

Precision Picoampere Input Current Quad Operational Amplifier

OP497

FEATURES

Low Offset Voltage: 50 µV max

Low Offset Voltage Drift: 0.5 μV/°C max

Very Low Bias Current 25°C: 100 pA max

-55°C to +125°C: 450 pA max

Very High Open-Loop Gain: 2000 V/mV min Low Supply Current (per Amplifier): 625 μA max

Operates from ±2 V to ±20 V Supplies High Common-Mode Rejection: 120 dB min

APPLICATIONS

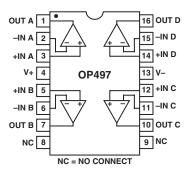
Strain Gage and Bridge Amplifiers
High Stability Thermocouple Amplifiers
Instrumentation Amplifiers
Photo-Current Monitors
High Gain Linearity Amplifiers
Long-Term Integrators/Filters
Sample-and-Hold Amplifiers
Peak Detectors
Logarithmic Amplifiers
Battery-Powered Systems

GENERAL DESCRIPTION

The OP497 is a quad op amp with precision performance in the space-saving, industry standard 16-lead SOIC package. Its combination of exceptional precision with low power and extremely low input bias current makes the quad OP497 useful in a wide variety of applications.

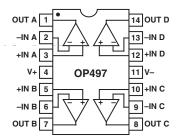
Precision performance of the OP497 includes very low offset, under 50 μV , and low drift, below 0.5 $\mu V/^{\circ}C$. Open-loop gain exceeds 2000 V/mV ensuring high linearity in every application. Errors due to common-mode signals are eliminated by the OP497's common-mode rejection of over 120 dB. The OP497's power supply rejection of over 120 dB minimizes offset voltage changes experienced in battery-powered systems. Supply current of the OP497 is under 625 μA per amplifier, and it can operate with supply voltages as low as $\pm 2~V$.

The OP497 utilizes a superbeta input stage with bias current cancellation to maintain picoamp bias currents at all temperatures. This is in contrast to FET input op amps whose bias currents start in the picoamp range at 25°C, but double for every 10°C rise in temperature, to reach the nanoamp range above 85°C. Input bias current of the OP497 is under 100 pA at 25°C and is under 450 pA over the military temperature range.


Combining precision, low power, and low bias current, the OP497 is ideal for a number of applications, including instrumentation amplifiers, log amplifiers, photo-diode preamplifiers, and long-term integrators. For a single device, see the OP97; for a dual device, see the OP297.

REV. D

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.


PIN CONNECTIONS


16-Lead Wide Body SOIC (S-Suffix)

14-Lead Plastic Dip (P-Suffix) 4-Lead Ceramic Dip

14-Lead Ceramic Dip (Y-Suffix)

Input Bias, Offset Current vs. Temperature

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 www.analog.com
Fax: 781/326-8703 © Analog Devices, Inc., 2002

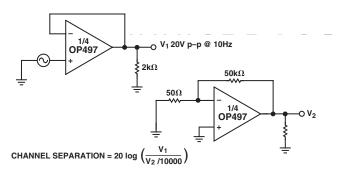
$\begin{cases} OP497-SPECIFICATIONS & (@V_S=15\ V,\ T_A=25\ ^{\circ}C,\ unless\ otherwise\ noted.) \end{cases}$

