

System Board User's Manual

> 935-DK79B1-000G 06700831E

#### Copyright

This publication contains information that is protected by copyright. No part of it may be reproduced in any form or by any means or used to make any transformation/adaptation without the prior written permission from the copyright holders.

This publication is provided for informational purposes only. The manufacturer makes no representations or warranties with respect to the contents or use of this manual and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. The user will assume the entire risk of the use or the results of the use of this document. Further, the manufacturer reserves the right to revise this publication and make changes to its contents at any time, without obligation to notify any person or entity of such revisions or changes.

© 2008. All Rights Reserved.

#### **Trademarks**

Windows<sup>®</sup> 2000 and Windows<sup>®</sup> XP are registered trademarks of Microsoft Corporation. Award is a registered trademark of Award Software, Inc. Other trademarks and registered trademarks of products appearing in this manual are the properties of their respective holders.

#### FCC and DOC Statement on Class B

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and the receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio TV technician for help.

#### Notice:

- 1. The changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
- 2. Shielded interface cables must be used in order to comply with the emission limits.

# Table of Contents

| About this Manual                  | 4   |
|------------------------------------|-----|
| Warranty                           | 4   |
| Static Electricity Precaution      | 5   |
| Safety Measures                    | 5   |
| About the Package                  | 6   |
| Before Using the System Board      | 6   |
| System Board Layout                | 7   |
| English                            | 8   |
| Français                           | 32  |
| Deutsch                            | 59  |
| Italiano                           | 85  |
| Español                            | 4   |
| Debug LED POST and Troubleshooting | 140 |

#### About this Manual

An electronic file of this manual is included in the CD. To view the user's manual in the CD, insert the CD into a CD-ROM drive. The autorun screen (Main Board Utility CD) will appear. Click the "TOOLS" icon then click "Manual" on the main menu.

For additional information on the system board, please download the complete version of the manual from DFI's website. Visit www.dfi.com.

#### Warranty

- Warranty does not cover damages or failures that arised from misuse of the product, inability to use the product, unauthorized replacement or alteration of components and product specifications.
- 2. The warranty is void if the product has been subjected to physical abuse, improper installation, modification, accidents or unauthorized repair of the product.
- 3. Unless otherwise instructed in this user's manual, the user may not, under any circumstances, attempt to perform service, adjustments or repairs on the product, whether in or out of warranty. It must be returned to the purchase point, factory or authorized service agency for all such work.
- 4. We will not be liable for any indirect, special, incidental or consequencial damages to the product that has been modified or altered.

#### **Static Electricity Precautions**

It is quite easy to inadvertently damage your PC, system board, components or devices even before installing them in your system unit. Static electrical discharge can damage computer components without causing any signs of physical damage. You must take extra care in handling them to ensure against electrostatic build-up.

- 1. To prevent electrostatic build-up, leave the system board in its anti-static bag until you are ready to install it.
- 2. Wear an antistatic wrist strap.
- 3. Do all preparation work on a static-free surface.
- 4. Hold the device only by its edges. Be careful not to touch any of the components, contacts or connections.
- 5. Avoid touching the pins or contacts on all modules and connectors. Hold modules or connectors by their ends.



#### Important:

Electrostatic discharge (ESD) can damage your processor, disk drive and other components. Perform the upgrade instruction procedures described at an ESD workstation only. If such a station is not available, you can provide some ESD protection by wearing an antistatic wrist strap and attaching it to a metal part of the system chassis. If a wrist strap is unavailable, establish and maintain contact with the system chassis throughout any procedures requiring ESD protection.

#### **Safety Measures**

To avoid damage to the system:

• Use the correct AC input voltage range.

To reduce the risk of electric shock:

• Unplug the power cord before removing the system chassis cover for installation or servicing. After installation or servicing, cover the system chassis before plugging the power cord.

Battery:

- Danger of explosion if battery incorrectly replaced.
- Replace only with the same or equivalent type recommend by the manufacturer.
- Dispose of used batteries according to local ordinance.

#### **About the Package**

The system board package contains the following items. If any of these items are missing or damaged, please contact your dealer or sales representative for assistance.

- ☑ One system board
- ☑ One IDE cable
- $\blacksquare$  One floppy cable
- $\blacksquare$  Two Serial ATA data cables
- ☑ One power cable with 2 Serial ATA power connectors
- $\blacksquare$  Smart connectors
- ☑ One I/O shield
- $\blacksquare$  One RAID driver diskette
- ☑ One ''Mainboard Utility'' CD
- ☑ One user's manual
- ☑ Auto Boost System (ABS) installation guide

The system board and accessories in the package may not come similar to the information listed above. This may differ in accordance to the sales region or models in which it was sold. For more information about the standard package in your region, please contact your dealer or sales representative.

#### Before Using the System Board

Before using the system board, prepare basic system components.

If you are installing the system board in a new system, you will need at least the following internal components.

- A CPU
- Memory module
- Storage devices such as hard disk drive, CD-ROM, etc.

You will also need external system peripherals you intend to use which will normally include at least a keyboard, a mouse and a video display monitor.

# System Board Layout



# Chapter I - Introduction

# Specifications

| Processor       | <ul> <li>AMD<sup>®</sup> AM2+ processors:<br/>Phenom<sup>™</sup> FX / Phenom<sup>™</sup> / Athlon<sup>™</sup> / Sempron<sup>™</sup><br/>AMD<sup>®</sup> AM2 processors: Athlon series / Sempron<sup>™</sup></li> <li>HyperTransport 3.0 (5200MT/s for AM2+)<br/>HyperTransport 1.0 (2000/1600MT/s for AM2)</li> <li>AMD OverDrive provides tuning options using the new<br/>"Advanced Clock Calibration" overclocking feature.</li> <li>Socket 940 AM2+ 65nm</li> </ul> |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chipset         | <ul> <li>AMD chipset</li> <li>Northbridge: AMD 790FX</li> <li>Southbridge: AMD SB750</li> </ul>                                                                                                                                                                                                                                                                                                                                                                         |
| System Memory   | <ul> <li>Four 240-pin DDR2 DIMM sockets</li> <li>Supports DDR2 667/800/1066 MHz DIMMs</li> <li>Supports dual channel (128-bit wide) memory interface</li> <li>Supports up to 8GB system memory</li> <li>Supports unbuffered non-ECC x8 and x16 DIMMs</li> </ul>                                                                                                                                                                                                         |
| Expansion Slots | <ul> <li>3 PCI Express (Gen 2) ×16 slots</li> <li>2-way or 4-way CrossFire at ×16/×16/NC bandwidth</li> <li>3-way CrossFire at ×16/×8/×8 bandwidth</li> <li>2-way CrossFire + Physics at ×16/×8/×8 bandwidth</li> <li>3 PCI slots</li> </ul>                                                                                                                                                                                                                            |
| BIOS            | <ul> <li>Award BIOS</li> <li>CMOS Reloaded</li> <li>CPU/DRAM overclocking</li> <li>CPU/DRAM/Chipset overvoltage</li> <li>8Mbit SPI flash memory</li> </ul>                                                                                                                                                                                                                                                                                                              |
| Audio           | <ul> <li>Realtek ALC885 8-channel HD Audio Codec</li> <li>High-performance DACs with 106dB dynamic range (A-Weight),<br/>ADCs with 101dB dynamic range (A-Weight)</li> </ul>                                                                                                                                                                                                                                                                                            |
| LAN             | <ul> <li>Marvell 88E8053 PCIE Gigabit LAN controller</li> <li>Fully compliant to IEEE 802.3 (10BASE-T), 802.3u (100BASE-TX) and 802.3ab (1000BASE-T) standards</li> </ul>                                                                                                                                                                                                                                                                                               |
| IDE             | • One IDE connector allows connecting up to two UltraDMA<br>I33Mbps hard drives                                                                                                                                                                                                                                                                                                                                                                                         |

|  | E |
|--|---|
|  |   |
|  |   |
|  |   |

| Serial ATA with<br>RAID | <ul><li>Supports up to 6 SATA devices</li><li>SATA speed up to 3Gb/s</li><li>RAID 0, RAID 1 and RAID 0+1</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rear Panel I/O          | <ul> <li>I mini-DIN-6 PS/2 mouse port</li> <li>I mini-DIN-6 PS/2 keyboard port</li> <li>I optical S/PDIF-out port</li> <li>I coaxial RCA S/PDIF-out port</li> <li>6 USB 2.0/1.1 ports</li> <li>I RJ45 LAN port</li> <li>Center/subwoofer, rear R/L and side R/L jacks</li> <li>Line-in, line-out (front R/L) and mic-in jacks</li> </ul>                                                                                                                                                                                                                                                                         |
| Internal I/O            | <ul> <li>3 connectors for 6 additional external USB 2.0 ports</li> <li>I connector for an external COM port</li> <li>I front audio connector</li> <li>I CD-in connector</li> <li>I IrDA connector</li> <li>I CIR connector</li> <li>G Serial ATA connectors</li> <li>I 40-pin IDE connector</li> <li>I floppy connector</li> <li>I floppy connector</li> <li>I 24-pin ATX power connector</li> <li>I 8-pin 12V power connector</li> <li>I 8-pin 12V power connectors (FDD type)</li> <li>I front panel connector</li> <li>6 fan connectors</li> <li>EZ touch switches (power switch and reset switch)</li> </ul> |
| Power<br>Management     | <ul> <li>ACPI and OS Directed Power Management</li> <li>ACPI STR (Suspend to RAM) function</li> <li>Wake-On-PS/2 Keyboard/Mouse</li> <li>Wake-On-USB Keyboard/Mouse</li> <li>Wake-On-Ring</li> <li>Wake-On-LAN</li> <li>RTC timer to power-on the system</li> <li>AC power failure recovery</li> </ul>                                                                                                                                                                                                                                                                                                           |
| Hardware<br>Monitor     | <ul> <li>Monitors CPU/system/chipset temperature</li> <li>Monitors 12V/5V/3.3V/Vcore/Vbat/5Vsb/Vdimm/Vchip voltages</li> <li>Monitors the speed of the cooling fans</li> <li>CPU Overheat Protection function monitors CPU temperature during system boot-up</li> </ul>                                                                                                                                                                                                                                                                                                                                          |
| РСВ                     | • ATX form factor<br>• 24.5cm (9.64") × 30.5cm (12")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

# Chapter 2 - Hardware Installation

# Jumper Settings

### Clear CMOS Data



If you encounter the following,

- a) CMOS data becomes corrupted.
- b) You forgot the supervisor or user password.
- c) The overclocked settings in the BIOS resulted to the system's instability or caused system boot up problems.

you can reconfigure the system with the default values stored in the ROM BIOS.

JP10 is accessible from the rear panel of the system. This provides convenience by allowing you to clear the CMOS without having to remove the chassis cover.

To load the default values stored in the ROM BIOS, please follow the steps below.

- I. Power-off the system then unplug the power cord.
- 2. Set JP8 or JP10 pins 2 and 3 to On. Wait for a few seconds and set JP8 or JP10 back to its default setting, pins 1 and 2 On.
- 3. Now plug the power cord then power-on the system.

**English** 

## PS/2 Power Select



Selecting 5VSB will allow you to use the PS/2 keyboard or PS/2 mouse to wake up the system.



#### **USB Power Select**

Selecting 5VSB will allow you to use the USB keyboard or USB mouse to wake up the system..

#### Important:

The 5VSB power source of your power supply must support  $\geq 1.5A$  (2 devices) or  $\geq 2A$  (3 or more devices).

# Speaker On/Off Select

English



.........

The system board is equipped with a buzzer which serves as the PC's speaker. By default the buzzer is "on" allowing you to hear the system's beep messages and warnings. If you intend to use an external speaker, turn this function off by setting JP2 pins 1 and 2 to On.

#### PCIE 3 Setting





Set this jumper according to the type of PCI Express card that you are using.



# Rear Panel I/O Ports

English



..................

#### PS/2 Ports and S/PDIF Ports

English **•••** 

#### PS/2 Mouse and PS/2 Keyboard Ports

These ports are used to connect a PS/2 mouse and a PS/2 keyboard.

#### **Optical S/PDIF**

The optical S/PDIF jack is used to connect an external audio output device using an optical S/PDIF cable.

#### Coaxial RCA S/PDIF

The coaxial RCA S/PDIF jack is used to connect an external audio output device using a coaxial S/PDIF cable.

DO NOT use optical S/PDIF and Coaxial RCA S/PDIF at the same time.

**English** 

## USB and LAN Ports



#### USB

The USB ports are used to connect USB 2.0/1.1 devices. The 10-pin connectors allow you to connect 6 additional USB 2.0/1.1 ports. Your USB ports may come mounted on a card-edge bracket. Install the card-edge bracket to an available slot at the rear of the system chassis then connect the USB port cables to these connectors.

#### LAN

The LAN port allows the system board to connect to a local area network by means of a network hub.

# E

# English

## Audio and CD-In

English .



-----

#### Rear Panel Audio

#### Center/Subwoofer Jack (Orange)

This jack is used to connect to the center and subwoofer speakers of the audio system.

#### Rear Right/Left Jack (Black)

This jack is used to connect to the rear right and rear left speakers of the audio system.

#### Side Right/Left Jack (Gray)

This jack is used to connect to the side left and side right speakers of the audio system.

#### Line-in (Light Blue)

This jack is used to connect any audio devices such as Hi-fi set, CD player, tape player, AM/FM radio tuner, synthesizer, etc.

#### Line-out - Front Right/Left Jack (Lime)

This jack is used to connect to the front right and front left speakers of the audio system.

**English** 

#### Mic-in Jack (Pink)

This jack is used to connect an external microphone.

#### Front Audio

The front audio connector is used to connect to the line-out and mic-in jacks that are at the front panel of your system.

#### CD-in

The CD-in connector is used to receive audio from a CD-ROM drive, TV tuner or MPEG card.

# Internal I/O Connectors

#### Serial ATA Connectors



The Serial ATA (SATA) connectors are used to connect Serial ATA drives. Connect one end of the Serial ATA cable to a Serial ATA connector and the other end to your Serial ATA device.

#### Configuring RAID

Refer to the RAID chapter in this manual for more information about creating RAID on Serial ATA drives.

English ...



#### FDD Connector and IDE Connector

#### **FDD** Connector

The floppy disk drive connector is used to connect a floppy drive. Insert one end of the floppy cable into this connector and the other end-most connector to the floppy drive. The colored edge of the cable should align with pin 1 of this connector.

#### **IDE** Connector

The IDE disk drive connector is used to connect 2 IDE disk drives. An IDE cable have 3 connectors on them, one that plugs into this connector and the other 2 connects to IDE devices. The connector at the end of the cable is for the Master drive and the connector in the middle of the cable is for the Slave drive. The colored edge of the cable should align with pin 1 of this connector.



#### Note:

When using two IDE drives, one must be set as the master and the other as the slave. Follow the instructions provided by the drive manufacturer for setting the jumpers and/or switches on the drives.

**English** 

# IrDA,CIR and Serial (COM) Connectors



#### IrDA and CIR Connectors

Connect the cable connector from your IrDA module to the IrDA connector or CIR connector.

#### Note:

The sequence of the pin functions on some IrDA/CIR cable may be reversed from the pin function defined on the system board. Make sure to connect the cable connector to the IrDA/ CIR connector according to their pin functions.

You may need to install the proper drivers in your operating system to use the IrDA/CIR function. Refer to your operating system's manual or documentation for more information.

#### Serial (COM) Connector

The serial (COM) connector is used to connect modems, serial printers, remote display terminals, or other serial devices. Your COM port may come mounted on a card-edge bracket. Install the card-edge bracket to an available slot at the rear of the system chassis then connect the serial port cable to this connector. The colored edge of the cable should align with pin 1 of this connector.



. . . . . . . . . . . . . . . . . . . .

**Cooling Fan Connectors** 

English .

These fan connectors are used to connect cooling fans. Cooling fans will provide adequate airflow throughout the chassis to prevent overheating the CPU and system board components.

#### **EZ Touch Switches**



The presence of the power switch and reset switch on the system board are user-friendly especially to DIY users. They provide convenience in powering on and/or resetting the system while fine tuning the system board before it is installed into the system chassis.

**English** 

LEDs



Standby Power LED

#### **DRAM Power LED**

This LED will light when the system's power is on.

#### Standby Power LED

This LED will light when the system is in the standby mode.

#### Diagnostic LED

The Diagnostic LED displays POST codes. POST (Power-On Self Tests) which is controlled by the BIOS is performed whenever you power-on the system. POST will detect the status of the system and its components. Each code displayed on the LED corresponds to a certain system status.

#### <u>Warning:</u>

When the DRAM Power LED and/or Standby Power LED lit red, it indicates that power is present on the DIMM sockets and/or PCI slots. Power-off the PC then unplug the power cord prior to installing any memory modules or add-in cards. Failure to do so will cause severe damage to the motherboard and components.

#### **Power Connectors**

English

Use a power supply that complies with the ATX12V Power Supply Design Guide Version 1.1. An ATX12V power supply unit has a standard 24-pin ATX main power connector that must be inserted into this connector.

. . . . . . . . . . .



Your power supply unit may come with an 8-pin or 4-pin +12V power connector. The +12V power enables the delivery of more +12VDC current to the processor's Voltage Regulator Module (VRM). If available, it is preferable to use the 8-pin power; otherwise connect a 4-pin power to this connector.



# E

#### English

The power connectors from the power supply unit are designed to fit the 24-pin and 8-pin connectors in only one orientation. Make sure to find the proper orientation before plugging the connectors.

The FDD-type power connectors are additional power connectors. If you are using more than one graphics cards, we recommend that you plug a power cable from your power supply unit to the 5V/12V power connector. This will provide more stability to the entire system. The system board will still work even if the additional power connector is not connected.



The system board requires a minimum of 300 Watt power supply to operate. Your system configuration (CPU power, amount of memory, add-in cards, peripherals, etc.) may exceed the minimum power requirement. To ensure that adequate power is provided, we strongly recommend that you use a minimum of 400 Watt (or greater) power supply.

#### Important:

Insufficient power supplied to the system may result in instability or the add-in boards and peripherals not functioning properly. Calculating the system's approximate power usage is important to ensure that the power supply meets the system's consumption requirements.

English

#### Restarting the PC

Normally, you can power-off the PC by:

- 1. Pressing the power button at the front panel of the chassis. or
- 2. Pressing the power switch that is on the system board (note: not all system boards come with this switch).

If for some reasons you need to totally cut off the power supplied to the PC, switch off the power supply or unplug the power cord. Take note though that if you intend to restart it at once, please strictly follow the steps below.

