
101 Innovation Drive
San Jose, CA 95134
www.altera.com

UG-01083-3.0

User Guide

10-Gbps Ethernet MAC MegaCore Function

Document last updated for Altera Complete Design Suite version:
Document publication date:

12.0
July 2012

 Subscribe Feedback

10-Gbps Ethernet MAC MegaCore Function User Guide

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=UG-01083
mailto:TechDocFeedback@altera.com?subject=Feedback on UG-01083.3.0 (10-Gbps Ethernet MAC MegaCore Function v12.0 User Guide)

10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Copyright © 2012 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, and specific device designations
are trademarks and/or service marks of Altera Corporation in the U.S. and other countries. All other words and logos identified as trademarks and/or service marks
are the property of Altera Corporation or their respective owners. Altera products are protected under numerous U.S. and foreign patents and pending applications,
maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard
warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of
the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

July 2012 Altera Corporation
Contents
Chapter 1. About This IP Core
1.1. Features . 1–1
1.2. Programmable datapath option to allow separate instantiation of MAC Tx block, MAC Rx block, or
both MAC Tx and MAC Rx blocks.Device Family Support . 1–2
1.3. IP Core Verification . 1–3

1.3.1. Simulation Environment . 1–3
1.3.2. Compatibility Testing Environment . 1–3

1.4. Performance and Resource Utilization . 1–4

Chapter 2. Getting Started with Altera IP Cores
2.1. Installation and Licensing . 2–1
2.2. Design Flows . 2–2
2.3. MegaWizard Plug-In Manager Flow . 2–2

2.3.1. Specifying Parameters . 2–2
2.3.2. Simulate the IP Core . 2–4

2.4. SOPC Builder Design Flow . 2–4
2.4.1. Specify Parameters . 2–5
2.4.2. Complete the SOPC Builder System . 2–5
2.4.3. Simulate the System . 2–6

2.5. Qsys System Integration Tool Design Flow . 2–7
2.5.1. Specify Parameters . 2–7
2.5.2. Complete the Qsys System . 2–8
2.5.3. Simulate the System . 2–8

2.6. 10GbE MAC Parameter Settings . 2–8

Chapter 3. Design Examples and Testbench
3.1. Software and Hardware Requirements . 3–1
3.2. Design Example . 3–2

3.2.1. Components . 3–3
3.2.1.1. Ethernet Loopback Module . 3–3
3.2.1.2. Base Addresses . 3–4

3.2.2. Files . 3–4
3.2.3. Creating a New 10GbE Design . 3–6
3.2.4. Parameter Settings . 3–7

3.3. Testbenches . 3–8
3.3.1. Architecture . 3–8
3.3.2. Components . 3–8
3.3.3. Files . 3–9
3.3.4. Simulation Flow . 3–10
3.3.5. Simulating the Testbench with the ModelSim Simulator . 3–10
3.3.6. Enabling Local Loopback . 3–11
3.3.7. Simulation Timing Diagrams . 3–12

3.4. Design Example Compilation and Verification in Hardware . 3–14
3.4.1. Compiling the Design . 3–14
3.4.2. Verifying the Design in Hardware . 3–16
3.4.3. Debugging . 3–16
3.4.4. Transmit and Receive Latencies . 3–17
3.4.5. Performance and Resource Utilization . 3–18
10-Gbps Ethernet MAC MegaCore Function User Guide

Contents iv
Chapter 4. Functional Description
4.1. Architecture . 4–1
4.2. Interfaces . 4–2

4.2.1. Avalon-ST Interface . 4–2
4.2.2. SDR XGMII . 4–2
4.2.3. Avalon-MM Control and Status Register Interface . 4–2

4.3. Frame Types . 4–3
4.4. Transmit Datapath . 4–3

4.4.1. Frame Payload Padding . 4–3
4.4.2. Address Insertion . 4–4
4.4.3. Frame Check Sequence (CRC-32) Insertion . 4–4
4.4.4. XGMII Encapsulation . 4–6
4.4.5. Inter-Packet Gap Generation and Insertion . 4–7
4.4.6. SDR XGMII Transmission . 4–7

4.5. Receive Datapath . 4–9
4.5.1. XGMII Decapsulation . 4–9
4.5.2. Frame Check Sequence (CRC-32) Checking . 4–10
4.5.3. Address Checking . 4–10
4.5.4. Frame Type Checking . 4–10
4.5.5. Length Checking . 4–11
4.5.6. CRC-32 and Pad Removal . 4–11
4.5.7. Overflow Handling . 4–12

4.6. Transmit and Receive Latencies . 4–13
4.7. Congestion and Flow Control . 4–13

4.7.1. IEEE 802.3 Flow Control . 4–14
4.7.1.1. Pause Frame Reception . 4–14
4.7.1.2. Pause Frame Transmission . 4–14

4.7.2. Priority-Based Flow Control . 4–16
4.7.2.1. PFC Frame Reception . 4–16
4.7.2.2. PFC Frame Transmission . 4–17

4.8. Error Handling (Link Fault) . 4–17

Chapter 5. Registers
5.1. MAC Registers . 5–2

5.1.1. Rx_frame_control Register . 5–15
5.1.2. Rx_pfc_control Register . 5–16

5.2. Register Initialization . 5–17

Chapter 6. Interface Signals
6.0.1. Clock and Reset Signals . 6–3
6.0.2. Avalon-ST Transmit and Receive Interface Signals . 6–3

6.0.2.1. Timing Diagrams—Avalon-ST Transmit Interface . 6–4
6.0.2.2. Timing Diagrams—Avalon-ST Receive Interface . 6–7

6.0.3. SDR XGMII Signals . 6–9
6.0.3.1. Timing Diagrams—SDR XGMII . 6–10

6.0.4. Avalon-MM Programming Interface Signals . 6–12
6.0.5. Avalon-ST Status and Pause Interface Signals . 6–12

Chapter 7. Design Considerations
7.1. SDR XGMII to DDR XGMII Conversion . 7–1

7.1.1. ALTDDIO_IN Megafunction Configuration . 7–1
7.1.2. ALTDDIO_OUT Megafunction Configuration . 7–1

7.2. 10GbE MAC and PHY Connection with XGMII . 7–2
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

Contents v
Appendix A. Frame Format
A.1. Ethernet Frame . A–1
A.2. VLAN and Stacked VLAN Tagged MAC Frame . A–2
A.3. Pause Frame . A–3
A.4. Priority-Based Flow Control Frame . A–4

Additional Information
 Document Revision History . Info–1
 How to Contact Altera . Info–2
 Typographic Conventions . Info–3
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

vi Contents
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

July 2012 Altera Corporation
1. About This IP Core
The 10-Gbps Ethernet (10GbE) Media Access Controller (MAC) IP core is a
configurable component that implements the IEEE 802.3-2005 specification. The IP
core uses the Avalon® Streaming (Avalon-ST) interface on the client side and the
single data rate (SDR) XGMII on the network side. To build a complete 10GbE
subsystem in an Altera® device and connect it to an external device, you can use the
10GbE MAC IP core with an Altera PHY IP core such as a soft XAUI PHY in FPGA
fabric, hard silicon-integrated XAUI PHY, or a 10GBASE-R PHY.

Figure 1–1 illustrates a system with the 10GbE MAC IP core.

1.1. Features
The 10GbE MAC supports the following features:

■ Avalon-ST 64-bit wide client interface running at 156.25 MHz with 10-Gbps
full-duplex line rate.

■ Direct interface to 64-bit SDR XGMII running at 156.25 MHZ.

■ Virtual local area network (VLAN) and stacked VLAN tagged frames filtering as
specified by IEEE 802.IQ and 802.1ad (Q-in-Q) standards respectively.

■ Optional cyclic redundancy code (CRC)-32 computation and insertion on the
transmit datapath; CRC checking on the receive datapath with optional
forwarding of the frame check sequence (FCS) field to the client application.

■ Checking of receive frames for FCS error, undersized and oversized frames, and
payload length error.

■ Deficit idle counter (DIC) for optimized performance with average inter-packet
gap (IPG) for LAN applications.

■ Optional statistics collection on the transmit and receive datapaths.

■ Packets termination when the transmit datapath receives incomplete packets.

■ Programmable maximum length of transmit and receive frames up to
64 Kbytes (KB).

■ Programmable promiscuous (transparent) mode.

Figure 1–1. Typical Application of 10GbE MAC

Avalon-ST
Interface

Client
Module

Altera FPGA

10GbE MAC External PHYXAUI / 10GBASE-R
PHY

SDR XGMII
XAUI/

10GBASE-R
10-Gbps Ethernet MAC MegaCore Function User Guide

1–2 Chapter 1: About This IP Core
Programmable datapath option to allow separate instantiation of MAC Tx block, MAC Rx block, or both MAC Tx and MAC Rx blocks.Device Family
■ Optional Ethernet flow control and priority-based flow control (PFC) using pause
frames with programmable pause quanta. The PFC supports up to 8 priority
queues.

■ Optional padding termination on the receive datapath and insertion on the
transmit datapath.

■ Design examples with optional loopback and testbench for design verification.

■ Optional preamble passthrough mode on the transmit and receive datapaths. The
preamble passthrough mode allows you to define the preamble in the client frame.

1.2. Programmable datapath option to allow separate instantiation of MAC Tx block, MAC Rx block,

or both MAC Tx and MAC Rx blocks.Device Family Support
MegaCore functions provide the following support for Altera device families:

■ FPGA device families

■ Preliminary support—Altera verifies the IP core with preliminary timing models
for this device family. The core meets all functional requirements, but might
still be undergoing timing analysis for the device family. It can be used in
production designs with caution.

■ Final support—Altera verifies the IP core with final timing models for this
device family. The core meets all functional and timing requirements for the
device family and can be used in production designs.

■ HardCopy device families

■ Companion—Altera verifies the IP core with preliminary timing models for the
HardCopy companion device. The core meets all functional requirements, but
might still be undergoing timing analysis for HardCopy device family. It can be
used in production designs with caution.

■ Compilation—Altera verifies the IP core with final timing models for the
HardCopy device family. The core meets all functional and timing
requirements for the device family and can be used in production designs.

Table 1–1 shows the level of support offered by the 10GbE MAC to each Altera device
family.

Table 1–1. Device Family Support

Device Family Support

Arria® GX Final

Arria II GX Final

Arria II GZ Final

Arria V GT Preliminary

Cyclone® IV GX Final

HardCopy® IV Companion

Stratix® II GX Final

Stratix III Final

Stratix IV Final
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 1: About This IP Core 1–3
IP Core Verification
1.3. IP Core Verification
To ensure compliance with the IEEE specification, Altera performs extensive
validation of the 10GbE MAC IP core. Validation includes both simulation and
hardware testing.

1.3.1. Simulation Environment
Altera performs the following tests in the simulation environment:

■ Directed tests that test all types and sizes of transaction layer packets and all bits of
the configuration space.

■ Error injection tests that inject errors in the link, transaction layer packets, and data
link layer packets, and check for the proper response from the IP core.

■ Random tests that test a wide range of traffic patterns across one or more virtual
channels.

1.3.2. Compatibility Testing Environment
Altera has performed significant hardware testing of the 10GbE MAC IP core to
ensure a reliable solution. The IP core has been tested with Arria GX, Arria II GX,
Cyclone IV GX, Stratix II GX, Stratix III, Stratix IV, Stratix IV GX, and Stratix V devices
and soft XAUI PHYs. They have passed all interoperability tests with a wide selection
of motherboards and test equipment. In addition, Altera internally tests every release
with motherboards from a variety of manufacturers.

Stratix V Preliminary

Other device families No support

Table 1–1. Device Family Support

Device Family Support
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

1–4 Chapter 1: About This IP Core
Performance and Resource Utilization
1.4. Performance and Resource Utilization
Table 1–2 provides the estimated performance and resource utilization of the 10GbE
MAC for the Cyclone IV device family. The estimates are obtained by compiling the
10GbE MAC with the Quartus II software targeting a Cyclone IV
(EP4CGX110DF31C7) device with speed grade –7.

1 To achieve your timing requirement in Quartus II, Altera recommends that you use
multiple seeds in the Design Space Explorer to find the optimal Fitter settings for your
design, follow the Timing Optimization Advisor's recommendations, apply the Speed
Optimization Technique and use the LogicLock regions.

Table 1–3 provides the estimated performance and resource utilization of the 10GbE
MAC for the Stratix IV device family. The estimates are obtained by compiling the
10GbE MAC with the Quartus II software targeting a Stratix IV GX
(EP4SGX70HF35C2) device with speed grade –2.

Table 1–4 provides the estimated performance and resource utilization of the 10GbE
MAC for the Stratix V device family. The estimates are obtained by compiling the
10GbE MAC with the Quartus II software targeting a Stratix V GX
(5SGXEA7H3F35C3) device with speed grade –3.

Table 1–2. Cyclone IV Performance and Resource Utilization

Settings Logic Elements Registers Memory Block (M9K) fMAX (MHz)

All options disabled
4,424 3,245 2 >156.25

All options enabled with
memory-based statistics counters 11,845 8,355 11 >156.25

Table 1–3. Stratix IV Performance and Resource Utilization

Settings Combinational ALUTs Logic Registers Memory Block (M9K) fMAX (MHz)

All options disabled
1,954 3,157 0 >156.25

All options enabled with
memory-based statistics counters 5,684 8,349 7 >156.25

All options enabled with
register-based statistics counters 8,135 10,117 3 >156.25

Table 1–4. Stratix V Performance and Resource Utilization

Settings Combinational ALUTs Dedicated Logic
Registers Memory Block (M20K) fMAX (MHz)

All options disabled
2,001 3,077 0 >156.25

All options enabled with
memory-based statistics counters 5,772 8,197 7 >156.25

All options enabled with
register-based statistics counters 8,202 9,965 3 >156.25
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

July 2012 Altera Corporation
2. Getting Started with Altera IP Cores
This chapter provides a general overview of the Altera IP core design flow to help you
quickly get started with any Altera IP core. The Altera IP Library is installed as part of
the Quartus II installation process. You can select and parameterize any Altera IP core
from the library. Altera provides an integrated parameter editor that allows you to
customize IP cores to support a wide variety of applications. The parameter editor
guides you through the setting of parameter values and selection of optional ports.
The following sections describe the general design flow and use of Altera IP cores.

2.1. Installation and Licensing
The Altera IP Library is distributed with the Quartus II software and downloadable
from the Altera website (www.altera.com).

Figure 2–1 shows the directory structure after you install an Altera IP core, where
<path> is the installation directory. The default installation directory on Windows is
C:\altera\<version number>; on Linux it is /opt/altera<version number>.

You can evaluate an IP core in simulation and in hardware until you are satisfied with
its functionality and performance. Some IP cores require that you purchase a license
for the IP core when you want to take your design to production. After you purchase
a license for an Altera IP core, you can request a license file from the Altera Licensing
page of the Altera website and install the license on your computer. For additional
information, refer to Altera Software Installation and Licensing.

Figure 2–1. IP core Directory Structure

<path>

<IP core name>
Contains the IP core files and documentation

common
Contains shared components

Installation directory

ip
Contains the Altera IP Library and third-party IP cores

altera
Contains the Altera IP Library
10-Gbps Ethernet MAC MegaCore Function User Guide

http://www.altera.com
http://www.altera.com/licensing
http://www.altera.com/literature/manual/quartus_install.pdf

2–2 Chapter 2: Getting Started with Altera IP Cores
Design Flows
2.2. Design Flows
You can use the following flow(s) to parameterize Altera IP cores:

■ MegaWizard Plug-In Manager Flow

Figure 2–2 shows the design flows.

The MegaWizard Plug-In Manager flow offers the following advantage:

■ Allows you to parameterize an IP core variant and instantiate into an existing
design

2.3. MegaWizard Plug-In Manager Flow
The MegaWizard Plug-In Manager flow allows you to customize the 10GbE MAC IP
core and manually integrate the function into your design.

2.3.1. Specifying Parameters
To specify the 10GbE MAC IP core parameters with the MegaWizard Plug-In
Manager, follow these steps:

1. Open an existing Quartus II project or create a new project using the New Project
Wizard available from the File menu.

Figure 2–2. Design Flows

Select Design Flow

Specify Parameters

SOPC Builder
Flow

MegaWizard
Flow

Complete
SOPC Builder System

Specify Parameters

IP Complete

Perform
Functional Simulation

Debug Design

Does
Simulation Give

Expected Results?

Yes

Optional

Add Constraints
and Compile Design
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 2: Getting Started with Altera IP Cores 2–3
MegaWizard Plug-In Manager Flow
2. In the Quartus II software, launch the MegaWizard Plug-in Manager from the
Tools menu, and follow the prompts in the MegaWizard Plug-In Manager
interface to create or edit a custom IP core variation.

3. In the Installed Plug-Ins list on page 2a of the MegaWizard Plug-In Manager
interface, expand the Interfaces folder and then the Ethernet folder. Select
Ethernet 10G MAC. Specify the type and name of the output file you want to
create.

4. Specify the parameters on the Parameter Settings pages. For detailed explanations
of these parameters, refer to “10GbE MAC Parameter Settings” on page 2–8.

5. Specify appropriate options in the wizard to generate a simulation model.

1 Altera IP supports a variety of simulation models, including
simulation-specific IP functional simulation models and encrypted RTL
models. These are all cycle-accurate models. The models allow for fast
functional simulation of your IP core instance using industry-standard
VHDL or Verilog HDL simulators.

f For more information about functional simulation models for Altera IP
cores, refer to Simulating Altera Designs in volume 3 of the Quartus II
Handbook.

c Use the simulation models only for simulation and not for synthesis or any
other purposes. Using these models for synthesis creates a nonfunctional
design.

6. Click Finish. The parameter editor generates the top-level HDL code for the
10GbE MAC IP core and a simulation directory which includes files for
simulation.

1 The Finish button may be unavailable until all parameterization errors
listed in the messages window are corrected.

7. Upon clicking Finish, a dialog box appears to allow you to skip the example
design file generation. The default setting is to generate the example design which
creates a list_of_files.tcl file in the <design_name>_sim project directory. If
you turn off Generate Example Design, the Quartus II skips the example design
generation stage and does not create the list_of_files.tcl file.

1 For the 10GbE MAC IP core, no example design is generated regardless of
whether the Generate Example Design check box is turned on or off. You
can leverage on the design example system provided in the Qsys
component library.

8. Click Yes if you are prompted to add the Quartus II IP File (.qip) to the current
Quartus II project. You can also turn on Automatically add Quartus II IP Files to
all projects.

You can now integrate your custom 10GbE MAC IP core instance in your design,
simulate, and compile.
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

http://www.altera.com/literature/hb/qts/qts_QII53025.pdf

2–4 Chapter 2: Getting Started with Altera IP Cores
SOPC Builder Design Flow
f For information about the Quartus II software and the MegaWizard Plug-In Manager,
refer to Quartus II Help.

2.3.2. Simulate the IP Core
You can simulate the 10GbE MAC IP core with the functional simulation model
generated by the Quartus II software. To perform a successful simulation of the 10GbE
MAC IP core using the MegaWizard Plug-In Manager flow, you are required to
compile all files listed in the <project directory>/<variation name>_sim output file.
Otherwise, the simulation may fail.

f For more information about simulating Altera IP cores, refer to Simulating Altera
Designs in volume 3 of the Quartus II Handbook.

2.4. SOPC Builder Design Flow
You can use SOPC Builder to build a system that includes your customized IP core.
You easily can add other components and quickly create an SOPC Builder system.
SOPC Builder automatically generates HDL files that include all of the specified
components and interconnections. SOPC Builder defines default connections, which
you can modify. The HDL files are ready to be compiled by the Quartus II software to
produce output files for programming an Altera device.

Figure 2–3 shows a block diagram of an example SOPC Builder system.

Figure 2–3. SOPC Builder System

Altera IP Core
Simulation

Testbench Module

System Interconnect Fabric

Peripheral 1

SOPC Builder System

Altera IP Core
Instance

Peripheral 2 Peripheral 3
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_QII53025.pdf
http://www.altera.com/literature/hb/qts/qts_QII53025.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/quartus/gl_quartus_welcome.htm

Chapter 2: Getting Started with Altera IP Cores 2–5
SOPC Builder Design Flow
f For more information about system interconnect fabric, refer to the System Interconnect
Fabric for Memory-Mapped Interfaces and System Interconnect Fabric for Streaming
Interfaces chapters in the SOPC Builder User Guide and to the Avalon Interface
Specifications.

f For more information about SOPC Builder and the Quartus II software, refer to the
SOPC Builder Features and Building Systems with SOPC Builder sections in the SOPC
Builder User Guide and to Quartus II Help.

2.4.1. Specify Parameters
To specify the 10GbE MAC IP core parameters in the SOPC Builder flow, follow these
steps:

1. Open an existing Quartus II project or create a new project using the New Project
Wizard available from the File menu.

2. On the Tools menu, click SOPC Builder.

3. For a new system, specify the system name and language.

4. On the System Contents tab, expand the Interfaces Protocols list and then the
Ethernet list. Double-click Ethernet 10G MAC to add it to your system. The
relevant parameter editor appears.

5. Specify the required parameters in the parameter editor. For detailed explanations
of these parameters, refer to “10GbE MAC Parameter Settings” on page 2–8.

6. Click Finish to complete the IP core instance and add it to the system.

2.4.2. Complete the SOPC Builder System
To complete the SOPC Builder system, follow these steps:

1. Add and parameterize any additional components. Some IP cores include a
complete SOPC Builder system design example.

2. Use the Connection panel on the System Contents tab to connect the components.

3. By default, clock names are not displayed. To display clock names in the Module
Name column and the clocks in the Clock column in the System Contents tab,
click Filters to display the Filters dialog box. In the Filter list, click All.

4. If you intend to simulate your SOPC builder system, on the System Generation
tab, turn on Simulation. Create project simulator files to generate simulation files
for your system.

5. Click Generate to generate the system. SOPC Builder generates the system and
produces the <system name>.qip file that contains the assignments and
information required to process the IP core or system in the Quartus II Compiler.

6. In the Quartus II software, click Add/Remove Files in Project on the Project menu
and add the .qip file to the project.

7. Compile your design in the Quartus II software.
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

http://www.altera.com/literature/ug/ug_sopc_builder.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/ug/ug_sopc_builder.pdf
http://www.altera.com/literature/ug/ug_sopc_builder.pdf

2–6 Chapter 2: Getting Started with Altera IP Cores
SOPC Builder Design Flow
2.4.3. Simulate the System
During system generation, you can specify whether SOPC Builder generates a
simulation model and testbench for the entire system, which you can use to easily
simulate your system in any of Altera's supported simulation tools. SOPC Builder
also generates a set of ModelSim® Tcl scripts and macros that you can use to compile
the testbench and plain-text RTL design files that describe your system in the
ModelSim simulation software.

f For information about the latest Altera-supported simulation tools, refer to the
Quartus II Software Release Notes.

f For information about simulating SOPC Builder systems, refer to the SOPC Builder
User Guide and AN 351: Simulating Nios II Embedded Processor Designs.

f For general information about simulating Altera IP cores, refer to Simulating Altera
Designs in volume 3 of the Quartus II Handbook.
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/ug/ug_sopc_builder.pdf
http://www.altera.com/literature/ug/ug_sopc_builder.pdf
http://www.altera.com/literature/an/an351.pdf
http://www.altera.com/literature/hb/qts/qts_QII53025.pdf
http://www.altera.com/literature/hb/qts/qts_QII53025.pdf

Chapter 2: Getting Started with Altera IP Cores 2–7
Qsys System Integration Tool Design Flow
2.5. Qsys System Integration Tool Design Flow
You can use the Qsys system integration tool to build a system that includes your
customized IP core. You easily can add other components and quickly create a Qsys
system. Qsys automatically generates HDL files that include all of the specified
components and interconnections. In Qsys, you specify the connections you want.
The HDL files are ready to be compiled by the Quartus II software to produce output
files for programming an Altera device.

