

Altera Transceiver PHY IP Core

User Guide

101 Innovation Drive San Jose, CA 95134 www.altera.com

UG-01080-1.7

Document last updated for Altera Complete Design Suite version: Document publication date: 12.0 June 2012

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and service and without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Chapter 1. Introduction

PCS	. 1–3
РМА	. 1–3
Reset Controller	. 1–3
Avalon-MM PHY Management	. 1–4
Running a Simulation Testbench	. 1–4
Unsupported Features	. 1–5

Chapter 2. Getting Started

Installation and Licensing	2–1
Design Flows	2–1
MegaWizard Plug-In Manager Flow	2–2
Specifying Parameters	2–2
Simulate the IP Core	

Chapter 3. 10GBASE-R PHY IP Core

Release Information	3–5
Device Family Support	
Performance and Resource Utilization	
Stratix IV Devices	
Stratix V Devices	
Parameter Settings	
General Options	
Analog Options	
Arria V Devices	
Stratix IV Devices	
Stratix V Devices	
Interfaces	
Ports	
SDR XGMII TX Interface	
SDR XGMII RX Interface	
Status Interface	
Clocks, Reset, and Powerdown	
Serial Interface	
Register Interface	
Register Descriptions	
Dynamic Reconfiguration	
Dynamic Reconfiguration for Stratix IV Devices	
Dynamic Reconfiguration for Arria V and Stratix V Devices	
TimeQuest Timing Constraints	
Simulation Files and Example Testbench	

Chapter 4. XAUI PHY IP Core

Release Information	4–2
Device Family Support	4–2
Performance and Resource Utilization	
Parameter Settings	4–3
Analog Options	4–4

Arria II GX, Cyclone IV GX, HardCopy IV and Stratix IV Devices	4–4
Stratix V Devices	4–5
Advanced Options	4–11
Configurations	
Interfaces	
Ports	
SDR XGMII TX Interface	
SDR XGMII RX Interface	
Transceiver Serial Data Interface	
Clocks, Reset, and Powerdown	
PMA Channel Controller	
PMA Control and Status Interface Signals–Soft IP Implementation (Optional)	
PMA Control and Status Interface Signals-Hard IP Implementation (Optional)	
Registers	
Register Descriptions	
Dynamic Reconfiguration	
Reconfiguration for Arria II GX, Cyclone IV GX, HardCopy IV GX, and Stratix IV (
4–26	
Dynamic Reconfiguration for Stratix V Devices	
Simulation Files and Example Testbench	
*	

Chapter 5. Interlaken PHY IP Core

Device Family Support	5–2
Parameter Settings	
General Options	
Advanced Options	
Analog Settings	
Interfaces	
Ports	
Avalon-ST TX Interface	
Avalon-ST RX Interface	
PLL Interface	
TX and RX Serial Interface	
Optional Clocks for Deskew	
Registers	
Register Descriptions	
Transceiver Reconfiguration	
TimeQuest Timing Constraints	
Simulation Files and Example Testbench	
•	

Chapter 6. PHY IP Core for PCI Express (PIPE)

Device Family Support	6–1
Resource Utilization	6–2
Parameter Settings	6–2
General Options	6–2
Analog Options	6–3
Interfaces	
Ports	6–10
Avalon-ST TX Input Data from the PHYMAC	6–11
Avalon-ST RX Output Data to the PHYMAC	
PIPE Interface	6–12
Transceiver Serial Interface	6–14
Optional Status Interface	6–14

Registers	
Register Descriptions	
Dynamic Reconfiguration	
Simulation Files and Example Testbench	

Chapter 7. Custom PHY IP Core

Parameter Settings.7–3General Options.7–3Word Alignment.7–6Rate Match FIFO.7–78B/10B Encoder and Decoder.7–8Byte Ordering.7–8PLL Reconfiguration.7–11Analog Options.7–12Presets for Ethernet.7–17nterfaces.7–18Ports.7–20Avalon-ST TX Input Data from the MAC.7–20Avalon-ST RX Output Data to the MAC.7–21Transceiver Serial Data Interface.7–21Status Signals (Optional).7–21Register Interface.7–21Register Interface.7–21Status (Optional).7–22Register Interface.7–23	Word Alignment7–6Rate Match FIFO7–78B/10B Encoder and Decoder7–8Byte Ordering7–8PLL Reconfiguration7–11
General Options.7–3Word Alignment.7–6Rate Match FIFO.7–78B/10B Encoder and Decoder.7–8Byte Ordering.7–8PLL Reconfiguration.7–11Analog Options.7–12Presets for Ethernet.7–17nterfaces.7–18Ports.7–20Avalon-ST TX Input Data from the MAC.7–20Avalon-ST RX Output Data to the MAC.7–20Clock Interface.7–21Transceiver Serial Data Interface.7–21Status Signals (Optional).7–21Register Interface.7–23Register Interface.7–23	General Options7–3Word Alignment7–6Rate Match FIFO7–78B/10B Encoder and Decoder7–8Byte Ordering7–8PLL Reconfiguration7–11
Word Alignment	Word Alignment7–6Rate Match FIFO7–78B/10B Encoder and Decoder7–8Byte Ordering7–8PLL Reconfiguration7–11
Rate Match FIFO.7–78B/10B Encoder and Decoder.7–8Byte Ordering.7–8PLL Reconfiguration.7–11Analog Options.7–12Presets for Ethernet.7–17nterfaces.7–18Ports.7–19Avalon-ST TX Input Data from the MAC.7–20Avalon-ST RX Output Data to the MAC.7–20Clock Interface.7–21Transceiver Serial Data Interface.7–21Status Signals (Optional).7–21Register Interface.7–21Register Interface.7–23	Rate Match FIFO
8B/10B Encoder and Decoder.7–8Byte Ordering.7–8PLL Reconfiguration.7–11Analog Options.7–12Presets for Ethernet.7–17nterfaces.7–18Ports.7–19Avalon-ST TX Input Data from the MAC.7–20Avalon-ST RX Output Data to the MAC.7–20Clock Interface.7–21Transceiver Serial Data Interface.7–21Status Signals (Optional).7–21Register Interface.7–22Register Interface.7–23	8B/10B Encoder and Decoder
Byte Ordering.7–8PLL Reconfiguration.7–11Analog Options.7–12Presets for Ethernet.7–17nterfaces.7–18Ports.7–19Avalon-ST TX Input Data from the MAC.7–20Avalon-ST RX Output Data to the MAC.7–20Clock Interface.7–21Transceiver Serial Data Interface.7–21Status Signals (Optional).7–21Register Interface.7–23	Byte Ordering
PLL Reconfiguration7–11Analog Options7–12Presets for Ethernet7–17nterfaces7–18Ports7–19Avalon-ST TX Input Data from the MAC7–20Avalon-ST RX Output Data to the MAC7–20Clock Interface7–21Transceiver Serial Data Interface7–21Status Signals (Optional)7–21Register Interface7–22Register Interface7–23	PLL Reconfiguration
Analog Options7–12Presets for Ethernet7–17nterfaces7–18Ports7–19Avalon-ST TX Input Data from the MAC7–20Avalon-ST RX Output Data to the MAC7–20Clock Interface7–21Transceiver Serial Data Interface7–21Status Signals (Optional)7–21Reset Control and Status (Optional)7–22Register Interface7–23	
Presets for Ethernet7–17nterfaces7–18Ports7–19Avalon-ST TX Input Data from the MAC7–20Avalon-ST RX Output Data to the MAC7–20Clock Interface7–21Transceiver Serial Data Interface7–21Status Signals (Optional)7–21Reset Control and Status (Optional)7–22Register Interface7–23	Analog Options
nterfaces7–18Ports7–19Avalon-ST TX Input Data from the MAC7–20Avalon-ST RX Output Data to the MAC7–20Clock Interface7–21Transceiver Serial Data Interface7–21Status Signals (Optional)7–21Reset Control and Status (Optional)7–22Register Interface7–23	
Ports7–19Avalon-ST TX Input Data from the MAC7–20Avalon-ST RX Output Data to the MAC7–20Clock Interface7–21Transceiver Serial Data Interface7–21Status Signals (Optional)7–21Reset Control and Status (Optional)7–22Register Interface7–23	Presets for Ethernet
Avalon-ST TX Input Data from the MAC7–20Avalon-ST RX Output Data to the MAC7–20Clock Interface7–21Transceiver Serial Data Interface7–21Status Signals (Optional)7–21Reset Control and Status (Optional)7–22Register Interface7–23	Interfaces
Avalon-ST RX Output Data to the MAC7-20Clock Interface7-21Transceiver Serial Data Interface7-21Status Signals (Optional)7-21Reset Control and Status (Optional)7-22Register Interface7-23	
Clock Interface7–21Transceiver Serial Data Interface7–21Status Signals (Optional)7–21Reset Control and Status (Optional)7–22Register Interface7–23	Avalon-ST TX Input Data from the MAC7–20
Transceiver Serial Data Interface7–21Status Signals (Optional)7–21Reset Control and Status (Optional)7–22Register Interface7–23	
Status Signals (Optional)7–21Reset Control and Status (Optional)7–22Register Interface7–23	
Reset Control and Status (Optional)7-22Register Interface7-23	Transceiver Serial Data Interface
Register Interface	Status Signals (Optional)
0	Reset Control and Status (Optional)
Register Descriptions 7–24	Register Interface
Register Descriptions	Register Descriptions
Dynamic Reconfiguration	Dynamic Reconfiguration
Simulation Files and Example Testbench	Simulation Files and Example Testbench

Chapter 8. Low Latency PHY IP Core

Device Family Support	8–1
Performance and Resource Utilization	8–2
Parameter Settings	8–3
General Options	8–3
Additional Options	8–5
PLL Reconfiguration Options	8–7
Analog Options	
Interfaces	. 8–14
Ports	. 8–14
Avalon-ST TX and RX Data Interface to the FPGA Fabric	. 8–15
Serial Data Interface	. 8–16
Optional Status Interface	. 8–16
Clock Interface	. 8–17
Reset Control and Status (Optional)	. 8–17
Register Interface	. 8–18
Register Descriptions	. 8–19
Dynamic Reconfiguration	
Simulation Files and Example Testbench	. 8–20

Chapter 9. Deterministic Latency PHY IP Core

Auto-Negotiation	
Achieving Deterministic Latency	
Delay Estimation Logic	9–5
Delay Numbers	9–6
Device Family Support	9–7
Parameter Settings	9–7
General Options	9–7
Additional Options	9–9
PLL Reconfiguration	9–11
Analog Options	9–12
Interfaces	9–18
Ports	
Avalon-ST TX Input Data from the MAC	
Avalon-ST RX Output Data to the MAC	9–21
Clock Interface	
Transceiver Serial Data Interface	
TX and RX Status Signals	
Optional Reset Control and Status	9–23
Register Interface	
Register Descriptions	9–25
Dynamic Reconfiguration	
Channel Placement and Utilization	9–28
Simulation Files and Example Testbench	9–29

Chapter 10. Stratix V Transceiver Native PHY IP Core

Device Family Support	
Performance and Resource Utilization	
Parameters	10–2
Analog Options	10–6
Interfaces	10–16
Ports	10–16
FPGA Fabric Interface	10–16
PLL and CDR Interface	10–17
Serial Data Interface	10–17
Reset and Calibration Status Interface	
CDR Lock Mode	10–18
Dynamic Reconfiguration	10–18
Simulation Support	

Chapter 11. Arria V Transceiver Native PHY IP Core

Simulation Support	
Chapter 12. Transceiver Reconfiguration Controller	
System Overview	
Device Family Support	
Performance and Resource Utilization	
Parameter Settings	
Interfaces	
MIF Reconfiguration Management Avalon-MM Master Interface	
Transceiver Reconfiguration Interface	
Reconfiguration Interface Management Interface	
Reconfiguration Controller Memory Map	
Transceiver Calibration Functions	
Offset Cancellation	
Duty Cycle Calibration	
Auxiliary Transmit (ATX) PLL Calibration	
PMA Analog Controls	
EyeQ	
DFE	
AEQ	
ATX PLL Calibration	
PLL Reconfiguration	
Channel and PLL Reconfiguration	
Channel Reconfiguration	
PLL Reconfiguration	
Streamer Module	
Mode 0 Streaming a MIF for Reconfiguration	
Mode 1 Avalon-MM Direct Writes for Reconfiguration	
MIF	
MIF Format	
Reduced MIF Creation	
Procedures for Reconfiguration	
Changing Transceiver Settings Using Register-Based Reconfiguration	
Register-Based Write	
Register-Based Read	
Changing Transceiver Settings Using Streamer-Based Reconfiguration	
Streamer-Based Reconfiguration	
Direct Write Reconfiguration	
Understanding Logical Channel Numbering	
Two PHY IP Core Instances Each with Four Bonded Channels	
One PHY IP Core Instance with Eight Bonded Channels	
Two PHY IP Core Instances Each with Non-Bonded Channels	
Reconfiguration Controller to PHY IP Connectivity	
Merging TX PLLs In Multiple Transceiver PHY Instances	
Loopback Modes	

Chapter 13. Transceiver PHY Reset Controller IP Core

Device Family Support	13–2
Performance and Resource Utilization	13–2
Parameters	13–3
Interfaces	13–5

Chapter 14. Migrating from Stratix IV to Stratix V Devices

Dynamic Reconfiguration of Transceivers	
Dynamic Reconfiguration for Stratix V Transceivers	
Dynamic Reconfiguration for Stratix IV Transceivers	
XAUI PHY	
Parameter Differences	
Port Differences	
PHY IP Core for PCI Express PHY (PIPE)	
Parameter Differences	
Port Differences	
Custom PHY	
Parameter Differences	
Port Differences	

Additional Information

Revision History	Info–1
How to Contact Altera	Info-14
Typographic Conventions	Info-14

1. Introduction

The *Altera® Transceiver PHY IP Core User Guide* describes the following protocol-specific PHYs:

- 10GBASE-R PHY IP Core
- XAUI PHY IP Core
- Interlaken PHY IP Core
- PHY IP Core for PCI Express (PIPE)
- Custom PHY IP Core
- Low Latency PHY IP Core
- Deterministic Latency PHY IP Core

The protocol-specific PHYs automatically configure settings for the physical coding sublayer (PCS) module, leaving a small number of parameters in the physical media attachment (PMA) module for you to configure. You can use the Custom PHY or Low Latency PHY for applications that require more flexible settings. The design of all of these PHYs is modular and uses standard interfaces. All PHYs include an Avalon[®] Memory-Mapped (Avalon-MM) interface to access control and status registers and an Avalon Streaming (Avalon-ST) interface to connect to the MAC for data transfer. The control and status registers store deviceJune-dependent information about the PCS and PMA modules. You can access this device-dependent information using the device-independent Avalon-MM interface, reducing overall complexity of your design and the number of device-dependent signals that you must expose in your top-level module.

For more information about the Avalon-MM and Avalon-ST protocols, including timing diagrams, refer to the *Avalon Interface Specifications*.

In addition, this user guide describes the following transceiver PHYs which provide direct access to the Stratix[®] V and Arria[®] V hardware:

- Stratix V Transceiver Native PHY IP Core
- Arria V Transceiver Native PHY IP Core

For the Quartus[®] II 12.0 release, the Transceiver Native PHY datapaths include only the PMA. The FPGA fabric connects directly to the PMA, reducing the overall latency of the datapath. If you require any PCS functionality, you must implement it in the FPGA fabric.

Figure 1–1 illustrates the top level modules that comprise the protocol-specific transceiver PHY IP cores. In addition, Figure 1–1 shows the Altera Transceiver Reconfiguration Controller IP Core that is instantiated separately.

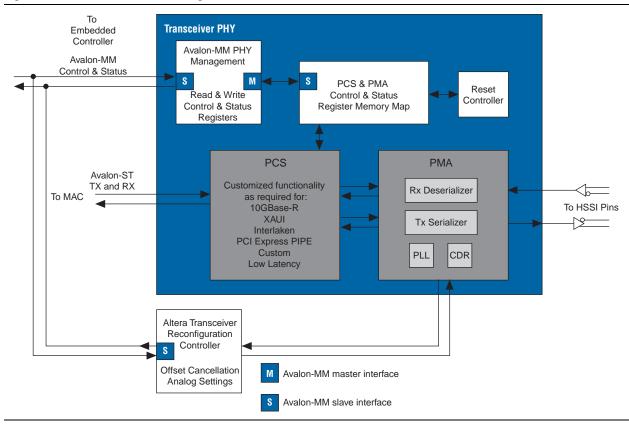


Figure 1–1. Altera Modular PHY Design

The following sections provide a brief introduction to each of the modules illustrated in Figure 1–1.

PCS

The PCS implements part of the physical layer specification for networking protocols. Depending upon the protocol that you choose, the PCS may include many different functions. Some of the most commonly included functions are: 8B/10B, 64B/66B, or 64B/67B encoding and decoding, rate matching and clock compensation, scrambling and descrambling, word alignment, phase compensation, error monitoring, and gearbox.

PMA

The PMA receives and transmits differential serial data on the device external pins. The transmit (TX) channel supports programmable pre-emphasis and programmable output differential voltage (V_{OD}). It converts parallel input data streams to serial data. The receive (RX) channel supports offset cancellation to correct for process variation and programmable equalization. It converts serial data to parallel data for processing in the PCS. The PMA also includes a clock data recovery (CDR) module with separate CDR logic for each RX channel.

Reset Controller

A transceiver reset controller is included as part of each PHY IP core. This embedded reset controller ensures reliable transceiver link initialization. The reset controller initializes the both the TX and RX channels. You can disable the automatic reset controller in the Custom and Low Latency Transceiver PHYs. If you do disable the embedded reset controller, the powerdown, analog and digital reset signals for both the TX and RX channels are top-level ports of the transceiver PHY. You can use these signals to design a custom reset sequence, or you can use the highly parameterizeable Transceiver PHY Reset Controller IP Core which is new in the 12.0 release to implement the reset sequence. For more information, refer to Chapter 13, Transceiver PHY Reset Controller IP Core for more information.

To accommodate different reset requirements for different transceivers in your design, instantiate multiple instances of a PHY IP core. For example, if your design includes 20 channels of the Custom PHY IP core with 12 channels running a custom protocol using the automatic reset controller and 8 channels requiring manual control of RX reset, instantiate 2 instances of the Custom PHY IP core and customize one to use automatic mode and the other to use your own reset logic. For more information, refer to "Enable embedded reset control" in Table 7–3 on page 7–3.

For more information about reset in Stratix V devices, refer to *Transceiver Reset Control in Stratix V Devices* in volume 3 of the *Stratix V Device Handbook*, for Stratix IV devices, refer to *Reset Control and Power Down* in volume 4 of the *Stratix IV Device Handbook*. For Arria V devices, refer to *Transceiver Reset Control and Power-Down in Arria V Devices*. For Cyclone V devices refer to *Transceiver Reset Control and Power Down in Cyclone V Devices*.

Avalon-MM PHY Management

You can use the Avalon-MM PHY Management module to read and write the control and status registers in the PCS and PMA. This module includes both Avalon-MM master and slave ports and acts as a bridge. It transfers commands received from an embedded controller on its slave port to its master port. The Avalon-MM PHY management master interface connects the Avalon-MM slave ports of PCS and PMA registers and the Transceiver Reconfiguration module, allowing you to manage these Avalon-MM slave components through a simple, standard interface. (Refer to Figure 1–1 on page 1–2.)

Running a Simulation Testbench

When you generate your transceiver PHY IP core, the Quartus II software generates the HDL files that define your parameterized IP core. In addition, the Quartus II software generates an example Tcl script to compile and simulate your design in ModelSim. Figure 1–2 illustrates the directory structure for the generated files.

Figure 1–2. Directory Structure for Generated Files

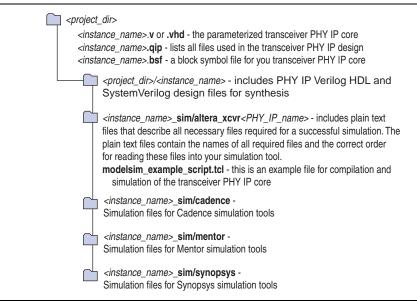


Table 1–1 describes the key files and directories for the parameterized transceiver PHY IP core and the simulation environment which are in clear text.

File Name Description	
<project_dir></project_dir>	The top-level project directory.
<instance_name>.v or .vhd</instance_name>	The top-level design file.
<instance_name>.qip</instance_name>	A list of all files necessary for Quartus II compilation.
<instance_name>.bsf</instance_name>	A Block Symbol File (.bsf) for your transceiver PHY.
<project_dir>/<instance_name>/</instance_name></project_dir>	The directory that stores the HDL files that define the protocol-specific PHY IP core. These files are used for synthesis.

Table 1–1. Generated Files (Part 1 of 2)

Table 1–1. Generated Files (Part 2 of 2)

File Name	Description	
<instance_name>_phy_assignments.qip</instance_name>	Includes an example of the PLL_TYPE assignment statement required to specify the PLL type for each PLL in the design. The available types are clock multiplier unit (CMU) and auxiliary transmit (ATX).	
<project_dir>/<instance_name>_sim/ altera_xcvr_<phy_ip_name>/</phy_ip_name></instance_name></project_dir>	The simulation directory.	
	The example Tcl script to compile and simulate the parameterized transceiver PHY IP core. You must edit this script to include the following information:	
modelsim_example_script.tcl	The simulation language	
	The top-level transceiver PHY variation name	
	The name of your testbench	
<project_dir>/<instance_name>_sim/cadence</instance_name></project_dir>	Simulation file for Cadence simulation tools.	
<project_dir>/<instance_name>_sim/mentor</instance_name></project_dir>	Simulation file for Mentor simulation tools.	
<project_dir>/<instance_name>_sim/synopsys</instance_name></project_dir>	Simulation file for Synopsys simulation tools.	

The Verilog and VHDL transceiver PHY IP cores have been tested with the following simulators:

- ModelSim SE
- Synopsys VCS MX
- Cadence NCSim

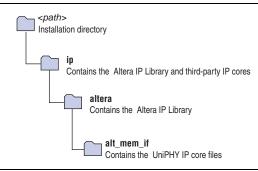
If you select VHDL for your transceiver PHY, only the wrapper generated by the Quartus II software is in VHDL. All the underlying files are written in Verilog or System Verilog. To enable simulation using a VHDL-only ModelSim license, the underlying Verilog and System Verilog files for the transceiver PHY are encrypted so that they can be used with the top-level VHDL wrapper without using a mixed-language simulator.

For more information about simulating with ModelSim, refer to the *Mentor Graphics ModelSim Support* chapter in volume 3 of the *Quartus II Handbook*.

The transceiver PHY IP cores do not support the NativeLink feature in the Quartus II software.

Unsupported Features

The protocol-specific and native transceiver PHYs are not supported in SOPC Builder or Qsys in the current release.



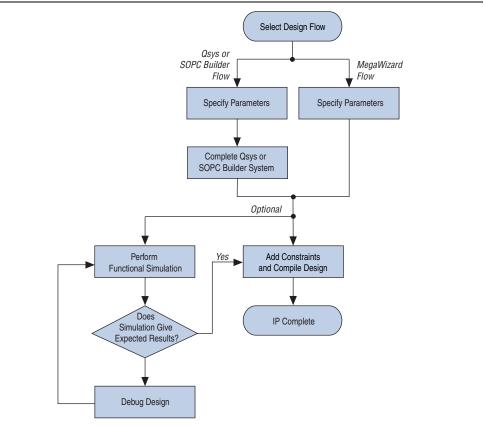
This chapter provides a general overview of the Altera IP core design flow to help you quickly get started with any Altera IP core. The Altera IP Library is installed as part of the Quartus II installation process. You can select and parameterize any Altera IP core from the library. Altera provides an integrated parameter editor that allows you to customize IP cores to support a wide variety of applications. The parameter editor guides you through the setting of parameter values and selection of optional ports. The following sections describe the general design flow and use of Altera IP cores.

Installation and Licensing

The Altera IP Library is distributed with the Quartus II software and downloadable from the Altera website (www.altera.com).

Figure 2–1 shows the directory structure after you install an Altera IP core, where *<path>* is the installation directory. The default installation directory on Windows is **C:\altera***<version number>*; on Linux it is **/opt/altera***<version number>*.

Figure 2–1. IP core Directory Structure


You can evaluate an IP core in simulation and in hardware until you are satisfied with its functionality and performance. Some IP cores require that you purchase a license for the IP core when you want to take your design to production. After you purchase a license for an Altera IP core, you can request a license file from the Altera Licensing page of the Altera website and install the license on your computer. For additional information, refer to *Altera Software Installation and Licensing*.

Design Flows

You can use the following flow(s) to parameterize Altera IP cores:

■ MegaWizard[™] Plug-In Manager Flow

Figure 2–2. Design Flows (1)

Note to Figure 2-2:

(1) Altera IP cores may or may not support the Qsys and SOPC Builder design flows.

The MegaWizard Plug-In Manager flow offers the following advantages:

- Allows you to parameterize an IP core variant and instantiate into an existing design
- For some IP cores, this flow generates a complete example design and testbench

MegaWizard Plug-In Manager Flow

The MegaWizard Plug-In Manager flow allows you to customize your IP core and manually integrate the function into your design.

Specifying Parameters

To specify IP core parameters with the MegaWizard Plug-In Manager, follow these steps:

1. Create a Quartus II project using the **New Project Wizard** available from the File menu.

- 2. In the Quartus II software, launch the **MegaWizard Plug-in Manager** from the Tools menu, and follow the prompts in the MegaWizard Plug-In Manager interface to create or edit a custom IP core variation.
- 3. To select a specific Altera IP core, click the IP core in the **Installed Plug-Ins** list in the MegaWizard Plug-In Manager.
- 4. Specify the parameters on the **Parameter Settings** pages. For detailed explanations of these parameters, refer to the "*Parameter Settings*" chapter in this document or the "*Documentation*" button in the MegaWizard parameter editor.
 - Some IP cores provide preset parameters for specific applications. If you wish to use preset parameters, click the arrow to expand the Presets list, select the desired preset, and then click Apply. To modify preset settings, in a text editor modify the *<installation directory>/ip/altera/* alt_mem_if_interfaces/alt_mem_if_
- 5. If the IP core provides a simulation model, specify appropriate options in the wizard to generate a simulation model.
 - Altera IP supports a variety of simulation models, including simulation-specific IP functional simulation models and encrypted RTL models, and plain text RTL models. These are all cycle-accurate models. The models allow for fast functional simulation of your IP core instance using industry-standard VHDL or Verilog HDL simulators. For some cores, only the plain text RTL model is generated, and you can simulate that model.
 - For more information about functional simulation models for Altera IP cores, refer to *Simulating Altera Designs* in volume 3 of the *Quartus II Handbook*.

- Use the simulation models only for simulation and not for synthesis or any other purposes. Using these models for synthesis creates a nonfunctional design.
- 6. If the parameter editor includes EDA and Summary tabs, follow these steps:
 - a. Some third-party synthesis tools can use a netlist that contains the structure of an IP core but no detailed logic to optimize timing and performance of the design containing it. To use this feature if your synthesis tool and IP core support it, turn on **Generate netlist**.
 - b. On the **Summary** tab, if available, select the files you want to generate. A gray checkmark indicates a file that is automatically generated. All other files are optional.
 - If file selection is supported for your IP core, after you generate the core, a generation report (*<variation name>.html*) appears in your project directory. This file contains information about the generated files.
- 7. Click the **Finish** button, the parameter editor generates the top-level HDL code for your IP core, and a simulation directory which includes files for simulation.

- The **Finish** button may be unavailable until all parameterization errors listed in the messages window are corrected.
- 8. Click **Yes** if you are prompted to add the Quartus II IP File (.qip) to the current Quartus II project. You can also turn on **Automatically add Quartus II IP Files to all projects**.

You can now integrate your custom IP core instance in your design, simulate, and compile. While integrating your IP core instance into your design, you must make appropriate pin assignments. You can create a virtual pin to avoid making specific pin assignments for top-level signals while you are simulating and not ready to map the design to hardware.

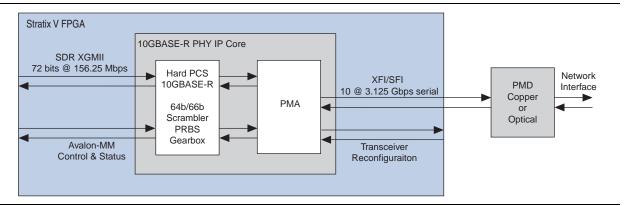
For some IP cores, the generation process also creates complete example designs. An example design for hardware testing is located in the <*variation_name>_example_design/example_project/* directory. An example design for RTL simulation is located in the <*variation_name>_example_design/simulation/* directory.

For information about the Quartus II software, including virtual pins and the MegaWizard Plug-In Manager, refer to Quartus II Help.

Simulate the IP Core

You can simulate your IP core variation with the functional simulation model and the testbench or example design generated with your IP core. The functional simulation model and testbench files are generated in a project subdirectory. This directory may also include scripts to compile and run the testbench.

For a complete list of models or libraries required to simulate your IP core, refer to the scripts provided with the testbench.


For more information about simulating Altera IP cores, refer to *Simulating Altera Designs* in volume 3 of the *Quartus II Handbook*.

3. 10GBASE-R PHY IP Core

The Altera 10GBASE-R PHY IP Core implements the functionality described in *IEEE 802.3 Clause 49*. It delivers serialized data to an optical module that drives optical fiber at a line rate of 10.3125 gigabits per second (Gbps). In a multi-channel implementation of 10GBASE-R, each channel of the 10GBASE-R PHY IP Core operates independently. Figure 3–1 shows the 10GBASE-R PHY IP Core available for Stratix V devices. Both the PCS and PMA of the 10GBASE-R PHY are implemented as hard IP blocks in Stratix V devices, saving FPGA resources.

• For a 10-Gbps Ethernet solution that includes both the Ethernet MAC and the 10GBASE-R PHY, refer to the 10-Gbps Ethernet MAC MegaCore Function User Guide.

For more detailed information about the 10GBASE-R transceiver channel datapath, clocking, and channel placement, refer to the *"10GBASE-R"* section in the *Transceiver Configurations in Stratix V Devices* chapter of the *Stratix V Device Handbook*.

Figure 3–2 illustrates a multiple 10 GbE channel IP core in a Stratix IV GT device. To achieve higher bandwidths, you can instantiate multiple channels. The PCS is available in soft logic for Stratix IV GT devices; it connects to a separately instantiated hard PMA. The PCS connects to an Ethernet MAC via single data rate (SDR) XGMII running at 156.25 megabits per second (Mbps) and transmits data to a 10 Gbps transceiver PMA running at 10.3125 Gbps in a Stratix IV GT device.

To make the most effective use of this soft PCS and PMA configuration for Stratix IV GT devices, you can group up to four channels in a single quad and control their functionality using one Avalon-MM PHY management bridge, transceiver reconfiguration module, and low controller. As Figure 3–2 illustrates, the Avalon-MM bridge Avalon-MM master port connects to the Avalon-MM slave port of the transceiver reconfiguration and low latency controller modules so that you can update analog settings using the standard Avalon-MM interface.

This configuration does not require that all four channels in a quad run the 10GBASE-R protocol.

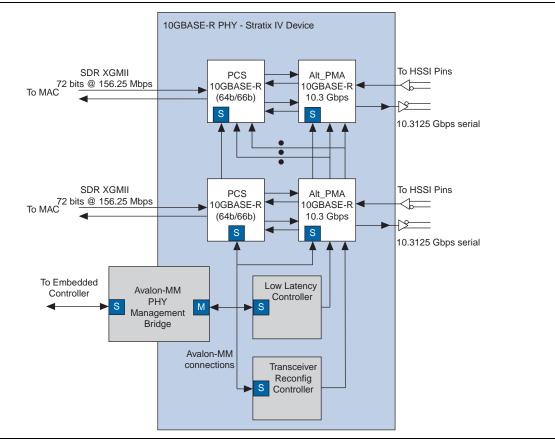


Figure 3–3 illustrates the 10GBASE-R PHY for Arria V devices.

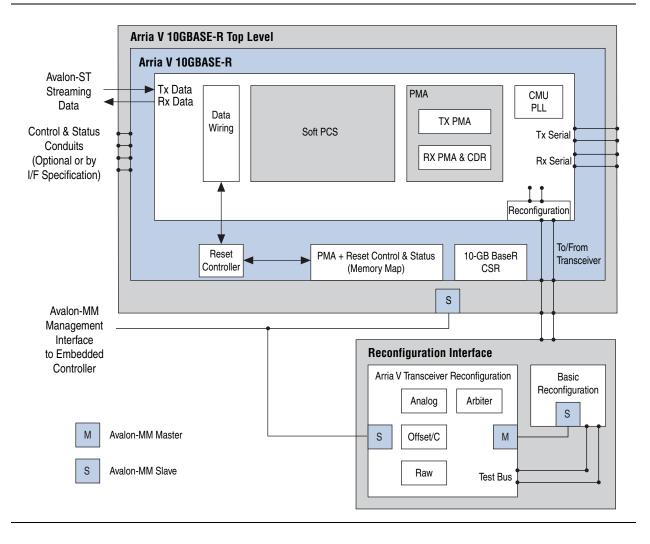


Figure 3–4 illustrates the 10GBASE-R PHY for Stratix V devices.

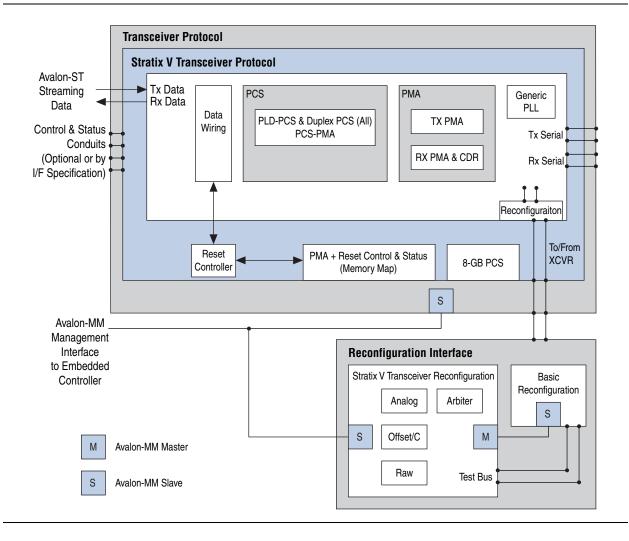


Table 3–1 lists the latency through the PCS and PMA for Stratix V devices with a 40-bit PMA. The FPGA fabric to PCS interface is 66 bits wide. The frequency of the parallel clock is 156.25 MHz which is line rate (10.3125)/interface width (66).

Table 3–1.	Latency	for T)	(and RX	PCS and	I PMA	Stratix V	Devices

	PCS (Parallel		
	Minimum Maximum		PMA (UI)
ТХ	8	12	124
RX	15	34	43

Table 3–2 lists the latency through the PCS and PMA for Arria V devices with a 66-bit PMA. The FPGA fabric to PCS interface is 66 bits wide. The frequency of the parallel clock is 156.25 MHz which is line rate (10.3125)/interface width (66).

	PCS (Parallel Clock Cycles)	PMA (UI)
ТХ	28	131
RX	33	99

Release Information

Table 3–3 provides information about this release of the 10GBASE-R PHY IP Core.

 Table 3–3.
 10GBASE-R Release Information

Item	Description	
Version	12.0	
Release Date	June 2012	
Ordering Codes ⁽¹⁾	IP-10GBASERPCS (primary) IPR-10GBASERPCS (renewal)	
Product ID	00D7	
Vendor ID	6AF7	

Note to Table 3-3:

(1) No ordering codes or license files are required for Stratix V devices.

Device Family Support

IP cores provide either final or preliminary support for target Altera device families. These terms have the following definitions:

- *Final support*—*V*erified with final timing models for this device.
- Preliminary support—Verified with preliminary timing models for this device.

Table 3–4 shows the level of support offered by the 10GBASE-R IP Core for Altera device families.

Table 3–4.	Device	Family	Support
------------	--------	--------	---------

Device Family	Support
Arria V GT devices–Soft PCS and Hard PMA	Preliminary–timing models are not available for the Quartus II 12.0 release. I3 speed grade.
Stratix IV GT devices–Soft PCS and Hard PMA	Final
Stratix V devices–Hard PCS and PMA	Preliminary–C2 Speed Grade
Other device families	No support

For speed grade information, refer to "Transceiver Performance Specifications" in the *DC and Switching Characteristics* chapter in the *Stratix IV Handbook* for Stratix IV devices or *Stratix V Device Datasheet*.

Performance and Resource Utilization

This section provides information about performance and resource utilization for Stratix IV and Stratix V devices.

Stratix IV Devices

Table 3–5 shows the typical expected device resource utilization for duplex channels using the current version of the Quartus II software targeting a Stratix IV GT device. The numbers of combinational ALUTs, logic registers, and memory bits are rounded to the nearest 100.

Table 3–5. 10GBASE-R PHY Performance and Resource Utilization—Stratix IV GT Device

Channels	Channels Combinational ALUTs Logic Registers (Bits)		Memory Bits
1	5200	4100	4700
4	15600	1300	18800
10	38100	32100	47500

Stratix V Devices

For Stratix V devices, the PCS and PMA are both implemented in hard logic; the 10GBASE-R transceiver PHY requires less than 1% of FPGA resources.

Table 3–6 lists the total latency for an Ethernet packet with a 9600 byte payload and an inter-packet gap of 12 characters. The latency includes the number of cycles to transmit the payload from the TX XGMII interface, through the TX PCS and PMA, looping back through the RX PMA and PCS to the RX XGMII interface. (Figure 3–7 on page 3–24 illustrates this datapath.)

PPM Difference	Cycles
0 PPM	35
-200 PPM	35
+200 PPM	42

IF latency is critical, Altera recommends designing your own soft 10GBASE-R PCS and connecting to the "Low Latency PHY IP Core".

Parameter Settings

To configure the 10GBASE-R PHY IP Core in the MegaWizard Plug-In Manager, click Installed Plug-Ins > Interfaces >Ethernet> 10GBASE-R PHY v12.0. The 10GBASE-R PHY IP Core is available for the Arria V, Stratix IV, or Stratix V device family.

General Options

This section describes the 10GBASE-R PHY parameters, which you can set using the MegaWizard Plug-In Manager. Table 3–7 lists the settings available on the **General Options** tab.

Table 3–7. General Options (Part 1 of 2)

Name	Value	Description			
	General Options				
Device family	Arria V Stratix IV GT Stratix V	Specifies the target device.			
Number of channels	1-32	The total number of 10GBASE-R PHY channels.			
Mode of operation	Duplex TX only RX only	Arria V and Stratix V devices allow duplex, TX, or RX mode. Stratix IV GT devices only support duplex mode.			
		For Stratix V devices:			
PLL type	CMU ATX	You can select either the CMU or ATX PLL. The CMU PLL has a larger frequency range than the ATX PLL. The ATX PLL is designed to improve jitter performance and achieves lower channel-to-channel skew; however, it supports a narrower range of data rates and reference clock frequencies. Another advantage of the ATX PLL is that it does not use a transceiver channel, while the CMU PLL does.			
		Because the CMU PLL is more versatile, it is specified as the default setting. An informational message displays in the message pane telling you whether the chosen settings for Data rate and Input clock frequency are legal for the CMU PLL, or for both the CMU and ATX PLLs.			
Reference Clock Frequency	322.265625 MHz 644.53125 MHz	Arria V and Stratix V devices support both frequencies. Stratix IV GT devices only support 644.53125 MHz.			
Create rx_coreclkin port	On/Off	When selected, rx_coreclkin is sourced from the 156.25 MHz xgmii_rx_clk signal avoiding the use of a FPLL to generate this clock. This clock drives the read side of RX FIFO.			
	ı	Additional Options			
Use external PMA control and reconfig	On/Off	For Stratix IV devices: If you turn this option on, the PMA controller and reconfiguration block are external, rather than included in the 10GBASE-R PHY IP Core, allowing you to use the same PMA controller and reconfiguration IP cores for other protocols in the same transceiver quad.			
		When you turn this option On , the cal_blk_powerdown (0x021) and pma_tx_pll_is_locked (0x022) registers are available.			
Enable additional control and status pins	On/Off	If you turn this option On , the following 2 signals are brought out to the top level of the IP core to facilitate debugging: rx_hi_ber and rx_block_lock.			
Enable rx_recovered_clk pin	On/Off	When you turn this option On , the RX recovered clock signal is an output signal.			

Name	Value	Description	
Enable pll_locked status port On/Off		For Arria V and Stratix V devices: When you turn this option On , a PLL locked status signal is included as a top-level signal of the core.	
		For Stratix IV devices, specifies the starting channel number. Must be 0 or a multiple of 4. You only need to set this parameter if you are using external PMA and reconfiguration modules.	
Starting channel number	0–96	Stratix V devices have different restrictions. Logical channel 0 should be assigned to either physical transceiver channel 1 or channel 4 of a transceiver bank. However, if you have already created a PCB with a different lane assignment for logical channel 0, you can use the workaound shown in Example 3–1 on page 3–8 to remove this restriction.	
		Assignment of the starting channel number is required for serial transceiver dynamic reconfiguration.	

Table 3-7. General Options (Part 2 of 2)

Example 3–1 shows how to remove the restriction on logical channel 0 assignment in Stratix V devices by redefining the pma_bonding_master parameter using the Quartus II Assignment Editor. In this example, the pma_bonding_master was originally assigned to physical channel 1. (The original assignment could also have been to physical channel 4.) The to parameter reassigns the pma_bonding_master to the 10GBASE-R instance name. You must substitute the instance name from your design for the instance name shown in quotation marks

Example 3–1. Overriding Logical Channel O Channel Assignment Restrictions in Stratix V Devices

set_parameter -name pma_bonding_master "\"1\"" -to "<PHY IP instance name>"

Analog Options

Click on the appropriate link to specify the analog options for your device:

- Arria V Devices
- Stratix IV Devices
- Stratix V Devices

Arria V Devices

You specify the analog parameters for Arria V devices using the Quartus II Assignment Editor, the Pin Planner, or through the Quartus II Settings File (**.qsf**). The default values for analog options fall into three categories:

- Global— These parameters have default values that are independent of other parameter settings.
- *Computed*—These parameters have an initial default value that is recomputed based on other parameter settings.
- Proxy—These parameters have default values that are place holders. The Quartus II software selects these initial default values based on your design; however, Altera recommends that you replace these defaults with values that match your electrical board specification.

Table 3–11 lists the analog parameters for Arria V devices whose original values are place holders for the values that match your electrical board specification. In Table 3–11, the default value of an analog parameter is shown in **bold** type. The parameters are listed in alphabetical order.

Table 3–8. Transceiver and PLL Assignments for Arria V Devices

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_IO_PIN_TERMINATION	Transceiver I/O Pin Termination	Specifies the intended on-chip termination value for the specified transceiver pin. Use External Resistor if you intend to use off-chip termination.	85_0HMS 100_0HMS 120_0HMS 150_0HMS EXTERNAL_ RESISTOR	Pin
XCVR_REFCLK_PIN_ TERMINATION	Transceiver Dedicated Refclk Pin Termination	Specifies the intended termination value for the specified refclk pin.	DC_COUPLING_ INTERNAL_100 _OHMS DC_COUPLING_ EXTERNAL_ RESISTOR	Pin
		Specifies the slew rate of the output	AC_COUPLING	
XCVR_TX_SLEW_RATE_CTRL	Transmitter Slew Rate Control	signal. The following encodings are defined: 1: SLEW_160PS 2: SLEW_90PS 3: SLEW_50PS 4: SLEW_30PS 5: SLEW_15PS	1–5	Pin
XCVR_VCCA_VOLTAGE	VCCA_GXB Voltage	Configures the VCCA_GXB voltage for a GXB I/O pin by specifying the intended VCCA_GXB voltage for a GXB I/O pin. This voltage is fixed at 2_5V for all frequency ranges.	2_5V	Pin
XCVR_VCCR_VCCT_VOLTAGE	VCCR_GXB VCCT_GXB Voltage	Configures the VCCR_GXB and VCCT_GXB voltage for an GXB I/O pin by specifying the intended supply voltages for a GXB I/O pin. This voltage is fixed at 1_1V for all frequency ranges.	1_1V	Pin

Table 3–12 lists the analog parameters with *global* or *computed* default values. You may want to optimize some of these settings. In Table 3–12, the default value is shown in **bold** type. For computed analog parameters, the default value listed is for the initial setting, not the recomputed setting. The parameters are listed in alphabetical order.

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
	Analog Parameters with	Global Default Value		
PLL_BANDWIDTH_PRESET	PLL Bandwidth Preset	Specifies the TX PLL and RX CDR bandwidth preset setting.	Auto Low Medium High	PLL instance
PLL_BANDWIDTH_PRESET	PLL Bandwidth Preset	Specifies the PLL bandwidth preset setting	Auto Low Medium High	PLL instance
XCVR_RX_DC_GAIN	Receiver Buffer DC Gain Control	Controls the amount of a stage receive-buffer DC gain.	0 –1	Pin
XCVR_RX_LINEAR_EQUALIZER_ CONTROL	Receiver Linear Equalizer Control	Static control for the continuous time equalizer in the receiver buffer. The equalizer has 3 settings from 0–2 corresponding to the increasing AC gain.	0, 1 , 2	Pin
l	Analog Parameters with C	omputed Default Value		
XCVR_RX_COMMON_MODE_ VOLTAGE	Receiver Buffer Common Mode Voltage	Receiver buffer common-mode voltage.	VTT_0P80V VTT_0P75V VTT_0P65V VTT_0P60V VTT_0P55V VTT_0P50V VTT_0P50V VTT_0P35V VTT_PUP _WEAK VTT_PDN WEAK TRISTATE1 VTT_PDN_ STRONG VTT_PUP_ STRONG TRISTATE2 TRISTATE3 TRISTATE4	Pin
XCVR_RX_SEL_HALF_BW	Receiver Equalizer Gain Bandwidth Select	Enables half bandwidth mode. For BW=3.25GHZ, select FULL_BW. For BW=1.5GHz, select HALF_BW.	FULL_BW HALF_BW	Pin
XCVR_RX_SD_ENABLE	Receiver Signal Detection Unit Enable/Disable	Enables or disables the receiver signal detection unit. During normal operation NORMAL_SD_ON=false, otherwise POWER_DOWN_SD=true.	TRUE False	Pin

Table 3–9. Transceiver and PLL Assignments for Arria V Devices (Part 1 of 2)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_RX_SD_THRESHOLD	Receiver Signal Detection Voltage Threshold	Specifies signal detection voltage threshold level. The following encodings are defined: SDLV_50MV=7 SDLV_45MV=6 SDLV_40MV=5 SDLV_35MV=4 SDLV_30MV=3 SDLV_25MV=2 SDLV_20MV=1 SDLV_15MV=0	0–7 3	Pin
XCVR_TX_COMMON_MODE_ VOLTAGE	Transmitter Common Mode Driver Voltage	Transmitter common-mode driver voltage	VOLT_0P80V VOLT_0P75V VOLT_0P70V VOLT_0P65V VOLT_0P60V VOLT_0P55V VOLT_0P55V VOLT_0P35V PULL_UP PULL_DOWN TRISTATED1 GROUNDED PULL_UP_TO VCCELA TRISTATED2 TRISTATED3 TRISTATED4	Pin
XCVR_TX_PRE_EMP_1ST_POST_ TAP	Transmitter Preemphasis First Post-Tap	Specifies the first post-tap setting value.	0 –31	Pin
XCVR_TX_VOD	Transmitter Differential Output Voltage	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength.	0 –63	Pin
XCVR_TX_VOD_PRE_EMP_ CTRL_SRC	Transmitter V _{oD} /Preemphasis Control Source	When set to $DYNAMIC_CTL$, the PCS block controls the V_{OD} and preemphasis are controlled by other assignments. such as	DYNAMIC_CTL Ram_Ctl	Pin

Table 3–9. Transceiver and PLL Assignments for Arria V Devices (Part 2 of 2)

For more information about the Pin Planner, refer to About the Pin Planner in Quartus II Help. For more information about the Assignment Editor, refer to About the Assignment Editor in Quartus II Help.

XCVR_TX_PRE_EMP_1ST_POST_TAP.

For more information about Quartus II Settings, refer to *Quartus II Settings File Manual*.

Stratix IV Devices

For Stratix IV devices, you specify analog options on the **Analog Options** tab. Table 3–10 describes these options.

Table 3–10. PMA Analog Options for Stratix IV Devices

Name	Value	Description	
Transmitter termination resistance	OCT_85_OHMS OCT_100_OHMS OCT_120_OHMS OCT_150_OHMS	Indicates the value of the termination resistor for the transmitter.	
Transmitter VOD control setting	0–7	Sets V_{OD} for the various TX buffers.	
Pre-emphasis pre-tap setting	0–7	Sets the amount of pre-emphasis on the TX buffer.	
Invert the pre-emphasis pre-tap polarity setting	On Off	Determines whether or not the pre-emphasis control signal for the pre-tap is inverted. If you turn this option on, the pre-emphasis control signal is inverted.	
Pre-emphasis first post-tap setting	0–15	Sets the amount of pre-emphasis for the 1st post-tap.	
Pre-emphasis second post-tap setting	0–7	Sets the amount of pre-emphasis for the 2nd post-tap.	
Invert the pre-emphasis second post-tap polarity	On Off	Determines whether or not the pre-emphasis control signal for the second post-tap is inverted. If you turn this option on, the pre-emphasis control signa is inverted.	
Receiver common mode voltage	Tri-State 0.82V 1.1v	Specifies the RX common mode voltage.	
Receiver termination resistance	OCT_85_OHMS OCT_100_OHMS OCT_120_OHMS OCT_150_OHMS	Indicates the value of the termination resistor for the receiver.	
		Sets the equalization DC gain using one of the following settings:	
		■ 0: 0 dB	
Receiver DC	0-4	■ 1:3 dB	
		■ 2:6 dB	
		■ 3: 9 dB	
		• 4: 12 dB	
Receiver static equalizer setting:	0–15	This option sets the equalizer control settings. The equalizer uses pass band filter. Specifying a low value passes low frequencies. Specifying a high value passes high frequencies.	

Stratix V Devices

You specify the analog parameters for Stratix V devices using the Quartus II Assignment Editor, the Pin Planner, or through the Quartus II Settings File (**.qsf**). The default values for analog options fall into three categories:

- Global— These parameters have default values that are independent of other parameter settings.
- *Computed*—These parameters have an initial default value that is recomputed based on other parameter settings.
- Proxy—These parameters have default values that are place holders. The Quartus II software selects these initial default values based on your design; however, Altera recommends that you replace these defaults with values that match your electrical board specification.

Table 3–11 lists the analog parameters for Stratix V devices whose original values are place holders for the values that match your electrical board specification. In Table 3–11, the default value of an analog parameter is shown in **bold** type. The parameters are listed in alphabetical order.

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_GT_IO_PIN_ TERMINATION	GT Transceiver I/O Pin Termination	Fine tunes the target 100-ohm on-chip termination for the specified transceiver pin. This parameter is only for GT transceivers.	0-15 12	Pin
XCVR_IO_PIN_TERMINATION	Transceiver I/O Pin Termination	Specifies the intended on-chip termination value for the specified transceiver pin. Use External Resistor if you intend to use off-chip termination.	85_0HMS 100_0HMS 120_0HMS 150_0HMS EXTERNAL_ RESISTOR	Pin
XCVR_REFCLK_PIN_ TERMINATION	Transceiver Dedicated Refclk Pin Termination	Specifies the intended termination value for the specified refclk pin.	DC_COUPLING_ INTERNAL_100 _OHM DC_COUPLING_ EXTERNAL_ RESISTOR AC_COUPLING	Pin
XCVR_RX_BYPASS_EQ_ STAGES_234	Receiver Equalizer Stage 2, 3, 4 Bypass	Bypass continuous time equalizer stages 2, 3, and 4 to save power. This setting eliminates significant AC gain on the equalizer and is appropriate for chip-to-chip short range communication on a PCB.	ALL_STAGES_ ENABLED BYPASS_ STAGES	Pin
XCVR_TX_SLEW_RATE_CTRL	Transmitter Slew Rate Control	Specifies the slew rate of the output signal. The valid values span from the slowest rate to fastest rate with 1 representing the slowest rate.	1–5	Pin

Table 3–11. Transceiver and PLL Assignments for Stratix V Devices (Part 1 of 2)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_VCCA_VOLTAGE	VCCA_GXB Voltage	Configure the VCCA_GXB voltage for a GXB I/O pin by specifying the intended VCCA_GXB voltage for a GXB I/O pin. If you do not make this assignment the compiler automatically sets the correct VCCA_GXB voltage depending on the configured data rate, as follows: Data rate <= 6.5 Gbps: 2_5V Data rate > 6.5 Gbps: 3_0V or 3_3V for Stratix V ES silicon	2_5V 3_0V	Pin
XCVR_VCCR_VCCT_VOLTAGE	VCCR_GXB VCCT_GXB Voltage	Refer to the <i>Device Datasheet for</i> <i>Stratix V Devices</i> for guidance on selecting a value.	0_85V 1_0V	Pin

Table 3-11.	Transceiver and PLL	Assignments for Stratix V Devices	(Part 2 of 2)
-------------	---------------------	-----------------------------------	---------------

Table 3–12 lists the analog parameters with *global* or *computed* default values. You may want to optimize some of these settings. In Table 3–12, the default value is shown in **bold** type. For computed analog parameters, the default value listed is for the initial setting, not the recomputed setting. The parameters are listed in alphabetical order.

Table 3–12. Transceiver and PLL Assignments for Stratix V Devices (Part 1 of 5)	Table 3-12.	Transceiver and PLL	Assignments for Stratix V D	evices (Part 1 of 5)
---	-------------	---------------------	-----------------------------	----------------------

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
	Analog Parameters with	Global Default Value		
CDR_BANDWIDTH_PRESET	CDR Bandwidth Preset	Specifies the CDR bandwidth preset setting.	Auto Low Medium High	PLL instance
PLL_BANDWIDTH_PRESET	PLL Bandwidth Preset	Specifies the PLL bandwidth preset setting	Auto Low Medium High	PLL instance
XCVR_GT_RX_DC_GAIN	Receiver Buffer DC Gain Control	Controls the RX buffer DC gain for GT channels.	0-19 8	Pin
XCVR_RX_DC_GAIN	Receiver Buffer DC Gain Control	Controls the RX buffer DC gain for GX channels.	0 –4	Pin
XCVR_RX_LINEAR_EQUALIZER_ CONTROL	Receiver Linear Equalizer Control	Static control for the continuous time equalizer in the receiver buffer. The equalizer has 16 distinct settings from $0-15$ corresponding to the increasing AC gain.	1 –16	Pin
	Inalog Parameters with C	omputed Default Value		
XCVR_GT_TX_PRE_EMP_PRE_ TAP	Transmitter Pre-emphasis Pre-Tap	Specifies the pre-tap pre-emphasis setting. This parameter is only for GT transceivers.	0-31 0	Pin

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_GT_TX_VOD_MAIN_TAP	Transmitter Differential Output Voltage for GT channels.	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength. This parameter is only for GT transceivers.	0-5 3	Pin
XCVR_GT_RX_COMMON_ MODE_VOLTAGE	GT receiver Buffer Common Mode Voltage	Receiver buffer common-mode voltage. This parameter is only for GT transceivers.	VTT_0P8V VTT_0P75V VTT_0P65V VTT_0P65V VTT_0P55V VTT_0P55V VTT_0P35V VTT_VCM0FF7 VTT_VCM0FF6 VTT_VCM0FF4 VTT_VCM0FF3 VTT_VCM0FF1 VTT_VCM0FF1 VTT_VCM0FF1 VTT_VCM0FF0	Pin
XCVR_GT_RX_CTLE	GT Receiver Linear Equalizer Control	Static control for the continuous time equalizer in the receiver buffer. The equalizer has 9 distinct settings from 0-8 corresponding to increasing AC gain. This parameter is only for GT transceivers.	0-8 0	Pin
XCVR_GT_TX_COMMON_MODE_ VOLTAGE	GT Transmitter Common Mode Driver Voltage	Transmitter common-mode driver voltage. This parameter is only for GT transceivers.	VOLT_0P80V VOLT_0P75V VOLT_0P65V VOLT_0P65V VOLT_0P60V VOLT_0P55V VOLT_0P55V VOLT_0P35V PULL_UP PULL_DN TRISTATED1 GROUNDED PULL_UP_TO_ VCCELA TRISTATED2 TRISTATED3 TRISTATED4	Pin
XCVR_GT_TX_PRE_EMP_1ST_ POST_TAP	GT Transmitter Preemphasis First Post-Tap	Specifies the first post-tap setting value. This parameter is only for GT transceivers.	0-31 5	Pin
XCVR_GT_TX_PRE_EMP_INV_ PRE_TAP	GT Transmitter Preemphasis Pre Tap Invert	Inverts the transmitter pre-emphasis pre-tap. This parameter is only for GT transceivers.	ON OFF	Pin
XCVR_GT_TX_PRE_EMP_PRE_ TAP	GT Transmitter Preemphasis Pre-Tap	Specifies the pre-tap pre-emphasis setting. This parameter is only for GT transceivers.	0-31 0	Pin

Table 3-12.	Transceiver and PLL	Assignments for Stratix V	Devices (Part 2 of 5)
-------------	---------------------	---------------------------	-----------------------

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_GT_TX_VOD_MAIN_TAP	GT Transmitter Differential Output Voltage	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength.	0-5 3	Pin
XCVR_RX_COMMON_MODE_ VOLTAGE	Receiver Buffer Common Mode Voltage	Receiver buffer common-mode voltage.	VTT_0P80V VTT_0P75V VTT_0P65V VTT_0P60V VTT_0P55V VTT_0P50V VTT_0P50V VTT_0P35V VTT_PUP _WEAK VTT_PDN WEAK TRISTATE1 VTT_PDN_ STRONG VTT_PUP_ STRONG TRISTATE2 TRISTATE3 TRISTATE4	Pin
XCVR_RX_ENABLE_LINEAR_ EQUALIZER_PCIEMODE	Receiver Linear Equalizer Control (PCI Express)	If enabled equalizer gain control is driven by the PCS block for PCI Express. If disabled equalizer gain control is determined by the XCVR_RX_LINEAR_EQUALIZER_SETT ING assignment.	TRUE False	Pin
XCVR_RX_EQ_BW_SEL	Receiver Equalizer Gain Bandwidth Select	Sets the gain peaking frequency for the equalizer. For data-rates of less than 6.5Gbps set to HALF. For higher data- rates set to FULL.	full Half	Pin
XCVR_RX_SD_ENABLE	Receiver Signal Detection Unit Enable/Disable	Enables or disables the receiver signal detection unit.	TRUE False	Pin
XCVR_RX_SD_OFF	Receiver Cycle Count Before Signal Detect Block Declares Loss Of Signal	Number of parallel cycles to wait before the signal detect block declares loss of signal.	0 –29	Pin
XCVR_RX_SD_ON	Receiver Cycle Count Before Signal Detect Block Declares Presence Of Signal	Number of parallel cycles to wait before the signal detect block declares presence of signal.	0 –16	Pin
XCVR_RX_SD_THRESHOLD	Receiver Signal Detection Voltage Threshold	Specifies signal detection voltage threshold level.	0 –7	Pin

Table 3–12. Transceiver and PLL Assignments for Stratix V Devices (Part 3 of 5)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_TX_COMMON_MODE_ VOLTAGE	Transmitter Common Mode Driver Voltage	Transmitter common-mode driver voltage	VOLT_0P80V VOLT_0P75V VOLT_0P65V VOLT_0P60V VOLT_0P55V VOLT_0P55V VOLT_0P35V PULL_0P PULL_0P PULL_D0WN TRISTATED1 GROUNDED PULL_UP_TO VCCELA TRISTATED2 TRISTATED3 TRISTATED4	Pin
XCVR_TX_PRE_EMP_PRE_TAP_ USER	Transmitter Preemphasis Pre-Tap user	Specifies the TX pre-emphasis pretap setting value, including inversion.	0 –31	Pin
XCVR_TX_PRE_EMP_2ND_TAP_ USER	Transmitter Preemphasis Second Post-Tap user	Specifies the transmitter pre-emphasis second post-tap setting value, including inversion.	0 –31	Pin
XCVR_TX_PRE_EMP_1ST_POST_ TAP	Transmitter Preemphasis First Post-Tap	Specifies the first post-tap setting value.	0 –31	Pin
XCVR_TX_PRE_EMP_2ND_ POST_TAP	Transmitter Preemphasis Second Post-Tap	Specifies the second post-tap setting value.	0 –15	Pin
XCVR_TX_PRE_EMP_INV_ 2ND_TAP	Transmitter Preemphasis Second Tap Invert	Inverts the transmitter pre-emphasis 2nd post tap.	TRUE False	Pin
XCVR_TX_PRE_EMP_INV_ PRE_TAP	Transmitter Preemphasis Pre Tap Invert	Inverts the transmitter pre-emphasis pre-tap.	TRUE False	Pin
XCVR_TX_PRE_EMP_PRE_TAP	Transmitter Preemphasis Pre-Tap	Specifies the pre-tap pre-emphasis setting.	0 –15	Pin
XCVR_TX_RX_DET_ENABLE	Transmitter's Receiver Detect Block Enable	Enables or disables the receiver detector circuit at the transmitter.	TRUE False	Pin
XCVR_TX_RX_DET_MODE	Transmitter's Receiver Detect Block Mode	Sets the mode for receiver detect block	0 –15	Pin
XCVR_TX_RX_DET_OUTPUT_SEL	Transmitter's Receiver Detect Block QPI/PCI Express Control	Determines QPI or PCI Express mode for the Receiver Detect block.	RX_DET_QPI_ OUT RX_DET_PCIE_ OUT	Pin

Table 3–12. Transceiver and PLL Assignments for Stratix V Devices (Part 4 of 5)

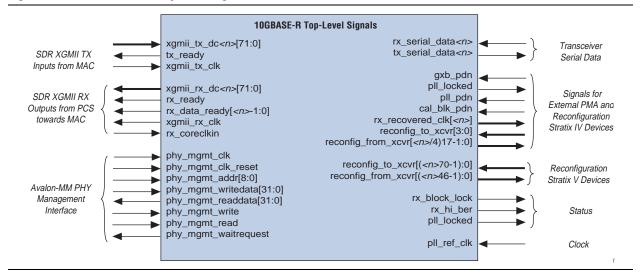
QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_TX_VOD	Transmitter Differential Output Voltage	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength.	0–63 50	Pin
XCVR_TX_VOD_PRE_EMP_ CTRL_SRC	Transmitter V _{oD} /Preemphasis Control Source	When set to DYNAMIC_CTL, the PCS block controls the V_{0D} and preemphasis coefficients for PCI Express. When this assignment is set to RAM_CTL the V_{0D} and preemphasis are controlled by other assignments, such as XCVR_TX_PRE_EMP_1ST_POST_TAP.	DYNAMIC_CTL Ram_Ctl	Pin

Table 3–12. Transceiver and PLL Assignments for Stratix V Devices (Part 5 of 5)

⑦ For more information about the Pin Planner, refer to About the Pin Planner in Quartus II Help. For more information about the Assignment Editor, refer to About the Assignment Editor in Quartus II Help.

For more information about Quartus II Settings, refer to *Quartus II Settings File Manual*.

Interfaces


This section describes interfaces of the 10GBASE-R PHY IP Core. It includes the following topics:

- Ports
- Register Interface
- Dynamic Reconfiguration

Ports

Figure 3–5 illustrates the top-level signals of the 10BASE-R PHY.

Figure 3–5. 10GBASE-R PHY Top-Level Signals

- The **block diagram** shown in the GUI labels the external pins with the *interface type* and places the *interface name* inside the box. The interface type and name are used in the Hardware Component Description File (_hw.tcl). If you turn on Show signals, the **block diagram** displays all top-level signal names.
- **For more information about _hw.tcl** files refer to refer to the *Component Interface Tcl Reference* chapter in volume 1 of the *Quartus II Handbook*.

The following sections describe the signals in each interface.

SDR XGMII TX Interface

Table 3-13 describes the signals in the SDR XGMII TX interface. These signals are driven from the MAC to the PCS. This is an Avalon-ST sink interface.

Table 3–13. SDR XGMII TX Inputs (1)

Signal Name Direction		Description	
xgmii_tx_dc_[<n>71:0]</n>	Sink	Contains 8 lanes of data and control for XGMII. Each lane consists of 8 bits of data and 1 bit of control. Lane 0-[7:0]/[8] Lane 1-[16:9]/[17] Lane 2-[25:18]/[26] Lane 3-[34:27]/[35] Lane 4-[43:36]/[44] Lane 5-[52:45]/[53] Lane 6-[61:54]/[62] Lane 7-[70:63]/[71] Refer to Table 3-14 for the mapping of the xgmii_tx_dc data and control to the xgmii_sdr_data and xgmii_sdr_ctrl signals.	
tx_ready	Output	Asserted when the TX channel is ready to transmit data. Because the readyLatency on this Avalon-ST interface is 0, the MAC may drive tx_ready as soon as it comes out of reset.	
xgmii_tx_clk	Input	The XGMII TX clock which runs at 156.25 MHz.	

Note to Table 3-13:

(1) <*n*> is the channel number

For more information about the Avalon-ST protocol, including timing diagrams, refer to the Avalon Interface Specifications.

Table 3–14 provides the mapping from the XGMII TX interface to the XGMII SDR interface.

Table 3–14. Mapping from XGMII TX Bus to XGMII SDR Bus (Part 1 of 2)

Signal Name	XGMII Signal Name	Description
<pre>xgmii_tx_dc_[7:0]</pre>	xgmii_sdr_data[7:0]	Lane 0 data
xgmii_tx_dc_[8]	xgmii_sdr_ctrl[0]	Lane 0 control
xgmii_tx_dc_[16:9]	xgmii_sdr_data[15:8]	Lane 1 data
xgmii_tx_dc_[17]	xgmii_sdr_ctrl[1]	Lane 1 control
xgmii_tx_dc_[25:18]	xgmii_sdr_data[23:16]	Lane 2 data
xgmii_tx_dc_[26]	xgmii_sdr_ctrl[2]	Lane 2 control
xgmii_tx_dc_[34:27]	xgmii_sdr_data[31:24]	Lane 3 data
xgmii_tx_dc_[35]	xgmii_sdr_ctrl[3]	Lane 3 control
xgmii_tx_dc_[43:36]	xgmii_sdr_data[39:32]	Lane 4 data
xgmii_tx_dc_[44]	xgmii_sdr_ctrl[4]	Lane 4 control
xgmii_tx_dc_[52:45]	xgmii_sdr_data[47:40]	Lane 5 data

Signal Name	XGMII Signal Name	Description
xgmii_tx_dc_[53]	xgmii_sdr_ctrl[5]	Lane 5 control
<pre>xgmii_tx_dc_[61:54]</pre>	xgmii_sdr_data[55:48]	Lane 6 data
xgmii_tx_dc_[62]	xgmii_sdr_ctrl[6]	Lane 6 control
xgmii_tx_dc_[70:63]	xgmii_sdr_data[63:56]	Lane 7 data
xgmii_tx_dc_[71]	xgmii_sdr_ctrl[7]	Lane 7 control

Table 3–14. Mapping from XGMII TX Bus to XGMII SDR Bus (Part 2 of 2)

SDR XGMII RX Interface

Table 3–15 describes the signals in the SDR XGMII RX interface. This is an Avalon-ST source interface. These signals are driven from the PCS to the MAC.

Table 3–15. SDR XGMII RX Inputs (1)

Signal Name	Direction	Description	
xgmii_rx_dc_ <n>[71:0] Source</n>		Contains 8 lanes of data and control for XGMII. Each lane consists of 8 bits of data and 1 bit of control. Lane 0-[7:0]/[8] Lane 1-[16:9]/[17] Lane 2-[25:18]/[26] Lane 3-[34:27]/[35] Lane 4-[43:36]/[44] Lane 5-[52:45]/[53] Lane 6-[61:54]/[62] Lane 7-[70:63]/[71] Refer to Table 3-16 for the mapping of the xgmii_rx_dc data and control to the xgmii_sdr_data and xgmii_sdr_ctrl signals.	
rx_ready	Output	Asserted when the RX reset is complete.	
<pre>rx_data_ready [<n>-1:0]</n></pre>	Output	When asserted, indicates that the PCS is sending data to the MAC. Because the readyLatency on this Avalon-ST interface is 0, the MAC must be ready to receive data whenever this signal is asserted. After rx_ready is asserted indicating the exit from the reset state, the MAC should store xgmii_rx_dc_ <n>[71:0] in each cycle where rx_data_ready<n> is asserted.</n></n>	
xgmii_rx_clk	Output	This clock is generated by the same reference clock that is used to generate the transceiver clock. Its frequency is 156.25 MHz. Use this clock for the MAC interface to minimize the size of the FIFO between the MAC and SDR XGMII RX interface.	
rx_coreclkin	Input	When you turn on Create rx_coreclkin port, this signal is available as a 156.25 MHz clock input port to drive the RX datapath interface (RX read FIFO).	

Note to Table 3-15:

(1) <*n>* is the channel number

Table 3–16 provides the mapping from the XGMII RX interface to the XGMII SDR interface.

Signal Name	XGMII Signal Name	Description
xgmii_rx_dc_[7:0]	xgmii_sdr_data[7:0]	Lane 0 data
xgmii_rx_dc_[8]	xgmii_sdr_ctrl[0]	Lane 0 control
xgmii_rx_dc_[16:9]	xgmii_sdr_data[15:8]	Lane 1 data
xgmii_rx_dc_[17]	xgmii_sdr_ctrl[1]	Lane 1 control
xgmii_rx_dc_[25:18]	xgmii_sdr_data[23:16]	Lane 2 data
xgmii_rx_dc_[26]	xgmii_sdr_ctrl[2]	Lane 2 control
xgmii_rx_dc_[34:27]	xgmii_sdr_data[31:24]	Lane 3 data
xgmii_rx_dc_[35]	xgmii_sdr_ctrl[3]	Lane 3 control
xgmii_rx_dc_[43:36]	xgmii_sdr_data[39:32]	Lane 4 data
xgmii_rx_dc_[44]	xgmii_sdr_ctrl[4]	Lane 4 control
xgmii_rx_dc_[52:45]	xgmii_sdr_data[47:40]	Lane 5 data
xgmii_rx_dc_[53]	xgmii_sdr_ctrl[5]	Lane 5 control
xgmii_rx_dc_[61:54]	xgmii_sdr_data[55:48]	Lane 6 data
xgmii_rx_dc_[62]	xgmii_sdr_ctrl[6]	Lane 6 control
xgmii_rx_dc_[70:63]	xgmii_sdr_data[63:56]	Lane 7 data
xgmii_rx_dc_[71]	xgmii_sdr_ctrl[7]	Lane 7 control

Status Interface

Table 3–17 describes signals that provide status information.

Signal Name Direction Description		Description
rx_block_lock	Output	Asserted to indicate that the block synchronizer has established synchronization.
rx_hi_ber	Output	Asserted by the BER monitor block to indicate a Sync Header high bit error rate greater than 10 ⁻⁴ .
pll_locked	Output	When asserted, indicates that the TX PLL is locked. This signal is available for Arria V and Stratix V devices.

Clocks, Reset, and Powerdown

The phy_mgmt_clk_reset signal is the global reset that resets the entire PHY. A positive edge on this signal triggers a reset.

Refer to the *Reset Control and Power Down* chapter in volume 2 of the *Stratix IV Device Handbook* for additional information about reset sequences in Stratix IV devices.

The PCS runs at 257.8125 MHz using the pma_rx_clock provided by the PMA. You must provide the PMA an input reference clock running at 644.53725 MHz to generate the 257.8125 MHz clock. Figure 3–6 illustrates the clock generation and distribution for Stratix IV devices.

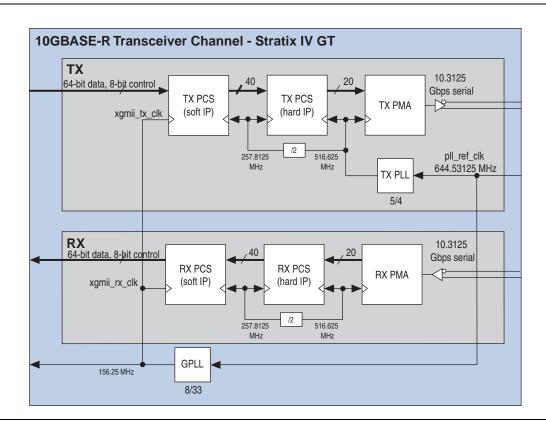
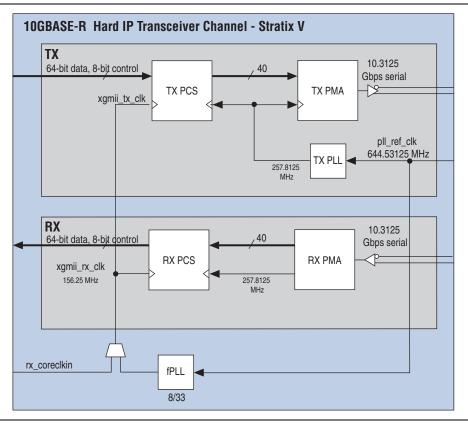



Figure 3–7 illustrates the clock generation and distribution for Stratix V devices.

Figure 3–7. Stratix V Clock Generation and Distribution

To ensure proper functioning of the PCS, the maximum PPM difference between the pll_ref_clk and xgmii_tx_clk clock inputs is 0 PPM. The FIFO in the RX PCS can compensate ±100 PPM between the RX PMA clock and xgmii_rx_clk. You should use xgmii_rx_clk to drive xgmii_tx_clk. The CDR logic recovers 257.8125 MHz clock from the incoming data.

Figure 3–8 illustrates the clock generation and distribution for Arria V devices.