- 1. The time where power is totally discharged varies among power supplies. It's discharge time is highly dependent on the system's configuration such as the wattage of the power supply, the sequence of the supplied power as well as the number of peripheral devices connected to the system. Due to this reason, we strongly recommend that you wait for the Standby Power LED (refer to the "LEDs" section in this chapter for the location of the Standby Power LED) to lit off.
- 2. After the Standby Power LED has lit off, wait for 6 seconds before powering on the PC.

If the system board is already enclosed in a chassis which apparently will not make the Standby Power LED visible, wait for 15 seconds before you restore power connections. 15 seconds is approximately the time that will take the LED to lit off and the time needed before restoring power.

The above will ensure protection and prevent damage to the motherboard and components.

24

**English** 

### Front Panel Connectors



#### HD-LED: Primary/Secondary IDE LED

This LED will light when the hard drive is being accessed.

#### **RESET: Reset Switch**

This switch allows you to reboot without having to power off the system thus prolonging the life of the power supply or system.

#### SPEAKER: Speaker Connector

This connects to the speaker installed in the system chassis.

#### ATX-SW: ATX Power Switch

Depending on the setting in the BIOS setup, this switch is a "dual function power button" that will allow your system to enter the Soft-Off or Suspend mode.

#### PWR-LED: Power/Standby LED

When the system's power is on, this LED will light. When the system is in the SI (POS - Power On Suspend) or S3 (STR - Suspend To RAM) state, it will blink every second.

#### Note:

<sup>></sup> If a system did not boot-up and the Power/Standby LED did not light after it was powered-on, it may indicate that the CPU or memory module was not installed properly. Please make sure they are properly inserted into their corresponding socket.

|                                       | Pin                 | Pin Assignment                                                    |
|---------------------------------------|---------------------|-------------------------------------------------------------------|
| HD-LED<br>(Primary/Secondary IDE LED) | 3<br>5              | HDD LED Power<br>HDD                                              |
| Reserved                              | 4<br> 6             | N. C.<br>N. C.                                                    |
| ATX-SW<br>(ATX power switch)          | 8<br>10             | PWRBT+<br>PWRBT-                                                  |
| Reserved                              | 8<br>20             | N. C.<br>N. C.                                                    |
| RESET<br>(Reset switch)               | 7<br>9              | Ground<br>H/W Reset                                               |
| SPEAKER<br>(Speaker connector)        | 3<br> 5<br> 7<br> 9 | Speaker Data<br>N. C.<br>Ground<br>Speaker Power                  |
| <b>PWR-LED</b><br>(Power/Standby LED) | 2<br>4<br>6         | LED Power (+)<br>LED Power (+)<br>LED Power (-) or Standby Signal |

# PCI Express Slots



# **Download Flash BIOS Connector**



#### English

#### Smart Connectors

The Smart Connectors (USB, IEEE 1394 and Front Panel) serve as extended connectors allowing you to easily connect cables to the connectors that are on the system board. This is specially advantageous when using the front panel connectors as this will prevent wrong cable connection.



#### Front Panel Connectors

 Connect all front panel cables from the chassis to the front panel smart connector. Connect according to the pin definition shown on the smart connector.



2. Connect the front panel smart connector to the front panel connector on the system board.



#### USB and IEEE 1394 Connectors

- 1. Connect your USB/1394 port cable to the USB/1394 smart connector. Connect according to the pin definition shown on the smart connector.
- 2. Connect the USB/1394 smart connector to the respective connectors on the system board.

# Chapter 3 - RAID

The AMD chip alows configuring RAID on Serial ATA drives. It supports RAID 0, RAID 1 and RAID 0+1.

#### **RAID** Levels

#### RAID 0 (Striped Disk Array without Fault Tolerance)

RAID 0 uses two new identical hard disk drives to read and write data in parallel, interleaved stacks. Data is divided into stripes and each stripe is written alternately between two disk drives. This improves the I/O performance of the drives at different channel; however it is not fault tolerant. A failed disk will result in data loss in the disk array.

#### RAID I (Mirroring Disk Array with Fault Tolerance)

RAID I copies and maintains an identical image of the data from one drive to the other drive. If a drive fails to function, the disk array management software directs all applications to the other drive since it contains a complete copy of the drive's data. This enhances data protection and increases fault tolerance to the entire system. Use two new drives or an existing drive and a new drive but the size of the new drive must be the same or larger than the existing drive.

#### RAID 0+1 (Striping and Mirroring)

RAID 0+1 is a combination of data striping and data mirroring providing the benefits of both RAID 0 and RAID 1. Use four new drives or an existing drive and three new drives for this configuration.

#### Settings

English

To enable the RAID function, the following settings are required.

- I. Connect the Serial ATA drives.
- 2. Configure Serial ATA in the Award BIOS.
- 3. Configure RAID in the RAID BIOS.
- 4. Install the RAID driver during OS installation.

#### Step I: Connect the Serial ATA Drives

Refer to chapter 2 for details on connecting the Serial ATA drives.

#### Important:

- 1. Make sure you have installed the Serial ATA drives and connected the data cables otherwise you won't be able to enter the RAID BIOS utility.
- 2. Treat the cables with extreme caution especially while creating RAID. A damaged cable will ruin the entire installation process and operating system. The system will not boot and you will lost all data in the hard drives. Please give special attention to this warning because there is no way of recovering back the data.

#### Step 2: Configure Serial ATA in the Award BIOS

- I. Power-on the system then press <Del> to enter the main menu of the Award BIOS.
- 2. Select the Integrated Peripherals submenu OnChip IDE Device section of the BIOS.
- 3. Configure Serial ATA in the appropriate fields.
- 4. Press <Esc> to return to the main menu of the BIOS setup utility. Select "Save & Exit Setup" then press <Enter>.
- 5. Type <Y> and press <Enter>.
- 6. Reboot the system.

#### Step 3: Configure RAID in the RAID BIOS

When the system powers-up and all drives have been detected, the AMD BIOS status message screen will appear. Press the <F4> key to enter the utility. The utility allows you to build a RAID system on Serial ATA drives.

# English

#### Step 4: Install the RAID Driver During OS Installation

The RAID driver must be installed during the Windows<sup>®</sup> XP or Windows<sup>®</sup> 2000 installation using the F6 installation method. This is required in order to install the operating system onto a hard drive or RAID volume when in RAID mode or onto a hard drive when in AHCI mode.

- I. Start Windows Setup by booting from the installation CD.
- 2. Press <F6> when prompted in the status line with the 'Press F6 if you need to install a third party SCSI or RAID driver' message.
- 3. Press <S> to "Specify Additional Device".
- 4. At this point you will be prompted to insert a floppy disk containing the RAID driver. Insert the provided RAID driver diskette.
- 5. Locate for the drive where you inserted the diskette then select RAID or AHCI controller that corresponds to your BIOS setup. Press <Enter> to confirm.

You have successfully installed the driver. However you must continue installing the OS. Leave the floppy disk in the floppy drive until the system reboots itself because Windows setup will need to copy the files again from the floppy disk to the Windows installation folders. After Windows setup has copied these files again, remove the floppy diskette so that Windows setup can reboot as needed.

# Chapitre I - Spécifications

| Processeur               | <ul> <li>AMD® AM2+ socket pour: <ul> <li>Phenom™FX/Phenom™/Athlon™/Sempron™</li> </ul> </li> <li>AMD® AM2 socket pour: <ul> <li>Athlon Series/Sempron™</li> </ul> </li> <li>HyperTransport 3.0 (5200MT/s pour AM2+)</li> <li>HyperTransport 1.0 (2000/1600MT/s pour AM2)</li> </ul> <li>AMD OverDrive donne des options de réglages fins utilisant la nouvelle fonction de surcadençage "Advanced Clock Calibration".</li> <li>Socket 940 AM2+ 65nm</li> |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chipset                  | •AMD® chipset<br>- Pont nord: AMD® 790FX<br>- Pont sud: AMD SB750                                                                                                                                                                                                                                                                                                                                                                                        |
| Mémoire Système          | <ul> <li>4 sockets DIMM DDR2 240-pin</li> <li>Les modules DDR2 667/800/1066 MHz</li> <li>Jusqu'à 12.8GB/s bande passante</li> <li>L'interface de mémoire deux canaux (128-bit)</li> <li>Jusqu'à 8GB de mémoire système</li> <li>Non-tamponns DIMM x8 et x16</li> </ul>                                                                                                                                                                                   |
| Logements<br>d'Extension | <ul> <li>3 PCI Express (Gen 2) ×16 fentes</li> <li>CrossFire bi ou quadri directionnel à bande passante ×16/x16/NC</li> <li>CrossFire tri directionnel à bande passante ×16/x8/x8</li> <li>CrossFire bi directionnel + Physics à bande passante ×16/x8/x8</li> <li>3 PCI slots</li> </ul>                                                                                                                                                                |
| BIOS                     | <ul> <li>Compatible avec Award BIOS</li> <li>CMOS Reloaded</li> <li>Overclocking de CPU/DRAM</li> <li>Contrôle du voltage de CPU/DRAM/Chipset</li> <li>Mémoire Flash 8Mbit</li> </ul>                                                                                                                                                                                                                                                                    |
| Audio                    | <ul> <li>Realtek ALC885 8 canaux HD Audio Codec</li> <li>DAC haute performance à plage dynamique de 106dB (Poids A),<br/>ADC à plage dynamique de 101dB (Poids A)</li> </ul>                                                                                                                                                                                                                                                                             |
| LAN                      | <ul> <li>Marvell 88E8053 PCIE Gigabit LAN</li> <li>Entièrement conforme IEEE 802.3 (10BASE-T), 802.3u (100BASE-TX) et 802.3ab (1000BASE-T) standard</li> </ul>                                                                                                                                                                                                                                                                                           |
| IDE                      | • Supporte des disques durs jusqu'à UltraDMA 133Mbps                                                                                                                                                                                                                                                                                                                                                                                                     |
| Serial ATA avec<br>RAID  | <ul> <li>6 ports de Série ATA</li> <li>SATA allant jusqu'à 3Gb/s</li> <li>RAID 0, RAID 1 et RAID 0+1</li> </ul>                                                                                                                                                                                                                                                                                                                                          |

Français

| Franç                                    | ais |
|------------------------------------------|-----|
| Panneau Arrière I/O • 1 port souris PS/2 |     |

- - - -

|                                         | <ul> <li>I port claver PS/2</li> <li>I port sortie optique S/PDIF</li> <li>I port sortie coaxial RCA S/PDIF</li> <li>6 ports USB 2.0/1.1</li> <li>I port RJ45 LAN</li> <li>Center/subwoofer, rear R/L et side R/L prises audio</li> <li>Line-in, line-out et mic-in prises audio</li> </ul>                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Interne I/O                             | <ul> <li>3 connecteurs pour 6 ports USB 2.0 supplémentaires</li> <li>1 connecteur pour 1 série</li> <li>1 connecteur audio frontal</li> <li>1 connecteur CD-in audio internes</li> <li>1 connecteur IrDA</li> <li>1 connecteur CIR</li> <li>6 connecteurs Serial ATA</li> <li>1 connecteur IDE</li> <li>1 connecteur de FDD</li> <li>1 connecteur d'alimentation 24-pin ATX</li> <li>1 connecteur d'alimentation 8-pin 12V ATX</li> <li>1 prise d'alimentation 4-broches 5V/12V (type-FDD)</li> <li>1 connecteur devant panneau</li> <li>6 connecteurs de ventilateurs</li> <li>EZ interrupteurs (bouton de power et reset)</li> </ul> |
| Gestion de<br>Puissance                 | <ul> <li>ACPI et OS Directed Power Management</li> <li>ACPI STR (Suspend to RAM) fonction</li> <li>Réveil-Sur-PS/2 Clavier/Souris</li> <li>Réveil-Sur-USB Clavier/Souris</li> <li>Eveil Sonnerie</li> <li>Réveil Par Le Réseau</li> <li>Minuterie RTC pour allumer le système</li> <li>Récupération après Défaillance d'Alimentation CA</li> </ul>                                                                                                                                                                                                                                                                                     |
| Fonctions de<br>Moniteur de<br>Matériel | <ul> <li>Gère l'alarme de température et de surchauffe de CPU / système / pont nord</li> <li>Gère l'alarme de voltage et d'échec de I2V/5V/3.3V/Vcore/ Vbat/5Vsb/Vdimm/Vchip</li> <li>Gère la vitesse de ventilateur du ventilateur</li> <li>Protection du CPU - supporte la mise hors circuit automatique en cas de surchauffage du système</li> </ul>                                                                                                                                                                                                                                                                                |
| РСВ                                     | • facteur de forme de ATX<br>• 24.5cm (9.64") × 30.5cm (12")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# Chapitre 2 - Installation de Matériel

## Cavalier

### Effacer les Données CMOS

Se débarrasser des données CMOS en utilisant les cavaliers



#### Si vous rencontrez les éléments suivants,

- a) Données CMOS devenant corrompues
- b) Vous avez oublié le superviseur ou le mot de passe utilisateur
- c) Les réglages surcadencés dans le BIOS ont entraîné une instabilité du système ou causés des problèmes de démarrage du système.

Vous devez reconfigurer le système aux valeurs par défaut stockées dans la ROM BIOS.

JP10 est accessible depuis le panneau arrière du système. Ceci vous apporte la commodité de nettoyer le CMOS sans avoir à retirer le couvercle du chassis.

Français

**Français** 

Pour charger les valeurs par défaut dans la ROM BIOS, veuillez suivre les étapes ci-dessous.

- I. Débrancher le système et retirer le cordon d'alimentation.
- 2. Mettre les broches du JP8/JP10 2 et 3 sur ON Attendre quelques secondes et remettre JP8/JP10 par défaut, broches 1 et 2 On.
- 3. Rebrancher maintenant le cordon d'alimentation et allumer le système.

Français



### Sélectionner l'alimentation PS/2

**Français** 

En sélectionnant 5VSB, vous pourrez utiliser le clavier PS/2 ou la souris PS/2 pour ''réveiller'' le système.

#### ..... USB 0-5 1 2 3 1 2 3 (JP5) I-2 On: 5V 2-3 On: 5VSB (défaut) m --0 Ο USB 6-11 1 2 3 1 2 3 (JP6) ···· 2-3 On: I-2 On: 5V 5VSB (défaut)

Sélectionner l'alimentation USB

En sélectionnant 5VSB, vous pourrez utiliser le clavier USB ou la souris USB pour "réveiller" le système.

#### Important:

La source d'alimentation 5VSB de votre alimentation doit supportée  $\geq 1,5(2 \text{ ports})$  ou  $\geq 2 \text{ A}(3 \text{ ou davantage de ports}).$
# Sélection des Haut-parleurs ON/OFF



La carte système est équipée d'un avertisseur sonore qui sert en tant que haut-parleur du PC. Par défaut l'avertisseur sonore est « ON » permettant d'entendre les « bips » des messages et les avertissements. Si vous voulez utiliser un haut-parleur externe, éteindre cette fonction en réglant les broches I et 2 du JP8 sur On.

# Sélectionner le PCIE 3



# Sélectionner le PCIE Gen 1/Gen 2



....................

Mettre ce cavalier en fonction du type de carte PCI Express utilisé.

# Ports I/O de l'arrière du Panneau



**Français** 

# Ports PS/2 et S/PDIF



# Ports Souris PS/2 et Clavier PS/2

Ces ports sont utilisés pour raccorder une souris PS/2 et un clavier PS/2.

# Prises coaxiale de RCA S/PDIF et optique de S/PDIF

Ces prises sont utilisées pour connecter les appareils de sortie audio externes en utilisant les câbles coaxiaux et **optique** S/PDIF.

NE PAS utiliser un câble S/PDIF et RCA S/PDIF coaxial en même temps.

# F

# Ports USB et LAN

Français .



# Ports USB

Les ports USB sont utilisés pour raccorder des appareils USB 2.0/ 1.1. Les connecteurs 10 broches vous permettent de raccorder 6 autres ports USB 2.0/1.1. Vos ports USB peuvent être livrés montés sur un support encartable. Installer le support encartable dans une fente disponible à l'arrière du châssis du système et raccorder les câbles des ports USB à ces connecteurs.

# Ports LAN

Les ports LAN permettent à la carte système de se connecter à un réseau local au moyen d'un concentrateur réseau.

**Français** 

# Audio et CD-In



# Prise de caisson de basse/central (Center/Subwoofer) (orange)

Cette prise est utilisée pour se connecter aux haut-parleurs de basse et centraux du système audio.

# Prise arrière gauche/droite (noire)

Cette prise est utilisée pour se connecter aux haut-parleurs arrière droits et gauches du système audio.

# Prise de côté gauche/droite (grise)

Cette prise est utilisée pour se connecter aux haut-parleurs de côté droits et gauches du système audio.

# Prise entrée (bleue claire)

La prise est utilisée pour raccorder tous les appareils audio tels que Hi-fi, lecteur CD, lecteur de bande magnétique, radio AM/FM, synthéthiseur, etc..

### Prise de sortie (Citron)

Cette prise est utilisée pour se connecter aux haut-parleurs avant droits et gauches du système audio.

### Prise entrée micro (rose)

Cette prise est utilisée pour connecter un microphone externe.

### Connecteur audio frontal

Le connecteur audio frontal est utilisé pour raccorder les prises micro d'entrée et les sorties de ligne (line-out) sur le panneau frontal de votre système.

### Connecteur d'entrée CD

Le connecteur d'entrée CD est utilisé pour recevoir les signaux audio d'un lecteur CD-ROM, d'une carte TV ou MPEG.

# Connecteurs I/O

Les Connecteurs en Série ATA

# Les connecteurs en série ATA (SATA) sont utilisés pour raccorder les disques durs ATA en série. Relier une extrémité du câble en série ATA au connecteur en série ATA et l'autre extrémité sur votre appareil en série ATA.

# Configuration du Système RAID

Se référer au chapitre RAID de ce manuel pour obtenir davantage d'informations sur la création d'un système RAID sur les disques durs en série ATA.



**Français** 



Français .

# Connecteur de Lecteur de Disquettes et Connecteur IDE



# Connecteur de Lecteur de Disquettes

Le connecteur de lecteur de disquettes est utilisé pour raccorder le lecteur de disquettes. Il possède un mécanisme d'insertion qui empêche sa mauvaise installation. Insérer une extrémité du câble du lecteur de disquette dans ce connecteur et l'autre dans le lecteur de disquette. Le bord coloré du câble devrait être aligné avec l'ergot 1 de ce connecteur:

# Connecteur de Disque dur IDE

Le connecteur de disque dur IDE est utilisé pour raccorder 2 disques IDE. Il possède un mécanisme d'insertion qui empêche la mauvaise installation du cable IDE. Un câble IDE comporte 3 connecteurs, un qui se branche sur ce connecteur et les deux autres qui se connectent sur les appareils IDE. Le connecteur à l'extrémité du câble est pour le disque maître et celui au milieu du câble est pour l'esclave. Le bord coloré du câble devrait être aligné avec l'ergot I de ce connecteur.