Figure 2–4 shows a high level block diagram of an example Qsys system.

f For more information about the Qsys system interconnect, refer to the Qsys
Interconnect chapter in volume 1 of the Quartus II Handbook and to the Avalon Interface
Specifications.

f For more information about the Qsys tool and the Quartus II software, refer to the
System Design with Qsys section in volume 1 of the Quartus II Handbook and to Quartus
II Help.

2.5.1. Specify Parameters
To specify parameters for your IP core using the Qsys flow, follow these steps:

1. Open an existing Quartus II project or create a new project using the New Project
Wizard available from the File menu.

2. On the Tools menu, click Qsys.

3. On the Component Library tab, expand the Interfaces Protocols list and then the
Ethernet list. Double-click Ethernet 10G MAC to add it to your system. The
relevant parameter editor appears.

4. Specify the required parameters in the Qsys tool. For detailed explanations of
these parameters, refer to “10GbE MAC Parameter Settings” on page 2–8.

5. Click Finish to complete the IP core instance and add it to the system.

Figure 2–4. Example Qsys System

DDR3
SDRAM

Ethernet
Subsystem

Ethernet

Embedded Cntl

PCI Express
Subsystem

Qsys System
PCIe to Ethernet Bridge

PCIe

CSR
Mem
Mstr

Mem
Slave

PHY
Cntl

Mem
Mstr

CSR

DDR3
SDRAM

Controller
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf
http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qsys_section.pdf

2–8 Chapter 2: Getting Started with Altera IP Cores
10GbE MAC Parameter Settings
2.5.2. Complete the Qsys System
To complete the Qsys system, follow these steps:

1. Add and parameterize any additional components.

2. Connect the components using the Connections panel on the System Contents
tab.

3. In the Export As column, enter the name of any connections that should be a
top-level Qsys system port.

4. If you intend to simulate your Qsys system, on the Generation tab, turn on one or
more options under Simulation to generate desired simulation files.

5. If you want to generate synthesis RTL files, turn on Create HDL design files for
synthesis.

6. Click Generate to generate the system. Qsys generates the system and produces
the <system name>.qip file that contains the assignments and information required
to process the IP core or system in the Quartus II Compiler.

7. In the Quartus II software, click Add/Remove Files in Project on the Project menu
and add the .qip file to the project.

8. Compile your design in the Quartus II software.

2.5.3. Simulate the System
During system generation, Qsys generates a functional simulation model which you
can use to simulate your system easily in any Altera-supported simulation tool.

f For information about the latest Altera-supported simulation tools, refer to the
Quartus II Software Release Notes.

f For general information about simulating Altera IP cores, refer to Simulating Altera
Designs in volume 3 of the Quartus II Handbook.

f For information about simulating Qsys systems, refer to the System Design with Qsys
section in volume 1 of the Quartus II Handbook.

2.6. 10GbE MAC Parameter Settings
You customize the 10GbE MAC by specifying the parameters on the MegaWizard
Plug-in Manager, SOPC Builder, or Qsys in the Quartus II software. Table 2–1
describes the parameters and how they affect the behavior of the IP core.

Table 2–1. 10GbE Parameters

Parameter Description

Preamble Passthrough Mode

Turn on this parameter to include the logic to implement the preamble passthrough
mode. To use the preamble passthrough mode, you must turn on this parameter and
set the tx_preamble_control, rx_lane_decoder_preamble_control, and
rx_preamble_inserter_control registers to 1 to enable the mode.

Priority-based Flow Control (PFC) Turn on this parameter to include the logic to implement PFC. Refer to “Priority-Based
Flow Control” on page 4–16 for more information on PFC and its operations.
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/hb/qts/qts_qii53014.pdf
http://www.altera.com/literature/hb/qts/qts_QII53025.pdf
http://www.altera.com/literature/hb/qts/qts_QII53025.pdf
http://www.altera.com/literature/hb/qts/qsys_section.pdf

Chapter 2: Getting Started with Altera IP Cores 2–9
10GbE MAC Parameter Settings
Number of PFC Priorities
Indicates the number of PFC priority levels that the 10GbE MAC IP core supports. The
valid range is from 2 to 8. This option is enabled only if you turn on the Priority-based
Flow Control (PFC) parameter.

Datapath Option

Use this parameter to select the datapath option that determines the MAC variation to
instantiate. By default, the TX & RX option is selected. The default datapath
instantiates the MAC Tx and MAC Rx blocks. Selecting TX Only instantiates the MAC
Tx block; selecting RX Only instantiates the MAC Rx block.

Supplementary Address

Turn on this parameter to include the logic to implement supplementary addresses. To
use supplementary addresses, you must turn on this parameter and enable
supplementary addresses by setting the EN_SUPP0/1/2/3 bits in the
rx_frame_control register to 1.

CRC on Transmit Path

Turn on this parameter to include the logic to calculate and insert CRC on the transmit
datapath. To compute and insert CRC on the transmit datapath, you must turn on this
parameter and enable CRC insertion by setting the tx_crcins_control[1] register
bit to 1.

Statistics Collection Turn on this parameter to include the logic that collects statistics on the transmit and
receive datapaths.

Statistics Counters

When you turn on Statistics Collection, the default implementation of the statistics
counters is Memory-based.

Use Memory-based statistics counters to free up the logic elements (the MAC does
not clear the statistic counters after the counters are read); Register-based statistics
counters to free up the memory (the MAC clears the statistic counters after the
counters are read).

Register-based statistics counters are not supported for Cyclone IV GX and Arria GX
devices.

Table 2–1. 10GbE Parameters

Parameter Description
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

2–10 Chapter 2: Getting Started with Altera IP Cores
10GbE MAC Parameter Settings
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

July 2012 Altera Corporation
3. Design Examples and Testbench
Altera provides the following design examples and testbenches to help you get
started with the 10GbE MAC IP core and use the core in your design:

■ 10GbE MAC with XAUI PHY

■ 10GbE MAC with 10GBASE-R PHY

This chapter describes the design examples, their architecture and components, and
functional verification using the provided testbench and in the hardware.

1 XAUI PHY and 10GBASE-R PHY do not support older devices such as Arria GX,
Stratix II, and Stratix III.

3.1. Software and Hardware Requirements
Altera uses the following hardware and software to test the design examples and
testbenches:

■ Quartus II software 12.0

■ Stratix IV GX FPGA development kit (for XAUI PHY)

■ Transceiver Signal Integrity development kit, Stratix IV GT Edition (for
10GBASE-R PHY)

■ ModelSim®-AE 6.6c, ModelSim-SE 6.6c or higher

f For more information on the development kits, refer to the following documents:

■ Stratix IV GX Development Kit User Guide

■ Stratix IV GX Development Kit Reference Manual

■ Transceiver Signal Integrity Development Kit, Stratix IV GT Edition User Guide

■ Transceiver Signal Integrity Development Kit, Stratix IV GT Edition Reference Manual
10-Gbps Ethernet MAC MegaCore Function User Guide

http://www.altera.com/literature/ug/ug_sivgx_fpga_dev_kit.pdf
http://www.altera.com/literature/manual/rm_sivgx_fpga_dev_board.pdf
http://www.altera.com/literature/ug/ug_sivgt_si_dev_kit.pdf
http://www.altera.com/literature/manual/rm_sivgt_si_dev_board.pdf
http://www.altera.com/literature/ug/ug_sivgt_si_dev_kit.pdf
http://www.altera.com/literature/manual/rm_sivgt_si_dev_board.pdf
http://www.altera.com/literature/manual/rm_sivgx_fpga_dev_board.pdf
http://www.altera.com/literature/ug/ug_sivgx_fpga_dev_kit.pdf

3–2 Chapter 3: Design Examples and Testbench
Design Example
3.2. Design Example
You can use the 10GbE MAC IP core design example to simulate a complete 10GbE
design in an Altera FPGA. You can compile the design example using the simulation
files generated by the Quartus II software and program the targeted Altera device
after a successful compilation.

Figure 3–1 shows the architecture of the design examples.

Figure 3–1. Design Example Architecture

Ethernet
Loopback

JTAG to Avalon Master
Bridge

Pipeline Bridge
10GbE MAC

XAUI
or

10GBASE-R
PHY

External
PHY

MDIO

64-bit Avalon-ST

64-bit Avalon-ST

32-bit
Avalon-MM

MDIO Signals

32
-b

it
Av

al
on

-M
M

System Console
(for debugging)

XAUI / 10GBASE-R

72-bit SDR XGMII

72-bit SDR XGMII

Tx FIFO BufferRx FIFO Buffer

Client
Application

Altera FPGA

Design Example

Client Application
(Configuration, Status, and

Statistics)

Avalon-ST
Single-Clock / Dual-Clock

FIFO

Configuration and Debugging Tools

32

6464

72 72

72 72

32

64 64
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 3: Design Examples and Testbench 3–3
Design Example
3.2.1. Components
The design example comprises the following components:

■ 10GbE Ethernet MAC—the MAC IP core with default settings. This IP core
includes memory-based statistics counters.

■ XAUI PHY or 10GBASE-R PHY—the PHY IP core with default settings. The XAUI
PHY is set to Hard XAUI by default.

■ Ethernet Loopback— the loopback module, which is enabled by default, provides
a mechanism for you to verify the functionality of the MAC and PHY. Refer to
Section 3.2.1.1, Ethernet Loopback Module for more information about this
module.

■ Rx and Tx FIFO buffers—Avalon-ST Single-Clock or Dual-Clock FIFO cores that
buffer receive and transmit data between the MAC and client. These FIFO buffers
are 64 bits wide and 512 bits deep. The default configuration is Avalon-ST
Single-Clock FIFO which operates in store and forward mode and can be
configured to provide packet-based flushing capabilities when an error occurs.

■ Configuration and debugging tools—provides access to the registers of the
following components via the Avalon Memory-Mapped (Avalon-MM) interface:
MAC, MDIO, Ethernet loopback, PHY, and FIFO buffers. The provided testbench
includes an Avalon driver which uses the pipeline bridge to access the registers.
You can use the system console to access the registers via the JTAG to Avalon
Master Bridge core when verifying the design in the hardware.

f To learn more about the components, refer to the respective documents:

■ XAUI PHY and 10GBASE-R PHY, refer to Altera Transceiver PHY IP Core User
Guide.

■ Avalon-ST Single-Clock or Dual-Clock FIFO, JTAG to Avalon Master Bridge, and
MDIO cores, refer to Embedded Peripherals IP User Guide.

■ Pipeline bridge, refer to Avalon Memory-Mapped Bridges in volume 4 of the Quartus
II Handbook.

■ System Console, refer to Analyzing and Debugging Designs with the System Console in
volume 3 of the Quartus II Handbook.

3.2.1.1. Ethernet Loopback Module
You can enable one the following loopback types:

■ Local loopback—turn on this loopback to verify the functionality of the MAC
during simulation. When you enable the local loopback, the Ethernet loopback
module takes the transmit frame from the MAC Tx and loops it back to the receive
datapath. During this cycle, the loopback module also forwards the frame to the
PHY. While the local loopback is turned on, the loopback module ignores any
frame it receives from the PHY.
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

www.altera.com/literature/ug/xcvr_user_guide.pdf
www.altera.com/literature/ug/xcvr_user_guide.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55014.pdf
http://www.altera.com/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/literature/hb/qts/qts_qii53028.pdf
http://www.altera.com/literature/hb/qts/qts_qii54020.pdf

3–4 Chapter 3: Design Examples and Testbench
Design Example
■ Line loopback—turn on this loopback to verify the functionality of the PHY when
verifying the design example in hardware. When you enable the line loopback, the
Ethernet loopback module takes the XGMII signal received from the external PHY
and loops it back to the transmit datapath. During this cycle, the loopback module
also forwards the XGMII signal to the MAC. While the line loopback is turned on,
the loopback module ignores any frame it receives from the MAC.

Table 3–1 describes the registers you can use to enable or disable the desired loopback.

3.2.1.2. Base Addresses
Table 3–2 lists the design example components that you can reconfigure to suit your
verification objectives. To reconfigure the components, write to their registers using
the base addresses listed in the table and the register offsets described in the
components' user guides. Refer to Table 3–1 for the Ethernet loopback registers.

3.2.2. Files
Figure 3–2 shows the directory structure for the design examples and testbenches. The
..\csr_script directory contains the design example script files.

Table 3–1. Loopback Registers

Byte Offset Register Description

0x00 line loopback Set this register to 1 to enable line loopback; 0 to disable it.

0x04 Reserved —

0x08 local loopback Set this register to 1 to enable local loopback; 0 to disable it.

Table 3–2. Base Addresses of Design Example Components

Component Base Address

10GbE MAC 0x000

XAUI or 10GBASE-R PHY 0x40000

MDIO 0X10000

Ethernet loopback 0x10200

Rx FIFO (Avalon-ST Single-Clock FIFO) 0x10400

Tx FIFO (Avalon-ST Single-Clock FIFO) 0x10600

Figure 3–2. Design Example Folders

<ip_lib>/ethernet/altera_eth_10g_design_example

altera_eth_10g_mac_base_r

altera_eth_10g_mac_xaui

csr_scripts

testbench

testbench

design_example_components

source
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 3: Design Examples and Testbench 3–5
Design Example
Table 3–3 lists the design example files. For the description of testbench files, refer to
Table 3–5 on page 3–9.

Table 3–3. Design Example Files

File Name Description

setup_proj.tcl
A Tcl script that creates a new Quartus II project
and sets up the project environment for your
design example.

altera_eth_10g_design_mac_xaui.qsys
A Qsys file for the 10GbE MAC and XAUI PHY
design example. The PHY is set to hard XAUI by
default.

altera_eth_10g_design_mac_xaui_sv.qsys

A Qsys file for the 10GbE MAC and XAUI PHY
design example with the Quartus II software
targeting the Stratix V device. The PHY is set to
hard XAUI by default.

altera_eth_10g_design_mac_base_r.qsys A Qsys file for the 10GbE MAC and 10GBASE-R
PHY design example.

altera_eth_10g_design_mac_base_r_sv.qsys
A Qsys file for the 10GbE MAC and 10GBASE-R
PHY design example with the Quartus II software
targeting the Stratix V device.

setup_SIVGX230C2ES.tcl

A Tcl script that sets the pin assignments and I/O
standards for the Stratix IV GX FPGA
development board. Use this Tcl script for the
10GbE MAC with XAUI PHY design example.

setup_EP4S100G5H40I3.tcl

A Tcl script that sets the pin assignments and I/O
standards for the Stratix IV GT Signal Integrity
development board. Use this Tcl script for the
10GbE MAC with 10GBASE-R PHY design
example.

top.sdc The Quartus II SDC constraint file for use with
the TimeQuest timing analyzer.

top.v The top-level entity file of the design example for
verification in hardware.

top_sv.v
The top-level entity file of the design example—
with the Quartus II software targeting the Stratix
V device—for verification in hardware.

common.tcl
A Tcl script that contains basic functions based
on the system console APIs to access the
registers through the Avalon-MM interface.

config.tcl A Tcl script that configures the design example.

csr_pkg.tcl
A Tcl script that maps address to the Avalon-MM
control registers. The script contains APIs which
is used by config.tcl and show_stats.tcl.

show_stats.tcl A Tcl script that displays the MAC statistics
counters.

altera_eth_10g_design_example_hw.tcl A hardware Tcl script that contains the
composition of the Ethernet system.
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

3–6 Chapter 3: Design Examples and Testbench
Design Example
3.2.3. Creating a New 10GbE Design
You can use the Quartus II software to create a new 10GbE design. Altera provides a
customizable Qsys design example file to facilitate the development of your 10GbE
design. Follow these steps to create the design:

1. Copy the respective design example directory to your preferred project directory:
altera_eth_10g_mac_xaui or altera_eth_10g_mac_base_r from
<ip library>/ethernet/altera_eth_10g_design_example.

2. Launch the Quartus II software and open the top.v file from the project directory.

3. Open the Quartus II Tcl Console window by pointing to Utility Windows on the
View menu and then selecting Tcl Console. In the Quartus II Tcl Console window,
type the following command to set up the project environment:

source setup_proj.tclr
4. Load the pin assignments and I/O standards for the development board:

■ For the 10GbE MAC with XAUI PHY design example, type the following
command:

source setup_SIVGX230C2ES.tclr
This command assigns the XAUI serial interface to the pins that are connected
to the HSMC Port A of the Stratix IV GX development board.

■ For the 10GbE MAC with 10GBASE-R design example, type the following
command:

source setup_EP4S100G2F40I1.tclr
This command assigns the 10GBASE-R serial interface to the pins that are
connected to the SMA connectors (J38 to J41) of the Stratix IV GT development
board.

f For more information about the development boards, refer to the respective
reference manuals: Stratix IV GX Development Kit Reference Manual or
Transceiver Signal Integrity Development kit, Stratix IV GT Edition Reference
Manual.

5. Launch Qsys from the Tools menu and open the altera_eth_10g_mac_base_r.qsys
or altera_eth_10g_mac_xaui.qsys file. For design targeting the Stratix V device
family, use the altera_eth_10g_mac_base_r_sv.qsys or
altera_eth_10g_mac_xaui_sv.qsys file.

1 By default, the design example targets the Stratix IV device family. To
change the target device family, click on the Project Settings tab and select
the desired device from the Device family list.

6. Turn off the additional module under the Use column if your design does not
require them. This action disconnects the module from the 10GbE system.

7. Double-click eth_10g_design_example_0 to launch the parameter editor.

8. Specify the required parameters in the parameter editor. For detailed explanations
of these parameters, refer to “Parameter Settings” on page 3–7.
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

http://www.altera.com/literature/manual/rm_sivgx_fpga_dev_board.pdf
http://www.altera.com/literature/manual/rm_sivgt_si_dev_board.pdf
http://www.altera.com/literature/manual/rm_sivgt_si_dev_board.pdf

Chapter 3: Design Examples and Testbench 3–7
Design Example
9. Click Finish.

10. On the Generation tab, select either a verilog or a VHDL simulation model and
make sure that the Create HDL design files for synthesis option is turned on.

11. Click Generate to generate the simulation and synthesis files.

3.2.4. Parameter Settings
You can customize the 10GbE design example by specifying the parameters using the
parameter editor. Table 3–4 describes the these parameters.

1 The parameter values you select on the configuration tab corresponds with other tabs
that requires further parameterization. You should only parameterize the components
that you select and omit the others. Editing the unselected component parameters
may cause the system generation to fail.

f For more information about the parameter settings of other components, refer to the
respective documents:

■ 10GbE MAC, refer to “10GbE MAC Parameter Settings” on page 2–8.

■ Avalon-ST Single-Clock or Dual-Clock FIFO and MDIO core, refer to Embedded
Peripherals IP User Guide.

■ XAUI PHY and 10GBASE-R PHY, refer to Altera Transceiver PHY IP Core User
Guide.

Table 3–4. Design Example Parameters

Name Value Description

Configuration

MDIO
MDIO

None

Specifies whether the Ethernet system requires a MDIO core to
access the external PHY device management registers for
configuration and management purposes.

PHY IP

XAUI PHY

10GBase-R PHY

None

Specifies which protocol-specific PHY IP core to use for the
Ethernet system. For XAUI PHY, you can choose to implement the
system in soft or hard logic.

FIFO

Avalon-ST Single Clock FIFO

Avalon-ST Dual Clock FIFO

Avalon-ST Single Clock FIFO
+ Avalon-ST Dual Clock FIFO

None

Specifies which FIFO buffer to use for the Ethernet system. The
Avalon-ST Single Clock FIFO operates with a common clock for the
input and output ports while the Avalon-ST Dual Clock FIFO
operates with independent clocks for the input and output ports.

You cannot enable a different FIFO option for Tx datapath and Rx
datapath. If you select Avalon-ST Single Clock FIFO, the design
includes single clock FIFO at both the Tx and Rx datapath.
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

www.altera.com/literature/ug/xcvr_user_guide.pdf
www.altera.com/literature/ug/xcvr_user_guide.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55014.pdf
http://www.altera.com/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/literature/ug/ug_embedded_ip.pdf

3–8 Chapter 3: Design Examples and Testbench
Testbenches
3.3. Testbenches
Altera provides testbenches for you to verify the design examples. The following
sections in this document describe the architecture of the testbenches, their
components, and use.

3.3.1. Architecture
The testbenches operate in loopback mode. Frames sent through the transmit path
loops back into the receive path.

Figure 3–3 illustrates the architecture of the testbenches.

3.3.2. Components
The testbenches comprise the following modules:

■ Device under test (DUT)—the design example. Refer to Figure 3–1 on page 3–2 for
the architecture of the design example.

■ Avalon driver—uses Avalon-ST bus functional models (BFMs) to exercise the
transmit and receive paths. The driver also utilizes the Avalon-MM BFM to access
the Avalon-MM interfaces of the design example components.

■ Packet monitors—monitors the transmit and receive datapaths, and displays the
frames in the simulator console.

Figure 3–3. Testbench Architecture

Loopback
on XGMII

Ethernet
Packet
Monitor

Avalon-ST

Avalon-MM

Avalon-ST

Avalon-MM
Control
Register

Ethernet
Packet
Monitor

Avalon Driver

avalon_bfm_wrapper.sv

Avalon-ST
Transmit
Frame

Generator

Avalon-ST
Receive
Frame
Monitor

DUT

Testbench
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 3: Design Examples and Testbench 3–9
Testbenches
3.3.3. Files
The following directories contain the testbench files which are in clear text:

■ 10GbE MAC and XAUI PHY testbench—<ip library>/ethernet/
altera_eth_10g_design_example/altera_eth_10g_mac_xaui/testbench

■ 10GbE MAC and 10GBASE-R PHY testbench— <ip library>/ethernet/
altera_eth_10g_design_example/altera_eth_10g_mac_base_r/testbench

Table 3–5 describes the files that implement the testbenches.

Table 3–5. Testbench Files

File Name Description

avalon_bfm_wrapper.sv A wrapper for the Avalon BFMs that the avalon_driver.sv file
uses.

avalon_driver.sv
A SystemVerilog HDL driver that utilizes the BFMs to exercise
the transmit and receive path, and access the Avalon-MM
interface.

avalon_if_params_pkg.sv
A SystemVerilog HDL testbench that contains parameters to
configure the BFMs. Because the configuration is specific to
the DUT, you must not change the contents of this file.

avalon_st_eth_packet_monitor.sv A SystemVerilog HDL testbench that monitors the Avalon-ST
transmit and receive interfaces.

eth_mac_frame.sv A SystemVerilog HDL class that defines the Ethernet frames.
The avalon_driver.sv file uses this class.

eth_register_map_params_pkg.sv A SystemVerilog HDL package that maps addresses to the
Avalon-MM control registers.

tb_run.tcl A Tcl script that starts a simulation session in the ModelSim
simulation software.

tb.sv

The top-level testbench file. This file includes the customized
10GbE MAC which is the device under test (DUT), a client
packet generator, and a client packet monitor along with
other logic blocks.

wave.do A signal tracing macro script for use with the ModelSim
simulation software to display testbench signals.
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

3–10 Chapter 3: Design Examples and Testbench
Testbenches
3.3.4. Simulation Flow
Upon a simulated power-on reset, each testbench performs the following operations:

1. Initializes the DUT by configuring the following options via the Avalon-MM
interface:

a. In the MAC, enables address insertion on the transmit path and sets the
transmit primary MAC address to EE-CC-88-CC-AA-EE.

b. In the Tx and Rx FIFO buffers (Avalon-ST Single Clock FIFO core), enables
drop on error.

