
a

ADSP-21368 SHARC® Processor
Hardware Reference

 Includes ADSP-21367, ADSP-21369,
ADSP-21371, ADSP-21375

Revision 1.0, September 2006

Part Number
82-000100-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2006 Analog Devices, Inc., ALL RIGHTS RESERVED. This
document may not be reproduced in any form without prior,
express written consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product
without prior notice. Information furnished by Analog Devices is
believed to be accurate and reliable. However, no responsibility is
assumed by Analog Devices for its use; nor for any infringement of
patents or other rights of third parties which may result from its
use. No license is granted by implication or otherwise under the
patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo and icon bar, Blackfin, EZ-KIT Lite,
SHARC, the SHARC logo, TigerSHARC, and VisualDSP++ are
registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks
of their respective owners.

ADSP-21368 SHARC Processor Hardware Reference iii

CONTENTS

PREFACE

Purpose of This Manual ... xxxi

Intended Audience ... xxxi

Manual Contents .. xxxii

What’s New in This Manual ... xxxiv

Technical or Customer Support ... xxxv

Supported Processors .. xxxvi

Product Information .. xxxvi

MyAnalog.com .. xxxvii

Processor Product Information ... xxxvii

Related Documents .. xxxviii

Online Technical Documentation ... xxxix

Printed Manuals ... xli

Conventions .. xliii

INTRODUCTION

Design Advantages .. 1-1

Architectural Overview ... 1-6

Processor Core ... 1-7

Contents

iv ADSP-21368 SHARC Processor Hardware Reference

Processor Peripherals ... 1-7

I/O Processor ... 1-7

Digital Audio Interface (DAI) ... 1-9

Digital Peripheral Interface (DPI) 1-10

Development Tools ... 1-10

Differences From Previous Processors .. 1-11

I/O Architecture Enhancements .. 1-11

Instruction Set Enhancements ... 1-12

I/O PROCESSOR

General Procedure for Configuring DMA 2-2

Core Access to IOP Registers .. 2-3

Configuring IOP/Core Interaction .. 2-6

Interrupt-Driven I/O .. 2-6

Interrupt Latency in Interrupt-Driven Transfers 2-11

Polling/Status-Driven I/O ... 2-12

DMA Controller Operation .. 2-13

Chaining DMA Processes .. 2-14

Transfer Control Block Chain Loading (TCB) 2-16

Setting Up DMA Channel Allocation and Priorities 2-18

Managing DMA Channel Priority 2-19

DMA Bus Arbitration ... 2-20

Setting Up DMA Parameter Registers .. 2-24

DMA Transfer Direction ... 2-24

Data Buffer Registers .. 2-25

ADSP-21368 SHARC Processor Hardware Reference v

Contents

Port, Buffer, and DMA Control Registers 2-26

Addressing .. 2-29

External Port DMA ... 2-35

Setting Up and Starting Chained DMA 2-36

Delay Line DMA ... 2-38

Serial Port DMA ... 2-40

Setting Up and Starting Chained DMA 2-40

Inserting a TCB in an Active Chain 2-41

Serial Peripheral Interface DMA .. 2-42

Setting Up and Starting Chained DMA over the SPI 2-42

UART DMA ... 2-44

Notes On Using DMA With the UART 2-47

Memory-to-Memory DMA ... 2-48

Summary .. 2-48

Programming Example .. 2-49

EXTERNAL PORT

External Memory Interface .. 3-2

External Memory Interface on the ADSP-2137x Processors 3-3

Direct Execution of Instructions From External Memory 3-3

Throughput and Instruction Execution Rate 3-3

Location of Interrupt Vector Table (IVT) 3-4

Instruction Cache ... 3-5

Instruction Storage and Packing .. 3-9

Register Configurations for External Memory Execution 3-15

Contents

vi ADSP-21368 SHARC Processor Hardware Reference

EMI Registers and Signals ... 3-16

External Port Arbitration Logic ... 3-18

Channel Freezing .. 3-18

Managing Data Paths .. 3-18

External Memory Interface Pins .. 3-19

Asynchronous Memory Interface ... 3-20

AMI Timing Control .. 3-21

Wait States .. 3-21

Bus Idle Cycles .. 3-22

Bus Hold Cycles .. 3-23

Setting AMI Modes .. 3-24

External Memory Reads .. 3-25

Data Packing .. 3-25

External Memory Writes ... 3-26

Data Packing .. 3-27

Read/Write Throughput .. 3-28

External Access Addressing .. 3-28

External Port DMA ... 3-30

Booting Through the AMI .. 3-30

SDRAM Controller .. 3-30

Definition of Terms .. 3-31

Timing External Memory Accesses ... 3-36

Parallel Connection of SDRAMs ... 3-39

SDRAM Control Register (SDCTL) 3-39

ADSP-21368 SHARC Processor Hardware Reference vii

Contents

SDRAM Control Status Register (SDSTAT) 3-49

SDRAM Refresh Rate Control Register (SDRRC) 3-49

SDRAM Initialization ... 3-51

SDRAM Address Mapping .. 3-51

SDRAM Controller Address Mapping 3-58

SDC Operation ... 3-58

Single Bank Operation .. 3-60

Multibank Operation (ADSP-2137x Processors) 3-60

Data Mask (DQM) ... 3-61

SDC Configuration ... 3-61

SDC Commands ... 3-63

Load Mode Register .. 3-64

Single Bank Activation .. 3-65

Multibank Activation (ADSP-2137x Processors) 3-66

Single Precharge (ADSP-2137x Processors) 3-66

Precharge All ... 3-66

Read/Write ... 3-67

Read/Write (ADSP-2137x Processors) 3-69

Burst Stop (ADSP-2137x Processors) 3-69

Auto-Refresh ... 3-70

Self-Refresh Mode ... 3-70

No Operation/Command Inhibit 3-71

Changing System Clock During Runtime 3-73

Contents

viii ADSP-21368 SHARC Processor Hardware Reference

SDRAM Timing ... 3-74

SDRAM Read Optimization ... 3-75

External Memory Access Restrictions 3-78

Shared Memory Interface .. 3-79

Shared Memory Bus Arbitration .. 3-79

Bus Arbitration Protocol ... 3-82

Bus Arbitration Priority (RPBA) 3-86

Bus Mastership Time-out .. 3-87

Bus Synchronization After Reset .. 3-88

Bus Synchronization Notes ... 3-91

Bus Lock and Semaphores ... 3-92

Shared Memory Interface Status .. 3-93

Shared Memory and the SDRAM Controller 3-94

Shared Memory Booting ... 3-94

DIGITAL AUDIO/DIGITAL PERIPHERAL INTERFACES

Structure of the Interfaces ... 4-2

DAI/DPI System Design ... 4-3

Signal Routing Units .. 4-8

Connecting Peripherals ... 4-8

Pin Interface ... 4-10

Pin Buffers as Signal Output Pins .. 4-11

Pin Buffers as Signal Input Pins ... 4-12

Bidirectional Pin Buffers ... 4-13

ADSP-21368 SHARC Processor Hardware Reference ix

Contents

Making Connections in the SRUs .. 4-15

DAI/SRU1 Connection Groups ... 4-18

Group A Connections—Clock Signals 4-19

Group B Connections—Data Signals 4-25

Group C Connections—Frame Sync Signals 4-31

Group D Connections—Pin Signal Assignments 4-36

Group E Connections—Interrupts and Miscellaneous
Signals ... 4-43

Group F—Pin Enable Signals .. 4-47

DPI/SRU2 Connection Groups ... 4-51

Group A Connections—Input Routing Signals 4-52

Group B Connections—Pin Assignment Signals 4-56

Group C Connections—Pin Enable Signals 4-60

General-Purpose I/O (GPIO) and Flags 4-64

DAI GPIO and Flags ... 4-64

DPI GPIO and Flags ... 4-65

Miscellaneous Signals .. 4-65

DAI/DPI Interrupt Controller ... 4-65

Relationship to the Core .. 4-65

DAI Interrupts .. 4-66

DPI Interrupts .. 4-67

High and Low Priority Latches .. 4-69

Rising and Falling Edge Masks ... 4-70

Contents

x ADSP-21368 SHARC Processor Hardware Reference

Configuring Peripherals Using SRU1 .. 4-71

Configuring the SPORTs .. 4-71

Configuring the PCGs .. 4-72

Configuring Peripherals Using SRU2 .. 4-72

Configuring the SPI .. 4-72

Choosing the Pin Enable for the SPI Clock 4-72

Configuring the Two Wire Interface 4-73

Using the SRU() Macro to Configure
the DAI ... 4-76

SERIAL PORTS

Features .. 5-2

Operation Modes ... 5-3

Serial Port Signals ... 5-5

Serial Port Signal Sensitivity .. 5-9

SPORT Operation Modes ... 5-10

Standard DSP Serial Mode .. 5-12

Standard DSP Serial Mode Control Bits 5-13

Clocking Options ... 5-13

Frame Sync Options ... 5-13

Data Formatting ... 5-14

Data Transfers .. 5-15

Status Information .. 5-15

Left-Justified Sample Pair Mode .. 5-16

Setting the Internal Serial Clock and Frame Sync Rates 5-17

ADSP-21368 SHARC Processor Hardware Reference xi

Contents

Left-Justified Sample Pair Mode Control Bits 5-17

Setting Word Length (SLEN) .. 5-17

Enabling SPORT Master Mode (MSTR) 5-18

Selecting Transmit and Receive Channel Order (FRFS) 5-18

Selecting Frame Sync Options (DIFS) 5-18

Enabling SPORT DMA (SDEN) 5-19

I2S Mode .. 5-20

Setting the Internal Serial Clock and Frame Sync Rates 5-21

I2S Mode Control Bits .. 5-21

Setting Word Length (SLEN) .. 5-22

Enabling SPORT Master Mode (MSTR) 5-23

Selecting Transmit and Receive Channel Order (FRFS) 5-23

Selecting Frame Sync Options (DIFS) 5-23

Enabling SPORT DMA (SDEN) 5-24

Multichannel Operation .. 5-25

Frame Syncs in Multichannel Mode 5-28

Multichannel Mode Control Bits 5-29

Packed I2S Mode ... 5-33

Programming Packed I2S Mode ... 5-34

SPORT Loopback ... 5-35

Clock Signal Options .. 5-36

Frame Sync Options .. 5-37

Framed Versus Unframed Frame Syncs 5-37

Internal Versus External Frame Syncs 5-38

Contents

xii ADSP-21368 SHARC Processor Hardware Reference

Active Low Versus Active High Frame Syncs 5-39

Sampling Edge for Data and Frame Syncs 5-39

Early Versus Late Frame Syncs ... 5-40

Data-Independent Frame Syncs ... 5-41

Frame Sync Error Detection .. 5-42

Data Word Formats .. 5-43

Word Length .. 5-43

Endian Format .. 5-45

Data Packing and Unpacking .. 5-45

Data Type .. 5-46

Companding .. 5-47

SPORT Control Registers and Data Buffers 5-49

Register Writes and Effect Latency ... 5-58

Serial Port Control Registers (SPCTLx) 5-59

Transmit and Receive Data Buffers
(TXSPxA/B, RXSPxA/B) .. 5-67

Clock and Frame Sync Frequency Registers (DIVx) 5-69

SPORT Reset .. 5-71

SPORT Interrupts .. 5-72

Moving Data Between SPORTs and Internal Memory 5-73

DMA Block Transfers .. 5-73

Setting Up DMA on SPORT Channels 5-75

SPORT DMA Parameter Registers ... 5-76

SPORT DMA Chaining ... 5-81

Single Word Transfers ... 5-81

ADSP-21368 SHARC Processor Hardware Reference xiii

Contents

SPORT Programming Examples .. 5-82

SERIAL PERIPHERAL INTERFACE PORTS

Functional Description ... 6-2

SPI Interface Signals ... 6-4

SPI Clock Signal (SPICLK) ... 6-4

SPICLK Timing .. 6-5

SPI Slave Select Input (SPIDS) .. 6-6

SPI Flag Signals (SPIFLG3-0) .. 6-6

Master Out Slave In (MOSI) ... 6-7

Master In Slave Out (MISO) ... 6-7

SPI General Operations ... 6-8

SPI Enable .. 6-9

Open Drain Mode (OPD) ... 6-9

Master Mode Operation .. 6-10

Slave Mode Operation ... 6-11

Multimaster Operation .. 6-12

SPI Data Transfer Operations .. 6-13

SPI Operation Using the Core ... 6-13

SPI Operation Using DMA .. 6-14

Master Mode DMA Operation .. 6-15

Slave Mode DMA Operation ... 6-19

Changing SPI Configuration ... 6-21

Switching From Transmit To Receive DMA 6-23

Switching From Receive to Transmit DMA 6-24

Contents

xiv ADSP-21368 SHARC Processor Hardware Reference

DMA Error Interrupts .. 6-25

DMA Chaining .. 6-27

SPI Transfer Formats .. 6-27

Beginning and Ending an SPI Transfer 6-29

SPI Word Lengths .. 6-31

8-Bit Word Lengths .. 6-31

16-Bit Word Lengths .. 6-32

32-Bit Word Lengths .. 6-32

Packing ... 6-32

SPI Interrupts ... 6-33

Error Signals and Flags ... 6-35

Mode Fault Error (MME) ... 6-35

Transmission Error Bit (TUNF) .. 6-37

Reception Error Bit (ROVF) ... 6-37

Transmit Collision Error Bit (TXCOL) 6-37

Programming Notes .. 6-38

Routing SPI Signals Using The DPI 6-38

Programming Examples .. 6-38

INPUT DATA PORT

Serial Inputs ... 7-3

Parallel Data Acquisition Port (PDAP) .. 7-8

Masking .. 7-9

Packing Unit ... 7-9

Packing Mode 11 .. 7-9

ADSP-21368 SHARC Processor Hardware Reference xv

Contents

Packing Mode 10 .. 7-10

Packing Mode 01 .. 7-11

Packing Mode 00 .. 7-11

Clocking Edge Selection .. 7-12

Hold Input .. 7-12

PDAP Strobe ... 7-14

FIFO Control and Status .. 7-15

FIFO to Memory Data Transfer ... 7-16

IDP Transfers Using the Core .. 7-17

Starting an Interrupt-Driven Transfer 7-18

Core Transfer Notes .. 7-19

IDP Transfers Using DMA .. 7-20

Simple DMA .. 7-20

Ping-Pong DMA ... 7-22

DMA Transfer Notes ... 7-25

DMA Channel Parameter Registers .. 7-27

IDP (DAI) Interrupt Service Routines for DMAs 7-28

FIFO Overflow ... 7-30

Input Data Port Programming Example 7-31

PULSE WIDTH MODULATION

PWM Implementation .. 8-1

PWM Waveforms .. 8-1

Edge-Aligned Mode .. 8-2

Center-Aligned Mode .. 8-3

Contents

xvi ADSP-21368 SHARC Processor Hardware Reference

Switching Frequencies ... 8-5

Dead Time ... 8-6

Duty Cycles .. 8-7

Duty Cycles and Dead Time ... 8-8

Over Modulation .. 8-12

Update Modes .. 8-15

Single Update ... 8-15

Double Update ... 8-15

Configurable Polarity .. 8-15

PWM Pins and Signals .. 8-16

Crossover ... 8-16

PWM Accuracy ... 8-17

PWM Registers .. 8-18

Duty Cycles .. 8-19

Output Enable .. 8-20

Programming Example .. 8-21

S/PDIF TRANSMITTER/RECEIVER

AES3/SPDIF Stream Format ... 9-2

Subframe Format .. 9-3

Channel Coding ... 9-5

Preambles ... 9-6

S/PDIF Transmitter .. 9-7

Channel Status .. 9-9

SRU1 Signals for the S/PDIF Transmitter 9-10

ADSP-21368 SHARC Processor Hardware Reference xvii

Contents

S/PDIF Transmitter Registers .. 9-12

Modes of Operation .. 9-12

Standalone Mode .. 9-13

Structure of the Serial Input Data .. 9-14

S/PDIF Receiver ... 9-16

S/PDIF Receiver Registers ... 9-17

SRU1 Receiver Signals ... 9-18

Phase-Locked Loop ... 9-19

Channel Status Decoding .. 9-19

Compressed or Non-Linear Audio Data 9-20

Emphasized Audio Data .. 9-21

Single-Channel, Double-Sampling Frequency Mode 9-21

Error Handling ... 9-22

Interrupts ... 9-24

DAI Programming Examples ... 9-24

S/PDIF Transmitter Programming Guidelines 9-24

Control Register ... 9-24

SRU1 Programming for Input and Output Streams 9-25

Control Register Programming and Enable 9-25

S/PDIF Receiver Programming Guidelines 9-25

Control Register ... 9-25

SRU1 Programming .. 9-26

Control Register Programming .. 9-26

Receiver Locking ... 9-26

Contents

xviii ADSP-21368 SHARC Processor Hardware Reference

Status Bits .. 9-26

Interrupted Data Streams on the Receiver 9-27

ASYNCHRONOUS SAMPLE RATE CONVERTER

Theory of Operation .. 10-2

Conceptual Model .. 10-4

Hardware Model ... 10-7

Sample Rate Converter Architecture .. 10-8

Group Delay ... 10-12

SRC Operation ... 10-12

Enabling the SRC ... 10-13

Serial Data Ports ... 10-13

Data Format ... 10-13

Time-Division Multiplex (TDM) Output Mode 10-15

TDM Input Mode .. 10-16

Matched-Phase Mode ... 10-16

Bypass Mode .. 10-18

De-Emphasis Filter ... 10-18

Mute Control ... 10-19

Soft Mute ... 10-20

Hard Mute ... 10-20

Auto Mute .. 10-20

SRC Registers ... 10-21

Programming the SRC Module ... 10-22

SRC Control Register Programming 10-22

ADSP-21368 SHARC Processor Hardware Reference xix

Contents

SRU Programming .. 10-22

SRC Mute-Out Interrupt ... 10-23

Sample Rate Ratio ... 10-23

Programming Summary ... 10-23

UART PORT CONTROLLER

Serial Communications ... 11-2

UART Control and Status Registers ... 11-3

UARTxLCR Registers .. 11-3

UARTxLSR Register .. 11-4

UARTxTHR Register .. 11-4

UARTxRBR Register ... 11-5

UARTxIER Register .. 11-7

UARTxIIR Register ... 11-9

UARTxDLL and UARTxDLH Registers 11-11

UARTxSCR Register ... 11-12

UARTxMODE Register .. 11-13

I/O Mode ... 11-13

Packing Mode ... 11-15

TWO WIRE INTERFACE CONTROLLER

Overview .. 12-1

Architecture .. 12-2

Register Descriptions .. 12-4

TWI Master Internal Time Register 12-4

Contents

xx ADSP-21368 SHARC Processor Hardware Reference

TWIDIV Register ... 12-5

Slave Mode Control Register ... 12-5

Slave Mode Address Register ... 12-6

Slave Mode Status Register .. 12-6

Master Mode Control Register .. 12-6

Master Mode Address Register ... 12-6

Master Mode Status Register ... 12-7

FIFO Control Register .. 12-7

FIFO Status Register ... 12-7

Interrupt Source Register .. 12-7

Interrupt Enable Register .. 12-8

8-Bit Transmit FIFO Register .. 12-8

16-Bit Transmit FIFO Register .. 12-8

8-Bit Receive FIFO Register .. 12-9

16-Bit Receive FIFO Register .. 12-10

Data Transfer Mechanics ... 12-10

Clock Generation and Synchronization 12-11

Bus Arbitration ... 12-12

Start and Stop Conditions ... 12-12

General Call Support .. 12-14

Fast Mode ... 12-14

Programming Examples .. 12-15

General Setup ... 12-15

Slave Mode ... 12-15

ADSP-21368 SHARC Processor Hardware Reference xxi

Contents

Master Mode Clock Setup ... 12-17

Master Mode Transmit .. 12-17

Master Mode Receive ... 12-18

Repeated Start Condition .. 12-19

Transmit/Receive Repeated Start Sequence 12-19

Receive/Transmit Repeated Start Sequence 12-21

Electrical Specifications ... 12-22

PRECISION CLOCK GENERATORS

Clock Outputs .. 13-3

Frame Sync Outputs ... 13-4

Normal Mode .. 13-5

Bypass Mode ... 13-6

Frame Sync Output Synchronization With an External Clock 13-7

Frame Sync ... 13-8

Phase Shift .. 13-9

Phase Shift Settings ... 13-10

Pulse Width .. 13-10

Bypass Mode ... 13-12

Bypass as a Pass Through ... 13-12

Bypass as a One-Shot .. 13-13

Programming Examples ... 13-14

PCG Setup for I2S or Left-Justified DAI 13-15

Clock and Frame Sync Divisors PCG Channel B 13-20

PCG Channel A and B Output Example 13-23

Contents

xxii ADSP-21368 SHARC Processor Hardware Reference

SYSTEM DESIGN

Processor Pin Descriptions .. 14-2

Pin Multiplexing ... 14-2

Choosing EP Data Mode .. 14-6

Interrupt and Timer Pins .. 14-8

Core-Based Flag Pins ... 14-8

Programming Flags ... 14-9

RESETOUT/CLKOUT/RUNRSTIN 14-12

JTAG Interface Pins .. 14-12

Clock Derivation .. 14-13

Power Management Control Register 14-14

PLL Programming Examples ... 14-16

Phase-Locked Loop Startup ... 14-19

RESET and CLKIN .. 14-20

Running Reset (ADSP-2137x) .. 14-22

System Design Considerations .. 14-23

Running Reset Control Register (RUNRSTCTL) 14-25

Programming The RUNRSTCTL Register 14-26

Reset Generators ... 14-27

Timing Specifications .. 14-28

Input Synchronization Delay ... 14-32

Conditioning Input Signals ... 14-32

RESET Input Hysteresis .. 14-33

ADSP-21368 SHARC Processor Hardware Reference xxiii

Contents

Designing for High Frequency Operation 14-33

Clock Specifications and Jitter ... 14-33

Other Recommendations and Suggestions 14-34

Decoupling Capacitors and Ground Planes 14-35

Oscilloscope Probes ... 14-35

Recommended Reading ... 14-36

Booting .. 14-37

External Port Booting .. 14-39

Booting Through the AMI .. 14-39

Shared Memory Booting ... 14-40

SPI Port Booting ... 14-42

32-Bit SPI Host Boot .. 14-43

16-Bit SPI Host Boot .. 14-44

8-Bit SPI Host Boot .. 14-46

Slave Boot Mode ... 14-47

Master Boot .. 14-48

Booting From an SPI Flash .. 14-51

Booting From an SPI PROM (16-Bit address) 14-52

Booting From an SPI Host Processor 14-52

Data Delays, Latencies, and Throughput 14-52

Execution Stalls ... 14-53

DAG Stalls .. 14-54

Memory Stalls ... 14-54

IOP Register Stalls ... 14-55

Contents

xxiv ADSP-21368 SHARC Processor Hardware Reference

DMA Stalls ... 14-56

IOP Buffer Stalls ... 14-56

 REGISTER REFERENCE

I/O Processor Registers ... A-2

Notes on Reading Register Drawings A-3

System Control Register (SYSCTL) ... A-5

System Status Register (SYSTAT) .. A-9

External Port Registers .. A-10

External Port Control Register (EPCTL) A-10

External Port DMA Control Registers (DMACx) A-14

AMI Control Registers (AMICTLx) A-17

AMI Status Register (AMISTAT) ... A-20

SDRAM Control Register (SDCTL) A-21

SDRAM Control Status Register (SDSTAT) A-26

SDRAM Refresh Rate Control Register (SDRRC) A-26

Memory-to-Memory DMA Register .. A-28

Serial Port Registers .. A-29

SPORT Serial Control Registers (SPCTLx) A-29

SPORT Multichannel Control Registers (SPMCTLx) A-40

SPORT Transmit Buffer Registers (TXSPx) A-43

SPORT Receive Buffer Registers (RXSPx) A-44

SPORT Divisor Registers (DIVx) .. A-44

SPORT Count Registers (SPCNTx) A-45

SPORT Active Channel Select Registers (SPxCSy) A-46

ADSP-21368 SHARC Processor Hardware Reference xxv

Contents

SPORT Compand Registers (SPxCCSy) A-47

SPORT Error Control Register (SPERRCTLx) A-48

SPORT Error Status Register (SPERRSTAT) A-49

SPORT DMA Index Registers (IISPx) A-50

SPORT DMA Modifier Registers (IMSPx) A-50

SPORT DMA Count Registers (CSPx) A-51

SPORT Chain Pointer Registers (CPSPx) A-51

Serial Peripheral Interface Registers ... A-52

SPI Control Registers (SPICTL, SPICTLB) A-52

SPI Port Status (SPISTAT, SPISTATB) Registers A-56

SPI Port Flags Registers (SPIFLG, SPIFLGB) A-58

SPI Receive Buffer Registers (RXSPI, RXSPIB) A-59

RXSPI Shadow Registers
(RXSPI_SHADOW, RXSPIB_SHADOW) A-59

SPI Transmit Buffer Registers (TXSPI, TXSPIB) A-59

SPI Baud Rate Registers (SPIBAUD, SPIBAUDB) A-60

SPI DMA Registers .. A-61

SPI DMA Configuration Registers (SPIDMAC,
SPIDMACB) .. A-62

SPI DMA Start Address Registers (IISPI, IISPIB) A-64

SPI DMA Address Modify Registers (IMSPI, IMSPIB) A-64

SPI DMA Word Count Registers (CSPI, CSPIB) A-64

SPI DMA Chain Pointer Registers (CPSPI, CPSPIB) A-65

Input Data Port Registers ... A-65

Input Data Port Control Register 0 (IDP_CTL0) A-66

Contents

xxvi ADSP-21368 SHARC Processor Hardware Reference

Input Data Port Control Register 1 (IDP_CTL1) A-68

Input Data Port FIFO Register (IDP_FIFO) A-69

Input Data Port DMA Control Registers A-70

IDP_DMA_Ix .. A-70

IDP_DMA_Mx .. A-71

IDP_DMA_Cx ... A-71

Input Data Port Ping-Pong DMA Registers A-72

IDP Ping-Pong Index Registers (IDP_DMA_IxA) A-72

IDP Ping-Pong Count Registers (IDP_DMA_PCx) A-73

Parallel Data Acquisition Port Control Register
(IDP_PP_CTL) ... A-74

Pulse Width Modulation Registers .. A-78

PWM Global Control Register (PWMGCTL) A-78

PWM Global Status Register (PWMGSTAT) A-79

PWM Control Register (PWMCTLx) A-80

PWM Status Registers (PWMSTATx) A-81

PWM Period Registers (PWMPERIODx) A-81

PWM Output Disable Registers (PWMSEGx) A-82

PWM Polarity Select Registers (PWMPOLx) A-83

PWM Channel Duty Control Registers
(PWMAx, PWMBx) ... A-84

PWM Channel Low Duty Control Registers
(PWMALx, PWMBLx) .. A-84

PWM Dead Time Registers (PWMDTx) A-85

ADSP-21368 SHARC Processor Hardware Reference xxvii

Contents

Sony/Philips Digital Interface Registers A-86

Transmitter Control Register (DITCTL) A-86

Left Channel Status for Subframe A
Registers (DITCHANAx) .. A-89

Right Channel Status for Subframe B
Registers (DITCHANBx) .. A-90

User Bits Buffer Registers for Subframe A
Registers (DITUSRBITAx) .. A-90

User Bits Buffer Registers for Subframe B
Registers (DITUSRBITBx) .. A-91

Receiver Control Register (DIRCTL) A-92

Receiver Status Register (DIRSTAT) A-94

Left Channel Status for Subframe A
Register (DIRCHANL) .. A-96

Right Channel Status for Subframe B
Register (DIRCHANR) ... A-96

Sample Rate Converter Registers .. A-97

SRC Control Registers (SRCCTLx) A-97

SRC Mute Register (SRCMUTE) A-107

SRC Ratio Registers (SRCRATx) .. A-108

DAI/DPI Registers ... A-109

Digital Audio Interface Status Register (DAI_STAT) A-109

DAI Resistor Pull-up Enable Register
(DAI_PIN_PULLUP) .. A-111

DAI Pin Buffer Status Register (DAI_PIN_STAT) A-112

DAI Interrupt Controller Registers A-112

Contents

xxviii ADSP-21368 SHARC Processor Hardware Reference

DPI Resistor Pull-up Enable Register
(DPI_PIN_PULLUP) .. A-115

DPI Pin Buffer Status Register (DPI_PIN_STAT) A-116

DPI Interrupt Controller Registers A-116

UART Control and Status Registers .. A-118

Line Control Registers (UARTxLCR) A-118

Line Status Registers (UARTxLSR) A-120

Transmit Hold Registers (UARTxTHR) A-121

Receive Buffer Registers (UARTxRBR) A-122

Interrupt Enable Registers (UARTxIER) A-123

Interrupt Identification Registers (UARTxIIR) A-124

Divisor Latch Registers (UARTxDLL, UARTxDLH) A-125

Scratch Registers (UARTxSCR) ... A-126

Mode Registers (UARTxMODE) ... A-126

UART DMA Registers .. A-127

DMA Control Registers (UARTxTXCTL,
UARTxRXCTL) .. A-128

DMA Status Registers (UARTxTXSTAT,
UARTxRXSTAT) .. A-129

Two Wire Interface Registers ... A-130

Master Internal Time Register (TWIMITR) A-131

Clock Divider Register (TWIDIV) A-132

Slave Mode Control Register (TWISCTL) A-133

Slave Address Register (TWISADDR) A-135

Slave Status Register (TWISSTAT) A-135

ADSP-21368 SHARC Processor Hardware Reference xxix

Contents

Master Control Register (TWIMCTL) A-136

Master Address Register (TWIMADDR) A-139

Master Status Register (TWIMSTAT) A-140

FIFO Control Register (TWIFIFOCTL) A-143

FIFO Status Register (TWIFIFOSTAT) A-145

Interrupt Source Register (TWIIRPTL) A-147

Interrupt Enable Register (TWIIMASK) A-150

8-Bit Transmit FIFO Register (TXTWI8) A-152

16-Bit Transmit FIFO Register (TXTWI16) A-153

8-Bit Receive FIFO Register (RXTWI8) A-154

16-Bit Receive FIFO Register (RXTWI16) A-154

Precision Clock Generator Registers ... A-155

Control Registers (PCG_CTLxx) .. A-155

PCG Pulse Width Registers .. A-158

PCG Frame Synchronization Registers (PCG_SYNCx) A-160

Peripheral Interrupt Priority Control Registers A-164

Peripheral Interrupt Priority Control
Registers (PICRx) .. A-164

Peripheral Interrupt Priority0 Control
Register (PICR0) ... A-167

Peripheral Interrupt Priority1 Control
Register (PICR1) ... A-168

Peripheral Interrupt Priority2 Control
Register (PICR2) ... A-169

Peripheral Interrupt Priority3 Control
Register (PICR3) ... A-170

Contents

xxx ADSP-21368 SHARC Processor Hardware Reference

Power Management Control
Register (PMCTL) ... A-170

Hardware Breakpoint Control Register A-175

Enhanced Emulation Status Register ... A-179

INTERRUPTS

Interrupt Vector Tables ... B-1

Interrupt Priorities .. B-4

Interrupt Registers .. B-6

Interrupt Register (LIRPTL) ... B-6

Interrupt Latch Register (IRPTL) .. B-13

Interrupt Mask Register (IMASK) ... B-18

Interrupt Mask Pointer Register (IMASKP) B-22

INDEX

ADSP-21368 SHARC Processor Hardware Reference xxxi

PREFACE

Thank you for purchasing and developing systems using the
ADSP-21367/8/9 and ADSP-2137x SHARC® processors from Analog
Devices.

Purpose of This Manual
The ADSP-21368 SHARC Processor Hardware Reference contains informa-
tion about the architecture and assembly language for ADSP-21367/8/9
and ADSP-2137x. These are 32-bit, fixed- and floating-point digital sig-
nal processors from Analog Devices for use in computing,
communications, and consumer applications.

The manual provides information on the processor’s I/O architecture and
the operation of the peripherals associated with each model.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. This manual assumes that the audience
has a working knowledge of the appropriate processor architecture and
instruction set. Programmers who are unfamiliar with Analog Devices
processors can use this manual, but should supplement it with other texts
(such as the appropriate hardware reference manuals and data sheets) that
describe your target architecture.

Manual Contents

xxxii ADSP-21368 SHARC Processor Hardware Reference

Manual Contents
The manual consists of:

• Chapter 1, “Introduction”
Provides an architectural overview of the ADSP-21367/8/9 and
ADSP-2137x SHARC processors.

• Chapter 2, “I/O Processor”
Describes ADSP-21367/8/9 and ADSP-2137x processors
input/output processor architecture and direct memory accesses
(DMA) for the peripherals that have this feature.

• Chapter 3, “External Port”
Describes the operation of the asynchronous memory interface
(AMI).

• Chapter 4, “Digital Audio/Digital Peripheral Interfaces”
Provides information about the digital applications interface (DAI)
which allows you to attach an arbitrary number and a variety of
peripherals to the ADSP-21367/8/9 and ADSP-2137x processors
while retaining high levels of compatibility.

• Chapter 5, “Serial Ports”
Describes the up to eight dual data line serial ports. Each SPORT
contains a clock, a frame sync, and two data lines that can be con-
figured as either a receiver or transmitter pair.

• Chapter 6, “Serial Peripheral Interface Ports”
Describes the operation of the SPI port. SPI devices communicate
using a master-slave relationship and can achieve high data transfer
rates because they can operate in full-duplex mode.

• Chapter 7, “Input Data Port”
Discusses the function of the input data port (IDP) which provides
a low overhead method of routing signal routing unit (SRU) sig-
nals back to the core’s memory.

ADSP-21368 SHARC Processor Hardware Reference xxxiii

Preface

• Chapter 8, “Pulse Width Modulation”
Describes the implementation and use of the pulse width modula-
tion module which provides a technique for controlling analog
circuits with the microprocessor’s digital outputs.

• Chapter 9, “S/PDIF Transmitter/Receiver”
Provides information on the use of the Sony/Philips Digital Inter-
face which is a standard audio file transfer format that allows the
transfer of digital audio signals from one device to another without
having to be converted to an analog signal.

• Chapter 10, “Asynchronous Sample Rate Converter”
Provides information on the sample rate converter module. This
module performs synchronous or asynchronous sample rate conver-
sions across independent stereo channels, without using any
internal processor resources.

• Chapter 11, “UART Port Controller”
Describes the operation of the Universal Asynchronous
Receiver/Transmitter (UART) which is a full-duplex peripheral
compatible with PC-style industry-standard UART.

• Chapter 12, “Two Wire Interface Controller”
The two wire interface is fully compatible with the widely used I2C
bus standard. It is designed with a high level of functionality and is
compatible with multi-master, multi-slave bus configurations.

• Chapter 13, “Precision Clock Generators”
Details the precision clock generators (PCG) each of which gener-
ates a pair of signals derived from a clock input signal.

• Chapter 14, “System Design”
Describes system design features of the ADSP-21367/8/9 and
ADSP-2137x processors. These include power, reset, clock, JTAG,
and booting, as well as pin descriptions and other system level
information.

What’s New in This Manual

xxxiv ADSP-21368 SHARC Processor Hardware Reference

• Appendix A, “Register Reference”
Provides a graphical presentation of all registers and describes the
bit usage in each register.

• Appendix B, “Interrupts”
Provides a complete listing of the registers that are used to config-
ure and control interrupts.

This hardware reference is a companion document to the
ADSP-2136x/ADSP-2137x SHARC Processor Programming Refer-
ence. The programming reference provides information relating to
the processor core, such as processing elements, internal memory,
and program sequencing. It also provides programming specific
information, such as complete descriptions of the ADSP-21xxx
instruction set and the compute operations, including their assem-
bly language syntax and opcode fields.

What’s New in This Manual
Revision 1.0 of the ADSP-21368 SHARC Processor Hardware Reference is
the first general release of this manual. The following changes should be
noted.

• In the preliminary version this manual was titled ADSP-2136x
SHARC Processor Hardware reference for the ADSP-21367/8/9 Pro-
cessors. The title change to ADSP-21368 SHARC Processor
Hardware Reference was done to reflect the fact that the
ADSP-21368 processor contains the super set of features of the
ADSP-21367 and ADSP-21369 models as well as the new
ADSP-21371 and ADSP-21375 models.

• This version of the manual contains information about the
ADSP-21371 and ADSP-21375 SHARC processors. These new
models contain the same core as the ADSP-21367/8/9 processors

ADSP-21368 SHARC Processor Hardware Reference xxxv

Preface

and as such are completely code compatible. The primary differ-
ences in these new models is the ability to execute programs from
external memory and a running reset feature.

For more information on these topics, see “Direct Execution of
Instructions From External Memory” on page 3-3 and “Running
Reset (ADSP-2137x)” on page 14-22.

Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following
ways:

• Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/manuals

• E-mail tools questions to
processor.tools.support@analog.com

• E-mail processor questions to
processor.support@analog.com (World wide support)

processor.europe@analog.com (Europe support)

processor.china@analog.com (China support)

• Phone questions to 1-800-ANALOGD

• Contact your Analog Devices, Inc. local sales office or authorized
distributor

• Send questions by mail to:

Analog Devices, Inc.

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA

http://www.analog.com/processors/technicalSupport
mailto:dsptools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

Supported Processors

xxxvi ADSP-21368 SHARC Processor Hardware Reference

Supported Processors
The following is the list of Analog Devices, Inc. processors supported in
VisualDSP++®.

Blackfin® (ADSP-BFxxx) Processors

The name Blackfin refers to a family of 16-bit, embedded processors.
VisualDSP++ currently supports the following Blackfin families:
ADSP-BF53x, ADSP-BF54x, and ADSP-BF56x.

SHARC (ADSP-21xxx) Processors

The name SHARC refers to a family of high-performance, 32-bit,
floating-point processors that can be used in speech, sound, graphics, and
imaging applications. VisualDSP++ currently supports the following
SHARC families: ADSP-2106x, ADSP-2116x, ADSP-2126x,
ADSP-2136x, and ADSP-2137x.

TigerSHARC® (ADSP-TSxxx) Processors

The name TigerSHARC refers to a family of floating-point and fixed-point
(8-bit, 16-bit, and 32-bit) processors. VisualDSP++ currently supports the
following TigerSHARC families: ADSP-TS101 and ADSP-TS20x.

Product Information
You can obtain product information from the Analog Devices Web site,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our Web site provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

ADSP-21368 SHARC Processor Hardware Reference xxxvii

Preface

MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices Web site that allows
customization of a Web page to display only the latest information on
products you are interested in. You can also choose to receive weekly
e-mail notifications containing updates to the Web pages that meet your
interests. MyAnalog.com provides access to books, application notes, data
sheets, code examples, and more.

Registration

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as a means to select the
information you want to receive.

If you are already a registered user, just log on. Your user name is your
e-mail address.

Processor Product Information
For information on embedded processors and DSPs, visit our Web site at
www.analog.com/processors, which provides access to technical publica-
tions, data sheets, application notes, product overviews, and product
announcements.

