
1

Using the ATV750 and ATV750B

Introduction
This application note describes how to
use the features of the ATV750 and
ATV750B in the ABEL (and Atmel-
ABEL) and CUPL (and Atmel-CUPL)
high level description languages. The
ATV750 and ATV750B a re easy
upgrades from a 22V10. They offer twice
the logic density and more flexibility in
the same footprint. Both devices have 20
registers and individual clock and AR
product terms for each register. Each I/O
pin has a programmable polarity control
and an individual output enable product
term. Independent feedback paths from
each register allow all of the registers to

be buried without wasting the I/O pins.
For the ATV750B the registers can also
be configured as D- or T-type and the
clock can be selected as either a syn-
chronous clock pin or a clock product
term. The ATV750 and ATV750B macro-
cell is shown in Figure 1.

Device Names and Pin and
Node Assignments
The device names for the ATV750 and
ATV750B for each language are shown
in Table 1.

Note: Pin/node numbers: DIP (PLCC)

Table 1. Device Names

Device Type ABEL Device Name CUPL Device Name

ATV750 DIP P750 V750

ATV750 PLCC P750C V750LCC

ATV750B DIP P750B V750B

ATV750B PLCC P750BC V750BLCC

Table 2. Node Numbers

Pin #

ABEL CUPL

Q1 Q1 Q0

14(17) 26 (30) 25 (29) 35 (39)

15(18) 27 (31) 26 (30) 36 (40)

16(19) 28 (32) 27 (31) 37 (41)

17(20) 29 (33) 28 (32) 38 (42)

18(21) 30 (34) 29 (33) 39 (43)

19(23) 31 (35) 30 (34) 40 (44)

20(24) 32 (36) 31 (35) 41 (45)

21(25) 33 (37) 32 (36) 42 (46)

22(26) 34 (38) 33 (37) 43 (47)

23(27) 35 (39) 34 (38) 44 (48)

Erasable
Programmable
Logic Device

Application
Note

Rev. 0459C–09/99

BDTIC www.bdtic.com/Semiconductor

CMOS PLD2

Figure 1. The ATV750 and ATV750B Macrocell

Buried registers (Q1 in each macrocell) are identified by
node numbers. Table 2 shows the node numbers for the
Q1 registers in the ATV750 and ATV750B. Registers which
are associated with the I/O pin (Q0 in each macrocell) are
identified by the pin numbers. The use of the Q0 node num-
bers in CUPL is described in the Macrocell Configurations
section.

The following examples show the device type specification
and the pin and node assignments:

ABEL and Atmel-ABEL
device_id device ’P750B’; “device_id will be used

”for JEDEC filename

I1,I2,I3,I4,I5 pin 1,2,3,4,5;

O23,O22 pin 23,22 istype 'reg_d,buffer';

O21,O20 pin 21,20 istype 'com';

O23Q1,O20Q1 node 35,32 istype 'reg_d';

CUPL and Atmel-CUPL
device V750B;

pin [1,2,3,4,5] = [I1,I2,I3,I4,I5];

pin [20,21,22,23] = [O20,O21,O22,O23];

pinnode [34,44,31] = [O23Q1,O23Q0,O20Q1];

Pin and Node Feedbacks
Each macrocell has three feedback paths into the array,
one from each of the registers and one from the pin. For a
buried register, the node name is used to refer to the

feedback path. For a combinatorial output, the feedback
comes from the pin, so the pin name is used to refer to the
feedback. For a registered output, the feedback can come
either from the register or from the pin. The feedback paths
are labeled (1), (2), and (3) on Figure 1. The following
examples show how the different feedback paths are
identified:

ABEL and Atmel-ABEL
O23.d = I1 # I2;

O23Q1.d = I1 & !I2;

O21 = O23 “(1)feedback from pin

O23.fb “(2)feedback from Q0 register(1)

O23Q1; “(3)feedback from buried register

Note: 1. For ABEL, either “.q” or “.fb” can be used to indicate
the buried register feedback path. When “.q” exten-
sion is used, the software will select the Q output of
the register, regardless of the output buffer polarity.
When the “.fb” extension is used, the software will
match the polarity of the register feedback with the
output polarity by selecting either the Q or !Q output
of the register.