2. Starts packet transmission. The testbench sends a total of eight packets:

a. 64-byte basic Ethernet frame

b. Pause frame

c. 1518-byte VLAN frame

d. 1518-byte basic Ethernet frame

e. 64-byte stacked VLAN frame

f. 500-byte VLAN frame

g. Pause frame

h. 1518-byte stacked VLAN frame

3. Ends the transmission and displays the MAC statistics in the transcript pane.

3.3.5. Simulating the Testbench with the ModelSim Simulator
To use the ModelSim simulator to simulate the testbench design, follow these steps:

1. Copy the respective design example directory to your preferred project directory:
altera_eth_10g_mac_xaui or altera_eth_10g_mac_base_r from
<ip library>/ethernet/altera_eth_10g_design_example.

2. The design example and testbench files are set to read only. Altera recommends
that you turn off the read-only attribute of all design example and testbench files.

3. Launch the Quartus II software and open the top.v file from the project directory.

4. Open the Quartus II Tcl Console window by pointing to Utility Windows on the
View menu and then selecting Tcl Console. In the Quartus II Tcl Console window,
type the following command to set up the project environment:

source setup_proj.tclr
5. Launch Qsys from the Tools menu and open altera_eth_10g_mac_base_r.qsys or

altera_eth_10g_mac_xaui.qsys in the File menu.

6. For the 10GbE MAC with XAUI design example, the default setting of the XAUI
PHY is Hard XAUI. Follow these steps if you want to set the PHY to Soft XAUI:

a. Double-click the XAUI PHY module to open the parameter editor.

b. On the General Options tab, select Soft XAUI for XAUI Interface Type.

7. On the Generation tab, select verilog simulation model.
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 3: Design Examples and Testbench 3–11
Testbenches
8. Click Generate to generate the system.Launch the ModelSim simulator software.

9. Change the working directory to <project directory>/<design example
directory>/testbench in the File menu.

10. Run the following command to set up the required libraries, compile the
generated IP Functional simulation model, and exercise the simulation model with
the provided testbench:

do tb_run.tclr
The ModelSim transcript pane in Main window displays messages from the
testbench reflecting the current task being performed.

Upon a successful simulation, the simulator displays the following RX Statistics
and TX Statistics:

framesOK = 8
framesErr = 0
framesCRCErr = 0
octetsOK = 5138
pauseMACCtrlFrames = 2
ifErrors = 0
unicastFramesOK = 4
unicastFramesErr = 0
multicastFramesOK = 1
multicastFramesErr = 0
broadcastFramesOK = 1
broadcastFramesErr = 0
etherStatsOctets = 5310
etherStatsPkts = 8
etherStatsUndersizePkts = 0
etherStatsOversizePkts = 0
etherStatsPkts64Octets = 4
etherStatsPkts65to127Octets = 0
etherStatsPkts128to255Octets = 0
etherStatsPkts256to511Octet = 1
etherStatsPkts512to1023Octets = 0
etherStatsPkts1024to1518Octets = 3
etherStatsPkts1519OtoXOctets = 0
etherStatsFragments = 0
etherStatsJabbers = 0
etherStatsCRCErr = 0
unicastMACCtrlFrames = 1
multicastMACCtrlFrames = 1
broadcastMACCtrlFrames = 0

3.3.6. Enabling Local Loopback
You can turn on local loopback to verify the functionality of the MAC during
simulation. Follow these steps to enable local loopback:

1. Open the tb.sv file.

2. Insert the command U_AVALON_DRIVER.avalon_mm_csr_wr(offset,value) where
offset is the sum of the base address of the loopback module and the register offset,
and value is the value to write to the register. Set value to 1 to enable local
loopback; 0 to disable it. Altera recommends that you insert the command after the
command that configures the Rx FIFO. For example, the following code segment
enables local loopback:
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

3–12 Chapter 3: Design Examples and Testbench
Testbenches
// Configure the RX FIFO
U_AVALON_DRIVER.avalon_mm_csr_wr(RX_FIFO_DROP_ON_ERROR_ADDR,RX_FIFO_DROP_ON_ERROR);

// Read the configured registers
U_AVALON_DRIVER.avalon_mm_csr_rd(RX_FIFO_DROP_ON_ERROR_ADDR, readdata);
$display("RX FIFO Drop on Error Enable = %0d", readdata[0]);

U_AVALON_DRIVER.avalon_mm_csr_wr(32'h948, 1)

3. Run the following command again to reconfigure the loopback module, set up the
required libraries, compile the generated IP Functional simulation model, and
exercise the simulation model:

do tb_run.tclr

3.3.7. Simulation Timing Diagrams
Figure 3–4 shows the reset and initial configuration sequence. The first read or write
transaction must be at least one clock cycle after the csr_reset_reset_n signal
completes.

Figure 3–4. Reset and Configuration

csr_clk_clk

csr_reset_reset_n

csr_address [18:0]

csr_read

csr_readdata [31:0]

csr_write

csr_writedata [31:0]

csr_waitrequest

40084

00000002
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 3: Design Examples and Testbench 3–13
Testbenches
Figure 3–5 shows the transmission of the first 60-byte frame upon a successful reset
and initial configuration. The same frame is looped back to the receive datapath.

Figure 3–5. Frame Transmission and Reception

tx_clk_clk

avalon_st_tx_ready

avalon_st_tx_valid

avalon_st_tx_startofpacket

avalon_st_tx_endofpacket

avalon_st_tx_data [63:0]

avalon_st_tx_empty [2:0]

avalon_st_tx_error

rx_clk_clk

avalon_st_rx_ready

avalon_st_rx_valid

avalon_st_rx_startofpacket

avalon_st_rx_endofpacket

avalon_st_rx_data [63:0]

avalon_st_rx_empty [2:0]

avalon_st_rx_error [5:0]

0 4 0

0 4

0

Loopback
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

3–14 Chapter 3: Design Examples and Testbench
Design Example Compilation and Verification in Hardware
3.4. Design Example Compilation and Verification in Hardware
Figure 3–6 shows the components in the top-level file provided with the design
example.

The address swapper swaps the destination address and source address in the receive
frame before sending the frame onto the transmit path. You must connect the DUT—
design example—to a remote partner that generates, transmits, and receives frames.

3.4.1. Compiling the Design
You can use the Quartus II software to compile the design example and program the
targeted Altera device after a successful compilation.

Follow these steps to compile the design and program the device:

1. Copy the respective design example directory to your preferred project directory:
altera_eth_10g_mac_xaui or altera_eth_10g_mac_base_r from
<ip library>/ethernet/altera_eth_10g_design_example.

2. Launch the Quartus II software and open top.v from the project directory.

3. Open the Quartus II Tcl Console window by pointing to Utility Windows on the
View menu then clicking Tcl Console. In the Quartus II Tcl Console window, type
the following command to set up the project environment:

source setup_proj.tclr

Figure 3–6. Top-Level Components

Address
Swapper

Remote
PartnerDUT

Altera Development Board

XAUI/
10GBASE-RAvalon-ST
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 3: Design Examples and Testbench 3–15
Design Example Compilation and Verification in Hardware
4. Load the pin assignments and I/O standards for the development board:

■ For the 10GbE MAC with XAUI PHY design example, type the following
command:

source setup_SIVGX230C2ES.tclr
This command assigns the XAUI serial interface to the pins that are connected
to the HSMC Port A of the Stratix IV GX development board.

■ For the 10GbE MAC with 10BASE-R design example, type the following
command:

source setup_EP4S100G2F40I1.tclr
This command assigns the 10GBASE-R serial interface to the pins that are
connected to the SMA connectors (J38 to J41) of the Stratix IV GT development
board.

f For more information about the development boards, refer to the respective
reference manuals: Stratix IV GX Development Kit Reference Manual or
Transceiver Signal Integrity Development kit, Stratix IV GT Edition Reference
Manual.

5. Launch Qsys from the Tools menu and open altera_eth_10g_mac_base_r.qsys or
altera_eth_10g_mac_xaui.qsys.

6. For the 10GbE MAC with XAUI PHY design example, the default setting of the
PHY is Hard XAUI. Follow these steps if you want to set the PHY to Soft XAUI:

a. Double-click the XAUI PHY module to open the parameter editor.

b. On the General Options tab, select Soft XAUI for XAUI Interface Type.

7. Click Save on the File menu.

8. On the Generation tab, turn on Create Synthesis RTL Files.

9. Click Generate to generate the system.

10. Click Start Compilation on the Processing menu to compile the design example.

11. Upon a successful compilation, click Programmer on the Tools menu to program
the device.

f For more information about device programming, refer to Quartus II Programmer in
volume 3 of the Quartus II Handbook.

1 If you are not using the Stratix IV GX FPGA development board or the Transceiver
Signal Integrity development board, Stratix IV GT Edition, modify setup_proj.tcl and
setup_SIVGX230C2ES.tcl or setup_EP4S100G2F40I1.tcl to suit your hardware.
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

http://www.altera.com/literature/manual/rm_sivgx_fpga_dev_board.pdf
http://www.altera.com/literature/manual/rm_sivgt_si_dev_board.pdf
http://www.altera.com/literature/manual/rm_sivgt_si_dev_board.pdf
http://www.altera.com/literature/hb/qts/qts_qii53022.pdf

3–16 Chapter 3: Design Examples and Testbench
Design Example Compilation and Verification in Hardware
3.4.2. Verifying the Design in Hardware
After programming the targeted Altera device, follow these steps to verify your
design and collect the statistics:

1. Copy the csr_scripts directory to the design example directory.

2. Launch Qsys and access the System Console by clicking System Console on the
Tools menu.

3. Change the working directory to <project directory>/csr_scripts.

4. Type the following command to configure the design example:

source config.tclr
5. Start frame transmission on your remote partner to exercise the datapaths.

6. Type the following command to read and view the statistics:

source show_stats.tclr

1 The config.tcl and show_stats.tcl scripts support only one USB-Blaster
connection.

3.4.3. Debugging
You can use the system console to perform the following tasks for debugging
purposes:

■ Reconfigure the design example components and retrieve the registers during
runtime by following these steps:

a. Create a new Tcl script.

b. Add the following commands:

source common.tcl

establishes the connection
open_jtag

use rd32 to retrieve the register value
base address = base address of the component
offset = byte offset of the register
rd32 <base address> 0 <offset>

use wr32 to configure the register
base address = base address of the component
offset = byte offset of the register
value = value to be written to the register
wr32 <base address> 0 <offset> <value>

closes the connection
close_jtag

Save and close the Tcl script and type the following command:

source <script>.tclr
■ Retrieve and view the statistics counters by typing the following command:

source show_stats.tclr
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 3: Design Examples and Testbench 3–17
Design Example Compilation and Verification in Hardware
■ Turn on the line loopback to verify the functionality of the XAUI/10GBASE-R
PHY by following these steps:

a. Edit the script config.tcl.

b. Add the command write_line_loopback(value) immediately after the
command that establishes the JTAG connection. Set the argument value, to 1 to
enable line loopback; 0 to disable line loopback. For example, the following
codes enable line loopback:

open_jtag
write_line_loopback 1

c. Save and close config.tcl, and type the following command:

source config.tclr

f For more information on the System Console, refer to Analyzing and Debugging Designs
with the System Console in volume 3 of the Quartus II Handbook.

3.4.4. Transmit and Receive Latencies
Altera uses the following definitions for the transmit and receive latencies:

■ Transmit latency is the number of clock cycles the MAC function takes to transmit
the first byte on the network-side interface (XGMII SDR) after the bit was first
available on the Avalon-ST interface.

■ Receive latency is the number of clock cycles the MAC function takes to present
the first byte on the Avalon-ST interface after the bit was received on the
network-side interface (XGMII SDR).

Table 3–6 shows the transmit and receive nominal latencies of the design example.

Table 3–6. Transmit and Receive Latencies of the Design Example

Configuration

Latency (Clock Cycles) (1) (2)

Transmit
(with respect to Tx clock)

Receive
(with respect to Rx clock)

MAC and Ethernet loopback 10 13

DC FIFO 6 6

SC FIFO 10 10

Soft XAUI PHY 41 (3)

Hard XAUI PHY 24 (3)

Soft 10GBASE-R PHY 56 (3)

Notes to Table 3–6:

(1) The clocks in all domains are running at the same frequency.
(2) The latency values are based on the assumption that there is no backpressure on the Avalon-ST Tx and Rx

interface.
(3) Total latency for both transmit and receive in this design example targeting the Stratix IV device family.
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

http://www.altera.com/literature/hb/qts/qts_qii53028.pdf
http://www.altera.com/literature/hb/qts/qts_qii53028.pdf

3–18 Chapter 3: Design Examples and Testbench
Design Example Compilation and Verification in Hardware
3.4.5. Performance and Resource Utilization
Table 3–7 provides the estimated performance and resource utilization of the design
example obtained by compiling the design with the Quartus II software targeting the
Stratix IV GX (EP4SGX230KF40C2ES) device with speed grade –2.

Table 3–7. Stratix IV Performance and Resource Utilization

Components Combinational
ALUTs Memory ALUTs Logic Registers Memory Block

(M9K) fMAX (MHz)

MAC 4,105 17 4,642 8 156.25

Loopback 272 0 175 4 156.25

Rx SC FIFO 231 0 210 5 156.25

Tx SC FIFO 213 0 210 4 156.25

Hard XAUI PHY 1,837 0 1,124 0 156.25

MDIO 120 0 133 0 156.25

JTAG Master 492 0 433 1 156.25

Address Swapper 66 0 71 0 156.25

FIFO to Pause Adapter 2 0 4 0 156.25

Qsys Fabric 422 0 634 1 156.25

Total Resource
Utilization 7,760 17 7,636 23 156.25
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

July 2012 Altera Corporation
4. Functional Description
The 10GbE MAC IP core handles the flow of data between a client and Ethernet
network through a 10-Gbps Ethernet PHY. On the transmit path, the MAC accepts
client frames and constructs Ethernet frames by inserting various control fields, such
as checksums before forwarding them to the PHY. Similarly, on the receive path, the
MAC accepts Ethernet frames via a PHY, performs checks, and removes the relevant
fields before forwarding the frames to the client. You can configure the MAC to collect
statistics on both transmit and receive paths.

This chapter describes the 10GbE MAC IP core, its architecture, interfaces, data paths,
registers, and interface signals.

4.1. Architecture
The 10GbE MAC IP core is a composition of three blocks: MAC receiver (MAC Rx),
MAC transmitter (MAC Tx), and Avalon-MM bridge. The MAC Rx and MAC Tx
handle data flow between the client and Ethernet network. Each of these blocks
include a 64-bit wide Avalon-ST interface on the client side and a single data rate
(SDR) XGMII on the network side.

The Avalon-MM bridge provides a single interface to all Avalon-MM interfaces within
the MAC, which allows a host to access 32-bit configuration and status registers, and
statistics counters.

Figure 4–1 shows a block diagram of the 10GbE MAC IP core.

Figure 4–1. 10GbE MAC IP Core Block Diagram

Avalon-MM
Bridge

10GbE MAC

XGMII
Transmit
Interface

64-bit
Avalon-ST

Receive Interface

Avalon-MM
Configuration

64-bit
Avalon-ST

Transmit Interface

XGMII
Receive
Interface

Link
Fault

Flow
Control

MAC Tx

MAC Rx

64

64

32

72

72
10-Gbps Ethernet MAC MegaCore Function User Guide

4–2 Chapter 4: Functional Description
Interfaces
4.2. Interfaces
The 10GbE MAC includes the following interfaces:

■ Avalon-ST transmit and receive interface on the client side

■ SDR XGMII transmit and receive interface on the network side

■ Avalon-MM control and status register interface

4.2.1. Avalon-ST Interface
The client-side interface of the MAC employs the Avalon-ST protocol, which is a
synchronous point-to-point, unidirectional interface that connects the producer of a
data stream (source) to a consumer of the data (sink). The key properties of this
interface include:

■ Frame transfers marked by startofpacket and endofpacket signals.

■ Signals from source to sink are qualified by the valid signal.

■ Errors marking a current packet are aligned with the end-of-packet cycle.

■ Use of the ready signal by the sink to backpressure the source. The source must
respond to the ready signal from sink by deasserting the valid signal after a fixed
number of cycles defined by the ready latency.

In the MAC, the Avalon-ST interface acts as a sink in the transmit datapath and source
in the receive datapath. These interfaces are 64 bits wide and support packets,
backpressure, and error. The ready latency on these interfaces is 0 and the MAC
expects the empty signal to contain a valid value.

f For more information about the Avalon-ST interface, refer to the Avalon Interface
Specifications.

4.2.2. SDR XGMII
The network-side interface of the MAC implements the SDR version of the XGMII
protocol. The SDR XGMII consists of 64-bit data bus and 8-bit control bus operating at
156.25 MHz. The data bus carries the MAC frame; the most significant byte occupies
the least significant lane.

4.2.3. Avalon-MM Control and Status Register Interface
The Avalon-MM control and status register interface is an Avalon-MM slave port. This
interface uses byte addressing which provides host access to 32-bit configuration and
status registers, and statistics counters.
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 4: Functional Description 4–3
Frame Types
4.3. Frame Types
The MAC supports the following frame types:

■ Basic Ethernet frames, including jumbo frames.

■ VLAN and stacked VLAN frames.

■ Control frames, which include pause and PFC frames.

Refer to Appendix A, Frame Format for the frame formats and fields.

4.4. Transmit Datapath
The MAC Tx receives the client payload data with the destination and source
addresses, and appends various control fields. Depending on the MAC configuration,
the MAC Tx could perform the following tasks: pads the payload to satisfy the
minimum Ethernet frame payload of 64 bytes, calculates and appends the CRC-32
field, modifies the source address, inserts inter-packet gap bytes, and accepts
client-defined preamble bytes.

Figure 4–2 shows the typical flow of frame through the MAC Tx.

4.4.1. Frame Payload Padding
The MAC Tx inserts pad bytes (0x00) into transmit frames when the payload length
doesn't meet the minimum length required:

■ 46 bytes for basic frames

■ 42 bytes for VLAN tagged frames

■ 38 bytes for stacked VLAN tagged frames

You can, however, disable pad bytes insertion by setting the tx_padins_control
register to 0. If disabled, the MAC forwards the frames to the receiver without
checking the frame length. You can check whether the frame is undersized by
referring to the statistics collected.

Figure 4–2. Typical Client Frame at Transmit Interface

Notes to Figure 4–2:

(1) <p> = payload size = 0–1500 bytes
(2) <s> = padding bytes = 0–46 bytes
(3) <I> = number of IPG bytes

Client - MAC Tx Interface
(optional)

Client Frame

MAC Frame

Destination
 Addr[47:0]

Source
 Addr[47:0]

Type/
Length[15:0]

Payload
[<p-1>:0]

Destination
 Addr[47:0]

SFD[7:0]
Preamble

[55:0]

CRC32
[31:0]

PAD [<s>]

Source
 Addr[47:0]

Client-Defined Preamble
[63:0]

(optional)

Type/
Length[15:0]

Payload
[<p-1>:0]

PAD [<s>] CRC32
[31:0]

EFD[7:0] IPG
[<l-1>:0]

Frame Length

(1) (2)

(3)
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

4–4 Chapter 4: Functional Description
Transmit Datapath
4.4.2. Address Insertion
By default, the MAC Tx retains the source address received from the client. You can
configure the MAX Tx to replace the source address with the primary MAC address
specified in the tx_addrins_macaddr0 and tx_addrins_macaddr1 registers by setting
the bit tx_addrins_control[0] to 1.

4.4.3. Frame Check Sequence (CRC-32) Insertion
The MAC Tx computes and inserts CRC-32 checksum into transmit frames. The MAC
Tx computes the CRC-32 checksum over the frame bytes that include the source
address, destination address, length, data, and pad bytes. The CRC checksum
computation excludes the preamble, SFD, and FCS bytes.

The following equation shows the CRC polynomial, as specified in the IEEE 802.3
Standard:

The 32-bit CRC value occupies the FCS field with X31 in the least significant bit of the
first byte. The CRC bits are thus received in the following order: X31, X30,..., X1, X0.

You can disable this function by setting the bit tx_crcins_control[1] to 0. You can
also choose to omit the logic for CRC computation and insertion to save resources.
When you disable or omit the CRC computation and insertion, the MAC does not
append the CRC bits to the automatically generated pause frames.

Figure 4–3 on page 4–5 shows the timing diagram of the Avalon-ST transmit and
receive interface where the FCS insertion function is on. The MAC Tx receives the
frame without CRC-32 checksum and inserts CRC-32 checksum (4EB00AF4) into the
frame. The frame is then loopback to the receive datapath with the
avalon_st_rx_data[63:0] containing the CRC-32 checksum.

FCS(X) X32 X26 X23 X22 X16 X12 X11 X10 X8 X7 X5 X4 X2 X1 1+ + + + + + + + + + + + + +=
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 4: Functional Description 4–5
Transmit Datapath
Figure 4–3. Avalon-ST Transmit and Receive Interface with CRC-32 Checksum Insertion

Note to Figure 4–3:

(1) This value (which varies depending on the frame size) indicates the number of symbols that are empty during the
cycles that mark the end of a frame.

tx_clk_clk

avalon_st_tx_ready

avalon_st_tx_valid

avalon_st_tx_startofpacket

avalon_st_tx_endofpacket

avalon_st_tx_data[63:0]

avalon_st_tx_empty[2:0]

avalon_st_tx_error

...00000000

0 4(1)

rx_clk_clk

avalon_st_rx_ready

avalon_st_rx_valid

avalon_st_rx_startofpacket

avalon_st_rx_endofpacket

avalon_st_rx_data[63:0]

avalon_st_rx_empty[2:0]

avalon_st_rx_error[5:0]

...4EB30AF4

0

July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

4–6 Chapter 4: Functional Description
Transmit Datapath
Figure 4–4 shows the timing diagram of the Avalon-ST transmit and receive interface
where the FCS insertion function is off. The MAC Tx receives the frame which
contains a CRC-32 checksum (4EB00AF4) and forwards the frame without performing
CRC computation. The frame with the same CRC-32 field is then loopback to the
receive datapath.

4.4.4. XGMII Encapsulation
The MAC Tx inserts 7-byte preamble, 1-byte SFD and 1-byte EFD (0xFD) into frames
received from the client. When you enable the preamble passthrough mode, the MAC
Tx accepts 8-byte client-defined preamble in the frames received from the client and
inserts a 1-byte EFD into the frames. For XGMII encapsulation, the first byte of the
preamble data is converted to a 1-byte START (0xFB).

An underflow could occur on the Avalon-ST transmit interface. An underflow occurs
when the avalon_st_tx_valid signal is deasserted in the middle of frame
transmission. When this happens, the MAC Tx inserts an error character |E| into the
frame and forwards the frame to the XGMII.

Figure 4–4. Avalon-ST Transmit and Receive Interface with CRC-32 Computation Disabled

tx_clk_clk

avalon_st_tx_ready

avalon_st_tx_valid

avalon_st_tx_startofpacket

avalon_st_tx_endofpacket

avalon_st_tx_data[63:0]

avalon_st_tx_empty[2:0]

avalon_st_tx_error

0

rx_clk_clk

avalon_st_rx_ready

avalon_st_rx_valid

avalon_st_rx_startofpacket

avalon_st_rx_endofpacket

avalon_st_rx_data[63:0]

avalon_st_rx_empty[2:0]

avalon_st_rx_error[5:0]

...4EB30AF4

...4EB30AF4

0

10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 4: Functional Description 4–7
Transmit Datapath
4.4.5. Inter-Packet Gap Generation and Insertion
The MAC Tx maintains an average IPG between transmit frames as required by the
IEEE 802.3 Ethernet standard. The average IPG is maintained at 96 bit times (12 byte
times) using the deficit idle count (DIC). The MAC Tx's decision to insert or delete
idle bytes depends on the value of the DIC; the DIC is bounded between a minimum
value of zero and maximum value of three. Averaging the IPG ensures that the MAC
utilizes the maximum available bandwidth.

