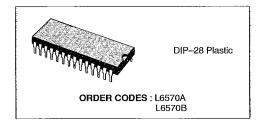
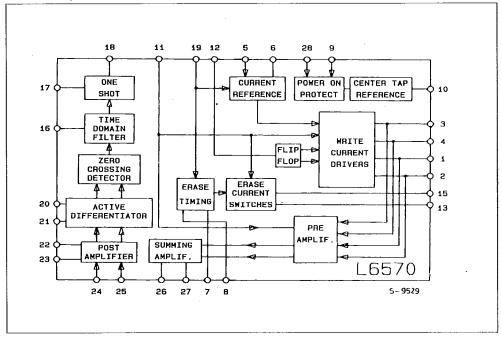


L6570A L6570B

TWO GAIN VERSIONS (A AND B)


■ COMPATIBLE WITH 8", 5.25" AND 3.5" DRIVES.

- INTERNAL WRITE AND ERASE CURRENT SOURCES, EXTERNALLY SET
- INTERNAL CENTER TAP VOLTAGE SOURCE
- CONTROL SIGNALS ARE TTL COMPATIBLE
- TTL SELECTABLE WRITE CURRENT BOOST
- OPERATES ON + 12 V AND + 5 V POWER SUP-PLIES


DESCRIPTION

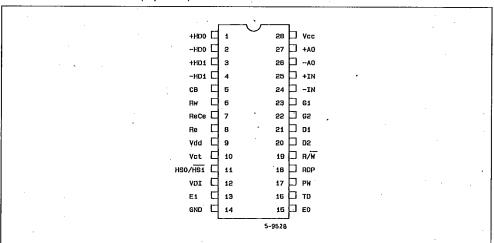
The L6570A/ B are integrated circuits which perform the functions of generating write signals and amplifying and processing read signals required for a double sided floppy disk drive. The L6570A fea-

tures a gain of 85 min and the L6570B of 300 min. All logic inputs and outputs are TTL compatible and all timing is externally programmable for maximum design flexibility.

BLOCK DIAGRAM

September 1988

1/7


L6570A-L65706 3DE D ■ 7929237 DD22179 6 ■

ABSOLUTE MAXIMUM RATINGS S 6 S-THOMSON

T-52-38

Symbol	Parameter	Test Conditions	Unit
Vcc	5V Supply Voltage	7	V
V _{DD}	12V Supply Voltage	- 14	V
T _{stg}	Storage Temperature	- 65 to 150	∘c
T _{amb}	Ambient Operating Temperature	0 to + 70	°C
Tj.	Junction Operating Temperature	0 to + 130	∘c
Vi	Logic Input Voltage	- 0.5 to 7.0	V
P _{tot}	Power Dissipation	500	mW

CONNECTION DIAGRAM (top view)

THERMAL DATA

R _{th J-amb}	Thermal Resistance Junction-ambient	Max	100	°C/W

2/7

606

SGS-THOMSON MICROELECTRONICS

S G S-THOMSON.

T-52-38

ELECTRICAL CHARACTERISTICS (unless otherwise specified, 4.75V \leq V_{CC} \leq 5.25V; 11.4V \leq V_{DD} \leq 12,6V; 0 °C \leq T_{amb} \leq 70 °C; R_W = 430 Ω; R_{ED} = 62 KΩ; C_E = 0.012 μF; R_{EH} = 62 KΩ; R_{EC} = 220Ω)

Symbol	Parameter	Test Condtions	Min.	Тур.	Max.	Unit

POWER SUPPLY CURRENTS

loc	5V Supply Current	Read Mode Write Mode		35 38	mA mA
IDD	12V Supply Current	Read Mode L6570 L6570		26 35	mA mA
		Write Mode (exclude Write and Erase currents) L6576 L6576	l I	24 35	mA mA

LOGIC SIGNALS-READ/WRITE (R/W), CURRENT BOOST (CB)

ViL	Input Low Voltage			0.8	٧
l _{iL}	Input Low Current	V _{IL} = 0.4V		- 0.4	mA
V _{iH}	Input High Voltage		2.0		٧
l _{IH}	Input High Current	V _{IH} = 2.4V		20	μА

LOGIC SIGNALS-WRITE DATA INPUT (WDI), HEAD SELECT (HS0/HS1)

-	V _T +	Threshold Voltage, Positive-going	1	1.4	1.9	V
	V _T -	Threshold Voltage, Negative-going		0.6	1.1	٧
	V _T +, V _T -	Hysteresis		0.4		V
	I _{IH} .	Input High Current	V _{IH} = 2.4V		20	μA
	l _{JL}	Input Low Current	V _{IL} = 0.4V		- 0.4	mA

CENTER TAP VOLTAGE REFERENCE

V _{CT}	Output Voltage	I _{WC} + I _E = 3 mA to 60 mA	V _{DD} -1.5	V _{DD} -0.5	٧
Vcc	Turn-Off Threshold		4.0	Ĭ	V
y _{DD}	Turn-Off Threshold		9.6		V
V _{CT}	Disabled Voltage	-		1.0	V

ERASE OUTPUTS (E1, E0)

	Unselected Head Leakage	V _{EO} , V _{E1} = 12.6V		100	μΑ
V_{E1} , V_{E0}	Output on Voltage	I _F = 50 mA		0.5	V

SGS-THOMSON WICHOELECTRORICS

3/7

L6570A-L657/ 3DE D 7929237 0022181 4

T-52-38

Min.