CUPL and Atmel-CUPL
O23.d = I1 # I2;

O23Q1.d = I1 & !I2;

O21 = O23.io /*(1)feedback from pin */

O23 /*(2)feedback from Q0 register */

O23Q1; /*(3)feedback from buried register */

CMOS PLD

3

Macrocell Configurations
The basic macrocell configurations are shown in Figures 2
through 7. Each macrocell can be configured as either a
registered or combinatorial output. In addition, each macro-
cell has a buried register. The multiple feedback paths also
allow both registers to be buried, with the I/O pin used as
an input pin.

The macrocells have a total of between 8 and 16 product
terms. If the buried register is used, the product terms are
automatically divided into two sum terms, each with half of
the product terms. If the buried register is not used, all of
the product terms are available for the I/O function.

For ABEL, the Q1 register is identified by a node number.
The Q0 register is identified by the pin number. The OE
should be set to 0 to disable the outputs. The “pinname”
(with no extensions) refers to the input path. The “pin-
name.fb” refers to the register feedback path. Another

name for either the input or the register may be substituted
in the Declarations section of the file, to make it clearer that
they have separate functions. The pin and node names will
be substituted back into the equations when the file is
compiled.

For CUPL, there are node numbers for both the Q1 and Q0
registers. The Q0 node numbers should only be used if the
Q0 register is buried and the pin is used as an input. The
Q0 node name refers to the register and the pin name
refers to the pin.

For this configuration, the output should be defined as com-
binatorial, and the equation written as combinatorial. A
clock equation should also be written for the output. The
registered signal which is fed back into the array is identi-
fied with “.fb” or “.q” for ABEL or “.dfb” for CUPL.

Figure 2. Combinatorial Output

Figure 3. Combinatorial Output plus Buried Register

ABEL and Atmel-ABEL
O21 = I1 # !I2 # I3 # !I4 # I5;

CUPL and Atmel-CUPL
O21 = I1 # !I2 # I3 # !I4 # I5;

ABEL and Atmel-ABEL
O20 = I3 & !I4;

O20Q1.d = I2 # I3 # I4;

CUPL and Atmel-CUPL
O20 = I3 & !I4;

O20Q1.d = I2 # I3 # I4;

CMOS PLD4

Figure 4. Registered Output

Figure 5. Registered Output plus Buried Register

ABEL and Atmel-ABEL
O23.d = I1 # I2 # I3 # I4 # I5;

CUPL and Atmel-CUPL
O23.d = I1 # I2 # I3 # I4 # I5;

ABEL and Atmel-ABEL
O23.d = I1 & I2;

O23Q1.d = I3 & I4;

CUPL and Atmel-CUPL
O23.d = I1 & I2;

O23Q1.d = I3 & I4;

CMOS PLD

5

Figure 6. Both Registers Buried, I/O Pin Used as Input

Figure 7. Combinatorial Output, Q0 Register Used to Latch Data

Asynchronous Reset, Synchronous Preset and Output Enable
There is an individual asynchronous reset product term for
each register. A single synchronous preset product term is
used to preset all registers. Since the synchronous preset
requires a clock, an individual register will only preset if it is
clocked. Each I/O pin has an individual output enable prod-
uct te rm. The fo l lowing examples show how the
asynchronous reset, synchronous preset, and output
enable functions are defined:

ABEL and Atmel-ABEL
O23.ar = I1;

O23.sp = I2; “NOTE: preset is for all registers

O23.oe = I3 & I4;

O22.oe = 1;

CUPL and Atmel-CUPL
O23.ar = I1;

O23.sp = I2; /*NOTE: preset is for all registers*/

O23.oe = I3 & I4;

O22.oe = 'b'1;

ABEL and Atmel-ABEL
Declarations
O23 pin 23 istype 'reg_d';
O23Q1 node 35 istype 'reg_d';
INPUT_FUNC = O23;
REG_FUNC = O23.fb;