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• E-mail processor questions to
processor.support@analog.com (World wide support)

processor.europe@analog.com (Europe support)

processor.china@analog.com (China support)

mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

Product Information

xxxviii ADSP-21368 SHARC Processor Hardware Reference

• Fax questions or requests for information to
1-781-461-3010 (North America)
+49-89-76903-157 (Europe)

• Access the FTP Web site at
ftp ftp.analog.com or ftp://137.71.25.69
ftp://ftp.analog.com

Related Documents
The following publications that describe the ADSP-2136x SHARC pro-
cessors (and related processors) can be ordered from any Analog Devices
sales office:

• ADSP-21362 SHARC Processor Data Sheet

• ADSP-21363 SHARC Processor Data Sheet

• ADSP-21364 SHARC Processor Data Sheet

• ADSP-21365 SHARC Processor Data Sheet

• ADSP-21366 SHARC Processor Data Sheet

• ADSP-21367/ADSP-21368/ADSP-21369 SHARC Processor Data
Sheet

• ADSP-21371 SHARC Processor Preliminary Data Sheet

• ADSP-21375 SHARC Processor Preliminary Data Sheet

• ADSP-2136x/ADSP-2137x SHARC Processor Programming
Reference

ADSP-21368 SHARC Processor Hardware Reference xxxix

Preface

For information on product related development software and Analog
Devices processors, see these publications:

• VisualDSP++ User’s Guide

• VisualDSP++ C/C++ Compiler and Library Manual for SHARC
Processors

• VisualDSP++ Assembler and Preprocessor Manual

• VisualDSP++ Linker and Utilities Manual

• VisualDSP++ Kernel (VDK) User’s Guide

Visit the Technical Library Web site to access all processor and tools
manuals and data sheets:

http://www.analog.com/processors/manuals

Online Technical Documentation
Online documentation comprises the VisualDSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, the Dinkum
Abridged C++ library, and Flexible License Manager (FlexLM) network
license manager software documentation. You can easily search across the
entire VisualDSP++ documentation set for any topic of interest. For easy
printing, supplementary .PDF files of most manuals are also provided.

Each documentation file type is described as follows.

If documentation is not installed on your system as part of the software
installation, you can add it from the VisualDSP++ CD-ROM at any time
by running the Tools installation. Access the online documentation from
the VisualDSP++ environment, Windows® Explorer, or the Analog
Devices Web site.

Product Information

xl ADSP-21368 SHARC Processor Hardware Reference

Accessing Documentation From VisualDSP++

From the VisualDSP++ environment:

• Access VisualDSP++ online Help from the Help menu’s Contents,
Search, and Index commands.

• Open online Help from context-sensitive user interface items (tool-
bar buttons, menu commands, and windows).

Accessing Documentation From Windows

In addition to any shortcuts you may have constructed, there are many
ways to open VisualDSP++ online Help or the supplementary documenta-
tion from Windows.

Help system files (.CHM) are located in the Help folder, and .PDF files are
located in the Docs folder of your VisualDSP++ installation CD-ROM.
The Docs folder also contains the Dinkum Abridged C++ library and the
FlexLM network license manager software documentation.

Using Windows Explorer

• Double-click the vdsp-help.chm file, which is the master Help sys-
tem, to access all the other .CHM files.

• Double-click any file that is part of the VisualDSP++ documenta-
tion set.

File Description

.CHM Help system files and manuals in Help format

.HTM or

.HTML
Dinkum Abridged C++ library and FlexLM network license manager software doc-
umentation. Viewing and printing the .HTML files requires a browser, such as
Internet Explorer 4.0 (or higher).

.PDF VisualDSP++ and processor manuals in Portable Documentation Format (PDF).
Viewing and printing the .PDF files requires a PDF reader, such as Adobe Acrobat
Reader (4.0 or higher).

ADSP-21368 SHARC Processor Hardware Reference xli

Preface

Using the Windows Start Button

• Access VisualDSP++ online Help by clicking the Start button and
choosing Programs, Analog Devices, VisualDSP++, and
VisualDSP++ Documentation.

• Access the .PDF files by clicking the Start button and choosing
Programs, Analog Devices, VisualDSP++, Documentation for
Printing, and the name of the book.

Accessing Documentation From the Web

Download manuals at the following Web site:
http://www.analog.com/processors/resources/manuals

Select a processor family and book title. Download archive (.ZIP) files, one
for each manual. Use any archive management software, such as WinZip,
to decompress downloaded files.

Printed Manuals
For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

VisualDSP++ Documentation Set

To purchase VisualDSP++ manuals, call 1-603-883-2430. The manuals
may be purchased only as a kit.

If you do not have an account with Analog Devices, you are referred to
Analog Devices distributors. For information on our distributors, log onto
http://www.analog.com/salesdir/continent.asp.

Product Information

xlii ADSP-21368 SHARC Processor Hardware Reference

Hardware Tools Manuals

To purchase EZ-KIT Lite® and In-Circuit Emulator (ICE) manuals, call
1-603-883-2430. The manuals may be ordered by title or by product
number located on the back cover of each manual.

Processor Manuals

Hardware reference and instruction set reference manuals may be ordered
through the Literature Center at 1-800-ANALOGD (1-800-262-5643),
or downloaded from the Analog Devices Web site. Manuals may be
ordered by title or by product number located on the back cover of each
manual.

Data Sheets

All data sheets (preliminary and production) may be downloaded from the
Analog Devices Web site. Only production (final) data sheets (Rev. 0, A,
B, C, and so on) can be obtained from the Literature Center at
1-800-ANALOGD (1-800-262-5643); they also can be downloaded from
the Web site.

To have a data sheet faxed to you, call the Analog Devices Faxback System
at 1-800-446-6212. Follow the prompts and a list of data sheet code
numbers will be faxed to you. If the data sheet you want is not listed,
check for it on the Web site.

ADSP-21368 SHARC Processor Hardware Reference xliii

Preface

Conventions
Text conventions used in this manual are identified and described as
follows.

Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
VisualDSP++ environment’s menu system. For example, the Close
command appears on the File menu.

{this | that} Alternative items in syntax descriptions appear within curly brackets
and separated by vertical bars; read the example as this or that. One
or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipse; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note: provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this
symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution: identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning: identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

Conventions

xliv ADSP-21368 SHARC Processor Hardware Reference

Additional conventions, which apply only to specific chapters, may
appear throughout this document.

ADSP-21368 SHARC Processor Hardware Reference 1-1

1 INTRODUCTION

The ADSP-21367/8/9 and ADSP-2137x SHARC processors are high per-
formance, 32-bit processors used for high quality audio, medical imaging,
communications, military, test equipment, 3D graphics, speech recogni-
tion, motor control, imaging, and other applications. By adding on-chip
SRAM, integrated I/O peripherals, and an additional processing element
for single-instruction, multiple-data (SIMD) support, this processor
builds on the ADSP-21000 family DSP core to form a complete
system-on-a-chip.

Design Advantages
A digital signal processor’s data format determines its ability to handle sig-
nals of differing precision, dynamic range, and signal-to-noise ratios.
Because floating-point DSP math reduces the need for scaling and the
probability of overflow, using a floating-point processor can simplify algo-
rithm and software development. The extent to which this is true depends
on the floating-point processor’s architecture. Consistency with IEEE
workstation simulations and the elimination of scaling are clearly two
ease-of-use advantages. High level language programmability, large
address spaces, and wide dynamic range allow system development time to
be spent on algorithms and signal processing concerns, rather than assem-
bly language coding, code paging, and/or error handling. The processors
are highly integrated, 32-bit floating-point processors which provide all of
these design advantages.

The SHARC processor architecture balances a high performance processor
core with high performance program memory (PM), data memory (DM),

Design Advantages

1-2 ADSP-21368 SHARC Processor Hardware Reference

and input/output (I/O) buses. In the core, every instruction can execute in
a single cycle. The buses and instruction cache provide rapid, unimpeded
data flow to the core to maintain the execution rate.

Figure 1-1 shows a detailed block diagram of the processor core and the
I/O processor (IOP). This figures illustrates the following architectural
features:

• Two processing elements (PEx and PEy), each containing 32-bit,
IEEE, floating-point computation units—multiplier, arithmetic
logic unit (ALU), shifter, and data register file

• Program sequencer with related instruction cache, interval timer,
and data address generators (DAG1 and DAG2)

• An SDRAM controller that provides an interface up to four sepa-
rate banks of industry-standard SDRAM devices or DIMMs, at
speeds up to fSCLK

• Up to 2M bits of SRAM and 6M bits of on-chip, mask-program-
mable ROM

• IOP with integrated direct memory access (DMA) controller, serial
peripheral interface (SPI) compatible port, and serial ports
(SPORTs) for point-to-point multiprocessor communications

• A variety of audio centric peripheral modules including a
Sony/Philips Digital Interface (S/PDIF), sample rate converter
(SRC) and pulse width modulation (PWM). Table 1-1 on page 1-5
provides details on these and other features for the current mem-
bers of the ADSP-21367/8/9 and ADSP-2137x processors families.

• JTAG test access port for emulation

Figure 1-1 also shows the three on-chip buses: the PM bus, DM bus, and
I/O bus. The PM bus provides access to either instructions or data. Dur-
ing a single cycle, these buses let the processor access two data operands

ADSP-21368 SHARC Processor Hardware Reference 1-3

Introduction

from memory, access an instruction (from the cache), and perform a
DMA transfer.

Figure 1-1 also shows the asychronous memory interface available on the
ADSP-21368 processor.

The ADSP-21367/8/9 and ADSP-2137x processors address the five cen-
tral requirements for signal processing:

Fast, Flexible Arithmetic. The ADSP-21000 family processors execute all
instructions in a single cycle. They provide fast cycle times and a complete
set of arithmetic operations. The processor is IEEE floating-point compat-
ible and allows either interrupt on arithmetic exception or latched status
exception handling.

Figure 1-1. ADSP-21368 Block Diagram

SPI PO RT (2)

TIMERS (3)

TWO WIRE
INTERFACE

UART (2)

D
P

IR
O

U
T

IN
G

U
N

IT

D IGITAL PE RIPHERAL INTERFACE

G PIO FLAGS /
IRQ/TIMEXP

4
SE RIAL PORTS (8)

INPUT DATA PORT/
P DAP

D
A

I
R

O
U

T
IN

G
U

N
ITSPDIF (RX /TX)

DIGITAL AUDIO INTERFACE

IOD(32)

ADDR DATA

IOA(24)

ON-CHIP MEMORY

P M D A TA BU S

D M D A TA B U S

3 2PM AD D R ES S B U S

D M A D D R ES S BU S

64

PX REGIS TER

2 PROCES SING
ELEME NTS
(PEX , P EY)

PROGRAM
SEQ UENCER

TIMER

INSTRUCTION
CACHE

32 X 48-BIT

CO RE PROCESS OR

DMA
CONTRO LLER

3 4 CH A N N ELS

S
MEMORY-TO-

MEMORY DMA (2)

IOP REG ISTER (MEMORY MAPPED)
CONTROL, S TATUS, & DATA BUFFERS

2 DAG S
8X4X32

I/O PROCESSOR

DAI PINS DP I PINS

64

3 2

1420

SRC (8 CHANNELS)

PRECISION CLOCK
GE NERATO RS (4)

*THE ADSP-21368 PROCESS OR INCLUDES A CUSTOMER-DE FINABLE RO M BLOCK.
PLEASE CONTACT YOUR ANALOG DEVICES SALES REPRES ENTATIVE FO R ADDITIO NAL DETAILS

24

18

SDRAM
CO NTROLLER

ADDRESS

CONTRO L

3

8

ASYNCHRONO US
MEMORY

INTERFACE

SHARED MEMORY
INTERFACE

8

EX TE RNAL PO RT

C
O

N
T

R
O

L
P

IN
S

PWM
32

DATA

FLAGS 4-15

Design Advantages

1-4 ADSP-21368 SHARC Processor Hardware Reference

Unconstrained Data Flow. The ADSP-21367/8/9 and ADSP-2137x pro-
cessors have a Super Harvard Architecture combined with a ten-port data
register file. In every cycle, the processor can write or read two operands to
or from the register file, supply two operands to the ALU, supply two
operands to the multiplier, and receive three results from the ALU and
multiplier. The processor’s 48-bit orthogonal instruction word supports
parallel data transfers and arithmetic operations in the same instruction.

40-Bit Extended Precision. The processor handles 32-bit IEEE float-
ing-point format, 32-bit integer and fractional formats (twos-complement
and unsigned), and extended-precision, 40-bit floating-point format. The
processors carry extended precision throughout their computation units,
limiting intermediate data truncation errors (up to 80 bits of precision are
maintained during multiply-accumulate operations).

Dual Address Generators. The processor has two data address generators
(DAGs) that provide immediate or indirect (pre- and post-modify)
addressing. Modulus, bit-reverse, and broadcast operations are supported
with no constraints on data buffer placement.

Efficient Program Sequencing. In addition to zero-overhead loops, the
processor supports single-cycle setup and exit for loops. Loops are both
nestable (six levels in hardware) and interruptable. The processors support
both delayed and non-delayed branches.

The ADSP-21367/8/9 and ADSP-2137x processors also provide the fol-
lowing features which increase the variety processor applications.

High Bandwidth I/O. The processors contain a dedicated, 6M bits
on-chip ROM, an external port, an SPI port, serial ports, digital audio
interface (DAI), and JTAG. The DAI incorporates a precision clock gen-
erator, input data port, and a signal routing unit.

Serial Ports. Provides an inexpensive interface to a wide variety of digital
and mixed-signal peripheral devices. The serial ports can operate at up to
half the processor core clock (CCLK) rate.

ADSP-21368 SHARC Processor Hardware Reference 1-5

Introduction

Input Data Port (IDP). The IDP provides an additional input path to the
processor core, configurable as eight channels of serial data or seven chan-
nels of serial data and a single channel of up to 20-bit wide parallel data.

Two Serial Peripheral Interfaces (SPI). The primary SPI has dedicated
pins and the secondary is controlled through the DAI. The SPI provides
master or slave serial boot through the SPI, full-duplex operation, mas-
ter-slave mode, multimaster support, open drain outputs, programmable
baud rates, clock polarities, and phases.

Digital Audio Interface and Digital Peripheral Interface. The digital
audio interface (DAI) and the digital peripheral interface (DPI) are com-
prised of groups of peripherals and their signal routing units (SRU1 and
SRU2 respectively). This allows peripherals to be interconnected to suit a
wide variety of systems. It also allows the processors to include an arbi-
trary number and variety of peripherals while retaining high levels of
compatibility without increasing pin count.

Signal Routing Units (SRU1/SRU2). The SRUs provide configuration
flexibility by allowing software-programmable connections to be made
between the DAI/DPI components and the 20 DAI pins and 14 DPI pins.

I/O Processor (IOP). The IOP manages the SHARC processor’s off-chip
data I/O to alleviate the core of this burden. This unit manages the other
processor peripherals such as the SPI, DAI, and IDP as well as direct
memory accesses (DMA).

Table 1-1. SHARC Processor Features

Feature ADSP-21367 ADSP-21368 ADSP-21369 ADSP-21371 ADSP-21375

RAM 2M bit 2M bit 2M bit 1M bit 0.5M bit

ROM 6M bit 6M bit1 6M bit1 4M bit1 2M bit1

Audio Decoders

in ROM2
Yes No No No No

Architectural Overview

1-6 ADSP-21368 SHARC Processor Hardware Reference

Architectural Overview
The ADSP-21367/8/9 and ADSP-2137x processors form a complete sys-
tem-on-a-chip, integrating a large, high speed SRAM and I/O peripherals
supported by a dedicated I/O bus. The following sections summarize the
features of each functional block in the processor architecture, which
appears in Figure 1-1.

Pulse Width
Modulation

Yes Yes Yes Yes No

S/PDIF Yes Yes Yes Yes No

Shared
Memory

No Yes No No No

SRC
Performance

128dB 140dB 128dB 128dB N/A

Package Option3 256-ball
SBGA
208 Lead
MQFP

256-ball
SBGA

256-ball
SBGA
208 Lead
MQFP

208-lead
MQFP

208-lead
MQFP

Processor Speed 333 MHz 333 MHz 333 MHz 266 MHz 266 MHz

1 The ADSP-21367 processor include a customer-definable ROM block. Please contact your Analog
Devices sales representative for additional details.

2 Audio decoding algorithms include PCM, Dolby Digital EX, PCM, Dolby Digital EX, Dolby Pro-
logic IIx, DTS 96/24, Neo:6, DTS ES, MPEG2 AAC, MPEG2 2channel, MP3, and functions like
bass management, delay, speaker equalization, graphic equalization, and more. Decoder/post-proces-
sor algorithm combination support will vary depending upon the chip version and the system config-
urations. Please visit www.analog.com/SHARC for complete information.

3 Analog Devices offers these packages in lead-free (Pb) versions.

Table 1-1. SHARC Processor Features (Cont’d)

Feature ADSP-21367 ADSP-21368 ADSP-21369 ADSP-21371 ADSP-21375

ADSP-21368 SHARC Processor Hardware Reference 1-7

Introduction

Processor Core
The processor core of the ADSP-21367/8/9 and ADSP-2137x processors
contain two processing elements (each with three computation units and
data register file), a program sequencer, two data address generators, a
timer, and an instruction cache. All digital signal processing occurs in the
processor core. For complete information, see the ADSP-21367/8/9 and
ADSP-2137x SHARC processors.

Processor Peripherals
The term processor peripherals refers to the multiple on-chip functional
blocks used to communicate with off-chip devices. The peripherals
include the JTAG, UART, serial ports, SPI ports, DAI/DPI components
(PCG, timers, and IDP are a few), and any external devices that connect
to the processor.

I/O Processor

The ADSP-21367/8/9 and ADSP-2137x processors input/output proces-
sor (IOP) manages the off-chip data I/O to alleviate the core of this
burden. Up to thirty-four channels of DMA are available on the
ADSP-21367/8/9 and ADSP-2137x processors—sixteen via the serial
ports, 8 via the input data port, 4 for the UARTs, 2 for the SPI interface,
2 for the external port, and 2 for memory-to-memory transfers. The I/O
processor can perform DMA transfers between the peripherals and inter-
nal memory at the full core clock speed. The architecture of the internal
memory allows the IOP and the core to access internal memory simulta-
neously with no reduction in throughput.

Serial Ports. The processors feature up to eight synchronous serial ports
that provide an inexpensive interface to a wide variety of digital and
mixed-signal peripheral devices. The serial ports can operate at up to half
of the processor core clock rate with maximum of 50M bits per second.
Each serial port features two data pins that function as a pair based on the

Architectural Overview

1-8 ADSP-21368 SHARC Processor Hardware Reference

same serial clock and frame sync. Accordingly, each serial port has two
DMA channels and serial data buffers associated with it to service the dual
serial data pins. Programmable data direction provides greater flexibility
for serial communications. Serial port data can automatically transfer to
and from on-chip memory using DMA. Each of the serial ports offers a
TDM multichannel mode (up to 128 channels) and supports μ-law or

A-law companding. I2S support is also provided with the
ADSP-21367/8/9 and ADSP-2137x processors.

The serial ports can operate with least significant bit first (LSBF) or most
significant bit first (MSBF) transmission order, with word lengths from 3
to 32 bits. The serial ports offer selectable synchronization and transmit
modes. Serial port clocks and frame syncs can be internally or externally
generated.

Serial Peripheral (Compatible) Interface (SPI). The SPI is an industry
standard synchronous serial link that enables the SPI-compatible port to
communicate with other SPI-compatible devices. SPI is an interface con-
sisting of two data pins, one device select pin, and one clock pin. It is a
full-duplex synchronous serial interface, supporting both master and slave
modes. It can operate in a multimaster environment by interfacing with
up to four other SPI-compatible devices, either acting as a master or slave
device.

The SPI-compatible peripheral implementation also supports programma-
ble baud rate and clock phase/polarities, as well as the use of open drain
drivers to support the multimaster scenario to avoid data contention.

SDRAM Controller. The SDRAM controller provides an interface of up
to four separate banks of industry-standard SDRAM devices or DIMMs,
at speeds up to fSCLK. Fully compliant with the SDRAM standard, each
bank has it’s own memory select line (MS0–MS3), and can be configured to
contain between 16M bytes and 256M bytes of memory.

ADSP-21368 SHARC Processor Hardware Reference 1-9

Introduction

ROM-Based Security. For those processors with application code in the
on-chip ROM, an optional ROM security feature is included. This feature
provides hardware support for securing user software code by preventing
unauthorized reading from the enabled code. The processor does not
boot-load any external code, executing exclusively from internal ROM.
Also, the processor is not freely accessible via the JTAG port. Instead, a
64-bit key is assigned to the user. This key must be scanned in through the
JTAG or Test Access Port. The device ignores a wrong key. Emulation
features and external boot modes are only available after the correct key is
scanned.

Digital Audio Interface (DAI)

The digital audio interface (DAI) unit is a new addition to the SHARC
processor peripherals. This set of audio peripherals consists of an interrupt
controller, an interface data port, and a signal routing unit, four precision
clock generators (PCGs) and three timers. Some family members have an
S/PDIF receiver/transmitter and eight channels asynchronous sample rate
converters (SRC).

Interrupt Controller. The DAI contains its own interrupt controller that
indicates to the core when DAI audio events have occurred. This interrupt
controller offer 32 independently configurable channels.

Input Data Port (IDP). The input data port provides the DAI with a way
to transmit data from within the DAI to the core. The IDP provides a
means for up to eight additional DMA paths from the DAI into on-chip
memory. All eight channels support 24-bit wide data and share a 16-deep
FIFO.

Signal Routing Unit One (SRU1). Conceptually similar to a “patch-bay”
or multiplexer, the SRU provides a group of registers that define the inter-
connection of the serial ports, the input data port, the DAI pins, and the
precision clock generators.

Development Tools

1-10 ADSP-21368 SHARC Processor Hardware Reference

Digital Peripheral Interface (DPI)

The digital peripheral interface (DPI) unit is a new addition to the
SHARC processor peripherals. This set of audio peripherals consists of an
interrupt controller, a two wire interface port (TWI), and a signal routing
unit, three timers and a Universal Asynchronous Receiver/Transmitter
(UART).

Interrupt Controller. The DPI contains its own interrupt controller that
indicates to the core when DPI audio events have occurred. This interrupt
controller offer 32 independently configurable channels.

Two Wire Interface (TWI). The two wire interface (TWI) controller
allows a device to interface to an Inter IC bus as specified by the Philips

I2C Bus Specification version 2.1 dated January 2000.

Universal Asynchronous Receiver/Transmitter (UART). A full-duplex
peripheral compatible with PC-style, industry-standard UARTs. The
UART converts data between serial and parallel formats. The UART
includes interrupt handling hardware. Interrupts can be generated from
12 different events.

Signal Routing Unit Two (SRU2). Conceptually similar to a “patch-bay”
or multiplexer, SRU2 provides a group of registers that define the inter-
connection of the DPI’s peripherals, the DPI pins, and the timers.

Development Tools
The ADSP-21367/8/9 and ADSP-2137x processors are supported by
VisualDSP++, an easy-to-use integrated development and debugging envi-
ronment (IDDE). VisualDSP++ allows you to manage projects from start
to finish from within a single, integrated interface. Because the project
development and debug environments are integrated, you can move easily
between editing, building, and debugging activities.

ADSP-21368 SHARC Processor Hardware Reference 1-11

Introduction

Differences From Previous Processors
This section identifies differences between the ADSP-21367/8/9 and
ADSP-2137x processors and previous SHARC processors: ADSP-21161,
ADSP-21160, ADSP-21060, ADSP-21061, ADSP-21062, and
ADSP-21065L. Like the ADSP-2116x family, the ADSP-2136x SHARC
processor family is based on the original ADSP-2106x SHARC family.
The ADSP-21367/8/9 and ADSP-2137x processors preserve much of the
ADSP-2106x architecture and is code compatible to the ADSP-21160,
while extending performance and functionality. For background informa-
tion on SHARC processors and the ADSP-2106x family DSPs, see the
ADSP-2106x SHARC User’s Manual or the ADSP-21065L SHARC DSP
Technical Reference.

I/O Architecture Enhancements
The I/O processor provides much greater throughput than that on the
ADSP-2106x processors.

The DMA controller supports up to 34 channels compared to 14 channels
on the ADSP-21161 processor. DMA transfers occur at clock speed in
parallel with full speed processor execution. The ADSP-21367/8/9 and
ADSP-2137x processors also provide delay line DMA functionality. This
allows processor reads and writes to external delay line buffers (and hence
to external memory) with limited core interaction.

In addition to the above, the ADSP-21367/8/9 and ADSP-2137x proces-
sors have up to eight serial ports (SPORTs), a 32-bit external memory
interface, a universal asynchronous transmitter/receiver (UART) and an

I2C compatible interface called the TWI (two wire interface).

Differences From Previous Processors

1-12 ADSP-21368 SHARC Processor Hardware Reference

Instruction Set Enhancements
The ADSP-21367/8/9 and ADSP-2137x processors provide source code
compatibility with the previous SHARC processor family members to the
application assembly source code level. All instructions, control registers,
and system resources available in the ADSP-2106x core programming
model are also available in the ADSP-21367/8/9 and ADSP-2137x proces-
sors. Instructions, control registers, or other facilities required to support
the new feature set of the ADSP-2116x core include:

• Code compatibility to the ADSP-21160 SIMD core

• Supersets of the ADSP-2106x programming model

• Reserved facilities in the ADSP-2106x programming model

• Symbol name changes from the ADSP-2106x programming models

These name changes can be managed through reassembly by using the
development tools to apply the ADSP-21367/8/9 and ADSP-2137x pro-
cessor symbol definitions header file and linker description file. While
these changes have no direct impact on existing core applications, system
and I/O processor initialization code and control code do require
modifications.

Although the porting of source code written for the ADSP-2106x family
to the ADSP-21367/8/9 and ADSP-2137x processors has been simplified,
code changes are required to take full advantage of the new features. For
more information, see the ADSP-2136x SHARC Processor Programming
Reference.

ADSP-21368 SHARC Processor Hardware Reference 2-1

2 I/O PROCESSOR

In applications that use extensive off-chip data I/O, programs may find it
beneficial to use a processor resource other than the processor core to per-
form data transfers. The ADSP-21367/8/9 and ADSP-2137x processors
contain an I/O processor (IOP) that supports a variety of DMA (direct
memory access) operations. Each DMA operation transfers an entire block
of data. These operations include the transfer types listed below and
shown in Figure 2-2 on page 2-25.

• Internal memory ↔ external memory devices (through the external
port)

• Internal memory ← digital audio/digital peripheral interfaces
(DAI/DPI)

• Internal memory ↔ serial port I/O

• Internal memory ↔ serial peripheral interface I/O

• Internal memory ↔ UART I/O

• Internal memory ↔ internal memory

By managing DMA, the I/O processor frees the processor core, allowing it
to perform other operations while off-chip data I/O occurs as a back-
ground task. The multibank architecture of the internal memory allows
the core and IOP to simultaneously access the internal memory if the
accesses are to different memory banks. This means that DMA transfers to
internal memory do not impact core performance. The processor core
continues to perform computations without penalty.

General Procedure for Configuring DMA

2-2 ADSP-21368 SHARC Processor Hardware Reference

To further increase off-chip I/O, multiple DMAs can occur at the same
time. The IOP accomplishes this by managing DMAs of processor mem-
ory through the TWI, UART, SPI, input data port (IDP), and serial ports.

Accesses to IOP spaces (from the processor core) should not use
Type 1 (dual access) or LW instructions.

General Procedure for Configuring DMA
To configure the ADSP-21367/8/9 and ADSP-2137x processors to use
DMA, use the following general procedure.

1. Determine which DMA options you want to use:

• IOP/core interaction method – interrupt-driven or sta-
tus-driven (polling)

• DMA transfer method – chained, non-chained, or delay line

• Channel priority scheme – fixed or rotating

2. Determine how you want the DMA to operate:

• Set up the data’s source and/or destination addresses
(INDEX)

• Set up the word COUNT (data buffer size)

• Configure the MODIFY values (step size)

3. Configure the peripheral(s):

• External port (includes AMI, SDRAM)

• Serial ports (SPORTs)

• Universal asynchronous receive/transmit (UART)

ADSP-21368 SHARC Processor Hardware Reference 2-3

I/O Processor

• Serial peripheral interface ports (SPI)

• Input data port (IDP)

4. Enable DMA

• Set the applicable bits in the appropriate control registers

For peripheral specific DMA information, see the following sections.

• “External Port DMA” on page 2-35

• “Serial Port DMA” on page 2-40

• “Serial Peripheral Interface DMA” on page 2-42

• “UART DMA” on page 2-44

• “Memory-to-Memory DMA” on page 2-48

Core Access to IOP Registers
In certain cases, extra core cycles are needed to process register accesses.
The access cycles are shown in Table 2-1 and the registers are shown in
Table 2-2.

Table 2-1. I/O Processor Stall Conditions

Type Of Access Number of Core Cycles

Core write1 1

Core read1 2

Unconditional, isolated I/O processor register
write2

1

Unconditional I/O processor register write after a
write2

2 (back-to-back)

Unconditional I/O processor register read2 7/8

Core Access to IOP Registers

2-4 ADSP-21368 SHARC Processor Hardware Reference

Aborted conditional I/O processor register
read/write 2

3

Conditional I/O processor register read/write 2 9/10

1 Applies to memory-mapped registers from Table 2-2.
2 Applies to all other memory-mapped registers not in Table 2-2.

Table 2-2. Memory-Mapped Emulation/Breakpoint Registers

Register Description Address

EEMUIN Emulator input FIFO 0x30020

EEMUSTAT Enhanced emulation status 0x30021

EEMUOUT Emulator output FIFO 0x30022

OSPID Operating system process ID 0x30023

SYSCTL System control 0x30024

BRKCTL Breakpoint control 0x30025

REVPID Emulation/revision ID 0x30026

PSA1S/E Instruction breakpoint address number 1
start/end

0x300A0/
0x300A1

PSA2S/E Instruction breakpoint address number 2
start/end

0x300A2/
0x300A3

PSA3S/E Instruction breakpoint address number 3
start/end

0x300A4/
0x300A5

PSA4S/E Instruction breakpoint address number 4
start/end

0x300A6/
0x300A7

EMUN Number of breakpoints before EMU
interrupt

0x300AE

IOAS/E I/O address breakpoint start/end 0x300B0/
0x300B1

Table 2-1. I/O Processor Stall Conditions (Cont’d)

Type Of Access Number of Core Cycles

ADSP-21368 SHARC Processor Hardware Reference 2-5

I/O Processor

In addition to the above, the following situations incur additional stall
cycles.

1. An aborted conditional I/O processor register read can cause one or
two extra core-clock stall cycles if it immediately follows a write.
Such a read is expected to take three core cycles, but it takes four or
five.

2. In case of a full write FIFO, the held-off I/O processor register read
or write access incurs one extra core-clock cycle.

3. Interrupted reads and writes, if preceded by another write, creates
an additional one core cycle stall.

Inside of an interrupt service routine (ISR), a write into an IOP register
that clears the interrupt has some latency. During this delay, the interrupt
may be generated a second time if the program executes an RTI
instruction.

For example, in the following code the interrupt isn’t cleared instanta-
neously. During the delay, if the program comes out of the ISR, the
interrupt is generated again.

/*.... code*/

dm(TXSPI) = R0; /* Write to TXSPI FIFO; disable spi;

 clears the interrupt */

rti;

DMA1S/E Data memory breakpoint address number
1 start/end

0x300B2/
0x300B3

DMA2S/E Data memory breakpoint address number
2 start/end

0x300B3/
0x300B4

PMDAS/E Program memory breakpoint address
start/end

0x300B8/
0x300B9

Table 2-2. Memory-Mapped Emulation/Breakpoint Registers (Cont’d)

Register Description Address

Configuring IOP/Core Interaction

2-6 ADSP-21368 SHARC Processor Hardware Reference

In order to resolve this issue, use one of the following methods.

1. Read an IOP register from the same peripheral block before execut-
ing the RTI. This read forces the write to occur first.

dm(TXSPI) = R0; /* Write to TXSPI FIFO */

R0 = dm(SPICTL); /* Dummy read. This read happens only

 after write */

rti;

2. Add sufficient NOP instructions after a write. In all cases, ten NOP
instructions after a write is sufficient to properly update the status.

R0 = 0x0;

dm(SPICTL) = R0; /* Disable spi */

nop; nop; nop; nop; nop;

nop; nop; nop; nop; nop;

rti;

Configuring IOP/Core Interaction
There are two methods the processor uses to monitor the progress of
DMA operations—interrupts, which are the primary method, and status
polling. The same program can use either method for each DMA channel.
The following sections describe both methods in detail.

Interrupt-Driven I/O
Interrupts are generated at the end of a DMA transfer. This happens when
the count register for a particular channel decrements to zero. The default
interrupt vector locations for each of the channels are listed in Table 2-3
on page 2-9. The interrupt register diagrams and bit descriptions are given
in Appendix B, Interrupts and “DAI Interrupt Controller Registers” on
page A-112.

ADSP-21368 SHARC Processor Hardware Reference 2-7

I/O Processor

The processors also have programmable interrupts using the
peripheral interrupt priority control registers, PICRx. For more
information, see “Peripheral Interrupt Priority Control Registers”
on page A-164.

Programs can check the appropriate status or configuration register to
determine which channels are performing a DMA or chained DMA.

All DMA channels can be active or inactive. If a channel is active, a DMA
is in progress on that channel. The I/O processor indicates the active sta-
tus by setting the channel’s bit in the status register. The only exception to
this is the IDP_DMAx_STAT bits of the DAI_STAT register can become active
even if DMA, through some IDP channel, is not intended.

The following are some other I/O processor interrupt attributes.

• When an unchained (single block) DMA process reaches comple-
tion (as the count decrements to zero) on any DMA channel, the
I/O processor latches that DMA channel’s interrupt. It does this by
setting the DMA channel’s interrupt latch bit in the IRPTL, LIRPTL,
DAI_IRPTL_H, or DAI_IRPTL_L registers.

• For chained DMA, the I/O processor generates interrupts in one of
two ways:
If PCI = 1, bit 19 of the chain pointer register is the program con-
trolled interrupts bit and an interrupt occurs for each DMA in the
chain.
If PCI = 0, an interrupt occurs at the end of a complete chain. (For
more information on DMA chaining, see “DMA Controller Oper-
ation” on page 2-13.)

• When a DMA channel’s buffer is not being used for a DMA pro-
cess, the I/O processor can generate an interrupt on single word
writes or reads of the buffer. This interrupt service differs slightly
for each port. For more information on single-word inter-
rupt-driven transfers, see “Serial Port Control Registers (SPCTLx)”
on page 5-59.

Configuring IOP/Core Interaction

2-8 ADSP-21368 SHARC Processor Hardware Reference

During interrupt-driven DMA, programs use the interrupt mask bits in
the IMASK, LIRPTL, DAI_IRPTL_PRI, DAI_IRPTL_RE, and DAI_IRPTL_FE reg-
isters to selectively mask DMA channel interrupts that the I/O processor
latches into the IRPTL, LIRPTL, DAI_IRPTL_H, and DAI_IRPTL_L registers.

The I/O processor only generates a DMA complete interrupt when
the channel’s count register decrements to zero as a result of actual
DMA transfers. Writing zero to a count register does not generate
the interrupt. To stop a DMA preemptively, write a one to the
count register. This causes one more word to be transferred or
received and an interrupt is then generated.

A channel interrupt mask in the IMASK, LIRPTL, DAI_IRPTL_PRI,
DAI_IRPTL_RE, and DAI_IRPTL_FE registers determines whether a latched
interrupt is to be serviced or not. When an interrupt is masked, it is
latched but not serviced. For more information on the IMASK and LIRPTL
registers, see “Interrupt Registers” on page B-6.

By clearing a channel’s PCI bit during chained DMA, programs
mask the DMA complete interrupt for a DMA process within a
chained DMA sequence.

The I/O processor can also generate interrupts for I/O port operations
that do not use DMA. In this case, the I/O processor generates an inter-
rupt when data becomes available at the receive buffer or when the
transmit buffer is not full (when there is room for the core to write to the
buffer). Generating interrupts in this manner lets programs implement
interrupt-driven I/O under control of the processor core. Care is needed
because multiple interrupts can occur if several I/O ports transmit or
receive data in the same cycle.

The digital audio interface (DAI) has two interrupts—the lower priority
option (DAILI) and higher priority option (DAIHI). This allows two inter-
rupts to have priorities that are higher and lower than serial ports.

ADSP-21368 SHARC Processor Hardware Reference 2-9

I/O Processor

Table 2-3. Default DMA Interrupt Vector Locations

Associated Register(s) Bits Vector
Address

Interrupt
Name

DMA
Channel

Data Buffer

IRPTL/IMASK 14 0x38 SP1I 0 RXSP1A, TXSP1A

LIRPTL 0 0x44 SP0I 2 RXSP0A, TXSP0A

IRPTL/IMASK 15 0x3C SP3I 4 RXSP3A, TXSP3A

LIRPTL 1 0x48 SP2I 6 RXSP2A, TXSP2A

IRPTL/IMASK 16 0x40 SP5I 8 RXSP5A, TXSP5A

LIRPTL 2 0x4C SP4I 10 RXSP4A, TXSP4A

IRPTL/IMASK 5 0x58 SP7I 12 RXSP7A, TXSP7A

LIRPTL 19 0x6C SP6I 14 RXSP6A, TXSP6A

IRPTL/IMASK 14 0x38 SP1I 1 RXSP1B, TXSP1B

LIRPTL 0 0x44 SP0I 3 RXSP0B, TXSP0B

IRPTL/IMASK 15 0x3C SP3I 5 RXSP3B, TXSP3B

LIRPTL 1 0x48 SP2I 7 RXSP2B, TXSP2B

IRPTL/IMASK 16 0x40 SP5I 9 RXSP5B, TXSP5B

LIRPTL 2 0x4C SP4I 11 RXSP4B, TXSP4B

IRPTL/IMASK 5 0x58 SP7I 13 RXSP7B, TXSP7B

LIRPTL 19 0x6C SP6I 15 RXSP6B, TXSP6B

IRPTL/IMASK
(high priority option)
LIRPTL
(low priority option)

11

6

0x2C

0x5C

DAIHI

DAILI

16 IDP_FIF0
Channel 0

IRPTL/IMASK
(high priority option)
LIRPTL
(low priority option)

11

6

0x2C

0x5C

DAIHI

DAILI

17 IDP_FIF0
Channel 1

Configuring IOP/Core Interaction

2-10 ADSP-21368 SHARC Processor Hardware Reference

IRPTL/IMASK
(high priority option)
LIRPTL
(low priority option)

11

6

0x2C

0x5C

DAIHI

DAILI

18 IDP_FIF0
Channel 2

IRPTL/IMASK
(high priority option)
LIRPTL
(low priority option)

11

6

0x2C

0x5C

DAIHI

DAILI

19 IDP_FIF0
Channel 3

IRPTL/IMASK
(high priority option)
LIRPTL
(low priority option)

11

6

0x2C

0x5C

DAIHI

DAILI

20 IDP_FIF0
Channel 4

IRPTL/IMASK
(high priority option)
LIRPTL
(low priority option)

11

6

0x2C

0x5C

DAIHI

DAILI

21 IDP_FIF0
Channel 5

IRPTL/IMASK
(high priority option)
LIRPTL
(low priority option)

11

6

0x2C

0x5C

DAIHI

DAILI

22 IDP_FIF0
Channel 6

IRPTL/IMASK
(high priority option)
LIRPTL
(low priority option)

11

6

0x2C

0x5C

DAIHI

DAILI

23 IDP_FIF0
Channel 7

IRPTL/IMASK
(high priority option)

12 0x30 SPIHI 24 RXSPI, TXSPI

LIRPTL
(low priority option)

9 0x74 SPILI 25 RXSPIB, TXSPIB

IRPTL/IMASK 18 0x68 MTMI 26 MTM Read FIFO

IRPTL/IMASK UART0RXI 27 RBR0

IRPTL/IMASK UART1RXI 28 RBR1

IRPTL/IMASK UART0TXI 29 THR0

Table 2-3. Default DMA Interrupt Vector Locations (Cont’d)

Associated Register(s) Bits Vector
Address

Interrupt
Name

DMA
Channel

Data Buffer

ADSP-21368 SHARC Processor Hardware Reference 2-11

I/O Processor

For more information, see the program sequencer “Interrupts and
Sequencing” section of Chapter 3 in the ADSP-2136x SHARC Processor
Programming Reference and Appendix B, Interrupts.