				Α.			Е			CIC		Τ
Parameter	Symbol	Condition	Min	A Typ	Max	Min	F Typ	Max	Min	C/G Typ	Max	Unit
INPUT CHARACTERISTIC	CS											
Offset Voltage	Vos			20	50		40	75		80	150	μV
		-40°C ≤ +85°C					70	150		120	250	
A		–55°C ≤ +125°C		40	100		80	150		140	300	
Average Input Offset	TOU	T. T.		0.0	0.5		0.4	1.0		0.6	1.5	
Voltage Drift	TCV _{OS}	$T_{MIN} - T_{MAX}$		0.2	0.5		0.4	1.0		0.6	1.5	μV/°C
Long-Term Input Offset Voltage Stability				0.1			0.1			0.1		μV/Mo
•	_	V - 0 V			100			150			200	'
Input Bias Current	I_{B}	$V_{CM} = 0 \text{ V} \\ -40^{\circ} \le T_{A} \le +85^{\circ}\text{C}$		30	100		40 60	150 200		60 80	200 300	pA
		$-55^{\circ} \le T_{A} \le +125^{\circ}C$		80	450		110	600		130	600	
Average Input Bias		33 = 1A = 1123 G		00	150		110	000		150	000	
Current Drift	TC_{IB}	$-40^{\circ} \le T_{A} \le +85^{\circ}C$					0.3			0.3		
	- 15	$-55^{\circ} \le T_{A}^{\circ} \le +125^{\circ}C$		0.5			0.7			0.7		pA/°C
Input Offset Current	Ios	$V_{CM} = OV$		15	100		30	150		50	200	pA
		$-40^{\circ} \le T_A \le +85^{\circ}C$					50	200		80	300	
		$-55^{\circ} \le T_{A} \le +125^{\circ}C$		35	400		60	600		90	600	
Average Input Offset												
Current Drift	$T_{\rm C}I_{\rm OS}$			0.2			0.3			0.4		pA/°C
Input Voltage Range ¹	IVR	T T	+ 13		_	+13		-	+13		_	V
Common Mada Daiastian	CMD	$T_{MIN} - T_{MAX}$		+13.)	+13	+13.)	+13	+13.)	dP.
Common-Mode Rejection	CMR	$V_{CM} = \pm 13 \text{ V}$	120	140		1	135		114	135 120		dB
Large Signal Voltage Gain	Α	$\begin{vmatrix} T_{MIN} - T_{MAX} \\ V_{O} = \pm 10 \text{ V}, \end{vmatrix}$	114	130		108	120		108	120		
Large Signal Voltage Gain	A_{VO}	$R_{L} = 2 k\Omega$	2000	6000		1500	4000		1200	4000		V/mV
		$-40^{\circ} \le T_{A} \le +85^{\circ}C$	2000	0000		800	2000		800	2000		V / 111 V
		$-55^{\circ} \le T_{A} \le +125^{\circ}C$	1200	4000		1	3000		800	3000		
Input Resistance		A										
Differential Mode	$ ule{R_{ m IN}}$		_	30			30			30		$M\Omega$
Input Resistance	·											
Common Mode	R _{INCM}			500			500			500		GΩ
Input Capacitance	C_{IN}			3			3			3		pF
OUTPUT CHARACTERIS	ΓICS											
Output Voltage Swing	$ V_0 $	$R_L = 2 k\Omega$	±13	±13.	7	±13	±13.	7	±13	±13.	7V	
		$R_L = 10 \text{ k}\Omega$	± 13	± 14		±13	± 14		±13	± 14		
		$T_{MIN} - T_{MAX}$			_			_			_	
01 . 01	_	$R_L = 10 \text{ k}\Omega$	±13	±13.	5	±13	±13.	5	±13	±13.	5	
Short Circuit	I_{SC}			±25			±25			±25		mA
POWER SUPPLY												
Power Supply	PSRR	$V_s = \pm 2 \text{ V to } \pm 20 \text{ V}$	120	140		114	135		114	135		dB
Rejection Ratio		$V_s = \pm 2.5 \text{ V to } \pm 20 \text{ V}$	1	120		100	100		100	100		
Supply Current	т	$T_{MIN} - T_{MAX}$ No Load	114	525	625	108	120 525	625	108	120 525	625	
(per Amplifier)	I_{SY}	T _{MIN} – T _{MAX}		580	625 750		580	750	580	750	625	μΑ
Supply Voltage Range	$V_{\rm S}$	Operating Range	±2	300	±20	±2	300	±20	±2	150	±20	V
Supply Voltage Range	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	T _{MIN} - T _{MAX}	± 2.5		± 20	± 2.5		± 20	± 2.5		± 20	· •
DYNAMIC PERFORMANO	\	- MIN - MAX										
Slew Rate	SR		0.05	0.15		0.05	0.15		0.05	0.15		V/µS
Gain Bandwidth Product	GBW		0.05	500		0.05	500		0.05	500		kHz
Channel Separation	CS	$V_{\rm O} = 20 \ V_{\rm p-p}$		300			300			300		KIIZ
Chamier Separation		fo = 10 Hz		150			150			150		dB
NOISE PERFORMANCE												
Voltage Noise	e	0.1 Hz to 10 Hz		0.3			0.3			0.3		μV/p-p
Voltage Noise Density	$e_{n p-p}$ $e_{n} = 10 \text{ Hz}$	0.1 112 to 10 112		17			17			17		nV/\sqrt{Hz}
. Stuge Troube Density	$e_n = 1 \text{ kHz}$			15			15			15		nV/\sqrt{Hz}
Current Noise Density	$i_n = 10 \text{ Hz}$			20			20			20		fA/\sqrt{Hz}
	1 1 225	<u> </u>				<u> </u>	-					

¹Guaranteed by CMR Test.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS¹


Supply Voltage	$\dots\dots\dots\pm20~V$
Input Voltage ²	20 V
Differential Input Voltage ²	
Output Short-Circuit Duration	
Storage Temperature Range	
Y Package	\dots -65°C to +175°C
P, S Package	\dots -65°C to +150°C
Operating Temperature Range	
OP497A, C (Y)	55°C to +125°C
OP497F, G (Y)	\dots -40°C to +85°C
OP497F, G (P, S)	\dots -40°C to +85°C
Junction Temperature	
Y Package	65°C to +175°C
P, S Package	65°C to +150°C
Lead Temperature Range (Soldering 60	sec) 300°C

Package Type	θ_{JA}^{3}	$\theta_{ m JC}$	Unit
14-Pin Cerdip (Y)	94	10	°C/W °C/W
14-Pin Plastic DIP (P) 16-Pin SOIC (S)	76 92	33 23	°C/W

NOTES

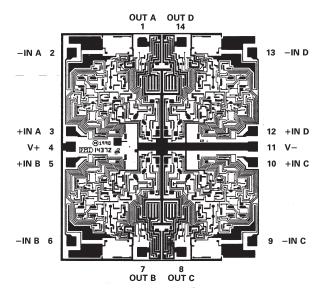
¹Absolute Maximum Ratings apply to both DICE and packaged parts, unless otherwise noted.

