

主机板规格

	配置 LGA 775CPU 脚座,适用于以下处理器类型: - Intel [®] Pentium [®] D		
	- Intel [®] Pentium [®] 4		
中央处理器	- Intel [®] Core TM 2(Conroe系列)		
十 大 处 连 命	支持Intel EMT64T (64位英特尔内存扩展技术)		
	支援EIST(英特尔动态节能技术)		
	支持Intel超线程(HT)技术		
	支援1066/800HHz FSB		
芯片组	Intel [®] 975X Express 芯片组:		
	北桥: Intel® 975X		
	南桥: Intel [®] ICH7R		
	四组 240-pin DDR2 DIMM 插槽		
	支持DDR2 533与DDR2 667内存		
系统内存	支持双通 道 (128位) 内存接口		
永纨内仔 	支持8GB系统内存		
	支持10.7GB/S带宽		
	支持ECC/non-ECC x8与 x16 DIMM		
扩充插槽	两组 PCI Express x16 插槽:		
	- 交叉火力 (CrossFire) 模式: 两组 x16 插槽将按照		
	x8带宽运行		
	- 单 VGA 模式: 仅一组 x16 插槽会按照 x16 带宽运行		

	一组PCI Express x1插槽		
	一组PCI Express x4插槽		
	两组PCI插槽		
	Award BIOS		
BIOS	8Mbit 闪存		
	ACPI 规格与 OS 直接电源管理		
	ACPI STR (Suspend to RAM) 功能		
	PS/2 键盘/鼠标唤醒功能		
电源管理	网络唤醒功能		
	来电振铃唤醒功能		
	定时系统启动功能		
	AC 电源中断系统回复状态控制		
	监控 CPU/ 系统 / 北桥温度,过热时示警		
	监控Vcore/Vdimm/Vnb/VCC5/12V/V5sb/Vbat电压		
硬件监控功能	监控散热风扇转速		
	CPU过热防护监控功能,可于系统开机过程中监控CPU		
	温度-温度过高时系统自动关闭		
	Realtek ALC882高保真音频编译码芯片		
音频功能	八声道音频输出		
日外约形	真实立体声线性输出		
	S/PDIF接口		
	Realtek RTL8111B PCIE Gigabit LAN		
网络功能	完全兼容的IEEE IEEE 802.3 (10BASE-T), 802.3u		
	(100BASETX)与802.3ab(1000BASE-T)标准		
	支持高达UltraDMA 100Mbps IDE设备		
	Intel 芯片组可支持:		
IDE	- 四个SATA接口		
Serial ATA	- SATA速度高达3Gb/s		
	- RAID 0, RAID 1, RAID 0+1与 RAID 5		
	JMB360 芯片可支持:		
_			

- 一个eSATA(外部SATA)接口			
	- SATA速度高达3Gb/s		
	一个 mini-DIN-6 PS/2 mouse 端口		
	一个 mini-DIN-6 PS/2 keyboard端口		
	一个parallel(并列)接口		
	一个S/PDIF-out光纤接口		
	一个RAC S/PDIF接口		
背板 I/O接口	一个eSATA接口		
	一个IEEE1394接口		
	一个RJ45 LAN接口		
	四个USB2.0/1.0 接口		
	Line-in, line-out 9(front R/L)与mic-in插口		
	Center/Subwoof,rear R/L与side R/L插口		
	两个USB接头,可接出四个外部USB 2.0/1.1接口		
	一个连接外部IEEE1394接口用接头		
	两个连接外部串行接口用接头		
	一个前置音频接头,可接出外部line-out 与 mic-in插口		
	一个CD-in 内部音频接头		
	一个IrDA接头		
	四个 Serial ATA接头		
内部I/O接口	两个40-pin IDE 接头		
	一个900软驱接头		
	一个24-pin ATX电源接头		
	一个8-pin 12V电源接头		
	一个4-pin 5V/12V电源接头(FDD类型)		
	一个前置面板接头		
	三个风扇接头		
	EZ 开关(电源开关与重置开关)		
DCD +EI +A	六层, ATX form factor		
PCB规格	24.4cm (9.6") x 30.5cm (12")		
	24.4cm (9.6") x 30.5cm (12")		

功能特色

hyper-threading technology

本主板支持 Intel 处理器, 具备 HT (超线程) 技 术。如果需要开启主板的HT技术,则您的系统

需要同时具备以下所列平台:

组件:

CPU: 一个支持HT技术的Intel® Pentium® 4 处理器

芯片组:一组支持 HT 技术的 Intel 系列芯片组

BIOS: 一套支持HT技术的BIOS并且该技术已于BIOS中开启

操作系统:一套优化的可运行HT技术的操作系统

请参考附录 A, 了解关于如何开启 HT 技术。更多相关信息, 请参考: http://www.intel.com/cd/business/enterprise/apac/zho/bss/products/ desktop/85232.htm。

CROSS ATI的CrossFire技术使个人计算机的性能达到 一个新的顶峰。通过连接一块Radeon

CrossFire Edition显卡和一块标准PCI Express显卡,系统内部的多GPU (Graphics Processing Units)可使游戏运行加速,并且可提高图形质量。

PCI Express 为一高速总线,经由多通道的组成来提升传 **EXPRESS** 输能力。本主板可支持实体层 x1 与 x16 的通道宽度。PCI Express x1 支持每秒 250MB 的传输率; PCI Express 架构可提供高性能 的绘图基础, 使 x16 PCI Express 通道传输速率达到 4 Gb/s。

Protection

CPU Overheat 系统启动时会自动侦测 CPU 温度,以避免 CPU 因过热而 受损:一旦侦测到 CPU 温度超过系统预设的上限值,系 统会自动关闭。此功能可避免 CPU 因过热而受损,确保系统运作的稳 定性。

DDR2 是一种高性能 DDR 技术, 其数据传输率可使带宽达到 4.3 GB/s以上,是未增加电耗情况下的普通DDR的传输速度

DDR 2 的两倍。相对于 DDR 模块所用的 2.6V 电压,只需提供 1.8V 的工作电压给DDR2 SDRAM模块即可。DDR2还同时整合了一些新技 术,如片内终端组件设计(ODT)以及高达4-bit预取功能,而DDR只有 2-bit.

Realtek ALC882高保真音频编译码芯片与背板位置上的六个音 |频插口, 可为高级7.1-声道超级环绕音频系统提供八声道音 频输出。ALC882也可支持S/PDIF输出输入功能,允许与DVD 系统或其它音频/视频等多媒体设备进行数据连接。

S/PDIF 为一标准的音频档转换格式,可将数字音频信号直接 传送至硬件设备,而不需先将其转换为模拟形态再输出,以 S/PDIF 避免数字转频品质打折。DAT 或音频处理设备等数字音频设 备通常都可支持 S/PDIF。本主板所具备的 S/PDIF 接头可将环绕音效与 3D 立体声音效输出信号传送到扩大机与喇叭,以及 CD 烧录机这类数 字数据的烧录设备。

e**SATA**

JMB360 芯片可支持 eSATA(外置 SATA)。eSATA 是一种 热插拔接口,可经此连接外部 Serial ATA 硬盘。这种接口 的传输速度可六倍于USB 2.0 或1394设备等外部存储解决方案的传输速

度。本主板支持一个速度高达 3Gb/s 的 eSATA 接口。

SATA 3Gb/s Serial ATA 为兼容于 SATA 1.0 规格的储存接口,Intel 芯片组支持四个 Serial ATA 端口,速度高达 3Gb/s,Serial ATA 可提升硬盘性能,使硬盘运行速度超过标准 Parallel ATA 100MB/s的数据传输率。

Intel 芯片组可允许在 Serial ATA 硬盘上对 RAID 进行设定。 支持RAID 0, RAID 1,RAID 0+1与RAID 5。

Realtek RTL8111B PCI Express Gigabit LAN芯片支持1Gps的数据传输率。

IEEE 1394完全符合1394 OHCI (Open Host controller Interface - 开放式主机控制器接口) 1.1 规格,最多可同时连接 63 个设备,并支持即插即用及热插拔功能。1394为一高速总线标准,数据传输率高达 400Mbps,可支持等时性传输,尤其适合于需要快速且及时传输大量数据影像设备。

IrDA 本主板备有一 IrDA 红外线传输接头。经由此接头,计算机与其外围设备可进行无线数据传输;IrDA 规格可支持一米距离内 115K baud 的数据传输率。

本主板配置 USB 2.0/1.1接口。USB 1.1 支持 12Mb/s 的带宽,而 USB 2.0 则支持 480Mb/s 的带宽。通过 USB 接口,计算机可同时连接许多外部即插即用的外围设备,有效解决系统 I/O 需求。

Wake-On-Ring 透过外部调制解调器或使用 PCI PME (Power Management Event) 信号的 PCI 数据卡的来电信号,可将处于软关机(Soft-Off) 状态或休眠 (Suspend) 模式的系统唤醒。

***** 提要:

使用调制解调器的唤醒功能时,电源供应器的5VSB 供电线路至少需提供720mA 的电流输出。

使用者可经由网络将处于软件关机 (Soft-Off) 状态中的系统唤醒。以下装置可支持此项功能: 内建的网络端口及使用 PCI PME (Power Management Event) 信号的 PCI 网络卡。但是,若您的系统是处于休眠 (Suspend) 模式,则只能经由IRO 或 DMA 中断来启动。

学 提要:

电源供应器的 5VSB 供电线路至少需支持 720mA 的电流输出。

Wake-On-PS/2

使用者可经由 PS/2 键盘或鼠标将系统唤醒。

党 提要:

电源供应器的 5VSB 供电线路至少需支持 720mA 的电流输出。

Wake-On-USB

使用者可经由 USB 键盘/鼠标将处于 S3 (STR - Suspend To RAM) 状态的系统唤醒。

₽ 提要:

使用两个 USB 接口时,若欲使用 USB 键盘/鼠标唤醒功能,电源供应器的 5VSB 供电线路至少需提供 1.5A 的电流输出。

使用三个或以上的 USB接口时,若欲使用 USB 键盘/鼠标唤醒功能,电源供应器的 5VSB 供电线路至少需提供 2A 的电流输出。

RTC 内建于主板的RTC可使系统于指定的日期与时间自动开机。

本主板的设计符合进阶电源管理规格 (ACPI - Advanced Configuration and Power Interface)。ACPI 提供省电功能,若所使用的操作系统支持 OS 直接电源管理 (OS Direct Power Management),即可使用电源管理与即插即用功能。目前只有 Windows* 2000/XP 可支持 ACPI 功能。需将 BIOS 中 Power Management Setup 子画面下的 ACPI 功能开启,才可使用 Suspend to RAM 功能。

一旦启用 Suspend to RAM 功能,使用者只需按下电源按钮或是在 关闭 Windows* 2000/XP 时选择"暂停"选项,即可立即关机,而 不需经历关闭档案、程序和操作系统这一连串的冗长程序。因为系统 于关机时会将所有程序与档案的执行状态储存于随机存取内存 (RAM - Random Access Memory) 中,当使用者再次开机时,系统即可回复到 先前关机时的作业内容。

₱ 提要:

电源供应器的5VSB供电线路至少需提供1A的电流输出。

POWERFAILURE 使用者可设定系统断电后又复电时的状态回复方 RECOVERY 式,可选择以手动方式将系统再次启动,或是让

系统自动启动, 亦或让系统回到断电时的状态。

第二章 硬件安装和设置

主机板布局图

(可能和实物有差异,以实物为准)

R

警告:

主板上的处理器、硬盘、适配卡等组件容易因静电而受损。使用者最好能在无静电工作台进行主板的安装;若无这类工作台,则应采行其它的防静电措施,如:戴上防静电手套,或是在安装过程中常常碰触金属机箱以中和静电。

系统内存

本主板支持240-pin DDR2 DIMM插槽。主板上的四组DDR2 DIMM插槽被分成两个通道。

通道 A - DDR2_1与 DDR2_2

通道 B - DDR2_3与 DDR2_4

本主板支持以下内存接口:

单通道(SC - Single Channel)

内存通道上的数据是以64位(8字节)模式被存取。

虚拟单通道 (VSC- Virtual Single Channel)

如果两个通道均安插不同的内存,则MCH将默认为虚拟单通道。

双通道 (DC- Dual Channel)

双通道可提供双倍的数据传输率,因而可提升系统性能。

动态寻址模式 (Dynamic Mode Addressing)

此模式下,系统可最小化在内存Bank中开启或关闭一个页面时对内存的占用,以降低row转换的次数。

	在同一通道安插内存	
单通道	同一通道的内存相同或完全不同	
	并非所有的插槽都安插内存	
12 1V	不同的通道安插不同的内存	
双通道	在奇数个插槽上安插内存	
虚拟单通道	相同的内存安插于不同的内存通道	
	在单通道上,需要安插偶数个或偶数row(内存的边)的	
动态寻址模式	内存。这种模式可在1SS, 2SS或2DS下开启。	
	在VSC模式下,两个通道必须具备相同的Row结构	