Interrupt Latency in Interrupt-Driven Transfers

During an interrupt-driven I/O transfer from any peripheral that uses an
IOP interrupt service routine, a write into an IOP register to clear the
interrupt causes a certain amount of latency. If the program comes out of
the interrupt service routine during that period of latency, the interrupt is
generated again.

To avoid the interrupt from being regenerated, use one of the following
solutions.

1. Read an IOP register from the same peripheral block before the
return from interrupt (RTI). The read forces the write to occur as
shown in the example code below.

isr_code:

 R0 = 0x0;

 dm(SPICTL) = R0; /* disable SPI */

 R0 = dm(SPICTL); /* dummy read, occurs only after

 write */

 rti;

IRPTL/IMASK UART1TXI 30 THR1

LIRPTL 0x50 EPDMA 31 EPDF0

LIRPTL EPDMA 32 EPTF0

LIRPTL 0x50 EPDMA 33 EPDF1

IRPTL/IMASK MTMI 34 MTM Write FIFO

Table 2-3. Default DMA Interrupt Vector Locations (Cont’d)

Associated Register(s) Bits Vector
Address

Interrupt
Name

DMA
Channel

Data Buffer

Configuring IOP/Core Interaction

2-12 ADSP-21368 SHARC Processor Hardware Reference

2. Add sufficient NOP instructions after a write. In the worst case pro-
grams need to add ten NOP instructions after a write as shown in the
example code below.

 isr_code:
 R0 = 0x0;

 dm(SPICTL) = R0; /* disable SPI */

 nop; nop; nop; nop; nop;

 nop; nop; nop; nop; nop;

 rti;

3. Read a status register from the same peripheral block to check
whether the interrupt has cleared.

Polling/Status-Driven I/O
The second method of controlling I/O is through status polling. The I/O
processor monitors the status of data transfers on DMA channels and indi-
cates interrupt status in the IRPTL, LIRPTL, DAI_IRPTL_H, and DAI_IRPTL_L
registers. Note that because polling uses processor resources it is not as
efficient as an interrupt-driven system. Also note that polling the DMA
status registers reduces I/O bandwidth. The following provide more infor-
mation on the registers that control and monitor I/O processes.

• All the bits in the IRPTL and LIRPTL registers are shown in “Inter-
rupt Latch Register (IRPTL)” on page B-13 and “Interrupt
Register (LIRPTL)” on page B-6.

• Figure A-44 on page A-114 lists all the bits in the DAI_IRPTL_H and
DAI_IRPTL_L registers.

The DMA controller in the ADSP-21367/8/9 and ADSP-2137x proces-
sors maintains the status information of the channels in each of the
peripherals registers, SPMCTLx, EPDMACTL, DAI_STAT, DPI_PIN_STAT,
RXSTAT_UACx, TXSTAT_UACx and SPIDMAC. More information on these regis-
ters can be found at the following locations.

ADSP-21368 SHARC Processor Hardware Reference 2-13

I/O Processor

• Bit definitions for the SPIDMAC register are illustrated in “SPI Port
Status (SPISTAT, SPISTATB) Registers” on page A-56.

• Bit definitions for the SPMCTLx register are illustrated in “SPORT
Multichannel Control Registers (SPMCTLx)” on page A-40.

• Bit definitions for the DAI_STAT register are illustrated in
Figure A-41 on page A-110.

Note that there is a one-cycle latency between a change in DMA channel
status and the status update in the corresponding register.

DMA Controller Operation
There are two methods you can use to start DMA sequences: chaining and
non-chaining.

Non-chained DMA. To start a new DMA sequence after the current one
is finished, a program must first clear the DMA enable bit, write new
parameters to the index, modify, and count registers, then set the DMA
enable bit to re-enable DMA.

Chained DMA. Chained DMA sequences are a set of multiple DMA
operations, each autoinitializing the next in line. To start a new DMA
sequence after the current one is finished, the IOP automatically loads
new index, modify, and count values from an internal memory location
pointed to by that channel’s chain pointer register. Using chaining, pro-
grams can set up consecutive DMA operations and each operation can
have different attributes.

Chaining is only supported on the SPI and SPORT DMA chan-
nels. The IDP port does not support chaining.

Configuring IOP/Core Interaction

2-14 ADSP-21368 SHARC Processor Hardware Reference

In general, a DMA sequence starts when one of the following occurs:

• Chaining is disabled, and the DMA enable bit transitions from low
to high.

• Chaining is enabled, DMA is enabled, and the chain pointer regis-
ter address field is written with a nonzero value. In this case, TCB
chain loading of the channel parameter registers occurs first.

• Chaining is enabled, the chain pointer register address field is non-
zero, and the current DMA sequence finishes. Again, TCB chain
loading occurs.

A DMA sequence ends when one of the following occurs:

• The count register decrements to zero, and the chain pointer regis-
ter is zero.

• Chaining is disabled and the channel’s DMA enable bit transitions
from high to low. If the DMA enable bit goes low (=0) and chain-
ing is enabled, the channel enters chain insertion mode and the
DMA sequence continues. For more information, see “Inserting a
TCB in an Active Chain” on page 2-41.

Once a program starts a DMA process, the process is influenced by two
external controls—DMA channel priority and DMA chaining. For more
information, see “Managing DMA Channel Priority” on page 2-19 or
“Chaining DMA Processes” below.

Chaining DMA Processes

The location of the DMA parameters for the next sequence comes from
the chain pointer register. In chained DMA operations, the processor
automatically initializes and then begins another DMA transfer when the
current DMA transfer is complete. In addition to the standard DMA
parameter registers, each DMA channel (SPORT, eternal port, UART and
SPI) also has a chain pointer register that points to the next set of DMA

ADSP-21368 SHARC Processor Hardware Reference 2-15

I/O Processor

parameters stored in the processor’s internal memory. These are the
CPSPxy registers for the SPORTs, the CPEP register for the external port,
the RXCP_UACx registers for the UART, and the CPSPI register for the SPI.
Each new set of parameters is stored in a four-word, user-initialized buffer
in internal memory known as a transfer control block (TCB).

The structure of a TCB is conceptually the same as that of a traditional
linked list. Each TCB has several data values and a pointer to the next
TCB. Further, the chain pointer of a TCB may point to itself to con-
stantly reiterate the same DMA.

A DMA sequence is defined as the sum of the DMA transfers for a single
channel, from when the parameter registers initialize to when the count
register decrements to zero. Each DMA channel has a chaining enable bit
(CHEN) in the corresponding control register. This bit must be set to one to
enable chaining. When chaining is enabled, DMA transfers are initiated
by writing a memory address to the chain pointer register. This is also an
easy way to start a single DMA sequence, with no subsequent chained
DMAs.

The chain pointer register can be loaded at any time during the DMA
sequence. This allows a DMA channel to have chaining disabled (chain
pointer register address field = 0x0000) until some event occurs that loads
the chain pointer register with a nonzero value. Writing all zeros to the
address field of the chain pointer register also disables chaining.

If chaining is enabled on a DMA channel, programs should not use poll-
ing to determine channel status as it can provide inaccurate information.
In this case, the DMA appears inactive if it is sampled while the next
transfer control block (TCB) is loading.

Chained DMA operations may only occur within the same chan-
nel. The processor does not support cross-channel chaining.

The chain pointer register is 20 bits wide. The lower 19 bits are the mem-
ory address field. Like other I/O processor address registers, the chain
pointer register’s value is offset to match the starting address of the

Configuring IOP/Core Interaction

2-16 ADSP-21368 SHARC Processor Hardware Reference

processor’s internal memory before it is used by the I/O processor. On the
ADSP-21367/8/9 and ADSP-2137x processors, this offset value is
0x0008 0000.

Bit 19 of the chain pointer register is the program-controlled interrupts
(PCI) bit. This bit controls whether an interrupt is latched after every
DMA in the chain (when set), or whether the interrupt is latched after the
entire DMA sequence completes (if cleared).

The PCI bit only effects DMA channels that have chaining enabled.
Also, interrupt requests enabled by the PCI bit are maskable with
the IMASK register.

Because the PCI bit is not part of the memory address in the chain pointer
register, programs must use care when writing and reading addresses to
and from the register. To prevent errors, programs should mask out the
PCI bit (bit 19) when copying the address in a chain pointer register to
another address register.

The DMA registers are shown in Figure 2-1.

Transfer Control Block Chain Loading (TCB)

During TCB chain loading, the I/O processor loads the DMA channel
parameter registers with values retrieved from internal memory. The
address in the chain pointer register points to the highest address of the
TCB (containing the index parameter). This means that if a program
declares an array to hold the TCB, the chain pointer register should not
point to the first location of the array.

Table 2-4 shows the TCB-to-register loading sequence for the serial port
and SPI port DMA channels. The I/O processor reads each word of the
TCB and loads it into the corresponding register. Programs must set up
the TCB in memory in the order shown in Table 2-4, placing the index
parameter at the address pointed to by the chain pointer register of the

ADSP-21368 SHARC Processor Hardware Reference 2-17

I/O Processor

previous DMA operation of the chain. The end of the chain (no further
TCBs are loaded) is indicated by a TCB with a chain pointer register value
of zero.

Figure 2-1. DMA Parameter Registers

PCI Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CPx

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EIPP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EMPP

ECPP

Program – Controlled Interrupt Bit
If this bit is set, the I/O processor generates a
DMA interrupt after every DMA in the chain.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IIx

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMx

Cx

Configuring IOP/Core Interaction

2-18 ADSP-21368 SHARC Processor Hardware Reference

A TCB chain load request is prioritized like all other DMA operations.
The I/O processor latches a TCB loading request and holds it until the
load request has the highest priority. If multiple chaining requests are
present, the I/O processor services the TCB registers for the highest priority
DMA channel first. A channel that is in the process of chain loading can-
not be interrupted by a higher priority channel. For a list of DMA
channels in priority order, see Table 2-7 on page 2-32.

Setting Up DMA Channel Allocation and Priorities
There are between 24 and 34 channels of DMA available on the
ADSP-21367/8/9 and ADSP-2137x processors, depending on the proces-
sor model. The maximum number is configured as—16 via the serial
ports, 8 via the input data port, 4 for the UARTs, 2 for the SPI interface,
2 for the external port, and 2 for memory-to-memory transfers. Each
channel has a set of parameter registers which are used to set up DMA

Table 2-4. TCB Chain Loading Sequence1

Address2 External Port Serial Ports SPI Port

CPSPx + 0x0008 0000 See Table 2-9, Table 2-10,
Table 2-11

IISPx IISPI

CPSPx – 1 + 0x0008 0000 IMSPx IMSPI

CPSPx – 2 + 0x0008 0000 CSPx CSPI

CPSPx – 3 + 0x0008 0000 CPSPx CPSPI

CPSPx – 4 + 0x0008 0000

CPSPx – 5 + 0x0008 0000

CPSPx – 6 + 0x0008 0000

1 Chaining is not available using the IDP port.
2 An “x” denotes the DMA channel used. While the TCB is eight locations in length, SPI and serial

ports only use the first four locations.

ADSP-21368 SHARC Processor Hardware Reference 2-19

I/O Processor

transfers. Table 2-5 shows the DMA channel allocation and parameter
register assignments for the ADSP-21367/8/9 and ADSP-2137x
processors.

DMA channels vary by processor model. For a breakdown of DMA
channels for a particular model, see the processor specific data
sheet.

Managing DMA Channel Priority

The DMA channel prioritization scheme ranks channel 0 as highest prior-
ity and channel 34 as the lowest priority. Table 2-7 on page 2-32 lists the
DMA channels in priority order. When a channel becomes the highest
priority requester, the I/O processor services the channel’s request. In the
next clock cycle, the I/O processor starts the DMA transfer.

The I/O data (IOD) bus is 32 bits wide and is the only path that the IOP
uses to transfer data between internal memory and the peripherals. When
there are two or more peripherals with active DMAs in progress, they may
all require data to be moved to or from memory in the same cycle. For
example, the input data port may fill its RXPP buffer just as a SPORT shifts
a word into its RXn buffer. To determine which word is transferred first,
the DMA channels for each of the processor’s I/O ports negotiate channel
priority with the I/O processor using an internal DMA request/grant
handshake.

Each I/O port has one or more DMA channels, and each channel has a
single request and a single grant. When a particular channel needs to read
or write data to internal memory, the channel asserts an internal DMA
request. The I/O processor prioritizes the request with all other valid
DMA requests. When a channel becomes the highest priority requester,
the I/O processor asserts the channel’s internal DMA grant. In the next
clock cycle, the DMA transfer starts. Figure 2-3 on page 2-30 shows the
paths for internal DMA requests within the I/O processor.

Configuring IOP/Core Interaction

2-20 ADSP-21368 SHARC Processor Hardware Reference

If a DMA channel is disabled (EPDEN, SPIDEN, SDEN, or IDP_DMA_EN
bits =0), the I/O processor does not issue internal DMA grants to
that channel (whether or not the channel has data to transfer).

The default DMA channel priority is fixed prioritization by DMA channel
group (serial ports, TWI, UART, IDP, or SPI port). Table 2-7 on
page 2-32 lists the DMA channels in descending order of priority.

For information on programming serial port priority modes, see
Table 5-11 on page 5-74.

The I/O processor determines which DMA channel has the highest prior-
ity internal DMA request during every cycle between each data transfer.

Processor core accesses of I/O processor registers and TCB chain loading
(both of which occur after the IOD transfer) are subject to the same prior-
itization scheme as the DMA channels. Applying this scheme uniformly
prevents I/O bus contention, because these accesses are also performed
over the internal I/O bus. For more information, see “Chaining DMA
Processes” on page 2-14.

DMA Bus Arbitration

DMA channel arbitration is the method that the IOP uses to determine
how groups rotate priority with other channels. This feature is enabled by
setting the DCPR bit in the IOP’s SYSCTL register.

DMA-capable peripherals execute DMA data transfers to and from inter-
nal memory over the IOD bus. When more than one of these peripherals
requests access to the IOD bus in a clock cycle, the bus arbiter, which is
attached to the IOD bus, determines which master should have access to
the bus and grants the bus to that master.

ADSP-21368 SHARC Processor Hardware Reference 2-21

I/O Processor

IOP channel arbitration can be set to use either a fixed or rotating algo-
rithm by setting or clearing bit 7 (DCPR) in the SYSCTL register:

• fixed SYSCTL[7] cleared (0)

• rotating SYSCTL[7] set (1)

In the fixed priority scheme, the lower indexed peripheral has the highest
priority.

In the rotating priority scheme, the default priorities at reset are the same
as that of the fixed priority. However, the peripheral priority is deter-
mined by group, not individually. Peripheral groups are shown in
Table 2-5.

Initially, group A has the highest priority and group F the lowest. As one
group completes its DMA operation, it is assigned the lowest priority
(moves to the back of the line) and the next group is given the highest
priority.

When none of the peripherals request bus access, the highest priority
peripheral, for example, peripheral#0, is granted the bus. However, this
does not change the currently assigned priorities to various peripherals.

Within a peripheral group the priority is highest for the higher indexed
peripheral (see Table 2-5). For example, in SP01 (which is in group A),
SP1 has the highest priority.

Table 2-5. DMA Channel Allocation and Parameter Register
Assignments

DMA
Channel
Number

Data Buffer Group IOP Address of
Data Buffers

Description

0 (highest
priority)

RXSP1A, TXSP1A A 0xC65, 0xC64 Serial Port 1A Data

1 RXSP1B, TXSP1B A 0xC67, 0xC66 Serial Port 1B Data

Configuring IOP/Core Interaction

2-22 ADSP-21368 SHARC Processor Hardware Reference

2 RXSP0A, TXSP0A A 0xC61, 0xC60 Serial Port 0A Data

3 RXSP0B, TXSP0B A 0xC63, 0xC62 Serial Port 0B Data

4 RXSP3A, TXSP3A B 0x465, 0x464 Serial Port 3A Data

5 RXSP3B, TXSP3B B 0x467, 0x466 Serial Port 3B Data

6 RXSP2A, TXSP2A B 0x461, 0x460 Serial Port 2A Data

7 RXSP2B, TXSP2B B 0x463, 0x462 Serial Port 2B Data

8 RXSP5A, TXSP5A C 0x865, 0x864 Serial Port 5A Data

9 RXSP5B, TXSP5B C 0x867, 0x866 Serial Port 5B Data

10 RXSP4A, TXSP4A C 0x861, 0x860 Serial Port 4A Data

11 RXSP4B, TXSP4B C 0x863, 0x862 Serial Port 4B Data

12 RXSP7A, TXSP7A C 0x04865,
0x04864

Serial Port 7A Data

13 RXSP7B, TXSP7B C 0x04867,
0x04866

Serial Port 7B Data

14 RXSP6A, TXSP6A C 0x04861 or
0x04860

Serial Port 6A Data

15 RXSP6B, TXSP6B C 0x04863 or
0x04862

Serial Port 6B Data

16 IDP_FIF0 D 0x24D0 DAI IDP Channel 0

17 IDP_FIF0 D 0x24D0 DAI IDP Channel 1

18 IDP_FIF0 D 0x24D0 DAI IDP Channel 2

19 IDP_FIF0 D 0x24D0 DAI IDP Channel 3

20 IDP_FIF0 D 0x24D0 DAI IPD Channel 4

21 IDP_FIF0 D 0x24D0 DAI IDP Channel 5

Table 2-5. DMA Channel Allocation and Parameter Register
Assignments (Cont’d)

DMA
Channel
Number

Data Buffer Group IOP Address of
Data Buffers

Description

ADSP-21368 SHARC Processor Hardware Reference 2-23

I/O Processor

22 IDP_FIF0 D 0x24D0 DAI IDP Channel 6

23 IDP_FIF0 D 0x24D0 DAI IDP Channel 7

24 RXSPI, TXSPI E 0x1004, 0x1003 SPI Data

25 RXSPIB, TXSPIB G 0x2804, 0x2803 SPI Data

26 MTM Read FIFO G Not accessible Memory-to-Memory
Read Data

27 THR0 G 0x3C00 UART0 Transmit
Holding Register

28 RBR0 G 0x3C00 UART0 Receive Buffer
Register

29 THR1 G 0x4000 UART1 Transmit
Holding Register

30 RBR1 G 0x4000 UART1 Receive Buffer
Register

31 EPDF0 G 0x182C External Port Channel0
Data FIFO

32 EPTF0 G 0x182D External Port Channel0
Tap List FIFO

33 EPDF1 G 0x183C External Port Channel1
Data FIFO

34 EPTF1 G 0x183D External Port Channel1
Tap List FIFO

35 (lowest
priority)

MTM Write FIFO G Not accessible Memory-to Memory
Write Data

Table 2-5. DMA Channel Allocation and Parameter Register
Assignments (Cont’d)

DMA
Channel
Number

Data Buffer Group IOP Address of
Data Buffers

Description

Setting Up DMA Parameter Registers

2-24 ADSP-21368 SHARC Processor Hardware Reference

Setting Up DMA Parameter Registers
Once you have determined and configured the DMA options, you can
configure the DMA parameter registers. The parameter registers control
the source and destination of the data, the size of the data buffer, and the
step size used. These topics are described in detail in the following
sections.

DMA Transfer Direction
DMA transfers between internal memory and external memory devices use
the processor’s external port. For these types of transfers, a program pro-
vides the DMA controller with the internal memory buffer size, address,
and address modifier, as well as the external memory buffer size, address
and address modifier and the direction of transfer. After setup, the DMA
transfers begin when the program enables the channel and continues until
the I/O processor transfers the entire buffer to processor memory.
Table 2-6 on page 2-29 shows the parameter registers for each DMA
channel.

Similarly, DMA transfers between internal memory and serial, IDP or SPI
ports have DMA parameters. When the I/O processor performs DMA
between internal memory and one of these ports, the program sets up the
parameters, and the I/O uses the port instead of the external bus.

Additionally, the ADSP-21367/8/9 and ADSP-2137x processors can use
DMA to transfer 64-bit blocks of data between internal memory locations.

The direction (receive or transmit) of the peripheral determines the direc-
tion of data transfer. When the port receives data, the I/O processor
automatically transfers the data to internal memory. When the port needs
to transmit a word, the I/O processor automatically fetches the data from
internal memory. Figure 2-2 shows the processor’s I/O processor, related
ports, and buses. Figure 2-3 on page 2-30 shows more detail on DMA
channel data paths.

ADSP-21368 SHARC Processor Hardware Reference 2-25

I/O Processor

Data Buffer Registers
Figure 2-2 shows the data buffer registers for each port. These registers
include:

• Serial port receive buffers (RXSPx). These receive buffers for the
serial ports have two-position FIFOs for receiving data when con-
nected to another serial device.

Figure 2-2. I/O Processor Block Diagram

ID P

ID P F IFO
8 D E E P

E X TE R N E L
P O R T

EX TE R N A L
A D D R E SS

G EN E R A TO R

TX SP 5A -0A ,
TX SP 5B -0B ,
R X S P5A -0A ,
R X SP 5B -0B

(2 D E E P)

SP O R T S

SP I P O R T

R X S P I, T XS P I
(1 D EE P EA C H)

S PI
D M A
FIFO

(4 D EE P)

IO D B U S

IIS PI, IM S PI,
C S P I, C P S PI

S PI

IIS P7A -0A ,
IIS P7B -0B ,

IM SP 7A -0A ,
IM S P 7B -0B
C S P7A -0A ,
C S P7B -0B ,

C PS P 7A -0A ,
C P SP 7B -0B

S P O R T

IO A B U S

IN T ER N A L
D M A

P R IO R IT IZE R

D M D , P M D
B U S ES (T O C O R E)

I/O P R O C E S S O R

ID P _D M A _Ix
ID P _D M A _M x
ID P _D M A _C x

ID P

M U X M U X

U A R T

U A R T xR XC T L , IIU A R TxR X
IM U A R TxR X, C U A R TxR X

C PU A R T xR X, U A R T xR XS TA T
U A R TxT XC T L , IIU A R TxTX
IM U A R T xT X, C U A R TxTX

C P U A R TxT X, U A R T xTXS TA T

E XT ER N A L
PO R T

E IEP x , E M E P x
E C E P x, IIE P x
IM E Px , IC E P x
C E P x , C PE P x

E B E Px , T PE P x
E LE P x

D F EP 0 (D A TA F IFO)
TFE P 0 (TA P L IS T FIFO)

Setting Up DMA Parameter Registers

2-26 ADSP-21368 SHARC Processor Hardware Reference

• Serial port transmit buffers (TXSPx). These transmit buffers for the
serial ports have two-position FIFOs for transmitting data when
connected to another serial device.

• SPI receive buffers (RXSPI, RXSPIB). These receive buffers for the
SPI ports have a single-position buffer for receiving data when con-
nected to another serial device.

• SPI transmit buffers (TXSPI, TXSPIB). These transmit buffers for
the SPI ports have a single-position buffer for transmitting data
when connected to another serial device.

• Input data port buffers (IDP_FIFO). This receive buffer for the
input data port has eight-position buffers for receiving data when
connected to another device.

Port, Buffer, and DMA Control Registers
The port, buffer, and DMA control registers in Figure 2-2 shows the con-
trol registers for the ports and DMA channels. These registers include:

• External port control registers (DMACx). These are the control regis-
ters for the external port DMA channels.

• Input data port control register (IDP_CTL). This is the control reg-
ister for the input data ports.

• Serial port control registers (SPCTLx, SPMCTLx). These control reg-
isters select the receive or transmit format, monitor FIFO status,
enable chaining, and start DMA for each serial port.

• SPI port control registers (SPICTL, SPICTLB). These control regis-
ters configure and enable the two SPI interfaces, selecting the
devices as masters or slaves, and determine the data transfer and
word size. The SPIDMAC and SPIDMACB registers also control SPI
DMA and FIFO status.

ADSP-21368 SHARC Processor Hardware Reference 2-27

I/O Processor

• Universal asynchronous receiver/transmitter registers
(RXCTL_UACx, TXCTL_UACx). These control registers configure and
enable the UART receiver and transmitter DMA, (chaining and
non chaining).

• Memory-to-memory DMA control register (MTMCTL). This control
register contains the MTM DMA read and write channel enable
and status bits.

Table 2-6 shows the parameter registers for each DMA channel. These
registers function similarly to data address generator registers and include:

• Internal index registers (IISPx, IISPI, IISPIB, IIEP, IDP_DMA_Ix,
RXI_UAC/TXI_UAC). Index registers provide an internal memory
address, acting as a pointer to the next internal memory DMA read
or write location.

• Internal modify registers (IMSPx, IMEP, IMSPI, IMSPIB, IDP_DMA_Mx,
RXM_UAC/TXM_UAC). Modify registers provide the signed increment
by which the DMA controller post-modifies the corresponding
internal memory index register after the DMA read or write.

• Count registers (CSPx, ICEP, CSPI, CSPIB, IDP_DMA_Cx,
RXC_UAC/TXC_UAC). Count registers indicate the number of words
remaining to be transferred to or from internal memory on the cor-
responding DMA channel.

• Chain pointer registers (CPSPx, CPSPI, CPSPIB, CPEP,
RXCP_UAC/TXCP_UAC). Chain pointer registers hold the starting
address of the TCB (parameter register values) for the next DMA
operation on the corresponding channel. These registers also con-
trol whether the I/O processor generates an interrupt when the
current DMA process ends.

• External index registers (EIEPx). Index registers provide an exter-
nal memory address, acting as a pointer to the next external
memory DMA read or write location.

Setting Up DMA Parameter Registers

2-28 ADSP-21368 SHARC Processor Hardware Reference

• External modify registers (EMEPx). Modify registers provide the
increment by which the DMA controller post-modifies the corre-
sponding external memory index register after the DMA read or
write.

• External count registers (ECEPx). External count registers indicate
the number of words remaining to be transferred to or from exter-
nal memory on the corresponding DMA channel.

• Memory-to-memory write index register (IIMTMW). This register
provides the base address in memory where DMA writes start.

• Memory-to-memory write modify register (IMMTMW). The MTM
modify register modifies the write index register after each 32-bit
write.

• Memory-to-memory write counter register (CMTMW). The MTM
counter register indicates the quantity of 32-bit data to be trans-
ferred to memory. The counter is decremented by one after each
data write.

• Memory-to-memory read index register (IIMTMR). This register
provides the base address in memory where DMA reads start.

• Memory-to-memory read modify register (IMMTMR). The MTM
modify register modifies the write index register after each 32-bit
read.

• Memory-to-memory read counter register (CMTMR). The MTM
counter register indicates the quantity of 32-bit data to be read
from memory. The counter is decremented by one after each data
write.

ADSP-21368 SHARC Processor Hardware Reference 2-29

I/O Processor

Addressing
Figure 2-3 shows a block diagram of the I/O processor’s address generator
(DMA controller). Table 2-6 lists the parameter registers for each DMA
channel. The parameter registers are uninitialized following a processor
reset.

The I/O processor generates addresses for DMA channels much the same
way that the data address generators (DAGs) generate addresses for data
memory accesses. Each channel has a set of parameter registers including
an index register and modify register that the I/O processor uses to address
a data buffer in internal memory. The index register must be initialized
with a starting address for the data buffer. As part of the DMA operation,
the I/O processor outputs the address in the index register onto the pro-
cessor’s I/O address bus and applies the address to internal memory
during each DMA cycle—a clock cycle in which a DMA transfer is taking
place.

Table 2-6. DMA Parameter Registers

Register Function Width Description

IIy Internal Index Register 19 bits Address of buffer in internal
memory

IMxy Internal Modify Register 16 bits1 Stride for internal buffer

Cxy Internal Count Register 16 bits Length of internal buffer

CPxy Chain Pointer Register 20 bits Chain pointer for DMA
chaining

EIEP External Index Register 19 bits Address of buffer in external
memory

EMEP External Modify Register 16 bits Stride for external buffer

ECEP External Count Register 16 bits Length of external buffer

1 IDP_DMA_Mx registers are 6 bits wide only.

Setting Up DMA Parameter Registers

2-30 ADSP-21368 SHARC Processor Hardware Reference

All addresses in the index registers are offset by a value that matches the
processor’s first internal normal word addressed RAM location (before the
I/O processor uses the addresses). For the ADSP-21367/8/9 and
ADSP-2137x processors, this offset value is 0x0008 0000.

Figure 2-3. DMA Address Generator

LOCAL BUS

IMX
MODIFIER

INTERNAL
MEMORY
ADDRESS

DMA ADDRESS GENERATOR (INTERNAL ADDRESSES)

LOCAL BUS

CX
COUNT

CPX
CHAIN POINTER

MUX

DMA WORD COUNTER

– 1

WORKING REGISTER

IIX
INDEX (ADDRESS)

+/-
POST-MODIFY

+

LOCAL BUS

EMPP
EXT. MODIFIER

ECPP
EXT. COUNT

– 1

EXTERNAL
MEMORY
ADDRESS

POST-MODIFY

EIPP
EXT. INDEX (ADDRESS)

DMA ADDRESS GENERATOR (EXTERNAL ADDRESSES)

+
+

ADSP-21368 SHARC Processor Hardware Reference 2-31

I/O Processor

The following rules for data transfers must be followed.

• DMA addresses must always be normal word (32-bit) memory.

• Internal memory data transfer sizes are 32 bits, while external data
transfer sizes may be 32, 16, or 8 bits.

• The I/O processor can transfer short word data (16-bit) using the
packing capability of the serial port and SPI port DMA channels.

After transferring each data word to or from internal memory, the I/O
processor adds the modify value to the index register to generate the
address for the next DMA transfer and writes the modified index value to
the index register. The modify value in the modify register is a signed inte-
ger, which allows both increment and decrement modifies. The modify
value can have any positive or negative integer value. Note that:

• If the I/O processor modifies the index register past the maximum
18-bit value to indicate an address out of internal memory, the
index wraps around to zero. With the offset for the ADSP-2136x
SHARC processor processors, the wraparound address is
0x0008 0000.

• If a DMA channel is disabled, the I/O processor does not service
requests for that channel, (whether or not the channel has data to
transfer).

If a program loads the count register with zero, the I/O processor
does not disable DMA transfers on that channel. The I/O proces-
sor interprets the zero as a request for 216 transfers. This count
occurs because the I/O processor starts the first transfer before test-
ing the count value. The only way to disable a DMA channel is to
clear its DMA enable bit.

The processor’s 34 DMA channels are numbered as shown in Table 2-7.
This table also shows the control, parameter, and data buffer registers that
correspond to each channel.

Setting Up DMA Parameter Registers

2-32 ADSP-21368 SHARC Processor Hardware Reference

In the serial port pair SP0/1, SP1 has a higher priority. For multichannel
pairs, the odd numbered channels have a higher priority (for example SP3,
SP5).

Table 2-7. DMA Channel Registers: Controls, Parameters,
and Buffers

DMA
Channel
Number

Control Registers Parameter Registers Buffer Registers Description

0 SPCTL1 IISP1A, IMSP1A, CSP1A,
CPSP1A

RXSP1A,
TXSP1A

Serial Port
1A Data

1 SPCTL1 IISP1B, IMSP1B, CSP1B,
CPSP1B

RXSP1B,
TXSP1B

Serial Port
1B Data

2 SPCTL0 IISP0A, IMSP0A, CSP0A,
CPSP0A

RXSP0A,
TXSP0A

Serial Port
0A Data

3 SPCTL0 IISP0B, IMSP0B, CSP0B,
CPSP0B

RXSP0B,
TXSP0B

Serial Port
0B Data

4 SPCTL3 IISP3A, IMSP3A, CSP3A,
CPSP3A

RXSP3A,
TXSP3A

Serial Port
3A Data

5 SPCTL3 IISP3B, IMSP3B, CSP3B,
CPSP3B

RXSP3B,
TXSP3B

Serial Port
3B Data

6 SPCTL2 IISP2A, IMSP2A, CSP2A,
CPSP2A

RXSP2A,
TXSP2A

Serial Port
2A Data

7 SPCTL2 IISP2B, IMSP2B, CSP2B,
CPSP2B

RXSP2B,
TXSP2B

Serial Port
2B Data

8 SPCTL5 IISP5A, IMSP5A, CSP5A,
CPSP5A

RXSP5A,
TXSP5A

Serial Port
5A Data

9 SPCTL5 IISP5B, IMSP5B, CSP5B,
CPSP5B

RXSP5B,
TXSP5B

Serial Port
5B Data

10 SPCTL4 IISP4A, IMSP4A, CSP4A,
CPSP4A

RXSP4A,
TXSP4A

Serial Port
4A Data

11 SPCTL4 IISP4B, IMSP4B, CSP4B,
CPSP4B

RXSP4B,
TXSP4B

Serial Port
4B Data

ADSP-21368 SHARC Processor Hardware Reference 2-33

I/O Processor

12 SPCTL7 IISP7A, IM7P5A, CSP7A,
CPSP7A

RXSP7A,
TXSP7A

Serial Port
7A Data

13 SPCTL7 IISP7B, IMSP7B, CSP7B,
CPSP7B

RXSP7B,
TXSP7B

Serial Port
7B Data

14 SPCTL6 IISP6A, IMSP6A, CSP6A,
CPSP6A

RXSP6A,
TXSP6A

Serial Port
6A Data

15 SPCTL6 IISP6B, IMSP6B, CSP6B,
CPSP6B

RXSP6B,
TXSP6B

Serial Port
6B Data

16 IDP_CTL IDP_DMA_I0,
IDP_DMA_M0,
IDP_DMA_C0

IDP_FIFO DAI IDP
Channel 0

17 IDP_CTL IDP_DMA_I1,
IDP_DMA_M1,
IDP_DMA_C1

IDP_FIFO DAI IDP
Channel 1

18 IDP_CTL IDP_DMA_I2,
IDP_DMA_M2,
IDP_DMA_C2

IDP_FIFO DAI IDP
Channel 2

19 IDP_CTL IDP_DMA_I3,
IDP_DMA_M3,
IDP_DMA_C3

IDP_FIFO DAI IDP
Channel 3

20 IDP_CTL IDP_DMA_I4,
IDP_DMA_M4,
IDP_DMA_C4

IDP_FIFO DAI IDP
Channel 4

21 IDP_CTL IDP_DMA_I5,
IDP_DMA_M5,
IDP_DMA_C5

IDP_FIFO DAI IDP
Channel 5

22 IDP_CTL IDP_DMA_I6,
IDP_DMA_M6,
IDP_DMA_C6

IDP_FIFO DAI IDP
Channel 6

Table 2-7. DMA Channel Registers: Controls, Parameters,
and Buffers (Cont’d)

DMA
Channel
Number

Control Registers Parameter Registers Buffer Registers Description

Setting Up DMA Parameter Registers

2-34 ADSP-21368 SHARC Processor Hardware Reference

23 IDP_CTL IDP_DMA_I7,
IDP_DMA_M7,
IDP_DMA_C7

IDP_FIFO DAI IDP
Channel 7

24 SPICTL IISPI, IMSPI, CSPI, CPSPI RXSPI, TXSPI SPI Data

25 SPICTLB IISPIB, IMSPIB, CSPIB,
CPSPIB

RXSPIB,
TXSPIB

SPI B Data

26 MTMCTL IIMTMW
IMMTMW,
CMTMW

N/A MTM Write
Channel

27 MTMCTL IIMTMR,
IMMTMR,
CMTMR

N/A MTM Read
Channel

28 AMICTL EIEP0, EMEP0, ECEP0,
IIEP0, IMEP0, ICEP0,
CEP0, CPEP0, EBEP0,
TPEP0, ELEP0

DFEP0, TFEP0 External
Port
Channel 0

29 AMICTL EIEP1, EMEP1, ECEP1,
IIEP1, IMEP1, ICEP1,
CEP1, CPEP1, EBEP1,
TPEP1, ELEP1

DFEP1, TFEP1 External
Port
Channel 1

30 RXCTL_UAC0 RXI_UAC0, RXM_UAC0,
RXC_UAC0, RXCP_UAC0,
RXSTAT_UAC0

RBR0,
RBRSH_UAC0

UART0 Rx

31 RXCTL_UAC1 RXI_UAC1, RXM_UAC1,
RXC_UAC1, RXCP_UAC1,
RXSTAT_UAC1

RBR1,
RBRSH_UAC1

UART1 Rx

Table 2-7. DMA Channel Registers: Controls, Parameters,
and Buffers (Cont’d)

DMA
Channel
Number

Control Registers Parameter Registers Buffer Registers Description

ADSP-21368 SHARC Processor Hardware Reference 2-35

I/O Processor

All of the I/O processor’s registers are memory-mapped, ranging from
address 0x0000 0000 to 0x0003 FFFF. For more information on these
registers, see “I/O Processor Registers” on page A-2.

External Port DMA
The external port has two DMA channels that can use either the SDRAM
controller (SDC) or the asynchronous memory interface (AMI). The
DMA chooses the correct interface (AMI or SDC) based on the external
address as determined by bits 0–3 in the external port global control regis-
ter (EPCTL, Table A-3 on page A-11). The DMA controllers support
conventional DMA, chained and circular DMA, and delay line DMA. The
priority of the two DMA channels is fixed with external port 0 having pri-
ority over external port 1.

The DMA controllers have two FIFOs, a four deep data FIFO for
received/transmitted data and a four deep tap list FIFO for the tap list
entries for the delay line DMA.

The registers that control external port DMA are described in Table 2-8.

32 TXCTL_UAC0 TXI_UAC0, TXM_UAC0,
TXC_UAC0, TXCP_UAC0,
TXSTAT_UAC0

THR0 UART0 Tx

33 TXCTL_UAC1 TXI_UAC1, TXM_UAC1,
TXC_UAC1, TXCP_UAC1,
TXSTAT_UAC1

THR1 UART1 Tx

Table 2-7. DMA Channel Registers: Controls, Parameters,
and Buffers (Cont’d)

DMA
Channel
Number

Control Registers Parameter Registers Buffer Registers Description

External Port DMA

2-36 ADSP-21368 SHARC Processor Hardware Reference

Setting Up and Starting Chained DMA
Use the following procedure to set up and run a chained DMA on the
external port.

1. Configure the AMICTLx registers to enable the AMI, set the desired
wait states, set the data bus width, and so on. Configure the SDCTL
register to enable the SDRAM, set the desired clock and timing set-
tings, set the data bus width, and so on.

2. Initialize the CPEP register—set the PCI bit if interrupts are needed
after the end of each DMA block.

Table 2-8. External Port Registers

Register Description Address

EPCTL External Port Global Control Register 0x1801

DMAC1–0 External Port DMA Control Register 0x180B, 0x180C

IIEP1–0 Internal Index Register 0x1823, 0x1833

IMEP1–0 Internal Modifier Register 0x1824, 0x1834

ICEP1–0 Internal Count Register 0x1825, 0x1835

EIEP1–0 External Index Register 0x1820, 0x1830

EMEP1–0 External Modifier Register 0x1821, 0x1831

CPEP1–0 Chain Pointer Register 0x1826, 0x1836

TPEP1–0 Tap List Pointer Register 0x1828, 0x1838

ELEP1–0 Circular Buffer Length Register 0x1829, 0x1839

EBEP1–0 External Base Address Register 0x1827, 0x1837

ADSP-21368 SHARC Processor Hardware Reference 2-37

I/O Processor

3. If circular buffering is needed, then program additional writes to
the ELEP and EBEP registers. Note that for normal chained DMA,
the ELEP and EBEP registers are not part of the TCB. So if circular
buffering is used with the normal chained DMA, all the DMA
blocks will have same ELEP and EBEP values.l

4. Enable DMA (DEN), chaining (CHEN), and circular buffering (CBEN)
if needed, in the DMACx registers. It is advised that the DMA FIFOs
are flushed (DFLSH) when DMA is enabled.

