0 AT 0 0 0 0 0 0 0 0 0 1

Byte 4 Requester ID Tag 0 0 0 0 First BE

Byte 8 Address[31:2] 0 0

Byte 12 Reserved

Table A–14. Completion with Data

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 1 0 1 0 0 TC 0 0 0 0 TD EP Attr AT Length

Byte 4 Completer ID Status B Byte Count

Byte 8 Requester ID Tag 0 Lower Address

Byte 12 Reserved
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

A–iv Chapter A: Transaction Layer Packet (TLP) Header Formats
TLP Packet Format with Data Payload
Table A–15. Completion Locked with Data

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 1 0 1 1 0 TC 0 0 0 0 TD EP Attr AT Length

Byte 4 Completer ID Status B Byte Count

Byte 8 Requester ID Tag 0 Lower Address

Byte 12 Reserved

Table A–16. Message with Data

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 1 1 0 r
2

r
1

r
0 0 TC 0 0 0 0 TD EP 0 0 AT Length

Byte 4 Requester ID Tag Message Code

Byte 8 Vendor defined or all zeros for Slot Power Limit

Byte 12 Vendor defined or all zeros for Slots Power Limit
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

June 2012 Altera Corporation
Additional Information
SPR
This chapter provides additional information about the document and Altera.

Revision History
The table below displays the revision history for the chapters in this User Guide.

Date Version Changes Made

June 2012‘ 12.01

■ Added Chapter 15, Testbench and Design Example.

■ Updated Chapter 2, Getting Started with the Arria V Hard IP for PCI Express and
Chapter 3, Getting Started with the Avalon-MM Arria V Hard IP for PCI Expressto include
steps to simulate using the Root Port and Endpoint BFMs described in the Testbench
and Design Example chapter.

June 2012 12.0

■ Added Avalon-MM interface support with full-featured and completer-only variants.

■ Added support for VHDL simulation.

■ Added support for dynamic reconfiguration of transceiver settings.

■ Added support for legacy interrupts.

■ Added txswing and txmargin[2:0] to the PIPE interface. This interface is available
for simulation only.

■ Removed derr_cor_ext_rcv1 signal which is not used.

■ Removed currentspeed[1:0] and dlup signals from reset and status interface.

■ Corrected definition of flow control protocol error.

■ Corrected definition of cpl_err[2]. This signal only applies to non-posted requests.

■ Updated definition of app_msi_req to include the fact that in Root Port mode, the
header bit[127] of rx_st_data is set to 1 to indicate that the TLP being forwarded to
the Application Layer was generated in response to an assertion of the
app_msi_request pin; otherwise, bit[127] is set to 0.

■ Removed dlup signal. Only dlup_exit is necessary.

■ Added tl_app_int_sts_vec[7:0] which replaces app_inta–app_intd signals.

■ Corrected explanation of Type 0 and Type 1 Configuration Space TLPs in Root Port
mode in Chapter 13, Flow Control.

■ Corrected size of RX buffer. It is 6 KBytes.

■ Removed fixedclk_locked signal.

■ Changed frequency range for Transceiver Reconfiguration Controller IP Core clock from
90–100 MHz to 100–125 MHz.

■ Corrected definitions of Avalon-MM to PCI Express interrupt registers in Table 8–11 on
page 8–6 and Table 8–12 on page 8–7.

November 2011 11.1 First release.
Arria V Hard IP for PCI Express
User Guide

Info–ii How to Contact Altera
How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the following table.

Typographic Conventions
The following table shows the typographic conventions this document uses.

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Nontechnical support (general) Email nacomp@altera.com

(software licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections in a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

h The question mark directs you to a software help system with related information.
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

Typographic Conventions Info–iii
f The feet direct you to another document or website with related information.

m The multimedia icon directs you to a related multimedia presentation.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.

Visual Cue Meaning
June 2012 Altera Corporation Arria V Hard IP for PCI Express
User Guide

https://www.altera.com/subscriptions/email/signup/eml-index.jsp

Info–iv Typographic Conventions
Arria V Hard IP for PCI Express June 2012 Altera Corporation
User Guide

	Arria V Hard IP for PCI Express User Guide
	Contents
	1. Datasheet
	Features
	Release Information
	Device Family Support
	Configurations
	Debug Features
	IP Core Verification
	Performance and Resource Utilization
	Recommended Speed Grades