Equations
O23.d = INPUT_FUNC & I3;
O23.oe = 0; “disable OE to use pin for input
O23Q1.d = REG_FUNC & I4;

CUPL and Atmel-CUPL
pin 23 = O23;
pinnode [34,44] = [O23Q1,O23Q0];
O23Q0.d = O23 & I3;
O23.oe = 'b'0; /*disable OE to use pin for */

/*input */
O23Q1.d = O23Q0 & I4;

ABEL and Atmel-ABEL
O21 = I3;

O21.ck = CLK;

O23.d = O21.fb; “registered O21 output

CUPL and Atmel-CUPL
O21 = I3;

O21.ck = CLK;

O23.d = O21.fb; /* registered O21 output */

CMOS PLD6

Programmable Polarity Control
Each I/O pin has programmable polarity control. Please
refer to the application note “Using the Programmable
Polarity Control” for details on using the polarity control.

Clock Options
For the ATV750, each register has an independent clock
product term. For the ATV750B, each register can be con-
f igured to use e i ther the c lock product term or a
synchronous clock pin (see Figure 8).

Figure 8. Clock Options

The following examples show how the clock is defined for
the two different modes:

ABEL and Atmel-ABEL
SYNC_CLK pin 1;

ASYNC_CLK,EN pin 2,3;

O23.ck = SYNC_CLK; “clock assigned to pin 1,
“no clock equation,
“software selects
“synchronous clock pin
“(for ATV750B only)

O23Q1.ck = ASYNC_CLK; “clock assigned to pin 2,
“software selects clock

“product term

O22.ck = ASYNC_CLK & EN; “clock uses product term,
“software selects clock

“product term

CUPL and Atmel-CUPL
pin 1 = SYNC_CLK;

pin [2,3] = [ASYNC_CLK,EN];

O23.ckmux = SYNC_CLK; /*.ckmux extension */
/*selects synchronous */
/*clock pin */
/*(for ATV750B only) */

O23Q1.ck = SYNC_CLK; /*.ck extension selects */
/*clock product term */

O22.ck = ASYNC_CLK & EN;

D-type or T-type Registers
For the ATV750, the registers can only be configured as
D-type flip-flops. For the ATV750B, the registers can be
configured as either D-type or T-type flip-flops. The follow-
ing examples show how to configure the registers as either
D- or T-type:

ABEL and Atmel-ABEL
O13 pin 13 istype 'reg_t';

O23.d = I1 & I2;

O13.t = I1 # I2;

CUPL and Atmel-CUPL
pin 13 = O13;

O23.d = I1 & I2;

O13.t = I1 # I2;

Design Example
Figure 9 shows a watchdog timer circuit which is imple-
mented in an ATV750B. The circuit detects whether an
event occurs at a regular interval. For this design, the timer
is set to detect whether the WATCHDOGL input goes low
every 18 ms. An 8 bit counter running on a 1ms clock
counts the number of clock cycles between events. A small
state machine detects whether the event occurs within the
expected window. If the event occurs either too soon or too
late, an error is generated. If the event occurs during the
window, the counter is reset to time the next event.

The ABEL and CUPL descriptions for this design follow.

Figure 9. Design Example

CMOS PLD

7

Example ABEL Description File

module WATCH;
title ’Watchdog Timer V750B Design Example

ATMEL Corporation March 27, 1995’;

WATCH device ’P750B’;

CLK1,WATCHDOGL,PORL pin 1,2,3;
RESET,CLEARCOUNT pin 23,22 istype ’com,buffer’;
ERRPULSE,ERRPULSE2 pin 21,20 istype ’reg_d,buffer’;
WDOG,WDOG2 pin 17,16 istype ’reg_d,buffer’;
Q0,Q1,Q2,Q3,Q4,Q5,Q6,Q7 node 35,34,33,32,29,28,27,26 istype ’reg_t’;
REGA, REGB pin 18,19 istype ’reg_d,buffer’;

COUNT8 = [Q7..Q0]; "8-bit counter

H,L,Z,C,K,X,U,D = 1,0,.Z.,.C.,.K.,.X.,.U.,.D.;

