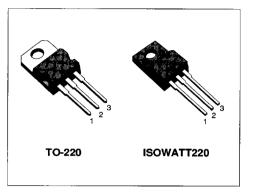
7929237 0046312 078 **III**SGTH

STP6N50 STP6N50FI


N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTOR

TYPE	VDSS	R _{DS(on)}	ło
STP6N50	500 V	< 1.1 Ω	6 A
STP6N50FI	500 V	< 1.1 Ω	3.8 A

- TYPICAL R_{DS(on)} = 0.93 Ω
- AVALANCHE RUGGED TECHNOLOGY
- 100% AVALANCHE TESTED
- REPETITIVE AVALANCHE DATA AT 100°C
- APPLICATION ORIENTED CHARACTERIZATION

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- SWITCH MODE POWER SUPPLIES (SMPS)
- CHOPPER REGULATORS, CONVERTERS, MOTOR CONTROL, LIGHTING FOR
- INDUSTRIAL AND CONSUMER ENVIRONMENT

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value			
		STP6N50	STP6N50FI	_	
VDS	Drain-source Voltage (V _{GS} = 0)	5	00	V	
VDGR	Drain- gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	5	00	v	
V_{GS}	Gate-source Voltage	±	20	V	
ID	Drain Current (continuous) at T _c = 25 °C	6	3.8	A	
ID	Drain Current (continuous) at T _c = 100 °C	3.8	2.4	A	
ldм(•)	Drain Current (pulsed)	24	24	A	
Ptot	Total Dissipation at T _c = 25 °C	100	2.4 24 40	w	
	Derating Factor	0.8	0.32	W/°C	
Viso	Insulation Withstand Voltage (DC)	_	2000	V	
Tstg	Storage Temperature	-65 t	o 150	°C	
Тј	Max. Operating Junction Temperature	1	50	°C	

July 1993

1/7

877

STP6N50/FI

7929237 0046313 TO4 🎟 SGTH

THERMAL DATA

			TO-200	ISOWATT220	
R _{thi-case}	Thermal Resistance Junction-case	Max	1.25	3.12	°C/W
Rthc-sink	Thermal Resistance Junction-ambient Thermal Resistance Case-sink Maximum Lead Temperature For Soldering F	Max Typ ^D urpose		62.5 0.5 300	°C/W °C/W °C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T _j max, $\delta < 1\%$)	6	A
EAS	Single Pulse Avalanche Energy (starting $T_i = 25 ^{\circ}C$, $I_D = I_{AR}$, $V_{DD} = 50 ^{\circ}V$)	300	mJ
E _{AR}	Repetitive Avalanche Energy (pulse width limited by T _i max, $\delta < 1\%$)	7	mJ
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive $(T_c = 100 ^{\circ}\text{C}, \text{ pulse width limited by } T_j \text{ max}, \delta < 1\%)$	3.8	A

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \ ^{\circ}C$ unless otherwise specified) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V(BR)DSS	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A V_{GS} = 0$	500			v
IDSS	Zero Gate Voltage Drain Current (V _{GS} = 0)	V _{DS} = Max Rating V _{DS} = Max Rating x 0.8 T _c = 125 °C			250 1000	μΑ μΑ
Igss	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20 V			± 100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
VGS(th)	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 250 \ \mu A$	2	3	4	V
RDS(on)	Static Drain-source On Resistance	$V_{GS} = 10V$ $I_D = 3 A$ $V_{GS} = 10V$ $I_D = 3 A$ $T_c = 100^{\circ}C$		0.93	1.1 2.2	Ω Ω
I _{D(on)}	On State Drain Current	V _{DS} > I _{D(on)} x R _{DS(on)max} V _{GS} = 10 V	6			A

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $I_D = 3 \text{ A}$	2.5	4.5		S
Ciss Coss C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25 V f = 1 MHz V_{GS} = 0$		800 140 60	1100 190 80	pF pF pF

2/7

ELECTRICAL CHARACTERISTICS (continued)

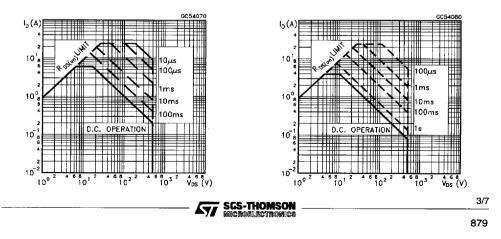
SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Time Rise Time			40 110	55 150	ns пs
(di/dt) _{on}	Turn-on Current Slope			85		A/µs
Qg Qgs Qgd	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 400 V I_D = 6 A V_{GS} = 10 V$		55 9 26	75	nC nC nC

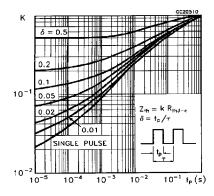
SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
tr(Voff)	Off-voltage Rise Time Fall Time	$V_{DD} = 400 V$ $I_D = 6 A$ $R_G = 50 \Omega$ $V_{GS} = 10 V$		115 35	160 50	ns
tc	Cross-over Time	(see test circuit, figure 5)		165	220	ns ns