BIOS 设定

须在 BIOS 中 Genie BIOS Setting 子菜单中"DRAM Timing and Config"下对系统内存进行设定。

下页表格集中展示了可使系统内存运作优化的各种解决方案,使用 者可按此对内存通道的运作模式进行设定:

说明:

下页表格中有关符号相应代表:

P	表示安插内存	SS	表示单边内存
Е	表示不安插内存	DS	表示双边内存
*	表示内存相同	1, 2, 3或 4	表示内存插槽
**	表示内存不同		

Config	DDR2 1	DDR2 2	DDR2 3	DDR2 4
No memory	E	E	E	E
Single channel A	Р	Е	E	E
Single channel A	Р	Р	E	Е
Single channel A	E	Р	E	E
Single channel B	Е	E	Р	E
Single channel B	Е	E	Р	Р
Single channel B	Е	E	Е	Р
Virtual single channel	Е	P(**)	E	P(**)
Virtual single channel	Е	Р	Р	E
Virtual single channel	Е	P(**)	Р	P(**)
Virtual single channel	Р	E	Е	Р
Virtual single channel	P(**)	E	P(**)	E
Virtual single channel	p(**)	E	P(**)	Р
Virtual single channel	Р	P(**)	Е	P(**)
Virtual single channel	P(**)	Р	P(**)	E
Virtual single channel	P(**)	P(**)	P(**)	P(**)
Dual channel	E	P(*)(2,4)	Е	P(*)(2,4)
Dual channel	P(*)(1,3)	E	P(*)(1,3)	E
Dual channel	P(*)(1,3)	P(*)(2,4)	P(*)(1,3)	P(*)(2,4)
Dynamic Mode Addressing	E	P(*)(2,4) DS	E	P(*)(2,4) DS
Dynamic Mode Addressing	P(*)(1,3) DS	E	P(*)(1,3) DS	E
Dynamic Mode Addressing	P(*)(1,3) DS	P(*)(2,4) DS	P(*)(1,3) DS	P(*)(2,4) DS
Dynamic Mode Addressing	E	P(*)(2,4) SS	Е	P(*)(2,4) SS
Dynamic Mode Addressing	P(*)(1,3) SS	E	P(*)(1,3) SS	E
Dynamic Mode Addressing	P(*)(1,3) SS	P(*)(2,4) SS	P(*)(1,3) SS	P(*)(2,4) SS

安装 DIMM 模块

DTMM模块必须固定在 DIMM 插槽里面,一个 Pin 1 的 DIMM 模块必须插在相对应的 Pin 1 插槽内。

- 1.将内存插槽两端的卡扣轻轻往外压。
- 2.将 DIMM 上的缺口对准插槽上的对位键。
- 3.将内存模块(DIMM)垂直置入插槽,于上方略为施力,插槽两侧的卡扣会自动向内侧扣入,牢牢地将 DIMM 固定在插槽上。

中央处理器(CPU)

主板上配置了一个表面粘贴式 LGA 775 处理器脚座,为安装 LGA 775 封装 CPU 专属设计。

》提要:

- 1. 进行安装前, 务必确认: (1) LGA775 脚座上盖有防护片, (2) 防护片无受损情形, 而且脚座上的针脚没有变形弯曲。若防护片已遗失, 亦或防护片与脚座上的针脚有损坏的情形, 请立即与你的经销商联络
- 2. 务必妥善保存防护片, 仅有在 LGA775 脚座已盖上防护片的情形下, 我们才提供产品维修服务。

安装处理器

- 1. 将系统与其所有周边装置的电源关闭。
- 2. 拔掉电源插头。
- 3. 找出主板上 LGA 775 CPU 脚座。

贄 提要:

除CPU外,请勿让其它物品接触到CPU脚座。应尽量避免将脚座 曝露出来。在安装CPU时,请将脚座上的防护片移除。

4. CPU 脚座上的固定盖覆盖着一片可移除的防护片,可隔离灰尘 及有害物质。安装 CPU 时,须先将防护片移除。

5. 如下图所示,将防护片向上推起,从固定盖上移除。

C.975X-MVP Ver2.0 硬件设定

6. 将脚座侧边的固定杆往下压并向侧边推出,从脚座上的卡扣松开 后往上推。

7. 将固定盖往上推。

8. 从脚座上方将 CPU 垂直置入; CPU 上的金色标记须与 CPU 脚座上的脚一位置对齐。

₽ 提要:

手持 CPU 时,应利用其边缘部位,避免碰触到其上的金属接触点。

9. 将 CPU 完全置入脚座。若安装的方向正确,不须额外施力即可轻易地将 CPU 置入脚座中。因此,若发现 CPU 无法顺利置入脚座时,切勿强行施力。

常 提要:

若 CPU 无法顺利地置入脚座,切勿强行使力,以免脚座上的接脚及 CPU 受损。

10. CPU 置放妥当后,将固定盖往下推盖住 CPU。

11. 将固定杆推下,卡进脚座侧边的卡扣,以确保 CPU 已牢固地 安装于脚座上。

安装风扇与散热片

须安装 CPU风扇与散热片以避免 CPU过热;若无法保持适当的空气流通,CPU 与主板会因为过热而受损。

注意:

请使用验证合格的风扇与散热片。

风扇与散热片包装通常会包含其组装支架,以及安装说明文件。 若本节的安装说明与包装中的说明文件有不符之处,请依循风扇与 散热片包装中的安装说明文件。

1.安装 CPU 风扇与散热片之前,必需在 CPU 顶端涂上散热胶;散 热胶通常会附于 CPU 或风扇与散热片的包装中。不需刻意将散热胶抹 开,当你将散热片安装到 CPU 上方后,散热胶会均匀散布开来。

若所使用的风扇/散热片底部已粘有散热胶片,只要将散热胶上的保护膜撕开,再将风扇/散热片安装于CPU上即可。

2.将散热片/风扇置放在CPU上方,散热片上的四个钮钉须与主板上CPU脚座外围的四个安装孔对齐。将每个钮钉上的沟槽朝向散热片,然后向下施力,将钮钉压入安装孔以锁紧散热片。

注意:

若未将钮钉上的沟槽朝向散热片、钮钉则无法将散热片锁紧。

3.将 CPU 风扇上的接线接至主板上的 CPU 风扇接头。

跳线设定

清除 CMOS 资料

若遇到下列情形:

- a) CMOS 数据发生错误。
- b) 忘记键盘开机密码或管理者/使用者密码。
- c) 在 BIOS 中的处理器时钟/倍频设定不当,导致无法开机。 使用者可经由储存于 ROM BIOS 中的默认值重新进行设定。欲加
- 载 ROM BIOS 中的默认值,请依循下列步骤: 1. 关闭系统,并拔掉系统的电源插头。
 - 2. 将 JP4 设成 2-3 On。数秒过后, 再将 JP4 调回默认值 (1-2 On)。
 - 3. 重新插上电源插头并启动系统。

若是因为 BIOS 中处理器时钟/倍频设定不当, 而必须清除 CMOS 数据,则请继续执行步骤 4。

- 4. 开机之后,按下 进入 BIOS 的设定主菜单。
- 5. 选择 Genie BIOS Setting 项目, 按 <Enter>。

- 6. 选择 CPU 时钟 / 倍频的原默认值或其它适当的设定。请参考第三章 Genie BIOS Setting 中的相关信息。
- 7. 按 <Esc> 回到 BIOS 的设定主菜单,选择"Save & Exit Setup" 后按 <Enter>。
 - 8. 键入 <Y> 之后按 <Enter>。

PS/2 电源设定

JP1 跳线器可用以选择 PS/2 键盘/鼠标电源。若欲使用 PS/2 键盘或 PS/2 鼠标唤醒功能,须选择 5VSB 电源。

BIOS 设定

须在 BIOS 的 Power Management Setup设定 PS/2 键盘/鼠标唤醒功能;请参阅第三章之相关信息。

贄提要:

电源供应器的 5VSB 供电线路至少须提供 720mA 的电流输出。

USB 电源设定

JP3与JP2跳线器可用以选择 USB接口电源。若要使用 USB 键盘/ 鼠标唤醒功能,须选择 5VSB。

* 提要:

使用两个 USB 端口时, 若要使用 USB 键盘/ 鼠标唤醒功能, 电源供应器的 5VSB 供电线路至少需要提供 1.5A 的电流。

使用三个或以上的 USB接口时,若要使用 USB 键盘/鼠标唤醒功能,电源供应器的 5VSB 供电线路至少需要提供 2A 的电流。

PCIE x1或x3带宽设定

JP7 和 JP8用于将PCIE 1与PCIE 3 插槽设定为x1以及x4的带宽。

背板输入及输出接口

背板输出及输入接口

背板输出及输入接口包括:

- PS/2 鼠标端口
- PS/2 键盘端口
- parallel(并行)接口
- •S/PDIF 光纤接口
- RCA S/PDIF接口
- •eSATA接口
- •IEEE 1394_1接口
- •USB接口
- •LAN 接口
- Line-in 插口
- Front R/L 插口
- Mic-in 插口
- Center/Subwoofer 插口
- Rear R/L 插口
- Side R/L 插口

PS/2 鼠标端口与 PS/2 键盘端口

硬件设定

本主板配置了一个绿色的 PS/2 鼠标端口和一个紫色的 PS/2键盘端口,都在主板 CN26 处。PS/2 鼠标端口使用的是 IRQ12,未使用此鼠标端口时,主板会将 IRQ12 保留给其它适配卡使用。

● 警告:

安装或移除鼠标或键盘前,务必先切断系统电源,以免主板受损。

PS/2 键盘/ 鼠标唤醒功能

使用者可利用 PS/2 键盘或鼠标来启动系统; 欲使用此功能时,需进行以下设定:

• 跳线设定

JP1 须设为 "2-3 On: 5VSB"。请参考本章 "PS/2 电源设定"一节的相关内容。

• BIOS 设定

须在 BIOS 的Power Management Setup子菜单中设定 PS/2 唤醒功能。请参考第三章之相关信息。

Parallel(并行)接口

本主板在CN27的位置配有一个标准并行接口(暗红色),可用于连接并行打印机,并支持SPP,ECP及EPP模式。

设定模式	功能
SPP(标准型并行端口)	一般速度,单向传输
ECP(高容量并行端口)	速度中等,双向传输
EPP (加强型并行端口)	速度最快, 双向传输

BIOS 设定

使用可在BIOS中Integrated Peripherals子菜单Super IO Device中对并行接口进行设定,请参考第三章相关信息。

S/PDIF

本主板配置一个内建的光纤S/PDIF-out接口以及一个同轴RCA S/PDIF-out接口,分别位于主板 CN7 与 CN4 的位置。S/PDIF接口可用于连接音频输出设备。

常 提要:

同轴RCA S/PDIF 音频接口与 S/PDIF-out 光纤接口"请勿"同时使用。

26 — 27

eSATA 接口

位于主板 CN35 位置的 eSATA 接口具备热插拔功能,可经此连接外部 Serial ATA 硬盘,并可提供高达 3Gb/s 的数据传输速度。

BIOS 设定

须在BIOS 中 Advanced Chipset Features 子菜单PCI Express Root Port Func 一节对 eSATA 接口进行设定,请参考第三章。

驱动程序安装

安装主板包装内所附CD中的eSATA驱动程序,请参考第四章。要从eSATA驱动器启动计算机,需要在该驱动器上安装Windows*XP或Windows*2000操作系统。在操作系统安装的最后阶段,系统需要安装eSATA驱动程序,此时需要用到主板包装内所附的包含eSATA驱动程序的软盘来完成安装。

IEEE 1394

主板的背板位置备有一个内建的IEEE 1394 接口CN21 (1394_1),另于主板上有一个IEEE 1394 接头 (1394_2 - J11),可接出一个额外的 IEEE 1394 外接设备。1394 接口出厂时即应贴装在挡板上。安装时,请先将挡板装于机箱上,然后将1394接口数据线接头上的脚1与J11接头的脚1对应妥当后再进行连接。

USB 接口

本主板支持八个USB 2.0/1.1接口。主板背板位置有四个内建的USB 2.0/1.1 接口: CN21 (USB 4-5) 与 CN1 (USB 6-7)。

另外, 主板上还配有 J5 (USB 0-1) 与 J4 (USB 2-3) 接头, 可再接出四个额外的 USB 2.0/1.1 接口。安装时, 请将挡板安装至位于机箱背板位置的安装槽上, 然后将USB接口连接线上的接头连接至主板上的 J4 或 J5 接头。

BIOS 设定

使用者可在 BIOS的Integrated Peripherals子菜单Onboard Device 中进行内建 USB 接口的设定:请参阅第三章的相关信息。

驱动程序安装

所使用的操作系统可能需先安装适当的驱动程序才可以使用USB装置。请参考您的操作系统使用手册,以取得进一步之相关信息。请参考第四章以取得 USB 2.0 驱动程序安装之相关信息。