	2. Getting Started with the Arria V Hard IP for PCI Express
	MegaWizard Plug-In Manager Design Flow
	Creating a Quartus II Project
	Customizing the Endpoint in the MegaWizard Plug-In Manager Design Flow
	Understanding the Files Generated

	Qsys Design Flow
	Customizing the Endpoint in Qsys
	Specifying the Parameters for the Arria V Hard IP for PCI Express
	Specifying the Parameters for the Example Design
	Completing the Qsys System

	Generating the Testbench
	Simulating the Example Design
	Understanding Channel Placement Guidelines

	Quartus II Compilation
	Compiling the Design in the MegaWizard Plug-In Manager Design Flow
	Compiling the Design in the Qsys Design Flow

	Modifying the Example Design

	3. Getting Started with the Avalon-MM Arria V Hard IP for PCI Express
	Creating a Quartus II Project
	Running Qsys
	Customizing the Avalon-MM Arria V Hard IP for PCI Express IP Core
	Adding the Remaining Components to the Qsys System
	Completing the Connections in Qsys
	Specifying Clocks and Address Assignments
	Specifying Exported Interfaces
	Specifying Address Assignments
	Specifying Output Directories
	Simulating the Qsys System
	Understanding Channel Placement Guidelines
	Compiling the Design
	Programming a Device
	Modifying the Example Design

	4. Parameter Settings for the Arria V Hard IP for PCI Express
	System Settings
	Port Functions
	Parameters Shared Across All Port Functions
	Device
	Error Reporting
	Link
	Slot
	Power Management

	Parameters Defined Separately for All Port Functions
	Base Address Registers for Function <n>
	Base and Limit Registers for Root Port Func <n>
	Device ID Registers for Function <n>
	PCI Express/PCI Capabilities for Func <n>

	5. Parameter Settings for the Avalon-MM Arria V Hard IP for PCI Express
	System Settings
	Base Address Registers
	Device Identification Registers
	PCI Express/PCI Capabilities
	Device
	Error Reporting
	Link
	Power Management

	Avalon Memory-Mapped System Settings
	Avalon to PCIe Address Translation Settings

	6. IP Core Architecture
	Key Interfaces
	Avalon-ST Interface
	RX Datapath
	TX Datapath

	Avalon-MM Interface
	Clocks and Reset
	Local Management Interface (LMI Interface)
	Transceiver Reconfiguration
	Interrupts

	Protocol Layers
	Transaction Layer
	Configuration Space

	Data Link Layer
	Physical Layer

	Multi-Function Support
	PCI Express Avalon-MM Bridge
	Avalon-MM-to-PCI Express Write Requests
	Avalon-MM-to-PCI Express Upstream Read Requests
	PCI Express-to-Avalon-MM Read Completions
	PCI Express-to-Avalon-MM Downstream Write Requests
	PCI Express-to-Avalon-MM Downstream Read Requests
	Avalon-MM-to-PCI Express Read Completions
	PCI Express-to-Avalon-MM Address Translation
	Avalon-MM-to-PCI Express Address Translation

	Single DWord Completer Endpoint
	RX Block
	Avalon-MM RX Master Block
	TX Block
	Interrupt Handler Block

	7. IP Core Interfaces
	Arria V Hard IP for PCI Express
	Avalon-ST Packets to PCI Express TLPs
	Avalon-ST RX Interface
	Data Alignment and Timing for the 64-Bit Avalon-ST RX Interface
	Data Alignment and Timing for the 128-Bit Avalon-ST RX Interface

	Avalon-ST TX Interface
	Data Alignment and Timing for the 64-Bit Avalon-ST TX Interface
	Data Alignment and Timing for the 128-Bit Avalon-ST TX Interface
	Root Port Mode Configuration Requests
	ECRC Forwarding

	Clock Signals
	Reset Signals
	ECC Error Signals
	Interrupts for Endpoints
	Interrupts for Root Ports
	Completion Side Band Signals
	Transaction Layer Configuration Space Signals
	Configuration Space Register Access Timing
	Configuration Space Register Access

	LMI Signals
	LMI Read Operation
	LMI Write Operation

	Power Management Signals

	Avalon-MM Hard IP for PCI Express
	32-Bit Non-Bursting Avalon-MM Control Register Access (CRA) Slave Signals
	RX Avalon-MM Master Signals
	64- or 128-Bit Bursting TX Avalon-MM Slave Signals

	Physical Layer Interface Signals
	Transceiver Reconfiguration
	Serial Interface Signals
	PIPE Interface Signals