# Note:

Lors de l'utilisation des disques dur IDE, l'un doit être assigné Maître et l'autre esclave. Suivre les instructions fournies par le fabricant de disques durs pour mettre les cavaliers et/ou les commutateurs sur les disques durs.

# Connecteurs IrDA, CIR et en Série (COM)



# Connecteur IrDA/CIR

Ce connecteur est utilisé pour raccorder un module IrDA/CIR.

# Note:

La séquence de la fonction des broches (signal) sur certains câbles IrDA/CIR peut être inversée à partir de la fonctionnalité définie sur la carte système. S'assurer de relier le connecteur du câble sur le connecteur IrDA/CIR selon les fonctions de leurs broches.

Il se peut que vous deviez installer les disques dans votre système d'exploitation convenants à l'utilisation de la fonctionnalité IrDA/CIR Se référer au manuel de votre système d'exploitation ou à la documentation pour obtenir davantage d'informations.

# Connecteur en Série (COM)

Français .

Le connecteur en série (COM) est utilisé pour raccorder les modems, les imprimantes en série, les terminaux d'affichage à distance ou autres appareils en série. Votre port COM peut être livré monté sur un support encartable. Installer le support encartable dans une fente disponible à l'arrière du châssis du système et raccorder le câble du port en série à ce connecteur. Le bord coloré du câble devrait être aligné avec l'ergot I de ce connecteur.

..........

# Connecteurs de Ventilateur de Refroidissement



Ces connecteurs de ventilateur sont utilisés pour raccorder les ventilateurs de refroidissement. Les ventilateurs de refroidissement fournissent une ventilation adéquate à l'intérieur du châssis afin d'empêcher toute surchauffe du processeur et des composants de la carte système.

# Commutateurs à Touche EZ



La présence des commutateurs d'alimentation et de réinitialisation sur la carte système est conviviale et particulièrement pour les utilisateurs étant bricoleurs. Ils sont très pratiques pour allumer ou réinitialiser le système tout en ajustant la carte système avant l'installation sur le châssis.

# F

# Voyants DEL

Francais



.................

# Voyant DEL d'alimentation DRAM

Ce voyant DEL s'allumera lorsque le système est allumé.

# Voyant DEL d'alimentation à l'état de Veille

Ce voyant DEL s'allumera lorsque le système est en mode veille.

# Voyant DEL de Diagnostic

Le voyant DEL de diagnostic affiche les codes POST. POST (tests automatiques d'alimentation) qui est contrôlé par le BIOS est effectué à chaque fois que le système est allumé. "POST détectera le statut du système et de ses composants. Chaque code affiché sur le voyant DEL correspond à un certains statut du système.



### Avertissement:

Lorsque le voyant DEL d'alimentation DRAM et/ou d'alimentation à l'état de veille sont rouge, cela indique que le courant passe dans les supports DIMM et/ou dans les fentes PCI. Eteindre le PC et débrancher le cordon d'alimentation avant d'installer les modules mémoire ou les cartes d'extension. Un échec à effectuer ceci peut entraîner des dégâts graves à la carte mère et ses composants.

# Connecteurs d'alimentation

Utiliser une alimentation électrique conforme à la version 1.1 du guide d'alimentation électrique ATX12V. Une unité d'alimentation électrique ATX12V possède un connecteur d'alimentation principale ATX à 24 broches qui doit être inséré dans ce connecteur.



Votre unité d'alimentation électrique peut être livrée avec un connecteur d'alimentation 12V à 4 ou 8 broches. L'alimentation 12V permet la fourniture de courant 12VDC en direction du module de régulation de tension du processeur (VRM - Voltage Regulator Module). Si disponible, il est préférable d'utiliser une alimentation 8 broches, sinon, raccorder une alimentation 4 broches à ce connecteur.



Les connecteurs d'alimentation de l'unité d'alimentation électrique sont conçus pour s'adapter aux connecteurs à 24 et 8 broches seulement dans une direction. S'assurer d'observer la bonne orientation avant de brancher les connecteurs.

Les connecteurs d'alimentation de type FDD sont des connecteurs supplémentaires d'alimentation. Si vous utilisez plus d'une carte graphique, nous vous conseillons de brancher les câbles d'alimentation depuis votre unité d'alimentation électrique sur des connecteurs d'alimentation de 5V/12V. Ceci donnera plus de stabilité à tout le système. La carte système fonctionnera toujours même si le connecteur d'alimentation supplémentaire n'est pas raccordé.



La carte système nécessite une alimentation minimale de 300 Watts pour pouvoir fonctionner. La configuration de votre système (alimentation du processeur, cartes d'extension, périphériques etc.) peut dépasser la puissance minimale requise. Pour s'assurer que la puissance minimale soit fournie, nous vous conseillons fortement d'utiliser une alimentation minimale de 400 Watts (ou davantage).



### Important:

Une puissance insuffisante fournie au système peut entraîner une instabilité ou un mauvais fonctionnement des cartes d'extension et des périphériques. Le calcul de la puissance approximative requise par le système est important pour garantir que l'alimentation soit suffisante pour la consommation du système.

# Redémarrage du PC

Normalement vous pouvez éteindre le PC en :

1. Appuyant sur le bouton d'alimentation sur le panneau frontal du chassis.

ои

2. En appuyant sur le commutateur d'alimentation se trouvant sur la carte système (note : toutes les cartes systèmes ne possèdent pas ce commutateur)

Si, pour quelque raison que ce soit, vous devez éteindre l'alimentation du PC, éteindre l'alimentation ou débrancher le cordon d'alimentation. Veuillez noter que si vous désirez le redémarrer de suite, suivez les étapes suivantes :

- 1. Le temps de déchargement de l'électricité dépend des alimentations électriques. Le temps de déchargement dépend entièrement de la configuration du système telle que le nombre de Watt de l'alimentation, de la séquence de l'alimentation ainsi que du nombre d'appareils périphériques reliés au système. Pour ces raisons nous conseillons fortement d'attendre que le voyant DEL de veille (se référer à la section « voyants DEL » de ce chapitre pour la localisation de ce voyant) s'éteigne.
- 2. Une fois le voyant DEL de veille éteint, attendre 6 secondes avant d'allumer le PC.

Si la carte système est déjà montée dans un châssis qui apparemment ne laissera pas entrevoir le voyant DEL de veille, attendre 15 secondes avant de restaurer les connexions électriques. 15 secondes est environ le temps que prendra le voyant DEL pour s'éteindre et le temps nécessaire avant la restauration de l'alimentation.

Ceci garantit une protection et empêche les dégâts graves éventuels à la carte mère et à ses composants.

# Connecteurs Frontaux du Panneau



# HD-LED: Voyant DEL IDE Principal/Secondaire

Ce voyant DEL s'allumera lorsqu'on accède au disque dur.

# **RESET:** Commutateur de Réinitialisation

Ce commutateur vous permet de redémarrer sans avoir à éteindre le système et par conséquent en permettant une durée de vie de l'alimentation ou du système prolongée.

# SPEAKER: Connecteur du Haut-parleur

Il se connecte au haut parleur installé dans le châssis du système.

# ATX-SW: Commutateur d'alimentation ATX

Dépendant des réglages à l'intérieur du BIOS, ce commutateur est un « bouton d'alimentation à deux fonctions » qui permettra à votre système d'entrer en mode Soft-Off ou Suspend.

# PWR-LED: Voyant DEL d'alimentation / état de veille

Ce voyant DEL s'allumera lorsque le système est allumé. Lorsque le système est sur le statut S1 (POS – alimentation suspendue) ou S3 (STR – suspendue dans la RAM), il clignotera toutes les secondes.



Note:

Si le système n'a pas démarré et que le voyant DEL d'alimentation/veille ne s'est pas allumé après le démarrage, cela peut indiquer que le processeur ou le module n'ont pas été installés correctement. Veuillez vous assurer qu'ils soient correctement insérés dans leur support.

|                                       | Pin                    | Pin Assignment                                                    |
|---------------------------------------|------------------------|-------------------------------------------------------------------|
| HD-LED<br>(Primary/Secondary IDE LED) | 3<br>5                 | HDD LED Power<br>HDD                                              |
| Reserved                              | 4<br> 6                | N. C.<br>N. C.                                                    |
| ATX-SW<br>(ATX power switch)          | 8<br>10                | PWRBT+<br>PWRBT-                                                  |
| Reserved                              | 18<br>20               | N. C.<br>N. C.                                                    |
| <b>RESET</b><br>(Reset switch)        | 7<br>9                 | Ground<br>H/W Reset                                               |
| <b>SPEAKER</b><br>(Speaker connector) | 3<br>  5<br>  7<br>  9 | Speaker Data<br>N. C.<br>Ground<br>Speaker Power                  |
| <b>PWR-LED</b><br>(Power/Standby LED) | 2<br>4<br>6            | LED Power (+)<br>LED Power (+)<br>LED Power (-) or Standby Signal |

F

Français

# Fentes PCI Express

**Français** 



. . . . . . . . . . . . . . . . . . .

# Connecteur de Download Flash BIOS Connector



F

Français

Francais

# Connecteurs Smart

Les connecteurs Smart (USB, IEEE 1394 et panneau avant) servent de rallonge de connecteurs vous permettant de facilement raccorder des câbles aux connecteurs se trouvant sur la carte mère. Ceci est particulièrement utile aux connecteurs du panneau avant car cela empêchera le raccordement de câbles ne convenant pas.



# Connecteurs du Panneau Avant

- Raccordez tous les câbles du panneau avant du châssis au connecteur Smart du panneau avant. Raccordez en fonction de la définition de la broche indiquée sur le connecteur Smart.
- 2. Raccordez le connecteur Smart du panneau avant au connecteur du panneau avant de la carte système.





# Connecteurs USB et IEEE 1394

- Raccordez votre câble du port USB/1394 au connecteur Smart USB/ 1394. Raccordez en fonction de la définition de la broche indiquée sur le connecteur Smart.
- 2. Raccordez le connecteur Smart USB/1394 aux connecteurs correspondants sur la carte système.

# Chapitre 3 - RAID

La puce AMD permet la configuration du système RAID sur disques durs ATA. Elle supporte les systèmes RAID 0, RAID I et RAID 0+1.

# Niveaux du Système RAID

### RAID 0 (matrice de disque à "0" erreur de tolérance)

RAID 0 utilise deux nouveaux disques durs identiques pour lire et graver en blocs parallèles. Les données sont divisées en bandes et chaque bande est gravée alternativement d'un disque à l'autre. Ceci améliore la performance I/O des disques sur les différents canaux, cependant aucune tolérance d'erreur n'est admise. Un disque défaillant résultera en une perte des données dans la matrice.

# RAID I (matrice de disque à écriture mirroir à tolérance d'erreur)

RAID I copie et conserve une image identique des données d'un disque à l'autre. Si un disque fonctionne incorrectement, le logiciel de gestion de la matrice envoie toutes les applications en direction de l'autre disque puisqu'il contient une copie complète des données du disque. Ceci améliore la protection des données et accroît la tolérance des erreurs dans tout le système. Utiliser deux nouveaux disques durs ou un disque existant et un nouveau disque dur mais la taille du nouveau disque dur doit être identique ou supérieure à celle de celui existant.

### RAID 0+1 (bande et mirroir)

RAID 0+1 est une combinaison de données mirroir et de bandes de données apportant les avantages des systèmes RAID 0 et RAID 1. Utiliser quatre nouveaux disques durs ou un disque existant et trois nouveaux disques pour cette configuration.

# Réglages

Pour activer la fonctionnalité RAID, les réglages suivants sont nécessaires:

Francais

- 1. Raccorder les disques durs en série ATA.
- 2. Configurer le disque ATA en série dans le BIOS.
- 3. Configurer les systèmes RAID dans le BIOS RAID.
- 4. Installer le driver RAID lors de l'installation du SE (système d'expl<sup>ion.</sup>).

# Etape I : Raccorder les disques durs en série ATA.

Se référer au chapitre 2 pour obtenir davantage de détails sur la connexion des disques durs en série ATA.

### Important:

- 1. S'assurer d'avoir installé les disques en série ATA et d'avoir raccordé les câbles de données sinon vous ne pourrez entrer dans l'utilitaire BIOS RAID.
- 2. Faire très attention aux câbles et particulièrement en créant le système RAID. Un câble endommagé détériorera tout le processus d'installation et le SE. Le système ne démarrera pas et vous perdrez toutes les données des disques durs. Veuillez prêter attention à cet avertissement car il n'existe aucun moyen de récupérer les informations.

# Etape 2 : Configurer le disque ATA en série dans le BIOS

- I. Allumer le système et appuyer sur <Del> pour rentrer dans le menu principal du BIOS.
- 2. Sélectionner le sous menu des périphériques intégrés sur la partie de puce correspondant au disque IDE du BIOS
- 3. Configurer le disque ATA en série dans les champs appropriés.
- 4. Appuyer sur <Esc> pour retourner au menu principal de l'utilitaire d'installation du BIOS. Sélectionner "Save & Exit Setup" et appuyer ensuite sur <Enter>.
- 5. Taper <Y> et appuyer sur <Enter>.
- 6. Redémarrer le système.

# Etape 3 : Configurer le système RAID dans le BIOS RAID

Lorsque le système démarre et que tous les disques durs ont été détectés, le message de statut du BIOS AMD apparaîtra. Appuyer sur la touche <F4> pour entrer dans l'utilitaire. L'utilitaire vous permet de créer un système RAID sur des disques durs en série ATA.

# Etape 4 : Installer le driver RAID lors de l'installation du SE (système d'explion.).

Le driver RAID doit être installé lors de l'installation de Windows<sup>®</sup> XP ou de Windows<sup>®</sup> 2000 en utilisant la méthode d'installation F6. Ceci est nécessaire afin d'installer le SE sur un disque dur ou sur un volume RAID lors du mode RAID ou sur un disque dur lors du mode AHCI.

- 1. Lancer l'installation de Windows en démarrant depuis le CD d'installation.
- 2. Appuyer sur <F6> lors de la demande dans la ligne de statut en utilisant la touche F6 si vous avez besoin d'installer une troisième partie SCSI ou lors d'un message du driver RAID.
- 3. Appuyer sur <S> pour « spécifier un appareil supplémentaire ».
- 4. A ce moment on vous demandera d'insérer une disquette contenant le driver RAID. Insérer la disquette contenant le driver RAID.
- 5. Localiser le lecteur dans lequel vous avez inséré la disquette et sélectionner le système RAID ou le contrôleur AHCI correspondant à votre installation du BIOS. Appuyer sur <Enter> pour confirmer.

Vous avez réussi à installer le driver. Cependant vous devez continuer à installer le SE. Laisser la disquette dans le lecteur de disquette jusqu'à ce que le système rédémarre tout seul car lors de l'installation de Windows les fichiers seront copiés depuis la disquette sur les dossiers d'installation de Windows. Une fois les fichiers copiés lors de l'installation de Windows, retirer la disquette afin de laisser l'ordinateur redémarrer après l'installation de Windows.

# Kapitel I - Spezifikation

| Prozessor           | <ul> <li>AMD® AM2+ CPU Einfaßung für:</li> <li>Phenom<sup>™</sup>FX/Phenom<sup>™</sup>/Athlon<sup>™</sup>/Sempron<sup>™</sup></li> <li>AMD® AM2 CPU Einfaßung für:</li> <li>Athlon Series/Sempron<sup>™</sup></li> <li>HyperTransport 3.0 (5200MT/s für AM2+)</li> <li>HyperTransport 1.0 (2000/1600MT/s für AM2)</li> <li>AMD OverDrive bietet Tuning-Optionen mithilfe der neuen "Advanced Clock Calibration" Overclocking-Funktion.</li> <li>Socket 940 AM2+ 65nm</li> </ul> |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chipset             | • AMD® chipset<br>- Nordbrücke: AMD 790FX<br>- Südbrücke: AMD SB750                                                                                                                                                                                                                                                                                                                                                                                                             |
| Systemspeicher      | <ul> <li>4 240-pin-Steckplätze DDR2 DIMM</li> <li>Moduln DDR2 667/800/1066 MHz</li> <li>Bis zum 12.8GB/s-Bandbreite.</li> <li>128-bit – Speiher mit den zwei Kanälen</li> <li>Bis zum 8GB-Systemspeicher</li> <li>DIMMs ohne Dämpfer x8 und x16 DIMMs</li> </ul>                                                                                                                                                                                                                |
| Expansion Schlitz   | <ul> <li>3 PCI Express (Gen 2) x16-Einbauplätzen</li> <li>2-way or 4-way CrossFire mit x16/x16/NC Bandbreite</li> <li>3-way CrossFire mit x16/x8/x8 Bandbreite</li> <li>2-way CrossFire + Physics mit x16/x8/x8 Bandbreite</li> <li>3 PCI-Einbauplätzen</li> </ul>                                                                                                                                                                                                              |
| BIOS                | <ul> <li>Kompatibilität mit Award BIOS</li> <li>CMOS Reloaded</li> <li>Die Frequenzerhöhung CPU/DRAM</li> <li>Spannungserhöhung CPU/DRAM/Chipset</li> <li>Flash-Speicher (8Mbit)</li> </ul>                                                                                                                                                                                                                                                                                     |
| Audio               | <ul> <li>Realtek ALC885 8-Kanal HD Audio Codec</li> <li>High-performance DACs mit 106dB dynamic range (A-Weight),<br/>ADCs mit 101dB dynamic range (A-Weight)</li> </ul>                                                                                                                                                                                                                                                                                                        |
| LAN                 | <ul> <li>Marvell 88E8053 PCIE Gigabit LAN</li> <li>Völlig gefällig zu IEEE 802.3 (10BASE-T), 802.3u (100BASE-TX) und 802.3ab (1000BASE-T) standards</li> </ul>                                                                                                                                                                                                                                                                                                                  |
| IDE                 | • Unterstützung der Festplatten bis zum UltraDMA 133Mbps                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Serial ATA mit RAID | <ul> <li>6 serielle Serial ATA-Ports</li> <li>SATA bis zu 3Gb/s schnell</li> <li>RAID 0, RAID 1 und RAID 0+1</li> </ul>                                                                                                                                                                                                                                                                                                                                                         |