Figure 3–8. Arria V Clock Generation and Distribution

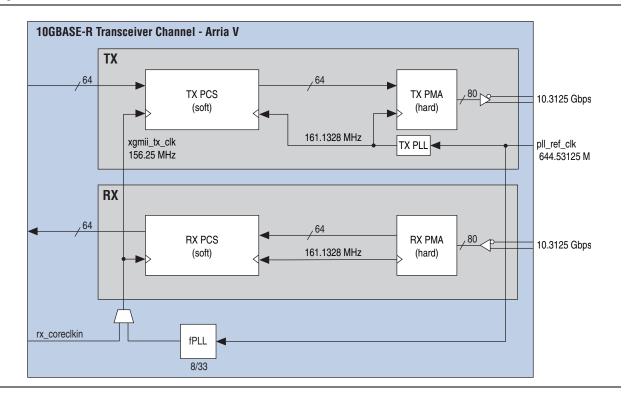


Table 3–18 describes the clock inputs.

Table 3-18. Clock Signals

Signal Name	Direction	Description
pll_ref_clk	Input	For Stratix IV GT devices, the TX PLL reference clock must be 644.53125 MHz. For Arria V and Stratix V devices, the TX PLL reference clock can be either 644.53125 MHz or 322.265625 MHz.

Serial Interface

Table 3–19 describes the input and outputs of the transceiver.

Table 3–19. Transceiver Serial Interface ⁽¹⁾

Signal Name	Direction	Description
rx_serial_data_< <i>n></i>	Input	Differential high speed serial input data using the PCML I/O standard. The clock is recovered from the serial data stream.
tx_serial_data_ <n> Output</n>		Differential high speed serial input data using the PCML I/O standard. The clock is embedded from the serial data stream.

Note to Table 3-19:

(1) *<n>* is the channel number.

Register Interface

The Avalon-MM PHY management interface provides access to the 10GBASER-R PHY PCS and PMA registers. You can use an embedded controller acting as an Avalon-MM master to send read and write commands to this Avalon-MM slave interface.

Table 3–20 describes the signals that comprise the Avalon-MM PHY Management interface.

Table 3-20. Avalon-MM PHY Management Interface

Signal Name	Direction	Description	
		The clock signal that controls the Avalon-MM PHY management, interface. For Stratix IV devices, the frequency range is 37.5–50 MHz.	
phy_mgmt_clk	Input	There is no frequency restriction for Stratix V devices; however, if you plan to use the same clock for the PHY management interface and transceiver reconfiguration, you must restrict the frequency range of phy_mgmt_clk to 100–150 MHz to meet the specification for the transceiver reconfiguration clock.	
phy_mgmt_clk_reset	Input	Global reset signal that resets the entire 10GBASE-R PHY. This signal is active high and level sensitive.	
phy_mgmt_addr[8:0]	Input	9-bit Avalon-MM address. Refer to for the address fields.	
phy_mgmt_writedata[31:0]	Input	Input data.	
phy_mgmt_readdata[31:0]	Output	Output data.	
phy_mgmt_write	Input	Write signal. Asserted high.	
phy_mgmt_read	Input	Read signal. Asserted high.	
phy_mgmt_waitrequest	Output	When asserted, indicates that the Avalon-MM slave interface is unable to respond to a read or write request. When asserted, control signals to the Avalon-MM slave interface must remain constant.	

Refer to the "Typical Slave Read and Write Transfers" and "Master Transfers" sections in the "Avalon Memory-Mapped Interfaces" chapter of the Avalon Interface Specifications for timing diagrams.

Register Descriptions

Table 3–21 specifies the registers that you can access over the Avalon-MM PHY management interface using word addresses and a 32-bit embedded processor. A single address space provides access to all registers.

Writing to reserved or undefined register addresses may have undefined side effects.

Word Addr	Bit	R/W	Name	Description			
	PMA Common Control and Status - working in 12.0.						
0x021	[31:0]	RW	cal_blk_powerdown	Writing a 1 to channel <i><n></n></i> powers down the calibration block for channel <i><n></n></i> . This register is only available if you select Use external PMA control and reconfig on the Additional Options tab of the GUI.			
0x022	[31:0]	RO	pma_tx_pll_is_locked	Bit[P] indicates that the TX clock multiplier unit CMU PLL [P] is locked to the input reference clock. This register is only available if you select Use external PMA control and reconfig on the Additional Options tab of the GUI.			
			Reset Control Registers-A	utomatic Reset Controller			
0x041	[31:0]	RW	reset_ch_bitmask	Reset controller channel bitmask for digital resets. The default value is all 1 s. Channel $\langle n \rangle$ can be reset when bit $\langle n \rangle$ = 1. Channel $\langle n \rangle$ cannot be reset when bit $\langle n \rangle$ =0.			
0x042	0x042 [1:0]	[1:0] W0	reset_control (write)	Writing a 1 to bit 0 initiates a TX digital reset using the reset controller module. The reset affects channels enabled in the reset_ch_bitmask. Writing a 1 to bit 1 initiates a RX digital reset of channels enabled in the reset_ch_bitmask. Both bits 0 and 1 self-clear.			
		RO	reset_status (read)	Reading bit 0 returns the status of the reset controller TX ready bit. Reading bit 1 returns the status of the reset controller RX ready bit.			
	[31:0] RW		reset_fine_control	You can use the reset_fine_control register to create your own reset sequence. The reset control module, illustrated in Figure 1–1 on page 1–2, performs a standard reset sequence at power on and whenever the phy_mgmt_clk_reset is asserted. Bits [31:4,0] are reserved.			
	[31:4,0]	RW	Reserved	It is safe to write 0s to reserved bits.			
0x044	0x044 [1]	RW	reset_tx_digital	Writing a 1 causes the internal TX digital reset signal to be asserted, resetting all channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.			
[2]	RW	reset_rx_analog	Writing a 1 causes the internal RX digital reset signal to be asserted, resetting the RX analog logic of all channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.				
	[3]	RW	reset_rx_digital	Writing a 1 causes the RX digital reset signal to be asserted, resetting the RX digital channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.			

Table 3–21. 10GBASE-R Register Descriptions (Part 1 of 3)

Word Addr	Bit	R/W	Name	Description				
	PMA Channel Control and Status							
0x061	[31:0]	RW	phy_serial_loopback	Writing a 1 to channel <i><n></n></i> puts channel <i><n></n></i> in serial loopback mode. For information about pre- or post-CDR serial loopback modes, refer to "Loopback Modes" on page 12–42.				
0x064	[31:0]	RW	pma_rx_set_locktodata	When set, programs the RX CDR PLL to lock to the incoming data. Bit <i><n></n></i> corresponds to channel <i><n></n></i> .				
0x065	[31:0]	RW	pma_rx_set_locktoref	When set, programs the RX CDR PLL to lock to the reference clock. Bit $\langle n \rangle$ corresponds to channel $\langle n \rangle$.				
0x066	[31:0]	RO	pma_rx_is_lockedtodata	When asserted, indicates that the RX CDR PLL is locked to the RX data, and that the RX CDR has changed from LTR to LTD mode. Bit <i><n></n></i> corresponds to channel <i><n></n></i> .				
0x067	[31:0]	RO	pma_rx_is_lockedtoref	When asserted, indicates that the RX CDR PLL is locked to the reference clock. Bit $\langle n \rangle$ corresponds to channel $\langle n \rangle$.				
			10GBASE	-R PCS				
0x080	[31:0]	wo	INDIRECT_ADDR	Provides for indirect addressing of all PCS control and status registers. Use this register to specify the logical channel number of the PCS channel you want to access.				
	[2]	RW	RCLR_ERRBLK_CNT	When set to 1, clears the error block count register.				
	[2]			To block: Block synchronizer				
0x081	[3]	RW	RCLR_BER_COUNT	When set to 1, clears the bit error rate (BER) register. This bit is only for Stratix IV devices.				
				To block: BER monitor				
	[0]	R	PCS_STATUS	For Stratix IV devices: When asserted indicates that the PCS link is up.				
	[1]	R	HI_BER	When asserted by the BER monitor block, indicates that the PCS is recording a high BER. This bit is only for Stratix IV devices.				
				From block: BER monitor				
	[2] R		R BLOCK LOCK	When asserted by the block synchronizer, indicates that the PCS is locked to received blocks.				
				From Block: Block synchronizer				
0x082	[3]	R	TX_FIFO_FULL	When asserted, indicates the TX FIFO is full.				
07002	[0]			From block: TX FIFO				
	[4]	R	RX_FIFO_FULL	When asserted, indicates the RX FIFO is full.				
	r.1			From block: RX FIFO				
	[5]	R	RX_SYNC_HEAD_ERROR	For Stratix V devices, when asserted, indicates an RX synchronization error. This signal is Stratix V devices only.				
	[6]	R	RX_SCRAMBLER_ERROR	For Stratix V devices: When asserted, indicates an RX scrambler error.				
	[7]	R	RX_DATA_READY	When asserted indicates that the RX interface is ready to send out received data. From block: 10 Gbps Receiver PCS				

Table 3–21. 10GBASE-R Register Descriptions (Part 2 of 3)

Word Addr	Bit	R/W	Name	Description
	[5:0]	R	BER COUNT[5:0]	For Stratix IV devices only, records the bit error rate (BER).
	[5.0]	IN I	BER_COUNT[5:0]	From block: BER monitor
0x083	[13:6]	R	ERROR_BLOCK_COUNT[7:0]	For Stratix IV devices only, records the number of blocks that contain errors.
				From Block: Block synchronizer

Table 3–21. 10GBASE-R Register Descriptions (Part 3 of 3)

Dynamic Reconfiguration

This section includes information about dynamic reconfiguration of the transceivers in Arria V, Stratix IV, and Stratix V devices.

Dynamic Reconfiguration for Stratix IV Devices

Table 3–22 describes the additional top-level signals 10GBASE-R PHY IP Core when the configuration includes external modules for PMA control and reconfiguration. You enable this configuration by turning on **Use external PMA control and reconfig** available for Stratix IV GT devices. This configuration is illustrated in Figure 3–2 on page 3–2.

Signal Name	Direction	Description
gxb_pdn	Input	When asserted, powers down the entire GT block. Active high.
pll_locked	Output	When asserted, indicates that the PLL is locked. Active high.
pll_pdn	Input	When asserted, powers down the TX PLL. Active high.
cal_blk_pdn	Input	When asserted, powers down the calibration block. Active high.
cal_blk_clk	Input	Calibration clock. For Stratix IV devices only. It must be in the range 37.5–50 MHz. You can use the same clock for the phy_mgmt_clk and the cal_blk_clk.
<pre>rx_recovered_clk[<n>:0]</n></pre>	Output	This is the RX clock, which is recovered from the received data stream.
<pre>reconfig_to_xcvr[3:0]</pre>	Input	Reconfiguration signals from the Transceiver Reconfiguration Controller to the PHY device. This signal is only available in Stratix IV devices.
reconfig_from_xcvr [(<n>/4)17-1:0]</n>	Output	Reconfiguration RAM. The PHY device drives this RAM data to the transceiver reconfiguration IP. This signal is only available in Stratix IV devices.

Table 3–22. External PMA and Reconfiguration Signals

Table 3–23 describes the signals in the reconfiguration interface. This interface uses the Avalon-MM PHY Management interface clock.

Table 3–23. Reconfiguration Interface

Signal Name	Direction	Description
<pre>reconfig_to_xcvr [(<n>70-1):0]</n></pre>	Sink	Reconfiguration signals from the Transceiver Reconfiguration Controller. <i><n></n></i> grows linearly with the number of reconfiguration interfaces. This signal is only available in Stratix V devices.
<pre>reconfig_from_xcvr [(<n>46-1):0]</n></pre>	Source	Reconfiguration signals to the Transceiver Reconfiguration Controller. <i><n></n></i> grows linearly with the number of reconfiguration interfaces. This signal is only available in Stratix V devices.

Dynamic Reconfiguration for Arria V and Stratix V Devices

As silicon progresses towards smaller process nodes, circuit performance is affected more by variations due to process, voltage, and temperature (PVT). These process variations result in analog voltages that can be offset from required ranges. The calibration performed by the dynamic reconfiguration interface compensates for variations due to PVT.

For Arria V and Stratix V devices, each channel and each TX PLL have separate dynamic reconfiguration interfaces. The MegaWizard Plug-In Manager provides informational messages on the connectivity of these interfaces. Example 3–2 shows the messages for a single duplex channel.

Although you must initially create a separate reconfiguration interface for each channel and TX PLL in your design, when the Quartus II software compiles your design, it reduces the number of reconfiguration interfaces by merging reconfiguration interfaces. The synthesized design typically includes a reconfiguration interface for at least three channels because three channels share an Avalon-MM slave interface which connects to the Transceiver Reconfiguration Controller IP Core. Conversely, you cannot connect the three channels that share an Avalon-MM interface to different Transceiver PHY IP cores. Doing so causes a Fitter error. For more information, refer to "Reconfiguration Controller to PHY IP Connectivity" on page 12–40. Allowing the Quartus II software to merge reconfiguration interfaces gives the Fitter more flexibility in placing transceiver channels.

Example 3–2. Informational Messages for the Transceiver Reconfiguration Interface

```
PHY IP will require 2 reconfiguration interfaces for connection to the external reconfiguration controller.
Reconfiguration interface offset 0 is connected to the transceiver channel.
Reconfiguration interface offset 1 is connected to the transmit PLL.
```

TimeQuest Timing Constraints

The timing constraints for Stratix IV GT designs are in **alt_10gbaser_phy.sdc**. If your design does not meet timing with these constraints, use LogicLockTM for the alt_10gbaser_pcs block. You can also apply LogicLock to the alt_10gbaser_pcs and slightly expand the lock region to meet timing.

- ? For more information about LogicLock, refer to About LogicLock Regions in Quartus II Help.
- For Stratix V devices, timing constraints are built into the HDL code.

Example 3–3 provides the Synopsys Design Constraints File (.sdc) timing constraints for the 10GBASE-R IP Core. To pass timing analysis, you must decouple the clocks in different time domains. Be sure to verify the each clock domain is correctly buffered in the top level of your design. You can find the .sdc file in your top-level working directory. This is the same directory that includes your top-level .v or .vhd file.

Example 3–3. Synopsys Design Constraints for Clocks

```
# Timing Information
set_time_format -unit ns -decimal_places 3
# Create Clocks
create_clock -name {xqmii_tx_clk} -period 6.400 -waveform { 0.000 3.200 } [get_ports
{xgmii_tx_clk}]
create_clock -name {phy_mgmt_clk} -period 20.00 -waveform { 0.000 10.000 } [get_ports
{phy_mgmt_clk}]
create_clock -name {pll_ref_clk} -period 1.552 -waveform { 0.000 0.776 } [get_ports
{ref_clk}]
#derive_pll_clocks
derive_pll_clocks -create_base_clocks
#derive_clocks -period "1.0"
# Create Generated Clocks
#********
                 create_generated_clock -name pll_mac_clk -source [get_pins -compatibility_mode
{*altpll_component|auto_generated|pll1|clk[0]}]
create_generated_clock -name pma_tx_clk -source [get_pins -compatibility_mode
{*siv_alt_pma|pma_direct|auto_generated|transmit_pcs0|clkout}]
    * * *
         ## Set Clock Latency
# Set Clock Uncertainty
derive_clock_uncertainty
set_clock_uncertainty -from [get_clocks
{*siv_alt_pma|pma_ch*.pma_direct|receive_pcs*|clkout}] -to pll_ref_clk -setup 0.1
set_clock_uncertainty -from [get_clocks
{*siv_alt_pma|pma_direct|auto_generated|transmit_pcs0|clkout}] -to pll_ref_clk -setup
0.08
set_clock_uncertainty -from [get_clocks
{*siv_alt_pma|pma_ch*.pma_direct|receive_pcs*|clkout}] -to pll_ref_clk -hold 0.1 set_clock_uncertainty -from [get_clocks
{*siv_alt_pma|pma_direct|auto_generated|transmit_pcs0|clkout}] -to pll_ref_clk -hold
0.08
# Set Input Delay
# Set Output Delay
```

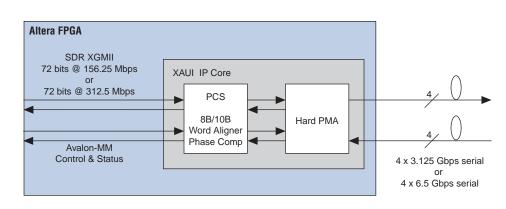
Synopsys Design Constraints for Clocks (Continued)

```
# Set Clock Groups
                          *****
#*
set_clock_groups -exclusive -group phy_mgmt_clk -group xgmii_tx_clk -group [get_clocks
##******
# Set False Path
#***
                     set_false_path -from {*siv_10gbaser_xcvr*clk_reset_ctrl|rx_pma_rstn} -to [get_clocks
{{*siv_alt_pma|pma_ch*.pma_direct|transmit_pcs*|clkout}
{*siv_alt_pma|pma_ch*.pma_direct|receive_pcs*|clkout}
{*pll_siv_xgmii_clk|altpll_component|auto_generated|pll1|clk[0]} phy_mgmt_clk
xgmii_tx_clk}]
set_false_path -from {*siv_10gbaser_xcvr*clk_reset_ctrl|rx_usr_rstn} -to [get_clocks
{{*siv_alt_pma|pma_ch*.pma_direct|transmit_pcs*|clkout}
 *siv_alt_pma|pma_ch*.pma_direct|transmit_pcs*|clkout}
{*pll_siv_xgmii_clk|altpll_component|auto_generated|pll1|clk[0]} phy_mgmt_clk
xgmii_tx_clk}]
set_false_path -from {*siv_10gbaser_xcvr*clk_reset_ctrl|tx_pma_rstn} -to [get_clocks
{{*siv_alt_pma|pma_ch*.pma_direct|receive_pcs*|clkout}
{*siv_alt_pma|pma_ch*.pma_direct|transmit_pcs*|clkout}
{*pll_siv_xgmii_clk|altpll_component|auto_generated|p111|clk[0]} phy_mgmt_clk
xgmii_tx_clk}]
set_false_path -from {*siv_10gbaser_xcvr*clk_reset_ctrl|tx_usr_rstn} -to [get_clocks
{{*siv_alt_pma|pma_ch*.pma_direct|receive_pcs*|clkout}
 *siv_alt_pma/pma_ch*.pma_direct/transmit_pcs*/clkout
{*pll_siv_xgmii_clk|altpll_component|auto_generated|pll1|clk[0]} phy_mgmt_clk
xgmii_tx_clk}]
set_false_path -from {*siv_10gbaser_xcvr*rx_analog_rst_lego|rinit} -to [get_clocks
{{*siv_alt_pma|pma_ch*.pma_direct|receive_pcs*|clkout}
 *siv_alt_pma|pma_ch*.pma_direct|transmit_pcs*|clkout
{*pll_siv_xgmii_clk|altpll_component|auto_generated|p111|clk[0]} phy_mgmt_clk
xgmii_tx_clk}]
set_false_path -from {*siv_10gbaser_xcvr*rx_digital_rst_lego|rinit} -to [get_clocks
{{*siv_alt_pma|pma_ch*.pma_direct|receive_pcs*|clkout}
{*siv_alt_pma|pma_ch*.pma_direct|transmit_pcs*|clkout}
{*pll_siv_xgmii_clk|altpll_component|auto_generated|pll1|clk[0]} phy_mgmt_clk
xgmii_tx_clk}]
              ******
# Set Multicycle Paths
# Set Maximum Delay
# Set Minimum Delay
# Set Input Transition
```

This **.sdc** file is only applicable to the 10GBASE-R PHY IP Core when compiled in isolation. You can use it as a reference to help in creating your own **.sdc** file.

Simulation Files and Example Testbench

Refer to "Running a Simulation Testbench" on page 1–4 for a description of the directories and files that the Quartus II software creates automatically when you generate your 10GBASE-R PHY IP Core.


Refer to the Altera wiki for an example testbench that you can use as a starting point in creating your own verification environment.

4. XAUI PHY IP Core

The Altera XAUI PHY IP Core implements the *IEEE 802.3 Clause 48* specification to extend the operational distance of the XGMII interface and reduce the number of interface signals. XAUI extends the physical separation possible between the 10 Gbps Ethernet MAC function implemented in an Altera FPGA and the Ethernet standard PHY component on a PCB to one meter. The XAUI IP Core accepts 72-bit data (single data rate–SDR XGMII) from the application layer at either 156.25 Mbps or 312.5 Mbps. The serial interface runs at either 4 × 3.125 Gbps or 4 × 6.25 Gbps (DDR XAUI option).

Figure 4–1 illustrates the top-level blocks of the XAUI PHY IP Core.

Figure 4–1. XAUI PHY IP Core

Note to Figure 4-1:

(1) Refer to Table 4-2 on page 4-2 for a list of supported devices.

For Stratix IV GX and GT devices, you can choose a hard XAUI physical coding sublayer (PCS) and physical media attachment (PMA), or a soft XAUI PCS and PMA in low latency mode. You can also combine both hard and soft PCS configurations in the same device, using all channels in a transceiver bank. The PCS is only available in soft logic for Stratix V devices.

For more detailed information about the XAUI transceiver channel datapath, clocking, and channel placement, refer to the "XAUI" section in the *Transceiver Configurations in Stratix V Devices* chapter of the *Stratix V Device Handbook*.

Release Information

Table 4–1 provides information about this release of the XAUI PHY IP Core.

Table 4–1. XAUI Release Information

Item	Description		
Version	12.0		
Release Date	June 2012		
Ordering Codes ⁽¹⁾	IP-XAUIPCS (primary)–Soft PCS IPR-XAUIPCS (renewal)–Soft PCS		
Product ID	00D7		
Vendor ID	6AF7		

Note to Table 4-1:

(1) No ordering codes or license files are required for the hard PCS and PMA PHY in Arria II GX, Cyclone[®] IV GX, or Stratix IV GX or GT devices.

Device Family Support

IP cores provide either final or preliminary support for target Altera device families. These terms have the following definitions:

- *Final support*—*V*erified with final timing models for this device.
- Preliminary support—Verified with preliminary timing models for this device.

Table 4–2 shows the level of support offered by the XAUI IP Core for Altera device families.

Table 4–2. Device Family Support

Device Family	Support	
XAUI		
Arria II GX – Hard PCS and PMA	Final	
Arria II GZ–Hard PCS and PMA	Final	
Cyclone IV GX–Hard PCS and PMA	Final	
HardCopy [®] IV	Final	
Stratix IV GX and GT devices–Soft or hard PCS and PMA	Final	
Stratix V devices–Soft PCS + PMA	Preliminary	
Other device families	No support	
DXAU		
Stratix IV GX and GT	Final	
Other device families	No support	

Performance and Resource Utilization

Table 4–3 shows the typical expected device resource utilization for different configurations using the current version of the Quartus II software targeting a Stratix IV GX (EP4SG230KF40C2ES) device. The numbers of combinational ALUTs, logic registers, and memory bits are rounded to the nearest 100.

Table 4–3. XAUI PHY Performance and Resource Utilization—Stratix IV GX Device

Implementation	Number of 3.125 Gbps Channels	Worst-Case Frequency	Combinational ALUTs	Dedicated Logic Registers	Memory Bits
Soft XAUI	4	183.18 MHz	4500	3200	5100
Hard XAUI	4	400 MHz	2000	1300	0

Parameter Settings

To configure the XAUI IP Core in the MegaWizard Plug-In Manager, click Installed Plug-Ins > Interfaces >Ethernet> XAUI PHY v12.0.

This section describes the XAUI PHY IP Core parameters, which you can set using the MegaWizard Plug-In Manager. Table 4–4 lists the settings available on **General Options** tab.

Table 4-4. General Options (Part 1 of 2)

Name	Value	Description	
Device family	Arria II GX Cyclone IV GX Stratix IV Stratix V	The target device family.	
		The physical starting channel number in the Altera device for channel 0 of this XAUI PHY. In Arria II GX, Cyclone IV GX, HardCopy IV, and Stratix IV devices, this starting channel number must be 0 or a multiple of 4.	
Starting channel number	0–124	Stratix V devices have different restrictions. Logical lane 0 should be assigned to either physical transceiver channel 1 or channel 4 of a transceiver bank. However, if you have already created a PCB with a different lane assignment for logical lane 0, you can use the workaound shown in Example 4–1 on page 4–4 to remove this restriction.	
		Assignment of the starting channel number is required for serial transceiver dynamic reconfiguration.	
		The following 3 interface types are available:	
		 Hard XAUI–Implements the PCS and PMA in hard logic. Available for Arria II, Cyclone IV, HardCopy IV, and Stratix IV devices. 	
XAUI interface type	Hard XAUI Soft XAUI	 Soft XAUI–Implements the PCS in soft logic and the PMA in hard logic. Available for HardCopy IV, Stratix IV, and Stratix V devices. 	
	DDR XAUI	 DDR XAUI–Implements the PCS in soft logic and the PMA in hard logic. Both the application and serial interfaces run at twice the frequency of the Soft XAUI options. Available for HardCopy IV Stratix IV devices. 	
		All interface types include 4 channels.	

Name	Value	Description
PLL type	CMU ATX	You can select either the CMU or ATX PLL. The CMU PLL has a larger frequency range than the ATX PLL. The ATX PLL is designed to improve jitter performance and achieves lower channel-to-channel skew; however, it supports a narrower range of data rates and reference clock frequencies. Another advantage of the ATX PLL is that it does not use a transceiver channel, while the CMU PLL does. This parameter is available for Stratix IV soft and DDR XAUI, and Stratix V devices.
Base data rate	1 × Lane rate 2 × Lane rate 4 × Lane rate	The base data rate is the frequency of the clock input to the PLL. Select a base data rate that minimizes the number of PLLs required to generate all the clock s required for data transmission. By selecting an appropriate base data rate , you can change data rates by changing the divider used by the clock generation block. This parameter is available for Stratix V devices.
Number of XAUI interfaces	1	Specifies the number of XAUI interfaces. Only 1 is available in the current release.

Table 4-4. General Options (Part 2 of 2)

Example 4–1 shows how to remove the restriction on logical lane 0 channel assignment in Stratix V devices by redefining the pma_bonding_master parameter using the Quartus II Assignment Editor. In this example, the pma_bonding_master was originally assigned to physical channel 1. (The original assignment could also have been to physical channel 4.) The to parameter reassigns the pma_bonding_master to the XAUI instance name shown in quotation marks. You must substitute the instance name from your design for the instance name shown in quotation marks

Example 4-1. Overriding Logical Lane O Channel Assignment Restrictions in Stratix V Devices

set_parameter -name pma_bonding_master "\"1\"" -to "<xaui instance name>|sv_xcvr_xaui:alt_xaui_phy|sv_xcvr_low_latency_phy_nr:alt_pma_0|sv_xcvr_custom_na tive:sv_xcvr_custom_inst|sv_xcvr_native:gen.sv_xcvr_native_insts[0].gen_bonded_group.s v_xcvr_native_inst"

Analog Options

The following sections explain how to specify analog options for supported device families.

Arria II GX, Cyclone IV GX, HardCopy IV and Stratix IV Devices

Arria II GX, Cyclone IV GX, and Stratix IV devices, you specify analog options on the **Analog Options** tab. Table 4–5 describes these options.

Name	Value	Description	
Transmitter termination resistance	0CT_85_0HMS 0CT_100_0HMS 0CT_120_0HMS 0CT_150_0HMS	Indicates the value of the termination resistor for the transmitter.	
Transmitter VOD control setting	0–7	Sets V _{OD} for the various TX buffers.	

Table 4-5. PMA Analog Options (Part 1 of 2)

Table 4–5. PMA Analog Options (Part 2 of 2)

Name	Value	Description		
Pre-emphasis pre-tap setting	0–7	Sets the amount of pre-emphasis on the TX buffer. Available for Stratix IV		
Invert the pre-emphasis pre-tap polarity setting	On Off	Determines whether or not the pre-emphasis control signal for the pre-tap is inverted. If you turn this option on, the pre-emphasis control signal is inverted. Available for HardCopy IV and Stratix IV devices.		
Pre-emphasis first post-tap setting	0–15	Sets the amount of pre-emphasis for the 1st post-tap.		
Pre-emphasis second post-tap setting	0–7	Sets the amount of pre-emphasis for the 2nd post-tap. Available for HardCopy IV and Stratix IV devices.		
Invert the pre-emphasis second post-tap polarity	On Off	Determines whether or not the pre-emphasis control signal for the second post-tap is inverted. If you turn this option on, the pre-emphasis control signa is inverted. Available for HardCopy IV and Stratix IV devices.		
Receiver common mode voltage	Tri-state 0.82V 1.1v	Specifies the RX common mode voltage.		
Receiver termination resistance	OCT_85_OHMS OCT_100_OHMS OCT_120_OHMS OCT_150_OHMS	Indicates the value of the termination resistor for the receiver. Cyclone IV supports 100 and 150.		
		Sets the equalization DC gain using one of the following settings:		
		■ 0-0 dB		
Receiver DC gain	0–4	■ 1–3 dB		
		■ 2–6 dB ■ 3–9 dB		
		■ 4–12 dB		
Receiver static equalizer setting:	0–15	This option sets the equalizer control settings. The equalizer uses a pass band filter. Specifying a low value passes low frequencies. Specifying a high value passes high frequencies. Available for HardCopy IV and Stratix IV devices.		

Stratix V Devices

You specify the analog parameters for Stratix V devices using the Quartus II Assignment Editor, the Pin Planner, or through the Quartus II Settings File (**.qsf**). The default values for analog options fall into three categories:

- *Global* These parameters have default values that are independent of other parameter settings.
- *Computed*—These parameters have an initial default value that is recomputed based on other parameter settings.
- *Proxy*—These parameters have default values that are place holders. The Quartus II software selects these initial default values based on your design; however, Altera recommends that you replace these defaults with values that match your electrical board specification.

Table 4–6 lists the analog parameters for Stratix V devices whose original values are place holders for the values that match your electrical board specification. In Table 4–6, the default value of an analog parameter is shown in **bold** type. The parameters are listed in alphabetical order.

Table 4–6. Transceiver and PLL Assignments for Stratix V Devices

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_GT_IO_PIN_ TERMINATION	GT Transceiver I/O Pin Termination	Fine tunes the target 100-ohm on-chip termination for the specified transceiver pin. This parameter is only for GT transceivers.	0-15 12	Pin
XCVR_IO_PIN_TERMINATION	Transceiver I/O Pin Termination	Specifies the intended on-chip termination value for the specified transceiver pin. Use External Resistor if you intend to use off-chip termination.	85_0HMS 100_0HMS 120_0HMS 150_0HMS EXTERNAL_ RESISTOR	Pin
XCVR_REFCLK_PIN_ TERMINATION	Transceiver Dedicated Refclk Pin Termination	Specifies the intended termination value for the specified refclk pin.	DC_COUPLING_ INTERNAL_100 _OHM DC_COUPLING_ EXTERNAL_ RESISTOR	Pin
		Bypass continuous time equalizer	AC_COUPLING	
XCVR_RX_BYPASS_EQ_ STAGES_234	Receiver Equalizer Stage 2, 3, 4 Bypass	stages 2, 3, and 4 to save power. This setting eliminates significant AC gain on the equalizer and is appropriate for chip-to-chip short range communication on a PCB.	ALL_STAGES_ ENABLED BYPASS_ STAGES	Pin
XCVR_TX_SLEW_RATE_CTRL	Transmitter Slew Rate Control	Specifies the slew rate of the output signal. The valid values span from the slowest rate to fastest rate with 1 representing the slowest rate.	1–5	Pin
XCVR_VCCA_VOLTAGE	VCCA_GXB Voltage	Configure the VCCA_GXB voltage for a GXB I/O pin by specifying the intended VCCA_GXB voltage for a GXB I/O pin. If you do not make this assignment the compiler automatically sets the correct VCCA_GXB voltage depending on the configured data rate, as follows: Data rate <= 6.5 Gbps: 2_5V Data rate > 6.5 Gbps: 3_0V or	2_5V 3_0V	Pin
		3_3V for Stratix V ES silicon		
XCVR_VCCR_VCCT_VOLTAGE	VCCR_GXB VCCT_GXB Voltage	Refer to the <i>Device Datasheet for</i> <i>Stratix V Devices</i> for guidance on selecting a value.	0_85V 1_0V	Pin

Table 4–7 lists the analog parameters with *global* or *computed* default values. You may want to optimize some of these settings. In Table 4–7, the default value is shown in **bold** type. For computed analog parameters, the default value listed is for the initial setting, not the recomputed setting. The parameters are listed in alphabetical order.

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
	Analog Parameters with	Global Default Value		
CDR_BANDWIDTH_PRESET	CDR Bandwidth Preset	Specifies the CDR bandwidth preset setting.	Auto Low Medium High	PLL instance
PLL_BANDWIDTH_PRESET	PLL Bandwidth Preset	Specifies the PLL bandwidth preset setting	Auto Low Medium High	PLL instance
XCVR_GT_RX_DC_GAIN	Receiver Buffer DC Gain Control	Controls the RX buffer DC gain for GT channels.	0-19 8	Pin
XCVR_RX_DC_GAIN	Receiver Buffer DC Gain Control	Controls the RX buffer DC gain for GX channels.	0-4	Pin
XCVR_RX_LINEAR_EQUALIZER_ CONTROL	Receiver Linear Equalizer Control	Static control for the continuous time equalizer in the receiver buffer. The equalizer has 16 distinct settings from $0-15$ corresponding to the increasing AC gain.	1 –16	Pin
I	Analog Parameters with C	omputed Default Value		
XCVR_GT_TX_PRE_EMP_PRE_ TAP	Transmitter Pre-emphasis Pre-Tap	Specifies the pre-tap pre-emphasis setting. This parameter is only for GT transceivers.	0-31 0	Pin
XCVR_GT_TX_VOD_MAIN_TAP	Transmitter Differential Output Voltage for GT channels.	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength. This parameter is only for GT transceivers.	0-5 3	Pin
XCVR_GT_RX_COMMON_ MODE_VOLTAGE	GT receiver Buffer Common Mode Voltage	Receiver buffer common-mode voltage. This parameter is only for GT transceivers.	VTT_0P8V VTT_0P75V VTT_0P65V VTT_0P65V VTT_0P55V VTT_0P55V VTT_0P35V VTT_VCM0FF7 VTT_VCM0FF6 VTT_VCM0FF5 VTT_VCM0FF3 VTT_VCM0FF3 VTT_VCM0FF1 VTT_VCM0FF1 VTT_VCM0FF0	Pin

Table 4–7. Transceiver and PLL Assignments for Stratix V Devices (Part 1 of 5)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_GT_RX_CTLE	GT Receiver Linear Equalizer Control	Static control for the continuous time equalizer in the receiver buffer. The equalizer has 9 distinct settings from 0-8 corresponding to increasing AC gain. This parameter is only for GT transceivers.	0-8 0	Pin
XCVR_GT_TX_COMMON_MODE_ VOLTAGE	GT Transmitter Common Mode Driver Voltage	Transmitter common-mode driver voltage. This parameter is only for GT transceivers.	VOLT_0P80V VOLT_0P75V VOLT_0P65V VOLT_0P65V VOLT_0P55V VOLT_0P55V VOLT_0P35V PULL_0P PULL_0P PULL_DN TRISTATED1 GROUNDED PULL_UP_TO_ VCCELA TRISTATED2 TRISTATED3 TRISTATED4	Pin
XCVR_GT_TX_PRE_EMP_1ST_ POST_TAP	GT Transmitter Preemphasis First Post-Tap	Specifies the first post-tap setting value. This parameter is only for GT transceivers.	0-31 5	Pin
XCVR_GT_TX_PRE_EMP_INV_ PRE_TAP	GT Transmitter Preemphasis Pre Tap Invert	Inverts the transmitter pre-emphasis pre-tap. This parameter is only for GT transceivers.	ON OFF	Pin
XCVR_GT_TX_PRE_EMP_PRE_ TAP	GT Transmitter Preemphasis Pre-Tap	Specifies the pre-tap pre-emphasis setting. This parameter is only for GT transceivers.	0-31 0	Pin

Table 4–7. Transceiver and PLL Assignments for Stratix V Devices (Part 2 of 5)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_GT_TX_VOD_MAIN_TAP	GT Transmitter Differential Output Voltage	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength.	0-5 3	Pin
XCVR_RX_COMMON_MODE_ VOLTAGE	Receiver Buffer Common Mode Voltage	Receiver buffer common-mode voltage.	VTT_0P80V VTT_0P75V VTT_0P65V VTT_0P65V VTT_0P55V VTT_0P50V VTT_0P50V VTT_0P35V VTT_PUP _WEAK VTT_PDN WEAK TRISTATE1 VTT_PDN_ STRONG VTT_PUP_ STRONG TRISTATE2 TRISTATE3 TRISTATE4	Pin
XCVR_RX_ENABLE_LINEAR_ EQUALIZER_PCIEMODE	Receiver Linear Equalizer Control (PCI Express)	If enabled equalizer gain control is driven by the PCS block for PCI Express. If disabled equalizer gain control is determined by the XCVR_RX_LINEAR_EQUALIZER_SETT ING assignment.	TRUE False	Pin
XCVR_RX_EQ_BW_SEL	Receiver Equalizer Gain Bandwidth Select	Sets the gain peaking frequency for the equalizer. For data-rates of less than 6.5Gbps set to HALF. For higher data- rates set to FULL.	full Half	Pin
XCVR_RX_SD_ENABLE	Receiver Signal Detection Unit Enable/Disable	Enables or disables the receiver signal detection unit.	TRUE False	Pin
XCVR_RX_SD_OFF	Receiver Cycle Count Before Signal Detect Block Declares Loss Of Signal	Number of parallel cycles to wait before the signal detect block declares loss of signal.	0–29	Pin
XCVR_RX_SD_ON	Receiver Cycle Count Before Signal Detect Block Declares Presence Of Signal	Number of parallel cycles to wait before the signal detect block declares presence of signal.	0 –16	Pin
XCVR_RX_SD_THRESHOLD	Receiver Signal Detection Voltage Threshold	Specifies signal detection voltage threshold level.	0 –7	Pin

Table 4–7. Transceiver and PLL Assignments for Stratix V Devices (Part 3 of 5)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_TX_COMMON_MODE_ VOLTAGE	Transmitter Common Mode Driver Voltage	Transmitter common-mode driver voltage	VOLT_OP80V VOLT_OP75V VOLT_OP65V VOLT_OP65V VOLT_OP60V VOLT_OP55V VOLT_OP55V VOLT_OP35V PULL_UP PULL_DOWN TRISTATED1 GROUNDED PULL_UP_TO VCCELA TRISTATED2 TRISTATED3 TRISTATED4	Pin
XCVR_TX_PRE_EMP_PRE_TAP_ USER	Transmitter Preemphasis Pre-Tap user	Specifies the TX pre-emphasis pretap setting value, including inversion.	0 –31	Pin
XCVR_TX_PRE_EMP_2ND_TAP_ USER	Transmitter Preemphasis Second Post-Tap user	Specifies the transmitter pre-emphasis second post-tap setting value, including inversion.	0 –31	Pin
XCVR_TX_PRE_EMP_1ST_POST_ TAP	Transmitter Preemphasis First Post-Tap	Specifies the first post-tap setting value.	0 –31	Pin
XCVR_TX_PRE_EMP_2ND_ POST_TAP	Transmitter Preemphasis Second Post-Tap	Specifies the second post-tap setting value.	0 –15	Pin
XCVR_TX_PRE_EMP_INV_ 2ND_TAP	Transmitter Preemphasis Second Tap Invert	Inverts the transmitter pre-emphasis 2nd post tap.	TRUE False	Pin
XCVR_TX_PRE_EMP_INV_ PRE_TAP	Transmitter Preemphasis Pre Tap Invert	Inverts the transmitter pre-emphasis pre-tap.	TRUE False	Pin
XCVR_TX_PRE_EMP_PRE_TAP	Transmitter Preemphasis Pre-Tap	Specifies the pre-tap pre-emphasis setting.	0 –15	Pin
XCVR_TX_RX_DET_ENABLE	Transmitter's Receiver Detect Block Enable	Enables or disables the receiver detector circuit at the transmitter.	TRUE False	Pin
XCVR_TX_RX_DET_MODE	Transmitter's Receiver Detect Block Mode	Sets the mode for receiver detect block	0 –15	Pin
XCVR_TX_RX_DET_OUTPUT_SEL	Transmitter's Receiver Detect Block QPI/PCI Express Control	Determines QPI or PCI Express mode for the Receiver Detect block.	RX_DET_QPI_ OUT RX_DET_PCIE_ OUT	Pin

Table 4–7. Transceiver and PLL Assignments for Stratix V Devices (Part 4 of 5)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_TX_VOD	Transmitter Differential Output Voltage	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength.	0–63 50	Pin
XCVR_TX_VOD_PRE_EMP_ CTRL_SRC	Transmitter V _{OD} /Preemphasis Control Source	When set to DYNAMIC_CTL, the PCS block controls the V _{OD} and preemphasis coefficients for PCI Express. When this assignment is set to RAM_CTL the V _{OD} and preemphasis are controlled by other assignments, such as XCVR_TX_PRE_EMP_1ST_POST_TAP.	DYNAMIC_CTL Ram_Ctl	Pin

Table 4–7.	Transceiver and PLL Assi	nnments for Stratix V	Devices (Part 5 of 5)
Table 4-7.	ITANSCEIVET ANU TEL ASSI	ymmenits fur stratik v	

- ⑦ For more information about the Pin Planner, refer to About the Pin Planner in Quartus II Help. For more information about the Assignment Editor, refer to About the Assignment Editor in Quartus II Help.
- **For more information about Quartus II Settings, refer to** *Quartus II Settings File Manual.*

Advanced Options

Table 4–8 describes the settings available on the **Advanced Options** tab.

 Table 4–8.
 Advanced Options

Name	Value	Description
Include control and status ports	On/Off	If you turn this option on, the top-level IP core include the status signals and digital resets shown in Figure 4–4 on page 4–14 and Figure 4–3 on page 4–13. If you turn this option off, you can access control and status information using Avalon-MM interface to the control and status registers. The default setting is off.
External PMA control and configuration	ind On/Off	If you turn this option on, the PMA signals are brought up to the top level of the XAUI IP Core. This option is useful if your design includes multiple instantiations of the XAUI PHY IP Core. To save FPGA resources, you can instantiate the Low Latency PHY Controller and Transceiver Reconfiguration Controller IP Cores separately in your design to avoid having these IP cores instantiated in each instance of the XAUI PHY IP Core. If you turn this option off, the PMA signals remain internal to the core. The default setting is off.
		This option is available for Arria II GX, HardCopy IV and Stratix IV devices. In these devices, this option must be turned On to fit 2 hard XAUI instances in adjacent transceiver quads that share the same calibration block. In addition, the instances must share powerdown signals.
Enable rx_recovered_clk pin	On/Off	When you turn this option on, the RX recovered clock signal is an output signal.

Configurations

Figure 4–2 illustrates one configuration of the XAUI IP Core. As this figure illustrates, if your variant includes a single instantiation of the XAUI IP Core, the transceiver reconfiguration control logic is included in the XAUI PHY IP Core. For Stratix V devices the Transceiver Reconfiguration Controller must always be external. Refer to Chapter 12, Transceiver Reconfiguration Controller for more information about this IP core.

Note to Figure 4–2:

(1) The Transceiver Reconfiguration Controller is always a separately instantiated in Stratix V devices.

Interfaces

This section describes interfaces of the XAUI PHY IP Core. It includes the following topics:

- Ports
- Registers
- Dynamic Reconfiguration

Ports

Figure 4–3 illustrates the top-level signals of the XAUI PHY IP Core for the hard IP implementation. Figure 4–4 illustrates the top-level signals of the XAUI PHY IP Core for the soft IP implementation. With the exception of the optional signals available for debugging and the signals for dynamic reconfiguration of the transceivers, the pinout of the two implementations is nearly identical. The DDR XAUI soft IP signals and behavior are the same as the soft IP implementation.

- The **block diagram** shown in the GUI labels the external pins with the *interface type* and places the *interface name* inside the box. The interface type and name are used to define component interfaces in the _hw.tcl. If you turn on Show signals, the block diagram displays all top-level signal names.
- **For more information about _hw.tcl** files refer to refer to the *Component Interface Tcl Reference* chapter in volume 1 of the *Quartus II Handbook*.

Figure 4–3 illustrates the top-level signals of the XAUI PHY IP Core for the hard IP implementation which is available for Arria II GX, Cyclone IV GX, HardCopy IV and Stratix IV GX devices.

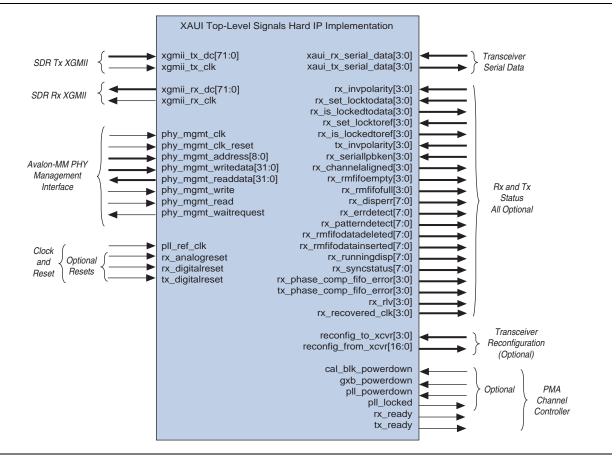
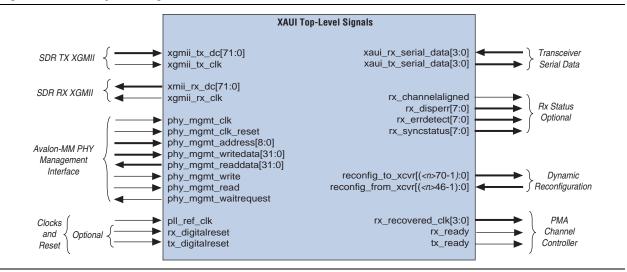
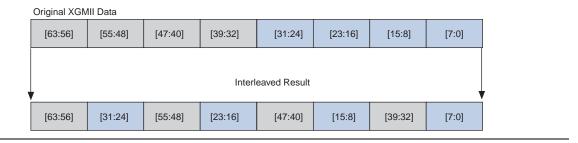



Figure 4–4 illustrates the top-level signals of the XAUI PHY IP Core for the soft IP implementation for both the single and DDR rates.

Figure 4–4. XAUI Top-Level Signals—Soft PCS and PMA

The following sections describe the signals in each interface.


SDR XGMII TX Interface

The XAUI PCS interface to the FPGA fabric uses a SDR XGMII interface. This interface implements a simple version of Avalon-ST protocol. The interface does not include ready or valid signals; consequently, the sources always drive data and the sinks must always be ready to receive data.

For more information about the Avalon-ST protocol, including timing diagrams, refer to the Avalon Interface Specifications.

Depending on the parameters you choose, the application interface runs at either 156.25 Mbps or 312.5 Mbps. At either frequency, data is only driven on the rising edge of clock. To meet the bandwidth requirements, the datapath is eight bytes wide with eight control bits, instead of the standard four bytes of data and four bits of control. The XAUI IP Core treats the datapath as two, 32-bit data buses and includes logic to interleave them, starting with the low-order bytes. Figure 4–5 illustrates the mapping.

Figure 4–5. Interleaved SDR XGMII Data

For the DDR XAUI variant, the start of control character (0xFB) is aligned to either byte 0 or byte 5. Figure 4–6 illustrates byte 0 alignment.

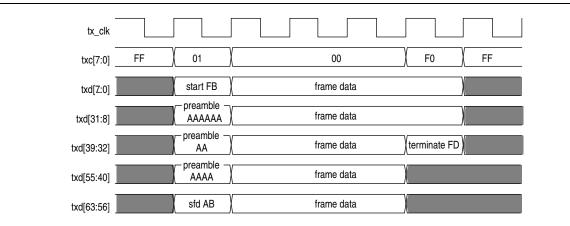
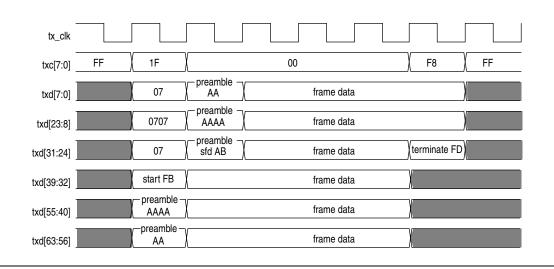



Figure 4–7 illustrates byte 4 alignment.

Table 4–9 describes the signals in the SDR TX XGMII interface.

Table 4–9. SDR TX XGMII Interface

Signal Name	Direction	Description
		Contains 4 lanes of data and control for XGMII. Each lane consists of 16 bits of data and 2 bits of control.
		■ Lane 0–[7:0]/[8], [43:36]/[44]
xgmii_tx_dc[71:0]	Source	■ Lane 1–[16:9]/[17], [52:45]/[53]]
		Lane 2–[25:18]/[26], [61:54]/[62]
		Lane 3-[34:27]/[35],[70:63]/[71]
xgmii_tx_clk	Input	The XGMII SDR TX clock which runs at 156.25 MHz or 312.5 for the DDR variant.

SDR XGMII RX Interface

Table 4–10 describes the signals in the SDR RX XGMII interface.

Table 4–10. SDR RX XGMII Inte

Signal Name	Direction	Description
xgmii_rx_dc_[71:0]	Sink	Contains 4 lanes of data and control for XGMII. Each lane consists of 16 bits of data and 2 bits of control. Lane 0–[7:0]/[8], [43:36]/[44] Lane 1–[16:9]/[17], [52:45]/[53]] Lane 2–[25:18]/[26], [61:54]/[62]
		Lane 3-[34:27]/[35],[70:63]/[71]
xgmii_rx_clk	Output	The XGMII SDR RX MAC interface clock which runs at 156.25 MHz.

Transceiver Serial Data Interface

Table 4–11 describes the signals in the XAUI transceiver serial data interface. There are four lanes of serial data for both the TX and RX interfaces. This interface runs at 3.125 GHz or 6.25 GHz depending on the variant you choose. There is no separate clock signal because it is encoded in the data.

Table 4–11. Serial Data Interface

Signal Name	Direction	Description
<pre>xaui_rx_serial_data[3:0]</pre>	Input	Serial input data.
<pre>xaui_tx_serial_data[3:0]</pre>	Output	Serial output data.

Clocks, Reset, and Powerdown

Figure 4–8 illustrates the clock inputs and outputs for the XAUI IP Cores with hard PCS and PMA blocks.

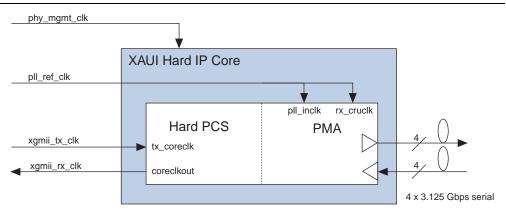


Figure 4–9 illustrates the clock inputs and outputs for the XAUI IP Cores with soft PCS and PMA blocks.

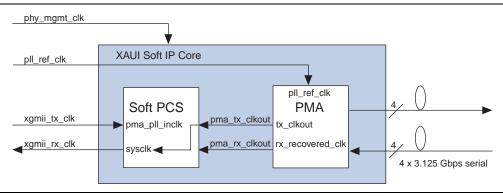


Table 4–12 describes the optional reset signals. Refer to "Reset Controller" on page 1–3 for additional information about reset.

Table 4-12.	Clock and	Reset Signals
-------------	-----------	----------------------

Signal Name	Direction	Description
pll_ref_clk	Input	This is a 156.25 MHz reference clock that is used by the TX PLL and CDR logic.
rx_analogreset	Input	This signal resets the analog CDR and deserializer logic in the RX channel. It is only available in the hard IP implementation.
rx_digitalreset	Input	PCS RX digital reset signal.
tx_digitalreset	Input	PCS TX digital reset signal.

PMA Channel Controller

Table 4–13 describes the signals in this interface.

Table 4–13. PMA Channel Controller Signals

Signal Name	Direction	Description
cal_blk_powerdown	Input	Powers down the calibration block. A high-to-low transition on this signal restarts calibration. Only available in Arria II GX and Stratix IV GX, and Stratix IV GT devices.
gxb_powerdown	Input	When asserted, powers down the entire transceiver block. Only available in Arria II GX and Stratix IV GX, and Stratix IV GT devices.
pll_powerdown	Input	Powers down the CMU PLL. Only available in Arria II GX and Stratix IV GX, and Stratix IV GT devices.
pll_locked	Output	Indicates CMU PLL is locked. Only available in Arria II GX and Stratix IV GX, and Stratix IV GT devices.
rx_recovered_clk[3:0]	Output	This is the RX clock which is recovered from the received data stream.
rx_ready	Output	Indicates PMA RX has exited the reset state and the transceiver can receive data.
tx_ready	Output	Indicates PMA TX has exited the reset state and the transceiver can transmit data.

PMA Control and Status Interface Signals–Soft IP Implementation (Optional)

Table 4–14 lists the optional PMA control and status signals available in the soft IP implementation. You can also access the state of these signals using the Avalon-MM PHY Management interface to read the control and status registers which are detailed in Table 4–17 on page 4–21. However, in some cases, you may need to know the instantaneous value of a signal to ensure correct functioning of the XAUI PHY. In such cases, you can include the required signal in the top-level module of your XAUI PHY IP Core.

Table 4–14. Optional Control and Status Signals

Signal Name	Direction	Description
rx_channelaligned	Output	When asserted, indicates that all 4 RX channels are aligned.
rx_disperr[7:0]	Output	Received 10-bit code or data group has a disparity error. It is paired with rx_errdetect which is also asserted when a disparity error occurs. The rx_disperr signal is 2 bits wide per channel for a total of 8 bits per XAUI link.
rx_errdetect[7:0]	Output	When asserted, indicates an 8B/10B code group violation. It is asserted if the received 10-bit code group has a code violation or disparity error. It is used along with the rx_disperr signal to differentiate between a code violation error, a disparity error, or both.The rx_errdetect signal is 2 bits wide per channel for a total of 8 bits per XAUI link.
rx_syncstatus[7:0]	Output	Synchronization indication. RX synchronization is indicated on the rx_syncstatus port of each channel. The rx_syncstatus signal is 2 bits per channel for a total of 8 bits per hard XAUI link. The rx_syncstatus signal is 1 bit per channel for a total of 4 bits per soft XAUI link.

Signal Name	Direction	Description
<pre>rx_is_lockedtodata[3:0]</pre>	Output	When asserted indicates that the RX CDR PLL is locked to the incoming data.
<pre>rx_is_lockedtoref[3:0]</pre>	Output	When asserted indicates that the RX CDR PLL is locked to the reference clock.
tx_clk312_5	Output	This is the clock used for the SDR XGMII interface.

Table 4–14. Optional Control and Status Signals

PMA Control and Status Interface Signals–Hard IP Implementation (Optional)

Table 4–15 lists the PMA control and status signals. You can access the state of these signals using the Avalon-MM PHY Management interface to read the control and status registers which are detailed in Table 4–17 on page 4–21. However, in some cases, you may need to know the instantaneous value of a signal to ensure correct functioning of the XAUI PHY. In such cases, you can include the required signal in the top-level module of your XAUI PHY IP Core.

Table 4–15. Optional Control and Status Signals—Hard IP Implementation, Stratix IV GX Devices (Part 1 of 2)

Signal Name	Direction	Description
<pre>rx_invpolarity[3:0]</pre>	input	Dynamically reverse the polarity of every bit of the RX data at the input of the word aligner.
<pre>rx_set_locktodata[3:0]</pre>	Input	Force the CDR circuitry to lock to the received data.
<pre>rx_is_lockedtodata[3:0]</pre>	Output	When asserted, indicates the RX channel is locked to input data.
<pre>rx_set_locktoref[3:0]</pre>	Input	Force the receiver CDR to lock to the phase and frequency of the input reference clock.
<pre>rx_is_lockedtoref[3:0]</pre>	Output	When asserted, indicates the RX channel is locked to input reference clock.
<pre>tx_invpolarity[3:0]</pre>	input	Dynamically reverse the polarity the data word input to the serializer in the TX datapath.
		Serial loopback enable.
	input	 1: Enables serial loopback
rx_seriallpbken		 0: Disables serial loopback
		This signal is asynchronous to the receiver. The status of the serial loopback option is recorded by the PMA channel controller, word address 0x061.
rx_channelaligned	Output	When asserted indicates that the RX channel is aligned.
pll_locked	Output	In LTR mode, indicates that the receiver CDR has locked to the phase and frequency of the input reference clock.
<pre>rx_rmfifoempty[3:0]</pre>	Output	Status flag that indicates the rate match FIFO block is empty (5 words). This signal remains high as long as the FIFO is empty and is asynchronous to the RX datapath.
rx_rmfifofull[3:0]	Output	Status flag that indicates the rate match FIFO block is full (20 words). This signal remains high as long as the FIFO is full and is asynchronous to the RX data.
rx_disperr[7:0]	Output	Received 10-bit code or data group has a disparity error. It is paired with rx_errdetect which is also asserted when a disparity error occurs. The rx_disperr signal is 2 bits wide per channel for a total of 8 bits per XAUI link.

Signal Name	Direction	Description
rx_errdetect[7:0]	Output	Transceiver 8B/10B code group violation or disparity error indicator. If either signal is asserted, a code group violation or disparity error was detected on the associated received code group. Use the rx_disperr signal to determine whether this signal indicates a code group violation or a disparity error. The rx_errdetect signal is 2 bits wide per channel for a total of 8 bits per XAUI link.
<pre>rx_patterndetect[7:0]</pre>	Output	Indicates that the word alignment pattern programmed has been detected in the current word boundary. The rx_patterndetect signal is 2 bits wide per channel for a total of 8 bits per XAUI link.
<pre>rx_rmfifodatadeleted[7:0]</pre>	Output	Status flag that is asserted when the rate match block deletes a R column. The flag is asserted for one clock cycle per deleted R column.
<pre>rx_rmfifodatainserted[7:0]</pre>	Output	Status flag that is asserted when the rate match block inserts a R column. The flag is asserted for one clock cycle per inserted R column.
<pre>rx_runningdisp[7:0]</pre>	Output	Asserted when the current running disparity of the 8B/10B decoded byte is negative. Low when the current running disparity of the 8B/10B decoded byte is positive.
<pre>rx_syncstatus[7:0]</pre>	Output	Synchronization indication. RX synchronization is indicated on the rx_syncstatus port of each channel. The rx_syncstatus signal is 2 bits wide per channel for a total of 8 bits per XAUI link.
<pre>rx_phase_comp_fifo_error[3:0]</pre>	Output	Indicates a RX phase comp FIFO overflow or underrun condition.
<pre>tx_phase_comp_fifo_error[3:0]</pre>	Output	Indicates a TX phase compensation FIFO overflow or underrun condition.
rx_rlv[3:0]	Output	Asserted if the number of continuous 1s and 0s exceeds the number that was set in the run-length option. The rx_rlv signal is asynchronous to the RX datapath and is asserted for a minimum of 2 recovered clock cycles.
rx recovered clk	Output	This is the RX clock which is recovered from the received data

Output

stream.

Table 4–15. Optional Control and Status Signals—Hard IP Implementation, Stratix IV GX Devices (Part 2 of 2)

rx_recovered_clk

Registers

The Avalon-MM PHY management interface provides access to the XAUI PHY IP Core PCS, PMA, and transceiver reconfiguration registers. Table 4–16 describes the signals that comprise the Avalon-MM PHY Management interface.

Table 4–16. Avalon-MM PHY Management Interface

Signal Name	Direction	Description
		Avalon-MM clock input.
phy_mgmt_clk	Input	There is no frequency restriction for Stratix V devices; however, if you plan to use the same clock for the PHY management interface and transceiver reconfiguration, you must restrict the frequency range of phy_mgmt_clk to 100–150 MHz to meet the specification for the transceiver reconfiguration clock. For Arria II GX, Cyclone IV GX, HardCopy IV, and Stratix IV GX the frequency range is 37.5–50 MHz.
phy_mgmt_clk_reset	Input	Global reset signal that resets the entire XAUI PHY. This signal is active high and level sensitive.
phy_mgmt_addr[8:0]	Input	9-bit Avalon-MM address.
phy_mgmt_writedata[31:0]	Input	32-bit input data.
phy_mgmt_readdata[31:0]	Output	32-bit output data.
phy_mgmt_write	Input	Write signal. Asserted high.
phy_mgmt_read	Input	Read signal. Asserted high.
phy_mgmt_waitrequest	Output	When asserted, indicates that the Avalon-MM slave interface is unable to respond to a read or write request. When asserted, control signals to the Avalon-MM slave interface must remain constant.

***** For more information about the Avalon-MM interface, including timing diagrams, refer to the *Avalon Interface Specifications*.

Register Descriptions

Table 4–17 specifies the registers that you can access using the Avalon-MM PHY management interface using word addresses and a 32-bit embedded processor. A single address space provides access to all registers.

Writing to reserved or undefined register addresses may have undefined side effects.

Word Addr	Bits	R/W	Register Name	Description
	PMA Common Control and Status Registers			
0x021	[31:0]	RW	cal_blk_powerdown	Writing a 1 to channel $\langle n \rangle$ powers down the calibration block for channel $\langle n \rangle$. This register is not available for Stratix V devices.
0x022	[31:0]	R	pma_tx_pll_is_locked	Bit[P] indicates that the TX CMU PLL (P) is locked to the input reference clock. There is typically one pma_tx_pll_is_locked bit per system. This register is not available for Stratix V devices.

Table 4–17. XAUI PHY IP Core Registers (Part 1 of 5)

Word Addr	Bits	R/W	Register Name	Description
			Reset Control Registers-A	utomatic Reset Controller
0x041	[31:0]	RW	reset_ch_bitmask	Bit mask for reset registers at addresses 0x042 and 0x044. The default value is all 1s. Channel $\langle n \rangle$ can be reset when bit $\langle n \rangle$ = 1.
0x042 [1:0]	W	reset_control (write)	Writing a 1 to bit 0 initiates a TX digital reset using the reset controller module. The reset affects channels enabled in the reset_ch_bitmask. Writing a 1 to bit 1 initiates a RX digital reset of channels enabled in the reset_ch_bitmask.	
		R	reset_status(read)	Reading bit 0 returns the status of the reset controller TX ready bit. Reading bit 1 returns the status of the reset controller RX ready bit.
			Reset Controls	-Manual Mode
	[31:4,0]	RW	Reserved	It is safe to write 0s to reserved bits.
	[1]	RW	reset_tx_digital	Writing a 1 causes the internal TX digital reset signal to be asserted, resetting all channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.
0x044	[2]	RW	reset_rx_analog	Writing a 1 causes the internal RX analog reset signal to be asserted, resetting the RX analog logic of all channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.
	[3]	RW	reset_rx_digital	Writing a 1 causes the RX digital reset signal to be asserted, resetting the RX digital channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.
			PMA Control and	Status Registers
0x061	[31:0]	RW	phy_serial_loopback	Writing a 1 to channel <n> puts channel <n> in serial loopback mode. For information about pre- or post-CDR serial loopback modes, refer to "Loopback Modes" on page 12–42.</n></n>
0x064	[31:0]	RW	pma_rx_set_locktodata	When set, programs the RX CDR PLL to lock to the incoming data. Bit <i><n></n></i> corresponds to channel <i><n></n></i> .
0x065	[31:0]	RW	pma_rx_set_locktoref	When set, programs the RX CDR PLL to lock to the reference clock. Bit <i><n></n></i> corresponds to channel <i><n></n></i> .
0x066	[31:0]	RO	pma_rx_is_lockedtodata	When asserted, indicates that the RX CDR PLL is locked to the RX data, and that the RX CDR has changed from LTR to LTD mode. Bit <i><n></n></i> corresponds to channel <i><n></n></i> .
0x067	[31:0]	RO	pma_rx_is_lockedtoref	When asserted, indicates that the RX CDR PLL is locked to the reference clock. Bit $\langle n \rangle$ corresponds to channel $\langle n \rangle$.

Table 4–17. XAUI PHY IP Core Registers (Part 2 of 5)

Word Addr	Bits	R/W	Register Name	Description		
	XAUI PCS					
	[31:4]		Reserved	—		
0x082	[3:0]	RW	invpolarity[3:0]	Inverts the polarity of corresponding bit on the RX interface. Bit 0 maps to lane 0 and so on.		
				To block: Word aligner.		
	[31:4]	—	Reserved	—		
0x083	[3:0]	RW	invpolarity[3:0]	Inverts the polarity of corresponding bit on the TX interface. Bit 0 maps to lane 0 and so on.		
				To block: Serializer.		
	[31:16]		Reserved	_		
[15:8]		patterndetect[7:0]	When asserted, indicates that the programmed word alignment pattern has been detected in the current word boundary. The RX pattern detect signal is 2 bits wide per channel or 8 bits per XAUI link. Reading the value of the patterndetect registers clears the bits. This register is only available in the hard XAUI implementation.			
0x084				From block: Word aligner.		
[7:0]			syncstatus[7:0]	Records the synchronization status of the corresponding bit. The RX sync status register has 2 bits per channel for a total of 8 bits per hard XAUI link. The RX sync status register has 1 bit per channel for a total of 4 bits per soft XAUI link; soft XAUI uses bits 0–3. Reading the value of the syncstatus register clears the bits.		
	[01.10]		Deserved	From block: Word aligner.		
0x085	[31:16]	R	Reserved	When set, indicates that a received 10-bit code group has an 8B/10B code violation or disparity error. It is used along with disperr to differentiate between a code violation error, a disparity error, or both. There are 2 bits per RX channel for a total of 8 bits per XAUI link. Reading the value of the errdetect register clears the bits. From block: 8B/10B decoder.		
	[7:0]		disperr[7:0]	Indicates that the received 10-bit code or data group has a disparity error. When set, the corresponding errdetect bits are also set. There are 2 bits per RX channel for a total of 8 bits per XAUI link. Reading the value of the errdetect register clears the bits From block: 8B/10B decoder.		

Word Addr	Bits	R/W	Register Name	Description
	[31:8]	—	Reserved	
	[7:4]		<pre>phase_comp_fifo_error[3: 0]</pre>	Indicates a RX phase compensation FIFO overflow or underrun condition on the corresponding lane. Reading the value of the phase_comp_fifo_error register clears the bits. This register is only available in the hard XAUI implementation
0x086		- R,		From block: RX phase compensation FIFO.
[3:0]	[3:0]	sticky	rlv[3:0]	Indicates a run length violation. Asserted if the number of consecutive 1s or 0s exceeds the number that was set in the Runlength check option. Bits 0-3 correspond to lanes 0-3, respectively. Reading the value of the RLV register clears the bits. This register is only available in the hard XAUI implementation.
				From block: Word aligner.
	[31:16]	—	Reserved	_
	[15:8]		rmfifodatainserted[7:0]	When asserted, indicates that the RX rate match block inserted a R column. Goes high for one clock cycle per inserted R column. Reading the value of the rmfifodatainserted register clears the bits. This register is only available in the hard XAUI implementation.
0x087				From block: Rate match FIFO.
UXU87	[7:0]	- R, sticky	rmfifodatadeleted[7:0]	When asserted, indicates that the rate match block has deleted an R column. The flag goes high for one clock cycle per deleted R column. There are 2 bits for each lane. Reading the value of the rmfifodatadeleted register clears the bits. This register is only available in the hard XAUI implementation.
				From block: Rate match FIFO.
	[31:8]		Reserved	
0×088	[7:4]	R, sticky	rmfifofull[3:0]	When asserted, indicates that rate match FIFO is full (20 words). Bits 0-3 correspond to lanes 0-3, respectively. Reading the value of the rmfifofull register clears the bits. This register is only available in the hard XAUI implementation
				From block: Rate match FIFO.
	[3:0]		rmfifoempty[3:0]	When asserted, indicates that the rate match FIFO is empty (5 words). Bits 0-3 correspond to lanes 0-3, respectively. Reading the value of the rmfifoempty register clears the bits. This register is only available in the hard XAUI implementation
				From block: Rate match FIFO.

Table 4–17	ΧΔΙΙΙ ΡΗΥ ΙΡ	Core Registers	(Part 4 of 5)
Table 4-17.		oure negisiers	(Fait 4 01 J)

Word Addr	Bits	R/W	Register Name	Description
	[31:3]	_	Reserved	_
0x089	[2:0]	R, sticky	<pre>phase_comp_fifo_error[2: 0]</pre>	Indicates a TX phase compensation FIFO overflow or underrun condition on the corresponding lane. Reading the value of the <pre>phase_comp_fifo_error</pre> register clears the bits.This register is only available in the hard XAUI implementation
				From block: TX phase compensation FIFO.
0x08a	[0]	RW	simulation_flag	Setting this bit to 1 shortens the duration of reset and loss timer when simulating. Altera recommends that you keep this bit set during simulation.

Table 4–17. XAUI PHY IP Core Registers (Part 5 of 5)

For more information about the individual PCS blocks referenced in Table 4–17, refer to the Transceiver Architecture chapters of the appropriate device handbook, as follows:

- Arria II–*Transceiver Architecture in Arria II Devices* in the Arria II Device Handbook
- Cyclone IV–*Cyclone IV Transceivers Architecture* in the Cyclone IV Device Handbook
- HardCopy IV-Transceiver Architecture in HardCopy IV Devices in the HardCopy IV Device Handbook
- Stratix IV–*Transceiver Architecture in Stratix IV Devices* in the *Stratix IV Device Handbook*
- Stratix V–*Transceiver Architecture in Stratix V Devices* in the *Stratix V Device Handbook*

Dynamic Reconfiguration

As silicon progresses towards smaller process nodes, circuit performance is affected more by variations due to process, voltage, and temperature (PVT). These process variations result in analog voltages that can be offset from required ranges. The calibration performed by the dynamic reconfiguration interface compensates for variations due to PVT.

This section includes information about the dynamic reconfiguration interface. The Arria II GX, Cyclone IV GX, HardCopy IV GX, and Stratix IV GX use the ALTGX_RECONFIG Mega function for transceiver reconfiguration. The Stratix V device uses the Transceiver Reconfiguration Controller IP Core for dynamic reconfiguration. For more information about this IP core, refer to Chapter 12, Transceiver Reconfiguration Controller.

For more information about the ALTGX_RECONFIG Megafunction, refer to ALTGX_RECONFIG Megafunction User Guide for Stratix IV Devices in volume 2 of the Stratix IV Device Handbook.

Reconfiguration for Arria II GX, Cyclone IV GX, HardCopy IV GX, and Stratix IV GX Devices

Table 4–18 describes the signals in the reconfiguration interface. If your XAUI PHY IP Core includes a single transceiver quad, these signals are internal to the core. If your design uses more than one quad, the reconfiguration signals are external.

Table 4–18. Dynamic Reconfiguration Interface

Signal Name	Direction	Description
reconfig_to_xcvr[3:0]	Input	Reconfiguration signals from the Transceiver Reconfiguration IP Core to the XAUI transceiver.
reconfig_from_xcvr[<n>:0]</n>	Output	Reconfiguration signals from the XAUI transceiver to the Transceiver Reconfiguration IP Core. The size of this bus is depends on the device. For the soft PCS in Stratix IV GX and GT devices, $\langle n \rangle = 68$ bits. For hard XAUI variants, $\langle n \rangle = 16$. For Stratix V devices, the number of bits depends on the number of channels specified. Refer to Chapter 12, Transceiver Reconfiguration Controller for more information.

Dynamic Reconfiguration for Stratix V Devices

For Stratix V devices, each channel and each TX PLL have separate dynamic reconfiguration interfaces. The MegaWizard Plug-In Manager provides informational messages on the connectivity of these interfaces. Example 4–2 shows the messages for a single transceiver quad.

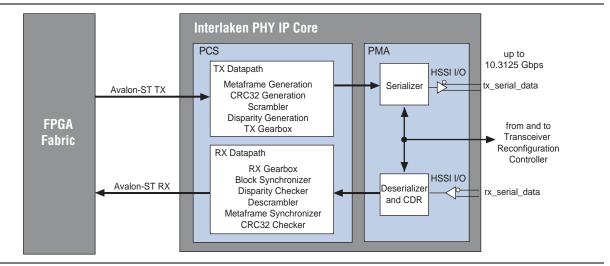
Although you must initially create a separate reconfiguration interface for each channel and TX PLL in your design, when the Quartus II software compiles your design, it reduces the number of reconfiguration interfaces by merging reconfiguration interfaces. The synthesized design typically includes a reconfiguration interface for at least three channels because three channels share an Avalon-MM slave interface which connects to the Transceiver Reconfiguration Controller IP Core. Conversely, you cannot connect the three channels that share an Avalon-MM interface to different Transceiver PHY IP Cores. Doing so causes a Fitter error. For more information, refer to "Reconfiguration Controller to PHY IP Connectivity" on page 12–40.

Example 4-2. Informational Messages for the Transceiver Reconfiguration Interface

```
PHY IP will require 8 reconfiguration interfaces for connection to the external reconfiguration controller.
Reconfiguration interface offsets 0-3 are connected to the transceiver channels.
Reconfiguration interface offsets 4-7 are connected to the transmit PLLs.
```

Simulation Files and Example Testbench

Refer to "Running a Simulation Testbench" on page 1–4 for a description of the directories and files that the Quartus II software creates automatically when you generate your XAUI PHY IP Core.



Refer to the Altera wiki for an example testbench that you can use as a starting point in creating your own verification environment.

Interlaken is a high speed serial communication protocol for chip-to-chip packet transfers. The Altera Interlaken PHY IP Core implements *Interlaken Protocol Specification, Rev 1.2.* It supports multiple instances, each with 1 to 24 lanes running at 10.3125 Gbps or greater on Stratix V devices. The key advantages of Interlaken are scalability and its low I/O count compared to earlier protocols such as SPI 4.2. Other key features include flow control, low overhead framing, and extensive integrity checking. The Interlaken physical coding sublayer (PCS) transmits and receives Avalon-ST data on its FPGA fabric interface. It transmits and receives high speed differential serial data using the PCML I/O standard. Figure 5–1 illustrates the top-level modules of the Interlaken PHY.

Figure 5–1. Interlaken PHY IP Core

For more information about the Avalon-ST protocol, including timing diagrams, refer to the *Avalon Interface Specifications*.

Interlaken operates on 64-bit data words and 3 control bits, which are striped round robin across the lanes to reduce latency. Striping renders the interface independent of exact lane count. The protocol accepts packets on 256 logical channels and is expandable to accommodate up to 65,536 logical channels. Packets are split into small bursts which can optionally be interleaved. The burst semantics include integrity checking and per channel flow control.