Тур.

Max.

Unit

WRITE CURRENT

Parameter.

Symbol

Unselected Head Leakage	V_{E1} , $V_{E0} = 12.6V$		25	μA
Write Current Range	$R_W = 820 \Omega \text{ to } 180 \Omega$	3	10	mA
Current Reference Accuracy	Iw c = 2.3/R w V _{CB} (current boost) = 0.5V	5	+5	%
Write Current Unbalanced	I _{W C} = 3 mA to 10 mA		1.0	.%
 Differential Head Voltage Swing	ΔI _{WC} ≤ 5 %	12.8		. V _{pk}
Current Boost	V _{CB} = 2.4V	1.25 Iwo	1.35 lwc	

Test Conditions

ERASE TIMING

Erase Delay Range	R_{ED} = 39 KΩ to 82 KΩ C_{E} = 0.0015 μF to 0.043 μF	0.1	1.0	ms
$\frac{\Delta T_{ED}}{T_{ED}} \times 100 \%$	$T_{ED} = 0.69 \; R_{ED} \; C_{E}$ $R_{ED} = 39 \; K\Omega \; to \; 82 \; K\Omega$ $C_{E} = 0.0015 \; \mu F \; to \; 0.043 \; \mu F$	- 15	+ 15	%
Erase Hold Range	R_{EH} + R_{ED} = 78 KΩ to 164 KΩ C_{E} = 0.0015 μF to 0.043 μF	0.2	2.0	· ms
Erase Hold Accuracy $\frac{\Delta T_{ED}}{T_{ED}}$ x 100 %	$T_{EH} = 0.69 \; (R_{ED} + R_{ED}) \; C_{E}$ $R_{EH} + R_{ED} = 78 \; K\Omega \; to \; 164 \; K\Omega$ $C_{E} = 0.0015 \; \mu F \; to \; 0.043 \; \mu F$	– 15	+ 15	%

ELECTRICAL CHARACTERISTICS (Unless otherwise specified : V_{IN} (Preamplifier) =10m V_{pp} sine wave, DC coupled to center tap. Summing amplifier load = 2 KΩ line-line, AC coupled. V_{IN} (Postamplifier)= 0.2 V_{pp} sine wave, AC coupled ; R_G = open ; Data pulse load = 1 KΩ to V_{CC} ; C_D = 240 pF; C_{TD} = 100 pF; C_{TD} = 7.5 KΩ; C_{PW} = 47 pF; C_{PW} = 7.5 KΩ).

READ MODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit

PREAMPLIFIER-SUMMING AMPLIFIER

Diff Voltage Gain	Freq. = 250 KHz	L6570A L6570B	85 300	115 400	V/V
Bandwidth (- 3 dB)			3		MHz
Gain Flatness	Freq. = DC to 1.5 MH	lz		± 1.0	dB
Diff. Input Impedance	Freq. = 250 KHz		20		KΩ
Max. Diff. Output Voltage Swing	V _{IN} = 250 KHz Sine V THD ≤ 5 %	Wave L6570A L6570B	2.5 4.0	•	V _{pp}
Small Signal Difference Output Resistance	I _O ≤ 1.0 mA _{pp}			75	Ω
Common Mode Rejection Ratio	V _{IN} = 300 mV _{pp} @ 5 Inputs Shorted	00 KHz L6570A L6570B	50 40		dB

4/7

SGS-THOMSON

S G S-THOMSON

T-52-38

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
				_		

PREAMPLIFIER-SUMMING AMPLIFIER

	Power Supply Rejection Ratio	$\Delta V_{DD} = 300 \text{ mV}_{pp} @ 500 \text{ KHz}$ Inputs Shorted to V_{CT}	50			dB
	Channel Isolation	Unselected Channel V _{IN} =100 mV _{pp} @ 500 KHz. Selected Channel Input Connected to V _{CT}	40			dB
	Equivalent Input Noise	Power BW = 10 kHz to 1 MHz Inputs Shorted to V _{CT}			10	μV_{rms}
V _{CT}	Center Tap Voltage			1.5		V

