

ALTDQ_DQS2 Megafunction

User Guide

101 Innovation Drive San Jose, CA 95134 www.altera.com Copyright © 2010 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, and specific device designations are trademarks and/or service marks of Altera Corporation in the U.S. and other countries. All other words and logos identified as trademarks and/or service marks are the property of Altera Corporation or their respective owners. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Document last updated for Altera Complete Design Suite version: Document publication date: Sep

10.0 September 2010

UG-01089-1.0

1. About This Megafunction

This user guide describes the features of the ALTDQ_DQS2 megafunction that you can configure through the MegaWizard[™] interface in the Quartus[®] II software.

The ALTDQ_DQS2 megafunction controls the double data rate (DDR) I/O elements (IOEs) for the data (DQ) and data strobe (DQS) signals in Stratix[®] V devices. A DQ group consists of six I/Os that share a common interface circuitry. Typically, one I/O is assigned to the DQS, one I/O is assigned to the complementary DQS, and four I/Os are assigned to the DQs.

This user guide assumes that you are familiar with megafunction and how to create them. If you are unfamiliar with Altera megafunctions or the MegaWizard interface, refer to the Megafunction Overview User Guide.

Features

The ALTDQ_DQS2 megafunction provides the following features:

- Access to dynamic on-chip termination (OCT) controls to switch between parallel termination during reads to series termination during writes.
- High-performance support for DDR interface standards
- 4- to 36-bit programmable DQ group widths
- Half-rate registers to enable successful data transfers between the I/O registers and the core logic
- Access to I/O delay chains to fine-tune delays on the data or strobe signals

Device Support

The ALTDQ_DQS2 megafunction supports Stratix V devices only.

Resource Utilization and Performance

For details about the resource usage and performance of your design, refer to the compilation reports in the Quartus II software.

To view the compilation reports in the Quartus II software, follow these steps:

- 1. On the Processing menu, click Start Compilation to run a full compilation.
- 2. After compiling the design, on the Processing menu, click Compilation Report.
- 3. In the Table of Contents browser, expand the **Fitter** folder by clicking the "+" icon.
- 4. Under **Fitter**, expand **Resource section**, and select **Resource Usage Summary** to view the resource usage information.
- 5. Under Fitter, expand Resource section, and select Resource Utilization by Entity to view the resource utilization information.

2. Parameter Settings

This section describes the parameter settings for the ALTDQ_DQS2 megafunction.

You can parameterize the megafunction using the MegaWizard Plug-In Manager or the command-line interface (CLI). Altera recommends that you configure the megafunction using the MegaWizard Plug-In Manager.

Expert users may choose to instantiate and parameterize the megafunction using the ip-generate command through the CLI. This method requires command-line scripting knowledge.

For more information about using the ip-generate command, refer to "IP-Generate Command" on page A-1.

Table 2–1 lists the MegaWizard and CLI parameter settings for the ALTDQ_DQS2 megafunction.

All CLI parameter values listed in Table 2–1 are type string, therefore you must enclose the values in double quotes.

MegaWizard Parameter		CLI Param	eter	Description
Name	Legal Values	Name	Legal Values	Description
General Settings Sectio	n			
Pin Width	1 to 36	nin width	1 to 36	Specifies the number of DQ pins.
	1 10 00	pin_widen	1 10 30	The default value is 9 (9).
	innut outnut		input output	Specifies the type of DQ pins.
Pin Type	bidirectional	pin_type	bidir	The default value is bidirectional (bidir).
Extra output-only pins 0 to 36		extra_output_	0 to 36	Specifies the number of additional output-only DQ pins.
		width		The default value is 0 (0).
Memory frequency 200–600	input freq	200-600	Specifies the full-rate frequency of the incoming DQS signal from the external device in MHz.	
				The default value is 300 MHz (300).
Use dynamic configuration scan chains	_	use_dynamic_config	true,false	Specifies whether to allow run-time configuration of multiple delay chains, phase shifts, and transfer registers. This option is disabled by default.

