TOSHIBA Photocoupler GaAlAs IRed & Photo-IC

TLP115

High Speed, Long Distance Isolated Line Receiver Microprocessor System Interfaces Digital Isolation For A / D, D / A Conversion Computer-Peripheral Interfaces Ground Loop Elimination

The TOSHIBA mini flat coupler TLP115 is small outline coupler, suitable for surface mount assembly.

TLP115 consists of a GaAℓAs light emitting diode, optically coupled to an integrated high gain, high speed shielded photo detector whose output is an open collector schottky clamped transistor.

The shield, which shunts capacitively coupled common noise to ground, provides a guaranteed transient immunity specification of 1000V / µs.

- Input current thresholds: IF=10mA (max.)
- Switching speed: 10MBd (typ.)
- Common mode transient immunity: ±1000V / µs (min.)
- Guaranteed performance over temp.: 0~70°C
- Isolation voltage: 2500Vrms (min.)
- UL recognized: UL1577, file no. E67349

Schematic

Note. A 0.1µF bypass capacitor must be connected between pins 4 and 6.

Pin Configuration(top view)

5 : V_O(Output) 6 : V_{CC}

Truth Table(positive logic)

Input	Output
Н	L
L	Н

Maximum Ratings (Ta = 25°C)

Characteristic			Symbol	Symbol Rating	
	Forward current		lF	20	mA
	Pulse forward current	(Note 1)	I _{FP}	40	mA
LEC	Peak transient forward current	(Note 2)	I _{FPT}	1	A
	Reverse voltage		V _R	5	V
Detector	Output current		Ι _Ο	25	mA
	Output voltage		Vo	7	V
	Supply voltage (1 minute maximum)	ltage maximum)		7	V
	Output power dissipation	n		40	mW
Ope	erating temperature range		T _{opr} –40~85		°C
Sto	Storage temperature range		T _{stg}	-55~125	°C
Lea	Lead solder temperature(10s)		T _{sol}	260	°C
Isol (AC	Isolation voltage (AC, 1min., RH ≤ 60%, Note 4)		BVS	2500	Vrms

(Note 1) 50% duty cycle, 1ms pulse width.

(Note 2) Pulse width $\leq 1\mu s$, 300pps.

Recommended Operating Conditions

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Input voltage, low level	V _{FL}	-3	0	1.0	V
Input current, high level	I _{FH}	13	16	20	mA
Supply voltage	V _{CC}	4.5	5	5.5	V
Fan out (TTL load, each channel)	N	_	_	8	_
Operating temperature	T _{opr}	0	_	70	°C

Electrical Characteristics (unless otherwise specified, Ta = 0~70°C, V_{CC} = 4.5~5.5V, V_{FL} \leq 1.0V)

Characteristic	Symbol	Test Condition	Min.	Тур.*	Max.	Unit
Forward voltage	VF	I _F =10mA, Ta=25°C	_	1.65	1.80	V
Forward voltage temperature coefficient	V _F / Ta	I _F =10mA	_	-2	_	mV / °C
Reverse current	I _R	V _R =5V, Ta=25°C	—	—	10	μA
Capacitance between terminals	CT	V _F =0, f=1MHz, Ta=25°C	_	45	_	pF
Llich lovel output ourrent	1	V _F =1.0, V _O =5.5V	_	_	250	μA
nightievel output current	ЮН	V _F =1.0, V _O =5.5V, Ta=25°C	—	0.5	10	
Low level output voltage	V _{OL}	I _F =10mA I _{OL} =13mA(sinking)	_	0.4	0.6	V
"H level output→ L level output" input current	I _{FH}	I _{OL} =13mA(sinking) V _{OL} =0.6V	_	_	10	mA
High level supply current	ICCH	V _{CC} =5.5V, I _F =0	—	7	15	mA
Low level supply current	I _{CCL}	V _{CC} =5.5V, I _F =16mA	—	12	18	mA
Input–output insulation leakage current	IS	V _S =3540V, t=5s Ta=25°C (Note 4) —	_	100	μA
Isolation resistance	R _S	R.H.≤ 60%, V _S =500V DC Ta=25°C (Note 4) 5×10 ¹⁰	10 ¹⁴	_	Ω
Stray capacitance between input to output	CS	V _S =0, f=1MHz Ta=25°C (Note 4) —	0.8	_	pF

* All typical values are V_{CC}=5V, Ta=25°C

Switching Characteristics($V_{CC} = 5V$, Ta = 25°C)

Characteristic	Symbol	Test Cir– cuit	Test Condition	Min.	Тур.	Max.	Unit
Propagation delay time (H→L)	t _{pHL}	1	I _F =0→ 16mA C _L =15pF, R _L =350Ω		60	120	ns
Propagation delay time (L→H)	t _{pLH}	1	$\begin{array}{l} \text{I}_{\text{F}}\text{=}16 {\rightarrow} \text{ 0mA} \\ \text{C}_{\text{L}}\text{=}15\text{p}\text{F}, \ \text{R}_{\text{L}}\text{=}350\Omega \end{array}$		60	120	ns
Output rise fall time (10–90%)	t _r , t _f	2	R _L =350Ω, C _L =15pF I _F =0 茌 16mA		30	-	ns
Common mode transient immunity at high output level	CM _H	2	IF=0mA, V _{CM} =400V _{p-p} V _{O(min)} =2V, R _L =350 Ω	1000	_	Ι	V / µs
Common mode transient immunity at low output level	CML	2	$I_{F}=16mA, V_{CM}=400V_{p-p}$ $V_{O(max)}=0.8V, R_{L}=350\Omega$	-1000	_	_	V / µs

(Note 4) Device considered a two-terminal device: Pins 1 and 3 shorted together, and pins 4, 5 and 6 shorted together.

(Note 5) The V_{CC} supply voltage to each TLP115 isolator must be bypassed by 0.1µF capacitor. This can be either a ceramic or solid tantalum capacitor with good high frequency characteristic and should be connected as close as possible to package V_{CC} and GND pins of each device.

(Note 6) Maximum electrostatic discharge voltage for any pins: 180V(C=200pF, R=0)

Test Circuit 1: Switching Time Test Circuit

 C_{L} is approximately 15pF which includes probe and stray wiring capacitance.

Test Circuit 2: Common Mode Transient Immunity Test Circuit

 C_{L} is approximately 15pF which includes probe and stray wiring capacitance.

TOSHIBA

Forward current IF (mA)

TOSHIBA

t_{pHL,} t_{pLH} - Ta 120 = 4kΩ Rı + -(su) -100 Propagation delay time t_{pHL}, t_{pLH} 1kΩ 80 × 350 Ω + 4 60 RL = 350 Ω 40 IF = 16mA 1kΩ VCC = 5V 4kΩ • t_{pHL} 20 – – t_{pLH} 0 - 20 0 20 40 60 80 Ambient temperature Ta (°C)

RESTRICTIONS ON PRODUCT USE

000707EBC

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.