³HIA is specified for worst-case mounting conditions, i.e., θ_{JA} is specified for device in socket for cerdip, P-DIP packages; θ_{JA} is specified for device soldered to printed circuit board for SOIC package.

Channel Separation Test Circuit

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
OP497AY*	–55°C to +125°C	14-Lead Cerdip	Q-14
OP497CY*	−55°C to +125°C	14-Lead Cerdip	Q-14
OP497FP	−40°C to +85°C	14-Lead Plastic DIP	N-14
OP497FS	−40°C to +85°C	16-Lead SOIC	R-16
OP497GP	−40°C to +85°C	14-Lead Plastic DIP	N-14
OP497GS	−40°C to +85°C	16-Lead SOIC	R-16


^{*}Not for new design; obsolete April 2002.

For a military processed devices, please refer to the Standard Microcircuit Drawing (SMD) available at www.dscc.dla.mil/programs.milspec./default.asp.

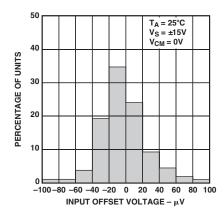
SMD Part Number	ADI Part Number
5962–9452101M2A*	OP497BRC
5962–9452101MCA	OP497BY

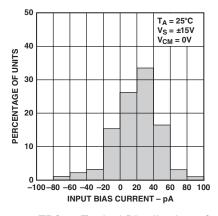
^{*}Not for new designs; obsolete April 2002.

DICE CHARACTERISTICS

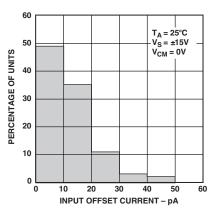
Die Size 0.112 × 0.129 inch, 14,448 sq. mils

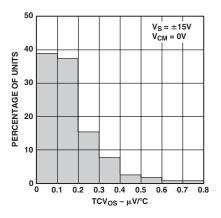
CAUTION

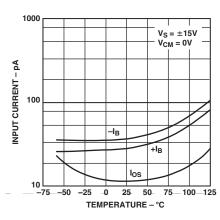

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP497 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

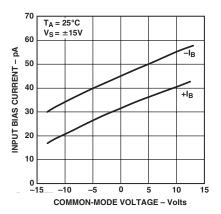

REV. D -3-

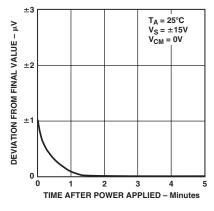
 $^{^2}For$ supply voltages less than ± 20 V, the absolute maximum input voltage is equal to the supply voltage.

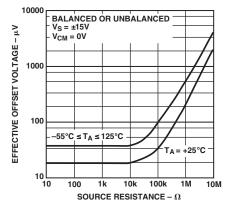

OP497—Typical Performance Characteristics (25° C, Vs = 15 V, unless otherwise noted.)

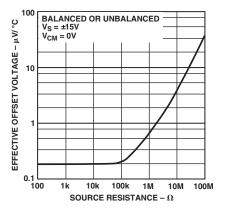

TPC 1. Typical Distribution of Input Offset Voltage


TPC 2. Typical Distribution of Input Bias Current

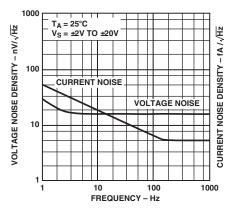

TPC 3. Typical Distribution of Input Offset Current


 $TPC \ 4$. Typical Distribution of TCV_{OS}

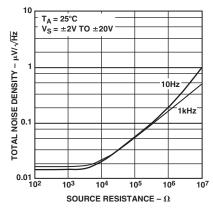

TPC 5. Input Bias, Offset Current vs. Temperature


TPC 6. Input Bias Current vs. Common-Mode Voltage

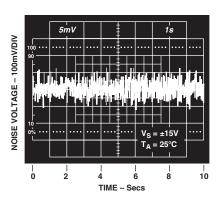
TPC 7. Input Offset Voltage Warm-Up Drift