4.4.6. SDR XGMII Transmission
To comply with the IEEE 802.3 Clause 46 Ethernet standard, the MAC Tx ensures the
following when transmitting frames on the SDR XGMII:

■ Aligns the first byte of the frame to either lane 0 or lane 4 of the interface.

■ Performs endian conversion. Transmit frames received from the client on the
Avalon-ST interface are big endian. Frames transmitted on the SDR XGMII are
little endian; the MAC Tx therefore transmits frames on this interface from the
least significant byte.
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

4–8 Chapter 4: Functional Description
Transmit Datapath
Figure 4–5 shows the timing for the transmit frames on the Avalon-ST interface and
the SDR XGMII. By comparing the data value in D3, the SDR XGMII performs endian
conversion by transmitting the frames from the least significant byte.

Figure 4–5. Endian Conversion

Note to Figure 4–5:

(1) In the preamble passthrough mode, the MAC Tx frame starts with a 1-byte START and a 7-byte client-defined
preamble.

tx_clk_clk

xgmii_tx_data[71]

xgmii_tx_data[70:53]

xgmii_tx_data[62]

xgmii_tx_data[61:54]

xgmii_tx_data[53]

xgmii_tx_data[52:45]

xgmii_tx_data[44]

xgmii_tx_data[43:36]

xgmii_tx_data[35]

xgmii_tx_data[34:27]

xgmii_tx_data[26]

xgmii_tx_data[25:18]

xgmii_tx_data[17]

xgmii_tx_data[16:9]

xgmii_tx_data[8]

xgmii_tx_data[7:0]

D5 (1) CC 01 09 11 19 21 29 F4

55(1) EE 00 08 10 18 20 28 0A

55(1) EE 2E 07 0F 17 1F 27 B3

55(1) AA 00 06 0E 16 1E 26 4E

55(1) CC EE 05 0D 15 1D 25 2D

55(1) 88 AA 04 0C 14 1C 24 2C

55(1) CC 03 0B 13 1B 23 2B

FB EE 88 02 0A 12 1A 22 2A FD

tx_clk_clk

avalon_st_tx_startofpacket

avalon_st_tx_endofpacket

avalon_st_tx_valid

avalon_st_tx_ready

avalon_st_tx_data [63:0]

avalon_st_tx_empty [2:0]

avalon_st_tx_error

0 4

D1: EECC88CCAAEEEECC

D2: 88CCAAEE002E0001

D3: 0203040506070809

D4: 0A0B0C0D0E0F1011

D5: 1213141516171819

D6: 1A1B1C1D1E1F2021

D7: 2223242526272829

D8: 2A2B2C2D00000000

D1 D2 D3 D4 D5 D6 D7 D8

Data value:
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 4: Functional Description 4–9
Receive Datapath
4.5. Receive Datapath
The MAC Rx receives Ethernet frames from the SDR XGMII and forwards the payload
with relevant frame fields to the client after performing checks and filtering invalid
frames. Some frame fields are optionally removed from the frame before MAC Rx
forwards the frame to the client.

Figure 4–6 shows the typical flow of frame through the MAC Rx.

4.5.1. XGMII Decapsulation
In the receive datapath, the MAC Rx decodes the data lanes coming through the SDR
XGMII. The MAC Rx expects the first byte of the receive frame to be in either lane 0
(most significant byte) or lane 4. The receive frame must also be preceded by a column
of idle bytes or an ordered set such as a local fault. A receive frame that does not
satisfy these conditions is invalid and the MAC Rx drops the frame.

The MAC Rx then checks the sequence of the frame. The frame must begin with a
1-byte START, 6-byte preamble, and 1-byte SFD. Otherwise, the MAC Rx considers
the frame invalid and drops it. For all valid frames, the MAC Rx removes the START,
preamble, SFD, and EFD bytes and ensures that the first byte of the frame aligns to
byte 0.

When you enable the preamble passthrough mode, the MAC Rx only checks for the
following conditions: the frame begins with a 1-byte START and the minimum length
of the frame including the START and client-defined preamble is 12 bytes. For frames
that do not fulfill these conditions, the MAC Rx considers the frames invalid and
drops them. For all valid frames, the MAC Rx removes the EFD byte and ensures that
the first byte of the frame aligns to byte 0. The MAC Rx forwards the START and
client-defined preamble to the client.

Figure 4–6. Typical Client Frame at Receive Interface

Notes to Figure 4–6:

(1) <p> = payload size = 0–1500 bytes
(2) <s> = padding bytes = 0–46 bytes
(3) In the preamble passthrough mode, the MAC Rx frame starts with a 1-byte START and a 7-byte client-defined preamble.

Client - MAC Rx Interface
(optional)

Client Frame

Destination
 Addr[47:0]

Source
 Addr[47:0]

Type/
Length[15:0]

Payload
[<p-1>:0]

Destination
 Addr[47:0]

CRC32
[31:0]

PAD [<s>]

Source
 Addr[47:0]

Client-Defined Preamble
[55:0]

(optional)

Type/
Length[15:0]

Payload
[<p-1>:0]

PAD [<s>] CRC32
[31:0]

EFD[7:0]

Start[7:0]

Frame Length

(1) (2)

MAC Frame

SFD[7:0]
Preamble

[47:0]Start[7:0]
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

4–10 Chapter 4: Functional Description
Receive Datapath
4.5.2. Frame Check Sequence (CRC-32) Checking
The CRC polynomial, as specified in the IEEE 802.3 Standard, is shown in the
following equation:

The 32-bit CRC field is received in the following order: X31, X30,..., X1, X0, where X31 is
the MSB of FCS field and occupies the LSB position on first FCS byte field.

If a CRC-32 error is detected, the MAC Rx marks the frame invalid by setting
avalon_st_rx_error[1] to 1 and forwards the frame to the client.

4.5.3. Address Checking
The MAC Rx can accept frames with the following address types:

■ Unicast address—bit 0 of the destination address is 0.

■ Multicast address—bit 0 of the destination address is 1.

■ Broadcast address—all 48 bits of the destination address are 1.

The MAC Rx always accepts broadcast frames. By default, it also receives all unicast
and multicast frames unless configured otherwise in the EN_ALLUCAST and
EN_ALLMCAST bits of the rx_frame_control register.

When the EN_ALLUCAST bit is set to 0, the MAC Rx filters unicast frames received. The
MAC Rx accepts only unicast frames if the destination address matches the primary
MAC address specified in the rx_frame_addr0 and rx_frame_addr1 registers. If any of
the supplementary address bits are set to 1 (EN_SUPP0/1/2/3 in the
rx_framedecoder_control register), the MAC Rx also checks the destination address
against the supplementary addresses in use.

When the EN_ALLMCAST bit is set to 0, the MAC Rx drops all multicast frames. This
condition doesn't apply to global multicast pause frames.

4.5.4. Frame Type Checking
The MAC Rx checks the length/type field to determine the frame type:

■ Length/type < 0x600—The field represents the payload length of a basic Ethernet
frame. The MAC Rx continues to check the frame and payload lengths.

■ Length/type >= 0x600—The field represents the frame type.

■ Length/type = 0x8100—VLAN or stacked VLAN tagged frames. The MAC Rx
continues to check the frame and payload lengths.

■ Length/type = 0x8088—Control frames. The next two bytes are the Opcode
field which indicates the type of control frame. For pause frames (Opcode =
0x0001) and PFC frames (Opcode = 0x0101), the MAC Rx proceeds with pause
frame processing (refer to “Congestion and Flow Control” on page 4–13). By
default, the MAC Rx drops all control frames. If configured otherwise
(FWD_CONTROL bit in the rx_framedecoder_control register = 1), the MAC Rx
forwards control frames to the client.

■ For other field values, the MAC Rx forwards the receive frame to the client.

FCS(X) X32 X26 X23 X22 X16 X12 X11 X10 X8 X7 X5 X4 X2 X1 1+ + + + + + + + + + + + + +=
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 4: Functional Description 4–11
Receive Datapath
4.5.5. Length Checking
The MAC Rx checks the frame and payload lengths of basic, VLAN tagged, and
stacked VLAN tagged frames.

The frame length must be at least 64 (0x40) bytes and not exceed the following
maximum value for the different frame types:

■ Basic—The value in the rx_frame_maxlength register.

■ VLAN tagged—The value in the rx_frame_maxlength register plus four bytes.

■ Stacked VLAN tagged—The value in the rx_frame_maxlength register plus eight
bytes.

The MAC Rx keeps track of the actual payload length as it receives a frame and checks
the actual payload length against the length/type or client length/type field. The
payload length must be between 46 (0x2E) and 1500 (0x5DC). For VLAN and VLAN
stacked frames, the minimum payload length is 42 (0x2A) or 38 (0x26) respectively
and not exceeding the maximum value of 1500 (0x5DC).

The MAC Rx does not drop frames with invalid length. For the following length
violations, the MAC Rx sets the corresponding error bit to 1:

■ avalon_st_rx_error[2]—Undersized frame

■ avalon_st_rx_error[3]—Oversized frame

■ avalon_st_rx_error[4]—Invalid payload length, the actual payload length
doesn't match the value of the length/type field

4.5.6. CRC-32 and Pad Removal
By default, the MAC Rx forwards receive frames to the client without removing pad
bytes from the frames. You can, however, configure the MAC Rx to remove pad bytes
by setting the bit rx_padcrc_control[1] to 1. When the bit is set to 1, the MAC Rx
removes the pad bytes as well as the CRC-32 field from receive frames before
forwarding the frames to the client.

The MAC Rx removes pad bytes from receive frames whose payload length is less
than the following values for the different frame types:

■ 46 bytes for basic frames

■ 42 bytes for VLAN tagged frames

■ 38 bytes for stacked VLAN tagged frames

To retain the CRC-32 field, set the rx_padcrc_control register to 0.
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

4–12 Chapter 4: Functional Description
Receive Datapath
Figure 4–7 on page 4–12 shows the timing for the Avalon-ST transmit and receive
interface where the MAC Tx receives a frame with pad bytes and CRC-32 field
inserted. The MAC Rx removes the pad bytes and CRC-32 field from the receive frame
when the rx_padcrc_control[1] bit is set to 1.

4.5.7. Overflow Handling
When an overflow occurs on the client side, the client can backpressure the Avalon-ST
receive interface by deasserting the avalon_st_rx_ready signal. If an overflow occurs
in the middle of frame transmission, the MAC Rx truncates the frame and the MAC
Rx sets the error bit, avalon_st_rx_error[5], to 1 to indicate an overflow. If frame
transmission is not in progress when an overflow occurs, the MAC Rx drops the
frame.

Figure 4–7. Avalon-ST Transmit and Receive Interface with Pad Bytes and CRC-32 Field Removed

tx_clk_clk

avalon_st_tx_ready

avalon_st_tx_valid

avalon_st_tx_startofpacket

avalon_st_tx_endofpacket

avalon_st_tx_data[63:0]

avalon_st_tx_empty[2:0]

avalon_st_tx_error

0000000000000000

1A1B1C1D1E1F2021

0

00000000AB704587

rx_clk_clk

avalon_st_rx_ready

avalon_st_rx_valid

avalon_st_rx_startofpacket

avalon_st_rx_endofpacket

avalon_st_rx_data[63:0]

avalon_st_rx_empty[2:0]

avalon_st_rx_error[5:0]

1A1B1C1D1E1F2021

FD07070707070707

0

10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 4: Functional Description 4–13
Transmit and Receive Latencies
4.6. Transmit and Receive Latencies
Altera uses the following definitions for the transmit and receive latencies:

■ Transmit latency is the number of clock cycles the MAC function takes to transmit
the first byte on the network-side interface (XGMII SDR) after the bit was first
available on the Avalon-ST interface.

■ Receive latency is the number of clock cycles the MAC function takes to present
the first byte on the Avalon-ST interface after the bit was received on the
network-side interface (XGMII SDR).

Table 4–1 shows the transmit and receive nominal latencies of the MAC.

4.7. Congestion and Flow Control
The flow control, as specified by IEEE 802.3 Annex 31B, is a mechanism to manage
congestion at the local or remote partner. When the receiving device experiences
congestion, it sends an XOFF pause frame to the emitting device to instruct the
emitting device to stop sending data for a duration specified by the congested
receiver. Data transmission resumes when the emitting device receives an XON pause
frame (pause quanta = zero) or when the timer expires.

The PFC, as specified by IEEE 802.1Qbb, is a similar mechanism that manages
congestion based on priority levels. The PFC supports up to 8 priority queues. When
the receiving device experiences congestion on a priority queue, it sends a PFC frame
requesting the emitting device to stop transmission on the priority queue for a
duration specified by the congested receiver. When the receiving device is ready to
receive transmission on the priority queue again, it sends a PFC frame instructing the
emitting device to resume transmission on the priority queue.

1 Ensure that only one type of flow control is enabled at any one time.

Table 4–1. Transmit and Receive Latencies of the MAC

MAC Configuration

Latency (Clock Cycles) (1) (2)

Transmit
(with respect to Tx clock)

Receive
(with respect to Rx clock)

MAC only 10 12

Notes to Table 4–1:

(1) The clocks in all domains are running at the same frequency.
(2) The latency values are based on the assumption that there is no backpressure on the Avalon-ST Tx and Rx

interface.
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

4–14 Chapter 4: Functional Description
Congestion and Flow Control
4.7.1. IEEE 802.3 Flow Control
This section describes the pause frame reception and transmission in the IEEE 802.3
flow control. To use the IEEE 802.3 flow control, set the following registers:

1. On the transmit datapath:

■ Set tx_pfc_priority_enable to 0 to disable the PFC.

■ Set tx_pauseframe_enable to 1 to enable the IEEE 802.3 flow control.

2. On the receive datapath:

■ Set rx_pfc_control to 1 to disable the PFC.

■ Set the IGNORE_PAUSE bit in the rx_decoder_control register to 0 to enable
the IEEE 802.3 flow control.

4.7.1.1. Pause Frame Reception
When the MAC receives an XOFF pause frame, it stops transmitting frames to the
remote partner for a period equal to the pause quanta field of the pause frame. If the
MAC receives a pause frame in the middle of a frame transmission, the MAC finishes
sending the current frame and then suspends transmission for a period specified by
the pause quanta. The MAC resumes transmission when it receives an XON pause
frame or when the timer expires. The pause quanta received overrides any counter
currently stored. When the remote partner sends more than one pause quanta, the
MAC sets the value of the pause to the last quanta it received from the remote partner.
You have the option to configure the MAC to ignore pause frames and continue
transmitting frames by setting the IGNORE_PAUSE bit in the rx_decoder_control
register to 1.

4.7.1.2. Pause Frame Transmission
The MAC provides the following two methods for the client or connecting device to
trigger pause frame transmission:

■ avalon_st_pause_data signal—You can connect this 2-bit signal to a FIFO buffer
or a client. Setting avalon_st_pause_data[1] to 1 triggers the transmission of
XOFF pause frames; setting avalon_st_pause_data[0] to 1 triggers the
transmission of XON pause frames.

If pause frame transmission is triggered when the MAC is generating a pause
frame, the MAC ignores the incoming request and completes the generation of the
pause frame. Upon completion, if the avalon_st_pause_data signal remains
asserted, the MAC generates a new pause frame and continues to do so until the
signal is deasserted.

■ tx_pauseframe_control register—A host (software) can set this register to trigger
pause frames transmission. Setting tx_pauseframe_control[1] to 1 triggers the
transmission of XOFF pause frames; setting tx_pauseframe_control[0] to 1
triggers the transmission of XON pause frames. The register clears itself after the
request is executed.

You can configure the pause quanta in the tx_pauseframe_quanta register. The MAC
sets the pause quanta field in XOFF pause frames to this register value.
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 4: Functional Description 4–15
Congestion and Flow Control
1 The tx_pauseframe_control register takes precedence over the
avalon_st_pause_data signal.

Figure 4–8 shows the transmission of an XON pause frame. The MAC sets the
destination address field to the global multicast address, 01-80-C2-00-00-01
(0x010000c28001) and the source address to the MAC primary address configured in
the tx_addrins_macaddr0 and tx_addrins_madaddr1 registers.

Figure 4–8. XON Pause Frame Transmission

tx_clk_clk

xgmii_tx_data[71]

xgmii_tx_data[70:63]

xgmii_tx_data[62]

xgmii_tx_data[61:54]

xgmii_tx_data[53]

xgmii_tx_data[52:45]

xgmii_tx_data[44]

xgmii_tx_data[43:36]

xgmii_tx_data[35]

xgmii_tx_data[34:27]

xgmii_tx_data[26]

xgmii_tx_data[25:18]

xgmii_tx_data[17]

xgmii_tx_data[16:9]

xgmii_tx_data[8]

xgmii_tx_data[7:0]

D5 CC 01 00 B9

55 EE 00 06

55 01 08 00 69

55 00 88 00 96

55 00 EE 00

55 C2 AA 00

55 80 CC 00

FB 01 88 00 FD
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

4–16 Chapter 4: Functional Description
Congestion and Flow Control
4.7.2. Priority-Based Flow Control
This section describes the PFC frame reception and transmission. Follow these steps
to use the PFC:

1. Turn on the Priority-based Flow Control (PFC) parameter and specify the number
of priority levels using the Number of PFC Priorities parameter. You can specify
between 2 to 8 PFC priority levels.

2. Set the following registers.

■ On the transmit datapath:

■ Set tx_pauseframe_enable to 0 to disable the IEEE 802.3 flow control.

■ Set tx_pfc_priority_enable[n] to 1 to enable the PFC for priority queue n.

■ On the receive datapath:

■ Set the IGNORE_PAUSE bit in the rx_decoder_control register to 1 to
disable the IEEE 802.3 flow control.

■ Set the PFC_IGNORE_PAUSE_n bit in the rx_pfc_control register to 0 to
enable the PFC.

3. Connect the avalon_st_tx_pfc_gen_data signal to the corresponding Rx client
logic and the avalon_st_rx_pfc_pause_data signal to the corresponding Tx client
logic.

4. You have the option to configure the MAC Rx to forward the PFC frame to the
client by setting the FWD_PFC bit in the rx_pfc_control register to 1. By default, the
MAC Rx drops the PFC frame after processing it.

4.7.2.1. PFC Frame Reception
When the MAC Rx receives a PFC frame from the remote partner, it asserts the
avalon_st_rx_pfc_pause_data[n] signal if Pause Quanta n is valid (Pause Quanta
Enable [n] = 1) and greater than 0. The client suspends transmission from the Tx
priority queue n for the period specified by Pause Quanta n. If the MAC Rx asserts the
avalon_st_rx_pfc_pause_data[n] signal in the middle of a client frame transmission
for the Tx priority queue n, the client finishes sending the current frame and then
suspends transmission for the queue.

When the MAC Rx receives a PFC frame from the remote partner, it deasserts the
avalon_st_rx_pfc_pause_data[n] signal if Pause Quanta n is valid (Pause Quanta
Enable [n] = 1) and equal to 0. The MAC Rx also deasserts this signal when the timer
expires. The client resumes transmission for the suspended Tx priority queue when
the avalon_st_rx_pfc_pause_data[n] signal is deasserted.

When the remote partner sends more than one pause quanta for the Tx priority queue
n, the MAC Rx sets the pause quanta n to the last pause quanta received from the
remote partner.

f For more information on the PFC pause frame, refer to Appendix A.4, Priority-Based
Flow Control Frame.
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 4: Functional Description 4–17
Error Handling (Link Fault)
4.7.2.2. PFC Frame Transmission
PFC frame generation is triggered through the avalon_st_tx_pfc_gen_data signal.
Set the respective bits to generate XOFF or XON requests for the priority queues.
Refer to Table 6–7 on page 6–17 for more information about the signal.

For XOFF requests, you can configure the pause quanta for each priority queue using
the pfc_pause_quanta_n registers. For an XOFF request for priority queue n, the MAC
Tx sets bit n in the Pause Quanta Enable field to 1 and the Pause Quanta n field to the
value of the pfc_pause_quanta_n register. You can also configure the gap between
successive XOFF requests for a priority queue using the pfc_holdoff_quanta_n
register. Refer to Table 5–2 on page 5–2 for more information about these registers.

For XON requests, the MAC Tx sets the pause quanta to 0.

4.8. Error Handling (Link Fault)
The 10GbE MAC includes a reconciliation sublayer (RS) located between the MAC
and the XGMII that handles local and remote faults.

When the local PHY reports a local fault (0x9c000001), the RS Rx sets
link_fault_status_xgmii_rx_data to 01. The RS Tx starts sending the remote fault
signal (0x9c000002) to the PHY, which is eventually received by the remote partner.

When the local PHY receives a remote fault signal, the RS Rx sets
link_fault_status_xgmii_rx_data to 10. The RS Tx transmits IDLE signal
(07070707). When the RS Tx starts sending the remote fault or IDLE signal, all data
sent by the MAC Tx is lost.

If the client and the remote partner both receive valid data in more than 127 columns,
the RS Rx sets link_fault_status_xgmii_rx_data to 00.

Figure 4–9 shows the fault signaling.

Figure 4–9. Fault Signaling

Remote Fault (0x9c000002)
Idle (07070707)

Remote Fault (0x9c000002)

Client
Interface

MAC
Tx RS Tx

MAC
Rx RS Rx

2 link_fault_status_xgmii_rx_data
XAUI /

10GBASE-R
PHY

External
PHY

Remote
Partner

XAUI /
10GBASE-R

Network
Interface

Local Fault (0x9c000001)

XGMII
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

4–18 Chapter 4: Functional Description
Error Handling (Link Fault)
Figure 4–10 shows the timing for the XGMII Tx interface transmitting the remote fault
signal (0x9c000002).

When you instantiate the MAC Rx only variation, connect the
link_fault_status_xgmii_rx_data signal to the corresponding Rx client logic to
handle the link fault. Similarly, when you instantiate the MAC Tx only variation,
connect the link_fault_status_xgmii_tx_data signal to the corresponding Tx client
logic. For more information on the signals, refer to
“SDR XGMII Signals” on page 6–9.

Figure 4–10. XGMII Tx interface Transmitting Remote Fault Signal

tx_clk_clk

xgmii_tx_data[71]

xgmii_tx_data[70:63]

xgmii_tx_data[62]

xgmii_tx_data[61:54]

xgmii_tx_data[53]

xgmii_tx_data[52:45]

xgmii_tx_data[44]

xgmii_tx_data[43:36]

xgmii_tx_data[35]

xgmii_tx_data[34:27]

xgmii_tx_data[26]

xgmii_tx_data[25:18]

xgmii_tx_data[17]

xgmii_tx_data[16:9]

xgmii_tx_data[8]

xgmii_tx_data[7:0]

02

00

00

9C

02

00

00

9C
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

July 2012 Altera Corporation
5. Registers
This section defines the MAC registers. The statistics collected on the transmit and
receive datapaths are categorized as good, error, or invalid frames.

■ Good frame—Error-free frames with a valid frame length.

■ Error frame—Frames that contain errors or with an invalid frame length.

■ Invalid frame—Frames that are not addressed to the MAC. It may or may not
contain error within the frame or have an invalid frame length. The MAC drops
invalid frames.

When you select the MAC Rx only variation, the register offsets from 0x000 to 0x3FFF
are available for Rx status and configuration registers. Similarly, when you select the
MAC Tx only variation, the register offsets from 0x4000 to 0x7FFF are available for Tx
status and configuration registers. All status and configuration registers are as
defined in Table 5–2 on page 5–2.

c Altera recommends accessing only the available register spaces in the MAC Rx only
variation or the MAC Tx only variation. Accessing unavailable register spaces may
cause the MAC to lock the Avalon-MM bus.

