

Data Sheet January 3, 2006 FN9238.1

Industry Standard Single-Ended Current Mode PWM Controller

The ISL8843 is an industry standard drop-in replacement for the popular 28C43 and 18C43 PWM controllers suitable for a wide range of power conversion applications including boost, flyback, and isolated output configurations. Its fast signal propagation and output switching characteristics make this an ideal product for existing and new designs.

Features include 30V operation, low operating current, $90\mu A$ start-up current, adjustable operating frequency to 2MHz, and high peak current drive capability with 20ns rise and fall times.

P	ART NUMBER	RISING UVLO	MAX. DUTY CYCLE
	ISL8843	8.4V	100%

Ordering Information

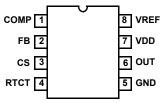
PART NUMBER	PART MARKING	TEMP. RANGE (°C)	PACKAGE	PKG. DWG. #
ISL8843ABZ (See Note)	8843 ABZ	-40 to 105	8 Ld SOIC (17b-1 ee)	M8.15
ISL8843AUZ (See Note)	884 <mark>32 VV</mark>	-40 to 105	8 Ld MSC P (Pb-free)	M8.118
ISL8843MBZ (See Note)	8843 MBZ	-55 to 125	8 Ld SOIC (Pb-free)	M8.15
ISL8843MUZ (See Note)	843MZ	-55 to 125	8 Ld MSOP (Pb-free)	M8.118

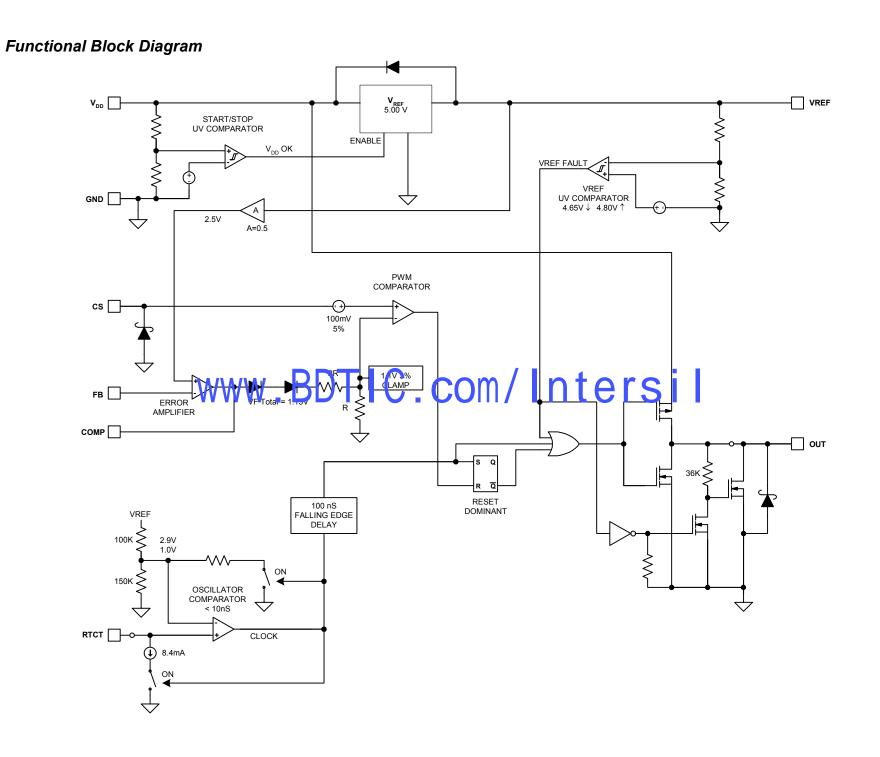
Add -T to part number for Tape and Reel packaging.

NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Features

- · 1A MOSFET gate driver
- 90μA start-up current, 125μA maximum
- · 35ns propagation delay current sense to output
- · Fast transient response with peak current mode control
- 30V operation
- · Adjustable switching frequency to 2MHz
- · 20ns rise and fall times with 1nF output load
- Trimmed timing capacitor discharge current for accurate deadtime/maximum duty cycle control
- · 1.5MHz bandwidth error amplifier
- Tight tolerance voltage reference over line, load, and temperature
- · ±3% current limit threshold
- Pb-free plus anneal available and ELV, WEEE, RoHS Compliant


Applications



- · Wireless base station power
- · File server power
- · Industrial power systems
- · PC power supplies
- · Isolated buck and flyback regulators
- · Boost regulators

Pinout

ISL8843 (8 LD SOIC, MSOP) TOP VIEW

 \sim

intersil

ω

intersil

CR5

ISL8843

Absolute Maximum Ratings

Supply Voltage, V _{DD} GND - 0.3V to +30.0'	V
OUT	٧
Signal Pins	٧
Peak GATE Current	Α
ESD Classification	
Human Body Model (Per JESD22-A114C.01)	٧
Machine Model (Per EIA/JESD22-A115-A)	٧
Charged Device Model (Per JESD22-C191-A)1000	٧

Thermal Information

Thermal Resistance (Typical, Note 1)	θ _{JA} (°C/W)
SOIC Package	100
MSOP Package	130
Maximum Junction Temperature	
Maximum Storage Temperature Range65	5°C to 150°C
Maximum Lead Temperature (Soldering 10s)	300°C
(SOIC, MSOP - Lead Tips Only)	

Operating Conditions

Temperature Range	
ISL8843AxZ	40°C to 105°C
ISL8843MxZ	55°C to 125°C
Supply Voltage Range (Typical)	
ISL8843	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES

- 1. θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
- 2. All voltages are with respect to GND.

Electrical Specifications

ISL8843A - Recommended operating conditions unless otherwise noted. Refer to Block Diagram and Typical Application schematic. V_{DD} = 15V, RT = 10k Ω , CT = 3.3nF, T_A = -40 to 105°C (Note 3) Typical values are at T_A = 25°C