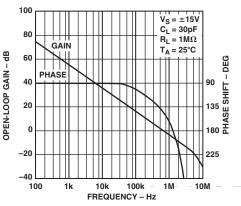


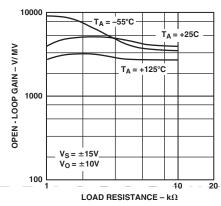
TPC 8. Effective Offset Voltage vs. Source Resistance

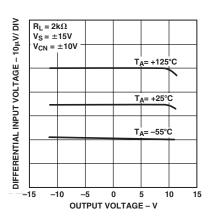


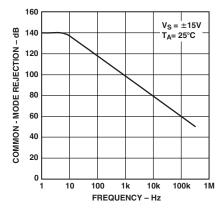
TPC 9. Effective TCV_{OS} vs. Source Resistance

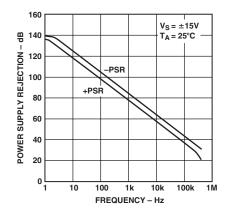

-4- REV. D

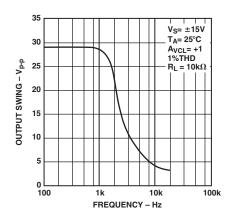

TPC 10. Voltage Noise Density vs. Frequency


TPC 11. Total Noise Density vs. Source Resistance

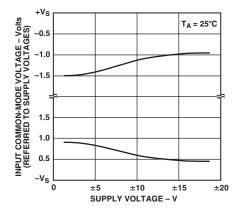

TPC 12. 0.1 Hz to 10 Hz Noise Voltage


TPC 13. Open-Loop Gain, Phase vs. Frequency

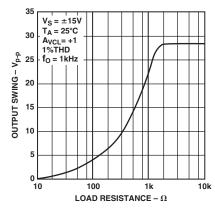

TPC 14. Open-Loop Gain vs. Load Resistance


TPC 15. Open-Loop Gain Linearity

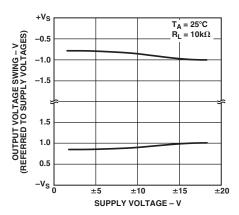
TPC 16. Common-Mode Rejection vs. Frequency

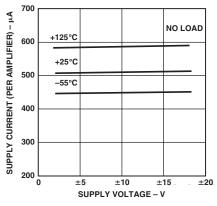


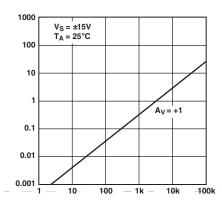
TPC 17. Power Supply Rejection vs. Frequency

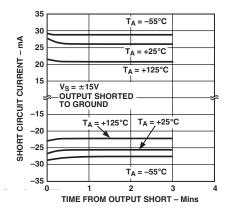


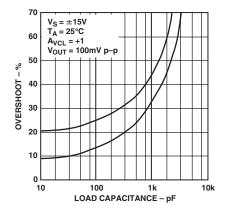
TPC 18. Maximum Output Swing vs. Frequency


REV. D -5-


TPC 19. Input Common-Mode Voltage Range vs. Supply Voltage


TPC 20. Maximum Output Swing vs. Load Resistance


TPC 21. Output Voltage Swing vs. Supply Voltage


TPC 22. Supply Current (per Amplifier) vs. Supply Voltage


TPC 23. Closed-Loop Output Impedance vs. Frequency

TPC 24. Short-Circuit Current vs. Time Temperature

TPC 25. Small-Signal Overshoot vs. Capacitance Load

TPC 26. Simplified Schematic Showing One Amplifier

-6- REV. D

APPLICATIONS INFORMATION

Extremely low bias current over the full military temperature range makes the OP497 attractive for use in sample-and-hold amplifiers, peak detectors, and log amplifiers that must operate over a wide temperature range. Balancing input resistances is not necessary with the OP497. Offset voltage and TCV_{OS} are degraded only minimally by high source resistance, even when unbalanced.

The input pins of the OP497 are protected against large differential voltage by back-to-back diodes and current-limiting resistors. Common-mode voltages at the inputs are not restricted, and may vary over the full range of the supply voltages used.

The OP497 requires very little operating headroom about the supply rails, and is specified for operation with supplies as low as ± 2 V. Typically, the common-mode range extends to within 1 V of either rail. The output typically swings to within 1 V of the rails when using a 10 k Ω load.

AC PERFORMANCE

The OP497's ac characteristics are highly stable over its full operating temperature range. Unity-gain small-signal response is shown in Figure 1. Extremely tolerant of capacitive loading on the output, the OP497 displays excellent response even with 1000 pF loads (Figure 2).