1 Altera has updated all register address for the 10GbE MAC IP core as part of register
map expansion to accommodate new registers. Table 5–1 summarizes the changes.

.

Table 5–1. Summary of Register Address Expansion

Component Name Previous Address Range
(ACDS Version 10.0, 10.1)

New Address Range
(ACDS Version 11.0 Onwards)

RX Datapath

RX Packet Transfer 0x000:0x00F 0x000:0x0FF

RX Pad/CRC Remover 0x010:0x01F 0x100:0x1FF

RX CRC Checker 0x020:0x0FF 0x200:0x2FF

RX Packet Overflow 0x180:0x1FF 0x300:0x3FF

RX Preamble Control — 0x400:0x4FF

RX Lane Decoder — 0x500:0x1FFF

RX Frame Decoder 0x100:0x17F 0x2000:0x2FFF

RX Statistics Counters 0x200:0x3FF 0x3000:0x3FFF

TX Datapath

TX Packet Transfer 0x400:0x40F 0x4000:0x40FF

TX Pad Inserter 0x410:0x41F 0x4100:0x41FF

TX CRC Inserter 0x420:0x45F 0x4200:0x42FF

TX Packet Underflow 0x580:0x5FF 0x4300:0x43FF

TX Preamble Control — 0x4400:0x44FF

TX Pause Frame Control and
Generator 0x460:0x47F 0x4500:0x45FF
10-Gbps Ethernet MAC MegaCore Function User Guide

5–2 Chapter 5: Registers
MAC Registers
1 If you instantiate the IP core using the MegaWizard Plug-in Manager flow, use double
word (dword) addressing to access the register spaces. Convert the byte offsets to
dword offsets by dividing the byte offsets by 4. For example,

■ rx_padcrc_control byte offset = 0x100

■ rx_padcrc_control word offset = 0x100 ÷ 4 = 0x040

5.1. MAC Registers
Table 5–2 shows the MAC registers.

TX PFC Generator — 0x4600:0x47FF

TX Address Inserter 0x480:0x4FF 0x4800:0x5FFF

TX Frame Decoder 0x500:0x57F 0x6000:0x6FFF

TX Statistics Counters 0x600:0x7FF 0x7000:0x7FFF

Table 5–1. Summary of Register Address Expansion

Component Name Previous Address Range
(ACDS Version 10.0, 10.1)

New Address Range
(ACDS Version 11.0 Onwards)

Table 5–2. MAC Registers (Part 1 of 14)

Byte
Offset Register Name Access Reset

Value Description

RX Packet Transfer (0x000:0x0FF)

0x000 rx_transfer_control RW 0x0

Receive path enable.

■ Bit 0 configures the receive path.
0—Enables the receive path.
1—Disables the receive path and drops all
receive frames.

■ Bits 1 to 31 are not used.

0x004 rx_transfer_status RO 0x0

■ Bit 0 indicates the status of the receive
path.
0—The receive path is enabled.
1—The receive path is disabled.

■ Bits 1 to 31 are not used.

0x008 –
0x0FF Reserved — — Reserved for future use.
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 5: Registers 5–3
MAC Registers
RX Pad/CRC Remover (0x100:0x1FF)

0x100 rx_padcrc_control RW 0x1

Padding and CRC removal (through the
avalon_st_rx_data signal).

■ Bit 0 configures CRC removal.
0—Retains the CRC field in receive packets.
1—Removes the CRC field from receive
packets.

■ Bit 1 configures padding and CRC removal.
0—Retains the padding bytes and CRC
field.
1—Removes the padding bytes and CRC
field from receive packets. The setting of
this bit takes precedence over bit 0.

■ Bits 2 to 31 are not used.

0x104 –
0x1FF Reserved — — Reserved for future use.

RX CRC Checker (0x200:0x2FF)

0x200 rx_crccheck_control RW 0x2

CRC checking:

■ Bit 0—Always set this bit to 0.

■ Bit 1 configures CRC checking.
0—Ignores the CRC field.
1—Checks the CRC field.

■ Bits 2 to 31 are not used.

0x204 –
0x2FF Reserved — — Reserved for future use.

RX Packet Overflow (0x300:0x3FF)

0x300

rx_pktovrflow_error RO

0x0 36-bit error counter that collects the number
of receive frames that are truncated when FIFO
buffer overflow persists:

■ The first 32 bits occupy the register at
offset 0x300.

■ The last 4 bits occupy the first four bits of
the register at offset 0x304. Bits 4 to 31 are
unused.

The counter will be cleared when the last 4 bits
have been read. If only the first 32 bits are
read, the counter will not be cleared.

0x304 0x0

Table 5–2. MAC Registers (Part 2 of 14)

Byte
Offset Register Name Access Reset

Value Description
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

5–4 Chapter 5: Registers
MAC Registers
0x308

rx_pktovrflow_
etherStatsDropEvents

RO

0x0
36-bit error counter that collects the number
of receive frames that are dropped when FIFO
buffer overflow persists:

■ The first 32 bits occupy the register at
offset 0x308.

■ The last 4 bits occupy the first four bits of
the register at offset 0x38C. Bits 4 to 31 are
unused.

The counter will be cleared when the last 4 bits
have been read. If only the first 32 bits are
read, the counter will not be cleared.

0x30C 0x0

0x310 –
0x3FF Reserved — — Reserved for future use.

RX Preamble Control (0x400:0x4FF)

0x400 rx_lane_decoder_preamble_control RW 0x0

■ Bit 0 determines whether or not the
client-defined preamble is forwarded to the
client frame.

0—Removes the client-defined preamble
from the receive frame.

1—Forwards the client-defined preamble to
the client.

■ Bits 1 to 31 are not used.

0x404 –
0x4FF Reserved — — Reserved for future use.

RX Lane Decoder (0x500:0x1FFF)

0x500 rx_preamble_inserter_control RW 0x0

■ Bit 0 enables the preamble passthrough
mode on the receive datapath.

0—Disables the preamble passthrough
mode.

1—Enables the preamble passthrough
mode.

■ Bits 1 to 31 are not used.

For more information on the XGMII
decapsulation in the preamble passthrough
mode, refer to “XGMII Decapsulation” on
page 4–9.

0x504 –
0x1FFF Reserved — — Reserved for future use.

RX Frame Decoder (0x2000:0x2FFF)

0x2000 rx_frame_control RW 0x3

Specifies valid frame types, pause frames
handling, and use of supplementary
addresses.

Refer to “Rx_frame_control Register” on
page 5–15 for the bit description.

Table 5–2. MAC Registers (Part 3 of 14)

Byte
Offset Register Name Access Reset

Value Description
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 5: Registers 5–5
MAC Registers
0x2004 rx_frame_maxlength RW 1518

■ Bits 0 to 15 specify the maximum allowable
frame length. The MAC asserts the
avalon_st_rx_error[3] signal when the
length of the receive frame exceeds the
value of this register.

■ Bits 16 to 31 are not used.

0x2008 rx_frame_addr0 RW 0x0 6-byte primary MAC address. You must map
the address to the registers in the following
manner:

■ rx_frame_addr0 = Last four bytes of the
address

■ rx_frame_addr1[0:15]= First two bytes of
the address. Bits 16 to 31 are not used.

Example:
If the primary MAC address is 00-1C-23-17-
4A-CB, set rx_frame_addr0 to 0x23174ACB
and rx_frame_addr1 to 0x0000001C.

The IP core uses the primary MAC address to
filter unicast frames when the en_allucast
bit of the rx_frame_control register is set
to 0.

0x200C rx_frame_addr1 (1) RW 0x0

0x2010 rx_frame_spaddr0_0 RW 0x0 You can specify up to four 6-byte
supplementary addresses:

■ rx_framedecoder_spaddr0_0/1

■ rx_framedecoder_spaddr1_0/1

■ rx_framedecoder_spaddr2_0/1

■ rx_framedecoder_spaddr3_0/1

You must map the supplementary addresses
to the respective registers in the same manner
as the primary MAC address. Refer to the
description of rx_frame_addr0 and
rx_frame_addr1.

The IP core uses the supplementary addresses
to filter unicast frames when the following
conditions are set:

■ The use of the supplementary addresses
are enabled using the respective bits in the
rx_frame_control register (refer to
“Rx_frame_control Register” on
page 5–15).

■ The en_allucast bit of the
rx_frame_control register is set to 0.

0x2014 rx_frame_spaddr0_1 (1) RW 0x0

0x2018 rx_frame_spaddr1_0 RW 0x0

0x201C rx_frame_spaddr1_1 (1) RW 0x0

0x2020 rx_frame_spaddr2_0 RW 0x0

0x2024 rx_frame_spaddr2_1 (1) RW 0x0

0x2028 rx_frame_spaddr3_0 RW 0x0

0x202C rx_frame_spaddr3_1 (1) RW 0x0

0x2060 rx_pfc_control RW 0x1

PFC enable for the priority queues on the
receive datapath.

Refer to “Rx_pfc_control Register” on
page 5–16 for the bit description.

Table 5–2. MAC Registers (Part 4 of 14)

Byte
Offset Register Name Access Reset

Value Description
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

5–6 Chapter 5: Registers
MAC Registers
0x2064 –
0x2FFF Reserved — — Reserved for future use.

TX Packet Transfer (0x4000:0x40FF)

0x4000 tx_transfer_control RW 0x0

Backpressure enable.

■ Bit 0 configures transmit transfer control.
0—Enables transmit transfer datapath.
1—Disables transmit transfer datapath on
the Avalon-ST transmit interface. The IP
core deasserts the avalon_st_tx_ready
signal.

■ Bits 1 to 31 are not used.

0x4004 tx_transfer_status RO 0x0

■ Bit 0 indicates if transmit transfer datapath
is enabled on the Avalon-ST transmit
interface.
0—Transmit transfer datapath is disabled.
1—Transmit transfer datapath is enabled..

■ Bits 1 to 31 are not used.

0x4008 –
0x40FF Reserved — — Reserved for future use.

TX Pad Inserter (0x4100:0x41FF)

0x4100 tx_padins_control RW 0x1

■ Bit 0 indicates padding insertion.
0—No effect on transmit frames.
1—Inserts padding bytes into transmit
frames until the frame length reaches 60
bytes. To achieve the minimum 64 bytes,
ensure that the CRC field is inserted (refer
to tx_crcins_control).

■ Bits 1 to 31 are not used.

0x4104 –
0x41FF Reserved — — Reserved for future use.

TX CRC Inserter (0x4200:0x42FF)

0x4200 tx_crcins_control RW 0x3

CRC insertion.

■ Bit 0—Always set this bit to 1.

■ Bit 1 configures CRC insertion.
0—Disables CRC insertion.
1—Computes CRC and inserts it into
transmit frames.

■ Bits 2 to 31 are not used.

0x4204 –
0x42FF Reserved — — Reserved for future use.

Table 5–2. MAC Registers (Part 5 of 14)

Byte
Offset Register Name Access Reset

Value Description
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 5: Registers 5–7
MAC Registers
TX Packet Underflow (0x4300:0x43FF)

0x4300

tx_pktunderflow_error RO 0x0

36-bit error counter that collects the number
of transmit frames that are truncated when
FIFO buffer underflow persists.

■ The first 32 bits occupy the register at
offset 0x580.

■ The last 4 bits occupy the first four bits of
the register at offset 0x584. Bits 4 to 31 are
not used.

The counter will be cleared when the last 4 bits
have been read. If only the first 32 bits are
read, the counter will not be cleared.

0x4304

0x4308 –
0x43FF Reserved — — Reserved for future use.

TX Preamble Control (0x4400:0x44FF)

0x4400 tx_preamble_control RW 0x0

■ Bit 0 configures the preamble passthrough
mode in the transmit datapath.
0—Set to 1 to disable the preamble
passthrough mode.
1—Set to 1 to enable the preamble
passthrough mode. MAC Tx identifies the
first 8-bytes of the client frame as
client-defined preamble.

■ Bits 1 to 31 are not used.

0x4404 –
0x44FF Reserved — — Reserved for future use.

TX Pause Frame Control and Generator (0x4500:0x45FF)

0x4500 tx_pauseframe_control RW 0x0

IEEE 802.3 pause frame generation.

■ Bit 0 configures the generation of XON
pause frames.
0—Disables pause frame generation.
1—Generates a pause frame with a pause
quanta value of 0.

■ Bit 1 configures the generation of XOFF
pause frames.
0—Disables pause frame generation.
1—Generates a pause frame using the
pause quanta specified in the
tx_pauseframe_quanta register.

■ Bits 2 to 31 are not used.

If both bits 0 and 1 are set to 1 simultaneously,
the IP core does not generate any pause
frames.

0x4504 tx_pauseframe_quanta RW 0x0
16-bit pause quanta. The IP core uses this
value when it generates XOFF pause frames.
Bits 16 to 31 are reserved.

Table 5–2. MAC Registers (Part 6 of 14)

Byte
Offset Register Name Access Reset

Value Description
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

5–8 Chapter 5: Registers
MAC Registers
0x4508 tx_pauseframe_enable RW 0x1

IEEE 802.3 pause frame generation process.

■ Bit 0 configures the process to generate the
IEEE 802.3 pause frame.

0—Disables pause frame generation
process.

1—Enables pause frame generation
process.

■ Bits 1 to 31 are not used.

0x450C –
0x45FF Reserved — — Reserved for future use.

TX PFC Generator (0x4600:0x47FF)

0x4600 pfc_pause_quanta_0 RW 0x0

pfc_pause_quanta_n specifies the pause
length for priority queue n. The pause length is
in unit of pause quanta, where 1 pause quanta
= 512 bits time.

0x4604 pfc_pause_quanta_1 RW 0x0

0x4608 pfc_pause_quanta_2 RW 0x0

0x460C pfc_pause_quanta_3 RW 0x0

0x4610 pfc_pause_quanta_4 RW 0x0

0x4614 pfc_pause_quanta_5 RW 0x0

0x4618 pfc_pause_quanta_6 RW 0x0

0x461C pfc_pause_quanta_7 RW 0x0

0x4620 –
0x463F Reserved — — Reserved for future use.

0x4640 pfc_holdoff_quanta_0 RW 0x0

pfc_holdoff_quanta_n specifies the gap
between consecutive XOFF requests for
priority queue n. The gap is in unit of holdoff
quanta, where 1 holdoff quanta = 512 bits
time.

0x4644 pfc_holdoff_quanta_1 RW 0x0

0x4648 pfc_holdoff_quanta_2 RW 0x0

0x464C pfc_holdoff_quanta_3 RW 0x0

0x4650 pfc_holdoff_quanta_4 RW 0x0

0x4654 pfc_holdoff_quanta_5 RW 0x0

0x4658 holdoff_quanta_6 RW 0x0

0x465C holdoff_quanta_7 RW 0x0

0x4660 –
0x467F Reserved — — Reserved for future use.

0x4680 tx_pfc_priority_enable RW 0x0

Enables PFC for a priority queue on the
transmit datapath.

■ Bit 0 to 7: Setting bit n in this register
enables PFC for priority queue n. For
example, setting tx_pfc_priority_enable[0]
enables PFC for priority queue 0.

■ Bits 8 to 31 are not used.

0x4684 –
0x47FF Reserved — — Reserved for future use.

TX Address Inserter (0x4800:0x49FF)

Table 5–2. MAC Registers (Part 7 of 14)

Byte
Offset Register Name Access Reset

Value Description
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 5: Registers 5–9
MAC Registers
0x4800 tx_addrins_control RW 0x0

Address insertion on the transmit datapath.

■ Bit 0 configures address insertion.
0—Disables address insertion on the
transmit datapath.
1—Overwrites the source address field of
transmit frames with the address
configured in the tx_addrins_macaddr0
and tx_addrins_macaddr1 registers.

■ Bits 1 to 31 are not used.

0x4804 tx_addrins_macaddr0 RW 0x0 6-byte MAC address. You must map the
address to the registers in the following
manner:

■ tx_addrins_macaddr0 = Last four bytes
of the address

■ tx_addrins_macaddr1[0:15] = First two
bytes of the address. Bits 16 to 31 are not
used.

Example:
If the primary MAC address is 00-1C-23-17-
4A-CB, set tx_addrins_macaddr0 to
0x23174ACB and tx_addrins_macaddr1 to
0x0000001C.

The IP core writes this address to the source
address field of transmit frames when address
insertion on transmit is enabled (refer to
description of tx_addrins_control).

0x4808 tx_addrins_macaddr1 RW 0x0

0x480C –
0x5FFF Reserved — — Reserved for future use.

TX Frame Decoder (0x6000:0x6FFF)

0x6000 Reserved — — Reserved for future use.

0x6004 tx_frame_maxlength RW 1518

■ Bits 0 to 15 specifies the maximum
allowable frame length for the statistic
counter. The MAC asserts the
avalon_st_txstatus_error[1] signal
when the length of the transmit frame
exceeds the value of this register and flags
it as oversized frame.

The value of this register does not affect the
allowable frame size that can be sent
through the Tx path.

■ Bits 16 to 31 are not used.

0x6008 –
0x6FFF Reserved — — Reserved for future use.

Table 5–2. MAC Registers (Part 8 of 14)

Byte
Offset Register Name Access Reset

Value Description
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

5–10 Chapter 5: Registers
MAC Registers
RX Statistics Counters (0x3000:0x3FFF)—Collect statistics on the receive path. Prefixed with rx_. (1)
TX Statistics Counters (0x7000:0x7FFF)—Collect statistics on the transmit path. Prefixed with tx_.

0x3000 rx_stats_clr RWC 0x0
■ Bit 0—Set this register to 1 to clear all

statistics counters for the receive path.

■ Bits 1 to 31 are not used.

0x7000 tx_stats_clr RWC 0x0
■ Bit 0—Set this register to 1 to clear all

statistics counters for the transmit path.

■ Bits 1 to 31 are not used.

0x3004
Reserved — — Reserved for future use.

0x7004

0x3008
rx_stats_framesOK

RO 0x0

■ Bit 0—The number of frames that are
successfully received or transmitted,
including control frames.

■ 36-bit width register:

■ 0x3008 and 0x7008 = bits [31:0]

■ 0x300C and 0x700C = bits [35:32]

0x300C

0x7008

tx_stats_framesOK
0x700C

0x3010
rx_stats_framesErr (2)

RO 0x0

■ Bit 0—The number of errored frames that
are received or transmitted, including
control frames.

■ 36-bit width register:

■ 0x3010 and 0x7010 = bits [31:0]

■ 0x3014 and 0x7014 = bits [35:32]

0x3014

0x7010

tx_stats_framesErr (2)
0x7014

0x3018
rx_stats_framesCRCErr

RO 0x0

■ Bit 0—The number of receive or transmit
frames with only CRC error.

■ 36-bit width register:

■ 0x3018 and 0x7018 = bits [31:0]

■ 0x301C and 0x701C = bits [35:32]

0x301C

0x7018
tx_stats_framesCRCErr

0x701C

0x3020
rx_stats_octetsOK

RO 0x0

■ Bit 0—The number of data and padding
octets that are successfully received or
transmitted, including control frames.

0x3024

0x7020
tx_stats_octetsOK

0x7024

0x3028
rx_stats_pauseMACCtrl Frames

RO 0x0

■ Bit 0—The number of valid pause frames
received or transmitted.

■ 36-bit width register:

■ 0x3028 and 0x7028 = bits [31:0]

■ 0x302C and 0x702C = bits [35:32]

0x302C

0x7028
tx_stats_pauseMACCtrl Frames

0x702C

0x3030
rx_stats_ifErrors

RO 0x0

■ Bit 0—The number of errored and invalid
frames received or transmitted.

■ 36-bit width register:

■ 0x3030 and 0x7030 = bits [31:0]

■ 0x3034 and 0x7034 = bits [35:32]

0x3034

0x7030
tx_stats_ifErrors

0x7034

Table 5–2. MAC Registers (Part 9 of 14)

Byte
Offset Register Name Access Reset

Value Description
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 5: Registers 5–11
MAC Registers
0x3038
rx_stats_unicast FramesOK

RO 0x0

■ Bit 0—The number of good unicast frames
that are successfully received or
transmitted, excluding control frames.

■ 36-bit width register:

■ 0x3038 and 0x7038 = bits [31:0]

■ 0x303C and 0x703C = bits [35:32]

0x303C

0x7038

tx_stats_unicast FramesOK
0x703C

0x3040
rx_stats_unicast FramesErr (2)

RO 0x0

■ Bit 0—The number of errored unicast
frames received or transmitted, excluding
control frames.

■ 36-bit width register:

■ 0x3040 and 0x7040 = bits [31:0]

■ 0x3044 and 0x7044 = bits [35:32]

0x3044

0x7040

tx_stats_unicast FramesErr (2)
0x7044

0x3048
rx_stats_multicast FramesOK

RO 0x0

■ Bit 0—The number of good multicast
frames that are successfully received or
transmitted, excluding control frames.

■ 36-bit width register:

■ 0x3048 and 0x7048 = bits [31:0]

■ 0x304C and 0x704C = bits [35:32]

0x304C

0x7048

tx_stats_multicast FramesOK
0x704C

0x3050
rx_stats_multicast FramesErr (2)

RO 0x0

■ Bit 0—The number of errored multicast
frames received or transmitted, excluding
control frames.

■ 36-bit width register:

■ 0x3050 and 0x7050 = bits [31:0]

■ 0x3054 and 0x7054 = bits [35:32]

0x3054

0x7050

tx_stats_multicast FramesErr (2)
0x7054

0x3058
rx_stats_broadcast FramesOK

RO 0x0

■ Bit 0—The number of good broadcast
frames received or transmitted, excluding
control frames.

■ 36-bit width register:

■ 0x3058 and 0x7058 = bits [31:0]

■ 0x305C and 0x705C = bits [35:32]

0x305C

0x7058

tx_stats_broadcast FramesOK
0x705C

0x3060
rx_stats_broadcast FramesErr (2)

RO 0x0

■ Bit 0—The number of errored broadcast
frames received or transmitted, excluding
control frames.

■ 36-bit width register:

■ 0x3060 and 0x7060 = bits [31:0]

■ 0x3064 and 0x7064 = bits [35:32]

0x3064

0x7060

tx_stats_broadcast FramesErr (2)
0x7064

0x3068
rx_stats_etherStats Octets

RO 0x0

■ Bit 0—The total number of octets received
or transmitted. This count includes good,
errored, and invalid frames.

0x306C

0x7068
tx_stats_etherStats Octets

0x706C

Table 5–2. MAC Registers (Part 10 of 14)

Byte
Offset Register Name Access Reset

Value Description
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

5–12 Chapter 5: Registers
MAC Registers
0x3070
rx_stats_etherStatsPkts

RO 0x0

■ Bit 0—The total number of good, errored,
and invalid frames received or transmitted.

■ 36-bit width register:

■ 0x3070 and 0x7070 = bits [31:0]

■ 0x3074 and 0x7074 = bits [35:32]

0x3074

0x7070
tx_stats_etherStatsPkts

0x7074

0x3078
rx_stats_etherStats UndersizePkts

RO 0x0

■ Bit 0—The number of undersized frames
(frame length less than 64 bytes, including
the CRC field) received or transmitted.

■ 36-bit width register:

■ 0x3078 and 0x7078 = bits [31:0]

■ 0x307C and 0x707C = bits [35:32]

0x307C

0x7078

tx_stats_etherStats UndersizePkts
0x707C

0x3080

rx_stats_etherStats OversizePkts RO 0x0

■ Bit 0—The number of oversized frames
(frame length more than
rx_frame_maxlength, including the CRC
field) received.

■ 36-bit width register:

■ 0x3080 = bits [31:0]

■ 0x3084 = bits [35:32]

0x3084

0x7080

tx_stats_etherStats OversizePkts RO 0x0

■ Bit 0—The number of oversized frames
(frame length more than
tx_frame_maxlength, including the CRC
field) transmitted.