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS			
UNDERVOLTAGE LOCKOUT								
START Threshold		8.0	8.4	9.0	V			
STOP Threshold WWW	U.COM/	7.3	7.6	8.0	V			
Hysteresis		-	0.8	-	V			
Startup Current, I _{DD}	V _{DD} < START Threshold	-	90	125	μА			
Operating Current, I _{DD}	(Note 4)	-	2.9	4.0	mA			
Operating Supply Current, I _D	Includes 1nF GATE loading	-	4.75	5.5	mA			
REFERENCE VOLTAGE					,			
Overall Accuracy	Over line (V _{DD} = 12V to 18V), load, temperature	4.925	5.000	5.050	V			
Long Term Stability	T _A = 125°C, 1000 hours (Note 5)	-	5	-	mV			
Current Limit, Sourcing		-20	-	-	mA			
Current Limit, Sinking		5	-	-	mA			
CURRENT SENSE								
Input Bias Current	V _{CS} = 1V	-1.0	-	1.0	μА			
CS Offset Voltage	V _{CS} = 0V (Note 5)	95	100	105	mV			
COMP to PWM Comparator Offset Voltage	V _{CS} = 0V (Note 5)	0.80	1.15	1.30	V			
Input Signal, Maximum		0.97	1.00	1.03	V			
Gain, $A_{CS} = \Delta V_{COMP}/\Delta V_{CS}$	0 < V _{CS} < 910mV, V _{FB} = 0V	2.5	3.0	3.5	V/V			
CS to OUT Delay		-	35	55	ns			
ERROR AMPLIFIER								
Open Loop Voltage Gain	(Note 5)	60	90	-	dB			
Unity Gain Bandwidth	(Note 5)	1.0	1.5		MHz			
Reference Voltage	V _{FB} = V _{COMP}	2.475	2.500	2.530	V			

FN9238.1 January 3, 2006

Electrical Specifications

ISL8843A - Recommended operating conditions unless otherwise noted. Refer to Block Diagram and Typical Application schematic. V_{DD} = 15V, RT = 10k Ω , CT = 3.3nF, T_A = -40 to 105°C (Note 3) Typical values are at T_A = 25°C (Continued)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
FB Input Bias Current	V _{FB} = 0V	-1.0	-0.2	1.0	μА
COMP Sink Current	V _{COMP} = 1.5V, V _{FB} = 2.7V	1.0	-	-	mA
COMP Source Current	V _{COMP} = 1.5V, V _{FB} = 2.3V	-0.4	-	-	mA
COMP VOH	V _{FB} = 2.3V	4.80	-	VREF	V
COMP VOL	V _{FB} = 2.7V	0.4	-	1.0	V
PSRR	Frequency = 120Hz, V _{DD} = 12V to 18V (Note 5)	60	80	-	dB
OSCILLATOR				•	'
Frequency Accuracy	Initial, T _A = 25°C	48	51	53	kHz
Frequency Variation with V _{DD}	T _A = 25°C, (F _{30V} - F _{9V})/F _{30V}	-	0.2	1.0	%
Temperature Stability	(Note 5)	-	-	5	%
Amplitude, Peak to Peak	Static Test	-	1.75	-	V
RTCT Discharge Voltage (Valley Voltage)	Static Test	-	1.0	-	V
Discharge Current	RTCT = 2.0V 6.5		7.8	8.5	mA
ОИТРИТ	•		•	•	•
Gate VOH	V _{DD} - OUT, I _{OUT} = -200mA	-	1.0	2.0	V
Gate VOL	OUT - GND, I _{OUT} = 200mA	-	1.0	2.0	V
Peak Output Current	C _{OUT} = 1nF (Note 5)	-	1.0	-	Α
Rise Time	C _O = 1nF (Note 5)		20	4 0	ns
Fall Time WWW B	C _{CUT} = 1nF Not(5)	n-te	20	0	ns
GATE VOL UVLO Clamp Voltage	VDD = 5V, I _{LOAD} = 1mA	-	-	1.2	V
PWM	<u> </u>		•	•	•
Maximum Duty Cycle	COMP = VREF		95	-	%
Minimum Duty Cycle	COMP = GND	-	-	0	%

NOTES:

- 3. Specifications at -40°C and 105°C are guaranteed by 25°C test with margin limits.
- 4. This is the V_{DD} current consumed when the device is active but not switching. Does not include gate drive current.
- 5. Guaranteed by design, not 100% tested in production.

Electrical Specifications

ISL8843M - Recommended operating conditions unless otherwise noted. Refer to Block Diagram and Typical Application schematic. V_{DD} = 15V, RT = 10kΩ, CT = 3.3nF, T_A = -55 to 125°C (Note 6), Typical values are at T_A = 25°C

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
UNDERVOLTAGE LOCKOUT					
START Threshold		8.0	8.4	9.0	V
STOP Threshold		7.3	7.6	8.0	V
Hysteresis		-	0.8	-	V
Startup Current, I _{DD}	V _{DD} < START Threshold	-	90	125	μА
Operating Current, I _{DD}	(Note 7)	-	2.9	4.0	mA
Operating Supply Current, I _D	Includes 1nF GATE loading	-	4.75	5.5	mA
REFERENCE VOLTAGE					
Overall Accuracy	Over line (V _{DD} = 12V to 18V), load, temperature	4.900	5.000	5.050	V

Electrical Specifications

ISL8843M - Recommended operating conditions unless otherwise noted. Refer to Block Diagram and Typical Application schematic. V_{DD} = 15V, RT = 10k Ω , CT = 3.3nF, T_A = -55 to 125°C (Note 6), Typical values are at T_A = 25°C (Continued)