"Define state values
POWERUP = ^B00;
IDLE = ^B10;
WAIT = ^B01;
ERROR = ^B11;

STATE_MACH = [REGB,REGA];

"Internal counter values used in state machine
" (these are 1 less than actual due to state machine delay)
LT18 = (COUNT8 < 16);
GT22 = (COUNT8 > 20);
MS256 = (COUNT8 == 255);

IRESET = (STATE_MACH == ERROR);

Equations

" For WATCHDOGL input, generate a 1 clock cycle wide pulse.
" Uses opposite edge of system clock from the state machine to
" insure that there are no setup or metastability problems between
" the inputs to the state machine and the state machine clock.
WDOG.d = (!WATCHDOGL & !WDOG2.fb);
WDOG2.d = (!WATCHDOGL);
WDOG.ck = !CLK1;
WDOG2.ck = !CLK1;
WDOG.ar = !PORL;
WDOG2.ar = !PORL;

" Generate 1 clock cycle wide error pulse upon entering ERROR
" state. Uses opposite clock edge from state machine to ensure
" error pulse generation is clean.
ERRPULSE.d = (IRESET & !ERRPULSE2.fb);
ERRPULSE2.d = IRESET;
ERRPULSE.ck = !CLK1;
ERRPULSE2.ck = !CLK1;
ERRPULSE.ar = !PORL;
ERRPULSE2.ar = !PORL;

CMOS PLD8

"256mS Internal Timer
" (resets on power-up reset, watchdog input, or ERROR state)
CLEARCOUNT = (!PORL # WDOG # ERRPULSE.fb);
COUNT8.ck = CLK1;
COUNT8.ar = CLEARCOUNT;
COUNT8.t = (COUNT8 + 1) $ COUNT8;

RESET = (!PORL # IRESET); "external RESET output

"State machine clocks and resets
STATE_MACH.ck = CLK1;
STATE_MACH.ar = !PORL;

state_diagram STATE_MACH;

 state POWERUP:
 if (WDOG & !MS256) then IDLE;
 else if (MS256) then ERROR;
 else POWERUP;
 state IDLE:
 if (WDOG) then ERROR;
 else if (!LT18) then WAIT;
 else IDLE;
 state WAIT:
 if (WDOG) then IDLE;
 else if (!WDOG & GT22) then ERROR;
 else WAIT;
 state ERROR:
 if (MS256) then POWERUP;
 else ERROR;

"Test normal powerup and normal watchdog input
TEST_VECTORS (
[CLK1, PORL,WATCHDOGL] -> [STATE_MACH,COUNT8,RESET])
[U, 0, X] -> [POWERUP, 0, 1];
[K, 1, 1] -> [POWERUP, 1, 0];
[K, 1, 1] -> [POWERUP, 2, 0];
[K, 1, 1] -> [POWERUP, 3, 0];
[K, 1, 0] -> [IDLE, 0, 0];
@@CONST CNT = 0;
@@REPEAT 9 {
@@CONST CNT = CNT + 1;
[K, 1, 0] -> [IDLE, CNT, 0];}
@@REPEAT 7 {
@@CONST CNT = CNT + 1;
[K, 1, 1] -> [IDLE, CNT, 0];}
[K, 1, 1] -> [WAIT, 17, 0];
[K, 1, 1] -> [WAIT, 18, 0];
[K, 1, 1] -> [WAIT, 19, 0];
[K, 1, 0] -> [IDLE, 0, 0];
[K, 1, 0] -> [IDLE, 1, 0];
[K, 1, 0] -> [IDLE, 2, 0];

"Now test various state transitions and timeouts
TEST_VECTORS (
[CLK1, PORL,WATCHDOGL] -> [STATE_MACH,COUNT8,RESET])
[U, 0, X] -> [POWERUP, 0, 1];
[K, 1, 1] -> [POWERUP, 1, 0];
[K, 1, 1] -> [POWERUP, 2, 0];
[K, 1, 1] -> [POWERUP, 3, 0];
[K, 1, 0] -> [IDLE, 0, 0];