	Test Signals

	8. Register Descriptions
	Configuration Space Register Content
	PCI Express Avalon-MM Bridge Control Register Content
	Avalon-MM to PCI Express Interrupt Registers
	PCI Express Mailbox Registers
	Avalon-MM-to-PCI Express Address Translation Table
	PCI Express to Avalon-MM Interrupt Status and Enable Registers
	Avalon-MM Mailbox Registers

	Correspondence between Configuration Space Registers and the PCIe Spec 2.1

	9. Reset and Clocks
	Reset
	Clocks
	p_clk
	coreclkout_hip
	pld_clk
	Transceiver Clock Signals

	10. Transaction Layer Protocol (TLP) Details
	Supported Message Types
	Transaction Layer Routing Rules
	Receive Buffer Reordering

	11. Interrupts
	Interrupts for Endpoints Using the Avalon-ST Application Interface
	MSI Interrupts
	MSI-X
	Legacy Interrupts

	Interrupts for Root Ports Using the Avalon-ST Interface to the Application Layer
	Interrupts for Endpoints Using the Avalon-MM Interface to the Application Layer
	Enabling MSI or Legacy Interrupts
	Generation of Avalon-MM Interrupts

	12. Optional Features
	ECRC
	ECRC on the RX Path
	ECRC on the TX Path

	Lane Initialization and Reversal

	13. Flow Control
	Throughput of Posted Writes
	Throughput of Non-Posted Reads

	14. Error Handling
	Physical Layer Errors
	Data Link Layer Errors
	Transaction Layer Errors
	Error Reporting and Data Poisoning
	Uncorrectable and Correctable Error Status Bits

	15. Transceiver PHY IP Reconfiguration
	16. Testbench and Design Example
	Endpoint Testbench
	Root Port Testbench
	Chaining DMA Design Examples
	Design Example BAR/Address Map
	Chaining DMA Control and Status Registers
	Chaining DMA Descriptor Tables

	Test Driver Module
	DMA Write Cycles
	DMA Read Cycles

	Root Port Design Example
	Root Port BFM
	BFM Memory Map
	Configuration Space Bus and Device Numbering
	Configuration of Root Port and Endpoint
	Issuing Read and Write Transactions to the Application Layer

	BFM Procedures and Functions
	BFM Read and Write Procedures
	ebfm_barwr Procedure
	ebfm_barwr_imm Procedure
	ebfm_barrd_wait Procedure
	ebfm_barrd_nowt Procedure
	ebfm_cfgwr_imm_wait Procedure
	ebfm_cfgwr_imm_nowt Procedure
	ebfm_cfgrd_wait Procedure
	ebfm_cfgrd_nowt Procedure

	BFM Configuration Procedures
	ebfm_cfg_rp_ep Procedure
	ebfm_cfg_decode_bar Procedure

	BFM Shared Memory Access Procedures
	Shared Memory Constants
	shmem_write
	shmem_read Function
	shmem_display Verilog HDL Function
	shmem_fill Procedure
	shmem_chk_ok Function

	BFM Log and Message Procedures
	ebfm_display Verilog HDL Function
	ebfm_log_stop_sim Verilog HDL Function
	ebfm_log_set_suppressed_msg_mask Verilog HDL Function
	ebfm_log_set_stop_on_msg_mask Verilog HDL Function
	ebfm_log_open Verilog HDL Function
	ebfm_log_close Verilog HDL Function

	Verilog HDL Formatting Functions
	himage1
	himage2
	himage4
	himage8
	himage16
	dimage1
	dimage2
	dimage3
	dimage4
	dimage5
	dimage6
	dimage7

	Procedures and Functions Specific to the Chaining DMA Design Example
	chained_dma_test Procedure
	dma_rd_test Procedure
	dma_wr_test Procedure
	dma_set_rd_desc_data Procedure
	dma_set_wr_desc_data Procedure
	dma_set_header Procedure
	rc_mempoll Procedure
	msi_poll Procedure
	dma_set_msi Procedure
	find_mem_bar Procedure
	dma_set_rclast Procedure
	ebfm_display_verb Procedure

	17. Debugging
	Hardware Bring-Up Issues
	Link Training
	Link Hangs in L0 Due To Deassertion of tx_st_ready
	Check PIPE Interface
	Use Third-Party PCIe Analyzer
	BIOS Enumeration Issues

	A. Transaction Layer Packet (TLP) Header Formats
	TLP Packet Format without Data Payload
	TLP Packet Format with Data Payload

	Additional Information
	Revision History
	How to Contact Altera
	Typographic Conventions