Long Term Stability TA = 125°C, 1000 hours (Note 8) - 5 - mV Current Limit, Sourcing -20 - - mA Current Limit, Sinking - 5 - - mA CURRENT SENSE Input Blas Current VCS = 1V -1.0 - 1.0 µA CSO first Voltage VCS = 9V (Note 8) 9.5 100 10.3 V Input Signal, Maximum - 0.97 1.00 1.03 V Gain, Acs = AVCOMPIAVCs 0 < VCS < 910mV, VFB = 0V 2.5 3.0 3.5 VV CS to OUT Delay 0 < VCS < 910mV, VFB = 0V 2.5 3.0 3.5 VV CS to OUT Delay 0 < VCS < 910mV, VFB = 0V 2.5 3.0 3.5 VV ERROR AMPLHIER VEB * VCOMP 1.0 1.5 6 0 90 - dB Unity Gain Bandwidth (Note 8) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	PARAMETER TEST CONDITION		MIN	TYP	MAX	UNITS				
Current Limit, Sinking 5 mA CURRENT SENSE Input Bias Current V _{CS} = 1V -1.0 -1.0 1.0 μA COMP to Voltage V _{CS} = 0V (Note 8) 9.5 10.0 10.5 mV COMP to PVM Comparator Offset Voltage V _{CS} = 0V (Note 8) 0.80 1.15 1.30 V Input Signal, Maximum 0.97 1.00 1.03 V Gain, AGS = AVCOMPIAVCS 0.4 V _{CS} < 910mV, V _{FB} = 0V 2.5 3.0 3.5 VV Set AGS = AVCOMPIAVCS 0.4 V _{CS} < 910mV, V _{FB} = 0V 2.5 3.0 3.5 VV Set AGS = AVCOMPIAVCS 0.4 V _{CS} < 910mV, V _{FB} = 0V 2.5 3.0 3.5 VV Set AGS = AVCOMPIAVCS 0.4 V _{CS} < 910mV, V _{FB} = 0 1.0 1.5 MB Unity Gain Bandwidth (Note 8) 60 90 MB Unity Gain Bandwidth (Note 8) 1.0 1.5 MB Unity Gain Bandwidth (Note 8)	Long Term Stability	T _A = 125°C, 1000 hours (Note 8)	-	5	-	mV				
CURRENT SINSE Input Bias Current V _{CS} = 1V -1.0 -0 1.0 μA CS Offset Voltage V _{CS} = 0V (Note 8) 95 100 105 mV CS Offset Voltage V _{CS} = 0V (Note 8) 0.80 1.15 1.30 V COMP to PWM Comparator Offset Voltage V _{CS} = 0V (Note 8) 0.80 1.15 1.30 V Input Signal, Maximum 0.97 1.00 1.03 V Gain, A _{CS} = ΛV _{COMP} /ΛV _{CS} 0.4 V _{CS} < 910mV, V _{FB} = 0V 2.5 3.0 3.5 VV CS to OUT Delay 60 9.0 3.5 60 ns ns ERROR AMPLIFIER Unity Gain Bandwidth (Note 8) 60 90 2.535 V Reference Voltage V _{FB} = V-COMP 2.460 2.500 2.535 V FB Input Bias Current V _{FB} = 0V -1.0 -0.2 1.0 μA COMP Sink Current V _{COMP} = 1.5V, V _{FB} = 2.7V 1.0 -0.2	Current Limit, Sourcing		-20	-	-	mA				
Input Bias Current	Current Limit, Sinking		5	-	-	mA				
CS Offset Voltage V _{CS} = 0V (Note 8) 95 100 105 mV COMP to PWM Comparator Offset Voltage V _{CS} = 0V (Note 8) 0.80 1.15 1.30 V Input Signal, Maximum 0.97 1.00 1.03 V Gain, A _{CS} = ΔV _{COMP} /ΔV _{CS} 0.4 V _{CS} < 910mV, V _{FB} = 0V 2.5 3.0 3.5 0.7 CS to OUT Delay 1.0 2.5 3.0 3.5 60 ns ERROR AMPLIFIER Open Loop Voltage Gain (Note 8) 60 90 - dB Unity Gain Bandwidth (Note 8) 1.0 1.5 - MHz Reference Voltage V _{FB} = V _{COMP} 2.460 2.500 2.535 V Bl Input Bias Current V _{FB} = V _{COMP} -1.0 -0.2 2.10 µA COMP Sink Current V _{COMP} = 1.5V, V _{FB} = 2.7V 1.0 -0.2 2.10 µA COMP Source Current V _{COMP} = 1.5V, V _{FB} = 2.3V -0.4 - - mA COMP VOL <t< td=""><td colspan="10">CURRENT SENSE</td></t<>	CURRENT SENSE									
COMP to PWM Comparator Offset Voltage V _{CS} = 0V (Note 8) 0.80 1.15 1.30 V Input Signal, Maximum 0.97 1.00 1.03 V Galin, A _{CS} = ΔV _{COMP} /ΔV _{CS} 0.4 V _{CS} < 910mV, V _{FB} = 0V 2.5 3.0 3.5 V/V St to OUT Delay 2.5 3.0 3.5 V/V ERROR AMPLIFIER 3.0 6.0 90 - dB Unity Gain Bandwidth (Note 8) 6.0 90 - MHz Reference Voltage V _{FB} = V _{COMP} 2.460 2.500 2.535 V FB Input Bias Current V _{CB} = V _{COMP} -1.0 -0.2 1.0 µA COMP Sink Current V _{COMP} = 1.5V, V _{FB} = 2.3V -1.0 -0.2 1.0 µA COMP Source Current V _{COMP} = 1.5V, V _{FB} = 2.3V -0.4 - - mA COMP VOL V _{FB} = 2.7V 0.4 - - mA COMP VOL 1.0 - - 1.0 V <td col<="" td=""><td>Input Bias Current</td><td>V_{CS} = 1V</td><td>-1.0</td><td>-</td><td>1.0</td><td>μА</td></td>	<td>Input Bias Current</td> <td>V_{CS} = 1V</td> <td>-1.0</td> <td>-</td> <td>1.0</td> <td>μА</td>	Input Bias Current	V _{CS} = 1V	-1.0	-	1.0	μА			
input Signal, Maximum 1.00 1.00 1.00 1.00 V Gain, A _{CS} = ΔV _{COMP} /ΔV _{CS} 0 < V _{CS} < 910mV, V _{FB} = 0V 2.5 3.0 3.5 V/V CS to OUT Delay - - 3.5 60 ns ERROR AMPLIFIER Open Loop Voltage Gain (Note 8) 60 90 - dB Reference Voltage V _{FB} = V _{COMP} 2.460 2.500 2.535 V Reference Voltage V _{FB} = V _{COMP} 2.460 2.500 2.535 V FB Input Bias Current V _{FB} = 0V -1.0 -0.2 1.0 µA COMP Sink Current V _{COMP} = 1.5V, V _{FB} = 2.7V 1.0 - - mA COMP Source Current V _{COMP} = 1.5V, V _{FB} = 2.3V -0.4 - - mA COMP YOH V _{FB} = 2.3V -0.4 - - 0 V COMP YOU P _{FB} 2.7V - 0.4 - - 0 dB SOSCILLATOR	CS Offset Voltage	V _{CS} = 0V (Note 8)	95	100	105	mV				
Gain, A _{CS} = ΛV _{COMP} /ΛV _{CS} 0 < V _{CS} < 910mV, V _{FB} = 0V 2.5 3.0 3.5 V/V CS to OUT Delay 0 < V _{CS} < 910mV, V _{FB} = 0V 2.5 3.0 3.5 60 ns ERROR AMPLIFIER Open Loop Voltage Gain (Note 8) 60 90 - dB Unity Gain Bandwidth (Note 8) 1.0 1.5 - MHz Reference Voltage V _{FB} = V _{COMP} 2.460 2.500 2.535 V FB Input Bias Current V _{FB} = 0V -1.0 -0.2 1.0 µA COMP Sink Current V _{COMP} = 1.5V, V _{FB} = 2.3V 1.0 - - mA COMP Source Current V _{COMP} = 1.5V, V _{FB} = 2.3V 4.80 - V REF V COMP VOH V _{FB} = 2.3V 4.80 - V REF V OMP VOL V _{FB} = 2.3V 4.80 - V REF V OSCILLATOR Intilai, T _A = 25°C (F _{30V} - F _{9V})/F _{30V} - 0.2 1.0 d M <	COMP to PWM Comparator Offset Voltage	V _{CS} = 0V (Note 8)	0.80	1.15	1.30	V				