The Interlaken PCS supports the following framing functions on a per lane basis:

- Gearbox
- Block synchronization
- Metaframe generation and synchronization
- 64b/67b encoding and decoding
- Scrambling and descrambling

- Lane-based CRC32
- Disparity DC balancing
- For more detailed information about the Interlaken transceiver channel datapath, clocking, and channel placement, refer to the "Interlaken" section in the Transceiver Configurations in Stratix V Devices chapter of the Stratix V Device Handbook.

Refer to PHY IP Design Flow with Interlaken for Stratix V Devices for a reference design that implements the Interlaken protocol in a Stratix V device.

Device Family Support

IP cores provide either final or preliminary support for target Altera device families. These terms have the following definitions:

- *Final support*—*V*erified with final timing models for this device.
- Preliminary support—Verified with preliminary timing models for this device.

Table 5–1 shows the level of support offered by the Interlaken PHY IP Core for Altera device families

Table 5–1. Device Family Support

Device Family	Support
Stratix V devices–Hard PCS + PMA	Preliminary
Other device families	Not supported

Parameter Settings

To configure the Interlaken PHY IP Core in the MegaWizard Plug-In Manager, click **Installed Plug-Ins > Interfaces > Interlaken > Interlaken PHY v12.0**. The Interlaken PHY IP Core is only available when you select the Stratix V device family.

General Options

Table 5–2 describes the parameters that you can set on the General tab.

Table 5–2. General Option (Part 1 of 2)

Parameter	Value	Description
Device family	Stratix V	Specifies the device family.
Datapath mode	Duplex, RX, TX	Specifies the mode of operation as Duplex , RX , or TX mode.

Table 5–2. General Option (Part 2 of 2)

Parameter	Value	Description
	3125 Mbps	Specifies the link bandwidth. The Input clock frequency and Base data rate parameters update automatically based on the Lane rate you specify; however, you can change these default values.
Lane rate	5000 Mbps 6250 Mbps 6375 Mbps 10312.5 Mbps Custom	Custom, user-defined, lane data rates are now supported. However, the you must choose a lane data rate that results in a standard board oscillator reference clock frequency to drive the pll_ref_clk and meet jitter requirements. Choosing a lane data rate that deviates from standard reference clock frequencies may result in custom board oscillator clock frequencies which may be prohibitively expensive or unavailable.
Number of lanes	1-24	Specifies the number of lanes in a link over which data is striped.
		Specifies the number of words in a metaframe. The default value is 2048.
Metaframe length in words	5 5-8141	Although 5–8191 words are valid metaframe length values, the current Interlaken PHY IP Core implementation requires a minimum of 128 Metaframe length for good, stable performance.
		In simulation, Altera recommends that you use a smaller metaframe length to reduce simulation times.
Input clock frequency	Lane rate/ <n> Lane rate/80 Lane rate/64 Lane rate/50 Lane rate/40 Lane rate/32 Lane rate/25 Lane rate/20 Lane rate/16 Lane rate/12.5 Lane rate/10 Lane rate/8</n>	Specifies the frequency of the input reference clock. The default value for the Input clock frequency is the Lane rate /20; however, you can change this value. Many reference clock frequencies are available.
		Specifies the PLL type.
PLL type	CMU ATX	The CMU PLL has a larger frequency range than the ATX PLL. The ATX PLL is designed to improve jitter performance and achieves lower channel-to-channel skew; however, it supports a narrower range of lane data rates and reference clock frequencies. Another advantage of the ATX PLL is that it does not use a transceiver channel, while the CMU PLL does. Because the CMU PLL is more versatile, it is specified as the default setting.
Base data rate	1 × Lane rate 2 × Lane rate 4 × Lane rate	This option allows you to specify a Base data rate to minimize the number of PLLs required to generate the clocks necessary for data transmission at different frequencies. Depending on the Lane rate you specify, the default Base data rate can be either 1, 2, or 4 times the Lane rate ; however, you can change this value. The default value specified is for backwards compatibility with earlier Quartus II software releases.

Advanced Options

Table 5–3 describes the parameters that you can set on the **Optional Ports** tab.

Table 5–3. Optional Ports

Parameter	Value	Description
Enable RX status signals, (word lock, sync lock, crc32 error) as part of rx_parallel_data	On/Off	When you turn this option on, $rx_parallel_data[71:69]$ are included in the top-level module. These optional signals report the status of word and synchronization locks and CRC32 errors. Refer to Table 5–7 on page 5–14 for more information.
Graata ty, aavaalkin		The tx_coreclkin drives the write side of TX FIFO. This clock is required for multi-lane synchronization but is optional for single lane Interlaken links.
Create tx_coreclkin port	On/Off	If tx_coreclkin is deselected for single lane Interlaken links, tx_user_clkout drives the TX side of the write FIFO. You must use the tx_user_clkout output port to drive transmit data in the Interlaken MAC.
Create rx_coreclkin port	On/Off	When selected rx_coreclkin is available as input port which drives the read side of RX FIFO, When deselected rx_user_clkout, rx_clkout for all bonded receiver lanes, is routed internally to drive the RX read side of FIFO. rx_user_clkout is also available as an output port for the Interlaken MAC.

Analog Settings

You specify the analog parameters for Stratix V devices using the Quartus II Assignment Editor, the Pin Planner, or through the Quartus II Settings File (**.qsf**). The default values for analog options fall into three categories:

- *Global* These parameters have default values that are independent of other parameter settings.
- *Computed*—These parameters have an initial default value that is recomputed based on other parameter settings.
- *Proxy*—These parameters have default values that are place holders. The Quartus II software selects these initial default values based on your design; however, Altera recommends that you replace these defaults with values that match your electrical board specification.

Table 5–4 lists the analog parameters for Stratix V devices whose original values are place holders for the values that match your electrical board specification. In Table 5–4, the default value of an analog parameter is shown in **bold** type. The parameters are listed in alphabetical order.

Table 5–4. Transceiver and PLL Assignments for Stratix V Devices

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_GT_IO_PIN_ TERMINATION	GT Transceiver I/O Pin Termination	Fine tunes the target 100-ohm on-chip termination for the specified transceiver pin. This parameter is only for GT transceivers.	0-15 12	Pin
XCVR_IO_PIN_TERMINATION	Transceiver I/O Pin Termination	Specifies the intended on-chip termination value for the specified transceiver pin. Use External Resistor if you intend to use off-chip termination.	85_0HMS 100_0HMS 120_0HMS 150_0HMS EXTERNAL_ RESISTOR	Pin
XCVR_REFCLK_PIN_ TERMINATION	Transceiver Dedicated Refclk Pin Termination	Specifies the intended termination value for the specified refclk pin.	DC_COUPLING_ INTERNAL_100 _OHM DC_COUPLING_ EXTERNAL_ RESISTOR	Pin
XCVR_RX_BYPASS_EQ_ STAGES_234	Receiver Equalizer Stage 2, 3, 4 Bypass	Bypass continuous time equalizer stages 2, 3, and 4 to save power. This setting eliminates significant AC gain on the equalizer and is appropriate for chip-to-chip short range communication on a PCB.	AC_COUPLING ALL_STAGES_ ENABLED BYPASS_ STAGES	Pin
XCVR_TX_SLEW_RATE_CTRL	Transmitter Slew Rate Control	Specifies the slew rate of the output signal. The valid values span from the slowest rate to fastest rate with 1 representing the slowest rate.	1–5	Pin
XCVR_VCCA_VOLTAGE	VCCA_GXB Voltage	Configure the VCCA_GXB voltage for a GXB I/O pin by specifying the intended VCCA_GXB voltage for a GXB I/O pin. If you do not make this assignment the compiler automatically sets the correct VCCA_GXB voltage depending on the configured data rate, as follows: Data rate <= 6.5 Gbps: 2_5V Data rate > 6.5 Gbps: 3_0V or 3_3V for Stratix V ES silicon	2_5V 3_0V	Pin
XCVR_VCCR_VCCT_VOLTAGE	VCCR_GXB VCCT_GXB Voltage	Refer to the <i>Device Datasheet for</i> <i>Stratix V Devices</i> for guidance on selecting a value.	0_85V 1_0V	Pin

Table 5–5 lists the analog parameters with *global* or *computed* default values. You may want to optimize some of these settings. In Table 5–5, the default value is shown in **bold** type. For computed analog parameters, the default value listed is for the initial setting, not the recomputed setting. The parameters are listed in alphabetical order.

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
	Analog Parameters with	Global Default Value		
CDR_BANDWIDTH_PRESET	CDR Bandwidth Preset	Specifies the CDR bandwidth preset setting.	Auto Low Medium High	PLL instance
PLL_BANDWIDTH_PRESET	PLL Bandwidth Preset	Specifies the PLL bandwidth preset setting	Auto Low Medium High	PLL instance
XCVR_GT_RX_DC_GAIN	Receiver Buffer DC Gain Control	Controls the RX buffer DC gain for GT channels.	0-19 8	Pin
XCVR_RX_DC_GAIN	Receiver Buffer DC Gain Control	Controls the RX buffer DC gain for GX channels.	0-4	Pin
XCVR_RX_LINEAR_EQUALIZER_ CONTROL	Receiver Linear Equalizer Control	Static control for the continuous time equalizer in the receiver buffer. The equalizer has 16 distinct settings from $0-15$ corresponding to the increasing AC gain.	1 –16	Pin
	Analog Parameters with C	omputed Default Value		
XCVR_GT_TX_PRE_EMP_PRE_ TAP	Transmitter Pre-emphasis Pre-Tap	Specifies the pre-tap pre-emphasis setting. This parameter is only for GT transceivers.	0-31 0	Pin
XCVR_GT_TX_VOD_MAIN_TAP	Transmitter Differential Output Voltage for GT channels.	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength. This parameter is only for GT transceivers.	0-5 3	Pin
XCVR_GT_RX_COMMON_ MODE_VOLTAGE	GT receiver Buffer Common Mode Voltage	Receiver buffer common-mode voltage. This parameter is only for GT transceivers.	VTT_0P8V VTT_0P75V VTT_0P65V VTT_0P65V VTT_0P55V VTT_0P55V VTT_0P35V VTT_0P35V VTT_VCM0FF7 VTT_VCM0FF6 VTT_VCM0FF3 VTT_VCM0FF3 VTT_VCM0FF1 VTT_VCM0FF1 VTT_VCM0FF0	Pin

Table 5–5. Transceiver and PLL Assignments for Stratix V Devices (Part 1 of 5)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_GT_RX_CTLE	GT Receiver Linear Equalizer Control	Static control for the continuous time equalizer in the receiver buffer. The equalizer has 9 distinct settings from 0-8 corresponding to increasing AC gain. This parameter is only for GT transceivers.	0-8 0	Pin
XCVR_GT_TX_COMMON_MODE_ VOLTAGE	GT Transmitter Common Mode Driver Voltage	Transmitter common-mode driver voltage. This parameter is only for GT transceivers.	VOLT_OP80V VOLT_OP75V VOLT_OP75V VOLT_OP65V VOLT_OP65V VOLT_OP55V VOLT_OP55V VOLT_OP35V PULL_UP PULL_DN TRISTATED1 GROUNDED PULL_UP_TO_ VCCELA TRISTATED2 TRISTATED3 TRISTATED4	Pin
XCVR_GT_TX_PRE_EMP_1ST_ POST_TAP	GT Transmitter Preemphasis First Post-Tap	Specifies the first post-tap setting value. This parameter is only for GT transceivers.	0-31 5	Pin
XCVR_GT_TX_PRE_EMP_INV_ PRE_TAP	GT Transmitter Preemphasis Pre Tap Invert	Inverts the transmitter pre-emphasis pre-tap. This parameter is only for GT transceivers.	ON OFF	Pin
XCVR_GT_TX_PRE_EMP_PRE_ TAP	GT Transmitter Preemphasis Pre-Tap	Specifies the pre-tap pre-emphasis setting. This parameter is only for GT transceivers.	0-31 0	Pin

Table 5–5. Transceiver and PLL Assignments for Stratix V Devices (Part 2 of 5)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_GT_TX_VOD_MAIN_TAP	GT Transmitter Differential Output Voltage	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength.	0-5 3	Pin
XCVR_RX_COMMON_MODE_ VOLTAGE	Receiver Buffer Common Mode Voltage	Receiver buffer common-mode voltage.	VTT_0P80V VTT_0P75V VTT_0P65V VTT_0P65V VTT_0P55V VTT_0P55V VTT_0P50V VTT_0P35V VTT_PUP _WEAK VTT_PDN WEAK TRISTATE1 VTT_PDN_ STRONG VTT_PUP_ STRONG TRISTATE2 TRISTATE3 TRISTATE4	Pin
XCVR_RX_ENABLE_LINEAR_ EQUALIZER_PCIEMODE	Receiver Linear Equalizer Control (PCI Express)	If enabled equalizer gain control is driven by the PCS block for PCI Express. If disabled equalizer gain control is determined by the XCVR_RX_LINEAR_EQUALIZER_SETT ING assignment.	TRUE False	Pin
XCVR_RX_EQ_BW_SEL	Receiver Equalizer Gain Bandwidth Select	Sets the gain peaking frequency for the equalizer. For data-rates of less than 6.5Gbps set to HALF. For higher data- rates set to FULL.	full Half	Pin
XCVR_RX_SD_ENABLE	Receiver Signal Detection Unit Enable/Disable	Enables or disables the receiver signal detection unit.	TRUE False	Pin
XCVR_RX_SD_OFF	Receiver Cycle Count Before Signal Detect Block Declares Loss Of Signal	Number of parallel cycles to wait before the signal detect block declares loss of signal.	0 –29	Pin
XCVR_RX_SD_ON	Receiver Cycle Count Before Signal Detect Block Declares Presence Of Signal	Number of parallel cycles to wait before the signal detect block declares presence of signal.	0 –16	Pin
XCVR_RX_SD_THRESHOLD	Receiver Signal Detection Voltage Threshold	Specifies signal detection voltage threshold level.	0 –7	Pin

Table 5–5. Transceiver and PLL Assignments for Stratix V Devices (Part 3 of 5)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_TX_COMMON_MODE_ VOLTAGE	Transmitter Common Mode Driver Voltage	Transmitter common-mode driver voltage	VOLT_OP80V VOLT_OP75V VOLT_OP65V VOLT_OP65V VOLT_OP60V VOLT_OP55V VOLT_OP55V VOLT_OP35V PULL_UP PULL_DOWN TRISTATED1 GROUNDED PULL_UP_TO VCCELA TRISTATED2 TRISTATED3 TRISTATED4	Pin
XCVR_TX_PRE_EMP_PRE_TAP_ USER	Transmitter Preemphasis Pre-Tap user	Specifies the TX pre-emphasis pretap setting value, including inversion.	0 –31	Pin
XCVR_TX_PRE_EMP_2ND_TAP_ USER	Transmitter Preemphasis Second Post-Tap user	Specifies the transmitter pre-emphasis second post-tap setting value, including inversion.	0 –31	Pin
XCVR_TX_PRE_EMP_1ST_POST_ TAP	Transmitter Preemphasis First Post-Tap	Specifies the first post-tap setting value.	0 –31	Pin
XCVR_TX_PRE_EMP_2ND_ POST_TAP	Transmitter Preemphasis Second Post-Tap	Specifies the second post-tap setting value.	0 –15	Pin
XCVR_TX_PRE_EMP_INV_ 2ND_TAP	Transmitter Preemphasis Second Tap Invert	Inverts the transmitter pre-emphasis 2nd post tap.	TRUE False	Pin
XCVR_TX_PRE_EMP_INV_ PRE_TAP	Transmitter Preemphasis Pre Tap Invert	Inverts the transmitter pre-emphasis pre-tap.	TRUE False	Pin
XCVR_TX_PRE_EMP_PRE_TAP	Transmitter Preemphasis Pre-Tap	Specifies the pre-tap pre-emphasis setting.	0 –15	Pin
XCVR_TX_RX_DET_ENABLE	Transmitter's Receiver Detect Block Enable	Enables or disables the receiver detector circuit at the transmitter.	TRUE False	Pin
XCVR_TX_RX_DET_MODE	Transmitter's Receiver Detect Block Mode	Sets the mode for receiver detect block	0 –15	Pin
XCVR_TX_RX_DET_OUTPUT_SEL	Transmitter's Receiver Detect Block QPI/PCI Express Control	Determines QPI or PCI Express mode for the Receiver Detect block.	RX_DET_QPI_ OUT RX_DET_PCIE_ OUT	Pin

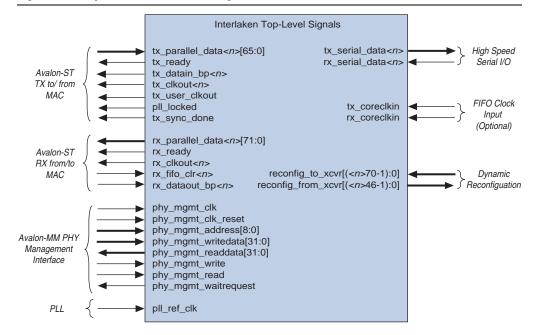
Table 5–5. Transceiver and PLL Assignments for Stratix V Devices (Part 4 of 5)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_TX_VOD	Transmitter Differential Output Voltage	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength.	0–63 50	Pin
XCVR_TX_VOD_PRE_EMP_ CTRL_SRC	Transmitter V _{OD} /Preemphasis Control Source	When set to DYNAMIC_CTL, the PCS block controls the V_{0D} and preemphasis coefficients for PCI Express. When this assignment is set to RAM_CTL the V_{0D} and preemphasis are controlled by other assignments, such as XCVR_TX_PRE_EMP_1ST_POST_TAP.	DYNAMIC_CTL Ram_Ctl	Pin

? For more information about the Pin Planner, refer to About the Pin Planner in Quartus II Help. For more information about the Assignment Editor, refer to About the Assignment Editor in Quartus II Help.

For more information about Quartus II Settings, refer to *Quartus II Settings File Manual*.

Interfaces


This section describes interfaces of the Interlaken Transceiver PHY. It includes the following sections:

- Ports
- Registers
- Transceiver Reconfiguration

Ports

Figure 5–2 illustrates the top-level signals of the Interlaken PHY IP Core.

Figure 5–2. Top-Level Interlaken PHY Signals (1)

Note to Figure 5-2:

(1) <n> = the number of channels in the interface, so that the width of tx_data in 4-channel instantiation is [263:0].

The **block diagram** shown in the GUI labels the external pins with the *interface type* and places the *interface name* inside the box. The interface type and name are used to define interfaces in the **_hw.tcl**. writing

For more information about _hw.tcl, files refer to the *Component Interface Tcl Reference* chapter in volume 1 of the *Quartus II Handbook*.

The following sections describe the signals in each interface.

Avalon-ST TX Interface

Table 5–6 lists the signals in the Avalon-ST TX interface.

Table 5-6. Avalon-ST TX Signals

Signal Name	Direction	Description
<pre>tx_parallel_data<n>[63:0]</n></pre>	Input	Avalon-ST data bus driven from the FPGA fabric to the TX PCS. This input should be synchronized to the $tx_coreclkin$ clock domain.
		Indicates whether tx_parallel_data <n>[63:0] represents control or data. When deasserted, tx_parallel_data<n>[63:0] is a data word. When asserted, tx_parallel_data<n>[63:0] is a control word.</n></n></n>
tx_parallel_data< <i>n</i> >[64]	Input	The value of header synchronization bits[65:64] of the Interlaken word identify whether bits[63:0] are a Framing Layer Control/Burst/IDLE Control Word or a data word. The MAC must gray encode the header synchronization bits. The value 2'b10 indicating Burst/IDLE Control Word must be gray encoded to the value 1'b1 for $tx_parallel_data < n > [64]$. The value 2'b01 indicating data word must be gray encoded to the value 1'b0 for $tx_parallel_data < n > [64]$. You can also tie header synchronization bit[65] to $tx_parallel_data[64]$ directly.
	lagut	When asserted, indicates that tx_parallel_data <n>[63:0] is valid and is ready to be written into the TX FIFO. When deasserted, indicates that tx_parallel_data<n>[63:0] is invalid and is not written into the TX FIFO. This signal is the data valid or write enable port of the TX FIFO. This input must be synchronized to the tx_coreclkin clock domain. The Interlaken MAC should gate tx_parallel_data<n>[65] based on tx_datain_bp<n>. Or, you can tie tx_datain_bp<n> directly to</n></n></n></n></n>
<pre>tx_parallel_data<n>[65]</n></pre>	Input	tx_parallel_data <n>[65]. For Quartus II releases before 12.0, you must pre-fill the transmit FIFO so this pin must be 1'b1 when tx_ready is asserted, but before tx_sync_done is asserted to insert the pre-fill pattern. Do not use valid data to pre-fill the transmit FIFO. Use the following Verilog HDL assignment for Quartus II releases prior to 12.0:</n>
		<pre>assign tx_parallel_data[65] = (!tx_sync_done)?1'b1:tx_datain_bp[0];</pre>

Table 5–6. Avalon-ST TX Signals

Signal Name	Direction	Description
tx_ready	Output	When asserted, indicates that the TX interface has exited the reset state and is ready for service. The tx_ready latency for the TX interface is 0. A 0 latency means that the TX FIFO can accept data on the same clock cycle that tx_ready is asserted. This output is synchronous to the phy_mgmt_clk clock domain. The Interlaken MAC must wait for tx_ready before initiating data transfer (pre-fill pattern or valid user data) on any lanes. The TX FIFO only captures input data from the Interlaken MAC when tx_ready and tx_parallel_data[65] are both asserted. For Quartus versions earlier than 12.0, the user is a required to pre-fill the transmit FIFO. Do not use valid user data to pre-fill the transmit
		FIFO. The beginning of the pre-fill stage is marked by the assertion of tx_ready, before tx_sync_done is asserted. The pre-fill stage should terminate when tx_ready is high and tx_sync_done changes from Logic 0 to Logic 1 state. At this point, TX synchronization is complete and valid TX data insertion can begin. TX synchronization is not required for single-lane variants. Use the following Verilog HDL assignment is for Quartus versions earlier than 12.0.
		assign tx_parallel_data[65] = (!tx_sync_done)?1'b1:tx_datain_bp[0];
		When asserted, indicates that Interlaken TX lane <i><n></n></i> interface is ready to receive data for transmission. The latency on this Avalon-ST interface is 0 cycles. The Interlaken MAC must only drive valid user data on tx_parallel_data <i><n></n></i> [63:0] data bus as soon as tx_ready <i><n></n></i> and tx_sync_done are both asserted. The tx_datain_bp <i><n></n></i> signal is connected to the <i>~</i> partialempty of the TX FIFO, so that when tx_datain_bp <i><n></n></i> is deasserted the TX FIFO back pressures the Interlaken MAC. The Interlaken MAC can continue driving data to the TX FIFO when
tx_datain_bp< <i>n></i>	Output	tx_datain_bp <n> is asserted. The Interlaken MAC should gate tx_parallel_data<n>[65], which operates as a data_valid signal, based on tx_datain_bp<n>. This output is synchronous to the tx_coreclkin clock domain. Or, you can also tie tx_datain_bp<n> directly to tx_parallel_data<n>[65]. For Quartus II releases prior to 12.0, you must pre-fill the TX FIFO before tx_sync_done can be asserted. Do not use valid data to pre-fill the TX FIFO. Use the following Verilog HDL assignment for Quartus II releases prior to 12.0: assign tx_parallel_data[65] =</n></n></n></n></n>
		(!tx_sync_done)?1'b1:tx_datain_bp[0];
tx_clkout	Output	Output clock from the TX PCS. The frequency of this clock equals the Lane rate divided by 40, which is the PMA serialization factor.
tx_user_clkout	Output	For single lane Interlaken links, tx_user_clkout is available when you do not create the optional $tx_coreclkin$. For Interlaken links with more than 1 lane, $tx_coreclkin$ is required and tx_user_clkout cannot be used. $tx_coreclkin$ must have a minimum frequency of the lane data rate divided by 40. The frequency range for tx_coreclkin is (data rate \div 40) – (data rate \div 67). Altera recommends (data rate \div 40) because it shows the best results.

Signal Name	Direction	Description
pll_locked	Output	In multilane Interlaken designs, this signal is the bitwise AND of the individual lane pll_locked signals. This output is synchronous to the phy_mgmt_clk clock domain.
		When asserted, indicates that all tx_parallel_data lanes are synchronized and ready for valid user data traffic. The Interlaken MAC must wait for this signal before initiating <i>valid</i> user data transfers on any lane. This output is synchronous to the tx_coreclkin clock domain.
tx_sync_done	Output	You must invoke a hard reset using <pre>mgmt_rst_reset and phy_mgmt_clk_reset to initiate the synchronization sequence on the TX lanes.</pre>
		For Quartus versions prior to 12.0, you must pre-fill the TX FIFO before tx_sync_done can be asserted. Use the following Verilog HDL assignment for Quartus II releases prior to 12.0:
		<pre>assign tx_parallel_data[65] = (!tx_sync_done)?1'b1:tx_datain_bp[0];</pre>

Table 5-6. Avalon-ST TX Signals

Avaion-SI KX Interface

Table 5–7 describes the signals in the Avalon-ST RX interface.

Table 5–7. Avalon-ST RX Signals (Part 1 of 4)

Signal Name	Direction	Description	
<pre>rx_parallel_data<n>[63:0]</n></pre>	Output	Avalon-ST data bus driven from the RX PCS to the FPGA fabric. This output is synchronous to the rx_coreclkin clock domain.	
		When asserted, indicates that rx_parallel_data <n>[63:0] is valid. When deasserted, indicates the rx_parallel_data<n>[63:0] is invalid. This output is synchronous to the rx_coreclkin clock domain.</n></n>	
rx_parallel_data <n>[64]</n>	Output	The Interlaken PCS implements a gearbox between the PMA and PCS interface. The rx_parallel_data <n>[64] port is deasserted whenever the gearbox is in the invalid region. The Interlaken MAC should not read rx_parallel_data<n>[65, 63:0] if rx_parallel_data<n>[64] is deasserted.</n></n></n>	

Table 5–7. Avalon-ST RX Signals (Part 2 of 4)

Signal Name	Direction	Description
	Output	Indicates whether rx_parallel_data <n>[63:0] represents control or data. When deasserted, rx_parallel_data<n>[63:0] is a data word. When asserted, rx_paralleldata<n>[63:0] is a control word. This output is synchronous to the rx_coreclkin clock domain.</n></n></n>
rx_parallel_data< <i>n</i> >[65]		The value of header synchronization bits[65:64] of the Interlaken word identify whether bits[63:0] are Framing Layer Control/Burst/IDLE Word or a data word. The value 2'b10 indicating a Framing Layer Control/Burst/IDLE Word is gray encoded to the value 1'b1 and $rx_parallel_data [65]$ is asserted by the Interlaken Receive PCS. The value 2'b01 indicating data word is gray encoded to the value 1'b0 and $rx_parallel_data [65]$ is deasserted by the Interlaken Receive PCS. The Framing Layer Control Words (Frame Sync, Scrambler State, Skip, and Diag) are not discarded but are sent to the Interlaken MAC for multi-lane alignment and deskew on the lanes.
<pre>rx_parallel_data<n>[66]</n></pre>	Output	This is an active-high synchronous status signal indicating that block lock (frame synchronization) and frame lock (metaframe boundary delineation) have been achieved. The Interlaken MAC must use this signal to indicate that Metaframe synchronization has been achieved for this lane. You must use this $rx_parallel_data[66]$ as the primary frame synchronization status flag and only use the optional $rx_parallel_data[70]$ as the secondary frame synchronization status flag. This output is synchronous to the $rx_coreclkin$ clock domain.
		If the RX PCS FIFO reaches the empty state or is in an empty state, rx_parallel_data <n>[66] Block Lock and Frame Lock status signals are deasserted in the next clock cycle. rx_parallel_data<n>[70] indicating metaframe lock and rx_parallel_data<n>[69] indicating that the first Interlaken synchronization word alignment pattern has been received remain asserted.</n></n></n>
<pre>rx_parallel_data<n>[67]</n></pre>	Output	When asserted, indicates an RX FIFO overflow error.
rx_parallel_data <n>[68]</n>	Output	When asserted, indicates that the RX FIFO is partially empty and is still accepting data from the frame synchronizer. This signal is asserted when the RX FIFO has limited data. This output is synchronous to the rx_coreclkin clock domain. To prevent underflow, the Interlaken MAC should begin reading from the RX FIFO when this signal is deasserted, indicating sufficient FIFO contents. The MAC should continue to read the RX FIFO to prevent overflow as long as this signal is not reasserted. You can assert a FIFO flush using the rx_fifo_clr when the receive FIFO overflows. This output is synchronous to the rx_clkout clock domain.
		You can tie this signal's inverted logic to the rx_dataout_bp <n> receive FIFO read enable signal as the following assignment statement illustrates: assign rx_dataout_bp[0] =!(rx_parallel_data[68]);</n>
		appran IV_naranni_nh[n] -:/IX_hararrer_nara[00])1

Signal Name	Direction	Description		
	Output	When asserted, indicates that the RX FIFO has found the first Interlaken synchronization word alignment pattern. For very short metaframes, this signal may be asserted after the frame synchronizer state machine validates frame synchronization and asserts rx_parallel_data <n>[70] because this signal is asserted by the RX FIFO which is the last PCS block in the RX datapath. This output is synchronous to the rx_coreclkin clock domain.</n>		
rx_parallel_data< <i>n</i> >[69]	Output	This signal is optional. If the RX PCS FIFO reaches the empty state or is in an empty state, rx_parallel_data <n>[70] indicating metaframe lock and rx_parallel_data<n>[69] indicating that the first Interlaken synchronization word alignment pattern has been received remain asserted, but rx_parallel_data<n>[66] block lock and frame lock status signal are deasserted in the next clock cycle.</n></n></n>		
rx_parallel_data< <i>n</i> >[70]	Output	When asserted, indicates that the RX frame synchronization state machine has found and received 4 consecutive, valid synchronization words. The frame synchronization state machine requires 4 consecutive synchronization words to exit the presync state and enter the synchronized state. You should only use this optional signal as a secondary status flag. The rx_parallel_data[66] signal should be used as the primary frame synchronization status flag. This output is synchronous to the rx_clkout clock domain.		
		This signal is optional. If the RX PCS FIFO reaches an empty state or is in an empty state, $rx_parallel_data < n>[70]$ indicating metaframe lock and $rx_parallel_data < n>[69]$ indicating that the first Interlaken synchronization word alignment pattern has been received remain asserted but $rx_parallel_data < n>[66]$ block lock and frame lock status signal are deasserted in the next clock cycle.		
rx_parallel_data< <i>n</i> >[71]	Output	When asserted, indicates a CRC32 error in this lane. This signal is optional. This output is synchronous to the rx_clkout clock domain.		
rx_ready	Output	When asserted, indicates that the RX interface has exited the reset state and is ready for service. The Interlaken MAC must wait for rx_ready to be asserted before initiating data transfer on any lanes. This output is synchronous to the phy_mgmt_clk domain.		
rx_clkout	Output	Output clock from the RX PCS. The frequency of this clock equals the Lane rate divided by 40, which is the PMA serialization factor.		
rx_fifo_clr <n></n>	Input	When asserted, the RX FIFO is flushed. This signal allows you to clear the FIFO if the receive FIFO overflows or if the Interlaken MAC is not able to achieve multi-lane alignment in the Interlaken MAC's deskew state machine. The rx_fifo_clr signal must be asserted for 4 rx_clkout cycles to successfully flush the RX FIFO.		
		This output is synchronous to the rx_clkout clock domain.		

Table 5–7. Avalon-ST RX Signals (Part 3 of 4)

Table 5–7. Avalon-ST RX Signals (Part 4 of 4)

Signal Name	Direction	Description
		When asserted, enables reading of data from the RX FIFO. This signal functions as a read enable. The RX interface has a ready latency of 1 cycle so that $rx_paralleldata < n > [63:0]$ and $rx_paralleldata < n > [65]$ are valid the cycle after $rx_dataout_bp < n >$ is asserted.
<pre>rx_dataout_bp<n></n></pre>	Input	This output is synchronous to the rx_coreclkin clock domain. You can tie this rx_dataout_bp <n> RX FIFO read enable signal to the inverted logic of the rx_parallel_data[68] RX FIFO partially empty signal using the following assignment statement:</n>
		<pre>assign rx_dataout_bp[0] = (rx_parallel_data[68]);</pre>
rx_user_clkout	Output	Master channel rx_user_clkout is available when you do not create the optional rx_coreclkin.

PLL Interface

Table 5–9 describes the signals in the PLL interface.

Table 5–8. Serial Interface

Signal Name	Direction	Description	
		Reference clock for the PHY PLLs. Refer to the Lane rate entry in Table 5–2 on page 5–2 for required frequencies.	
pll_ref_clk	Input	Custom, user-defined, data rates are now supported. However, the you must choose a lane data rate that results in standard board oscillator reference clock frequency to drive the pll_ref_clk and meet jitter requirements. Choosing a lane data rate that deviates from standard reference clock frequencies may result in custom board oscillator clock frequencies which could be unavailable or cost prohibitive.	

TX and RX Serial Interface

Table 5–9 describes the signals in the chip-to-chip serial interface.

Table 5–9. Serial Interface

Signal Name	Direction	Description	
tx_serial_data Output		Differential high speed serial output data using the PCML I/O standard. Clock is embedded in the serial data stream.	
rx_serial_data Input		Differential high speed serial input data using the PCML I/O standard. Clock is recovered from the serial data stream.	

Optional Clocks for Deskew

Table 5–10 describes the optional clocks that you can create to reduce clock skew.

Table 5–10. Serial Interface

Signal Name	Direction	Description
tx_coreclkin	Input	When enabled tx_coreclkin is available as input port which drives the write side of TX FIFO. Altera recommends using this clock to reduce clock skew. The typical range is (data rate \div 67) to (data rate \div 40). For best results, Altera recommends the tx_coreclkin = (data rate \div 40). Using a lower frequency will underflow the TX FIFO causing the Frame Generators to go into a unrecoverable out of alignment state and insert Skip Words into the lane. If the Interlaken TX FIFO underflows, the alignment state machine tries to recover continuously. When disabled, tx_clkout drives the write side the TX FIFO.tx_coreclkin must be used when the number of lanes is greater than 1.
rx_coreclkin	Input	When enabled, rx_coreclkin is available as input port which drives the read side of RX FIFO. Altera recommends using this clock to reduce clock skew. You should use a minimum frequency of lane (data rate \div 67) to drive rx_coreclkin. Using a lower frequency overflows the RX FIFO corrupting the received data.When disabled, rx_user_clkout, which is the master rx_clkout for all the bonded receiver lanes, is internally routed to drive the read side the RX FIFO.

Registers

The Avalon-MM PHY management interface provides access to the Interlaken PCS and PMA registers, resets, error handling, and serial loopback controls. You can use an embedded controller acting as an Avalon-MM master to send read and write commands to this Avalon-MM slave interface. Table 5–11 describes the signals that comprise the Avalon-MM management interface.

Table 5–11.	Avalon-MM PCS	Management	Interface	(Part 1 of 2)	

Signal Name	Direction	Description
		Avalon-MM clock input.
phy_mgmt_clk	Input	There is no frequency restriction for Stratix V devices; however, if you plan to use the same clock for the PHY management interface and transceiver reconfiguration, you must restrict the frequency range of phy_mgmt_clk to 100–150 MHz to meet the specification for the transceiver reconfiguration clock.
phy_mgmt_clk_reset		Global reset signal that resets the entire Interlaken PHY. This signal is active high and level sensitive.
	Input	When the Interlaken PHY IP connects to the Transceiver PHY Reconfiguration Controller IP Core, the Transceiver PHY Reconfiguration Controller mgmt_rst_reset signal must be simultaneously asserted with the phy_mgmt_clk_reset signal to bring the Frame Generators in the link into alignment. This is a mandatory requirement. Failure to comply to this requirement will result in excessive transmit lane-to-lane skew in the Interlaken link.
phy_mgmt_addr[8:0]	Input	9-bit Avalon-MM address.

Signal Name	Direction	Description	
phy_mgmt_writedata[31:0] Input		Input data.	
phy_mgmt_readdata[31:0] Output		Output data.	
phy_mgmt_write Input		Write signal.	
phy_mgmt_read Input		Read signal.	
phy_mgmt_waitrequest Output		When asserted, indicates that the Avalon-MM slave interface is unable to respond to a read or write request. When asserted, control signals to the Avalon-MM slave interface must remain constant.	

Table 5–11. Avalon-MM PCS Management Interface (Part 2 of 2)

Register Descriptions

Table 5–12 specifies the registers that you can access using the Avalon-MM PHY management interface using word addresses and a 32-bit embedded processor. A single address space provides access to all registers. Writing to reserved or undefined register addresses may have undefined side effects.

All undefined register bits are reserved.

Word Addr	Bits	R/W	Register Name	Description
			PMA Common Control	and Status Registers
0x022	[31:0]	RO	pma_tx_pll_is_locked	Bit[P] indicates that the TX CMU PLL (P) is locked to the input reference clock. There is typically one pma_tx_pll_is_locked bit per system.
			Reset Control Registers-A	utomatic Reset Controller
	0x041 [31:0] RW			Reset controller channel bitmask for digital resets. The default value is all 1s. Channel $\langle n \rangle$ can be reset when bit $\langle n \rangle$ = 1. Channel $\langle n \rangle$ cannot be reset when bit $\langle n \rangle$ = 0.
0x041		RW	reset_ch_bitmask	The Interlaken PHY IP requires the use of the embedded reset controller to initiate the correct the reset sequence. A hard reset to phy_mgmt_clk_reset and mgmt_rst_reset is required for Interlaken PHY IP.
			Altera does not recommend use of a soft reset or the use of these reset register bits for Interlaken PHY IP.	
0x042 [1:0] WO RO	reset_control (write)	Writing a 1 to bit 0 initiates a TX digital reset using the reset controller module. The reset affects channels enabled in the reset_ch_bitmask. Writing a 1 to bit 1 initiates a RX digital reset of channels enabled in the reset_ch_bitmask.		
	RO	reset_status(read)	Reading bit 0 returns the status of the reset controller TX ready bit. Reading bit 1 returns the status of the reset controller RX ready bit.	

Table 5–12. Interlaken PHY Registers (Part 1 of 3)

Word Addr	Bits	R/W	Register Name	Description
	-Manual Mode			
			You can use the reset_fine_control register to create your own reset sequence. The reset control module, illustrated in Figure 1–1 on page 1–2, performs a standard reset sequence at power on and whenever the phy_mgmt_clk_reset is asserted. Bits [31:4, 0] are reserved.	
	_	RW	reset_fine_control	The Interlaken PHY IP requires the use of the embedded reset controller to initiate the correct the reset sequence. A hard reset to phy_mgmt_clk_reset and mgmt_rst_reset is required for Interlaken PHY IP.
0x044				Altera does not recommend use of a soft reset or the use of these reset register bits for Interlaken PHY IP.
0,044	[3]	RW	reset_rx_digital	Writing a 1 causes the RX digital reset signal to be asserted, resetting the RX digital channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.
	[2]	RW	reset_rx_analog	Writing a 1 causes the internal RX digital reset signal to be asserted, resetting the RX analog logic of all channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.
	[1]	RW	reset_tx_digital	Writing a 1 causes the internal TX digital reset signal to be asserted, resetting all channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.
			PMA Control and	Status Registers
0x061	[31:0]	RW	phy_serial_loopback	Writing a 1 to channel <i><n></n></i> puts channel <i><n></n></i> in serial loopback mode. For information about pre- or post-CDR serial loopback modes, refer to "Loopback Modes" on page 12–42.
0x064	[31:0]	RW	pma_rx_set_locktodata	When set, programs the RX CDR PLL to lock to the incoming data. Bit <i><n></n></i> corresponds to channel <i><n></n></i> .
0x065	[31:0]	RW	pma_rx_set_locktoref	When set, programs the RX CDR PLL to lock to the reference clock. Bit <i><n></n></i> corresponds to channel <i><n></n></i> .
0x066	[31:0]	RO	pma_rx_is_lockedtodata	When asserted, indicates that the RX CDR PLL is locked to the RX data, and that the RX CDR has changed from LTR to LTD mode. Bit <i><n></n></i> corresponds to channel <i><n></n></i> .
00x067	[31:0]	RO	pma_rx_is_lockedtoref	When asserted, indicates that the RX CDR PLL is locked to the reference clock. Bit $\langle n \rangle$ corresponds to channel $\langle n \rangle$.
0x080	[31:0]	WO	indirect_addr	Provides for indirect addressing of all PCS control and status registers. Use this register to specify the logical channel address of the PCS channel you want to access.

Table 5–12. Interlaken PHY Registers (Part 2 of 3)

Word Addr	Bits	R/W	Register Name	Description
			Stratix V Devi	ce Registers
	[27]	RO	rx_crc32_err	Asserted by the CRC32 checker to indicate a CRC error in the corresponding RX lane. From block: CRC32 checker.
0x081	[25]	RO	rx_sync_lock	Asserted by the frame synchronizer to indicate that 4 frame synchronization words have been received so that the RX lane is synchronized.
				From block: Frame synchronizer.
	[04]	PO		Asserted when the first alignment pattern is found. The RX FIFO generates this synchronous signal.
	[24]	RO	rx_word_lock	From block: The RX FIFO generates this synchronous signal.

Table 5–12. Interlaken PHY Registers (Part 3 of 3)

Transceiver Reconfiguration

As silicon progresses towards smaller process nodes, circuit performance is affected more by variations due to process, voltage, and temperature (PVT). These process variations result in analog voltages that can be offset from required ranges. The calibration performed by the dynamic reconfiguration interface compensates for variations due to PVT.

For Stratix V devices, each channel and each TX PLL have separate dynamics reconfiguration interfaces. The MegaWizard Plug-In Manager provides informational messages on the connectivity of these interfaces. Example 5–1 shows the messages for a 4-channel Interlaken PHY IP Core.

Example 5–1. Informational Messages for the Transceiver Reconfiguration Interface

```
PHY IP will require 5 reconfiguration interfaces for connection to the external reconfiguration controller.
Reconfiguration interface offsets 0-3 are connected to the transceiver channels.
Reconfiguration interface offset 4 is connected to the transmit PLL.
```

Although you must initially create a separate reconfiguration interface for each channel and TX PLL in your design, when the Quartus II software compiles your design, it reduces the number of reconfiguration interfaces by merging reconfiguration interfaces. The synthesized design typically includes a reconfiguration interface for at least three channels because three channels share an Avalon-MM slave interface which connects to the Transceiver Reconfiguration Controller IP Core. Conversely, you cannot connect the three channels that share an Avalon-MM interface to different Transceiver PHY IP cores. Doing so causes a Fitter error. For more information, refer to "Reconfiguration Controller to PHY IP Connectivity" on page 12–40.

Table 5–13 describes the signals in the reconfiguration interface. This interface uses the Avalon-MM PHY Management interface clock.

Table 5–13. Reconfiguration Interface

Signal Name	Direction	Description
reconfig_to_xcvr [(<n>70)-1:0]</n>	Sink	Reconfiguration signals from the Transceiver Reconfiguration Controller. <i><n></n></i> grows linearly with the number of reconfiguration interfaces. <i><n></n></i> initially includes the total number transceiver channels and TX PLLs before optimization/merging.
<pre>reconfig_from_xcvr [(<n>46)-1:0]</n></pre>	Source	Reconfiguration signals to the Transceiver Reconfiguration Controller. <i><n></n></i> grows linearly with the number of reconfiguration interfaces. <i><</i> n> initially includes the total number transceiver channels before optimization/merging.

Transceiver dynamic reconfiguration requires that you assign the starting channel number. Logical channel 0 should be assigned to either physical transceiver channel 1 or channel 4 of a transceiver bank. However, if you have already created a PCB with a different lane assignment for logical lane 0, you can use the workaound shown in Example 5–2 to remove this restriction. Example 5–2 redefines the pma_bonding_master parameter using the Quartus II Assignment Editor. In this example, the pma_bonding_master was originally assigned to physical channel 1. (The original assignment could also have been to physical channel 4.) The to parameter reassigns the pma_bonding_master to the Interlaken instance name. You must substitute the instance name from your design for the instance name shown in quotation marks

Example 5–2. Overriding Logical Channel O Channel Assignment Restrictions in Stratix V Devices

set_parameter -name pma_bonding_master "\"1\"" -to "<PHY IP instance name>"

TimeQuest Timing Constraints

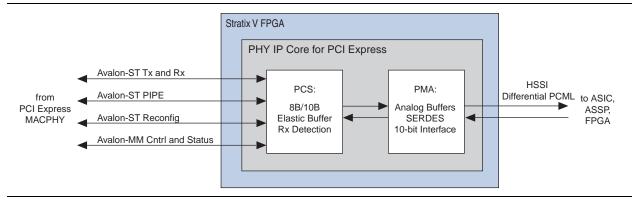
You must add the following TimeQuest constraint to your Synopsys Design Constraints File (.sdc) timing constraint file:

derive_pll_clocks -create_base_clocks

Simulation Files and Example Testbench

Refer to "Running a Simulation Testbench" on page 1–4 for a description of the directories and files that the Quartus II software creates automatically when you generate your Interlaken PHY IP Core.

Refer to the Altera wiki for an example testbench that you can use as a starting point in creating your own verification environment.


6. PHY IP Core for PCI Express (PIPE)

The Altera PHY IP Core for PCI Express (PIPE) implements physical coding sublayer (PCS) and physical media attachment (PMA) modules as defined by the *Intel PHY Interface for PCI Express (PIPE) Architecture* specification. The PHY IP Core for PCI Express connects to a PHYMAC for PCI Express to create a complete design. Altera supports the Gen1 and Gen2 specifications and ×1, ×4, or ×8 operation for a total aggregate bandwidth of 2 to 32 Gbps.

Figure 6–1 illustrates the top-level blocks of the PCI Express PHY (PIPE) for Stratix V GX devices.

• For more detailed information about the PCI Express PHY PIPE transceiver channel datapath, clocking, and channel placement, refer to the "PCI Express" section in the *Transceiver Configurations in Stratix V Devices* chapter of the *Stratix V Device Handbook*.

Device Family Support

IP cores provide either final or preliminary support for target Altera device families. These terms have the following definitions:

- *Final support*—*V*erified with final timing models for this device.
- Preliminary support—Verified with preliminary timing models for this device.

Table 6–1 shows the level of support offered by the PCI Express PIPE IP Core for Altera device families

Table 6–1. Device Family Support

Device Family	Support
Stratix V devices–Hard PCS + PMA	Preliminary
Other device families	No support

Resource Utilization

Table 6–2 shows the typical expected device resource utilization for different configurations using the current version of the Quartus II software targeting a Stratix V GX device.

Number of Lanes	Combinational ALUTs	Logic Registers	Memory Bits	PLLs
Gen1 ×1	460	285	0	2
Gen1 ×4	530	373	0	5
Gen1 ×8	590	425	0	9
Gen2 ×1	460	295	0	2
Gen2 ×4	530	373	0	5
Gen2 ×8	590	425	0	9

Table 6–2. PCI Express PHY (PIPE) Performance and Resource Utilization—Stratix V Devices

Parameter Settings

To configure the PHY IP core for PCI Express in the MegaWizard Plug-In Manager, click Installed Plug-Ins > Interfaces > PCI Express > PHY IP Core for PCI Express (PIPE) v12.0. This PHY IP core is only available when you select the Stratix V device family.

General Options

This section describes the PHY IP Core for PCI Express parameters, which you can set using the MegaWizard Plug-In Manager. Table 6–3 lists the settings available on **General Options** tab.

Name Value Description		Description
Device family	Stratix V	Supports Stratix V devices
Number of lanes	1, 4, 8	The total number of duplex lanes
Protocol version	I versionGen1 (2.5 Gbps) Gen2 (5.0 Gbps)Specifies the protocol version. Gen1 implements PCI Express Base Specification 1.1. Gen2 implements PCI Express Base Specification 2.0.	
Base data rate1 × Lane rate 4 × Lane rate 8 × Lane rate		The base data rate is the output clock frequency of the PLL. Select a base data rate that minimizes the number of PLLs required to generate all the clock s required for data transmission. By selecting an appropriate base data rate , you can achieve the required data rate by changing the divider used by the clock generation block.

Table 6–3. General Options (Part 1 of 2)

Table 6–3. General Options (Part 2 of 2)

Name	Value	Description	
PLL type CMU frequency range than the ATX PLL. The A improve jitter performance and achieves skew; however, it supports a narrower rai reference clock frequencies. For example ATX 2500 Mbps is not available with the ATX F clock; however, base data rates of 5000 possible with the ATX PLL and 100 MHz		You can select either the CMU or ATX PLL. The CMU PLL has a larger frequency range than the ATX PLL. The ATX PLL is designed to improve jitter performance and achieves lower channel-to-channel skew; however, it supports a narrower range of data rates and reference clock frequencies. For example, if a base data rate of 2500 Mbps is not available with the ATX PLL and a 100 MHz reference clock; however, base data rates of 5000 Mbps or 10000 Mbps are possible with the ATX PLL and 100 MHz reference clock. Another advantage of the ATX PLL is that it does not use a transceiver channel, while the CMU PLL does.	
PLL reference clock frequency			
Deserialization factor	8, 16	Specifies the width of the interface between the PHYMAC and PHY (PIPE). Using the 16-bit interface, reduces the required clock frequency by half at the expense of extra FPGA resources.	
PIPE low latency synchronous mode	On/Off	When enabled, the rate match FIFO is in low latency mode.	
Run length	5–160	Specifies the legal number of consecutive 0s or 1s.	
Enable electrical idle True/False de al		When True , enables the PIPE interface to infer electrical idle instead of detecting electrical idle using analog circuitry. For more information about inferring electrical idle, refer to <i>"Section 4.2.3.4 Inferring Electrical Idle"</i> in the <i>PCI Express Base Specification 2.0.</i>	

Analog Options

You specify the analog parameters for Stratix V devices using the Quartus II Assignment Editor, the Pin Planner, or through the Quartus II Settings File (**.qsf**). The default values for analog options fall into three categories:

- *Global* These parameters have default values that are independent of other parameter settings.
- *Computed*—These parameters have an initial default value that is recomputed based on other parameter settings.
- Proxy—These parameters have default values that are place holders. The Quartus II software selects these initial default values based on your design; however, Altera recommends that you replace these defaults with values that match your electrical board specification.

Table 6–4 lists the analog parameters for Stratix V devices whose original values are place holders for the values that match your electrical board specification. In Table 6–4, the default value of an analog parameter is shown in **bold** type. The parameters are listed in alphabetical order.

Table 6–4. Transceiver and PLL Assignments for Stratix V Devices

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To	
XCVR_GT_IO_PIN_ TERMINATION	GT Transceiver I/O Pin Termination	Fine tunes the target 100-ohm on-chip termination for the specified transceiver pin. This parameter is only for GT transceivers.	0-15 12	Pin	
XCVR_IO_PIN_TERMINATION	Transceiver I/O Pin Termination	Specifies the intended on-chip termination value for the specified transceiver pin. Use External Resistor if you intend to use off-chip termination.	85_0HMS 100_0HMS 120_0HMS 150_0HMS EXTERNAL_ RESISTOR	Pin	
XCVR_REFCLK_PIN_ TERMINATION	Transceiver Dedicated Refclk Pin Termination	Specifies the intended termination value for the specified refclk pin.	DC_COUPLING_ INTERNAL_100 _OHM DC_COUPLING_ EXTERNAL	Pin	
			RESISTOR	1	
XCVR_RX_BYPASS_EQ_ STAGES_234	Receiver Equalizer Stage 2, 3, 4 Bypass	Bypass continuous time equalizer stages 2, 3, and 4 to save power. This setting eliminates significant AC gain on the equalizer and is appropriate for chip-to-chip short range communication on a PCB.	ALL_STAGES_ Enabled Bypass_ Stages	Pin	
XCVR_TX_SLEW_RATE_CTRL	Transmitter Slew Rate Control	Specifies the slew rate of the output signal. The valid values span from the slowest rate to fastest rate with 1 representing the slowest rate.	1–5	Pin	
XCVR_VCCA_VOLTAGE	VCCA_GXB Voltage	Configure the VCCA_GXB voltage for a GXB I/O pin by specifying the intended VCCA_GXB voltage for a GXB I/O pin. If you do not make this assignment the compiler automatically sets the correct VCCA_GXB voltage depending on the configured data rate, as follows: Data rate <= 6.5 Gbps: 2_5V	2_5V 3_0V	Pin	
		 Data rate > 6.5 Gbps: 2_0V Data rate > 6.5 Gbps: 3_0V or 3_3V for Stratix V ES silicon 			
XCVR_VCCR_VCCT_VOLTAGE	VCCR_GXB VCCT_GXB Voltage	Refer to the <i>Device Datasheet for</i> <i>Stratix V Devices</i> for guidance on selecting a value.	0_85V 1_0V	Pin	

Table 6–5 lists the analog parameters with *global* or *computed* default values. You may want to optimize some of these settings. In Table 6–5, the default value is shown in **bold** type. For computed analog parameters, the default value listed is for the initial setting, not the recomputed setting. The parameters are listed in alphabetical order.

QSF Assignment Name	Pin Planner and Assignment Editor Description Name		Options	Assign To
	Analog Parameters with	Global Default Value		
CDR_BANDWIDTH_PRESET	CDR Bandwidth Preset	Specifies the CDR bandwidth preset setting.	Auto Low Medium High	PLL instance
PLL_BANDWIDTH_PRESET	PLL Bandwidth Preset	Specifies the PLL bandwidth preset setting	Auto Low Medium High	PLL instance
XCVR_GT_RX_DC_GAIN	Receiver Buffer DC Gain Control	Controls the RX buffer DC gain for GT channels.	0-19 8	Pin
XCVR_RX_DC_GAIN	Receiver Buffer DC Gain Control	Controls the RX buffer DC gain for GX channels.	0-4	Pin
XCVR_RX_LINEAR_EQUALIZER_ CONTROL	Receiver Linear Equalizer Control	Static control for the continuous time equalizer in the receiver buffer. The equalizer has 16 distinct settings from 0 –15 corresponding to the increasing AC gain.	1 –16	Pin
I	Analog Parameters with C	omputed Default Value		
XCVR_GT_TX_PRE_EMP_PRE_ TAP	Transmitter Pre-emphasis Pre-Tap	Specifies the pre-tap pre-emphasis setting. This parameter is only for GT transceivers.	0-31 0	Pin
XCVR_GT_TX_VOD_MAIN_TAP	Transmitter Differential Output Voltage for GT channels.	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength. This parameter is only for GT transceivers.	0-5 3	Pin
XCVR_GT_RX_COMMON_ MODE_VOLTAGE	GT receiver Buffer Common Mode Voltage	Receiver buffer common-mode voltage. This parameter is only for GT transceivers.	VTT_0P8V VTT_0P75V VTT_0P65V VTT_0P65V VTT_0P55V VTT_0P55V VTT_0P35V VTT_0P35V VTT_VCM0FF7 VTT_VCM0FF6 VTT_VCM0FF4 VTT_VCM0FF3 VTT_VCM0FF1 VTT_VCM0FF1 VTT_VCM0FF0	Pin

Table 6–5. Transceiver and PLL Assignments for Stratix V Devices (Part 1 of 5)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_GT_RX_CTLE	GT Receiver Linear Equalizer Control	Static control for the continuous time equalizer in the receiver buffer. The equalizer has 9 distinct settings from 0-8 corresponding to increasing AC gain. This parameter is only for GT transceivers.	0-8 0	Pin
XCVR_GT_TX_COMMON_MODE_ VOLTAGE	GT Transmitter Common Mode Driver Voltage	Transmitter common-mode driver voltage. This parameter is only for GT transceivers.	VOLT_0P80V VOLT_0P75V VOLT_0P65V VOLT_0P65V VOLT_0P65V VOLT_0P55V VOLT_0P55V VOLT_0P35V PULL_0P PULL_0P PULL_DN TRISTATED1 GROUNDED PULL_UP_TO_ VCCELA TRISTATED2 TRISTATED3 TRISTATED4	Pin
XCVR_GT_TX_PRE_EMP_1ST_ POST_TAP	GT Transmitter Preemphasis First Post-Tap	Specifies the first post-tap setting value. This parameter is only for GT transceivers.	0-31 5	Pin
XCVR_GT_TX_PRE_EMP_INV_ PRE_TAP	GT Transmitter Preemphasis Pre Tap Invert	Inverts the transmitter pre-emphasis pre-tap. This parameter is only for GT transceivers.	ON OFF	Pin
XCVR_GT_TX_PRE_EMP_PRE_ TAP	GT Transmitter Preemphasis Pre-Tap	Specifies the pre-tap pre-emphasis setting. This parameter is only for GT transceivers.	0-31 0	Pin

Table 6–5.	Transceiver and	PLL Assignments	for Stratix V Devices	(Part 2 of 5)
------------	-----------------	-----------------	-----------------------	---------------

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_GT_TX_VOD_MAIN_TAP	GT Transmitter Differential Output Voltage	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength.	0-5 3	Pin
XCVR_RX_COMMON_MODE_ Receiver Buffer Common VOLTAGE Mode Voltage		Receiver buffer common-mode voltage.	VTT_0P80V VTT_0P75V VTT_0P65V VTT_0P65V VTT_0P55V VTT_0P55V VTT_0P55V VTT_0P35V VTT_PUP _WEAK VTT_PDN WEAK TRISTATE1 VTT_PDN_ STRONG VTT_PUP_ STRONG TRISTATE2 TRISTATE3 TRISTATE4	Pin
XCVR_RX_ENABLE_LINEAR_ EQUALIZER_PCIEMODE	Receiver Linear Equalizer Control (PCI Express)	If enabled equalizer gain control is driven by the PCS block for PCI Express. If disabled equalizer gain control is determined by the XCVR_RX_LINEAR_EQUALIZER_SETT ING assignment.	TRUE False	Pin
XCVR_RX_EQ_BW_SEL	Receiver Equalizer Gain Bandwidth Select	Sets the gain peaking frequency for the equalizer. For data-rates of less than 6.5Gbps set to HALF. For higher data- rates set to FULL.	full Half	Pin
XCVR_RX_SD_ENABLE	Receiver Signal Detection Unit Enable/Disable	Enables or disables the receiver signal detection unit.	TRUE False	Pin
XCVR_RX_SD_OFF	Receiver Cycle Count Before Signal Detect Block Declares Loss Of Signal	Number of parallel cycles to wait before the signal detect block declares loss of signal.	0 –29	Pin
XCVR_RX_SD_ON	Receiver Cycle Count Before Signal Detect Block Declares Presence Of Signal	Number of parallel cycles to wait before the signal detect block declares presence of signal.	0 –16	Pin
XCVR_RX_SD_THRESHOLD	Receiver Signal Detection Voltage Threshold	Specifies signal detection voltage threshold level.	0 –7	Pin

Table 6–5.	. Transceiver and PLL Assignments for Stratix V Dev	ices (Part 3 of 5)
------------	---	--------------------

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_TX_COMMON_MODE_ VOLTAGE	Transmitter Common Mode Driver Voltage	Transmitter common-mode driver voltage	VOLT_OP80V VOLT_OP75V VOLT_OP65V VOLT_OP65V VOLT_OP60V VOLT_OP55V VOLT_OP55V VOLT_OP35V PULL_UP PULL_DOWN TRISTATED1 GROUNDED PULL_UP_TO VCCELA TRISTATED2 TRISTATED3 TRISTATED4	Pin
XCVR_TX_PRE_EMP_PRE_TAP_ USER	Transmitter Preemphasis Pre-Tap user	Specifies the TX pre-emphasis pretap setting value, including inversion.	0 –31	Pin
XCVR_TX_PRE_EMP_2ND_TAP_ USER	Transmitter Preemphasis Second Post-Tap user	Specifies the transmitter pre-emphasis second post-tap setting value, including inversion.	0 –31	Pin
XCVR_TX_PRE_EMP_1ST_POST_ TAP	Transmitter Preemphasis First Post-Tap	Specifies the first post-tap setting value. 0 -31		Pin
XCVR_TX_PRE_EMP_2ND_ POST_TAP	Transmitter Preemphasis Second Post-Tap	Specifies the second post-tap setting value.	0 –15	Pin
XCVR_TX_PRE_EMP_INV_ 2ND_TAP	Transmitter Preemphasis Second Tap Invert	Inverts the transmitter pre-emphasis 2nd post tap.	TRUE False	Pin
XCVR_TX_PRE_EMP_INV_ PRE_TAP	Transmitter Preemphasis Pre Tap Invert	Inverts the transmitter pre-emphasis pre-tap.	TRUE False	Pin
XCVR_TX_PRE_EMP_PRE_TAP	Transmitter Preemphasis Pre-Tap	Specifies the pre-tap pre-emphasis setting.	0 –15	Pin
XCVR_TX_RX_DET_ENABLE	Transmitter's Receiver Detect Block Enable	Enables or disables the receiver detector circuit at the transmitter.	TRUE False	Pin
XCVR_TX_RX_DET_MODE	Transmitter's Receiver Detect Block Mode	Sets the mode for receiver detect block	0 –15	Pin
XCVR_TX_RX_DET_OUTPUT_SEL	Transmitter's Receiver Detect Block QPI/PCI Express Control	Determines QPI or PCI Express mode for the Receiver Detect block.	RX_DET_QPI_ OUT RX_DET_PCIE_ OUT	Pin

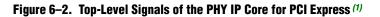
Table 6–5.	Transceiver and PLI	Assignments f	or Stratix V Devices	(Part 4 of 5)
Table U-J.	IT AIISUCIVET AIIU T LL	Assignments i	UI JUIALIA Y DEVICES	(1 all 4 01 3)

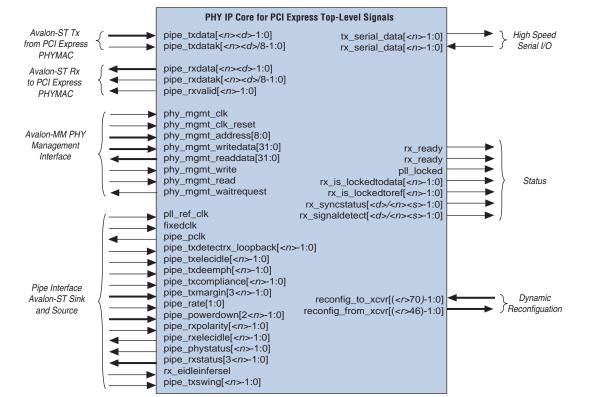
QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_TX_VOD	Transmitter Differential Output Voltage	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength.	0–63 50	Pin
XCVR_TX_VOD_PRE_EMP_ CTRL_SRC	Transmitter V _{0D} /Preemphasis Control Source	When set to DYNAMIC_CTL, the PCS block controls the V_{0D} and preemphasis coefficients for PCI Express. When this assignment is set to RAM_CTL the V_{0D} and preemphasis are controlled by other assignments, such as XCVR_TX_PRE_EMP_1ST_POST_TAP.	DYNAMIC_CTL Ram_Ctl	Pin

Table 6–5. Transceiver and PLL Assignments for Stratix V Devices (Part 5 of 5)

⑦ For more information about the Pin Planner, refer to About the Pin Planner in Quartus II Help. For more information about the Assignment Editor, refer to About the Assignment Editor in Quartus II Help.

For more information about Quartus II Settings, refer to *Quartus II Settings File Manual*.


Interfaces


This section describes interfaces of the PHY IP Core for PCI Express (PIPE). It includes the following topics:

- Ports
- Registers
- Dynamic Reconfiguration

Ports

Figure 6–2 illustrates the top-level pinout of the PHY IP Core for PCI Express PHY.

Note to Figure 6-2:

- (1) <*n*> is the number of lanes. <*d*> is the total deserialization factor from the input pin to the PHYMAC interface. <*s*> is the symbols size.<*r*> is the width of the reconfiguration interface; <*r*> is automatically calculated based on the selected configuration.
 - The **block diagram** shown in the GUI labels the external pins with the *interface type* and places the *interface name* inside the box. The interface type and name are used in the **_hw.tcl** file. If you turn on **Show signals**, the **block diagram** displays all top-level signal names.
 - **For more information about _hw.tcl** files, refer to refer to the *Component Interface Tcl Reference* chapter in volume 1 of the *Quartus II Handbook*.

The following sections describe the signals in each interface.

Avalon-ST TX Input Data from the PHYMAC

Table 6–6 describes the signals in the Avalon-ST input interface. These signals are driven from the PHYMAC to the PCS. This is an Avalon sink interface.

For more information about the Avalon-ST protocol, including timing diagrams, refer to the *Avalon Interface Specifications*.

Table 6–6. Avalon-ST TX Inputs

Signal Name	Dir	Description
		This is TX parallel data driven from the PHYMAC for PCI Express. The ready latency on this interface is 0, so that the PHY must be able to accept data as soon as the PHY exits reset.
		Data and control indicator for the received data. When 0, indicates that pipe_txdata is data, when 1, indicates that pipe_txdata is control.

Avalon-ST RX Output Data to the PHYMAC

Table 6–7 describes the signals in the Avalon-ST output interface. These signals are driven from the PHY to the PHYMAC. This is an Avalon source interface.

Table 6–7. Avalon-ST RX Inputs

Signal Name Dir		Description	
pipe_rxdata[<n><d>-1:0]</d></n>	Source	This is RX parallel data driven from the PHY. The ready latency on this interface is 0, so that the MAC must be able to accept data as soon as the PHY comes out of reset.	
<pre>pipe_rxdatak[<n><d>/8-1:0]</d></n></pre>	Source	Data and control indicator for the source data. Bit 0 correspond the low byte of pipe_rxdata. Bit 1 corresponds to the upper byte. When 0, indicates that pipe_rxdata is data, when 1, indicates that pipe_rxdata is control.	
pipe_rxvalid[<n>-1:0] Source</n>		Asserted when RX data and control are valid.	

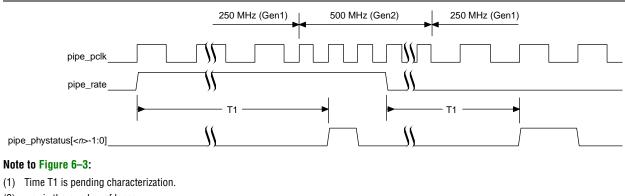
PIPE Interface

Table 6–8 describes the signals in the PIPE interface.

 Table 6–8.
 PIPE Interface (Part 1 of 2)

Signal Name	Direction	Description
		This is the 100 MHz input reference clock source for the PHY PLL. You can optionally provide a 125 MHz input reference clock by setting the PLL reference clock frequency parameter to 125 MHz as described in Table 6–3 on page 6–2.
pll_ref_clk	Sink	If you have enabled Configuration via Protocol (CvP) and your design includes other transceiver PHYs connected to the same Transceiver Reconfiguration Controller, then you should connect pll_ref_clk to the phy_mgmt_clk_clk signal of the Transceiver Reconfiguration Controller and the other transceiver PHYs. In addition, if your design includes more than one Transceiver Reconfiguration Controller on the same side of the FPGA, they all must share the phy_mgmt_clk_clk signal.
fixedclk Sink		A 125 MHz clock used for the receiver detect circuitry. You must connect a 125 MHz input clock signal for the fixedclk port. This clock can be derived from pll_ref_clk.
pipe_txdetectrx_loopback	Sink	This signal instructs the PHY to start a receive detection operation. After power-up asserting this signal starts a loopback operation. Refer to section 6.4 of the <i>Intel PHY Interface for PCI Express (PIPE) Architecture</i> for a timing diagram.
pipe_txelecidle	Sink	This signal forces the transmit output to electrical idle. Refer to section 7.3 of the <i>Intel PHY Interface for PCI Express (PIPE) Architecture</i> for timing diagrams.
	Sink	Transmit de-emphasis selection. In PCI Express Gen2 (5 Gbps) mode it selects the transmitter de-emphasis:
pipe_txdeemph	SIIIK	■ 1'b0: -6 dB
		■ 1'b1: -3.5 dB
pipe_txcompliance Sink		When asserted for one cycle, sets the 8B/10B encoder output running disparity to negative. Used when transmitting the compliance pattern. Refer to section 6.11 of the <i>Intel PHY Interface for PCI Express (PIPE) Architecture</i> for more information.
pipe_txmargin Sink		Transmit V_{OD} margin selection. The PCI Express MegaCore [®] function hard IP sets the value for this signal based on the value from the Link Control 2 Register. This is 3 bits in the PIPE Specification.
		The 2-bit encodings have the following meanings:
		 2'b00: Gen1 rate (2.5 Gbps)
pipe_rate[1:0]	Sink	2'b01: Gen2 rate (5.0 Gbps)
		2'b1x: Reserved
		Figure 6–3 on page 6–14 illustrates the timing of a rate switch from Gen1 to Gen2 and back to Gen1.

Table 6–8. PIPE Interface (Part 2 of 2)


Signal Name	Direction	Description
		This signal requests the PHY to change its power state to the specified state. The following encodings are defined:
		 2b'00– P0, normal operation
<pre>pipe_powerdown<n>[1:0] (1)</n></pre>	Sink	2b'01–P0s, low recovery time latency, power saving state
		 2b'10–P1, longer recovery time (64 us maximum latency), lower power state
		 2b'11–P2, lowest power state. (not supported)
pipe_rxpolarity	Sink	When 1, instructs the PHY layer to invert the polarity on the 8B/10B receiver decoding block.
pipe_rxelecidle	Source	When asserted, indicates receiver detection of an electrical idle.
pipe_phystatus	Source	This signal is used to communicate completion of several PHY requests.
		This signal encodes receive status and error codes for the receive data stream and receiver detection.The following encodings are defined:
		 000-receive data OK
		001-1 SKP added
pipe_rxstatus <n>[2:0] ⁽¹⁾</n>	Source	010–1 SKP removed
		011–Receiver detected
		■ 100–Both 8B/10B decode error and (optionally) RX disparity error
		 101–Elastic buffer overflow
		110-Elastic buffer underflow
		 111–Receive disparity error.
<pre>rx_eidleinfersel[<n>-1:0] Sink</n></pre>		When asserted high, the electrical idle state is inferred instead of being identified using analog circuitry to detect a device at the other end of the link. You can select electrical idle inferencing, by setting the Enable electrical idle inferencing parameter in the MegaWizard Plug-In Manager to true .
		Indicates whether the transceiver is using full- or low-swing voltages as defined by the tx_pipemargin.
pipe_txswing	Source	 0–Full swing
		■ 1-Low swing

Note to Table 6-8:

(1) <n> is the number of lanes. The PHY (PIPE) supports $\times 1$, $\times 4$, $\times 8$ operation.

Figure 6–3 illustrates the pipe_pclk switching from Gen1 to Gen2 and back to Gen1.

(2) $\langle n \rangle$ is the number of lanes.

Transceiver Serial Interface

Table 6–9 describes the differential serial TX and RX connections to FPGA pins.

Table 6–9. Transceiver Differential Serial Interface

Signal Name Direction		Description
<pre>rx_serial_data[<n>-1:0]</n></pre>	Input	Receiver differential serial input data, $\langle n \rangle$ is the number of lanes.
<pre>tx_serial_data[<n>-1:0]</n></pre>	Output	Transmitter differential serial output data <i><n></n></i> is the number of lanes.

- For information about channel placement of the Hard IP PCI Express IP Core, refer to the *Channel Placement Gen1 and Gen2* and *Channel Placement Gen3* sections in the *Stratix V Hard IP for PCI Express User Guide*.
- For soft IP implementations of PCI Express, channel placement is determined by the Quartus II fitter.

Optional Status Interface

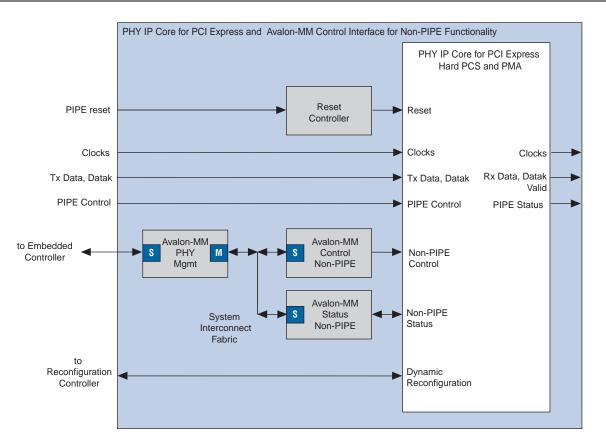
Table 6–10 describes the signals the optional status signals.

 Table 6–10.
 Status Signals
 (Part 1 of 2) ⁽¹⁾

Signal Name	Direction	Signal Name
tx_ready	Output	When asserted, indicates that the TX interface has exited the reset state and is ready to transmit.
rx_ready	Output	When asserted, indicates that the RX interface has exited the reset state and is ready to receive.
<pre>pll_locked[-1:0]</pre>	Output	When asserted, indicates that the PLL is locked to the input reference clock. This signal is asynchronous.
<pre>rx_is_lockedtodata[<n>-1:0]</n></pre>	Output	When asserted, the receiver CDR is in to lock-to-data mode. When deasserted, the receiver CDR lock mode depends on the rx_locktorefclk signal level.
<pre>rx_is_lockedtoref[<n>-1:0]</n></pre>	Output	Asserted when the receiver CDR is locked to the input reference clock. This signal is asynchronous.

Signal Name	Direction	Signal Name
<pre>rx_syncstatus[<d><n>/8-1:0]</n></d></pre>	Output	Indicates presence or absence of synchronization on the RX interface. Asserted when word aligner identifies the word alignment pattern or synchronization code groups in the received data stream.
		When asserted indicates that the lane detects a sender at the other end of the link.

Note to Table 6–10:


(1) <n> is the number of lanes. <d> is the deserialization factor. is the number of PLLs.

Registers

The Avalon-MM PHY management interface provides access to the PHY IP Core for PCI Express PCS and PMA features that are not part of the standard PIPE interface. You can use an embedded controller acting as an Avalon-MM master to send read and write commands to this Avalon-MM slave interface.

Figure 6–4 provides a high-level view of this hardware.

Figure 6–4. PCI Express PIPE IP Core (1)

Note to Figure 6-4:

(1) Blocks in gray are soft logic. Blocks in white are hard logic.