Table 2–1. ALTDQ_DQS2 Parameter Settings (Part 1 of 3)

MegaWizard Pa	arameter	CLI Param	eter	Bernietien
Name	Legal Values	Name	Legal Values	Description
Output Path Section	•			
Use half-rate output path	_	half_rate_output	true,false	Specifies whether to double the width of the data bus on the FPGA side, and clock the FPGA side interface using the half-rate clock. If this option is enabled, you must drive the hr_clock_in port with the half- rate clock signal. This option is enabled by default.
Use output phase alignment blocks	_	use_output_phase_ alignment	true,false	Specifies whether to allow phase shift on the output path based on the delay settings from the DLL. This option is disabled by default.
Capture Strobe Section				
Capture strobe type	Single, Differential, Complimentary	capture_strobe_ type	single, differential, complimentary	Specifies the type of capture strobe (DQS signal from the external device). The default value is Single
Use inverted capture strobe	_	invert_capture_ strobe	true, false	Specifies whether to capture data with an inverted capture strobe. This option is disabled by default.
DQS phase shift	0, 45, 90, 135,180 degrees	dqs_phase_setting	0, 1, 2, 3, 4	Specifies the phase shift value for the DQS delay chain to shift the incoming strobe within the data valid window during read and write operations. The default value is 90 degrees
Use capture strobe enable block		use_dqs_enable	true, false	Specifies whether to use the capture strobe enable block, which allows control over the preamble state of the capture strobe. This option is disabled by default.
DQS enable phase setting	0 , 45 , 90 , 135 degrees	dqs_enable_phase_ setting	0, 1, 2, 3	Specifies the value of phase shift to shift the full-rate clock signal that drives the capture strobe enable block. The default value is 0 degrees (0).

Table 2–1. ALTDQ_DQS2 Parameter Settings (Part 2 of 3)

Table 2–1.	ALTDO I	DOS2	Parameter	Settinas	(Part 3	of 3)
				oo uuugo		••••

MegaWizard Parameter		CLI Param	eter	Departmention
Name	Legal Values	Name	Legal Values	Description
Generate output strobe	_	use_output_strobe	true, false	Specifies whether to generate an output strobe signal based on the OE signal and the full-rate clock. This option is enabled by default.
Bidirectional capture strobe	_	use_bidir_strobe	true, false	Specifies whether to turn on a bidirectional capture strobe (capture strobe and output strobe is on the same port). This option is disabled by default.
Differential/ complimentary output strobe	_	differential_ output_strobe	true, false	Specifies whether to turn on a differential or complimentary output strobe. This option is disabled by default.

3. Functional Description

ALTDQ_DQS2 Datapaths

This section describes the read and write datapaths and how other megafunctions are used with the ALTDQ_DQS2 megafunction.

DQ and DQS Input Path

The DQ and DQS input path receives the DQ and DQS signal from the external device during read operations.

Figure 3–1 shows the input path where n = the number of DQ pins and x = 0 to (n-1).

- (1) For bidirectional DQ, the input of the buffer connects to the <code>read_write_data_io[x]</code> port.

(2) For bidirectional DQS, the input of the buffer connects to the ${\tt strobe_io}$ port.

Table 3–1 lists the blocks in the DQ and DQS input path.

Table 3–1. DQ and DQS input Path (Part 1 of 2)

Block name	Description
DQS enable	Represents the AND-gate control on the DQS input that grounds the DQS input strobe when the strobe goes to Z after a DDR read postamble. The DQS enable block enables the registers to allow enough time for the DQS delay settings to travel from the DQS phase-shift circuitry or core logic to all the DQS logic blocks before the next change.
	For more information about the DQS enable block, refer to "Update Enable Circuitry" in the <i>External Memory Interfaces in Stratix V Devices</i> chapter of the <i>Stratix V Device Handbook</i> .