■ 36-bit width register:

■ 0x7080 = bits [31:0]

■ 0x7084 = bits [35:32]

0x7084

0x3088
rx_stats_etherStats Pkts64Octets

RO 0x0

■ Bit 0—The number of 64-byte receive or
transmit frames, including the CRC field but
excluding the preamble and SFD bytes. This
count includes good, errored, and invalid
frames.

■ 36-bit width register:

■ 0x3088 and 0x7088 = bits [31:0]

■ 0x308C and 0x708C = bits [35:32]

0x308C

0x7088

tx_stats_etherStats Pkts64Octets
0x708C

0x3090 rx_stats_etherStats
Pkts65to127Octets

RO 0x0

■ Bit 0—The number of receive or transmit
frames between the length of 65 and 127
bytes, including the CRC field but excluding
the preamble and SFD bytes. This count
includes good, errored, and invalid frames.

■ 36-bit width register:

■ 0x3090 and 0x7090 = bits [31:0]

■ 0x3094 and 0x7094 = bits [35:32]

0x3094

0x7090

tx_stats_etherStats
Pkts65to127Octets0x7094

Table 5–2. MAC Registers (Part 11 of 14)

Byte
Offset Register Name Access Reset

Value Description
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 5: Registers 5–13
MAC Registers
0x3098 rx_stats_etherStats
Pkts128to255Octets

RO 0x0

■ Bit 0—The number of receive or transmit
frames between the length of 128 and 255
bytes, including the CRC field but excluding
the preamble and SFD bytes. This count
includes good, errored, and invalid frames.

■ 36-bit width register:

■ 0x3098 and 0x7098 = bits [31:0]

■ 0x309C and 0x709C = bits [35:32]

0x309C

0x7098

tx_stats_etherStats
Pkts128to255Octets0x709C

0x30A0 rx_stats_etherStats
Pkts256to511Octets

RO 0x0

■ Bit 0—The number of receive or transmit
frames between the length of 256 and 511
bytes, including the CRC field but excluding
the preamble and SFD bytes. This count
includes good, errored, and invalid frames.

■ 36-bit width register:

■ 0x30A0 and 0x70A0 = bits [31:0]

■ 0x30A4 and 0x70A4 = bits [35:32]

0x30A4

0x70A0

tx_stats_etherStats
Pkts256to511Octets0x70A4

0x30A8 rx_stats_etherStats
Pkts512to1023Octets

RO 0x0

■ Bit 0—The number of receive or transmit
frames between the length of 512 and
1,023 bytes, including the CRC field but
excluding the preamble and SFD bytes. This
count includes good, errored, and invalid
frames.

■ 36-bit width register:

■ 0x30A8 and 0x70A8 = bits [31:0]

■ 0x30AC and 0x70AC = bits [35:32]

0x30AC

0x70A8

tx_stats_etherStats
Pkts512to1023Octets0x70AC

0x30B0 rx_stats_etherStat
Pkts1024to1518Octets

RO 0x0

■ Bit 0—The number of receive or transmit
frames between the length of 1,024 and
1,518 bytes, including the CRC field but
excluding the preamble and SFD bytes. This
count includes good, errored, and invalid
frames.

■ 36-bit width register:

■ 0x30B0 and 0x70B0 = bits [31:0]

■ 0x30B4 and 0x70B4 = bits [35:32]

0x30BC

0x70B0

tx_stats_etherStat
Pkts1024to1518Octets0x70B4

0x30B8 rx_stats_etherStats
Pkts1519toXOctets

RO 0x0

■ Bit 0—The number of receive or transmit
frames equal or more than the length of
1,519 bytes, including the CRC field but
excluding the preamble and SFD bytes. This
count includes good, errored, and invalid
frames.

■ 36-bit width register:

■ 0x30B8 and 0x70B8= bits [31:0]

■ 0x30BC and 0x70BC = bits [35:32]

0x30BC

0x70B8

tx_stats_etherStats
Pkts1519toXOctets0x70BC

Table 5–2. MAC Registers (Part 12 of 14)

Byte
Offset Register Name Access Reset

Value Description
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

5–14 Chapter 5: Registers
MAC Registers
0x30C0
rx_stats_etherStats Fragments

RO 0x0

■ Bit 0—The total number of receive or
transmit frames with length less than 64
bytes and CRC error. This count includes
errored and invalid frames.

■ 36-bit width register:

■ 0x30C0 and 0x70C0 = bits [31:0]

■ 0x30C4 and 0x70C4 = bits [35:32]

0x30C4

0x70C0

tx_stats_etherStats Fragments
0x70C4

0x30C8

rx_stats_etherStats Jabbers RO 0x0

■ Bit 0—The number of oversized receive
frames (frame length more than
rx_frame_maxlength) with CRC error.
This count includes invalid frame types.

■ 36-bit width register:

■ 0x30C8 = bits [31:0]

■ 0x30CC = bits [35:32]

0x30CC

0x70C8

tx_stats_etherStats Jabbers RO 0x0

■ Bit 0—The number of oversized transmit
frames (frame length more than 1,518
bytes) with CRC error. This count includes
invalid frame types.

■ 36-bit width register:

■ 0x70C8 = bits [31:0]

■ 0x70CC = bits [35:32]

0x70CC

0x30D0

rx_stats_etherStats CRCErr RO 0x0

■ Bit 0—The number of receive frames
between the length of 64 and the value
configured in the rx_frame_maxlength
register with CRC error. This count includes
errored and invalid frames.

■ 36-bit width register:

■ 0x30D0 = bits [31:0]

■ 0x30D4 = bits [35:32]

0x30D4

0x70D0

tx_stats_etherStats CRCErr RO 0x0

■ Bit 0—The number of transmit frames
between the length of 64 and 1,518 bytes.
This count includes errored and invalid
frames.

■ 36-bit width register:

■ 0x70D0 = bits [31:0]

■ 0x70D4 = bits [35:32]

0x70D4

0x30D8
rx_stats_unicastMAC CtrlFrames

RO 0x0

■ Bit 0—The number of valid unicast control
frames received or transmitted.

■ 36-bit width register:

■ 0x30D8 and 0x70D8 = bits [31:0]

■ 0x30DC and 0x70DC = bits [35:32]

0x30DC

0x70D8
tx_stats_unicastMAC CtrlFrames

0x70DC

Table 5–2. MAC Registers (Part 13 of 14)

Byte
Offset Register Name Access Reset

Value Description
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 5: Registers 5–15
MAC Registers
5.1.1. Rx_frame_control Register
Table 5–3 describes the function of each field in the rx_framedecoder_control register.

0x30E0
rx_stats_multicastMAC CtrlFrames

RO 0x0

■ Bit 0—The number of valid multicast
control frames received or transmitted.

■ 36-bit width register:

■ 0x30E0 and 0x70E0 = bits [31:0]

■ 0x30E4 and 0x70E4 = bits [35:32]

0x30E4

0x70E0
tx_stats_multicastMAC CtrlFrames

0x70E4

0x30E8
rx_stats_broadcastMAC CtrlFrames

RO 0x0

■ Bit 0—The number of valid broadcast
control frames received or transmitted.

■ 36-bit width register:

■ 0x30E8 and 0x70E8 = bits [31:0]

■ 0x30EC and 0x70EC = bits [35:32]

0x30EC

0x70E8
tx_stats_broadcastMAC CtrlFrames

0x70EC

0x30F0
rx_stats_PFCMACCtrlFrames

RO 0x0

■ Bit 0—The number of valid PFC frames
received or transmitted.

■ 36-bit width register:

■ 0x30F0 and 0x70F0 = bits [31:0]

■ 0x30F4 and 0x70F4 = bits [35:32]

0x30F4

0x70F0
tx_stats_PFCMACCtrlFrames

0x70F4

0x30F8 –
0x3FFF

Reserved — — Reserved for future use.
0x70F8 –
0x7FFF

Notes to Table 5–2:

(1) When you read the statistic counters, read the LSB before reading the MSB. For example, when you read rx_stats_PFCMACCtrlFrames, read
the register offset 0x30F0 before reading the register offset 0x30F4.

(2) If you set the statistics counters to memory-based implementation, the number of undersized frames received or transmitted is not incremented
for this register. This is due to the limited processing time when undersized frames are received or transmitted.

Table 5–2. MAC Registers (Part 14 of 14)

Byte
Offset Register Name Access Reset

Value Description

Table 5–3. Rx_framedecoder_control Register (Part 1 of 2)

Bit Field Name Width Access Reset
Value Description

0 EN_ALLUCAST 1 RW 0x1

0—Drops unicast receive frames using the primary MAC
addresses.

1—Accepts all unicast receive frames.

Setting this register and the EN_ALLMCAST register to 1,
enables the MAC to go on promiscuous (transparent)
mode.

1 EN_ALLMCAST 1 RW 0x1

0—Drops all multicast frames.

1—Accepts all multicast frames.

Setting this register and the EN_ALLUCAST register to 1,
enables the MAC to go on promiscuous (transparent)
mode.

2 Reserved 1 — — Reserved for future use.
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

5–16 Chapter 5: Registers
MAC Registers
5.1.2. Rx_pfc_control Register
Table 5–4 describes the function of each field in the rx_pfc_control register.

3 FWD_CONTROL 1 RW 0x0

When you turn on the Priority-based Flow Control (PFC)
parameter, this bit affects all control frames except the
IEEE 802.3 pause frames and PFC frames. Otherwise, this
bit affects all control frames except the IEEE 802.3 pause
frames.

0—Drops control frames.

1—Forwards control frames to the client.

4 FWD_PAUSE 1 RW 0x0
0—Drops IEEE 802.3 pause frame after processing them.

1—Forwards IEEE 802.3 pause frames to the client.

5 IGNORE_PAUSE 1 RW 0x0
0—Suspends transmission for the value specified by the
pause quanta in the IEEE 802.3 pause frame received.

1—Ignores IEEE 802.3 pause frames.

6 – 15 Reserved — — — Reserved for future use.

16 EN_SUPP0 1 RW 0x0
0—Disables the use of supplementary address 0.

1—Enables the use of supplementary address 0.

17 EN_SUPP1 1 RW 0x0
0—Disables the use of supplementary address 1.

1—Enables the use of supplementary address 1.

18 EN_SUPP2 1 RW 0x0
0—Disables the use of supplementary address 2.

1—Enables the use of supplementary address 2.

19 EN_SUPP3 1 RW 0x0
0—Disables the use of supplementary address 3.

1—Enables the use of supplementary address 3.

20 – 31 Reserved — — — Reserved for future use.

Table 5–3. Rx_framedecoder_control Register (Part 2 of 2)

Bit Field Name Width Access Reset
Value Description

Table 5–4. Rx_pfc_control Register

Bit Field Name Width Access Reset
Value Description

0 PFC_IGNORE_PAUSE_0 1 RW 0x1

0—Suspends transmission for Tx priority queue n for the
period specified by pfc_pause_quanta_n.

1—Ignores the PFC pause request for Tx priority queue n.

1 PFC_IGNORE_PAUSE_1 1 RW 0x1

2 PFC_IGNORE_PAUSE_2 1 RW 0x1

3 PFC_IGNORE_PAUSE_3 1 RW 0x1

4 PFC_IGNORE_PAUSE_4 1 RW 0x1

5 PFC_IGNORE_PAUSE_5 1 RW 0x1

6 PFC_IGNORE_PAUSE_6 1 RW 0x1

7 PFC_IGNORE_PAUSE_7 1 RW 0x1

8 – 15 Reserved — — — Reserved for future use.
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 5: Registers 5–17
Register Initialization
5.2. Register Initialization
Altera offers the following options for the 10G Ethernet solution with the 10G MAC IP
core:

■ 10G MAC with single data rate (SDR) XGMII

■ 10G MAC with double data rate (DDR) XGMII

■ 10G MAC with XAUI PHY IP

■ 10G MAC with 10GBASE-R PHY IP

f To learn more about the 10G MAC with SDR XGMII to DDR XGMII conversion, refer
to “SDR XGMII to DDR XGMII Conversion” on page 7–1.

The 10G MAC is configured in promiscuous (transparent) mode at default or after a
hard reset. In promiscuous mode, the 2.5G MAC does not perform any MAC address
filtering and it is capable of transmitting and receiving all types of Ethernet frames.

Register initialization for the 10GbE MAC design example is mainly performed in the
following configurations:

■ External PHY Initialization Using MDIO (Optional)

■ PHY Configuration Register Initialization

■ Miscellaneous Configuration Register Initialization

■ MAC Configuration Register Initialization

f For more information about the 10GbE MAC design example, refer to the “Design
Examples and Testbench”chapter.

To initialize the registers for the 10GbE MAC configuration, it is important for you to
understand the usage of the addressing mode. This configuration uses the following
addressing modes:

■ 10G MAC IP Core—dword addressing

■ 10G Ethernet design example—byte addressing

You can easily convert between dword and byte addressing by removing or adding
two least significant bits (LSB) in the address. For example, if dword = 0x341, you can
add two LSB bits to the byte address conversion to get byte address = 0xD04.

Use the following recommended register initialization sequences for 10GbE MAC
design example:

16 FWD_PFC 1 RW 0x1
0—Drops the PFC frame after processing it.

1—Forwards the PFC frame to the client.

16 – 31 Reserved — — — Reserved for future use.

Table 5–4. Rx_pfc_control Register

Bit Field Name Width Access Reset
Value Description
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

5–18 Chapter 5: Registers
Register Initialization
1. External PHY initialization using MDIO

This is only applicable when you require external PHY transceiver configuration.

//Assume:

//External PHY Address (Hardwired) (MDIO_PRTAD): 0x01

//External PHY Device Type (MDIO_DEVAD): 0x01

//External PHY Control Register address (MDIO_REGAD): 0x0000

//MDIO Base Address: 0x00010000

//MDIO Register Byte offset: 0x84 Byte Address, 0x00010084 = 0x00000104

//Read/Write to External PHY Control Register define in MDIO_REGAD

//MDIO Base Address: 0x00010000

//MDIO Register Byte offset: 0x80

Read/write to Byte Address, 0x00010080 = Read/write to PHY Control
Register (Device Address = 0x01, Register Address = 0x0000)

2. PHY configuration register initialization

Altera provides various types of Ethernet PHY such as XAUI and 10GBASE-R
PHY. By default, the PHY does not need any configuration register initialization.
To ensure the transceiver PHY is operating properly, perform a hard reset to the
PHY after a power-up sequence.

//Hard Reset the Altera Transceiver PHY

Asserted the phy_mgmt_reset input at least more than 3 phy_mgmt_clk
cycles.

De-assert the phy_mgmt_reset input to release the hard reset

//Wait for the Transceiver PHY Reset Sequence to Complete

Wait the tx_ready and rx_ready outputs = 1

Or

//Check the tx_read and rx_ready status through PHY Management Interface

//XAUI/10G BASE-R PHY Base Address: 0x00040000

//reset_status byte addres: 0x108

//reset_status bit 0 – tx_ready, bit 1 – rx_ready

Wait reset_status (address = 0x00040108) = 0x3

3. Miscellaneous configuration register initialization

This is only applicable to the 10GbE MAC design example. The following
components in the design example is categorized under the miscellaneous
configuration register initialization:

■ TX and RX single-clock FIFO/dual clock FIFO

a. Setting for single-clock FIFO

//RX FIFO Base Address: 0x00010400

//TX FIFO Base Address: 0x00010600

//Enable Store and Forward Mode in RX Single-Clock FIFO
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 5: Registers 5–19
Register Initialization
//cut_through_threshold byte address: 0x10

//Set this larger than 0 will enable Cut Through mode

cut_throught_threshold (address = 0x00010410) = 0x0

//Enable Store and Forward Mode in TX Single-Clock FIFO

//cut_through_threshold byte address: 0x10

//Set this larger than 0 will enable Cut through mode

cut_through_threshold (address = 0x00010610) = 0x0

//Enable FIFO Frame Drop On Error

//Drop on Error is NOT available in Cut Through Mode

//drop_on_error byte address: 0x14

//Set this to 0 will disable the drop on error

drop_on_error (address = 0x00010414) = 0x1

//Enable Drop On Error in TX Single Clock FIFO

//Drop on Error is NOT available in Cut Through Mode

//drop_on_error byte address: 0x14

//Set this to 0 will disable the drop on error

drop_on_error (address = 0x00010614) = 0x1

b. Setting for dual-clock FIFO

Because the drop on error and store and forward features are not supported, you
are not required to perform any register initialization.

■ Ethernet loopback

//Ethernet Loopback Base Address: 0x00010200

//Disable Line Loopback

//line_loopback byte address: 0x00

//Set this to 1 will enable the Line loopback

line_loopback (address = 0x00010200) = 0x0

//Disable Local Loopback

//local_loopback byte address: 0x08

//set this to 1 will eable the local loopback

local_loopback (address = 0x00010208) = 0x0

4. MAC configuration register initialization
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

5–20 Chapter 5: Registers
Register Initialization
The 10GbE MAC is configured as promiscuous mode by default; therefore it does not
require any initialization to transmit and receive Ethernet frames. Use the following
recommended initialization sequences for your configuration:

a. Disable MAC transmit and receive datapath

Disable the 10GbE MAC transmit and receive datapath before changing any
configuration register.

//Disable the MAC Receive Path

//rx_transfer_control byte address: 0x000

rx_transfer_control (address = 0x00000000) = 0x1

//Disable the MAC Transmit Path

//tx_transfer_control byte address: 0x4000

tx_transfer_control (address = 0x00004000) = 0x1

//Check the MAC Transmit and Receive Path is disable

//rx_transfer_status byte address: 0x004

Wait rx_transfer_status (address = 0x00000004) = 0x1

//tx_transfer_status byte address: 0x4004

Wait tx_transfer_status (address = 0x00004004) = 0x1

b. MAC address configuration

//Assume MAC address is 00-1C-23-17-4A-CB

//Configure the MAC Receive MAC Address

//rx_frame_addr0 byte address: 0x2008

//rx_frame_addr1 byte address: 0x200C

rx_frame_addr0 (address = 0x00002008) = 0x17231C00

rx_frame_addr1 (address = 0x0000200C) = 0x0000CB4A

//Configure the MAC Transmit MAC Address

//tx_addrins_macaddr0 byte address: 0x4804

//tx_addrins_macaddr1 byte address: 0x4808

tx_addrins_macaddr0 (address = 0x00004804) = 0x17231C00

tx_addrins_macaddr1 (address = 0x00004808) = 0x0000CB4A
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 5: Registers 5–21
Register Initialization
c. MAC function configuration

//Maximum Frame Length is 1518 bytes

//rx_frame_maxlength byte address: 0x2004

rx_frame_maxlength (address = 0x00002004) = 1518

//tx_frame_maxlength byte address: 0x6004

tx_frame_maxlength (address = 0x00006004) = 1518

//Maximum Pause Quanta Value for Flow Control

//tx_pauseframe_quanta byte address: 0x4504

tx_pauseframe_quanta (address = 0x00004504) = 0xFFFF

//CRC and Padding Removal for MAC Receive

//rx_padcrc_control byte address: 0x0100

rx_padcrc_control (address = 0x00000100) = 0x3

//Padding Removal for MAC Transmit

//tx_padins_control byte address: 0x4100

tx_padins_control (address = 0x00004100) = 0x1

//CRC Removal for MAC Transmit

//tx_crcins_control byte address: 0x4200

tx_crcins_control (address = 0x00004200) = 0x3

//TX MAC Address Insertion on Transmit Frame

//tx_addrins_control byte address: 0x4800

tx_addrins_control (address = 0x00004800) = 0x1

//Configure the RX Frame Control Register

//Disable the promiscuous (transparent) mode by setting EN_ALLUCAST bit
to 0

//rx_frame_control byte address: 0x2000

rx_frame_control (address = 0x00002000) = 0x00000002
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

5–22 Chapter 5: Registers
Register Initialization
Figure 5–1 shows the settings for the rx_frame_control register.

d. Enable MAC transmit and receive datapath.

//Enable the MAC Receive Path

//rx_transfer_control byte address: 0x000

rx_transfer_control (address = 0x00000000) = 0x0

//Enable the MAC Transmit Path

//tx_transfer_control byte address: 0x4000

tx_transfer_control (address = 0x00004000) = 0x0

//Check the Transmit and Receive Path is enable

//rx_transfer_status byte address: 0x004

Wait rx_transfer_status (address = 0x00000004) = 0x0

//tx_transfer_status byte address: 0x4004

Wait tx_transfer_status (address = 0x00004004) = 0x0

Figure 5–1. Fx_frame_control Register Settings

R
es

er
ve

d

EN
_S

U
PP

3

EN
_S

U
PP

2

EN
_S

U
PP

1

EN
_S

U
PP

0

R
es

er
ve

d

IG
N

O
R

E_
PA

U
SE

FW
D

_P
AU

SE

FW
D

_C
O

N
TR

O
L

R
es

er
ve

d

EN
_A

LL
M

C
AS

T

EN
_A

LL
U

C
AS

T

30..20 19 18 17 16 15..6 5 4 3 2 1 0

0..0 0 0 0 0 0..0 0 0 0 0 1 0
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

July 2012 Altera Corporation
6. Interface Signals
This section describes the interface signals in all MAC variations.

Figure 6–1 shows the interface signals for the MAC Tx and Rx variation.

Figure 6–1. 10GbE MAC

Avalon-ST Receive
Interface Signals

Avalon-ST Transmit
Interface Signals

Avalon-ST Status
Signals

Clock and Reset
Signals

XGMII Signals

Avalon-ST Pause
Signals

tx_clk_clk

tx_reset_reset_n

rx_clk_clk

rx_reset_reset_n

csr_clk_clk

csr_reset_reset_n

avalon_st_rxstatus_valid

avalon_st_rxstatus_data []

avalon_st_rxstatus_error []

avalon_st_rx_startofpacket

avalon_st_rx_endofpacket

avalon_st_rx_valid

avalon_st_rx_ready

avalon_st_rx_data []

avalon_st_rx_empty []

avalon_st_rx_error []

avalon_st_tx_startofpacket

avalon_st_tx_endofpacket

avalon_st_tx_valid

avalon_st_tx_ready

avalon_st_tx_data []

avalon_st_tx_empty []

avalon_st_tx_error

avalon_st_pause_data []
2

64

3

64

3

6

40

7

avalon_st_txstatus_error []
7

xgmii_tx_data []

xgmii_rx_data []
72

72

10GbE MAC

avalon_st_txstatus_valid

avalon_st_txstatus_data []
40

avalon_st_tx_pfc_gen_data []

avalon_st_rx_pfc_pause_data []

16

8

avalon_st_rx_pfc_status_valid

avalon_st_rx_pfc_status_data []
16

avalon_st_tx_pfc_status_valid

avalon_st_tx_pfc_status_data []
16

Avalon-MM Control
Interface Signals

csr_address []

csr_read

csr_readdata []

csr_write

csr_writedata []

csr_waitrequest

13

32

32

link_fault_status_xgmii_rx_data []
2

10-Gbps Ethernet MAC MegaCore Function User Guide

6–2 Chapter 6: Interface Signals
Figure 6–2 shows the interfaces signals for the MAC Tx only variation.

Figure 6–3 shows the interface signals for the MAC Rx only variation.