Once the DMA control register is initialized, the DMA controller fetches
the DMA descriptors from the address pointed to by the external port
chain pointer register (CPEP). The order the descriptors are fetched is
shown in Table 2-9.

The order the descriptors are fetched with circular buffering enabled is
shown in Table 2-10

Table 2-9. Chain Pointer Loading Sequence (Normal DMA)

Address Register Value

CPEP[18:0] IIEP

CPEP[18:0] – 0x1 IMEP

CPEP[18:0] – 0x2 ICEP

CPEP[18:0] – 0x3 EIEP

CPEP[18:0] – 0x4 EMEP

CPEP[18:0] – 0x5 CPEP

External Port DMA

2-38 ADSP-21368 SHARC Processor Hardware Reference

Once the DMA descriptors are fetched, the normal DMA process starts.
Upon completion, new DMA descriptors are loaded and the process is
repeated until CPEP = 0x00000. A DMA completion interrupt is generated
at the end of each DMA block or at the end of an entire chained DMA,
depending on the PCI bit setting.

Delay Line DMA
Delay line DMA is used to support reads and writes to external delay line
buffers with limited core interaction. In this sense, delay line DMA is basi-
cally a quantity of integrated writes followed by reads from external
memory—called a delay line DMA access. The delay line DMA access con-
sists of the following accesses in the order listed.

1. Writes to external memory. The number of writes are determined
by the external port internal count ICEP register. The data is
fetched from the external port internal index register (IIEP) and
the external port internal modify register (IMEP) is used as the inter-
nal modifier. The external port external index register (EIEP) serves

Table 2-10. Chain Pointer Loading Sequence (Circular Buffering Enabled)

Address Register Value

ELEP[18:0] IIEP

CPEP[18:0] – 0x1 IMEP

CPEP[18:0] – 0x2 ICEP

CPEP[18:0] – 0x3 EIEP

CPEP[18:0] – 0x4 EMEP

CPEP[18:0] – 0x5 CPEP

EPCP[18:0] – 0x5 EPEB

EPCP[18:0] – 0x6 EPEL

ADSP-21368 SHARC Processor Hardware Reference 2-39

I/O Processor

as the external index and is incremented by the external modifier
register (EMEP) after each write. These writes are circular buffered if
circular buffering is enabled.

2. In chained DMA, when the writes are complete, (ICEP = zero) the
EPEI register, which serves as the write pointer of the delay line, is
written back to the internal memory location from where it was
fetched.

3. Reads from external memory. For reads, the tap list (TL) modifiers
are used and the number of reads is determined by the external port
read count register (RCEP). The write pointer in the external port
external index register (EIEP) serves as the index address for these
reads (reads start from where writes end). The EIEP register, along
with tap list modifiers, are used in a pre-modify addressing mode
to create the external address for the writes. For each 32-bit read
the external index is:

• EIEP – TL[0] is the first read address (where TL[0] is the
first tap list entry in internal memory as pointed to by the
external port tap list pointer register TPEP).

• EIEP – TL[1] is the second address, and so on.

Therefore, for each read, the DMA controller fetches the external
modifier from the tap list and the reads are circular buffered (if
enabled).

The external address generation follows pre-modify addressing for
reads in delay line DMA and therefore EIEP values are not modi-
fied. Also the EMEP register does not have any effect during delay
line reads.

Serial Port DMA

2-40 ADSP-21368 SHARC Processor Hardware Reference

4. Once the read count completes, the delay line DMA access is com-
plete and the DMA complete interrupt is generated. Note that if
chaining is enabled, the interrupt is generated based on the PCI bit
setting. For more information on the PCI bit, see “Interrupt-Driven
I/O” on page 2-6.

Serial Port DMA
The serial ports support standard as well as chained DMA.

Setting Up and Starting Chained DMA
To set up and initiate a chain of DMA operations, use these steps:

1. Set up all TCBs in internal memory.

Table 2-11. Chain Pointer Loading Sequence (Delay Line DMA)

Address Register Value

EPCP[18:0] EPII (Write Index)

EPCP[18:0] – 0x1 EPIM

EPCP[18:0] – 0x2 EPIC (Write Count)

EPCP[18:0] – 0x3 EPEI

EPCP[18:0] – 0x4 EPEM

EPCP[18:0] – 0x5 EPEB

EPCP[18:0] – 0x6 EPEL

EPCP[18:0] – 0x7 EPRI

EPCP[18:0] – 0x8 EPRC

EPCP[18:0] – 0x9 EPTP

EPCP[18:0] – 0xA EPCP

ADSP-21368 SHARC Processor Hardware Reference 2-41

I/O Processor

2. Write to the appropriate DMA control register, setting the DMA
enable bit to one and the chaining enable bit to one.

3. Write the address containing the index register value of the first
TCB to the chain pointer register, which starts the chain.

The I/O processor responds by autoinitializing the first DMA parameter
registers with the values from the first TCB, and then starts the first data
transfer.

Inserting a TCB in an Active Chain
It is possible to insert a single DMA operation or another DMA chain
within an active DMA chain. Programs may need to perform insertion
when a high priority DMA requires service and cannot wait for the cur-
rent chain to finish.

When DMA on a channel is disabled and chaining on the channel is
enabled, the DMA channel is in chain insertion mode. This mode lets a
program insert a new DMA or DMA chain within the current chain with-
out effecting the current DMA transfer. Use the following sequence to
insert a DMA subchain for the serial port 0A channel while another chain
is active:

1. Enter chain insertion mode by setting SCHEN_A = 1 and SDEN_A = 0
in the channel’s DMA control register, SPCTL0. The DMA inter-
rupt indicates when the current DMA sequence is complete.

2. Copy the address currently held in the chain pointer register to the
chain pointer position of the last TCB in the chain that is being
inserted.

3. Write the start address of the first TCB of the new chain into the
chain pointer register.

4. Resume chained DMA mode by setting SCHEN_A = 1 and
SDEN_A = 1.

Serial Peripheral Interface DMA

2-42 ADSP-21368 SHARC Processor Hardware Reference

Chain insertion mode operates the same as non-chained DMA mode.
When the current DMA transfer ends, an interrupt request occurs and no
TCBs are loaded. This interrupt request is independent of the PCI bit
state.

Chain insertion should not be set up as an initial mode of operation. This
mode should only be used to insert one or more TCBs into an active
DMA chaining sequence.

Serial Peripheral Interface DMA
The serial peripheral interface supports both standard and chained DMA.
However, unlike the serial ports, programs cannot insert a TCB in an
active chain using the SPI.

Setting Up and Starting Chained DMA over the SPI
Configuring and starting chained DMA transfers over the SPI port is the
same as for the serial port, with one exception. Contrary to SPORT DMA
chaining, (where the first DMA in the chain is configured by the first
TCB), for SPI DMA chaining, the first DMA is not initialized by a TCB.
Instead, the first DMA in the chain must be loaded into the SPI parameter
registers (IISPI, IMSPI, CSPI), and the chain pointer register (CPSPI)
points to a TCB that describes the second DMA in the sequence.
Table 2-12 shows the order of register loading.

Table 2-12. DMA Chaining Sequence

Address Register Description

CPSPI DMA Start Address Address in memory

CPSPI – 1 DMA Address Modifier Address increment

CPSPI – 2 DMA Word Count Number of words to transfer

CPSPI – 3 DMA Next TCB Pointer to address of next TCB

ADSP-21368 SHARC Processor Hardware Reference 2-43

I/O Processor

Writing an address to the CPSPI register does not begin a chained
DMA sequence unless the IISPI, IMSPI, and CSPI registers are ini-
tialized, SPI DMA is enabled, the SPI port is enabled, and SPI
DMA chaining is enabled.

The sequence for setting up and starting a chained DMA is outlined in the
following steps and can also be seen in Listing 6-3 on page 6-43.

1. Configure the TCB associated with each DMA in the chain except
for the first DMA in the chain.

2. Write the first three parameters for the initial DMA to the IISPI,
IMSPI, and CSPI registers directly.

3. Select a baud rate using the SPIBAUD register.

4. Select which flag to use as the SPI slave select signal in the SPIFLG
register.

5. Configure and enable the SPI port with the SPICTL register.

6. Configure the DMA settings for the entire sequence, enabling
DMA and DMA chaining in the SPIDMAC register.

7. Begin the DMA by writing the address of a TCB (describing the
second DMA in the chain) to the CPSPI register.

The address field of the chain pointer registers is only 19 bits wide. If a
program writes a symbolic address to bit 19 of the chain pointer, there
may be a conflict with the PCI bit. Programs should clear the upper bits of
the address, then AND the PCI bit separately, if needed. For example:

R0 = next_TCB+3; /* addr of next chain */

R1 = 0x7FFFF; /* mask 19 bits */

R0 = R0 or R1;

CPSPI = R0;

UART DMA

2-44 ADSP-21368 SHARC Processor Hardware Reference

UART DMA
In the UART, separate receive and transmit DMA channels move data
between the UART and memory. The software does not have to move
data, it just has to set up the appropriate transfers either through the
descriptor mechanism or through auto buffer mode. See also “DMA Con-
troller Operation” on page 2-13.

To perform DMA transfers, the UART has a special set of receive and
transmit registers. These registers are listed in Table 2-14.

No additional buffering is provided in the UART DMA channel, so the
latency requirements are the same as in non-DMA mode. However, the
latency is determined by the bus activity and arbitration mechanism and
not by the processor loading and interrupt priorities.

Table 2-13. UART DMA Registers

Register Description

UARTxRXCTL (3 bits) DMA Config/Control register for UART Rx

IIUARTxRX (19 bits) Address for DMA

IMUARTxRX (16 bits) Modifier

CUARTxRX (16 bits) Count

CPUARTxRX (20 bits) Chain Pointer

UARTxRXSTAT (3 bits) DMA Status register

UARTxTXCTL (3 bits) DMA Config/Control register for UART Tx

IIUARTxTX (19 bits) Address for DMA

IMUARTxTX (16 bits) Modifier

CUARTxTX (16 bits) Count

CPUARTxTX (20 bits) Chain Pointer

UARTxTXSTAT (3 bits) DMA Status register

ADSP-21368 SHARC Processor Hardware Reference 2-45

I/O Processor

DMA through the UART is started by setting up values in the DMA
parameter registers and then writing to the transmit and receive control
registers, enabling the module using the UARTEN bits (in the UARTxTXCTL
and UARTxRXCTL registers) and enabling DMA using the UARTDEN bits. A
DMA can be interrupted by resetting the UARTDEN bit in the control regis-
ter. A DMA request that is already in the pipeline completes normally.

DMA chaining is enabled by setting the UARTCHEN bit in the transmit and
receive control registers. When chaining is enabled at the end of a current
DMA, the next set of DMA parameters are loaded from internal memory
and a new DMA starts. The index of the memory location is written in the
chain pointer register. DMA parameter values reside in consecutive mem-
ory locations as shown in Table 2-14. Chaining ends when the CP register
contains address 0x00000 for the next parameter block.

To start a DMA use the following steps.

1. Initialize index, modify, and count registers with the appropriate
values, keeping DEN and EN bits disabled in the UARTxTX/RXCTL
register.

2. Write to the control register with the required control values and
set the DEN, EN and CHEN (if chaining is needed) bits.

Table 2-14. Transfer Control Block Chain Loading Sequence

Address Register Value

CPUARTxTX/RX18–0 IIUARTxTX/RX

CPUARTxTX/RX18–0 – 0x1 IMUARTxTX/RX

CPUARTxTX/RX18–0 – 0x2 CUARTxTX/RX

CPUARTxTX/RX18–0 – 0x3 CPUARTxTX/RX

UART DMA

2-46 ADSP-21368 SHARC Processor Hardware Reference

When performing DMA using the UART module, receive interrupts are
generated when:

• The receive word block is complete/the DMA is complete.

• A receive overrun error is detected.

• A receive parity error is detected.

• A receive framing error is detected.

• An address detect interrupt (for 9 bit mode) is detected.

The transmit interrupt is generated when the transmit word block is com-
plete/the DMA is complete.

To start a chain pointer DMA use the following steps.

1. Initialize the chain pointer register with the address of the DMA
descriptor table. Set the PCI bit if an interrupt is needed at the end
of each DMA block.

2. Set up the appropriate control register to enable the UART trans-
mitter and receiver, chain pointer, and DMA. Once chain pointer
DMA is enabled, the DMA engine fetches the index, modify,
count, and chain pointer values from the memory address specified
in the chain pointer register. Once the DMA descriptors are
fetched, normal DMA starts. This process is continued until the
chain pointer register contains all zeros.

ADSP-21368 SHARC Processor Hardware Reference 2-47

I/O Processor

Notes On Using DMA With the UART
The following should be noted when performing DMA in conjunction
with the UART module.

1. DMA can be interrupted by resetting the DEN bit, but none of the
other control settings should be changed. If the UART is enabled
again, then interrupted DMA can be resumed by resetting the DEN
bit.

2. Disabling the UART by resetting the enable (EN) bit flushes data in
the transmit/receive buffer. Resetting the UART during a DMA
operation is prohibited and leads to data loss.

3. Do not disable chaining (CHEN bit in the control registers) when a
chaining DMA is in progress. If this occurs, a DMA completion
interrupt will not be generated when the PCI bit = 1.

4. During a receive DMA, a read of the receiver buffer (UARTxRBR) is
not allowed. If needed, programs should read the receiver shadow
buffer (UARTxRBRSH).

5. During DMA, the UARTDR bit in the UARTxLSR register is cleared
automatically.

6. DMA may be used in 9-bit mode, once the address has been
detected. If, between DMAs, another address is received, an
address detect interrupt is generated (if enabled). At this point, the
UARTxRBRSH shadow register can be read to find the 9-bit word (the
address). The UARTxLSR register also shows the UARTRX9D (address
detect) bit.

Memory-to-Memory DMA

2-48 ADSP-21368 SHARC Processor Hardware Reference

Memory-to-Memory DMA
Memory-to-memory (MTM) DMA allows programs to transfer blocks of
64-bit data from one internal memory location to another. This transfer
method uses two DMA channels, one for reading data and one for writing
data. This data transfer can be set up using the following procedure.

1. Program the DMA registers for both channels.

2. Set (=1) the MTMFLUSH bit in the MTMCTL register to flush the FIFO
and reset the read/write pointers.

3. Set (=1) the MTMEN bit in the MTMCTL register and clear (=0) the
MTMFLUSH bit.

A two-deep, 32-bit FIFO regulates the data transfer through the DMA
channels.

If the MTMI bit in the IMASK register is enabled, an interrupt occurs at the
end of each DMA (read/write). For more information, see “Interrupts” in
Appendix B, Interrupts.

Summary
Because the IOP registers are memory-mapped, the processors have access
to program DMA operations. A program sets up a DMA channel by writ-
ing the transfer’s parameters to the DMA parameter registers. After the
index, modify, and count registers (among others) are loaded with a start-
ing source or destination address, an address modifier, and a word count,
the processor is ready to start the DMA.

The SPI port, external port, serial ports, input data ports and the MTM
DMA engine each have a DMA enable bit (SPIDEN, DMAEN, SDEN
IDP_DMA_EN, or MTM_DEN) in their channel control register. Setting this bit
for a DMA channel with configured DMA parameters starts the DMA on

ADSP-21368 SHARC Processor Hardware Reference 2-49

I/O Processor

that channel. If the parameters configure the channel to receive, the I/O
processor transfers data words received at the buffer to the destination in
internal memory. If the parameters configure the channel to transmit, the
I/O processor transfers a word automatically from the source memory to
the channel’s buffer register. These transfers continue until the I/O pro-
cessor transfers the selected number of words as determined by the count
parameter. DMA through the IDP ports occurs in internal memory only.

Programming Example
The following example demonstrates setting up a memory-to-memory
direct memory access (DMA).

/* Register Definitions */

#define MTMCTL 0x2c01

#define IIMTMW 0x2c10

#define IIMTMR 0x2c11

#define IMMTMW 0x2c0e

#define IMMTMR 0x2c0f

#define CMTMW 0x2c16

#define CMTMR 0x2c17

/* Bit Definitions */

#define MTMI 0x00040000

#define IRPTEN 0x00001000

#define MTMEN 0x1

#define MTMFLUSH 0x2

/* Buffer Declarations */

.section/dm seg_dmda;

.align 2;

.var dest[100];

Programming Example

2-50 ADSP-21368 SHARC Processor Hardware Reference

.align 2;

.var source[100];

/* Main code section */

.global _main;

.section/pm seg_pmco;

_main:

r0=0x11111111;

i0=source;

/* Fill the source buffer */

lcntr=LENGTH(source), do fill until lce;

 dm(i0,1)=r0;

fill: r0=rot r0 by 1;

/* Set the interrupt mask for MTMDMA */

bit set imask MTMI;

bit set mode1 IRPTEN;

/* Flush the MTMDMA FIFO */

r0=MTMFLUSH;

dm(MTMCTL)=r0;

/* Set up the source address to read */

r0=source;

dm(IIMTMR)=r0;

/* Set up the destination address to write */

r0=dest;

dm(IIMTMW)=r0;

ADSP-21368 SHARC Processor Hardware Reference 2-51

I/O Processor

/* Read and write sequentially with a step of 1 */

r0=1;

dm(IMMTMW)=r0;

dm(IMMTMR)=r0;

/* Read the number of words in source */

r0=@source;

dm(CMTMR)=r0;

/* Write the number of words in destination */

r0=@dest;

dm(CMTMW)=r0;

/* Enable MTMDMA */

r0=MTMEN;

dm(MTMCTL)=r0;

_main.end: jump(pc,0);

Programming Example

2-52 ADSP-21368 SHARC Processor Hardware Reference

ADSP-21368 SHARC Processor Hardware Reference 3-1

3 EXTERNAL PORT

The external ports of the ADSP-21367/8/9 and ADSP-2137x processors
are comprised of the following modules.

• An “Asynchronous Memory Interface” on page 3-20 which com-
municates with SRAM, FLASH, and other devices that meet the
standard asynchronous SRAM access protocol. The AMI supports
16M words of external memory in bank1, bank2, and bank3 and
14M words of external memory in bank0. The maximum external
data is 64M bytes on bank1.

Each bank is individually programmed to access a single memory,
either SDRAM or asynchronous.

• An SDRAM controller that supports a glueless interface with any
of the standard SDRAMs of 32, 64, 128, 256, and 512M bit. See
“SDRAM Controller” on page 3-30.

• A “Shared Memory Interface” on page 3-79 that allows the connec-
tion of up to four ADSP-21368 processors to create shared external
bus systems (ADSP-21368 only).

• A DMA interface between internal and external memory that
directs processor core accesses to external memory locations. For
more information, see Chapter 2, I/O Processor.

External Memory Interface

3-2 ADSP-21368 SHARC Processor Hardware Reference

External Memory Interface
The external memory interface provides a glueless interface to external
memories. The processor’s I/O processor (IOP) supports synchronous
DRAMs (SDRAMs), SRAMs, FIFOs, flash memory, and ASIC/FPGA
devices. The external memory interface and the SDRAM memory that
interfaces to the external port is clocked by the SDRAM clock (SDCLK).
The ratio of core clock (CCLK) to SDCLK is determined by programming bits
in the power management control (PMCTL) registers. For more informa-
tion, see “Power Management Control Register (PMCTL)” in
Appendix A, Register Reference.

The various possible SDRAM clock to core clock frequency ratios are 1:2,
1:2.5, 1:3, 1:3.5, and 1:4. This ratio is independent of the peripheral
clock (PCLK) used by the other peripherals. For more information on tim-
ing, see Chapter 14, System Design and the appropriate ADSP-21367/8/9
and ADSP-2137x processor data sheet.

The asynchronous external interface follows the standard asynchronous
SRAM access protocol. Programmable wait states, idle cycles, and hold
cycles are provided to interface memories that have different access times.
To extend access, an acknowledge (ACK) signal can be pulled low by the
external device.

The external memory interface supports access to the external memory by
direct core accesses and DMA accesses. The external memory address
space for non-SDRAM addresses is shown in Table 3-1 on page 3-10. The
external memory address space for SDRAM addresses is shown in
Table 3-20 on page 3-52. The external memory is divided in to four
banks. Any bank can be programmed as either asynchronous or synchro-
nous memory.

ADSP-21368 SHARC Processor Hardware Reference 3-3

External Port

External memory address space is supported in normal word
addressing mode only. Single-instruction, multiple-data (SIMD),
extended-precision, short word and long word addressing modes
are not supported. Program execution from external memory on
the ADSP-2136x processors is also not supported.

External Memory Interface on the ADSP-2137x
Processors

The ADSP-2137x SHARC processors support direct execution of instruc-
tions from external memory, using the 16-bit external port (on the
ADSP-21375) or the 32-bit external port (as on the ADSP-21371). Exe-
cution is supported from external memory bank0 space which is selected
by MS0. This external memory can either be SDRAM, or asynchronous
memory, such as SRAM or flash.

While 16-bit to 48-bit packing, and 32-bit to 48-bit packing are
supported when the external memory is SDRAM, the external
asynchronous memory interface (AMI) also supports 8-bit to
48-bit, 16-bit to 48-bit, and 32-bit to 48-bit instruction packing.

Direct Execution of Instructions From External Memory

While the earlier SHARC processor families (including ADSP-2126x and
ADSP-2136x) supported data storage in external memory, and core as well
as DMA accesses to and from external memory, the ADSP-2137x proces-
sors extends this capability to support direct execution of instructions
from external memory.

Throughput and Instruction Execution Rate

Since instructions on the SHARC processor are 48 bits wide, instruction
throughput when executing code from external SDRAM memory is 2
instructions every 3 SDCLK (peripheral) clock cycles over a 32-bit wide
external port, and 2 instructions every 6 SDCLK clock cycles over a 16-bit

External Memory Interface

3-4 ADSP-21368 SHARC Processor Hardware Reference

wide external port. When executing from external asynchronous memory,
instruction throughput depends on the settings of asynchronous memory
such as the number of wait states, the ratio of core to peripheral clock and
other settings. For details, please refer to the external port global control
register (EPCTL), asynchronous memory interface control register
(AMICTLx), and SDRAM control register (SDCTL) documentation in the
ADSP-2136x SHARC Processor Hardware Reference for the
ADSP-21367/8/9 Processors.

The SDRAM controller along with the processor core incorporates appro-
priate enhancements so that the code can be fetched from the SDRAM at
the maximum possible throughput. Throughput is limited only by
SDRAM when the code executes sequentially.

The address map for code is same as the data—each address refers to a
32-bit word. Any address produced by the sequencer is checked to deter-
mine if it falls in the external memory and if it does, the SDRAM
controller initiates access to the SDRAM. Because the sequencer address
bus is limited to 24 bits, only part of the external memory address area can
be used to store code. As explained in the following section, “Location of
Interrupt Vector Table (IVT)”, the address generated by the sequencer
undergoes translation to produce physical address, since the SDRAM data
bus width is less than 48 bits.

Location of Interrupt Vector Table (IVT)

On ADSP-2137x processors, the interrupt vector table always starts at the
top of internal memory at address 0x90000. This is set by programming
the IIVT bit in the system control register (SYSCTL). Therefore, if code exe-
cution from external memory is desired upon reset, the program needs to
set up the appropriate interrupt vector tables in internal memory as part of
the boot-up code before beginning to execute instructions from external
memory.

ADSP-21368 SHARC Processor Hardware Reference 3-5

External Port

When an unmasked interrupt occurs and is serviced, program execution
automatically jumps to the location of the corresponding interrupt vector
table in internal memory. Upon returning from the interrupt, the
sequencer resumes execution from external memory because locating the
IVT in external memory is not supported. Placing the interrupt vector
table in external memory is not supported.

Instruction Cache

To circumvent the relative difference in clock domains between the core
and external memory interface (1:2 in the best case) and enable faster exe-
cution throughput, the functionality of the traditional “conflict” cache on
the SHARC has been enhanced to serve as an instruction cache in external
execution mode.

In previous generations of SHARC processors, the function of the conflict
cache had been to cache only those instructions whose fetching conflicted
with access of a data operand from memory over the PM bus. The
enhancements to the cache architecture mean that the functionality of the
cache remains intact for execution from internal memory whereas it
behaves as instruction cache for external memory execution. Every
instruction that is fetched from external memory into the program
sequencer is also simultaneously loaded into the cache. The next time that
this instruction needs to be fetched from external memory, it is first
searched for in the cache. The instruction is stored using the entire 24-bit
address. Figure 3-1 shows the format for storing an instruction and
Figure 3-2 shows the cache architecture.

External Memory Interface

3-6 ADSP-21368 SHARC Processor Hardware Reference

Figure 3-1. Cache Operation During Instruction Execution from External
Memory

Figure 3-2. Instruction Cache Architecture

PM Address Bus

DM Address Bus

PM Data Bus

DM Data Bus

P
ac

ki
n

g
U

n
it

SDRAM
Controller

Asynchronous
Memory
Interface

PROGRAM
Sequencer

Instruction
Cache

32-bit x 48-bit

16/32*

11

24

Data

Control

Address

24

24

64

64

EXTERNAL PORT

*The external bus is 32 bits on the ADSP-21371 and
16 bits on the ADSP-21375.

INSTRUCTIONS

SET
0

SET
1

SET
2

SET
13

SET
14

SET
15

ADDRESSES
BITS (23-4)

LRU
BIT

VALID
BIT

ENTRY 0

ENTRY 0

ENTRY 0

ENTRY 1

ENTRY 1

ENTRY 1

ENTRY 0

ENTRY 0

ENTRY 0

ENTRY 1

ENTRY 1

ENTRY 1

ADDRESSES
BITS (3-0)

0000

0001

0010

1101

1110

1111

ADSP-21368 SHARC Processor Hardware Reference 3-7

External Port

In other words, the 32-entry 2-way set-associative cache in the SHARC
has been modified to act as an instruction cache when the program
sequencer executes instructions from external memory, while continuing
to work as the traditional conflict cache when the sequencer executes
instructions located in internal memory. This context switching from con-
flict cache to instruction cache and vice-versa happens automatically
without the need for any user intervention.

The first time that an instruction from a particular address is fetched from
external memory, there is a cache miss when the sequencer looks for this
instruction within the cache. Consequently, the instruction has to be
fetched from external memory and a copy of instruction is stored in cache.
Upon subsequent executions of this instruction, the sequencer search
results in a cache hit, resulting in the instruction being fetched from cache
instead of external memory. This allows for an instruction throughput
that is equivalent to internal memory execution.

This context-dependent caching preserves the cache performance of the
traditional SHARC conflict cache as well as significantly improving pro-
gram instruction throughput for repetitive instructions such as those
inside loops when executing from external memory. Analyses of typical
application code examples have shown that this 32-entry instruction cache
improves execution throughput by 50-80% over not having this cache.

In general, cache hits occur for all instructions which are fetched and exe-
cuted multiple times (for example loops, subroutine calls, negative
branches, and so on). Typical applications, such as signal processing algo-
rithms, are ideal candidates for significant performance improvements as a
result of the cache.

An important and significant result of the instruction being fetched from
the cache is that it frees up the external port as well as the internal PM and
DM buses for other operations such as data transfers, operand fetches, or
DMA transfers.

External Memory Interface

3-8 ADSP-21368 SHARC Processor Hardware Reference

The following example shows the innermost loop of a FIR filter.

lcntr=FILTER_TAPS-1, do macloop until lce;

 macloop: f12=f0*f4, f8=f8+f12, f0=dm(i0,m1), f4=pm(i9,m9);

In this example, if the code is stored and executed from external memory,
the first time through this loop the program sequencer places the appro-
priate 24-bit address on the external address bus, and fetches the
instruction in line 2 from external memory. While this instruction is being
fetched and processed by the sequencer, it is also simultaneously stored in
the internal instruction cache.

For every subsequent iteration of this loop, the instruction is fetched from
the internal cache, thereby occurring in a single cycle, while freeing up the
internal memory buses to fetch the data operands required for the
instruction.

Previously, in the absence of the internal instruction cache, the number of
cycles taken by the loop for a case of FILTER_TAPS = 16 would have been a
minimum of 48 cycles over a 16-bit wide external bus, and 24 cycles over
a 32-bit wide external bus (excluding any conflicts for data operand
fetches). However, with the presence of the instruction cache, and assum-
ing that the execution is from external SDRAM, and that the instructions
are on the same SDRAM page, the number of cycles is reduced to 17 over
a 16-bit wide external bus, and either 15 cycles or 16 cycles over a 32-bit
wide bus (depending on whether instruction 1 begins on an even 32-bit
address, or odd 32-bit address).

Thus, the internal cache improves the efficiency of execution from 16-bit
wide external memory by approximately 64.5% for this example.

As might be expected, it is important to remember that the instruction
cache will not play a significant role in improving the efficiency of strictly
linearly executed code from external memory.

ADSP-21368 SHARC Processor Hardware Reference 3-9

External Port

Instruction Storage and Packing

The ADSP-2137x processors incorporate a 32-bit SDRAM controller.
However, the SDRAM controller supports SDRAMs with data bus widths
of 16 as well as 32 bits. The packing logic in the SDRAM controller packs
the data from SDRAM into 48-bit instructions. Any address produced by
the sequencer which falls in external memory is first translated into the
physical address in external memory based on the actual data bus width of
external memory as shown in Figure 3-3.

The controller completes the required number of accesses from consecu-
tive locations for returning a 48-bit word instructions. For a 16-bit
SDRAM bus, it performs three accesses. For 32-bit SDRAM, three
accesses are performed for two instructions. In this packing mode, all the
even addresses in external memory are translated by multiplying the
address by a factor of 3/2. For example, if A is an even address falling in
external memory region (A > 0x200000), the translated address is
((A>>1) + A). For an odd address, the translated address for the previous
even address is incremented by 1. Note that it is the absolute address
rather than the offset from the base of external memory that is translated.
Therefore, the beginning of external memory, 0x200000, is translated to
0x300000. Two 32-bit accesses are performed for each even address. For
an odd address in the sequence, only one access is necessary. Two accesses
are necessary however, if the odd address happens to be first in a sequence.

Only bank0 can be populated for external code execution on
ADSP-2137x processors.

External Memory Interface

3-10 ADSP-21368 SHARC Processor Hardware Reference

The address range of external memory (asynchronous memory) is shown
in Table 3-1. External bank 0 can be used to execute instructions.

Table 3-2 shows the addressable range for SDRAM memory space. Bank 0
can be used for executing instructions. Note that the external memory
bank addresses shown are for normal word accesses.

The actual throughput execution from external SDRAM is dependent on
the configuration of the SDRAM. The SDRAM can be programmed to
run at a number of different frequency ratios with respect to the core
clock, the fastest being half of the core clock (or the same as the peripheral
clock). The core and SDRAM controller have been enhanced so that

Figure 3-3. Logical Versus Physical Addresses

Table 3-1. External Memory Address Space for Non SDRAM Addresses

Bank Size in words Address Range

Bank 0 14M 0x0020 0000 – 0x00FF FFFF

Bank 1 16M 0x0400 0000 – 0x04FF FFFF

Bank 2 16M 0x0800 0000 – 0x08FF FFFF

Bank 3 16M 0x0C00 0000 – 0x0CFF FFFF

External

ADSP-213xx

Port

External

Bank 0

Sequencer
Packing

Unit

48

24

“Physical
Address” on
address bus

16/32 bit*
“Instruction Data”

on data bus

*32-bit on the ADSP-21371 and
16-bit on the ADSP-21375.

“Logical
Address” 24

Data

Address

Memory

Address
Translator

ADSP-21368 SHARC Processor Hardware Reference 3-11

External Port

throughput is maximized when SDRAM is programmed to run at half the
core clock frequency and the instructions being fetched are sequential.
After the initial latency, accesses follow a 4-2-4-2-4 core cycles pattern for
the above setting for a 32-bit SDRAM meaning that because of the way
the instructions are packed in external memory, the first instruction takes
four core clock cycles to execute, while the second instruction only takes
two core cycles, and so on.

It is possible to store both 48-bit instructions as well as 32-bit data in the
external memory bank 0. However, care must be taken while specifying
the proper starting addresses if 48-bit instructions are stored or interleaved
with 32-bit data in the same memory bank. For example, in case of 32-bit
wide external SDRAM memory, two instructions are packed into three
32-bit memory locations, while 32-bit data occupies one memory location
each. If 2K instructions are placed starting at the bank 0 base address
(0x0020 0000), then the starting address for placing data has to be at least
0x0020 0C00 (in other words, an offset of 3K 32-bit words).

The ADSP-2137x processors support the execution of 48-bit wide pro-
gram instructions from external memory devices of various widths. The
processor can transparently pack and execute instructions stored in 16-bit
(ADSP-21375) or 32-bit wide (ADSP-21371) external memory.
Table 3-3 shows the format of stored instructions in external 32-bit wide
memory. The sequencer automatically places the normal word address
corresponding to the starting address of the first instruction to be fetched
from external memory on the appropriate address bus, fetches three 16-bit

Table 3-2. External Address Space for SDRAM Memory Accesses

Bank Size in words Address Range

Bank 0 62M 0x0020 0000 – 0x03FF FFFF

Bank 1 64M 0x0400 0000 – 0x07FF FFFF

Bank 2 64M 0x0800 0000 – 0x0BFF FFFF

Bank 3 64M 0x0C00 0000 – 0x0FFF FFFF

External Memory Interface

3-12 ADSP-21368 SHARC Processor Hardware Reference

words and packs them to form the 48-bit instruction to be executed. The
address is automatically incremented, and program execution continues
with placing the next address on the external address bus, and so on.

In Table 3-3, the logical to physical translation is a multiplication by a
factor of 3/2 and N = 0x8AAAA9. Therefore, the 32-bit wide memory
supports 8.6 million instructions.

In Table 3-4 the logical to physical translation is a multiplication by a fac-
tor of 3 and N = 0x355554. Therefore, the 16-bit wide memory supports
3.3 million instructions.

Table 3-3. Logical Versus Physical Address Mapping, 32-Bit Asynchronous
Memory

Logical Address Dispatched
by Program Sequencer

Physical Address Observed
on the External Address Bus

Data
31 0

0x200000 0x300000 Instr0[31:0]

0x300001 Instr1[15:0] Instr0[47:32]

0x200001 0x300001 Instr1[47:16]

0x300002 Instr2[31:0]

0x200002 0x300002 Instr3[15:0] Instr2[47:32]

0x300003 Instr3[47:16]

... ...

...

... ...

...

0xAAAA9 0xFFFFFE InstrN[31:0]

0xFFFFFF 0000 InstrN[47:32]

ADSP-21368 SHARC Processor Hardware Reference 3-13

External Port

Table 3-5 and Table 3-6 show the logical to physical address translation
maps for external SDRAM. In SDRAM, there is an additional 2 bits of
address generation available to the SDRAM controller. Therefore, the
external addressable range is larger than with asynchronous memory and
the entire allowable internal address range of 24 bits can be accessed in
external memory.

In Table 3-5, N = 0xE00000. Therefore, the total number of external
memory instructions for a 32-bit wide SDRAM memory is 14 million.

Table 3-4. Logical Versus Physical Address Mapping, 16-Bit Asynchronous
Memory

Logical Address Dispatched
by Program Sequencer

Physical Address Observed
on the External Address Bus

Data
16 0

0x200000 0x600000 Instr0[15:0]

0x600001 Instr0[31:16]

0x600002 Instr0[47:32]

0x200001 0x600003 Instr1[15:0]

0x600004 Instr1[31:16]

0x600005 Instr1[47:32]

0x200002 0x600006 Instr2[15:0]

0x600007 Instr2[31:16]

0x600008 Instr2[47:32]

... ...

... ...

... ...

0x555554 0xFFFFFD InstrN[15:0]

0xFFFFFE InstrN[31:16]

0xFFFFFF InstrN[47:32]

External Memory Interface

3-14 ADSP-21368 SHARC Processor Hardware Reference

In Table 3-6, P = 0xE00000. Therefore, the total number of external
memory instructions for a 16-bit wide SDRAM memory is 14 million.

Table 3-5. Logical Versus Physical Address Mapping, 32-Bit SDRAM
Memory

Logical Address Dispatched
by Program Sequencer

Physical Address Observed
on the External Address Bus

Data
31 0

0x200000 0x300000 Instr0[31:0]

0x300001 Instr1[15:0] Instr0[47:32]

0x200001 0x300001 Instr1[47:16]

0x300002 Instr2[31:0]

0x200002 0x300002 Instr3[15:0] Instr2[47:32]

0x300003 Instr3[47:16]

... ...

...

... ...

...

0xFFFFFF 0x17FFFFE InstrP[31:0]

0x17FFFFF 0000 InstrN[47:32]

Table 3-6. Logical Versus Physical Address Mapping, 16-Bit SDRAM
Memory

Logical Address Dispatched
by Program Sequencer

Physical Address Observed
on the External Address Bus

Data
16 0

0x200000 0x600000 Instr0[15:0]

0x600001 Instr0[31:16]

0x600002 Instr0[47:32]

ADSP-21368 SHARC Processor Hardware Reference 3-15

External Port

Register Configurations for External Memory Execution

If bank 0 memory is asynchronous memory (such as SRAM or flash) then
programs need to appropriately configure the asynchronous memory
interface control register (AMICTL) and the external port control register
(EPCTL). Bits [2:1] of the AMICTL register configure the external bus width
as either 16 or 32 bits wide. If bank 0 memory is SDRAM, then programs
need to configure the SDRAM control register (SDCTL). Bit 16 determines
whether the external bus data width is either 16-bits wide, or 32-bits wide.

The default packing mode on the ADSP-21375 is 16-to-48 bit mode
packing, while for the ADSP-21371 it is 32-to-48 bit mode packing.

0x200001 0x600003 Instr1[15:0]

0x600004 Instr1[31:16]

0x600005 Instr1[47:32]

0x200002 0x600006 Instr2[15:0]

0x600007 Instr2[31:16]

0x600008 Instr2[47:32]

... ...

... ...

... ...

0xFFFFFF 0x2FFFFFD InstrN[15:0]

0x2FFFFFE InstrN[31:16]

0x2FFFFFF InstrN[47:32]

Table 3-6. Logical Versus Physical Address Mapping, 16-Bit SDRAM
Memory (Cont’d)

Logical Address Dispatched
by Program Sequencer

Physical Address Observed
on the External Address Bus

Data
16 0

External Memory Interface

3-16 ADSP-21368 SHARC Processor Hardware Reference

For the ADSP-21371 processor, the SDCTL register needs to be
explicitly programmed for 16-bit wide external memory by setting
bit 16 (X16DE) of this register.

EMI Registers and Signals
The external port global control register is used to set the priority between
core and DMA memory accesses and to determine whether SDRAM or
asynchronous memory is used on each bank. The bits in this register are
described in Table 3-7.

In multiple clock domains, the effect latency of the control register bits of
the external port varies. The worst case is 1:4, where the time from a con-
trol bit write, to the time the write takes effect, is a maximum of four IOP
clock cycles/eight core clock cycles. It is essential to put NOP commands
(no operation) in the program to accommodate this time. It is also advised
that programs not perform any external memory accesses until the effect
takes place. The status bits of the control register can also have a maxi-
mum latency of up to one cycle.

The EPCTL register bits should not be changed during external
accesses.