CS to OUT Delay n. 35 60 ns ERROR AMPLIFIER Open Loop Voltage Gain (Note 8) 60 90 - dB Unity Gain Bandwidth (Note 8) 1.0 1.5 - MHz Reference Voltage VFB = VCOMP 2.460 2.500 2.535 V BE Input Bias Current VFB = 0V -1.0 -0.2 1.0 mA COMP Sink Current VCOMP = 1.5V, VFB = 2.7V 1.0 - - mA COMP Source Current VCOMP = 1.5V, VFB = 2.3V -0.4 - - mA COMP VOH VFB = 2.3V 4.80 - VREF V COMP VOL VFB = 2.3V 4.80 - VREF V COMP VOL VFB = 2.3V 4.80 - VREF V COMP VOL VFB = 2.3V 4.80 - VREF V COMP VOL VBB = 2.3V 4.80 - - 1.0 MRE CO	Input Signal, Maximum		0.97	1.00	1.03	V				
ERROR AMPLIFIER Open Loop Voltage Gain (Note 8) 60 90 - dB Unity Gain Bandwidth (Note 8) 1.0 1.5 - MHz Reference Voltage VFB = VCOMP 2.460 2.500 2.535 V FB Input Bias Current VFB = VCOMP -1.0 -0.2 1.0 μA COMP Sink Current VCOMP = 1.5V, VFB = 2.7V 1.0 - - mA COMP Source Current VCOMP = 1.5V, VFB = 2.3V -0.4 - - mA COMP VOH VFB = 2.3V 4.80 - VREF V COMP VOL VFB = 2.7V 0.4 - - - mA COMP VOL VFB = 2.7V 0.4 - - 0 V PSR VIDER CALLATOR TA = 25°C 48 51 53 KHz Frequency Accuracy Initial, TA = 25°C 48 51 53 KHz Frequency Variation with V _{DD}	Gain, $A_{CS} = \Delta V_{COMP}/\Delta V_{CS}$	0 < V _{CS} < 910mV, V _{FB} = 0V	2.5	3.0	3.5	V/V				
Open Loop Voltage Gain (Note 8)	CS to OUT Delay		-	35	60	ns				
Unity Gain Bandwidth (Note 8) 1.0 1.5 - MHz	ERROR AMPLIFIER									
Reference Voltage VFB = VCOMP 2.460 2.500 2.535 V FB Input Bias Current VFB = 0V -1.0 -0.2 1.0 μA COMP Sink Current VCOMP = 1.5V, VFB = 2.7V 1.0 - - mA COMP Source Current VCOMP = 1.5V, VFB = 2.3V -0.4 - - mA COMP VOH VFB = 2.3V 4.80 - VREF V COMP VOL VFB = 2.7V 0.4 - 10 V PSRR VWW VFB = 2.7V 0.4 - 10 V COMP VOL VFB = 2.3V 4.80 - VREF V COMP VOL VFB = 2.3V 4.80 - VREF V COMP VOL VFB = 2.3V 4.80 - VREF V COMP VOL VFB = 2.3V 4.80 51 53 MHz COMP VOL VFB = 2.7V 0.4 4.80 51 53 MHz	Open Loop Voltage Gain	(Note 8)	60	90	-	dB				
FB Input Bias Current V _{FB} = V -1.0 -0.2 1.0 μA COMP Sink Current V _{COMP} = 1.5V, V _{FB} = 2.7V 1.0 -0.4 -0.4 -0.4 -0.6 mmA COMP Source Current V _{COMP} = 1.5V, V _{FB} = 2.3V 0.4 -0.4 -0.4 -0.7 mmA COMP VOH V _{FB} = 2.3V 4.80 -0.4 -0.7 VREF V COMP VOL PSRR VIIII 1, T _A = 25°C Initial, T _A = 25°C I	Unity Gain Bandwidth	(Note 8)	1.0	1.5	-	MHz				
COMP Sink Current VCOMP = 1.5V, VFB = 2.7V 1.0 - - mA COMP Source Current VCOMP = 1.5V, VFB = 2.3V -0.4 - - mA COMP VOH VFB = 2.3V 4.80 - VREF V COMP VOL VFB = 2.7V 0.4 - 10 V PSRR VFB = 2.7V 0.4 - 10 V COMP VOL VFB = 2.7V 0.4 - 10 V PSRR VFB = 2.7V 0.4 - 10 V PSRR VFB = 2.7V 0.4 - 10 V PSRR VFB = 2.7V 0.4 - 10 V DSCEILLATOR Initial, TA = 25°C 48 51 53 kHz PSRR Initial, TA = 25°C (F30V - F9V)/F30V - 0.2 1.0 % TSR VOLUTION with VDD TA = 25°C (F30V - F9V)/F30V - 1.75 - V	Reference Voltage	V _{FB} = V _{COMP}	2.460	2.500	2.535	V				
COMP Source Current V _{COMP} = 1.5V, V _{FB} = 2.3V -0.4 - - mA COMP VOH V _{FB} = 2.3V 4.80 - VREF V COMP VOL V _{FB} = 2.3V 0.4 - 10 V PSRR VWW Program of Tage of Tag	FB Input Bias Current	V _{FB} = 0V	-1.0	-0.2	1.0	μА				
COMP VOH	COMP Sink Current	V _{COMP} = 1.5V, V _{FB} = 2.7V	1.0	-	-	mA				
COMP VOL	COMP Source Current	V _{COMP} = 1.5V, V _{FB} = 2.3V	-0.4	-	-	mA				
OSCILLATOR Frequency Accuracy Initial, TA = 25°C 48 51 53 kHz Frequency Variation with VDD TA = 25°C, (F _{30V} - F _{9V})/F _{30V} - 0.2 1.0 % Temperature Stability (Note 8) - - 5 % Amplitude, Peak to Peak Static Test - 1.75 - V RTCT Discharge Voltage (Valley Voltage) Static Test - 1.0 - V Discharge Current RTCT = 2.0V 6.2 8.0 8.5 mA OUTPUT Gate VOH VDD - OUT, I _{OUT} = -200mA - 1.0 2.0 V Gate VOL OUT - GND, I _{OUT} = 200mA - 1.0 2.0 V Peak Output Current C _{OUT} = 1nF (Note 8) - 1.0 2.0 V Rise Time C _{OUT} = 1nF (Note 8) - 20 40 ns Fall Time C _{OUT} = 1nF (Note 8) - 2.0 40 ns GATE VOL UVLO Clamp Vo	COMP VOH	V _{FB} = 2.3V	4.80	-	VREF	V				
OSCILLATOR Frequency Accuracy Initial, TA = 25°C 48 51 53 kHz Frequency Variation with VDD TA = 25°C, (F _{30V} - F _{9V})/F _{30V} - 0.2 1.0 % Temperature Stability (Note 8) - - 5 % Amplitude, Peak to Peak Static Test - 1.75 - V RTCT Discharge Voltage (Valley Voltage) Static Test - 1.0 - V Discharge Current RTCT = 2.0V 6.2 8.0 8.5 mA OUTPUT Gate VOH VDD - OUT, I _{OUT} = -200mA - 1.0 2.0 V Gate VOL OUT - GND, I _{OUT} = 200mA - 1.0 2.0 V Peak Output Current C _{OUT} = 1nF (Note 8) - 1.0 2.0 V Rise Time C _{OUT} = 1nF (Note 8) - 20 40 ns Fall Time C _{OUT} = 1nF (Note 8) - 2.0 40 ns GATE VOL UVLO Clamp Vo	COMP VOL	V _F 2.7V	0.4		1.0	V				
Frequency Accuracy Initial, T _A = 25°C 48 51 53 kHz Frequency Variation with V _{DD} T _A = 25°C, (F _{30V} - F _{9V})/F _{30V} - 0.2 1.0 % Temperature Stability (Note 8) - - 5 % Amplitude, Peak to Peak Static Test - 1.75 - V RTCT Discharge Voltage (Valley Voltage) Static Test - 1.0 - V Discharge Current RTCT = 2.0V 6.2 8.0 8.5 mA OUTPUT Gate VOH VpD - OUT, I _{OUT} = -200mA - 1.0 2.0 V Gate VOL OUT - GND, I _{OUT} = 200mA - 1.0 2.0 V Peak Output Current C _{OUT} = 1nF (Note 8) - 1.0 - A Rise Time C _{OUT} = 1nF (Note 8) - 20 40 ns Fall Time C _{OUT} = 1nF (Note 8) - 20 40 ns GATE VOL UVLO Clamp Voltage VDD = 5V, I _{LOAD} = 1mA	PSRR WWW.DU	Frequency = 120Hz, / pt) = 12V to 18V (Note 8)	60	80		dB				