| Porte an der<br>Rückwand | <ul> <li>I Mini-DIN-6-Anschluß für eine PS/2-Maus</li> <li>I Mini-DIN-6-Anschluß für eine PS/2-Tastatur</li> <li>I S/PDIF optischen-Anschlüsse</li> <li>I S/PDIF coaxial RCA-Anschlüsse</li> <li>6 USB 2.0/1.1-Anschlüsse</li> <li>I RJ45 LAN-Anschlüsse</li> <li>Center/subwoofer, rear R/L und side R/LAudio-Anschlußbuchsen</li> <li>Line-in, line-out und mic-in Audio-Anschlußbuchsen</li> </ul>                                                                                                                                                                                                                                                                                                               |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Internes I/O             | <ul> <li>3 Anschlußfassung für 6 zusätzliche externe USB 2.0-Anschlüsse</li> <li>I Anschluß für eine externe serieller DB-9-Anschluß</li> <li>I Front-Audioanschluss</li> <li>I interne Audioanschlüsse (CD-in)</li> <li>I IrDA-Anschluß</li> <li>I CIR-Anschluß</li> <li>6 Serial-ATA-Anschlüsse</li> <li>I IDE-Anschlüsse</li> <li>I IDE-Anschlüsse</li> <li>I Floppy-Anschlüsse</li> <li>I 24-polige Anschlußstecker für das ATX-Netzgerät</li> <li>8-polige 12V Anschlußstecker für das ATX-Netzgerät</li> <li>2 4-polige 5V/12V Netzstecker (für FDD)</li> <li>I Vorderseite Füllung Anschlüsse</li> <li>6-ventilator-Anschlüsse</li> <li>EZ Umschaltern (der Knopf der Speisung und des Auslasses)</li> </ul> |
| Energie<br>Management    | <ul> <li>ACPI und OS Directed Power Management</li> <li>ACPI STR (Suspend to RAM) funktion</li> <li>Wecken bei Betätigung der PS/2 Tastatur/Maus</li> <li>Wecken bei USB-Tastatur/Maus</li> <li>Wecken bei Klingeln und Wecken des Systems durch das Netzwerk</li> <li>RTC-Taktgeber zum Einschalten des Systems</li> <li>Wiederherstellung der Wechselstromversorgung nach einem Ausfall</li> </ul>                                                                                                                                                                                                                                                                                                                |
| Kleinteilmonitor         | <ul> <li>Überwachung der Temperatur des CPU / Systems /<br/>Nordbrücke sowie Warnsignal bei Überhitzung</li> <li>Überwachung der Spannungen des 12V/5V/3.3V/Vcore/Vbat/<br/>5Vsb/Vdimm/Vchip</li> <li>Überwachung der Geschwindigkeit des Ventilators</li> <li>Prozessor-Shutz - Die Ausschaltung bei der Überhitzung – die<br/>automatische Ausschaltung des Computers bei der Überhitzung</li> </ul>                                                                                                                                                                                                                                                                                                              |
| РСВ                      | • ATX Formfaktor<br>• 24.5cm (9.64") × 30.5cm (12")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Deutsch

# Kapitel 2 - Installieren des Hardware

# Jumper

# Löschen der CMOS Daten

# CMOS Data mit Steckbrücken löschen



Sollten Sie eins der folgenden Probleme haben,

- a) die CMOS Daten sind beschädigt.
- b) Sie haben das Supervisor oder User Passwort vergessen.
- c) die Übertaktungseinstellungen im BIOS haben zur Instabilität des Systems geführt oder Ihr System bereitet Probleme beim Booten.

so können Sie das System mit den im ROM BIOS gespeicherten Standardwerten rekonfigurieren.

Der JP10 ist von der Rückseite des Systems zu erreichen. Dies bietet den Vorteil, dass Sie das CMOS löschen können, ohne das Gehäuse entfernen zu müssen.

Um die im ROM BIOS gespeicherten Standardwerte zu laden führen Sie bitte die folgenden Schritte aus.

.......

.........

I. Schalten Sie das System aus und ziehen Sie den Netzstecker.

. . . . . . . . .

- 2. Setzen Sie die JP8/JP10 Pins 2 und 3 auf On. Warten Sie nun einige Sekunden und setzen Sie dann die JP8/JP10 Pins zurück in die Ausgangsposition, Pins 1 und 2 On.
- 3. Verbinden Sie nun wieder den Netzstecker und schalten Sie das System ein.

# PS/2 Power Select



Die Auswahl von 5VSB erlaubt es Ihnen, Ihr System per PS/2 Keyboard oder PS/2 Maus aufzuwecken.



# **USB** Power Select

Die Auswahl von 5VSB erlaubt es Ihnen, Ihr System per USB Keyboard oder USB Maus aufzuwecken.

### Wichtig:

Die 5VSB Stromquelle Ihres Netzteils muss ≥1.5V (2 ports) oder ≥2V (3 oder mehr Ports) Vunterstützen.

# G

# Speaker On/Off Auswahl

Deutsch



.................

Das Systemboard ist mit einem Summer ausgestattet, der als Lautsprecher des PC's dient. Ab Werk ist die Standardeinstellung des Summers "on" wodurch Sie die Warnungen und Piep-Nachrichten des Systems hören. Falls Sie externe Lautsprecher verwenden wollen, so schalten Sie diese Funktion durch das Setzen der JP2 Pins I und 2 auf On aus.

# PCIE 3 Select



Deutsch

# PCIE Gen1/Gen2 Select



Setzen Sie die Brücke entsprechend des von Ihnen benutzten Typs der PCI Express Card.

# Rückseite I/O Ports



Deutsch



..........

# PS/2 Ports und S/PDIF Ports

# PS/2 Maus und PS/2 Keyboard Ports

Diese Ports werden zum Anschluss von PS/2 Maus und PS/2 Keyboard verwendet.

# Coaxial RCA S/PDIF und Optischer S/PDIF Stecker

Mit diesen Steckern verbinden Sie externe Audioausgabegeräte die koaxiale/Optischer S/PDIF Kabel verwenden.



Wichtig: Verwenden Sie NICHT optische S/PDIF und koaxiale RCA S/ PDIF gleichzeitig.





# **USB** Ports

Über die USB Ports verbinden Sie USB 2.0/1.1 Geräte. Die 10-Pin Anschlüsse erlauben Ihnen den Anschluss von 6 zusätzlichen USB 2.0/1.1 Ports. Ihre USB Ports könnten auf einem Halterungsblech befestigt sein. Installieren Sie das Blech in eine verfügbare Halterung an der Rückseite des Gehäuses und verbinden Sie das Kabel des USB Ports mit dem entsprechenden Anschluss.

# LAN Ports

Über die LAN Ports können Sie das Systemboard über einen Netzwerk-Hub mit einem lokalen Netzwerk verbinden.

# Audio und CD-In

tsch



.................

# Center/Subwoofer Stecker (Orange)

Mit diesem Stecker verbinden Sie die Center und Subwoofer Lautsprecher Ihres Audiosystems mit dem System.

# Rear Right/Left Jack (Schwarz)

Mit diesem Stecker verbinden Sie die hinten links und hinten rechts Lautsprecher Ihres Audiosystems mit dem System.

# Side Right/Left Jack (Grau)

Mit diesem Stecker verbinden Sie die seitlich links und seitlich rechts Lautsprecher des Audiosystems mit dem System.

### Line-in Stecker (Hellblau)

Mit diesem Stecker verbinden Sie beliebige Audiogeräte wie z.B. Stereoanlagen, CD-Player, Kassettenrecorder, AM/FM Radios, Synthesizer, etc.mit dem System.

# Line-out Stecker (Hellgrün)

Mit diesem Stecker verbinden Sie die vorne links und vorne rechts Lautsprecher Ihres Audiosystems mit dem System.

Deutsch

# Mic-in Stecker (Pink)

Mit diesem Stecker verbinden Sie ein externes Mikrophon mit dem System.

# Front Audio Anschluss

Mit dem Front Audio Anschluss werden die line-out und mic-in Stecker die sich an der Frontseite des Gehäuses befinden verbunden.

# **CD-in Anschluss**

Der CD-in Anschluss wird verwendet, um Audio von einem CD-ROM Laufwerk, einer TV Tuner oder MPEG-Karte zu empfangen.

# I/O Anschlüsse

# Serial ATA Anschlüsse



Über die Serial ATA (SATA) Anschlüsse werden Serial ATA Laufwerke angeschlossen. Verbinden Sie das eine Ende des Serial ATA Kabels mit dem Serial ATA Anschluss und das andere Ende mit Ihrem Serial ATA Gerät.

# **RAID-Konfiguration**

Bitte lessen Sie im Kapitel RAID dieses Handbuchs, um weitere Informationen zur Erzeugung von RAID auf Serial ATA Laufwerken zu erhalten.



# Floppy Disk Drive Anschluss und IDE Anschluss

# Floppy Disk Drive Anschluss

Über den Floppy Disk Drive Anschluss werden Floppy-Laufwerke angeschlossen. Er verfügt über einen Verbindungsmechanismus der eine Fehlinstallation vermeidet. Verbinden Sie ein Ende des Floppy-Kabels mit dem Anschluss auf dem Board und das andere Ende mit dem Floppy-Laufwerk. Das farblich markierte Ende des Kabels muss mit Pin I des Anschlusses in Übereinstimmung gebracht werden.

# **IDE Disk Drive Anschluss**

Über den IDE Disk Drive Anschluss werden 2 IDE Laufwerke angeschlossen. Er verfügt über einen Verbindungsmechanismus der eine Fehlinstallation vermeidet. Das IDE-Kabel hat 3 Steckverbindungen, eine für den IDE Disk Drive Anschluss und die anderen beiden für die IDE-Laufwerke. Der Stecker am Ende des Kabels ist für das Master-Laufwerk und der in der Mitte des Kabels ist für das Slave-Laufwerk vorgsehen. Das farblich merkierte Ende des Kabels muss mit Pin Ides Anschlusses in Übereinstimmung gebracht werden.



### Bitte beachten:

Wenn Sie 2 IDE-Laufwerke verwenden muss eins als Master und eins als Slave eingestellt sein. Folgen Sie den Anweisungen des Herstellers der Laufwerke bezüglich der Einstellungen der Jumper und/oder Schalter.

Deutsch

•••• .... IRRX Ground N. C. IRTX VCC m IrDA 5 تر ا 1 ...... Ο CIRRX Ground N.C. \_\_\_\_ 5VSB CIRTX ..... CIR 5 DTR DSR CTS COM 1 CLC STS R

# IrDA, CIR und Serial (COM) Anschlüsse

# IrDA/CIR Anschlüsse

Dieser Anschluss unterstützt ein Infrarotmodul/CIR.

# Bitte beachten:

Die Anordnung der PIN-Funktionen kann bei einigen IrDA/CIR Kabeln abweichend von der Anordnung auf dem Systemboard sein. Bitte stellen Sie sicher, dass die Pinbelegungen des Kabels und des IrDA/CIR Anschlusses auf dem Systemboard miteinander übereinstimmen.

Um die IrDA/CIR Funktion nutzen zu können könnte es notwendig sein, die entsprechenden Treiber in Ihrem Betriebssystem zu installieren. Informationen hierzu erhalten Sie aus dem Benutzerhandbuch des Betriebssystems.

# Serial (COM) Anschluss

Mit dem Serial (COM) Anschluss verbinden Sie Modems, serielle Drucker, Display Terminals oder andere serielle Geräte mit dem System. Ihr COM Anschluss könnte auf einem Halterungsblech befestigt sein. Installieren Sie das Blech in eine verfügbare Halterung an der Rückseite des Gehäuses und verbinden Sie das Kabel des seriellen Ports mit dem entsprechenden Anschluss. Das farblich markierte Ende des Kabels muss mit Pin I des Anschlusses in Übereinstimmung gebracht werden.

.................



# Lüfteranschlüsse

Deutsch

Über diese Lüfteranschlüsse werden Lüfter mit dem System verbunden. Diese Lüfter sorgen für ausreichende Luftzirkulation im Gehäuse und verhindern somit ein Überhitzen der CPU und der Komponenten auf dem Systemboard.
#### **EZ Touch Schalter**



. . . . . . .

Das Vorhandensein von Power- und Reset-Schaltern auf dem Systemboard ist speziell für DIY-User sehr anwenderfreundlich. Sie bieten die Möglichkeit bequem das System ein-/auszuschalten und einen Reset durchzuführen und somit die Einstellungen des Systemboards zu verfeinern bevor es in ein Gehäuse eingebaut wird.

# G

Deutsch

**LEDs** 

Deutsch



..................

Standby Power LED

#### **DRAM Power LED**

Diese LED leuchtet wenn das System eingeschaltet ist.

#### Standby Power LED

Diese LED leuchtet wenn das System im Standby Modus ist.

#### Diagnostic LED

Die Diagnostic LED zeigt POST Codes an. POST (Power-On Self Tests), die durch das BIOS gesteuert werden, werden bei jedem Start des Systems durchgeführt. Der POST erkennt den Status des Systems und seiner Komponenten. Jeder durch die LED angezeigte Code entspricht einem bestimmten Systemstatus.



#### Warnung:

Eine aufleuchtende DRAM Power LED und/oder Standby Power LED zeigt an, dass die DIMM-Sockel und/oder PCI-Steckplätze unter Spannung stehen. Schalten Sie den PC aus und ziehen Sie den Netzstecker bevor Sie Speichermodule oder Zusatzkarten installieren. Bei Nichtbeachtung drohen erhebliche Schäden am Motherboard und den Komponenten.

#### Stromanschlüsse

Verwenden Sie ein Netzteil, dass den ATX12V Netzteil Designrichtlinien Version 1.1 entspricht. Ein ATX12V Netzteil verfügt über einen standard 24-Pin ATX Hauptstromanschluss. Verbinden Sie diese Stromanschlüsse.



Ihr Netzteil könnte über einen 8-Pin oder 4-Pin +12V Anschluss verfügen. Der +12V Anschluss erlaubt die Bereitstellung von mehr +12VDC Spannung für das Voltage Regulator Module (VRM) des Prozessors. Falls verfügbar sollten Sie bevorzugt den 8-Pin Anschluss verwenden, falls nicht vorhanden den 4-Pin Anschluss.



Die Stromanschlüsse des Netzteils sind so entworfen, dass die die 24-Pin und 8-Pin Anschlüsse nur in einer Ausrichtung verbunden werden können. Stellen Sie sicher, dass die Ausrichtung korrekt ist bevor Sie die Anschlüsse verbinden.

Die FDD-Typ Stromanschlüsse sind zusätzliche Stromanschlüsse. Sollten Sie mehr als eine Grafikkarte verwenden, so empfehlen wir, dass Sie die Stromkabel des Netzteils mit den 5V/12V Stromanschlüssen verbinden. Dies wird das komplette System mit mehr Stabilität versorgen. Das Systemboard wird nach wie vor arbeiten, auch wenn die zusätzlichen Stromanschlüsse nicht angeschlossen sind.



Das Systemboard benötigt zum Betrieb ein Netzteil mit mindestens 300 Watt. Ihre Systemkonfiguration (CPU Power, Grösse des Speichers, Zusatzkarten, Perpheriegeräte, etc.) können den Strombedarf des Systems zusätzlich erhöhen. Um sicher zu stellen, dass ausreichende Stromversorgung zur Verfügung steht empfehlen wir, ein Netzteil mit mindestens 400 Watt oder mehr zu verwenden.



#### Wichtig:

Ungenügende Stromversorgung kann zu Instabilität führen oder fehlerhafte Funktion von Zusatzkarten und Peripheriegeräten zur Folge haben. Die Berechnung des Stromverbrauchs des Systems ist wichtig, um sicherzustellen, dass das eingesetzte Netzteil den Anforderungen des Systems entspricht.

#### Neustart des PC's

In der Regel lässt sich der PC wie folgt ausschalten:

1. Betätigung des Power-Schalters auf der Frontseite des Gehäuses.

Deutsch

oder

2. Betätigung des Power-Schalters der sich auf dem Systemboard befindet (Anmerkung: nicht alle Systemboards verfügen über diesen Schalter).

Sollten Sie jedoch die Stromzufuhr zu Ihrem PC komplett unterbrechen wollen, so schalten Sie das Netzteil aus oder ziehen Sie den Netzstecker. Wenn Sie den PC sofort neustarten wollen sollten Sie unbedingt die folgenden Schritte befolgen.

- 1. Die Dauer in der sich der Strom komplett entlädt ist von Netzteil zu Netzteil unterschiedlich. Diese Länge der Zeitspanne hängt dabei stark von der Systemkonfiguration wie z.B. der Wattzahl des Netzteils, der Anordnung des Netzteils oder der Anzahl der an das System angeschlossenen Peripheriegeräte ab. Aus diesem Grund empfehlen wir, auf das Aufleuchten der Standby Power LED (siehe dazu auch den Abschnitt "LED's" in diesem Kapitel) zu warten.
- 2. Warten Sie mit dem Einschalten des PC's bis die Power LED etwa 6 Sekunden erloschen ist.

Sollte das Systemboard bereits in ein Gehäuse eingebaut sein und die Standby Power LED dadurch nicht sichtbar sein, so warten Sie bitte 15 Sekunden bevor Sie die Stromzufuhr wieder herstellen. Es dauert etwa 15 Sekunden bis die LED erlischt und dies ist auch die Zeitspanne, die vor einem Neustart notwendig ist.

Die o.g. Regeln stellen einen Schutz vor Beschädigung des Motherboards und der Komponenten dar.

#### Frontanschlüsse

Deutsch



..................

#### HD-LED: Primäre/Sekundäre IDE LED

Diese LED leuchtet auf, wenn auf die Festplatte zugegriffen wird.

#### **RESET: Reset-Schalter**

Dieser Schalter erlaubt es Ihnen einen Neustart durchzuführen ohne die Stromzufuhr zu unterbrechen. Dadurch wird die Lebensdauer des Netzteils und des Systems verlängert.

#### SPEAKER: Lautsprecheranschluss

Dieser stellt die Verbindung zu dem im System installierten Lautsprecher her:

#### ATX-SW: ATX Power-Schalter

Abhängig von den Einstellungen im BIOS Setup ist dieser Schalter ein "dual function power button" der es erlaubt Ihr System in den Soft-Off oder Suspend Modus zu versetzen.

#### PWR-LED: Power/Standby LED

Diese LED leuchtet, wenn die Stromzufuhr des Systems eingeschaltet ist. Sollte das System sich im SI (POS - Power On Suspend) oder S3 (STR - Suspend To RAM) Status befinden, so blinkt die LED einmal pro Sekunde.