Table 6–11 describes the signals that comprise the Avalon-MM PHY Management interface.

 Table 6–11.
 Avalon-MM PHY Management Interface

Signal Name Direction		Description	
		Avalon-MM clock input.	
phy_mgmt_clk	Input	There is no frequency restriction for Stratix V devices; however, if you plan to use the same clock for the PHY management interface and transceiver reconfiguration, you must restrict the frequency range of phy_mgmt_clk to 100-125 MHz to meet the specification for the transceiver reconfiguration clock.	
phy_mgmt_clk_reset	Input	Global reset signal that resets the entire PHY IP core. Changed definition of phy_mgmt_clk_reset. This signal is active high and level sensitive.	
phy_mgmt_address[8:0]	Input	9-bit Avalon-MM address.	
phy_mgmt_writedata[31:0]	Input	Input data.	
phy_mgmt_readdata[31:0]	Output	Output data.	
phy_mgmt_write	Input	Write signal.	
phy_mgmt_read	Input	Read signal.	
phy_mgmt_waitrequest	Output	When asserted, indicates that the Avalon-MM slave interface is unable to respond to a read or write request. When asserted, control signals to the Avalon-MM slave interface must remain constant.	

Register Descriptions

Table 6–12 describes the registers that you can access over the Avalon-MM PHY management interface using word addresses and a 32-bit embedded processor. A single address space provides access to all registers.

Writing to reserved or undefined register addresses may have undefined side effects.

Table 6–12. PCI Express PHY (PIPE) IP Core Registers (Part 1 of 4	Table 6–12.	PCI Express PHY	(PIPE) IP Core Registers	(Part 1 of 4
---	-------------	-----------------	--------------------------	--------------

Word Addr	Bits	R/W	Register Name	Description
			PMA Common Control a	nd Status Registers
0x022	[31:0]	R	pma_tx_pll_is_locked	Bit[P] indicates that the TX CMU PLL (P) is locked to the input reference clock. There is typically one pma_tx_pll_is_locked bit per system.
			Reset Control Registers-Aut	omatic Reset Controller
0x041	[31:0]	RW	reset_ch_bitmask	Reset controller channel bitmask for digital resets. The default value is all 1s. Channel $\langle n \rangle$ can be reset when bit $\langle n \rangle = 1$.

	2. PUI EXPI	622 LUI	(PIPE) IP Core Registers (Part	2 01 4)	
Word Addr	Bits	R/W	Register Name	Description	
0x042	[1:0]	w	reset_control (Write)	Writing a 1 to bit 0 initiates a TX digital reset using the reset controller module. The reset affects channels enabled in the reset_ch_bitmask. Writing a 1 to bit 1 initiates a RX digital reset of channels enabled in the reset_ch_bitmask.	
		R	reset_status(read)	Reading bit 0 returns the status of the reset controller TX ready bit. Reading bit 1 returns the status of the reset controller RX ready bit.	
			Reset Controls	-Manual Mode	
	[31:0]	RW	reset_fine_control	You can use the reset_fine_control register to create your own reset sequence. The reset control module, illustrated in Figure 1–1 on page 1–2, performs a standard reset sequence at power on and whenever the phy_mgmt_clk_reset is asserted. Bits [31:4, 0] are reserved.	
	[31:4]	RW	Reserved	It is safe to write 0s to reserved bits.	
0x044	[3]	RW	reset_rx_digital	Writing a 1 causes the RX digital reset signal to be asserted, resetting the RX digital channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.	
	[2]	RW	reset_rx_analog	Writing a 1 causes the internal RX digital reset signal to be asserted, resetting the RX analog logic of all channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.	
	[1]	RW	reset_tx_digital	Writing a 1 causes the internal TX digital reset signal to be asserted, resetting all channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.	
	[0]	RW	pll_powerdown	Writing a 1 causes the internal TX PLL to powerdown. If you reset the transceiver, you must assert pll_powerdown by writing a 1 to this register and then writing a 0 after 1 μ s. Asserting pll_powerdown also asserts tx_analogreset which is required for Gen2 operation.	
			PMA Control and	Status Registers	
0x061	[31:0]	RW	phy_serial_loopback	Writing a 1 to channel <n> puts channel <n> in serial loopback mode.</n></n>	
0x063	[31:0]	R	pma_rx_signaldetect	When channel <i><n></n></i> =1, indicates that receive circuit for channel <i><n></n></i> senses the specified voltage exists at the RX input buffer. This option is only operational for the PCI Express PHY IP Core.	
0x064	[31:0]	RW	pma_rx_set_locktodata	When set, programs the RX CDR PLL to lock to the incoming data. Bit <i><n></n></i> corresponds to channel <i><n></n></i> .	
0x065	[31:0]	RW	pma_rx_set_locktoref	When set, programs the RX CDR PLL to lock to the reference clock. Bit <i><n></n></i> corresponds to channel <i><n></n></i> .	

Table 6–12. PCI Express PHY (PIPE) IP Core Registers (Part 2 of 4)

Word Addr	Bits	R/W	Register Name	Description
0x066	[31:0]	RO	pma_rx_is_lockedtodata	When asserted, indicates that the RX CDR PLL is locked to the RX data, and that the RX CDR has changed from LTR to LTD mode. Bit <i><n></n></i> corresponds to channel <i><n></n></i> .
00x067	[31:0]	RO	pma_rx_is_lockedtoref	When asserted, indicates that the RX CDR PLL is locked to the reference clock. Bit <i><n></n></i> corresponds to channel <i><n></n></i> .
			PCS for PCI	Express
0x080	[31:0]	RW	Lane or group number	Specifies lane or group number for indirect addressing, which is used for all PCS control and status registers. For variants that stripe data across multiple lanes, this is the logical group number. For non-bonded applications, this is the logical lane number.
	[31:6]	R	Reserved	—
·	[5:1]	R	rx_bitslipboundary selectout	Records the number of bits slipped by the RX Word Aligner to achieve word alignment. Used for very latency sensitive protocols.
0x081				From block: Word aligner.
	[0]	R	rx_phase_comp_fifo_error	When set, indicates an RX phase compensation FIFO error.
				From block: RX phase compensation FIFO.
	[31:1]	R	Reserved	-
0x082	[0]	RW	tx_phase_comp_fifo_error	When set, indicates a TX phase compensation FIFO error. From block: TX phase compensation FIFO.
	[31:6]	RW	Reserved	-
0000	[5:1]	RW	tx_bitslipboundary_select	Sets the number of bits the TX block needs to slip the output. Used for very latency sensitive protocols.
0x083				From block: TX bit-slipper.
	[0]	RW	tx_invpolarity	When set, the TX channel inverts the polarity of the TX data.
				To block: Serializer.
	[31:1]	RW	Reserved	_
0x084	[0]	RW	rx_invpolarity	When set, the RX channel inverts the polarity of the received data. The 8B/10B decoder inverts the decoder input sample and then decodes the inverted samples.
				To block: 8B/10B decoder.

Table 6-12. PCI Express PHY (PIPE) IP Core Registers (Part 3 of 4)

Word Addr	Bits	R/W	Register Name	Description
	[31:4]	RW	Reserved	—
	[3]	RW	rx_bitslip	When set, the word alignment logic operates in bitslip mode. Every time this register transitions from 0 to 1, the RX data slips a single bit.
				To block: Word aligner.
0.005	[2]	RW		When set, enables byte reversal on the RX interface.
0x085	[2]	ΠW	rx_bytereversal_enable	To block: Word aligner.
	[1]	RW		When set, enables bit reversal on the RX interface.
	[1]	ΠVV	rx_bitreversal_enable	To block: Word aligner.
	[0]	RW	rx_enapatternalign	When set, the word alignment logic operates in pattern detect mode.
				To block: Word aligner.
	[31:20]	R	Reserved	-
	[19:16]	R	rx_rlv	When set, indicates a run length violation.
_				From block: Word aligner.
	[15:12] R 1		rx_patterndetect	When set, indicates that RX word aligner has achieved synchronization.
				From block: Word aligner.
	[11:8]	R	rx_disperr	When set, indicates that the received 10-bit code or data group has a disparity error. When set, the corresponding errdetect bits are also set.
0x086				From block: 8B/10B decoder.
	[7:4]	4] R	rx_syncstatus	When set, indicates that the RX interface is synchronized to the incoming data.
				From block: Word aligner.
	[3:0]	R	rx_errdetect	When set, indicates that a received 10-bit code group has an 8B/10B code violation or disparity error. It is used along with RX disparity to differentiate between a code violation error and a disparity error, or both.
				In PIPE mode, the PIPE specific output port called pipe_rxstatus encodes the errors.
				From block: 8B/10B decoder.

Table 6–12.	PCI Express P	HY (PIPE) IP	Core Registers	(Part 4 of 4)

For more information about the individual PCS blocks referenced in Table 6–12, refer to Transceiver Architecture in Stratix V Devices in the Stratix V Device Handbook

Dynamic Reconfiguration

As silicon progresses towards smaller process nodes, circuit performance is affected more by variations due to process, voltage, and temperature (PVT). These process variations result in voltages that can be offset from required ranges. The calibration performed by the dynamic reconfiguration interface compensates for variations due to PVT.

For Stratix V devices, each channel and each TX PLL have separate dynamic reconfiguration interfaces. The MegaWizard Plug-In Manager provides informational messages on the connectivity of these interfaces. Example 6–1 shows the messages for a 8-channel PHY IP Core for PCI Express (PIPE).

Although you must initially create a separate reconfiguration interface for each channel and TX PLL in your design, when the Quartus II software compiles your design, it reduces the number of reconfiguration interfaces by merging reconfiguration interfaces. The synthesized design typically includes a reconfiguration interface for at least three channels because three channels share an Avalon-MM slave interface which connects to the Transceiver Reconfiguration Controller IP Core. Conversely, you cannot connect the three channels that share an Avalon-MM interface to different Transceiver PHY IP Cores. Doing so causes a Fitter error. For more information, refer to "Reconfiguration Controller to PHY IP Connectivity" on page 12–40.

Example 6–1. Informational Messages for the Transceiver Reconfiguration Interface

PHY IP will require 9 reconfiguration interfaces for connection to the external reconfiguration controller. Reconfiguration interface offsets 0-7 are connected to the transceiver channels. Reconfiguration interface offset 8 is connected to the transmit PLL.

Table 6–13 describes the signals in the reconfiguration interface. This interface uses the Avalon-MM PHY Management interface clock.

 Table 6–13.
 Reconfiguration Interface

Signal Name	Direction	Description
<pre>reconfig_to_xcvr [<r>70-1:0]</r></pre>	Sink	Reconfiguration signals from the Transceiver Reconfiguration Controller. <i><r></r></i> grows linearly with the number of reconfiguration interfaces.
reconfig_from_xcvr [<r>46-1:0]</r>	Source	Reconfiguration signals to the Transceiver Reconfiguration Controller. <i><r></r></i> grows linearly with the number of reconfiguration interfaces.

Transceiver dynamic reconfiguration requires that you assign the starting channel number. Logical channel 0 should be assigned to either physical transceiver channel 1 or channel 4 of a transceiver bank. However, if you have already created a PCB with a different lane assignment for logical lane 0, you can use the workaound shown in Example 6–2 to remove this restriction. Example 6–2 redefines the pma_bonding_master parameter using the Quartus II Assignment Editor. In this example, the pma_bonding_master was originally assigned to physical channel 1. (The original assignment could also have been to physical channel 4.) The to parameter reassigns the pma_bonding_master to the PHY IP Core for PCI Express (PIPE) instance name. You must substitute the instance name from your design for the instance name shown in quotation marks

Example 6–2. Overriding Logical Channel O Channel Assignment Restrictions in Stratix V Devices

set_parameter -name pma_bonding_master "\"1\"" -to "<PHY IP instance name>"

Simulation Files and Example Testbench

Refer to "Running a Simulation Testbench" on page 1–4 for a description of the directories and files that the Quartus II software creates automatically when you generate your PHY IP Core for PCI Express.

Refer to the Altera wiki for an example testbench that you can use as a starting point in creating your own verification environment.

7. Custom PHY IP Core

The Altera Custom PHY IP Core is a generic PHY that you can customize for use in Arria V, Cyclone V, or Stratix V FPGAs. You can connect your application's MAC-layer logic to the Custom PHY to transmit and receive data at rates of 0.611–6.5536 Gbps for Arria V devices or 0.622–11.0 Gbps for Stratix V devices. You can parameterize the physical coding sublayer (PCS) to include the functions that your application requires. The following functions are available:

- 8B/10B encode and decode
- Three word alignment modes
- Rate matching
- Byte ordering

By setting the appropriate options using the MegaWizard Plug-In Manager, you can configure the Custom PHY IP Core to support many standard protocols, including all of the following protocols:

- Serial Data Converter (SDC(JESD204A))
- Serial digital interface (SDI)
- Ethernet (1.25 and 2.50 Gbps)
- Serial RapidIO[®] (SRIO) 1.3
- Serial ATA (SATA) and sequential active serial (SAS) Gen1, Gen2, and Gen3
- Gigabit-capable passive optical network (GPON)

To access control and status registers in the Custom PHY, your design must include an embedded controller with an Avalon-MM master interface. This is a standard, memory-mapped protocol that is typically used to read and write registers and memory.

• For more information about the Avalon-ST and Avalon-MM protocols, refer to the *Avalon Interface Specifications*.

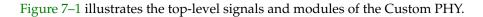
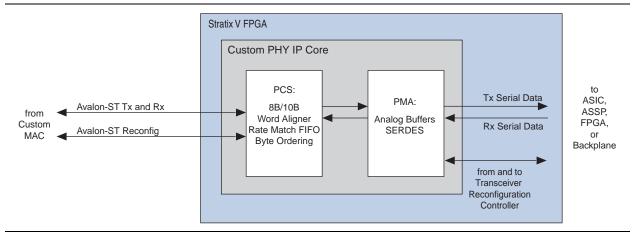



Figure 7–1. Custom PHY IP Core

For more detailed information about the Custom datapath and clocking, refer to the *"Custom Configurations with the Standard PCS"* section in the *Transceiver Configurations in Stratix V Devices* chapter of the *Stratix V Device Handbook*.

Device Family Support

IP cores provide either final or preliminary support for target Altera device families. These terms have the following definitions:

- *Final support*—*V*erified with final timing models for this device.
- *Preliminary support*—Verified with preliminary timing models for this device.

Table 7–1 shows the level of support offered by the Custom PHY IP core for Altera device families.

Table 7–1. Device Family Support

Device Family	Support
Arria V devices–Hard PCS and PMA	Preliminary
Cyclone V devices–Hard PCS and PMA	Preliminary
Stratix V devices–Hard PCS and PMA	Preliminary
Other device families	No support

Performance and Resource Utilization

Because the PCS and PMA are both implemented in hard logic, the Custom PHY IP Core requires less than 1% of FPGA resources. Table 7–1 lists the resource utilization for the Custom PHY when the GIGE-1.25 Gbps preset is specified.

Channels	Combinational ALUTs	Logic Registers (Bits)	
1	142	154	
4	244	364	

Parameter Settings

To configure the Custom PHY IP Core in the MegaWizard Plug-In Manager, click Installed Plug-Ins > Interfaces > Transceiver PHY > Custom PHY v12.0. You can use the tabs on the MegaWizard Plug-In Manager to select the options required for the protocol. Presets are available for the 1.25 Gbps Ethernet (GIGE–1.25 Gbps) and 2.50 Gbps Ethernet (GIGE–2.5 Gbps) protocols.

The following sections describe all of the options on seven tabs of the MegaWizard Plug-In Manager and then list parameters that are set for 1.25 and 2.50 Gbps Ethernet.

General Options

The **General Options** tab allows you to set the basic parameters of your transceiver PHY. Table 7–3 lists the settings available on the **General Options** tab.

Name	Value	Description
Device family	Arria V Stratix V	Specifies the device family. Arria V and Stratix V are available.
Parameter validation rules	Custom GIGE	Allows you to specify the transceiver protocol. Select Custom if you are not implementing 1.25 or 2.50GIGE.
Mode of operation	Duplex TX RX	You can select to transmit data, receive data, or both.
Number of lanes	1–32	The total number of lanes in each direction.
Enable lane bonding	On/Off	When enabled, a single clock drives multiple lanes, reducing clock skew. In Stratix V devices, up to 6 lanes can be bonded if you use an ATX PLL; 4 lanes can be bonded If you select the CMU PLL.

Table 7–3. General Options (Part 1 of 3)

Value Name Description Select **xN** to use the same clock source for up to 6 channels in a single transceiver bank, resulting in reduced clock skew. You must use contiguous channels when you select **×N** bonding. In addition, you must place logical channel 0 in either physical channel 1 or 4. Physical channels 1 and 4 are indirect drivers of the **×N** clock network. ×N **Bonding mode** Select **fb** compensation (feedback compensation) to use the same fb_compensation clock source for multiple channels across different transceiver banks to reduce clock skew. For more information about bonding, refer to "Bonded Channel Configurations Using the PLL Feedback Compensation Path" in Transceiver Clocking in Stratix V Devices in volume 2 of the Stratix V Device Handbook. FPGA fabric transceiver 8,10,16,20, Specifies the total serialization factor, from an input or output pin to interface width 32.40 the MAC-laver logic. The PCS-PMA interface width depends on the FPGA fabric transceiver interface width and whether 8B/10B is enabled. The following combinations are available: FPGA/XCVR 8B/10B PCS-PMA Interface Width 8 8 No 8 Yes 10 **PCS-PMA** interface width 8, 10, 16, 20 10 No 10 16 No 8 or 16 16 Yes 10 or 20 20 No 10 or 20 32 No 16 32 Yes 20 40 20 No You can select either the CMU or ATX PLL. The CMU PLL has a larger frequency range than the **ATX** PLL. The **ATX** PLL is designed to improve jitter performance and achieves lower channel-tochannel skew; however, it supports a narrower range of data rates and reference clock frequencies. Another advantage of the **ATX** PLL is that it does not use a transceiver channel, while the CMU PLL CMU PLL type does. ATX Because the **CMU** PLL is more versatile, it is specified as the default setting. An informational message displays in the message pane telling you whether the chosen settings for **Data rate** and **Input clock frequency** are legal for the CMU PLL, or for both the **CMU** and **ATX** PLLs. 622-11000 Mbps Specifies the data rate. Data rate The **base data rate** is the frequency of the clock input to the PLL. Select a **base data rate** that minimizes the number of PLLs 1 × Lane rate required to generate all the clocks required for data transmission. Base data rate $2 \times Lane rate$ By selecting an appropriate **base data rate**, you can change data 4 × Lane rate rates by changing the divider used by the clock generation block. For higher frequency data rates $2 \times and 4 \times base$ data rates are not available.

Table 7–3. General Options (Part 2 of 3)

Table 7–3. General Options (Part 3 of 3)

Name	Value	Description
Input clock frequency	Variable	Specifies the frequency of the PLL input reference clock. The frequency required is the Base data rate /2. You can use any Input clock frequency that allows the PLLs to generate this frequency.
	I	Additional Options
Enable TX Bitslip	On/Off	When enabled, the TX bitslip word aligner is operational.
Create rx_coreclkin port	On/Off	This is an optional clock to drive the coreclk of the RX PCS
Create tx_coreclkin port	On/Off	This is an optional clock to drive the coreclk of the TX PCS
Create rx_recovered_clk port	On/Off	When enabled, the RX recovered clock is an output.
		When you turn this option on, the following signals are added to the top level of your transceiver for each lane:
• • • • •		<pre>tx_forceelecidle</pre>
Create optional ports	On/Off	<pre>rx_is_lockedtoref</pre>
		<pre>rx_is_lockedtodata</pre>
		<pre>rx_signaldetect</pre>
Avalon data interfaces	On/Off	When you turn this option On , the order of symbols is changed. This option is typically required if you are planning to import your Custom PHY IP Core into a Qsys system.
		When On , the automatic reset controller initiates the reset sequence for the transceiver. When Off you can design your own reset logic using tx_analogreset, rx_analogreset, tx_digitalreset, rx_digitalreset, and pll_powerdown which are top-level ports of the Custom Transceiver PHY. You may also use the Transceiver PHY Reset Controller' to reset the transceivers. For more information, refer to the Chapter 13, Transceiver PHY Reset Controller IP Core.
Enable embedded reset control	On/Off	By default, the CDR circuitry is in automatic lock mode whether you use the embedded reset controller or design your own reset logic. You can switch the CDR to manual mode by writing the pma_rx_setlocktodata Or pma_rx_set_locktoref registers to 1. If either the pma_rx_set_locktodata and pma_rx_set_locktoref is set, the CDR automatic lock mode is disabled as Table 7–4 illustrates. For more information about the reset control and status registers, refer to Table 7–21 on page 7–24.
		For more information about reset in Stratix V devices, refer to <i>Transceiver Reset Control in Stratix V Devices</i> in volume 2 of the <i>Stratix V Device Handbook</i> .

The CDR can be put in either manual or automatic mode. The CDR mode is controlled with the pma_rx_set_locktodata and pma_rx_set_locktoref registers. Table 7–4 shows the required settings to control the CDR mode.

rx_set_locktoref	rx_set_locktodata	CDR Lock Mode
1	0	Manual RX CDR locked to reference
Х	1	Manual RX CDR locked to data
0	0	Automatic RX CDR

Word Alignment

The word aligner restores word boundaries of received data based on a predefined alignment pattern. This pattern can be 7, 8, 10, 16, 20, or 32 bits long. The word alignment module searches for a programmed pattern to identify the correct boundary for the incoming stream. Table 7–5 lists the settings available on the **Word Aligner** tab.

Table 7–5. Word Aligner (Part 1 of 2)Options

Name	Value	Description		
		You can select 1 of the following 3 modes:		
	Manual	Manual-In this mode you enable the word alignment function by asserting rx_enapatternalign using the Avalon-MM interface. When the PCS exits reset, the word aligner automatically performs an initial alignment to the specified word alignment pattern if the PCS interface is wider than the PCS to PMA interface. After the initial alignment, you must assert rx_enapatternalign to initiate another pattern alignment. rx_enapatternalign is edge sensitive in most cases; however, if the PMA-PCS interface width is 10 bits, it is level sensitive.		
	Bit slipping	 Bit slipping-You can use bit slip mode to shift the word boundary using the Avalon-MM interface. For every rising edge of the rx_bitslip signal, the word boundary is shifted by 1 bit. Each bit slip removes the earliest received bit from the received data. 		
Word alignment mode		Automatic synchronization state machine-In this mode, word alignment is controlled by a programmable state machine. This mode can only be used with 8B/10B encoding. The data width at the word aligner can be 10 or 20 bits. You can specify the following parameters:		
	Automatic synchronization state machine	 Number of consecutive valid words before sync state is reached: Specifies the number of consecutive valid words needed to reduce the built up error count by 1. Valid values are 1–256. 		
		 Number of bad data words before loss of sync state: Specifies the number of bad data words required for alignment state machine to enter loss of sync state. Valid values are 1–256. 		
		 Number of valid patterns before sync state is reached: Specifies the number of consecutive patterns required to achieve synchronization. Valid values are 1–256. 		

Table 7-5. Word Aligner (Part 2 of 2)Options

Name	Value	Description	
Word alignment mode (continued)	Automatic synchronization state machine (continued)	 Create optional word aligner status ports: When enabled the rx_syncstatus and rx_patterndetect status ports are created. Word alignment pattern length: Allows you to specify a 7- or 10-bit pattern for use in the word alignment state machine. Word alignment pattern: Allows you to specify a word alignment pattern. 	
Enable run length violation checking	On/Off	If you turn this option on, you can specify the run length which is the maximum legal number of contiguous 0s or 1s.	
Run length	40–640	Specifies the threshold for a run-length violation.	

Table 7–6 provides more information about the word alignment function.

PMA-PCS Interface Width (bits)	Word Alignment Mode	Word Alignment Pattern Length (bits)	Word Alignment Behavior	
8	Manual alignment	8, 16	User-controlled signal starts alignment process. Alignment occurs once unless signal is re-asserted.	
	Manual alignment		User-controlled signal starts alignment process. Alignment occurs once unless signal is re-asserted.	
10	Automatic synchronized state machine	7, 10	Data must be 8B/10B encoded and aligns to selected word aligner pattern.	
16	Manual alignment	8, 16, 32	User-controlled signal starts alignment process. Alignment occurs once unless signal is re-asserted.	
Manual alignment		8, 16, 32 User-controlled signal starts alignment process. Aligoccurs once unless signal is re-asserted.		
20	Automatic Synchronized State Machine	7 and 10 bits	Automatically selected word aligner pattern length and pattern.	

For more information about the word aligner, refer to "Word Alignment" in *Transceiver Architecture in Stratix V Devices* in the *Stratix V Device Handbook* or *Transceiver Architecture in Arria V Devices* in the *Arria V Device Handbook*.

Rate Match FIFO

The rate match FIFO compensates for small clock frequency differences between the upstream transmitter and the local receiver clocks by inserting or removing skip (SKP) symbols or ordered-sets from the inter-packet gap (IPG) or idle streams. It deletes SKP symbols or ordered-sets when the upstream transmitter reference clock frequency is greater than the local receiver reference clock frequency. It inserts SKP symbols or ordered-sets when the local receiver reference clock frequency is greater than the local receiver reference clock frequency is greater than the local receiver reference clock frequency is greater than the upstream transmitter reference clock frequency.

If you enable the rate match FIFO, the MegaWizard Plug-In Manager provides options to enter the rate match insertion and deletion patterns. The lower 10 bits are the control pattern, and the upper 10 bits are the skip pattern. Table 7–7 lists the settings available on the **Rate Match** tab.

Table 7–7. Rate Match FIFO Options

Name	Value	Description		
Enable rate match FIFO	On/Off	Turn this option on, to enable the rate match functionality. Turning this option on adds the rx_rmfifodatainserted, and rx_rmfifodatadeleted status signals to your PHY.		
Rate match insertion/deletion +ve disparity pattern	1101000011 1010000011	Enter a 10-bit skip pattern (bits 10–19) and a 10-bit control pattern (bits 0–9). The skip pattern must have neutral disparity.		
Rate match insertion/deletion -ve disparity pattern	0010111100 0101111100	Enter a 10-bit skip pattern (bits 10–19) and a 10-bit control pattern (bits 0–9). The skip pattern must have neutral disparity.		
Create optional rate match FIFO status ports	On/Off	When enabled, creates the rx_rmfifoddatainserted and rx_rmfifodatadeleted signals from the rate match FIFO become output ports.		

8B/10B Encoder and Decoder

The 8B/10B encoder generates 10-bit code groups (control or data word) with proper disparity from the 8-bit data and 1-bit control identifier. The 8B/10B decoder receives 10-bit data from the rate matcher and decodes it into an 8-bit data and 1-bit control identifier. Table 7–8 lists the settings available on the **8B/10B** tab.

Table 7-8. 8B/10B Options

Name	Value	Description	
Enable 8B/10B decoder/encoder	ble 8B/10B decoder/encoder On/Off Enable this option if your application requires 8B/10B enco decoding. This option on adds the tx_datak <n>, rx_dat and rx_runningdisp<n> signals to your transceiver.</n></n>		
Enable manual disparity control	On/Off	When enabled, you can use the tx_forcedisp signal to control the disparity of the 8B/10B encoder. Turning this option on adds the tx_forcedisp and tx_dispval signals to your transceiver.	
Create optional 8B/10B status port	On/Off	Enable this option to include the 8B/10B rx_errdetect and rx_disperr error signals at the top level of the Custom PHY IP Core.	

Byte Ordering

The byte ordering block is available when the PCS width is doubled at the byte deserializer. Byte ordering identifies the first byte of a packet by determining whether the programmed start-of-packet (SOP) pattern is present; it inserts enough pad characters in the data stream to force the SOP to the lowest order byte lane. Table 7–9 describes the byte order options.

You cannot enable Rate Match FIFO when your application requires byte ordering. Because the rate match function inserts and deletes idle characters, it may shift the SOP to a different byte lane.

Table 7–9.	Byte Order Optio	ns (Part 1 of 2)
------------	------------------	------------------

Name	Value	Description
Name Value Enable byte ordering block On/Off		 Turn this option on if your application uses serialization to create a datapath that is larger than 1 symbol. This option is only available if you use the byte deserializer for the following configurations: Configuration 1: 16-bit FPGA fabric-transceiver interface No 8B/10B decoder (8-bit PMA-PCS interface) Word aligner in manual alignment mode Configuration 2: 16-bit FPGA fabric-transceiver interface 8B/10B decoder (10-bit PMA-PCS interface) Word aligner in automatic synchronization state machine mode Configuration 3: 32-bit FPGA fabric-transceiver interface
		0
		This option creates the rx_byteordflag signal which is asserted when the received data is aligned to the byte order pattern that you specified.
Enable byte ordering block manual control	On/Off	Turn this option on to choose manual control of byte ordering. This option creates the rx_enabyteord signal. A byte ordering operation occurs whenever rx_enabyteord is asserted. To perform multiple byte ordering operations, deassert and reassert rx_enabyteord.

Table 7–9. Byte Order Options (Part 2 of 2)

Name	Value	Description			
		Specifies the pattern that identifies the SOP.			
		For 16-bit byte ordering pattern you must include a 2-bit pad so that the pattern entered is in the following format: 00 <i><pattern></pattern></i> 00 <i><pattern></pattern></i> . For example, if the required pattern is 10111100, enter the following pattern: 00101111000010111100			
		Enter the byte ordering pattern as follows based on the 5 configurations that support byte ordering as described in the "Enable byte ordering block" on page 7–9:			
		Configuration 1: 8-bits			
		Configuration 2: 10-bits			
Byte ordering pattern	Depends on configuration	For example: If you select a /Kx.y/ control code group as the byte ordering pattern, the most significant 2 bits of the 10-bit byte ordering pattern must be 2'b01. If you select a /Dx.y/ data code group as the byte ordering pattern, the most significant 2-bits of the 10-bit byte ordering pattern must be 2'b00. The least significant 8-bits must be the 8B/10B decoded version of the code group used for byte ordering.			
		 Configuration 3:16-bits, 8-bits 			
		Configuration 4: 20-bits only			
		For example: If you select a /Kx.y/Dx.y/ code group as the byte ordering pattern, the most significant 2-bits of the 20-bit byte ordering pattern must be 2'b01. Similarly bit[9:0] must be 2'b00. Bit[18:10] must be the 8B/10B decoded version of /Kx.y/. Bit[7:0] must be 8B/10B decoded version of /Dx.y/.			
		Configuration 5: 20-bits, 10-bits			
		Specifies the pad pattern that is inserted to align the SOP. Enter the following size pad patterns:			
Byte ordering pad pattern	0000000	Data Width 8B/10B Encoded? Pad Pattern 8, 16, 32 No 8 bits 10,20,40 No 10 bits 8, 16, 32 Yes 9 bits			

PLL Reconfiguration

Table 7–10 lists the **PLL Recon figurations** options. For more information about transceiver reconfiguration registers, refer to "PLL Reconfiguration" on page 12–19.

 Table 7–10.
 PLL Reconfigurations

Name	Value	Description		
Allow PLL Reconfiguration	On/Off	You must enable this option if you plan to reconfigure the PLLs in your design. This option is also required to simulate PLL reconfiguration.		
		Specifies the number of TX PLLs required for this instance of the Custom PHY. More than 1 PLL may be required if your design reconfigures channels to run at multiple frequencies.		
Number of TX PLLs	1–4	You must disable the embedded reset controller and design your own controlled reset controller or the use the highly configurable reset core described in Chapter 13, Transceiver PHY Reset Controller IP Core if you intend to use more than 1 TX PLL for a Custom PHY IP instance.		
Number of input clocks	1–5	Specifies the number of input reference clocks. More than one reference clock may be required if your design reconfigures channels to run at multiple frequencies.		
Main TX PLL logical index	0–3	Specifies the index for the TX PLL that should be instantiated at startup. Logical index 0 corresponds to TX PLL0, and so on.		
Main TX PLL input clock source	0–3	Specifies the index for the TX PLL input clock that should be instantiated at startup. Logical index 0 corresponds to input clock 0 and so on.		
		TX PLL (0–3)		
(Refer to 1		3 for a detailed explanation of these parameters.)		
PLL Type	CMU Atx	Specifies the PLL type.		
Base data rate	1 × Lane rate 2 × Lane rate 4 × Lane rate	Specifies Base data rate .		
Input clock frequency	Variable	Specifies the frequency of the PLL input reference clock. The frequency required is the Base data rate /2. You can use any Input clock frequency that allows the PLLs to generate this frequency.		
Selected input clock source	0–4	Specifies the index of the input clock for this TX PLL. Logical index 0 corresponds to input clock 0 and so on.		
		Channel Interface		
		Turn this option on to enable PLL and datapath dynamic reconfiguration. When you select this option, the width of tx_parallel_data and rx_parallel_data buses increases in the following way.		
Enable channel interface	On/Off	 The tx_parallel_data bus is 44 bits per lane; however, only the low-order number of bits specified by the FPGA fabric transceiver interface width contain valid data for each lane. 		
		 The rx_parallel_data bus is 64 bits per lane; however, only the low-order number of bits specified by the FPGA fabric transceiver interface width contain valid data. 		

Analog Options

You specify the analog parameters for Stratix V devices using the Quartus II Assignment Editor, the Pin Planner, or through the Quartus II Settings File (**.qsf**). The default values for analog options fall into three categories:

- *Global* These parameters have default values that are independent of other parameter settings.
- *Computed*—These parameters have an initial default value that is recomputed based on other parameter settings.
- *Proxy*—These parameters have default values that are place holders. The Quartus II software selects these initial default values based on your design; however, Altera recommends that you replace these defaults with values that match your electrical board specification.

Table 7–11 lists the analog parameters for Stratix V devices whose original values are place holders for the values that match your electrical board specification. In Table 7–11, the default value of an analog parameter is shown in **bold** type. The parameters are listed in alphabetical order.

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_GT_IO_PIN_ TERMINATION	GT Transceiver I/O Pin Termination	Fine tunes the target 100-ohm on-chip termination for the specified transceiver pin. This parameter is only for GT transceivers.	0-15 12	Pin
XCVR_IO_PIN_TERMINATION	Transceiver I/O Pin Termination	Specifies the intended on-chip termination value for the specified transceiver pin. Use External Resistor if you intend to use off-chip termination.	85_0HMS 100_0HMS 120_0HMS 150_0HMS EXTERNAL_ RESISTOR	Pin
XCVR_REFCLK_PIN_ TERMINATION	Transceiver Dedicated Refclk Pin Termination	Specifies the intended termination value for the specified refclk pin.	DC_COUPLING_ INTERNAL_100 _OHM	Pin
			DC_COUPLING_ EXTERNAL_ RESISTOR AC_COUPLING	
XCVR_RX_BYPASS_EQ_ STAGES_234	Receiver Equalizer Stage 2, 3, 4 Bypass	Bypass continuous time equalizer stages 2, 3, and 4 to save power. This setting eliminates significant AC gain on the equalizer and is appropriate for chip-to-chip short range communication on a PCB.	ALL_STAGES_ ENABLED BYPASS_ STAGES	Pin
XCVR_TX_SLEW_RATE_CTRL	Transmitter Slew Rate Control	Specifies the slew rate of the output signal. The valid values span from the slowest rate to fastest rate with 1 representing the slowest rate.	1–5	Pin

Table 7–11. Transceiver and PLL Assignments for Stratix V Devices (Part 1 of 2)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_VCCA_VOLTAGE	VCCA_GXB Voltage	Configure the VCCA_GXB voltage for a GXB I/O pin by specifying the intended VCCA_GXB voltage for a GXB I/O pin. If you do not make this assignment the compiler automatically sets the correct VCCA_GXB voltage depending on the configured data rate, as follows: Data rate <= 6.5 Gbps: 2_5V Data rate > 6.5 Gbps: 3_0V or	2_5V 3_0V	Pin
		3_3V for Stratix V ES silicon		
XCVR_VCCR_VCCT_VOLTAGE	VCCR_GXB VCCT_GXB Voltage	Refer to the <i>Device Datasheet for</i> <i>Stratix V Devices</i> for guidance on selecting a value.	0_85V 1_0V	Pin

lable 7–11. Iransceiver and PLL Assignments for Stratix V Devices (Part 2 of 2	sceiver and PLL Assignments for Stratix V Devices (Part 2 of 2)
--	---

Table 7–12 lists the analog parameters with *global* or *computed* default values. You may want to optimize some of these settings. In Table 7–12, the default value is shown in **bold** type. For computed analog parameters, the default value listed is for the initial setting, not the recomputed setting. The parameters are listed in alphabetical order.

Table 7–12. Transceiver and PLL Assignments for Stratix V Devices (Part 1 of 5)	Table 7–12.	Transceiver and PLL	Assignments for Stratix V	Devices (Part 1 of 5)
---	-------------	----------------------------	---------------------------	-----------------------

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
	Analog Parameters with	Global Default Value		
CDR_BANDWIDTH_PRESET	CDR Bandwidth Preset	Specifies the CDR bandwidth preset setting.	Auto Low Medium High	PLL instance
PLL_BANDWIDTH_PRESET	PLL Bandwidth Preset	Specifies the PLL bandwidth preset setting	Auto Low Medium High	PLL instance
XCVR_GT_RX_DC_GAIN	Receiver Buffer DC Gain Control	Controls the RX buffer DC gain for GT channels.	0-19 8	Pin
XCVR_RX_DC_GAIN	Receiver Buffer DC Gain Control	Controls the RX buffer DC gain for GX channels.	0 –4	Pin
XCVR_RX_LINEAR_EQUALIZER_ CONTROL	Receiver Linear Equalizer Control	Static control for the continuous time equalizer in the receiver buffer. The equalizer has 16 distinct settings from 0-15 corresponding to the increasing AC gain.	1 –16	Pin
Analog Parameters with Computed Default Value				
XCVR_GT_TX_PRE_EMP_PRE_ TAP	Transmitter Pre-emphasis Pre-Tap	Specifies the pre-tap pre-emphasis setting. This parameter is only for GT transceivers.	0-31 0	Pin

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_GT_TX_VOD_MAIN_TAP	Transmitter Differential Output Voltage for GT channels.	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength. This parameter is only for GT transceivers.	0-5 3	Pin
XCVR_GT_RX_COMMON_ MODE_VOLTAGE	GT receiver Buffer Common Mode Voltage	Receiver buffer common-mode voltage. This parameter is only for GT transceivers.	VTT_0P8V VTT_0P75V VTT_0P65V VTT_0P65V VTT_0P55V VTT_0P55V VTT_0P35V VTT_0P35V VTT_VCM0FF6 VTT_VCM0FF6 VTT_VCM0FF4 VTT_VCM0FF3 VTT_VCM0FF1 VTT_VCM0FF1 VTT_VCM0FF0	Pin
XCVR_GT_RX_CTLE	GT Receiver Linear Equalizer Control	Static control for the continuous time equalizer in the receiver buffer. The equalizer has 9 distinct settings from 0-8 corresponding to increasing AC gain. This parameter is only for GT transceivers.	0-8 0	Pin
XCVR_GT_TX_COMMON_MODE_ GT Transmitter Common VOLTAGE Mode Driver Voltage		Transmitter common-mode driver voltage. This parameter is only for GT transceivers.	VOLT_0P80V VOLT_0P75V VOLT_0P65V VOLT_0P66V VOLT_0P60V VOLT_0P55V VOLT_0P55V VOLT_0P35V PULL_UP PULL_DN TRISTATED1 GROUNDED PULL_UP_TO_ VCCELA TRISTATED2 TRISTATED3 TRISTATED4	Pin
XCVR_GT_TX_PRE_EMP_1ST_ POST_TAP	GT Transmitter Preemphasis First Post-Tap	Specifies the first post-tap setting value. This parameter is only for GT transceivers.	0-31 5	Pin
XCVR_GT_TX_PRE_EMP_INV_ PRE_TAP	GT Transmitter Preemphasis Pre Tap Invert	Inverts the transmitter pre-emphasis pre-tap. This parameter is only for GT transceivers.	ON OFF	Pin
XCVR_GT_TX_PRE_EMP_PRE_ TAP	GT Transmitter Preemphasis Pre-Tap	Specifies the pre-tap pre-emphasis setting. This parameter is only for GT transceivers.	0-31 0	Pin

Table 7–12. Transceiver and PLL Assignments for Stratix V Devices (Part 2 of 5)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_GT_TX_VOD_MAIN_TAP	GT Transmitter Differential Output Voltage	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength.	0-5 3	Pin
XCVR_RX_COMMON_MODE_ VOLTAGE	Receiver Buffer Common Mode Voltage	Receiver buffer common-mode voltage.	VTT_0P80V VTT_0P75V VTT_0P65V VTT_0P65V VTT_0P55V VTT_0P50V VTT_0P35V VTT_0P35V VTT_PUP _WEAK VTT_PDN WEAK TRISTATE1 VTT_PDN_ STRONG VTT_PUP_ STRONG TRISTATE2 TRISTATE3 TRISTATE4	Pin
XCVR_RX_ENABLE_LINEAR_ Receiver Linear Equalizer EQUALIZER_PCIEMODE Control (PCI Express)		If enabled equalizer gain control is driven by the PCS block for PCI Express. If disabled equalizer gain control is determined by the XCVR_RX_LINEAR_EQUALIZER_SETT ING assignment.	TRUE False	Pin
VR_RX_EQ_BW_SEL Receiver Equalizer Gain Bandwidth Select		Sets the gain peaking frequency for the equalizer. For data-rates of less than 6.5Gbps set to HALF. For higher data- rates set to FULL.	full Half	Pin
XCVR_RX_SD_ENABLE	Receiver Signal Detection Unit Enable/Disable	Enables or disables the receiver signal detection unit.	TRUE False	Pin
XCVR_RX_SD_OFF	Receiver Cycle Count Before Signal Detect Block Declares Loss Of Signal	Number of parallel cycles to wait before the signal detect block declares loss of signal.	0 –29	Pin
XCVR_RX_SD_ON	Receiver Cycle Count Before Signal Detect Block Declares Presence Of Signal	Number of parallel cycles to wait before the signal detect block declares presence of signal.	0 –16	Pin
XCVR_RX_SD_THRESHOLD	Receiver Signal Detection Voltage Threshold	Specifies signal detection voltage threshold level.	0 –7	Pin

Table 7–12. Transceiver and PLL Assignments for Stratix V Devices (Part 3 of 5)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_TX_COMMON_MODE_ VOLTAGE	Transmitter Common Mode Driver Voltage	Transmitter common-mode driver voltage	VOLT_OP80V VOLT_OP75V VOLT_OP75V VOLT_OP65V VOLT_OP60V VOLT_OP55V VOLT_OP55V VOLT_OP50V VOLT_OP35V PULL_UP PULL_DOWN TRISTATED1 GROUNDED PULL_UP_TO VCCELA TRISTATED2 TRISTATED3 TRISTATED4	Pin
XCVR_TX_PRE_EMP_PRE_TAP_ USER	Transmitter Preemphasis Pre-Tap user	Specifies the TX pre-emphasis pretap setting value, including inversion.	0 –31	Pin
XCVR_TX_PRE_EMP_2ND_TAP_ USER	Transmitter Preemphasis Second Post-Tap user	Specifies the transmitter pre-emphasis second post-tap setting value, including inversion.	0 –31	Pin
XCVR_TX_PRE_EMP_1ST_POST_ TAP	Transmitter Preemphasis First Post-Tap	Specifies the first post-tap setting value.	0 –31	Pin
XCVR_TX_PRE_EMP_2ND_ POST_TAP	Transmitter Preemphasis Second Post-Tap	Specifies the second post-tap setting value.	0 –15	Pin
XCVR_TX_PRE_EMP_INV_ 2ND_TAP	Transmitter Preemphasis Second Tap Invert	Inverts the transmitter pre-emphasis 2nd post tap.	TRUE False	Pin
XCVR_TX_PRE_EMP_INV_ PRE_TAP	Transmitter Preemphasis Pre Tap Invert	Inverts the transmitter pre-emphasis pre-tap.	TRUE False	Pin
XCVR_TX_PRE_EMP_PRE_TAP	Transmitter Preemphasis Pre-Tap	Specifies the pre-tap pre-emphasis setting.	0 –15	Pin
XCVR_TX_RX_DET_ENABLE	Transmitter's Receiver Detect Block Enable	Enables or disables the receiver detector circuit at the transmitter.	TRUE False	Pin
XCVR_TX_RX_DET_MODE	Transmitter's Receiver Detect Block Mode	Sets the mode for receiver detect block	0 –15	Pin
XCVR_TX_RX_DET_OUTPUT_SEL	Transmitter's Receiver Detect Block QPI/PCI Express Control	Determines QPI or PCI Express mode for the Receiver Detect block.	RX_DET_QPI_ OUT RX_DET_PCIE_ OUT	Pin

Table 7–12. Transcei	iver and PLL Assignm	ents for Stratix V Devices	(Part 4 of 5)
----------------------	----------------------	----------------------------	---------------

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_TX_VOD	Transmitter Differential Output Voltage	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength.	0–63 50	Pin
XCVR_TX_VOD_PRE_EMP_ CTRL_SRC	Transmitter V _{oD} /Preemphasis Control Source	When set to DYNAMIC_CTL, the PCS block controls the V_{OD} and preemphasis coefficients for PCI Express. When this assignment is set to RAM_CTL the V_{OD} and preemphasis are controlled by other assignments, such as XCVR_TX_PRE_EMP_1ST_POST_TAP.	DYNAMIC_CTL Ram_Ctl	Pin

⑦ For more information about the Pin Planner, refer to About the Pin Planner in Quartus II Help. For more information about the Assignment Editor, refer to About the Assignment Editor in Quartus II Help.

For more information about Quartus II Settings, refer to *Quartus II Settings File Manual*.

Presets for Ethernet

If you apply the presets for GIGE-1.25 Gbps or GIGE-2.5 Gbps, parameters with specific required values for those protocols are set for you. Selecting a preset does not prevent you from changing any parameter to meet the requirements of your design. Table 7–13 lists the parameters that are set for the GIGE-1.25 Gbps or GIGE-2.5 Gbps protocols.

Table 7–13. Presets for Ethernet Protocol (Part 1 of 2)

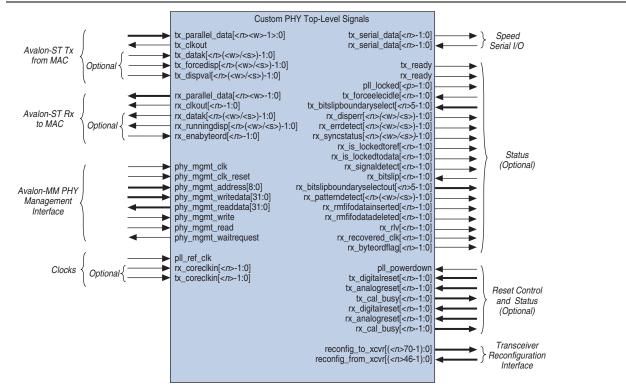
Parameter Name	GIGE-1.25 Gbps	GIGE-2.50 Gbps			
General Options Tab					
Parameter validation rules	GIGE	GIGE			
Enable bonding	Off	Off			
FPGA fabric transceiver interface width	8	16			
PCS-PMA Interface Width	10	10			
Data rate	1250 Mbps	3125			
Input clock frequency	62.5 MHz	62.5			
Enable TX Bitslip	Off	Off			
Create rx_coreclkin port	Off	Off			
Create tx_coreclkin port	Off	Off			
Create rx_recovered_clk port	Off	Off			
Create optional ports	Off	Off			

Parameter Name	GIGE-1.25 Gbps	GIGE-2.50 Gbps
Avalon data interfaces	Off	Off
Enabled embedded reset controller	On	On
	Word Aligner Options	
Word alignment mode	Automatic synchronization state machine	Automatic synchronization state machine
Number of consecutive valid words before sync state is reached	3	3
Number of bad data words before loss of sync state	3	3
Number of valid patterns before sync state is reached	3	3
Create optional word aligner status ports	Off	Off
Word aligner pattern length	10	10
Word alignment pattern	101111100	0101111100
Enable run length violation checking	Off	Off
Run length	—	—
·	Rate Match Options	
Enable rate match FIFO	On	On
Rate match insertion/deletion +ve disparity pattern	10100010010101111100	101000100101011111100
Rate match insertion/deletion -ve disparity pattern	10101011011010000011	10101011011010000011
	8B/10B Options	
Enable 8B/10B decoder/encoder	On	On
Enable manual disparity control	Off	Off
Create optional 8B/10B status port	Off	Off
· · · · ·	Byte Order Options	
Enable byte ordering block	Off	Off
Enable byte ordering block manual control	Off	Off
Byte ordering pattern	—	—
Byte ordering pad pattern		

Table 7–13. Presets for Ethernet Protocol (Part 2 of 2)

Interfaces

This section describes interfaces of the Custom Transceiver PHY. It includes the following topics:


- Ports
- Register Interface
- Dynamic Reconfiguration

Ports

Figure 7–2 illustrates the top-level signals of the Custom PHY IP Core. The variables in Figure 7–2 represent the following parameters:

- <*n>*—The number of lanes
- *<w>*—The width of the FPGA fabric to transceiver interface per lane
- *<s>* The symbol size
- *—*The number of PLLs

Figure 7–2. Custom PHY Top-Level Signals (1)

Note to Figure 7-2:

(1) <*n*> is the number of lanes. <*w*> is the PCS to FPGA fabric interface width per lane. <*s*> is the symbol size in bits. <*p*> is the number of PLLs.

- By default **block diagram** shown in the MegaWizard Plug-In Manager labels the external pins with the *interface type* and places the *interface name* inside the box. The interface type and name are used in the _hw.tcl file that describes the component. If you turn on Show signals, the block diagram displays all top-level signal names.
- **For more information about _hw.tcl** files refer to refer to the *Component Interface Tcl Reference* chapter in volume 1 of the *Quartus II Handbook*.

The following sections describe the signals in each interface.

Avalon-ST TX Input Data from the MAC

Table 7-14 describes the signals in the Avalon-ST input interface. These signals are driven from the MAC to the PCS. This is an Avalon sink interface.

For more information about the Avalon-ST protocol, including timing diagrams, refer to the Avalon Interface Specifications.

Table 7–14. Avalon-ST TX Interface

Signal Name	Direction	Description
<pre>tx_parallel_data[(<n><w>)-1:0]</w></n></pre>	Sink	This is TX parallel data driven from the MAC. The ready latency on this interface is 0, so that the PHY must be able to accept data as soon as it comes out of reset.
tx_clkout	Output	This is the clock for TX parallel data, control, and status signals.
tx_datak[<n>(<w>/<s>)-1:0]</s></w></n>	Sink	Data and control indicator for the received data. When 0, indicates that tx_data is data, when 1, indicates that tx_data is control.
<pre>tx_forcedisp[<n>(<w>/<s>)-1:0]</s></w></n></pre>	Sink	When asserted, this control signal enables disparity to be forced on the TX channel. This signal is created if you turn On the Enable manual disparity control option on the 8B/10B tab.
tx_dispval[<n>(<w>/<s>)-1:0]</s></w></n>	Sink	This control signal specifies the disparity of the data. This port is created if you turn On the Enable disparity control option on the 8B/10B tab.

Avalon-ST RX Output Data to the MAC

Table 7-15 describes the signals in the Avalon-ST output interface. These signals are driven from the PCS to the MAC. This is an Avalon source interface.

Table 7–15. Avalon-ST RX Interface	
--	--

Signal Name	Direction	Description	
<pre>rx_parallel_data[<n><w>-1:0]</w></n></pre>	Source	This is RX parallel data driven from the Custom PHY IP Core. The ready latency on this interface is 0, so that the MAC must be able to accept data as soon as the PHY comes out of reset. Data driven from this interface is always valid.	
<pre>rx_clkout[<n>-1:0]</n></pre>	Output	This is the clock for the RX parallel data source interface.	
rx_datak[< <i>n</i> >(<w>/<s>)-1:0]</s></w>	Source	Data and control indicator for the source data. When 0, indicates that rx_parallel_data is data, when 1, indicates that rx_parallel_data is control.	
rx_runningdisp[<n>(<w>/<s>)-1:0]</s></w></n>	Source	This status signal indicates the disparity of the incoming data.	
<pre>rx_enabyteord[<n>-1:0]</n></pre>	Input This signal is created if you turn On the Enable byte or block control option on the Byte Order tab. A byte order operation occurs whenever rx_enabyteord is asserted perform multiple byte ordering operations, deassert an rx_enabyteord.		

Clock Interface

Table 7–16 describes optional and required clocks for the Custom PHY. The input reference clock, pll_ref_clk, drives a PLL inside the PHY-layer block, and a PLL output clock, rx_clkout (described in Table 7–15 on page 7–20) is used for all data, command, and status inputs and outputs.

Table 7–16. Clock Signals

Signal Name	Direction	Description
pll_ref_clk	Input	Reference clock for the PHY PLLs. Frequency range is 50–700 MHz.
<pre>rx_coreclkin[<n>-1:0]</n></pre>	Input This is an optional clock to drive the coreclk of the RX	
<pre>tx_coreclkin[<n>-1:0]</n></pre>	Input	This is an optional clock to drive the coreclk of the TX PCS

Transceiver Serial Data Interface

Table 7–17 describes the differential serial data interface and the status signals for the RX interface.

Table 7–17. Serial Interface and Status Signals (1)

Signal Name	Direction	n Signal Name	
<pre>rx_serial_data[<n>-1:0]</n></pre>	Input	Receiver differential serial input data.	
<pre>tx_serial_data[<n>-1:0]</n></pre>	Output	Transmitter differential serial output data.	

Note to Table 7–17:

(1) <n> is the number of lanes. <w> is the PCS to FPGA fabric interface width. <s> is the symbol size in bits. is the number of PLLs.

Status Signals (Optional)

Table 7–18 describes the optional status signals for the RX interface.

Table 7–18. Serial Interface and Status Signals (Part 1 of 2)⁽¹⁾

Signal Name	Direction	Signal Name
tx_ready	Output	When asserted, indicates that the TX interface has exited the reset state and is ready to transmit.
rx_ready	Output When asserted, indicates that the RX interface has exi reset state and is ready to receive.	
<pre>pll_locked[-1:0]</pre>	Output When asserted, indicates that the PLL is locked to the reference clock.	
<pre>tx_forceelecidle[<n>-1:0]</n></pre>	Input	When asserted, enables a circuit to detect a downstream receiver. It is used for the PCI Express protocol. This signal must be driven low when not in use because it causes the TX PMA to enter electrical idle mode and tristate the TX serial data signals.
<pre>tx_bitslipboundaryselect [<n>5-1:0]</n></pre>	Input When asserted, indicates that the PLL is locked to the in reference clock.	
rx_disperr[<n>(<w>/<s>)-1:0]</s></w></n>	Output	When asserted, indicates that the received 10-bit code or data group has a disparity error.
rx_errdetect[<n>(<w>/<s>)-1:0]</s></w></n>	Output	When asserted, indicates that a received 10-bit code group has an 8B/10B code violation or disparity error.

Signal Name	Direction	Signal Name	
<pre>rx_syncstatus[<n>(<w>/<s>)-1:0]</s></w></n></pre>	Output	Indicates presence or absence of synchronization on the RX interface. Asserted when word aligner identifies the word alignment pattern or synchronization code groups in the rece data stream. This signal is optional.	
<pre>rx_is_lockedtoref[<n>-1:0]</n></pre>	Output	Asserted when the receiver CDR is locked to the input referenc clock. This signal is asynchronous. This signal is optional.	
<pre>rx_is_lockedtodata[<n>-1:0]</n></pre>	Output	When asserted, the receiver CDR is in to lock-to-data mode. When deasserted, the receiver CDR lock mode depends on the rx_locktorefclk signal level. This signal is optional.	
<pre>rx_signaldetect[<n>-1:0]</n></pre>	Output	Signal threshold detect indicator required for the PCI Express protocol. When asserted, it indicates that the signal present at th receiver input buffer is above the programmed signal detection threshold value.	
<pre>rx_bitslip[<n>-1:0]</n></pre>	Input	Used for manual control of bit slipping. The word aligner slips bit of the current word for every rising edge of this signal.	
<pre>rx_bitslipboundaryselectout [<n>5-1:0]</n></pre>	Output	This signal is used for bit slip word alignment mode. It reports the number of bits that the RX block slipped to achieve a deterministic latency.	
<pre>rx_patterndetect [<n>(<w>/<s>)-1:0]</s></w></n></pre>	Output	When asserted, indicates that the programmed word alignment pattern has been detected in the current word boundary.	
<pre>rx_rmfifodatainserted[<n>-1:0]</n></pre>	Output	When asserted, indicates that the RX rate match block inserted R column.	
<pre>rx_rmfifodatadeleted[<n>-1:0]</n></pre>	Output	When asserted, indicates that the RX rate match block deleted a R column.	
rx_rlv[<n>-1:0]</n>	Output	When asserted, indicates a run length violation. Asserted if the number of consecutive 1s or 0s exceeds the number specified the MegaWizard Plug-In Manager.	
<pre>rx_recovered_clk[<n>-1:0]</n></pre>	Output	This is the RX clock which is recovered from the received data stream.	
<pre>rx_byteordflag[<n>-1:0]</n></pre>	Output	This status flag is asserted high the received data is aligned to the byte order pattern that you specify.	

Table 7–18.	Serial Interface	and Status Signal	Is (Part 2 of 2) ⁽¹⁾
		una otatao orgina	

Note to Table 7–17:

(1) <n> is the number of lanes. <w> is the PCS to FPGA fabric interface width per lane. <s> is the symbol size in bits. is the number of PLLs.

Reset Control and Status (Optional)

Table 7–19 describes the signals in the optional reset control and status interface. These signals are available if you do not enable the embedded reset controller. For more information including timing diagrams, refer to *Transceiver Reset Control in Stratix V Devices* in volume 2 of the *Stratix V Device Handbook*.

Signal Name	Direction	Description
pll_powerdown	Input	When asserted, resets the TX PLL.
<pre>tx_digitalreset[<n>-1:0]</n></pre>	Input When asserted, reset all blocks in the TX PCS.	
<pre>tx_analogreset[<n>-1:0]</n></pre>	Input	When asserted, resets all blocks in the TX PMA.

Table 7–19. Avalon-ST RX Interface (Part 1 of 2)

Signal Name	Direction	Description
<pre>tx_cal_busy[<n>-1:0]></n></pre>	Output	When asserted, indicates that the TX channel is being calibrated. You must hold the channel in reset until calibration completes.
<pre>rx_digitalreset[<n>-1:0]</n></pre>	Input When asserted, resets the RX PCS.	
<pre>rx_analogreset[<n>-1:0]</n></pre>	Input	When asserted, resets the RX CDR.
<pre>rx_cal_busy[<n>-1:0]</n></pre>	Output	When asserted, indicates that the RX channel is being calibrated. You must hold the channel in reset until calibration completes.


Table 7–19. Avalon-ST RX Interface (Part 2 of 2)

Register Interface

The Avalon-MM PHY management interface provides access to the Custom PHY PCS and PMA registers, resets, error handling, and serial loopback controls. You can use an embedded controller acting as an Avalon-MM master to send read and write commands to this Avalon-MM slave interface.

Figure 7–3 provides a high-level view of this hardware.

Note to Figure 7-3:

(1) Blocks in gray are soft logic. Blocks in white are hard logic.

Table 7–20 describes the signals in the PHY Management interface.

Table 7–20. Avalon-MM PHY Management Interface

Signal Name Direction		Description	
phy_mgmt_clk Input		Avalon-MM clock input. There is no frequency restriction for the phy_mgmt_clk; however, if you plan to use the same clock for the PHY management interface and transceiver reconfiguration, you must restrict the frequency range of phy_mgmt_clk to 100–150 MHz to meet the specification for the transceiver reconfiguration clock.	
phy_mgmt_clk_reset	Input	Global reset signal. This signal is active high and level sensitive.	
phy_mgmt_address[8:0]	Input	9-bit Avalon-MM address.	
phy_mgmt_writedata[31:0] Input		Input data.	
phy_mgmt_readdata[31:0] Output		Output data.	
phy_mgmt_write	Input	Write signal.	
phy_mgmt_read Input Read signal.		Read signal.	
phy_mgmt_waitrequest Output		When asserted, indicates that the Avalon-MM slave interface is unable to respond to a read or write request. When asserted, control signals to the Avalon-MM slave interface must remain constant.	

Register Descriptions

Table 7–21 specifies the registers that you can access over the PHY management interface using word addresses and a 32-bit embedded processor. A single address space provides access to all registers.

Writing to reserved or undefined register addresses may have undefined side effects.

Word Addr	Bits	R/W	Register Name	Description		
	PMA Common Control and Status Registers					
0x022	[31:0]	R	R pma_tx_pll_is_locked Bit[P] indicates that the TX/CMU PLL (P) is locked input reference clock. There is typically one pma_tx_pll_is_locked bit per system.			
	Reset Control Registers-Automatic Reset Controller					
0x041	[31:0]	RW	reset_ch_bitmask	Reset controller channel bitmask for digital resets. The default value is all 1s. Channel $\langle n \rangle$ can be reset when bit $\langle n \rangle$ = 1.		
0x042	0x042 [1:0] W reset_control (write)		reset_control (write)	Writing a 1 to bit 0 initiates a TX digital reset using the reset controller module. The reset affects channels enabled in the reset_ch_bitmask. Writing a 1 to bit 1 initiates a RX digital reset of channels enabled in the reset_ch_bitmask.		
R		R	reset_status(read)	Reading bit 0 returns the status of the reset controller TX ready bit. Reading bit 1 returns the status of the reset controller RX ready bit.		

Table 7–21. Custom PHY IP Core Registers (Part 1 of 3)

Word Addr	Bits	R/W	Register Name	Description			
Reset Controls – Manual Mode							
	[31:0]	[31:0] RW	reset_fine_control	You can use the reset_fine_control register to create your own reset sequence. If you disable Enable embedded reset controller on the General Options tab of the MegaWizard Plug-In Manager, you can design your own reset sequence using the tx_analogreset, rx_analogreset, tx_digitalreset, rx_digitalreset, and pll_powerdown which are top-level ports of the Custom Transceiver PHY.			
				By default, the CDR circuitry is in automatic lock mode whether you use the embedded reset controller or design your own reset logic. You can switch the CDR to manual mode by writing the pma_rx_setlocktodata or pma_rx_set_locktoref registers to 1.			
0x044	[31:4,0]	RW	Reserved	It is safe to write 0s to reserved bits.			
	[3] RW [2] RW	[3] RW reset_rx_digital	Writing a 1 causes the internal RX digital reset signal to be asserted, resetting the RX digital channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.				
		RW	reset_rx_analog	Writing a 1 causes the internal RX analog reset signal to be asserted, resetting the RX analog logic of all channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.			
	[1]	RW	reset_tx_digital	Writing a 1 causes the internal TX digital reset signal to be asserted, resetting all channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.			
			PMA Control and	Status Registers			
0x061	[31:0]	RW	phy_serial_loopback	Writing a 1 to channel <n> puts channel <n> in serial loopback mode. For information about pre- or post-CDR serial loopback modes, refer to "Loopback Modes" on page 12–42.</n></n>			
0x063	[31:0]	R	pma_rx_signaldetect	When channel $\langle n \rangle = 1$, indicates that receive circuit for channel $\langle n \rangle$ senses the specified voltage exists at the RX input buffer.			
0x064	[31:0]	RW	pma_rx_set_locktodata	When set, programs the RX CDR PLL to lock to the incoming data. Bit <i><n></n></i> corresponds to channel <i><n></n></i> .			
0x065	[31:0]	RW	pma_rx_set_locktoref When set, programs the RX CDR PLL to lock to t reference clock. Bit <n> corresponds to channel</n>				
0x066	[31:0]	RO	pma_rx_is_lockedtodata When 1, indicates that the RX CDR PLL is locked to the data, and that the RX CDR has changed from LTR to the mode. Bit <n> corresponds to channel <n>.</n></n>				
0x067	[31:0]	RO	pma_rx_is_lockedtoref	When 1, indicates that the RX CDR PLL is locked to the reference clock. Bit <i><n></n></i> corresponds to channel <i><n></n></i> .			

Word Addr	Bits	R/W	Register Name	Description		
	Custom PCS					
0x080	[31:0]	RW	Specifies lane or group number for indirect addressing, which is used for all PCS control and status registers. F variants that stripe data across multiple lanes, this is th logical group number. For non-bonded applications, this 			
0x081	[5:1]	R	rx_bitslipboundaryselect out	This is an output from the bit slip word aligner which shows the number of bits slipped. From block: Word aligner.		
	[0]	R	rx_phase_comp_fifo_error	When set, indicates an RX phase compensation FIFO error. From block: RX phase Compensation FIFO		
0x082	[0]	RW	tx_phase_comp_fifo_error	When set, indicates an TX phase compensation FIFO error. From block: TX phase Compensation FIFO		
	[5:1]	RW	tx_bitslipboundary_select	Sets the number of bits that the TX bit slipper needs to slip. To block: Word aligner.		
0x083	[0]	RW	tx_invpolarity	When set, the TX interface inverts the polarity of the TX data.		
				To block: 8B/10B encoder.		
0x084	0	RW	rx_invpolarity	When set, the RX channels inverts the polarity of the received data.		
				To block: 8B/10B decoder.		
	[3]	RW	rx_bitslip	Every time this register transitions from 0 to 1, the RX data slips a single bit.		
				To block: Word aligner.		
	[0]	RW	h.t	When set, enables byte reversal on the RX interface.		
[2] 0x085		ΠW	<pre>rx_bytereversal_enable</pre>	To block: Byte deserializer.		
07000	[1]	1] RW rx bitreversal enable		When set, enables bit reversal on the RX interface.		
	[1] RW rx_bitreversal_enable		TY_DICLEVELSAT_ENUMPE	To block: Word aligner.		
	[0]	RW	rx_enapatternalign	When set in manual word alignment mode, the word alignment logic begins operation when this pattern is set.		
				To block: Word aligner.		

Table 7–21. Custom PHY IP Core Registers (Part 3 of 3)

For more information about the individual PCS blocks referenced in Table 7–21, refer to Transceiver Architecture in Stratix V Devices in the Stratix V Device Handbook or Transceiver Architecture in Arria V Devices in the Arria V Device Handbook, as appropriate.

Dynamic Reconfiguration

As silicon progresses towards smaller process nodes, circuit performance is affected more by variations due to process, voltage, and temperature (PVT). These process variations result in analog voltages that can be offset from required ranges. The calibration performed by the dynamic reconfiguration interface compensates for variations due to PVT.

For Stratix V devices, each channel and each TX PLL have separate dynamic reconfiguration interfaces. The MegaWizard Plug-In Manager provides informational messages on the connectivity of these interfaces. Example 7–1 shows the messages for a single duplex channel parameterized for the 1.25 GIGE protocol.

Although you must initially create a separate reconfiguration interface for each channel and TX PLL in your design, when the Quartus II software compiles your design, it reduces the number of reconfiguration interfaces by merging reconfiguration interfaces. The synthesized design typically includes a reconfiguration interface for at least three channels because three channels share an Avalon-MM slave interface which connects to the Transceiver Reconfiguration Controller IP Core. Conversely, you cannot connect the three channels that share an Avalon-MM interface to different Transceiver PHY IP Cores. Doing so causes a Fitter error. For more information, refer to "Reconfiguration Controller to PHY IP Connectivity" on page 12–40.

Example 7–1. Informational Messages for the Transceiver Reconfiguration Interface

PHY IP will require 2 reconfiguration interfaces for connection to the external reconfiguration controller. Reconfiguration interface offset 0 is connected to the transceiver channel. Reconfiguration interface offset 1 is connected to the transmit PLL.

Table 7–22 describes the signals in the reconfiguration interface. This interface uses the Avalon-MM PHY Management interface clock.

 Table 7–22.
 Reconfiguration Interface

Signal Name	Direction	Description
<pre>reconfig_to_xcvr [(<n>70-1):0]</n></pre>	Sink	Reconfiguration signals from the Transceiver Reconfiguration Controller. <i><n></n></i> grows linearly with the number of reconfiguration interfaces.
<pre>reconfig_from_xcvr [(<n>46-1):0]</n></pre>	Source	Reconfiguration signals to the Transceiver Reconfiguration Controller. <i><n></n></i> grows linearly with the number of reconfiguration interfaces.

Transceiver dynamic reconfiguration requires that you assign the starting channel number. Logical channel 0 should be assigned to either physical transceiver channel 1 or channel 4 of a transceiver bank. However, if you have already created a PCB with a different lane assignment for logical lane 0, you can use the workaound shown in Example 7–2 to remove this restriction. Example 7–2 redefines the pma_bonding_master parameter using the Quartus II Assignment Editor. In this example, the pma_bonding_master was originally assigned to physical channel 1. (The original assignment could also have been to physical channel 4.) The to parameter reassigns the pma_bonding_master to the Custom PHY instance name. You must substitute the instance name from your design for the instance name shown in quotation marks

Example 7–2. Overriding Logical Channel O Channel Assignment Restrictions in Stratix V Devices

```
set_parameter -name pma_bonding_master "\"1\"" -to "<custom phy
instance>|altera_xcvr_custom:my_custom_phy_inst|sv_xcvr_custom_nr:S5|sv_xcvr_custom_native:transceiver
_core|sv_xcvr_native:gen.sv_xcvr_native_insts[0].gen_bonded_group.sv_xcvr_native_inst"
```

Simulation Files and Example Testbench

Refer to "Running a Simulation Testbench" on page 1–4 for a description of the directories and files that the Quartus II software creates automatically when you generate your Custom PHY IP Core.

Refer to the Altera wiki for an example testbench that you can use as a starting point in creating your own verification environment.

8. Low Latency PHY IP Core

The Altera Low Latency PHY IP Core receives and transmits differential serial data, recovering the RX clock from the RX input stream. The PMA connects to a simplified PCS, which contains a phase compensation FIFO. Depending on the configuration you choose, the Low Latency PHY IP Core instantiates one of the following channels:

- GX channels using the Standard PCS
- GX channels using the 10G PCS
- GT channels in PMA-Direct mode

An Avalon-MM interface provides access to control and status information. Figure 8–1 illustrates the top-level modules of the Low Latency PHY IP Core.

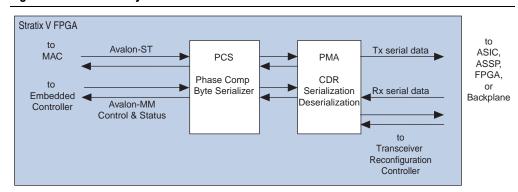


Figure 8-1. Low-Latency PHY IP Core—Stratix V Devices

Because the Low Latency PHY IP Core bypasses much of the PCS, it minimizes the PCS latency.

For more detailed information about the Low Latency datapath and clocking, refer to the refer to the "*Stratix V GX Device Configurations*" section in the *Transceiver Configurations in Stratix V Devices* chapter of the *Stratix V Device Handbook*.

Device Family Support

IP cores provide either final or preliminary support for target Altera device families. These terms have the following definitions:

- *Final support*—*V*erified with final timing models for this device.
- Preliminary support—Verified with preliminary timing models for this device.

Table 8–1 shows the level of support offered by the Low Latency PHY IP Core for Altera device families.

Table 8–1. Device Family Support

Device Family	Support
Stratix V devices	Preliminary
Other device families	No support

Performance and Resource Utilization

Table 8–2 shows the typical expected device resource utilization for different configurations using the current version of the Quartus II software targeting a Stratix V GX (5SGSMD612H35C2) device.

Table 8–2. Low Latency PHY Performance and Resource Utilization—Stratix V GX Device

Implementation	Number of Lanes	Serialization Factor	Worst-Case Frequency	Combinational ALUTs	Dedicated Registers	Memory Bits
11 Gbps	1	32 or 40	599.16	112	95	0
11 Gbps	4	32 or 40	584.8	141	117	0
11 Gbps	10	32 or 40	579.71	192	171	0
6 Gbps (10 Gbps datapath)	1	32 or 40	608.27	111	93	0
6 Gbps (10 Gbps datapath)	4	32 or 40	454.96	141	117	0
6 Gbps (10 Gbps datapath)	10	32 or 40	562.75	192	171	0
6 Gbps (8 Gbps datapath)	1	32 or 40	607.16	113	93	0
6 Gbps (8 Gbps datapath)	4	32 or 40	639.8	142	117	0
6 Gbps (8 Gbps datapath)	10	32 or 40	621.89	193	171	0
3 Gbps (8 Gbps datapath)	1	8, 10, 16, or 20	673.4	114	93	0
3 Gbps (8 Gbps datapath)	4	8, 10, 16, or 20	594.88	142	117	0
3 Gbps (8 Gbps datapath)	10	8, 10, 16, or 20	667.67	193	171	0

Parameter Settings

To configure the Low Latency PHY IP Core in the MegaWizard Plug-In Manager, click Installed Plug-Ins > Interfaces > Transceiver PHY > Low Latency PHY v12.0. For more information about using the MegaWizard Plug-In Manager refer to Chapter 2, Getting Started.

General Options

Table 8–3 lists the settings available on **General Options** tab.

Table 8–3. General Options

Name	Value	Description		
Device family	Stratix V	This IP core is only available for Stratix V.		
Datapath type	Standard 10G GT	The Low Latency PHY IP Core is part of a Standard , 10G , or GT datapath. In most cases the FPGA fabric transceiver interface width determines the bandwidth of the datapath; however, when the FPGA fabric transceiver interface width is 32 or 40 bits, you have the option of using either the Standard datapath which is the default mode, or changing to the 10G datapath by selecting this option. Refer to Table 8–4 for a comprehensive list of datapath support.		
Mode of operation	Duplex RX TX	Specifies the mode of operation as Duplex , RX , or TX mode.		
Number of lanes1-32Specifies the total number of lanes in each directidevices include up to 32 GX channels (Standard of to 4 GT channels. You must instantiate each GT channels. You both GX and GT channels within the same instantiate				
Enable lane bonding	On/Off	When enabled, the PMA uses the same clock source for up to 6 channels in a transceiver bank, reducing clock skew. This option is only available for the Standard datapath.		
		Turn this option Off if you are using multiple TX PLLs in a single Low Latency PHY IP Core instance.		
		Select xN to use the same clock source for up to 6 channels in single transceiver bank, resulting in reduced clock skew. You must use contiguous channels when you select xN bonding. I addition, you must place logical channel 0 in either physical channel 1 or 4. Physical channels 1 and 4 are indirect drivers the xN clock network.		
Bonding mode	×N fb_compensation	Select fb_compensation (feedback compensation) to use the same clock source for multiple channels across different transceiver banks to reduce clock skew.		
		For more information about bonding, refer to "Bonded Channel Configurations Using the PLL Feedback Compensation Path" in <i>Transceiver Clocking in Stratix V Devices</i> in volume 2 of the <i>Stratix V Device Handbook</i> .		