Frequency Variation with V _{DD} T _A = 25°C, (F _{30V} - F _{9V})/F _{30V} - 0.2 1.0 % Temperature Stability (Note 8) - - 5 % Amplitude, Peak to Peak Static Test - 1.75 - V RTCT Discharge Voltage (Valley Voltage) Static Test - 1.0 - V Discharge Current RTCT = 2.0V 6.2 8.0 8.5 mA OUTPUT Gate VOH V _{DD} - OUT, I _{OUT} = -200mA - 1.0 2.0 V Gate VOL OUT - GND, I _{OUT} = 200mA - 1.0 2.0 V Peak Output Current C _{OUT} = 1nF (Note 8) - 1.0 - A Rise Time C _{OUT} = 1nF (Note 8) - 20 40 ns Fall Time C _{OUT} = 1nF (Note 8) - 20 40 ns GATE VOL UVLO Clamp Voltage VDD = 5V, I _{LOAD} = 1mA - - 1.2 V PWM Maximum Duty C	OSCILLATOR									
Temperature Stability (Note 8) - - 5 % Amplitude, Peak to Peak Static Test - 1.75 - V RTCT Discharge Voltage (Valley Voltage) Static Test - 1.0 - V Discharge Current RTCT = 2.0V 6.2 8.0 8.5 mA OUTPUT Gate VOH VDD - OUT, I _{OUT} = -200mA - 1.0 2.0 V Gate VOL OUT - GND, I _{OUT} = 200mA - 1.0 2.0 V Peak Output Current C _{OUT} = 1nF (Note 8) - 1.0 - A Rise Time C _{OUT} = 1nF (Note 8) - 20 40 ns Fall Time C _{OUT} = 1nF (Note 8) - 20 40 ns GATE VOL UVLO Clamp Voltage VDD = 5V, I _{LOAD} = 1mA - - 1.2 V PWM Maximum Duty Cycle COMP = VREF 93.5 95 - %	Frequency Accuracy	Initial, T _A = 25°C	48	51	53	kHz				
Amplitude, Peak to Peak Static Test - 1.75 - V RTCT Discharge Voltage (Valley Voltage) Static Test - 1.0 - V Discharge Current RTCT = 2.0V 6.2 8.0 8.5 mA OUTPUT Gate VOH VDD - OUT, IOUT = -200mA - 1.0 2.0 V Gate VOL OUT - GND, IOUT = 200mA - 1.0 2.0 V Peak Output Current COUT = 1nF (Note 8) - 1.0 - A Rise Time COUT = 1nF (Note 8) - 20 40 ns Fall Time COUT = 1nF (Note 8) - 20 40 ns GATE VOL UVLO Clamp Voltage VDD = 5V, ILOAD = 1mA - - 1.2 V PWM Maximum Duty Cycle COMP = VREF 93.5 95 - %	Frequency Variation with V _{DD}	$T_A = 25^{\circ}C, (F_{30V} - F_{9V})/F_{30V}$	-	0.2	1.0	%				
RTCT Discharge Voltage (Valley Voltage) Static Test - 1.0 - V Discharge Current RTCT = 2.0V 6.2 8.0 8.5 mA OUTPUT Gate VOH VDD - OUT, IOUT = -200mA - 1.0 2.0 V Gate VOL OUT - GND, IOUT = 200mA - 1.0 2.0 V Peak Output Current COUT = 1nF (Note 8) - 1.0 - A Rise Time COUT = 1nF (Note 8) - 20 40 ns Fall Time COUT = 1nF (Note 8) - 20 40 ns GATE VOL UVLO Clamp Voltage VDD = 5V, ILOAD = 1mA - - 1.2 V PWM Maximum Duty Cycle COMP = VREF 93.5 95 - %	Temperature Stability	(Note 8)	-	-	5	%				
Discharge Current RTCT = 2.0V 6.2 8.0 8.5 mA OUTPUT Gate VOH VDD - OUT, IOUT = -200mA - 1.0 2.0 V Gate VOL OUT - GND, IOUT = 200mA - 1.0 2.0 V Peak Output Current COUT = 1nF (Note 8) - 1.0 - A Rise Time COUT = 1nF (Note 8) - 20 40 ns Fall Time COUT = 1nF (Note 8) - 20 40 ns GATE VOL UVLO Clamp Voltage VDD = 5V, ILOAD = 1mA - - 1.2 V PWM Maximum Duty Cycle COMP = VREF 93.5 95 - %	Amplitude, Peak to Peak	Static Test	-	1.75	-	V				
OUTPUT Gate VOH VDD - OUT, IOUT = -200mA - 1.0 2.0 V Gate VOL OUT - GND, IOUT = 200mA - 1.0 2.0 V Peak Output Current COUT = 1nF (Note 8) - 1.0 - A Rise Time COUT = 1nF (Note 8) - 20 40 ns Fall Time COUT = 1nF (Note 8) - 20 40 ns GATE VOL UVLO Clamp Voltage VDD = 5V, ILOAD = 1mA - - 1.2 V PWM Maximum Duty Cycle COMP = VREF 93.5 95 - %	RTCT Discharge Voltage (Valley Voltage)	Static Test	-	1.0	-	V				
Gate VOH VDD - OUT, IOUT = -200mA - 1.0 2.0 V Gate VOL OUT - GND, IOUT = 200mA - 1.0 2.0 V Peak Output Current COUT = 1nF (Note 8) - 1.0 - A Rise Time COUT = 1nF (Note 8) - 20 40 ns Fall Time COUT = 1nF (Note 8) - 20 40 ns GATE VOL UVLO Clamp Voltage VDD = 5V, ILOAD = 1mA - - 1.2 V PWM Maximum Duty Cycle COMP = VREF 93.5 95 - %	Discharge Current	RTCT = 2.0V	6.2	8.0	8.5	mA				
Gate VOL OUT - GND, I _{OUT} = 200mA - 1.0 2.0 V Peak Output Current C _{OUT} = 1nF (Note 8) - 1.0 - A Rise Time C _{OUT} = 1nF (Note 8) - 20 40 ns Fall Time C _{OUT} = 1nF (Note 8) - 20 40 ns GATE VOL UVLO Clamp Voltage VDD = 5V, I _{LOAD} = 1mA - - 1.2 V PWM Maximum Duty Cycle COMP = VREF 93.5 95 - %	ОИТРИТ									
Peak Output Current C _{OUT} = 1nF (Note 8) - 1.0 - A Rise Time C _{OUT} = 1nF (Note 8) - 20 40 ns Fall Time C _{OUT} = 1nF (Note 8) - 20 40 ns GATE VOL UVLO Clamp Voltage VDD = 5V, I _{LOAD} = 1mA - - 1.2 V PWM Maximum Duty Cycle COMP = VREF 93.5 95 - %	Gate VOH	V _{DD} - OUT, I _{OUT} = -200mA	-	1.0	2.0	V				
Rise Time COUT = 1nF (Note 8) - 20 40 ns Fall Time COUT = 1nF (Note 8) - 20 40 ns GATE VOL UVLO Clamp Voltage VDD = 5V, I _{LOAD} = 1mA - - 1.2 V PWM Maximum Duty Cycle COMP = VREF 93.5 95 - %	Gate VOL	OUT - GND, I _{OUT} = 200mA	-	1.0	2.0	V				
Fall Time C _{OUT} = 1nF (Note 8) - 20 40 ns GATE VOL UVLO Clamp Voltage VDD = 5V, I _{LOAD} = 1mA - - 1.2 V PWM Maximum Duty Cycle COMP = VREF 93.5 95 - %	Peak Output Current	C _{OUT} = 1nF (Note 8)	-	1.0	-	Α				
GATE VOL UVLO Clamp Voltage	Rise Time	C _{OUT} = 1nF (Note 8)	-	20	40	ns				
PWM COMP = VREF 93.5 95 - %	Fall Time	C _{OUT} = 1nF (Note 8)		20	40	ns				
Maximum Duty Cycle COMP = VREF 93.5 95 - %	GATE VOL UVLO Clamp Voltage	VDD = 5V, I _{LOAD} = 1mA	-	-	1.2	V				
	PWM	•								
Minimum Duty Cycle COMP = GND - - 0 %	Maximum Duty Cycle	COMP = VREF	93.5	95	-	%				
	Minimum Duty Cycle	COMP = GND	-	-	0	%				

