RDY-18F 智能测控终端

用户手册

第一章.	RDY-18F简介	- 2 -
1. 2. RD	RDY-18F的结构: Y-18F特点:	- 2 - - 2 -
第二章.	RDY-18F的安装和接线	- 3 -
一、 二、	安装:	- 3 - - 3 -
1.供 2.AD	电电源的连接: RDY-18F的供电有主电源和备电两部分。	- 3 - - 4 -
3. 4. I/(频率采样的连接:	- 4 -
5. I/C 6. DA ² 7. DT	7和山的庄安: 输出的连接: ſŪ的使用和连接	- 5 - - 5 -
第三章.	RDY-18F通讯	- 6 -
第四章.	PID调节	- 7 -
RDY-18	F有两路独立的PID调节。PID调节输出 0~5V,外加线性光电隔离可转换为 0~20MA输出。PID	- 7 -
调节的两	丙路输出端分别为: DA1 和DA2; PID的反馈输出端可以任意选择 16 路AD采样。	- 7 -
第五章.	多路扩展	- 9 -
第六章.	RDY-18F显示界面	11 -
第七章.	RDY-18F软件	14 -
附表	RDY-18F端子符号及其功能	18 -

-

第一章. RDY-18F 简介

RTU-18F 智能测控终端采用最新型的单片机, 配以 240x128 点阵液晶显示器, 轻触键盘,构成一个功能 完全的微处理系统,可替代小型 DCS 和 PLC,使集成成本大大降低。RDY-18F 有多个输入输出端口,人机界面 友好,汉字显示,用户可按照自己的需要进行设置,使其能适用于不同的领域和环境。目前 RDY-18F 已经广 泛应用于各大中型工矿企业的计量监测系统,物流量的监测,油田煤气,自来水,水利,电力行业,环境监 测,气象监测,智能交通,管网监测,公共安全等领域。

1. RDY-18F 的结构:

- 2. RDY-18F 特点:
- 1. 多功能:具有多路输入输出功能
- ★可采集 4-20mA 信号 15 路;
- ★可采集二路频率信号(0-5V 0-3000HΣ);

★可通过 RS-232、RS-485 与其它数字终端通讯采集数字量;

- ★有5个光隔离的开关量输入口;
- ★有5个继电器触点输出口;
- ★可选配电话通讯模块,无需外接 MODEM,实现远程数据传输及控制;

★可选配以太网通讯模块,实现数据的时时采集及控制。

2. 具有 D / A 输出。本机有两路 10bit、0-5V 的 D / A 输出。可供用户控制外围设备用,可手控,亦可按用户 要求实现自控或实现 PID 调节的闭环控制。

- 3. 人性化的显示界面。本机采用大尺寸(240x128)点阵液晶显示器,汉字显示,界面友好。
- 4. 灵巧的复用键盘: 方便地进行选项及数字输入。
- 5.停电来电时间记录。本仪表内有实时钟,故可对停电及来电时间进行记录。

6. 历史数据记录;可按要求存储历史数据,内存容量为 2M,其数据可通过串口,由抄读器读出,以便在计算 机上回放。

7. 具有远程通讯功能:

可外接 GPRS、CDMA 等 DTU,或安装数传电台实现远程无线数据传输和控制,或通过电话线实现远程数据传输 及控制,也可通过以太网实现数据的时时采集和远程控制。

8. 软件升级:可按用户需要对软件升级,通过 RS-232 串口方便地实现软件的升级更新。

第二章. RDY-18F 的安装和接线

一、 安装:

RDY-18F 左右两侧各有一个固定孔,可采用悬挂式或平放式安装,直接用螺钉固定安装。

二、 连接:

1. 供电电源的连接: RDY-18F 的供电有主电源和备电两部分。

1) **主电:** RDY-18F 可使用宽幅直流(12V~40V)供电,使用直流供电时,直流电的正极接端子"+"(符号含义见附表一); 直流电的负极接端子"-"。

注意: 直流电的正负极不要接反;

RDY-18F 也可使用交流(220V, 50Hz)供电,内有最大允许电流为1A的保险管,使用交流供电时接"AC,AC"两个端子。

▲ 注意: 直流供电和交流供电不可同时使用。

2) 备电: 备电采用 9V 锂电或蓄电池, 备电的正极接端子 "B+"; 备电的负极接端子 "B-"。 备电有两种工作方式:

★备电受 RDY-18F 的控制。工作方式为:当 RDY-18F 检测到主电断电时,自动切换到备电供电状态, RDY-18F 保存完主电断电时的信息(如断电时间、断电时刻的累计量等)后,通过"第三路 I/O 输出"(03,030) 将备电断开, RDY-18F 停止工作。当主电恢复正常后,自动接入备电(但不供电), RDY-18F 进入正常运行 状态。

★备电不受 RDY-18F 的控制。工作方式为:主电断电后,自动切换到备电供电状态,直至主电恢复 后再由备电供电状态切换到主电供电,实现 RDY-18F 的不间断工作。

两种工作方式的转换可以通过 RDY-18F 电路板上的跳线端子 B1 和 B2 来实现,具体跳线连接如下:

★备电不受 RDY-18F 控制的工作方式,跳线连接如图 3 中 a;

★备电受 RDY-18F 控制的工作方式,跳线连接如图 3 中 b。

▲ 注意: 在要求有断电记录功能或要求 RDY-18F 不间断工作的情况下才使用备电,其他情况下只使用主电源。

正确连接主电并供电后, RDY-18F 将显示主界面, 如图 4。

秒:分:	时		日/月/年	
		111 监测		
		222 调整		
		333 手动		
监测信息	Х	XXX.	XXX	
		XXXX	XXX	图
输入	XX	输出	出 xxxxx	

2.AD 采样的连接:

RDY-18F 共有 16 路 AD 采样,输入为 4~20mA,或 0~20mA。信号要求: ≤20mA。若输入信号为 1~5V 或 0~5V 时需将 RDY-18F 内部对应的精密电阻断开。亦可增加线性光电隔离模块(选配),实现信号的隔离。

4

★AD 采样的连接:

信号的正极接端子 "ADx", 信号的负极接相邻的 "GND"。例如使用第 3 路 AD 采样, 则信号的正极连接 "AD2", 负极连接相邻的 "GND"。(第 x 路对应的端子符号见附表一)。

输入信号为 1~5V 或 0~5V 时,信号的正极接端子 "ADx",负极接相邻的 "GND",并且要将该路对应的 电阻(250 欧姆)断开(各路和对应的电阻见表一)。如使用第 10 路 AD 采样,则信号的正极连接 "AD9", 负极连接相邻的 "GND",并断开电阻 R42。

表一、AD 采样各路和对应的电阻

x 路	对应电阻						
1	R24	5	R32	9	R40	13	R48
2	R26	6	R34	10	R42	14	R50
3	R28	7	R36	11	R44	15	R52
4	R30	8	R38	12	R46	16	R54

▲ 注意:第16路 AD 采样作为备电电压检测时,不可再用作 AD 采样,出厂时已作为备电电压检测。需要 将第16路作为普通 AD 采样时,要断开电阻 R135 和 R136。

3. 频率采样的连接:

RDY-18F 共有 2 路频率采样,最大频率为 3000Hz,信号的幅值要求在 0-3~10V 之间。 频率采样的连接:

使用第一路频率采样时,频率信号的正极接"P1+",负极接"P1-";

使用第二路频率采样时,频率信号的正极接"P2+",负极接"P2-"。

4. I/O 输入的连接:

RDY-18F 共有 5 路 I/O 输入,均为光电隔离输入,输入信号为有源信号,有效输入信号最大幅值应为 0-3~10V。

I/O 输入的连接:

使用第一路 I/O 输入时,信号的正极接"I1+",负极接"I1-";

使用第二路 I/O 输入时,信号的正极接"I2+",负极接"I2-";

使用第三路 I/O 输入时,信号的正极接"I3+",负极接"I3-";

使用第四路 I/O 输入时,信号的正极接"I4+",负极接"I4-";

使用第五路 I/O 输入时,信号的正极接"I5+",负极接"I5-"。

5. I/O 输出的连接:

RDY-18F 共有 5 路 I/O 输出,均为继电器触点输出。允许的电压和通过的电流为:DC-30V/1A; AC-125V/0.3A。

I/O 输出的连接:(均为常开触点)

使用第一路 I/O 输出时,输出端为"O1"和"O10";(未被复用时)

使用第二路 I/O 输出时,输出端为"O2"和"O20";

使用第三路 I/O 输出时,输出端为"O3"和"O30";(未被复用时)

使用第四路 I/O 输出时,输出端为"O4"和"O40";