Figure 6–2. MAC Tx Only Variation

Avalon-ST Transmit
Interface Signals

Avalon-ST Status
Signals

Clock and Reset
Signals

XGMII Signals

Avalon-ST Pause
Signals

tx_clk_clk

tx_reset_reset_n
csr_clk_clk

csr_reset_reset_n

avalon_st_tx_startofpacket

avalon_st_tx_endofpacket

avalon_st_tx_valid

avalon_st_tx_ready

avalon_st_tx_data []

avalon_st_tx_empty []

avalon_st_tx_error

avalon_st_pause_data []
2

64

3
xgmii_tx_data []

link_fault_status_xgmii_tx_data []
2

72

10GbE MAC

avalon_st_txstatus_valid

avalon_st_txstatus_data []
40

avalon_st_tx_pfc_gen_data []
16

avalon_st_tx_pfc_status_valid

avalon_st_tx_pfc_status_data []
16

Avalon-MM Control
Interface Signals

csr_address []

csr_read

csr_readdata []

csr_write

csr_writedata []

csr_waitrequest

13

32

32

avalon_st_tx_pause_length_data []

avalon_st_tx_pause_length_valid
16

avalon_st_txstatus_error []
7

Figure 6–3. MAC Rx Only Variation

Avalon-ST Receive
Interface Signals

Avalon-ST Status
Signals

Clock and Reset
Signals

XGMII Signals

Avalon-ST Pause
Signals

rx_clk_clk

rx_reset_reset_n

csr_clk_clk

csr_reset_reset_n

avalon_st_rxstatus_valid

avalon_st_rxstatus_data []

avalon_st_rxstatus_error []

avalon_st_rx_startofpacket

avalon_st_rx_endofpacket

avalon_st_rx_valid

avalon_st_rx_ready

avalon_st_rx_data []

avalon_st_rx_empty []

avalon_st_rx_error []

avalon_st_pause_data []
2

64

3

6

40

7

link_fault_status_xgmii_rx_data []

xgmii_rx_data []

2

72

10GbE MAC

avalon_st_rx_pfc_pause_data []
8

avalon_st_rx_pfc_status_valid

avalon_st_rx_pfc_status_data []
16

Avalon-MM Control
Interface Signals

csr_address []

csr_read

csr_readdata []

csr_write

csr_writedata []

csr_waitrequest

13

32

32

avalon_st_rx_pause_length_data []

avalon_st_rx_pause_length_valid
16
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 6: Interface Signals 6–3
6.0.1. Clock and Reset Signals
The MAC operates in multiple clock domains. You can use different sources to drive
the clock and reset interfaces. Refer to Table 6–1 on page 6–3 for the clock and timing
requirements for the clock and reset interfaces.

Table 6–1 lists the MAC clock and reset signals.

6.0.2. Avalon-ST Transmit and Receive Interface Signals
Table 6–2 describes the Avalon-ST transmit signals.

Table 6–1. Common Clock and Reset Signals

Signal Direction Width Description

tx_clk_clk (1) Input 1 156.25-MHz transmit clock. Provides the timing
reference for the Avalon-ST transmit interface.

tx_reset_reset_n Input 1
An active-low asynchronous reset signal for the
tx_clk_clk domain. The MAC function implements a
reset synchronizer to generate a synchronous signal.

rx_clk_clk (1) Input 1 156.25-MHz receive clock. Provides the timing
reference for the Avalon-ST receive interface.

rx_reset_reset_n Input 1
An active-low asynchronous reset signal for the
rx_clk_clk domain. The MAC function implements a
reset synchronizer to generate a synchronous signal.

csr_clk_clk Input 1 Configuration clock for the control and status interface.
The clock runs at 156.25-MHz or lower.

csr_reset_reset_n Input 1 An active-low reset signal for the control and status
interface.

Note to Table 6–1:

(1) You can use the same clock source for both tx_clk_clk and rx_clk_clk.

Table 6–2. Avalon-ST Transmit Signals

Signal Direction Width Description

avalon_st_tx_startofpacket Input 1 Assert this signal to indicate the beginning of the transmit
packet.

avalon_st_tx_endofpacket Input 1 Assert this signal to indicate the end of the transmit packet.

avalon_st_tx_valid Input 1 Assert this signal to qualify the transmit data on the
avalon_st_tx_data bus.

avalon_st_tx_ready Output 1 When asserted, this signal indicates that the IP core is ready
to accept data.

avalon_st_tx_data[] Input 64 Carries the transmit data from the client.

avalon_st_tx_empty[] Input 3 Use this signal to specify the number of bytes that are empty
(not used) during cycles that contain the end of a packet.

avalon_st_tx_error Input 1 Assert this signal to indicate the current receive packet
contains errors.
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

6–4 Chapter 6: Interface Signals
Table 6–3 describes the Avalon-ST receive signals.

6.0.2.1. Timing Diagrams—Avalon-ST Transmit Interface
The diagrams in this section shows the timing and the mapping on the Avalon-ST
transmit interface.

The client asserts the avalon_st_tx_startofpacket signal to indicate the beginning of
the transmit packet. On the same rising edge of tx_clk_clk, the client asserts the
avalon_st_tx_valid signal to qualify the transmit data on the
avalon_st_tx_data[63:0] bus. At the end of the packet, the avalon_st_tx_empty
[2:0] signal specifies the number of bytes that are empty.

Table 6–3. Avalon-ST Receive Signals

Signal Direction Width Description

avalon_st_rx_startofpacket Output 1 When asserted, this signal indicates the beginning of the
receive packet.

avalon_st_rx_endofpacket Output 1 When asserted, this signal indicates the end of the receive
packet.

avalon_st_rx_valid Output 1 When asserted, this signal qualifies the receive data on
the avalon_st_rx_data bus.

avalon_st_rx_ready Input 1 Assert this signal when the client is ready to accept data.

avalon_st_rx_data[] Output 64 Carries the receive data to the client.

avalon_st_rx_empty[] Output 3 Contains the number of bytes that are empty (not used)
during cycles that contain the end of a packet.

avalon_st_rx_error[] Output 6

When set to 1, the respective bits in this signal indicate an
error type in the receive frame:

■ Bit 0: PHY error—The XGMII Rx interface data bus
(xgmii_rx_data) contains a control error character
(FE).

■ Bit 1: CRC error—The calculated CRC value differs
from the received CRC.

■ Bit 2: Undersized frame—The frame size is less than
64 bytes.

■ Bit 3: Oversized frame—The frame size is more than
MAX_FRAME_SIZE.

■ Bit 4: Payload length error—The actual frame payload
length differs from the length/type field.

■ Bit 5: Overflow error—The FIFO buffer is full while it is
receiving signal from the MAC causing truncated
receive frame.

The IP core presents the error type on this bus in the
same clock cycle it asserts
avalon_st_rx_endofpacket and
avalon_st_rx_valid.
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 6: Interface Signals 6–5
Figure 6–4 shows the timing for the Avalon-ST transmit interface with a good frame.

When the client forwards an error frame to the Avalon-ST transmit interface, the client
asserts the avalon_st_tx_error signal to indicate errors in the current frame. The
avalon_st_tx_error signal is aligned with the avalon_st_tx_endofpacket signal.

Figure 6–5 shows the timing for the Avalon-ST transmit interface with an error frame.

Figure 6–4. Avalon-ST Transmit Interface

Note to Figure 6–4:

(1) n indicates the number of symbols that are empty during the cycles that mark the end of a frame.

Figure 6–5. Avalon-ST Transmit Interface with Error

Note to Figure 6–5:

(1) n indicates the number of symbols that are empty during the cycles that mark the end of a frame.

tx_clk_clk

avalon_st_tx_startofpacket

avalon_st_tx_endofpacket

avalon_st_tx_valid

avalon_st_tx_ready

avalon_st_tx_data [63:0]

avalon_st_tx_empty [2:0]

avalon_st_tx_error

0 n (1)

tx_clk_clk

avalon_st_tx_startofpacket

avalon_st_tx_endofpacket

avalon_st_tx_valid

avalon_st_tx_ready

avalon_st_tx_data [63:0]

avalon_st_tx_empty [2:0]

avalon_st_tx_error

0 n (1)
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

6–6 Chapter 6: Interface Signals
Figure 6–6 shows the mapping of the client frame on the Avalon-ST transmit interface.

Figure 6–6. Mapping of Client Frame to Avalon-ST Transmit Interface

Notes to Figure 6–6:

(1) <p> = payload size = 0–1500 bytes
(2) In the preamble passthrough mode, the client frame starts with an 8-byte client-defined preamble.
(3) n indicates the number of symbols that are empty during the cycles that mark the end of a frame.

avalon_st_tx_data[63:56]

avalon_st_tx_data[55:48]

avalon_st_tx_data[47:40]

avalon_st_tx_data[39:32]

avalon_st_tx_data[31:24]

avalon_st_tx_data[23:16]

avalon_st_tx_data[15:8]

avalon_st_tx_data[7:0]

tx_clk_clk

avalon_st_tx_valid

Client Frame(2)

Destination Addr[47:0] Source Addr[47:0] Type/
Length
[15:0]

Payload
[<p-1>:0]

DA0 SA2

DA1 SA3

DA2 SA4

DA3 SA5

DA4 TL0

DA5 TL1

SA0 TL2

SA1 P0

P1

avalon_st_tx_ready

P2

P<p-1>

DA0 P0DA1 DA2 DA3 DA4 DA5 SA0 SA1 SA2 SA3 SA4 SA5 TL0 TL1 P<p-1>

P3

P4

P5

P6

P7

P8

(1)

avalon_st_tx_startofpacket

avalon_st_tx_endofpacket

avalon_st_tx_empty [2:0] 0 n

avalon_st_tx_error

(3)
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 6: Interface Signals 6–7
6.0.2.2. Timing Diagrams—Avalon-ST Receive Interface
The diagrams in this section show the timing on the Avalon-ST receive interface.

The Avalon-ST receive interface avalon_st_rx_startofpacket signal is asserted to
indicate the start of a new frame. On the same rising edge of rx_clk_clk, the
avalon_st_rx_valid signal is also asserted to qualify the transmit data on the
avalon_st_rx_data[63:0] bus. The end of the receive packet is indicated by the
avalon_st_rx_endofpacket signal.

Figure 6–7 shows the timing for the Avalon-ST receive interface with a good frame.

When the MAC Rx receives an undersized frame, it sets the avalon_st_rx_error[2]
bit to 1. When an overflow occurs, the MAC Rx sets the avalon_st_rx_error[5] bit to
1 and deasserts the avalon_st_rx_ready signal to backpressure the Avalon-ST receive
interface. The error signals are sampled when avalon_st_rx_endofpacket and
avalon_st_rx_valid signals are asserted.

For more information about the error signals in the Avalon-ST receive and status
interface, refer to Table 6–3 on page 6–4 and Table 6–6 on page 6–12.

Figure 6–7. Avalon-ST Receive

Note to Figure 6–7:

(1) n indicates the number of symbols that are empty during the cycles that mark the end of a frame.

rx_clk_clk

avalon_st_rx_startofpacket

avalon_st_rx_endofpacket

avalon_st_rxstatus_valid

avalon_st_rx_valid

avalon_st_rx_ready

avalon_st_rxstatus_data [38:0]

avalon_st_rx_data [63:0]

avalon_st_rx_empty [2:0]

avalon_st_rxstatus_error [6:0]

avalon_st_rx_error [5:0]

n0

0

0

(1)
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

6–8 Chapter 6: Interface Signals
Figure 6–8 shows the reception of a 60-byte frame at the Avalon-ST receive interface
when an error occurs with an overflow and undersized frame condition.

Figure 6–8. Avalon-ST Receive with Error (Overflow and Undersized Frame)

rx_clk_clk

avalon_st_rx_ready

avalon_st_rx_valid

avalon_st_rx_startofpacket

avalon_st_rx_data[63:0]

avalon_st_rx_empty[2:0]

avalon_st_rx_error[5]

avalon_st_rx_error[4]

avalon_st_rx_error[3]

avalon_st_rx_error[2]

avalon_st_rx_error[1]

avalon_st_rx_error[0]

avalon_st_rx_endofpacket

avalon_st_rxstatus_valid

avalon_st_rxstatus_data[38:0]

avalon_st_rxstatus_error[6]

avalon_st_rxstatus_error[5]

avalon_st_rxstatus_error[4]

avalon_st_rxstatus_error[3]

avalon_st_rxstatus_error[2]

avalon_st_rxstatus_error[1]

avalon_st_rxstatus_error[0]

40

Overflow

Undersized
frame

Undersized
frame
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 6: Interface Signals 6–9
6.0.3. SDR XGMII Signals
Table 6–4 shows the SDR XGMII signals.

Table 6–4. SDR XGMII Signals

Signal Direction Width Description

xgmii_rx_data[] Input 72 8-lane data bus carrying 8-bit data and 1-bit control
information. Lane 0 starts from the least significant
bit.

xgmii_rx_data[7:0] / xgmii_tx_data[7:0] = data
xgmii_rx_data[8] / xgmii_tx_data[8] = control
xgmii_rx_data[16:9] / xgmii_tx_data[16:9] =
data
xgmii_rx_data[17] / xgmii_tx_data[17] = control
... and so forth

xgmii_tx_data[] Output 72

link_fault_status_xgmii_rx_data[] Output 2

Indicates the link fault status from the RS Rx to the
RS Tx.

■ 00 = No link fault.

■ 01 = Local fault.

■ 10 = Remote fault.

When you instantiate the MAC Rx only variation,
connect this signal to the corresponding Tx client
logic to handle the local and remote faults.

link_fault_status_xgmii_tx_data[] Input 2

This signal is present only in the MAC Tx only
variation. Connect this signal to the corresponding Rx
client logic to handle the local and remote faults.

Indicates the link fault status to the RS Tx.

■ 00 = No link fault

■ 01 = Local fault

■ 10 = Remote fault
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

6–10 Chapter 6: Interface Signals
6.0.3.1. Timing Diagrams—SDR XGMII
The diagrams in this section show the timing for the SDR XGMII.

Figure 6–9 shows the timing for the SDR XGMII Rx interface data bus.

When an error occurs, the control bit signal is asserted and the data during that clock
cycle is replaced by a control error character (FE).

Figure 6–9. SDR XGMII Rx Interface Data Bus

Note to Figure 6–9:

(1) In the preamble passthrough mode, the MAC Tx frame starts with a 1-byte START and a 7-byte client-defined
preamble.

rx_clk_clk

xgmii_rx_data[71]

xgmii_rx_data[70:63]

xgmii_rx_data[62]

xgmii_rx_data[61:54]

xgmii_rx_data[53]

xgmii_rx_data[52:45]

xgmii_rx_data[44]

xgmii_rx_data[43:36]

xgmii_rx_data[35]

xgmii_rx_data[34:27]

xgmii_rx_data[26]

xgmii_rx_data[25:18]

xgmii_rx_data[17]

xgmii_rx_data[16:9]

xgmii_rx_data[8]

xgmii_rx_data[7:0]

D5 (1) CC 01 09 11 19 21 29 F4

EE 00 08 10 18 20 28 0A

EE 2E 07 0F 17 1F 27 B3

AA 00 06 0E 16 1E 26 4E

CC EE 05 0D 15 1D 25 2D

88 AA 04 0C 14 1C 24 2C

55 (1) CC 03 0B 13 1B 23 2B

FB EE 88 02 0A 12 1A 22 2A FD

55 (1)

55 (1)

55 (1)

55 (1)

55 (1)
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 6: Interface Signals 6–11
Figure 6–10 shows the timing for the SDR XGMII Rx interface when an error occurs.

Figure 6–10. SDR XGMII Rx Interface with Error

Note to Figure 6–10:

(1) The xgmii_rx_data[7:0] bus is expanded to show the behavior of each signal when an error occurs.

rx_clk_clk

xgmii_rx_data [71]

xgmii_rx_data [70:63]

xgmii_rx_data [62]

xgmii_rx_data [61:54]

xgmii_rx_data [53]

xgmii_rx_data [52:45]

xgmii_rx_data [44]

xgmii_rx_data [43:36]

xgmii_rx_data [35]

xgmii_rx_data [34:27]

xgmii_rx_data [26]

xgmii_rx_data [25:18]

xgmii_rx_data [17]

xgmii_rx_data [16:9]

xgmii_rx_data [8]

xgmii_rx_data [7:0]

xgmii_rx_data [7]

xgmii_rx_data [6]

xgmii_rx_data [5]

xgmii_rx_data [4]

xgmii_rx_data [3]

xgmii_rx_data [2]

xgmii_rx_data [1]

xgmii_rx_data [0]

D5 CC 01 09 11 19 FE

55 EE 00 08 10 18 FE

55 CC 1E 07 0F 17 FE

55 AA 00 06 0E 16 FE

55 88 EE 05 0D 15 FE

55 66 AA 04 0C 14 FE

55 44 CC 03 0B 13 FE

FB 22 88 02 0A 12 FE FD(1)
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

6–12 Chapter 6: Interface Signals
6.0.4. Avalon-MM Programming Interface Signals
Table 6–5 describes the Avalon-MM programming interface signals.

6.0.5. Avalon-ST Status and Pause Interface Signals
Table 6–6 describes the Avalon-ST status signals.

1 Use the Avalon-ST status interface to obtain information and error status on receive
frames only when the option to remove CRC and/or padding is disabled and no
overflow occurs. When CRC and/or padding removal is enabled or when an
overflow occurs (avalon_st_rx_ready is deasserted), obtain the same information
using the statistics counters.

Table 6–5. Avalon-MM CSR Interface Signals

Signal Direction Width Description

csr_address[] Input 13 Use this bus to specify the register address you want to
read from or write to.

csr_read Input 1 Assert this signal to request a read.

csr_readdata[] Output 32 Carries the data read from the specified register.

csr_write Input 1 Assert this signal to request a write.

csr_writedata[] Input 32 Carries the data to be written to the specified register.

csr_waitrequest Output 1
When asserted, this signal indicates that the IP core is
busy and not ready to accept any read or write
requests.

Table 6–6. Avalon-ST Status Interface Signals (Part 1 of 5)

Signal Direction Width Description

avalon_st_rxstatus_valid Output 1

When asserted, this signal indicates that
avalon_st_rxstatus_data[] contains valid
information about the receive frame.

The IP core asserts this signal in the same clock cycle it
receives the end of packet (avalon_st_rx_endofpacket
is asserted).
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 6: Interface Signals 6–13
avalon_st_rxstatus_data[] Output 40

Contains information about the receive frame:

■ Bits 0 to 15: Payload length.

■ Bits 16 to 31: Packet length.

■ Bit 32: When set to 1, indicates a stacked VLAN frame.

■ Bit 33: When set to 1, indicates a VLAN frame.

■ Bit 34: When set to 1, indicates a control frame.

■ Bit 35: When set to 1, indicates a pause frame.

■ Bit 36: When set to 1, indicates a broadcast frame.

■ Bit 37: When set to 1, indicates a multicast frame.

■ Bit 38: When set to 1, indicates a unicast frame.

■ Bit 39: When set to 1, indicates a PFC frame.

The IP core presents the valid information on this bus in
the same clock cycle it asserts
avalon_st_rxstatus_valid. The information on this
data bus is invalid when an overflow occurs or when CRC
and/or padding removal is enabled.

avalon_st_rxstatus_error[] Output 7

When set to 1, each bit of this signal indicates an error
type in the receive frame.

■ Bit 0: Undersized frame.

■ Bit 1: Oversized frame.

■ Bit 2: Payload length error.

■ Bit 3: CRC error.

■ Bit 4: Unused.

■ Bit 5: Unused.

■ Bit 6: PHY error.

The IP core presents the error status on this bus in the
same clock cycle it asserts
avalon_st_rxstatus_valid. The error status is invalid
when an overflow occurs or when CRC and/or padding
removal is enabled.

avalon_st_txstatus_valid Output 1
When asserted, this signal indicates that
avalon_st_txstatus_data[] contains valid
information about the transmit frame.

Table 6–6. Avalon-ST Status Interface Signals (Part 2 of 5)

Signal Direction Width Description
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

6–14 Chapter 6: Interface Signals
avalon_st_txstatus_data[] Output 40

Contains information about the transmit frame:

■ Bits 0 to 15: Payload length.

■ Bits 16 to 31: Packet length.

■ Bit 32: When set to 1, indicates a stacked VLAN frame.

■ Bit 33: When set to 1, indicates a VLAN frame.

■ Bit 34: When set to 1, indicates a control frame.

■ Bit 35: When set to 1, indicates a pause frame.

■ Bit 36: When set to 1, indicates a broadcast frame.

■ Bit 37: When set to 1, indicates a multicast frame.

■ Bit 38: When set to 1, indicates a unicast frame.

■ Bit 39: When set to 1, indicates a PFC frame.

The IP core asserts the valid information on this bus in the
same clock cycle it asserts
avalon_st_txstatus_valid. The information on this
data bus is invalid when an overflow occurs or when CRC
and/or padding insertion is enabled.

avalon_st_txstatus_error[] Output 7

When set to 1, each bit of this signal indicates an error
type in the receive frame.

■ Bit 0: Undersized frame.

■ Bit 1: Oversized frame.

■ Bit 2: Payload length error.

■ Bit 3: Unused.

■ Bit 4: Underflow.

■ Bit 5: Client error.

■ Bit 6: Unused.

The IP core presents the error status on this bus in the
same clock cycle it asserts
avalon_st_txstatus_valid. The error status is invalid
when an overflow occurs or when CRC and/or padding
removal is enabled.

avalon_st_tx_pfc_status_valid
(1)

Output 1 When asserted, this signal qualifies the data on the
avalon_st_tx_pfc_status_data bus.

Table 6–6. Avalon-ST Status Interface Signals (Part 3 of 5)

Signal Direction Width Description
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 6: Interface Signals 6–15
avalon_st_tx_pfc_status_data[]
(1)

Output n

The signal width is determined by the Number of PFC
Priority parameter, n = 2 x number priority queues
enabled.

■ Bit 0: When asserted, this bit indicates that an XON
request is transmitted for priority queue 0.

■ Bit 1: When asserted, this bit indicates that an XOFF
request is transmitted for priority queue 0.

■ Bit 2: When asserted, this bit indicates that an XON
request is transmitted for priority queue 1.

■ Bit 3: When asserted, this bit indicates that an XOFF
request is transmitted for priority queue 1.

■ Bit 4:When asserted, this bit indicates that an XON
request is transmitted for priority queue 2.

■ Bit 5: When asserted, this bit indicates that an XOFF
request is transmitted for priority queue 2.

■ Bit 6: When asserted, this bit indicates that an XON
request is transmitted for priority queue 3.

■ Bit 7: When asserted, this bit indicates that an XOFF
request is transmitted for priority queue 3.

■ Bit 8: When asserted, this bit indicates that an XON
request is transmitted for priority queue 4.

■ Bit 9: When asserted, this bit indicates that an XOFF
request is transmitted for priority queue 4.

■ Bit 10: When asserted, this bit indicates that an XON
request is transmitted for priority queue 5.

■ Bit 11: When asserted, this bit indicates that an XOFF
request is transmitted for priority queue 5.

■ Bit 12: When asserted, this bit indicates that an XON
request is transmitted for priority queue 6.

■ Bit 13: When asserted, this bit indicates that an XOFF
request is transmitted for priority queue 6.

■ Bit 14: When asserted, this bit indicates that an XON
request is transmitted for priority queue 7.

■ Bit 15: When asserted, this bit indicates that an XOFF
request is transmitted for priority queue 7.

avalon_st_rx_pfc_status_valid
(1)

Output 1 When asserted, this signal qualifies the data on the
avalon_st_rx_pfc_status_data bus.

Table 6–6. Avalon-ST Status Interface Signals (Part 4 of 5)

Signal Direction Width Description
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

6–16 Chapter 6: Interface Signals
avalon_st_rx_pfc_status_data[]
(1)

Output n

The signal width is determined by the Number of PFC
Priority parameter, n = 2 x number priority queues
enabled.

■ Bit 0: When asserted, this bit indicates that an XON
request is received for priority queue 0.

■ Bit 1: When asserted, this bit indicates that an XOFF
request is received for priority queue 0.

■ Bit 2: When asserted, this bit indicates that an XON
request is received for priority queue 1.

■ Bit 3: When asserted, this bit indicates that an XOFF
request is received for priority queue 1.