Deutsch



#### Bitte beachten:

Sollte das System nicht hochfahren und die Power/Standby LED nicht aufleuchten nachdem Sie den Power-Schalter betätigt haben, so könnte dies darauf hinweisen, dass die CPU oder die Speichermodule nicht korrekt installiert wurden. Bitte stellen Sie sicher, dass diese ordnungsgemäss in ihren entsprechenden Steckplätzen eingesetzt sind.

|                                       | Pin                    | Pin Assignment                                                    |
|---------------------------------------|------------------------|-------------------------------------------------------------------|
| HD-LED<br>(Primary/Secondary IDE LED) | 3<br>5                 | HDD LED Power<br>HDD                                              |
| Reserved                              | 4<br> 6                | N. C.<br>N. C.                                                    |
| ATX-SW<br>(ATX power switch)          | 8<br>10                | PWRBT+<br>PWRBT-                                                  |
| Reserved                              | 8<br>20                | N. C.<br>N. C.                                                    |
| RESET<br>(Reset switch)               | 7<br>9                 | Ground<br>H/W Reset                                               |
| <b>SPEAKER</b><br>(Speaker connector) | 3<br>  5<br>  7<br>  9 | Speaker Data<br>N. C.<br>Ground<br>Speaker Power                  |
| <b>PWR-LED</b><br>(Power/Standby LED) | 2<br>4<br>6            | LED Power (+)<br>LED Power (+)<br>LED Power (-) or Standby Signal |

### PCI Express Steckplätze

Deutsch



.......

## Download Flash BIOS Anschlüsse



80

#### Smart Connectoren

Die Smart Connectoren (USB, IEEE 1394 und Front Panel) dienen als erweiterte Stecker, die ein bequemes Anschließen von Kabeln an die Buchsen der System-Platine ermöglichen. Dies ist ein besonderer Vorteil bei den Buchsen am Bedienfeld, da es hilft, falsche Kabelanschlüsse zu vermeiden.



#### Buchsen des Bedienfelds

- Nutzen Sie bei allen Bedienfeld-Kabeln des Gehäuses die Bedienfeld Smart Connectoren. Schließen Sie sie entsprechend der Stift-Definition der Smart Connectoren an.
- Schließen Sie die Bedienfeld Smart Connectoren an die Buchsen des Bedienfeldes der System-Platine an.





#### USB und IEEE 1394 Buchsen

- Schließen Sie Ihre USB/1394 Kabel an die USB/1394 Smart Connectoren. Gehen Sie dabei entsprechend der auf den Smart Connectoren gezeigten Stiftbelegung vor.
- 2. Schließen Sie die USB/1394 Smart Connectoren an die entsprechenden Buchsen der System-Platine.

## Kapitel 3 - RAID

Der AMD Chip erlaubt es RAID auf Serial ATA Festplatten zu konfigurieren. Er unterstützt RAID 0, RAID 1 und RAID 0+1.

## **RAID** Level

## RAID 0 (Festplattenanordnung in Datenstreifen ohne Fehlertoleranz)

RAID 0 verwendet zwei neue identische Festplatten zum parallelen, in überlappenden Blöcken liegenden Lesen und Schreiben von Daten. Die Daten werden in Streifen aufgeteilt und jeder Streifen wird alternativ auf die Festplatten geschrieben. Dies erhöht die I/O Performance der Festplatten, bietet jedoch keine Fehlertoleranz. Eine fehlerhafte Festplatte kann in diesem RAID zu Datenverlust führen.

#### RAID I (Gespiegelte Festplattenanordnung mit Fehlertoleranz)

RAID I kopiert und behält eine identische Spiegelung der Daten von einem Laufwerk zum anderen bei. Sollte eines der Laufwerke ausfallen, so leitet die Management Software der Festplattenanordnung alle Applikationen auf das andere Laufwerk um, da dort die gleichen Daten gespiegelt vorhanden sind. Dies erhöht den Schutz Ihrer Daten und erhöht die Fehlertoleranz des kompletten Systems. Verwenden Sie hierfür zwei neue Laufwerke oder ein bereits vorhandes und ein neues aber beachten Sie, dass das neue Laufwerk die gleiche oder eine grössere Kapazität als das bereits vorhandene aufweisen muss.

#### RAID 0+1 (Datenstreifen und Spiegelung)

RAID 0+1 ist eine Kombination der Speicherung der Daten in Streifen und als Spiegelung und bietet somit die Vorteile sowohl von RAID 0 als auch von RAID 1. Verwenden Sie für diese Konfiguration vier neue Laufwerke oder ein bereits vorhandenes und drei neue Laufwerke.

#### Einstellungen

Um die RAID-Funktion zu aktivieren sind folgende Einstellungen notwendig.

Deutsch

- 1. Schliessen Sie die Serial ATA Laufwerke an.
- 2. Konfigurieren Sie Serial ATA im Award BIOS.
- 3. Konfigurieren Sie RAID im RAID BIOS.
- 4. Installieren Sie den RAID-Treiber während der Installation des Betriebssystems.

#### Schritt I: Schliessen Sie die Serial ATA Laufwerke an

Informationen zum Anschluss der Serial ATA Laufwerke finden Sie in Abschnitt 2.

#### Wichtig:

- Stellen Sie sicher, dass die Serial ATA Laufwerke installiert und dass die Datenkabel korrekt angeschlossen sind. Ansonsten ist es nicht möglich, das RAID BIOS Utility Programm zu verwenden.
- 2. Behandeln Sie die Kabel sehr vorsichtig, besonders beim Einrichten von RAID. Beschädigte Kabel können den kompletten Installationsprozess zunichte machen und das Betriebssystem beschädigen. Das System wird nicht hochfahren und Sie werden alle Daten auf den Festplatten verlieren. Bitte beachten Sie unbedingt diese Warnung, verlorengegangene Daten können nicht wieder hergestellt werden!

#### Schritt 2: Konfiguration von Serial ATA im Award BIOS

- I. Schalten Sie das System ein und drücken Sie dann die <Del> Taste, um in das Hauptmenü des Award BIOS zu gelangen.
- 2. Wählen Sie das Integrated Peripherals Untermenü Abschnitt OnChip IDE Device des BIOS aus.
- 3. Konfigurieren Sie Serial ATA in den entsprechenden Feldern.
- 4. Drücken Sie die <Esc> Taste um ins Hauptmenü des BIOS Setup zu gelangen. Wählen Sie "Save & Exit Setup" aus und drücken Sie dann die <Enter> Taste.
- 5. Schreiben Sie <Y> und drücken dann die <Enter> Taste.
- 6. Führen Sie einen Neustart des Systems durch.

#### Deutsch

#### Step 3: Konfiguration von RAID im RAID BIOS

Wenn das System hochfährt und alle Laufwerke erkannt wurden erscheint die AMD BIOS Status Nachricht auf dem Bildschirm. Drücken Sie die <F4> Taste um das Programm aufzurufen. Das Programm ermöglicht es Ihnen ein RAID system auf den Serial ATA Laufwerken einzurichten.

## Schritt 4: Installation des RAID Treibers während der Installation des Betriebssystems.

Der RAID Treiber muss während der Installation von Windows<sup>®</sup> XP oder Windows<sup>®</sup> 2000 per F6 Installationsmethode eingerichtet werden. Dies ist notwendig um das Betriebssystem auf eine Festplatte oder RAID System zu installieren die im RAID-Modus sind oder auf eine Festplatte wenn sie im AHCI-Modus ist.

- Starten Sie das Windows Setup indem Sie von der Installations-CD booten.
- 2. Drücken Sie die <F6> Taste, wenn die Nachricht 'Press F6 if you need to install a third party SCSI or RAID driver' auf dem Bildschirm erscheint.
- 3. Wählen Sie <S> für "Specify Additional Device" aus.
- 4. Nun werden Sie aufgefordert eine Diskette die den RAID Treiber enthält einzulegen. Legen Sie die mitgelieferte RAID Treiberdiskette ein.
- 5. Wählen Sie das Laufwerk aus in das Sie die Diskette eingelegt hatten und wählen Sie anschliessend den RAID oder AHCI Controller der mit Ihrem BIOS Setup übereinstimmt. Drücken Sie die <Enter> Taste zur Bestätigung.

Sie haben nun den Treiber erfolgreich installiert. Sie müssen aber dennoch mit der Installation des Betriebssystems fortfahren. Belassen Sie die Diskette im Floppy-Laufwerk bis das System automatisch neustartet. Das Windows Setup muss noch erneut die Dateien von der Diskette in die Windows Installationsordner kopieren. Nachdem das Windows Setup die Dateien kopiert hat können Sie die Diskette entfernen, so dass das Windows Setup wie erforderlich neustarten kann.

## Capitolo I - Quick Guide Scheda Madre

Questa guida rapida di installazione indica i passaggi principali per l'assemblaggio della scheda madre.

Tutte le operazioni di assemblaggio della scheda madre richiedono che i prodotti collegati alla motherboard non siano connessi alla rete elettrica.

Le operazioni di montaggio della motherboard richiedono personale tecnicamente addestrato. Rivolgersi ad un tecnico specializzato se non si hanno esperienze di montaggio di componenti elettronici.

La scheda madre richiede ulteriori componenti per il funzionamento. Senza questi componenti il prodotto non è grado di svolgere alcun funzionamento.

I componenti alloggiati sulla scheda madre possono danneggiarsi se soggetti ad elettricità statica. Utilizzare un apposito bracciale ed un tappetno antistatico nel lavoro di assemblaggio dei componenti sulla scheda madre.

Per un corretto assemblaggio individuare un piano stabile e provvedere all'assemblaggio del processore (CPU) e dei moduli di memoria.

Sulla scheda madre è presente uno zoccolo apposito (socket) per l'inserimento del processore. Il processore dispone di senso di inserimento obbligato e di un meccanismo di bloccaggio. Il processore durante il funzionamento emette una quantità elevata di calore e può richiedere un dissipatore di calore con ventola con interposto uno strato di pasta conduttiva. Fate riferimento alla documentazione del processore per il corretto assemblaggio.

I moduli di memoria (DIMM) dispongono di appositi zoccoli numerati. L'inserimento dei moduli è obbligato in modo da evitare posizionamenti errati. Quando il modulo viene inserito correttamente il modulo emette un click emesso da due alette in plastica di ritenzione che evitano la fuoriuscita del modulo dallo zoccolo di alloggiamento.

Una volta inseriti processori e DIMM è possibile procede all'assemblaggio del prodotto in un apposito contenitore denominato cabinet.

Fare riferimento alla documentazione del cabinet per un corretto assemblaggio. Fare attenzione che tutti i distanziali per evitare il contatto accidentale della scheda madre con le parti del cabinet e le viti di fissaggio siano correttamente montate.

Per il montaggio di periferiche come hard disk, floppy ed unità ottiche (lettori CD-ROM, lettori DVD-ROM, Masterizzatori CD/DVD) fare riferimento alle documentazioni allegate.

La scheda madre dispone di slot per il montaggio di schede di espansione come schede video, schede audio, schede di interfaccia, controller etc. Fate riferimento alla documentazione del produttore delle schede per il corretto assemblaggio.

Sul cabinet deve essere opportunamente posizionato un alimentatore che provvederà all'alimentazione della scheda madre e di tutte le periferiche.

Assicurarsi che l'alimentatore sia compatibile con la scheda madre che si sta assemblando.

Controllare sempre che l'alimentatore non sia connesso alla rete elettrica durante le fasi di assemblaggio.

Collegare l'alimentatore alla scheda madre sugli appositi zoccoli.

A fine assemblaggio verificare la correttezza di tutti i cablaggi ed inserzioni.

La scheda madre integra diverse porte di comunicazione nello schema accanto viene riportato un esempio de connettori che possono essere dislocati sul pannello di input/output della scheda madre.



.........

Esempi di Disposizione

# Italiano

Italiano

## Capitolo 2 - Introduzione

## Specifiche

| Processore         | <ul> <li>Presa AMD®AM2+ per:<br/>- Phenom™FX/Phenom™/Athlon™/Sempron™</li> <li>Presa AMD®AM2 per:<br/>- Athlon Series/Sempron™</li> <li>HyperTransport 3.0 (5200MT/s per AM2+)</li> <li>HyperTransport 1.0 (2000/1600MT/s per AM2)</li> <li>L'OverDrive AMD fornisce opzioni di sintonizzazione servendosi della nuova funzione di overlocking "Advanced Clock Calibration".</li> <li>Presa 940 AM2+ 65nm</li> </ul> |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chipset            | <ul> <li>chipset AMD<sup>®</sup></li> <li>Northbridge: AMD 790FX</li> <li>Southbridge: AMD SB750</li> </ul>                                                                                                                                                                                                                                                                                                          |
| Memoria di sistema | <ul> <li>Quattro prese DDR2 DIMM a 240 pin</li> <li>Supporta DDR2 667/800/1066 MHz</li> <li>Larghezza di banda di fino a 12.8Gb/s</li> <li>Supporta interfacccia di memoria dual-channel (a 128 bit)</li> <li>Supporta memoria di sistema di fino a 8GB</li> <li>Supporta DIMM x8 e x16 senza buffer</li> </ul>                                                                                                      |
| Slot di espansione | <ul> <li>3 Slot PCI Express (Gen 2) x16</li> <li>CrossFire a 2 vie o 4 vie a larghezza di banda x16/x16/NC</li> <li>CrossFire a 3 vie a larghezza di banda x16/x8/x8</li> <li>CrossFire a 2 vie + Physics a larghezza di banda x16/x8/x8</li> <li>3 slot PCI</li> </ul>                                                                                                                                              |
| BIOS               | <ul> <li>Award BIOS</li> <li>CMOS ricaricato</li> <li>Overlocking CPU/DRAM</li> <li>Sovratensinoe CPU/DRAM/Chipset</li> <li>BIOS flash SPI a 8Mbit</li> </ul>                                                                                                                                                                                                                                                        |
| Audio              | <ul> <li>Audio CODEC ad alta definizione ALC885 Realtek</li> <li>DAC a elevata prestazione con gamma dinamica 106dB (Peso<br/>A), ADC con gamma dinamica 101dB (Peso A)</li> </ul>                                                                                                                                                                                                                                   |
| LAN                | <ul> <li>Controllore PCIE Gigabit LAN Marvell 88E8053</li> <li>Totalmente conforme agli standard IEEE 802.3 (10BASE-T),<br/>802.3u (100BASETX) e 802.3ab (1000BASE-T)</li> </ul>                                                                                                                                                                                                                                     |
| IDE                | • Supporta fino a 2 dispositivi IDE UltraDMA a 100Mbps                                                                                                                                                                                                                                                                                                                                                               |
| Memorizzazione     | <ul> <li>Supporta fino a 6 dispositivi SATA</li> <li>Velocità SATA di fino a 3Gb/s</li> <li>RAID 0, RAID 1 e RAID 0+1</li> </ul>                                                                                                                                                                                                                                                                                     |

. . .

. . .

|   |   | 5 |  |
|---|---|---|--|
|   | 5 | 2 |  |
|   | 2 | 3 |  |
| - |   | Š |  |
|   | 2 | 3 |  |
| - | 1 | 3 |  |

| I/O pannello<br>posteriore | <ul> <li>I porta mouse PS/2 mini-DIN-6</li> <li>I porta tastiera PS/2 mini-DIN-6</li> <li>I porta ottica S/PDIF-out</li> <li>I porta coassiale S/PDIF-out RCA</li> <li>6 porte USB 2.0/1.1</li> <li>I porta LAN RJ45</li> <li>Prese centro/subwoofer, posteriore R/L e laterale R/L</li> <li>Line-in, line-out (anteriore R/L) e prese mic-in</li> </ul>                                                                                                                                                                                                                                                                       |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I/O interno                | <ul> <li>3 connettori per 6 porte USB 2.0 esterne addizionali</li> <li>I connettore per una porta COM esterna</li> <li>I connettore audio frontale</li> <li>I connettore CD-in</li> <li>I connettore IrDA</li> <li>I connettore CIR</li> <li>6 connettore IDE a 40 pin</li> <li>I connettore floppy</li> <li>I connettore floppy</li> <li>I connettore di alimentazione 12V a 8 pin</li> <li>2 connettore di alimentazione 5V/12V a 4 pin (tipo FDD)</li> <li>I connettore pannello anteriore</li> <li>6 connettori ventola</li> <li>Interruttori a sforamento EZ (interruttore alimentazione e interruttore reset)</li> </ul> |
| Consumo<br>energetico      | <ul> <li>Gestione di alimentazione ACPI e OS Directed</li> <li>Funzione ACPI STR (sospesa a RAM)</li> <li>Tastiera/Mouse Wake-On-PS/2</li> <li>Tastiera/Mouse Wake-On-USB</li> <li>Wake-On-LAN</li> <li>Wake-On-Ring</li> <li>Timer RTC di alimentazione del sistema</li> <li>Ripristino interruzione di corrente CA</li> </ul>                                                                                                                                                                                                                                                                                                |
| Monitor hardware           | <ul> <li>Monitoraggio della temperatura di CPU/sistema/Northbridge e avviso di surriscaldamento</li> <li>Monitoraggio di tensioni 12V/5V/3.3V/Vcore/Vbat/5Vsb/Vdimm/<br/>Vchip</li> <li>Monitoraggio di velocità ventole di raffreddamento</li> <li>Funzione di protezione del surriscaldamento CPU per il monitoraggio della temperatura della CPU e della ventola all'avvio del sistema (chiusura automatica al surriscaldamento del sistema)</li> </ul>                                                                                                                                                                     |
| РСВ                        | • fattore di forma ATX<br>• 24,5cm (9.64") × 30.5cm (12")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

## Capitolo 3 - Installazione hardware

#### Eliminazione dei dati CMOS



Se si verifica quanto segue,

- a) i dati CMOS verranno corrotti.
- b) Smarrimento della password utente o supervisore.
- c) Le impostazioni di overclock del BIOS hanno causato l'instabilità del sistema o problemi di avvio del sistema.

è possibile configurare il sistema con i valori predefiniti memorizzati Sul BIOS ROM.

JP10 è accessibile dal pannello posteriore del sistema. È un modo pratico per eliminare i CMOS senza rimuovere la protezione dell`unità

Per caricare i valori di default memorizzati nella BIOS ROM, seguire la procedura di seguito.

- I. Scollegare il sistema e il cavo di alimentazione.
- 2. Impostare i pin 2 e 3 di JP8 o JP10 su On. Attendere alcuni secondi e impostare nuovamente JP8 o JP10 alla configurazione predefinita, con pin 1 e 2 On.
- 3. Ora, collegare il cavo di alimentazione e attivare il sistema.



Selezionando 5VSB, è possibile usare la tastiera PS/2 o il mouse PS/ 2 per attivare il sistema.