Table 3-7. External Port Control Register Bit Descriptions

Bit Name Description Default

0 B0SD Bank 0 SDRAM.
1 = Bank 0 (MS0) connected to SDRAM
0 = Bank 0 (MS0) connected to asynchronous memory

0

1 B1SD Bank 1 SDRAM.
1 = Bank 1(MS1) connected to SDRAM
0 = Bank 1 (MS1) connected to asynchronous memory

0

2 B2SD Bank 2 SDRAM.
1 = Bank 2 (MS2) connected to SDRAM
0 = Bank 2 (MS2) connected to asynchronous memory

0

ADSP-21368 SHARC Processor Hardware Reference 3-17

External Port

3 B3SD Bank 3 SDRAM.
1 = Bank 3 (MS3) connected to SDRAM
0 = Bank 3 (MS3) connected to asynchronous memory

0

5–4 EPBR External Port Bus Priority.
11 = Rotating priority
10 = Core has high priority
01 = DMA has high priority
00 = Reserved

11

7–6 DMAPR DMA channel Priority for CH0 and CH1.
11 = Rotating priority
10 = Fixed priority
01 = Reserved
00 = Reserved

11

8 Reserved

10–9 FRZDMA Arbitration Freezing Length for DMA.
0 = No freezing
1 = 4 Accesses
2 = 8 Accesses
3 = 16 Accesses

0

12–11 Reserved

14–13 FRZCR Arbitration Freezing Length for CORE Accesses.
0 = No freezing
1 = 4 Accesses
2 = 8 Accesses
3 = 16 Accesses

0

18–15 DATE DATA Enable. When the SDRAM/AMI memory con-
troller is in no pack mode, these bits of the data lane are
masked with zeros. The data lane is 8 bits. The 32-bit
data bus has four data lanes. DATA[31:0] is mapped to
DL3, DL2, DL1, DL0. For example, if DATE is 1010,
then DL3 and DL1 are masked with zeros.

0000

19 Reserved

Table 3-7. External Port Control Register Bit Descriptions (Cont’d)

Bit Name Description Default

External Memory Interface

3-18 ADSP-21368 SHARC Processor Hardware Reference

External Port Arbitration Logic

The external port arbitration logic controls the arbitration between the
two DMA channels and processor core. The following control the arbitra-
tion logic.

• The EPCTL register can be programmed to use the various features
of arbitration between different channels. DMA channels 0 and 1
can be programmed for rotating or fixed priority.

• The winning DMA channel can be arbitrated with the core chan-
nel. The EBPR and DMAPR bits define the priorities.

Channel Freezing

The external port is idle when DMA engines are idle and no core access is
pending. When multiple DMA channels are reading data from SDRAM
memory, channel freezing can improve the data throughput. By setting the
freeze bits (FRZDMA, bits 10–9 and FRZCR, bits 14–13), each channel is fro-
zen for programmed accesses. For example, if the processor core is frozen
for 16 accesses, and if the core requests 16 accesses to SDRAM sequen-
tially, data throughput improves. Freezing is based on the fact that
sequential accesses to the SDRAM provide better throughput then
non-sequential accesses. Freezing does not add value for write accesses.
For details on throughput, see “SDRAM Timing” on page 3-74.

Managing Data Paths

The DATE bits (bits 18–15) are used to enable the data paths in the input
path. If the DATE bits are set (=1), then the incoming data that corresponds
to the set bits are connected to zero. This helps to avoid the floating pin
data coming in to the processor.

ADSP-21368 SHARC Processor Hardware Reference 3-19

External Port

External Memory Interface Pins
The pins used by the external memory interface are described in
Table 3-8.

Table 3-8. External Memory Pin Descriptions

Pin Name I/O Description for AMI Description for SDRAM

DATA31–0 I/O Data bus Data bus

ADDR23–0 O Address bus Address bus, includes bank selects
ADDR [23:0]

SDCLK O N/A SDRAM clock

SDCKE O N/A SDRAM clock enable

SDA10 O N/A SDRAM address bit 10 used for auto
refresh

SDRAS O N/A SDRAM row address strobe

SDCAS O N/A SDRAM column address strobe

SDWE O N/A SDRAM write enable

MS3–0 O Chip select Chip select. MS1-0, FLAG2 and
FLAG3 are muxed to form MS3-2,
(FLAG3 is MS3 and FLAG2 is MS2

RD O Read output strobe N/A

WR O Write output strobe N/A

ACK I Acknowledge signal N/A

Asynchronous Memory Interface

3-20 ADSP-21368 SHARC Processor Hardware Reference

Asynchronous Memory Interface
Both the processor core and the I/O processor have access to external
memory using the AMI. Table 3-9 describes the processor pins used for
interfacing to external memory.

The processor’s memory control signals also permit direct connection to
fast static RAM devices. Memory-mapped peripherals and slower memo-
ries can also connect to the processor using a user-defined combination of
programmable waitstates and hardware acknowledge signals.

External memory can hold data and packed instructions (the ADSP-2136x
cannot execute from external memory). Data packing of 16 to 32 bits or 8
to 32 bits is supported for transfers directly from 32-bit, 16-bit, or 8-bit
wide external memories to and from internal memory.

Table 3-9. Asynchronous Memory Interface Signals

Pin Type Description

ACK I Memory Acknowledge. External devices can deassert ACK (low) to
hold off an external memory access. ACK is used by I/O devices,
memory controllers, or other peripherals to hold off completion of
an external memory access. ACK has a 22.5 kΩ internal pull-up
resistor that is enabled during reset.

ADDR23-0 O External Bus Address. The processor outputs addresses for external
memory and peripherals on these pins. A pull-up enabled on the
processor’s ADDR23-0 pins maintains the input at the level it was
last driven. This pull-up is only enabled on the processor with
ID2-0=01x in shared memory system during reset. Note that only
the ADSP-21368 processor has shared memory capability.

DATA31–0 I/O External Bus Data. The processor inputs and outputs data on these
pins. Pull-up resistors on unused data pins are not necessary. A
pull-up on the processor’s DATA31-0 pins maintains the input at
the level it was last driven. This pull-up is only enabled on the pro-
cessors with ID2-0=01x in shared memory system during reset.

ADSP-21368 SHARC Processor Hardware Reference 3-21

External Port

AMI Timing Control
The following three sections introduce the available control settings that
affect the timing used to make AMI accesses. Note that all accesses are in
terms of SDCLK since the SDRAM controller and AMI share this clock.

Wait States
Wait states and acknowledge signals are used to allow the processors to
connect to memory-mapped peripherals and slower memories. Wait states
are programmable from 1 to 31 using the WS bits (bits 10–6) in the AMI
control register. Wait states are programmed relative to SDCLK.

When ACK is enabled, the wait state value should be set to indicate when
the processor can sample ACK after the RD/WR edge goes low. The minimum
wait state value that can be used is WS = 1 when ACK is enabled. If ACK is not

MS3–0 O Memory Select Lines [FLAG2-3 are muxed and used as MS2 and
MS3]. Memory select lines 0–1 are asserted (low) as chip selects for
the corresponding banks of external memory. The MS3-0 lines are
decoded memory address lines that change at the same time as the
other address lines. When no external memory access is occurring,
the MS3-0 lines are inactive; they are active however when a condi-
tional memory access instruction is executed, whether or not the
condition is true.

RD O Memory Read Strobe. RD is asserted whenever the processor reads
a word from external memory. In a shared memory system, RD is
driven by the bus master. RD has a 22.5 kΩ internal pull-up resistor
that is enabled for processors with ID2-0=01x during reset.

WR O Memory Write Strobe. WR is asserted when the processor writes a
word to external memory. In a shared memory system, WR is driven
by the bus master. WR has a 22.5 kΩ internal pull-up resistor that is
enabled for processors with ID2-0=01x during reset.

Table 3-9. Asynchronous Memory Interface Signals (Cont’d)

Pin Type Description

AMI Timing Control

3-22 ADSP-21368 SHARC Processor Hardware Reference

enabled, the minimum value is WS = 2 (a wait state value of 0 corresponds
to 32 wait cycles). The processor samples the ACK signal after the pro-
grammed wait state count expires—it is imperative that the WS value is
initialized when the acknowledge enable bit (ACKEN) is set.

Bus Idle Cycles
A bus idle cycle (IC bits 16–14 in the AMICTLx registers) is an inactive bus
cycle that the processor automatically generates to avoid data bus driver
conflicts. Such a conflict can occur when a device with a long output dis-
able time continues to drive after RD is deasserted, while another device
begins driving on the following cycle. Idle cycles are also required to pro-
vide time for a slave in one bank to three-state its ACK driver, before the
slave in the next bank enables its ACK driver in synchronous access modes.
Figure 3-4 shows idle cycle insertion between a synchronous read and a
zero-wait, synchronous write in cycle 3.

To avoid this data bus driver conflict, the processor generates an idle cycle
in the following cases:

• On a transition from a read operation to a write operation

• On a transition from read from one bank to another bank

• On a transition from read from one bank to external access from
another device such as an SDRAM controller or another master in
a shared memory system

Unlike previous SHARC processors, the ADSP-21367/8/9 and
ADSP-2137x SHARC processors do not support idle cycle inser-
tion on a page boundary crossing. If an idle cycle is programmed
for a particular bank, then a minimum of one cycle is inserted for
reads, even if they are from the same bank.

ADSP-21368 SHARC Processor Hardware Reference 3-23

External Port

Bus Hold Cycles
The processor is able to insert bus hold and read hold cycles by setting bits
in the AMI control register (AMICTLx). These two methods for holding off
data processing are described below.

• Bus hold cycle (HC bits 13–11) is an inactive bus cycle that the pro-
cessor automatically generates at the end of a read or write to allow
a longer hold time for address and data. Programs may disable
holds, or hold off processing for one or more external port proces-
sor cycles.

• Read hold cycle (RHC bits 20–18) is the delay between two reads at
the end of a read access. Programs may disable the read hold cycle,
or hold the address for one or more external port clock cycles.

Figure 3-4. Idle Cycle Example, Wait State = 2

1 2 3 4 5

SDCLK

ADDRESS 23-0

MSx

RD

WR

DATA 31-0

READ IDLE WRITE

6

Setting AMI Modes

3-24 ADSP-21368 SHARC Processor Hardware Reference

The address, data (if a write), and bank select (if in banked external mem-
ory) remain unchanged and are driven for one or more cycles after the
read or write strobes are deasserted. Figure 3-5 demonstrates a hold time
cycle appended to an asynchronous write access (EBxWS = 011).

Setting AMI Modes
The AMICTLx registers control the asynchronous memory interface’s oper-
ating mode and the AMISTAT register provides status information.
Table A-5 on page A-18 lists all the bits in the AMICTLx registers and
Figure A-7 on page A-20 shows all the bits in the AMISTAT register.

• For information on using DMA through the external port, see
“External Port DMA” on page 2-35.

• For information on using external port interrupts, see “Inter-
rupt-Driven I/O” on page 2-6.

Figure 3-5. Hold Time Cycle Example

1 2 3 4 5

SDCLK

ADDRESS 23-0

MSx

WR

DATA 31-0

HOLD
TIME

WRITE

ADSP-21368 SHARC Processor Hardware Reference 3-25

External Port

There is a 3:1 bus conflict resolution ratio at the external port
interface (three internal buses to one external bus) in addition to
the 2:1 or greater clock ratio between the processor’s internal clock
and the external SDRAM clock (SDCLK). Systems that fetch data
through the external port must tolerate at least one cycle—and pos-
sibly many additional cycles—of latency for non-SDRAM accesses.

Data alignment through the external port is identical for these interfaces.

External Memory Reads
The AMI behaves as an external port bus slave and an external read access
is performed only upon a read request from the external port control bus.
Reads from external memory are done through the AMI. When an exter-
nal address that is mapped to the AMI in the EPCTL register is accessed, the
module receives 8-, 16-, or 32-bit data and packs the data based on the
packing and control modes in the AMI control register (AMICTLx). Once
the data is received, the status bit RXS is set, indicating valid data is
present. Updates occur on a feedback RD signal and the status update
occurs on the SDCLK signal. The RXS status update is delayed by one cycle
to accommodate the delay in the feedback RD signal.

The AMI provides the interface to the external data pins as well as to the
processor core or to the internal DMA controller. When the AMI receives
data, it is passed by internal hardware to the DMA controller or to the
external port control bus, depending on which entity requested the data.

Data Packing

Data packing for memory reads is accomplished using the packing disable
(PKDIS, bit 3) and most significant word first (bit 4 in the MSWF register)
bits in the AMICTLx register.

For packed data mode where PKDIS = 0 and MSWF = 0, the packing order
for BW = 8 is: first byte is bits [7–0], the second byte is bits [15–8], and so
on.

Setting AMI Modes

3-26 ADSP-21368 SHARC Processor Hardware Reference

For packed data mode where PKDIS = 0 and MSWF = 1, the packing order
for BW = 8 is: first byte received is bits 31–24, the second byte is bits
23–15, and so on.

If the PKDIS bit is set (=1), then the 8- or 16-bit data (based on the bus
width) is zero appended to 32 bits.

Both of these methods apply to 16- to 32-bit packing as well. These
modes are summarized in Table 3-10.

External Memory Writes
The AMI behaves as an external port bus slave and external write accesses
are performed when there is a write request from the external port control
bus. Writes to external memory are done through the AMI module. When
an external address that is mapped to the AMI in the EPCTL register is
accessed, the module receives data from internal memory using the DMA

Table 3-10. Data Packing Bit Settings (Reads)

Packing
Mode

PKDIS Bit
Setting

MSWF Bit
Setting Description

Enabled 0 0 8- or 16-bit received data is packed to 32-bit data
and transmitted 32-bit data is unpacked to two
16-bit data or four 8-bit data.
First 8- or 16-bit word read/written occupies the
least significant position in the 32bit packed word.

Enabled 0 1 8 or 16 bit received data is packed to 32-bit data
and 32-bit data to be transmitted is unpacked to
two 16-bit data or four 8-bit data.
First 8- or 16-bit word read/written occupies the
most significant position in the 32-bit packed word.

Disabled 1 N/A 8- or 16-bit data received is zero filled. For transmit-
ted data only 16-bit or the 8-bit LSB part of the
32-bit data word is written to external memory.

ADSP-21368 SHARC Processor Hardware Reference 3-27

External Port

controller or through direct core writes. Writes to the AMI set a status bit
(AMITXS, bit 2 in the AMISTAT register) and initiate the external write
access.

Once a full word is transferred out of the AMI, the AMITXS bit is cleared
and new writes are allowed. No more external transfers can start while the
AMI module is empty.

Whenever the AMITX is empty, the DMA controller or a direct access from
the processor core can write fresh data into the AMI. If the register is full,
further writes from the core (or DMA controller) are stalled.

Data Packing

Data unpacking for memory writes uses the packing disable bit (PKDIS, bit
3) and the most significant word first (MSWF, bit 4) bits in the AMICTLx
register.

For packed data mode where PKDIS = 0 MSWF = 0, the order of unpacking
for 32- to 8-bit data is: the first byte is bits 7–0, the second byte is bits
15–8, and so on.

For packed data mode where PKDIS = 0 MSWF = 1, the unpacking order for
32- to 8-bit data is: first byte received is bits 31–24, the second byte is bits
23–16, and so on.

If PKDIS bit is set (=1), only the 16- or 8-bit least significant portion of the
32-bit data is written to external memory.

Both of these methods apply to 32- to 16-bit unpacking as well. These
modes are summarized in Table 3-10.

For direct access (core and DMA), the received data is also
unpacked, depending on the setting of the PKDIS bit. The order of
unpacking is dependent on the MSWF bit in AMICTLx registers.

Setting AMI Modes

3-28 ADSP-21368 SHARC Processor Hardware Reference

Read/Write Throughput
For a wait state of 2 (which is the smallest wait state), the throughput is
shown in Table 3-11.

External Access Addressing
The AMI supports 16M words of external memory in bank1, bank2, and
bank3 and 14M words of external memory in bank0. The maximum
amount of external data is 64M bytes when the external bus width (set
using the BW bits 2–1 in the AMICTLx registers) is 32 bits on bank1, bank2,
or bank3.

The ADSP-21367/8/9 and ADSP-2137x processors have the ability to use
logical addressing when an external memory smaller than 32 bits is used.
When logical addresses are used, multiple external addresses seen by the
memory correspond to a single internal address, depending on the width
of the memory being accessed, and the packing mode setting of the AMI
or SDRAM controller. The following are examples of logical addressing.

Table 3-11. Read/Write Throughput

Bus Width Operation Throughput in SDCLK Cycles

32-bit Write One 32-bit word per 3 SDCLK cycles

32-bit Read One 32-bit word per 3 SDCLK cycles

16-bit Write One 32-bit word per 6 SDCLK cycles

16-bit Read One 32-bit word per 6 SDCLK cycles

8-bit Write One 32-bit word per 12 SDCLK cycles

8-bit Read One 32-bit word per 12 SDCLK cycles

ADSP-21368 SHARC Processor Hardware Reference 3-29

External Port

• For an external bus width of 32 bits, or when packing is disabled
with other bus widths (PKDIS = 1 and BW = 16 bits or PKDIS = 1 and
BW = 8 bits), then the external physical memory is the same as the
lower 24 bits of bits 23–0 in the address being supplied to the
external port by the core or DMA controller.

• For an external bus width of 16 bits with packing enabled
(PKDIS = 0), the external physical address ADDR23–0 generation is
ADDR23–1 = bits 22–0 in the address being supplied to the external
port by the core or DMA controller. Here, ADDR[0] corresponds to
the 1st/2nd 16-bit word.

• For an external bus width of 8 bits with packing enabled
(PKDIS = 0), the external physical address ADDR23–0 generation is
ADDR23–2 = bits 21–0 in the address being supplied to the external
port by the core or DMA controller. Here, ADDR1–0 corresponds to
the 1st/2nd/3rd/4th 8-bit word.

The external physical address map is shown in Table 3-12.

Table 3-12. AMI Address Memory Map

Bus Width External
Memory BANK

External Physical Address
(on ADDR23–0)

32-bit (or PKDIS=1) 0 0x20_0000 to 0xFF_FFFF

32-bit (or PKDIS=1) 1, 2, and 3 0x00_0000 to 0xFF_FFFF

16-bit (and PKDIS=0) 0 0x40_0000 to 0xFF_FFFF

16-bit (and PKDIS=0) 1, 2, and 3 0x00_0000 to 0xFF_FFFF

8-bit (and PKDIS=0) 0 0x80_0000 to 0xFF_FFFF

8-bit (and PKDIS=0) 1, 2, and 3 0x00_0000 to 0xFF_FFFF

SDRAM Controller

3-30 ADSP-21368 SHARC Processor Hardware Reference

External Port DMA
The AMI shares the two DMA channels of the external port with the
SDRAM controller. Either of these DMA channels can be directed to the
external asynchronous memories. For information on external port DMA,
see Chapter 2, I/O Processor.

Booting Through the AMI
The AMI supports an 8-bit user boot called AMI boot. For more informa-
tion, see “Booting Through the AMI” on page 14-39.

SDRAM Controller
The ADSP-21367/8/9 and ADSP-2137x SHARC processors support a
glueless interface with any of the standard SDRAMs of 64M bit, 128M
bit, 256M bit, and 512M bit with configurations x4, x8, x16 and x32.
The SDRAM controller (SDC) can support up to 254M words of
SDRAM in four banks. Bank 0 can accommodate up to 62M words, and
banks 1, 2, and 3 can accommodate up to 64M words each. The SDC
includes timing options to support additional buffers between the proces-
sors and SDRAM. This allows the processor to handle the capacitive loads
of large memory arrays. The following are additional features of the SDC.

• I/O width 16-bit or 32-bits, I/O supply 3.3 V

• Types of 32, 64, 128, 256, and 512M bit with I/O of x4, x8, x16
and x32

• Page sizes of 128, 256, 512, 1k, 2k words

• SDC uses no-burst mode (BL = 1) with sequential burst type

• SDC uses optional full page burst (ADSP-2137x only)

ADSP-21368 SHARC Processor Hardware Reference 3-31

External Port

• SDC uses open page policy—any open page is closed only if a new
access in another page of the same bank occurs

• Supports multibank operation within the SDRAM
(ADSP-2137x only)

• Uses a programmable refresh counter to coordinate between vary-
ing clock frequencies and the SDRAM’s required refresh rate

• Provides multiple timing options to support additional buffers
between the processor and SDRAM

• Allows independent auto-refresh while the asynchronous memory
interface (AMI) has control of the External Port

• Supports self-refresh mode for power savings

• Supports instruction fetch (ADSP-2137x only)

• Supports 32-bit data access by the processor core

All inputs are sampled and all outputs are valid on the rising edge
of the SDRAM clock output (SDCLK).

Definition of Terms
The following are terms commonly used in SDRAM systems.

Bank activate command

The bank activate command causes the SDRAM to open an internal bank
of memory (specified by the bank address) in a specific row (specified by
the row address). For more information, see “SDC Commands” on
page 3-63.

SDRAM Controller

3-32 ADSP-21368 SHARC Processor Hardware Reference

Burst length

The burst length determines the number of words that the SDRAM device
stores or delivers after detecting a single write or read command,
respectively.

The SDC supports burst length = 1 mode only.

Burst stop command

Use of this command is one of several ways to terminate or interrupt a
burst read or write operation. Since the burst length is hardwired to 1, the
SDC does not support the burst stop command. However, this command
is optionally supported by ADSP-2137x processors.

Burst type

The burst type determines the address order in which the SDRAM deliv-
ers burst data after detecting a read command, or stores burst data after
detecting a write command.

Since the burst length is always programmed to 1, the burst type does not
apply. However, the SDC always sets the burst type to sequen-
tial-accesses-only during the SDRAM power-up sequence.

CAS latency

Also tAA, tCAC. The column address strobe (CAS) latency is the delay in
clock cycles between when the SDRAM detects the read command and
when it provides the data at its output pins. The CAS latency is pro-
grammed in the SDRAM mode register during the power-up sequence
with the value programmed in the SDRAM control register (SDCTL bits
1-0).

The speed grade of the SDRAM and the SDCLK frequency determine the
value of the CAS latency. The SDC supports CAS latencies of 2 or 3 clock
cycles. The selected CAS latency value is programmed into the SDCTL reg-
ister before the SDRAM power-up sequence.

ADSP-21368 SHARC Processor Hardware Reference 3-33

External Port

CBR (CAS before RAS)

Refresh or auto-refresh. When the SDC refresh counter times out, the
SDC precharges all four banks of SDRAM and then issues an auto-refresh
command to them. This causes the SDRAMs to generate an internal CBR
refresh cycle. When the internal refresh completes, the SDRAM banks are
precharged.

Data mask feature

SDRAM’s allow partial read or writes in byte addressing mode. Since
SHARC processors do not support byte addressing, DQM pins are not con-
trolled by the SDC.

Internal bank

There are several internal memory banks on a given SDRAM row. An
internal bank in a specific row cannot be activated (opened) until the pre-
vious internal bank in that row has been precharged.

The SDC does not support multibank accesses. The bank address can be
thought of as part of the row address. The SDC also assumes that all
SDRAMs to which it interfaces have four internal banks.

Only the SDRAM controller on the ADSP-2137x processors sup-
ports multibank accesses.

Mode register

SDRAM devices contain an internal configuration register which allows
specification of the SDRAM device’s functionality. During power-up, and
before executing a read or write to the SDRAM memory space, the appli-
cation must trigger the SDC to write to the SDRAM’s mode register. The
write of the this register is triggered by writing a 1 to the SDPSS bit (bit 14)
in the processor’s SDRAM control register (SDCTL), and then issuing a
read or write transfer to the SDRAM address space.

SDRAM Controller

3-34 ADSP-21368 SHARC Processor Hardware Reference

The initial read or write triggers the SDRAM power-up sequence, which
programs the SDRAM’s mode register with the CAS latency from the
SDCTL register. This initial read or write to SDRAM takes many cycles to
complete. Note that for most applications the SDRAM power-up
sequence and a write to the mode register is performed only once. Once
the power-up sequence has completed, the SDPSS bit should not be set
again unless a change to the mode register is desired.

Page size

Page size is the amount of memory which has the same row address and
can be accessed with successive read or write commands without needing
to activate another row.

Precharge command

The precharge command closes a specific internal bank in the active page
or all internal banks in the page. For more information, see “SDC Com-
mands” on page 3-63.

Self-refresh

When the SDRAM is in self-refresh mode, its internal timer initiates
auto-refresh cycles periodically, without external control input. The SDC
must issue a series of commands, including the self-refresh command, to
put the SDRAM into this low power mode. It must issue another series of
commands to exit self-refresh mode. Entering self-refresh mode is pro-
grammable in the SDRAM control register (SDCTL) and any access to the
SDRAM address space causes the SDC to exit the SDRAM from
self-refresh mode. For more information, see “Self-Refresh Mode” on
page 3-70.

ADSP-21368 SHARC Processor Hardware Reference 3-35

External Port

tRAS

Required delay between issuing a bank activate command and a precharge
command, and between issuing the self-refresh command and the exit
from self-refresh mode. The SDTRAS bits (7–4) in the SDCTL register can be
set to 1 to 15 clock cycles.

tRP

 Required delay between issuing a precharge command and issuing:

• a bank activate command

• an auto-refresh command

• a self-refresh command

The SDTRP bits (10–8) in the SDCTL register can be set to 1 to 7 clock
cycles.

tMRD

Required delay between issuing a mode register set command and a suc-
cessive bank activate command. This delay is not directly programmable
and is assumed to be 2 clock cycles.

tRCD

Required delay between a bank activate command and the start of the first
read or write command. The SDTRCD bits (26–24) in the SDCTL register can
be set to 1 to 7 clock cycles.

tWR

Required delay between a write command (driving write data) and a pre-
charge command. The SDTWR bits (18–17) in the SDCTL register can be set
to 1 to 3 clock cycles.

SDRAM Controller

3-36 ADSP-21368 SHARC Processor Hardware Reference

tRC

Required delay between issuing successive bank activate commands to the
same SDRAM internal bank. This delay is not directly programmable.
The tRC delay is satisfied by programming the SDTRAS and SDTRP fields to
ensure that tRAS + tRP ≥ tRC.

tRFC

Required delay between issuing an auto-refresh command and a bank acti-
vate command, and between issuing successive auto-refresh commands.
This delay is not directly programmable and is assumed to be equal to tRC.
The tRC delay is satisfied by programming the SDTRAS and SDTRP fields to
ensure that tRAS + tRP ≥ tRC.

tRRD

This is the required delay between a bank A activate command and a bank
B activate command. This delay is not programmable and fixed to
tRCD + 1 cycles. This delay is used for multibank operation (ADSP-2137x
processors only).

tXSR

Required delay between exiting the self-refresh mode and issuing an
auto-refresh command. This delay is not directly programmable and is
assumed to be equal to tRC. The tRC delay is satisfied by programming the
tRAS and tRP fields to ensure that tRAS + tRP ≥ tRC.

Timing External Memory Accesses
The SDRAM controller is capable of running at up to 166 MHz and can
run at various frequencies, depending on the programmed SDRAM clock
(SDCLK) to core clock (CCLK) ratios. These are shown in Table 3-13.

ADSP-21368 SHARC Processor Hardware Reference 3-37

External Port

The SDRAM CAS latency, (SDCL, SDTRAS bits), precharge (SDTRP bits),
RAS to CAS delay (SDTRCD bits), and write before precharge timing (SDTWR
bits) should be programmed based on the SDRAM clock frequency and
the timing specifications of the SDRAM used. All timing parameters are
written with valid values based on the SDCLK clock frequency and the tim-
ing specifications of the SDRAM before any access to SDRAM address
space, including the power-up sequence. Note that the programmed
parameters apply to all four external memory banks.

Also note that these timing parameters should not be changed while the
SDC is active.

To obtain certain higher SDRAM frequencies, the core frequency
may need to be reduced.

The following procedure may be used to change the SDRAM clock ratio.
Note that this procedure changes only the output divider.

1. Select the PLL divider by setting the PLLDx bits (bits 6–7 in the
PMCTL register) to one of the following values.

2. Select the SDCLK divider (SDCLK to CCLK ratio) by setting the SDCKRx
bits (bits 18–20 in the PMCTL register) to one of the following five
values.

Table 3-13. SDC Clock Frequencies

CK/SDCLK Clock
Period Ratio

SDRAM Frequency
(400 MHZ)

SDRAM Frequency
(333 MHZ)

SDRAM Frequency
(266 MHZ)

1:2.0 166
(not supported)

166 133

1:2.5 160 133 106

1:3.0 133 111 88

1:3.5 114 95 76

1:4.0 100 83 66

SDRAM Controller

3-38 ADSP-21368 SHARC Processor Hardware Reference

3. Enable the new divisors by setting the DIVEN bit (bit 9 in the PMCTL
register). Do not set this bit at the same time as the PLLBP bit (bit
15 of the PMCTL register) is set. See “Power Management Control
Register” on page 14-14 for more information.

The new divisor ratios are picked up on the fly and the clocks
smoothly transition to their new values within 14 core clock (CCLK)
cycles.

The core clock frequency is:
CCLK = CLKIN × (PLL multiplier ÷ clock divider) where:
PLL multiplier = PLLM (1–64) and the PLL divider = 1, 2, 4 or 8.

The SDCLK frequency is SDCLK = CCLK ÷ SDRATIO.

If either the PLL divider or the SDCLK to CCLK ratio (or both) are changed,
it may take up to 14 CCLK cycles for all the clocks to get the new value.

PLLD Bit Setting Clock Ratio

00 CCLK divider of 1

01 CCLK divider of 2

10 CCLK divider of 4

11 CCLK divider of 8

SDCKR Bit Setting Clock Ratio

000 SDCLK divider of 2

001 SDCLK divider of 2.5

010 SDCLK divider of 3

011 SDCLK divider of 3.5

100 SDCLK divider of 4

ADSP-21368 SHARC Processor Hardware Reference 3-39

External Port

For more information on SDRAM clocking and programming the PLL,
see “Clock Derivation” on page 14-13, “Power Management Control Reg-
ister” on page 14-14, and “Power Management Control Register
(PMCTL)” on page A-170.

Parallel Connection of SDRAMs
To specify a SDRAM system, multiple possibilities are given based on the
different memory sizes. For a 32-bit I/0 capability, the following can
configured.

• 1 x 32-bit/page 256 words

• 2 x 16-bit/page 512 words

• 4 x 8-bit/page 1k words

• 8 x 4-bit/page 2k words

The SDRAM’s page size is used to determine the system you select. All
four systems have the same external bank size, but different page sizes.
Note that larger page sizes, allow higher performance but larger page sizes
require more complex hardware layouts.

Even if connecting SDRAMs in parallel, the SDC always considers
the cluster as one external SDRAM bank because all address and
control lines feed the parallel parts.

SDRAM Control Register (SDCTL)
The SDRAM memory control register includes all programmable parame-
ters associated with the SDRAM access timing and configuration. These
bits are described below. For more information, see “SDRAM Control
Register (SDCTL)” on page A-21.

SDRAM Controller

3-40 ADSP-21368 SHARC Processor Hardware Reference

SDRAM CAS latency parameter setting. SDCL bits 1–0. The column
address strobe (CAS) latency is the delay in clock cycles between when the
SDRAM detects the read command and when it provides the data at its
output pins. Settings are: 10 = 2 cycles, 11 = 3 cycles.

Generally, the frequency of operation determines the value of the CAS
latency. For specific information about setting this value, consult the
SDRAM device documentation.

SDRAM controller disable. DSDCTL bit 2. Enables or disables the SDC. If
DSDCTL is set (=1), any access to SDRAM address space does not occur
externally. All SDC control pins are in their inactive states and the
SDRAM clock, SDCLK, does not run.

The DSDCTL bit is cleared (=0) by default, so that SDCLK is running after
reset deasserts. If the SDC is not used, the DSDCTL bit can be set to stop the
clock and reduce power dissipation. Even though the SDC is enabled at
reset, the power-up sequence must be executed before reading or writing
to SDRAM address space. Failure to execute the power-up sequence
before reading or writing to SDRAM address space results in unpredict-
able operation. However, DSDCTL must remain cleared at all times when
the SDC is needed to generate auto-refresh commands to the SDRAM.

SDRAM tRAS parameter setting. SDTRAS bits 7–4. The tRAS value (bank
activate command delay) defines the required delay, in number of SDCLK
cycles, between the time the SDC issues a bank activate command and the
time it issues a precharge command as shown below.

The SDRAM must also remain in self-refresh mode for a period of time of
at least tRAS. The tRP and tRAS values define the tRFC, tRC, and tXSR val-
ues. For more information, see “Timing External Memory Accesses” on
page 3-36.

SDTRAS
t
RASmin
tSDCLK

--------------------≥

ADSP-21368 SHARC Processor Hardware Reference 3-41

External Port

The tRAS parameter allows the ADSP-21367/8/9 and ADSP-2137x pro-
cessors to adapt to the timing requirements of the system’s SDRAM
devices. Any value between 1 and 15 SDCLK cycles can be selected as shown
in Table 3-14.

SDRAM tRP parameter setting. SDTRP bits 10–8. Defines the required
precharge delay, in number of SDCLK cycles, between the time the SDC
issues a precharge command and the time it issues a bank activate com-
mand as shown in the following equation.

The tRP setting also specifies the time required between precharge and
auto-refresh, and between precharge and self-refresh. Any value between 1
and 7 SDCLK cycles may be selected as shown in Table 3-15.

Table 3-14. Bank Activate Command Delay Bit Settings

Bit Setting Clock Cycles Bit Setting Clock Cycles

SDTRAS1 = 0000 Reserved SDTRAS8 = 1000 8

SDTRAS1 = 0001 1 SDTRAS9 = 1001 9

SDTRAS2 = 0010 2 SDTRAS10 = 1010 10

SDTRAS3 = 0011 3 SDTRAS11 = 1011 11

SDTRAS4 = 0100 4 SDTRAS12 = 1100 12

SDTRAS5 = 0101 5 SDTRAS13 = 1101 13

SDTRAS6 = 0110 6 SDTRAS14 = 1110 14

SDTRAS7 = 0111 7 SDTRAS15 = 1111 15

SDTRP
t
RPmin
tSDCLK
------------------≥

SDRAM Controller

3-42 ADSP-21368 SHARC Processor Hardware Reference

SDRAM power-up mode. SDPM bit 11. If the SDPM bit is set (=1), the SDC
does a precharge all command, followed by a load mode register com-
mand, and eight auto-refresh cycles. If the SDPM bit is cleared (=0), the
SDC does a precharge all command, followed by eight auto-refresh cycles,
and a load mode register command.

SDRAM bank column address width. SDCAW bits 13–12 shown in
Table 3-16. Sets the SDRAM page size. Page sizes of 256 and 512 bits,
and 1K and 2K bits are supported. Table 3-22 on page 3-53 shows the
page size and breakdown of the internal address (IA31–0), as seen from the
core into the row, bank, and column address. The column address makes
up the address inside the page.

Programming the SDC with non-supported page size values pro-
duces unpredictable results.

Table 3-15. Precharge Delay Bit Settings

Bit Setting Clock Cycles Bit Setting Clock Cycles

000 Reserved SDTRP4 = 100 4

SDTRP1 = 001 1 SDTRP5 = 101 5

SDTRP2 = 010 2 SDTRP6 = 110 6

SDTRP3 = 011 3 SDTRP7 = 111 7

Table 3-16. SDRAM Bank Column Address Width Bit Settings

SDCAW Bit Setting SDRAM Bank Column
Address Width

SDCAW8 = 00 8 bits (256 words)

SDCAW9 = 01 9 bits (512 words)

SDCAW10 = 10 10 bits (1K words)

SDCAW11 = 11 11 bits (2K words)

ADSP-21368 SHARC Processor Hardware Reference 3-43

External Port

SDRAM power-up sequence start. SDPSS bit 14. The SDPM bit specifies
the power-up mode and the SDPSS bit starts an SDRAM power-up (initial-
ization) sequence. When this bit is set (=1), the SDRAM power-up
sequence starts on the next SDRAM access. When cleared, this bit has no
effect. This bit always reads zero. See also “Load Mode Register” on
page 3-64.

SDRAM self-refresh command. SDSRF bit 15. When set (=1), starts the
self-refresh mode. When cleared (=0) this bit has no effect. This bit always
reads zero. In self-refresh mode, the SDRAM performs refresh operations
internally which reduces the SDRAM’s power consumption.

When SDSRF is set to 1, the SDC enters an idle state. In this state, it issues
a precharge command (if necessary) and then issues a self-refresh com-
mand. If an internal access is pending, the SDC delays issuing the
self-refresh command until it completes all pending SDRAM access
requests. Once the SDRAM device enters into self-refresh mode, the
SDRAM controller asserts the SDSRA bit in the SDRAM control status reg-
ister (SDSTAT). The SDRAM controller ignores other self-refresh requests
when the SDRAM device is already in self-refresh mode.

The SDRAM device exits self-refresh mode only when the SDC
receives a request for SDRAM space access. There is no way to can-
cel entry into self-refresh mode.

SDRAM external data path width. X16DE bit 16. Selects whether the
SDRAM interface is 32 or 16 bits wide.

• If set (=1), a 16-bit SDRAM should be used;
DATA[15–0] should be connected to the SDRAM data pins;
ADDR[14:0] should be connected to SDRAM address pins 14–0;
16 to 32-bit packing is performed.
Note that ADDR[18:17] pins are also used. See tables Table 3-22 on
page 3-53 to Table 3-25 on page 3-57 for bank address usage.

SDRAM Controller

3-44 ADSP-21368 SHARC Processor Hardware Reference

• If cleared (=0), a 32-bit SDRAM should be used;
DATA[31–0] should be connected to the SDRAM data pins;
ADDR[15:1] should be connected SDRAM address pins 14–0. For
more information, see “SDRAM Address Mapping” on page 3-51.
Note that ADDR[18:17] pins are also used. See tables Table 3-22 on
page 3-53 to Table 3-25 on page 3-57 for bank address usage.

SDRAM tWR parameter setting. SDTWR bits 18–17. Defines the required
delay, in number of SDCLK cycles, between the time the SDC issues a write
command (drives write data) and a precharge command.

The tWR parameter enables applications to accommodate the SDRAM’s
timing requirements. For more information, see “Timing External Mem-
ory Accesses” on page 3-36. Any value between 1 and 3 SDCLK cycles may
be selected as shown in Table 3-17.

SDRAM optional refresh. SDORF bit 19. Used for memories built as
SDRAM in FPGAs. When set (=1), auto-refresh is not performed and the
Force AR bit does not have any effect. When cleared (=0), auto-refresh
occurs when the refresh counter expires. See also “SDRAM Refresh Rate
Control Register (SDRRC)” on page 3-49.

Table 3-17. SDRAM tWR Bit Settings

SDTWR Bit Setting SDRAM Parameter Setting

00 Reserved

SDTWR1 = 01 One clock cycle

SDTWR2 = 10 Two clock cycles

SDTWR3 = 11 Three clock cycles

SDTWR
t
WRmin

tSDCLK
------------------≥

ADSP-21368 SHARC Processor Hardware Reference 3-45

External Port

Force auto-refresh. Force AR bit 20. When set (=1), forces auto-refresh.
When cleared (=0), has no effect. Note that when SDORF bit is set, setting
this bit causes Force AR to have no effect.

Force precharge. Force PC bit 21. When set (=1), forces precharge. When
cleared (=0), has no effect.

Force load mode register. Force LMR bit 22. If set (=1), when SDRAMs
are in a precharged state, a mode register write to SDRAMs is initiated
immediately. This is in contrast to the normal load mode register set
which requires some delay. This command performs a precharge all (if not
precharged already) followed by a mode register write (ADSP-2137x pro-
cessors only).

External register buffer pipeline option. SDBUF bit 23. Enables, if set (=1),
or disables, if cleared (=0), external buffer timing. When buffered
SDRAM modules or discrete register buffers are used to drive the SDRAM
control inputs, SDBUF should be set to 1. This adds a cycle of data buffer-
ing to read and write accesses. An example single processor system is
shown in Figure 3-7.

When no buffering is required, the example shown in Figure 3-6 can be
used.

SDRAM tRCD parameter setting. SDTRCD bits 26–24. Sets the required
delay (in terms of SDCLK) between a bank activate command and the start
of the first read or write command.