使用第五路 I/O 输出时,输出端为"O5"和"O50"。

▲ 注意:第一路和第三路 I/O 输出均为复用输出,当第一路 I/O 输出作为控制 DTU 供电时,不可再作为 普通 I/O 输出使用,在作为普通 I/O 输出时,请确认 RDY-18F 电路板上的"PW"跳线端子应处于断开状态; 当第三路 I/O 输出作为备电控制时,不可再作为普通 I/O 输出使用。第三路作为普通 I/O 输出时,B1,B2 跳 线端子的连接应如图 5 所示。 出厂时两路均被复用。

图 5

6. DA 输出的连接:

RDY-18F 共有 2 路精度为 10bit 的 DA 输出, 输出 0~5V, 可增加线性光电隔离模块(选配)输出 0~20mA。 DA 输出的连接:

使用第一路 DA 输出时,"DA1"为输出的正极,"GND"为负极。

使用第二路 DA 输出时,"DA2"为输出的正极,"GND"为负极。

7. DTU 的使用和连接

需要远程通讯、控制、传输数据时,可采用的 DTU(CDMA 或 GPRS)模块。DTU 的工作方式可以自行设定,如不间断在线(使用备电时)、连续在线、定时在线、整点在线等工作方式(见参数设置)。DTU 的供电由"第一路 I/O"(01,010)输出来控制。

DTU 的连接:

★供电部分: DTU 电源的正极接 "PW+", 负极接 "PW-"。

并将 RDY-18F 电路板上的 PW 跳线端子短接。

★通讯部分:通过 RS232 和 RDY-18F 进行通讯,

DTU的RX接RDY-18F的TX1 DTU的TX接RDY-18F的RX1 DTU的GND接RDY-18F的GND

第三章. RDY-18F 通讯

RDY-18F 的通讯接口:两个串口(COM1和COM2)、一个以太网接口和一个电话线接口。

1. COM1: 是 RS-232 口, 用来实现 RDY-18 和 DTU 或上位机进行通讯、参数设置等。接线端子为: "RX1"、

"TX1"、"GND"。在和 DTU 或上位机进行通讯时, 交叉连接。COM1 口的默认波特率为 9600bps。

指示灯 STX1 和 SRX1 分别为 COM1 发送和接收数据时的指示灯,当 COM1 发送数据时 STX1 闪 烁,当 COM1 接收到数据时 SRX1 闪烁。

▲注意: 在使用 COM1 时请确认 RDY-18F 电路板上 "RX-TX" 和 "TX-RX" 两个跳线端子处于断开状态。出厂时为断开状态。

2. COM2: 可设置为 RS-232 或 RS-485 两种方式,两种方式的转换可以通过 RDY-18F 电路板上跳线端子

"J15"来实现。按照图 6 中 a 连接端子时将 COM2 设置为 RS-232 方式;按照图 6 中 b 连接端子时将 COM2 设置为 RS-485 方式。

RS-232 通讯口接线端子为: "RX2"、"TX2"、"GND"。采集一次仪表数据时 RX、TX 使用交叉连接, 默认波特率为 4800bps。

指示灯 STX2 和 SRX2 分别为 COM2 发送和接收数据时的指示灯,当 COM2 发送数据时 STX2 闪烁,当 COM2 接收到数据时 SRX2 闪烁。

RS-485 通讯口遵循 Modbus 协议。接线端子为"BB"和"AA"

图 6. COM2 和 RS485 的转换

3. 以太网通讯:选用 RDY-18F 的以太网扩展模块可以实现以太网通讯。

RDY-18F 设备上的"J45"为以太网接口,指示灯 LLED 为以太网扩展模块的电源指示灯,以太网扩展模块插到 RDY-18F 的扩展槽后该灯常亮。指示灯 RLED 为通讯指示灯。

RX

ТΧ

ТΧ

RX

图 7

使用以太网扩展模块时要确认"RX-TX"

和"TX-RX"两个跳线端子如图5连接。

选用以太网通讯时, RDY-18F 可以

作为客户端也可也作为服务器,具体参数设

见"以太网扩展模块设置说明"。

出厂时 RDY-18F 不带以太网扩展模块(由用户选配)。

4. 电话线传输:选用 RDY-18F 的电话传输扩展模块可以实现小数

据量的传输或远程控制。电话线传输通过"市话程控交换机"以 DTMF 信号实现可靠的远程数据传输及控制。 RDY-18F 设备上的"PHONELIN"端子和电话线连接(不区分正负极)。远端可以直接拨打 RDY-18F 设备连 接的电话进行传输数据或远程控制。

第四章. PID 调节

RDY-18F 有两路独立的 PID 调节。PID 调节输出 0~5V,外加线性光电隔离可转换为 0~20mA 输出。PID 调节的两路输出端分别为: DA1 和 DA2; PID 的反馈输出端可以任意选择 16 路 AD 采样。