■ Bit 4:When asserted, this bit indicates that an XON
request is received for priority queue 2.

■ Bit 5: When asserted, this bit indicates that an XOFF
request is received for priority queue 2.

■ Bit 6: When asserted, this bit indicates that an XON
request is received for priority queue 3.

■ Bit 7: When asserted, this bit indicates that an XOFF
request is received for priority queue 3.

■ Bit 8: When asserted, this bit indicates that an XON
request is received for priority queue 4.

■ Bit 9: When asserted, this bit indicates that an XOFF
request is received for priority queue 4.

■ Bit 10: When asserted, this bit indicates that an XON
request is received for priority queue 5.

■ Bit 11: When asserted, this bit indicates that an XOFF
request is received for priority queue 5.

■ Bit 12: When asserted, this bit indicates that an XON
request is received for priority queue 6.

■ Bit 13: When asserted, this bit indicates that an XOFF
request is received for priority queue 6.

■ Bit 14: When asserted, this bit indicates that an XON
request is received for priority queue 7.

■ Bit 15: When asserted, this bit indicates that an XOFF
request is received for priority queue 7.

Note to Table 6–6:

(1) The signal is included only when you turn on the Priority-based Flow Control (PFC) parameter.

Table 6–6. Avalon-ST Status Interface Signals (Part 5 of 5)

Signal Direction Width Description
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 6: Interface Signals 6–17
Table 6–7 describes the Avalon-ST flow control signals.

Table 6–7. Avalon-ST Flow Control Signals (Part 1 of 3)

Signal Direction Width Description

avalon_st_pause_data[] Input 2

Assert this signal to generate pause frames:

■ Bit 0: Set to 1 to generate an XON pause frame.

■ Bit 1: Set to 1 to generate an XOFF pause frame.

You can also use the tx_pauseframe_control
register to generate pause frames. The register takes
precedence over this signal.

avalon_st_rx_pfc_pause_data[] (1) Output 2-8

The signal width is determined by the Number of PFC
Priority parameter, n = number priority queues enabled.

The MAC Rx asserts bit n when the Pause Quanta n
field in the PFC frame is valid (Pause Quanta Enable [n]
= 1) and greater than 0. For each pause quanta unit, the
MAC Rx asserts bit n for eight clock cycle.

The MAC Rx deasserts bit n when the Pause Quanta n
field in the PFC frame is valid (Pause Quanta Enable [n]
= 1) and equal to 0. The MAC Rx also deasserts this
signal when the timer expires.
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

6–18 Chapter 6: Interface Signals
avalon_st_tx_pfc_gen_data[] (1) Input 4-16

The signal width is determined by the Number of PFC
Priority parameter, n = 2 x number priority queues
enabled.

■ Bit 0: Set this bit to 1 to trigger an XON request for
priority queue 0.

■ Bit 1: Set this bit to 1 to trigger an XOFF request for
priority queue 0.

■ Bit 2: Set this bit to 1 to trigger an XON request for
priority queue 1.

■ Bit 3: Set this bit to 1 to trigger an XOFF request for
priority queue 1.

■ Bit 4:Set this bit to 1 to trigger an XON request for
priority queue 2.

■ Bit 5: Set this bit to 1 to trigger an XOFF request for
priority queue 2.

■ Bit 6: Set this bit to 1 to trigger an XON request for
priority queue 3.

■ Bit 7: Set this bit to 1 to trigger an XOFF request for
priority queue 3.

■ Bit 8: Set this bit to 1 to trigger an XON request for
priority queue 4.

■ Bit 9: Set this bit to 1 to trigger an XOFF request for
priority queue 4.

■ Bit 10: Set this bit to 1 to trigger an XON request for
priority queue 5.

■ Bit 11: Set this bit to 1 to trigger an XOFF request for
priority queue 5.

■ Bit 12: Set this bit to 1 to trigger an XON request for
priority queue 6.

■ Bit 13: Set this bit to 1 to trigger an XOFF request for
priority queue 6.

■ Bit 14: Set this bit to 1 to trigger an XON request for
priority queue 7.

■ Bit 15: Set this bit to 1 to trigger an XOFF request for
priority queue 7.

If you simultaneously assert both bits corresponding to
priority queue n, neither the XOFF request nor the XON
request is generated.

avalon_st_tx_pause_length_data[] Input 16

This signal is present only in the MAX Tx only variation.

Specifies the pause duration when a pause frame is
received on the Tx path. The pause length is in unit of
pause quanta, where 1 pause length = 512 bits time.

avalon_st_tx_pause_length_valid Input 1
This signal is present only in the MAX Tx only variation.

When asserted, this signal qualifies the data on the
avalon_st_tx_pause_length_data bus.

Table 6–7. Avalon-ST Flow Control Signals (Part 2 of 3)

Signal Direction Width Description
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Chapter 6: Interface Signals 6–19
avalon_st_rx_pause_length_data[] Output 16

This signal is present only in the MAX Rx only variation.

Specifies the pause duration when a pause frame is
sent to the Tx path. The pause length is in unit of pause
quanta, where 1 pause length = 512 bits time.

avalon_st_rx_pause_length_valid Output 1
This signal is present only in the MAX Rx only variation.

When asserted, this signal qualifies the data on the
avalon_st_rx_pause_length_data bus.

Note to Table 6–7:

(1) The signal is present only when you turn on the Priority-based Flow Control (PFC) parameter.

Table 6–7. Avalon-ST Flow Control Signals (Part 3 of 3)

Signal Direction Width Description
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

6–20 Chapter 6: Interface Signals
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

July 2012 Altera Corporation
7. Design Considerations
7.1. SDR XGMII to DDR XGMII Conversion
The MAC implements 64-bit SDR XGMII Tx and Rx interfaces with a frequency of
156.25 MHz. The XGMII as defined by IEEE 802.3-2005 standard is a 32-bit DDR
interface with a frequency of 156.25 MHz.

If you want to use the MAC with a PHY IP core and connect it to an external device,
convert the XGMII from 64-bit SDR (156.25 MHz) to 32-bit DDR (156.25 MHz) or vice
versa by connecting the MAC to the Altera DDR I/O (ALTDDIO) megafunctions. The
ALTDDIO megafunctions includes the following features:

■ ALTDDIO_IN megafunction—Implements the Rx interface for DDR inputs to
convert XGMII DDR to SDR frame format.

■ ALTDDIO_OUT megafunction—Implements the Tx interface for DDR outputs to
convert XGMII SDR to DDR frame format.

7.1.1. ALTDDIO_IN Megafunction Configuration
Use the MegaWizard Plug-in Manager to instantiate the ALTDDIO_IN megafunction
and specify the initial parameters. Set the data bus width to 36 bits and apply the
following signal connections:

■ xgmii_sdr[35:0] to dataout_l[35:0]

■ xgmii_sdr[71:36] to dataout_h[35:0]

7.1.2. ALTDDIO_OUT Megafunction Configuration
Use the MegaWizard Plug-in Manager to instantiate the ALTDDIO_OUT
megafunction and specify the initial parameters. Set the data bus width to 36 bits and
apply the following signal connections:

■ xgmii_sdr[35:0] to datain_l[35:0]

■ xgmii_sdr[71:36] to datain_h[35:0]

For more information about the ALTDDIO megafunction ports and parameters, refer
to the ALTDDIO Megafunction User Guide.
10-Gbps Ethernet MAC MegaCore Function User Guide

http://www.altera.com/literature/ug/ug_altddio.pdf
http://www.altera.com/literature/ug/ug_altddio.pdf

7–2 Chapter 7: Design Considerations
10GbE MAC and PHY Connection with XGMII
7.2. 10GbE MAC and PHY Connection with XGMII
The XGMII is defined by the IEEE802.3 standard. XGMII is the standard interface
between the MAC and PHY in the 10G Ethernet solution. Altera 10G MAC and PHY
connect easily using the SDR XGMII interface.

Figure 7–1 shows an example of an SDR XGMII connection between the 10G MAC
and PHY IP.

Figure 7–1. 10G MAC and PHY Connection with XGMII Interface

10GbE MAC XAUI/10G BASE-R PHY

Reconfiguration Controller

Avalon ST TX

Avalon ST RX

tx_clk_clk

rx_clk_clk

xgmii_rx_data

xgmii_tx_data

xgmii_tx_clk

xaui_rx_serial_
data[3:0]/rx_serial_data

xaui_tx_serial_
data[3:0]/tx_serial_data

xgmii_rx_clk

pll_ref_clk

xgmii_rx_dc

phy_mgmt interface

xgmii_tx_dc

reconfig_from_xcvr

reconfig_to_xcvr

mgmt_clk_clk

reconfig_mgmt interface

reconfig_from_xcvr

reconfig_to_xcvr

csr interface

72

72

4/1

4/1

SDR XGMII

XAUI@156.25 Mhz/
10G BASE-R@644.53725 Mhz

XAUI@3.125 Gbps/
10G BASE-R@10.3125 Gbps

Avalon MM

Your design does not require the reconfiguration controller if you use Arria II GX/GT, Cyclone IV GX, or Stratix IV GX/GT devices.

Avalon MM
Clock
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

July 2012 Altera Corporation
A. Frame Format
A.1. Ethernet Frame
Figure A–1 shows the Ethernet frame format.

The Ethernet frame comprises the following fields:

■ Inter-packet gap (IPG)—an average inter-frame length of 12 octets and is
represented with the Idle control character which consists of data value 0x07.

■ Preamble—inserted by the MAC or the client. MAC-inserted preamble is a
maximum of 7 octets of data with value 0x55.

■ Start frame delimiter (SFD)—a 1-octet fixed value of 0xD5 which marks the
beginning of a frame.

■ Destination and source addresses—6 octets each. The least significant byte is
transmitted first.

■ Length or type—a 2-octet value equal to or greater than 1536 (0x600) indicates a
type field. Otherwise, this field contains the length of the payload data. The most
significant byte of this field is transmitted first.

■ Payload Data and Pad—variable length data and padding.

■ Frame check sequence (FCS)—a 4-octet cyclic redundancy check (CRC) value for
detecting frame errors during transmission.

■ End frame delimiter (EFD)—a 1-octet fixed value of 0xFD which marks the end of
a frame.

Figure A–1. Ethernet Frame Format

Pad (Optional)

Frame Check Sequence

Destination Address

Source Address

MAC Client Length/Type

Payload Data

7 Octets

1 Octets

2 Octets

0..1500/9000 Octets

1 Octets

6 Octets

6 Octets

4 Octets

0..46 Octets

End Frame Delimiter (EFD)

Start Frame Delimite (SFD)

Preamble

Inter-Packet Gap (IPG)12 Octets

Fr
am

e
Le

ng
th
10-Gbps Ethernet MAC MegaCore Function User Guide

A–2 Appendix A: Frame Format
VLAN and Stacked VLAN Tagged MAC Frame
A.2. VLAN and Stacked VLAN Tagged MAC Frame
The extension of a basic frame is a VLAN tagged frame, which contains an additional
VLAN tag field between the source address and length/type fields. VLAN tagging is
defined by the IEEE 802.1Q standard. VLANs can identify and separate many groups'
network traffic in enterprises and metro networks.VLAN tagged frames have a
maximum length of 1522 bytes, excluding the preamble and the SFD bytes. In carrier
Ethernet network applications based on IEEE 802.1ad provider bridge standard
(QinQ) for scaling the network, frames can be tagged with two consecutive VLAN
tags (stacked VLAN). Stacked VLAN frames contain an additional 8-byte field
between the source address and length/type fields.

Figure A–2 shows the VLAN frame format.

Figure A–3 shows the stacked VLAN frame format.

Figure A–2. VLAN Frame Format

Figure A–3. Stacked VLAN Frame Format

first octet

second octet

first octet

second octet

user priority CFI

Pad

Frame Check Sequence

Destination Address

VLAN Identifier (VID, 12 bits)

Source Address

Tag Control Information

MAC Client Length/Type

Payload Data

Length/Type = 802.1Q TagType

6 Octets

6 Octets

2 Octets

2 Octets

2 Octets

0..1500/9000 Octets

4 Octets

8 7 6 5 4 3 2 1

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1

0..42 Octets

Pad

Frame Check Sequence

Destination Address

Source Address

Tag Control Information

MAC Client Length/Type

Payload Data

Length/Type = 802.1Q TagType

6 Octets

6 Octets

2 Octets

2 Octets

2 Octets

4 Octets

Tag Control Information

Length/Type = 802.1Q TagType2 Octets

2 Octets
Stacked VLANs

0..1500/9000 Octets

0..42 Octets
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

Appendix A: Frame Format A–3
Pause Frame
A.3. Pause Frame
Figure A–4 shows the format of pause frames.

The length/type field has a fixed value of 0x8808, followed by a 2-byte opcode field of
0x0001. Subsequent two bytes define the pause quanta (P1 and P2); P1 is the most
significant byte. For XOFF pause frames, the MAC sets the pause quanta field to the
value of the tx_pauseframe_quanta register. For XON pause frames, the pause quanta
is 0. One pause quanta fraction is equivalent to 512 bit times, which equates to 512/64
(the width of the MAC data bus), or 8 cycles for the system clock.

The MAC sets the destination address field to the global multicast address, 01-80-C2-
00-00-01 (0x010000c28001) and the source address to the MAC primary address
configured in the tx_addrins_macaddr0 and tx_addrins_madaddr1 registers. Pause
frames have no payload length field, and is always padded with 42 bytes of 0x00.

Figure A–4. Pause Frame Format

Reserved[335:0] = 0x0

Frame Check Sequence[31:0]

Destination Address[47:0] = 0x010000c28001

Source Address[47:0] = MAC Primary Address

Pause Quanta[15:0] = 0xP1, 0xP2
(XOFF: P1,P2 = tx_pauseframe_quanta; XON: P1, P2 = 0x0)

6 Octets

6 Octets

2 Octets

42 Octets

4 Octets

Opcode[15:0] = 0x0001

Type[15:0] = 0x88082 Octets

2 Octets

SFD[7:0]

Preamble[47:0]

Start[7:0]

1 Octet

6 Octets

1 Octet
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

A–4 Appendix A: Frame Format
Priority-Based Flow Control Frame
A.4. Priority-Based Flow Control Frame
The PFC frame is an extension of the basic pause frame. It contains additional fields to
enable priority queues and specify pause quanta for these queues. Figure A–5 shows
the PFC frame format.

The following are the additional fields in the PFC frame:

■ PFC Opcode—a 2-octet fixed value of 0x0101.

■ Pause Quanta Enable[15:0]—indicates the validity of the pause quanta fields. The
upper byte of this field is unused. Each bit in the lower byte represents a priority
queue. If bit n is set to 1, it indicates that pause quanta n is valid and should be
acted upon.

■ Pause Quanta n[15:0]—the pause quanta for priority queue n.

Figure A–5. PFC Frame Format

Destination Address[47:0] = 0x0180C2000001

Source Address[47:0] = MAC Primary Address

Pause Quanta 7[15:0]

6 Octets

6 Octets

2 Octets

PFC Opcode[15:0] = 0x0101

Type[15:0] = 0x88082 Octets

2 Octets

Pause Quanta Enable[15:0] = 0x00, e[7:0]

2 Octets Pause Quanta 0[15:0]

Padding[207:0] = 26 bytes of 0x0026 Octets

Frame Check Sequence[31:0]4 Octets

Pause Quanta n[15:0]6 x 2 Octets

2 Octets
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

July 2012 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

Document Revision History
The following table shows the revision history for this document.

Date Version Changes

July 2012 3.0

■ Added support for Arria V GT.

■ Revised the “Registers”, “Interface Signals”, and “Design Considerations” sections into
individual chapters.

■ Added the “Register Initialization” section in Chapter 5.

■ Added the “10GbE MAC and PHY Connection with XGMII” section in Chapter 7.

May 2011 2.0

■ Added a new section “IP Core Verification” on page 1–3.

■ Revised the “Performance and Resource Utilization” section in Chapter 1.

■ Added new features option in the MAC parameter settings.

■ Updated the design example file directory structure in Table 3–3 on page 3–5.

■ Added two new sections in Chapter 3—“Creating a New 10GbE Design” on page 3–6 and
“Parameter Settings” on page 3–7.

■ Added a new section “Transmit and Receive Latencies” on page 3–17.

■ Revised the “Performance and Resource Utilization” section in Chapter 3.

■ Updated the “Transmit Datapath” on page 4–3 and “Receive Datapath” on page 4–9 to
describe the new preamble passthrough mode feature.

■ Updated the “Congestion and Flow Control” on page 4–13 to describe the new PFC
feature.

■ Added a summary of register address expansion in Table 5–1.

■ Updated all register address and byte offset in table Table 5–2.

■ Revised Figure 6–1 and added two new figures (Figure 6–2 and Figure 6–3) to show the
interface signals for Tx only and Rx only datapath.

■ Updated Table 6–2, Table 6–3, Table 6–4, Table 6–6 and Table 6–7 to describe the
interface signals for preamble passthrough mode, datapath option, and PFC features.

■ Updated Figure 4–5, Figure 4–8, Figure 4–10, Figure 6–9, and Figure 6–10 to correct the
bus signal names.
10-Gbps Ethernet MAC MegaCore Function User Guide

Info–2 Additional Information
How to Contact Altera
How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the
following table.

November 2010 1.2

■ Added new timing diagrams to the following sections:

■ “Frame Check Sequence (CRC-32) Insertion” on page 4–4

■ “SDR XGMII Transmission” on page 4–7

■ “CRC-32 and Pad Removal” on page 4–11

■ “Pause Frame Transmission” on page 4–14

■ “Error Handling (Link Fault)” on page 4–17

■ “SDR XGMII to DDR XGMII Conversion”

■ Added Cyclone IV GX and Stratix III device family to the “Programmable datapath option
to allow separate instantiation of MAC Tx block, MAC Rx block, or both MAC Tx and MAC
Rx blocks.Device Family Support” section in Chapter 1 and updated Arria GX device
family support from preliminary to final.

■ Revised the “Performance and Resource Utilization” section in Chapter 1.

■ Revised the “Ethernet Loopback Module” section in Chapter 3.

■ Revised the design simulation, compilation, and verification flow in Chapter 3.

■ Added a new section “Transmit and Receive Latencies” on page 4–13.

■ Updated Figure 4–9 on page 4–17.

■ Added frames types definition in “Registers” on page 5–1.

■ Corrected the register address of Rx statistics counters and Tx statistics counters in
Table 5–2 on page 5–2.

■ Revised the description of reset signals in “MAC Tx Only Variation” on page 6–2.

August 2010 1.1
■ Revised the “Performance and Resource Utilization” section in Chapter 1.

■ Corrected signal name to rx_clk_clk in the “Mapping of Client Frame to Avalon-ST
Transmit Interface” section in Chapter 6.

June 2010 1.0 Initial release.

Date Version Changes

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note:

(1) You can also contact your local Altera sales office or sales representative.
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

Additional Information Info–3
Typographic Conventions
Typographic Conventions
The following table shows the typographic conventions this document uses.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

h A question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.
July 2012 Altera Corporation 10-Gbps Ethernet MAC MegaCore Function User Guide

https://www.altera.com/subscriptions/email/signup/eml-index.jsp

Info–4 Additional Information
Typographic Conventions
10-Gbps Ethernet MAC MegaCore Function User Guide July 2012 Altera Corporation

	10-Gbps Ethernet MAC MegaCore Function User Guide
	Contents
	1. About This IP Core
	1.1. Features
	1.2. Programmable datapath option to allow separate instantiation of MAC Tx block, MAC Rx block, or both MAC Tx and MAC Rx blocks.Device Family Support
	1.3. IP Core Verification
	1.3.1. Simulation Environment
	1.3.2. Compatibility Testing Environment

	1.4. Performance and Resource Utilization

	2. Getting Started with Altera IP Cores
	2.1. Installation and Licensing
	2.2. Design Flows
	2.3. MegaWizard Plug-In Manager Flow
	2.3.1. Specifying Parameters
	2.3.2. Simulate the IP Core

	2.4. SOPC Builder Design Flow
	2.4.1. Specify Parameters
	2.4.2. Complete the SOPC Builder System
	2.4.3. Simulate the System

	2.5. Qsys System Integration Tool Design Flow
	2.5.1. Specify Parameters
	2.5.2. Complete the Qsys System
	2.5.3. Simulate the System

	2.6. 10GbE MAC Parameter Settings

	3. Design Examples and Testbench
	3.1. Software and Hardware Requirements
	3.2. Design Example
	3.2.1. Components
	3.2.1.1. Ethernet Loopback Module
	3.2.1.2. Base Addresses

	3.2.2. Files
	3.2.3. Creating a New 10GbE Design
	3.2.4. Parameter Settings

	3.3. Testbenches
	3.3.1. Architecture
	3.3.2. Components
	3.3.3. Files
	3.3.4. Simulation Flow
	3.3.5. Simulating the Testbench with the ModelSim Simulator
	3.3.6. Enabling Local Loopback
	3.3.7. Simulation Timing Diagrams

	3.4. Design Example Compilation and Verification in Hardware
	3.4.1. Compiling the Design
	3.4.2. Verifying the Design in Hardware
	3.4.3. Debugging
	3.4.4. Transmit and Receive Latencies
	3.4.5. Performance and Resource Utilization

	4. Functional Description
	4.1. Architecture
	4.2. Interfaces
	4.2.1. Avalon-ST Interface
	4.2.2. SDR XGMII
	4.2.3. Avalon-MM Control and Status Register Interface

	4.3. Frame Types
	4.4. Transmit Datapath
	4.4.1. Frame Payload Padding
	4.4.2. Address Insertion
	4.4.3. Frame Check Sequence (CRC-32) Insertion
	4.4.4. XGMII Encapsulation
	4.4.5. Inter-Packet Gap Generation and Insertion
	4.4.6. SDR XGMII Transmission

	4.5. Receive Datapath
	4.5.1. XGMII Decapsulation
	4.5.2. Frame Check Sequence (CRC-32) Checking
	4.5.3. Address Checking
	4.5.4. Frame Type Checking
	4.5.5. Length Checking
	4.5.6. CRC-32 and Pad Removal
	4.5.7. Overflow Handling

	4.6. Transmit and Receive Latencies
	4.7. Congestion and Flow Control
	4.7.1. IEEE 802.3 Flow Control
	4.7.1.1. Pause Frame Reception
	4.7.1.2. Pause Frame Transmission

	4.7.2. Priority-Based Flow Control
	4.7.2.1. PFC Frame Reception
	4.7.2.2. PFC Frame Transmission

	4.8. Error Handling (Link Fault)

	5. Registers
	5.1. MAC Registers
	5.1.1. Rx_frame_control Register
	5.1.2. Rx_pfc_control Register

	5.2. Register Initialization

	6. Interface Signals
	6.0.1. Clock and Reset Signals
	6.0.2. Avalon-ST Transmit and Receive Interface Signals
	6.0.2.1. Timing Diagrams—Avalon-ST Transmit Interface
	6.0.2.2. Timing Diagrams—Avalon-ST Receive Interface

	6.0.3. SDR XGMII Signals
	6.0.3.1. Timing Diagrams—SDR XGMII

	6.0.4. Avalon-MM Programming Interface Signals
	6.0.5. Avalon-ST Status and Pause Interface Signals

	7. Design Considerations
	7.1. SDR XGMII to DDR XGMII Conversion
	7.1.1. ALTDDIO_IN Megafunction Configuration
	7.1.2. ALTDDIO_OUT Megafunction Configuration

	7.2. 10GbE MAC and PHY Connection with XGMII

	A. Frame Format
	A.1. Ethernet Frame
	A.2. VLAN and Stacked VLAN Tagged MAC Frame
	A.3. Pause Frame
	A.4. Priority-Based Flow Control Frame

	Additional Information
	Document Revision History
	How to Contact Altera
	Typographic Conventions