SDRCD
tRCDmin

tSDCLK
---------------------=

SDRAM Controller

3-46 ADSP-21368 SHARC Processor Hardware Reference

Figure 3-6. Uniprocessor System With Multiple SDRAM Devices

SDRAM #4
4M X 4 X 4

DATA [3:0]

DQM

DATA[31-0]

ADSP-21367

MS3

RAS

CAS

SDWE

SDCKE

C
O
N
T
R
O
L

RAS

CAS

DQM

WE

CLK

CKE

SDRAM #1
4M X 4 X 4

DATA [3:0]

A[14:0]

CS

SDRAM #2
4M X 4 X 4

SDRAM #3
4M X 4 X 4

DATA [3:0]

DATA [3:0]

DATA [7:4]

DATA [11:8]

DATA [3:0]

BA1

BA0

A
D
D
R
E
S
S

SDCLK

A[15:11]

A[9:1]

SDA10

A17

A18 DQM

DQM

DATA [15:12]

ADSP-21368 SHARC Processor Hardware Reference 3-47

External Port

Figure 3-7. Uniprocessor System With Multiple Buffered SDRAM
Devices

SDRAM #8
4 X 4 X 4

DATA[3:0]

DQM

SDRAM #7
4 X 4 X 4

SDRAM #6
4 X 4 X 4

DATA[31-0]

ADSP-21367

MS3

RAS

CAS

SDWE

SDCLK

SDCKE

C
O
N
T
R
O
L

REGISTERED
BUFFERS

I0

I5

I4

I2

I1

O0A

O4A

O3A

O2A

O1A

IX[14:0]

OXA[14:0]

OXB[14:0]

RAS

CAS

WE

CLK

CKE

SDRAM #5
4 X 4 X 4

DATA [3:0]

A[14:0]

CS

DATA[3:0]

AB[15:1]

AA[15:1]

D Q

D Q

ADDR [15]

CTRL [6]

21

21

SDRAM BANK 1
ADDR & CTRL

SDRAM BANK 2
ADDR & CTRL

DATA[3:0]

A
D
D
R
E
S
S

A[15:11]

A[9:1]

SDA10

A17

A18

DQM

DQM

DQM

DATA [31:28]

DATA [19:16]

DATA [23:20]

O0B

O4B

O3B

O2B

O1B

TO SDRAM #1, 2, 3, 4
4 X 4 X 4

DATA [15:12]

DATA [7:4]

DATA [11:8]

DATA [3:0]

DATA [27:24]

SDRAM Controller

3-48 ADSP-21368 SHARC Processor Hardware Reference

For more information, see “Timing External Memory Accesses” on
page 3-36. Any value between 1 and 7 SDCLK cycles may be selected as
shown in Table 3-18.

SDRAM row address width. SDRAW bits 29–27. With the X16DE and SDCAW
bits, defines the SDRAM core memory space (internal address to external
address mapping). Any value between 0 to 7 can be selected as shown in
Table 3-19. For more information, see “SDRAM Address Mapping” on
page 3-51.

Program the SDRAM Controller for Page Size of 128 Words. PGSZ 128
bit 30. This bit allows programs to configure the SDC for a page size of
128 words (7 bits) which supports most available 32 Mb SDRAMs.

No burst mode. NO BSTOP bit 31. This bit is used to select between full
page burst or no burst mode (BL=1). If set (=1), no burst mode is active
and the burst stop command is ignored. If cleared, full page burst is active
using the burst stop command for access interruption. This bit must be
cleared if the SDRAM does not support no burst mode but supports full
page burst.

Table 3-18. SDRAM tRCD Bit Settings

SDTRCD Bit
Setting

SDRAM Parameter
Setting

SDTWR Bit
Setting

SDRAM Parameter
Setting

000 Reserved STDRCD4 = 100 Four clock cycles

STDRCD1 = 001 One clock cycle STDRCD5 = 101 Five clock cycles

STDRCD2 = 010 Two clock cycles STDRCD6 = 110 Six clock cycles

STDRCD3 = 011 Three clock cycles STDRCD7 = 111 Seven clock cycles

ADSP-21368 SHARC Processor Hardware Reference 3-49

External Port

SDRAM Control Status Register (SDSTAT)
The SDRAM control status register provides information on the state of
the SDC. This information can be used to determine when it is safe to
alter SDC control parameters, or as a debug aid. The status bits that
appear in this register are described in detail in “SDRAM Control Status
Register (SDSTAT)” on page A-26.

SDRAM Refresh Rate Control Register (SDRRC)
The SDRAM refresh rate control register provides a flexible mechanism
for specifying auto-refresh timing. The SDC provides a programmable
refresh counter which has a period based on the value programmed into
the lower 12 bits of this register. This coordinates the supplied clock rate
with the SDRAM device’s required refresh rate.

The delay (in number of SDCLK cycles) between consecutive refresh
counter time-outs must be written to the RDIV field. A refresh counter
time-out triggers an auto-refresh command to the external SDRAM bank.
Programs should write the RDIV value to the SDRRC register before the
SDRAM power-up sequence is triggered. Change this value only when the
SDC is idle as indicated in the SDSTAT register.

Table 3-19. SDRAM Row Address Width Bit Settings

SDRAW Bit Setting Row Address Width SDRAW Bit Setting Row Address Width

SDRAW8 = 000 8 bits (256) SDRAW12 = 100 12 bits (4K)

SDRAW9 = 001 9 bits (512) SDRAW13 = 101 13 bits (8K)

SDRAW10 = 010 10 bits (1K) SDRAW14 = 110 14 bits (16K)

SDRAW11 = 011 11 bits (2K) SDRAW15 = 111 15 bits (32K)

SDRAM Controller

3-50 ADSP-21368 SHARC Processor Hardware Reference

To calculate the value to write to the SDRRC register, use the following
equation.

Where:

fSDCLK = SDCLK frequency (SDRAM clock frequency)

tREF = SDRAM refresh period

NRA = Number of row addresses in SDRAM (refresh cycles to
refresh whole SDRAM)

tRAS = Active to precharge time (SDTRAS bits in the SDRAM mem-
ory control register) in number of clock cycles

tRP = RAS to precharge time (in the SDRAM memory control reg-
ister) in number of clock cycles

This equation calculates the number of clock cycles between required
refreshes and subtracts the required delay between bank activate com-
mands to the same bank (tRC = tRAS + tRP). The tRC value is subtracted, so
that in the case where a refresh time-out occurs while an SDRAM cycle is
active, the SDRAM refresh rate specification is guaranteed to be met. The
result from the equation is always rounded down to an integer. Below is
an example of the calculation of RDIV for a typical SDRAM in a system
with a 133 MHz SDRAM clock.

fSDCLK = 133 MHz

tREF = 64 ms

NRA = 8192 row addresses

tRAS = 6

tRP = 3

RDIV
fSDCLK tREF×

NRA
-----------------------------------⎠

⎞ tRAS(– tRP)+⎝
⎛≤

ADSP-21368 SHARC Processor Hardware Reference 3-51

External Port

This means RDIV is 0x406 (hex) and the SDRAM refresh rate control reg-
ister is written with 0x406.

The RDIV value must be programmed to a nonzero value if the
SDRAM controller is enabled. When RDIV = 0, operation of the
SDRAM controller is not supported and can produce undesirable
behavior. Values for RDIV can range from 0x001 to 0xFFF.

For details on the SDROPT and SDMODIFY bits see, “SDRAM Read Optimi-
zation” on page 3-75.

SDRAM Initialization
Before executing the SDC power-up sequence, ensure that:

1. The SDRAM receives stable power and is clocked for the proper
amount of time, as specified by the SDRAM specification.

2. The SDPSS bit is set to 1 to enable the SDRAM power-up sequence.

3. A read or write access occurs to enabled SDRAM address space in
order to have the external bus granted to the SDC. This allows the
SDRAM power-up sequence to occur.

There is a long latency for this first access to SDRAM because the
power-up sequence takes many cycles to complete.

SDRAM Address Mapping
The address that is seen from the processor core and DMA controller is
referred to as internal address space IA[31–0] in the following sections.
The internal address is divided into three parts to generate the SDRAM
row, column, and bank addresses as shown in Figure 3-8.

RDIV
133 10

6() 64×× 10
3–()×

8192

⎝ ⎠
⎜ ⎟
⎛ ⎞

6 3+() 1030=–=

SDRAM Controller

3-52 ADSP-21368 SHARC Processor Hardware Reference

On the ADSP-21367/8/9 and ADSP-2137x processors, bank 0 starts at
address 0x20 0000 in external memory and is followed in order by banks
1, 2, and 3. When the processor generates an address located within one of
the four banks, it asserts the corresponding memory select line, MS3-0.

The external memory address ranges are shown in Table 3-20.

External memory address space is supported in normal word
addressing mode only. Single-instruction, multiple-data (SIMD),
extended-precision, short word, and long word addressing modes
are not supported. Program execution from external memory is also
not supported in the ADSP-21367/8/9 processors but is supported
in the ADSP-2137x processors. For more information, “External
Memory Interface on the ADSP-2137x Processors” on page 3-3.

The MS3-0 outputs serve as chip selects for memories or other external
devices, eliminating the need for external decoding logic. For more infor-
mation, see “Timing External Memory Accesses” on page 3-36. The MS3-0

Figure 3-8. Core Address Mapping to Bank, Row, and Column Addresses

Table 3-20. External Memory Address Space for SDRAM Addresses

Bank Size in Words Address Range

Bank 0 62M 0x0020 0000 – 0x03FF FFFF

Bank 1 64M 0x0400 0000 – 0x07FF FFFF

Bank 2 64M 0x0800 0000 – 0x0BFF FFFF

Bank 3 64M 0x0C00 0000 – 0x0FFF FFFF

31 0

Unused Bank Column AddressRow Address
Address

ADSP-21368 SHARC Processor Hardware Reference 3-53

External Port

lines are decoded memory address lines that change at the same time as the
other address lines. When no external memory access is occurring, the
MS3-0 lines are inactive.

The width of the bank address is only two bits and is shown in
Table 3-21. The width of the column address is programmable. The row
address is also programmable using SDRAW bits. The SDRAM bank address
is calculated using the row address width and the column address width.

In the following sections and in Table 3-22 through Table 3-25, the map-
ping of internal addresses to the external addresses is discussed. The
mapping of the addresses depends on the row address width (SDRAW), col-
umn address width (SDCAW), and the X16DE bit setting.

In Table 3-22, X16DE = 0, SDRAW[2:0] = 100 (12 bits), and SDCAW[1:0]
= 10 (10 bits).

Table 3-21. External Memory Address Bank Decoding

IA[27] IA[26] External Bank

0 0 Bank 0

0 1 Bank 1

1 0 Bank 2

1 1 Bank 3

Table 3-22. 32-Bit Column, Row, and Bank Address Mapping
(1K Words)

Pin Column Address Row Address Bank Address Pins of SDRAM

A[18] IA[23] BA[1]

A[17] IA[22] BA[0]

A[13] A[12]

A[12] IA[21] A[11]

SDRAM Controller

3-54 ADSP-21368 SHARC Processor Hardware Reference

In Table 3-23, X16DE = 0, SDRAW[2:0] = id 100 (12 bits), and
SDCAW[1:0] = 11 (11 bits).

SDA10 IA[20] A[10]

A[10] IA[9] IA[19] A[9]

A[9] IA[8] IA[18] A[8]

A[8] IA[7] IA[17] A[7]

A[7] IA[6] IA[16] A[6]

A[6] IA[5] IA[15] A[5]

A[5] IA[4] IA[14] A[4]

A[4] IA[3] IA[13] A[3]

A[3] IA[2] IA[12] A[2]

A[2] IA[1] IA[11] A[1]

A[1] IA[0] IA[10] A[0]

A[0] Not USED for 32-bit SDRAMs

Table 3-23. 32-Bit Column, Row and Bank Address Mapping
(2K Words)

Pin Column Address Row Address Bank Address Pins of SDRAM

A[18] IA[24] BA[1]

A[17] IA[23] BA[0]

A[13] A[12]

A[12] IA[10] IA[22] A[11]

SDA10 IA[21] A[10]

A[10] IA[9] IA[20] A[9]

Table 3-22. 32-Bit Column, Row, and Bank Address Mapping
(1K Words) (Cont’d)

Pin Column Address Row Address Bank Address Pins of SDRAM

ADSP-21368 SHARC Processor Hardware Reference 3-55

External Port

Even if the external data width is 16 bits, the ADSP-21367/8/9 and
ADSP-2137x SHARC processors support only 32-bit data accesses. If
X16DE is enabled (=1) the SDC performs two 16-bit accesses to get and
place 32-bit data. The SDC takes the IA address and appends one extra bit
to the LSB to generate the address externally.

For example, if the processor core requests address 0x200–0000 for a
32-bit access, the SDC performs two 16-bit accesses at 0x000–0000 and
0x000–0001, using MS0 to get one 32-bit data word. The column and row
addresses seen by 16-bit SDRAMs is shown in Table 3-24 where
X16DE = 1, SDRAW[2:0] = 100 (12 bits), and SDCAW[1:0] = 10 (10 bits) and
Table 3-25 where X16DE = 1, SDRAW[2:0] = 100 (12 bits), and
SDCAW[1:0] = 11 (11 bits).

A[9] IA[8] IA[19] A[8]

A[8] IA[7] IA[18] A[7]

A[7] IA[6] IA[17] A[6]

A[6] IA[5] IA[16] A[5]

A[5] IA[4] IA[15] A[4]

A[4] IA[3] IA[14] A[3]

A[3] IA[2] IA[13] A[2]

A[2] IA[1] IA[12] A[1]

A[1] IA[0] IA[11] A[0]

A[0] Not USED for 32-bit SDRAMs

Table 3-23. 32-Bit Column, Row and Bank Address Mapping
(2K Words) (Cont’d)

Pin Column Address Row Address Bank Address Pins of SDRAM

SDRAM Controller

3-56 ADSP-21368 SHARC Processor Hardware Reference

Table 3-24. 16-Bit Row and Column Address Mapping
(1K Words)

Pin Column Address Row Address Bank Address Pins of SDRAM

A[18] IA[22] BA[1]

A[17] IA[21] BA[0]

A[13]

A[12] A[12]

A[11] IA[20] A[11]

SDA10 IA[19] A[10]

A[9] IA[8] IA[18] A[9]

A[8] IA[7] IA[17] A[8]

A[7] IA[6] IA[16] A[7]

A[6] IA[5] IA[15] A[6]

A[5] IA[4] IA[14] A[5]

A[4] IA[3] IA[13] A[4]

A[3] IA[2] IA[12] A[3]

A[2] IA[1] IA[11] A[2]

A[1] IA[0] IA[10] A[1]

A[0] 1/0 IA[9] A[0]

ADSP-21368 SHARC Processor Hardware Reference 3-57

External Port

If you are using 32-bit SDRAMs, the SDC on the
ADSP-21367/8/9 and ADSP-2137x processors A0 pin is not con-
nected to the SDRAM’s A0 pin.

Table 3-25. 16-Bit Row and Column Address Mapping (2K Words)

Pin Column Address Row Address Bank Address Pins of SDRAM

A[18] IA[23] BA[1]

A[17] IA[22] BA[0]

A[13]

A[12] A[12]

A[11] IA[9] IA[21] A[11]

SDA10 IA[20] A[10]

A[9] IA[8] IA[19] A[9]

A[8] IA[7] IA[18] A[8]

A[7] IA[6] IA[17] A[7]

A[6] IA[5] IA[16] A[6]

A[5] IA[4] IA[15] A[5]

A[4] IA[3] IA[14] A[4]

A[3] IA[2] IA[13] A[3]

A[2] IA[1] IA[12] A[2]

A[1] IA[0] IA[11] A[1]

A[0] 1/0 IA[10] A[0]

SDRAM Controller

3-58 ADSP-21368 SHARC Processor Hardware Reference

SDRAM Controller Address Mapping

To access SDRAM, the SDC multiplexes the internal 32-bit, non-multi-
plexed address into a row and column address. The row and column
address mappings for 32-bit and 16-bit addresses are shown in
Table 3-25. The row and column addresses are muxed to pins
A14–A0 of the processor. The SDRAM address pin A10 is connected to the
processor’s SDA10 pin. The SDC bank address pins BA[0] and BA[1], are
connected to the processor’s A[17] and A[18] pins.

For 2 banked SDRAMs connect BA with A[17].

SDC Operation
The AMI normally generates an external memory address, which then
asserts the corresponding CS select on the SDRAM, along with RD and WR
strobes. However these control signals are not used by the SDRAM con-
troller. The internal strobes are used to generate pulsed commands (MSx,
SDCKE, SDRAS, SDCAS, SDWE) within a truth table Table 3-26. The memory
access to SDRAM is based by mapping ADDR[27:0] causing an internal
memory select to SDRAM space.

The configuration is programmed in the SDCTL register. The SDRAM con-
troller can hold off the processor core or DMA controller with an
internally connected acknowledge signal, as controlled by refresh, or page
miss latency overhead.

A programmable refresh counter is provided which generates background
auto-refresh cycles at the required refresh rate based on the clock fre-
quency used. The refresh counter period is specified with the SDRRC field
in the SDRAM refresh rate control register (“SPERRCTLx Register” on
page A-48).

ADSP-21368 SHARC Processor Hardware Reference 3-59

External Port

The internal 32-bit non-multiplexed address is multiplexed into:

• SDRAM column address

• SDRAM row address

• Internal SDRAM bank address

The lowest bits are mapped into the column address, next bits are mapped
into the row address, and the final two bits are mapped into the internal
bank address. This mapping is based on the SDCAW and SDRAW values pro-
grammed into the SDRAM control register.

The SDC uses no burst mode (BL = 1) for read and write operations. This
requires the SDC to post every read or write address on the bus as for
non-sequential reads or writes, but does not cause any performance degra-
dation. For ADSP-2137x processors, optional full page burst can be
activated, However, every single access is immediately interrupted by
another access resulting in no burst mode.

For read commands, there is a latency from the start of the read command
to the availability of data from the SDRAM, equal to the CAS latency.
This latency is always present for any single read transfer. Subsequent
reads do not have latency.

For more information on commands used by the SDRAM controller, see
“SDC Commands” on page 3-63.

SDRAM Controller

3-60 ADSP-21368 SHARC Processor Hardware Reference

Single Bank Operation

The SDC keeps only one page open at a time, however, driving four exter-
nal memory selects populated with SDRAM, the effective page size is
increased up to four pages.

Multibank Operation (ADSP-2137x Processors)

Since an SDRAM contains four independent internal banks (A–D), the
SDC on the ADSP-2137x processors is capable of supporting multibank
operation, thus taking advantage of the architecture.

Any first access to SDRAM bank (A) forces an activate command before a
read or write command. However, if any new access falls into the address
space of the other banks (B, C, or D) the SDC leaves bank (A) open and
activates any of the other banks (B, C, or D). Bank (A) to bank (B) active
time is controlled by tRRD = tRCD + 1. This scenario is repeated until all
four banks (A–D) are opened and results in an effective page size of up to
four pages. This is because the absence of latency allows switching
between these open pages (as compared to one page in only one bank at a
time). Any access to any closed page in any opened bank (A–D) forces a
precharge command only to that bank. If, for example, two external port
DMA channels are pointing to the same internal SDRAM bank, this
always forces precharge and activation cycles to switch between the differ-
ent pages. However, if the two external port DMA channels are pointing
to different internal SDRAM banks, there is no additional overhead. See
Figure 3-9.

Furthermore the SDC supports four external memory selects containing
each SDRAM. However only the MS0 and MS1 signals provide multibank
support, so the maximum number of open pages is 2 × 4 + 2 × 1 = 10
pages.

Multibank operation reduces precharge and activation cycles by
mapping opcode/data among different internal SDRAM banks
driven by the A[18:17] pins and external memory selects (MSx).

ADSP-21368 SHARC Processor Hardware Reference 3-61

External Port

Data Mask (DQM)

Since the ADSP-21367/8/9 and ADSP-2137x processors do not support
byte addressing, there is no need to mask data during partial writes (for
example, higher or lower byte on a 16-bit wide SDRAM).

All SDRAM DQM pins must be tied low.

SDC Configuration
After reset, the SDC clocks are enabled. However, the SDC must be con-
figured and initialized. Before programming the SDC and executing the
power-up sequence, select the correct CCLK to SDCLK ratio, and ensure that
the clock to the SDRAM is enabled (after the power has stabilized for the
proper amount of time as specified by the SDRAM).

Figure 3-9. Single Versus Multibank Operation

Bank A

Bank B

Bank C

Bank D

Bank A

Bank B

Bank C

Bank D

Access to page x

Access to page y

Access to page x

Access to page y

Access to page x

Access to page y

Single bank operation Multibank operation

SDRAM Controller

3-62 ADSP-21368 SHARC Processor Hardware Reference

In order to set up the SDC and start the SDRAM power-up sequence for
the SDRAMs, use the following procedure. Note that the registers must be
programmed in order.

1. External port control (EPCTL) register (assign external banks to
SDC)

2. Refresh rate control (SDRRC) register (program refresh counter)

3. SDRAM control (SDCTL) register (define global control for SDC
and SDRAM based on speed and SDRAM specs)

4. Access to SDRAM address space (initiates power-up sequence)

The SDRS bit (bit 3) of the SDRAM control status register can be checked
to determine the current state of the SDC. If this bit is set, the SDRAM
power-up sequence has not been initiated.

In order to set up the SDC and start the SDRAM power-up sequence for
the SDRAMs, the SDRAM refresh rate control register (SDRRC) and
SDRAM memory control register (SDCTL) must be written, and a transfer
must be started to SDRAM address space. The SDRS bit of the SDRAM
control status register can be checked to determine the current state of the
SDC. If this bit is set, the SDRAM power-up sequence has not been
initiated.

The RDIV field of the SDRRC register ia written to set the SDRAM refresh
rate.

Write to the SDCTL register in order to:

• Set the SDRAM cycle timing options—SDCL, SDTRAS, SDTRP,
SDTRCD, SDTWR, SDBUF

• Enable the SDRAM clock (DSDCTL)

• Set the data path width (X16DE)

ADSP-21368 SHARC Processor Hardware Reference 3-63

External Port

• Select and enable the start of the SDRAM power-up sequence
(SDPM, SDPSS)

• Select the column/row address widths

Once the SDPSS bit in the SDCTL register is set to 1, and a transfer occurs to
enabled SDRAM address space, the SDC initiates the SDRAM power-up
sequence. The exact sequence is determined by the SDPM bit in the SDCTL
register. The transfer that is used to trigger the SDRAM power-up
sequence can be either a read or a write. This transfer occurs when the
SDRAM power-up sequence has completed. This initial transfer takes
many cycles to complete since the SDRAM power-up sequence must take
place.

SDC Commands
This section provides a description of each of the commands that the SDC
uses to manage the SDRAM interface. These commands are handled auto-
matically by the SDC. A summary of the various commands used by the
on-chip controller for the SDRAM interface follows and is shown in
Table 3-26 on page 3-72.

• Load mode register—initializes the SDRAM operation parameters
during the power-up sequence.

• Single precharge—closes a specific internal bank depending on user
code (ADSP-2137x processors only).

• Precharge all—closes all internal banks, preceding any auto-refresh
command.

• Activate—activates a page in the required internal SDRAM bank

• Read/write

• Auto-refresh—causes the SDRAM to execute an internal CAS
before RAS refresh.

SDRAM Controller

3-64 ADSP-21368 SHARC Processor Hardware Reference

• Self-refresh entry—places the SDRAM in self-refresh mode, in
which the SDRAM powers down and controls its refresh opera-
tions internally.

• Self-refresh exit—exits from self-refresh mode by expecting
auto-refresh commands from SDC.

• NOP/command inhibit—no operation used to insert wait states
for activate and precharge cycles

• Burst Stop command—used to interrupt any full page burst opera-
tion (ADSP-2137x processors only).

Load Mode Register

This command is initializes SDRAM operation parameters. It is a part of
the SDRAM power-up sequence. Load mode register uses the address bus
of the SDRAM as data input. The power-up sequence is initiated by writ-
ing 1 to the SDPSS bit in the SDCTL register and then writing or reading
from any enabled address within the SDRAM address space to trigger the
power-up sequence. The exact order of the power-up sequence is deter-
mined by the SDPM bit of the SDCTL register.

The load mode register command initializes the following parameters.

• Burst length = 1, bits 2–0, always zero

• Optional burst length = full page, bits 2–0, all ones (ADSP-2137x
processors only).

• Wrap type = sequential, bit 3, always zero

• Ltmode = latency mode (CAS latency), bits 6–4, programmable in
the SDCTL register

• Bits 14–7, always zero

ADSP-21368 SHARC Processor Hardware Reference 3-65

External Port

While executing the load mode register command, the unused address
pins are set to zero. During the first SDCLK cycle following load mode reg-
ister, the SDC issues only NOP commands.

Alternatively, programs can use the Force LMR command by setting bit
22 (=1) in the SDCTL register. This command performs precharge all (if not
precharged already) followed by a mode register write. Unlike the standard
load mode register command, the eight CBR commands are not per-
formed. The correct usage of this bit is:

1. Force precharge (set bit 21)

2. Wait

3. Force LMR (set bit 22)

4. Wait

5. Eight CBR refresh cycles (set bit 20 eight times)

The order of these commands (step 3 and step 5, depending on SDRAM)
can be changed depending on the SDRAM requirements (see your
SDRAM vendors data sheet).

When the Force LMR bit is set, the load mode register command is
performed immediately. This is in contrast to the normal load
mode register command which requires a dummy access to be exe-
cuted (ADSP-2137x processors only).

Single Bank Activation

The bank activation command is required for first access to any internal
bank in SDRAM. Any subsequent access to the same internal bank but
different row will be preceded by a precharge and activation command to
that bank.

SDRAM Controller

3-66 ADSP-21368 SHARC Processor Hardware Reference

However, if an access to another bank occurs, the SDC closes the current
page open and issues another bank activate command before executing the
read or write command to that bank. With this method, called single bank
operation, Only one page can be open at a time.

Multibank Activation (ADSP-2137x Processors)

Unlike this command for the ADSP-21367/8/9 processors, if any other
access to another bank occurs, the SDC leaves the current page open and
issues a bank activate command before executing the read or write com-
mand to that bank. With this method, called multibank operation, one
page per bank can be open at a time, which results in a maximum of four
pages. For more information, see “Multibank Operation (ADSP-2137x
Processors)” on page 3-60.

Multibank activation is only supported for the external banks 0
and 1.

Single Precharge (ADSP-2137x Processors)

For a page miss during reads or writes in any specific internal SDRAM
bank, the SDC uses the single precharge command to close that bank. All
other internal banks are untouched.

This command is only supported for the external banks 0 and 1.

Precharge All

The precharge all command is given to precharge all internal banks at the
same time before executing an auto-refresh. All open banks are automati-
cally closed. This is possible since the SDC uses a separate SDA10 pin
which is asserted high during this command. This command proceeds the
auto-refresh command. Also, for single bank operation, this command is
used to close any open bank after a page miss detection.

ADSP-21368 SHARC Processor Hardware Reference 3-67

External Port

Read/Write

This command is executed if the next read/write access is in the present
active page. During the read command, the SDRAM latches the column
address. The delay between activate and read commands is determined by
the tRCD parameter. Data is available from the SDRAM after the CAS
latency has been met.

In the write command, the SDRAM latches the column address. The
write data is also valid in the same cycle. The delay between activate and
write commands is determined by the tRCD parameter.

The SDC does not use the auto-precharge function of SDRAMs, which is
enabled by asserting SDA10 high during a read or write command.

Figure 3-10 and Figure 3-11 show the SDRAM write and read timing of
the ADSP-21367/8/9 processors respectively. Figure 3-12 and
Figure 3-13 show the SDRAM write and read timing for the ADSP-2137x
processors.

Figure 3-10. Write Timing Diagram ADSP-21367/8/9

SDCLK

COMMAND ACT ACTNOP NOPPREWR WR WR WR NOP

COL COL COL COL

A A A A

D D D D

ROW

A

ROW

A

tRAS

tRCD
tRP

tWR

tRC

ADDR

BA[1:0]

DATA

SDA10

SDRAM Controller

3-68 ADSP-21368 SHARC Processor Hardware Reference

Figure 3-11. Read Timing Diagram ADSP-21367/8/9

Figure 3-12. Write Timing Diagram (ADSP-2137x, Full Page Burst))

SDCLK

COMMAND AC T ACTNOP NOPPRERD RD NOP NOP NOP

COL COL

A A

D D

ROW

A

ROW

A

tRAS

tRCD
tRP

CL

tRC

ADDR

BA[1:0]

DATA

SDA10

SD CLK

COMMAND ACT ACTNOP NOPPREWR WR WR WR BST

COL COL COL COL

A A A A

D D D D

ROW

A A

ROW

A

tRAS

tRCD
tRP

tWR

tRC

ADDR

BA[1:0]

DATA

SDA10

u

ADSP-21368 SHARC Processor Hardware Reference 3-69

External Port

Read/Write (ADSP-2137x Processors)

If the optional full page burst is select in the SDCTL register, the SDC posts
for every read and write an address on the bus. It does not burst, this
causes that every start address of the burst is interrupted with another start
address. This mode is equivalent to no burst mode.

Burst Stop (ADSP-2137x Processors)

If the optional full page burst is selected in the SDCTL register, the SDC
posts an address on the bus for every read and write. However if a
non-SDRAM access is latched, the SDC interrupts the full page burst pro-
tocol. By executing a burst stop command, the specific page remains open.

Figure 3-13. Read Timing Diagram (ADSP-2137x, Full Page Burst)

SDCLK

COMMAND ACT ACTNOP NOPPRERD RD NOP NOP BST

COL COL

A A

D D

ROW

A A

ROW

A

tRAS

tRCD
tRP

CL

tRC

ADDR

BA[1:0]

DATA

SDA10

SDA10

SDRAM Controller

3-70 ADSP-21368 SHARC Processor Hardware Reference

Auto-Refresh

The SDRAM internally increments the refresh address counter and causes
a CAS before RAS (CBR) refresh to occur internally for that address when
the auto-refresh command is given. The SDC generates an auto-refresh
command after the SDC refresh counter times out. The RDIV value in the
SDRAM refresh rate control register (SDRRC) must be set so that all
addresses are refreshed within the tREF period specified in the SDRAM
timing specifications.

Before executing the auto-refresh command, the SDC executes a pre-
charge all command to all external banks. The next activate command is
not given until the tRFC specification (tRFC = tRAS + tRP) is met.
Auto-refresh commands are also issued by the SDC as part of the
power-up sequence and after exiting self-refresh mode.

Self-Refresh Mode

This mode causes refresh operations to be performed internally by the
SDRAM, without any external control. This means that the SDC does not
generate any auto-refresh cycles while the SDRAM is in self-refresh mode.

Self-refresh entry—Self-refresh mode is enabled by writing a 1 to the
SDSRF bit of the SDRAM memory control register (SDCTL). This de-asserts
the SDCKE pin and puts the SDRAM in self-refresh mode if no access is
currently underway. The SDRAM remains in self-refresh mode for at least
tRAS and until an internal access (read/write) to SDRAM space occurs

Self-refresh exit—When any SDRAM access occurs, the SDC asserts
SDCKE high which causes the SDRAM to exit from self-refresh mode. The
SDC waits to meet the tXSR specification (tXSR = tRAS + tRP) and then
issues an auto-refresh command. After the auto-refresh command, the
SDC waits for the tRFC specification (tRFC = tRAS + tRP) to be met before
executing the activate command for the transfer that caused the SDRAM

ADSP-21368 SHARC Processor Hardware Reference 3-71

External Port

to exit self-refresh mode. Therefore, the latency from when a transfer is
received by the SDC while in self-refresh mode, until the activate com-
mand occurs for that transfer, is 2 × (tRC + tRP) cycles

System clock during self-refresh mode. Note that the SDCLK is not dis-
abled by the SDC during self-refresh mode. However, software may
disable the clocks by clearing the DSDCTL bit in the SDCTL register. Pro-
grams should ensure that all applicable clock timing specifications are met
before the transfer to SDRAM address space (which causes the controller
to exit the self-refresh mode). If a transfer occurs to SDRAM address space
when the DSDCTL bit is cleared, an internal bus error is generated, and the
access does not occur externally, leaving the SDRAM in self-refresh mode.

The following steps are required when using self-refresh mode.

1. Set the SDSRF bit to enter self-refresh mode

2. Poll the SDSRA bit in the SDRAM status register (SDSTAT) to deter-
mine if the SDRAM has already entered self-refresh mode.

3. Optionally: set the DSDCTL bit to freeze SDCLK

4. Optionally: clear the DSDCTL bit to re-enable SDCLK

5. SDRAM access occurs the SDRAM exits from self-refresh mode

The minimum time between a subsequent self-refresh entry and
exit command is the tRAS cycle. If a self-refresh request is issued
during any external port DMA, the SDC grants the request with
the tRAS cycle and continues DMA operation afterwards.

No Operation/Command Inhibit

The no operation (NOP) command to the SDRAM has no effect on opera-
tions currently in progress. The command inhibit command is the same as
a NOP command; however, the SDRAM is not chip-selected. When the
SDC is actively accessing the SDRAM but needs to insert additional

SDRAM Controller

3-72 ADSP-21368 SHARC Processor Hardware Reference

commands with no effect, the NOP command is given. When the SDC is
not accessing any SDRAM external banks, the command inhibit com-
mand is given.

A summary of pin states during SDC commands appears in Table 3-26.
Note that an X means do not care.

Table 3-26. SDRAM Pin States During SDC Commands

Command SDCKE
(n-1)

SDCKE
(n)

MS3–0 SDRAS SDCAS SDWE SDA10 Addresses

Mode register
set

High High Low Low Low Low Opcode Opcode

Activate High High Low Low High Low Valid Valid

Read High High Low High Low High Low Valid

Single
Precharge

High High Low Low High Low Low Valid

Precharge all High High Low Low High Low High X

Write High High Low High Low Low Low Valid

Auto-refresh High High Low Low Low High X X

Self-refresh
entry

High Low Low Low Low High X X

Self-refresh Low Low X X X X X X

Self-refresh
exit

Low High High X X X X X

Burst Stop High High Low High High Low X X

Nop High High Low High High High X X

Inhibit High High High X X X X X

ADSP-21368 SHARC Processor Hardware Reference 3-73

External Port

Changing System Clock During Runtime

All timing specifications are normalized to the system clock. Since most of
these are minimum specifications, (except tREF, which is a maximum spec-
ification), a variation of the system clock violates a specific specification
and causes a performance degradation for the other specifications.

The reduction of system clock violates the minimum specifications, while
increasing the system clock violates the maximum tREF specification.
Therefore, careful software control is required to adapt these changes.

For most applications, the SDRAM power-up sequence and writ-
ing of the mode register needs to occur only once. Once the
power-up sequence has completed, the SDPSS bit should not be set
again unless a change to the mode register is desired.

The recommended procedure for changing the system frequency
SDCLK is as follows.

1. Set the SDRAM to self-refresh mode by writing a 1 to the
SDSRF bit of SDCTL register.

2. Poll the SDSRA bit of SDSTAT register for self-refresh grant.

3. Execute the desired PLL programming sequence. (For
details see “PLL Programming Examples” on page 14-16).

4. Wait until the signal RESETOUT/CLKOUT is asserted which
ensures that the PLL has settled to the new frequency.

5. Reprogram the SDRAM registers (SDRRC, SDCTL) with values
appropriate to the new SDCLK frequency and assure that the
SDSRF bit is set.

6. Bring the SDRAM out of self-refresh mode by performing a
read or write access.

SDRAM Controller

3-74 ADSP-21368 SHARC Processor Hardware Reference

SDRAM Timing
To support key timing requirements and power-up sequences for different
SDRAM vendors, the SDC provides programmability for tRAS, tRP, tRCD,
tWR and the power-up sequence mode.

CAS latency is programmed in the SDCTL register based on the frequency
of operation. (Please refer to the SDRAM vendor’s data sheet for more
information.)

For other parameters, the SDC assumes:

• Bank cycle time is tRC = tRAS + tRP

• Bank A to Bank B cycle time is tRRD = tRCD + 1 (ADSP-2137x
processors only)

• Refresh cycle time is tRFC = tRAS + tRP

• Exit self-refresh time is tXSR = tRAS + tRP

• Load mode register to activate time is tMRD = 2 SDCLK cycles.

Table 3-27 and Table 3-28 show the optimal data throughput for 32- and
16-bit data accesses respectively. Table 3-29 shows accesses between exter-
nal memory banks.

Table 3-27. Optimal Data Throughput for 32-Bit Data Accesses
(CAS Latency = 2)

Access Operation Page Throughput per SDCLK
(32-Bit Data)

Sequential and
uninterrupted

Read Same 32 words per 37 cycles

Any Write Same core = 1 word per cycle
DMA = 1 word per 2 cycles

Non Sequential and
uninterrupted

Read Same 6 cycles

ADSP-21368 SHARC Processor Hardware Reference 3-75

External Port

With external buffering enabled, each access takes one extra cycle.

SDRAM Read Optimization

To achieve better performance, read addresses can be provided in a predic-
tive manner to the SDRAM memory. This is done by setting (=1) the
SDROPT bit (bit 16) and correctly configuring the SDMODIFY bits (bits 20–
17) in the SDRRC register. The predictive address given to the memory
depends on the SDMODIFY bits values. If the SDMODIFY value is 2, then the
address + 2 is the predictive value provided to the SDRAM address pins.

Programs may choose to determine whether read optimization is used or
not. If read optimization is disabled, then each read takes 6 cycles for a
CAS latency of 2. With read optimization enabled, 32 sequential reads,
with offsets ranging from 0 to 15, take only 37 cycles. Read optimization
should not be enabled while reading at the external bank boundaries. For

Table 3-28. Optimal Data Throughput for 16-Bit Data Accesses
(CAS Latency = 2)

Access Operation Page Throughput per SDCLK
(32-Bit Data)

Sequential and
uninterrupted

Read Same 32 words per 69 cycles

Sequential and uninter-
rupted

Write Same 2 cycles

Non Sequential and
uninterrupted

Read Same 7 cycles

Table 3-29. Accesses Between External Memory Banks
(MSx, CAS Latency = 2)

Operation Idle Cycles per SDCLK (32-Bit Data)

Read 6 cycles

Write 1 cycle

SDRAM Controller

3-76 ADSP-21368 SHARC Processor Hardware Reference

example, if SDMODIFY = 1, then 32 locations in the boundary of the exter-
nal banks should not be used. These locations can be used without
optimization enabled. If SDMODIFY = 2 then 64 locations can not be used at
the boundaries of the external bank (if it is fully populated).

Achieving Maximum Throughput Using Core Accesses

Any break of sequential reads of 32 accesses can cause a throughput loss
due to a maximum of eight extra reads in 32-bit memories or four extra
reads (eight 16-bit reads). Listing 3-1 shows how to achieve maximum
throughput using core accesses. Any cycle between consecutive reads to an
SDRAM address results in nonsequential reads.

Listing 3-1. Maximum Throughput Using Sequential Reads

I0 = sdram_addr;

M0 = 1; /* SET sdmodify to 1 */

Lcntr = 1024, do(PC,1) until lce;

R0 = R0 + R1, R0 = dm (I0, M0);

The examples in Listing 3-2 show how read optimization can be used effi-
ciently using core accesses. In Listing 3-2, all reads are on the same page
and it takes 1184 cycles to perform 1024 reads.

Listing 3-2. Sequential Reads With Read Optimization

I0 = sdram_addr;

M0 = 2; /* SET sdmodify to 2 */

Lcntr = 1024, do(PC,1) until lce;

R0 = R0 + R1, R0 = dm (I0, M0);

In Listing 3-3, reads are not performed sequentially and the read optimi-
zation reduces throughput.