PID 调节的实现步骤:

1. 系统的连接: 将系统的反馈输入端连接到选定的某路 AD 采样上,将系统执行机构的控制端连接到 PID 调节的某路输出端。

2. PID 的初始化:将控制系统正确连接后,需要对 PID 调节进行初始化时,将本设备的 COM1 口与计算 机串口交叉连接,在计算机上打开随 RDY-18F 附带的上位机参数设置软件,如图 8。

初始化包括:设置 PID 调节的输出端和反馈输入端;设置被控对象的量程; PID 调节的给定值 r、Kp、Ti、Td。 PID 初始化和设置的上位机和界面如图 8 和图 9 所示。

图 8

图 9

例如: 某系统为恒温控制系统。选择第一路 PID 调节作为控制回路, DA1 作为 PID 调节的输出控制端; 第 10 路 AD 采样作为控制系统的反馈输入端, 给定温度为 30℃。

该系统 PID 调节的初始化如图 8、图 9 所示。具体设置如下:

图 8 中 AD 设置用来设置被控对象"温度" 的范围,即 4~20mA 对应的温度值。其中,"编号"为反馈输入 端连接的 AD 采样的路数,如图 8 中"编号"选择"10";"类型"即为控制对象的类型,如温度,压力,液 位等,该例中类型为温度。"关联的 IO"、"上线报警"、"下限报警"、"上限系数" 和"下限系数" 五个 参数按照图 8 设置(其他 PID 调节系统中此 5 个参数也按照图 8 进行设置)。"系数 1""系数 2":分别为 4mA 和 20mA 对应的值,即控制对象的量程。设置好各参数后单击 "AD 设置" 按钮确定。图 9 中"DA 编号" 和 "AD 编号":分别指 PID 调节的输出控制端和反馈输入端,该例中分别为 DA1 和 AD10,单击"关联设 置按钮"确定。 "adkL"、"adkH":分别为 4mA 和 20mA 对应的值。"R":为控制系统的期望值; "Kp"、 "Ti"和"Td":分别为比例系数、积分时间常数、微分时间常数。设置好各参数后单击"PID 系数设置" 确定。PID 调节初始化完毕。

3. 开始和停止 PID 调节:

图 9 中 "pid1"和 "pid2":两个文本框分别为两个独立的闭环控制回路的使能项,"有效"即开始该回路的 PID 自动调节,"无效"即停止该控制回路的 PID 自动调节;"pid 编号":选择当前的 PID 控制回路,该例中 选择第一路即 "1"。上例中 "pid1"选择有效、"pid2"选择无效,"pid 编号"选择 1。单击"有效设置" 按 钮即开始相应有效闭环控制回路的 PID 自动调节。将该回路选择为"无效"单击"有效设置"按钮则停止该 回路的 PID 自动调节。

4. PID 参数的调整:

在开始 PID 调节后, 就可根据系统进行 PID 参数的调整。在调整的过程中, 只需改变图 9 中的"R"、"Kp"、 "Ti"和"Td"四个参数, 其他参数应保持不变, 单击"PID 系数设置"按钮确定修改的 参数。

5. PID 调节自动和手动的切换: 在主界面下按 RDY-18F 的键盘上的"键盘键"→"3"键→"确认"键,

- 8 -

进入 PID 手动调节界面,如图 10 所示。

AD 输入	DA 输出
1	
2	
当前调整	1

手控方法:

[1] 按"键盘"键使能键盘;

[2] 按"1" 键或"2" 键,选择当前需手动调整的 DA 输出 DA1 或 DA2;

[3] 按"↓"键, DA 输出按 0.05 的步长递增, 按"↑"键, DA 输出按 0.05 的步长递减, 以此进行手工 控制;

[4]手控结束后,按"确认"键,退出手控状态,恢复 PID 控制。

第五章. 多路扩展

多路扩展结合 RTU-18F 可实现多路 AD, I/O 扩展。可以扩展 5×32 路 AD 采样、I/O 输入、I/O 输出,或 2×32 路频率量输入。

多路扩展和 RTU-18F 的连接:

如下图中每一个"扩展板"最多可以扩展 32 路。

					(接约	就端子))					
IO5	IO4	IO3	IO2	IO1	CE	D	С	В	А	VC	GN	
												电源指示灯
	扩		扩			扩		扩			扩	
	展		展			展		展			展	
	板		板			板		板			板	
	五.		四			<u> </u>					-	
	的		的			的		的			的	
	37		37			37		37			37	
	针		针			针		针			针	
	接		接			接		接			接	
	头		_ 头			头		_ 头			头	