• •	
Block name	Description
	Represents the circuitry that controls the DQS enable block. A DQS enable control block controls each DQS enable block.
DQS enable control	For more information about the DQS enable control, refer to "DQS Postamble Circuitry" in the <i>External Memory Interfaces in Stratix V Devices</i> chapter of the <i>Stratix V Device Handbook</i> .
	Represents the delay chains that delay signals.

Table 3–1. DQ and DQS input Path (Part 2 of 2)

DQ Output Path

The DQ output path sends the DQ signal to the external device during write operations.

Figure 3–2 shows the output path where n = the number of DQ pins and x = 0 to (n-1).

For more information about the DQS delay chain block, refer to "DQS Delay Chain" in the *External Memory Interfaces in Stratix V Devices* chapter of the *Stratix V Device Handbook*.

DQS delay chain

Notes to Figure 3–2:

- (1) For bidirectional DQ, the output of the buffer connects to there $read_write_data_io[x]$ port.
- (2) The alignment clock comes from the write-leveling delay chains
- (3) The write clock comes from the PLL or the write-leveling delay chains
- (4) The series termination control connects to the ALTOCT megafunction.

Figure 3–3 shows the DQ output path for additional DQ pins usage, where m= the number of DQ pins and y = 0 to (m-1).

Notes to Figure 3–3:

- (1) The alignment clock comes from the write-leveling delay chains.
- (2) The write clock comes from the PLL or the write-leveling delay chains.

Table 3–2 lists the blocks ir	n the DQ output path
-------------------------------	----------------------

Table 3-2. DQ Output Path

Block name	Description
Half-rate to single-rate output enable registers	Represents a group of registers that convert half-rate data to single-rate data.
Output phase alignment registers	Represents the circuitry required to phase shift the DQ-output signals. Use this block for write-leveling purposes in DDR3 SDRAM interfaces.
DDR output registers	Represents the DDIO registers that transfer DDR signals from the core to the DQ/DQS pins.

For more information about how the input and output paths are mapped to the device IOEs, refer to "I/O Element Registers" in the *External Memory Interfaces in Stratix V Devices* chapter of the *Stratix V Device Handbook*.

Connect the ALTDQ_DQS2 megafunction to the ALTOCT, ALTDLL, and ALTERA_PLL megafunctions to utilize their features.

The following list describes how the ALTOCT, ALTDLL, and ALTERA_PLL megafunctions are used with the ALTDQ_DQS2 megafunction:

- ALTDLL—The ALTDLL megafunction instantiates a delay-locked loop (DLL) circuit in your design. The DLL circuit represents the specialized phase-shift reference circuit for calibrating the delay settings of the DQS delay chains, allowing the delay chains to compensate for PVT variations. The DLL uses a reference clock at the same frequency as the input DQS signal to compute the amount of delay required at each DQS pin on the FPGA to perform the phase-shift.
 - **Construction** For more information about DLL in Stratix V devices, refer to the DQS *Phase-Shift Circuitry* section in the *External Memory Interfaces in Stratix V Devices* chapter of the *Stratix V Device Handbook*.
 - ***** For more information about the ALTDLL megafunction, refer to the *ALTDLL and ALTDQ_DQS Megafunction User Guide*.
- ALTERA_PLL—The ALTERA_PLL megafunction instantiates a phase-locked loop (PLL) circuit in your design. The PLL generates the related clock signals that are used by the IOEs.
 - **For more information about the Stratix V PLL, refer to the** *Clock Networks and PLLs in Stratix V Devices* **chapter of the** *Stratix V Device Handbook.*
 - **For more information about the ALTERA_PLL megafunction, refer to the** *Altera Phase-Locked Loop (ALTERA_PLL) Megafunction User Guide.*
- ALTOCT—The ALTOCT megafunction instantiates an on-chip termination (OCT) calibration block in your design. The block provides dynamic OCT control for I/O impedance matching and termination. The OCT maintains signal quality, saves board space, and reduces external component costs.
 - **Control** For more information about dynamic OCT control, refer to the *Dynamic On-Chip Termination Control* section in the *External Memory Interfaces in Stratix V Devices* chapter of the *Stratix V Device Handbook*.
 - **For more information about the ALTOCT megafunction, refer to the** *Dynamic Calibrated On-Chip Termination (ALTOCT) Megafunction User Guide.*

ALTDQ_DQS2 Ports

This section describes the ports of the ALTDQ_DQS2 megafunction.