ADSP-21368 SHARC Processor Hardware Reference 3-77

External Port

Listing 3-3. Nonsequential Reads With Read Optimization

I0 = sdram_addr;

M0 = 2; /* SET sdmodify to 2 */

Lcntr = 1024, do(PC,2) until lce;

R0 = R0 + R1, R0 = dm (I0, M0);

NOP;

Without read optimization, 1024 reads use 6144 processor cycles if all of
the reads are on the same page. With read optimization, 1024 reads take
7168 cycles, due to the breaking of sequential reads.

SDRAM Read Optimization Restrictions

Incorrect data may be read from external memory in the presence of the
following two types of sequences:

1. Any sequence of IOP register accesses (read or write) followed by
an external memory read causes incorrect data to be read from
external memory. For example:

r0=dm(RXSP3A);

r0=dm(ext_dest_seq_read); /* r0 is filled with the

 wrong data */

To avoid this error, separate the IOP and external memory access
by adding a NOP or any other instruction which is NOT an IOP
read/write or an external memory read.

2. In a dual-data move instruction, both accesses should not be to
external memory.

r0=dm(IOP), r8=pm(Ext_Mem);

SDRAM Controller

3-78 ADSP-21368 SHARC Processor Hardware Reference

The workaround is to break up this instruction into separate
instructions and use the workaround similar to case #1.

r0=dm(IOP);

NOP;

r8=pm(Ext_Mem);

External Memory Access Restrictions

The following restrictions should be noted when writing programs for the
ADSP-21367/8/9 and ADSP-2137x processors.

1. The processor does not execute from external memory in SIMD
mode and the LW mnemonic is not applicable to external memory.

2. In a dual-data move instruction, both accesses should not be to
external memory.

3. Conditional accesses to external memory should not be based on
any of the FLAG pin status.

4. If there is an aborted or interrupted conditional read to an external
memory, the processor generates a spurious read. This is an issue
for FIFO devices and not standard memories.

5. Any sequence of IOP register access (read or write) followed by an
external memory read, causes incorrect data to be read from exter-
nal memory. To workaround this restriction, separate the IOP and
external memory access by adding a NOP instruction or any other
instruction which is not either an IOP read/write, or an external
memory read.

ADSP-21368 SHARC Processor Hardware Reference 3-79

External Port

Shared Memory Interface
The ADSP-21368 processor supports connections to a common shared
external memory of other ADSP-21368 processors. These connections
create shared external bus processor systems. This support includes:

• Support for asynchronous memory and SDRAM

• Distributed, on-chip arbitration for the shared external bus

• Fixed and rotating priority bus arbitration

• Bus time-out logic

• Bus lock

Figure 3-14 illustrates a basic shared memory system. In a system with
several processors sharing the external bus, any of the processors can
become the bus master. The bus master has control of the bus, which con-
sists of the DATA31-0 and ADDR23-0 pins and associated control lines.

In a shared memory system, programs should not reset the current
bus master as this leads to system synchronization problems.

Shared Memory Bus Arbitration
Multiple processors can share the external bus with no additional arbitra-
tion logic as shown in Figure 3-14. Arbitration logic is included on chip to
allow the connection of up to four ADSP-21368 processors.

The processor accomplishes bus arbitration through the BR1-4 signals
which arbitrate between multiple processors. The priority scheme for bus
arbitration is determined by the RPBA pin setting. Table 3-30 defines the
processor pins used in multiprocessing systems.

Shared Memory Interface

3-80 ADSP-21368 SHARC Processor Hardware Reference

Figure 3-14. ADSP-21368 Shared Memory System

ADDR23-0

DATA31-0

C
O

N
T

R
O

L

A DSP-21368 #1

CLOCK

RESET

ADDR

DAT A

SDRAM
(OPTIONAL)

ACK

GLOBAL
MEMORY

AND
PERIPHERALS

(OPTIONAL)

OE

ADDR

DATA

CS

ADDR

DATA B OOT
EPROM

(OPTIONAL)

RD

MS3-0

RAS

SDCLK1-0

SDWE

ACK
ID2-0

RESET

CLKIN

3
001

BR4-2

CS

WEWR

C
O

N
TR

O
L

A
D

D
R

E
S

S

D
A

T
A

CAS

CONTROL

ADSP-21368 #N

ADDR

DATA

ID2-0

RESET

CLKIN

3
011

BR1

SDCKE
SDA10

RAS

CLK

WE
CAS

CKE
A10

RD

ADSP-21368 SHARC Processor Hardware Reference 3-81

External Port

The ID2-0 pins provide a unique identity for each processor in a multipro-
cessing system. The first processor should be assigned ID = 001, the second
should be assigned ID = 010, and so on. One of the processors must be
assigned ID = 001 in order for the bus synchronization scheme to function
properly.

The processor with ID = 001 holds the external bus control lines
stable (pull-up enabled) during reset.

A processor in a shared memory system can determine which processor is
the current bus master by reading the CRBM2-0 bits of the SYSTAT register
(see “System Status Register (SYSTAT)” on page A-9). These bits provide
the values of the ID2-0 inputs of the current bus master.

Table 3-30. Shared Memory Pins

Signal Type Definition

BR4–1 I/O/S Shared Memory Bus Requests. Used to arbitrate for bus mastership.
A processor only drives its own BRx line (corresponding to the value
of its ID2-0 inputs) and monitors all others. In a shared memory
system with less than four processors, the unused BRx pins should
be tied high; the processor’s own BRx line must not be tied high or
low because it is an output.

ID2–0 I Shared Memory ID. Determines which bus request (BR1–BR4) is
used by the ADSP-21368. ID = 001 corresponds to BR1, ID = 010
corresponds to BR2, and so on. Use ID = 000 or ID = 001 in single
processor systems. These lines are a system configuration selection
that should be hardwired or only changed at reset.

RPBA I Rotating Priority Bus Arbitration Select. When RPBA is high,
rotating priority for shared memory bus arbitration is selected.
When RPBA is low, fixed priority is selected. This signal is a system
configuration selection which must be set to the same value on every
processor.

I = Input, S = Synchronous, O = Output

Shared Memory Interface

3-82 ADSP-21368 SHARC Processor Hardware Reference

Conditional instructions can be written that depend upon whether the
processor is the current bus master in a shared memory system. The
assembly language mnemonic for this condition code is BM, and its com-
plement is Not BM (not bus master). The BM condition indicates whether
the processor is the current bus master. For more information, see the
“Conditional Sequencing” section in the ADSP-2136x SHARC Processor
Programming Reference, “Program Sequencer” chapter. To use the bus
master condition, the condition code select (CSEL) field in the MODE1 regis-
ter must be zero or the condition is always evaluated as false.

Bus Arbitration Protocol

The bus request (BR1-4) pins are connected between each processor in a
shared memory system, where the number of BRx lines used is equal to the
number of processors in the system. Each processor drives the BRx pin that
corresponds to its ID2-0 inputs and monitors all others.

If less than four processors are used in the system, the unused BRx
pins should be tied high.

When one of the slave processors needs to become bus master, it automat-
ically initiates the bus arbitration process by asserting its BRx line at the
beginning of the cycle. Later in the same cycle, the processor samples the
value of the other BRx lines.

The cycle in which mastership of the bus is passed from one processor to
another is called a bus transition cycle (BTC). A BTC occurs when the
current bus master’s BRx pin is deasserted and one or more of the slave’s
BRx pins is asserted. The bus master can retain bus mastership by keeping
its BRx pin asserted.

By observing all of the BRx lines, each processor can detect when a bus
transition cycle occurs and which processor has become the new bus mas-
ter. A bus transition cycle is the only time that bus mastership is
transferred.

ADSP-21368 SHARC Processor Hardware Reference 3-83

External Port

After conditions determine that a bus transition cycle is going to occur,
every processor in the system evaluates the priority of the BRx lines asserted
within that cycle. For a description of bus arbitration priority, see “Bus
Arbitration Priority (RPBA)” on page 3-86. The processor with the high-
est priority request becomes the bus master on the following cycle, and all
of the processors update their internal records to indicate which processor
is the current bus master. Figure 3-15 shows typical timing for bus
arbitration.

The actual transfer of bus mastership is accomplished by the current bus
master three-stating the external bus—DATA31-0, ADDR23-0, RD, WR, and
MS3-0—at the end of the bus transition cycle and the new bus master driv-
ing these signals at the beginning of the next cycle. The bus strobes RD, WR,

Figure 3-15. Bus Arbitration Timing

INTERNAL
OPERATION

INTERNAL
OPERATION

INTERNAL
OPERATION

INTERNAL
OPERATION

INTERNAL
OPERATION

EXTERNAL
ACCESS

UNDRIVEN
PERFORM
ACCESS

INTERNAL
OPERATION

EXTERNAL
ACCESS

INTERNAL
OPERATION

EXTERNA L
ACC ESS

INTERNAL
OPERATION

INTERNAL
OPERAT ION

UNDRIVEN
HOLD SIGNAL

STABLE
PERFORM
ACC ESS

HOLD SIGNAL
STABLE

PERFOR M
ACCESS

PERFORM
ACCESS

BRX SAMPLED
AT THIS POINT

BUS REQUESTS

CLKIN

BR1

BR2

EXECUTE
FLOW

BUS
ACTIVE

EXECUTE
FLOW

BUS
ACTIVE

PROCESSOR #1
IS BUS MASTER

PROCESSOR #2
IS BUS MASTER

BTCBTC

EXTERNAL
ACCESS

HOLD SIGNAL
STABLE

UNDRIVEN

PROCESSOR WITH ID=1

PROCESSOR WITH ID=2

Shared Memory Interface

3-84 ADSP-21368 SHARC Processor Hardware Reference

and MS3-0 are driven high (inactive) before three-stating occurs. The ACK
signal must be sampled high by the new master before it starts a new bus
operation. For more information, see Figure 3-16.

During bus transition cycle delays, execution of external accesses are
delayed. When one of the slave processors needs to perform an external
read or write, it automatically initiates the bus arbitration process by
asserting its BRx line. This read or write is delayed until the processor
receives bus mastership. If the read or write was generated by the proces-
sor’s core (not the I/O processor), program execution stops on that
processor until the instruction is completed.

The following steps occur as a slave acquires bus mastership and performs
an external read or write over the bus as shown in Figure 3-16.

1. The slave determines that it is executing an instruction which
requires an off-chip access. It asserts its BRx line at the beginning of
the cycle. Extra cycles are generated by the core processor (or I/O
processor) until the slave acquires bus mastership.

2. To acquire bus mastership, the slave waits for a bus transition cycle
in which the current bus master deasserts its BRx line. If the slave
has the highest priority request in the BTC, it becomes the bus
master in the next cycle. If not, it continues waiting.

3. At the end of the BTC, the current bus master releases the bus and
the new bus master starts driving.

During the CLKIN cycle in which the bus master deasserts its BRx output, it
three-states its outputs in case another bus master wins arbitration and
enables its drivers in the next CLKIN cycle. If the current bus master retains
control of the bus in the next cycle, it enables its bus drivers, even if it has
no bus operation to run.

The processor with ID = 001 enables internal pull-up devices on key sig-
nals, including the address and data buses, strobes, and ACK. These devices
provide a weak current source or sink (approximate 20 kΩ impedance) to

ADSP-21368 SHARC Processor Hardware Reference 3-85

External Port

keep these signals from drifting near input receiver thresholds when all
drivers are three-stated. Note that single processor systems with ID = 000
also enable these pull-up devices.

When the bus master stops using the bus, its BRx line is deasserted, allow-
ing other processors to arbitrate for mastership if they need it. If no other
processors are asserting their BRx line when the master deasserts its BRx,
the master retains control of the bus and continues to drive the memory
control signals until: 1) it needs to use the bus again, or 2) another proces-
sor asserts its BRx line.

Figure 3-16. Bus Request and Read/Write Timing

BRx

1 2 3 4 5 6

ADDR

MSx

RD

WR

ACK

DATA

BTC

VALID

OPTIONAL

VALID

BTC DOES NOT
OCCUR IF NO OTHER

BRS ASSERTED

VALID VALID

VALID VALID

HIGHEST PRIORITY REQUESTER BECOMES BUS MASTER

MS, STROBES DRIVEN INACTIVE BEFORE THREE-STATE

CLKIN

Shared Memory Interface

3-86 ADSP-21368 SHARC Processor Hardware Reference

Bus Arbitration Priority (RPBA)

To resolve competing bus requests, there are two available priority
schemes—fixed and rotating. The RPBA pin selects the scheme. When RPBA
is high, rotating priority bus arbitration is selected, and when RPBA is low,
fixed priority is selected. The RPBA pin must be set to the same value on
each processor in a multiprocessing system.

In the fixed priority scheme, the processor with the lowest ID number
among the competing bus requests becomes the bus master. If, for exam-
ple, the processor with ID = 010 and the processor with ID =100 request
the bus simultaneously, the processor with ID=010 becomes bus master in
the following cycle.

Each processor knows the ID of the other processors requesting the
bus, because the ID corresponds to the BRx line being used for each
processor.

The rotating priority scheme gives roughly equal priority to each proces-
sor. When rotating priority is selected, the priority of each processor is
reassigned after every transfer of bus mastership. Highest priority is
rotated from processor to processor as if they were arranged in a circle—
the processor with the next highest ID setting from the current bus master
is the one that receives highest priority. Table 3-31 shows an example of
how rotating priority changes on a cycle-by-cycle basis.

Table 3-31. Rotating Priority Arbitration Example

Cycle Number

Hardwired Processor IDs and Priority1

ID1 ID2 ID3 ID4

12 M 1 2-BR 3

2 2 3-BR M-BR 1

3 2 3-BR M 1

ADSP-21368 SHARC Processor Hardware Reference 3-87

External Port

Bus Mastership Time-out

In either the fixed or rotating priority scheme, systems may need to limit
how long a bus master can retain the bus. This is accomplished by forcing
the bus master to deassert its BRx line after a specified number of CLKIN
cycles and giving the other processors a chance to acquire bus mastership.

To set up a bus master time-out, a program must load the bus time-out
maximum (BMAX register, address = 0x180D, Figure 3-17) with the maxi-
mum number of CLKIN cycles (minus 2) that allows the processor to retain
bus mastership. This equation is shown below.

BMAX = (maximum number of bus mastership CLKIN cycles) – 2

The minimum value for BMAX is 2, which lets the processor retain bus mas-
tership for four CLKIN cycles. Setting BMAX=1 is not allowed. To disable the
bus master time-out function, set BMAX=0.

Each time a processor acquires bus mastership, its bus time-out counter
(BCNT register, address = 0x180E) is loaded with the value in BMAX. The
BCNT is then decremented in every CLKIN cycle in which the master per-
forms a read or write over the bus and any other (slave) processors are
requesting the bus. Any time the bus master deasserts its BRx line, BCNT is
reloaded from BMAX.

4 3-BR M 1 2-BR

53 1-BR 2 3 M

1 The following symbols appear in these cells: 1-3 = assigned priority, M = bus mastership (in that
cycle), BR = requesting bus mastership with BRx

2 Initial priority assignments
3 Final priority assignments

Table 3-31. Rotating Priority Arbitration Example (Cont’d)

Cycle Number

Hardwired Processor IDs and Priority1

ID1 ID2 ID3 ID4

Shared Memory Interface

3-88 ADSP-21368 SHARC Processor Hardware Reference

When BCNT decrements to zero, the bus master first completes its off-chip
read/write and then deasserts its own BRx (any new off-chip accesses are
delayed), which allows transfer of bus mastership. If the ACK signal is hold-
ing off an access when BCNT reaches zero, bus mastership is not
relinquished until the access can complete.

If BCNT reaches zero while bus lock is active, the bus master does not deas-
sert its BRx line until bus lock is removed. Bus lock is enabled by the BUSLK
bit (bit 29 of SYSCTL register). For more information, see “Bus Lock and
Semaphores” on page 3-92.

Bus Synchronization After Reset
When a shared memory system comes out of reset (after RESET is asserted),
the bus arbitration logic on each processor must synchronize, ensuring
that only one processor drives the external bus. One processor must
become the bus master, and all other processors must recognize it before
actively arbitrating for the bus. The bus synchronization scheme also lets
the system safely bring individual processors into and out of reset.

One of the processors in the system must be assigned ID = 001 in order for
the bus synchronization scheme to function properly. This processor also
holds the external bus control lines stable during reset.

Bus arbitration and synchronization are disabled if the processor is
in a single processor system (ID = 000).

Figure 3-17. BMAX Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BMAX = maximum # of bus
mastership cycles – 2
Bits 31-16 are reserved.

BMAX (0x180D)

ADSP-21368 SHARC Processor Hardware Reference 3-89

External Port

To synchronize their bus arbitration logic and define the bus master after
a system reset, the multiple processors obey the following rules:

• All processors except the one with ID = 001 deassert their BRx line
during reset. They keep their BRx deasserted for at least two cycles
after reset and until their bus arbitration logic is synchronized.

• After reset, a processor considers itself synchronized when it detects
a cycle in which only one BRx line is asserted. The processor identi-
fies the bus master by recognizing which BRx is asserted and
updates its internal record to indicate the current master.

• The processor with ID = 001 asserts its BRx during reset and for at
least two cycles after reset. If no other BRx lines are asserted during
these cycles, the processor with ID = 001 drives the memory control
signals to prevent glitches. Although the processor with ID = 001 is
asserting its BRx and driving the memory control signals during
these cycles, this processor does not perform reads or writes over
the bus.

• While in reset, the processor with ID = 001 attempts to gain con-
trol of the bus by asserting BR1.

• While in reset, the processor with ID = 001 drives the RD, WR, and
MS3-0 signals only if it determines that it has control of the bus. For
the processor to decide it has control of the bus: 1) its BR1 signal
must be asserted and 2) in the previous cycle, no other processor’s
BRx signals were asserted.

The processor with ID = 001 continues to drive the RD, WR, and MS3-0 sig-
nals for two cycles after reset, as long as other BRx lines are asserted.

If the processor with ID = 001 is synchronized by the end of the two cycles
following reset, it becomes the bus master. If it is not synchronized at this
time, it deasserts its BRx and stops driving the memory control signals and
does not arbitrate for the bus until it becomes synchronized. When a pro-
cessor has synchronized itself, it sets the BSYN bit in the SYSTAT register.

Shared Memory Interface

3-90 ADSP-21368 SHARC Processor Hardware Reference

If one processor comes out of reset after the others have synchronized and
started program execution, that processor may not be able to synchronize
immediately (for example, if it detects more than one BRx line asserted). If
the non-synchronized processor tries to execute an instruction with an
off-chip read or write, it cannot assert its BRx line to request the bus and
execution is delayed until it can synchronize and correctly arbitrate for the
bus.

During reset, the ACK line is pulled high internally by the processor bus
master with a 20 kΩ equivalent resistor.

In a system where multiple ADSP-21368 processors share a bank of
SDRAM, the master processor’s SDRAM controller powers up the
SDRAM. The master processor then periodically performs an auto-refresh
command as expected. When another ADSP-21368 arbitrates for and
receives bus mastership, it assumes the responsibility for performing a pre-
charge all command, followed by the auto-refresh command.

When a processor (other than the one responsible for power-up) receives
bus mastership for the first time, the auto-refresh command is not per-
formed. This can cause a delay of up to four times the value programmed
between the execution of auto-refresh commands. Further, this delay can
occur for each processor (other than the master) in the system.

To compensate for this delay, use the following procedure.

1. The processors, other than the one responsible for power-up,
should wait for SDRAM power-up to complete. Flags or NOP-loops
may be used to accomplish this.

2. After detecting that power-up is complete, and before performing
any external data accesses, the processors (other than the power-up
processor) should execute the following set of instructions to
ensure that an auto-refresh command is executed.

r0 = dm(sdram_addr); /* dummy access to grab the bus */

if not BM jump(pc,0); /* wait for bus mastership */

ADSP-21368 SHARC Processor Hardware Reference 3-91

External Port

/* Force an auto-refresh */

ustat1 = dm(SDCTL);

bit set ustat1 F_AR;

dm(SDCTL) = ustat1;

After this code is executed, the processors in the system can start
normal external accesses. These steps must be repeated when a pro-
cessor is reset.

Bus Synchronization Notes

1. During normal operation, do not reset the current bus master
(external hard reset) as this causes system synchronization prob-
lems. A few key signals (for example SDCLK) are three stated or
undriven at reset.

2. The SDCLK and CLKIN signals are used in the arbitration logic for
the shared external bus. This logic requires that these clocks are ris-
ing edge aligned to function properly. Therefore, not all clock
ratios are allowed in shared memory systems. The values of PLLM
(PLL multiplier) and PLLD (PLL divider), which are set in the
power management control register (PMCTL), need to be pro-
grammed such that the ratio (PLLM/2PLLD) is an integer. For
more information, see “Power Management Control Register
(PMCTL)” on page A-170.

3. If the clock ratio from the PLL is changed by programming values
of PLLM and/or PLLD in the PMCTL register, the FSYNC bit (bit 28
of SYSCTL register) should be set to re synchronize the shared mem-
ory system. This bit should be cleared after meeting the PLL
settling time and the clock locks to the new ratio. If only the value
of PLLD is programmed, in addition to the above, enter dummy
bypass mode by setting and clearing the PLLBP bit (bit 15 in the
PMCTL register) to ensure the SDCLK and CLKIN are rising edge
aligned.

Shared Memory Interface

3-92 ADSP-21368 SHARC Processor Hardware Reference

Only SDRAM clock (SDCLK) ratios of two and four are supported
in shared memory systems.

Bus Lock and Semaphores
To allow the processors in shared memory systems to share resources such
as memory or I/O, semaphores can be used. A semaphore is a flag that can
be read and written by any of the processors sharing the resource. The
value of the semaphore tells the processor when it can access the resource.
Semaphores are also useful to synchronize tasks being performed by differ-
ent processors in a system.

With the use of its bus lock feature, the processor has the ability to read
and modify a semaphore—a key requirement of shared memory systems.

Read-modify-write operations on semaphores can be performed if all of
the processors obey two simple rules:

1. A processor must not write to a semaphore unless it is the bus
master.

2. When attempting a read-modify-write operation on a semaphore,
the processor must have bus mastership for the duration of the
operation.

Both of these rules apply when a processor uses its bus lock feature, which
retains its mastership of the bus and prevents other processors from simul-
taneously accessing the semaphore.

Bus lock is requested by setting the BUSLK bit in the SYSCTL register. When
this happens, the processor initiates the bus arbitration process by assert-
ing its BRx line. When the processor becomes bus master, it locks the bus
by keeping its BRx line asserted, even when it is not performing an external
read or write. When the BUSLK bit is cleared, the processor gives up the bus
by deasserting its BRx line.

ADSP-21368 SHARC Processor Hardware Reference 3-93

External Port

While the BUSLK bit is set, the processor can determine if it has acquired
bus mastership by executing a conditional instruction with the bus master
(BM) or not bus master (Not BM) condition codes, for example:

IF NOT BM JUMP(PC,0); /* Wait for bus mastership */

If the processor becomes the bus master, it can proceed with the external
read or write. If not, it can clear its BUSLK bit and try again later.

A read-modify-write operation is accomplished with the following steps:

1. Request bus lock by setting the BUSLK bit in SYSCTL.

2. Wait for bus mastership to be acquired.

3. Read the semaphore, test it, then write to it.

Locking the bus prevents other processors from writing to the semaphore
while the read-modify-write operation is occurring.

Shared Memory Interface Status

The system status (SYSTAT) register provides status information for host
and multiprocessor systems. Table 3-32 shows the status bits in this
register.

Table 3-32. SYSTAT Register

Bit(s) Name Definition

1 BSYN Bus Synchronized. This bit indicates whether the proces-
sor’s bus arbitration logic is synchronized (if set, =1) or is
not synchronized (if cleared, =0, reset value).

6-4 CRBM Current Bus Master. These bits indicate the ID of the
processor that is currently the bus master in a multipro-
cessor system.

10-8 IDC ID Code. These bits indicate the state of the ID pins on
the processor.

Shared Memory Interface

3-94 ADSP-21368 SHARC Processor Hardware Reference

Shared Memory and the SDRAM Controller
In a shared memory environment, the SDRAM is shared among two or
more ADSP-21368 processors. SDRAM input signals (including clock)
are always driven by the bus master. The current bus master continues to
hold the bus for tRASmin – 1 cycles before giving up the bus to the new bus
master.

The clock is three-stated on releasing the bus, and command lines are
driven for one extra cycle with a NOP instruction. The new bus master also
drives a NOP on the command lines immediately after acquiring the bus
mastership. This prevents latching of invalid commands due to glitches on
the clock, (if any) during bus mastership changeover.

The following should be noted when using the SDRAM controller in a
shared memory system.

1. Processors do not track commands on the bus.

2. The master processor issues a refresh command immediately after
getting bus-mastership and clearing its refresh counter. This sim-
plifies the design and avoids maintaining the refresh counters in
sync on all processors using an overhead of a few clock cycles on
each mastership changeover.

3. For shared SDRAM timing, all processors must have the same
SDCLK frequency, and the same core clock (CCLK) to SDRAM clock
(SDCLK) ratio. This implies that all processors must use the same
settings in their respective control (SDCTL) and refresh rate (SDRRC)
registers.

Shared Memory Booting
The ADSP-21368 processor allows booting for multiple processors from a
single EPROM/FLASH. For more information, see “Shared Memory
Booting” on page 14-40.

ADSP-21368 SHARC Processor Hardware Reference 4-1

4 DIGITAL AUDIO/DIGITAL
PERIPHERAL INTERFACES

The digital audio interface (DAI) and the digital peripheral interface
(DPI) are comprised of a groups of peripherals and their respective signal
routing units (SRU1 and SRU2). The inputs and outputs of the peripher-
als are not directly connected to external pins. Rather, the SRUs connect
the peripherals to a set of pins and to each other, based on a set of config-
uration registers. This allows the peripherals to be interconnected to suit a
wide variety of systems. It also allows the ADSP-21367/8/9 and
ADSP-2137x SHARC processors to include an arbitrary number and vari-
ety of peripherals while retaining high levels of compatibility without
increasing pin count. Table 4-1 shows the peripherals that are assigned to
each SRU.

The peripherals listed in Table 4-1 represent the maximum in any
single processor. For a listing

Table 4-1. Signal Routing Unit Peripheral Assignments

DAI SRU1 DPI SRU21

Serial Ports (up to 8)2 Timers (3)

S/PDIF Transmitter/Receiver Serial Peripheral Interface (2)

Interrupts (10) Two Wire Interface

Precision Clock Generators (4) Universal Asynchronous Receiver/
Transmitter (2)

Asynchronous Sample Rate
Converter (8 channels)

General-Purpose I/O (9)

Structure of the Interfaces

4-2 ADSP-21368 SHARC Processor Hardware Reference

The following sections describe the general operating theory of both the
DAI and DPI as well as their SRUs.

Structure of the Interfaces
Both the DAI and DPI incorporate a specific set of peripherals and a very
flexible routing (connection) system permitting a large combination of
signal flows. A set of DAI/DPI-specific registers make such design, con-
nectivity, and functionality variations possible. All routing related to
peripheral states for the DAI/DPI interfaces are specified using registers
related to each interface. For more information on pin states, refer to
Figure 4-6 on page 4-10.

The DAI/DPI may be used to connect any combination of inputs to any
combination of outputs. This function is performed by the SRUs through
memory-mapped registers.

Input Data Port Flags (12)

General-Purpose I/O (20 channels)

1 The precision clock generator (PCG) units C and D can also be routed through
the DPI.

2 SPORT6 and SPORT7 receive clocks from other sources but cannot send their
own clocks to other SPORTS or other peripherals internally through SRU1. If
needed, they have to be connected externally through pins.

Table 4-1. Signal Routing Unit Peripheral Assignments (Cont’d)

DAI SRU1 DPI SRU21

ADSP-21368 SHARC Processor Hardware Reference 4-3

Digital Audio/Digital Peripheral Interfaces

This virtual connectivity design offers a number of distinct advantages:

• Flexibility

• Increased numbers and kinds of configurations

• Connections can be made through software—no hard wiring is
required

Inputs may only be connected to outputs.

DAI/DPI System Design
Figure 4-1 and Figure 4-2 show how the DAI pin buffers are connected
through SRU1 and Figure 4-3 and Figure 4-4 show how the DPI pin
buffers are connected through SRU2. The SRUs allow for very flexible
data routing. In its design, the DAI/DPI makes use of several types of data
from the sources, shown in Table 4-1.

For a sample of a DAI system configuration, refer to “Using the SRU()
Macro to Configure the DAI” on page 4-76.

DAI/DPI System Design

4-4 ADSP-21368 SHARC Processor Hardware Reference

Figure 4-1. DAI System Design

C
L

K
F

S
D

A
D

B

SPORTx_CLK_PE_O
SPORTx_CLK_O
SPORTx_CLK_I

SPORTx_FS_PE_O
SPORTx_FS_O
SPORTx_FS_I

SPORTx_DA_PE_O
SPORTx_DA_O

SPORTx_DB_PE_O
SPORTx_DB_O
SPORTx_DB_I

SPORTx_DA_I
DAI_P20

DAI_PB20_O

DAI_PB20_I

DAI_PB20_PE_I

DAI_P19
DAI_PB19_O

DAI_PB19_I

DAI_PB19_PE_I

DAI_P18
DAI_PB18_O

DAI_PB18_I

DAI_PB18_PE_I

DAI_P17
DAI_PB17_O

DAI_PB17_I

DAI_PB17_PE_I

DAI_P16
DAI_PB16_O

DAI_PB16_I

DAI_PB16_PE_I

DAI_P15
DAI_PB15_O

DAI_PB15_I

DAI_PB15_PE_I

DAI_P14
DAI_PB14_O

DAI_PB14_I

DAI_PB14_PE_I

DAI_P13
DAI_PB13_O

DAI_PB13_I

DAI_PB13_PE_I

DAI_P12
DAI_PB12_O

DAI_PB12_I

DAI_PB12_PE_I

DAI_P11
DAI_PB11_O

DAI_PB11_I

DAI_PB11_PE_I

DAI PINS

SIGNAL ROUTING UNIT

DAI
CORE

INTERFACE

DAI PIN
BUFFERS

DIT_CLK_I

DIT_DAT_I
DIT_FS_I
DIT_HFCLK_I
DIT_EXTSYNC_I*

DIR_DAT_O

DIR_CLK_O
DIR_FS_O

DIR_TDMCLK_O

SPDIF_PLLCLK_I*

DIR_I

SRC0_DAT_IP_I

SRC0_CLK_IP_I

SRC0_FS_IP_I

SRC0_DAT_OP_O

SRC0_CLK_OP_O

SRC0_FS_OP_O

S/PDIF TRANSMITTER

S/PDIF RECEIVER

SRC0_TDM_OP_I*

SRC0_TDM_IP_O*

SAMPLE RATE
CONVERTER 0

SERIAL PORTS[7-0]

T
D

V

SPORTx_TDV_O

DIT_O

BLK_START*

SRC 1
SRC 2

SRC 3

DIR_LRCLK_FB*

DIR_LRCLK_REF* *OPTIONAL SIGNAL

ADSP-21368 SHARC Processor Hardware Reference 4-5

Digital Audio/Digital Peripheral Interfaces

Figure 4-2. DAI System Design (continued)

PDAP

IDP0_CLK_I
IDP0_FS_I
IDP0_DAT_I

IDP0

IDP
DMA
[7:1]

IDP1

IDP2

IDP3

IDP4

IDP5

IDP6

PCG_CLKD_O

PCG_EXTD_I

PCG_FSD_O

PCG_CLKC_O

PCG_EXTC_I

PCG_FSC_O

DAI
CORE

INTERFACE

DAI_P10
DAI_PB10_O

DAI_PB10_I

DAI_PB10_PE_I

DAI_P09
DAI_PB09_O

DAI_PB09_I

DAI_PB09_PE_I

DAI_P08
DAI_PB08_O

DAI_PB08_I

DAI_PB08_PE_I

DAI_P07
DAI_PB07_O

DAI_PB07_I

DAI_PB07_PE_I

DAI_P06
DAI_PB06_O

DAI_PB06_I

DAI_PB06_PE_I

DAI_P05
DAI_PB05_O

DAI_PB05_I

DAI_PB05_PE_I

DAI_P04
DAI_PB04_O

DAI_PB04_I

DAI_PB04_PE_I

DAI_P03
DAI_PB03_O

DAI_PB03_I

DAI_PB03_PE_I

DAI_P02
DAI_PB02_O

DAI_PB02_I

DAI_PB02_PE_I

DAI_P01
DAI_PB01_O

DAI_PB01_I

DAI_PB01_PE_I

DAI PINS

SIGNAL ROUTING UNIT

SHARC
SIMD CORE

AND
MEMORY

IDP7_DAT_I

IDP7_CLK_I
IDP7_FS_I

IDP7

PDAP_STRB_O

IDP
DMA0 M

U
X

DAI PIN
BUFFERS

PCG_CLKB_O

PCG_EXTB_I

PCG_FSB_O

PCG_CLKA_O

PCG_EXTA_I

PCG_FSA_O

PCGA

PCGB

PCGC

PCGD

PCG_SYNC_CLKA_I

PCG_SYNC_CLKB_I

PCG_SYNC_CLKC_I

PCG_SYNC_CLKD_I

DAI/DPI System Design

4-6 ADSP-21368 SHARC Processor Hardware Reference

Figure 4-3. DPI System Design

UART0

DPI_P07
DPI_PB07_O

DPI_PB07_I

DPI_PB07_PE_I

DPI_P06
DPI_PB06_O

DPI_PB06_I

DPI_PB06_PE_I

DPI_P05
DPI_PB05_O

DPI_PB05_I

DPI_PB05_PE_I

DPI_P04
DPI_PB04_O

DPI_PB04_I

DPI_PB04_PE_I

DPI_P03
DPI_PB03_O

DPI_PB03_I

DPI_PB03_PE_I

DPI_P02
DPI_PB02_O

DPI_PB02_I

DPI_PB02_PE_I

DPI_P01
DPI_PB01_O

DPI_PB01_I

DPI_PB01_PE_I

DPI PINS

TIMER1_O

TIMER1_I

TIMER2_O

GENERAL
PURPOSE
COUNTER/

TIMERS

TIMER3_O

TIMER2_I

TIMER3_I

SIGNAL ROUTING UNIT 2

DPI
CORE

INTERFACE

DPI PIN
BUFFERS

UART0_RX_I

UART0_TX_O

UART1

PCG_CLKD_O

PCG_EXTD_I

PCG_FSD_O

PCG_CLKC_O

PCG_EXTC_I

PCG_FSC_O

PCGC

PCGD

PCG_SYNC_CLKC_I

PCG_SYNC_CLKD_I

FLAGS

FLAG[15-4]_PE_O

FLAG[15-4]_O

ADSP-21368 SHARC Processor Hardware Reference 4-7

Digital Audio/Digital Peripheral Interfaces

Figure 4-4. DPI System Design (continued)

DPI
CORE

INTERFACE
DPI_P14

DPI_PB06_O

DPI_PB06_I

DPI_PB06_PE_I

DPI_P13
DPI_PB05_O

DPI_PB05_I

DPI_PB05_PE_I

DPI_P12
DPI_PB04_O

DPI_PB04_I

DPI_PB04_PE_I

DPI_P11
DPI_PB03_O

DPI_PB03_I

DPI_PB03_PE_I

DPI_P09
DPI_PB02_O

DPI_PB02_I

DPI_PB02_PE_I

DPI_P08
DPI_PB01_O

DPI_PB01_I

DPI_PB01_PE_I

DPI PINS

SIGNAL ROUTING UNIT 2

SHARC
SIMD CORE

AND
MEMORY

DPI PIN
BUFFERS

SPI

TWI

TWI_SDATA_IN

TWI_SCLK_OE

TWI_SDATA_OE

SPI_MOSI_I

SPI_MISO_I

SPI_CLK_I

SPI_DS_I

SPI_FLG0_I

SPI_FLG1_I

SPI_FLG3_I

SPI_FLG2_I

SPI_MOSI_O

SPI_MISO_O

SPI_CLK_O

SPI_DS_O

SPI_FLG0_O

SPI_FLG1_O

SPI_FLG3_O

SPI_FLG2_O

SPI_CLK_PBEN_O

SPIB

Signal Routing Units

4-8 ADSP-21368 SHARC Processor Hardware Reference

Signal Routing Units
This section describes how to use the signal routing units (SRU1 and
SRU2) to connect inputs to outputs.

Connecting Peripherals
The SRUs can be likened to a set of patch bays, which contains a bank of
inputs and a bank of outputs. For each input, there is a set of permissible
output options. Outputs can feed to any number of inputs in parallel, but
every input must be patched to exactly one valid output source. Together,
the set of inputs and outputs are called a group. The signal’s inputs and
outputs that comprise each group all serve similar purposes. They are
compatible such that almost any output-to-input patch makes functional
sense.

Table 4-2 lists the SRU signal groups that are named sequentially A
through F for SRU1 and A through C for SRU2. Each group routes a
unique set of signals with a specific purpose. For example, SRU1 Group A
routes clock signals, while SRU2 group A routes the external 14 pins and
other sources like timer outputs to the inputs of the various peripherals.
Unlike SRU1 in the DAI module, all types of functionality like serial
clock and data are clubbed into the same group in the DPI/SRU2.

Table 4-2. Pin Signal Group Assignments

Signal Group DAI (SRU1) DPI (SRU2)

Group A Clock routing control Input routing control, includes serial
clock and data

Group B Serial data routing control Pin signal assignments

Group C Frame sync routing control Pin enable assignment, routes enables
of various peripherals to the drive
buffer of each of the 14 pins

Group D Pin signal assignments N/A

ADSP-21368 SHARC Processor Hardware Reference 4-9

Digital Audio/Digital Peripheral Interfaces

Each input and output in each group is given a unique mnemonic. In the
few cases where a signal appears in more than one group, the mnemonic is
slightly different to distinguish between the connections. The convention
is to begin the name with an identifier for the peripheral that the signal is
coming to/from followed by the signal’s function as shown in Figure 4-5.
A number is included if the DAI contains more than one peripheral type
(for example, serial ports) or if the peripheral has more than one signal
that performs this function (for example, IDP channels). The mnemonic
always ends with _I if the signal is an input, or with _O if the signal is an
output.

Note that it is not possible to connect a signal in one group directly to a
signal in a different group (analogous to wiring from one patch bay to
another). However, group D (in SRU1) is largely devoted to routing in
this vein.

Group E Interrupts and miscellaneous
signals

N/A

Group F Pin enable signals used to spec-
ify whether each DAI pin is
used as an output or an input.

N/A

Figure 4-5. Example SRU Mnemonic

Table 4-2. Pin Signal Group Assignments (Cont’d)

Signal Group DAI (SRU1) DPI (SRU2)

SPORT0_CLK_O

PERIPHERAL
(SERIAL PORT 0)

SIGNAL’S FUNCTION
(CLOCK)

DIRECTION; RELATIVE TO
SIGNAL’S PERIPHERAL (OUTPUT)

Signal Routing Units

4-10 ADSP-21368 SHARC Processor Hardware Reference

Pin Interface
Within the context of the SRUs, physical connections to the DAI/DPI
pins are replaced by a logical interface known as a pin buffer. This is a
three-terminal active device capable of sourcing/sinking output current
when its driver is enabled, and passing external input signals when dis-
abled. Each pin has an input, output, and enable pin as shown in
Figure 4-6. The inputs and the outputs are defined with respect to the
pin, similar to a peripheral device. This is consistent with the SRU nam-
ing convention.

The notation for pin input and output connections can be quite confusing
at first because, in a typical system, a pin is simply a wire that connects to
a device. The manner in which the pins are connected within the SRU
requires additional nomenclature. The pin interface’s input may be
thought of as the input to a buffer amplifier that can drive a load on the
physical external lead. The pin interface enable is the input signal that
enables the output of the buffer by turning it on when its value is logic
high, and turning it off when its value is logic low.