Name	Value	Description	
FPGA fabric transceiver interface width	8, 10, 16, 20, 32, 40, 50, 64, 66, 128	This option indicates the parallel data fabric transceiver interfac width. GT datapath supports a single width of 128 bits. Refer toTable 8–4 for the supported interface widths of the Standard and 10G datapaths.	
PCS-PMA interface width	8, 10, 16, 20, 32, 30, 64	The PCS-PMA interface width depends on the F PGA fabric transceiver interface width and the Datapath type. Refer to Table 8–4 for the supported interface widths of the Standard and 10G datapaths.	
PLL type	CMU Atx	The CMU PLL is available for the Standard and 10G datapaths. The ATX PLL is available for the Standard , 10G , and GT datapaths. The CMU PLL has a larger frequency range than the ATX PLL. The ATX PLL is designed to improve jitter performance and achieves lower channel-to-channel skew; however, it supports a narrower range of data rates and reference clock frequencies. Another advantage of the ATX PLL is that it does not use a transceiver channel, while the CMU PLL does.	
		An informational message displays in the message panel if the PLL type that you select is not available at the frequency specified.	
Data rate	Device dependent	Specifies the data rate in Mbps. Refer to <i>Stratix V Device Datasheet</i> for the data rate ranges of datapath.	
Base data rate	1 × Data rate 2 × Data rate 4 × Data rate	Select a base data rate that minimizes the number of PLLs required to generate all the clocks required for data transmission. By selecting an appropriate base data rate , you can change data rates by changing the divider used by the clock generation block. For higher frequency data rates 2 × and 4× base data rates are not available.	
Input clock frequency	Variable	Specifies the frequency of the PLL input reference clock. The Input clock frequency drop down menu is populated with all valid frequencies derived as a function of the data rate and base data rate. However, if you select fb_compensation as the bonding mode, then the input reference clock frequency is limited to the (data rate) ÷ (PCS-PMA interface width).	

Table 8–3. General Options

Table 8–4 lists **Standard** and **10G** datapath widths for the FPGA fabric-transceiver interface, the PCS-PMA interface, and the resulting frequencies for the tx_clkout and rx_clkout parallel clocks. In almost all cases, the parallel clock frequency is described by the following equation:

*frequency*_{parallel clock} = *data rate/FPGA fabric-transceiver interface width*

The FPGA fabric-transceiver interface width is always 128 bits for the **GT** datapath.

FPGA Fabric-Transceiver	PCS-PMA Int	tx_clkout and rx_clkout		
Interface Width	Standard Datapath	10G Datapath	frequency	
8	8	—	data rate/8	
10	10	—	data rate/10	

Table 8-4. Datapath Width Support (Part 1 of 2)

FPGA Fabric-Transceiver	PCS-PMA Int	tx_cikout and rx_cikout	
Interface Width	Standard Datapath 10G Datapath		frequency
16	8 or 16	—	data rate/16
20	10 or 20	—	data rate/20
32	16	32	data rate/32
40	20	40	data rate/40
50	—	40	data rate/50 ⁽¹⁾
64	—	32	data rate/32 ⁽²⁾
64	—	64	data rate/64
66	— 40 data rat		data rate/66

Table 8–4. Datapath Width Support (Part 2 of 2)

Note to Table 8-4:

(1) For this datapath configuration, the tx_clkout frequency generated by the Low Latency PHY is the data rate /40. You must generate a /50 frequency clock from the /40 clock and feed this clock back into the tx_coreclkin. The rx_clkout frequency generated by the Low Latency PHY is /40 of the data rate. You must generate a /50 frequency from the recovered clock and feed this back into the rx_coreclkin.

(2) For this datapath configuration, the tx_clkout frequency generated by the Low Latency PHY is the data rate/32. You must generate a /64 frequency clock from the /32 clock and feed this clock back into the tx_coreclkin. The rx_clkout frequency generated by the Low Latency PHY is the data rate/32. You must generate a /64 frequency from the recovered clock and feed this back into the rx_coreclkin.

Additional Options

The parameters on the **Additional Options** tab control clocking and datapath options. Both bonded (×N) and non-bonded modes are available. In bonded modes, a single PLL can drive all channels. In non-bonded modes, each channel may have its own PLL.

Table 8–5 describes the options available on the **Additional Options** tab.

Table 8–5.	Additional	Options	(Part 1	of 2)
------------	------------	---------	---------	-------

Name	Value	Description
Enable tx_coreclkin ⁽¹⁾	On/Off	When you turn this option on, tx_coreclkin connects to the write clock of the TX phase compensation FIFO and you can clock the parallel TX data generated in the FPGA fabric using this port. This port allows you to clock the write side of the TX phase compensation FIFO with a user-provided clock, either the FPGA fabric clock, the FPGA fabric-TX interface clock, or the input reference clock. You must turn this option On when the FPGA fabric transceiver interface width:PCS-PMA Interface width is 50:40 or when you specify the 10G datapath with a fabric transceiver interface width:PCS-PMA Interface width of 64:32.
		For the GT datapath, if you are using different reference clock pins for the TX and RX channels, you must instantiate two separate Low Latency PHY IP Core instances for TX and RX channels. The reference clock pins for each channel must reside in the same transceiver bank.

Table 8–5. Additional Options (Part 2 of 2)

Name	Value	Description
Enable rx_coreclkin ⁽¹⁾	On/Off	When you turn this option on, rx_coreclkin connects to the read clock of the RX phase compensation FIFO and you can clock the parallel RX output data using rx_coreclk. This port allows you to clock the read side of the RX phase compensation FIFO with a user-provided clock, either the FPGA fabric clock, the FPGA fabric RX interface clock, or the input reference clock. rx_coreclkin is not available for the GT datapath.
		You must turn this option On when the FPGA fabric transceiver interface width:PCS-PMA Interface width is 50:40 or when you specify the 10G datapath with a fabric transceiver interface width:PCS-PMA Interface width of 64:32.
Enable TX bitslip	On/Off	The bit slip feature allows you to slip the transmitter side bits before they are sent to the gear box. The maximum number of bits slipped is equal to the ((FPGA fabric-to-transceiver interface width) - 1). For example, if the FPGA fabric-to-transceiver interface width is 64 bits, the bit slip logic can slip a maximum of 63 bits. Each channel has 5 bits to determine the number of bits to slip. The value specified on the TX bitslip bus indicates the number of bit slips. Effectively, each value shifts the word boundary by one bit. For example, a TX bitslip value of 1 on a 64bit FPGA interface width shifts the word boundary by 1 bit. That is, bit[63] from the first word and bit[62:0] are concatenated to form a 64 bit word (bit[62:0] from the second word, bit[63] from the first word LSB).
		This option is only available for the ${\bf Standard}$ and ${\bf 10G}$ datapaths.
		This option is turned on by default. When On , the embedded reset controller initiates the reset sequence when it receives a positive edge on the phy_mgmt_clk_reset input signal.
Enable embedded reset control	On/Off	Disable this option to implement your own reset sequence using the tx_analogreset, rx_analogreset, tx_digitalreset, rx_digitalreset, and pll_powerdown which are available as top-level ports of the Low Latency Transceiver PHY. When you design your own reset controller, the tx_ready and rx_ready are not top-level signals of the core. Another option is to use Altera's Transceiver PHY Reset Controller' IP Core to reset the transceivers. For more information, refer to the Chapter 13, Transceiver PHY Reset Controller IP Core.
		For more information about designing a reset controller, refer to the "User-Controller Reset Controller" section in the <i>Transceiver Reset Control in Stratix V Devices</i> in volume 2 of the <i>Stratix V Device Handbook</i> .
Avalon data interfaces	On/Off	When you turn this option On , the order of symbols is changed. This option is typically required if you are planning to import your Low Latency Transceiver PHY IP Core into a Qsys system.

Note to Table 8-5:

(1) For more information refer to the "FPGA Fabric-Transceiver Interface Clocking" section in the Stratix V Transceiver Clocking chapter.

PLL Reconfiguration Options

Table 8–5 describes the options available on the **PLL Reconfiguration** tab. For more information about transceiver reconfiguration registers, refer to "PLL Reconfiguration" on page 12–18.

The PLL reconfiguration options are not available for the GT datapath.

Table 8–6. PLL Reconfigurations (Part 1 of 2)

Name	Value	Description	
Allow PLL/CDR Reconfiguration	On/Off	You must enable this option if you plan to reconfigure the PLLs in your design. This option is also required to simulate PLL reconfiguration.	
		Specifies the number of TX PLLs required for this instance of the Low Latency Transceiver PHY. More than 1 PLL may be required if your design reconfigures channels to run at multiple frequencies.	
Number of TX PLLs	1–4	You must disable the embedded reset controller and design your own controlled reset controller or the use the highly configurable reset core described in Chapter 13, Transceiver PHY Reset Controller IP Core if you intend to use more than 1 TX PLL for a Low Latency PHY IP instance.	
Number of reference clocks	1–5	Specifies the number of input reference clocks. More than one reference clock may be required if your design reconfigures chanr to run at multiple frequencies.	
Main TX PLL logical index	0–3	Specifies the index for the TX PLL that should be instantiated at startup. Logical index 0 corresponds to TX PLL0, and so on.	
CDR PLL input clock source	0–3	Specifies the index for the TX PLL input clock that should be instantiated at startup. Logical index 0 corresponds to input clock 0 and so on.	
		TX PLL (0–3)	
(Refer to T	Table 8–3 on page 8–	3 for a detailed explanation of these parameters.)	
PLL Type	CMU Atx	Specifies the PLL type.	
Base data rate	1 × Data rate 2 × Data rate 4 × Data rate 8 × Data rate	Specifies Base data rate .	
Reference clock frequency	Variable	Specifies the frequency of the PLL input reference clock. The frequency required is the Base data rate /2. You can use any Input clock frequency that allows the PLLs to generate this frequency.	
Selected reference clock source	0–4	Specifies the index of the input clock for this TX PLL. Logical index 0 corresponds to input clock 0 and so on.	

Altera Transceiver PHY IP Core

User Guide

Name	Value	Description				
Channel Interface						
Enable Channel Interface	On/Off	Turn this option on to enable PLL and datapath dynamic reconfiguration. When you select this option, the width of tx_parallel_data and rx_parallel_data buses increases in the following way.				
		Standard datapath:				
		The tx_parallel_data bus is 44 bits per lane; however, only the low-order number of bits specified by the FPGA fabric transceiver interface width contain valid data for each lane.				
		 The rx_parallel_data bus is 64 bits per lane; however, only the low-order number of bits specified by the FPGA fabric transceiver interface width contain valid data. 				
		10G datapath:				
		 The both the tx_parallel_data and rx_parallel_data buses are 64 bits per lane; however, only the low-order number of bits specified by the FPGA fabric transceiver interface width contain valid data. 				

Analog Options

You specify the analog parameters for Stratix V devices using the Quartus II Assignment Editor, the Pin Planner, or through the Quartus II Settings File (**.qsf**). The default values for analog options fall into three categories:

- Global— These parameters have default values that are independent of other parameter settings.
- *Computed*—These parameters have an initial default value that is recomputed based on other parameter settings.
- Proxy—These parameters have default values that are place holders. The Quartus II software selects these initial default values based on your design; however, Altera recommends that you replace these defaults with values that match your electrical board specification.

Table 8–7 lists the analog parameters for Stratix V devices whose original values are place holders for the values that match your electrical board specification. In Table 8–7, the default value of an analog parameter is shown in **bold** type. The parameters are listed in alphabetical order.

Table 8–7. Transceiver and PLL Assignments for Stratix V Devices

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_GT_IO_PIN_ TERMINATION	GT Transceiver I/O Pin Termination	Fine tunes the target 100-ohm on-chip termination for the specified transceiver pin. This parameter is only for GT transceivers.	0-15 12	Pin
XCVR_IO_PIN_TERMINATION	Transceiver I/O Pin Termination	Specifies the intended on-chip termination value for the specified transceiver pin. Use External Resistor if you intend to use off-chip termination.	85_0HMS 100_0HMS 120_0HMS 150_0HMS EXTERNAL_ RESISTOR	Pin
XCVR_REFCLK_PIN_ TERMINATION	Transceiver Dedicated Refclk Pin Termination	Specifies the intended termination value for the specified refclk pin.	DC_COUPLING_ INTERNAL_100 _OHM DC_COUPLING_ EXTERNAL_ RESISTOR AC_COUPLING	Pin
XCVR_RX_BYPASS_EQ_ STAGES_234	Receiver Equalizer Stage 2, 3, 4 Bypass	Bypass continuous time equalizer stages 2, 3, and 4 to save power. This setting eliminates significant AC gain on the equalizer and is appropriate for chip-to-chip short range communication on a PCB.	ALL_STAGES_ ENABLED BYPASS_ STAGES	Pin
XCVR_TX_SLEW_RATE_CTRL	Transmitter Slew Rate Control	Specifies the slew rate of the output signal. The valid values span from the slowest rate to fastest rate with 1 representing the slowest rate.	1–5	Pin
XCVR_VCCA_VOLTAGE	VCCA_GXB Voltage	Configure the VCCA_GXB voltage for a GXB I/O pin by specifying the intended VCCA_GXB voltage for a GXB I/O pin. If you do not make this assignment the compiler automatically sets the correct VCCA_GXB voltage depending on the configured data rate, as follows: Data rate <= 6.5 Gbps: 2_5V Data rate > 6.5 Gbps: 3_0V or 3_3V for Stratix V ES silicon	2_5V 3_0V	Pin
XCVR_VCCR_VCCT_VOLTAGE	VCCR_GXB VCCT_GXB Voltage	Refer to the <i>Device Datasheet for</i> <i>Stratix V Devices</i> for guidance on selecting a value.	0_85V 1_0V	Pin

Table 8–8 lists the analog parameters with *global* or *computed* default values. You may want to optimize some of these settings. In Table 8–8, the default value is shown in **bold** type. For computed analog parameters, the default value listed is for the initial setting, not the recomputed setting. The parameters are listed in alphabetical order.

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
	Analog Parameters with	Global Default Value		
CDR_BANDWIDTH_PRESET	CDR Bandwidth Preset	Specifies the CDR bandwidth preset setting.	Auto Low Medium High	PLL instance
PLL_BANDWIDTH_PRESET	PLL Bandwidth Preset	Specifies the PLL bandwidth preset setting	Auto Low Medium High	PLL instance
XCVR_GT_RX_DC_GAIN	Receiver Buffer DC Gain Control	Controls the RX buffer DC gain for GT channels.	0-19 8	Pin
XCVR_RX_DC_GAIN	Receiver Buffer DC Gain Control	Controls the RX buffer DC gain for GX channels.	0-4	Pin
XCVR_RX_LINEAR_EQUALIZER_ CONTROL	Receiver Linear Equalizer Control	Static control for the continuous time equalizer in the receiver buffer. The equalizer has 16 distinct settings from 0-15 corresponding to the increasing AC gain.	1 –16	Pin
l	Analog Parameters with C	omputed Default Value		
XCVR_GT_TX_PRE_EMP_PRE_ TAP	Transmitter Pre-emphasis Pre-Tap	Specifies the pre-tap pre-emphasis setting. This parameter is only for GT transceivers.	0-31 0	Pin
XCVR_GT_TX_VOD_MAIN_TAP	Transmitter Differential Output Voltage for GT channels.	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength. This parameter is only for GT transceivers.	0-5 3	Pin
XCVR_GT_RX_COMMON_ MODE_VOLTAGE	GT receiver Buffer Common Mode Voltage	Receiver buffer common-mode voltage. This parameter is only for GT transceivers.	VTT_0P8V VTT_0P75V VTT_0P65V VTT_0P65V VTT_0P55V VTT_0P55V VTT_0P35V VTT_VCM0FF7 VTT_VCM0FF6 VTT_VCM0FF4 VTT_VCM0FF3 VTT_VCM0FF1 VTT_VCM0FF1 VTT_VCM0FF0	Pin

Table 8–8. Transceiver and PLL Assignments for Stratix V Devices (Part 1 of 5)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_GT_RX_CTLE	GT Receiver Linear Equalizer Control	Static control for the continuous time equalizer in the receiver buffer. The equalizer has 9 distinct settings from 0-8 corresponding to increasing AC gain. This parameter is only for GT transceivers.	0-8 0	Pin
XCVR_GT_TX_COMMON_MODE_ VOLTAGE	GT Transmitter Common Mode Driver Voltage	Transmitter common-mode driver voltage. This parameter is only for GT transceivers.	VOLT_0P80V VOLT_0P75V VOLT_0P75V VOLT_0P65V VOLT_0P65V VOLT_0P55V VOLT_0P55V VOLT_0P35V PULL_UP PULL_UP PULL_DN TRISTATED1 GROUNDED PULL_UP_TO_ VCCELA TRISTATED2 TRISTATED3 TRISTATED4	Pin
XCVR_GT_TX_PRE_EMP_1ST_ POST_TAP	GT Transmitter Preemphasis First Post-Tap	Specifies the first post-tap setting value. This parameter is only for GT transceivers.	0-31 5	Pin
XCVR_GT_TX_PRE_EMP_INV_ PRE_TAP	GT Transmitter Preemphasis Pre Tap Invert	Inverts the transmitter pre-emphasis pre-tap. This parameter is only for GT transceivers.	ON OFF	Pin
XCVR_GT_TX_PRE_EMP_PRE_ TAP	GT Transmitter Preemphasis Pre-Tap	Specifies the pre-tap pre-emphasis setting. This parameter is only for GT transceivers.	0-31 0	Pin

Table 8–8. Transceiver and PLL Assignments for Stratix V Devices (Part 2 of 5)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_GT_TX_VOD_MAIN_TAP	GT Transmitter Differential Output Voltage	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength.	0-5 3	Pin
XCVR_RX_COMMON_MODE_ VOLTAGE	Receiver Buffer Common Mode Voltage	Receiver buffer common-mode voltage.	VTT_0P80V VTT_0P75V VTT_0P65V VTT_0P60V VTT_0P55V VTT_0P50V VTT_0P50V VTT_0P35V VTT_PUP _WEAK VTT_PDN WEAK TRISTATE1 VTT_PDN_ STRONG VTT_PUP_ STRONG TRISTATE2 TRISTATE3 TRISTATE4	Pin
XCVR_RX_ENABLE_LINEAR_ EQUALIZER_PCIEMODE	Receiver Linear Equalizer Control (PCI Express)	If enabled equalizer gain control is driven by the PCS block for PCI Express. If disabled equalizer gain control is determined by the XCVR_RX_LINEAR_EQUALIZER_SETT ING assignment.	TRUE False	Pin
XCVR_RX_EQ_BW_SEL	Receiver Equalizer Gain Bandwidth Select	Sets the gain peaking frequency for the equalizer. For data-rates of less than 6.5Gbps set to HALF. For higher data- rates set to FULL.	full Half	Pin
XCVR_RX_SD_ENABLE	Receiver Signal Detection Unit Enable/Disable	Enables or disables the receiver signal detection unit.	TRUE False	Pin
XCVR_RX_SD_OFF	Receiver Cycle Count Before Signal Detect Block Declares Loss Of Signal	Number of parallel cycles to wait before the signal detect block declares loss of signal.	0–29	Pin
XCVR_RX_SD_ON	Receiver Cycle Count Before Signal Detect Block Declares Presence Of Signal	Number of parallel cycles to wait before the signal detect block declares presence of signal.	0 –16	Pin
XCVR_RX_SD_THRESHOLD	Receiver Signal Detection Voltage Threshold	Specifies signal detection voltage threshold level.	0 –7	Pin

Table 8–8. Transceiver and PLL Assignments for Stratix V Devices (Part 3 of 5)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_TX_COMMON_MODE_ VOLTAGE	Transmitter Common Mode Driver Voltage	Transmitter common-mode driver voltage	VOLT_0P80V VOLT_0P75V VOLT_0P75V VOLT_0P65V VOLT_0P60V VOLT_0P55V VOLT_0P55V VOLT_0P35V PULL_0P PULL_0P PULL_0P PULL_0WN TRISTATED1 GROUNDED PULL_UP_TO VCCELA TRISTATED2 TRISTATED3 TRISTATED4	Pin
XCVR_TX_PRE_EMP_PRE_TAP_ USER	Transmitter Preemphasis Pre-Tap user	Specifies the TX pre-emphasis pretap setting value, including inversion.	0 –31	Pin
XCVR_TX_PRE_EMP_2ND_TAP_ USER	Transmitter Preemphasis Second Post-Tap user	Specifies the transmitter pre-emphasis second post-tap setting value, including inversion.	0 –31	Pin
XCVR_TX_PRE_EMP_1ST_POST_ TAP	Transmitter Preemphasis First Post-Tap	Specifies the first post-tap setting value.	0 –31	Pin
XCVR_TX_PRE_EMP_2ND_ POST_TAP	Transmitter Preemphasis Second Post-Tap	Specifies the second post-tap setting value.	0 –15	Pin
XCVR_TX_PRE_EMP_INV_ 2ND_TAP	Transmitter Preemphasis Second Tap Invert	Inverts the transmitter pre-emphasis 2nd post tap.	TRUE False	Pin
XCVR_TX_PRE_EMP_INV_ PRE_TAP	Transmitter Preemphasis Pre Tap Invert	Inverts the transmitter pre-emphasis pre-tap.	TRUE False	Pin
XCVR_TX_PRE_EMP_PRE_TAP	Transmitter Preemphasis Pre-Tap	Specifies the pre-tap pre-emphasis setting.	0 –15	Pin
XCVR_TX_RX_DET_ENABLE	Transmitter's Receiver Detect Block Enable	Enables or disables the receiver detector circuit at the transmitter.	TRUE False	Pin
XCVR_TX_RX_DET_MODE	Transmitter's Receiver Detect Block Mode	Sets the mode for receiver detect block	0 –15	Pin
XCVR_TX_RX_DET_OUTPUT_SEL	Transmitter's Receiver Detect Block QPI/PCI Express Control	Determines QPI or PCI Express mode for the Receiver Detect block.	RX_DET_QPI_ OUT RX_DET_PCIE_ OUT	Pin

Table 8–8. Transceiver and PLL Assignments for Stratix V Devices (Part 4 of 5)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_TX_VOD	Transmitter Differential Output Voltage	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength.	0–63 50	Pin
XCVR_TX_VOD_PRE_EMP_ CTRL_SRC	Transmitter V _{oD} /Preemphasis Control Source	When set to DYNAMIC_CTL, the PCS block controls the V_{OD} and preemphasis coefficients for PCI Express. When this assignment is set to RAM_CTL the V_{OD} and preemphasis are controlled by other assignments, such as XCVR_TX_PRE_EMP_1ST_POST_TAP.	DYNAMIC_CTL Ram_Ctl	Pin

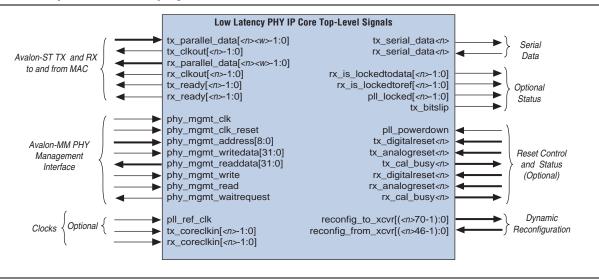
Table 8–8. Transceiver and PLL Assignments for Stratix V Devices (Part 5 of 5)

⑦ For more information about the Pin Planner, refer to About the Pin Planner in Quartus II Help. For more information about the Assignment Editor, refer to About the Assignment Editor in Quartus II Help.

For more information about Quartus II Settings, refer to *Quartus II Settings File Manual*.

Interfaces

This section describes interfaces of the Low Latency Transceiver PHY. It includes the following topics:


- Ports
- Register Interface
- Dynamic Reconfiguration

Ports

Figure 8–2 illustrates the top-level signals of the Custom PHY IP Core. The variables in Figure 8–2 represent the following parameters:

- <*n>*—The number of lanes
- *<w>*—The width of the FPGA fabric to transceiver interface per lane

Figure 8–2. Top-Level Low Latency Signals

- By default **block diagram** shown in the MegaWizard Plug-In Manager labels the external pins with the *interface type* and places the *interface name* inside the box. The interface type and name are used in the _hw.tcl file that describes the component. If you turn on Show signals, the block diagram displays all top-level signal names.
 - **For more information about _hw.tcl** files refer to refer to the *Component Interface Tcl Reference* chapter in volume 1 of the *Quartus II Handbook*.

The following sections describe each interface.

Avalon-ST TX and RX Data Interface to the FPGA Fabric

Table 8–9 describes the signals in the Avalon-ST interface. These signals are named from the point of view of the MAC so that the TX interface is an Avalon-ST sink interface and the RX interface is an Avalon-ST source.

Table 8–9. Avalon-ST interface (Part 1 of 2)

Signal Name	Direction	Description
<pre>tx_parallel_data[<n><w>-1:0]</w></n></pre>	Sink	This is TX parallel data driven from the MAC FPGA fabric. The ready latency on this interface is 0, so that the PCS in Low-Latency Bypass Mode or the MAC in PMA Direct mode must be able to accept data as soon as it comes out of reset.
tx_clkout[<n>-1:0]</n>	Output	This is the clock for TX parallel data.
<pre>tx_ready[<n>-1:0]</n></pre> Output		When asserted, indicates that the Low Latency IP Core has exited the reset state is ready to receive data from the MAC. This signal is available if you select Enable embedded reset control on the Additional Options tab.
<pre>rx_parallel_data[<n><w>-1:0]</w></n></pre>	Source	This is RX parallel data driven by the Low Latency PHY IP Core. Data driven from this interface is always valid.

Signal Name	Direction	Description
rx_clkout[< <i>n</i> >-1:0]	Output	Low speed clock recovered from the serial data.
rx_ready[<n>-1:0]</n>	Output	This is the ready signal for the RX interface. The ready latency on this interface is 0, so that the MAC must be able to accept data as soon as the PMA comes out of reset. This signal is available if you select Enable embedded reset control on the Additional Options tab.

Table 8–9. Avalon-ST interface (Part 2 of 2)

Serial Data Interface

Table 8–10 describes the signals that comprise the serial data interface.

	Table 8–10.	Serial	Data	Interface
--	-------------	--------	------	-----------

Signal Name	Direction	Description
<pre>rx_serial_data[<n>-1:0]</n></pre>	Sink	Differential high speed input serial data.
<pre>tx_serial_data [<n>-1:0]</n></pre>	Source	Differential high speed output serial data.

Optional Status Interface

Table 8–11 describes the signals that comprise the optional status interface.

Table 8–11. Optional Status Interface	Table 8–11.	Optional Status	Interface
---------------------------------------	-------------	------------------------	-----------

Signal Name	Direction	Description
<pre>rx_is_lockedtodata[<n>-1:0]</n></pre>	Output	When asserted, indicates that the RX CDR is locked to incoming data. This signal is optional. If latency is not critical, you can read the value of this signal from the Rx_is_lockedtodata register.
<pre>rx_is_lockedtoref[<n>-1:0]</n></pre>	Output	When asserted, indicates that the RX CDR is locked to the input reference clock. This signal is optional. When the RX CDR is locked to data, you can ignore transitions on this signal. If latency is not critical, you can read the value of this signal from the rx_is_lockedtoref register.
<pre>pll_locked[<n>-1:0]</n></pre>	Output	When asserted, indicates that the TX PLL is locked to the input reference clock. This signal is asynchronous.
<pre>tx_bitslip[<n>-1:0]</n></pre>	Output	When set, the data sent to the PMA is slipped. The maximum number of bits that can be slipped is equal to the value selected in the serialization factor field - 1 or $$ -1.

Clock Interface

Table 8–12 describes reference clock for the Low Latency PHY. The input reference clock, pll_ref_clk, drives a PLL inside the PHY-layer block, and a PLL output clock, rx_clkout is used for all data, command, and status inputs and outputs.

Table 8-12. Clock Signals

Signal Name	Direction	Description
<pre>tx_coreclkin[<n>-1:0]</n></pre>	Input	This is an optional clock to drive the write side of the TX FIFO.
<pre>rx_coreclkin[<n>-1:0]</n></pre>	Input	This is an optional clock to drive the read side of the RX FIFO.
pll_ref_clk	Input	Reference clock for the PHY PLLs. The frequency range is 60–700 MHz.

Reset Control and Status (Optional)

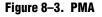

Table 8–13 describes the signals in the optional reset control and status interface. These signals are available if you do not enable the embedded reset controller. For more information including timing diagrams, refer to *Transceiver Reset Control in Stratix V Devices* in volume 2 of the *Stratix V Device Handbook*.

Table 8–13. Avalon-ST RX Interface

Signal Name Direction		Description	
pll_powerdown	Input	When asserted, resets the TX PLL.	
<pre>tx_digitalreset[<n>-1:0]</n></pre>	Input	When asserted, reset all blocks in the TX PCS.	
<pre>tx_analogreset[<n>-1:0]</n></pre>	Input	When asserted, resets all blocks in the TX PMA.	
<pre>tx_cal_busy[<n>-1:0]</n></pre>	Output	When asserted, indicates that the TX channel is being calibrated. You must hold the channel in reset until calibration completes.	
<pre>rx_digitalreset[<n>-1:0]</n></pre>	Input	When asserted, resets the RX PCS.	
<pre>rx_analogreset[<n>-1:0]</n></pre>	Input	When asserted, resets the RX CDR.	
<pre>rx_cal_busy[<n>-1:0]</n></pre>	Output	When asserted, indicates that the RX channel is being calibrated. You must hold the channel in reset until calibration completes.	

Register Interface

The Avalon-MM PHY management interface provides access to the Low Latency PHY PCS and PMA registers that control the TX and RX channels, the PMA powerdown, PLL registers, and loopback modes. Figure 8–3 provides a high-level view of this hardware.

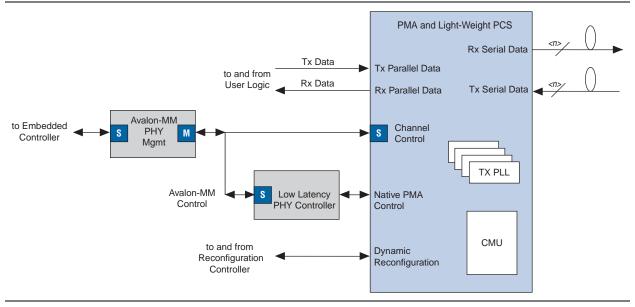


Table 8–14 describes the signals in the PHY Management interface.

Signal Name	Direction	Description
phy_mgmt_clk	Input	Avalon-MM clock input. There is no frequency restriction for the phy_mgmt_clk ; however, if you plan to use the same clock for the PHY management interface and transceiver reconfiguration, you must restrict the frequency range of phy_mgmt_clk to 100–150 MHz to meet the specification for the transceiver reconfiguration clock.
phy_mgmt_clk_reset	Input	Global reset signal. This signal is active high and level sensitive. This is an asynchronous signal.
phy_mgmtaddress[8:0]	Input	9-bit Avalon-MM address.
phy_mgmt_writedata[31:0]	Input	Input data.
phy_mgmt_readdata[31:0]	Output	Output data.
phy_mgmt_write	Input	Write signal.
phy_mgmt_read	Input	Read signal.

For more information about the Avalon-MM and Avalon-ST protocols, including timing diagrams, refer to the *Avalon Interface Specifications*.

Register Descriptions

Table 8–15 describes the registers that you can access over the PHY Management Interface using word addresses and a 32-bit embedded processor.

Writing to reserved or undefined register addresses may have undefined side effects.

Word Addr	Bits	R/W	Register Name	Description			
	Reset Control Registers-Automatic Reset Controller						
0x041	[31:0]	RW	reset_ch_bitmask	Reset controller channel bitmask for digital resets. The default value is all 1s. Channel $\langle n \rangle$ can be reset when bit $\langle n \rangle$ = 1.			
0x042	[1:0]	W	reset_control (write)	Writing a 1 to bit 0 initiates a TX digital reset using the reset controller module. The reset affects channels enabled in the reset_ch_bitmask. Writing a 1 to bit 1 initiates a RX digital reset of channels enabled in the reset_ch_bitmask.			
R		R	reset_status(read)	Reading bit 0 returns the status of the reset controller TX ready bit. Reading bit 1 returns the status of the reset controller RX ready bit.			
PMA Control and Status Registers							
0x061	[31:0]	RW	phy_serial_loopback	Writing a 1 to channel <n> puts channel <n> in serial loopback mode. For information about pre- or post-CDR serial loopback modes, refer to "Loopback Modes" on page 12–40.</n></n>			
0x063	[31:0]	R	pma_rx_signaldetect	When channel $\langle n \rangle = 1$, indicates that receive circuit for channel $\langle n \rangle$ senses the specified voltage exists at the RX input buffer.			
0x064	[31:0]	RW	pma_rx_set_locktodata	When set, programs the RX CDR PLL to lock to the incoming data. Bit <i><n></n></i> corresponds to channel <i><n></n></i> .			
0x065	[31:0]	RW	pma_rx_set_locktoref	When set, programs the RX CDR PLL to lock to the reference clock. Bit <i><n></n></i> corresponds to channel <i><n></n></i> .			
0x066	[31:0]	RO	pma_rx_is_lockedtodata	When asserted, indicates that the RX CDR PLL is locked to the RX data, and that the RX CDR has changed from LTR to LTD mode. Bit <i><n></n></i> corresponds to channel <i><n></n></i> .			
0x067	[31:0]	RO	pma_rx_is_lockedtoref	When asserted, indicates that the RX CDR PLL is locked to the reference clock. Bit <i><n></n></i> corresponds to channel <i><n></n></i> .			

 Table 8–15.
 Low Latency PHY IP Core Registers

Dynamic Reconfiguration

As silicon progresses towards smaller process nodes, circuit performance is affected more by variations due to process, voltage, and temperature (PVT). These process variations result in analog voltages that can be offset from required ranges. The calibration performed by the dynamic reconfiguration interface compensates for variations due to PVT. For Stratix V devices, each channel and each TX PLL have separate dynamic reconfiguration interfaces.

Although you must initially create a separate reconfiguration interface for each channel and TX PLL in your design, when the Quartus II software compiles your design, it reduces the number of reconfiguration interfaces by merging reconfiguration interfaces. The synthesized design typically includes a reconfiguration interface for at least three channels because three channels share an Avalon-MM slave interface which connects to the Transceiver Reconfiguration Controller IP Core. Conversely, you cannot connect the three channels that share an Avalon-MM interface to different Transceiver PHY IP Cores. Doing so causes a Fitter error. For more information, refer to "Reconfiguration Controller to PHY IP Connectivity" on page 12–38.

Table 8–16 describes the signals in the reconfiguration interface. This interface uses a clock provided by the reconfiguration controller.

Table 8–16. Re	econfiguration	Interface
----------------	----------------	-----------

Signal Name	Direction	Description
<pre>reconfig_to_xcvr [(<n>70)-1:0]</n></pre>	Sink	Reconfiguration signals from the Transceiver Reconfiguration Controller. <i><n></n></i> grows linearly with the number of reconfiguration interfaces.
<pre>reconfig_from_xcvr [(<n>46)-1:0]</n></pre>	Source	Reconfiguration signals to the Transceiver Reconfiguration Controller. <i><n></n></i> grows linearly with the number of reconfiguration interfaces.

Transceiver dynamic reconfiguration requires that you assign the starting channel number. Logical channel 0 should be assigned to either physical transceiver channel 1 or channel 4 of a transceiver bank. However, if you have already created a PCB with a different lane assignment for logical lane 0, you can use the workaound shown in Example 8–1 to remove this restriction. Example 8–1 redefines the pma_bonding_master parameter using the Quartus II Assignment Editor. In this example, the pma_bonding_master was originally assigned to physical channel 1. (The original assignment could also have been to physical channel 4.) The to parameter reassigns the pma_bonding_master to the Low Latency PHY instance name. You must substitute the instance name from your design for the instance name shown in quotation marks

Example 8–1. Overriding Logical Channel O Channel Assignment Restrictions in Stratix V Devices

set_parameter -name pma_bonding_master "\"1\"" -to "<low latency phy instance>|altera_xcvr_low_latency_phy:my_low_latency_phy_inst|sv_xcvr_low_latency_phy_nr:sv_xcvr_low_l atency_phy_nr_inst|sv_xcvr_10g_custom_native:sv_xcvr_10g_custom_native_inst|sv_xcvr_native:sv_xcvr_nat ive_insts[0].gen_bonded_group_native.sv_xcvr_native_inst"

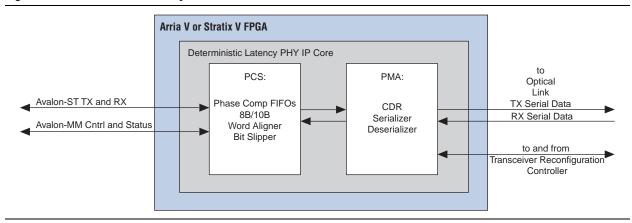
Simulation Files and Example Testbench

Refer to "Running a Simulation Testbench" on page 1–4 for a description of the directories and files that the Quartus II software creates automatically when you generate your Low Latency PHY IP Core.

Refer to the Altera wiki for an example testbench that you can use as a starting point in creating your own verification environment.

9. Deterministic Latency PHY IP Core

The Altera Deterministic Latency PHY IP Core targets protocols that require a datapath with deterministic latency. Deterministic latency enables accurate delay measurements and known timing for the transmit (TX) and receive (RX) datapaths as required in applications such as wireless communication systems, emerging Ethernet standards, and test and measurement equipment. The Deterministic Latency PHY IP Core support 1-32 lanes with a continuous range of data rates from 611 Mbps–11000 Mbps for Stratix V devices and 1–6144 Mbps for Arria V devices. By setting the appropriate options using the MegaWizard Plug-In Manager, you can configure the Deterministic Latency PHY IP Core to support many industry-standard protocols that require deterministic latency, including the following protocols:


- Common Public Radio Interface (CPRI)
- Open Base Station Architecture Initiative (OBSAI)
- 1588 Ethernet

***** For more information about using the Deterministic Latency PHY IP Core to implement CPRI, refer to the application note, *Implementing the CPRI Protocol Using the Deterministic PHY IP Core*.

Figure 9–1 illustrates the top-level interfaces and modules of the Deterministic Latency PHY IP Core. As Figure 9–1, the physical coding sublayer (PCS) includes the following functions:

- TX and RX Phase Compensation FIFO
- 8B/10B encoder and decoder
- Word aligner
- TX bit slipper

Figure 9–1. Deterministic Latency PHY IP Core

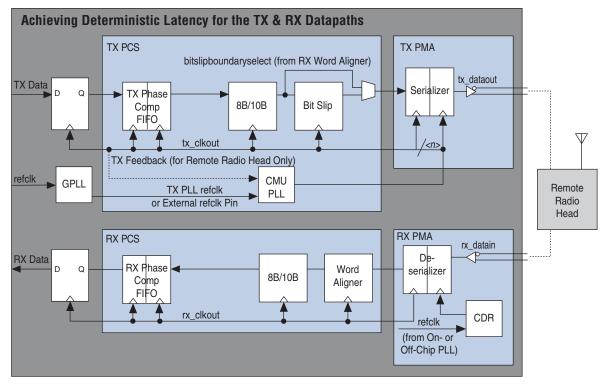
The data that the Deterministic Latency PHY receives data on its FPGA fabric interface employs the Avalon Streaming (Avalon-ST) protocol to transmit and receive data. The Avalon-ST protocol is a simple protocol designed for driving high bandwidth, low latency, unidirectional data. The Deterministic Latency PHY IP Core also includes an Avalon Memory-Mapped (Avalon-MM) interface to access control and status registers. This is a standard, memory-mapped protocol that is normally used to read and write registers and memory. The transceiver reconfiguration interface connects to the Altera Transceiver Reconfiguration Controller IP Core which can dynamically reconfigure transceiver settings. Finally, the PMA transmits and receives serial data which connects to an optical link.

For more information about the Avalon-ST and Avalon-MM protocols, refer to the Avalon Interface Specifications.

Auto-Negotiation

The Deterministic Latency PHY IP Core supports auto-negotiation. When auto-negotiation is required, the channels initialize at the highest supported frequency and switch to successively lower data rates if frame synchronization is not achieved. If your design requires auto-negotiation, choose a base data rate that minimizes the number of PLLs required to generate the clocks required for data transmission. By selecting an appropriate base data rate, you can change data rates by changing the divider used by the clock generation block. Table 9–1 shows an example where setting two base data rates, 9830.4 and 6144 Mbps, with the appropriate clock dividers generates almost the full range of data rates required by the CPRI protocol.

Data Rate (Mbps)	Base Data Rate (Mbps)	Clock Divider
614.4	4915.2	8
1228.8	4915.2	4
2457.6	4915.2	2
3072.0	6144.0	2
4915.2	4915.2	1
6144.0	6144.0	1


 Table 9–1.
 Recommended Base Data Rate and Clock Divisors for CPRI

You can use PMA Direct mode in the Arria V Transceiver Native PHY for CPRI applications that require the 9.8304 Gbps data rate. For more information refer to Chapter 11, Arria V Transceiver Native PHY IP Core

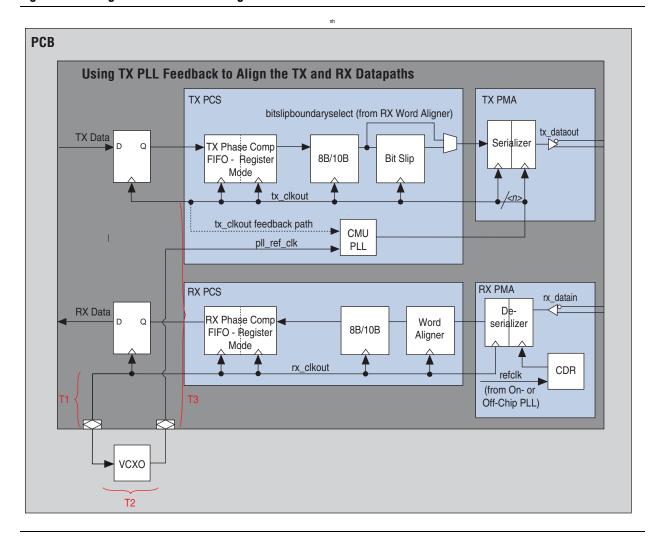
Achieving Deterministic Latency

Figure 9–2 illustrates the TX and RX channels when configured as a wireless basestation communicating to a remote radio head (RRH) using a CPRI or OBSAI interface. Figure 9–2 also provides an overview of the calculations that guarantee deterministic delay. As this figure illustrates, you can use a general-purpose PLL to generate the clock that drives the TX CMU PLL or an external reference clock input pin.

Note to Figure 9-2:

(1) The TX and RX Phase Compensation FIFOs always operate in register mode.

There are two ways to control the total latency through the datapath:


- Use TX PLL feedback to align the TX core clock with the source to the TX PLL which is the RX recovered clock.
 - If you use this method, Altera recommends that you drive rx_clkout to an external voltage controlled crystal oscillator (VCXO) to remove clock jitter unless you have determined that the clock jitter is not excessive. The input from the VCXO is pll_ref_clk which drives the PLL for the TX datapath. Refer to Figure 9–3 on page 9–4 for a block diagram illustrating this approach.
- Use sampling techniques in a delay estimate FIFO to measure the phase difference between the tx_clkout and rx_clkout, and the clock output of the PLL (Figure 9–2) and ensure the delay through the FIFO to a certain accuracy.

Systems that require multiple PLLs in a single transceiver block must use a delay estimate FIFO to determine delay estimates and the required phase adjustments.

Figure 9–3 illustrates the use of TX feedback and an external VCXO for clock jitter cleanup. It shows the following three delay variables:

- T1—The delay from user logic to FPGA pin. Quartus II software includes this delay in its timing models.
- T2—The delay from the FPGA pin, to the external PLL and back to the FPGA reference clock pin. You must provide the value for this delay.
- T3—Includes the latency from the FPGA pin to the CMU PLL, from the CMU PLL to the TX Serializer, and the TX PCS datapath to the TX Phase Compensation FIFO tx_clkout pin. Quartus II software includes this delay in its timing models.

Figure 9–3. Using TX PLL Feedback to Align the TX Core Clock with the RX Core Clock

Delay Estimation Logic

This section provides the equations to calculate delays when the Deterministic Latency PHY IP Core implements CPRI protocol. CPRI defines the radio base station interface between network radio equipment controllers (REC) and radio equipment (RE) components.

For RE

RX_latency_RE = <RX PCS latency in parallel clock cycles> + (<RX PMA latency in UI> + <PMA uncertainty reported by wordalignment_boundary[5]>) TX_latency_RE = <TX PCS latency in parallel clock cycles>

+ <TX PMA latency in UI > + <Tx bitslip latency>

For REC

RX_latency_REC = <RX PCS latency in parallel clock cycles> + <RX PMA latency in UI> + < rx_clkout phase shift of tx_clkout>

TX_latency_REC = <TX PCS latency in parallel clock cycles> + <TX PMA latency in UI>

Round Trip Delay

Launch_time (from TX pins) =<clock arrival time> + <data arrival time>

= <clock arrival time> + <TX latency in REC> (tx bitslip=0) = <t_{PD} GPLL to CMU PLL - t_{feedback}> + ((<TX_latency in REC> × <tx_clkout_period>) + t_{TX_tclock_output})

Arrival_time (at RX pins) = <latency time in RE> - <RX latency time in REC>

= (<Round_trip_latency> × <tx_clkout_period>) - ((<RX_latency in REC> × <rx_clkout_period>) + <t_{PDIO>RX_deser} >

+ <rx_clkout_phase_WRT_tx_clkout/360 × rx_clkout_period>)

Total Delay = <*Arrival_time*> - <*Launch_time*>

Total Delay Uncertainty

Round trip delay estimates are subject to power, voltage, and temperature (PVT) variation.

 $t_{RXCLK_Phase_detector_uncertainty} = 2 \times max(\langle t_{GLL_phase_step} \rangle, \langle t_{CDR_to_GPLL_jitter} \rangle) + \mu t_{SU} + \mu t_{H}$

 $\begin{aligned} t_{\text{Round_trip_uncertainty}} &= < t_{RX_CLK_Phase_detector_uncertainty} + t_{GPLL->CMUPLL_variation} > \\ &+ < t_{feedback_variation} > + < t_{TX_tco_variation} > + < t_{IO->RXdeser_delay_variation} > \\ &+ < t_{PLL_multicycle_jitter} > + < t_{offset_uncertainty} > \end{aligned}$

Delay Numbers

Table 9–2 shows the total latency through the TX PCS in parallel clock cycles with the byte serializer/deserializer turned off. The TX compensation FIFO is in register mode.

Table 9–2. TX PCS Total Latency

PCS to PMA Datapath Width	TX Phase Comp FIFO	Serializer	8B/10B	Bitslip	Total TX Clock Cycles
	Byte Serializer/	/Deserializer Tur	ned Off		
8 bits	1.0	1.0	1.0	0	3.0
16 bits	1.0	1.0	1.0	0	3.0
Byte Serializer/Deserializer Turned On					
16 bits	1.0	0.5	0.5	0	2.0
32 bits	1.0	0.5	0.5	0	2.0

Table 9–3 shows the total latency through the RX PCS in parallel clock cycles with the byte serializer/deserializer turned off. The RX compensation FIFO is in register mode.

Table 9–3. RX PCS Total Latency

PCS to PMA Datapath Width	RX Phase Comp FIFO	Byte Ordering	Deserializer	8B/10B	Word Aligner	Total RX Clock Cycles
	Byte Serializer/Deserializer Turned Off					
8 bits	1.0	1.0	1.0	1.0	4.0	8.0
16 bits	1.0	1.0	1.0	1.0	5.0	9.0
Byte Serializer/Deserializer Turned On						
16 bits	1.0	1.0	1.5	0.5	2.0	6.0
32 bits	1.0	1.0	1.5	0.5	2.5	6.5

Table 9-4 shows the total latency through the TX and RX PMA in UI.

Table 9–4. PMA Datapath Total Latency (1)

	TX PMA La	tency in UI	RX PMA Latency in UI		
Device	PCS to PMA Width 10 bits	PCS to PMA Width with 20 bits	PCS to PMA Width with 10 bits	PCS to PMA Width with 20 bits	
Arria V	23	43	53	83	
Stratix V	13	23	54	84	

Note to Table 9-4:

(1) The numbers in this table are from simulation.

There is a small discrepancy between simulation of the delays through the PMA serializer and deserializer and hardware modeling of these delays.

Device Family Support

IP cores provide either final or preliminary support for target Altera device families. These terms have the following definitions:

- *Final support*—*V*erified with final timing models for this device.
- *Preliminary support*—Verified with preliminary timing models for this device.

Table 9–5 shows the level of support offered by the Deterministic Latency PHY IP Core for Altera device families.

Table 9–5. Device Family Support

Device Family	Support
Arria V devices	Preliminary
Stratix V devices	Preliminary
Other device families	No support

Parameter Settings

To configure the Deterministic Latency PHY IP Core in the MegaWizard Plug-In Manager, click Installed Plug-Ins > Interfaces > Transceiver PHY > Deterministic Latency PHY v12.0. You can use the tabs on the MegaWizard Plug-In Manager to select the options required for the protocol.

The following sections describe all of the options on the tabs of the MegaWizard Plug-In Manager.

General Options

The **General Options** tab allows you to set the basic parameters of your transceiver PHY. Table 9–6 lists the settings available on the **General Options** tab.

 Table 9–6.
 General Options (Part 1 of 2)

Name	Value	Description	
Device family	Arria V Stratix V Specifies the device family. Arria V and Stratix V are available		
Mode of operation	Duplex TX RX	You can select to transmit data, receive data, or both.	
Number of lanes	1–32	The total number of lanes in each direction.	
FPGA fabric transceiver interface width	8, 10, 16, 20,32	Specifies the word size between the FPGA fabric and PCS. Refer to "Sample Channel WIdth Options for Supported Serial Data Rates" on page 9–9 for the data rates supported at each word size.	
PCS-PMA interface width	10 20	Specifies the datapath width between the transceiver PCS and PMA. A deserializer in the PMA receives serial input data from the RX buffer using the high-speed recovered clock and deserializes it using the low-speed parallel recovered clock.	

Name	Value	Description
PLL type	CMU Atx	Specifies the PLL type. The CMU PLL has a larger frequency range than the ATX PLL. The ATX PLL is designed to improve jitter performance and achieves lower channel-to-channel skew; however, it supports a narrower range of data rates and reference clock frequencies. Another advantage of the ATX PLL is that it does not use a transceiver channel, while the CMU PLL does. Because the CMU PLL is more versatile, it is specified as the default setting.
Data rate	611 Mbps – 6144 Mbps 611 Mbps - 11000 Mbps	The top data rate for Arria V is 6553.6 Mbps, for Stratix V it is 11000 Mbps. Refer to "Sample Channel WIdth Options for Supported Serial Data Rates" on page 9–9 for sample the channel widths that support these data rates.
Base data rate	1 × Data rate 2 × Data rate 4 × Data rate 8 × Data rate	For systems that transmit and receive data at more than one data rate, select a base data rate that minimizes the number of PLLs required to generate the clocks for data transmission. Table 9–1 on page 9–2 lists the recommended Base data rates for various Data rates . The available options are dynamically computed based on the Data rate you specified as long as those Base data rates are within the frequency range of the PLL.
Input clock frequency	Data rate/20 Data rate/10 Data rate/8 Data rate/5 Data rate/4 Data rate/2.5 Data rate/2 Data rate/1.25 Data rate/1	This is the reference clock for the PHY PLL. The available options are based on the Base data rate specified.
Enable tx_clkout feedback path for TX PLL	On/Off	When On , the core uses TX PLL feedback to align the TX core clock with the source to the TX PLL which is the RX recovered clock. This configuration is shown in Using TX PLL Feedback to Align the TX Core Clock with the RX Core ClockFigure 9–3 on page 9–4.

 Table 9–6. General Options (Part 2 of 2)

Table 9–7 lists the available channel widths available at selected frequencies. The channel width options are restricted by the following maximum FPGA-PCS fabric interface frequencies:

- Arria V devices—159.375 MHz
- Stratix V devices—221 MHz

Table 9–7. Sample Channel Width Options for Supported Serial Data Rates

	Channel Width (FPGA-PCS Fabric)				
Serial Data Rate (Mbps)	Single-Width		Double-Width		
	8-Bit	16-Bit	16-Bit	32-Bit	
614.4	\checkmark	\checkmark	—	_	
1228.8	\checkmark	\checkmark	\checkmark	\checkmark	
2457.6	—	\checkmark	\checkmark	\checkmark	
3072	—	\checkmark	\checkmark	\checkmark	
4915.2	—	—	—	\checkmark	
6144	—	—	—	\checkmark	

Additional Options

Table 9–8 lists the settings available on the **Additional Options** tab.

Table 9-8.	Additional	Options	(Part 1 of 3)
------------	------------	---------	---------------

Name	Value	Description
	The word aligner restores word boundaries of received data based on a predefined alignment pattern. The word aligner automatically performs an initial alignment to the specified word pattern after reset deassertion.	
		You can select 1 of the following 2 modes:
Word alignment mode	Deterministic Int mode Iatency state machine	Deterministic latency state machine-In this mode, the RX word aligner automatically searches for the word alignment pattern after reset completes. After the word aligner detects the specified word alignment pattern, it sends RX_CLKSLIP to the RX PMA deserializer indicating the number of bits to slip to compensate for the bits that were slipped to achieve word alignment. When
		RX_CLKSLIP has a non-zero value, the deserializer either skips one serial bit or pauses the serial clock for one cycle. As a result, the period of the parallel clock could be extended by 1 unit interval (UI) during the clock slip operation. This procedure avoids using the TX bit slipper to ensure constant round-trip delay. In this mode, the

Table 9–8. Additional Options (Part 2 of 3)

Name	Value	Description
Word alignment mode (continued)	Deterministic latency state machine (continued)	specified word alignment pattern, which is currently forced to K28.5 (0011111010) is always placed in the least significant byte (LSB) of a word with a fixed latency of 3 cycles. User logic can assume the LSB placement. Altera recommends the deterministic latency state machine mode for new designs.
		During the word alignment process, the parallel clock shifts the phase to align to the data. This phase shifting will be 2/10 cycles (20%) in 10 bit mode, 2/20 cycles (10%) in 20 bit mode, and 2/40 cycles (5%) in 40 bit mode.
		For double-width datapaths using deterministic latency state machine mode, after the initial alignment following the deassertion of reset, the Avalon-MM register big rx_enapatternalign (not available as a signal) must be reasserted to initiate another pattern alignment. Asserting rx_enapatternalign, may cause the extra shifting in the RX datapath if rx_enablepatternalign is asserted while bit slipping is in progress; consequently rx_enapatternalign should only be asserted under the following conditions:
		<pre>rx_syncstatus is asserted</pre>
		 rx_bitslipboundaryselectout changes from a non-zero value to zero or 1
	Manual	Manual-In this mode, the RX word aligner parses the incoming data stream for a specific alignment character. Once it identifies this pattern, it shifts the input stream to align the data and also outputs the number of bits slipped on bitslipboundaryselectot[4:0] for latency compensation on the TX datapath. This mode is provided for backwards compatibility with designs implemented in Stratix IV and Arria II devices.
TX bitslip	On/Off	TX bitslip is enabled whenever the word aligner is in Manual alignment mode. The TX bitslipper uses the value of bitslipboundarselect[4:0] to compensate for bits slipped on the RX datapath to achieve deterministic latency.
Enable run length violation checking	On/Off	If you turn this option on, you can specify the run length which is the maximum legal number of contiguous 0s or 1s. This option also creates the rx_rlv output signal which is asserted when a run length violation is detected.
Run length	5–160	Specifies the threshold for a run-length violation. Must be a multiple of 5.
Create optional word aligner status ports	On/Off	Enable this option to include the rx_patterndetect and rx_syncstatus ports.
Create optional 8B/10B control and status ports	On/Off	Enable this option to include the 8B/10B rx_runningdisp, rx_errdetect, and rx_disperr signals at the top level of the Deterministic Latency PHY IP Core.
Create PMA optional status ports	On/Off	Enable this option to include the 8B/10B rx_is_lockedtoref, rx_is_lockedtodata, and rx_signaldetect signals at the top level of the Deterministic Latency PHY IP Core.

Name	Value	Description	
Avalon data interfaces	On/Off	This option is typically required if you are planning to import your Deterministic Latency PHY IP Core into a Qsys system.	
Enable embedded reset controller	On/Off	This option is typically required if you are planning to import your	

For more information about the individual the word aligner and TX bitslip functionality, refer to *Transceiver Architecture in Stratix V Devices* in the *Stratix V Device Handbook* or *Transceiver Architecture in Arria V Devices* in the *Arria V Device Handbook* as appropriate.

PLL Reconfiguration

Table 9–9 lists the **PLL Reconfiguration** options. For more information about transceiver reconfiguration registers, refer to "PLL Reconfiguration" on page 12–19.

Table 9–9. PLL Reconfiguration Options

Name	Value	Description
Allow PLL Reconfiguration	On/Off	You must enable this option if you plan to reconfigure the PLLs in your design. This option is also required to simulate PLL reconfiguration.
Number of TX PLLs	Device dependent	Specifies the number of TX PLLs required for this instance of the Custom PHY. More than 1 PLL may be required if your design reconfigures channels to run at multiple frequencies.
Number of reference clocks	1–5	Specifies the number of input reference clocks. More than one reference clock may be required if your design reconfigures channels to run at multiple frequencies.
Main TX PLL logical index	0–3	Specifies the index for the TX PLL that should be instantiated at startup. Logical index 0 corresponds to TX PLL0, and so on.
Main TX PLL input clock source	0–3	Specifies the index for the TX PLL input clock that should be instantiated at startup. Logical index 0 corresponds to input clock 0 and so on.
CDR PLL input clock source	0-4	Specifies the index for the CDR PLL input clock that should be instantiated at startup. Logical index 0 corresponds to input clock 0 and so on.
		TX PLL (0–3)
(Refer to	Table 9–6 on page 9–	7 for a detailed explanation of these parameters.)
PLL Type	СМИ	Specifies the PLL type.
Base data rate	1 × Lane rate 2 × Lane rate 4 × Lane rate	Specifies Base data rate .

Name	Value	Description
Input clock frequency	Variable	Specifies the frequency of the PLL input reference clock. The frequency required is the Base data rate /2. You can use any Input clock frequency that allows the PLLs to generate this frequency.
Selected input clock source	0–4	Specifies the index of the input clock for this TX PLL. Logical index 0 corresponds to input clock 0 and so on.
	I	Channel Interface
		Turn this option on to enable PLL and datapath dynamic reconfiguration. When you select this option, the width of tx_parallel_data and rx_parallel_data buses increases in the following way:
Enable channel interface	On/Off	 The tx_parallel_data bus is 44 bits per lane; however, only the low-order number of bits specified by the FPGA fabric transceiver interface width contain valid data for each lane.
		 The rx_parallel_data bus is 64 bits per lane; however, only the low-order number of bits specified by the FPGA fabric transceiver interface width contain valid data.

Table 9–9. PLL Reconfiguration Options

Analog Options

You specify the analog parameters for Stratix V devices using the Quartus II Assignment Editor, the Pin Planner, or through the Quartus II Settings File (**.qsf**). The default values for analog options fall into three categories:

- *Global* These parameters have default values that are independent of other parameter settings.
- *Computed*—These parameters have an initial default value that is recomputed based on other parameter settings.
- Proxy—These parameters have default values that are place holders. The Quartus II software selects these initial default values based on your design; however, Altera recommends that you replace these defaults with values that match your electrical board specification.

Table 9–10 lists the analog parameters for Stratix V devices whose original values are place holders for the values that match your electrical board specification. In Table 9–10, the default value of an analog parameter is shown in **bold** type. The parameters are listed in alphabetical order.

Table 9–10. Transceiver and PLL Assignments for Stratix V Devices

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_GT_IO_PIN_ TERMINATION	GT Transceiver I/O Pin Termination	Fine tunes the target 100-ohm on-chip termination for the specified transceiver pin. This parameter is only for GT transceivers.	0-15 12	Pin
XCVR_IO_PIN_TERMINATION	Transceiver I/O Pin Termination	Specifies the intended on-chip termination value for the specified transceiver pin. Use External Resistor if you intend to use off-chip termination.	85_0HMS 100_0HMS 120_0HMS 150_0HMS EXTERNAL_ RESISTOR	Pin
XCVR_REFCLK_PIN_ TERMINATION	Transceiver Dedicated Refclk Pin Termination	Specifies the intended termination value for the specified refclk pin.	DC_COUPLING_ INTERNAL_100 _OHM DC_COUPLING_ EXTERNAL_ RESISTOR AC_COUPLING	Pin
XCVR_RX_BYPASS_EQ_ STAGES_234	Receiver Equalizer Stage 2, 3, 4 Bypass	Bypass continuous time equalizer stages 2, 3, and 4 to save power. This setting eliminates significant AC gain on the equalizer and is appropriate for chip-to-chip short range communication on a PCB.	ALL_STAGES_ ENABLED BYPASS_ STAGES	Pin
XCVR_TX_SLEW_RATE_CTRL	Transmitter Slew Rate Control	Specifies the slew rate of the output signal. The valid values span from the slowest rate to fastest rate with 1 representing the slowest rate.	15	Pin
XCVR_VCCA_VOLTAGE	VCCA_GXB Voltage	Configure the VCCA_GXB voltage for a GXB I/O pin by specifying the intended VCCA_GXB voltage for a GXB I/O pin. If you do not make this assignment the compiler automatically sets the correct VCCA_GXB voltage depending on the configured data rate, as follows: Data rate <= 6.5 Gbps: 2_5V Data rate > 6.5 Gbps: 3_0V or 3_3V for Stratix V ES silicon	2_5V 3_0V	Pin
XCVR_VCCR_VCCT_VOLTAGE	VCCR_GXB VCCT_GXB Voltage	Refer to the <i>Device Datasheet for</i> <i>Stratix V Devices</i> for guidance on selecting a value.	0_85V 1_0V	Pin

Table 9–11 lists the analog parameters with *global* or *computed* default values. You may want to optimize some of these settings. In Table 9–11, the default value is shown in **bold** type. For computed analog parameters, the default value listed is for the initial setting, not the recomputed setting. The parameters are listed in alphabetical order.

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To	
	Analog Parameters with Global Default Value				
CDR_BANDWIDTH_PRESET	CDR Bandwidth Preset	Specifies the CDR bandwidth preset setting.	Auto Low Medium High	PLL instance	
PLL_BANDWIDTH_PRESET	PLL Bandwidth Preset	Specifies the PLL bandwidth preset setting	Auto Low Medium High	PLL instance	
XCVR_GT_RX_DC_GAIN	Receiver Buffer DC Gain Control	Controls the RX buffer DC gain for GT channels.	0-19 8	Pin	
XCVR_RX_DC_GAIN	Receiver Buffer DC Gain Control	Controls the RX buffer DC gain for GX channels.	0-4	Pin	
XCVR_RX_LINEAR_EQUALIZER_ CONTROL	Receiver Linear Equalizer Control	Static control for the continuous time equalizer in the receiver buffer. The equalizer has 16 distinct settings from 0 –15 corresponding to the increasing AC gain.	1 –16	Pin	
	Analog Parameters with C	omputed Default Value			
XCVR_GT_TX_PRE_EMP_PRE_ TAP	Transmitter Pre-emphasis Pre-Tap	Specifies the pre-tap pre-emphasis setting. This parameter is only for GT transceivers.	0-31 0	Pin	
XCVR_GT_TX_VOD_MAIN_TAP	Transmitter Differential Output Voltage for GT channels.	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength. This parameter is only for GT transceivers.	0-5 3	Pin	
XCVR_GT_RX_COMMON_ MODE_VOLTAGE	GT receiver Buffer Common Mode Voltage	Receiver buffer common-mode voltage. This parameter is only for GT transceivers.	VTT_0P8V VTT_0P75V VTT_0P65V VTT_0P65V VTT_0P55V VTT_0P55V VTT_0P35V VTT_0P35V VTT_VCM0FF7 VTT_VCM0FF6 VTT_VCM0FF3 VTT_VCM0FF3 VTT_VCM0FF1 VTT_VCM0FF1 VTT_VCM0FF0	Pin	

Table 9–11. Transceiver and PLL Assignments for Stratix V Devices (Part 1 of 5)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_GT_RX_CTLE	GT Receiver Linear Equalizer Control	Static control for the continuous time equalizer in the receiver buffer. The equalizer has 9 distinct settings from 0-8 corresponding to increasing AC gain. This parameter is only for GT transceivers.	0-8 0	Pin
XCVR_GT_TX_COMMON_MODE_ VOLTAGE	GT Transmitter Common Mode Driver Voltage	Transmitter common-mode driver voltage. This parameter is only for GT transceivers.	VOLT_0P80V VOLT_0P75V VOLT_0P75V VOLT_0P65V VOLT_0P65V VOLT_0P55V VOLT_0P55V VOLT_0P35V PULL_UP PULL_UP PULL_DN TRISTATED1 GROUNDED PULL_UP_TO_ VCCELA TRISTATED2 TRISTATED3 TRISTATED4	Pin
XCVR_GT_TX_PRE_EMP_1ST_ POST_TAP	GT Transmitter Preemphasis First Post-Tap	Specifies the first post-tap setting value. This parameter is only for GT transceivers.	0-31 5	Pin
XCVR_GT_TX_PRE_EMP_INV_ PRE_TAP	GT Transmitter Preemphasis Pre Tap Invert	Inverts the transmitter pre-emphasis pre-tap. This parameter is only for GT transceivers.	ON OFF	Pin
XCVR_GT_TX_PRE_EMP_PRE_ TAP	GT Transmitter Preemphasis Pre-Tap	Specifies the pre-tap pre-emphasis setting. This parameter is only for GT transceivers.	0-31 0	Pin

Table 9–11. Transceiver and PLL Assignments for Stratix V Devices (Part 2 of 5)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_GT_TX_VOD_MAIN_TAP	GT Transmitter Differential Output Voltage	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength.	0-5 3	Pin
XCVR_RX_COMMON_MODE_ VOLTAGE	Receiver Buffer Common Mode Voltage	Receiver buffer common-mode voltage.	VTT_0P80V VTT_0P75V VTT_0P65V VTT_0P60V VTT_0P55V VTT_0P50V VTT_0P50V VTT_0P35V VTT_PUP _WEAK VTT_PDN WEAK TRISTATE1 VTT_PDN_ STRONG VTT_PUP_ STRONG TRISTATE2 TRISTATE3 TRISTATE4	Pin
XCVR_RX_ENABLE_LINEAR_ EQUALIZER_PCIEMODE	Receiver Linear Equalizer Control (PCI Express)	If enabled equalizer gain control is driven by the PCS block for PCI Express. If disabled equalizer gain control is determined by the XCVR_RX_LINEAR_EQUALIZER_SETT ING assignment.	TRUE False	Pin
XCVR_RX_EQ_BW_SEL	Receiver Equalizer Gain Bandwidth Select	Sets the gain peaking frequency for the equalizer. For data-rates of less than 6.5Gbps set to HALF. For higher data- rates set to FULL.	full Half	Pin
XCVR_RX_SD_ENABLE	Receiver Signal Detection Unit Enable/Disable	Enables or disables the receiver signal detection unit.	TRUE False	Pin
XCVR_RX_SD_OFF	Receiver Cycle Count Before Signal Detect Block Declares Loss Of Signal	Number of parallel cycles to wait before the signal detect block declares loss of signal.	0 –29	Pin
XCVR_RX_SD_ON	Receiver Cycle Count Before Signal Detect Block Declares Presence Of Signal	Number of parallel cycles to wait before the signal detect block declares presence of signal.	0 –16	Pin
XCVR_RX_SD_THRESHOLD	Receiver Signal Detection Voltage Threshold	Specifies signal detection voltage threshold level.	0 –7	Pin

Table 9–11. Transceiver and PLL Assignments for Stratix V Devices (Part 3 of 5)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_TX_COMMON_MODE_ VOLTAGE	Transmitter Common Mode Driver Voltage	Transmitter common-mode driver voltage	VOLT_0P80V VOLT_0P75V VOLT_0P65V VOLT_0P65V VOLT_0P55V VOLT_0P55V VOLT_0P35V PULL_0P PULL_0P PULL_DOWN TRISTATED1 GROUNDED PULL_UP_TO VCCELA TRISTATED2 TRISTATED3 TRISTATED4	Pin
XCVR_TX_PRE_EMP_PRE_TAP_ USER	Transmitter Preemphasis Pre-Tap user	Specifies the TX pre-emphasis pretap setting value, including inversion.	0 –31	Pin
XCVR_TX_PRE_EMP_2ND_TAP_ USER	Transmitter Preemphasis Second Post-Tap user	Specifies the transmitter pre-emphasis second post-tap setting value, including inversion.	0 –31	Pin
XCVR_TX_PRE_EMP_1ST_POST_ TAP	Transmitter Preemphasis First Post-Tap	Specifies the first post-tap setting value.	0 –31	Pin
XCVR_TX_PRE_EMP_2ND_ POST_TAP	Transmitter Preemphasis Second Post-Tap	Specifies the second post-tap setting value.	0 –15	Pin
XCVR_TX_PRE_EMP_INV_ 2ND_TAP	Transmitter Preemphasis Second Tap Invert	Inverts the transmitter pre-emphasis 2nd post tap.	TRUE False	Pin
XCVR_TX_PRE_EMP_INV_ PRE_TAP	Transmitter Preemphasis Pre Tap Invert	Inverts the transmitter pre-emphasis pre-tap.	TRUE False	Pin
XCVR_TX_PRE_EMP_PRE_TAP	Transmitter Preemphasis Pre-Tap	Specifies the pre-tap pre-emphasis setting.	0 –15	Pin
XCVR_TX_RX_DET_ENABLE	Transmitter's Receiver Detect Block Enable	Enables or disables the receiver detector circuit at the transmitter.	TRUE False	Pin
XCVR_TX_RX_DET_MODE	Transmitter's Receiver Detect Block Mode	Sets the mode for receiver detect block	0 –15	Pin
XCVR_TX_RX_DET_OUTPUT_SEL	Transmitter's Receiver Detect Block QPI/PCI Express Control	Determines QPI or PCI Express mode for the Receiver Detect block.	RX_DET_QPI_ OUT RX_DET_PCIE_ OUT	Pin

Table 9–11. Transceiver and PLL Assignments for Stratix V Devices (Part 4 of 5)

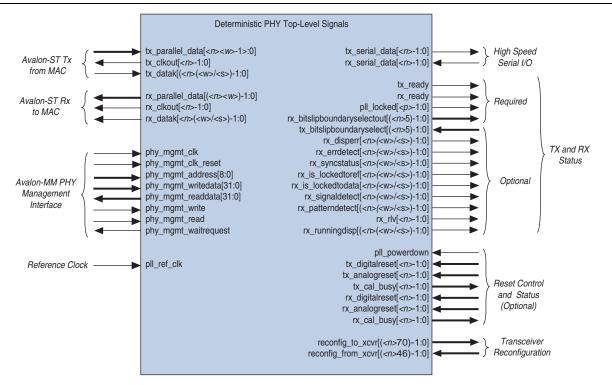
QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_TX_VOD	Transmitter Differential Output Voltage	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength.	0–63 50	Pin
XCVR_TX_VOD_PRE_EMP_ CTRL_SRC	Transmitter V _{OD} /Preemphasis Control Source	When set to DYNAMIC_CTL, the PCS block controls the V_{OD} and preemphasis coefficients for PCI Express. When this assignment is set to RAM_CTL the V_{OD} and preemphasis are controlled by other assignments, such as XCVR_TX_PRE_EMP_1ST_POST_TAP.	DYNAMIC_CTL Ram_Ctl	Pin

⑦ For more information about the Pin Planner, refer to About the Pin Planner in Quartus II Help. For more information about the Assignment Editor, refer to About the Assignment Editor in Quartus II Help.

For more information about Quartus II Settings, refer to *Quartus II Settings File Manual*.

Interfaces

This section describes interfaces of the Deterministic Latency Transceiver PHY. It includes the following topics:


- Ports
- Register Interface
- Dynamic Reconfiguration

Ports

Figure 9–4 illustrates the top-level signals of the Deterministic Latency PHY IP Core. The variables in Figure 9–4 represent the following parameters:

- <*n>*—The number of lanes
- *«w>*—The width of the FPGA fabric to transceiver interface per lane
- *<s>* The symbol size
- →The number of PLLs

- The **block diagram** shown in the MegaWizard Plug-In Manager labels the external pins with the *interface type* and places the *interface name* inside the box. The interface type and name are used in the **_hw.tcl** file that describes the component. If you turn on **Show signals**, the **block diagram** displays all top-level signal names.
- **For more information about _hw.tcl** files, refer to the *Component Interface Tcl Reference* chapter in volume 1 of the *Quartus II Handbook*.

The following sections describe the signals in each interface.

Avalon-ST TX Input Data from the MAC

Table 9–12 describes the signals in the Avalon-ST input interface. These signals are driven from the MAC to the PCS. This is an Avalon sink interface.

...

• For more information about the Avalon-ST protocol, including timing diagrams, refer to the *Avalon Interface Specifications*.

Table 9–12. Avalon-ST TX Interface

Signal Name	Direction	Description
<pre>tx_parallel_data[(<n><w>)-1:0]</w></n></pre>	Sink	This is TX parallel data driven from the MAC. The ready latency on this interface is 0, so that the PHY must be able to accept data as soon as it comes out of reset. Refer to for definitions of the control and status signals with 8B/10B encoding enabled and disabled. Refer to Table 9–13 for the signals that correspond to data, control, and status signals.
<pre>tx_clkout[<n>-1:0]</n></pre>	Output	This is the clock for TX parallel data, control, and status signals.
tx_datak[(<n>(<d>/<s>)-1:0]</s></d></n>	Sink	Data and control indicator for the received data. When 0, indicates that tx_parallel_data is data, when 1, indicates that tx_parallel_data is control.