- 9 -

接线端子:

GN: -5V, 接 RTU-18F 端子的 GND;

VC: +5V, 接 RTU-18F 端子的+5V;

A: 地址线 A, 接 RTU-18F 端子的 AD11;

B: 地址线 B, 接 RTU-18F 端子的 AD12;

C: 地址线 C, 接 RTU-18F 端子的 AD13;

D: 地址线 D, 接 RTU-18F 端子的 AD14;

CE: 片选线, 接 RTU-18F 端子的 AD10;

IO1:"扩展板一"的公共端口;

IO2:"扩展板二"的公共端口;

IO3:"扩展板三"的公共端口;

IO4:"扩展板四"的公共端口;

IO5:"扩展板五"的公共端口。

AD采样的扩展(最多可扩展5×32路):

- IO1: 接 RTU-18F 端子的 AD9;
- IO2: 接 RTU-18F 端子的 AD8;
- IO3: 接 RTU-18F 端子的 AD7;
- IO4: 接 RTU-18F 端子的 AD6;
- IO5: 接 RTU-18F 端子的 AD5。

IO 输入的扩展(最多可扩展 5×32 路):

- IO1: 接 RTU-18F 端子的 I1+;
- IO2: 接 RTU-18F 端子的 I2+;
- IO3: 接 RTU-18F 端子的 I3+;
- IO4: 接 RTU-18F 端子的 I4+;

IO5: 接 RTU-18F 端子的 I5+。

IO 输出的扩展(最多可扩展 5×10 路):

IO1: 接 RTU-18F 端子的 O1(在有 DTU 控制的情况下,此口不能作扩展用);

- IO2: 接 RTU-18F 端子的 O3;
- IO3: 接 RTU-18F 端子的 O4(在有备电控制的情况下,此口不能作扩展用);
- IO4: 接 RTU-18F 端子的 O5;
- IO5: 接 RTU-18F 端子的 O6。
- 频率量输入的扩展(最多可扩展2×32路):
 - IO1: 接 RTU-18F 端子的 P1+;
 - IO2: 接 RTU-18F 端子的 P2+;

37 针接头(多路扩展输入端的接线):

1、12、19、20、31: 输入的公共地线 GND;

2~11: 第1路到第10路输入(IO输入、输出、频率量输入或AD采样);
13~18: 第11路到第16路输入(IO输入、频率量输入或AD采样);
21~30: 第17路到第26路输入(IO输入、频率量输入或AD采样);

32~37: 第 27 路到第 32 路输入(IO 输入、频率量输入或 AD 采样)。

第六章. RDY-18F 显示界面

键盘:

1. 键盘的使用:

键盘: 3x6 轻触复用键盘(如图 11)

其中: 0-9: 数字键

- ▲ 上箭头、小数点复用键
- ★: :光标后退键
- _ 光标前进键
 - <u>」</u>: 下箭头
- "修改": 修改键,按此键清除已键入数字后,可重新键入

"键盘":键盘使能,只有按此键后,其它各键才被使能,进入键盘操作

"确认":全部设置完成后,按此键确认并结束键盘操作

2. 键盘使用原则

(1)按"键盘"键进入键盘操作程序,按"确认"键确认并结束键盘操作

(2)数字输入可直接按数字键

RDY-18F 的显示界面共有 4 个: 主界面、检测界面、PID 参数调整界面和 PID 手动调节界面。

1.主界面:

★进入方式:按"键盘"键→"确认"键,则进入主界面(图12)

秒:分	: 时		日 / 月 / 年
		112 223	监测调整
		333	手动
监测信息	х		XXX.XXX
			XXXXXX
输入	XX		输出 xxxxx

主界面

★使用方法:

按"键盘"键→"1"键→"确认"键,则进入检测界面

按"键盘"键→"2"键→"确认"键,则进入 PID 参数设置界面

图 11

按"键盘"键→"3"键→"确认"键,则进入手动控制界面

★显示信息:

1. 最上一行,显示为时间、日期

2. 检测信息行显示三个数字。

N:输入模拟量+频率量的编号,最大范围值为1—17,即15个模拟量,2个频率量,模拟量的个数 在设置参数时由上位机确定。例:上位机确定有5个模拟量,则N的值为1-5,其后的D、H值为相应 的模拟量采数值,而当N为6或7时,则代表频率量的采样值。