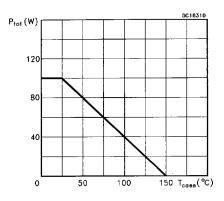
SOURCE DRAIN DIODE

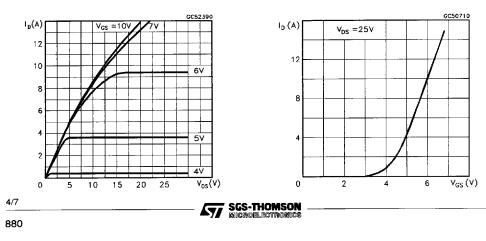

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (•)	Source-drain Current Source-drain Current (pulsed)				6 24	A A
V _{SD} (*)	Forward On Voltage	$I_{SD} = 6 A V_{GS} = 0$			1.6	v
t _{rr}	Reverse Recovery Time	$I_{SD} = 6 A$ di/dt = 100 A/µs V _{DD} = 100 V T _i = 150 °C		550		ns
Qrr	Reverse Recovery Charge	(see test circuit, figure 5)		6.9		μC
RRM	Reverse Recovery Current			25		A

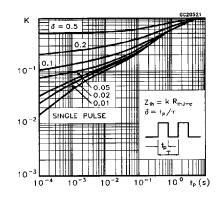
(*) Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %

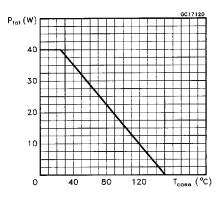

(•) Pulse width limited by safe operating area

Safe Operating Areas For TO-220

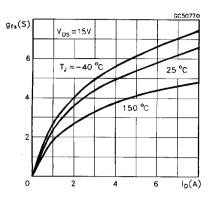

Safe Operating Areas For ISOWATT220


Thermal Impedeance For TO-220

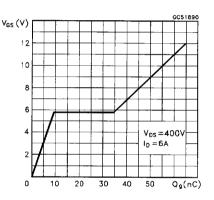

Derating Curve For TO-220


Output Characteristics

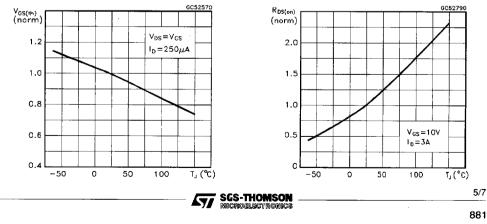
Thermal Impedance For ISOWATT220

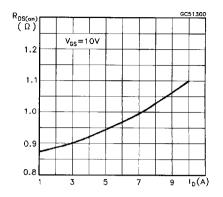


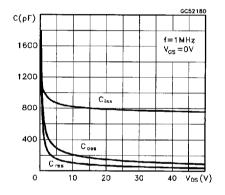
Derating Curve For ISOWATT220



Transfer Characteristics

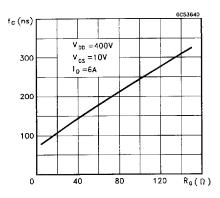

Transconductance


Gate Charge vs Gate-source Voltage

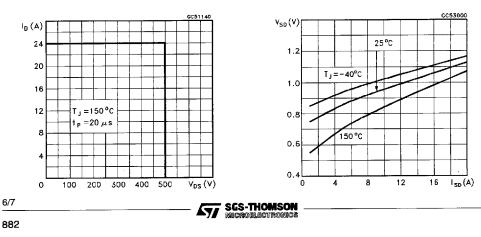

Normalized Gate Threshold Voltage vs Temperature

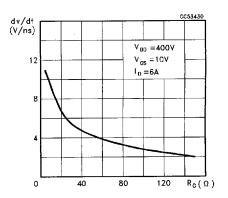
Static Drain-source On Resistance

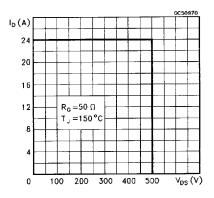
Capacitance Variations



Normalized On Resistance vs Temperature


Turn-on Current Slope


Cross-over Time


Accidental Overload Area

Turn-off Drain-source Voltage Slope

Switching Safe Operating Area

Source-drain Diode Forward Characteristics

Fig. 1: Unclamped Inductive Load Test Circuits

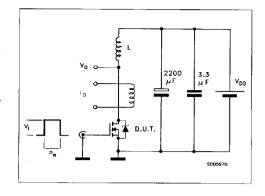


Fig. 3: Switching Times Test Circuits For Resistive Load

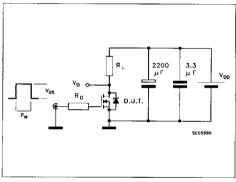


Fig. 5: Test Circuit For Inductive Load Switching And Diode Reverse Recovery Time

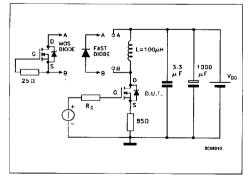


Fig. 2: Unclamped Inductive Waveforms

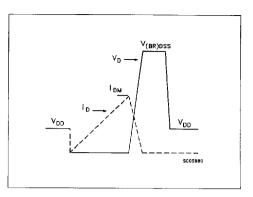
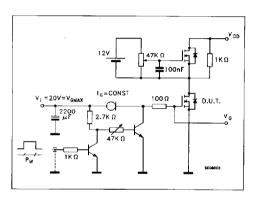



Fig. 4: Gate Charge Test Circuit

 ∇

S-THOMSON

ECTRONICS

7/7 883