NOTES:

- 6. Specifications at -55°C and 125°C are guaranteed by 25°C test with margin limits.
- 7. This is the V_{DD} current consumed when the device is active but not switching. Does not include gate drive current.
- 8. Guaranteed by design, not 100% tested in production.

Typical Performance Curves

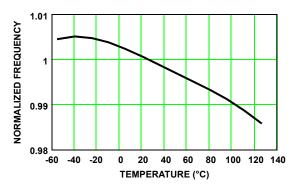


FIGURE 1. FREQUENCY vs TEMPERATURE

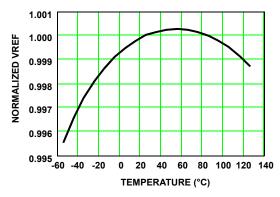


FIGURE 2. REFERENCE VOLTAGE vs TEMPERATURE

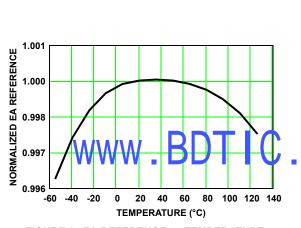


FIGURE 3. EA REFERENCE vs TEMPERATURE

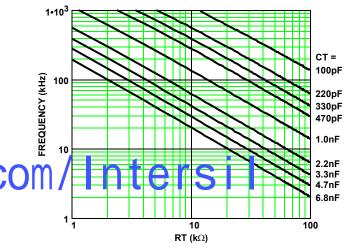


FIGURE 4. RTCT vs FREQUENCY

Pin Descriptions

RTCT - This is the oscillator timing control pin. The operational frequency and maximum duty cycle are set by connecting a resistor, RT, between VREF and this pin and a timing capacitor, CT, from this pin to GND. The oscillator produces a sawtooth waveform with a programmable frequency range up to 2.0MHz. The charge time, T_C , the discharge time, T_D , the switching frequency, f, and the maximum duty cycle, Dmax, can be approximated from the following equations:

$$T_{C} \approx 0.533 \bullet RT \bullet CT$$
 (EQ. 1)

$$T_{D} \approx -RT \bullet CT \bullet In \left(\frac{0.008 \bullet RT - 3.83}{0.008 \bullet RT - 1.71} \right)$$
 (EQ. 2)

$$f = 1/(T_C + T_D)$$
 (EQ. 3)

$$D = T_{\mathbf{C}} \bullet f \tag{EQ. 4}$$

The formulae have increased error at higher frequencies due to propagation delays. Figure 4 may be used as a guideline in selecting the capacitor and resistor values required for a given frequency.

COMP - COMP is the output of the error amplifier and the input of the PWM comparator. The control loop frequency compensation network is connected between the COMP and FB pins.

FB - The output voltage feedback is connected to the inverting input of the error amplifier through this pin. The non-inverting input of the error amplifier is internally tied to a reference voltage.

CS - This is the current sense input to the PWM comparator. The range of the input signal is nominally 0 to 1.0V and has an internal offset of 100mV.

GND - GND is the power and small signal reference ground for all functions.

intersil FN9238.1 January 3, 2006 ${\bf OUT}$ - This is the drive output to the power switching device. It is a high current output capable of driving the gate of a power MOSFET with peak currents of 1.0A. This GATE output is actively held low when ${\bf V}_{DD}$ is below the UVLO threshold.