USB 键盘/鼠标唤醒功能

本主板支持 USB 键盘/鼠标唤醒功能,使用者可经由 USB 键盘将处于 S3 (STR - Suspend To RAM) 状态的系统唤醒。欲使用此功能, 需进行以下设定:

• 跳线设定

JP2 与 JP3 必须设为 "2-3 On: 5VSB"。请参考本章 "USB 电源设定"一节。

• BIOS 设定

须于 BIOS 中 Power Management Setup 子菜单 USB KB Wake- Up From S3 设为 Enabled。请参考第三章。

贄 提要:

使用两个 USB 接口时,若要使用 USB 键盘/鼠标唤醒功能,电源供应器的 5VSB 供电线路至少需要提供1.5A 的电流。

使用三个或以上的USB接口时,若要使用USB键盘/鼠标唤醒功能,电源供应器的5VSB供电线路至少需要提供2A的电流。

RJ45 网络端口

主板 CN1 的位置配有一个 LAN 端口,经由网络集线器,可连上局域 网。

BIOS 设定

使用者可在 BIOS 的 Advanced Chipset Features 中("PCI Express Root Port Func"一节)设定内建的网络功能;请参阅第三章之相关信息。

驱动程序

须安装网络驱动程序。相关信息,请参考第四章。

音頻

后置音频

Line- in 插口(淡蓝色)

连接外部音响设备,如: Hi-Fi 音响、CD/录音带播放器、AM/FM 调频收音机以及音效合成器等。

Line Out-Front Right/Left 插口(淡绿色)

连接音响系统的左前方与右前方喇叭。

Mic-in 插口(粉红色)

连接外部麦克风。

Center/Subwoofer(中央/重低音)插口(橘色)

连接音响系统的中央声道与超低音喇叭。

Rear Right/Left 插口(黑色)

连接音响系统的右后方与左后方喇叭。

Side Right/Left 插口(灰色)

连接音响系统的左侧边与右侧边喇叭。

BIOS 设定

须在BIOS中Integrated Peripherals子菜单下Onboard Device中设定内建的音频功能,请参考第三章。

驱动程序安装

安装音频驱动程序,请参考第四章相关说明。

输出/输入接头

CD- in 音频输入接头

CD-in (J1) 音频输入接头可接收来自光驱、电视谐调器或MPEG 卡的音频信号。

软驱接头

主板上有一个90°软驱接头,可连接一台标准软驱。此接头有预防不当安装的设计,安装时必需将软驱连接线一端 34-pin 接头的第一脚与主板上软驱接头的第一脚对应妥适,才能够顺利安装。

接上软驱连接线

将软驱连接线一端的接头接到主板上的J18 软驱接头(接线外缘有颜色者为第一脚,需对应至软驱接头的第一脚),接线另一端则接至软驱的信号接头。

BIOS 设定

使用者可在 BIOS 的 Integrated Peripherals菜单下Super IO Device 中开启或关闭软驱控制器;请参考第三章之相关信息。

串行 (COM) 端口

本主板分别在J3的位置与J6的位置配置两个串行接头COM 1与COM 2,用于与外部串行接口相连接。串行接口的连接线作为选用品,需要您另外购置。

将接口连接线的接头插入J3接头或J6,然后将串行接口挡板安装在位于机箱背部的挡板槽上,务必确认连接线上的颜色条和J3或J6的pin1对齐。

此串行接头为兼容于16C550A UARTs的RS-232异步通讯端口,可连接调制解调器、串行打印机、终端显示以及其它串行设备。

BIOS 设定

须于BIOS的Integrated Peripherals子菜单Super IO Device中对串行接头进行设定,请参考第三章相关设定。

Serial ATA 接头

Intel 975X芯片支持四个Serial ATA接口

SATA 速度高达 3Gb/s RAID 0, RAID1,RAID0+1与RAID 5

连接 Serial ATA 接线

请将Serial ATA连接线一端连接至SATA 1(J15), SATA 2 (J22), SATA 3 (J23)或SATA 4 (J24)接头,另外一端连接至Serial ATA设备。

设定 RAID

本系统主板允许在Serial ATA驱动器上设定RAID,请参考第五章RAID 设定的相关步骤。

IDE 硬盘接头

本主板的PCI IDE接头可安装两台 Enhanced IDE (Integrated Drive Electronics) 硬盘。每一个 PCI IDE 接头皆有预防不当安装的设计;安装时必需将硬盘连接线接头的第一脚与主板上 IDE 接头的第一脚对应妥适,才能够顺利安装。

主板上的 PCI IDE 接头可支持两台 IDE 装置,一台为 Master,另一台为 Slave。硬盘连接线有三个接头,将连接线一端的接头接至主板上的 IDE 接头,连接线的另外两个接头则用来连接两颗硬盘;接在连接线终端的硬盘需设定为 Master,而接于连接线中间接头的硬盘则需设成 Slave。

连接 IDE 硬盘排线

将 IDE 连接线的一端接至主板的 IDE 接头 (J14), 另外两端接线 至 IDE 设备。

注意:

请按照硬盘说明书的相关说明进行硬盘开关设定。

硬盘上的设定

若安装了两台硬盘,其中一台需设定为 Master,另一台则需设定为 Slave;有关硬盘上的 jumper/switch 设定,请参考您的硬盘使用手册。

本主板支持 Enhanced IDE, ATA-2, ATA/33, ATA/66, ATA/100与ATA/133 硬盘。使用两台或以上的硬盘时,最好选用相同的厂牌;不同厂牌的硬盘若互相搭配使用,可能无法正常运作;这是硬盘本身的兼容性问题,并非主板的问题。

* 提要:

有些ATAPI 光驱在 Master 的设定模式下可能无法被辨识或无法 正常运作,若遇上这种情形,请将它设为 Slave。

BIOS 设定

使用者可在 BIOS 的 Integrated Periperals 的Onboard IDE/SATA Device 中开启或关闭内建的 IDE 功能。请参考第三章之相关信息。

IrDA 接头

将IrDA模块的接线接头接至IrDA接头(J19)。

注意:

部份IrDA接线的接头,其接脚功能定义的顺序与本主板所定义的顺序相反;使用此类接线时,请将接线接头反向插入主板上的IrDA接头。

BIOS 设定

使用者可在BIOS的Integrated Peripherals子菜单Super IO Device 中设定内建的 IrDA 功能。

驱动程序

所使用的操作系统中可能也必需安装适当的驱动程序才能使用 IrDA功能;请参考您的操作系统使用说明书,以取得更多的相关 信息。

风扇接头

请将CPU风扇接线上的接头连接至主板上的CPU风扇接头(J16)。另有NB fan(20), System fan (J17)风扇接头可用来连接额外的散热风扇。散热风扇可保持机箱内适当的空气流通, 防止 CPU 及系统组件因过热而 受损。

BIOS 设定

BIOS 中 PC Health Status 子菜单会显示出散热风扇转速; 请参阅 第三章之相关信息。

电源接头

我们建议您使用与 ATX 12V Power Supply Design Guide Version 1. 1 设计规格相符的电源供应器;此类电源供应器有一个标准的 24-pin ATX 主要电源插头,需插在主板上的 CN10 接头上。

您的电源供应器应具备一个8-pin或4-pin的 +12V电源接头。+12V电源可向 CPU 的电压调节模块(Voltage regulator Module, VRM)提供大于+12VDC的电流。请尽量选用 8-pin 电源,若无 8-pin 电源,请按照如下方式将 4-pin 电源接头连接至 CN5:

主板上配置了FDD类型的额外电源接头,使用两张显卡时,我们建议你将电源供应器上的电源线接上两个5V/12V电源接头(J7),如此可保持较佳的系统稳定性。但若未接上此额外的电源接头,主板亦可运作。

本主板至少须使用 300W 的电源供应器。如果系统的负载较大时 (较大的 CPU 电力需求、较多的内存模块、适配卡及外围装置等),可能需要更大的电源供应;因此,我们强烈推荐使用 400W 或以上的电源供应器,以确保足够的电力供应。

* 提要:

如果电流供应不足,则系统运行可能会不够稳定,适配卡与计算 机周边设备也可能无法正常运作。对系统用电量进行合理的估算有 助干使用与电能消耗更为匹配的电源。

如何重新启动计算机

- 一般情况下,您可以通过以下方式启动系统:
- 1.按下前面板上的电源按钮。
- 2.按下主板上的电源开关(注意:某些主板不具备此开关)

如果因为某些原因需要完全切断系统电源,请关闭电源开关或者直接拔除电源插头。注意如果您希望立即重新启动系统,请务必遵循以下步骤:

- 1.系统关闭后,等待 Standby Power LED (请参考本章的"LED"一节,找到其具备位置)指示灯熄灭。因为电荷是否完全释放干净取决于电源供应的情况,如系统中设定的电源电压、供电次序以及周边设备数目等等。
- 2.Standby Power LED指示灯熄灭后,至少需要等待六秒,之后再启动系统。

如果主板已经装入机箱,使用者无法目测 Standby Power LED 的 熄灭情况,则使用者应于系统电源关闭后15秒(期间电荷可完全释放)后再行接通电源。

执行以上步骤可保护系统、避免主板受到损坏。

Standby Power LED

Standby Power LED

当系统处于闲置(standby)模式时,此灯会亮起。

注意:

若Standby Power LED处于亮起状态,此时若想安装内存模块或适配卡,请务必先关闭系统,接着关闭电源供应器开关或直接拔掉电源插头,然后再行安装。

前置面板接头

HD- LED: Primary / Secondary IDE 硬盘灯号

对主板上的 IDE 硬盘进行数据存取时,此灯号会亮起。

RESET: 重置开关

按下此开关,使用者毋需关闭系统电源即可重新启动计算机,可延长 电源供应器和系统的使用寿命。

SPEAKER: 喇叭接头

可连接系统机壳内的喇叭。

ATX-SW: ATX 电源开关

此开关具双重功能;配合 BIOS 的设定,此开关可让系统进入软关机 状态或暂停模式。请参考第三章 Power Management Setup 子菜单下 "Soft-Off By PWRBTN"字段的相关信息。

PWR- LED - Power/StandBy 电源灯号

当系统电源开启时,此 LED 灯号会亮起, 当系统处于 S1(POS - Power On Suspend) 或 S3 (STR - Suspend To RAM) 暂停模式时,此 LED 灯号每秒会闪烁一次。

注意:

开机后若系统无法启动,且Power/Standby LED灯号(PWR-LED) 也没有亮时,请检查主板上的 CPU 与内存是否皆已妥善安装。

-1. Ak	Lòr HIH	P+ W
功能	接脚	定义
HD-LED	3	HDD LED Power
(Primary/SecondaryIDE	5	HDD
硬盘灯号接脚)		
保留	14	N. C.
	16	N. C.
ATX-SW	8	PWRBT+
(ATX 电源开关接脚)	10	PWRBT-
保留	18	N. C.
	20	N. C.
RESET	7	Ground
(重置开关接脚)	9	H/W Reset
SPEAKER	13	Speaker Data
(喇叭接脚)	15	N. C.
	17	Ground
	19	Speaker Power
PWR-LED	2	LED Power (+)
(电源状态灯号接脚)	4	LED Power (+)
	6	LED Power (-) or Standby Signal

EZ 简易开关 (电源开关与重置开关)

本主板上配置了一个电源开关与一个重置开关。对于喜欢 DIY 的使用者而言,在主板还在设定调整阶段尚未安装入机箱之前,这两个开关提供了相当大的便利性。

PCI Express 插槽

PCI Express x16

请将符合规格的PCI Express x16显卡安装在PCI Express x16插槽上,在 x16插槽安装显卡时,先将显卡在上空与插槽对齐,然后压入插槽中,直到其牢固固定于插槽中为止,插槽中的固定夹会自动固定好显卡。

PCI Express x1/x4

安装 PCI Express x1 卡,如网卡等,也应该符合 PCI Express 规格,并且将其安装在PCI Express x1插槽内。

电池

锂离子电池作为辅助电源设备,可在主电源关闭的情况下,为实时时钟和 CMOS 内存提供电源。

安全措施

- 若电池未正确安装,则有可能引起爆炸。
- 请更换相同的或经制造商推荐的电池类型。
- 按照制造商提供的说明处理废旧电池。

Award BIOS 设定程序

基本输出/输入系统 (BIOS) 为中央处理器与外围设备间的基本沟通控制程序,此外还储存着主板的各种进阶功能码。本章将会针对 BIOS 各项设定提出说明。

系统启动后,BIOS 信息会显示于屏幕上,自动测试内存并计算其容量。测试完毕后,屏幕会出现以下信息:

< Press DEL to enter setup>

若此信息在您响应前就消失,请按机箱上的 <Reset> 开关,或是同时按住 <Ctrl>+<Alt>+ 键重新开机。

当您按下 键时,屏幕上会出现以下画面。

Standard CMOS Features

使用方向键选取"Standard CMOS Features"选项并按 <Enter>。 屏幕上会出现类似以下画面。

上图的设定值仅供参考;设定项目会因BIOS的版本不同而异。

Date

日期格式为 <Day>, <Month>, <Date>, <Year>。<Day> 可显示 Sunday 至 Saturday。<Month> 可显示 January 至 December。<Date> 可显示 1 至 31。<Year> 可显示 1994 至 2079。