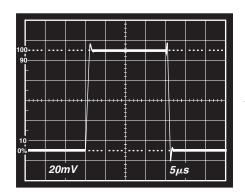


Figure 1. Small-Signal Transient Response $(C_{LOAD} = 100 \text{ pF}, A_{VCL} = 1)$

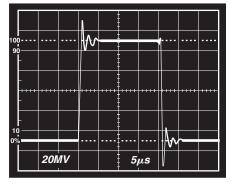


Figure 2. Small-Signal Transient Response $(C_{LOAD} = 1000 \text{ pF}, A_{VCL} = 1)$

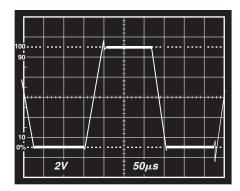


Figure 3. Large-Signal Transient Response ($A_{VCL} = 1$)

GUARDING AND SHIELDING

To maintain the extremely high input impedances of the OP497, care must be taken in circuit board layout and manufacturing. Board surfaces must be kept scrupulously clean and free of moisture. Conformal coating is recommended to provide a humidity barrier. Even a clean PC board can have 100 pA of leakage currents between adjacent traces, so guard rings should be used around the inputs. Guard traces are operated at a voltage close to that on the inputs, as shown in Figure 4, so that leakage currents become minimal. In noninverting applications, the guard ring should be connected to the common-mode voltage at the inverting input. In inverting applications, both inputs remain at ground, so the guard trace should be grounded. Guard traces should be on both sides of the circuit board.

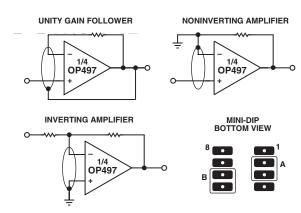


Figure 4. Guard Ring Layout and Connections

REV. D -7-

OPEN-LOOP GAIN LINEARITY

The OP497 has both an extremely high gain of 2000 V/mv minimum and constant gain linearity. This enhances the precision of the OP497 and provides for very high accuracy in high closed-loop gain applications. Figure 5 illustrates the typical open-loop gain linearity of the OP 497 over the military temperature range.

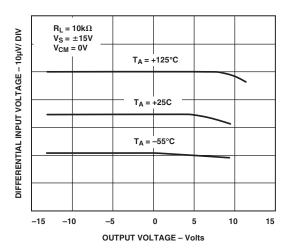


Figure 5. Open-Loop Linearity of the OP497

APPLICATIONS

Precision Absolute Value Amplifier

The circuit of Figure 6 is a precision absolute value amplifier with an input impedance of 30 M Ω . The high gain and low TCV_{OS} of the OP497 ensure accurate operation with microvolt input signals. In this circuit, the input always appears as a common-mode signal to the op amps. The CMR of the OP497 exceeds 120 dB, yielding an error of less than 2 ppm.

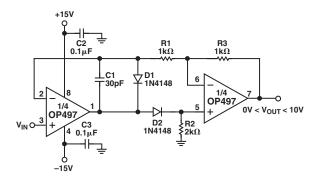


Figure 6. Precision Absolute Value Amplifier

PRECISION CURRENT PUMP

Maximum output current of the precision current pump shown in Figure 7 is ± 10 mA. Voltage compliance is ± 10 V with ± 15 V supplies. Output impedance of the current transmitter exceeds 3 M Ω with linearity better than 16 bits.

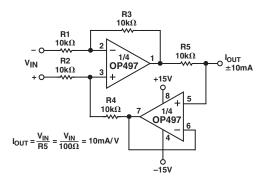


Figure 7. Precision Current Pump

PRECISION POSITIVE PEAK DETECTOR

In Figure 8, the CH must be of polystyrene, Teflon*, or polyethylene to minimize dielectric absorption and leakage. The droop rate is determined by the size of CH and the bias current of the OP497.

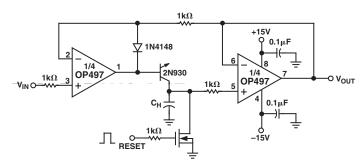


Figure 8. Precision Positive Peak Detector

SIMPLE BRIDGE CONDITIONING AMPLIFIER

Figure 9 shows a simple bridge conditioning amplifier using the OP497. The transfer function is:

$$V_{OUT} = V_{REF} \left(\frac{\Delta R}{R + \Delta R} \right) \frac{R_F}{R}$$

The REF43 provides an accurate and stable reference voltage for the bridge. To maintain the highest circuit accuracy, $R_{\rm F}$ should be 0.1% or better with a low temperature coefficient.

–8– REV. D

^{*}Teflon is a registered trademark of the Dupont Company.