 ${
m V_{DD}}$ - ${
m V_{DD}}$ is the power connection for the device. The total supply current will depend on the load applied to OUT. Total ${
m I_{DD}}$ current is the sum of the operating current and the average output current. Knowing the operating frequency, f, and the MOSFET gate charge, Qg, the average output current can be calculated from:

$$I_{OUT} = Qg \times f$$
 (EQ. 5)

To optimize noise immunity, bypass V_{DD} to GND with a ceramic capacitor as close to the V_{DD} and GND pins as possible.

VREF - The 5.00V reference voltage output. +1.0/-1.5% tolerance over line, load and operating temperature. Bypass to GND with a $0.1\mu F$ to $3.3\mu F$ capacitor to filter this output as needed.

Functional Description

Features

The ISL8843 current mode PWM makes an ideal choice for low-cost flyback and forward topology applications. With its greatly improved performance over into stry standard parts, it is the obvious choice for new designs or existing legigns which require updating.

Oscillator

The ISL8843 has a sawtooth oscillator with a programmable frequency range to 2MHz, which can be programmed with a resistor from VREF and a capacitor to GND on the RTCT pin. (Please refer to Figure 4 for the resistor and capacitance required for a given frequency.)

Soft-Start Operation

Soft-start must be implemented externally. One method, illustrated below, clamps the voltage on COMP.

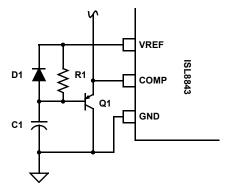


FIGURE 5. SOFT-START

The COMP pin is clamped to the voltage on capacitor C1 plus a base-emitter junction by transistor Q1. C1 is charged from VREF through resistor R1 and the base current of Q1. At power-up C1 is fully discharged, COMP is at ~0.7V, and the duty cycle is zero. As C1 charges, the voltage on COMP increases, and the duty cycle increases in proportion to the voltage on C1. When COMP reaches the steady state operating point, the control loop takes over and soft start is complete. C1 continues to charge up to VREF and no longer affects COMP. During power down, diode D1 quickly discharges C1 so that the soft start circuit is properly initialized prior to the next power on sequence.

Gate Drive

The ISL8843 is capable of sourcing and sinking 1A peak current. To limit the peak current through the IC, an optional external resistor may be placed between the totem-pole output of the IC (OUT pin) and the gate of the MOSFET. This small series resistor also damps any oscillations caused by the resonant tank of the parasitic inductances in the traces of the board and the FET's input capacitance.

Slope Compensation

For applications where the maximum duty cycle is less than 50%, slope compensation may be used to improve noise immunity, particularly at lighter loads. The amount of slope compensation required for noise immunity is determined empirically, but is generally about 10% of the full scale unent feed pack signal, for applications where the duty ycle is greater than 10% slope compensation is required to prevent instability.

Slope compensation may be accomplished by summing an external ramp with the current feedback signal or by subtracting the external ramp from the voltage feedback error signal. Adding the external ramp to the current feedback signal is the more popular method.

From the small signal current-mode model [1] it can be shown that the naturally-sampled modulator gain, Fm, without slope compensation, is

$$Fm = \frac{1}{SnTsw}$$
 (EQ. 6)

where Sn is the slope of the sawtooth signal and Tsw is the duration of the half-cycle. When an external ramp is added, the modulator gain becomes

$$Fm = \frac{1}{(Sn + Se)Tsw} = \frac{1}{m_cSnTsw}$$
 (EQ. 7)

where Se is slope of the external ramp and

$$m_{c} = 1 + \frac{Se}{Sn}$$
 (EQ. 8)

The criteria for determining the correct amount of external ramp can be determined by appropriately setting the damping factor of the double-pole located at the switching

8

frequency. The double-pole will be critically damped if the Q-factor is set to 1, over-damped for Q < 1, and underdamped for Q > 1. An under-damped condition may result in current loop instability.

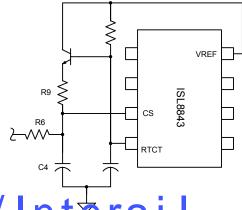
$$Q = \frac{1}{\pi(m_c(1-D)-0.5)}$$
 (EQ. 9)

where D is the percent of on time during a switching cycle. Setting Q = 1 and solving for Se yields

$$S_e = S_n \left(\left(\frac{1}{\pi} + 0.5 \right) \frac{1}{1 - D} - 1 \right)$$
 (EQ. 10)

Since Sn and Se are the on time slopes of the current ramp and the external ramp, respectively, they can be multiplied by Ton to obtain the voltage change that occurs during Ton.

$$V_e = V_n \left(\left(\frac{1}{\pi} + 0.5 \right) \frac{1}{1 - D} - 1 \right)$$
 (EQ. 11)


where Vn is the change in the current feedback signal (ΔI) during the on time and Ve is the voltage that must be added by the external ramp.

For a flyback converter, Vn can be solved for in terms of input voltage, current transducer components, and primary inductance, yielding

Substituting Equations 12 and 13 into Equation 14 and solving for R_{CS} yields

$$\begin{split} R_{CS} &= \frac{1}{\frac{D \cdot T_{sw} \cdot V_{IN}}{L_p} \cdot \left(\frac{\frac{1}{\pi} + 0.5}{1 - D} - 1\right) + \frac{N_s}{N_p} \cdot \left(I_O + \frac{(1 - D) \cdot V_O \cdot T_{sw}}{2L_s}\right)} \end{split}$$
 (EQ. 15

Adding slope compensation is accomplished in the ISL8843 using an external buffer transistor and the RTCT signal. A typical application sums the buffered RTCT signal with the current sense feedback and applies the result to the CS pin as shown in Figure 6.

$V_{e} = \frac{D \cdot T_{SW} \cdot V_{IN} \cdot R_{CS}}{L_{p}} \left(\left(\frac{1}{1} + 0.5 \right) \frac{1}{1 \cdot B} \right) T^{V}$ (EQ. 12) FIGURE 6. SLOPE COMPENSATION

where R_{CS} is the current sense resistor, T_{SW} is the switching frequency, L_{D} is the primary inductance, V_{IN} is the minimum input voltage, and D is the maximum duty cycle.

The current sense signal at the end of the ON time for CCM operation is:

$$V_{CS} = \frac{N_S \cdot R_{CS}}{N_p} \left(I_O + \frac{(1 - D) \cdot V_O \cdot T_{sw}}{2L_s} \right) \qquad V$$
 (EQ. 13)

where $V_{\mbox{\footnotesize{CS}}}$ is the voltage across the current sense resistor, L_s is the secondary winding inductance, and I_O is the output current at current limit. Equation 13 assumes the voltage drop across the output rectifier is negligible.