Time

时间格式为 <Hour>, <Minute>, <Second>。时间设定以二十四小时全日制为表示方式。例如: 1 p.m. 为 13:00:00。<Hour> 可显示 00 至 23。 <Minute> 可显示 00 至 59。<Second> 可显示 00 至 59。

IDE Channel 0 Master/Slave和IDE Channel 1 Master/Slave

欲设定 IDE 驱动器,将光标移至该项目,按 <Enter>,屏幕上会出现类似以下画面。

IDE HDD Auto- Detection

可侦测硬盘的参数,并自动将这些参数显示于屏幕上。

IDE Channel Master/Slave 与 IDE Channel 1 Master/Slave

使用者可从硬盘厂商所提供的使用说明书中取得硬盘相关信息。若选择 "Auto", BIOS 将会于开机自我测试 (POST) 阶段自动侦测硬盘及光 驱,并显示出 IDE 的传输模式。若尚未安装硬盘,请选择"None"。

Access Mode

使用者通常会将容量大于 528MB 的硬盘设为 LBA 模式; 但在某些操作系统中,却需将这类硬盘设为 CHS 或 Large 模式。请参考你的操作系统使用手册或其它相关信息,以便选择适当的硬盘设定。

Capacity

显示出硬盘的约当容量。所显示的容量通常略大于磁盘格式化后所侦测出的容量。

Cylinder

显示硬盘磁柱数量。

Head

显示硬盘读/写头数量。

Precomp

用来表示写入预补偿值,以调整写入时间。

+ + +++

Landing Zone

显示读/写头的停放区。

Sector

显示每个磁道的扇区数量。

Drive A

软驱类型的设定:

None		木女装软驱	
360K,	5.25in.	5.25 英寸,	容量为360KB的的标准磁盘驱动器。
1.2M,	5.25in.	5.25 英寸,	容量为1.2MB AT高密度磁盘驱动器。
720K,	3.5 in.	3.5 英寸,	容量为720KB的双面磁盘驱动器。
1.44M,	3.5 in.	3.5 英寸,	容量为1.44MB的双面磁盘驱动器。
2.88M,	3.5 in.	3.5 英寸,	容量为2.88MB的双面磁盘驱动器。

Video

选择系统主要屏幕所使用的显卡型态。系统虽可支持第二台显示器,但不需在此进行设定。这个项目的默认值为 EGA/VGA。

EGA/VGA Enhanced Graphics Adapter/Video GraphicsArray, 为 EGA,

VGA. SVGA及PGA 加强型显卡。

CGA 40 CGA 显卡, 40 行模式。

CGA 80 CGA 显卡, 80 行模式。

Mono 黑白单色显卡,包括高频黑白单色显卡。

Halt On

当 BIOS 执行开机自我测试 (POST) 时,若侦测到错误,可让系统暂停开机,系统默认设定为All Errors。

No Errors 无论侦测到任何错误都不停止,系统继续开机。

AllErrors 一旦侦测到错误,系统立即停止开机。

All, But Keyboard 除键盘错误外,侦测到其它错误系统即停止开机。

All, But Diskette 除磁盘驱动器错误外,侦测到其它错误系统即停止开机。

All, But Disk/Key 除磁盘驱动器与键盘错误外, 侦测到其它错误系统即

停止开机。

Base Memory

显示系统的基本 (传统) 内存容量。若主板所安装的内存为 512K, 其基本内存容量一般为 512K; 若主板所安装的内存为 640K 或以上的容量,则其基本内存容量一般为 640K。

Extended Memory

显示系统于开机时所侦测到的扩充内存容量。

Total Memory

显示全部的系统内存容量。

Advanced BIOS Features

在这个子画面中,使用者可设定一些系统的基本运作功能; 部份项目的默认值为主板的必要设定,而其余项目若设定得当,则可提高系统效率。使用者可依个别需求进行设定。

上图列出了 Advanced BIOS Features 子画面中的所有设定项目;实际使用时,请利用画面中的滚动条来查看所有项目。上图中的设定值仅供参考;设定项目会因 BIOS 的版本不同而异。

CPU Feature

将光标移动至此字段按<Enter>,会出现以下画面:

Delay Prior To Thermal

当 CPU 到达其最高温度临界时,会根据此字段所设定的时间减半速运行,以避免温度过高而致使 CPU 或主板受损,从而确保工作环境的安全性。

Thermal Management

选择"thermal monitor"可开启 CPU 的 speedstep 功能。重新启动系统后进入"Control Panel"(控制面板),双击"Power Options"(电源选项),将弹出"Power Options Properties"(电源选项属性)窗口,在"Power Schemes"(电源使用方案)菜单中选择"Portable/Laptop"。Speedstep 将根据 CPU 负荷相应降低其频率和电压。

Thermal Monitor 1 芯片内建温度控制机制。

Thermal Monitor 2 变换倍频与 VID。

TM2 Bus Ratio

此区域用于选择性能抑制状态的频率(总线倍频)。当微处理器的核心温度升高时,此状态即开始。

TM2 Bus VID

此区域用于选择性能抑制状态的电压。当微处理器的核心温度升高时, 此状态即开始。

Limit CPUID MaxVal

较新版的 CPU 所响应的若是大于 3 的 CPUID 值,可能会致使某些操作系统发生问题。这类问题并不会发生在 Windows 系列操作系统,但若使用其它系统时,须将此字段设为 Enabled,以避免发生问题。

C1E Function

选项为 Auto and Disabled。

Execute Disable Bit

此字段设定为 Disabled 时, XD 特征旗号返回值一直为 0。

Virtualization Technology

当此字段设为 Enabled 时,VMM 可启用 Vanderpool Technology 技术 所提供的额外的硬件功能。

Hard Disk Boot Priority

此字段可用以选择硬盘的开机顺序,将光标移至此字段,按 <Enter>。 使用上下方向键来选择装置,然后按 <+> 往上移动,或按 <-> 往下移 动。

上图的设定值仅供参考;设定项目会因BIOS的版本不同而异。

Virus Warning

此选项用于保护引导扇区或硬盘分割表。此选项开启时, Award BIOS 将监视硬盘引导扇区或硬盘分割表。当引导扇区或硬盘分割表中有读取 动作时, BIOS 会立即终止系统并显示出错信息。如有必要,此时使 用者可运行防毒软件找到并消除病毒,保护系统安全。

许多诊断程序会对启动扇区有读取动作,此时也会导致系统示警。 若运行了此类程序,建议最好将本选项关闭;若即将安装或运行某些 操作系统,如 Windows 95/98/2000 等,也请将此选项关闭,否则操 作系统将无法安装或运行。

CPU L1 & L2 Cache

设为 Enabled 时,可启动外部快取功能,以加速内存的数据存取速度, 并提升系统运作效率。

CPU L3 Cache

此字段通常用于开启或关闭CPU的L3缓存功能。

Hyper- Threading Technology

若所使用的 Intel® Pentium® 4 处理器支持 HT 技术, 此设定项目会出 现, 计使用者可以开启 HT 功能。

Quick Power On Self Test

若设为 Enabled, BIOS 于执行开机自我测试 (POST) 时,会省略部份 测试项目,以加快开机速度。

USB Flash Disk Type

自动侦测USB设备 Auto

HDD U 盘仿真为 HDD 模式

U盘仿真为软盘模式 Floppy

First Boot Device, Second Boot Device, Third Boot Device 与 Boot Other Device

使用者可于 "First Boot Device"、"Second Boot Device" 和 "Third Boot Device"项目中选择开机磁盘的先后顺序, BIOS 会根据其中的 设定依序搜寻开机磁盘。若要从其它设备开机,则将"Boot Other Device"项目设为 Enabled。

Boot Up Floppy Seek

若设为 Enabled, 开机时 BIOS 会检测 40 轨与 80 轨的软驱。但当所有的磁 盘驱动器均为80轨时,则BIOS无法辨别720KB、1.2M、1.44M与2.88M 磁盘种类。若设为 Disabled, 开机时 BIOS 则不会检测软驱。

Boot Up NumLock Status

设定键盘右侧的数字键/方向键状态。若设为 On, 开机后这些键会被 锁定为数字状态: 若设为 Off, 则为方向键状态。

Gate A20 Option

用以选择 Gate A20 的控制方式。Gate A20 信号线是用来寻址 1MB 以上的内存,以往由键盘控制器所控制,现今为了增进效率,则普遍由系统芯片组所控制。

Typematic Rate Setting

Disabled 按住键盘上的某个键不放时,系统会视为只输入该键一次。 Enabled 按住键盘上的某个键不放时,系统会视为重复按下该键。 例如,使用者可运用此功能来加速方向键的光标移动速度。将此项目 开启时,可在接下来的"Typematic Rate(Chars/Sec)"与"Typematic Delay(Msec)"项目中进行设定。

Typematic Rate (Chars/Sec)

持续按住某一键时, 每秒重复的信号次数。

Typematic Delay (Msec)

持续按住某一键时, 其输入的延迟时间。

Security Option

此系统安全性选项可防止未经授权的使用者任意使用系统。若欲使用此安全防护功能,需同时在 BIOS 主画面上选取 "Set Supervisor/User Password"以设定密码。

System 开机进入系统或 BIOS Setup 时,都必需输入正确的密码。 Setup 进入 BIOS Setup 时,需输入正确的密码。

APIC Mode

请保留原默认值。

MPS Version Control for OS

用来选择系统所使用的 MPS 版本。

OS Select for DRAM > 64MB

可使用 OS/2 操作系统中超过 64MB 以上的内存。

HDD S. M. A. R. T Capability

本主板可支持 SMART (Self-Monitoring, Analysis and Reporting Technology) 硬盘。若系统所使用的是 SMART 硬盘,将此项目 Enabled 即可开启硬盘的预示警告功能。它会在硬盘即将损坏前预先通知使用者,让使用者提早进行数据备份,避免数据流失。只有 ATA/33 或之后的硬盘才支持 SMART。

Report No FDD For WIN 95

选项为Yes与 No。

Full Screen Logo Show

若要让系统在开机期间显示特定的 logo可在此设定。

Enabled 系统开机期间, logo 以全屏幕显示。

Disabled 系统开机期间, logo 不会出现。

Advanced Chipset Features

上图的设定值仅供参考:设定项目会因BIOS的版本不同而异。

这个子画面主要是用来设定系统芯片组的相关功能。例如: 总线速 度与内存资源的管理。每一项目的默认值皆以系统最佳运作状态为考 量。因此,除非必要,否则请勿任意更改这些默认值。系统若有不 兼容或数据流失的情形时,再进行调整。

SLP S4# Assertion Width

选项为 1- 2 Sec、2- 3 Sec、3- 4 Sec 与 4- 5 Sec。

System BIOS Cacheable

设为 Enabled 时,可启动 BIOS ROM 位于 F0000H — FFFFFH 地址的快 取功能,增进系统效能。Cache RAM 越大,系统效率越高。

Video BIOS Cacheable

若系统 BIOS 快取功能已开启,将此项目设为 Enabled 时,位于C0000H - C7FFFH 地址的 Video BIOS 数据即可快取,加快数据存取速度。 Cache RAM 越大,影像的处理越快。

Memory Hole At 15M-16M

为提高系统效能,系统内存会预留一定的空间给ISA卡使用。映射至内存空

间的内存大小一般不超过16MB。此项目开启时, CPU将虚拟15-16MB的内 存大小给ISA 隐藏地址范围, 而不是系统 DRAM 实际大小。此项目关闭时, CPU所预留的15-16MB地址空间为DRAM内存实际大小。如果所安装的内 存大小超过16MB,请将此项目关闭,以提供比较匹配的系统内存空间。

PCI Express Root Port Func

移动光标至此字段按<Enter>, 出现以下图形:

上图的设定值仅供参考;设定项目会因BIOS的版本不同而异。

PCI Express Port 1 至 PCI Express Port 4

这些字段用于开启或关闭PCI Express接口的功能。

PCI Express LAN Port

此字段用于开启或关闭LAN接口的功能。

PCI Express eSATA Port

此字段用于开启或关闭eSATA接口的功能。

PCI- E Compliancy Mode

此字段用于选择PCI Express适配卡的模式。

PEG Force x1

选项为Enabled与Disabled。

Integrated Peripherals

上图的设定值仅供参考;设定项目会因BIOS的版本不同而异。

Onboard IDE/SATA Device

上图的设定值仅供参考;设定项目会因BIOS的版本不同而异。

IDE HDD Block Mode

Enabled 使用IDE硬盘区块传输模式; BIOS 会侦测出系统可传输

的最大硬盘区块。区块的大小会随着硬盘的类型而异。

Disabled 不使用硬盘区块传输模式。

IDE DMA Transfer Access

开启或关闭 IDE 硬盘的 DMA 传输功能。

On-Chip Primary PCI IDE

此字段用于开启或关闭 primary IDE 控制器,默认值为 Enabled。如果想添加另一块硬盘,请选择 Disabled。

IDE Primary/Slave PIO

PIO (Programmed Input/Output) 是通过主板上的芯片与 CPU 来进行 IDE 硬盘数据的传输。PIO 有五种模式,由 0 到 4,不同的模式其数据传输速度会有所不同。设为 Auto 时,BIOS 会自动侦侧硬盘所支持的最佳传输模式。