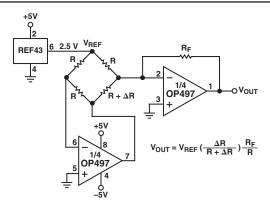


Figure 9. A Simple Bridge Conditioning Amplifier Using the OP497

NONLINEAR CIRCUITS

Due to its low input bias currents, the OP497 is an ideal log amplifier in nonlinear circuits such as the square and square root circuits shown in Figures 10 and 11. Using the squaring circuit of Figure 10 as an example, the analysis begins by writing a voltage-loop equation across transistors Q_1 , Q_2 , Q_3 , and Q_4 .

$$V_{T1} In \left(\frac{I_{IN}}{I_{S1}}\right) + V_{T2} In \left(\frac{I_{IN}}{I_{S2}}\right) = V_{T3} In \left(I\frac{I_O}{I_{S3}}\right) + V_{T4} In \left(\frac{I_{REF}}{I_{S4}}\right)$$

All the transistors of the MAT04 are precisely matched and at the same temperature, so the I_S and V_T terms cancel, giving:

$$2InI_{IN} = InI_O + InI_{REF} = In(I_O \times I_{REF})$$

Exponentiating both sides of thick equation leads to:

$$I_O = \frac{\left(I_{IN}\right)^2}{I_{REF}}$$

Op amp A_2 forms a current-to-voltage converter which gives $V_{\rm OUT}$ = $R2 \times I_{\rm O}$. Substituting ($V_{\rm IN}/R1$) for $I_{\rm IN}$ and the above equation for $I_{\rm O}$, yields:

$$V_{OUT} = \left(\frac{R2}{I_{REF}}\right) \left(\frac{V_{IN}}{R1}\right)^2$$

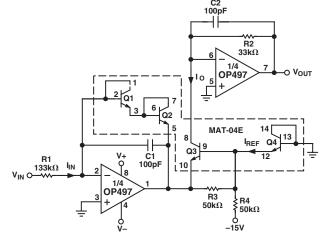


Figure 10. Squaring Amplifier

A similar analysis made for the square-root circuit of Figure 11 leads to its transfer function:

$$V_{OUT} = R2\sqrt{\frac{(V_{IN})(I_{REF})}{R1}}$$

In these circuits, I_{REF} is a function of the negative power supply. To maintain accuracy, the negative supply should be well regulated. For applications where very high accuracy is required, a voltage reference may be used to set I_{REF} . An important consideration for the squaring circuit is that a sufficiently large input voltage can force the output beyond the operating range of the output op amp. Resistor R4 can be changed to scale I_{REF} , or R1 and R2 can be varied to keep the output voltage within the usable range.

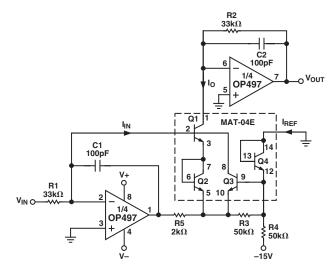


Figure 11. Square-Root Amplifier

Unadjusted accuracy of the square-root circuit is better than 0.1% over an input voltage range of 100 mV to 10 V. For a similar input voltage range, the accuracy of the squaring circuit is better than 0.5%.

REV. D –9–

OP497 SPICE MACRO-MODEL

Figure 12 and Table I show the node and net list for a SPICE macro-model of the OP497. The model is a simplified version of the actual device and simulates important dc parameters such as $V_{\rm OS}$, $I_{\rm OS}$, $I_{\rm B}$, $A_{\rm VO}$, CMR, $V_{\rm O}$, and $I_{\rm SY}$. AC parameters such as slew rate, gain and phase response, and CMR change with frequency are also simulated by the model.

The model uses typical parameters for the OP497. The poles and zeros in the model were determined from the actual open and closed-loop gain and phase response of the OP497. In this way, the model presents an accurate ac representation of the actual device. The model assumes an ambient temperature of 25°C.

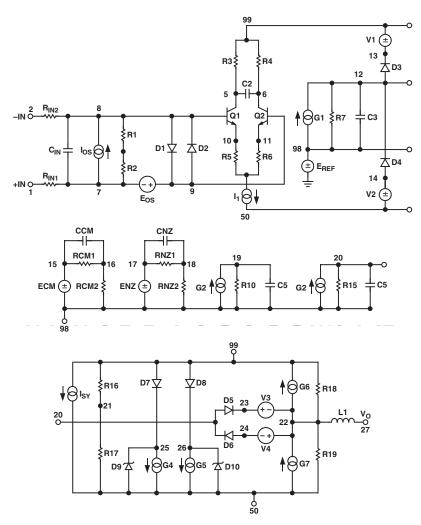
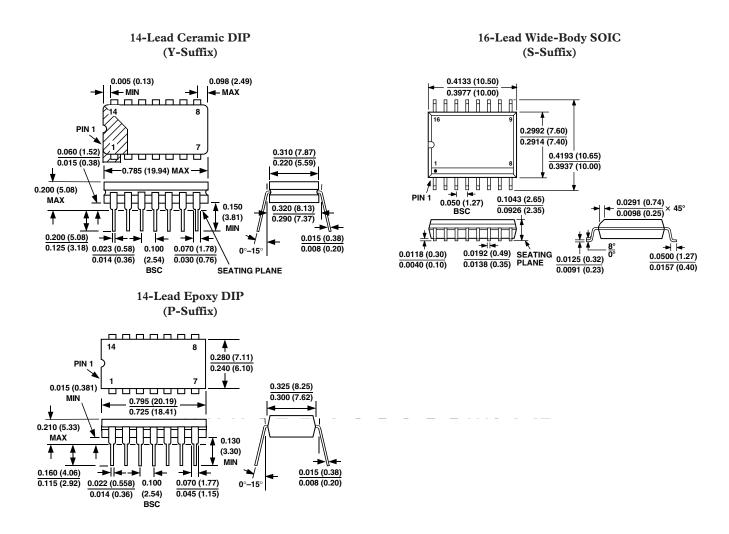