POSTAMPLIFIER-ACTIVE DIFFERENTIATOR

AO, Diff. Voltage Gain + IN, - IN to D1, D2	Freq. = 250 KHz	8.5	11.5	V/V
Bandwidth (- 3dB) + IN, - IN to D1, D2	$C_D = 0.1 \ \mu\text{F}, R_D = 2.5 \ \text{K}\Omega$	3		MHz
Gain Flatness + IN, - IN to D1, D2	Freq. = DC to 1.5 MHz C_D = 0.1 μ F, R_D = 2.5 $K\Omega$		± 1.0	dB
Max. Diff. Output Voltage Swing	V _{IN} = 250 KHz Sine Wave, AC Coupled. ≤ 5 % THD in Voltage across C _D	5.0		V _{pp}
Max. Diff. Input Voltage	V_{IN} = 250 KHz Sine Wave, AC Coupled. ≤ 5 % THD in Voltage across C_D , R_G = 1.5 K Ω	2.5		V _{pp}
Diff. Input Impedance		10		ΚΩ
Gain Control Accuracy ΔA _R X 100 %	$A_{R} = A_{O}R_{G}/(8 \times 10^{3} + R_{G})$ $R_{G} = 2 \text{ K}\Omega$	- 25	+ 25	%
Threshold Differential Input Voltage	Min. diff. input voltage at post amp. that results in a change of state at RDP $V_{IN}=250~\text{KHz}~\text{square wave,} \\ C_D=0.1~\mu\text{F}~~R_D=500~\Omega, \\ T_R,~T_F\leq0.2~\mu\text{s. No overshoot}~; \\ Data~\text{pulse}~\text{from each}~V_{IN} \\ transition$		3.7	mV _{pp}
Peak Differential Network Current		1.0		mA

SGS-THOMSON MECROELECTRONICS

5/7

L6570A-L6570B

8 E815500 7E5P5P 🚾 (30E

S G Z-THOMZON

T-52-38

Symbol	Parameter	Test Conditions	Mín.	Тур.	Max.	Unit

TIME DOMAIN FILTER

Delay Accuracy $\frac{\Delta T_{TD}}{T_{TD}} \times 100 \%$	$\begin{split} T_{TD} &= 0.58 \; R_{TD} \left(C_{TD} + 10^{-11}\right) + \\ 150 \; \text{ns.} \\ R_{TD} &= 5 \; \text{K}\Omega \; \text{to} \; 10 \; \text{K}\Omega \\ C_{TD} &= 56 \; \text{pF} \\ V_{\text{IN}} &= 50 \; \text{mV}_{pp} \textcircled{250} \; \text{KHz} \; \text{sq.} \\ \text{wave} \\ T_{\text{R}}, \; T_{\text{F}} &\leq 20 \; \text{ns, AC coupled.} \\ \text{Delay measured from 50 \% input} \\ \text{amplitude to} \; 1.5 \; \text{V} \; \text{data pulse} \end{split}$	– 15	+ 15	%
Delay Range	T_{TD} = 0.58 R_{TD} = (C_{TC} + 10 ⁻¹¹) + 150 ns. R_{TD} = 5 K Ω to 10 K Ω C_{TD} = 56 pF to 240 pF R_D = 500 Ω C_D = 0.1 μ F.	240	2370	ns

DATA PULSE

Δ	hth Accuracy L ^T PW X 100 % F _{PW}	T_{PW} = 0.58 R_{PW} x (C_{PW} + 8 x 10 ⁻¹²) + 20 ns R_{PW} = 5 K Ω to 10 K Ω C_{PW} ≥ 36 pF with measured at 1.5V amplitudes	– 20		+ 20	%
Ac	tive Level Output Voltage	l _{OH} = 400 μA	2.7			V
	active Level Output akage	I _{QL} = 4 mA		-	0.5	٧
Pu	lse Width	$T_{PW} = 0.58 R_{PW} \times (C_{PW} + 8 \times 10^{-12}) + 20 ns$ $R_{PW} = 5 KΩ$ to 10 $KΩ$ $C_{PW} = 36 pF$ to 200 pF	145		1225	ns

TEST SCHEMATICS

Figure 1: Preamplifier Characteristics.

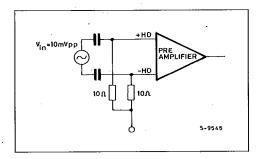
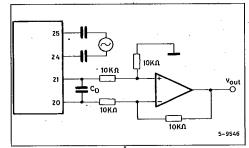



Figure 2: Postamplifier Differential Output Voltage Swing and Voltage Gain.

6/7

SGS-THOMSON

T-52-38

S_G_S-THOMSON

TEST SCHEMATICS (Continued)

Figure 3: Postamplifier Threshold Differential Input Voltage.

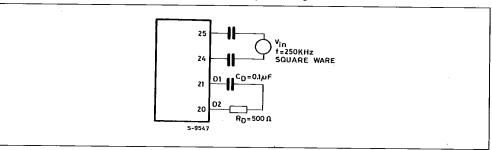
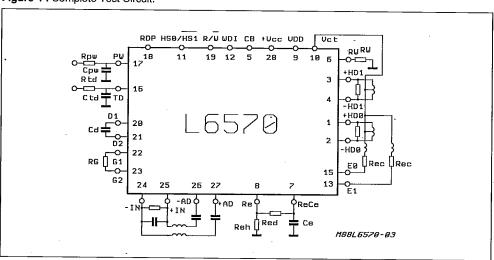



Figure 4 : Complete Test Circuit.

SGS-THOMSON NICHOELECTWOMICS

7/7