Table 9–13 shows the signals within tx_parallel_data that correspond to data, control, and status signals.

Table 9–13. Signal Definitions for tx_parallel_data with and without 8B/10B Encoding

TX Data Word	Description	
Sig	nal Definitions with 8B/10B Enabled	
<pre>tx_parallel_data[7:0]</pre>	TX data bus	
<pre>tx_parallel_data[8]</pre>	TX data control character	
<pre>tx_parallel_data[9]</pre>	Force disparity, validates disparity field.	
	Specifies the current disparity as follows:	
<pre>tx_parallel_data[10]</pre>	1'b0 = positive	
	1'b1 = negative	
Sig	Signal Definitions with 8B/10B Disabled	
<pre>tx_parallel_data[9:0]</pre>	TX data bus	
tx_parallel_data[10]	Unused	

Avalon-ST RX Output Data to the MAC

Table 9–14 describes the signals in the Avalon-ST output interface. These signals are driven from the PCS to the MAC. This is an Avalon source interface

Signal Name	Direction	Description
<pre>rx_parallel_data[(<n><d>)-1:0]</d></n></pre>	Source	This is RX parallel data driven from the Deterministic Latency PHY IP Core. The ready latency on this interface is 0, so that the MAC must be able to accept data as soon as the PHY comes out of reset. Data driven from this interface is always valid. Refer to Table 9–15 for the signals that correspond to data, control, and status signals.
rx_clkout[<n>-1:0]</n>	Output	This is the clock for the RX parallel data source interface.
rx_datak[(<n>(<d>/<s>)-1:0]</s></d></n>	Source	Data and control indicator for the source data. When 0, indicates that rx_parallel_data is data, when 1, indicates that rx_parallel_data is control.

Table 9–15 shows the signals within rx_parallel_data that correspond to data, control, and status signals.

Table 9–15	. Signal Definitions for rx	_parallel_data with and	l without 8B/10B Encoding
------------	-----------------------------	-------------------------	---------------------------

TX Data Word	Description		
Signal Definitions with 8B/10B Enabled			
rx_parallel_data[9:0] RX data bus			
rx_parallel_data[10]	Synchronization status		
rx_parallel_data[11]	Disparity error		
rx_parallel_data[12]	Pattern detect		
	The following encodings are defined:		
	 2'b00: Normal data 		
rx_parallel_data[14:13]	2'b01: Deletion		
	 2'b10: Insertion (or Underflow with 9'h1FE or 9'h1F7) 		
	2'b11: Overflow		
rx_parallel_data[15]	Running disparity value		
Signa	l Definitions with 8B/10B Disabled		
rx_parallel_data[9:0]	RX data bus		
rx_parallel_data[10]	Synchronization status		
rx_parallel_data[11]	Disparity error		
rx_parallel_data[12]	Pattern detect		
	The following encodings are defined:		
	 2'b00: Normal data 		
<pre>rx_parallel_data[14:13]</pre>	2'b01: Deletion		
	 2'b10: Insertion (or Underflow with 9'h1FE or 9'h1F7) 		
	2'b11: Overflow		
rx_parallel_data[15]	Running disparity value		

Clock Interface

Table 9–16 describes clocks for the Deterministic Latency PHY. The input reference clock, pll_ref_clk, drives a PLL inside the PHY-layer block, and a PLL output clock, rx_clkout is used for all data, command, and status inputs and outputs.

Table 9–16. Clock Signals

Signal Name	Direction	Description
pll_ref_clk	Input	Reference clock for the PHY PLLs. Frequency range is 60–700 MHz.

Transceiver Serial Data Interface

Table 9–17 describes the differential serial data interface and the status signals for the transceiver serial data interface.

Table 9–17. Serial Interface and Status Signals (1)

Signal Name	Direction	Signal Name
<pre>rx_serial_data[<n>-1:0]</n></pre>	Input	Receiver differential serial input data.
<pre>tx_serial_data[<n>-1:0]</n></pre>	Output	Transmitter differential serial output data.

Note to Table 9-17:

(1) $\langle n \rangle$ is the number of lanes.

TX and RX Status Signals

Table 9–18 describes the optional status signals for the RX interface.

Table 9–18. Serial Interface and Status Signals (Part 1 of 2)⁽¹⁾

Signal Name	Direction	Signal Name
tx_ready	Output	When asserted, indicates that the TX interface has exited the reset state and is ready to transmit.
rx_ready	Output	When asserted, indicates that the RX interface has exited the reset state and is ready to receive.
<pre>pll_locked[-1:0]</pre>	Output	When asserted, indicates that the PLL is locked to the input reference clock.
<pre>rx_bitslipboundaryselectout [(<n>5)-1:0]</n></pre>	Output	Specifies the number of bits slipped to achieve word alignment. In 3G (10-bit) mode, the output is the number of bits slipped. If no bits were slipped, the output is 0. In 6G (20-bit) mode, the output is $(19 - \text{the number of bits slipped})$. If no bits were slipped, the output is 19. The default value of rx_bitslipboundaryselectout[4:0] before alignment is achieved is 5'b01111 in 3G mode and 5'b11111 in 6G mode.
	Optional Stat	tus Signals
<pre>tx_bitslipboundaryselect [(<n>5)-1:0]</n></pre>	Input	This signal is used for bit slip word alignment mode. It selects the number of bits that the TX block must slip to achieve a deterministic latency.
rx_disperr[(<n>(<d>/<s>)-1:0]</s></d></n>	Output	When asserted, indicates that the received 10-bit code or data group has a disparity error.

Signal Name	Direction	Signal Name
rx_errdetect[(<n>(<d>/<s>)-1:0]</s></d></n>	Output	When asserted, indicates that a received 10-bit code group has an 8B/10B code violation or disparity error.
rx_syncstatus[(<n>(<d>/<s>)-1:0]</s></d></n>	Output	Indicates presence or absence of synchronization on the RX interface. Asserted when word aligner identifies the word alignment pattern or synchronization code groups in the received data stream. This signal is optional.
<pre>rx_is_lockedtoref[(<n>(<d>/<s>)-1:0]</s></d></n></pre>	Output	Asserted when the receiver CDR is locked to the input reference clock. This signal is asynchronous. This signal is optional.
<pre>rx_is_lockedtodata[(<n>(<d>/<s>)-1:0]</s></d></n></pre>	Output	When asserted, the receiver CDR is in to lock-to-data mode. When deasserted, the receiver CDR lock mode depends on the rx_locktorefclk signal level. This signal is optional.
<pre>rx_patterndetect[(<n>(<d>/<s>)-1:0]</s></d></n></pre>	Output	When asserted, indicates that the programmed word alignment pattern has been detected in the current word boundary.
rx_rlv[<n>-1:0]</n>	Output	When asserted, indicates a run length violation. Asserted if the number of consecutive 1s or 0s exceeds the number specified using the MegaWizard Plug-In Manager.
rx_runningdisp[(<n>(<d>/<s>)-1:0]</s></d></n>	Source	This status signal indicates the disparity of the incoming data.

Optional Reset Control and Status

Table 9–19 describes the signals in the optional reset control and status interface. These signals are available if you do not enable the embedded reset controller. For more information including timing diagrams, refer to *Transceiver Reset Control in Stratix V Devices* in volume 2 of the *Stratix V Device Handbook*.

Signal Name	Direction	Description
<pre>pll_powerdown[<n>-1:0]</n></pre>	Input	When asserted, resets the TX PLL.
<pre>tx_digitalreset[<n>-1:0]</n></pre>	Input	When asserted, reset all blocks in the TX PCS.
<pre>tx_analogreset[<n>-1:0]</n></pre>	Input	When asserted, resets all blocks in the TX PMA.
<pre>tx_cal_busy[<n>-1:0]</n></pre>	Output	When asserted, indicates that the TX channel is being calibrated. You must hold the channel in reset until calibration completes.
<pre>rx_digitalreset[<n>-1:0]</n></pre>	Input	When asserted, resets the RX PCS.
<pre>rx_analogreset[<n>-1:0]</n></pre>	Input	When asserted, resets the RX CDR.
<pre>rx_cal_busy[<n>-1:0]</n></pre>	Output	When asserted, indicates that the RX channel is being calibrated. You must hold the channel in reset until calibration completes.

Table 9–19. Avalon-ST RX Interface

Register Interface

The Avalon-MM PHY management interface provides access to the Deterministic Latency PHY PCS and PMA registers that control the TX and RX channels, the PMA powerdown and PLL registers, and loopback modes.

Figure 9–5 illustrates the role of the PHY Management module in the Deterministic Latency PHY.

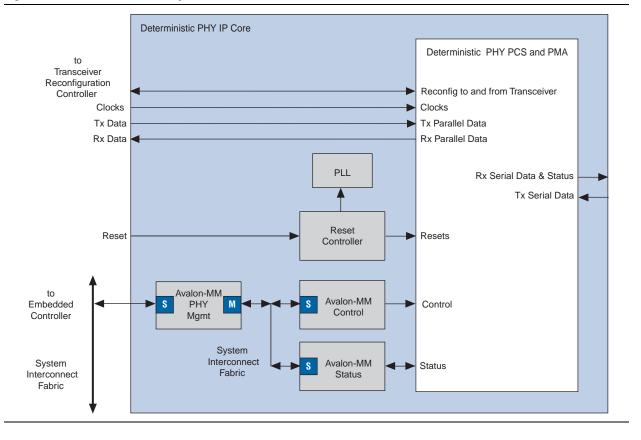


Table 9–20 describes the signals in the PHY Management interface.

Signal Name	Direction	Description		
		Avalon-MM clock input.		
phy_mgmt_clk	Input	There is no frequency restriction for Stratix V devices; however, if you plan to use the same clock for the PHY management interface and transceiver reconfiguration, you must restrict the frequency range of phy_mgmt_clk to 100–150 MHz to meet the specification for the transceiver reconfiguration clock.		
phy_mgmt_clk_reset	Input	Global reset signal. This signal is active high and level sensitive.		
phy_mgmt_address[8:0]	Input	9-bit Avalon-MM address.		
phy_mgmt_writedata[31:0]	Input	Input data.		
phy_mgmt_readdata[31:0]	Output	Output data.		
phy_mgmt_write	Input	Write signal.		

Signal Name	Direction	Description
phy_mgmt_read	Input	Read signal.
phy_mgmt_waitrequest	Output	When asserted, indicates that the Avalon-MM slave interface is unable to respond to a read or write request. When asserted, control signals to the Avalon-MM slave interface must remain constant.

Table 9–20. Avalon-MM PHY Management Interface (Part 2 of 2)

Register Descriptions

Table 9–21 specifies the registers that you can access over the PHY management interface using word addresses and a 32-bit embedded processor. A single address space provides access to all registers.

P

[>] Writing to reserved or undefined register addresses may have undefined side effects.

 Table 9–21. Deterministic Latency PHY IP Core Registers (Part 1 of 3)

Word Addr	Bits	R/W	Register Name	Description
			PMA Common Control	and Status Registers
0x021	[31:0]	RW	cal_blk_powerdown	Writing a 1 to channel $\langle n \rangle$ powers down the calibration block for channel $\langle n \rangle$.
0x022	[31:0]	R	pma_tx_pll_is_locked	Bit[P] indicates that the TX CMU PLL (P) is locked to the input reference clock. There is typically one pma_tx_pll_is_locked bit per system.
	Reset Control Registers-Automatic Reset Controller			
0x041	[31:0]	RW	reset_ch_bitmask	Reset controller channel bitmask for digital resets. The default value is all 1s. Channel $\langle n \rangle$ can be reset when bit $\langle n \rangle = 1$.
0x042	[1:0]	W	reset_control (write)	Writing a 1 to bit 0 initiates a TX digital reset using the reset controller module. The reset affects channels enabled in the reset_ch_bitmask. Writing a 1 to bit 1 initiates a RX digital reset of channels enabled in the reset_ch_bitmask.
		R	reset_status(read)	Reading bit 0 returns the status of the reset controller TX ready bit. Reading bit 1 returns the status of the reset controller RX ready bit.

Word Addr	Bits	R/W	Register Name	Description
Reset Controls –Manual Mode				
	[31:0]	RW	reset_fine_control	You can use the reset_fine_control register to create your own reset sequence. In manual mode, only the TX reset occurs automatically at power on and when the phy_mgmt_clk_reset is asserted. When pma_rx_setlocktodata Or pma_rx_setlocktodata is set, the transceiver PHY is placed in manual mode.
	[31:4,0]	RW	Reserved	It is safe to write 0s to reserved bits.
0x044	[3]	RW	reset_rx_digital	Writing a 1 causes the internal RX digital reset signal to be asserted, resetting the RX digital channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.
	[2]	RW	reset_rx_analog	Writing a 1 causes the internal RX analog reset signal to be asserted, resetting the RX analog logic of all channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.
	[1]	RW	reset_tx_digital	Writing a 1 causes the internal TX digital reset signal to be asserted, resetting all channels enabled in reset_ch_bitmask. You must write a 0 to clear the reset condition.
			PMA Control and	Status Registers
0x061	[31:0]	RW	phy_serial_loopback	Writing a 1 to channel <n> puts channel <n> in serial loopback mode. For information about pre- or post-CDR serial loopback modes, refer to "Loopback Modes" on page 12–42.</n></n>
0x064	[31:0]	RW	pma_rx_set_locktodata	When set, programs the RX CDR PLL to lock to the incoming data. Bit <i><n></n></i> corresponds to channel <i><n></n></i> .
0x065	[31:0]	RW	pma_rx_set_locktoref	When set, programs the RX CDR PLL to lock to the reference clock. Bit <i><n></n></i> corresponds to channel <i><n></n></i> .
0x066	[31:0]	RO	pma_rx_is_lockedtodata	When asserted, indicates that the RX CDR PLL is locked to the RX data, and that the RX CDR has changed from LTR to LTD mode. Bit <i><n></n></i> corresponds to channel <i><n></n></i> .
0x067	[31:0]	RO	pma_rx_is_lockedtoref	When asserted, indicates that the RX CDR PLL is locked to the reference clock. Bit $\langle n \rangle$ corresponds to channel $\langle n \rangle$.
			PC	S
0x080	[31:0]	RW	Lane or group number	Specifies lane or group number for indirect addressing, which is used for all PCS control and status registers. For variants that stripe data across multiple lanes, this is the logical group number. For non-bonded applications, this is the logical lane number.
	[31:6]	R	pcs8g_rx_status	Reserved.
0x081	[5:1]	R	rx_bitslipboundaryselect out	This is an output from the bit slip word aligner which shows the number of bits slipped. From block: Word aligner.

Table 9-21	Deterministic Latency PHY IP Core Registers	(Part 2 of 3)
------------	---	---------------

Word Addr	Bits	R/W	Register Name	Description
0x082	[31:1]	R	pcs8g_tx_status	Reserved.
0X002	[0]	RW	Reserved	—
	[31:6]	RW	pcs8g_tx_control	Reserved.
	[5:1]	RW	tx_bitslipboundary_select	Sets the number of bits that the TX bit slipper needs to slip.
0x083	[5.1]	ΠW	tx_bitsiipboundary_select	To block: Word aligner.
0,000	[0]	RW	tx_invpolarity	When set, the TX interface inverts the polarity of the TX data.
				To block: 8B/10B encoder.
	[31:1]	RW	Reserved.	—
0x084	[0]	RW	rx_invpolarity	When set, the RX channels inverts the polarity of the received data.
				To block: 8B/10B decoder.
	[31:4]	RW	pcs8g_rx_wa_control	Reserved.
	[3]	RW	rx_bitslip	Every time this register transitions from 0 to 1, the RX data slips a single bit.
				To block: Word aligner.
	[0]			When set, enables byte reversal on the RX interface.
0x085	0x085 [2] R'	RW	<pre>rx_bytereversal_enable</pre>	To block: RX Phase Comp FIFO.
	[4]			When set, enables bit reversal on the RX interface.
	[1]	RW	rx_bitreversal_enable	To block: Word aligner.
	[0]	RW	rx_enapatternalign	When set in manual word alignment mode, the word alignment logic begins operation when this bit is set.
				To block: Word aligner.

Table 9–21. Deterministic Latency PHY IP Core Registers (Part 3 of 3)

Dynamic Reconfiguration

As silicon progresses towards smaller process nodes, circuit performance is affected more by variations due to process, voltage, and temperature (PVT). These process variations result in analog voltages that can be offset from required ranges. The calibration performed by the dynamic reconfiguration interface compensates for variations due to PVT.

Each channel and each TX PLL has a separate dynamic reconfiguration interfaces. The MegaWizard Plug-In Manager provides informational messages on the connectivity of these interfaces. Example 9–1 shows the messages for a single duplex channel.

Although you must initially create a separate reconfiguration interface for each channel and TX PLL in your design, when the Quartus II software compiles your design, it reduces the number of reconfiguration interfaces by merging reconfiguration interfaces. The synthesized design typically includes a reconfiguration interface for at least three channels because three channels share an

Avalon-MM slave interface which connects to the Transceiver Reconfiguration Controller IP Core. Conversely, you cannot connect the three channels that share an Avalon-MM interface to different Transceiver PHY IP Cores. Doing so causes a Fitter error. For more information, refer to "Reconfiguration Controller to PHY IP Connectivity" on page 12–40.

Example 9–1. Informational Messages for the Transceiver Reconfiguration Interface

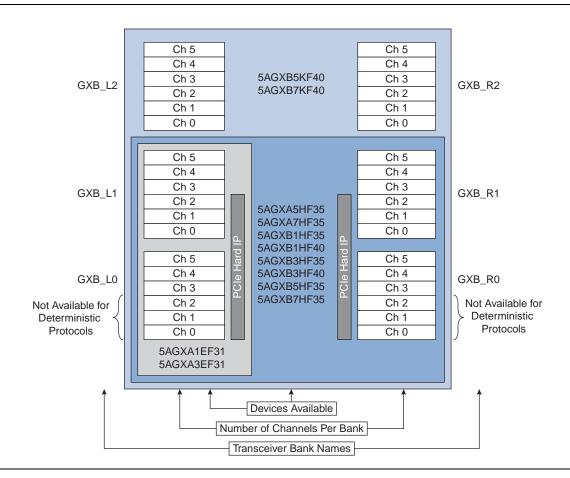
```
PHY IP will require 2 reconfiguration interfaces for connection to the external reconfiguration controller.
Reconfiguration interface offset 0 is connected to the transceiver channel.
Reconfiguration interface offset 1 is connected to the transmit PLL.
```

Table 9–22 describes the signals in the reconfiguration interface. This interface uses the Avalon-MM PHY Management interface clock.

 Table 9–22.
 Reconfiguration Interface

Signal Name	Direction	Description
<pre>reconfig_to_xcvr [(<n>70)-1:0]</n></pre>	Sink	Reconfiguration signals from the Transceiver Reconfiguration Controller. <i><n></n></i> grows linearly with the number of reconfiguration interfaces.
<pre>reconfig_from_xcvr[(<n>46)-1:0]</n></pre>	Source	Reconfiguration signals to the Transceiver Reconfiguration Controller. <i><n></n></i> grows linearly with the number of reconfiguration interfaces.

Transceiver dynamic reconfiguration requires that you assign the starting channel number. Logical channel 0 should be assigned to either physical transceiver channel 1 or channel 4 of a transceiver bank. However, if you have already created a PCB with a different lane assignment for logical lane 0, you can use the workaound shown in Example 9–2 to remove this restriction. Example 9–2 redefines the pma_bonding_master parameter using the Quartus II Assignment Editor. In this example, the pma_bonding_master was originally assigned to physical channel 1. (The original assignment could also have been to physical channel 4.) The to parameter reassigns the pma_bonding_master to the Deterministic Latency PHY instance name. You must substitute the instance name from your design for the instance name shown in quotation marks


Example 9–2. Overriding Logical Channel O Channel Assignment Restrictions in Stratix V Devices

set_parameter -name pma_bonding_master "\"1\"" -to "<PHY IP instance name>"

Channel Placement and Utilization

The Deterministic Latency PHY IP Core has the following restriction on channel placement:

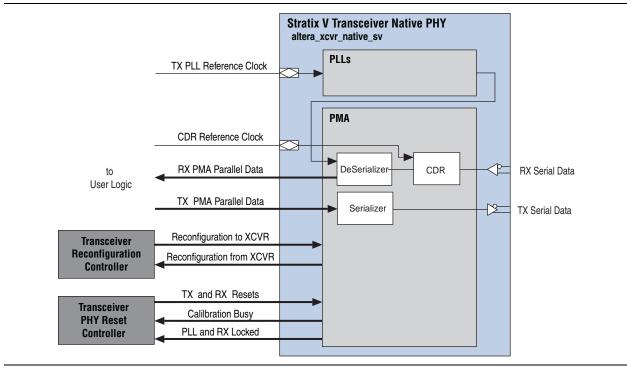
 Channels 0–2 in transceiver banks GXB_L0 and GSB_R0 of Arria V devices are not available for deterministic latency protocols. Figure 9–6 shows the placement of transceiver banks in Arria V devices and indicates the channels that are not available.

Figure 9–6. Channel Placement and Available Channels in Arria V Devices

Simulation Files and Example Testbench

Refer to "Running a Simulation Testbench" on page 1–4 for a description of the directories and files that the Quartus II software creates automatically when you generate your Deterministic Latency PHY IP Core.

This chapter provides additional information about the document and Altera.



The Stratix V Transceiver Native PHY IP Core provides direct access to all control and status signals of the transceiver channels. Unlike other PHY IP Cores, the Native PHY IP Core does not include an Avalon Memory-Mapped (Avalon-MM) interface. Instead, it exposes all signals directly as ports.

In the 12.0 release, the Stratix V Transceiver Native PHY IP Core only supports PMA Direct mode. You must implement any required PCS functions in the FPGA fabric. Because the Native PHY provides direct access to the PMA from the FPGA fabric, the latency for transmitted and received data is very low. The transceiver PHY does not include an embedded reset controller. You can either design custom reset logic or incorporate Altera's "Transceiver PHY Reset Controller IP Core" to implement reset functionality.

Figure 10–1 shows a typical use of the Stratix V Transceiver Native PHY IP Core. As this figure illustrates, TX PLL and CDR reference clocks from the pins of the device are input to the PLL module and CDR logic. The PMA deserializes the RX data and serializes TX data. In a typical design, the separately instantiated Transceiver PHY Reset Controller drives reset signals to Native PHY and receives calibration and locked status signal from the Native PHY. The Native PHY reconfiguration buses connect the external Transceiver Reconfiguration Controller for calibration and dynamic reconfiguration of the PLLs.

You specify the initial configuration when you parameterize the IP core. The Transceiver Native PHY IP Core connects to the "Transceiver Reconfiguration Controller" to dynamically change reference clocks and PLL connectivity at runtime.

Device Family Support

IP cores provide either final or preliminary support for target Altera device families. These terms have the following definitions:

- *Final support*—*V*erified with final timing models for this device.
- Preliminary support—Verified with preliminary timing models for this device.

Table 10–1 shows the level of support offered by the Stratix V Transceiver Native PHY IP Core for Altera device families.

Device Family	Support
Stratix V devices	Preliminary
Other device families	No support

Performance and Resource Utilization

Because the PMA is implemented in hard logic, the Stratix V Native PHY IP Core requires less than minimal resources.

Parameters

Table 10–2 lists the parameters available on the General Options tab.

Many parameters listed in Table 10–2 have ranges where the value is specified as Device Dependent. For such parameters, the possible range of frequencies and bandwidths depends on the device, speed grade, and other design characteristics. Refer to the *Stratix V Device Datasheet* for specific data for Stratix V devices.

Table 10-2. General Options (Part 1 of 4)

Name	Range	Description
Number of data channels	1-32	Specifies the total number of data channels in each direction. From 1–32 channels are supported.
Enable TX datapath	On/Off	When you turn this option On , the core includes the TX datapath.
Enable RX datapath	On/Off	When you turn this option On , the core includes the RX datapath.
Selected datapath	PMA Direct	The PMA Direct datapath is the only option available for the 12.0 release. This datapath does not include a PCS. The FPGA fabric connects directly to the PMA, reducing latency. Refer to "Latency for RX Deserialization in Stratix V Devices" on page 10–5 and "Latency for TX Serialization in Stratix Devices" on page 10–5 for latencies in Stratix V devices.

Table 10–2. General Options (Part 2 of 4)

Name	Range	Description
	Non-bonded ×6	In Non–bonded mode, each channel is paired with a PLL. During Quartus II compilation, the Fitter merges all PLLs that meet merging requirements into a single PLL.
Bonding mode		Select $\times 6$ to use the same clock source for up to 6 channels in a single transceiver bank, resulting in reduced clock skew. You must use contiguous channels when you select $\times 6$ bonding. In addition, you must place logical channel 0 in either physical channel 1 or 4. Physical channels 1 and 4 are indirect drivers of the $\times 6$ clock network.
	fb_compensation	Select fb_compensation (feedback compensation) to use the same clock source for multiple channels across different transceiver banks to reduce clock skew.
		For more information about bonding, refer to "Bonded Channel Configurations Using the PLL Feedback Compensation Path" in <i>Transceiver Clocking in Stratix V Devices</i> in volume 2 of the <i>Stratix V Device Handbook</i> .
		РМА
Data rate	Device Dependent	Specifies the data rate.
PMA interface width	8, 10, 16, 20, 32, 40, 64, 80	Specifies the width of the datapath that connects the FPGA fabric to the PMA. To simplify connectivity between the FPGA fabric and PMA, the bus bits used are not contiguous for 16-, 32-, and 64-bit buses. Refer to Table 10–5 on page 10–6for the bits used.
TX local clock division factor	1, 2, 4, 8	Specifies the value of the divider available in the transceiver channels to divide the input clock to generate the correct frequencies for the parallel and serial clocks.
TX PLL base data rate	Device Dependent	Specifies the base data rate for the clock input to the TX PLL. Select a base data rate that minimizes the number of PLLs required to generate all the clocks required for data transmission. By selecting an appropriate base data rate , you can change data rates by changing the divider used by the clock generation block.
		ТХ РМА
Enable TX PLL dynamic reconfiguration	On/Off	When you turn this option On , you can dynamically reconfigure the PLL to use a different reference clock input. This option is also required to simulate TX PLL reconfiguration. If you turn this option On , the Quartus II Fitter prevents merging by default; however, you can specify merging using the FORCE_MERGE_PLL QSF assignments.
Number of TX PLLs	1–4	Specifies the number of TX PLLs required. More than 1 PLL is typically required if your design reconfigures channels to run at multiple frequencies.
Main TX PLL logical index	0–3	Specifies the index of the TX PLL used in the initial configuration.
Number of TX PLL reference clocks	1–5	Specifies the total number of reference clocks that are shared by all of the PLLs.

Name	Range	Description			
	TX PLL <n></n>				
PLL type	CMU, ATX	You can select either the CMU or ATX PLL. the CMU PLL has a larger frequency range than the ATX PLL. The ATX PLL is designed to improve jitter performance and achieves lower channel-to-channel skew; however, it supports a narrower range of data rates and reference clock frequencies. Another advantage of the ATX PLL is that it does not use a transceiver channel, while the CMU PLL does.			
		Because the CMU PLL is more versatile, it is specified as the default setting. An error message displays in the message pane if the settings chosen for Data rate and Input clock frequency are not supported for selected PLL.			
		Specifies the base data rate a of the clock input to the TX PLL.The PLL base data rate is equal to the local clock division factor multiplied by the data rate.			
PLL base data rate	Device Dependent	Select a base data rate that minimizes the number of PLLs required to generate all the clocks required for data transmission. By selecting an appropriate base data rate , you can change data rates by changing the divider used by the clock generation block.			
		Specifies the frequency of the reference clock for the Selected reference clock source index you specify. You can define a single frequency for each PLL. You can use the Transceiver Reconfiguration Controller shown in "Stratix V Native Transceiver PHY IP Core" on page 10–1 to dynamically change the reference clock input to the PLL.			
Reference clock frequency	Device Dependent	Note that the list of frequencies updates dynamically when you change the TX PLL base data rate .			
		The Input clock frequency drop down menu is populated with all valid frequencies derived as a function of the data rate and base data rate. However, if fb_compensation is selected as the bonding mode then the input reference clock frequency is limited to the data rate divided by the PCS-PMA interface width.			
Selected reference clock source	0-4	You can define up to 5 frequencies for the PLLs in your core. The Reference clock frequency selected for index 0 , is assigned to TX PLL<0>. The Reference clock frequency selected for index 1 , is assigned to TX PLL<1>, and so on.			
		Specifies the index of the reference clock. Only 1 reference clock is possible in the current release.			
	RX PMA				
Enable CDR dynamic reconfiguration	On/Off	When you turn this option On , you can dynamically change the reference clock input the CDR circuit. This option is also required to simulate TX PLL reconfiguration.			
Number of CDR reference clocks	0–4	Specifies the number of reference clocks for the CDRs.			
Selected CDR reference clock	0–4	Specifies the index of the selected CDR reference clock.			
Selected CDR reference clock frequency	Device Dependent	Specifies the frequency of the clock input to the CDR.			

Table 10–2. General Options (Part 3 of 4)

Table 10–2. General Options (Part 4 of 4)

Name	Range	Description
PPM detector threshold	Device Dependent	Specifies the maximum PPM difference the CDR can tolerate between the input reference clock and the recovered clock.
Enable rx_pma_bitslip_port	On/Off	When you turn this option On , the rx_pma_bitslip is an input to the core. The deserializer slips one clock edge each time this signal is asserted. You can use this feature to minimize uncertainty in the serialization process as required by protocols that require a datapath with deterministic latency such as CPRI.
Enable rx_seriallpbken port	On/Off	When you turn this option On , the rx_seriallpbken is an input to the core. When your drive a 1 on this input port, the PMA operates in loopback mode with TX data looped back to the RX channel.

Table 10–3 lists the best case latency for the most significant bit of a word for the RX deserializer. For example, for an 8-bit interface width, the latencies in UI are 11 for bit 7, 12 for bit 6, 13 for bit 5, and so on.

Table 10-3. Latency for KX Deserialization in Stratix V Devices	Table 10-3.	Latency for RX Deserialization in Stratix V Devi	ces
---	-------------	--	-----

FPGA Fabric Interface Width	Stratix V L latency in UI
8 bits	11
10 bits	13
16 bits	19
20 bits	23
32 bits	35
40 bits	43
64 bits	99
80 bits	123

Table 10–4 lists the best- case latency for the LSB of the TX serializer for all supported interface widths.

Table 10–4. Latency for TX Serialization in Stratix Devices

FPGA Fabric Interface Width	Stratix V Latency in UI
8 bits	44
10 bits	54
16 bits	68
20 bits	84
32 bits	100
40 bits	124
64 bits	132
80 bits	164

Table 10–5 shows the bits used for all FPGA fabric to PMA interface widths. Regardless of the FPGA Fabric Interface Width selected, all 80 bits are exposed for the TX and RX parallel data ports. However, depending upon the interface width selected not all bits on the bus will be active. Table 10–5 shows which bits are active for each FPGA Fabric Interface Width selection. For example, if your interface is 16 bits, the active bits on the bus are [17:0] and [7:0] of the 80 bit bus. The non-active bits are tied to ground.

Table 10-5. Bus Bits Used

FPGA Fabric Interface Width	Bus Bits Used
8 bits	[7:0]
10 bits	[9:0]
16 bits	{[17:10], [7:0]}
20 bits	[19:0]
32 bits	{[37:30], [27:20], [17:10], [7:0]}
40 bits	[39:0]
64 bits	{[77:70], [67:60], [57:50], [47:40], [37:30], [27:20], [17:10], [7:0]}
80 bits	[79:0]

Analog Options

You specify the analog parameters for Stratix V devices using the Quartus II Assignment Editor, the Pin Planner, or through the Quartus II Settings File (**.qsf**). The default values for analog options fall into three categories:

- *Global* These parameters have default values that are independent of other parameter settings.
- *Computed*—These parameters have an initial default value that is recomputed based on other parameter settings.
- Proxy—These parameters have default values that are place holders. The Quartus II software selects these initial default values based on your design; however, Altera recommends that you replace these defaults with values that match your electrical board specification.

Table 10–6 lists the analog parameters for Stratix V devices whose original values are place holders for the values that match your electrical board specification. In Table 10–6, the default value of an analog parameter is shown in **bold** type. The parameters are listed in alphabetical order.

Table 10–6. Transceiver and PLL Assignments for Stratix V Devices

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_GT_IO_PIN_ TERMINATION	GT Transceiver I/O Pin Termination	Fine tunes the target 100-ohm on-chip termination for the specified transceiver pin. This parameter is only for GT transceivers.	0-15 12	Pin
XCVR_IO_PIN_TERMINATION	Transceiver I/O Pin Termination	Specifies the intended on-chip termination value for the specified transceiver pin. Use External Resistor if you intend to use off-chip termination.	85_0HMS 100_0HMS 120_0HMS 150_0HMS EXTERNAL_ RESISTOR	Pin
XCVR_REFCLK_PIN_ TERMINATION	Transceiver Dedicated Refclk Pin Termination	Specifies the intended termination value for the specified refclk pin.	DC_COUPLING_ INTERNAL_100 _OHM DC_COUPLING_ EXTERNAL_ RESISTOR AC_COUPLING	Pin
XCVR_RX_BYPASS_EQ_ STAGES_234	Receiver Equalizer Stage 2, 3, 4 Bypass	Bypass continuous time equalizer stages 2, 3, and 4 to save power. This setting eliminates significant AC gain on the equalizer and is appropriate for chip-to-chip short range communication on a PCB.	ALL_STAGES_ ENABLED BYPASS_ STAGES	Pin
XCVR_TX_SLEW_RATE_CTRL	Transmitter Slew Rate Control	Specifies the slew rate of the output signal. The valid values span from the slowest rate to fastest rate with 1 representing the slowest rate.	1–5	Pin
XCVR_VCCA_VOLTAGE	VCCA_GXB Voltage	Configure the VCCA_GXB voltage for a GXB I/O pin by specifying the intended VCCA_GXB voltage for a GXB I/O pin. If you do not make this assignment the compiler automatically sets the correct VCCA_GXB voltage depending on the configured data rate, as follows: Data rate <= 6.5 Gbps: 2_5V Data rate > 6.5 Gbps: 3_0V or 3_3V for Stratix V ES silicon	2_5V 3_0V	Pin
XCVR_VCCR_VCCT_VOLTAGE	VCCR_GXB VCCT_GXB Voltage	Refer to the <i>Device Datasheet for</i> <i>Stratix V Devices</i> for guidance on selecting a value.	0_85V 1_0V	Pin

Table 10–7 lists the analog parameters with *global* or *computed* default values. You may want to optimize some of these settings. In Table 10–7, the default value is shown in **bold** type. For computed analog parameters, the default value listed is for the initial setting, not the recomputed setting. The parameters are listed in alphabetical order.

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
	Analog Parameters with	Global Default Value		
CDR_BANDWIDTH_PRESET	CDR Bandwidth Preset	Specifies the CDR bandwidth preset setting.	Auto Low Medium High	PLL instance
PLL_BANDWIDTH_PRESET	PLL Bandwidth Preset	Specifies the PLL bandwidth preset setting	Auto Low Medium High	PLL instance
XCVR_GT_RX_DC_GAIN	Receiver Buffer DC Gain Control	Controls the RX buffer DC gain for GT channels.	0-19 8	Pin
XCVR_RX_DC_GAIN	Receiver Buffer DC Gain Control	Controls the RX buffer DC gain for GX channels.	0-4	Pin
XCVR_RX_LINEAR_EQUALIZER_ CONTROL	Receiver Linear Equalizer Control	Static control for the continuous time equalizer in the receiver buffer. The equalizer has 16 distinct settings from $0-15$ corresponding to the increasing AC gain.	1 –16	Pin
I	Analog Parameters with C	omputed Default Value		
XCVR_GT_TX_PRE_EMP_PRE_ TAP	Transmitter Pre-emphasis Pre-Tap	Specifies the pre-tap pre-emphasis setting. This parameter is only for GT transceivers.	0-31 0	Pin
XCVR_GT_TX_VOD_MAIN_TAP	Transmitter Differential Output Voltage for GT channels.	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength. This parameter is only for GT transceivers.	0-5 3	Pin
XCVR_GT_RX_COMMON_ MODE_VOLTAGE	GT receiver Buffer Common Mode Voltage	Receiver buffer common-mode voltage. This parameter is only for GT transceivers.	VTT_0P8V VTT_0P75V VTT_0P65V VTT_0P65V VTT_0P55V VTT_0P55V VTT_0P35V VTT_0P35V VTT_VCM0FF7 VTT_VCM0FF6 VTT_VCM0FF3 VTT_VCM0FF3 VTT_VCM0FF1 VTT_VCM0FF1 VTT_VCM0FF0	Pin

Table 10–7. Transceiver and PLL Assignments for Stratix V Devices (Part 1 of 5)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_GT_RX_CTLE	GT Receiver Linear Equalizer Control	Static control for the continuous time equalizer in the receiver buffer. The equalizer has 9 distinct settings from 0-8 corresponding to increasing AC gain. This parameter is only for GT transceivers.	0-8 0	Pin
XCVR_GT_TX_COMMON_MODE_ VOLTAGE	GT Transmitter Common Mode Driver Voltage	Transmitter common-mode driver voltage. This parameter is only for GT transceivers.	VOLT_0P80V VOLT_0P75V VOLT_0P65V VOLT_0P65V VOLT_0P60V VOLT_0P55V VOLT_0P55V VOLT_0P35V PULL_0P PULL_0N TRISTATED1 GROUNDED PULL_UP_TO_ VCCELA TRISTATED2 TRISTATED3 TRISTATED4	Pin
XCVR_GT_TX_PRE_EMP_1ST_ POST_TAP	GT Transmitter Preemphasis First Post-Tap	Specifies the first post-tap setting value. This parameter is only for GT transceivers.	0-31 5	Pin
XCVR_GT_TX_PRE_EMP_INV_ PRE_TAP	GT Transmitter Preemphasis Pre Tap Invert	Inverts the transmitter pre-emphasis pre-tap. This parameter is only for GT transceivers.	ON OFF	Pin
XCVR_GT_TX_PRE_EMP_PRE_ TAP	GT Transmitter Preemphasis Pre-Tap	Specifies the pre-tap pre-emphasis setting. This parameter is only for GT transceivers.	0-31 0	Pin

Table 10–7. Transceiver and PLL Assignments for Stratix V Devices (Part 2 of
--

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_GT_TX_VOD_MAIN_TAP	GT Transmitter Differential Output Voltage	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength.	0-5 3	Pin
XCVR_RX_COMMON_MODE_ VOLTAGE	Receiver Buffer Common Mode Voltage	Receiver buffer common-mode voltage.	VTT_0P80V VTT_0P75V VTT_0P65V VTT_0P60V VTT_0P55V VTT_0P55V VTT_0P55V VTT_0P35V VTT_PUP _WEAK VTT_PDN WEAK TRISTATE1 VTT_PDN_ STRONG VTT_PUP_ STRONG TRISTATE2 TRISTATE3 TRISTATE4	Pin
XCVR_RX_ENABLE_LINEAR_ EQUALIZER_PCIEMODE	Receiver Linear Equalizer Control (PCI Express)	If enabled equalizer gain control is driven by the PCS block for PCI Express. If disabled equalizer gain control is determined by the XCVR_RX_LINEAR_EQUALIZER_SETT ING assignment.	TRUE False	Pin
XCVR_RX_EQ_BW_SEL	Receiver Equalizer Gain Bandwidth Select	Sets the gain peaking frequency for the equalizer. For data-rates of less than 6.5Gbps set to HALF. For higher data- rates set to FULL.	full Half	Pin
XCVR_RX_SD_ENABLE	Receiver Signal Detection Unit Enable/Disable	Enables or disables the receiver signal detection unit.	TRUE False	Pin
XCVR_RX_SD_OFF	Receiver Cycle Count Before Signal Detect Block Declares Loss Of Signal	Number of parallel cycles to wait before the signal detect block declares loss of signal.	0–29	Pin
XCVR_RX_SD_ON	Receiver Cycle Count Before Signal Detect Block Declares Presence Of Signal	Number of parallel cycles to wait before the signal detect block declares presence of signal.	0 –16	Pin
XCVR_RX_SD_THRESHOLD	Receiver Signal Detection Voltage Threshold	Specifies signal detection voltage threshold level.	0 –7	Pin

Table 10–7. Transceiver and PLL Assignments for Stratix V Devices (Part 3 of 5)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_TX_COMMON_MODE_ VOLTAGE	Transmitter Common Mode Driver Voltage	Transmitter common-mode driver voltage	VOLT_OP80V VOLT_OP75V VOLT_OP75V VOLT_OP65V VOLT_OP60V VOLT_OP55V VOLT_OP55V VOLT_OP35V PULL_UP PULL_DOWN TRISTATED1 GROUNDED PULL_UP_TO VCCELA TRISTATED2 TRISTATED3 TRISTATED4	Pin
XCVR_TX_PRE_EMP_PRE_TAP_ USER	Transmitter Preemphasis Pre-Tap user	Specifies the TX pre-emphasis pretap setting value, including inversion.	0 –31	Pin
XCVR_TX_PRE_EMP_2ND_TAP_ USER	Transmitter Preemphasis Second Post-Tap user	Specifies the transmitter pre-emphasis second post-tap setting value, including inversion.	0 –31	Pin
XCVR_TX_PRE_EMP_1ST_POST_ TAP	Transmitter Preemphasis First Post-Tap	Specifies the first post-tap setting value.	0 –31	Pin
XCVR_TX_PRE_EMP_2ND_ POST_TAP	Transmitter Preemphasis Second Post-Tap	Specifies the second post-tap setting value.	0 –15	Pin
XCVR_TX_PRE_EMP_INV_ 2ND_TAP	Transmitter Preemphasis Second Tap Invert	Inverts the transmitter pre-emphasis 2nd post tap.	TRUE False	Pin
XCVR_TX_PRE_EMP_INV_ PRE_TAP	Transmitter Preemphasis Pre Tap Invert	Inverts the transmitter pre-emphasis pre-tap.	TRUE False	Pin
XCVR_TX_PRE_EMP_PRE_TAP	Transmitter Preemphasis Pre-Tap	Specifies the pre-tap pre-emphasis setting.	0 –15	Pin
XCVR_TX_RX_DET_ENABLE	Transmitter's Receiver Detect Block Enable	Enables or disables the receiver detector circuit at the transmitter.	TRUE False	Pin
XCVR_TX_RX_DET_MODE	Transmitter's Receiver Detect Block Mode	Sets the mode for receiver detect block	0 –15	Pin
XCVR_TX_RX_DET_OUTPUT_SEL	Transmitter's Receiver Detect Block QPI/PCI Express Control	Determines QPI or PCI Express mode for the Receiver Detect block.	RX_DET_QPI_ OUT RX_DET_PCIE_ OUT	Pin

Table 10–7. Transceiver and PLL Assignments for Stratix V Devices (Part 4 of 5)

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_TX_VOD	Transmitter Differential Output Voltage	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength.	0–63 50	Pin
XCVR_TX_VOD_PRE_EMP_ CTRL_SRC	Transmitter V _{0D} /Preemphasis Control Source	When set to DYNAMIC_CTL, the PCS block controls the V_{0D} and preemphasis coefficients for PCI Express. When this assignment is set to RAM_CTL the V_{0D} and preemphasis are controlled by other assignments, such as XCVR_TX_PRE_EMP_1ST_POST_TAP.	DYNAMIC_CTL Ram_Ctl	Pin

Table 10-7.	Transceiver and PLL	Assignments for Stratix V Devices	(Part 5 of 5)
		Accignmente foi ottatix i porioco	(1 41 (0 01 0)

- ⑦ For more information about the Pin Planner, refer to About the Pin Planner in Quartus II Help. For more information about the Assignment Editor, refer to About the Assignment Editor in Quartus II Help.
- For more information about Quartus II Settings, refer to Quartus II Settings File Manual.

You specify the analog parameters for Arria V devices using the Quartus II Assignment Editor, the Pin Planner, or through the Quartus II Settings File (**.qsf**). The default values for analog options fall into three categories:

- *Global* These parameters have default values that are independent of other parameter settings.
- *Computed*—These parameters have an initial default value that is recomputed based on other parameter settings.
- Proxy—These parameters have default values that are place holders. The Quartus II software selects these initial default values based on your design; however, Altera recommends that you replace these defaults with values that match your electrical board specification.

Table 10–6 lists the analog parameters for Arria V devices whose original values are place holders for the values that match your electrical board specification. In Table 10–6, the default value of an analog parameter is shown in **bold** type. The parameters are listed in alphabetical order.

Table 10–8. Transceiver and PLL Assignments for Arria V Devices

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_IO_PIN_TERMINATION	Transceiver I/O Pin Termination	Specifies the intended on-chip termination value for the specified transceiver pin. Use External Resistor if you intend to use off-chip termination.	85_OHMS 100_OHMS 120_OHMS 150_OHMS EXTERNAL_ RESISTOR	Pin
XCVR_REFCLK_PIN_ TERMINATION	Transceiver Dedicated Refclk Pin Termination	Specifies the intended termination value for the specified refclk pin.	DC_COUPLING_ INTERNAL_100 _OHMS DC_COUPLING_ EXTERNAL_ RESISTOR AC COUPLING	Pin
		Specifies the slew rate of the output signal. The following encodings are		
XCVR_TX_SLEW_RATE_CTRL	Transmitter Slew Rate Control	defined: 1: SLEW_160PS 2: SLEW_90PS 3: SLEW_50PS 4: SLEW_30PS 5: SLEW_15PS	1–5	Pin
XCVR_VCCA_VOLTAGE	VCCA_GXB Voltage	Configures the VCCA_GXB voltage for a GXB I/O pin by specifying the intended VCCA_GXB voltage for a GXB I/O pin. This voltage is fixed at 2_5V for all frequency ranges.	2_5V	Pin
XCVR_VCCR_VCCT_VOLTAGE	VCCR_GXB VCCT_GXB Voltage	Configures the VCCR_GXB and VCCT_GXB voltage for an GXB I/O pin by specifying the intended supply voltages for a GXB I/O pin. This voltage is fixed at 1_1V for all frequency ranges.	1_1V	Pin

Table 10–7 lists the analog parameters with *global* or *computed* default values. You may want to optimize some of these settings. In Table 10–7, the default value is shown in **bold** type. For computed analog parameters, the default value listed is for the initial setting, not the recomputed setting. The parameters are listed in alphabetical order.

Table 10–9. Tran	sceiver and PLL	Assignments for	Arria V Devices	(Part 1 of 2)
------------------	-----------------	------------------------	------------------------	---------------

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
	Analog Parameters with Global Default Value			
PLL_BANDWIDTH_PRESET	PLL Bandwidth Preset	Specifies the TX PLL and RX CDR bandwidth preset setting.	Auto Low Medium High	PLL instance
PLL_BANDWIDTH_PRESET	PLL Bandwidth Preset	Specifies the PLL bandwidth preset setting	Auto Low Medium High	PLL instance
XCVR_RX_DC_GAIN	Receiver Buffer DC Gain Control	Controls the amount of a stage receive-buffer DC gain.	0 –1	Pin
XCVR_RX_LINEAR_EQUALIZER_ CONTROL	Receiver Linear Equalizer Control	Static control for the continuous time equalizer in the receiver buffer. The equalizer has 3 settings from 0–2 corresponding to the increasing AC gain.	0, 1 , 2	Pin
Analog Parameters with Computed Default Value				
XCVR_RX_COMMON_MODE_ VOLTAGE	Receiver Buffer Common Mode Voltage	Receiver buffer common-mode voltage.	VTT_OP80V VTT_OP75V VTT_OP75V VTT_OP65V VTT_OP55V VTT_OP50V VTT_OP35V VTT_OP35V VTT_PUP _WEAK VTT_PDN WEAK TRISTATE1 VTT_PDN_ STRONG VTT_PUP_ STRONG TRISTATE2 TRISTATE3 TRISTATE4	Pin
XCVR_RX_SEL_HALF_BW	Receiver Equalizer Gain Bandwidth Select	Enables half bandwidth mode. For BW=3.25GHZ, select FULL_BW. For BW=1.5GHz, select HALF_BW.	full_bw half_bw	Pin
XCVR_RX_SD_ENABLE	Receiver Signal Detection Unit Enable/Disable	Enables or disables the receiver signal detection unit. During normal operation NORMAL_SD_ON=false, otherwise POWER_DOWN_SD=true.	TRUE False	Pin

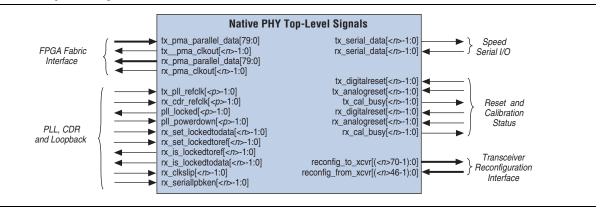
QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_RX_SD_THRESHOLD	Receiver Signal Detection Voltage Threshold	Specifies signal detection voltage threshold level. The following encodings are defined: SDLV_50MV=7 SDLV_45MV=6 SDLV_40MV=5 SDLV_35MV=4 SDLV_30MV=3 SDLV_25MV=2 SDLV_20MV=1 SDLV_15MV=0	0–7 3	Pin
XCVR_TX_COMMON_MODE_ VOLTAGE	Transmitter Common Mode Driver Voltage	Transmitter common-mode driver voltage	VOLT_0P80V VOLT_0P75V VOLT_0P70V VOLT_0P65V VOLT_0P60V VOLT_0P55V VOLT_0P55V VOLT_0P35V PULL_UP PULL_DOWN TRISTATED1 GROUNDED PULL_UP_TO VCCELA TRISTATED2 TRISTATED3 TRISTATED4	Pin
XCVR_TX_PRE_EMP_1ST_POST_ TAP	Transmitter Preemphasis First Post-Tap	Specifies the first post-tap setting value.	0 –31	Pin
XCVR_TX_VOD	Transmitter Differential Output Voltage	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength.	0 –63	Pin
XCVR_TX_VOD_PRE_EMP_ CTRL_SRC	Transmitter V _{OD} /Preemphasis Control Source	When set to DYNAMIC_CTL, the PCS block controls the V _{0D} and preemphasis are controlled by other assignments. such as XCVR_TX_PRE_EMP_1ST_POST_TAP.	DYNAMIC_CTL Ram_Ctl	Pin

Table 10–9. Transceiver and PLL Assignments for Arria V Devices (Part 2 of 2)

- For more information about the Pin Planner, refer to About the Pin Planner in Quartus II Help. For more information about the Assignment Editor, refer to About the Assignment Editor in Quartus II Help.
- For more information about Quartus II Settings, refer to *Quartus II Settings File Manual*.

Interfaces

This section describes interfaces of the Stratix V Native Transceiver PHY IP Core. It includes the following topics:


- Ports
- Dynamic Reconfiguration

Ports

Figure 10–2 illustrates the top-level signals of the Stratix V Native PHY IP Core. The variables in Figure 10–2 represent the following parameters:

- <*n>*—The number of lanes
- *-*The number of PLLs
- <r>—the number of CDR references clocks selected

Figure 10-2. Top-Level Signals of the Native PHY

FPGA Fabric Interface

Table 10–10 describes the signals that comprise the interface between the FPGA fabric and PMA.

Table 10-10.	FPGA Fabri	ic Interface
--------------	------------	--------------

Signal Name	Dir	Description
<pre>tx_parallel_data[79:0]</pre>	Input	Data for transmission from the FPGA fabric to the pins of the device. Data is continuously valid.
<pre>tx_pma_clkout[<n>-1:0]</n></pre>	Output	Output clock for TX data.
<pre>rx_parallel_data[<w><n>-1:0]</n></w></pre>	Output	Data driven to the FPGA fabric from the pins of the device. Data is continuously valid.
<pre>rx_pma_clkout[<n>-1:0]</n></pre>	Output	Output clock for RX data.

Table 10–11 describes PLL signals and signals that control the CDR function. In Table 10–11, <*r*> = the number of CDR references clocks selected.

Name	Dir	Description
<pre>tx_pll_refclk[-1:0]</pre>	Input	The reference clock input to the TX PLL.
<pre>rx_cdr_refclk[<r>-1:0]</r></pre>	Input	The reference clock input to the RX CDR.
<pre>pll_locked[<n>-1:0]</n></pre>	Output	When asserted, indicates that the PLL is locked to the input reference clock.
<pre>pll_powerdown[<n>-1:0]</n></pre>	Input	When asserted, resets the TX PLL.
<pre>rx_set_locktodata[<n>-1:0]</n></pre>	Input	When asserted, the RX CDR PLL locks to the incoming data, rx_serial_data. For more information, refer to "CDR Lock Mode" on page 10–18.
<pre>rx_set_locktoref[<n>-1:0]</n></pre>	Input	When asserted, the RX CDR PLL locks to the reference clock, rx_cdr_refclk. For more information, refer to "CDR Lock Mode" on page 10–18.
<pre>rx_is_lockedtoref[<n>-1:0]</n></pre>	Output	Asserted when the receiver CDR is locked to the input reference clock. This signal is asynchronous. This signal is optional.
<pre>rx_is_lockedtodata[<n>-1:0]</n></pre>	Output	When asserted, the CDR is locked to the incoming data.
rx_clkslip[<n>-1:0]</n>	Input	The deserializer slips one clock edge each time this signal is asserted.
<pre>rx_seriallpbken[<n>-1:0]</n></pre>	Input	When asserted, the transceiver enters loopback mode. Loopback drives TX data to the RX interface.

Serial Data Interface

Table 10–12 describes the signals in the serial data interface.

Table 10	-12.	Serial	Data	Interface
----------	------	--------	------	-----------

Signal Name	Dir	Description
<pre>rx_serial_data [<n>-1:0]</n></pre>	Input	Receiver differential serial input data.
<pre>tx_serial_data [<n>-1:0]</n></pre>	Output	Transmitter differential serial output data.

Reset and Calibration Status Interface

Table 10–13 describes the reset and calibration status and control signals.

Table 10-13.	Reset and	Calibration	Status
	mooot and	• an a lot	•••••••

Signal Name	Dir	Description
<pre>tx_analogreset[<n>-1:0]</n></pre>	Input	When asserted, resets all blocks in the TX PMA.
<pre>tx_digitalreset[<n>-1:0]</n></pre>	Input	This reset signal is not used for the PMA Direct datapath. It is included for compatibility with other component interfaces.
<pre>tx_cal_busy[<n>-1:0]</n></pre>	Output	When asserted, indicates that TX calibration is occurring. The Native PHY cannot exit the reset state until calibration completes.
<pre>rx_analogreset[<n>-1:0]</n></pre>	Input	When asserted, resets the RX CDR.

Signal Name	Dir	Description
<pre>rx_digitalreset[<n>-1:0]</n></pre>	Input	When asserted, resets PPM detector logic.
<pre>rx_cal_busy[<n>-1:0]</n></pre>	Output	When asserted, indicates that RX calibration is occurring. The Native PHY cannot exit the reset state until calibration completes.

Table 10–13. Reset and Calibration Status

CDR Lock Mode

The CDR can be put in either manual or automatic mode. In manual mode, the CDR is controlled manually to determine whether the CDR locks to the incoming data or to the CDR reference clock. The the pma_rx_set_locktodata and pma_rx_set_locktoref registers control the CDR mode. Table 10–14 shows the required settings to control the CDR mode.

rx_set_locktoref	rx_set_locktodata	CDR Lock Mode
1	0	Manual RX CDR locked to reference
Х	1	Manual RX CDR locked to data
0	0	Automatic RX CDR

Dynamic Reconfiguration

As silicon progresses towards smaller process nodes, circuit performance is affected more by variations due to process, voltage, and temperature (PVT). These process variations result in analog voltages that can be offset from required ranges. The calibration performed by the dynamic reconfiguration interface compensates for variations due to PVT.

For non-bonded clocks, each channel and each TX PLL has a separate dynamic reconfiguration interfaces. The MegaWizard Plug-In Manager provides informational messages on the connectivity of these interfaces. Example 10–1 shows the messages for the Stratix V Native PHY with four duplex channels, four TX PLLs, in a non-bonded configuration.

For more information about transceiver reconfiguration refer to Chapter 12, Transceiver Reconfiguration Controller.

Example 10-1. Informational Messages for the Transceiver Reconfiguration Interface

PHY IP will require 8 reconfiguration interfaces for connection to the external reconfiguration controller. Reconfiguration interface offsets 0-3 are connected to the transceiver channels. Reconfiguration interface offsets 4-7 are connected to the transmit PLLs. Table 10–15 describes the signals in the reconfiguration interface.

 Table 10–15.
 Reconfiguration Interface

Signal Name	Direction	Description
<pre>reconfig_to_xcvr [(<n>70-1):0]</n></pre>	Input	Reconfiguration signals from the Transceiver Reconfiguration Controller. <i><n></n></i> grows linearly with the number of reconfiguration interfaces.
<pre>reconfig_from_xcvr [(<n>46-1):0]</n></pre>	Output	Reconfiguration signals to the Transceiver Reconfiguration Controller. <i><n></n></i> grows linearly with the number of reconfiguration interfaces.

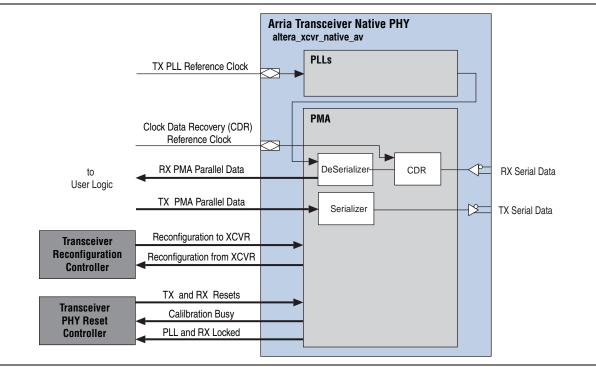
Transceiver dynamic reconfiguration requires that you assign the starting channel number. Logical channel 0 should be assigned to either physical transceiver channel 1 or channel 4 of a transceiver bank. However, if you have already created a PCB with a different lane assignment for logical lane 0, you can use the workaound shown in Example 10–2 to remove this restriction. Example 10–2 redefines the pma_bonding_master parameter using the Quartus II Assignment Editor. In this example, the pma_bonding_master was originally assigned to physical channel 1. (The original assignment could also have been to physical channel 4.) The to parameter reassigns the pma_bonding_master to the Deterministic Latency PHY instance name. You must substitute the instance name from your design for the instance name shown in quotation marks

Example 10–2. Overriding Logical Channel O Channel Assignment Restrictions in Stratix V Devices

set_parameter -name pma_bonding_master "\"1\"" -to "<PHY IP instance name>"

Simulation Support

The Quartus II 12.0 release provides simulation and compilation support for the Stratix V Native PHY IP Core. Refer to "Running a Simulation Testbench" on page 1–4 for a description of the directories and files that the Quartus II software creates automatically when you generate your Stratix V Transceiver Native PHY IP Core.



The Arria V Transceiver Native PHY IP Core provides direct access to all control and status signals of the transceiver channels. Unlike other PHY IP Cores, the Native PHY IP Core does not include an Avalon Memory-Mapped (Avalon-MM) interface. Instead, it exposes all signals directly as ports.

In the 12.0 release, the Arria V Transceiver Native PHY IP Core only supports PMA Direct mode. You must implement any required PCS functions in the FPGA fabric. Because the Native PHY provides direct access to the PMA from the FPGA fabric, the latency for transmitted and received data is very low. The transceiver PHY does not include an embedded reset controller. You can either design custom reset logic or incorporate Altera's "Transceiver PHY Reset Controller IP Core" to implement reset functionality. The Native Transceiver PHY's primary use in Arria V GT devices for data rates greater than 6.5536 Gbps.

Figure 11–1 shows a typical use of the Arria V Transceiver Native PHY IP Core. As this figure illustrates, TX PLL and CDR reference clocks from the pins of the device are input to the PLL module and CDR logic. The PMA deserializes the RX data and serializes TX data. In a typical design, the separately instantiated Transceiver PHY Reset Controller drives reset signals to Native PHY and receives calibration and locked status signal from the Native PHY. The Native PHY reconfiguration buses connect the external Transceiver Reconfiguration Controller for calibration and dynamic reconfiguration .

You specify the initial configuration when you parameterize the IP core. The Transceiver Native PHY IP Core connects to the "Transceiver Reconfiguration Controller" to dynamically change reference clocks and PLL connectivity at runtime.

Device Family Support

IP cores provide either final or preliminary support for target Altera device families. These terms have the following definitions:

- *Final support*—*V*erified with final timing models for this device.
- Preliminary support—Verified with preliminary timing models for this device.

Table 11–1 shows the level of support offered by the Arria V Transceiver Native PHY IP Core for Altera device families.

Table 11-1. Device Family Support

Device Family	Support
Arria V devices	Preliminary
Other device families	No support

Performance and Resource Utilization

Because the PMA is implemented in hard logic, the Arria V Native PHY IP Core requires less than minimal resources.

Parameters

Table 11–2 lists the parameters available on the **General Options** tab.

Many parameters listed in Table 11–2 have ranges where the value is specified as Device Dependent. For such parameters, the possible range of frequencies and bandwidths depends on the device, speed grade, and other design characteristics. Refer to *Device Datasheet for Arria V Devices* for specific data for Arria V devices.

 Table 11–2. General Options (Part 1 of 3)

Name	Range	Description
Number of data channels	1-32	Specifies the total number of data channels in each direction. From 1–32 channels are supported.
Enable TX datapath	On/Off	When you turn this option On , the core includes the TX datapath.
Enable RX datapath	On/Off	When you turn this option On , the core includes the RX datapath.
Selected datapath	PMA Direct	The PMA Direct datapath is the only option available for the 12.0 release. This datapath does not include a PCS. The FPGA fabric connects directly to the PMA, reducing latency. Refer to

Name	Range	Description		
Bonding mode	Non-bonded	In Non-bonded mode, each channel is paired with a PLL. During Quartus II compilation, the Fitter merges all PLLs that meet merging requirements into a single PLL.		
		РМА		
Data rate Device Dependent Specifies the data rate.		Specifies the data rate.		
PMA interface width	8, 10,16, 20, 80	Specifies the width of the datapath that connects the FPGA fabric to the PMA. To simplify connectivity between the FPGA fabric and PMA, the bus bits used are not contiguous for 16- and 32-bit buses. Refer to Table 11–5 on page 11–5for the bits used.		
TX local clock division factor	1, 2, 4, 8	Specifies the value of the divider available in the transceiver channels to divide the input clock to generate the correct frequencies for the parallel and serial clocks.		
TX PLL base data rate	Device Dependent	Specifies the base data rate for the clock input to the TX PLL. Select a base data rate that minimizes the number of PLLs required to generate all the clocks required for data transmission. By selecting an appropriate base data rate , you can change data rates by changing the divider used by the clock generation block.		
ТХРМА				
Number of TX PLLs	1	Specifies the number of TX PLLs required.		
Main TX PLL logical index	0	Specifies the index of the TX PLL used in the initial configuration.		
Number of TX PLL reference clocks	1	1 Specifies the total number of reference clocks that are shared all of the PLLs.		
	•	TX PLL <n></n>		
PLL type	СМИ	The CMU PLL is available for Arria V devices.		
	Device Dependent	Specifies the base data rate a of the clock input to the TX PLL.The PLL base data rate is equal to the local clock division factor multiplied by the data rate.		
PLL base data rate		Select a base data rate that minimizes the number of PLLs required to generate all the clocks required for data transmission. By selecting an appropriate base data rate , you can change data rates by changing the divider used by the clock generation block.		
		Specifies the frequency of the reference clock for the Selected reference clock source index you specify. You can define a single frequency for each PLL.		
Reference clock frequency	Device Dependent	Note that the list of frequencies updates dynamically when you change the TX PLL base data rate .		
		The Input clock frequency drop down menu is populated with all valid frequencies derived as a function of the data rate and base data rate. However, if fb_compensation is selected as the bonding mode then the input reference clock frequency is limited to the data rate divided by the PCS-PMA interface width.		

Name	Range	Description	
Selected reference clock source	:0	Specifies the index of the reference clock. Only 1 reference clock is possible in the current release.	
		RX PMA	
Number of CDR reference clocks	0	Specifies the number of reference clocks for the CDRs.	
Selected CDR reference clock	0	Specifies the index of the selected CDR reference clock.	
Selected CDR reference clock frequency	Device Dependent	Specifies the frequency of the clock input to the CDR.	
PPM detector threshold	Device Dependent	Specifies the maximum PPM difference the CDR can tolerate between the input reference clock and the recovered clock.	
Enable rx_pma_bitslip_port	On/Off	When you turn this option On , the rx_pma_bitslip is an input to the core. The deserializer slips one clock edge each time this signal is asserted. You can use this feature to minimize uncertainty in the serialization process as required by protocol that require a datapath with deterministic latency such as CPR	
Enable rx_seriallpbken port	On/Off	When you turn this option \mathbf{On} , the rx_seriallpbken is an input to the core. When your drive a 1 on this input port, the PMA operates in loopback mode with TX data looped back to the RX channel.	

Table 11-2. General Options (Part 3 of 3)

Table 11–3 lists the best case latency for the most significant bit of a word for the RX deserializer. For example, for an 8-bit interface width, the latencies in UI are 11 for bit 7, 12 for bit 6, 13 for bit 5, and so on.

Table 11–3. Latency for RX Deserialization in Arria Devices

FPGA Fabric Interface Width	Arria V Latency in UI
8 bits	19
10 bits	23
16 bits	35
20 bits	43
80 bits	123

Table 10–5 lists the best- case latency for the LSB of the TX serializer for all supported interface widths.

Table 11–4. Latency for TX Serialization n Arria Devices	Table 11-4.	or TX Serialization n Arria Devices
--	-------------	-------------------------------------

FPGA Fabric Interface Width	Arria V Latency in UI
8 bits	43
10 bits	53
16 bits	67
20 bits	83
80 bits	163

Table 11–5 shows the bits used for all FPGA fabric to PMA interface widths. Regardless of the FPGA Fabric Interface Width selected, all 80 bits are exposed for the TX and RX parallel data ports. However, depending upon the interface width selected not all bits on the bus will be active. Table 11–5 shows which bits are active for each FPGA Fabric Interface Width selection. For example, if your interface is 16 bits, the active bits on the bus are [17:0] and [7:0] of the 80 bit bus. The non-active bits are tied to ground.

Table 11-5. Bus Bits Used

FPGA Fabric Interface Width	Bus Bits Used
8 bits	[7:0]
10 bits	[9:0]
16 bits	{[17:10], [7:0]}
20 bits	[19:0]
80 bits	[79:0]

Analog Options

You specify the analog parameters for Arria V devices using the Quartus II Assignment Editor, the Pin Planner, or through the Quartus II Settings File (**.qsf**). The default values for analog options fall into three categories:

- *Global* These parameters have default values that are independent of other parameter settings.
- *Computed*—These parameters have an initial default value that is recomputed based on other parameter settings.
- Proxy—These parameters have default values that are place holders. The Quartus II software selects these initial default values based on your design; however, Altera recommends that you replace these defaults with values that match your electrical board specification.

Table 11–6 lists the analog parameters for Arria V devices whose original values are place holders for the values that match your electrical board specification. In Table 11–6, the default value of an analog parameter is shown in **bold** type. The parameters are listed in alphabetical order.

Table 11–6. Transceiver and PLL Assignments for Arria V Devices

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_IO_PIN_TERMINATION	Transceiver I/O Pin Termination	Specifies the intended on-chip termination value for the specified transceiver pin. Use External Resistor if you intend to use off-chip termination.	85_OHMS 100_OHMS 120_OHMS 150_OHMS EXTERNAL_ RESISTOR	Pin
XCVR_REFCLK_PIN_ TERMINATION	Transceiver Dedicated Refclk Pin Termination	Specifies the intended termination value for the specified refclk pin.	DC_COUPLING_ INTERNAL_100 _OHMS DC_COUPLING_ EXTERNAL_ RESISTOR	Pin
		Specifies the slew rate of the output	AC_COUPLING	
XCVR_TX_SLEW_RATE_CTRL	Transmitter Slew Rate Control	signal. The following encodings are defined: 1: SLEW_160PS 2: SLEW_90PS 3: SLEW_50PS 4: SLEW_30PS 5: SLEW_15PS	1–5	Pin
XCVR_VCCA_VOLTAGE	VCCA_GXB Voltage	Configures the VCCA_GXB voltage for a GXB I/O pin by specifying the intended VCCA_GXB voltage for a GXB I/O pin. This voltage is fixed at 2_5V for all frequency ranges.	2_5V	Pin
XCVR_VCCR_VCCT_VOLTAGE	VCCR_GXB VCCT_GXB Voltage	Configures the VCCR_GXB and VCCT_GXB voltage for an GXB I/O pin by specifying the intended supply voltages for a GXB I/O pin. This voltage is fixed at 1_1V for all frequency ranges.	1_1V	Pin

Table 11–7 lists the analog parameters with *global* or *computed* default values. You may want to optimize some of these settings. In Table 11–7, the default value is shown in **bold** type. For computed analog parameters, the default value listed is for the initial setting, not the recomputed setting. The parameters are listed in alphabetical order.

QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
	Analog Parameters with	Global Default Value		
PLL_BANDWIDTH_PRESET	PLL Bandwidth Preset	Specifies the TX PLL and RX CDR bandwidth preset setting.	Auto Low Medium High	PLL instance
PLL_BANDWIDTH_PRESET	PLL Bandwidth Preset	Specifies the PLL bandwidth preset setting	Auto Low Medium High	PLL instance
XCVR_RX_DC_GAIN	Receiver Buffer DC Gain Control	Controls the amount of a stage receive-buffer DC gain.	0 –1	Pin
XCVR_RX_LINEAR_EQUALIZER_ CONTROL	Receiver Linear Equalizer Control	Static control for the continuous time equalizer in the receiver buffer. The equalizer has 3 settings from 0–2 corresponding to the increasing AC gain.	0, 1 , 2	Pin
Analog Parameters with Computed Default Value				
XCVR_RX_COMMON_MODE_ VOLTAGE	Receiver Buffer Common Mode Voltage	Receiver buffer common-mode voltage.	VTT_0P80V VTT_0P75V VTT_0P65V VTT_0P65V VTT_0P55V VTT_0P50V VTT_0P50V VTT_0P35V VTT_PUP _WEAK VTT_PDN WEAK TRISTATE1 VTT_PDN_ STRONG VTT_PUP_ STRONG TRISTATE2 TRISTATE3 TRISTATE4	Pin
XCVR_RX_SEL_HALF_BW	Receiver Equalizer Gain Bandwidth Select	Enables half bandwidth mode. For BW=3.25GHZ, select FULL_BW. For BW=1.5GHz, select HALF_BW.	FULL_BW HALF_BW	Pin
XCVR_RX_SD_ENABLE	Receiver Signal Detection Unit Enable/Disable	Enables or disables the receiver signal detection unit. During normal operation NORMAL_SD_ON=false, otherwise POWER_DOWN_SD=true.	TRUE False	Pin

Table 11–7. Transceiver and PLL Assignments for Arria V Devices (Part 1 of 2)

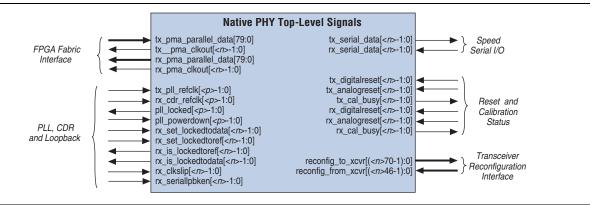
QSF Assignment Name	Pin Planner and Assignment Editor Name	Description	Options	Assign To
XCVR_RX_SD_THRESHOLD	Receiver Signal Detection Voltage Threshold	Specifies signal detection voltage threshold level. The following encodings are defined: SDLV_50MV=7 SDLV_45MV=6 SDLV_40MV=5 SDLV_35MV=4 SDLV_30MV=3 SDLV_25MV=2 SDLV_20MV=1 SDLV_15MV=0	0–7 3	Pin
XCVR_TX_COMMON_MODE_ VOLTAGE	Transmitter Common Mode Driver Voltage	Transmitter common-mode driver voltage	VOLT_0P80V VOLT_0P75V VOLT_0P70V VOLT_0P65V VOLT_0P60V VOLT_0P55V VOLT_0P55V VOLT_0P35V PULL_UP PULL_DOWN TRISTATED1 GROUNDED PULL_UP_TO VCCELA TRISTATED2 TRISTATED3 TRISTATED4	Pin
XCVR_TX_PRE_EMP_1ST_POST_ TAP	Transmitter Preemphasis First Post-Tap	Specifies the first post-tap setting value.	0 –31	Pin
XCVR_TX_VOD	Transmitter Differential Output Voltage	Differential output voltage setting. The values are monotonically increasing with the driver main tap current strength.	0 –63	Pin
XCVR_TX_VOD_PRE_EMP_ CTRL_SRC	Transmitter V _{oD} /Preemphasis Control Source	When set to DYNAMIC_CTL, the PCS block controls the V _{OD} and preemphasis are controlled by other assignments. such as XCVR_TX_PRE_EMP_1ST_POST_TAP.	DYNAMIC_CTL Ram_Ctl	Pin

Table 11–7. Transceiver and PLL Assignments for Arria V Devices (Part 2 of 2)

- ⑦ For more information about the Pin Planner, refer to About the Pin Planner in Quartus II Help. For more information about the Assignment Editor, refer to About the Assignment Editor in Quartus II Help.
- **For more information about Quartus II Settings, refer to** *Quartus II Settings File Manual*.

Interfaces

This section describes interfaces of the Arria V Native Transceiver PHY IP Core. It includes the following topics:


- Ports
- Dynamic Reconfiguration

Ports

Figure 11–2 illustrates the top-level signals of the Arria V Native PHY IP Core. The variables in Figure 11–2 represent the following parameters:

- <*n>*—The number of lanes
- *-*The number of PLLs
- <r>—the number of CDR references clocks selected

Figure 11–2. Top-Level Signals of the Native PHY

FPGA Fabric Interface

Table 11–8 describes the signals that comprise the interface between the FPGA fabric and PMA.