Figure 12. OP497 Macro Model

–10– REV. D


Table I. OP497 SPICE Net-List

Second S	* Nod	e assig	nments	3							* NEG	ATIV	E ZER	O AT 1.8	MHz
Note	*			nor	ninverti	ing in	put				*				
*	*				inver	ting is	iput				E1	17	98	12 21	1E6
**	*					posit	ive su	apply			R8	17	18	1E6	
**	*					_	neg	ative supply	y		C4	17	18	-88.419E	-15
**UBCKT OP497 1 2 99 50 27 **POLE AT 6 MHz ** **INPUT STAGE AND POLE AT 6 MHz ** **INPUT STAGE AND POLE AT 6 MHz ** **INPUT STAGE AND POLE AT 6 MHz ** ** ** ** ** ** ** ** ** **	*								•		R9	18	98	1	
* * INPUT STAGE AND POLE AT 6 MHz	*							<u>.</u>			*				
* INPUT STAGE AND POLE AT 6 MHZ * RIN 1	*SUB	CKT (OP497	1	2	99	50	27			* POL	ЕАТ	6 MHz	Z	
**	*										*				
RINI 1 7 2500	* INP	UT ST	ΓAGE	AND	POLE	E AT	6 MI	Hz			G2	98	19	18 21	1E-6
RIN 2	*										R15	20	98	1E6	
RIN 2	RIN1	1	7	250	00						C8	20	98	26.526E-	15
R1	RIN2	2													
R2											* POL	ЕАТ	1.8 MI	Hz	
R3													110 111		
R4											G6	98	20	19 21	1E-6
CIN 7 8 3E-12															12 0
C2 5															15
The content of the						12						20	90	00.419L-	1)
TOS 7 8 15E-12						12					* OUT	ידו זמי	STAG	E	
FOS 9 7 POLY(1) 16 21 40E-6 1 R16 99 21 160 k Q1 5 8 10 QX R17 21 50 160 k Q2 6 9 11 QX ISY 99 50 331E-6 R5 10 4 25.374 V3 23 22 1.9 R6 11 4 25.374 D5 20 23 DX D1 8 9 DX V4 22 24 1.9 D2 9 8 DX D6 24 20 DX * EREF98 0 21 0 1 G4 25 50 20 22 5E-3 * EREF98 0 21 0 1 G4 25 50 20 22 5E-3 * ** ** ** ** ** ** ** ** ** ** ** **												101	SIAG	L	
R17						16	21	10E 6		1		00	21	160 h	
Name		-				10	21	40E-0		1					
R5															
R6	-														
D1															
D2															
**															
EREF 98 0 21 0 1		9	8	DX											
* GAIN STAGE AND DOMINANT POLE AT 0.11 Hz * GAIN STAGE AND DOMINANT POLE AT 0.11 Hz * B8 99 26 DX * G5 26 50 22 20 5E-3 R7 1 98 2.1703E9 D10 50 26 DY C3 2 98 666.67E-12 G6 22 99 99 20 5E-3 G1 98 12 5 R18 99 22 200 V1 99 13 1.275 G7 50 22 20 50 5E-3 V2 11 9 1.275 R19 22 50 200 D3 12 13 DX L1 22 27 0.1E-6 D4 14 12 DX * MODELS USED * COMMON-MODE GAIN NETWORK WITH ZERO AT 50 MHz * MODEL QX NPN (BF = 1.25E6) RCM1 15 16 3.18E-9 RCM2 16 98 1															
*GAIN STAGE AND DOMINANT POLE AT 0.11 Hz *GAIN STAGE AND DOMINANT POLE AT 0.11 Hz *GS		98	0	21	0	1									5E-3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												50		DY	
R7 1 98 2.1703E9 C3 2 98 666.67E-12 G6 22 99 99 20 5E-3 G1 98 12 5 R18 99 22 200 V1 99 13 1.275 G7 50 22 20 50 5E-3 V2 11 9 1.275 R19 22 50 200 D3 12 13 DX L1 22 27 0.1E-6 D4 14 12 DX * *COMMON-MODE GAIN NETWORK WITH ZERO AT 50 MHz * RCM1 15 16 1E6 CCM 15 16 3.18E-9 RCM2 16 98 1 * ** ** ** ** ** ** ** ** *		N STA	GE AN	ND I	OMIN	NAN	POI	LE AT 0.11	l Hz			99		DX	