Auto BIOS 会自动设定硬盘的数据传输模式。

Mode 0-4 由使用者依据所安装硬盘的数据传输速度,自行设定硬盘的 PIO 模式。应避免错误的设定,以防硬盘运作异常。

IDE Primary Master/Slave UDMA

设定硬盘或 CD-ROM 的 UDMA 模式。选择 Auto 时, BIOS 会自动检测你的硬盘或 CD-ROM, 为其设定最佳传输模式。

Auto 自动侦测 IDE 硬盘是否支持Ultra DMA模式。

Disabled 关闭 Ultra DMA 功能。

SATA Mode

IDE 选此可允许在IDE模式下对Serial ATA硬盘进行设定。

RAID 选此可开启 Serial ATA 硬盘的 RAID 功能。

AHCI 选此可允许在AHCI模式下对Serial ATA硬盘进行设定。

On-Chip Serial ATA

Disabled 关闭内建的 SATA。

Auto 系统会侦测出既有的 SATA 与 IDE 硬盘, 然后自动

为它们设定 Master/Slave 模式。

Combined Mode 可同时使用 IDE 与 SATA 硬盘, 最多可使用四块硬盘。

Enchaned Mode 可同时使用 IDE 与 SATA 硬盘,最多可使用六块硬盘。

SATA Only 自动将 SATA 硬盘设定为 Primary Master 与Secondary

Master 模式。由于两块 SATA 硬盘皆为 Master 模式,

因此不得将 IDE 硬盘设为 Master 模式。

SATA Port Speed Settings

Force GEN 1 SATA将使用1.5Gb/s的传输速度,此为第一代SATA的速度。 Force GEN 2 SATA将使用3Gb/s的传输速度,此为第二代SATA的速度。

PATA IDE Mode

Primary IDE 1 使用 Primary Master 与 Primary Slave 通道。SATA 1

与SATA3 使用 Secondary Master 与 Secondary Slave 通

道。

Secondary IDE 1 使用 Secondary Master 与 Secondary Slave 通道。

SATA 0 与 SATA 2使用 Primary Master 与 Primary

Slave 通道, SATA1与SATA3无效。

SATA Port

如果 "PATA IDE Mode"字段设为Primary,此字段将显示"P1, P3 is Secondary",表示SATA 0 与 SATA 2 为 Secondary。如果"PATA IDE Mode"字段设为Secondary,此字段将显示"P0, P2 is Secondary",表示SATA 1 与 SATA 3 为 Primary。

Onboard Device

上图的设定值仅供参考;设定项目会因BIOS的版本不同而异。

USB Controller

此字段用于开启或关闭内建的USB功能。

USB 2.0 Controller

此字段用于开启或关闭内建的USB 2.0功能。

USB Keyboard Support

由于BIOS ROM空间有限,默认情况下,BIOS对老式USB键盘(在 DOS 模式下)的支持已设为Disabled,以节约更多的BIOS ROM空间,用于支持更多高级功能,同时可为连接更多周边设备提供更好的兼容性。如果需要经由USB键盘安装Windows(在 DOS 模式下进行 Windows 的安装)或在 DOC 模式下运行一些程序,请将此字段设定为 Enabled。

USB Mouse Support

由于BIOS ROM空间有限,默认情况下,BIOS对老式USB鼠标(在 DOS 模式下)的支持已设为 Disabled,以节约更多的 BIOS ROM 空间,用于 支持更多高级功能,同时可为连接更多周边设备提供更好的兼容性。

如果需要经由USB 鼠标安装 Windows(在 DOS 模式下进行 Windows 的 安装)或在 DOC 模式下运行一些程序,请将此字段设定为 Enabled。

Azalia Audio Select

Auto 系统自动侦测内建的音频功能

Disabled 关闭内建的音频功能

BIOS Flash Protect

Enabled 选择此选项可有效防止对BIOS随意进行更新或升级。开启

时,BIOS 更新与升级作业无效。

Disabled 关闭"BIOS flash protect"功能,需要时,用户可对

BIOS 进行升级与更新。

Audio Dongle Presence

选项为Enabled与Disabled。

Super IO Device

上图的设定值仅供参考:设定项目会因BIOS的版本不同而异。

KBC Input Clock

用于选择键盘输入时钟。选项为: 8MHz 与12MHz (默认值)。

Onboard FDC Controller

Enabled 开启内建的软盘控制器。 Disabled 关闭内建的软盘控制器。

Onboard Serial Port 1与Onboard Serial Port2

Auto 系统自动为内建的串行接口1与串行接口2分配I/O地址

3F8/IRQ4, 2F8/IRQ3, 3E8/IRQ4, 2E8/IRQ3 允许为内建的串

行接口1与串行接口2手动分配I/O地址

Disabled 关闭内建的串行接口1与串行接口2。

UART Mode Select

选择你的IrDA装置所支持的IrDA标准。欲达到较佳的数据传输效果,请将IrDA装置与系统的位置调整在30度角的范围内,并保持在一米以内的距离。

UR2 Duplex Mode

Half 数据全部传送完毕后再接收新的数据。

Full 数据同时接收与传送。

Onboard Parallel Port

378/IRQ7,3BC/IRQ7,278/IRQ5 用于为内建的并行接口选择I/O地址与

IRQ.

Disabled 关闭系统内建的并行接口。

Parallel Port Mode

可选择的并行端口模式有Normal、EPP、ECP及ECP+EPP。这些都是标准模式,使用者应依据系统所安装的装置类型与速度,选择最适当的并行端口模式。请参考您的外围装置使用说明书以来选择适当的设定。

Normal 一般速度,单向传输。

ECP (Extended Capabilities Port) 快速双向传输。 EPP (Enhanced Parallel Port) 高速双向传输。

ECP Mode Use DMA

选择并行端口的 DMA 通道。选项为1与3(默认值)。

Power Management Setup

这个子画面中的项目, 可设定系统的省电功能。

上图的设定值仅供参考;设定项目会因BIOS的版本不同而异。

PCI Express PM Function

将光标移至此项目按 <Enter>, 以下画面将会出现:

上图的设定值仅供参考;设定项目会因BIOS的版本不同而异。

PEG Port ASPM

选项为 Disabled, L0s 与 L1/L0s。

Root Port ASPM

选项为 Disabled, L0s, L1 与 L1/L0s。

PCI Express PME

选项为Enabled与Disabled。

DMI Port ASPM

选项为L0s与Disabled。

ACPI Function

默认情况下,ACPI 功能开启。此功能只有在支持 ACPI 的操作系统中才能开启。

72 ______ 73

ACPI Suspend Type

此字段用于选择暂停(Suspend)模式的类型。

S3(STR) 开启 Suspend to RAM 功能。

Auto 只有使用的是 Windows[®] XP 操作系统时,此设定值可选。 由于本主板支持此项设定,所以 S3 值将自动可 Windows[®]

XP 操作系统开启。

Run VGABIOS if S3 Resume

此字段设为Auto时,当系统从S3状态被唤醒时,将初始化VGA BIOS。 只有将"ACPI Suspend Type"设为"S3(STR)"时,才可在此字 段进行设定。当此功能关闭时,系统启动时间将会缩短,但是,此 时如果希望首先初始化VGA卡,则需要安装AGP驱动程序。所以,如 果所使用的AGP卡驱动程序不支持VGA卡的初始化功能,则系统从S3 开启时,显示功能将会出现异常或无法显示。

PEG Port ASPM

选项为 Disabled, L0s 与 L1/L0s。

Root Port ASPM

选项为 Disabled, L0s, L1 与 L1/L0s。

PCI Express PME

选项为Enabled与Disabled。

DMI Port ASPM

选项为L0s与Disabled。

ACPI Function

默认情况下, ACPI功能开启。此功能只有在支持ACPI的操作系统中才能开启。

ACPI Suspend Type

此字段用于选择暂停(Suspend)模式的类型。

S3(STR) 开启 Suspend to RAM 功能。

Auto 只有使用的是 Windows[®] XP 操作系统时,此设定值可选。 由于本主板支持此项设定,所以 S3 值将自动可 Windows[®] XP 操作系统开启。

Run VGABIOS if S3 Resume

此字段设为Auto时,当系统从S3状态被唤醒时,将初始化VGA BIOS。 只有将"ACPI Suspend Type"设为"S3(STR)"时,才可在此字 段进行设定。当此功能关闭时,系统启动时间将会缩短,但是,此 时如果希望首先初始化VGA卡,则需要安装AGP驱动程序。所以,如 果所使用的AGP卡驱动程序不支持VGA卡的初始化功能,则系统从S3 开启时,显示功能将会出现异常或无法显示。

Power Management

使用者可依据个人需求选择省电类型(或程度),自行设定系统关闭硬盘电源(HDD Power Down)前的闲置时间。

Min. Saving 最小的省电类型。若持续十五分钟没有使用系统,

会关闭硬盘电源。

Max. Saving 最大的省电类型。若一分钟没有使用系统,会关闭

硬盘电源。

User Define 使用者自行在 HDD Power Down 项目中进行设定。

Video Off Method

选择屏幕画面关闭的方式。

V/HSYNC+Blank 停止水平与垂直同步信号扫描,并在显示缓冲区中写

入空白信号。

Blank Screen 在显示缓冲区中写入空白信号。

DPMS 若你的显卡符合 DPMS 管理规范,则可使用屏幕电源

管理功能, 节省更多的电源。

Video Off In Suspend

当系统进入暂停(Standby)模式时,此字段元用于开启屏幕画面关闭功能。选项为 Yes 与 No。

Suspend Type

选项为 Stop Grant 与 PwrOn Suspend。

MODEM Use IRQ

此字段用于为系统所安装的调制解调器设定一个IRQ通道。

Suspend Mode

只有当Power Management 字段设为User Define时,才可于此字段进行设定。当系统闲置时间进入于此所设定的界限时,CPU及周边设备电源关闭。

HDD Power Down

若于 Power Management 字段被设为 User Define,即可在此进行设定。使用者若于所设定的时间内没有使用计算机,硬盘电源会自动关闭。

Soft- Off by PWR- BTTN

选择系统电源的关闭方式。

Delay 4 Sec. 不论 Power Management 功能是否开启,使用者若持续按住电源开关超过四秒,电源才会关闭。若按住电源开关的时间过短(少于四秒),系统会进入暂停模式。此功能可避免使用者在不小心碰触到电源开关的情况下,非预期地将系统关闭。

Instant-Off 按一下电源开关,电源立即关闭。

Wake- Up By PCI Card

Enabled 系统所安装的 PCI 适配卡(如: 网络卡和数据卡) 若是可使用PCI PME (Power Management Event) 信号从远程唤醒系

统 ,则可将此项目设为 Enabled。在 PCI 数据卡或网络 卡有读取动作时,系统会被唤醒。

Disabled 适配卡有任何读取动作,系统都不会被唤醒。

Resume By Ring

设为 Enabled 时,可使用外部调制解调器唤醒功能,即通过外部调制解调器的来电振铃信号可将系统唤醒。

USB KB Wake- Up From S3

设为 Enabled 时,使用者可经由 USB 键盘将处于 S3 (STR - Suspend To RAM) 状态的系统唤醒。唯有"ACPI Suspend Type"项目被设为"S3(STR)"时,才可在此项进行设定。

Resume By Alarm

Enabled 使用者可选择特定的日期与时间,定时将软关机(Soft-Off)状态的系统唤醒。如果来电振铃或网络唤醒时间早于定时开机时间,系统会先经由来电振铃或网络开机。将此项目设为 Enabled 后,使用者即可在 Time (hh:mm:ss) Alarm 项目中进行设定。

Disabled 关闭定时自动开机功能(默认值)。

Date (of Month) Alarm

- 0 系统会根据 Time (hh:mm:ss) Alarm 项目中的设定,于每一 天的特定时间开机。
- 1-31 选择系统自动启动的日期。系统会根据所设定的日期及 Time (hh:mm:ss) Alarm 项目中的设定时间自动开机。

Time (hh: mm: ss) Alarm

设定计算机的自动开机时间。

Power On Function

在此字段进行设定,即可使用PS/2 鼠标或PS/2 键盘启动系统

Button only 使用电源按钮开机。

Password 选择此选项后,须在"KB Power On Password"