Signal Name	Dir	Description
<pre>tx_parallel_data[79:0]</pre>	Input	Data for transmission from the FPGA fabric to the pins of the device. Data is continuously valid.
<pre>tx_pma_clkout[<n>-1:0]</n></pre>	Output	Output clock for TX data.
<pre>rx_parallel_data[<w><n>-1:0]</n></w></pre>	Output	Data driven to the FPGA fabric from the pins of the device. Data is continuously valid.
<pre>rx_pma_clkout[<n>-1:0]</n></pre>	Output	Output clock for RX data.

PLL and CDR Interface

Table 11–9 describes PLL signals and signals that control the CDR function. In Table 11–9, <r> = the number of CDR references clocks selected.

Table 11-9. Clock Signals

Name	Dir	Description
<pre>tx_pll_refclk[-1:0]</pre>	Input	The reference clock input to the TX PLL.
<pre>rx_cdr_refclk[<r>-1:0]</r></pre>	Input	The reference clock input to the RX CDR.
<pre>pll_locked[<n>-1:0]</n></pre>	Output	When asserted, indicates that the PLL is locked to the input reference clock.
pll_powerdown[<n>-1:0]</n>	Input	When asserted, resets the TX PLL.
<pre>rx_set_locktodata[<n>-1:0]</n></pre>	Input	When asserted, the RX CDR PLL locks to the incoming data, rx_serial_data. For more information, refer to "CDR Lock Mode" on page 11-11.
<pre>rx_set_locktoref[<n>-1:0]</n></pre>	Input	When asserted, the RX CDR PLL locks to the reference clock, rx_cdr_refclk. For more information, refer to "CDR Lock Mode" on page 11–11.
<pre>rx_is_lockedtoref[<n>-1:0]</n></pre>	Output	Asserted when the receiver CDR is locked to the input reference clock. This signal is asynchronous. This signal is optional.
<pre>rx_is_lockedtodata[<n>-1:0]</n></pre>	Output	When asserted, the CDR is locked to the incoming data.
<pre>rx_clkslip[<n>-1:0]</n></pre>	Input	The deserializer slips one clock edge each time this signal is asserted.
<pre>rx_seriallpbken[<n>-1:0]</n></pre>	Input	When asserted, the transceiver enters loopback mode. Loopback drives TX data to the RX interface.

Serial Data Interface

Table 11–10 describes the signals in the serial data interface.

Table 11–10. Serial Data Interface

Signal Name	Dir Description	
<pre>rx_serial_data [<n>-1:0]</n></pre>	Input	Receiver differential serial input data.
<pre>tx_serial_data [<n>-1:0]</n></pre>	Output	Transmitter differential serial output data.

Reset and Calibration Status Interface

Table 11–11 describes the reset and calibration status and control signals.

Table 11-11.	Reset and	Calibration	Status
	nooot ana	Janwallon	otatao

Signal Name	Dir	Description	
<pre>tx_analogreset[<n>-1:0]</n></pre>	Input	When asserted, resets all blocks in the TX PMA.	
<pre>tx_digitalreset[<n>-1:0]</n></pre>	Input	This reset signal is not used for the PMA Direct datapath. It is included for compatibility with other component interfaces.	
<pre>tx_cal_busy[<n>-1:0]</n></pre>	Output	When asserted, indicates that TX calibration is occurring. The Native PHY cannot exit the reset state until calibration completes.	
<pre>rx_analogreset[<n>-1:0]</n></pre>	Input	When asserted, resets the RX CDR.	

Signal Name	Dir	Description
<pre>rx_digitalreset[<n>-1:0]</n></pre>	Input	This reset signal is not used for the PMA Direct datapath. It is included for compatibility with other component interfaces.
<pre>rx_cal_busy[<n>-1:0]</n></pre>	Output	When asserted, indicates that RX calibration is occurring. The Native PHY cannot exit the reset state until calibration completes.

CDR Lock Mode

The CDR can be put in either manual or automatic mode. In manual mode, the CDR is controlled manually to determine whether the CDR locks to the incoming data or to the CDR reference clock. The the pma_rx_set_locktodata and pma_rx_set_locktoref registers control the CDR mode. Table 11–12 shows the required settings to control the CDR mode.

Table 11–12. Reset Mode

rx_set_locktoref	rx_set_locktodata	CDR Lock Mode
1	0	Manual RX CDR locked to reference
Х	1	Manual RX CDR locked to data
0	0	Automatic RX CDR

Dynamic Reconfiguration

As silicon progresses towards smaller process nodes, circuit performance is affected more by variations due to process, voltage, and temperature (PVT). These process variations result in analog voltages that can be offset from required ranges. The calibration performed by the dynamic reconfiguration interface compensates for variations due to PVT.

For non-bonded clocks, each channel and each TX PLL has a separate dynamic reconfiguration interfaces. The MegaWizard Plug-In Manager provides informational messages on the connectivity of these interfaces. Example 10–1 shows the messages for the Arria V Native PHY with four duplex channels, four TX PLLs, in a non-bonded configuration.

For more information about transceiver reconfiguration refer to Chapter 12, Transceiver Reconfiguration Controller.

Table 11–13 describes the signals in the reconfiguration interface.

Signal Name Direction		Description	
<pre>reconfig_to_xcvr [(<n>70-1):0]</n></pre>	Input	Reconfiguration signals from the Transceiver Reconfiguration Controller. <i><n></n></i> grows linearly with the number of reconfiguration interfaces.	
<pre>reconfig_from_xcvr [(<n>46-1):0]</n></pre>	Output	Reconfiguration signals to the Transceiver Reconfiguration Controller. <i><n></n></i> grows linearly with the number of reconfiguration interfaces.	

Table 11–13. Reconfiguration Interface

Simulation Support

The Quartus II 12.0 release provides simulation and compilation support for the Arria V Native PHY IP Core. Refer to "Running a Simulation Testbench" on page 1–4 for a description of the directories and files that the Quartus II software creates automatically when you generate your Arria V Transceiver Native PHY IP Core.

12. Transceiver Reconfiguration Controller

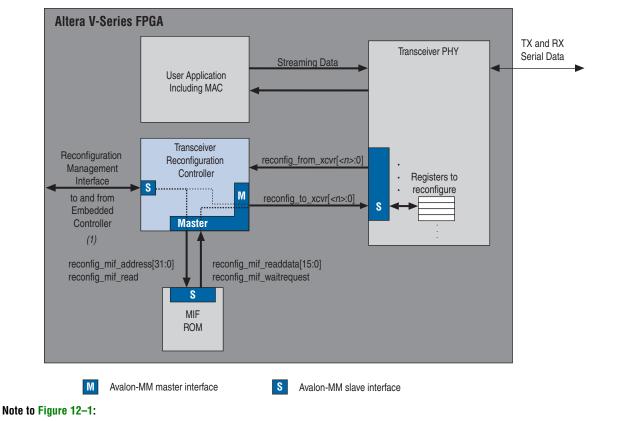
The Altera Transceiver Reconfiguration Controller dynamically reconfigures analog settings in Arria V, Cyclone V, and Stratix V devices. Reconfiguration allows you to compensate for variations due to process, voltage, and temperature (PVT) in 28-nm devices. It is required for Arria V, Cyclone V, and Stratix V devices that include transceivers. The reconfiguration functionality available in Arria V and Cyclone V devices is a subset of the functionality available for Stratix V devices. Table 12–1 summarizes the features available for all 28-nm devices.

Some of the reconfiguration features not available for Arria V and Cyclone V devices in the current release, may be available in subsequent releases.

Area	Feature	Stratix V	Arria V	Cyclone V	
	Offset cancellation	\checkmark	\checkmark	\checkmark	
Calibration Functions	Duty cycle distortion calibration	~	\checkmark	—	
	ATX PLL calibration	~		_	
	On-chip signal quality monitoring	~		_	
Analog Features	Decision feedback equalization (DFE)	~		—	
	Adaptive equalization	~		_	
Leenheel medee	Pre-CDR reverse serial loopback	~	\checkmark	\checkmark	
Loopback modes	Post-CDR reverse serial loopback	~	\checkmark	\checkmark	
	Reference clock switching (CDR and TX PLLs)	~		_	
PLL reconfiguration	TX PLL connected to a transceiver channel reconfiguration	~	\checkmark	_	
	RX CDR reconfiguration	~	\checkmark	_	
	Reconfiguration of PCS blocks	\checkmark	\checkmark	—	
Transceiver Channel/PLL	TX PLL switching	~	\checkmark	_	
Reconfiguration TX local clock divider reconfiguration (1,2,4		\checkmark	\checkmark	—	
	RPGA fabric-transceiver channel data width reconfiguration	~	\checkmark		

Table 12–1. Device Support for Dynamic Reconfiguration

For more information about the features that are available for each device refer to the following device documentation: *Dynamic Reconfiguration in Stratix V Devices*, *Dynamic Reconfiguration in Arria V Devices*, and *Dynamic Reconfiguration in Cyclone V Devices*. These chapters are included in the Stratix V, Arria V, and Cyclone V device handbooks, respectively.


This user guide describes the features of the Transceiver Reconfiguration Controller. It also includes descriptions of the accessible transceiver registers, information about the MIF file format, and examples demonstrating the update procedures. It includes the following sections:

- "System Overview" on page 12–3
- "Device Family Support" on page 12–4
- "Performance and Resource Utilization" on page 12–5
- "Parameter Settings" on page 12–6
- "Interfaces" on page 12–7
- "Reconfiguration Controller Memory Map" on page 12–10
- "PMA Analog Controls" on page 12–12
- "EyeQ" on page 12–13
- "DFE" on page 12–15
- "AEQ" on page 12–17
- "ATX PLL Calibration" on page 12–19
- "PLL Reconfiguration" on page 12–19
- "The Quartus II software supports reference clock switching and PLL switching for CMU PLLs in the 12.0 release." on page 12–22
- "Streamer Module" on page 12–23
- "" on page 12–29
- "Understanding Logical Channel Numbering" on page 12–34
- "Reconfiguration Controller to PHY IP Connectivity" on page 12–40
- "Merging TX PLLs In Multiple Transceiver PHY Instances" on page 12–41
- "Loopback Modes" on page 12–42

System Overview

Figure 12–1 illustrates the Transceiver Reconfiguration Controller's role.

Figure 12–1. Transceiver Reconfiguration Controller

(1) You can locate the embedded controller on-chip or on the PCB.

As Figure 12–1 illustrates, an embedded controller programs the Transceiver Reconfiguration Controller using its Avalon-MM slave interface. The reconfig_to_xcvr and reconfig_from_xcvr buses include the Avalon-MM address, read, write, readdata, writedata, and signals that connect to features related to calibration and signal integrity.

The Transceiver Reconfiguration Controller provides two modes to dynamically reconfigure transceiver settings:

Register Based—In this access mode you can directly reconfigure a transceiver PHY IP core using the Transceiver Reconfiguration Controller's reconfiguration management interface. You initiate reconfiguration using a series of Avalon-MM reads and writes to the appropriate registers of the Transceiver Reconfiguration Controller. The Transceiver Reconfiguration Controller translates the device independent commands received on the reconfiguration management interface to device dependent commands on the transceiver reconfiguration interface. For more information, refer to "The Quartus II software supports reference clock switching and PLL switching for CMU PLLs in the 12.0 release." on page 12–22.

- For more information about Avalon-MM interfaces including timing diagrams, refer to the *Avalon Interface Specifications*.
- Streamer Based —This access mode allows you to either stream a MIF that contains the reconfiguration data or perform direct writes to perform reconfiguration. The streaming mode uses a memory initialization file (.mif) to stream an update to the transceiver PHY IP core. The .mif file can contain changes for many settings. For example, a single .mif file might contain changes to the PCS datapath settings, clock settings, and PLL parameters. You specify the .mif using write commands on the Avalon-MM PHY management interface. After the streaming operation is specified, the update proceeds in a single step. For more information, refer to "Streamer-Based Reconfiguration" on page 12–31. In the direct write mode, you perform Avalon-MM reads and writes to initiate a reconfiguration of the PHY IP. For more information, refer to "Direct Write Reconfiguration" on page 12–32.

Table 12–2 shows the features that you can reconfigure or control using register-based and MIF-based access modes for Stratix V devices. Arria V and Cyclone V devices support register-based mode..

Feature	Register-Based	Streamer-Based	
PMA settings, including V _{OD} , pre-emphasis, RX equalization DC gain, RX equalization control	~	~	
Pre-CDR and post-CDR loopback modes	\checkmark	—	
AEQ mode	\checkmark	—	
Eye Monitor	\checkmark	—	
ATX Tuning	\checkmark	—	
Reference clock	—	\checkmark	
TX PLL clock switching	\checkmark	\checkmark	
Channel interface	—	\checkmark	
Channel internals	—	\checkmark	

Table 12–2. Reconfiguration Feature Access Modes

Device Family Support

IP cores provide either final or preliminary support for target Altera device families. These terms have the following definitions:

- *Final support*—*V*erified with final timing models for this device.
- Preliminary support—Verified with preliminary timing models for this device.

Table 12–3 lists the level of support offered by the Transceiver Reconfiguration Controller for Altera device families.

Table 12–3. Device Family Support

Device Family	Support
Arria V devices	Preliminary
Cyclone V devices	Preliminary
Stratix V devices	Preliminary
Other device families	No support

Performance and Resource Utilization

Table 12–4 shows the approximate device resource utilization for a the Transceiver Reconfiguration Controller for Stratix V devices. The numbers of combinational ALUTs and logic registers are rounded to the nearest 50. Table 12–4 also shows the time required for calibration and AEQ functions.

To close timing, you may need to instantiate multiple instances of the Transceiver Reconfiguration Controller IP Core to reduce routing delays.

Table 12–4. Resource Utilization for Stratix V Devices	\$
--	----

Component	ALUTS	Registers	Memory Blocks	M20Ks	Run Time			
Transceiver Calibration Functions								
Offset Cancellation 500 400 0 0 100 µs/channel								
Duty cycle calibration	350	400	0	0	70 µs/channel			
ATX PLL calibration	650	450	0	4	60 µs/channel			
	Analog Features							
EyeQ	300	200	0	0	—			
AEQ	700	500	0	0	40 µs/channel			
Reconfiguration Features								
Channel and PLL reconfiguration	400	500	0	0	(1)			
PLL reconfiguration (only)	250	350	0	0	(1)			

Note to Table 12-4:

(1) The time to complete these functions depends upon the complexity of the reconfiguration operation.

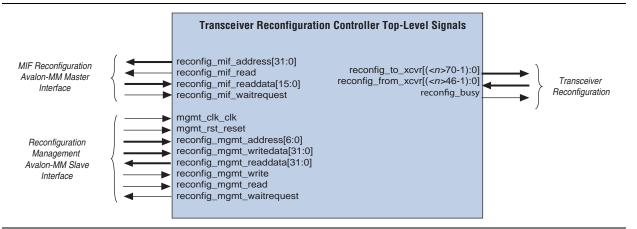
Parameter Settings

The Transceiver Reconfiguration Controller is available in the MegaWizard Plug-In Manager and Qsys design flows. To configure the Transceiver Reconfiguration Controller IP Core in the MegaWizard Plug-In Manager design flow, click Installed Plug-Ins > Interfaces > Transceiver PHY > Transceiver Reconfiguration Controller v12.0. To configure the Transceiver Reconfiguration Controller in Qsys, in the Component Library, type Transc in the Search Box. Qsys filters all available components for this text string and displays the Transceiver Reconfiguration Controller which is in the Interface Protocols >Transceiver PHY category.

Table 12–5 lists the available options.

Name	Value	Description			
Device family	Arria V Cyclone V Stratix VSpecifies the device family. The reconfiguration functions for Arria V and Cyclone V devices are a subset of those a for Stratix V devices. Refer to Table 12–1 on page 12–1 information about available functions.				
Interface Bundles					
Number of reconfiguration	<if></if>	Specifies the total number of reconfiguration interfaces that connect to the Transceiver Reconfiguration Controller. There is one interface for each channel and TX PLL.			
		When you specify the parameters for a transceiver PHY, the message window displays the number of interfaces required.			
Optional interface grouping	<grp<sub>1>,<grp<sub>2>, <grp<sub>3></grp<sub></grp<sub></grp<sub>	Specifies the grouping of reconfiguration interfaces as a comma-separated list with each integer indicating the total number of reconfiguration interfaces that are connected to a transceiver PHY instance. Leave this entry blank if all reconfiguration interfaces connect to the same transceiver PHY instance.			
		Refer to "Understanding Logical Channel Numbering" on page 12–34 for more information about grouping interfaces.			
Transceiver Calibration Functions					
Enable offset cancellation	On	When enabled, the Transceiver Reconfiguration Controller includes the offset cancellation functionality. This option is always on. Offset cancellation occurs automatically at power-up and runs only once.			
Enable duty cycle calibration	On/Off	When enabled, this circuitry improves the duty cycle of the transceiver PHY IP core transmitters.			
Enable auxiliary transmit (ATX) PLL calibration	On/Off	When enabled, an algorithm that improves the signal integrity of the ATX PLL is included in the Transceiver Reconfiguration Controller IP Core. This feature is only available for Stratix V devices.			
	An	alog Features			
Enable Analog controls	On/Off	When enabled, TX and RX signal conditioning features are enabled.			
Enable EyeQ block	On/Off	When enabled, you can use the EyeQ, the on-chip signal quality monitoring circuitry, to estimate the actual eye opening at the receiver. This feature is only available for Stratix V devices.			

 Table 12–5.
 General Options (Part 1 of 2)


Table 12-5. General Options (Part 2 of 2)

Name	Value	Description		
Enable adaptive equalization (AEQ) block On/Off		When enabled, the Transceiver Reconfiguration Controller includes logic to perform AEQ. This feature is only available for Stratix V devices.		
	Reconfiguration Features			
Enable channel/PLL reconfiguration	On/Off	When enabled, the Transceiver Reconfiguration Controller includes logic to include both channel and PLL reconfiguration.		
Enable PLL reconfiguration support block	On/Off	When enabled, the Transceiver Reconfiguration Controller includes logic to perform PLL reconfiguration.		

Interfaces

This section describes interfaces for the Transceiver Reconfiguration Controller. Figure 12–2 illustrates the top-level signals of the Transceiver Reconfiguration Controller.

By default, the **Block Diagram** shown in the MegaWizard Plug-In Manager labels the external pins with the *interface type* and places the *interface name* inside the box. The interface type and name are used in the Hardware Component Description File (_hw.tcl). If you click **Show signals**, the block diagram expands to show all of the signals of the component given the options currently selected in the MegaWizard Plug-In Manager.

For more information about _hw.tcl files refer to the *Component Interface Tcl Reference* in volume 1 of the *Quartus II Handbook*.

MIF Reconfiguration Management Avalon-MM Master Interface

Table 12–6 describes the signals that comprise the dynamic reconfiguration interface. The Transceiver Reconfiguration Controller communicates with the PHY IP cores using this interface.

Table 12-6. MIF Reconfiguration Management Avalon-MM Master Interface

Signal Name	Direction	Description
<pre>reconfig_mif_address[31:0]</pre>	Output	This is the Avalon-MM address. This is a byte address.
reconfig_mif_read	Output	When asserted, signals an Avalon-MM read request.
reconfig_mif_readdata[15:0]	Input	The read data.
reconfig_mif_waitrequest	Input	When asserted, indicates that the MIF Avalon-MM slave is not ready to respond to a read request.

Transceiver Reconfiguration Interface

Table 12–7 describes the signals that comprise the dynamic reconfiguration interface. The Transceiver Reconfiguration Controller communicates with the PHY IP cores using this interface. In Table 12–7, <*n*> is the number of reconfiguration interfaces connected to the Transceiver Reconfiguration Controller.

Table 12–7. Transceiver Reconfiguration Interface

Signal Name	Direction	Description
<pre>reconfig_to_xcvr[(<n>x70)-1:0]</n></pre>	Output	Parallel reconfiguration bus from the Transceiver Reconfiguration Controller to the PHY IP Core.
<pre>reconfig_from_xcvr[(<n>x46)-1:0]</n></pre>	Input	Parallel reconfiguration bus from the PHY IP core to the Transceiver Reconfiguration Controller.
reconfig_busy	Output	When asserted, indicates that a reconfiguration operation is in progress and no further reconfiguration operations should be performed. You can monitor this signal to determine the status of the Transceiver Reconfiguration Controller. Alternatively, you can monitor the busy bit of the control and status registers of any reconfiguration feature to determine the status of the Transceiver Reconfiguration Controller.

Reconfiguration Interface Management Interface

The reconfiguration management interface is an Avalon-MM slave interface. You can use an embedded controller to drive this interface. Alternatively, you can use a finite state machine to control all Avalon-MM reads and writes to the Transceiver Reconfiguration Controller. This interface provides access to the Transceiver Reconfiguration Controller's Avalon-MM registers.

For more information about the Avalon-MM protocol, including timing diagrams, refer to the Avalon Interface Specifications. Table 12–8 list the signals in the reconfiguration management interface.

Signal Name	Direction	Description
mgmt_clk_clk	Input	Avalon-MM clock input. The frequency range for the mgmt_clk_clk is 100–125 MHz for Stratix V devices. It is 75–125 MHz for Arria V devices. Falling outside of the required frequency range may reduce the accuracy of the calibration functions.
		This signal resets the Transceiver Reconfiguration Controller. This signal is active high and level sensitive.
mgmt_rst_reset	Input	If the Transceiver Reconfiguration Controller IP Core connects to an Interlaken PHY IP Core, the Reconfiguration Controller IP Core mgmt_rst_reset must be simultaneously asserted with phy_mgmt_clk_reset to bring the Frame Generators in the link into alignment. Failure to meet to this requirement will result in excessive transmit lane-to-lane skew in the Interlaken link.
reconfig_mgmt_address[6:0]	Input	7-bit Avalon-MM address.
<pre>reconfig_mgmt_writedata[31:0]</pre>	Input	Input data.
reconfig_mgmt_readdata[31:0]	Output	Output data.
reconfig_mgmt_write Input		Write signal. Active high.
reconfig_mgmt_read	Input	Read signal. Active high.

Table 12–8. Reconfiguration Management Interface

12-9

Reconfiguration Controller Memory Map

This section describes the memory map that control reconfiguration and signal integrity features. Each register-based feature has its own Avalon-MM address space within the Transceiver Reconfiguration Controller as Figure 12–3 illustrates.

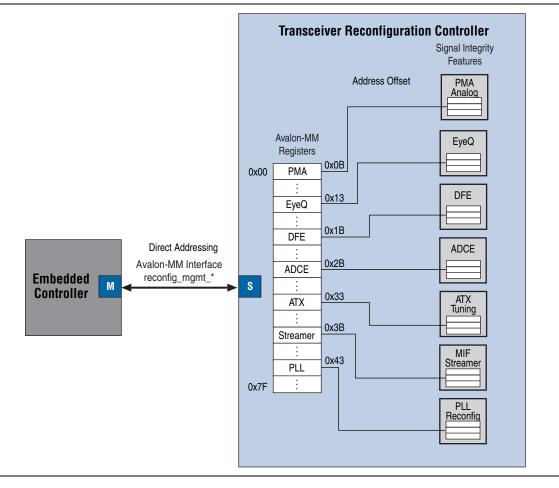


Table 12–9 lists the address range for the Transceiver Reconfiguration Controller and the reconfiguration and signal integrity modules. It provides links to the sections describing the registers in each module.

Table 12-9.	Transceiver R	leconfiguration	Controller	Address Map	(Part 1 of 2)
-------------	----------------------	-----------------	------------	-------------	---------------

Address	Link
7'h08–7'h0C	"PMA Analog Controls" on page 12–12
7'h10–7'h14	"EyeQ" on page 12–13
7'h18–7'h1C	"DFE" on page 12–15
7'h28–7'h2C	"AEQ" on page 12–17
7'h30-7'h34	"ATX PLL Calibration" on page 12–19

Address	Link
7'h38–7'h3C	"Streamer Module" on page 12–23
7'h40–7'h44	"PLL Reconfiguration" on page 12–19

Table 12–9. Transceiver Reconfiguration Controller Address Map (Part 2 of 2)

Transceiver Calibration Functions

The Transceiver Reconfiguration Controller supports various calibration functions to enhance the performance and operation of any connected transceiver PHY IP core. This section describes the functionality of each calibration function. Refer to Table 12–4 on page 12–5 for the resource utilization of these calibration functions.

Offset Cancellation

The offset cancellation function adjusts the offsets within the RX PMA and the CDR parameters for process variations to achieve optimal performance in Stratix V devices. Offset cancellation runs only once upon power-up. The RX buffers are unavailable while this function is running. This calibration feature is run automatically and enabled by default. Arria V and Cyclone V devices do not require offset cancellation for the RX buffer.

Duty Cycle Calibration

The duty cycle calibration function tunes the transmitter to minimize duty cycle distortion. Altera recommends that you enable this function for all transceiver PHY IP cores with a data \geq 6 Gbps. Both the TX and RX buffers are unavailable while this function is running.

If you select a TX-only transceiver PHY, duty cycle calibration does not run. To run duty cycle calibration, you can instantiate an unused receiver channel.

Auxiliary Transmit (ATX) PLL Calibration

ATX calibration tunes the parameters of the ATX PLL for optimal performance. This function runs once after power up. You can rerun this function by writing into the appropriate memory-mapped registers.

You should enable ATX calibration for all transceiver PHY IP cores that use an ATX PLL. The RX buffer is unavailable while this function is running. You should run the ATX calibration after reconfiguring the PLL. You may need to rerun ATX calibration if you reset an ATX PLL and it does not lock after the specified lock time. When a design includes an ATX PLL, this calibration feature runs once upon powerup. After powerup, you must manually initiate the calibration function.

For more information about controlling the Auxiliary Transmit (ATX) PLL Calibration refer to "ATX PLL Calibration" on page 12–19.

Refer to the "Parameter Settings" on page 12–6 section for information about how to enabled these functions.

PMA Analog Controls

You can use the Transceiver Reconfiguration Controller to reconfigure the following analog controls:

- Differential output voltage (V_{OD})
- Pre-emphasis taps
- Receiver equalization control
- Receiver equalization DC gain

Table 12–10 lists the memory-mapped PMA analog registers that you can access using the reconfiguration management interface.

All undefined register bits are reserved.

Recon -fig Addr	Bits	R/W	Register Name	Description
7'h08	[9:0]	RW	logical channel number	The logical channel number. Must be specified when performing dynamic updates. The Transceiver Reconfiguration Controller maps the logical address to the physical address.
7'h09	[9:0]	R	physical channel address	The physical channel address. The Transceiver Reconfiguration Controller maps the logical address to the physical address.
				Error. When asserted, indicates an error. This bit is asserted if any of the following conditions occur:
	[9]	R		 The channel address is invalid.
				The PHY address is invalid.
7'h0A			control and status	The PMA offset is invalid.
	[8]	R		Busy. When asserted, indicates that a reconfiguration operation is in progress.
	[1]	W		Read. Writing a 1 to this bit triggers a read operation.
	[0]	W		Write. Writing a 1 to this bit triggers a write operation.
7'h0B	[5:0]	RW	pma offset	Specifies the offset of the PMA analog setting to be reconfigured. Table 12–11 describes the valid offset values.
7'h0C	[6:0]	RW	data	Reconfiguration data for the PMA analog settings. Refer to Table 12–11 for valid data values.

Table 12-10. PMA Analog Registers

Refer to the Arria V Device Datasheet, the Cyclone V Device Datasheet, or the Stratix V Device Datasheet for more information about the electrical characteristics of each device. The final values are currently pending full characterization of the silicon.

I All undefined register bits are reserved and must be set to 0.

Offset	Bits	R/W	Register Name	Description
0x0	[5:0]	RW	V _{op}	$V_{\text{OD.}}$ The following encodings are defined:
0.00	[5.0]	1100	VOD	6'b000000:6'b111111:0-63
				The following encodings are defined:
0x1	[4:0]	BW	Due omphagig nue ten	5'b00000-5'b10000: 0
UXI	[4.0]	ΠW	Pre-emphasis pre-tap	■ 5'b00001–5'b01111: -15 to -1
				■ 5'b10001–5b'11111: 1 to 15
0x2	[4:0]	RW	Due emphasie finst seet to	The following encodings are defined:
UXZ	[4:0]		Pre-emphasis first post-tap	■ 5'b00000-5'b11111: 0-31
				The following encodings are defined:
0x3	[4:0]	BW		5'b00000-5'b10000: 0
UX3	[4:0]	KW	Pre-emphasis second post-tap	■ 5'b00001-5'b01111: -15 to -1
				■ 5'b10001–5b'11111: 1 to 15
0.40	[0.0]	DW		The following encodings are defined:
0x10	[2:0]	RW	RX equalization DC gain	■ 3'b000–3b'111:0–4
0x11	[0.0]	WO		The following encodings are defined:
UXII	[3:0]	000	RX equalization control	■ 4'b0000-4'b1111: 0-15
			Pre-CDR Reverse Serial	Writing a 1 to this bit enables S reverse
0x20	0x20 [0] WO	WO	Loopback	serial loopback. Writing a 0 disables pre- CDR reverse serial loopback.
			Post-CDR Reverse Serial	Writing a 1 to this bit enables post-CDR
0x21	[0]	WO	Loopback	reverse serial loopback. Writing a 0
				disables post-CDR reverse serial loopback.

 Table 12–11.
 PMA Offsets and Values

Refer to "Changing Transceiver Settings Using Register-Based Reconfiguration" on page 12–29 and "Changing Transceiver Settings Using Streamer-Based Reconfiguration" on page 12–31 for the procedures you can use to update PMA settings.

• Refer to *Application Note 645: Dynamic Reconfiguration of PMA Controls in Stratix V Devices* for an example demonstrating the use of the Transceiver Reconfiguration Controller.

EyeQ

EyeQ is a debug and diagnostic tool that analyzes the incoming data, including the receiver's gain, noise level, and jitter after the receive buffer. EyeQ is only available for Stratix V devices.

EyeQ uses a phase interpolator and sampler to estimate the vertical and horizontal eye opening using the values that you specify for the horizontal phase and vertical height. (Refer to Table 12–13 on page 12–14.) The phase interpolator generates a sampling clock and the sampler examines the data from the receiver output. The sampled data is deserialized and sent to the IP core where the PRBS checker determines the BER. As the phase interpolator output clock phase is shifted by small increments, the data error rate goes from high to low to high if the receiver is good. The number of steps of valid data is defined as the width of the eye. If none of the steps yields valid data, the width of the eye is equal to 0, which means the eye is closed.

Table 12–12 lists the memory-mapped EyeQ registers that you can access using Avalon-MM reads and writes on reconfiguration management interface.

All undefined register bits are reserved.

 Table 12–12.
 Eye Monitor Registers

Recon -fig Addr	Bits	R/W	Register Name	Description
7'h10	[9:0]	RW	logical channel number	The logical channel number. Must be specified when performing dynamic updates. The Transceiver Reconfiguration Controller maps the logical address to the physical address.
	[9]	R		Error. When asserted, indicates an invalid channel or address.
7'h12	[8]	R	control and status	Busy. When asserted, indicates that a reconfiguration operation is in progress.
	[1]	W		Read. Writing a 1 to this bit triggers a read operation.
	[0]	W		Write. Writing a 1 to this bit triggers a write operation.
7'h13	[5:0]	RW	eyeq offset	Specifies the 6-bit offset of the EyeQ register.
7'h14	[15:0]	RW	data	Reconfiguration data for the transceiver PHY registers.

Table 12–13 describes the EyeQ registers that you can access.

All undefined register bits are reserved and must be set to 0.

Table 12–13. EyeQ Offsets and Values (Part 1 of 2)

Offset	Bits	R/W	Register Name	Description
0x0	[0]	RW	Control	Writing a 1 to this bit enables the Eye monitor.
0x1	[5:0]	RW	Horizontal phase	Taken together, the horizontal phase and vertical height specify the Cartesian x-y coordinates of the point on the eye diagram that you want to sample. You can increment through 64 phases over 2 UI on the horizontal axis.

Offset	Bits	R/W	Register Name	Description
0x2	[5:0]	RW	Vertical height	Taken together, the horizontal phase and vertical height specify the Cartesian x-y coordinates of the point on the eye diagram that you want to sample. You can specify 64 heights on the vertical axis.
	[15:14]	RMW	Reserved	You should not modify these bits. To update this register, first read the value of this register then change only the value for bits that are not reserved.
	[13]	RW	1D-Eye	Writing a 1 to this bit selects 1D Eye mode and disables vertical height measurement. Writing a 0 to this bit selects normal 2D Eye measurement mode including both the horizontal and vertical axes.
0x3	[12:11]	RMW	Reserved	You should not modify these bits. To update this register, first read the value of this register then change only the value for bits that are not reserved.
		RW		Sets the EyeQ bandwidth based on receiver channel data rate. The following encodings are defined:
	[10:9]		Bandwidth	 2'b00: data rate < 16 Gbps
				2'b01: data rate > 16 Gbps and <= 2.5 Gbps
				2'b10: data rate > 2.5 Gbps and <= 7.5 Gbps
		2'b11: data rate > 7.5 Gbps	2'b11: data rate > 7.5 Gbps	
	[8:0]	RMW	Reserved	You should not modify these bits.To update this register, first read the value of this register then change only the value for bits that are not reserved.

Table 12–13. EyeQ Offsets and Values (Part 2 of 2)

Refer to "Changing Transceiver Settings Using Register-Based Reconfiguration" on page 12–29 for the procedures you can use to control the Eye Monitor.

DFE

The DFE is an infinite impulse response filter (non-linear) that compensates for inter-symbol interference (ISI). Because the values of symbols previously detected are known, the DFE engine can estimate the ISI contributed by these symbols and cancel out this ISI by subtracting the predicted value from subsequent symbols. This mechanism allows DFE to boost the signal to noise ratio of the received data. You can use DFE in conjunction with the receiver's linear equalization and with the transmitter's pre-emphasis feature. DFE is only available for Stratix V devices.

DFE automatically runs offset calibration and phase interpolator (PI) phase calibration on all channels after power up. You can run DFE manually to determine the optimal settings by monitoring the BER of the received data at each setting and specify the DFE settings that yield the widest eye.

Table 12–14 lists the direct DFE registers that you can access using Avalon-MM reads and writes on reconfiguration management interface.

All undefined register bits are reserved.

Table 12–14. DFE Registers

Recon -fig Addr	Bits	R/W	Register Name	Description
7'h18	[9:0]	RW	logical channel address	The logical channel address. Must be specified when performing dynamic updates. The Transceiver Reconfiguration Controller maps the logical address to the physical address.
	[9]	R		Error. When asserted, indicates an invalid channel or address.
7'h1A	[8]	R	control and status	Busy. When asserted, indicates that a reconfiguration operation is in progress.
	[1]	W		Read. Writing a 1 to this bit triggers a read operation.
	[0]	W		Write. Writing a 1 to this bit triggers a write operation.
7'h1B	[5:0]	RW	dfe_offset	Specifies the 6-bit offset of the DFE register.
7'h1C	[15:0]	RW	data	Reconfiguration data for the transceiver PHY registers.

Table 12–15 describes the DFE registers that you can access to change DFE settings.

All undefined register bits are reserved and must be set to 0.

Offset	Bits	R/W	Register Name	Description
0x0	[1]	RW	power on	Writing a 0 to this bit powers down DFE in the channel specified.
0,0	[0]	RW	adaptation engine enable	Writing a 1 triggers the adaptive equalization engine.
0x1	[3:0]	RW	tap 1	Specifies the coefficient for the first post tap. The valid range is 0–15.
				Specifies the polarity of the second post tap as follows:
	[3]	RW	tap 2 polarity	0: negative polarity
0x2				 1: positive polarity
	[2:0]	RW	tap 2	Specifies the coefficient for the second post tap. The valid range is 0–7.
				Specifies the polarity of the third post tap as follows:
	[3]	RW	tap 3 polarity	 0: negative polarity
0x3				 1: positive polarity
	[2:0]	RW	tap 3	Specifies the coefficient for the third post tap. The valid range is 0–7.

Table 12–15. DFE Offset and Values (Part 1 of 2)

Offset	Bits	R/W	Register Name	Description
				Specifies the polarity of the fourth post tap as follows:
	[3]	RW	tap 4 polarity	 0: negative polarity
				1: positive polarity
0x4	[2:0]	RW	tap 4	Specifies the coefficient for the fourth post tap.
				Specifies the polarity of the fifth post tap as follows:
	[3]	RW	tap 5 polarity	 0: negative polarity
0x5				 1: positive polarity
	[2:0]	RW	tap 5	Specifies the coefficient for the fifth post tap. The valid range is 0–7.
				Specifies the reference voltage: The following encodings are defined:
				3'b000: 0 mV
				3'b001: 35 mV
			reference voltage	 3'b010: 55 mV
0x6	[2:0]	RW	level	3'b011: 70 mV
				 3'b100: 110 mV
				 3'b101: 150 mV
				 3'b110: 200 mV
				 3'b111: 1000 mV
x0a	[0]	RW	DFE_control	Writing a 1 to this bit initiates DFE for the specified channel.

Table 12–15. DFE Offset and Values (Part 2 of 2)

AEQ

Adaptive equalization compensates for backplane losses and dispersion which degrade signal quality. You can choose to run the AEQ once at power up or to run it continuously to dynamically adapt to changing conditions. You can also use AEQ to help control the four-stage continuous time linear equalizer (CTLE) which is a manual tool that compensates for backplane losses and dispersion.

Table 12–16 lists the direct AEQ registers that you can access using Avalon-MM reads and writes on reconfiguration management interface.

Recon -fig Addr	Bits	R/W	Register Name	Description
7'h28	[9:0]	RW	logical channel number	The logical channel number of the AEQ hardware to be accessed. Must be specified when performing dynamic updates. The Transceiver Reconfiguration Controller maps the logical address to the physical address.
7'h29	[9:0]	R	physical channel address	The physical channel address. The Transceiver Reconfiguration Controller maps the logical address to the physical address.
	[9]	R		Error. When asserted, indicates an error. This bit is asserted when the channel address is invalid.
7'h2A	[8]	R	control and status	Busy. When asserted, indicates that a reconfiguration operation is in progress.
	[1]	W		Read. Writing a 1 to this bit triggers a read operation.
	[0]	W		Write. Writing a 1 to this bit triggers a write operation.
7'h2B	[3:0]	RW	aeq_offset	Specifies the address of the AEQ register to be read or written. Refer to Table 12–17 for details.
7'h2C	[15:0]	RW	data	Specifies the read or write data.

Table 12-16. AEQ Registers

Table 12–17 describes the AEQ registers that you can access to change AEQ settings.

All undefined register bits are reserved and must be set to 0.

Offset	Bits	R/W	Register Name	Description	Default Value
	[8]	R	adapt_done	When asserted, indicates that adaptation has completed.	1b'0
0x0	[1:0]	RW	mode	 Specifies the following address modes: 2'b00: Low power manual equalization mode 2'b01: One-time AEQ adaptation at power up 2'b10: Perform continuous AEQ adaptation 2'b11: Reserved 	2'b00
0x2	[3:0]	R	equalization results	This is the value set by the automatic AEQ adaptation performed at startup. If you choose to perform manual equalization using the linear equalizer, you can use this value as a reference. Although automatic and manual equalization do not provide identical functionality, specifying this value enables manual equalization to approximate the original setting.	0x0000

Table 12–17. AEQ Offsets and Values

Refer to "Changing Transceiver Settings Using Register-Based Reconfiguration" on page 12–29 for the procedures you can use to control AEQ.

ATX PLL Calibration

This feature allows you to rerun ATX calibration after power up. The Transceiver Reconfiguration Controller automatically runs ATX calibration at power up.

Table 12–18 lists the direct access ATX registers that you can access using Avalon-MM reads and writes on reconfiguration management interface.

All undefined register bits are reserved.

ATX Addr	Bits	R/W	Register Name	Description
7'h30	[9:0]	RW	logical channel number	The logical channel number. The Transceiver Reconfiguration Controller maps the logical address to the physical address.
7'h32	[9]	R	control and status	Error. When asserted, indicates an invalid channel or address. This bit is asserted after a write operation if the selected logical channel number selects a logical channel interface that is not connected to an ATX PLL. It is also be asserted if the tuning algorithm failed to converge on a working setting after a manual calibration.
	[8]	R		Busy. When asserted, indicates that a reconfiguration operation is in progress.
	[1]	W		Read. Writing a 1 to this bit triggers a read operation.
	[0]	W		Write. Writing a 1 to this bit triggers a write operation.
7'h33	[3:0]	RW	atx_offset	Specifies the 4-bit register address used for indirect accesses on the reconfiguration bus. Refer to Table 12–19 for offsets and values.
7'h34	[15:0]	RW	data	Reconfiguration data for the transceiver PHY registers.

Table 12–18. ATX Tuning Registers

Table 12–19 lists the ATX PLL tuning registers.

Table 12-19.	ATX PLL	Tuning	Offsets a	and Values
--------------	---------	--------	-----------	------------

Offset	Bits	R/W	Register Name	Description
0x0	[1]	RW	Control	Writing a 1 to this bit triggers ATX PLL calibration. This register self-clears. Unused bits of this register must be set to 0.

Refer to "Changing Transceiver Settings Using Register-Based Reconfiguration" on page 12–29 for the procedures you can use to control ATX tuning.

PLL Reconfiguration

You can use the PLL reconfiguration registers to change the reference clock input to the TX PLL or the clock data recovery (CDR) circuitry.

You may need to rerun ATX calibration if you reset an ATX PLL and it does not lock after the specified lock time.

The PLL registers for dynamic reconfiguration feature are available when you select one of the following Stratix V transceiver PHY IP cores:

- Custom PHY IP Core
- Low Latency PHY IP Core
- Deterministic Latency PHY IP Core

You can establish the number of possible PLL configurations on the **Reconfiguration** tab of the appropriate transceiver PHY IP core. The **Reconfiguration** tab allows you to specify up to five input reference clocks and up to four TX PLLs. You can also change the input clock source to the CDR PLL; up to five input clock sources are possible. If you plan to dynamically reconfigure the PLLs in your design, you must also enable **Allow PLL Reconfiguration** and specify the **Main TX PLL logical index** which is the PLL that the Quartus II software instantiates at power up. Figure 12–4 illustrates these parameters.

If you dynamically reconfigure PLLs, you must provide your own reset logic by including the Altera Reset Controller IP Core or your own custom reset logic in your design. For more information about the Altera-provided reset controller, refer to Chapter 13, Transceiver PHY Reset Controller IP Core.

For more information about the Stratix V reset sequence, refer to *Transceiver Reset Control in Stratix V Devices* in volume 2 of the *Stratix V Device Handbook*.

Figure 12–4. Reconfiguration Tab of Custom, Low Latency, and Deterministic Latency Transceiver PHYs

PLL Reconfiguration	
🗹 Allow PLL Reconfiguration	
Number of TX PLLs:	2 🗸
Number of input clocks:	1 ~
Main TX PLL logical index:	1 ~
CDR PLL input clock source:	0 🗸
TX PLL 0	
PLL type:	СМИ 🗸
Base data rate:	3125 Mbps
Input clock frequency:	156.25 MHz 🗸
Selected input clock source:	0 🗸
TX PLL 1	
PLL type:	CMU 🗸
Base data rate:	1250 Mbps"
Input clock frequency:	62.5 MHz 🗸
Selected input clock source:	0 🗸
Channel Interface	
Enable Channel Interface	

When you specify multiple PLLs, you must use the QSF assignment, XCVR_TX_PLL_RECONFIG_GROUP, to identify the PLLs within a reconfiguration group using the Assignment Editor. The XCVR_TX_PLL_RECONFIG_GROUP assignment identifies PLLs that the Quartus II Fitter can merge. You can assign TX PLLs from different transceiver PHY IP core instances to the same group. F You must create the $XCVR_TX_PLL_RECONFIG_GROUP$ even if one transceiver PHY IP core instance instantiates multiple TX PLLs.

Table 12-20 lists the PLL reconfiguration registers that you can access using Avalon-MM read and write commands on reconfiguration management interface. PLL reconfiguration is only available for Stratix V devices.

All undefined register bits are reserved.

Addr	Bits	R/W	Register Name	Description
7'h40	[9:0]	RW	logical channel number	The logical channel number. Must be specified when performing dynamic updates. The Transceiver Reconfiguration Controller maps the logical address to the physical address.
7 1140	[9.0]	ΠΨ	iogical channel number	When reconfiguring the reference clock for the TX PLL you must specify the PLL's logical channel number. When reconfiguring the reference clock for the CDR you must specify the channel's logical channel number.
7'h41	[9:0]	R	physical channel address	The physical channel address. The Transceiver Reconfiguration Controller maps the logical address to the physical address.
				When asserted, indicates an error. This bit is asserted if any of the following conditions occur:
	[9]	R		 The channel address is invalid.
				The PHY address is invalid.
7'h42			control and status	 The address offset is invalid.
	[8]	R		MIF $Busy$. When asserted, indicates that a reconfiguration operation is in progress.
	[1]	W		Read. Writing a 1 to this bit specifies a read operation.
	[0]	W		Write. Writing a 1 to this bit specifies a write operation.
7'h43	[3:0]	RW	pll offset	Specifies the 4-bit register address used for indirect to the PLL registers on the reconfiguration bus. Refer to Table 12–21 for offsets and values.
7'h44	[15:0]	RW	data	Specifies the read or write data.

Table 12–20. PLL Reconfiguration Registers

Table 12–21 lists the PLL reconfiguration registers.

All undefined register bits are reserved and must be set to 0.

Table 12-21. PLL Reconfiguration Offsets and Values

Offset	Bits	R/W	Name	Description
0x0	[2:0]	RW		When written initiates reference clock change to the logical reference clock indexed by bits [2:0].
0.00	[2:0]	ΠVV	logical refclk selection	This index refers to the Number of input clocks on the Reconfiguration tab. You can specify up to 5 input clocks.
				When written initiates a clock generation block (CGB) switch to logical PLL indexed by bits [2:0].
0x1	[2:0]	RW	logical PLL selection	This index refers to the Number of TX PLLs selected on the Reconfiguration tab. You can specify up to 4 input clocks. If you set the Main TX PLL logical index to 0, the Quartus II software initializes your design using the first PLL defined.
0x2	[24:0]	RO	refclk physical mapping	Specifies the logical to physical refclk for current logical channel.
0x3	[14:0]	RO	PLL physical mapping	Specifies the logical to physical clock generation block word for current logical channel.

The Quartus II software supports reference clock switching and PLL switching for CMU PLLs in the 12.0 release.

Channel and PLL Reconfiguration

You can use channel and PLL reconfiguration to dynamically reconfigure the channel and PLL settings in a transceiver PHY IP core. Among the settings that you can change dynamically are the data rate and interface width. Refer to "Device Support for Dynamic Reconfiguration" on page 12–1 for specific information about reconfiguration in Arria V, Cyclone V, and Stratix V devices.

The Transceiver Reconfiguration Controller's Streamer Module implements channel and PLL reconfiguration. Refer to the "Streamer Module" on page 12–23 for more information about this module.

Channel and PLL reconfiguration are available for the Custom, Low Latency and Deterministic Latency PHY IP Cores.

Channel Reconfiguration

If you turn on **Enable channel/PLL reconfiguration** in the Transceiver Reconfiguration Controller GUI, you can change the following channel settings:

TX PMA settings

- RX PMA settings
- RX CDR input clock
- Reference clock inputs
- FPGA fabric transceiver width

When you select **Enable Channel Interface**, in the Custom, Low Latency, Deterministic Latency Transceiver PHY GUIs, the default width of the FPGA fabric to transceiver interface increases for both the **Standard** and **10G** datapaths as follows:

- Standard datapath—The TX interface is 44 bits. The RX interface is 64 bits.
- 10G datapath— TX only, RX only, and duplex channels are all 64 bits.

However, depending upon the FPGA fabric transceiver width specified, only a subset of the 64 bits may carry valid data. Specifically, in the wider bus, only the lower $\langle n \rangle$ bits are used, where $\langle n \rangle$ is equal to the width of the FPGA fabric width specified in the transceiver PHY IP core. Table 12–22 illustrates this point for the 10G datapath, showing three examples where the FPGA fabric interface width is less than 64 bits.

Table 12–22. Channel Reconfiguration Bit Ordering

Number of Lanes	Specified FPGA Fabric Width (Total Bits)	Default Channel Width (Total Bits)	Used Bits
1	32 bits (32 bits)	64 bits/lane (64 bits)	Lane 0: [31:0]
2	40 bits (80 bits)	64 bits/lane (128 bits)	Lane 0: [39:0]
2	40 bits (60 bits)		Lane 1: [103:64]
			Lane 0: [39:0]
3	40 bits (120 bits)	64 bits/lane (192 bits)	Lane 1: [103:64]
			Lane 2: [167:128]

PLL Reconfiguration

If you turn on **Enable PLL reconfiguration support block** in the Transceiver Reconfiguration Controller GUI, you can change the following channel settings:

- TX PLL settings
- TX PLL selection
- When you specify multiple PLLs, you must use the QSF assignment, XCVR_TX_PLL_RECONFIG_GROUP, to identify the PLLs within a reconfiguration group. The XCVR_TX_PLL_RECONFIG_GROUP assignment identifies PLLs that the Quartus II Fitter can merge.

Streamer Module

The Streamer module defines the following two modes for channel and PLL reconfiguration:

■ Mode 0—MIF. Uses a memory initialization file (.mif) to reconfigure settings.

Mode 1—Direct Write. Uses a series of Avalon-MM writes on the reconfiguration management interface to change settings. Table 12–10 lists the Streamer's memory-mapped registers that you can access using Avalon-MM read and write commands on reconfiguration management interface.

All undefined register bits are reserved.

PHY Addr	Bits	R/W	Register Name	Description
7'h38	[9:0]	RW	logical channel number	The logical channel number. Must be specified when performing dynamic updates. The Transceiver Reconfiguration Controller maps the logical address to the physical address.
7'h39	[9:0]	R	physical channel address	The physical channel address. The Transceiver Reconfiguration Controller maps the logical address to the physical address.
				Error. When asserted, indicates an error. This bit is asserted if any of the following conditions occur:
	[9]	R		The channel address is invalid.
				The PHY address is invalid.
				The offset register address is invalid.
	[8]	R		Busy. When asserted, indicates that a reconfiguration operation is in progress.
				Mode. The following encodings are defined:
				 2'b00: MIF. This mode continuously reads and transfers a .mif file, which contains the reconfiguration data.
7'h3A	[3:2]	RW	control and status	2'b01: Direct Write. In this mode, you specify a logical channel, a register offset, and data. Depending on the logical channel specified, the Transceiver Reconfiguration Controller may mask some of the data specified to prevent read-only values that were optimized during startup, from being over-written. In particular, this mode protects the following settings:
				 Decision feedback equalization controls
				 RX buffer offset calibration adjustments
			 Duty cycle distortion adjustments 	
				PMA clock settings
				2'b10: Reserved
				2'b11: Reserved
	[1]	W		Read. Writing a 1 to this bit triggers a read operation. This bit is self clearing.
	[0]	W		Write. Writing a 1 to this bit triggers a write operation. This bit is self clearing.

 Table 12–23.
 Streamer Module Registers (Part 1 of 2)

PHY Addr	Bits	R/W	Register Name	Description
7'h3B	[15:0]	RW	streamer offset	When the MIF mode = 2'b00, the offset register specifies a an internal MIF Streamer register. Refer to Table 12–24 for definitions of these registers. When MIF Mode = 2'b01, offset register specifies register in the transceiver
7'h3C	[31:0]	RW	data	When the MIF Mode = 2'b00, the data register stores read or write data for indirect access to the location specified in the offset register. When MIF Mode = 2'b01, data holds an update for transceiver to be dynamically reconfigured.

Table 12-23.	Streamer	Module	Registers	(Part 2 of 2)
--------------	----------	--------	-----------	---------------

Table 12–24 lists the internal Streamer Module registers that you access to control and determine the status of a MIF operation.

All undefined register bits are reserved and must be set to 0.

Table 12–24. Streamer Module Internal MIF Register Offsets

Offset	Bits	R/W	Register Name	Description
0x0	[31:0]	RW	MIF base address	Specifies the MIF base address.
0x1	[0]	RW		Writing a 1 to this bit clears any error currently recorded in an indirect register. This register self clears.
UXI	[2]	ΝVV	Clear error status	Any error detected in the error registers prevents MIF streaming. If an error occurs, you must clear the error register before restarting the Streamer.
	[0]	RW	Start MIF stream	Writing a 1 to this register, triggers a MIF streaming operation. This register self clears.
	[4]	RO	MIF or Channel mismatch	 When asserted, indicates the MIF type specified is incorrect. For example, the logical channel is duplex, but the MIF type specifies an RX only channel. The following 4 MIF types are defined: Duplex TX PLL (CMU) RX only channel TX only channel
0x2	[2]	RO	PLL reconfiguration IP error	When asserted, indicates that an error occurred changing a refclk or clock generation block setting.
	[1]	RO	MIF opcode error	When asserted, indicates that an undefined opcode ID was specified in the .mif file, or the first entry in the . mif file was not a start of MIF opcode.
	[0]	RO	Invalid register access	When asserted, indicates that the offset register address specified is out of range.

The following sections describe operations in Streamer modes 0 and 1.

Mode 0 Streaming a MIF for Reconfiguration

In mode 0, you can stream the contents of a MIF containing the reconfiguration data to the transceiver PHY IP core instance. You specify this mode by writing a value of 2'b00 into bits 2 and 3 of the control and status register, as indicated in Table 12–23 on page 12–24. Mode 0 simplifies the reconfiguration process because all reconfiguration data is stored in the MIF, which is streamed to the transceiver PHY IP in a single step.

The MIF can change PLL settings, reference clock inputs, or the TX PLL selection. After the MIF streaming update is complete, all transceiver PHY IP core settings reflect the value specified by the MIF. Refer to "Streamer-Based Reconfiguration" on page 12–31 for an example of a MIF update.

Mode 1 Avalon-MM Direct Writes for Reconfiguration

You specify this mode by writing a value of 2'b01 into bits 2 and 3 of the control and status register, as indicated in Table 12–23 on page 12–24. In this mode, you can write directly to transceiver PHY IP core registers to perform reconfiguration. Refer to "Direct Write Reconfiguration" on page 12–32 for an example of an update using mode 1. In mode 1, you can selectively reconfigure portions of the transceiver PHY IP core. Unlike mode 0, mode 1 allows you to write only the data required for a reconfiguration.

MIF

The MIF stores the reconfiguration data for the transceiver PHY IP cores. The Quartus II software automatically generates MIFs after each successful compilation. MIFs are stored in the **reconfig_mif** folder of the project's working directly. This folder stores all MIFs associated with the compiled project for each transceiver PHY IP core instance in the design. The parameter settings of PHY IP core instance reflect the currently specified MIF. You can store the MIF in an on-chip ROM or any other type of memory. This memory must connect to the MIF reconfiguration management interface.

Example 12–1 shows file names for the **.mif** files for a design with two channels. This design example includes two transceiver PHY IP core instances running at different data rates. Both transceiver PHY IP core instances have two TX PLLs specified to support both 1 Gbps and 2.5 Gbps data rates. The Quartus II software generates two TX PLL **.mif** files for each PLL. The difference between the **.mif** files is the PLL reference clock specified. To dynamically reconfigure the channel from the initially specified data rate to a new data rate, you can use the MIF streaming function to load the other **.mif**.

When reconfiguration is limited to a few settings, you can create a partial **.mif** that only includes the settings that must be updated. Refer to "Reduced MIF Creation" on page 12–28 for more information about creating a partial **.mif** file.

Example 12–1. Quartus II Generated MIF Files

```
<project_dir>/reconfig_mif/inst0_1g_channel.mif
<project_dir>/reconfig_mif/inst0_1g_txpl10.mif
<project_dir>/reconfig_mif/inst0_1g_txpl11.mif
<project_dir>/reconfig_mif/inst0_2p5g_channel.mif
<project_dir>/reconfig_mif/inst0_2p5g_txpl10.mif
<project_dir>/reconfig_mif/inst0_2p5g_txpl11.mif
```

MIF Format

The MIF file is organized into records where each record contains the information necessary to carry out the reconfiguration process. There are two types of records: non-data records and data records. A MIF can contain a variable number of records, depending on the target transceiver channel. Both data records and non-data records are 16-bits long.

For both record types the high-order 5 bits represent the length field. A length field of 5'b0, indicates a non-data record which contains an opcode. A length field that is not zero indicates a data record.

For a non-data record, the opcode is represented by the lower 5-bits in the record. Table 12–25 lists the supported opcodes and describes the data content.

Opcode	Opcode Description
5'b00000	Reserved
5'b00001	Start of MIF
	Channel format indicator specifying the MIF channel type. The following encodings are defined:
511 0004 0	 2'b00: Duplex channel
5'b00010	2'b01: TX PLL (CMU)
	2'b10: RX only channel
	2'b11: TX only channel
5'b00011	CDR Input Clock switch
5'b00100	PLL switch
5'b00101-5'b11110	Reserved
5'b11111	End of MIF (EOM)

 Table 12–25.
 Opcodes for MIF Files

For data records, the low-order 11 bits provide a logical offset address. In this case, the length field indicates the number of data records that are written into the specified address. For example, if the length field is set to two, the next two records belong the data record and are written into the offset address.

Figure 12–5 provides an example of a typical MIF format. Entries 3, 7, and $\langle n \rangle$ are data records.

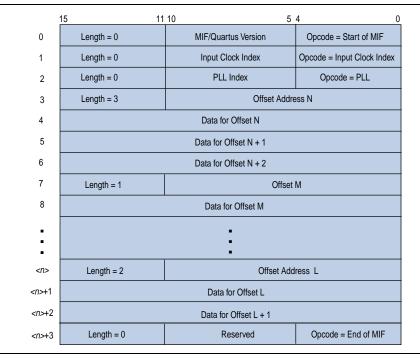


Figure 12–5. MIF File Format

Reduced MIF Creation

When you use a MIF for reconfiguration many parameters do not change. To decrease the time required to stream a MIF, you can create a reduced MIF. A reduced MIF reduces the time required for reconfiguration by streaming only the necessary MIF content for a reconfiguration.

You can create a reduced MIF from the following two MIFs:

- Original MIF—contains the transceiver settings that were specified during the initial compilation
- Reconfigured MIF—contains the new transceiver settings. You generate the reconfigured MIF by modifying the original transceiver settings. For example, if the original compilation specifies a clock divider value of 1 and the reconfigured compilation specifies a clock divider value of 2, the MIF files reflect that change. The reduced MIF contains only the changed content. In this example, the difference between the two MIFs would be the clock divider value.

All MIF files must contain the lines shown in Table 12–26.

Line Number	Description	Content Includes
0	Specifies start of the reconfiguration MIF	Start of MIF opcode
1	Specifies the type of MIF	Type of MIF opcode
2	Specifies the reference clock	RefClk switch opcode

Table 12–26. Required Lines for All MIFs

Table 12-26. Required Lines for All MIFs

Line Number	Description	Content Includes
3	Specifies the PLL switch	CGB PLL switch opcode
Last	Specifies end of reconfiguration MIF	End of MIF Opcode

Follow these steps to generate a reduced MIF:

- 1. Determine the content differences between the original MIF and the reconfigured MIF. For this example, assume there are bit differences at offset 5 and offset 20. These offsets reside in the PMA-TX and PMA-RX sections of the MIF.
- Use a text editor to create a new reduced MIF file. In this example, we will call the reduced MIF reduced_mif.mif. Copy the WIDTH, DEPTH, ADDRESS_RADIX, DATA_RADIX and CONTENT BEGIN lines from the original MIF to reduced_mif.mif.
- 3. Copy offsets 0-3 as described Table 12–26 from the original MIF to **reduced_mif.mif.** The reconfiguration MIF must always include these lines.
- 4. Copy all offsets of the PMA-TX and PMA-RX sections from the reconfigured MIF to reduced_mif.mif.
- 5. Copy the End of MIF opcode offset and END; from the original MIF to **reduced_mif.mif**.
- 6. Renumber **reduced_mif.mif** sequentially and update the DEPTH variable with the new value. The new value equals the number offsets in **reduced_mif.mif**.

You can now use **reduced_mif.mif** to reconfigure the transceiver.

Procedures for Reconfiguration

As Table 12–2 indicates, some features can only be reconfigured using register-based accesses, some features can only be reconfigured using MIF-based accesses, and some features can be reconfigured using either access mode. The following sections discuss both modes.

Changing Transceiver Settings Using Register-Based Reconfiguration

In register-based mode, you use a sequence of Avalon-MM writes and reads to update individual transceiver settings. The following section describes how to perform a register-based reconfiguration read and write.

Register-Based Write

Complete the following steps to perform a register-based write:

- 1. Read the control and status register busy bit (bit 8) until it is clear.
- 2. Write the logical channel number of the channel to be updated to the logical channel number register.
- 3. Write the *<feature>* offset address.
- 4. Write the appropriate data value to the data register.

- 5. Write the control and status register write bit to 1'b1.
- 6. Read the control and status register busy bit. Continue to read the busy bit while its value is one.
- 7. When busy = 0, the Transceiver Reconfiguration Controller has updated the logical channel specified in Step 2 with the data specified in Step 3.

Example 12–2 shows a reconfiguration that changes the logical channel 0 $\rm V_{OD}$ setting to 40.

Example 12–2. Register-Based Write of Logical Channel O V_{oD} Setting

```
#Setting logical channel 0
write_32 0x8 0x0
#Setting offset to VOD
write_32 0xB 0x0
#Setting data register to 40
write_32 0xC 0x28
#Writing all data
write_32 0xA 0x1
```

Register-Based Read

Complete the following steps for a read:

- 1. Read the control and status register busy bit (bit 8) until it is clear.
- 2. Write the logical channel number of the channel to be read to the logical channel number register.
- 3. Write the *<feature>* offset address.
- 4. Write the control and status register read bit to 1'b1.
- 5. Read the control and status register busy bit. Continue to read the busy until the value is zero.
- 6. Read the data register to get the data.

Example 12–3 illustrates a read of the pre-emphasis pretap value for logical channel 2.

Example 12–3. Register-Based Read of Logical Channel 2 Pre-Emphasis Pretap Setting

```
#Setting logical channel 2
write_32 0x8 0x2
#Setting offset to pre-emphasis pretap
write_32 0xB 0x1
#Writing the logical channel and offset for pre-emphasis pretap
write_32 0xA 0x1
#Reading data register for the pre-emphasis pretap value
read_32 0xC
```

Changing Transceiver Settings Using Streamer-Based Reconfiguration

The Streamer's registers allow you to change to the PCS datapath settings, clock settings, and PLL parameters by reading the new settings from an on- or off-chip ROM. "Streamer Module Registers" on page 12–24 lists the Streamer's memory-mapped registers that you can access using Avalon-MM read and write commands on reconfiguration management interface.

The following sections show how to change transceiver settings using Streamer modes 0 and 1.

Streamer-Based Reconfiguration

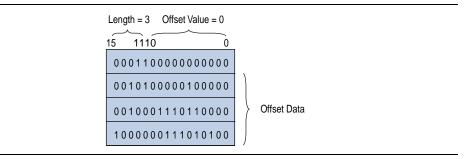
Follow these steps to reconfigure a transceiver setting by streaming the contents of a MIF file through the Streamer Module.

- 1. Write the logical channel number to the Streamer logical channel register.
- 2. Write MIF mode, 2'b00, to the Streamer control and status register mode bits.
- 3. Write the MIF base address, 0x0, to the Streamer offset register.
- 4. Write the base address of the MIF file to the Streamer data register.
- 5. Write the Streamer control and status register write bit to 1'b1 to initiate a write of all the data set in the previous steps.
- 6. Write to the Streamer offset register with the value to start a MIF stream, 0x1.
- 7. Write the Streamer internal data register with the value 0x1 to setup the streaming of the MIF.
- 8. Write to the Streamer control and status register to 1'b1, to initiate the streaming operation.
- 9. Read the control and status register busy bit. When the busy bit is deasserted, the MIF streaming operation has completed.

Example 12–4 illustrates the reconfiguration of logical channel 0 using a MIF with a base address of 0x100.

Example 12–4. Reconfiguration of Logical Channel O Using a MIF

```
#Setting logical channel 0
write_32 0x38 0x0
#Setting Streamer mode to 0
write 32 0x3A 0x0
\#Setting Streamer offset register to the MIF base address (0x0)
write_32 0x3B 0x0
#Setting data register with the MIF base address
write_32 0x3C 0x100
#Writing all data to the Streamer
write_32 0x3A 0x1
#Setting Streamer Module offset for Start MIF stream
write_32 0x3B 0x1
#Setting data register with 0x1 to setup for streaming
write_32 0x3C 0x1
#Writing all data to the Streamer to start streaming the MIF
write_32 0x3A 0x1
#Read the busy bit to determine when the write has completed
read 32 0x3A
```


Direct Write Reconfiguration

Follow these steps to reconfigure a transceiver setting using a series of Avalon-MM direct writes.

- 1. Write the logical channel number to the Streamer logical channel register.
- 2. Write Direct Mode, 2'b01, to the Streamer control and status register mode bits.
- 3. Write the offset address to the Streamer offset register.
- 4. Write the offset data to the Streamer data register.
- 5. Write the Streamer control and status register write bit to 1'b1 to initiate a write of all the data set in the previous steps.
- 6. Repeat steps 3 through 5 if the offset data length is greater than 1. Increment the offset value by 1 for each additional data record.
- 7. Read the control and status register busy bit. When the busy bit is deasserted, the operation has completed.

In Steps 3 and 4, you must specify an offset value and offset data. You can determine the values of the offset address and offset data by examining the data records specified in either the channel or PLL MIFs. Figure 12–6 shows a sample MIF.

Figure 12-	-6.	Sample	MIF
------------	-----	--------	-----

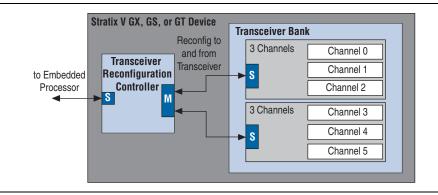
For the sample data record in Figure 12–6, the length field specifies three data records. The offset value is 0, as indicated by bits 10–0. The offset data are the three subsequent entries. Example 12–5 performs a direct write in Streamer mode 1. This example writes the sample MIF in Figure 12–6 into the Streamer module which writes this data to logical channel 0.

Example 12–5. Streamer Mode 1 Reconfiguration

```
#Setting logical channel 0
write 32 0x38 0x0
#Setting Streamer to mode to 1
write 32 0x3A 4'b0100
#Setting Streamer offset register to the offset address
#In the example record, the first offset address is 0x0
write_32 0x3B 0x0
#Setting data register with the first data record
write_32 0x3C 16'b0010100000100000
#Writing first data to the Streamer
write 32 0x3A 0x1
#Incrementing Streamer offset register offset address
write 32 0x3B 0x1
#Setting data register with the second data record
write_32 0x3C 16'b0010001110110000
#Writing second data to the Streamer
write_32 0x3A 0x1
#Incrementing Streamer offset register offset address
write_32 0x3B 0x2
```

Example 12–5. (continued)

```
#Setting data register with the third data record
write_32 0x3C 16'b1000000111010100
#Writing third data record to the Streamer
write_32 0x3A 0x1
#Read the busy bit to determine when the operation completes
read_32 0x3a
```


Understanding Logical Channel Numbering

This discussion of channel numbering, uses the following definitions:

- Reconfiguration interface—A bundle of signals that connect the Transceiver Reconfiguration Controller to a transceiver PHY data channel or TX PLL.
- Logical channels—An abstract representation of a channel or TX PLL that does not include physical location information.
- Bonded channel—A channel that shares a clock source with at least one other channel.
- Physical channel—The physical channel associated with a logical channel.

Figure 12–7 illustrates the connections between the Transceiver Reconfiguration Controller and a transceiver bank after running the Quartus II Fitter.

Figure 12–7. Post-Fit Connectivity

The transceiver PHY IP cores create a separate reconfiguration interface for each channel and each TX PLL. Each transceiver PHY IP core reports the number of reconfiguration interfaces it requires in the message pane of its GUI. You must take note of this number so that you can enter it as a parameter in the Transceiver Reconfiguration Controller.

Figure 12–8 shows the Low Latency PHY IP ore GUI specifying 32 channels. The message pane indicates that reconfiguration interfaces 0–31 are for the transceiver channels and reconfiguration interfaces 32–63 are for the TX PLLs.

Device family Data path typ		Stratix V Standard 🗸	
Mode of oper		Duplex	
Number of la		32	
	ne bonding ransceiver interface		
PCS-PMA inte			
PLL type:	inace width.	8	
Data rate:			
Base data rat	et	1250 Mbps	
Input clock fr		62.5 MHz	
Info: low_late	ancy: PHY IP will requ	ire 64 reconfiguration interfaces for connection to the external re	configuration controlle
	경험 관련 것은 것은 것은 것은 귀엽을 많이 많이 없다.	n interface offsets 0-31 are connected to the transceiver channel:	5.
Info: low_late	ancy: Reconfiguratio	n interface offsets 32–63 are connected to the transmit PLLs.	_

Figure 12–8.	Low Latency Transceiver PHY Example	

After Quartus II compilation, many of the interfaces are merged.

Figure 12–9 illustrates the GUI for the Transceiver Reconfiguration Controller. To connect the Low Latency PHY IP Core instance to the Transceiver Reconfiguration Controller, you would enter 64 for **Number of reconfiguration interfaces**. You would not need to enter any values for the **Optional interface grouping** parameter because all of the interfaces belong to the same transceiver PHY IP core instance.

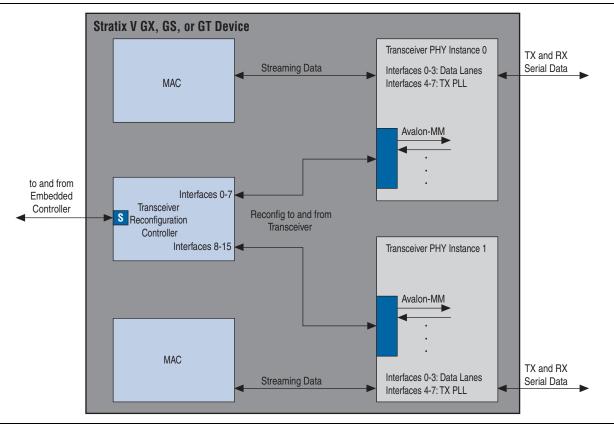
	alt_xcvr_reconfig		Documentation	
	neters			1
Devic	e family:	Stratix	V	
Inter	face Bundles			
Numb	er of reconfiguration i	nterfaces: 64		١
Optio	nal interface grouping:)
(na ')	2,2' or leave blank for a	single bundle)		1
	.,	, only to an arc,		
▼ Tran	sceiver Calibration fu	unctions		
🗹 En	able offset cancellation	n		
🗌 En	able duty cycle calibra	tion		
🗌 En	able auxiliary transmit	(ATX) PLL calibra	tion	
🔻 Anal	og Features			
🗹 En	able Analog controls			
En En	able EveQ block			
_	able adaptive equalizat	tion (AEO) block		
	abre adaptive equalization	ion (420) block		
Reco	nfiguration Features			
🗌 En	able channel/PLL reco	nfiguration		-
🗌 En	able PLL reconfiguratio	on support block		٠
2			>	

Figure 12–9. Transceiver Reconfiguration Controller Interface Bundles

Figure 12–10 on page 12–37 shows a design with two transceiver PHY IP core instances, each with four channels. For this design you would enter 16 for the **Number of reconfiguration interfaces** and 8, 8 for the **Optional interface grouping** parameter.

Depending upon the transceiver PHY IP core and the parameters specified, the number of reconfiguration interfaces varies. For a single-channel, RX-only transceiver instance, there is a single reconfiguration interface. One reconfiguration interface is created for a single-channel Low Latency PHY setup as a RX only channel. Two reconfiguration interfaces are created for a single-channel Custom PHY setup as a duplex channel. The reconfiguration interfaces do not appear as separate buses, but as a single bus of concatenated reconfiguration interfaces, that grows linearly with the number of reconfiguration interfaces.

Although you must create a separate logical reconfiguration interface for each PHY IP core instance, when the Quartus II software compiles your design, it reduces original number of logical interfaces by merging them. Allowing the Quartus II software to merge reconfiguration interfaces gives the Fitter more flexibility in placing transceiver channels. However, the logical channel number remains the same.


You cannot use SignalTapTM to observe the reconfiguration interfaces.

You do not have to assign numbers to the reconfiguration interfaces. The logical interface numbering is determined by the order of the interfaces in the connection between the transceiver PHY IP and the Transceiver Reconfiguration Controller.

Two PHY IP Core Instances Each with Four Bonded Channels

When two transceiver PHY instances, each with four bonded channels, are connected to a Transceiver Reconfiguration Controller, the reconfiguration buses of the two instances are concatenated. Figure 12–10 and Table 12–27 show the order and numbering of reconfiguration interfaces. The Quartus II software assigns the data channels logical channel numbers 0 to 3 for each transceiver PHY instance. The Quartus II software assigns the TX PLLs logical channel numbers 4 to 7 for each transceiver PHY instance. During Quartus II place and route, the Fitter maps the four logical TX PLLs in each transceiver PHY instance to a single physical TX PLL.

Logical Interface Number	PHY Instance, Interface, or PLL	
0–3	Instance 0, interfaces 0–3.	
4-7	Instance 0, TX PLL. The Fitter assigns all 4 logical TX PLLs to a single physical PLL.	
8-11	Instance 1, interfaces 0–3.	
12-15	Instance 1, TX PLL. The Fitter assigns all 4 logical TX PLLs to a single physical PLL.	

One PHY IP Core Instance with Eight Bonded Channels

This example requires the Quartus II Fitter to place channels in two, contiguous transceiver banks. To preserve flexibility for the Fitter, each channel and TX PLL is numbered separately. During place and route, the Fitter maps the eight logical TX PLLs to a single physical TX PLL.