D: 被采样的物理量的瞬时值。

H:如被采样的物理量为流量,则H为流量的累积值此检测界面按照模拟量和频率量顺序循环显示,显示的时间周期为5妙。

3. 最底一行,显示 I/O 输入和输出状态。

输入: 5个数字(0或1)自右向左代表光隔离输入端口I1、I2、I3、I4、I5的状态,(0:0V,1:3--10V)。

输出: 5个数字(0或1)自右向左代表代表继电器触电输出端口 01/010、02/020、03/030、04/040、05/050 的开闭状态(0:闭合,1:断开),此信息每5秒刷新一次。

2. 监测界面:

★进入方式:在主界面下按"键盘"键→"1"键→"确认"键,则进入监测界面

秒:分	: 时	日 / 月 / 年			
1(9)(17)		5(13)			
2(10)		6(14)			
3(11)		7(15)			
4(12)		8(16)			
关注	X xxx.xxx xxxxxx				
DA 输出	1. xxx 2. xxx				
输入	XXXXXX	输出	XXXXX		

★显示信息:

1. 最上一行,显示为时间、日期.

- 第2、3、4、5行,共8个显示单元,每5秒依次显示1-8路、9-16路、17路等输入物理量(模拟 量和频率量)的瞬时值和累积值(对流量而言)
- 3. 第7行显示两路的 DA 输出的电压值 (0-5V)。
- 第8行显示5路光隔离输入I1、I2、I3、I4、I5和5路继电器触电输出(01/010、02/020、03/030、04/040、 05/050)的状态。
- 5. 第6行,为关注,固定显示某路的输入的物理量。其显示信息为:

N: 为要关注的物理量的路号。

D: 被采样的物理量的瞬时值。

H: 如被采样的物理量为流量,则H为流量的累积值。

N 的选择方法:

- 按"键盘"键
- 按"↑"(减小)键或"↓"(增大)键,改变N值到关注值。
- 按"确认"键后,此关注值则只显示被选定的路号的物理量了。

3. 调整界面:

进入方法:在主界面下,按"键盘"键→"2"键→"确认"键,则进入 PID 参数调整界面

秒:	分:时	日 / 月 / 年
No	1	
R	+ XXX .XX	
Кр	+ XXX .XX	
Ki	+ XXX .XX	
Kd	+ XXX .XX	

调整界面

- (1) NO为 D/A 输出的路号 (1 或 2)。
- (2) R: 为被控物理量设定值。
- (3) Kp: 为比例系数,
 - Ki: 为积分系数,
 - Kd: 为微分系数。

★参数设置(调整)方法:

进入调整界面后,光标首先显示在 NO 栏的数字下方,修改参数的方法:

(1)按键盘键使能键盘

(2)按"←"键或"→"键,移动光标到欲修改的数字下方

(3)按"↑"(减小)键或"↓"(增大)键,来修改选定的数值到指定值

(4)重复2、3直到数据全部修改完毕

(5)按"修改"键,确认新值(此时液晶屏右上方显示"Y")

(6)按"确认"键,完成参数修改

(7)按"键盘"键→"确认"键,返回主界面

★ 例: 修改第2路的 PID 参数 R=35、Kp=4.5、Ki=5、Kd=10,如界面为图 14 状态,则修改步骤为:

① 按"键盘"键,此时光标已在被修改处

② 按"↓"键将数字改为2, NO 栏显示为2

-

[★]显示信息:

- ③ 按 3 次 "→"键将关标移动到 R 栏
- ④ 将R栏的数字通过"↑"(减小)键或"↓"(增大)键修数值到035.00
- ⑤ 按6次"→"键,将光标移动到Kp栏
- ⑥ 将 Kp 栏的数字通过"↑"(减小)键或"↓"(增大)键修数值到 004.60
- ⑦ 按5次"→"键,将光标移动到Ki栏
- ⑧ 将 Kp 栏的数字通过"↑"(减小)键或"↓"(增大)键修数值到 005.00
- ⑨ 按5次"→"键,将光标移动到Kd栏
- ⑩ 将 Kd 栏的数字通过"↑"(减小)键或"↓"(增大)键修数值到 010.00
- ⑪ 按"修改"键,屏幕右上角显示Y
- 12 按"确认"键,完成参数设置
- 4. 手动控制界面:

★进入方法: 在主界面下按"键盘键"→"3"键→"确认"键,则进入手动控制界面

AD 输入	DA 输出
1	
2	
当前调整	1

手动控制界面

★手控方法:

- (1) 按"键盘"键使能键盘
- (2) 按"1" 键或"2" 键,选择当前需手动调整的 DA 输出 DA1 或 DA2
- (3) 按"↓"键, DA 输出按 0.05 的步长递增, 按"↑"键, DA 输出按 0.05 的步长递减, 以此进行手 工控制
- (4) 手控结束后,按"确认"键,退出手控状态,恢复 PID 控制

第七章. RDY-18F 软件

RDY-18F 软件是配合 RDY-18F 智能测控终端,在 PC 上执行的软件。主要实现了对下位机终端设备的当前数据的收集,报警记录、断电记录、历史数据的读取,及终端设备运行系数和功能的设置

1. 安装

上位机通过串口与下位机进行通讯,所以在与下位机通讯前先将两者用串口线连接。RDY-18F 软件是运行在 windows 平台下的绿色软件,无须安装,拷贝到电脑后就可以直接使用。

2. 操作界面

RDY-18F软件界面非常友好,只须将鼠标移到图标上,双击即可进入操作界面。

RDY-18F 软件采用下拉指令栏及快捷按钮的操作形式,并且将各功能模块直接分布于窗口上,操作者可利用 鼠标在窗口上操作,快速完成 RDY-18F 软件的操作。 (1) 当前运行相关:软件启动后,首先进入"当前运行相关"界面(见图1)

🛎 pic串口通讯	
当前运行相关。输入/输出相关 功能系数相关	
通讯端口 波特率 校验方式 数据位 停止位	
_ID新ID	
1 ID设置	
对像编号	
助电记求致	
报警记录数	
扇区始址 扇区个数	
报警记录	
历史记录数当前数据	
扇区始址 扇区个数	
历史记录	
▼ 保存信息设 晋	
	图 1

★ 上位机所用串口的设置:串口设置采用下拉指令栏,单击下箭头选择好相应的串口端口和端口的配置信息
 后单击"确定"。

RDY-18F软件串口默认设置为:通讯端口-com1

波特率-9600 校验方式-n 数据位-8 停止位-1

★下位机的 ID 设置:填写下位机的 ID 号单击"ID 设置"

/ 注意: ID 填写项不允许为空,必须为相应终端的 ID 号

★下位机流量采集中累计量的清零设置: 在"对象"和"编号"下拉指令栏中选择相应的清除对象和编号后, 单击"清累计量"

注意:对象分为 4-20mA 和频率两种流量采集

★ 下位机记录的操作:

记录分为断电记录、报警记录、历史记录

操作分为读取当前记录的记录信息: 单击 "XX 记录数", 按钮右侧显示相应的数据

读取保存的记录信息 : 填写扇区信息, 单击"XX 记录"

清除记录信息: 单击"清除 XX 记录"

★给下位机较时:单击"同步时间",终端的时钟设置为所用电脑的系统时间

★读取下位机的采集信息: 单击"当前数据", 右侧文本框显示相关信息

★读取下位机的设置信息: 单击"当前设置", 右侧文本框显示相关信息

/ ↓ 注意: 程序界面的底部显示了当前串口通讯的状态提示,命令的成功与否会有相应的提示

(2) 输入/输出相关:在串口及 ID 的设置完成后,单击"输入/输出相关"快捷按钮,进入输入/输出相关界面 - - 15-

(见图2)

★ 下位机 AD 采样的设置:

编号:设置第几路就在下拉命令栏中选择相应的编号

类型:采集的是那种物质下拉命令栏中选择相应的类型

关联的 IO: 选择关联 IO 的数量(继电器动作)

系数:采集的量程为系数1到系数2

上、下限报警:选择上、下限是否报警

上、下限系数:选择上、下限的系数

设置完成后,单击"AD 设置",完成 AD 设置

★下位机频率采样的设置: 选择操作对象的编号, 填写其最大的量程系数 单击"频率设置"

★下位机 DA 输出的设置:选择操作对象的编号,填写要输出的电压值 单击"DA 输出设置"

★下位机开关量输入的关联设置: 文本框中只能为由0或1组成的长度为16的字符串,有效的只有右端的5

个,其它的保留。(0代表无关联;1代表有关联)

★下位机开关量输出的默认设置: 文本框中只能为由0或1组成的长度为16的字符串,有效的只有右端的5 个,其它的保留。(0代表闭合;1代表断开)

★下位机开关量输出的执行设置: 文本框中只能为由0或1组成的长度为16的字符串,有效的只有右端的5 个,其它的保留。(0代表手动执行;1代表自动执行)