#### Selezione di alimentazione USB



Selezionando 5VSB, è possibile usare la tastiera USB o il mouse USB per attivare il sistema.

#### Importante:

La fonte di alimentazione 5VSB in uso deve supportare $\geq$ 1.5A (2 dispositivi)  $\geq$ 2A (minimo 3 dispositivi).

# Selezione altoparlante On/Off



La scheda di sistema è dotata di un cicalino che funge da altoparlante per il PC. Di default il cicalino è impostato su "On". Sarà in questo modo possibile sentire i messaggi di bip del sistema e i vari avvertimenti. Qualora si desiderasse utilizzare un altoparlante esterno, disattivare questa funzione impostando i pin JP2 I e 2 su On.

#### Selezine PCIE 3



**Italiano** 

Italiano Selezine PCIE Gen 1/Gen 2 .... A ω 
 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0
 ···· <u>ات</u> 3 2 1 3 2 1 ...... JP13  $\Box$ 1-2 On: Gen 2 2-3 On: Gen I Ē ∃ (default)  $\Box$ ····· 

Impostare questo jumper a seconda del tipo di scheda PCI Express che si sta utilizzando.

## Rear Panel I/O Ports



Italiano



.....

#### Porte del mouse PS/2 e della tastiera PS/2

Queste porte servono per collegare un mouse PS/2 e una tastiera PS/2.

#### S/PDIF ottico

La presa S/PDIF ottica serve per collegare un dispositivo di uscita audio esterno usando un cavo ottico S/PDIF.

#### S/PDIF RCA coassiale

La presa S/PDIF RCA ottica serve per collegare un dispositivo di uscita audio esterno mediante un cavo coassiale S/PDIF.

Importante: NON usare S/PDIF ottico e S/PDIF RCA coassiale contemporaneamente.

## Porte USB e porta LAN



#### Porte USB

Le porte USB servono per collegare i dispositivi USB 2.0/1.1. I connettori a 10 pin permettono di collegare 6 porte USB 2.0/1.1 addizionali.Le porte USB possono includere una staffa con finitura in cartone. Installare la staffa card-edge in uno slot libero sul retro dell'unità, quindi collegare i cavi della porta USB a questi connettori.

#### Porta LAN

La porta LAN permette di collegare la scheda di sistema alla LAN mediante un hub di rete.

#### Audio e CD-In

Italiano



#### Audio pannello posteriore

#### Presaa centrale/subwoofer (arancio)

Questa presa serve per collegare gli altoparlanti centrali e subwoofer al sistema audio.

#### Presa posteriore destra/sinistra (nero)

Questa presa serve per collegare gli altoparlanti posteriore destro e posteriore sinistro al sistema audio.

#### Presa laterale sinistra/destra (grigio)

Questa presa serve per collegare gli altoparlanti laterale sinistro e laterale destro del sistema audio.

#### Line-in (azzurro)

Questa presa serve per collegare i dispositivi audio, ad es. sistema Hi-Fi, lettore CD, lettore nastri, sintonizzatore radio AM/FM, sintetizzatore, ecc.

#### Line-out - presa anteriore destra/sinistra (lime)

Questa presa serve per collegare gli altoparlanti anteriore destro e anteriore sinistro del sistema audio.

#### Mic-in Jack (rosa)

Questa presa serve per collegare un microfono esterno.

#### Audio anteriore

Il connettore audio anteriore serve per collegare le prese line-out e mic-in situati sul lato anteriore del sistema.

#### CD-in

Il connettore CD-in serve per ricevere l'audio da un'unità CD-ROM, sintonizzatore TV o scheda MPEG.

## Connettori I/O interni

### Connettori ATA Seriali

**Italiano** 



I connettori ATA Seriali (SATA) servono per collegare le unità ATA Seriali. Collegare un`estremità del cavo ATA Seriale a un connettore ATA Seriale e l`altra estremità al dispositivo ATA Seriale.

#### **Configurazione RAID**

Consultare il capitolo RAID di questo manuale per ulteriori informazioni sulla creazione di RAID sulle unità ATA Seriali.

#### Connettore FDD e connettore IDE



#### Connettore FDD

Il connettore dell'unità floppy disk serve per collegare un'unità floppy. Inserire un'estremità del cavo floppy disk nel connettore e l'altra estremità all'unità del floppy. L'estremità colorata del cavo deve essere allineata al pin I di questo connettore.

#### Connettore IDE

Il connettore dell'unità del disco IDE permette di collegare 2 unità del disco IDE. Un cavo IDE ha 3 connettori, uno che si collega a questo connettore e 2 che si collegano a dispositivi IDE. Il connettore all'estremità del cavo collega l'unità principale mentre il connettore al centro del cavo collega l'unità secondaria. La terminazione colorata del cavo deve essere allineata al pin I del connettore.



#### <u>Nota:</u>

Quando si usano due unità IDE, una deve essere impostata come principale e l'altra come secondaria. Seguire le istruzioni fornite dal produttore dell'unità per l'impostazione dei jumper e/o degli interruttori delle unità

## Connettori IrDA, CIR e Seriale (COM)



#### Connettore IrDA/CIR

Questo connettore serve per collegare un modulo IrDA/CIR.

## Nota:

La sequenza delle funzioni pin su un cavo IrDA/CIR può essere invertita dalla funzione pin definita sulla scheda di sistema.Verificare che il connettore del cavo al connettore IrDA/ CIR in bae alle rispettive funzioni dei pin.

Può essere necessario installare i driver adeguati sul sistema operativo per usare la funzione IrDA/CIR. Consultare il manuale operativo del sistema o la documentazione per maggiori informazioni.

#### Connettore Seriale (COM)

Il connettore Seriale (COM) serve per collegare modem, stampanti seriali, terminali display o altri dispositivi seriali. Le porte COM possono essere montate su una staffa card-edged. Installare la staffa card-edge su uno slot disponibile sul retro dell'unità e collegare il cavo della porta seriale a questo connettore. La terminazione colorata del cavo deve essere allineata al pin I del connettore.





#### Connettori della ventola di raffreddamento

I connettori della ventola servono per collegare le ventole di raffreddamento. Le ventole di raffreddamento forniscono un flusso d`aria adeguato all`unità per impedirne il surriscaldamento della CPU e dei componenti della scheda di sistema.

#### Interruttori a sfioramento EZ



........

La presenza dell'interruttore di alimentazione e dell'interruttore di reset sulla scheda di sistema sono pratici da usare soprattutto per gli utenti DIY. Sono un modo immediato di alimentare e/o reimpostare il sistema e ottimizzare allo stesso tempo la scheda di sistema prima di installarla sull'unità.

LED



#### LED di alimentazione DRAM

Questo LED si accende quando il sistema viene attivato.

#### LED di alimentazione Standby

Questo LED si accenda quando il sistema è in modalità Standby.

#### LED diagnostico

Il LED diagnostico visualizza i codici POST. Il POST (Power-On Self Tests), che è controllato dal BIOS, viene eseguito a ogni avvio di sistema. Il POST rileva lo stato del sistema e dei suoi componenti. Ciascun codice visualizzato sul LED corrisponde a un determinato stato del sistema..



#### Avvertenza:

Quando il LED di alimentazione DRAM e/o il LED di alimentazione Standby si accendono in rosso, l'alimentazione è attiva sui socket DIMM e/o gli slot PCI. Scollegare il PC e il cavo di alimentazione prima di installare altri moduli di memoria o schede add-in. Altrimenti, la scheda di sistema e i componenti verrebbero gravemente danneggiati.

#### Connettori di alimentazione

Italiano

Usare un'alimentazione conforme alla Guida di progettazione dell'alimentazione ATX12V versione 1.1. Un'unità di alimentazione ATX12V ha un connettore di alimentazione principale ATX a 24 pin che deve essere inserito in questo connettore.



L'unità di alimentazione può essere dotata di un connettore di alimentazione +12V a 8 o 12 pin. L'alimentazione +12V alimenta il modulo regolatore di tensione (VRM) del processore con una corrente di oltre +12VDC. Se disponibile, si raccomanda di usare l'alimentazione a 8 pin; in alternativa, collegare l'alimentazione a 4 pin a questo connettore.



I connettori di alimentazione di questa unità sono progettati per essere compatibili ai connettori a 24 pin e 8 pin solo in un orientamento. Individuare l'orientamento corretto prima di collegare i connettori.

I connettori di alimentazione di tipo FDD sono connettori di alimentazione aggiuntivi. Se si usa più di una scheda grafica, si raccomanda di collegare il cavo di alimentazione dell'unità a un connettore di alimentazione 5V/12V. Questo garantirà maggiore stabilità a tutto il sistema. La scheda di sistema continuerà a funzionare anche se il connettore di alimentazione aggiuntivo non è collegato.



La scheda di sistema richiede un'alimentazione minima di 300 Watt per operare. La configurazione del sistema (alimentazione CPU, quantità di memoria, schede add-in, periferiche, ecc.) può superare il requisito di alimentazione minimo. Per garantire che sia fornita un'alimentazione sufficiente, si raccomada di usare un'alimentazione minima di 400 Watt (o superiore).



#### <u>Importante:</u>

<sup>2</sup> Un`alimentazione insufficiente del sistema può provocare instabilità o malfunzionamento di schede add-in o periferiche. È importante fare una stima dell`alimentazione del sistema per garantire che soddisfi i requisiti di consumo del sistema.

#### Riavvio del PC

In genere, è possibile scollegare il PC:

I. premendo il pulsante di alimentazione sul parte anteriore dellunità.

Oppure

2. premendo il pulsante di alimentazione sulla scheda di sistema (Nota: non tutte le schede di sistema sono dotate di questo interruttore).

Se per qualche motivo, è necessario interrompere completamente l'alimentazione al PC, scollegare l'alimentazione o il cavo di alimentazione.Per riavviare il dispositivo, seguire la procedura esposta di seguito.

- 1. Il tempo di spegnimento dell'alimentazione varia in base al tipo di alimentazione. Dipende anche dalla configurazione del sistema, ad esempio dal wattaggio e dalla sequenza dell'alimentazione e dal numero di periferiche collegate al sistema. Per questo, si raccomanda di attendere lo spegnimento del LED di alimentazione Standby (vedere la sezione LED di questo capitolo per individuarne la posizione).
- 2. Dopo aver scollegato il LED di alimentazione Standby, attendere 6 secondi prima di accendere il PC.

Se la scheda di sistema è già alloggiata nell'unità che impedisca di vedere il LED di alimentazione Standby, attendere 15 secondi prima di ripristinare l'alimentazione. Il LED si spegne in circa 15 secondi e si riaccende nello stesso intervallo di tempo.

Quanto detto garantisce la protezione e impedisce di danneggiare la scheda madre e i componenti.

#### Connettori del pannello anteriore



#### HD-LED LED IDE primario/secondario

Questo LED si accenda ogni volta che si accede al disco rigido.

#### **RESET** Interruttore di Reset

Questo interruttore permette di riavviare senza scollegare il sistema prolungando così la durata di alimentazione o del sistema.

#### SPEAKER Connettore dell'altoparlante

Si collega all'altoparlante installato sull'unità di sistema.

#### ATX-SW Interruttore di alimentazione ATX

A seconda dell'impostazione del BIOS, questo interruttore è un pulsante di alimentazione a doppia funzione che permette di mettere il sistema in modalità Soft-Off o di sospensione.

Italiano .

#### PWR-LED LED alimentazione/Standby

Quando il sistema viene acceso, questo LED si illumina. Quando il sistema è in stato SI (POS - Power On Suspend) o S3 (STR -Suspend To RAM), il LED lampeggia ogni secondo.



Nota:

Se un sistema non si è avviato e il LED di alimentazione/ Standby non si è acceso dopo l'alimentazione, è possibile che CPU o il modulo di memoria non siano stati installati correttamente. Verificare che siano inseriti correttamente nel socket corrispondente.

|                                               | Pin                    | Pin Assignment                                                   |
|-----------------------------------------------|------------------------|------------------------------------------------------------------|
| HD-LED<br>(LED IDE primario/secondario)       | 3<br>5                 | HDD LED Power<br>HDD                                             |
| Riservato                                     | 4<br> 6                | N. C.<br>N. C.                                                   |
| ATX-SW<br>(interruttore di alimentazioneATX)  | 8<br>10                | PWRBT+<br>PWRBT-                                                 |
| Riservato                                     | 18<br>20               | N. C.<br>N. C.                                                   |
| <b>RESET</b><br>(interruttore di Reset)       | 7<br>9                 | Ground<br>H/W Reset                                              |
| <b>SPEAKER</b><br>(Connettore altoparlante)   | 3<br>  5<br>  7<br>  9 | Speaker Data<br>N. C.<br>Ground<br>Speaker Power                 |
| <b>PWR-LED</b><br>(LED alimentazione/Standby) | 2<br>4<br>6            | LED Power (+)<br>LED Power (+)<br>LED Power (-) o Standby Signal |
#### **Italiano**

#### Slot PCI Express



#### Connettore di download Flash BIOS



#### Connettori Smart

Italiano

I Connettori Smart (USB, IEEE 1394 e il Pannello Anteriore) fungono da connettori estesi che consentono di collegare in modo facile i cavi ai connettori che si trovano sul sistema. Ciò si rivela particolarmente utile per il collegamento alle prese del pannello anteriore, al fine di evitare di collegare i cavi in modo scorretto.



#### Connettori Pannello Anteriore

1. Collegare tutti i cavi del pannello anteriore dal dispositivo al connettore smart del pannello anteriore. Collegare seguendo la definizione dei pin indicata sul connettore smart.



 Collegare il connettore smart del pannello anteriore alla presa del pannello anteriore sul sistema.



#### Connettori USB e IEEE 1394

- Collegare il cavo della porta USB/1394 al connettore smart USB/ 1394. Collegare seguendo la definizione dei pin indicata sul connettore smart.
- 2. Collegare il connettore smart USB/1394 ai rispettivi connettori sul sistema.

#### Capitoio 4 - RAID

Il chip AMD consente di configurare RAID sulle unità ATA Seriali collegate a SATA I fino a SATA 6. Supporta RAID 0, RAID I e RAID 0+1.

#### Livelli RAID

#### RAID 0 (Striped Disk Array without Fault Tolerance)

RAID 0 usa due nuove unità di disco rigido identiche per leggere e scrivere i dati in stack parallelo e stack interlacciato. I dati sono divisi in bande e ogni banda è scritta alternativamente fra i due dischi rigidi. Questo migliora le prestazioni I/O delle unità a canale diverso; tuttavia, non è tollerante all'errore. Un errore di disco causa la perdita dei dati nella partizione del disco.

#### RAID I (Striped Disk Array without Fault Tolerance)

RAID I copia e mantiene un'immagine identica dei dati da un'unità all'altra. Se un'unità non funziona, il software di gestione della partizione del disco dirige tutte le applicazioni all'altra unità che contiene una copia completa dei dati. Questo migliora la protezione dei dati e la tolleranza agli errori di tutto il sistema. Si serve di due unità nuove o un'unità nuova e una esistente ma la dimenisone dell'unità nuova deve essere identica o superiore a quella dell'unità esistente.

#### RAID 0+1 (Striping and Mirroring)

RAID 0+1 è una combinazione di striping e mirroring di dati che fornisce i vantaggi di RAID 0 e di RAID 1. Per questa configurazione, occorre usare nuove unità oppure un'unità esistente e tre unità nuove. Italiano

#### Impostazioni

Per abilitare la funzione RAID, sono necessarie le seguenti impostazioni.

- I. Collegare le unità ATA Seriali.
- 2. Configurare l'ATA Seriale all'Award BIOS.
- 3. Configurare RAID nel RAID BIOS.
- 4. Installare l'unità RAID durante l'installazione del sistema operativo.

#### Passo I: Collegare le unità ATA Seriali

Vedere il capitolo 2 per informazioni sulla connessione delle unità ATA Seriali.

#### Importante:

- I. Verificare di aver installato le unità ATA Seriali e aver collegato i cavi dati altrimenti non sarà possibile abilitare l'utility RAID BIOS.
- 2 Maneggiare i cavi con estrema attenzione specialmente durante la creazione della RAID. Un cavo danneggiato può compromettere l'intero processo di installazione e sistema operative. Il sistema non viene avviato e tutti I dai sulle unità del disco rigido andranno perse. Fornire attenzione speciale a questa avvertenza perchè non è possibile recuperare i dati.

#### Passo 2: Configurare l'ATA seriale nel Award BIOS.

- I. Alimentare il sistema e premere il tasto <Del> per aprire il menu principale di Award BIOS.
- 2. Selezionare il menu secondario delle Periferiche integrate dispositivo IDE OnChip del BIOS.
- 3. Configurare I`ATA seriale nel Award BIOS.
- 4. Premere <Esc> per tornare al menu principale dell`impostazione BIOS utility. Selezionare ave &Chiudi configurazione quindi premere il tasto <Invio>.
- 5. Tipo <Y> e premere <Invio>.
- 6. Riavviare il sistema.

#### Passo 3: Configurare RAID nel RAID BIOS.

Quando il sistema è alimentato e tutte le unità sono state rilevate,viene visualizzato lo schermo dei messaggi di stato AMD BIOS. Premere il tasto <F4> per accedere all'utility. L`utility permette di creare un sistema RAID su unità ATA seriali.

Passo 4: Installare l'unità RAID durante l'installazione del SO.

L'unità RAID deve essere installata durante l'installazione di Windows®XP o Windows®2000 usando il metodo di installazione F6. Questo è richiesto per installare il sistema operativo sul disco rigido o il volume RaID quando la modalità RAID o sul disco rigido nella modalità AHCI.

- I. Avviare Windows Setup dal CD di installazione
- 2. Premere il tasto <F6> quando sollecitato nella barra di stato con il F6 per installare un SCSI o RAID di terze parti.
- 3. Premere <S> per specificare un dispositivo aggiuntivo
- 4. A questo punto, è richiesto di inserire un floppy disk che contiene l'unità RAID. Inserire l'unità RAID fornito.
- 5. Individuare l'unità in cui è stato inserito il dischetto e selezionare il controllore RAID o AHCI che corrisponde all'impostazione BIOS.Premere <Invio> per confermare.

L'unità è stata installata con successo. Tuttavia, occorre continuare a installare il sistema operativo. Lasciare il floppy disk nell'unità fino al riavvio del sistema perché l'impostazione di Windows deve copiare i file dal floppy disk alle cartelle di installazione di Windows.Dopo che Windows ha copiato i file, rimuovere il floppy disk in modo che l'impostazione di Windows possa riavviarsi come necessario.