CMOS PLD

9

@@CONST CNT = 0;
@@REPEAT 15 {
@@CONST CNT = CNT + 1;
[K, 1, 1] -> [IDLE, CNT, 0];
[K, 1, 1] -> [IDLE, 16, 0];
[K, 1, 1] -> [WAIT, 17, 0];
[K, 1, 1] -> [WAIT, 18, 0];
[K, 1, 1] -> [WAIT, 19, 0];
[K, 1, 1] -> [WAIT, 20, 0];
[K, 1, 1] -> [WAIT, 21, 0];
[K, 1, 1] -> [ERROR, 22, 1]; "Input doesn’t happen
[K, 1, 1] -> [ERROR, 0, 1];
[K, 1, 1] -> [ERROR, 1, 1];
[K, 0, X] -> [POWERUP, 0, 1]; "RESET
[K, 1, 1] -> [POWERUP, 1, 0];
[K, 1, 0] -> [IDLE, 0, 0];
[K, 1, 1] -> [IDLE, 1, 0];
[K, 1, 0] -> [ERROR, 0, 1]; "Input hits too soon
[K, 1, 1] -> [ERROR, 0, 1];
[K, 1, 1] -> [ERROR, 1, 1];
[U, 0, 1] -> [POWERUP, 0, 1];
@@REPEAT 255 { "Test POWERUP timeout
[K, 1, 1] -> [POWERUP, X, 0];
@@REPEAT 257 { "Test ERROR timeout
[K, 1, 1] -> [ERROR, X, 1];
[K, 1, 1] -> [POWERUP, X, 0];
[K, 1, 1] -> [POWERUP, X, 0];
[K, 1, 1] -> [POWERUP, X, 0];

END WATCH;

CMOS PLD10

Example CUPL Description File

Name WATCH;
Partno N/A;
Date 3/27/95;
Rev. -;
Designer PLD Expert;
Company Atmel;
Assembly -;
Location -;
Device V750B;

pin [1,2,3] = [CLK1,WATCHDOGL,PORL];
pin [23,22] = [RESET,CLEARCOUNT];
pin [21,20] = [ERRPULSE,ERRPULSE2];
pin [17,16] = [WDOG,WDOG2];
pin [18,19] = REGA, REGB;
pinnode [34,33,32,31,28,27,26,25] = [Q0..Q7];

field COUNT8 = [Q7..Q0]; /* 8-bit counter */

/* Define state values */
$define POWERUP ’b’00
$define IDLE ’b’10
$define WAIT ’b’01
$define ERROR ’b’11

field STATE_MACH = [REGB,REGA];

/* Internal counter values used in state machine */
/* (these are 1 less than actual due to state machine delay) */
LT18 = COUNT8:[0..F];
GT22 = COUNT8:[15..FF];
MS256 = COUNT8:FF;

IRESET = STATE_MACH:ERROR;

/* Equations */

/* For WATCHDOGL input, generate a 1 clock cycle wide pulse.
Uses opposite edge of system clock from the state machine to
insure that there are no setup or metastability problems between
the inputs to the state machine and the state machine clock. */
WDOG.d = (!WATCHDOGL & !WDOG2);
WDOG2.d = (!WATCHDOGL);
WDOG.ck = !CLK1;
WDOG2.ck = !CLK1;
WDOG.ar = !PORL;
WDOG2.ar = !PORL;

/* Generate 1 clock cycle wide error pulse upon entering ERROR
state. Uses opposite clock edge from state machine to ensure
error pulse generation is clean. */
ERRPULSE.d = (IRESET & !ERRPULSE2);
ERRPULSE2.d = IRESET;
ERRPULSE.ck = !CLK1;
ERRPULSE2.ck = !CLK1;
ERRPULSE.ar = !PORL;
ERRPULSE2.ar = !PORL;