Figure 3–4 shows the ports of the megafunction.

Table 3–3 lists the ALTDQ_DQS2 megafunction data strobe ports.

Table 3–3. ALTDQ_DQS2 Megafunction Data Strobe Ports (Part 1 of 2)

Port Name	Туре	Width	Description
capture_strobe_ena	Input	1	Controls the DQS enable control block—Acts as the output enable signal for signals coming from the input registers (capture_strobe_in port) to reach the DQS delay chain block.
capture_strobe_in	Input	1	Receives the clock signal from the external device . For example, a DQS signal from the external memory.
capture_strobe_n_in	Input	1	Receives the negative polarity clock signal from the external device. For example, a DQSn signal from the external memory. This port is available when the capture strobe type is set to differential or complimentary.
capture_strobe_out	Output	1	Sends the delayed clock signal to the core. For example, a delayed DQS signal from the DQS delay chain.
output_strobe_ena	Input	1	The output enable signal for the output_strobe_out port.
output_strobe_in	Input	1	Receives the clock signal from the core. For example, a DQS signal from the core.

Port Name	Туре	Width	Description
output_strobe_out	Output	1	Sends clock signal to the external device. For example, a DQS signal to the external memory.
output_strobe_n_out	Output	1	Sends the negative polarity clock signal to the external device (For example, DQSn signal to the external memory). This port is available when you set the output strobe type to differential or complimentary.
strobe_ena_clk_in	Input	1	Receives the clock signal from the clock pin or the PLL to clock the DQS enable control block.
strobe_io	Bidirectional	1	Sends and receives the bidirectional clock signal.
strobe_n_io	Bidirectional	1	Sends and receives the negative polarity clock signal for differential or complimentary strobe configuration.

Table 3–3. ALTDQ_DQS2 Megafunction Data Strobe Ports (Part 2 of 2)

Table 3–4 lists the ALTDQ_DQS2 megafunction data ports where n= number of DQ pins, m= number of additional output-only DQ pins, x = 0 to (n-1), and y= 0 to (m-1).

Port Name	Туре	Width <i>(1)</i>	Description
			Receives data signal from the core.
extra_write_data_in[]	Input	Full-rate = 2 <i>m</i> Half-rate = 4 <i>m</i>	This port connects to the input port of the half-rate data to single-rate data output registers block (Figure 3–3 on page 3–3). In full-rate mode, only the extra_write_data_in[y] and extra_write_data_in[m+y] ports are used.
			Sends data to the external device.
extra_write_data_out[]	Output	т	This port connects to the output port of the output buffer (Figure 3–3 on page 3–3).
			Receives data from the external device.
read_data_in[]	Input	п	This port connects to the input port of the input buffer located between the DQ pin and the DDR input registers block. This is an input-only DQ port that receives data from the external device to the core. This port connects to the input port of the input buffer located between the DQ-pin and the DDR input registers block (Figure 3–1 on page 3–1).
			Sends the captured data from the external device to the core.
read_data_out[]	Output	2n	This port connects to the output port of the DDR input register block (Figure 3–1 on page 3–1). The read_data_out[x] port outputs the positive-edge triggered data, and the read_data_out[n+x] port outputs the negative-edge triggered data.
road write data is[]	Bidirectional	n	Receives and sends data between the core and the external device.
reau_write_uata_i0[]	σιαπεστισπαι	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	You must assign the bidirectional DQ port with the Output Termination and Input Termination assignments.