C3 2 98 666.67E-12 G6 22 99 99 20 5E-3 G1 98 12 5 R18 99 22 200 V1 99 13 1.275 C2 11 9 1.275 C3 12 13 DX C4 14 12 DX C5 15 16 1E6 C6 12 99 99 20 5E-3 C6 22 99 99 20 5E-3 C7 50 22 20 50 5E-3 C7 50 22 20 50 5E-3 C8 19 22 50 200 C8 15 16 1E6 C6 1E6 C6 1E6 C7 50 22 20 50 5E-3 C8 19 22 50 200 C8 15 16 25 0.1E-6 C8 15 16 1E6 C9 16 20 20 50 5E-3 C9 10 20 20 50 5E-3 C9	*										G5	26	50	22 20	5E-3
G1 98 12 5 V1 99 13 1.275 V2 11 9 1.275 D3 12 13 DX L1 22 27 0.1E-6 D4 14 12 DX * **COMMON-MODE GAIN NETWORK WITH ZERO AT 50 MHz * **COMMON-MODE GAIN NETWORK WITH ZERO AT 50 MHz * **MODELS USED **MODEL QX NPN (BF = 1.25E6) .MODEL DX (IS = 1E-15) .MODEL DZ D(IS = 1E-15 BV = 50) RCM2 16 98 1	R7	1	98	2.1	703E9						D10	50	26	DY	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C3	2	98	666	6.67E-1	12					G6	22	99	99 20	5E-3
V2 11 9 1.275 D3 12 13 DX L1 22 27 0.1E-6 D4 14 12 DX * ** MODELS USED **COMMON-MODE GAIN NETWORK WITH ZERO AT 50 MHz * ** MODEL QX NPN (BF = 1.25E6) .MODEL DX (IS = 1E-15) .MODEL DZ D(IS = 1E-15 BV = 50) RCM2 16 98 1 RENDS OP497	G1	98	12	5							R18	99	22	200	
D3 12 13 DX L1 22 27 0.1E-6 D4 14 12 DX * *MODELS USED *COMMON-MODE GAIN NETWORK WITH ZERO AT 50 MHz * **COMMON-MODE GAIN NETWORK WITH ZERO AT 50 MHz * *MODEL QX NPN (BF = 1.25E6) .MODEL DX (IS = 1E-15) .MODEL DZ D(IS = 1E-15 BV = 50) RCM2 16 98 1 .ENDS OP497	V1	99	13	1.2	75						G7	50	22	20 50	5E-3
D4 14 12 DX	V2	11	9	1.2	75						R19	22	50	200	
* * MODELS USED * MODELS USED * MODEL QX NPN (BF = 1.25E6) * MODEL DX (IS = 1E-15) * MODEL DX DIS = 1E-15 BV = 50) * MODEL DX DIS = 1E-15 BV = 50) * MODEL DX DIS = 1E-15 BV = 50)	D3	12	13	DX							L1	22	27	0.1E-6	
*COMMON-MODE GAIN NETWORK WITH ZERO AT 50 MHz * .MODEL QX NPN (BF = 1.25E6) .MODEL DX (IS = 1E-15) .MODEL DX (IS = 1E-15) .MODEL DZ D(IS = 1E-15 BV = 50) .ENDS OP497	D4	14	12	DX							*				
* ** ** ** ** ** ** ** ** **	*										* MOI	DELS	USED)	
RCM1 15 16 1E6 .MODEL DX (IS = 1E-15) CCM 15 16 3.18E-9 .MODEL DZ D(IS = 1E-15 BV = 50) RCM2 16 98 1 .ENDS OP497	*COMMON-MODE GAIN NETWORK WITH ZERO AT 50 MHz						*								
RCM1 15 16 1E6 .MODEL DX (IS = 1E-15) CCM 15 16 3.18E-9 .MODEL DZ D(IS = 1E-15 BV = 50) RCM2 16 98 1 .ENDS OP497	*										.MODI	EL Q	X NPN	I(BF = 1.2)	5E6)
CCM 15 16 3.18E-9 .MODEL DZ D(IS = 1E-15 BV = 50) RCM2 16 98 1 .ENDS OP497	RCM1	1 15	16	1E6	5										•
RCM2 16 98 1 .ENDS OP497															V = 50
	RCM2	2 16	98												• /
					21	177.	83E-3	3							

REV. D -11-

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

Revision History

Location	Page
11/01—Data Sheet changed from REV. C to REV. D.	
Edits to PIN CONNECTIONS headings	1
Deleted WAFER TEST LIMITS	3
Edits to ORDERING GUIDE	3
Edits to ABSOLUTE MAXIMUM RATINGS	3
Edits to OUTLINE DIMENSIONS	12