CMOS PLD

11

/* 256mS Internal Timer
(resets on power-up reset, watchdog input, or ERROR state) */
CLEARCOUNT = (!PORL # WDOG # ERRPULSE);
COUNT8.ck = CLK1;
COUNT8.ar = CLEARCOUNT;
Q0.t = ’b’1;
Q1.t = Q0;
Q2.t = Q1 & Q0;
Q3.t = Q2 & Q1 & Q0;
Q4.t = Q3 & Q2 & Q1 & Q0;
Q5.t = Q4 & Q3 & Q2 & Q1 & Q0;
Q6.t = Q5 & Q4 & Q3 & Q2 & Q1 & Q0;
Q7.t = Q6 & Q5 & Q4 & Q3 & Q2 & Q1 & Q0;

RESET = (!PORL # IRESET); /* external RESET output */

/* State machine clocks and resets */
STATE_MACH.ck = CLK1;
STATE_MACH.ar = !PORL;

sequence STATE_MACH {

 present POWERUP
 if (WDOG & !MS256) next IDLE;
 if (MS256) next ERROR;
 default next POWERUP;
 present IDLE
 if (WDOG) next ERROR;
 if (!WDOG & !LT18) next WAIT;
 default next IDLE;
 present WAIT
 if (WDOG) next IDLE;
 if (!WDOG & GT22) next ERROR;
 default next WAIT;
 present ERROR
 if (MS256) next POWERUP;
 default next ERROR;
}

CUPL Simulation Input File (WATCH.SI)
Name WATCH;
Partno N/A;
Date 3/27/95;
Rev. -;
Designer PLD Expert;
Company Atmel;
Assembly -;
Location -;
Device V750B;

ORDER: CLK1,%1,PORL,%1,WATCHDOGL,%2,STATE_MACH,%1,COUNT8,%1,RESET;
BASE: decimal;
VECTORS:
$MSG “Test normal powerup and normal watchdog input”;
1 0 X “0" ”0" H
K 1 1 “0" ”1" L
K 1 1 “0" ”2" L
K 1 1 “0" ”3" L
K 1 0 “2" ”0" L
$REPEAT 9;
K 1 0 “2" ”*" L

CMOS PLD12

$REPEAT 7;
K 1 1 “2" ”*" L
K 1 1 “1" ”17" L
K 1 1 “1" ”18" L
K 1 1 “1" ”19" L
K 1 0 “2" ”0" L
K 1 0 “2" ”1" L
K 1 0 “2" ”2" L

$MSG “Test various state transitions and timeouts”;
1 0 X “0" ”0" H
K 1 1 “0" ”1" L
K 1 1 “0" ”2" L
K 1 1 “0" ”3" L
K 1 0 “2" ”0" L
$REPEAT 15;
K 1 1 “2" ”*" L
K 1 1 “2" ”16" L
K 1 1 “1" ”17" L
K 1 1 “1" ”18" L
K 1 1 “1" ”19" L
K 1 1 “1" ”20" L
K 1 1 “1" ”21" L
K 1 1 “3" ”22" H /*Input doesn't happen*/
K 1 1 “3" ”0" H
K 1 1 “3" ”1" H
K 0 X “0" ”0" H /*RESET*/
K 1 1 “0" ”1" L
K 1 0 “2" ”0" L
K 1 1 “2" ”1" L
K 1 0 “3" ”0" H /*Input hits too soon*/
K 1 1 “3" ”0" H
K 1 1 “3" ”1" H
1 0 1 “0" ”0" H
$REPEAT 255; /*Test POWERUP timeout*/
K 1 1 “0" ”*" L
$REPEAT 257; /*Test ERROR timeout*/
K 1 1 “3" ”*" H
K 1 1 “0" ”*" L
K 1 1 “0" ”*" L
K 1 1 “0" ”*" L

BDTIC www.bdtic.com/Semiconductor

	Section Head X - Introduction
	Section Head - Device Names and Pin and Node Assignments
	Section Head - Pin and Node Feedbacks
	Section Head X - Macrocell Configurations
	Section Head X - Asynchronous Reset, Synchronous Preset and Output Enable
	Section Head New Page - Programmable Polarity Control
	Section Head - Clock Options
	Section Head - D-type or T-type Registers
	Section Head - Design Example
	Section Head X New Page - Example ABEL Description File
	Section Head New Page - Example CUPL Description File