#### Chapter I - Especificaciones

| Procesador                   | <ul> <li>AMD® AM2+ Zócalo de la CPU para:</li> <li>Phenom<sup>™</sup>FX/Phenom<sup>™</sup>/Athlon<sup>™</sup>/Sempron<sup>™</sup></li> <li>AMD® AM2 Zócalo de la CPU para:</li> <li>Athlon Series/Sempron<sup>™</sup></li> <li>HyperTransport 3.0 (5200MT/s para AM2+)</li> <li>HyperTransport 1.0 (2000/1600MT/s para AM2)</li> <li>AMD OverDrive proporciona opciones de afinamiento mediante la nueva función de sobreaceleración "Calibración avanzada del reloj".</li> <li>Socket 940 AM2 65nm</li> </ul> |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chipset                      | <ul> <li>AMD<sup>®</sup> chipset</li> <li>Puente norte: AMD 790FX</li> <li>Puente sur: AMD SB750</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                    |
| Memoria de Sistema           | <ul> <li>4 240-pin mortajas DDR2 DIMM</li> <li>Los módulos DDR2 667/800/1066 MHz</li> <li>Hasta 12.8GB/s de ancho de banda</li> <li>Memoria de dos canales (128-bit)</li> <li>Hasta 8GB de memoria sistémica</li> <li>Sólo unbuffered x8 y x16 DIMM</li> </ul>                                                                                                                                                                                                                                                 |
| Ranuras de<br>Expansión      | <ul> <li>3 ranuras PCI Express (Gen 2) x 16</li> <li>CrossFire de dos vías o 4 vías a ancho de banda de x16/<br/>x16/NC</li> <li>CrossFire de tres vías a ancho de banda de x16/x8/x8</li> <li>CrossFire de dos vías + Física a ancho de banda de x16/x8/<br/>x8</li> <li>3 slots PCI</li> </ul>                                                                                                                                                                                                               |
| BIOS                         | <ul> <li>Award BIOS</li> <li>CMOS Reloaded</li> <li>Subida de frecuencia de CPU/DRAM</li> <li>Subida de voltaje de CPU/DRAM/Chipset</li> <li>Memoria Instante (8Mbitios)</li> </ul>                                                                                                                                                                                                                                                                                                                            |
| Audio                        | <ul> <li>Codec de audio Realtek ALC885 de alta definición de 8 canales</li> <li>DAC de alto rendimiento con un rango dinámico de 106dB (Peso E), ADC con rango dinámico de 101dB (Peso A)</li> </ul>                                                                                                                                                                                                                                                                                                           |
| LAN                          | <ul> <li>Marvell 88E8053 PCIE Gigabit LAN</li> <li>Completamente a IEEE 802.3 (10BASE-T), 802.3u (100BASE-TX) y 802.3ab (1000BASE-T) estándar</li> </ul>                                                                                                                                                                                                                                                                                                                                                       |
| IDE                          | • Soporta las unidades duras hasta de UltraDMA 133Mbps                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dispositivo de<br>Almacenaje | <ul> <li>6 puertos de Serial ATA</li> <li>Velocidad SATA de hasta 3Gb/s</li> <li>RAID 0, RAID 1 y RAID 0+1</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                          |

S

Español

| Panel Trasero I/O         | <ul> <li>I puerto de ratón mini-DIN-6 PS/2</li> <li>I puerto de teclado mini-DIN-6 PS/2</li> <li>I puerto de S/PDIF óptica</li> <li>I puerto de S/PDIF coaxial RCA</li> <li>6 puertos de USB 2.0/1.1</li> <li>I puerto de RJ45 LAN</li> <li>Center/subwoofer, rear R/L y side R/L enchufes de audio</li> <li>Line-in, line-out (front R/L) y mic-in enchufes de audio</li> </ul>                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conectador Interno        | <ul> <li>3 conectors para 6 puertos de USB 2.0 externo adicional</li> <li>1 conector para un puerto de DB-9 serie externa</li> <li>1 connector de sonido delantera</li> <li>1 conector de CD-in audio interno</li> <li>1 conector de IDA</li> <li>1 conector de irDA</li> <li>1 conector de cir</li> <li>6 conectores de Serial ATA</li> <li>1 conector de IDE</li> <li>1 conector de FDD</li> <li>1 conector 24-pin de fuente de alimentación de ATX</li> <li>1 conector 8-pin 12V de fuente de alimentación de ATX</li> <li>2 4-fichas conectadores de energía de 5V/12V (FDD-tipo)</li> <li>1 conector de panel delante</li> <li>6 conectores de abanicos</li> <li>EZ conmutadores (conmutadores de alimentación y reset)</li> </ul> |
| Gerencia de la<br>Energía | <ul> <li>ACPI y OS Directed Power Management</li> <li>ACPI STR (Suspend to RAM) función</li> <li>PS/2 Teclado/Ratón de Wake-On</li> <li>USB Teclado/Ratón de Wake-On</li> <li>Wake-On-Ring</li> <li>Wake-On-LAN</li> <li>Temporizador de RTC para encender el sistema</li> <li>Recuperación de Fracaso de Energía AC</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                         |
| Monitor del<br>Hardware   | <ul> <li>Monitores de los CPU/sistema/Puente norte temperaturas y alarma acalorada.</li> <li>Monitores de voltajes de 12V/5V/3.3V/Vcore/Vbat/5Vsb/Vdimm/Vchip</li> <li>Vigila la velocidad del abanico del abanido</li> <li>Protección del procesador - Desconección en caso de recalentamiento –el ordenador se desconecta automáticamente en caso de recalentamiento</li> </ul>                                                                                                                                                                                                                                                                                                                                                       |
| РСВ                       | • ATX forme el factor<br>• 24.5cm (9.64") × 30.5cm (12")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

.....

. . .

Español

#### Chapter 2 - Instalación del Hardware

#### Puente

#### Borrar Datos CMOS

#### Limpieza de datos CMOS Data utilizando Jumpers



En alguno de los siguientes casos,

- a) los datos CMOS se corrompen.
- b) ha olvidado la contraseña del supervisor o del usuario.
- c) La configuración de overlock en el BIOS causó inestabilidad en el sistema o problemas en el inicio del mismo.

Se puede configurar nuevamente el sistema con los valores predeterminados almacenados en la ROM BIOS.

Acceso al JP10 desde el panel trasero del sistema. Esto le proporciona comodidad al permitirle borrar los CMOS sin tener que quitar la tapa de la carcasa.

Para cargar los valores predeterminados almacenados en la ROM BIOS, siga los siguientes pasos.

- 1. Apague el sistema y desenchufe el cable de alimentación.
- 2. Coloque en posición de encendido los pines JP8/JP10 2 y 3. Aguarde unos segundos y vuelva el JP8/JP10 nuevamente a su configuración predeterminada, pines I y 2 encendidos.
- 3. Luego, enchufe el cable de alimentación y encienda el sistema.

Español ...

#### Selector de Alimentación PS/2



. . . . . . . . . . . . . . . . . . . .

Seleccionar 5VSB le permitirá utilizar el teclado PS/2 o el ratón PS/2 para despertar el sistema.

#### Selector de Alimentación USB



Seleccionar 5VSB le permitirá utilizar el teclado USB o el ratón USB para despertar el sistema.

#### Importante:

La fuente de alimentación 5VSB de suministro eléctrico debe admitir  $\geq$ 1.5A.(2 puertos) o  $\geq$ A (3 o más puertos USB).

#### Selector de Encendido/Apagado de Altavoz



La placa del sistema cuenta con un zumbador que sirve como altavoz del PC. Por defecto, el zumbador se encuentra encendido, lo que le permite escuchar los mensajes y advertencias del sistema. Si desea utilizar un altavoz externo, apague esta función colocando en posición On (encendido) los pines JP2 I y 2.

#### Selección de PCIE 3



#### Selección de PCIE Gen1/Gen 2

Español



....................

Fije este puente de acuerdo al tipo de tarjeta PCI Express que esté utilizando.

#### Puertos I/O del Panel Posterior



**Español** 

Puertos PS/2 y Puertos S/PDIF



#### Puertos para Ratón PS/2 y Teclado PS/2

Estos puertos se utilizan para conectar un ratón PS/2 y un teclado PS/2.

#### Enchufes coaxiales RCA S/PDIF y óptico S/PDIF

Estos enchufes se utilizan para conectar dispositivos de salida de audio externos mediante cables coaxiales/óptico S/PDIF.

Importante: NO utilice S/PDIF óptico y S/PDIF RCA coaxial al mismo tiempo.

#### Puertos USB y Puertos LAN

Español ...



#### Puertos USB

Los puertos USB se utilizan para conectar dispositivos USB 2.0/1.1 El conector de 10 pines permite conectar 6 puertos USB 2.0/1.1 adicionales. El puerto USB puede presentarse montado en un soporte con bordes de placa. Instale dicho soporte en una ranura disponible en la parte trasera del armazón del sistema, luego conecte los cables del puerto USB a estos conectores.

#### Puertos LAN

Los puertos LAN permiten a la placa del sistema conectarse a una red de área local mediante un concentrador de red.

**Español** 

#### Audio y CD-In



#### Enchufe central/para altavoz de graves (naranja)

Este enchufe se utiliza para conectar los altavoces central y de graves del sistema de audio.

#### Enchufe trasero izquierdo/derecho (negro)

Este enchufe se utiliza para conectar los altavoces trasero derecho y trasero izquierdo del sistema de audio.

#### Enchufe lateral izquierdo/derecho (gris)

Este enchufe se utiliza para conectar los altavoces lateral derecho y lateral izquierdo del sistema de audio.

#### Enchufe de entrada (azul claro)

Este enchufe se utiliza para conectar cualquier dispositivo de audio, tal como un hi-fi, un reproductor de CD, un reproductor de cintas, sintonizador de radio AM/FM, un sintetizador, etc.

#### Enchufe de salida (verde lima)

Este enchufe se utiliza para conectar los altavoces frontal derecho y frontal izquierdo del sistema de audio.

#### Español

#### Enchufe de entrada de micrófono (rosa)

Este enchufe se utiliza para conectar un micrófono externo.

#### Conector de audio frontal

El conector de audio frontal se utiliza para conectar a los enchufes de entrada de línea y de entrada de micrófono en el panel frontal de su sistema.

#### Conector de entrada de CD

El conector de entrada de CD se utiliza para recibir audio de un lector de CD-ROM, de un sintonizador de TV o de una placa MPEG.

#### Conectores I/O

#### **Conectores ATA Seriales**



Los conectores seriales ATA (SATA) se utilizan para conectar los transmisores ATA seriales. Conecte un extremo del cable ATA serial al conector ATA serial y el otro extremo al dispositivo ATA serial.

#### Configuración del RAID

Consulte el capítulo sobre RAID en este manual para obtener más información sobre la creación de RAID en dispositivos ATA seriales.

#### Conector de la Unidad de Disco Flexible y Conector IDE



#### Conector de Disco Flexible

El conector de disco flexible de se utiliza para conectar una unidad de discos flexibles. Cuenta con un mecanismo de codificación para prevenir una instalación inadecuada del cable flexible. Inserte un extremo del cable flexible en este conector y el otro conector del extremo a la unidad de discos flexibles. El extremo de color del cable debe estar alineado con el pin I de este conector.

#### Conector de Unidad de Discos IDE

El conector de la unidad de discos IDE se utiliza para conectar dos unidades de discos IDE. Cuenta con un mecanismo de codificación para prevenir una instalación inadecuada del cable IDE. Un cable IDE incluye 3 conectores, uno que se inserta en este conector y los otros dos que se insertan en los dispositivos IDE. El conector en el extremo del cable corresponde a la unidad principal y el conector en el medio del cable corresponde a la unidad secundaria. El extremo de color del cable debe estar alineado con el pin1 de este conector.



#### Nota:

Al utilizar dos unidades IDE, una de ellas se debe configurar como principal y la otra como secundaria. Siga las instrucciones del fabricante de la unidad para configurar los puentes de conexión y/o los interruptores de las unidades.

#### Conectores IrDA, CIR y Serial (COM)



. . . . . . . . . . . .

#### Conectore IrDA/CIR

Este conector se utiliza para conectar un módulo IrDA/CIR.

#### Nota:

La secuencia de las funciones de pin en algún cable IrDA/CIR se puede revertir desde la función de pin definida en la placa del sistema. Asegúrese de conectar el conector del cable al conector IrDA/CIR de acuerdo a sus funciones de pin.

Es posible que necesite instalar los controladores adecuados en el sistema operativo para utilizar la función IrDA/CIR. Consulte el manual o la documentación de su sistema operativo para obtener más información.

#### Conector Serial (COM)

El conector (COM) serial se utiliza para conectar módems, impresoras seriales, pantallas remotas u otros dispositivos seriales. El puerto COM puede presentarse montado en un soporte con bordes de placa. Instale dicho soporte en una ranura disponible en la parte trasera del armazón del sistema, luego conecte el cable del puerto serial a ese conector. El extremo de color del cable debe estar alineado con el pin I de este conector.



#### Conectores de Ventiladores de Refrigeración

Estos conectores de ventiladores se utilizan para conectar ventiladores de refrigeración. Los ventiladores de refrigeración proporcionan una circulación de aire adecuada a través del armazón a fin de prevenir que recalienten los componentes de la placa de sistema y la CPU.

#### Interruptores Sensibles al Tacto EZ

Español



. . . . . . . . . . . . . . . . . .

La inclusión de los interruptores power y reset en la placa del sistema resulta útil especialmente para los usuarios que realizan las conexiones ellos mismos. Son convenientes al encender y/o reiniciar el sistema mientras se ajusta la placa del sistema antes de instalarla en el armazón del sistema.

Español

LED



#### LED de Encendido DRAM

Este LED se iluminará cuando se encienda el sistema.

#### LED de Alimentación de Reserva

Este LED se iluminará cuando el sistema se encuentre en modo de reserva.

#### LED de Diagnóstico

El LED de diagnóstico muestra códigos POST. Los POST (Autodiagnósticos en encendido) que los controla el BIOS se efectúan cada vez que el sistema está encendido. POST detectarán el estado del sistema y sus componentes. Cada código del LED corresponde a un estado del sistema determinado.



#### Advertencia:

Cuando el LED de encendido DRAM y/o el LED de alimentación de reserva se encienden en rojo, ésto indica que hay electricidad en el enchufe DIMM y/o en las ranuras PCI. Apague el PC, luego desenchufe el cable de alimentación antes de instalar módulos de memoria o placas complementarias. No hacerlo causará daños graves a la placa madre y a sus componentes.

#### Conectores de Electricidad

Español

Utilice un suministro de electricidad compatible con la ATX12V Power Supply Design Guide (Guía de diseño de suministro de electricidad ATX12V) Versión I.I. Una unidad de suministro de electricidad ATX12V incluye un conector de electricidad principal estándar ATX de 24 pines que debe insertarse en el conector.



Su unidad de suministro de electricidad puede contar con un conector de electricidad de 8 pines o de 4 pines + 12V La electricidad +12V permite el suministro de corriente de más de +12VDC al módulo regulador de voltaje del procesador (VRM, por sus siglas en inglés) De ser posible, es preferible utilizar electricidad de 8 pines; de otro modo, conecte electricidad de 4 pines a este conector.



Los conectores de electricidad de la unidad de suministro eléctrico están diseñados para adaptarse a los conectores de 24 pines y 8 pines en una sola orientación. Asegúrese de encontrar la orientación adecuada antes de enchufar los conectores.

Los conectores de electricidad de tipo FDD son conectores adicionales. Si usted utiliza más de una placa de gráficos, le sugerimos conectar los cables eléctricos desde la unidad de suministro eléctrico hacia los conectores de electricidad 5V/12V. Esto dará mayor estabilidad a todo el sistema. La placa del sistema funcionará aún cuando el conector de electricidad adicional no esté conectado.



La placa del sistema requiere un suministro eléctrico mínimo de 300 Watt para funcionar. La configuración de su sistema (alimentación de la CPU, cantidad de memoria, placas adicionales, periféricos, etc.) pueden exceder el requerimiento eléctrico mínimo. Para asegurarse de que la electricidad sea suficiente, le sugerimos utilizar un suministro eléctrico mínimo de 400 Watt (o mayor).



#### Importante:

Un suministro eléctrico insuficiente al sistema puede causar inestabilidad en las placas adicionales y que los periféricos no funcionen correctamente. Calcular el consumo eléctrico aproximado del sistema es importante para corroborar que el suministro eléctrico alcance los requerimientos de consumo del sistema.

Español

#### Reinicio del PC

Por lo general, se puede apagar el PC:

- I. pulsando el botón power en el panel frontal del armazón.
- 2. pulsando el interruptor power que se encuentra en la placa del sistema (nota: no todas las placas de sistema incluyen dicho interruptor).

Si por algún motivo, usted necesita cortar totalmente el suministro eléctrico al PC, apague el interruptor del suministro eléctrico o desenchufe el cable eléctrico. Sin embargo, tenga en cuenta que si desea reiniciarlo inmediatamente, debe seguir los siguientes pasos.

- 1. El tiempo que demora la alimentación en descargarse totalmente varía de acuerdo al tipo de suministro eléctrico. El tiempo de descarga depende en gran medida de la configuración del sistema, tal como el vataje del suministro eléctrico, la secuencia de la electricidad suministrada y el número de dispositivos periféricos conectados al sistema. Por esta razón, sugerimos que aguarde que el LED de alimentación de reserva se apague (consulte la sección de "LED" en este capítulo para localizar el LED de alimentación de reserva).
- 2. Después de que el LED de alimentación de reserva se apague, aguarde 6 segundos antes de encender el PC.

Si la placa del sistema se encuentra dentro de un armazón que no permite visualizar el LED de alimentación de reserva, aguarde 15 segundos antes de reiniciar las conexiones eléctricas. 15 segundos es el tiempo aproximado que le llevará al LED apagarse y el tiempo necesario antes de volver a conectar la electricidad.

Lo mencionado anteriormente asegura protección y previene daños a la placa madre y sus componentes.

#### Conectores del Panel Frontal



#### HD-LED: LED del IDE primario/secundario

Este LED se iluminará cuando se acceda al disco duro.

#### **RESET:** Interruptor reset (reinicio)

Este interruptor le permite reiniciar el sistema sin necesidad de apagarlo, prolongando, de este modo, la vida del suministro eléctrico o del sistema.

#### SPEAKER: Conector del altavoz

Se conecta al altavoz instalado en el armazón del sistema.

#### ATX-SW: Interruptor de encendido ATX

De acuerdo con la configuración del BIOS, este interruptor es un "botón de encendido de doble función" que le permitirá a su sistema ingresar al modo de Suspend (Suspensión) o Soft-Off (hibernación).

#### PWR-LED (LED de electricidad): LED de encendido/alimentación de reserva

...........