Table 3-4. ALTDQ_DQS2 Megafunction Data Ports (Part 1 of 2)

Port Name	Туре	Width <i>(1)</i>	Description
		Full rate On	Receives DDR data signal from the core to be sent out to the external device. For example, data to be written to the external memory during write operation.
write_data_in[]	Input	Half-rate = $4n$	This port connects to the input port of the half-rate data to single-rate data output registers block (Figure 3-2 on page 3-2). In full-rate mode, the megafunction uses only the write_data_in[x] and write_data_in[n+x] ports.
	lonut		Sends the DDR data signal to the external device. For example, data to be written to the external memory during write operation.
write_data_out[]	mput	n	This port connects to the output port of the output buffer located between the DDR output registers block and the DQ-out pin (Figure 3–2 on page 3–2).
		Full-rate = <i>n</i> Half-rate = 2 <i>n</i>	Receives the output enable signal from the core to control the output buffer. For example, output enable control when writing data to the external memory during write operation.
write_oe_in[]	Input		This port connects to the input port of the half-rate data to single-rate data output-enable registers block (Figure 3-2 on page 3-2). In full-rate mode, the megafunction uses only the write_oe_in[x] port.
Note to Table 3–4: (1) The port width applies to full-	rate mode. unless	otherwise specified.	

Table 3–4. ALTDQ_DQS2 Megafunction Data Ports (Part 2 of 2)

To understand how these ports connect to the IOEs, refer to "I/O Elements" in the *External Memory Interfaces in Stratix V Devices* chapter of the *Stratix V Device Handbook*.

Table 3–5 lists the terminal control ports.

Table 3–5. ALT	DQ_DQS2 Megafuncti	on Temination Control Ports
----------------	--------------------	-----------------------------

Port name	Туре	Width	Description
			Controls the calibrated parallel termination ports of the input buffers.
<pre>paralleltermination control_in[]</pre>	Input	16	You must connect this port to the parallelterminationcontrol[15:0] port of the ALTOCT megafunction. Ensure that the termination block located in the ALTOCT instance is assigned with the termination control block assignment.
<pre>seriesterminationcontrol _in[]</pre>			Controls the calibrated series termination ports of the output buffers.
	Input	16	You must connect this port to the seriesterminationcontrol[15:0] port of the ALTOCT megafunction. Ensure that the termination block located in the ALTOCT instance is assigned with the termination control block assignment.

For more information about dynamic OCT control in Stratix V devices, refer to the *DC and Switching Characteristics for Stratix V Devices* chapter in volume 3 of the *Stratix V Device Handbook*.

Table 3–6 lists the PLL and DLL ports.

Table 3-6. PLL an	d DLL Ports
-------------------	-------------

Port name	Туре	Width	Description
dll_delayctrl_in[]	Input	7	Receives the 7-bit delay settings from the dll_delayctrlout port of the ALTDLL megafunction instance. This 7-bit signal controls delay through the DQS delay chains. Compilation error occurs if this port is not connected to a DLL.
fr_clock_in	Input	1	Receives the full-rate clock signal from a clock pin, or the PLL clock output port.
hr_clock_in	Input	1	Receives the half-rate clock signal from a clock pin, or the PLL clock output port.

For more information about DLL in Stratix V device, refer to "Delay-Locked Loop" in the *External Memory Interfaces in Stratix V Devices* **chapter of the** *Stratix V Device Handbook*.

For more information about PLL in Stratix V devices, refer to "PLL Specifications" in *DC and Switching Characteristics for Stratix V Devices* chapter of the *Stratix V Device Handbook*.

The I/O and DQS configuration blocks represent a set of serial-to-parallel shift registers that dynamically changes the settings of various device configuration bits. The I/O and DQS configuration blocks shift a serial configuration data stream into the shift registers, and then load the data stream into the configuration registers. The shift registers power-up low. Every I/O pin contains an I/O configuration block. Every DQS group contains a DQS configuration block and an I/O configuration block.

Table 3–7 lists the dynamic configuration ports where n= number of DQ pins and m= number of additional DQ pins.