Table 12–28 illustrates the logical channel numbering. In this table, logical address 0 accesses data channel 0 and logical address 8 accesses the TX PLL for data channel 0; logical address 1 accesses data channel 1 and logical address 9 accesses the TX PLL for data channel 1, and so on. In simulation, to reconfigure the TX PLL for channel 0, specify logical address 8 in the Streamer module's logical channel number. The Streamer module maps the logical channel to the physical channel which would be the same value for all eight channels.

Channel	Logical Channel Number	
Channel O	0	
Channel 1	1	
Channel 2	2	
Channel 3	3	
Channel 4	4	
Channel 5	5	
Channel 6	6	
Channel 7	7	
CMU 0	8	
CMU 1	9	
CMU 2	10	
CMU 3	11	
CMU 4	12	
CMU 5	13	
CMU 6	14	
CMU 7	15	

Table 12–28. Initial Number of Eight Bonded Channels

P

Because all of the channels in a transceiver bank share a PLL, this original numbering allows the Fitter to select the optimal CMU PLL from a placement perspective by considering all of the TX PLLs in the bank.

Table 12–29 shows the channel numbers for post-Fitter and hardware simulations. At this point, you should have assigned channels to pins of the device.

Channel	Logical Channel Number	
Channel O	0	
Channel 1	1	
Channel 2	2	
Channel 3	3	
CMU (0-4)	8-12	
Channel 4	4	
Channel 5	5	
CMU (5-7)	13–15	
Channel 6	6	
Channel 7	7	

Table 12–29. Post-Fit Logical Channel Numbers for Eight Bonded Channels

Two PHY IP Core Instances Each with Non-Bonded Channels

For each transceiver PHY IP core instance, the Quartus II software assigns the data channels sequentially beginning at logical address 0 and assigns the TX PLLs the subsequent logical addresses.

Table 12–30 illustrates the logical channel numbering for two transceiver PHY IP cores, one with 4 channels and one with 2 channels.

Instance	Channel	Logical Channel Number
	Channel O	0
	Channel 1	1
	Channel 2	2
Instance 0	Channel 3	3
	CMU 0	4
	CMU 1	5
	CMU 2	6
	CMU 3	7
	Channel 0	8
Instance 1	Channel 1	9
	CMU 0	10
	CMU 1	11

Table 12–30. Initial Number of Eight Bonded Channels

Reconfiguration Controller to PHY IP Connectivity

You can connect a single Transceiver Reconfiguration Controller to all of the transceiver channels and PLLs in your design. You can also use multiple Transceiver Reconfiguration Controllers to facilitate placement and routing of the FPGA. However, the three, upper or lower contiguous channels in a transceiver bank must be connected to the same reconfiguration controller.

Figure 12–11 illustrates connections between the Transceiver Reconfiguration Controller and transceiver channels after Quartus II compilation.

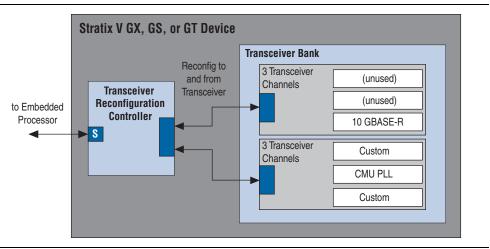
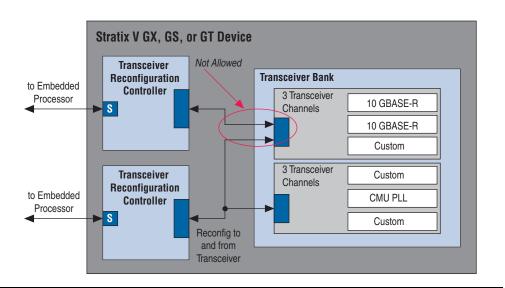
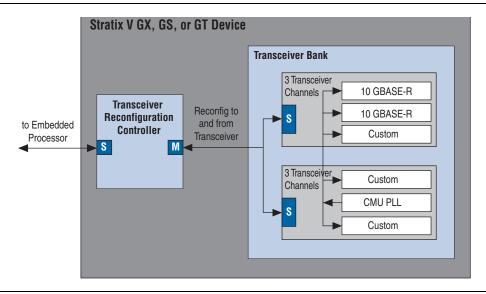



Figure 12–11. Correct Connections

Figure 12–12 illustrates incorrect connections between two Transceiver Reconfiguration Controllers and six transceiver channels. Two Transceiver Reconfiguration Controllers cannot access a single reconfiguration interface because there is no arbitration logic to prevent concurrent access. The configuration shown in Figure 12–12 results in a Quartus II compilation error.

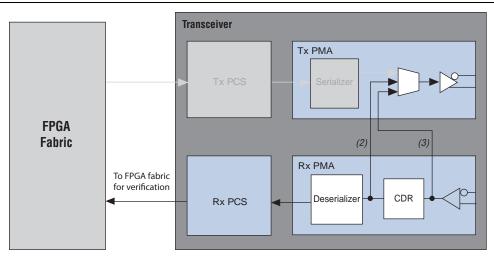
Figure 12–12. Incorrect Connections


Merging TX PLLs In Multiple Transceiver PHY Instances

The Quartus II Fitter can merge the TX PLLs for multiple transceiver PHY IP cores under the following conditions:

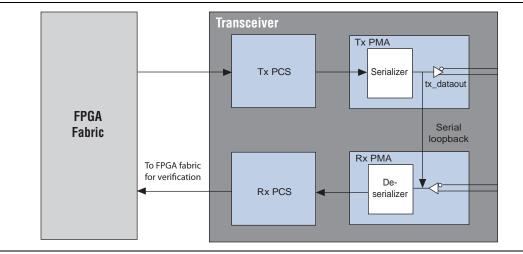
- The PLLs connect to the same reset pin.
- The PLLs connect to the same reference clock.
- The PLLs connect to the same Transceiver Reconfiguration Controller.

Figure 12–13 illustrates a design where the CMU PLL in channel 1 provides the clock to three Custom PHY channels and two 10GBASE-R PHY channels.



Loopback Modes

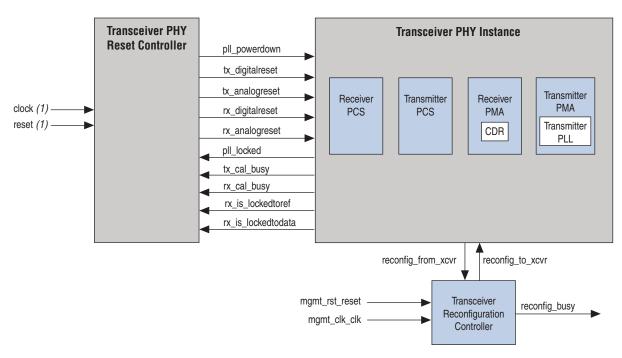
You can enable the pre- and post-CDR reverse serial loopback modes by writing the appropriate bits of the Transceiver Reconfiguration Controller pma_offset register described in Table 12–10 on page 12–12. In pre-CDR mode, data received through the RX input buffer is looped back to the TX output buffer. In post-CDR mode, received data passes through the RX CDR and then loops back to the TX output buffer. The RX data is also available to the FPGA fabric. In the TX channel, only the TX buffer is active. Figure 12–14 illustrates these modes.


Notes to Figure 12–14:

- (1) Grayed-out blocks are not active in these modes.
- (2) Post-CDR reverse serial loopback path.
- (3) Pre-CDR reverse serial loopback path.

In addition to the pre-CDR and post-CDR loopback modes available in the Transceiver Reconfiguration Controller register map, all the of PHYs, with the exception of PCI Express, support serial loopback mode. You enable this mode by writing the phy_serial_loopback register (0x061) using the Avalon-MM PHY management interface. PCI Express supports reverse parallel loopback mode as required by the *PCI Express Base Specification*.

Figure 12–15 shows the datapath for serial loopback. The data from the FPGA fabric passes through the TX channel and is looped back to the RX channel, bypassing the RX buffer. The received data is available to the FPGA fabric for verification. Using the serial loopback option, you can check the operation of all enabled PCS and PMA functional blocks in the TX and RX channels. When serial loopback is enabled, the TX channel sends the data to both the tx_serial_data output port and the RX channel.



The Transceiver PHY Reset Controller IP Core is a highly configurable core that you can use to reset transceivers in Stratix V, Arria V, or Cyclone V devices. This reset controller is an alternate controller that you can use instead of the embedded reset controller for the Custom, Low Latency, and Deterministic Latency PHY IP cores. You can use it to implement custom reset logic. It handles all reset sequencing of the transceiver to enable successful operation. The reset controller provides the following options:

- Separate or shared reset controls per channel
- Separate controls for the TX and RX channels and PLLs
- Synchronization of the reset inputs
- Hysteresis for PLL locked status inputs
- Configurable reset timings
- Automatic or manual reset recovery mode

Figure 13–1 illustrates the typical use of Transceiver PHY Reset Controller in a design that includes a transceiver PHY instance and the Transceiver Reconfiguration Controller IP Core.

Note to Figure 13-1:

(1) You can use the phy_mgmt_clk and phy_mgmt_clk_reset as the clock and reset to the user-controller reset logic.

As Figure 13–1 illustrates, the Transceiver PHY Reset Controller connects to a Transceiver PHY. The Transceiver PHY Reset Controller IP Core drives TX and RX resets to the Transceiver PHY and receives status from the Transceiver PHY. Depending on the components in the design, the calibration busy signal may be an output of the Transceiver PHY or the Transceiver Reconfiguration Controller. The following transceiver PHY IP support the removal of the embedded reset controller:

- Custom Transceiver PHY IP Core
- Low Latency PHY IP Core
- Deterministic Latency PHY IP Core
- Arria V and Stratix V Native PHY IP Cores

These transceiver PHYs drive the TX and RX calibration busy signals to the Transceiver PHY Reset Controller IP Core.

• For more information about recommended transceiver initialization and reset sequence for Stratix[®] V devices, refer to *Transceiver Reset Control in Stratix V Devices* in volume 3 of the *Stratix V Device Handbook*.

Device Family Support

IP cores provide either final or preliminary support for target Altera device families. These terms have the following definitions:

- *Final support*—*V*erified with final timing models for this device.
- *Preliminary support*—Verified with preliminary timing models for this device.

Table 13–1 shows the level of support offered by the Custom PHY IP core for Altera device families.

Table 13–1. Device Family S

Device Family	Support
Cyclone V devices	Preliminary
Arria V devices	Preliminary
Stratix V devices	Preliminary
Other device families	No support

Performance and Resource Utilization

Table 13–2 shows the typical expected device resource utilization, rounded to the nearest 50, for two configurations using the current version of the Quartus II software targeting a Stratix V GX device. Figures are rounded to the nearest 50.

Table 13–2. Reset Controller Resource Utilization—Stratix V De	vices
--	-------

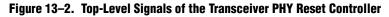
Configuration	Combinational ALUTs	Logic Registers
Single channel	50	50
4 channels, shared TX reset, separate RX resets	100	150

Parameters

Table 13–3 describes the parameters that you can set to customize the Transceiver PHY Reset Controller IP Core.

 Table 13–3.
 General Options

Name	Range	Description		
Number of transceiver channels	1-1000	Specifies the number of channels that connect to the Transceiver PHY Reset Controller IP Core.		
Number of TX PLLS	1-1000	Specifies the number of TX PLLs that connect to the Transceiver PHY Reset Controller.		
Input clock frequency	1-500 MHz	The frequency of the input clock in MHz. The upper limit on the input clock frequency is the frequency achieved in timing closure.		
Synchronize reset input	On/Off	When On , the Transceiver PHY Reset Controller synchronizes the reset to the input clock before driving it to the internal reset logic. When Off , the reset input is not synchronized.		
Use fast reset for simulation	On/Off	When On , the Transceiver PHY Reset Controller uses reduce reset counters for simulation. When Off , simulation runs wi the actual timings for hardware.		
TX PLL				
Enable TX PLL channel reset control	On/Off	When On , the Transceiver PHY Reset Controller enables the control of the TX PLL. When Off , the TX PLL controls are disabled.		
PLL powerdown duration 1+		Specifies the duration of the PLL powerdown period in ns. The value is rounded up to the nearest clock cycle. The default value is 1000 ns.		
Synchronize reset input for PLL powerdown	On/Off	When On , the Transceiver PHY Reset Controller synchronizes the PLL powerdown reset with the input clock. When Off , the PLL powerdown reset is not synchronized. If you select this option, you must also enable the Synchronize reset input parameter.		
		Turning this option On prevents equivalent PLLs from being merged across Transceiver PHY Reset Controllers.		
	TX Channel			
Enable TX channel reset control	On/Off	When On , the Transceiver PHY Reset Controller enables the control logic and associated status signals for TX reset. When Off , disables TX reset control and status signals.		
Use separate TX reset per channel On/Off		When On , each TX channel has a separate reset. When Off , the Transceiver PHY Reset Controller uses a shared TX reset controller for all channels.		


Name	Range	Description	
		Specifies the Transceiver PHY Reset Controller behavior when the pll_locked signal is deasserted. The following modes are available:	
TX automatic reset recovery mode	Auto Manual Expose Port	 Auto: The associated tx_digital_reset controller automatically resets whenever the pll_locked signal is deasserted. 	
		 Manual: The associated tx_digital_reset controller is not reset when the pll_locked signal is deasserted, allowing you to choose corrective action. 	
		 Expose Port: The tx_manual signal is a top-level signal of the IP Core. 	
TX digital reset duration	1+	Specifies the time in ns to continue to assert the tx_digitalreset after the reset input and all other gating conditions are removed. The value is rounded up to the nearest clock cycle. The default value is 20 ns.	
PLL locked input hysteresis	0+	Specifies the amount of hysteresis in ns to add to the pll_locked status input to filter spurious unreliable assertions of the pll_locked signal. A value of 0 adds no hysteresis. A higher values filters glitches on the pll_locked signal.	
	RX C	thannel	
		When On , the Transceiver PHY Reset Controller enables the control logic and associated status signals for RX reset. When Off , disables RX reset control and status signals.	
Use separate RX reset per channel	On/Off	When On , each RX channel has a separate reset input. When Off , uses a shared RX reset controller for all channels.	
RX automatic reset recovery mode	Auto Manual Expose Port	Specifies the Transceiver PHY Reset Controller behavior when the pll_locked signal is deasserted. The following modes are available:	
		 Auto: The associated rx_digital_reset controller automatically resets whenever the rx_is_lockedtodata signal is deasserted. 	
		 Manual: The associated rx_digital_reset controller is not reset when the rx_is_lockedtodata signal is deasserted, allowing you to choose corrective action. 	
		Expose Port: The rx_manual signal is a top-level signal of the IP Core. If the core include separate reset control for each RX channel, each RX channel uses its respective rx_is_lockedtodata signal for automatic reset control; otherwise, the inputs are ANDed to provide internal status for the shared reset controller.	

Name Range		Description	
RX digital reset duration	1+	Specifies the time in ns to continue to assert the rx_digitalreset after the reset input and all other gating conditions are removed. The value is rounded up to the nearest clock cycle. The default value is 40 ns.	
RX analog reset duration	1+	Specifies the time in ns to continue to assert the rx_analogreset after the reset input and all other gating conditions are removed. The value is rounded up to the nearest clock cycle. The default value is 4000 ns.	

Interfaces

Figure 13–2 illustrates the top-level signals of the Transceiver PHY Reset Controller IP Core. Many of the signals in Figure 13–2 become buses if you choose separate reset controls. The variables in Figure 13–2 represent the following parameters:

- *<n>*—The number of lanes
- *-*The number of PLLs

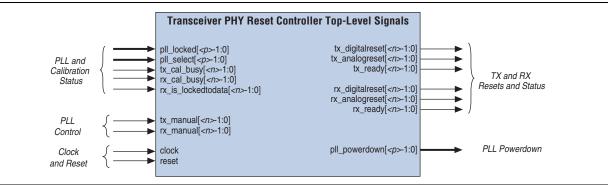


Table 13–4 describes the signals in Figure 13–2 in the order that they are shown in the figure. 1

Table 13-4. Top-Level Signals

Signal Name	Direction	Description	
Input Signals			
pll_locked[-1:0]	Input	Provides the PLL locked status input for each PLL. When asserted, indicates that the TX PLL is locked. When deasserted, the PLL is not locked. There is one signal per PLL.	
	-	When an IP core uses multiple PLLS, the ${\tt pll_select}$ signals specifies the PLL to use.	

Table 13–4. Top-Level Signals

Signal Name	Direction	Description
		When you select Use separate TX reset per channel , this bus provides enough inputs to specify an index for each pll_locked signal to listen to for each channel.
pll_select	Input	When you select a shared TX reset, the pll_select signal specifies the pll_locked signal used for all channels.
		This signal is synchronous to the Transceiver PHY Reset Controller input clock.
<pre>tx_cal_busy[<n>-1:0]</n></pre>	Input	This is the calibration status signal from the Transceiver PHY IP Core. When asserted, calibration is active. When deasserted, calibration has completed. This signal gates the TX reset sequence. The width of this signals depends on the number of TX and RX channels.
<pre>rx_cal_busy[<n>-1:0]</n></pre>	Input	This is calibration status signal from the Transceiver PHY IP Core. When asserted, calibration is active. When deasserted, calibration has completed. This signal gates the RX reset sequence. The width of this signals depends on whether or not you choose separate controls for each channel.
<pre>rx_is_lockedtodata[<n>-1:0]</n></pre>	Input	Provides the $rx_is_lockedtodata$ status from each RX CDR. When asserted, indicates that a particular RX CDR is ready to receive input data. If you do not choose separate controls for the RX channels, these inputs are ANDed together internally to provide a single status signal.
		This optional signal places tx_digitalreset controller under automatic or manual control.
tx_manual[< <i>n></i> -1:0]	Input	When asserted, the associated tx_digitalreset controller does not automatically respond to deassertion of the pll_locked signal. However, the initial tx_digitalreset sequence still requires a one-time rising edge on pll_locked before proceeding.
		When deasserted. The associated tx_digital_reset controller automatically begins its reset sequence whenever the selected pll_locked signal is deasserted.
		This optional signal places rx_digitalreset controller under automatic or manual control.
<pre>rx_manual[<n>-1:0]</n></pre>	Input	When asserted, the associated rx_digitalreset controller does not automatically respond to deassertion of the rx_is_lockedtodata signal. When deasserted. The associated rx_digital_reset controller automatically begins its reset sequence whenever the selected rx_is_lockedtodata signal is deasserted.
clock	Input	System clock input from which all internal logic is driven.
reset	Input	Asynchronous reset input. When asserted, all configured reset outputs are asserted. Holding the reset input signal asserted holds all other reset outputs asserted.

Table 13-4. Top-Level Signals

Signal Name	Direction	Description		
Output Signals				
	Output	Digital reset for TX. The width of this signal depends on the number of TX channels. This signal is asserted when any of the following conditions is true:		
		reset is asserted.		
		pll_powerdown is asserted		
<pre>tx_digitalreset[<n>-1:0]</n></pre>		<pre>tx_cal_busy is asserted</pre>		
		PLL has not reached the initial lock (pll_locked deasserted)		
		pll_locked is deasserted and tx_manual is deasserted		
		When all of these conditions are false, the reset counter begins its countdown for deassertion of $tx_digital_reset$.		
<pre>tx_analogreset[<n>-1:0]</n></pre>	Output	Analog reset for TX channels. This signal follows pll_powerdown and is deasserted a few clock cycles after the TX PLL comes out the reset and locks to the input reference clock.		
tx_ready[<n>-1:0]</n>	Output	Status signal to indicate when the TX reset sequence is complete. This signal is deasserted while the TX reset is active. It is asserted a few clock cycles after the deassertion of $tx_digitalreset$. The width of this signal depends on the number of TX channels.		
		Digital reset for RX. The width of this signal depends on the number of channels. This signal is asserted when any of the following conditions is true:		
		reset is asserted		
<pre>rx_digitalreset[<n>-1:0]</n></pre>	Output	rx_analogreset is asserted		
		<pre>rx_cal_busy is asserted</pre>		
		<pre>rx_is_lockedtodata is deasserted and rx_manual is deasserted</pre>		
		When all of these conditions are false, the reset counter begins its countdown for deassertion of rx_digital_reset.		
rx_ready[<n>-1:0]</n>	Output	Status signal to indicate when the RX reset sequence is complete. This signal is deasserted while the RX reset is active. It is asserted a few clock cycles after the deassertion of rx_digitalreset. The width of this signal depends on the number of channels.		
<pre>pll_powerdown[-1:0]</pre>	Output	When asserted, this status signal indicates that the selected TX PLL is powered down.		

14. Migrating from Stratix IV to Stratix V Devices

Previously, Altera provided the ALTGX megafunction as a general purpose transceiver PHY solution. The current release of the Quartus II software includes protocol-specific PHY IP cores that simplify the parameterization process.

The design of these protocol-specific transceiver PHYs is modular and uses standard interfaces. An Avalon-MM interface provides access to control and status registers that record the status of the PCS and PMA modules. Consequently, you no longer must include signals in the top level of your transceiver PHY to determine the status of the serial RX and TX interfaces. Using standard interfaces to access this device-dependent information should ease future migrations to other device families and reduce the overall design complexity. However, to facilitate debugging, you may still choose to include some device-dependent signals in the top level of your design during the initial simulations or even permanently. All protocol-specific PHY IP in Stratix V devices also include embedded controls for post-reset initialization which are available through the Avalon-MM interface.

For Stratix IV devices, the location of the transceiver dynamic reconfiguration logic is design dependent. In general, reconfiguration logic is integrated with the transceiver channels for simple configurations and is separately instantiated for more complex designs that use a large number of channels or instantiate more than one protocol in a single transceiver quad. For Stratix V devices, transceiver dynamic reconfiguration is always performed using the separately instantiated Transceiver Reconfiguration Controller.

Control of loopback modes is also different in Stratix IV and Stratix V devices. For Stratix IV devices, you must select loopback options in the using the MegaWizard Plug-In Manager. For Stratix V devices, you control loopback modes through Avalon-MM registers. Table 14–1 outlines these differences.

Loopback Mode	Stratix IV	Stratix V
Serial loopback	On the Loopback tab of the ALTGX MegaWizard Plug-In Manager, Instantiate the rx_seriallpbken signal by selecting the Serial loopback option. Drive this signal to 1 to put the transceiver in serial loopback mode.	Use the Avalon-MM PHY management interface to set the appropriate bit in the phy_serial_loopback register (0x061).
Reverse serial loopback (pre- and post-CDR)	On the Loopback tab of the ALTGX MegaWizard Plug-In Manager, select either pre-CDR or post-CDR loopback and regenerate the ALTGX IP core.	Update the appropriate bits of the Transceiver Reconfiguration Controller tx_rx_word_offset register to enable the pre- or post-CDR reverse serial loopback mode. Refer to Table 12–10 on page 12–12 for more information.

 Table 14–1. Controlling Loopback Modes in Stratix IV and Stratix V Devices

This chapter enumerates the differences between the ALTGX megafunction for use with Stratix IV GX devices and the protocol-specific transceiver PHYs for use with Stratix V GX devices in the current release. It includes the following topics:

- Dynamic Reconfiguration of Transceivers
- XAUI PHY
- PHY IP Core for PCI Express PHY (PIPE)
- Custom PHY

Dynamic Reconfiguration of Transceivers

This section covers dynamic reconfiguration of transceivers in Stratix V and Stratix IV devices. Dynamic reconfiguration interface is completely new in Stratix V devices. You cannot automatically migrate a dynamic reconfiguration solution from Stratix IV to Stratix V devices.

Dynamic Reconfiguration for Stratix V Transceivers

Stratix V devices that include transceivers must use the Altera Transceiver Reconfiguration Controller that contains the offset cancellation logic to compensate for variations due to PVT. Initially, each transceiver channel and each TX PLL has its own parallel, dynamic reconfiguration bus, named reconfig_from_xcvr[45:0] and reconfig_to_xcvr[69:0]. The reconfiguration bus includes Avalon-MM signals to read and write registers and memory and test bus signals. When you instantiate a transceiver PHY in a Stratix V device, the transceiver PHY IP core provides informational messages specifying the number of required reconfiguration interfaces in the message pane as Example 14–1 illustrates.

```
Example 14–1. Informational Messages for the Transceiver Reconfiguration Interface
```

PHY IP will require 5 reconfiguration interfaces for connection to the external reconfiguration controller. Reconfiguration interface offsets 0-3 are connected to the transceiver channels. Reconfiguration interface offset 4 is connected to the transmit PLL.

Although you must initially create a separate reconfiguration interface for each channel and TX PLL in your design, when the Quartus II software compiles your design, it reduces the number of reconfiguration interfaces by merging reconfigurations interfaces. The synthesized design typically includes a reconfiguration interface for three channels. Allowing the Quartus II software to merge reconfiguration interfaces gives the Fitter more flexibility in placing transceiver channels.

Dynamic Reconfiguration for Stratix IV Transceivers

Stratix IV devices that include transceivers must use the ALTGX_RECONFIG IP Core to implement dynamic reconfiguration. The ALTGX_RECONFIG IP Core always includes the following two serial buses:

reconfig_from[<n>16:0]— this bus connects to all the channels in a single quad. <n> is the number of quads connected to the ALTGX_RECONFIG IP Core. reconfig_togxb[3:0]—this single bus connects to all transceiver channels.

If you select additional functionality in the MegaWizard Plug-In Manager for the ALTGX_RECONFIG IP Core, the IP core adds signals to support that functionality. For more information about the ALTGX_RECONFIG IP Core, refer to *ALTGX_RECONFIG Megafunction User Guide for Stratix IV Devices* in volume 3 of the *Stratix IV Device Handbook*.

XAUI PHY

This section lists the differences between the parameters and signals for the XAUI PHY IP Core and the ALTGX megafunction when configured in the XAUI functional mode.

Parameter Differences

Table 14–2 lists the XAUI PHY parameters and the corresponding ALTGX megafunction parameters.

Table 14–2. Comparison of ALTGX Megafunction and XAUI PHY Parameters (Part 1 of 2)

ALTGX Parameter Name (Default Value)	XAUI PHY Parameter Name	Comments	
Number of channels	Number of XAUI interfaces	In Stratix V devices, this parameter is locked to 1 (for 4 channels). You cannot change it in the current release.	
Train receiver clock and data recover (CDR) from pll_inclk (On)	Not available as parameters in	Use assignment editor to make these assignment	
TX PLL bandwidth mode (Auto)	the MegaWizard Plug-In Manager interface		
RX CDR bandwidth mode (Auto)			

ALTGX Parameter Name (Default Value)	XAUI PHY Parameter Name	Comments	
Acceptable PPM threshold between receiver CDR VCO and receiver input reference clock (± 1000)			
Analog power (Auto)			
Loopback option (No loopback)			
Enable static equalizer control (Off)			
DC gain (0)			
Receiver common mode voltage (0.82v)			
Use external receiver termination (Off)			
Receiver termination resistance (100 ohms)	Not available as parameters in	Use assignment editor to	
Transmitter buffer power (1.5v)	the MegaWizard Plug-In Manager interface	make these assignments	
Transmitter common mode voltage (0.65v)			
Use external transmitter termination (Off)			
Transmitter termination resistance (100 ohms)			
VOD setting (4)			
Preemphasis 1 st post-tap (0)			
Preemphasis pre-tap setting (0)			
Preemphasis second post-tap setting (0)			
Analog controls (Off)			
Enable ADCE (Off)	Not available as parameters in		
Enable channel and transmitter PLL reconfig (Off)	the MegaWizard Plug-In Manager interface	Not available in 10.0	
Starting channel number (0)	No longer required	Automatically set to 0. The Quartus II software handles lane assignments	
Enable run length violation checking with run length of (40)	Not available as parameters in	Use assignment editor	
Enable transmitter bit reversal (Off)	the MegaWizard Plug-In Manager interface		
Word alignment pattern length (10)	intoritado		

Table 14–2. Comparison of ALTGX Megafunction and XAUI PHY Parameters (Part 2 of 2)

Port Differences

Table 14–5 lists the differences between the top-level signals in Stratix IV GX and Stratix V GX/GS devices.

Table 14–3. Correspondences between XAUI PHY Stratix IV GX and Stratix V Device Signals (Part 1 of 3)

Stratix IV GX Devices		Stratix V Devices			
Signal Name Width		Signal Name	Width		
Reference Clocks and Resets					
pll_inclk	1	refclk	1		
rx_cruclk	[< <i>n</i> > -1:0]	Not available	—		
coreclkout	1	xgmii_rx_clk	1		
rx_coreclk	[< <i>n</i> >-1:0]	Not available	—		

Stratix IV GX Devices		Stratix V Devices		
Signal Name Width		Signal Name	Width	
tx_coreclk [< <i>n</i> >-1:0] xg		xgmii_tx_clk	1	
Not available	_	rx_pma_ready	1	
Not available	_	tx_pma_ready	1	
	Dat	ta Ports		
rx_datain	[< <i>n</i> >-1:0]	xaui_rx_serial	[3:0]	
tx_datain	[16< <i>n</i> > -1:0]	xgmii_tx_dc	[63:0]	
rx_dataout	[16< <i>n></i> – 1:0]	xgmii_rx_dc	[63:0]	
tx_dataout	[< <i>n</i> > -1:0]	xaui_tx_serial	[3:0]	
	Optional TX a	nd RX Status Ports		
gxb_powerdown	[< <i>n</i> >/4 – 1:0]	Not available, however you can access them through the Avalon-MM PHY management interface.	_	
pll_locked	[< <i>n</i> >-1:0]	Not available		
rx_locktorefclk	[< <i>n</i> > -1:0]	Not available		
rx_locktodata	[< <i>n</i> > -1:0]	Not available		
rx_pll_locked	[< <i>n</i> >/4 – 1:0]	Not available	_	
rx_freqlocked	[< <i>n</i> >/4 – 1:0]	Not available		
rx_phase_comp_fifo_error	[< <i>n</i> >/4 – 1:0]	Not available		
tx_phase_comp_fifo_error	[< <i>n</i> >/4 – 1:0]	Not available		
cal_blk_powerdown	—	Not available		
rx_syncstatus	[2< <i>n</i> > – 1:0]	rx_syncstatus	[< <i>n</i> >*2-1:0]	
rx_patterndetect	[2< <i>n</i> > – 1:0]	Not available		
rx_invpolarity	[< <i>n</i> >-1:0]	Not available		
rx_ctrldetect	[2< <i>n</i> > – 1:0])] Not available		
rx_errdetect	[2< <i>n</i> > – 1:0]	rx_errdetect	[< <i>n</i> >*2-1:0]	
rx_disperr	[2< <i>n</i> >-1:0]	rx_disperr	[< <i>n</i> >*2-1:0]	
tx_invpolarity	[< <i>n</i> >-1:0]	Not available	_	
rx_runningdisp	[2< <i>n</i> > – 1:0]	Not available	_	
rx_rmfifofull	[2< <i>n</i> > – 1:0]	Not available	—	
rx_rmfifoempty	[2< <i>n</i> > – 1:0]	Not available	_	
rx_rmfifodatainserted	[2< <i>n</i> > – 1:0]	Not available	—	
rx_rmfifodatadeleted	[2< <i>n</i> > – 1:0]	Not available	—	
	Transceiver	Reconfiguration		
cal_blk_clk	1	These signals are included in the		
reconfig_clk	1	reconfig_to_xcvr bus.		
reconfig_togxb	[3:0]	reconfig_to_xcvr	variable	
reconfig_fromgxb	[16:0]	reconfig_from_xcvr	variable	

Table 14–3. Correspondences between XAUI PHY Stratix IV GX and Stratix V Device Signals (Part 2 of 3) ⁽¹⁾

Stratix IV GX Devices		Stratix V Devices	
Signal Name Width		Signal Name	Width
		phy_mgmt_clk_rst	1
		phy_mgmt_clk	1
		phy_mgmt_address	[8:0]
Not available		phy_mgmt_read	1
		phy_mgmt_readdata	[31:0]
		phy_mgmt_write	1
		phy_mgmt_writedata	[31:0]

Table 14–3. Correspondences between XAUI PHY Stratix IV GX and Stratix V Device Signals (Part 3 of 3) ⁽¹⁾

Note to Table 14-3:

(1) <n> = the number of lanes. <d> = the total deserialization factor from the pin to the FPGA fabric.

PHY IP Core for PCI Express PHY (PIPE)

This section lists the differences between the parameters and signals for the PCI Express PHY (PIPE) IP Core and the ALTGX megafunction when configured in the PCI Express (PIPE) functional mode.

Parameter Differences

Table 14–4 lists the PHY IP Core for PCI Express PHY (PIPE) parameters and the corresponding ALTGX megafunction parameters.

ALTGX Parameter Name (Default Value)	PCI Express PHY (PIPE) Parameter Name	Comments
Number of channels	Number of Lanes	—
Channel width	Deserialization factor	_
Subprotocol	Protocol Version	—
input clock frequency	PLL reference clock frequency	—
Starting Channel Number	_	Automatically set to 0. Quartus II software handles lane assignments.
Enable low latency sync	pipe_low_latency_syncronous_mode	—
Enable RLV with run length of	pipe_run_length_violation_checking Always on	
Enable electrical idle inference functionality	Enable electrical idle inferencing	_
-	phy_mgmt_clk_in_mhz	For embedded reset controller to calculate delays

ALTGX Parameter Name (Default Value)	PCI Express PHY (PIPE) Parameter Name	Comments	
Train receiver CDR from pll_inclk (false)			
TX PLL bandwidth mode (Auto)			
RX CDR bandwidth mode (Auto)			
Acceptable PPM threshold (± 300)			
Analog Power(VCCA_L/R) (Auto)			
Reverse loopback option (No loopback)			
Enable static equalizer control (false)			
DC gain (1)			
RX Vcm (0.82)	Not available in MegaWizard Interface	Use assignment editor to make these assignments	
Force signal detection (Off)	Not available in megavizaru interiace		
Signal Detect threshold (4)			
Use external receiver termination (Off)			
RX term (100)			
Transmitter buffer power(VCCH) (1.5)			
TX Vcm (0.65)			
Use external transmitter termination (Off)			
TX Rterm (100)			
VCO control setting (5)			
Pre-emphasis 1st post tap (18)			
Pre-tap (0)			
2nd post tap (0)	Not available in MegaWizard Interface	Use assignment editor to make these assignments	
DPRIO - V_{0D} , Pre-em, Eq and EyeQ (Off)			
DPRIO - Channel and TX PLL Reconfig (Off)	1		

Table 14–4. Comparison of ALTGX Megafunction and PHY IP Core for PCI Express PHY (PIPE) Parameters (Part 2 of 2)

Port Differences

Table 14–5 lists the differences between the top-level signals in Stratix IV GX and Stratix V GX/GS devices. PIPE standard ports remain, but are now prefixed with pipe_. Clocking options are simplified to match the PIPE 2.0 specification.

Table 14–5. PCIe PHY (PIPE) Correspondence between Stratix IV GX Device and Stratix V Device Signals (Pa	Part 1 of 3) (1)
--	------------------

Stratix IV GX Device Signal Name	Stratix V Device Signal Name	Width
	Reference Clocks and Resets	
pll_inclk	pll_ref_clk	1
rx_cruclk	Not available [<n>-1:</n>	
tx_coreclk	Not available [<n>-</n>	
rx_coreclk	Not available	[< <i>n</i> >-1:0]
tx_clkout/coreclkout	pipe_pclk	1

Stratix IV GX Device Signal Name	Stratix V Device Signal Name	Width	
pll_powerdown	These signals are now available as control and	1	
cal_blk_powerdown	status registers. Refer to the "Avalon-MM PHY Management Interface" on page 6–16 and "PCI Express PHY (PIPE) IP Core Registers" on page 6–16	1	
Not available	<pre>tx_ready (reset control status)</pre>	1	
Not available	<pre>rx_ready (reset curl status)</pre>	1	
PIPE interface Ports			
tx_datain	pipe_txdata	[<n><d>-1:0]</d></n>	
tx_ctrlenable	pipe_txdatak	[(<d>/8)*<n>-1:0]</n></d>	
tx_detectrxloop	pipe_txdetectrx_loopback	[<n>-1:0]</n>	
tx_forcedispcompliance	pipe_txcompliance	[<n>-1:0]</n>	
tx_forceelecidle	pipe_txelecidle	[< <i>n></i> -1:0]	
txswing	pipe_txswing [<n></n>		
<pre>tx_pipedeemph[0]</pre>	pipe_txdeemph	[< <i>n</i> >-1:0]	
<pre>tx_pipemargin[2:0]</pre>	pipe_txmargin	[3< <i>n</i> >-1:0]	
rateswitch[0]	pipe_rate[1:0]	[<n>-1:0]</n>	
powerdn	pipe_powerdown	[2< <i>n</i> >-1:0]	
rx_elecidleinfersel	pipe_eidleinfersel	[3< <i>n</i> >-1:0]	
rx_dataout	pipe_rxdata	[<n>-*<d>-1:0]</d></n>	
rx_ctrldetect	pipe_rxdatak	[(<d>/8)*<n>-1:0]</n></d>	
pipedatavalid	pipe_rxvalid	[<n>-1:0]</n>	
pipe8b10binvpolarity	pipe_rxpolarity	[<n>-1:0]</n>	
pipeelecidle	pipe_rxelecidle	[<n>-1:0]</n>	
pipephydonestatus	pipe_phystatus	[<n>-1:0]</n>	
pipestatus	pipe_rxstatus	[3< <i>n</i> >-1:0]	
	Non-PIPE Ports		
rx_pll_locked	rx_is_lockedtoref	[< <i>n</i> >1:0]	
rx_freqlocked	rx_is_lockedtodata	[< <i>n</i> >1:0]	
pll_locked	pll_locked	1	
rx_syncstatus	rx_syncstatus (also management interface)	[(<d>/8)*<n>-1:0]</n></d>	

Table 14–5 .	PCIe PHY (PIP	E) Correspondence	e between Stratix	IV GX Device a	nd Stratix V De	vice Signals	(Part 2 of 3)	(1)
				11 G/L DU1100 G		Tiou orginalo	(1 41 6 6 01 0/	

Stratix IV GX Device Signal Name	Stratix V Device Signal Name	Width	
rx_locktodata		[< <i>n</i> >-1:0]	
rx_locktorefclk		[<n>-1:0]</n>	
tx_invpolarity		[<n>-1:0]</n>	
rx_errdetect	These signals are now available as control and	[(<d>/8)*<n>-1:0]</n></d>	
rx_disperr	status registers. Refer to the "Register	[(<d>/8)*<n>-1:0]</n></d>	
rx_patterndetect	Descriptions" under "Avalon-MM PHY	[(<d>/8)*<n>-1:0]</n></d>	
tx_phase_comp_fifo_error	Management Interface" on page 6–16	[<n>-1:0]</n>	
rx_phase_comp_fifo_error		[<n>-1:0]</n>	
rx_signaldetect		[<n>-1:0]</n>	
rx_rlv		[<n>-1:0]</n>	
rx_datain	rx_serial_data	[<n>-1:0]</n>	
tx_dataout	tx_serial_data	[<n>-1:0]</n>	
	Reconfiguration		
cal_blk_clk		1	
reconfig_clk	These signals are included in the reconfig_to_xcvr bus	1	
fixedclk	reconfig_to_xcvr bus	1	
reconfig_togxb	reconfig_to_xcvr	variable	
reconfig_fromgxb	reconfig_from_xcvr	variable	
Av	alon MM Management Interface		
	phy_mgmt_clk_reset	1	
	phy_mgmt_clk	1	
	phy_mgmt_address	[8:0]	
Not available	phy_mgmt_read	1	
	phy_mgmt_readdata	[31:0]	
	phy_mgmt_write	1	
	phy_mgmt_writedata	[31:0]	

Table 14–5. PCIe PHY (PIPE) Correspondence between Stratix IV GX Device and Stratix V Device Signals (Part 3 of 3) ⁽¹⁾

Note to Table 14-5:

(1) <n> = the number of lanes. <d> = the total deserialization factor from the pin to the FPGA fabric.

Custom PHY

This section lists the differences between the parameters and signals for the Custom PHY IP Core and the ALTGX megafunction when configured in the Basic functional mode.

Parameter Differences

Table 14–6 lists the Custom PHY parameters and the corresponding ALTGX megafunction parameters.

 Table 14–6. Comparison of ALTGX Megafunction and Custom PHY Parameters (Part 1 of 2)

ALTGX Parameter Name (Default Value)	Custom PHY Parameter Name		
General			
	Device family		
Not available	Transceiver protocol		
NOT AVAILABLE	Mode of operation		
	Enable bonding		
What is the number of channels?	Number of lanes		
Which subprotocol will you be using? (×4, ×8)	Not available		
What is the channel width?	Serialization factor		
What is the effective data rate?	Data rate		
What is the input clock frequency?	Input clock frequency		
tx/rx_8b_10b_mode	Enable 8B/10B encoder/decoder		
Not available	Enable manual disparity control		
NOT available	Create optional 8B10B status ports		
What is the deserializer block width?	Deserializer block width: ⁽¹⁾		
Single Double	Auto Single Double		
Additional Options			
	Enable TX Bitslip		
	Create rx_coreclkin port		
	Create tx_coreclkin port		
Not available	Create rx_recovered_clk port		
	Create optional ports		
	Avalon data interfaces		
	Force manual reset control		
Protocol Settings–Word Aligner	Word Aligner		
Use manual word alignment mode Use manual bitslipping mode Use the built-in 'synchronization state machine'	Word alignment mode		
Enable run length violation checking with a run length of	Run length		
	nuli leliyili		

What is the word alignment pattern length	Word aligner pattern length
Protocol Settings—Rate match/Byte order	Rate Match
What is the 20-bit rate match pattern1 (usually used for +ve disparity pattern)	Rate match insertion/deletion +ve disparity pattern
What is the 20-bit rate match pattern1 (usually used for -ve disparity pattern)	Rate match insertion/deletion -ve disparity pattern
Protocol Settings—Rate match/Byte order	Byte Order
What is the byte ordering pattern	Byte ordering pattern

Table 14–6. Comparison of ALTGX Megafunction and Custom PHY Parameters (Part 2 of 2)

Note to Table 14-6:

(1) This parameter is on the **Datapath** tab.

Port Differences

Table 14–5 lists the differences between the top-level signals in Stratix IV GX and Stratix V GX/GS devices.

Table 14–7. Custom PHY Correspondences between Stratix IV GX Device and Stratix V Device Signals

ALTGX	Custom PHY	Width
	Avalon MM Management Interface	
	phy_mgmt_clk_reset	1
	phy_mgmt_clk	1
	phy_mgmt_address	8
Not available	phy_mgmt_read	1
	phy_mgmt_readdata	32
	phy_mgmt_write	1
	phy_mgmt_writedata	32
	Clocks	
cal_blk_clk	These signals are included in the	
reconfig_clk	reconfig_to_xcvr bus	
pll_inclk	pll_ref_clk	[-1:0]
rx_coreclk	rx_coreclkin	
tx_coreclk	tx_coreclkin	
	Avalon-ST TX Interface	
tx_datain	tx_parallel_data	[<d><n>-1:0]</n></d>
tx_ctrlenable	tx_datak	[<d><n>-1:0]</n></d>
rx_ctrldetect	rx_datak	[<d><n>-1:0]</n></d>
	Avalon-ST RX Interface	
rx_dataout	rx_parallel_data	[<d><n>-1:0]</n></d>
rx_runningdisp	rx_runningdisp	[<d 8=""><n>-1:0]</n></d>
rx_enabyteord	rx_enabyteord	[<n>-1:0]</n>

High Speed Serial I/O		
rx_datain	rx_serial_data	[<n>-1:0]</n>
tx_dataout	tx_serial_data	[<n>-1:0]</n>
rx_freqlocked	rx_is_lockedtodata	[<n>-1:0]</n>
	Transceiver Control and Status Signals	
gxb_powerdown	phy_mgmt_clk_reset	
rx_dataoutfull	—	
tx_dataoutfull	_	
rx_pll_locked	There are both pll_locked and rx_pll_clocked in Stratix IV. Stratix V only has pll_locked.	
rx_clkout		
rx_phase_comp_fifo_error	These signals are now available as control and	
rx_seriallpbken	status registers. Refer to "Register Descriptions"	
tx_phase_comp_fifo_error	on page 7–24.	
tx_invpolarity		
	Transceiver Reconfiguration	
reconfig_togxb[3:0]	reconfig_to_xcvr	variable
reconfig_fromgxb[16:0]	reconfig_from_xcvr	variable

Table 14–7. Custom PHY Correspondences between Stratix IV GX Device and Stratix V Device Signals

Note to Table 14-7:

(1) <n> = the number of lanes. <d> = the total deserialization factor from the pin to the FPGA fabric.

This chapter provides additional information about the document and Altera.

Revision History

The table below displays the revision history for the chapters in this user guide.

Date	Version	Changes Made
	·	Introduction and Getting Started
June 2012	1.7	Added brief discussion of the Stratix V and Arria V Transceiver Native PHY IP Cores.
	1	Getting Started
June 2012	1.7	 No changes from the previous release.
	1	10GBASE-R
		 Added the following QSF settings to all transceiver PHY: XCVR_TX_PRE_EMP_PRE_TAP_USER, XCVR_TX_PRE_EMP_2ND_POST_TAP_USER, and 11 new settings for GT transceivers. Added Arria V device support.
	1.7	 Changed the default value for xcvr_refclk_pin_termination from DC_coupling_internal_100_Ohm to AC_coupling. Changed references to Stratix IV GX to Stratix IV GT. This IP core only supports
h		 Stratix IV GT devices. Added optional pll_locked status signal for Arria V and Stratix V devices. Added optional rx_coreclkin port.
June 2012		 Added arrows indicating Transceiver Reconfiguration Controller IP Core connection to block diagram.
		 Changed the maximum frequency of phy_mgmt_clk to 150 MHz if the same clock is used for the Transceiver Reconfiguration Controller IP Core.
		 Added the following restriction in the dynamic reconfiguration section: three channels share an Avalon-MM slave interface which must connect to the same Transceiver Reconfiguration Controller IP Core.
		 Added example showing how to override the logical channel 0 channel assignment in Stratix V devices.
		Added table showing latency through PCS and PMA for Arria V and Stratix V devices.

Date	Version	Changes Made	
	XAUI		
		 Added the following QSF settings to all transceiver PHY: XCVR_TX_PRE_EMP_PRE_TAP_USER, XCVR_TX_PRE_EMP_2ND_POST_TAP_USER, and 11 new settings for GT transceivers. 	
		 Added reference Transceiver device handbook chapters for detailed explanation of PCS blocks. 	
		 Changed the default value for XCVR_REFCLK_PIN_TERMINATION from DC_coupling_internal_100_Ohm to AC_coupling. 	
June 2012	1.7	 Changed the maximum frequency of phy_mgmt_clk to 150 MHz if the same clock is used for the Transceiver Reconfiguration Controller IP Core. 	
		 Added example showing how to override the logical channel 0 channel assignment in Stratix V devices. 	
		 Expanded definition of External PMA control and configuration parameter. 	
		 Added the following restriction in the dynamic reconfiguration section: three channels share an Avalon-MM slave interface which must connect to the same Transceiver Reconfiguration Controller IP Core. 	
		 Added note that cal_blk_powerdown register is not available for Stratix V devices. 	
		Interlaken	
		 Added support for custom, user-defined, data rates. 	
		 Added the following QSF settings to all transceiver PHY: XCVR_TX_PRE_EMP_PRE_TAP_USER, XCVR_TX_PRE_EMP_2ND_POST_TAP_USER, and 11 new settings for GT transceivers. 	
		 Changed the default value for XCVR_REFCLK_PIN_TERMINATION from DC_coupling_internal_100_Ohm to AC_coupling. 	
		 Updated the definition of tx_sync_done. It is no longer necessary to send pre-fill data before tx_sync_done and tx_ready are asserted. 	
June 2012	1.7	Updated definition of tx_datain_bp <n>.</n>	
		 Added arrows indicating Transceiver Reconfiguration Controller IP Core connection to block diagram. 	
		 Changed the maximum frequency of phy_mgmt_clk to 150 MHz if the same clock is used for the Transceiver Reconfiguration Controller IP Core. 	
		 Clarified signal definitions. 	
		 Added the following restriction in the dynamic reconfiguration section: three channels share an Avalon-MM slave interface which must connect to the same Transceiver Reconfiguration Controller IP Core. 	

Date	Version	Changes Made
		PCI Express (PIPE)
		 Added the following QSF settings to all transceiver PHY: XCVR_TX_PRE_EMP_PRE_TAP_USER, XCVR_TX_PRE_EMP_2ND_POST_TAP_USER, and 11 new settings for GT transceivers.
		 Added reference Stratix V Transceiver Architecture chapter for detailed explanation of PCS blocks.
June 2012	1.7	 Changed the default value for XCVR_REFCLK_PIN_TERMINATION from DC_coupling_internal_100_Ohm to AC_coupling.
		 Corrected definition of tx_bitslipboundary_select register.
		Changed pipe_rate signal to 2 bits.
		 Added the following restriction in the dynamic reconfiguration section: three channels share an Avalon-MM slave interface which must connect to the same Transceiver Reconfiguration Controller IP Core.
		Custom Transceiver PHY
		 Added the following QSF settings to all transceiver PHY: XCVR_TX_PRE_EMP_PRE_TAP_USER, XCVR_TX_PRE_EMP_2ND_POST_TAP_USER, and 11 new settings for GT transceivers.
	1.7	 Added reference to Stratix V Transceiver Architecture chapter for detailed explanation of the PCS blocks.
		 Updated definition of rx_enapatternalign: It is edge sensitive in most cases; however, if the PMA-PCS interface width is 10 bits, it is level sensitive.
June 2012		 Added definition for rx_byteordflag output status signal which is created when you enable the byte ordering block.
Julie 2012		 Changed the default value for XCVR_REFCLK_PIN_TERMINATION from DC_coupling_internal_100_Ohm to AC_coupling.
		 Added arrows indicating Transceiver Reconfiguration Controller IP Core connection to block diagram.
		 Changed the maximum frequency of phy_mgmt_clk to 150 MHz if the same clock is used for the Transceiver Reconfiguration Controller IP Core.
		 Added the following restriction in the dynamic reconfiguration section: three channels share an Avalon-MM slave interface which must connect to the same Transceiver Reconfiguration Controller IP Core.
		Low Latency PHY
		 Added the following QSF settings to all transceiver PHY: XCVR_TX_PRE_EMP_PRE_TAP_USER, XCVR_TX_PRE_EMP_2ND_POST_TAP_USER, and 11 new settings for GT transceivers.
		 Changed the default value for XCVR_REFCLK_PIN_TERMINATION from DC_coupling_internal_100_Ohm to AC_coupling.
June 2012	1.7	 Added arrows indicating Transceiver Reconfiguration Controller IP Core connection to block diagram.
		 Changed the maximum frequency of phy_mgmt_clk to 150 MHz if the same clock is used for the Transceiver Reconfiguration Controller IP Core.
		 Added the following restriction in the dynamic reconfiguration section: three channels share an Avalon-MM slave interface which must connect to the same Transceiver Reconfiguration Controller IP Core.

Date	Version	Changes Made	
	Deterministic Latency		
		 Added the following QSF settings to all transceiver PHY: XCVR_TX_PRE_EMP_PRE_TAP_USER, XCVR_TX_PRE_EMP_2ND_POST_TAP_USER, and 11 new settings for GT transceivers. 	
		 Added PLL reconfiguration option. 	
		 Changed the default value for XCVR_REFCLK_PIN_TERMINATION from DC_coupling_internal_100_Ohm to AC_coupling. 	
June 2012	1.7	 Removed references to the byte serializer and deserializer which is not included in the datapath. 	
Julie 2012	1.7	 Added GUI option for tx_clkout feedback path for TX PLL to align the TX and RX clock domains and figure illustrating this approach. 	
		 Added tables showing the signals in TX and RX parallel data that correspond to data, control, and status signals with and without 8B/10B encoding. 	
		 Corrected definition of rx_runnindisp. This is a status output. 	
		 Added the following restriction in the dynamic reconfiguration section: three channels share an Avalon-MM slave interface which must connect to the same Transceiver Reconfiguration Controller IP Core. 	
		Stratix V Transceiver Native PHY	
June 2012	1.7	 Initial release. 	
		Arria V Transceiver Native PHY	
June 2012	1.7	 Initial release. 	
		Transceiver Reconfiguration Controller	
		 DFE now automatically runs offset calibration and phase interpolator (PI) phase calibration at power on. 	
June 2012	1.7	 Added section explaining how to generate a reduced MIF file. 	
		• Corrected definition of EyeQ control register. Writing a 1 to bit 0 enables the Eye monitor.	
		 Corrected bit-width typos in Table 12–10 on page 12–12. 	
		Transceiver PHY Reset Controller	
June 2012	1.7	 Initial release. 	
		Custom	
March 2012	1.6	 Added register definitions for address range 0x080–0x085. 	
		Low Latency PHY	
March 2012	1.6	 Removed register definitions for address range 0x080–0x085. 	

Date	Version	Changes Made
		10GBASE-R
		 Added datapath latency numbers for Stratix V devices.
		Corrected bit range for ERRORED_BLOCK_COUNT.
February 2012	1.5	 Added statement that the the cal_blk_powerdown (0x021) and pma_tx_pll_is_locked (0x022) registers are only available when the Use external PMA control and reconfig option is turned On on the Additional Options tab of the GUI.
		 Clarified that the BER count functionality is for Stratix IV devices only.
		 Removed pma_rx_signaldetect register. The 10GBASE-R PHY does not support this functionality.
	•	XAUI
Fahrmann 0010	4 5	 Removed reset bits at register 0x081. The reset implemented Cat register 0x044 provides more comprehensive functionality.
February 2012	1.5	 Removed pma_rx_signaldetect register. The XAUI PHY does not support this functionality.
	1	PCI Express (PIPE)
February 2012	1.5	 Updated definition of fixedclk. It can be derived from pll_ref_clk.
		Custom
February 2012	1.5	Removed register definitions for Low Latency PHY.
		Low Latency PHY
February 2012	1.5	 Added register definitions for Low Latency PHY.
		Deterministic Latency PHY
		 Removed pma_rx_signaldetect register. The Deterministic Latency PHY does not support this functionality.
February 2012	1.5	 Updated the definition of deterministic latency word alignment mode to include the fact that the word alignment pattern, which is currently forced to K28.5 = 0011111010 is always placed in the least significant byte (LSB) of a word with a fixed latency of 3 cycles.
	•	Transceiver Reconfiguration Controller
February 2012	1.5	Added DFE.
		Introduction
December 2011	1.4	 Revised discussion of embedded reset controller to include the fact that this reset controller can be disabled for some transceiver PHYs.
		10GBASE-R
December 2011	1.4	 Removed description of calibration block powerdown register (0x021) which is not available for this transceiver PHY.
2011		 Changed definition of phy_mgmt_clk_reset. This signal is active high and level sensitive.
		XAUI
December	1.4	 Changed definition of phy_mgmt_clk_reset. This signal is active high and level sensitive.
2011		 Added Arria II GX to device support table.

Date	Version	Changes Made
		Interlaken
December		 Changed access mode for RX equalization, pre-CDR reverse serial loopback, and post-CDR reverse serial loopback to write only (WO).
2011	1.4	Removed optional rx_sync_word_err, rx_scrm_err, and rx_framing_err status bits.
		• Changed definition of phy_mgmt_clk_reset. This signal is active high and level sensitive.
		PHY IP Core for PCI Express (PIPE)
December 2011	1.4	• Changed definition of phy_mgmt_clk_reset. This signal is active high and level sensitive.
		Custom
		Added ×N and feedback compensation options for bonded clocks.
December 2011	1.4	 Added Enable Channel Interface parameter which is required for dynamic reconfiguration of transceivers.
2011		 Corrected formulas for signal width in top-level signals figure.
		 Changed definition of phy_mgmt_clk_reset. This signal is active high and level sensitive.
		Low Latency PHY
		 Added option to disable the embedded reset controller to allow you to create your own reset sequence.
		 Added ×N and feedback compensation options for bonded clocks.
December 2011	1.4	 Fixed name of phy_mgmt_reset signal. Should be phy_mgmt_clk_reset. Also, a positive edge on this signal initiates a reset.
2011		 Added Enable Channel Interface parameter which is required for dynamic reconfiguration of transceivers.
		 Corrected formulas for signal width in top-level signals figure.
		• Changed definition of phy_mgmt_clk_reset. This signal is active high and level sensitive.
		Deterministic Latency PHY
December	1.4	Removed Enable tx_clkout feedback path for TX PLL from the General Options tab of the Deterministic Latency PHY IP Core GUI. This option is unavailable in 11.1 and 11.1 SP1.
2011		• Changed definition of phy_mgmt_clk_reset. This signal is active high and level sensitive.

Date	Version	Changes Made
		Transceiver Reconfiguration Controller
		 Added duty cycle distortion (DCD) signal integrity feature.
		 Added PLL and channel reconfiguration using a memory initialization file (.mif).
		 Added ability to reconfigure PLLs, including the input reference clock or to change the PLL that supplies the high speed serial clock to the serializer without including logic to reconfigure channels.
December		 Corrected values for RX equalization gain. 0–4 are available.
2011	1.4	 Corrected logical number in "Interface Ordering with Multiple Transceiver PHY Instances" on page 12–37.
		 Increased the number of channels that can share a PLL from 5 to 11 when feedback compensation is used.
		 Increased the number of channels that can connect to the Transceiver Reconfiguration Controller from 32 to 64.
		 Added section on requirements for merging PLLs.
		Introduction
November 2011	1.3	 Revised reset section. The 2 options for reset are now the embedded reset controller or user-specified reset controller.
2011		 Updated directory names in simulation testbench.
		10GBASE-R PHY Transceiver
		Added support for Stratix V devices.
November		 Added section discussing transceiver reconfiguration in Stratix V devices.
2011	1.3	 Removed rx_oc_busy signal which is included in the reconfiguration bus.
		 Updated QSF settings to include text strings used to assign values and location of the assignment which is either a pin or PLL.
		XAUI Transceiver PHY
		The pma_tx_pll_is_locked is not available in Stratix V devices.
		Added base data rate, lane rate, input clock frequency, and PLL type parameters.
November 2011	1.3	 Updated QSF settings to include text strings used to assign values and location of the assignment which is either a pin or PLL.
		 Added section on dynamic transceiver reconfiguration in Stratix V devices.
		 Removed Timing Constraints section. These constraints are included in the HDL code.
		Interlaken Transceiver PHY
		• Added tx_sync_done signal which indicates that all lanes of TX data are synchronized.
November		tx_coreclk_in is required in this release.
2011	1.3	Added base data rate, lane rate, input clock frequency, and PLL type parameters.
		 Updated QSF settings to include text strings used to assign values and location of the assignment which is either a pin or PLL.

Date	Version	Changes Made
		PHY IP Core for PCI Express (PIPE)
		 Added pll_powerdown bit (bit[0] of 0x044) for manual reset control. You must assert this bit for 1 μs for Gen2 operation.
November 2011	1.3	 Added PLL type and base data rate parameters.
2011		 Updated QSF settings to include text strings used to assign values and location of the assignment which is either a pin or PLL.
		Custom Transceiver PHY
		 Added Arria V and Cyclone V support.
		Added base data rate, lane rate, input clock frequency, and PLL type parameters.
November 2011	1.3	 Revised reset options. The 2 options for reset are now the embedded reset controller or a user-specified reset logic.
		 Updated QSF settings to include text strings used to assign values and location of the assignment which is either a pin or PLL.
		Low Latency PHY
		Added base data rate, lane rate, input clock frequency, and PLL type parameters.
November 2011	1.3	 Updated QSF settings to include text strings used to assign values and location of the assignment which is either a pin or PLL.
2011		 Revised reset options. The 2 options for reset are now the embedded reset controller or a user-specified reset logic.
		Deterministic Latency
November 2011	1.3	 Initial release of this chapter.
		Transceiver Reconfiguration Controller
		 Added MIF support to allow transceiver reconfiguration from a .mif file that may contain updates to multiple settings. Added support for the following features:
		 Added support for the following features:
		 EyeQ AEQ
November 2011	1.3	ACC ATX tuning
		 PLL reconfiguration
		 DC gain and four-stage linear equalization for the RX channels
		 Removed Stratix IV device support.
		 Changed frequency range of phy_mgmt_clk to 100-125 MHz.

Date	Version	Changes Made
		All Chapters
		 Restricted frequency range of the phy_mgmt_clk to 90-100 MHz for the <i>Transceiver</i> <i>Reconfiguration Controller IP Core</i> chapter. There is no restriction on the frequency of phy_mgmt_clk for Stratix V devices in the 10GBASE-R, XAUI, Interlaken, PHY IP Core for PCI Express, Custom, and Low Latency PHYs; however, to use the same clock source for both, you must restrict this clock to 90-100 MHz.
		 Added column specifying availability of read and write access for PMA analog controls in the Transceiver Reconfiguration Controller IP Core chapter.
		Renamed Avalon-MM bus in for Transceiver Reconfiguration Controller reconfig_mgmt*.
July 2011	1.2.1	 Provided frequency range for phy_mgmt_clk for the XAUI PHY IP Core in Arria II GX, Cyclone IV GX, HardCopy IV, and Stratix IV GX devices.
		 Added register descriptions for the automatic reset controller to the Low Latency PHY IP Core chapter.
		 Added two steps to procedure to reconfigure a PMA control in the <i>Transceiver</i> <i>Reconfiguration Controller</i> chapter.
		 Corrected RX equalization DC gain in <i>transceiver Reconfiguration Controller</i> chapter. It should be 0–4.
		• Corrected serialization factor column in <i>Low Latency PHY IP Core</i> chapter.
		Introduction
		 Added simulation section.
May 0011	10	 Revised Figure 1–1 on page 1–2 to show the Transceiver Reconfiguration Controller as a separately instantiated IP core.
May 2011	1.2	 Added statement saying that the transceiver PHY IP cores do not support the NativeLink feature of the Quartus II software.
		 Revised reset section.
		Getting Started
May 2011	1.2	No changes from previous release.
		10GBASE-R PHY Transceiver
		Corrected frequency of pll_ref_clk. Should be 644.53125 MHz, not 644.53725 MHz.
May 2011	1.2	 Renamed reconfig_fromgxb and reconfig_togxb reconfig_from_xcvr and reconfig_to_xcvr, respectively.

Date	Version	Changes Made
		XAUI PHY Transceiver
		Added support for DDR XAUI
		 Added support for Arria II GZ and HardCopy IV
		 Added example testbench
		 Renamed reconfig_fromgxb and reconfig_togxb reconfig_from_xcvr and reconfig_to_xcvr, respectively.
		 Updated definitions of rx_digital_reset and tx_digital_reset for the soft XAUI implementation in Table 4–17 on page 4–21.
May 2011	1.2	 Changed description of rx_syncstatus register and signals to specify 2 bits per channel in hard XAUI and 1 bit per channel in soft XAUI implementations.
		 Corrected bit sequencing for 0x084, 0x085 and 0x088 in Table 4–17 on page 4–21, as follows:
		patterndetect = 0x084, bits [15:8]
		syncstatus = 0x084, bits [7:0]
		<pre>errordetect = 0x085, bits [15:8]</pre>
		<pre>disperr = 0x085, bits [7:0]</pre>
		rmfifofull = 0x088, bits [7:4]
		<pre>rmfifoempty = 0x088, bits [3:0]</pre>
		Interlaken PHY Transceiver
		 Added details about the 0 ready latency for tx_ready.
		 Added PLL support to lane rate parameter description in Table 5–2 on page 5–2.
		 Moved dynamic reconfiguration for the transceiver outside of the Interlaken PHY IP Core. The reconfiguration signals now connect to a separate Reconfiguration Controller IP Core.
May 2011	1.2	 Added a reference to PHY IP Design Flow with Interlaken for Stratix V Devices which is a reference design that implements the Interlaken protocol in a Stratix V device.
		 Changed supported metaframe lengths from 1–8191 to 5–8191.
		Added pll_locked output port.
		 Added indirect_addr register at 0x080 for use in accessing PCS control and status registers.
		 Added new Bonded group size parameter.
		PHY IP Core for PCI Express PHY (PIPE)
		 Renamed to PHY IP Core for PCI Express.
May 2011	1.2	 Moved dynamic reconfiguration for the transceiver outside of the PHY IP Core. The reconfiguration signals now connect to a separate Reconfiguration Controller IP Core.
		Removed ×2 support.

Date	Version	Changes Made
		Custom PHY Transceiver
		Added presets for the 2.50 GIGE and 1.25GIGE protocols.
		 Moved dynamic reconfiguration for the transceiver outside of the Custom PHY IP Core. The reconfiguration signals now connect to a separate Reconfiguration Controller IP Core.
		Removed device support for Arria II GX, Arria II GZ, HardCopy IV GX, and Stratix IV GX.
		 Added the following parameters on the General tab:
		 Transceiver protocol
		Create rx_recovered_clk port
		 Force manual reset control
May 2011	1.2	 Added optional rx_rmfifoddatainserted, rx_rmfifodatadelted, rx_rlv, and rx_recovered_clk as output signals.
		 Added phy_mgmt_waitrequest to the PHY management interface.
		 Renamed reconfig_fromgxb and reconfig_togxb reconfig_from_xcvr and reconfig_to_xcvr, respectively.
		 Corrected address for 8-Gbps RX PCS status register in Table 7–21 on page 7–24.
		Added special pad requirement for Byte ordering pattern. Refer to Table 7–7 on page 7–8.
		 Clarified behavior of the word alignment mode. Added note explaining how to disable all word alignment functionality.
		Low Latency PHY Transceiver
		 Moved dynamic reconfiguration for the transceiver outside of the Low Latency PHY IP Core. The reconfiguration signals now connect to a separate Reconfiguration Controller IP Core.
May 2011	1.2	 Moved dynamics reconfiguration for the transceiver outside of the Custom PHY IP Core. The reconfiguration signals now connect to a separate Reconfiguration Controller IP Core.
		 Renamed the tx_parallel_clk signal tx_clkout.
		Transceiver Reconfiguration Controller
May 2011		 Added Stratix V support. The Transceiver Reconfiguration Controller is only available for Stratix IV devices in the Transceiver Toolkit.
	1.2	 Added sections describing the number of reconfiguration interfaces required and restrictions on channel placement.
		 Added pre- and post-serial loopback controls.
		 Changed reconfiguration clock source. In 10.1, the Avalon-MM PHY Management clock was used for reconfiguration. In 11.0, the reconfiguration controller supplies this clock.
		Migrating from Stratix IV to Stratix V
		Added discussion of dynamic reconfiguration for Stratix IV and Stratix V devices.
May 2011	1.2	 Added information on loopback modes for Stratix IV and Stratix V devices.
		 Added new parameters for Custom PHY IP Core in Stratix V devices.

Date	Version	Changes Made
		All Chapters
		 Corrected frequency range for the phy_mgmt_clk for the Custom PHY IP Core in Table 7–20 on page 7–24.
December 2010		 Added optional reconfig_from_xcvr[67:0] to Figure 4–4 on page 4–14. Provided more detail on size of reconfig_from_xcvr in Table 4–18 on page 4–26
	1.11	 Removed table providing ordering codes for the Interlaken PHY IP Core. Ordering codes are not required for Stratix V devices using the hard implementation of the Interlaken PHY.
		 Added note to 10GBASE-R release information table stating that "No ordering codes or license files are required for Stratix V devices."
		 Minor update to the steps to reconfigure a TX or RX PMA setting in the Transceiver Reconfiguration Controller chapter.
		Introduction
December		Revised reset diagram.
December 2010	1.1	 Added block diagram for reset
		 Removed support for SOPC Builder
		Getting Started
December 2010	1.1	 Removed description of SOPC Builder design flow. SOPC Builder is not supported in this release.
		10GBASE-R PHY Transceiver
		Added Stratix V support
		 Changed phy_mgmt_address from 16 to 9 bits.
		 Renamed management interface, adding phy_ prefix
December	1.1	Renamed block_lock and hi_ber signals rx_block_lock and rx_hi_ber, respectively.
2010		 Added top-level signals for external PMA and reconfiguration controller in Stratix IV devices. Refer to Table 3–22 on page 3–29.
		 Removed the mgmt_burstcount signal.
		 Changed register map to show word addresses instead of a byte offset from a base address.
		XAUI PHY Transceiver
		Added support for Arria II GX and Cyclone IV GX with hard PCS
	1.1	 Renamed management interface, adding phy_ prefix
		 Changed phy_mgmt_address from 16 to 9 bits.
December 2010		 Renamed many signals. Refer to "XAUI Top-Level Signals—Soft PCS and PMA" on page 4–14 and "XAUI Top-Level Signals–Hard IP PCS and PMA" on page 4–13 as appropriate.
		• Changed register map to show word addresses instead of a byte offset from a base address.
		 Removed the rx_ctrldetect and rx_freqlocked signals.

Date	Version	Changes Made	
		Interlaken PHY Transceiver	
		Added simulation support in ModelSim SE, Synopsys VCS MX, Cadence NCSim	
		 Changed number of lanes supported from 4–24 to 1–24. 	
December		 Changed reference clock to be 1/20th rather than 1/10th the lane rate. 	
2010	1.1	 Renamed management interface, adding phy_ prefix 	
		 Changed phy_mgmt_address from 16 to 9 bits. 	
		 Changed many signal names, refer to Figure 5–2 on page 5–11.Changed register map to show word addresses instead of a byte offset from a base address. 	
	•	PCI Express PHY (PIPE)	
		 Added simulation support in ModelSim SE 	
		 Added PIPE low latency configuration option 	
December	4.4	 Changed phy_mgmt_address from 16 to 9 bits. 	
2010	1.1	• Changed register map to show word addresses instead of a byte offset from a base address.	
		Added tx_ready, rx_ready, pipe_txswing, and pipe_rxeleciidle signals	
		Added rx_errdetect, rx_disperr, and rx_a1a2sizeout register fields	
	·	Custom PHY Transceiver	
		Added support for 8B/10B encoding and decoding in Stratix V devices	
		 Added support for rate matching in Stratix V devices. 	
		Added support for Arria II GX, Arria II GZ, HardCopy IV GX, and Stratix IV GX devices	
December	1.1	 Renamed management interface, adding phy_ prefix 	
2010		 Changed phy_mgmt_address from 8 to 9 bits. 	
		 Added many optional status ports and renamed some signals. Refer to Figure 7–2 on page 7–19 and subsequent signal descriptions. 	
		• Changed register map to show word addresses instead of a byte offset from a base address.	
	·	Low Latency PHY IP Core	
		Renamed management interface, adding phy_ prefix	
		 Changed phy_mgmt_address from 16 to 9 bits. 	
December	1.1	• Changed register map to show word addresses instead of a byte offset from a base address.	
2010		 Removed rx_offset_cancellation_done signal. Internal reset logic determines when offset cancellation has completed. 	
		 Removed support for Stratix IV GX devices. 	
	·	Transceiver Reconfiguration Controller	
December	4.4	Reconfiguration is now integrated into the XAUI PHY IP Core and 10GBASE-R PHY IP Core.	
2010	1.1	Revised register map to show word addresses instead of a byte offset from a base address.	
		Migrating from Stratix IV to Stratix V	
December 2010	1.1	Changed phy_mgmt_address from 16 to 9 bits.	

Date	Version	Changes Made	
		 Corrected address offsets in Table 12–10 on page 12–12. These are byte offsets and should be: 0x00, 0x04, 0x08, 0x0C, 0x10, not 0x00, 0x01, 0x02, 0x03, 0x04. 	
November 2010	1.1	 Corrected base address for transceiver reconfiguration control and status registers in Table 12–10 on page 12–12. It should be 0x420, not 0x400. 	
		 Corrected byte offsets in Table 7–21 on page 7–24 and Table 6–12 on page 6–16. The base address is 0x200. The offsets are 0x000–0x018. 	
July 2010	1.0	 Initial release. 	

How to Contact Altera

To locate the most up-to-date information about Altera products, refer to the following table.

Contact ⁽¹⁾	Contact Method	Address
Technical support	Website	www.altera.com/support
Technical training	Website	www.altera.com/training
recinical training	Email	custrain@altera.com
Product literature	Website	www.altera.com/literature
Nontechnical support (general)	Email	nacomp@altera.com
(software licensing)	Email	authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.

Typographic Conventions

The following table shows the typographic conventions this document uses.

Visual Cue	Meaning
Bold Type with Initial Capital Letters	Indicate command names, dialog box titles, dialog box options, and other GUI labels. For example, Save As dialog box. For GUI elements, capitalization matches the GUI.
bold type	Indicates directory names, project names, disk drive names, file names, file name extensions, software utility names, and GUI labels. For example, \qdesigns directory, D: drive, and chiptrip.gdf file.
Italic Type with Initial Capital Letters	Indicate document titles. For example, Stratix IV Design Guidelines.
	Indicates variables. For example, $n + 1$.
italic type	Variable names are enclosed in angle brackets (< >). For example, <i><file name=""></file></i> and <i><project name="">.pof</project></i> file.
Initial Capital Letters	Indicate keyboard keys and menu names. For example, the Delete key and the Options menu.
"Subheading Title"	Quotation marks indicate references to sections in a document and titles of Quartus II Help topics. For example, "Typographic Conventions."

Visual Cue	Meaning
	Indicates signal, port, register, bit, block, and primitive names. For example, data1, tdi, and input. The suffix n denotes an active-low signal. For example, resetn.
Courier type	Indicates command line commands and anything that must be typed exactly as it appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.
	Also indicates sections of an actual file, such as a Report File, references to parts of files (for example, the AHDL keyword SUBDESIGN), and logic function names (for example, TRI).
4	An angled arrow instructs you to press the Enter key.
1., 2., 3., and a., b., c., and so on	Numbered steps indicate a list of items when the sequence of the items is important, such as the steps listed in a procedure.
	Bullets indicate a list of items when the sequence of the items is not important.
I	The hand points to information that requires special attention.
?	The question mark directs you to a software help system with related information.
	The feet direct you to another document or website with related information.
I , ™ I	The multimedia icon directs you to a related multimedia presentation.
CAUTION	A caution calls attention to a condition or possible situation that can damage or destroy the product or your work.
WARNING	A warning calls attention to a condition or possible situation that can cause you injury.
M	The envelope links to the Email Subscription Management Center page of the Altera website, where you can sign up to receive update notifications for Altera documents.