Este LED se iluminará cuando el sistema se encuentre encendido. Cuando el sistema se encuentre en estado S1 (POS – Encendido suspendido) o S3 (STR – Suspendido a RAM), parpadeará cada un segundo.



Español ....

#### <u>Nota:</u>

Si un sistema no se inició y el LED de electricidad/alimentación en reserva no se iluminó después de encenderse, puede indicar que la CPU o el módulo de memoria no se instalaron adecuadamente. Por favor, compruebe que estén insertados adecuadamente en sus zócalos correspondientes.

|                                       | Pin                 | Pin Assignment                                                    |
|---------------------------------------|---------------------|-------------------------------------------------------------------|
| HD-LED<br>(Primary/Secondary IDE LED) | 3<br>5              | HDD LED Power<br>HDD                                              |
| Reserved                              | 4<br> 6             | N. C.<br>N. C.                                                    |
| ATX-SW<br>(ATX power switch)          | 8<br>10             | PWRBT+<br>PWRBT-                                                  |
| Reserved                              | 18<br>20            | N. C.<br>N. C.                                                    |
| <b>RESET</b><br>(Reset switch)        | 7<br>9              | Ground<br>H/W Reset                                               |
| <b>SPEAKER</b><br>(Speaker connector) | 3<br> 5<br> 7<br> 9 | Speaker Data<br>N. C.<br>Ground<br>Speaker Power                  |
| <b>PWR-LED</b><br>(Power/Standby LED) | 2<br>4<br>6         | LED Power (+)<br>LED Power (+)<br>LED Power (-) or Standby Signal |

#### Ranuras PCI Express



#### Conector de Download Flash BIOS



#### Español

#### **Conectores Inteligentes**

Los conectores inteligentes (USB, IEEE 1394 y del panel frontal) sirven como conectores extendidos que le permiten conectar los cables fácilmente a los conectores que están en la tarjeta del sistema. Esto es especialmente ventajoso para los conectores del tablero frontal ya que esto impedirá una mala conexión de los cables.



#### **Conectores del Panel Frontal**

 Conecte todos los cables del panel frontal del chasis al conector inteligente del panel frontal. Conecte según la definición de las patitas que se muestran en el conector inteligente.



. . . . . . . . . . . . . . . . . . . .

2. Conecte el conector inteligente del panel frontal al conector del panel frontal en el tablero del sistema.



#### Conectores USB y IEEE 1394

- Conecte el cable del puerto USB/1394 al conector inteligente USB/ 1394. Conecte según la definición de las patitas que se muestran en el conector inteligente.
- 2. Conecte el conector inteligente USB/1394 a los conectores respectivos en el tablero del sistema.

#### Chapter 3 - RAID

El chip AMD permite configurar RAID en unidades ATA seriales. Es compatible con RAID 0, RAID 1 y RAID 0+1.

#### Niveles de RAID

#### RAID 0 (Arreglo de discos de franjas sin tolerancia a fallos)

RAID 0 utiliza dos nuevas unidades de disco duro idénticas para leer y escribir datos en grupos paralelos, entrelazados. Los datos se dividen en franjas y cada franja se escribe alternativamente entre dos discos duros. Esto mejora el rendimiento de I/O de las unidades en diferentes canales, sin embargo, no tiene tolerancia a fallos. Un disco fallado dará como resultado la pérdida de datos en el arreglo de discos.

#### RAID I (duplicación de arreglo de discos sin tolerancia a fallos)

RAID I copia y mantiene una imagen idéntica de los datos de una unidad en la otra unidad. Si una unidad no funciona, el software de la administración del arreglo de discos dirige todas las aplicaciones hacia la otra unidad debido a que contiene una copia completa de los datos de la unidad. Esto facilita la protección de datos y aumenta la tolerancia a fallos de todo el sistema. Utilice dos unidades nuevas o una unidad existente y una nueva, pero el tamaño de la nueva debe ser igual o mayor al de la anterior.

#### RAID 0+1 (Franjas y duplicación)

RAID 0+1 es una combinación de datos en franjas y datos duplicados que brindan los beneficios tanto del RAID 0 como del RAID 1.Utilice cuatro unidades nuevas o una existente y tres nuevas para esta configuración.

#### Configuración

Para que el RAID funcione, se requiere la siguiente configuración.

- I. Conecte las unidades ATA seriales.
- 2. Configure el ATA serial en el BIOS Award.
- 3. Configure el RAID en el RAID BIOS.
- 4. Instale el controlador RAID durante la instalación del OS.

#### Español

#### Paso I: Conecte las Unidades ATA Seriales

Consulte el capítulo 2 para obtener más información sobre como conectarlas unidades ATA seriales.

#### Importante:

- 1. Asegúrese de haber instalado las unidades ATA seriales y de haber conectado los cables de datos, de otro modo, no podrá ingresar a la utilidad de RAID BIOS.
- Trate los cables con mucho cuidado, especialmente, durante la creación del RAID. Un cable dañado arruinará todo el proceso de instalación y el sistema operativo. El sistema no se iniciará y usted perderá todos los datos en los discos duros. Preste especial atención a esta advertencia porque no hay modo de recuperar los datos perdidos.

#### Paso 2: Configure el ATA Serial en el BIOS Award

- 1. Encienda el sistema, luego presione <Del> para ingresar al menú principal del BIOS Award.
- 2. Seleccione el submenú de periféricos integrado la sección Dispositivo IDE OnChip del BIOS.
- 3. Configure el ATA serial en los campos adecuados.
- Pulse <Esc> para regresar al menú principal de la utilidad de configuración de BIOS. Seleccione "Save & Exit Setup" (guardar y salir de la configuración) y luego pulse <Enter>.
- 5. Escriba <Y> y pulse <Enter>.
- 6. Reinicie el sistema.

#### Paso 3: Configure el RAID en el RAID BIOS

Cuando el sistema se enciende y todas las unidades han sido detectadas, aparecerá la pantalla de mensajes de estado del AMD BIOS. Pulse la tecla <F4> para ingresar a la utilidad. La utilidad permite crear un sistema RAID en unidades ATA seriales.

#### el Controlador RAID Durante la Instalación del OS

La unidad RAID debe estar instalada durante la instalación de Windows<sup>®</sup> XP or Windows<sup>®</sup> 2000 mediante el método de instalación F6. Esto es necesario a fin de instalar el sistema operativo en un disco duro o volumen RAID al estar en modo RAID o en un disco duro al estar en modo AHCI.

- Español
- Inicie Windows Setup (configuración de Windows) ejecutando el CD de instalación.
- Pulse <F6> cuando se le solicite en la línea de estado con el "Press F6" (oprima F6) si necesita instalar un mensaje de unidad SCSI o RAID de un tercero.
- 3. Pulse <S> para "Specify Additional Devices" (especificar dispositivos adicionales).
- 4. En este punto, se le solicitará que inserte un disco flexible con el controlador del RAID. Inserte el disquete provisto con el controlador del RAID.
- 5. Localice la unidad donde insertó el disquete, luego seleccione el controlador RAID o AHCI que corresponde a su configuración de BIOS. Pulse <Enter> para confirmar.

Ha instalado el controlador satisfactoriamente. Sin embargo, debe continuar instalando el OS. Deje el disco flexible en la unidad hasta que el sistema se reinicie debido a que Windows setup lo necesitará para copiar los archivos nuevamente del disco flexible a las carpetas de instalación de Windows. Después de que Windows setup haya copiado estos archivos nuevamente, quite el disco flexible para que Windows setup pueda reiniciar según sea necesario.

#### Appendix A

| POST (hex) | Debug Code Action                     | <b>BIOS Program Definition</b>                    | Possible Cause                                                                    | Solution                                                                          |
|------------|---------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Power on   | None, blank                           | Nil                                               | 1. CMOS jumper is set at pins 2-3.                                                | 1. Set the CMOS jumper to pins 1-2 (default).                                     |
|            |                                       |                                                   | <ol> <li>5Vsb of PSU is insufficient.</li> <li>(Minimum required - 2A)</li> </ol> | 2. Replace a suitable PSU.                                                        |
| 00         | Power on -> Stopped at 00             | BIOS program starts to set VID/FID                | 1. Mixed-up BIOS data.                                                            | 1. Clear the CMOS data.                                                           |
|            |                                       | IO IIIIIIAIIZE OF U. (DUUL DIUCK ALEA).           | 2. Defective CPU connection.                                                      | 2. Remove and reinstall the CPU.                                                  |
|            |                                       |                                                   | 3. Incompatible PSU.                                                              | 3. Replace a suitable PSU.                                                        |
|            |                                       |                                                   | 4. No CPU power.                                                                  | 4. Inspect the 12V connection.                                                    |
|            |                                       |                                                   | 5. Reset button short-circuited.                                                  | 5. Inspect the cable that connects the reset button to the front panel connector. |
| 00         | Power on -> 00 -><br>Reset -> Looping | CPU VID is incorrect.                             | PSU does not comply with the system's requirement.                                | Replace a PSU that will provide adequate power to the system.                     |
| A0         | 00 -> C1 -> Stopped at <b>A0</b>      | A0~AF Definition: Initializing memory check code. | 1. Incompatible memory modules.                                                   | 1. Remove and reinstall the memory modules.                                       |
|            |                                       |                                                   | 2. Mixed-up BIOS data.                                                            | 2. Clear the CMOS data.                                                           |
| b8         | 00 -> C1 -> Stopped at b8             | B0~BF Definition: Initializing                    | 1. Mixed-up BIOS data.                                                            | 1. Clear the CMOS data.                                                           |
|            |                                       | inemoty/devices check code (registers).           | 2. Incompatible memory modules.                                                   | 2. Remove and reinstall the memory modules.                                       |
|            |                                       |                                                   | 3. Incompatible PCI devices.                                                      | 3. Remove and reconnect the PCI devices.                                          |
| CO         | 00 -> Stopped at C0                   | Initializing memory.                              | 1. Probing for failed memory devices.                                             | 1. Make sure the memory modules are installed properly in the slots.              |
|            |                                       |                                                   | 2. SPD value is lost or empty.                                                    | 2. Replace the memory modules.                                                    |

#### General Debug LED POST and Troubleshooting

| POST (hex) | Debug Code Action                                     | <b>BIOS Program Definition</b>                                   | Possible Cause                                                  | Solution                                       |
|------------|-------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------|
| C1         | 00 -> C0 -> Stopped at C1<br>(00 -> C0 -> C1 ->       | Detecting memory.                                                | 1. Incompatible memory modules.                                 | 1. Remove and reinstall the memory modules.    |
|            | Keset -> Looping)                                     | Detecting DKAM size and type.<br>ECC auto-detection of L2 cache. | 2. Overclocking issue (tight DRAM timing).                      | 2. Clear the CMOS then load the default speed. |
|            |                                                       |                                                                  | 3. One of the memory modules is defective.                      | 3. Try installing a single module only.        |
| C3/C5      | C0 -> C1 -> Stopped at C3/C5<br>( $C0 -> C1 -> C3 ->$ | Expanding compressed BIOS code to the DRAM.                      | <ol> <li>Tight DRAM timing (system is<br/>unstable).</li> </ol> | 1. Clear the CMOS then load the default speed. |
|            | keset -> rooping)                                     |                                                                  | 2. Insufficient DRAM voltage.                                   | 2. Increase the DRAM's voltage.                |
|            |                                                       |                                                                  | 3. Overclocking issue.                                          | 3. Remove and reinstall the memory modules.    |
| CF         | Shutdown -> Stopped at CF                             | Resume on S1/S3 failed.                                          | 1. Insufficient DRAM voltage.                                   | 1. Increase the DRAM's voltage.                |
|            | () -> CF -> Kesel                                     |                                                                  | 2. Incompatible memory modules.                                 | 2. Remove and reinstall the memory modules.    |
|            |                                                       |                                                                  | 3. Overclocking issue (tight DRAM timing).                      | 3. Load the default DRAM speed.                |
|            |                                                       |                                                                  | 4. BIOS issue.                                                  | 4. Upgrade to the latest BIOS.                 |
| EO         | $CO \rightarrow CI \rightarrow Stopped at EO$         | E0-EF Definition: Initializing PCIE                              | 1. Mixed-up BIOS data.                                          | 1. Clear the CMOS data.                        |
|            |                                                       |                                                                  | 2. Incompatible PCI devices.                                    | 2. Remove and reinstall the PCI device.        |

#### Debug LED POST and Troubleshooting

| POST (hex) | Debug Code Action                         | <b>BIOS Program Definition</b>                                                                                                               | Possible Cause                                               | Solution                                                                                                                                                  |
|------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25         | 00 -> C1 -> C3 -><br>Stopped at <b>25</b> | Enumerating PCI bus number.<br>Assigning memory & I/O resource -<br>searching for a valid VGA device &<br>VCA DTOS than closing it in C000.0 | 1. Incompatible PCI devices.                                 | 1. Remove all PCI/PCIE devices and<br>leave only the graphics card to test<br>first. Test the devices one at a time to<br>determine the one with problem. |
|            |                                           |                                                                                                                                              | 2. Incompatible USB devices.                                 | 2. Remove all USB devices including the USB keyboard and instead use a PS/2 keyboard to test.                                                             |
|            |                                           |                                                                                                                                              | 3. Defective graphics card.<br>(VGA BIOS did not initialize) | 3. Replace the graphics card.                                                                                                                             |
|            |                                           |                                                                                                                                              | 4. The graphics card was not installed properly.             | 4. Remove and reinstall the graphics card.                                                                                                                |
| 26         | 00 -> C1 -> C3 -><br>Stonnad at <b>36</b> | Initializing display card.                                                                                                                   | 1. Defective graphics card.                                  | 1. Replace the graphics card.                                                                                                                             |
|            | opped at zo                               | Initializing onboard clock generator.                                                                                                        | 2. Initialized wrong BIOS process.                           | 2. Clear the CMOS data.                                                                                                                                   |
|            |                                           | Disabling respective clock resource to empty PCI & DIMM slots.                                                                               | (crock-gen circuit / Super 10<br>circuit)                    |                                                                                                                                                           |
|            |                                           | Initializing onboard PWM3.                                                                                                                   |                                                              |                                                                                                                                                           |
|            |                                           | Initializing onboard H/W monitor devices.                                                                                                    |                                                              |                                                                                                                                                           |
| 41         | C3 -> 25 -> 26 -><br>Stopped at <b>41</b> | Initializing the FDD device.                                                                                                                 | Detected floppy error.                                       | Unplug the FDD cable and check for errors or check the BIOS settings.                                                                                     |
|            |                                           |                                                                                                                                              | * Mixed-up BIOS data could be one of the causes too.         | * Replace a new BIOS chip.                                                                                                                                |
| 50         | Power on -> Stopped at 50                 | Initializing USB devices.                                                                                                                    | 1. USB failed to boot. (BBS issue)                           | 1. Clear the CMOS data first.                                                                                                                             |
|            |                                           |                                                                                                                                              | 2. Incompatible USB devices.                                 | 2. Try connecting the device to another USB port.                                                                                                         |
|            |                                           |                                                                                                                                              |                                                              | 3. Test the USB devices one by one.                                                                                                                       |
|            |                                           |                                                                                                                                              |                                                              | 4. Set the USB power source to 5V by means of the 5V/5Vsb select jumper.                                                                                  |

Debug LED POST and Troubleshooting

| r (hex) | Debug Code Action<br>Power on -> Stopped at 75<br>Power on -> Stopped at 7F<br>* Checksum error always<br>appear after the BIOS default<br>has been loaded. | BIOS Program Definition<br>Initializing storage devices.<br>(Probing for IDE devices or SATA<br>devices)<br>BIOS setup module in progress.<br>Reporting BIOS check errors.<br>Waiting for keys:<br>DEL key to load the BIOS default.<br>F1 key to continue. | Possible Cause         1. Lost power source of some devices.         2. Incompatible SATA or PATA         device.         3. CD-ROM's spin took too long.         1. Checksum error occured.         (Change/add devices such as CPU/DRAM)         2. Error occured after clearing the CMOS.         3. Onboard battery is depleted.         4. Overclocking issue. | Solution         1. Inspect the power cable connection.         2. Inspect the IDE cable connection or replace another PATA/ SATA device.         3. Remove the disc, if present, from the CD-ROM device.         1. Load the optimized default setting of the BIOS.         2. Alter or adjust the BIOS setting.         3. Replace a new battery. |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Power on -> Run to FF<br>* Blank Screen                                                                                                                     | Boot attempt (INT 19h)<br>System booted normally.                                                                                                                                                                                                           | defective.<br>Normal Operation<br>* The graphics card was not<br>connected properly or it is defective.                                                                                                                                                                                                                                                             | Nil<br>* Remove and reinstall the graphics<br>card.                                                                                                                                                                                                                                                                                                 |

#### Debug LED POST and Troubleshooting

| A Debug LED POST and Troubleshooting |
|--------------------------------------|
|--------------------------------------|

#### Abnormal Debug LED POST and Troubleshooting

| Solution                       | 1. Clear the CMOS data.            | 2. RMA action required.                                                                                    | 1. Clear the CMOS data.            | 2. RMA action required.                                                                                    | 1. Clear the CMOS data.             | 2. RMA action required.                            |
|--------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------|
| Possible Cause                 | 1. Mixed-up BIOS data.             | 2. MB is defective.<br>(NB chip may be defective.)                                                         | 1. Mixed-up BIOS data.             | 2. MB is defective.<br>(NB chip may be defective.)                                                         | 1. Mixed-up BIOS data.              | 2. MB is defective.<br>(NB chip may be defective.) |
| <b>BIOS Program Definition</b> | There is no "79" definition on the | Award DLOS code:<br>(BIOS program executed the wrong<br>process therefore showing the wrong<br>POST code.) | There is no "88" definition on the | Award DLOS code:<br>(BIOS program executed the wrong<br>process therefore showing the wrong<br>POST code.) | Definition: BIOS process completed. | process therefore showing the wrong POST code.)    |
| Debug Code Action              | Power on -> Prompt Stopped         | ar 19                                                                                                      | Power on -> Prompt Stopped         | al <b>00</b>                                                                                               | Power on -> Prompt Stopped          | at FF                                              |
| POST (hex)                     | 79                                 |                                                                                                            | 88                                 |                                                                                                            | FF                                  |                                                    |

#### Index

## Clearing CMOS Data

- 1. Turn-off and unplug the AC power.
- 2. Move the jumper cap from pins 1-2 to pins 2-3.
- 3. Wait for 5 seconds then move the jumper cap back to pins 1-2.

# Totally Discharging the Motherboard

Unplug the AC power and remove the battery for 5 minutes then reinstall the battery and plug the AC power back on.