Since the peak current limit threshold is 1.00V, the total current feedback signal plus the external ramp voltage must sum to this value when the output load is at the current limit threshold.

$$V_e + V_{CS} = 1$$
 (EQ. 14)

9

Assuming the designer has selected values for the RC filter (R6 and C4) placed on the CS pin, the value of R9 required to add the appropriate external ramp can be found by superposition.

$$V_e = \frac{2.05D \cdot R6}{R6 + R9}$$
 V (EQ. 16)

The factor of 2.05 in Equation 16 arises from the peak amplitude of the sawtooth waveform on RTCT minus a baseemitter junction drop. That voltage multiplied by the maximum duty cycle is the voltage source for the slope compensation. Rearranging to solve for R9 yields:

$$R9 = \frac{(2.05D - V_e) \cdot R6}{V_o} \qquad \Omega$$
 (EQ. 17)

The value of R_{CS} determined in Equation 15 must be rescaled so that the current sense signal presented at the CS pin is that predicted by Equation 13. The divider created by R6 and R9 makes this necessary.

$$R'_{CS} = \frac{R6 + R9}{R9} \cdot R_{CS}$$
 (EQ. 18)

FN9238.1 January 3, 2006 Example:

 $V_{IN} = 12V$

 $V_O = 48V$

 $L_{S} = 800 \mu H$

Ns/Np = 10

 $Lp = 8.0 \mu H$

 $I_{O} = 200 \text{mA}$

Switching Frequency, Fsw = 200kHz

Duty Cycle, D = 28.6%

 $R6 = 499\Omega$

Solve for the current sense resistor, R_{CS}, using Equation 15.

 $R_{CS} = 295 \text{m}\Omega$

Determine the amount of voltage, Ve, that must be added to the current feedback signal using Equation 12.

Ve = 92.4mV

Using Equation 17, solve for the summing resistor, R9, from CT to CS.

 $R9 = 2.67k\Omega$

Determine the new value of R_{CS}, R'_{CS}, using Equation 18.

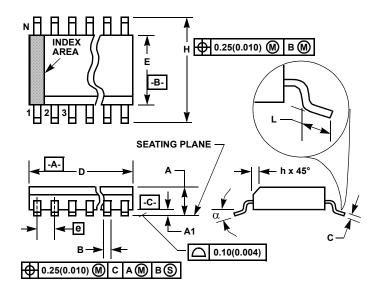
R'cs = 350m\Q www.BDTIC.com/Intersil

Additional slope compensation may be considered for design margin. The above discussion determines the minimum external ramp that is required. The buffer transistor used to create the external ramp from RTCT should have a sufficiently high gain (>200) so as to minimize the required base current. Whatever base current is required reduces the charging current into RTCT and will reduce the oscillator frequency.

Fault Conditions

A Fault condition occurs if VREF falls below 4.65V. When a Fault is detected OUT is disabled. When VREF exceeds 4.80V, the Fault condition clears, and OUT is enabled.

Ground Plane Requirements


Careful layout is essential for satisfactory operation of the device. A good ground plane must be employed. A unique section of the ground plane must be designated for high di/dt currents associated with the output stage. V_{DD} should be bypassed directly to GND with good high frequency capacitors.

References

[1] Ridley, R., "A New Continuous-Time Model for Current Mode Control", IEEE Transactions on Power Electronics, Vol. 6, No. 2, April 1991.

intersil

Small Outline Plastic Packages (SOIC)

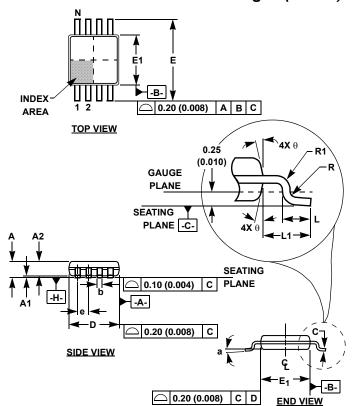
NOTES:

- Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side.
- Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
- 5. The chamfer on the body is pytional. fit is not present a visual index.
- 6. "L" is the length of terminal for soldering to a substrate.
- 7. "N" is the number of terminal positions.
- 8. Terminal numbers are shown for reference only.
- The lead width "B", as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch).
- Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

11

intersil

M8.15 (JEDEC MS-012-AA ISSUE C) 8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE


	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.0532	0.0688	1.35	1.75	-
A1	0.0040	0.0098	0.10	0.25	-
В	0.013	0.020	0.33	0.51	9
С	0.0075	0.0098	0.19	0.25	-
D	0.1890	0.1968	4.80	5.00	3
Е	0.1497	0.1574	3.80	4.00	4
е	0.050	BSC	1.27	BSC	-
Н	0.2284	0.2440	5.80	6.20	-
h	0.0099	0.0196	0.25	0.50	5
L	0.016	0.050	0.40	1.27	6
N	8	3	8		7
α	0°	8°	0°	8°	-

Rev. 1 6/05

com/Intersil

FN9238.1 January 3, 2006

Mini Small Outline Plastic Packages (MSOP)

M8.118 (JEDEC MO-187AA) 8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE

	INC	HES	MILLIN			
SYMBOL	MIN	MAX	MIN	MAX	NOTES	
Α	0.037	0.043	0.94 1.10		-	
A1	0.002	0.006	0.05	0.15	-	
A2	0.030	0.037	0.75	0.95	-	
b	0.010	0.014	0.25	0.36	9	
С	0.004	0.008	0.09	0.20	-	
D	0.116	0.120	2.95	3.05	3	
E1	0.116	0.120	2.95	3.05	4	
е	0.026	26 BSC 0.		BSC	-	
Е	0.187	0.199	4.75	5.05	-	
L	0.016	0.028	0.40	0.70	6	
L1	0.037 REF		0.95	REF	-	
N	8	8		8	7	
R	0.003	-	0.07	-	-	
R1	0.003	-	0.07	-	-	
0	5 ⁰	15 ⁰	5 ⁰	15 ⁰	-	
α	0°	6 ⁰	0°	6 ⁰	-	

Rev. 2 01/03

NOTES:

- 1. These package dinhers on are within a lowable din ensions of COM/ nters
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1994.
- Dimension "D" does not include mold flash, protrusions or gate burrs and are measured at Datum Plane. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side.
- Dimension "E1" does not include interlead flash or protrusions and are measured at Datum Plane. - H- Interlead flash and protrusions shall not exceed 0.15mm (0.006 inch) per side.
- 5. Formed leads shall be planar with respect to one another within 0.10mm (0.004) at seating Plane.
- 6. "L" is the length of terminal for soldering to a substrate.
- 7. "N" is the number of terminal positions.
- 8. Terminal numbers are shown for reference only.
- Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall be 0.08mm (0.003 inch) total in excess of "b" dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07mm (0.0027 inch).
- 10. Datums -A and -B to be determined at Datum plane -H I.
- Controlling dimension: MILLIMETER. Converted inch dimensions are for reference only.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com