Port name	Туре	Width	Description
config_clock_in	Input	1	Receives the clock signal to clock all dynamic configuration blocks. You can connect this port to a clock pin, or the PLL clock output port.
config_data_in	Input	1	Receives the serial configuration data stream that shifts into the serial-to-parallel shift registers.
config_dqs_ena	Input	1	Receives the clock enable signal for the DQS configuration block.
config_dqs_io_ena	Input	1	Receives the clock enable signal for the DQS I/O configuration block.
config_extra_io_ena[]	Input	т	Receives the clock enable signal for the additional I/O configuration block.
config_io_ena[]	Input	п	Receives the clock enable signal for the I/O configuration block.
config_update	Input	1	Receives the signal to load the bits from the serial-to-parallel shift registers to the configuration registers.

 Table 3–7.
 ALTDQ_DQS2
 Megafunction
 Dynamic
 Configuration
 Ports

For more information about the dynamic configuration blocks in Stratix V device, refer to "I/O Configuration Block and DQS Configuration Block" in the *External Memory Interfaces in Stratix V Devices* chapter of the *Stratix V Device Handbook*.

A. IP-Generate Command

This section describes how you can use the ip-generate command to create custom variations of the ALTDQ_DQS2 megafunction.

Using IP-Generate Command

You can use **ip-generate.exe**, a command-line executable, to configure parameters. The command creates or modifies custom megafunction variations, which you can then instantiate in a design file.

To run the ip-generate command, follow these steps:

- The ip-generate.exe executable file is located in the <quartus_install_dir>\quartus\sopc_builder\bin\ directory. Ensure that you include the directory path into your operating system environment.
- 2. To obtain the options for the ip-generate command, type the following command in the command prompt:

ip-generate -help

3. To instantiate the megafunction using the executable file, type the following syntax:

```
ip-generate --component-name=altdq_dqs2 --component-system-
param=DEVICE_FAMILY="Stratix V" --file-set=QUARTUS_SYNTH --output-
name[=<file_name>] --component-
param[=<parameter_name>][=<parameter_value>]
```

The *<file_name>* is the instance name. For example, my_dqdqs2. The *<parameter_name>* is the name of the parameter that you configure with the value stated in *<parameter_value>*.

You must use the --component-param[=<parameter_name>][=<parameter_value>] option for every parameter assignment. Parameters that are not assigned take the default values. Ensure that you type the exact case and spaces for the parameter names and values.

The following list describes two examples of how you can use this command:

• To create an ALTDQ_DQS2 instance named my_dqdqs2 with all the default parameter values, type the following command:

ip-generate --component-name=altdq_dqs2 --component-systemparam=DEVICE_FAMILY="Stratix V" --output-name=my_dqdqs2 --fileset=QUARTUS_SYNTH

To create an ALTDQ_DQS2 instance named mydq_dqs2 without output strobe ports, and with a 135 degrees DQS phase shift, type the following command:

ip-generate --component-name=altdq_dqs2 --component-systemparam=DEVICE_FAMILY="Stratix V" --output-name=my_dqdqs2 --fileset=QUARTUS_SYNTH --component-param=USE_OUTPUT_STROBE="False" -component-param=DQS PHASE SETTING="3"

This command generates two files—**my_dqdqs2.v** and **my_dqdqs2_altdq_dqs2.sv**. The **my_dqdqs2.v** file contains the my_dqdqs2 top-level module, and the **my_dqdqs2_altdq_dqs2.sv** file contains the source code. Both files are in Verilog HDL format.

The ip-generate command generates the ports for the instance based on the parameter values.

- For more information about the ports, refer to the "ALTDQ_DQS2 Ports" on page 3–5.
- **For more information about the parameters, refer to the** "Parameter Settings" on page 2–1.

Document Revision History

Table A–1 lists the revision history for this document.

Table A-1. Document Revision History

Date	Version	Changes
September 2010	1.0	Initial release.