字段设定开机密码。

Hot Key 选择此项目后,即可在"Hot Key Power On"字

段中设定功能键开机。

Mouse Click 点击PS/2鼠标即可唤醒系统

Any Key 按下任何键即启动系统。

Keyboard 98 以相容于 Windows® 98 的键盘上的 Wake-up 键来启

动系统。

KB Power On Password

将光标移至此字段后按<Enter>键,输入五个字符以内的密码。确认时再输入相同的密码,然后按<Enter>键。此字段密码一经设定,电源按钮的功能将会失效,必须正确输入密码才能开机。忘记密码时,请先关闭系统,接着去掉电池,几秒钟后再将电池装回原位,然后开机。

Hot Key Power On

可经由此字段选择一个用于开机的功能键。

PWRON After PWR- Fail

Off 系统掉电后恢复供电时,系统电源处于关闭状态,须经由

电源按钮才能开机。

On 系统掉电后恢复供电时,系统自动开启。

Former-Sts 系统掉电后恢复供电时,系统将自动恢复到掉电以前的状

态。若掉电时系统处于开启状态,则恢复供电后系统自动

开机, 反之, 若处于关闭状态则不开机。

PnP/PCI Configurations

这个子画面中的设定与 PCI 总线的即插即用功能有关,所涉及的问题技术性较强。若非经验丰富的使用者,请勿更改原默认值。

上图的设定值仅供参考;设定项目会因BIOS的版本不同而异。

Init Display First

选择开机时先启动PCI Express 或 PCI 显示设备。

PCIEx 系统启动时,首先启用 PCI Express x16 显卡。

PCISlot 系统启动时,首先启用PCI显卡。

Reset Configuration Data

Enabled BIOS 于开机时会重置 ESCD (Extended System Configuration

Data), 更新系统资源分配数据。

Disabled BIOS 于开机时不会更新系统资源分配数据。

Resources Controlled By

BIOS 可自动分配系统资源,避免装置间的相互冲突。

Auto(ESCD) BIOS 会自动分配系统资源。

Manual 使用者在"IRQ Resources"项目中自行分配系统资源。

IRQ Resources

将光标移至此项目按《Enter》。将系统中断值(IRO)设为PCI Device 或 Reserved。

上图的设定值仅供参考;设定项目会因BIOS的版本不同而异。

PCI/VGA Palette Snoop

可避免 MPEG ISA/VESA VGA 装置与 PCI/VGA 装置搭配不良时所造成的 兼容性 问题。

Enabled MPEG ISA/VESA VGA 装置与 PCI/VGA 装置无兼容性问题时,请选择此设定。

Disabled MPEG ISA/VESA VGA 装置与 PCI/VGA 装置不兼容时,请选择此设定。

INT Pin 1 Assignment to INT Pin 8 Assignment

默认情况下,系统会自动为每个装置分配一个 INT,使用者也可以手动为系统装置分配 INT。

Maximum Payload Size

选择 PCI Express 装置的最大 TLP payload; 单位为字节。

PC Health Status

上图的设定值仅供参考;设定项目会因BIOS的版本不同而异。

Shutdown Temperature

选择系统的温度上限值。一旦侦测出温度已超过于此字段所设定的临界值,系统会自动关闭,以避免过热现象发生。

Current CPU Voltage 至 Current Battery Voltage 这些字段将显示受控的输出电压。

Current System Temperature 至 Current NB Temperature 这些字段将显示内部系统、CPU 与北桥芯片的当前温度。

Current System Fan Speed 和 Current CPU Fan Speed 此字段显示所监控的散热风扇的转速。单位为 RPM (转 / 分)。

80 ______ 81

System Fan Operating Mode

Full-On 系统风扇(System Fan)全速运转

Fan-PWM 此选项可允许对下面System Fan PWM Value字段的系统风 扇 PWM 值进行设定。

System Fan PWM Value

用于选择系统风扇速度。在此字段输入的值越高,系统风扇转速越快。

CPU Fan Operating Mode

Smart Fan CPU 风扇转速将按照 CPU 温度进行调整。温度越高, CPU 风扇转速越快。

Full-On CPU 风扇全速运转。

Fan-PWM 此选项可允许对下面CPU Fan PWM Value字段的CPU风扇PWM 值进行设定。

CPU Fan PWM Value

用于选择CPU风扇速度。在此字段输入的值越高, CPU风扇转速越快。

NB Fan Operating Mode

Smart Fan 北桥风扇转速将按照 CPU 温度进行调整。温度越高, 北桥风扇转速越快。

Full-On 北桥风扇全速运转。

Fan-PWM 此选项可允许对下面NB Fan PWMValue字段的北桥风扇 PWM 值进行设定。

NB Fan PWM Value

用于选择北桥风扇速度。在此字段输入的值越高,北桥风扇转速越快。

Genie BIOS Setting

上图中的设定值仅供参考;设定项目会因BIOS的版本不同而异。

上图列出了Genie BIOS Setting子画面中的所有设定项目;实际使用时,请利用画面中的滚动条来查看所有项目。

82 _____ 83

DRAM Timing and Config

将光标移至此项目按 <Enter>, 会出现以下项目。

上图的设定值仅供参考;设定项目会因BIOS的版本不同而异。

DRAM Timing

此字段用于选择MDRA时钟。

By SPD DIMM上的EEPROM具备SPD(Serial Presence Detect)数据

结构,存储着诸如内存类型、大小、速度等模块信息。 选择此选项时,主板将按照EEPROM内储存的数据运行。 此选项为默认值,可为系统提供十分稳定的运行环境。

Manual 欲取得较高的系统性能,请选择本选项,然后在以下字段中选择高级选项。

CAS Latency Time(Tcl)

选择 CAS 延迟时间。

DRAM RAS# to CAS# Delay

RAS# 至 CAS# 的转换延迟。周期越短, DRAM 性能越好。

DRAM RAS# Precharge

用于选择一个系统向DRAM发出预充电命令之后的闲置时钟。

Precharge Delay (tRAS)

选项为Auto, Vt16, Vt17, Vt18与4 to15。

System Memory Frequency

为系统内存选择频率。

Refresh Mode Select

选项为 Auto, 7.8 us 与 15.6 us。

DRAM Data Integrity Mode

只有72位 SDRAM DIMM可支持ECC 功能。如果系统使用的是64位 SDRAM DIMM,请将此字段设为 Non-ECC。

Non-ECC 使用 64 位 SDRAM DIMM 时,选择此设定值。

ECC 此设定值可允许系统从内存存储失败中恢复。可检查单位 与多位错误,对于单位错误可以自行纠正。

Over Clock Mode Select

此字段用于选择超频的模式。

Easy Overclocking

可为CPU选择一个超频速度。

FSB 800MHz CPU Enhanced Mode

如果系统使用的是800MHz FSB CPU,并且,使用者希望使用该CPU的高级模式,请将此字段设定为Enabled。

CPU Clock Ratio Setting

此字段用于设定CPU倍频。

1) 提要:

某些处理器厂商会将 CPU 倍频锁定。此种情况下,对 CPU 倍频进行调节将无效。

CPU Clock Setting

本字段提供了众多选项,可用来调整CPU的系统外部总线时钟;使用者可以每次增加1MHz的渐进方式自行设定。

*) 提要:

选择默认值以外的系统外部总线时钟设定未必可提升系统效能, 而且可能导致处理器或系统运作不稳定。

O. C. Failed Control

系统超频以后,若出现无法正常运行的情况,则系统会自动按照此字 段所选值对CPU进行调整,调整的时钟速度为实际CPU时钟与此字段 所选时钟的差值。

PCIE Clock Sync With

CPU Clock PCI Express 时钟与 CPU FSB 时钟同步。

O.C. Mode 启动PCI Express时钟

PCIE Clock Setting

此字段用于为PCI Express 总线选择时钟,允许使用者按照1MHz增量对总线时钟进行调节。

SATA Clock Sync. with

PCIEClock SATA时钟与PCI Express时钟同步

Fix 100MHz SATA时钟固定在100MHz

CPU and PCIE Clock Turbo

选项为 H/W Turbo 与 S/W Turbo.

CPU Turbo Add- On Speed

为CPU选择一个附加的速度。

PCIE Turbo Add- On Speed

为PCI Express 选择一个附加的速度。

CPU VID Offset Setting

此字段用于选择 CPU核心电压。欲使用 CPU核心电压的默认值,请保留此字段原设定值不变,系统将按照 CPU VID的设定自动产生一个 CPU核心电压。

⇒ 提要:

本主板虽支持这项功能,但因调高此电压可能会造成电流不稳定,以致主板受损,因此我们并不建议您将电压调高。

Default CPU Voltage

用于显示 CPU 默认电压。

CPU VTT Voltage Setting

用于选择 CPU 供应电压。

*****)提要:

本主板虽支持这项功能,但因调高此电压可能会造成电流不稳定,以致主板受损,因此我们并不建议您将电压调高。

DRAM Voltage Setting

此字段可允许手动调高 DRAM 的供电电压。欲使用原默认值,请保留原设定不变。

₽ 提要:

本主板虽支持这项功能,但因调高此电压可能会造成电流不稳定,以致主板受损,因此我们并不建议您将电压调高。

NB Chip Voltage Setting

此字段允许手动高北桥芯片的供电电压。

₱ 提要:

本主板虽支持这项功能,但因调高此电压可能会造成电流不稳定,以致主板受损,因此我们并不建议您将电压调高。

Auto Detect PCI Clk

此字段开启时,系统将自动为系统已有的PCI设备输送时钟信号。

Spread Spectrum

请保留原设定不变。若非工程师或专业人士建议,请勿任意更改。

Load Fail-Safe Defaults

BIOS ROM 芯片中储存有一套安全默认值,这套默认值并非是系统最佳性能的标准值,因为部份可增进系统效能的功能都被关闭;但是这套默认值能够相对较多的避免硬件问题;因此,系统硬件运行发生问题时,用户可载入这套默认值。在BIOS 主画面上选择此项目,按<Enter>后屏幕会出现以下信息:

键入 <Y> 后按 <Enter>, 即可将这套默认值加载。

88 ______89

Load Optimized Defaults

BIOS ROM 芯片中存有一套最佳化的 BIOS 默认值,请使用这套默认值作为系统的标准设定值。在 BIOS 主画面上选择此项目,按 <Enter>后屏幕会出现以下信息:

键入 <Y> 后按 <Enter>, 即可将最佳化默认值加载。

Set Supervisor Password

要避免未经授权人员任意使用您的计算机或更改 BIOS 的设定值,可在此设定管理者密码,同时将 Advanced BIOS Features 项目设为 System。若只是想避免 BIOS 的设定值被任意更改,则请设为 Setup; 系统冷启动时,将不会提示输入密码。于 BIOS 的主画面中,用箭头 键选中 Set Supervisor Password 后按 <Enter>,屏幕上会出现以下信息:

键入 8 个字符以内的密码后按 <Enter>。屏幕会出现以下信息:

Confirm Password:

再一次输入相同的密码作为确认;若所输入的密码与先前不符,则必须再次输入正确的密码。若要取消管理者密码的设定;请于主画面选择 set supervisor Password 后按 <Enter>,于 Enter Password:信息出现后,不要输入任何密码而直接按 <Enter>,然后按 <Esc> 键回到主画面。

Set User Password

若要将系统开放给其它使用者,但又想避免 BIOS 设定被任意更改,可设定使用者密码作为使用系统时的通行密码,并将 Advanced BIOS Features 项目设为 System 但若要让使用者能够以输入密码的方式进入 BIOS 设定程序,则设为 Setup。

以使用者密码进入 BIOS 设定程序时,只能进入主画面的使用者密码设定项目,而无法进入其它的设定项目。于 BIOS 的主画面中,箭头键选中 Set User Password 后按 <Enter>, 屏幕上会出现以下信息:

键入 8 个字母以内的密码后按 <Enter>。屏幕会出现以下信息:

Confirm Password:

再一次输入相同的密码作为确认;若所输入的密码与先前不符,则必须再次输入正确的密码。若要取消使用者密码的设定;请于主画面选择 Set User Password 后按 <Enter>,于 Enter Password:信息出现后,不要输入任何密码而直接按 <Enter>,然后按 <Esc> 键回到主画面。

Save & Exit Setup

设定值更改完毕后,若欲储存所做的变更,请选择 Save & Exit Setup 按 <Enter>。屏幕上会出现以下信息:

请键入 <Y> 后按 <Enter>。所有更改过的设定值会存入 CMOS 内存中,同时系统将会重新启动,再次回到开机自我测试画面。此刻若想再次更改某些设定,可于内存测试及计数完毕后,按 键进入BIOS 的设定画面。

Exit Without Saving

若不想储存更改过的设定值,请选择 Exit Without Saving 按 <Enter>。屏幕上会出现以下信息:

键入 <Y> 后按 <Enter>。系统将会重新开机,再次回到开机自我测试 画面。此刻若想要更改某些设定,请同时按<Ctrl> <Alt> <Esc>键或在 内存测试及计数完毕后,按 键进入 BIOS 的设定画面。