★下位机开关量输出的手动控制:选择操作对象的编号 单击 "IO闭合"则闭合,单击 "IO断开"则断开★下位机输入关联的设置:选择操作对象编号和设置信息(关联的 IO、关联态),

单击"输入关联信息设置"

★下位机输入关联的设置:选择操作对象编号和执行的小时、分钟和保持时间,单击"输出执行信息设置"

▲ 注意: 程序界面的底部显示了当前串口通讯的状态提示, 命令的成功与否会有相应的提示

(3) 功能系数相关(见图3)

图 3

★下位机的断电检测功能设置:选择是否检测后单击"断电检测设置";

★下位机的显示功能设置:选择是否显示后单击"显示设置";

★下位机的心跳包功能设置:选择是否发送心跳包和发送的时间间隔后单击"心跳包设置";

★下位机的上传信息功能设置:选择信息类型、发送的时间(小时、分钟)后单击"上传信息设置";

★下位机的串口的设置:选择操作对象编号和设置信息后单击"串口设置";

★下位机 PID 控制的功能设置:选择 pid1 和 pid2 是否有效后单击"有效设置"

选择 pid 编号、选择 DA 编号、AD 编号, 然后单击"关联设置", 来设置 pid

调节中对应的输入和输出;

选择 pid 编号,填写 pid 对应 AD 输入的量程

(adkL、adkH)、给定值(R)和Kp、Ti、Td,

选择后单击"PID 系数设置"。

↓ 注意: 程序界面的底部显示了当前串口通讯的状态提示, 命令的成功与否会有相应的提示

附表 RDY-18F 端子符号及其功能

端子符	功能说明	端子符	功能说明
号		号	
_	主电源的负极	AD15	第十六路 AD 采样正极
+	主电源的正极	GND	第十六路 AD 采样负极
B-	备用电源负极	X5	(未使用)
B +	备用电源正极	X6	(未使用)
DL1	(未使用)	X7	(未使用)
DL2	(未使用)	AC	交流 220V (50Hz)
P2+	第二路频率正极	AC	交流 220V
P2-	第二路频率负极	I1+	第一路 IO 输入正极
GND	输出 5V 的负极	I1-	第一路 IO 输入负极
+5V	输出 5V 的正极	I2+	第二路 IO 输入正极
AD0	第一路 AD 采样正极	I2-	第二路 IO 输入负极
GND	第一路 AD 采样负极	I3+	第三路 IO 输入正极
AD1	第二路 AD 采样正极	I3-	第三路 IO 输入负极
GND	第二路 AD 采样负极	I4+	第四路 IO 输入正极
AD2	第三路 AD 采样正极	I4-	第四路 IO 输入负极
GND	第三路 AD 采样负极	I5+	第五路 IO 输入正极
AD3	第四路 AD 采样正极	15-	第五路 IO 输入负极
GND	第四路 AD 采样负极	01	第一路 IO 输出(触点输出)
AD4	第五路 AD 采样正极	O10	第一路 IO 输出
GND	第五路 AD 采样负极	PW+	DTU 供电正极(主电源电压)
AD5	第六路 AD 采样正极	PW-	DTU 供电负极
GND	第六路 AD 采样负极	02	第二路 IO 输出(触点输出)
AD6	第七路 AD 采样正极	O20	第二路 IO 输出
GND	第七路 AD 采样负极	03	第三路 IO 输出(触点输出)
AD7	第八路 AD 采样正极	O30	第三路 IO 输出
GND	第八路 AD 采样负极	04	第四路 IO 输出(触点输出)
AD8	第九路 AD 采样正极	O40	第四路 IO 输出
GND	第九路 AD 采样负极	05	第五路 IO 输出(触点输出)
AD9	第十路 AD 采样正极	O50	第五路 IO 输出
GND	第十路 AD 采样负极	DA1	第一路 DA 输出正极
AD10	第十一路 AD 采样正极	GND	第一路 DA 输出负极
GND	第十一路 AD 采样负极	DA2	第二路 DA 输出正极
AD11	第十二路 AD 采样正极	GND	第二路 DA 输出负极
GND	第十二路 AD 采样负极	AA	485 输出 AA 端
AD12	第十三路 AD 采样正极	BB	485 输出 BB 端
GND	第十三路 AD 采样负极	RX1	COM1 接收端
AD13	第十四路 AD 采样正极	TX1	COM1 发送端
GND	第十四路 AD 采样负极	GMD	串口地
AD14	第十五路 AD 采样正极	RX2	COM2 接收端
GND	第十五路 AD 采样负极	TX2	COM2 发送端

-