Intel RAID BIOS

RAID BIOS 程序用于在 Serial ATA 硬盘上对 RAID 进行设定与管理。

于系统重启动,所有硬盘均侦测之后,Intel RAID BIOS 状态信息 将出现于屏幕上。此时,同时按下<Ctrl>与<I>键进入此程序,该程序 可允许在 Serial ATA 硬盘上建立一个 RAID 体系。

关于 RAID 设定的详细步骤,请参考第五章相关信息。

贄 提要:

在建立RAID之前,请务必确认Serial ATA 硬盘已成功安装并且数据线也已正确连接,否则无法进入RAID BIOS公用程序。

DOS 模式下 BIOS 的更新方法如下

首先请确认您的BIOS 厂商(AMI/Award),您的主板名称及版本 (一)建立一片开机软盘:放入一片软盘在 A 驱,在 DOS 模式下键入 "Format A:/S",此时会格式化软盘并复制系统文件。

- A. 这个过程将会删除掉此软盘原有的文件。
- B. 过程中将会复制4个文件至软盘中,但只看得到COMMAND.COM文件。
- C. 软盘中请勿有CONFIG.SYS及AUTOEXEC.BAT文件。
- D. 请将此软盘的防写孔设定为可写入状态。
- (二)网站上下载 BIOS 升级程序,将此文件存放在步骤 1.中的软盘,闪盘或硬盘中。将 BIOS 文件和刷新工具一起拷贝到当前目录下用步骤 1.的开机软盘来重新开机,进入纯 DOS 模式。
- (三)如果您的BIOS厂商为AMI请在DOS模式下键入: AMINFxxx. exe filename.xxx,如果您的BIOS厂商为Award请在DOS模式下键入: Awd*.exe filename.xxx,其中的filename.xxx 是您所解压出的BIOS文件,然后再按"ENTER"。
- (四)如果是Award BIOS,你会碰到的第一个选项,它会问您是否要将现在的BIOS程序存档,如果您可能在升级后想要恢复为现行的版本,请选"YES",然后它会问您要用什么文件名存档;如果您不想将现行版本的BIOS文档存档,请选"NO"。如果是AMI BIOS要保存原文件,请输入: AMI*.exe/S filename.xxx(注意 S后面没有空格)。

- (五)下来第二个选项是问你:确定要升级吗?如果您选择了"YES",那当BIOS升级程序在升级您的BIOS过程中,请不要按到键盘,电源开关或RESET键。
- (六) BIOS 升级完成时,升级程序会问您要重新开机或关闭电脑,当 您选择完毕后,请将开机软盘取出。
- (七) 启动后,新 BIOS 版本将会出现在开机画面,至此您的 BIOS 就 算升级成功。
- (八)接着请按"DEL"键,以进入COMS SETUP 画面,再载入DEFAULT值,再根据您的需要去修改BIOS内容。
- (九)特别注意:在刷 BIOS前,请将主板上的 BIOS的写保护设置为可写状态。硬件部分请将 BIOS写保护跳线设置为可写,具体参考本手册的硬件安装部分;软件部分请将 BIOS Guardian设置为 DISABLED。具体参看本手册的 BIOS的说明部分,否则会出现刷不进去的现象。

第四章 软件支持

驱动程序与软件安装

本主板所附的 CD 片中包含驱动程序与软件程序,其中部份程序可用来增进主板的性能。

将所附的 CD 片置入光驱;安装主画面 (MAINBOARD UTILITY CD) 会自动启动并显示于屏幕上。如果安装主画面没有自动启动,请直接到 CD 片的根目录下,点选 "Setup"。

常> 提示: 安装任何驱动程序之前,请先安装 Mi crosoft DirectX9.0C。

Microsoft DirectX 9.0C

在光驱中放入CD后,预设的画面即Chipset Drivers画面窗口将会出现。如果此窗口未出现,请点击自动运行画面左边的"CHIPSET"图标。

1.点击主画面中的 "Microsoft DirectX 9.0C"。

2.点击"I accept the agreement",再点击Next。

3.准备安装 Direct X,请 点击 Next。

4.点击 Finish.重新启动 计算机, DirectX即可生效。

Intel Chipset Software Installation Utility

本公用程序主要用于升级Windows INF,以便更好的在系统中对Intel 芯片组进行识别与设定:

自动运行画面的左边,点击"CHIPSET"图标。

1.在主菜单中点击"Intel Chipset Software Installation Utility"。

2.即将安装驱动程序,请 点击 Next 继续。

3.点击Next开始驱动程序 的 安装。

4.阅读许可文件后点击 Yes。

5.阅读Read Me 文件, 了解系统需求及安装信息, 之后点击Next。

6.请按照屏幕上的提示完 成 安装。

7.重新启动系统以使驱动程序生效。

Realted Audio Drivers

在自动运行画面的左边,点击"AUDIO"图标。

1.在主安装画面中点击 "Realtek Audio Driver"。

2.安装向导正在收集文件 准备安装 Realtek HD 音频, 该过程完成后,请点击 Next。

3.正准备安装驱动程序, 请点击 Next。

4. 正在安装并设定新的程序。

5.点击"Yes, I want to restart my computer now" 后,点击Finish。

重新启动系统以使动程 序生效。

104 _______ 105

Realtek LAN Drivers

在自动运行画面的左边,点击"NETWORK"图标。

1.在安装主画面中点击 "LAN Driver"。点击Next。 按照屏幕提示完成安 装。

- 2. 正准备安装驱动程序。
- 3. 按照屏幕上的提示完成 安 装 。
- 4.点击Finish。重新启动 系统以使驱动程序生效。

JMicron eSATA Drivers

在自动运行画面的左边,点击"TOOLS"图标。

1.在主菜单中点击 "JMicron eSATA Drivers"。

2.正准备安装驱动程序。 点击 Next。

3.点击Install开始安装。

4.正在安装并设定新的程序。

5.点击"Yes, I want to restart my computer now"后,点击Finish。

重新启动系统以使动程 序生效。

在安装 Windows[®] XP 或 Windows[®] 2000 操作系统的过程中,安装 eSATA 驱动程序

欲从eSATA驱动器开机,则需要在该驱动器上安装Windows[®] XP 或 Windows[®] 2000 操作系统。在安装操作系统的最后阶段,需要用到包含有 eSATA 驱动程序的软盘来完成安装。

以下步骤显示了在安装Windows[®] XP或Windows[®] 2000操作系统的过程中安装 eSATA 驱动程序的相应步骤:

- 1.从 Windows Setup 安装光盘开机,开始 Windows 操作系统的安装。
 - 2.在操作系统安装之初,提示信息出现时,按 <F6>。
- 3.以下步骤十分关键,因为有一个十分重要的文件将在此时安装。请按<S> 选择 "Specify Additional Device"。
- 4. 当提示信息出现时,使用内含eSATA驱动程序的软盘来安装,请将软盘放入CD-ROM中。
- 5.指定上述软盘的所在位置,选择 eSATA 驱动程序,按 <Enter>进行驱动程序的安装。
- 6.若有其它装置尚待安装,请于此时一并指定,否则请继续下一个 步骤。
 - 7.依循屏幕上的指示完成安装。
 - 8.操作系统安装完成以后,如有必要,建立硬盘扇区。

ITE Hardware Monitor

本主板出货时即附有ITE Hardware Monitor公用程序。此公用程序可用来监控系统温度、风扇速度、电压等,并允许使用者为监控对象手动设定监控范围(最高限度与最低限度),如果监控对象的数值超出设定范围,系统即会弹出警告信息。此程序亦可设定为出错时出声示警模式。公用程序内含一套可将系统维持在理想监控状态的默认值,建议使用者选用。

在自动运行画面的左边,点击"TOOLS"图示。

1.在主画面中点击"ITE Hardware Monitor"。

2. 安装程序准备中。

3.此时即开始 Smart Guardian 的安装。点击 Next 继续或点击 Browse 选择其它的安装路径。

4.选择Next将程序图 标添加至安装路径中。

5.点击 Finish, 重新 启动计算机使程序生效。

USB 2.0 驱动程序

• Windows XP

如果你的 Windows* XP 光盘已包含 Service Pack 1,在安装操作系统时,USB2.0驱动程序会自动安装。若你的 Windows* XP 光盘并未包含 Service Pack 1,则可至 Microsoft Windows Update 网站下载。

• Windows 2000

如果你的 Windows[®] 2000 光盘片已包含 Service Pack 4,在安装操作系统时,USB 2.0 驱动程序会自动安装。若你的 Windows[®] 2000 光盘并未包含 Service Pack 4,则可至 Microsoft Windows Update 网站下载。

程序安装注意事项

1.安装主画面的自动启动功能仅支持Windows* 2000/Windows NT* 4.0/Windows* XP操作系统。当你将所附的 CD 片置入CD-ROM 光驱后,安装主画面若未自动启动并显示于屏幕,可直接至 CD 片所在的根目录中执行"Setup"执行档。

2.由于软件程序偶尔会更新,因此安装步骤与程序亦会随之改变,针对相关之变动,我们并不另行通知。欲取得最新版本的驱动程序与软件程序,请至七彩虹网站: http://www.seethru.com.cn。

Intel芯片可允许跨距四个Serial ATA硬盘对 RAID 进行设定设定, 支持RAID 0, RAID 1, RAID 0+1与 RAID 5。

RAID 级别

RAID 0 (无容错设计条带磁盘阵列)

RAID 0采用两颗相同的新硬盘驱动器,并列、交互对数据进行读写。资料被划分为条带,写入时,每个条带被打散在两颗硬盘上。运用RAID 0阵列,不同通道的输入/输出性能得到提升。但是,RAID 0无容错功能,任何一颗磁盘出现故障,将会导致整个阵列数据丢失。

RAID 1(容错镜像磁盘阵列)

RAID 1可经由一颗磁盘向另一颗磁盘镜像拷贝并储存相同的一组数据。如果一颗磁盘发生故障,磁盘阵列管理软件可从另一颗磁盘获得所需数据,因为RAID 1事先会将一颗磁盘上的数据完整复写至另一颗硬盘上,如此确保了数据安全,并且提高了整个RAID 体系的容错能力。建立RAID 1时,可使用两颗新硬盘,也可使用已有的硬盘搭配一颗新硬盘,此时,新硬盘的容量必须等同或稍大于已有的硬盘。

RAID 0+1 (条带与镜像)

RAID 0+1 融合了RAID 0与RAID 1各自的优点,此类RAID设定需要使用四颗新硬盘或三颗新硬盘加一颗系统已有的硬盘。

RAID 5

RAID 5 可跨硬盘条带存储数据奇偶效验信息。此类 RAID 具备容错功能并可提供较好的硬盘效果及存储能力。

RAID 设定

欲开启RAID功能,须进行以下设定:

- 1.连接Serial ATA硬盘
- 2.在Award BIOS中对Serial ATA进行设定。
- 3.在Intel RAID BIOS中对Serial ATA进行设定。
- 4. 安装 RAID 驱动程序。

步骤一: 连接 Serial ATA 硬盘

将Serial ATA接线的一端连接至SATA接头,另外一端连接至Serial ATA 硬盘。

常 提要:

- 1. 务必确定已连接好 Serial ATA 硬盘与数据线, 否则无法进入 RAID BIOS 程序。
- 2. 创建 RAID 时,请您务必十分谨慎,千万不要触动硬盘线,因为硬盘线一旦触动,整个操作系统以及本次安装即告失败。系统将不会重新启动,而所有数据也将因此流失。请您一定要认真阅读此警告,数据一旦流失,将无法再恢复。

步骤二:在Award BIOS中对Serial ATA进行设定

- 1. 开机后按键进入Award BIOS的主菜单。
- 2.在 BIOS 的 Integrated Peripherals 子菜单中选择"Onbord IDE/SATA Device"选项。
 - 3.将"SATA Mode"设为"RAID"。
- 4.在"On-chip Serial ATA"及"SATA Port"字段对RAID进行设定"。

5.按<Esc>键回到 BIOS 主菜单,选择"Save & Exit Setup"后按<Enter>。

6. 输入 "Y" 后按<Enter>键。

7.重新启动系统。

步骤三:在Intel RAID BIOS中对Serial ATA进行设定

在系统启动,所有硬盘均侦测到以后,Intel RAID BIOS 状态信息的屏幕将会出现。同时按下<Ctrl>与<I>键进入此程序。此程序可允许您于 Serial ATA 硬盘上建立一个 RAID。

步骤四:安装 RAID 驱动程序

如果在安装Windows[®] XP或 Windows[®] 2000操作系统的过程中, 在设定为RAID的Serial ATA硬盘上安装RAID驱动程序,需使用所附 软盘进行安装;如果于已安装完毕Windows[®] XP或Windows[®] 2000操 作系统中安装RAID驱动程序,需使用所附CD进行安装。

于安装 Windows[®] XP 或 Windows[®] 2000 过程中安装 RAID 驱动程序

以下显示了于安装 Windows* XP 或 Windows* 2000 过程中,在 设定了 RAID 的 Serail ATA 硬盘上安装 RAID 驱动程序的相关步骤:

- 1.从 Windows Setup 安装光盘片开机, 开始 Windows 操作系统的 安装。
 - 2.在操作系统安装之初,提示信息出现时,按 <F6>。
 - 3.请按<S>键选择 "Specify Additional Device"。
 - 4. 当提示信息出现时,使用内含 RAID 驱动程序的软盘来安装。
- 5.找到软盘目录,选择Intel ICH7R RAID Controller,按 <Enter>以安装驱动程序。
- 6.若有其它装置尚待安装,请在这时候一并指定,否则请继续下一个步骤。

- 7.依循屏幕上的指示完成安装。
- 8.操作系统安装完成以后,如有必要,建立硬盘扇区。

Intel Matrix Storage Manager(英特尔矩阵存储管理器)

Intel Matrix Storage Manager 是一套公用程序,该程序可允许在Windows 操作系统中对 RAID 卷管理进行创建、删除或者移动,并可显示 SATA 设备或 RAID 卷的有用信息。

安装该程序时,请将CD放入CD-ROM中,在自动运行画面的左边,点击"TOOLS"图标。

1.在主画面中点击 "RAID/AHCH Software -Intel Matrix Storage Manager"。

2.正在收集所需安装的 文件,该过程完成后,请 点击 Next。

3.阅读 Readme 文件, 了解系统需求及程序安装相 关信息,然后点击 Next。

4.按照屏幕提示完成安 装 。

第六章 ATI CrossFire 技术

ATI的 CrossFire 技术使个人计算机的性能达到一个新的顶峰。通过连接一块Radeon CrossFire Edition显卡和一块标准PCI Express显卡,系统内部的多 GPU(Graphics Processing Units)可使游戏运行加速,并且可提高图形质量。

CrossFire 工作原理

CrossFire 关键技术在于提高多GPU系统速度,这种技术是将每一渲染任务划分给两个GPU进行。每个GPU完成分配的每一帧的任务以后,CrossFire Edition 显卡上的合成引擎即对GPU(按照所选择的操作模式)的处理结果进行合成,然后将总的帧结果传送至显示设备。此技术可使帧渲染速度达到单块显卡的两倍。

特性

如果不考虑操作模式,每一帧的完成过程实际是由两张GPU将其送至 CrossFire Edition 显卡上的合成引擎,然后送至显示设备。

SuperTiling (瓦片分离) 渲染模式

瓦片分离是将屏幕图像划分成类似如"瓦格"的交互瓦片模式,每块 GPU 分别处理分配给自己的"半块瓦片"的任务。

Scissor (页框分离) 渲染模式

在页框分离渲染模式下,每一帧被分为两个部分,即有水平的, 也有垂直的,每个GPU处理一个部分。

Alternate Frame Rendering (交替帧渲染, AFR) 模式

在交替帧渲染模式下,帧数为偶数时,交给一块 GPU 处理,当帧数变为奇数时,又交给另一块 GPU 处理。

Super AA (超级全屏抗锯齿) 模式

在多GPU系统中,超级全屏抗锯齿模式提供了比较高的抗锯齿图像显示质量。此模式中,运用抗锯齿技术在每一块GPU中对同一帧进行渲染,但是每块显卡中的采样模式并不相同。当两块GPU中的帧渲染完成以后,CrossFire合成引擎将对其进行合成,由此得到的显示结果将双倍于采样数,即4x与6x抗锯齿结果将相应变为8x与12x超级抗锯齿结果。

显卡类型

- 1.一张Radeon* X850 / Radeon* X800 CrossFire Edition显卡。
- 2.一张标准PCI Express Radeon[®] X850 或 Radeon[®] X800显卡。

Radeon* X850 CrossFire Edition卡可与目前市面上出售的任意ATI 或其合作商的标准PCI Express Radeon X850显卡(Radeon X850 PRO, Radeon X850 XT或 Radeon X850 XT Platinum Edition)协同工作。

Radeon® X800 CrossFire Edition卡可与来自任意ATI或其合作商的标准PCI Express Radeon X800显卡(Radeon X800, Radeon X800 PRO, Radeon X800 XL, Radeon X800 XT 或 Radeon X800 XT Platinum Edition)协同工作。

注意:

如果 CrossFire Edition 与标准 PCI Express 显卡的时钟速度设定不一致,则两块显卡将各自独立运作。

PCI Express 插槽

PCIE 2与PCIE 4为PCI Express x16插槽

CrossFire 模式: 两组 x16 插槽,每组以 x8 频率运行。单 VGA 模式: 只有一组插槽按 x16 带宽运行。

PCIE 1为一PCI Express x1插槽

PCIE 3为PCI Express x4插槽

安装显卡

- 1.关闭系统及显示器并拔除电源插头。
- 2. 移除PCIE2插槽所对应的背板位置上固定挡板用螺丝,然后移开挡板。

3.将 CrossFire Edition 显卡(Master)在上空与 PCIE2 插槽对齐,然 后压入插槽中,直到其牢固固定于插槽中为止。

- 4.安装步骤二移除的螺丝,固定好显卡。
- 5.移除PCIE4插槽所对应的背板位置上固定挡板用螺丝,然后移开挡板。

6.CrossFire Edition 显卡本身即具备一条连接线,按照如下方式将连接线插头接入CrossFire Edition 显卡接头。

7.按照步骤三相同的方式将标准PCI Express显卡(Slave)置入PCIE4 插槽中。

8. 安装步骤 5 移除的螺丝。

9.将另外一个插头接入PCI Express 显卡的 DVI-I 接头,然 后将剩下的接头接入显示设备。

- 10.将辅助电源由电源供应器接入显卡。
- 11.安装显卡驱动程序,之后重新启动系统使程序生效。
- 12. 进入操作系统后,会在系统桌面上发现一个"ATI Catalyst Control Center"的图标。双击该图标。

13. 点击 View 标签后选择 Custom View。

14. 在Graphics Settings画面 (屏幕左边)中,点击 CrossFire。此时主窗口的屏幕上会出现一个 CrossFire Settings 窗口。点击 "Enable CrossFire"之后再点击 "Yes"继续。

15. 如果出现类似右边的窗口则表明CrossFire已成功开启。请重新启动系统以使CrossFire生效。

附录 A 错误信息解读

系统于 BIOS 错误时会发出警告声或于屏幕上出现错误信息告知使用者,这时使用者可遵循屏幕上的指示信息如: PRESS F1 TO CONTINUE, CRLT-ALT-ESC or DEL TO ENTER SETUP即可继续执行或进入 BIOS 设定程序中修正错误。

开机自我测试 (POST) 警告哔声

BIOS 中有两种警告声,当 BIOS 无法启动屏幕显示器来显示信息时,系统会发出一长三短的哔声;当 DRAM 发生错误时,会发出一长哔声。

错误信息

BIOS 于开机自我测试(POST)时,若侦测到错误,会将此错误信息显示在屏幕上。以下是 BIOS 常见的错误信息:

CMOS BATTERY HAS FAILED

CMOS 电池没电,需更换新电池。

● 警告:

电池替换或安装不当可能导致电池爆裂,请依照厂商的建议,选用适当的电池类型;并依据电池制造商的指示处理废弃电池。

CMOS CHECKSUM ERROR

当 CHECKSUM 有误时,可能是电池电力不足而引起 CMOS 数据流失。请检查电池,必要时进行更换。

DISPLAY SWITCH IS SET INCORRECTLY

主板上显示器的设定可将屏幕设成单色或彩色,此信息的出现表示主板上显示器的设定与BIOS中的设定不一致。先确定显示器的类型,于关机后调整主板上的设定,或是进入BIOS中更改 VIDEO 的设定。

FLOPPY DISK(S) FAIL(80)

软驱无法重置。

FLOPPY DISK(S) FAIL(40)

软驱类型不符。

HARD DISK(S) FAIL (80)

硬盘重置失效。

HARD DISK(S) FAIL (40)

硬盘控制器诊断发生错误。

HARD DISK(S) FAIL (20)

硬盘起始化错误。

HARD DISK(S) FAIL (10)

扇区数据混乱,数据无法重新修复。

HARD DISK(S) FAIL (08)

读写扇区发生错误混乱。

KEYBOARD IS LOCKED OUT - UNLOCK THE KEY

键盘被锁住, 键盘控制器被 pull low。

KEYBOARD ERROR OR NO KEYBOARD PRESENT

无法初始化键盘。请确定键盘的连接正确无误,而且在开机过程中避 免不当的按键动作。

MANUFACTURING POST LOOP

当键盘被 pull low 时,系统会永无止境地执行 POST,此乃用于工厂测试主板时的 "烧机 (burn-in)" 作业。

BIOS ROM CHECKSUM ERROR - SYSTEM HALTED

ROM 地址 F0000H-FFFFFH 的 checksum 发生错误。

MEMORY TEST FAIL

内存有误时, BIOS 提报内存测试失败。

附录 B 故障排除

故障排除检查清单

本章节主旨在于协助使用者解决常见的系统问题;问题发生时,最 好将不同的问题加以区分,以避免不相干的问题相互干扰,才能够有 效率地找出发生问题的原因。

系统发生问题时,最普遍的原因如下:

- 1.外围设备的电源尚未开启。
- 2.排线与电源线连接不当。
- 3.外围设备使用的电源插座接触不良或无电流通过。这时可以使用 电灯或其它电器用品测试此插座。
 - 4.显示器电源尚未开启。
 - 5.显示器亮度与对比颜色设定不当。
 - 6.适配卡安装不牢固。
 - 7.系统所安装的适配卡设定不当。

显示器 / 画面

系统启动后, 屏幕上无画面。

- 1.确定显示器电源是否已开启。
- 2.检查显示器电源线及显示器与交流电插座的连接是否牢固。必要时,可更换其它插座。
- 3.检查影像输入线是否已正确地连接于显示器与系统的显示卡上, 并且连接牢固。
 - 4.使用显示器的亮度调节钮调整屏幕亮度。

画面持续跳动

- 1. 检查屏幕的垂直同步画面设定是否流失。调整垂直同步画面的设定。
- 2.移开周围不相干的电器设备,如:风扇或其它显示器等,以免

系统受到电磁干扰。

3.屏幕是否支持显示卡的输出频率。

画面轻微晃动

1.如果你的显示器与另一台显示器距离过近,最好将另一台显示器 关掉,否则你的显示器会受另一台显示器幅射荧光的影响,而造成画 面晃动。

电源供应器

计算机启动后无任何响应

- 1. 检查插座是否通电,及电源线与插座及系统的连接是否得当。
- 2. 系统所使用的电压是否正确。
- 3.电源线可能短路。检查电源线,必要时请更换新的电源线。

软驱

软驱无法使用

- 1.磁盘未格式化。请将磁盘格式化后再试。
- 2.磁盘有写保护设定。请使用未写保护的磁盘。
- 3. 磁盘驱动器路径错误。请检查指令路径,找出正确的磁盘驱动器路径。
 - 4.现有的磁盘容量不够,请更换容量较大的磁盘。

硬盘

硬盘无法使用

- 1.确定 BIOS 中硬盘的设定数据正确。
- 2.若是系统内有两台硬盘,请确定第一台硬盘为可开机硬盘设为 Master,第二台设为 Slave。而第一台硬盘必须要有开机扇区。

格式化时间过长

若硬盘容量很大,或是排线连接不当时,可能会导致格式化时间过长。

并行端口(打印机端口)

下达打印指令时, 打印机无任何反应

- 1.请确定打印机电源已开启,并且已与系统联机(on-line)。
- 2.请确定打印机的驱程设定正确。
- 3.确认主板 LPT 端口的 I/O 地址与 IRQ 设定妥当。
- 4. 若已确定并行端口(LPT) 及打印机并无损坏,而且设定亦无错误时,请更换打印机与系统的连接线,然后再试一次。

串行端口

连接于串行端口的设备如调制解调器、打印机无法正常输出或输出乱码

- 1.确定设备的电源已开启,并且处于联机 (on-line) 状态。
- 2.确认设备已连接至计算机背面正确的串行端口上。
- 3.检查设备与串行端口是否损坏,串行端口的设定是否正确,系统与串行装置间的连接线是否损坏。
 - 4.确认 COM 端口的设定与 I/O 地址的选择无误。

键盘

按键无任何反应

- 1.确认键盘的连接正确无误。
- 2.检查键盘上的按键是否被异物卡住;或在开机过程中不小心按到键盘。

主板

- 1.确认主板扩充槽中的适配卡是否安装牢固,若是适配卡有松动的情形,请先关掉系统电源,于适配卡安装稳固之后,再重新开机。
 - 2.确认主板上的 DIP Switch 和 Jumper 的设定无误。
 - 3.确认内存插槽中的所有内存模块皆安装牢固。
 - 4.确认所有内存模块的安装位置无误。

C.975X-MVP Ver2.0

- 5.主板无法正常运作时,请将主板置于平坦的桌面上,检查所安装的对象是否皆安装牢固,可轻压每一张卡或接头使安装更为稳固。
- 6.若是更改 BIOS 设定后所造成的系统问题,则请进入BIOS 将原默认值重新加载。