Figure 4-6. Pin Buffer Example

IN OUT

ENABLE

PBxx_I

PBxx_O

PBENxx_I

External
Package

Connection
Pin

Interface
to SRU

PBxx_O
PIN

BUFFER

ADSP-21368 SHARC Processor Hardware Reference 4-11

Digital Audio/Digital Peripheral Interfaces

When the pin enable is asserted, the pin output is logically equal to pin
input, and the pin is driven. When the pin enable is deasserted, the output
of the buffer amplifier becomes high impedance. In this situation, an
external device may drive a level onto the line, and the pin is used as an
input to the ADSP-21367/8/9 and ADSP-2137x processors.

While the pin is at high impedance and another device is driving a logic
level onto the external pin, this logic level value is sent to the SRUs as the
pin interface output. Even though the signal is an input to the SHARC
processor, it is an output from the pin interface (as a three-terminal
device) and may be patched to the signal inputs of peripherals within the
SRUs. Pin output is equal to pin input when the pin enable is asserted,
but pin output is equal to the external (input) signal when the pin enable
is deasserted.

If a DAI/DPI pin is not being used, the pin enable (for example
DAI_PBxx_I) for its pin buffer should be connected to LOW and its
associated bit in the DAI_PIN_PULLUP register should be set (= 1) to
enable a 22.5 kΩ pull-up resistor for that pin.

Pin Buffers as Signal Output Pins
In a typical embedded system, most pins are designated as either inputs or
outputs when the circuit is designed, even though they may have the abil-
ity to be used in either direction. Each of the DAI/DPI pins can be used as
either an input or an output. Although the direction of a DAI/DPI pin is
set simply by writing to a memory-mapped register, most often the pin’s
direction is dictated by the designated use of that pin. For example, if a
DAI pin is hard wired to only the input of another interconnected circuit,
it would not make sense for the corresponding pin buffer to be configured
as an input. Input pins are commonly tied to logic high or logic low to set
the input to a fixed value. Similarly, setting the direction of a DAI pin at
system startup by tying the pin buffer enable to a fixed value (either logic
high or logic low) is often the simplest and cleanest way to configure the
SRUs.

Signal Routing Units

4-12 ADSP-21368 SHARC Processor Hardware Reference

When the DAI/DPI pin is used only as an output, connect the corre-
sponding pin buffer enable to logic high as shown in Figure 4-7. This
enables the buffer amplifier to operate as a current source and to drive the
value present at the pin buffer input onto the DAI/DPI pin and off chip.
When the pin buffer enable (in this example PBENxx_I) is set (= 1), the pin
buffer output (PBxx_O) is the same signal as the pin buffer input (PBxx_I),
and this signal is driven as an output.

Pin Buffers as Signal Input Pins
When the DAI/DPI pin is used only as an input, connect the correspond-
ing pin buffer enable to logic low as shown in Figure 4-8. This disables the
buffer amplifier and allows an off-chip source to drive the value present on
the DAI/DPI pin and at the pin buffer output. When the pin buffer
enable (PBENxx_I) is cleared (= 0), the pin buffer output (PBxx_O) is the
signal driven onto the DAI pin by an external source, and the pin buffer
input (PBxx_I) is not used.

Figure 4-7. Pin Buffer as Output

IN OUT
PIN

ENABLE

DAI_PBxx_I

DAI_PBxx_O

PBENxx_I

EXTERNAL
PACKAGE

CONNECTION
PIN

INTERFACE
TO SRU

PAD
DRIVER

PIN BUFFER
OUTPUT

PIN BUFFER
INPUT

PIN BUFFER
ENABLE
(= HIGH)

DAI_PBxx_O

ADSP-21368 SHARC Processor Hardware Reference 4-13

Digital Audio/Digital Peripheral Interfaces

Although not strictly necessary, it is recommended programming practice
to tie the pin buffer input to logic low whenever the pin buffer enable is
tied to logic low. By default, the pin buffer enables are connected to
SPORT pin enable signals that may change value. Tying the pin buffer
input low decouples the line from irrelevant signals and can make code
easier to debug. It also ensures that no voltage is driven by the pin if a bug
in your code accidentally asserts the pin enable.

Bidirectional Pin Buffers
All peripherals within the DAI and DPI that have bidirectional pins gen-
erate a corresponding pin enable signal. Typically, the settings within a
peripheral’s control registers determine if a bidirectional pin is an input or
an output, and is then driven accordingly. Both the peripheral control reg-
isters and the configuration of the SRUs can effect the direction of signal
flow in a pin buffer.

Figure 4-8. Pin Buffer as Input

IN OUT
PIN

ENABLE

DAI_PBxx_I

DAI_PBxx_O

PBENxx_I

EXTERNAL
PACKAGE

CONNECTION
PIN

INTERFACE
TO SRU

PAD
DRIVER

PIN BUFFER
OUTPUT

PIN BUFFER
INPUT

(NOT USED)

PIN BUFFER
ENABLE
(= LOW)

DAI_PBxx_O

Signal Routing Units

4-14 ADSP-21368 SHARC Processor Hardware Reference

For example, from an external perspective, when a serial port (SPORT) is
completely routed off chip, it uses four pins—clock, frame sync, data
channel A, and data channel B. Because all four of these pins comprise the
interface that the serial port presents to SRU1, there are a total of 12 con-
nections as shown in Figure 4-9.

For each bidirectional line, the serial port provides three separate signals.
For example, a SPORT clock has three separate SRU connections—an
input clock to the SPORT (SPORTx_CLK_I), an output clock from the
SPORT (SPORTx_CLK_O), and an output enable from the SPORT
(SPORTx_CLK_PBEN_O). Note that the input and output signal pair is never
used simultaneously. The pin enable signal dictates which of the two
SPORT lines appear at the DAI pin at any given time. By connecting all
three signals through SRU1, the standard SPORT configuration registers
behave as documented in “SPORT Serial Control Registers (SPCTLx)” on

Figure 4-9. SRU1 Connections for SPORTx

Interface
to SRU

SPORT0_DA_O

SPORT0_DA_I

SPORT0_DA_PBEN_O

SPORT0_FS_O

SPORT0_FS_I

SPORT0_FS_PBEN_O

SPORT0_CLK_O

SPORT0_CLK_I

SPORT0_CLK_PBEN_O

SPORT0_DB_O

SPORT0_DB_I

SPORT0_DB_PBEN_O

ADSP-21368 SHARC Processor Hardware Reference 4-15

Digital Audio/Digital Peripheral Interfaces

page A-29. SRU1 then becomes transparent to the peripheral. Figure 4-10
demonstrates SPORT0 properly routed to DAI pins one through four—
although it can be equally well routed to any of the 20 DAI pins.

Though SPORT signals are capable of operating in this bidirectional man-
ner, it is not required that they be connected to the pin buffer this way. As
mentioned above, if the system design only uses a SPORT signal in one
direction, it is easier and safer to connect the pin buffer enable directly
high or low as appropriate. Furthermore, signals in the SRUs other than
the pin buffer enable signal (which is generated by the peripheral) may be
routed to the pin buffer enable input. For example, an outside source may
be used to ‘gate’ a pin buffer output by controlling the corresponding pin
buffer enable.

Making Connections in the SRUs
As described previously, the SRUs are similar to a set of patch bays. Each
bay routes a distinct set of outputs to compatible inputs. These connec-
tions are implemented as a set of memory-mapped registers with a bit field
for each input. The outputs are implemented as a set of bit encodings.
Conceptually, a patch cord is used to connect an output to an input. In
the SRUs, a bit pattern that is associated with a signal output (shown as
item 1 in Figure 4-11) is written to a bit field corresponding to a signal
input (shown as item 2 in Figure 4-11).

The memory-mapped SRU registers are arranged by groups, referred to as
group A through group F in SRU1 and group A through group C in
SRU2 and described in “DAI/SRU1 Connection Groups” on page 4-18
and “DPI/SRU2 Connection Groups” on page 4-51. Each group has a
unique encoding for its associated output signals and a set of configura-
tion registers. For example, in the DAI, group A is used to route clock
signals. Five memory-mapped registers, SRU_CLK4–0, contain 5-bit wide
fields corresponding to the clock inputs of various peripherals. The values
written to these bit fields specify a signal source that is an output from

Making Connections in the SRUs

4-16 ADSP-21368 SHARC Processor Hardware Reference

Figure 4-10. SRU1 Connection to Four Bidirectional SPORT Pins

SPORT0_DA_O

SPORT0_DA_I

SPORT0_DA_PBEN_O

SPORT0_FS_O

SPORT0_FS_I

SPORT0_FS_PBEN_O

SPORT0_CLK_O

SPORT0_CLK_I

SPORT0_CLK_PBEN_O

SPORT0_DB_O

SPORT0_DB_I

SPORT0_DB_PBEN_O

PIN
ENABLE

PB01_I

PB01_O

PBEN01_I

PB01_O
IN OUT

EXTERNAL
PACKAGE

CONNECTION

PIN
ENABLE

PB02_I

PB02_O

PBEN02_I

PB02_O
IN OUT

PIN
ENABLE

PB03_I

PB03_O

PBEN03_I

PB03_O
IN OUT

PIN
ENABLE

PB04_I

PB04_O

PBEN04_I

PB04_O
IN OUT

EXTERNAL
PACKAGE

CONNECTION

EXTERNAL
PACKAGE

CONNECTION

EXTERNAL
PACKAGE

CONNECTION

ADSP-21368 SHARC Processor Hardware Reference 4-17

Digital Audio/Digital Peripheral Interfaces

another peripheral. All of the possible encodings represent sources that are
clock signals (or at least could be clock signals in some systems).
Figure 4-11 diagrams the input signals that are controlled by the DAI
group A register, SRU_CLK0. All bit fields in the SRU1 configuration regis-
ters correspond to inputs. The value written to the bit field specifies the
signal source. This value is also an output from some other component
within the SRU.

Note that the lower portion of the patch bay in Figure 4-11 is shown with
a large number of ports to reinforce the point that one output can be con-
nected to many inputs. The same encoding can be written to any number
of bit fields in the same group. It is not possible to run out of patch points
for an output signal.

Figure 4-11. Patching to the Group A Register SRU_CLK0

2 SRU: GROUP ASRU_CLK0

SPORT5_CLK_I
(11001)

SPORT4_CLK_I
(11000)

SPORT3_CLK_I
(10111)

SPORT0_CLK_I
(10100)

SPORT1_CLK_I
(10101)

SPORT2_CLK_I
(10110)

4:09:514:1019:1524:2029:25

1

Making Connections in the SRUs

4-18 ADSP-21368 SHARC Processor Hardware Reference

Just as DAI group A routes clock signals, each of the other groups route a
collection of compatible signals. Group B routes serial data streams while
group C routes frame sync signals. Group D routes signals to pins so that
they may be driven off chip. Note that all of the groups have an encoding
that allows a signal to flow from a pin output to the input being specified
by the bit field. However, group D is required to route a signal to the pin
input. Group F routes signals to the pin enables, and the value of these
signals determines if a DAI pin is used as an output or an input. These
groups are described in more detail in the following sections.

DAI/SRU1 Connection Groups
The DAI/SRU1 has the default configuration shown in Table 4-3.

There are five separate groups of connections that are used in SRU1. The
following sections summarize each.

Table 4-3. DAI/SRU1 Default Configuration

Pin Number Signal Name Pin Number Signal Name

DAI_01 SPORT0_DA DAI_11 SPORT3_DA

DAI_02 SPORT0_DB DAI_12 SPORT3_DB

DAI_03 SPORT0_CLK DAI_13 SPORT3_CLK

DAI_04 SPORT0_FS DAI_14 SPORT3_FS

DAI_05 SPORT1_DA DAI_15 SPORT4_DA

DAI_06 SPORT1_DB DAI_16 SPORT4_DB

DAI_07 SPORT1_CLK DAI_17 SPORT5_DA

DAI_08 SPORT1_FS DAI_18 SPORT5_DB

DAI_09 SPORT2_DA DAI_19 SPORT5_CLK

DAI_10 SPORT2_DB DAI_20 SPORT5_FS

ADSP-21368 SHARC Processor Hardware Reference 4-19

Digital Audio/Digital Peripheral Interfaces

Group A Connections—Clock Signals

Group A is used to route the following signals to clock inputs and are
selected from the list of group A sources.

• SPORTs clock inputs (when the SPORTs are in clock slave mode)

• Clock inputs to the eight IDP (input data port) channels

• Four precision clock generator (PCG) external sources

• SRC clock inputs

• SPDIF transmitter clock inputs

When channel 0 of the IDP is configured for PDAP input, the
clock source set here is used as the parallel word latch instead of the
serial bit clock.

Set all clock inputs that are not used to logic low. Any IDP channels that
receive clock signals as set here send data to the FIFO. When a SPORT is
used as a clock master, setting the unused SPORT clock input to logic low
improves signal integrity. The registers are shown in Figure 4-12 through
Figure 4-17. The input and output signals for group A are summarized in
Table 4-4 on page 4-23.

The following notes apply to the group A connections

1. The SRU_CLK4–0 registers are 30-bit registers. On reads, bits
30 and 31 always return zero.

2. SPORTs 6 and 7 receive their clocks from other sources but
cannot send their own clocks to other SPORTs or other
peripherals internally through SRU. If needed, they have to
be connected externally through pins.

Making Connections in the SRUs

4-20 ADSP-21368 SHARC Processor Hardware Reference

3. Setting SRU_CLK4[4:0] = 0x1C connects PCG_EXTA_I to logic
low, not PCG_CLKA_O.
Setting SRU_CLK4[9:5] = 0x1D connects PCG_EXTB_I to
logic low, not PCG_CLKB_O.

Figure 4-12. SRU_CLK0 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 1 0 0 1 0 1 0 0 1 0 0 1 1

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 1 1 0 0 0 0 1 1 0 0 0 0 1

SPORT5_CLK_I
Serial Port 5 Clock Input

SPORT3_CLK_I
Serial Port 3 Clock Input

SPORT4_CLK_I
Serial Port 4 Clock Input

SPORT2_CLK_I
Serial Port 2 Clock Input SPORT1_CLK_I

Serial Port 1 Clock Input

SPORT0_CLK_I

Serial Port 0 Clock Input

SRU_CLK0 (0x2430)

SPORT3_CLK_I

Reset = 0x252630C2

ADSP-21368 SHARC Processor Hardware Reference 4-21

Digital Audio/Digital Peripheral Interfaces

Figure 4-13. SRU_CLK1 Register

Figure 4-14. SRU_CLK2 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 1 1 1 1 0 1 1 1 1 0 1 1 1

Reserved

Reset = 0x3DEF7BDE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 1 1 1 0 1 1 1 1 0 1 1 1 1

SRC2_CLK_OP_I

SRC1_CLK_OP_I

SRC2_CLK_IP_I

SRU_CLK1 (0x2431)

SRC1_CLK_OP_I

SRC1_CLK_IP_I
SRC0_CLK_OP_I

SRC0_CLK_IP_I

Sample Rate Converter 2
Clock Output Input

Sample Rate Converter 1
Clock Output Input

Sample Rate Converter 2
Clock Input Input

Sample Rate Converter 1
Clock Output Input Sample Rate Converter 0

Clock Input Input

Sample Rate Converter 0
Clock Output Input

Sample Rate Converter 1
Clock Input Input

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 1 1 1 1 0 1 1 1 1 0 1 1 1

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 1 1 1 0 1 1 1 1 0 1 1 1 1

IDP2_CLK_I
Input Data Port 2
Clock Input

IDP0_CLK_I
Input Data Port 0
Clock Input

DIT_CLK_I

SRC3_CLK_IP_I

SRC3_CLK_OP_I

SRU_CLK2 (0x2432)

IDP0_CLK_I

Reset = 0x3DEF7BDE

IDP1_CLK_I
Input Data Port 1
Clock Input

Sample Rate Converter 3
Clock Input Input

SPDIF Transmitter
Clock Input Sample Rate Converter 3

Clock Output Input

Input Data Port 0
Clock Input

Making Connections in the SRUs

4-22 ADSP-21368 SHARC Processor Hardware Reference

Figure 4-15. SRU_CLK3 Register

Figure 4-16. SRU_CLK4 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 1 1 1 1 0 1 1 1 1 0 1 1 1

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 1 1 1 0 1 1 1 1 0 1 1 1 1

SRU_CLK3 (0x2433) Reset = 0x3DEF7BDE

DIT_HFCLK_I

IDP6_CLK_I

IDP7_CLK_I

IDP6_CLK_I

IDP5_CLK_I

IDP3_CLK_I

IDP4_CLK_I

Input Data Port Channel
6 Clock Input

SPDIF Oversampling
Clock Input

Input Data Port Channel
3 Clock Input

Input Data Port Channel
4 Clock Input

Input Data Port Channel
7 Clock Input

Input Data Port Channel
5 Clock Input

Input Data Port Channel
6 Clock Input

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 1 1 1 1 0 1 1 1 1 0 1 1 1

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 1 1 1 0 1 1 1 1 0 1 1 1 1

SPDIF_EXTPLLCLK_I

External 512 x FS PLL Clock Input

PCG_EXTA_I

Precision Clock Generator
External Clock A Input

PCG_EXTB_I

Precision Clock Generator
External Clock B Input

SRU_CLK4 (0x2434)

Setting SRU_CLK4 4–0 = 28 connects PCG_EXTA_I to logic low, not to PCG_CLKA_O.
Setting SRU_CLK4 9–5 = 29 connects PCG_EXTB_I to logic low, not to PCG_CLKB_O.

PCG_SYNC_CLKB_I
Precision Clock Generator
Clock B Sync Input

Reserved

PCG_SYNC_CLKA_I

Precision Clock Generator
Clock A Sync Input

Reset = 0x3DEF7BDE

Reserved

ADSP-21368 SHARC Processor Hardware Reference 4-23

Digital Audio/Digital Peripheral Interfaces

Figure 4-17. SRU_CLK5 Register

Table 4-4. Group A Sources—Serial Clock

Selection Code Source Signal Description (Source)

00000 (0x0) DAI_PB01_O Select DAI pin buffer 1

00001 (0x1) DAI_PB02_O Select DAI pin buffer 2

00010 (0x2) DAI_PB03_O Select DAI pin buffer 3

00011 (0x3) DAI_PB04_O Select DAI pin buffer 4

00100 (0x4) DAI_PB05_O Select DAI pin buffer 5

00101 (0x5) DAI_PB06_O Select DAI pin buffer 6

00110 (0x6) DAI_PB07_O Select DAI pin buffer 7

00111 (0x7) DAI_PB08_O Select DAI pin buffer 8

01000 (0x8) DAI_PB09_O Select DAI pin buffer 9

01001 (0x9) DAI_PB10_O Select DAI pin buffer 10

01010 (0xA) DAI_PB11_O Select DAI pin buffer 11

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 1 1 1 1 0 1 1 1 1 0 1 1 1

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 1 1 1 0 1 1 1 1 0 1 1 1 1

PCG_SYNC_CLKC_I

Precision Clock Generator
Clock C Sync Input

SPORT6_CLK_I

Serial Port 6 Clock Input

SPORT7_CLK_I

Serial Port 7 Clock Input

SRU_CLK5 (0x2435)

PCG_SYNC_CLKD_I

Precision Clock Generator
Clock D Sync Input

PCG_EXTC_I

Reset = 0x3DEF7BDE

PCG_SYNC_CLKD_I

Precision Clock Generator
External Clock C Input

PCG_EXTD_I

Precision Clock Generator
External Clock D Input

Precision Clock Generator
Clock D Sync Input

Making Connections in the SRUs

4-24 ADSP-21368 SHARC Processor Hardware Reference

01011 (0xB) DAI_PB12_O Select DAI pin buffer 12

01100 (0xC) DAI_PB13_O Select DAI pin buffer 13

01101 (0xD) DAI_PB14_O Select DAI pin buffer 14

01110 (0xE) DAI_PB15_O Select DAI pin buffer 15

01111 (0xF) DAI_PB16_O Select DAI pin buffer 16

10000 (0x10) DAI_PB17_O Select DAI pin buffer 17

10001 (0x11) DAI_PB18_O Select DAI pin buffer 18

10010 (0x12) DAI_PB19_O Select DAI pin buffer 19

10011 (0x13) DAI_PB20_O Select DAI pin buffer 20

10100 (0x14) SPORT0_CLK_O Select SPORT 0 Clock

10101 (0x15) SPORT1_CLK_O Select SPORT 1 Clock

10110 (0x16) SPORT2_CLK_O Select SPORT 2 Clock

10111 (0x17) SPORT3_CLK_O Select SPORT 3 Clock

11000 (0x18) SPORT4_CLK_O Select SPORT 4 Clock

11001 (0x19) SPORT5_CLK_O Select SPORT 5 Clock

11010 (0x1A) DIR_CLK_O Select SPDIF receive clock output

11011 (0x1B) DIR_TDMCLK_O Select SPDIF receive TDM clock output

11100 (0x1C) PCG_CLKA_O Select precision clock A output

11101 (0x1D) PCG_CLKB_O Select precision clock B output

11110 (0x1E) LOW Select logic level low (0)

11111 (0x1F) HIGH Select logic level high (1)

Table 4-4. Group A Sources—Serial Clock (Cont’d)

Selection Code Source Signal Description (Source)

ADSP-21368 SHARC Processor Hardware Reference 4-25

Digital Audio/Digital Peripheral Interfaces

Group B Connections—Data Signals

Group B connections are used to route signals to serial data inputs. This
includes serial data inputs to both the A and B channels of the SPORTs
and to each of the eight IDP channels. The SRCs and SPDIF transmitter
are also selected from the list of group B sources and set in the group B
registers. When a SPORT is configured to transmit, the data source set
here is ignored. Likewise, when channel 0 of the IDP is used for the
PDAP, the serial data source set here is ignored. The registers are shown in
Figure 4-18 through Figure 4-24. The input and output signals for group
B are summarized in Table 4-5 on page 4-29.

The following notes apply to group B connections.

1. SRU_DAT0, SRU_DAT1, SRU_DAT2, SRU_DAT3, SRU_DAT4, and
SRU_DAT5 are 30-bit registers. On reads, bits 30 and 31
always return zero.

2. SRU_DAT6 is a 24-bit register. On reads, bits 31 through 24
always return zero.

Figure 4-18. SRU_DAT0 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 1 0 0 0 0 0 0 1 0 1 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 0 0 0 0 0 0 0 1 0 0 0 0 0

Serial Port 2 Data Channel A Input

SPORT2_DA_I
Serial Port 1 Data
Channel A Input

SPORT1_DA_I

Serial Port 1 Data Channel B Input

SPORT1_DB_I

Serial Port 0 Data Channel B Input

SPORT0_DB_I Serial Port 0 Data
Channel A Input

SPORT0_DA_I

SRU_DAT0 (0x2440)

SPORT1_DA_I

Reset = 0x08144040

Serial Port 1 Data Channel A Input

Making Connections in the SRUs

4-26 ADSP-21368 SHARC Processor Hardware Reference

Figure 4-19. SRU_DAT1 Register

Figure 4-20. SRU_DAT2 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 1 1 1 1 0 0 1 1 1 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 0 1 1 0 0 1 0 1 0 0 0 1 0 0

Serial Port 4 Data Channel B Input

SPORT4_DB_I
Serial Port 3 Data
Channel B Input

SPORT3_DB_I

Serial Port 4 Data Channel A Input

SPORT4_DA_I

Serial Port 3 Data Channel A Input

SPORT3_DA_I Serial Port 2 Data
Channel B Input

SPORT2_DB_I

SRU_DAT1 (0x2441)

SPORT3_DB_I

Reset = 0x0F38B289

Serial Port 3 Data Channel B Input

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 1 0 0 0 1 0 1 0 0 0

Serial Port 5 Data Channel B Input

SPORT5_DB_I
Serial Port 5 Data
Channel A Input

SPORT5_DA_I

SRU_DAT2 (0x2442)

SRC0_DAT_IP_I

Reset = 0x00000450

Sample Rate Converter 2
Data Input Input

SRC2_DAT_IP_I

Sample Rate Converter 1
Data Input Input

SRC1_DAT_IP_I

Sample Rate Converter 0
Data Input Input

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SRC0_DAT_IP_I
Sample Rate Converter 0
Data Input Input

ADSP-21368 SHARC Processor Hardware Reference 4-27

Digital Audio/Digital Peripheral Interfaces

Figure 4-21. SRU_DAT3 Register

Figure 4-22. SRU_DAT4 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sample Rate Converter 3 TDM
Output Input

SRC3_TDM_OP_I

SRC1_TDM_OP_I

SRC2_TDM_OP_I

SRC0_TDM_OP_I

SRU_DAT3 (0x2443) Reset = 0x00000000

SRC3_DAT_IP_I

Sample Rate Converter 2
TDM Output Input

Sample Rate Converter 1 TDM
Output Input

Sample Rate Converter 0 TDM
Output Input

Sample Rate Converter 3
Data Input Input

SRC1_TDM_OP_I
Sample Rate Converter 1
TDM Output Input

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPDIF Transmit
Data Input

DIT_DAT_I

IDP2_DAT_I
Input Data Port 2
Data Input

IDP3_DAT_I

Input Data Port 3 Data Input

IDP0_DAT_I
Input Data Port 0 Data Input

SRU_DAT4 (0x2444)

IDP1_DAT_I

Reset = 0x00000000

Input Data Port 1 Data Input

IDP1_DAT_I
Input Data Port 1
Data Input

Making Connections in the SRUs

4-28 ADSP-21368 SHARC Processor Hardware Reference

Figure 4-23. SRU_DAT5 Register

Figure 4-24. SRU_DAT6 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Input Data Port 4 Data
Channel A Input

IDP4_DAT_I

IDP6_DAT_I

IDP7_DAT_I

Input Data Port 7 Data Input

IDP5_DAT_I

Input Data Port 5 Data Input

SRU_DAT5 (0x2445)

IDP6_DAT_I

Reset = 0x00000000

Input Data Port 6 Data Input

SPDIF Receive Data Input

DIR_DAT_I Input Data Port 6
Data Input

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Serial Port 7 Data
Channel A Input

SPORT7_DA_I

Serial Port 7 Data Channel BA Input

SPORT7_DB_I

Serial Port 6 Data Channel B Input

SPORT6_DB_I Serial Port 6 Data
Channel A Input

SPORT6_DA_I

SRU_DAT6 (0x2446)

SPORT7_DA_I

Reset = 0x00000000

Serial Port 7 Data Channel A Input

ADSP-21368 SHARC Processor Hardware Reference 4-29

Digital Audio/Digital Peripheral Interfaces

Table 4-5. Group B Sources—Serial Data

Selection Code Source Signal Description (Source)

000000 (0x0) DAI_PB01_O Select DAI pin buffer 1

000001 (0x1) DAI_PB02_O Select DAI pin buffer 2

000010 (0x2) DAI_PB03_O Select DAI pin buffer 3

000011 (0x3) DAI_PB04_O Select DAI pin buffer 4

000100 (0x4) DAI_PB05_O Select DAI pin buffer 5

000101 (0x5) DAI_PB06_O Select DAI pin buffer 6

000110 (0x6) DAI_PB07_O Select DAI pin buffer 7

000111 (0x7) DAI_PB08_O Select DAI pin buffer 8

001000 (0x8) DAI_PB09_O Select DAI pin buffer 9

001001 (0x9) DAI_PB10_O Select DAI pin buffer 10

001010 (0xA) DAI_PB11_O Select DAI pin buffer 11

001011 (0xB) DAI_PB12_O Select DAI pin buffer 12

001100 (0xC) DAI_PB13_O Select DAI pin buffer 13

001101 (0xD) DAI_PB14_O Select DAI pin buffer 14

001110 (0xE) DAI_PB15_O Select DAI pin buffer 15

001111 (0xF) DAI_PB16_O Select DAI pin buffer 16

010000 (0x10) DAI_PB17_O Select DAI pin buffer 17

010001 (0x11) DAI_PB18_O Select DAI pin buffer 18

010010 (0x12) DAI_PB19_O Select DAI pin buffer 19

010011 (0x13) DAI_PB20_O Select DAI pin buffer 20

010100 (0x14) SPORT0_DA_O Select SPORT 0A data

010101 (0x15) SPORT0_DB_O Select SPORT 0B data

010110 (0x16) SPORT1_DA_O Select SPORT 1A data

010111 (0x17) SPORT1_DB_O Select SPORT 1B data

Making Connections in the SRUs

4-30 ADSP-21368 SHARC Processor Hardware Reference

011000 (0x18) SPORT2_DA_O Select SPORT 2A data

011001 (0x19) SPORT2_DB_O Select SPORT 2B data

011010 (0x1A) SPORT3_DA_O Select SPORT 3A data

011011 (0x1B) SPORT3_DB_O Select SPORT 3B data

011100 (0x1C) SPORT4_DA_O Select SPORT 4A data

011101 (0x1D) SPORT4_DB_O Select SPORT 4B data

011110 (0x1E) SPORT5_DA_O Select SPORT 5A data

011111 (0x1F) SPORT5_DB_O Select SPORT 5B data

100000 (0x20) SRC0_DAT_OP_O SRC0 data out (stereo)

100001 (0x21) SRC1_DAT_OP_O SRC1 data out (stereo)

100010 (0x22) SRC2_DAT_OP_O SRC2 data out (stereo)

100011 (0x23) SRC3_DAT_OP_O SRC3 data out (stereo)

100100 (0x24) SRC0_TDM_IP_O SRC0 data out

100101 (0x25) SRC1_TDM_IP_O SRC1 data out

100110 (0x26) SRC2_TDM_IP_O SRC2 data out

100111 (0x27) SRC3_TDM_IP_O SRC3 data out

101000 (0x28) DIR_DAT_O SPDIF_RX serial data out

101001 (0x29) LOW Select logic level low (0)

101010 (0x2A) LOW Select logic level low (0)

101011 (0x2B) HIGH Select logic level high (1)

101100 (0x2C) SPORT6_DA_O Select SPORT 6A data

101101 (0x2D) SPORT6_DB_O Select SPORT 6B data

101110 (0x2E) SPORT7_DA_O Select SPORT 7A data

101111 (0x2F) SPORT7_DB_O Select SPORT 7B data

Table 4-5. Group B Sources—Serial Data (Cont’d)

Selection Code Source Signal Description (Source)

ADSP-21368 SHARC Processor Hardware Reference 4-31

Digital Audio/Digital Peripheral Interfaces

Group C Connections—Frame Sync Signals

Group C connections are used to route signals to frame sync inputs. These
are the SPORT frame sync inputs (when the SPORT is in slave mode) and
the frame sync inputs to the eight IDP channels. The SRCs and SPDIF
transmitter and receiver are also selected from the list of group C sources
and set in the group C registers.

Each of the frame sync inputs specified is connected to a frame sync
source based on the 5-bit values described in the group C frame sync
sources. Thirty-two possible frame sync sources can be connected using
the SRU_FS0-4 registers. The registers are shown in Figure 4-25 through
Figure 4-29. The input and output signals for group C are summarized in
Table 4-6 on page 4-35.

The following notes apply to group C connections.

1. SRU_FS0, SRU_FS1, and SRU_FS2 are 30-bit registers. On
reads, bits 30 and 31 always return zero.

2. SRU_FS3 is a 24-bit register. On reads, bits 31 through 24
always return zero.

3. SRU_FS4 is a 10-bit register. On reads, bits 31 through 10
always return zero.

110000 (0x30) DIT_O Select SPDIF biphase encoded output

110001 (0x31) –111101 (0x3D) Reserved

111110 (0x3E) LOW Select logic level low (0)

111111 (0x3F) HIGH Select logic level high (1)

Table 4-5. Group B Sources—Serial Data (Cont’d)

Selection Code Source Signal Description (Source)

Making Connections in the SRUs

4-32 ADSP-21368 SHARC Processor Hardware Reference

4. SPORTs 6 and 7 receive frame syncs from other sources but
cannot send their own frame syncs to other SPORTs or
other peripherals internally through the SRU. If needed,
they have to be connected externally through pins.

Figure 4-25. SRU_FS0 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 1 0 0 1 1 1 0 0 1 1 0 1 1

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 0 1 1 0 1 0 0 1 1 1 0 0 0 1

Serial Port 2 Frame Sync Input

SPORT2_FS_I
Serial Port 0 Frame
Sync Input

SPORT0_FS_I

Serial Port 5 Frame Sync Input

SPORT5_FS_I

Serial Port 3 Frame Sync Input

SPORT3_FS_I

Serial Port 4 Frame
Sync Input

SPORT4_FS_I

Serial Port 1 Frame
Sync Input

SPORT1_FS_I

SRU_FS0 (0x2450)

SPORT3_FS_I

Serial Port 3 Frame
Sync Input

Reset = 0x2736B4E3

ADSP-21368 SHARC Processor Hardware Reference 4-33

Digital Audio/Digital Peripheral Interfaces

Figure 4-26. SRU_FS1 Register

Figure 4-27. SRU_FS2 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 1 1 1 1 0 1 1 1 1 0 1 1 1

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 1 1 1 0 1 1 1 1 0 1 1 1 1

SRC2_FS_OP_I

SRC1_FS_OP_I

SRC2_FS_IP_I

SRU_FS1 (0x2451)

SRC1_FS_OP_I
SRC0_FS_IP_I

SRC0_FS_OP_I
SRC1_FS_IP_I

Sample Rate Converter 2
Frame Sync Output Input Sample Rate Converter 2

Frame Sync Input Input

Sample Rate Converter 0
Frame Sync Input Input

Sample Rate Converter 1
Frame Sync Output Input

Sample Rate Converter 1
Frame Sync Input Input Sample Rate Converter 0

Frame Sync Output Input

Sample Rate Converter 1
Frame Sync Output Input

Reset = 0x3DEF7BDE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 1 1 1 1 0 1 1 1 1 0 1 1 1

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 1 1 1 0 1 1 1 1 0 1 1 1 1

IDP2_FS_I

SPDIF_TX_FS_I

IDP0_FS_I

SRU_FS2 (0x2452)

IDP0_FS_I
SRC3_FS_IP_I

SRC3_FS_OP_I

IDP1_FS_I

Sample Rate Converter 3
Frame Sync Input Input

Input Data Port Channel 1
Frame Sync Input

Input Data Port Channel 0
Frame Sync Input

Input Data Port Channel 0
Frame Sync Input

Sample Rate Converter 3
Frame Sync Output Input

SPDIF 3 Oversampling
Clock Input

Input Data Port Channel 0
Frame Sync Input

Reset = 0x3DEF7BDE

Making Connections in the SRUs

4-34 ADSP-21368 SHARC Processor Hardware Reference

Figure 4-28. SRU_FS3 Register

Figure 4-29. SRU_FS4 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 1 1 1 1 0 1 1 1 1 0 1 1 1

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 1 1 1 0 1 1 1 1 0 1 1 1 1

Input Data Port Channel 7
Frame Sync Input

IDP7_FS_I

IDP5_FS_I

IDP6_FS_I

Input Data Port Channel 5
Frame Sync Input

IDP4_FS_I

Input Data Port Channel 4
Frame Sync Input

Input Data Port Channel 3
Frame Sync Input

IDP3_FS_I

SRU_FS3 (0x2453)

SPDIF_RX_I

SPDIF Receiver Biphase
Encoded Data Input

Input Data Port Channel 6
Frame Sync Input

IDP6_FS_I

Input Data Port Channel 6
Frame Sync Input

Reset = 0x3DEF7BDE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 1 1 1 1 0 1 1 1 1

Serial Port 6 Frame
Sync Input

SPORT6_FS_I

Reserved

Serial Port 7 Frame Sync Input

SPORT7_FS_I

SRU_FS4 (0x2454)

Reserved

Reset = 0x000003DE

ADSP-21368 SHARC Processor Hardware Reference 4-35

Digital Audio/Digital Peripheral Interfaces

Table 4-6. Group C Sources—Frame Sync

Selection Code Source Signal Description (Source)

00000 (0x0) DAI_PB01_O Select DAI pin buffer 1

00001 (0x1) DAI_PB02_O Select DAI pin buffer 2

00010 (0x2) DAI_PB03_O Select DAI pin buffer 3

00011 (0x3) DAI_PB04_O Select DAI pin buffer 4

00100 (0x4) DAI_PB05_O Select DAI pin buffer 5

00101 (0x5) DAI_PB06_O Select DAI pin buffer 6

00110 (0x6) DAI_PB07_O Select DAI pin buffer 7

00111 (0x7) DAI_PB08_O Select DAI pin buffer 8

01000 (0x8) DAI_PB09_O Select DAI pin buffer 9

01001 (0x9) DAI_PB10_O Select DAI pin buffer 10

01010 (0xA) DAI_PB11_O Select DAI pin buffer 11

01011 (0xB) DAI_PB12_O Select DAI pin buffer 12

01100 (0xC) DAI_PB13_O Select DAI pin buffer 13

01101 (0xD) DAI_PB14_O Select DAI pin buffer 14

01110 (0xE) DAI_PB15_O Select DAI pin buffer 15

01111 (0xF) DAI_PB16_O Select DAI pin buffer 16

10000 (0x10) DAI_PB17_O Select DAI pin buffer 17

10001 (0x11) DAI_PB18_O Select DAI pin buffer 18

10010 (0x12) DAI_PB19_O Select DAI pin buffer 19

10011 (0x13) DAI_PB20_O Select DAI pin buffer 20

10100 (0x14) SPORT0_FS_O Select SPORT 0 frame sync

10101 (0x15) SPORT1_FS_O Select SPORT 1 frame sync

10110 (0x16) SPORT2_FS_O Select SPORT 2 frame sync

10111 (0x17) SPORT3_FS_O Select SPORT 3 frame sync

Making Connections in the SRUs

4-36 ADSP-21368 SHARC Processor Hardware Reference

Group D Connections—Pin Signal Assignments

Group D is used to specify any signals that are driven off chip by the pin
buffers. A pin buffer input (DAI_PBxx_I) is driven as an output from the
processor when the pin buffer enable is set (= 1).

Each physical pin (connected to a bonded pad) may be routed via the SRU
to any of the outputs of the DAI audio peripherals, based on the 7-bit val-
ues listed in Table 4-7 on page 4-39. The SRU may also be used to route
signals that control the pins in other ways. These signals may be config-
ured for use as general-purpose I/O, precision clock generators, or
miscellaneous control signals. The registers are shown in Figure 4-30
through Figure 4-34.

The following notes apply to the group D sources.

1. Setting SRU_PIN4[28] to high inverts the level of DAI_P19_I
and setting SRU_PIN4[29] inverts the level of DAI_P20_I.

2. If SRU_PIN4[20:14] = 0x12 then setting SRU_PIN4[28] to
high does not invert the output.

11000 (0x18) SPORT4_FS_O Select SPORT 4 frame sync

11001 (0x19) SPORT5_FS_O Select SPORT 5 frame sync

11010 (0x1A) DIR_FS_O SPDIF_RX frame sync output

11011 (0x1B) Reserved

11100 (0x1C) PCG_FSA_O Select precision frame sync A output

11101 (0x1D) PCG_FSB_O Select precision frame sync B output

11110 (0x1E) LOW Select logic level low (0)

11111 (0x1F) HIGH Select logic level high (1)

Table 4-6. Group C Sources—Frame Sync (Cont’d)

Selection Code Source Signal Description (Source)

ADSP-21368 SHARC Processor Hardware Reference 4-37

Digital Audio/Digital Peripheral Interfaces

3. If SRU_PIN4[27:21] = 0x13, then setting SRU_PIN4[29] to
high does not invert the output.

4. SRU_PIN0, SRU_PIN1, SRU_PIN2, and SRU_PIN3 are 28-bit reg-
isters. Reads on bits 28 through 31 always return zero.

5. SRU_PIN4 is a 30-bit register. Reads on bits 31 and 30 always
return zero.

Figure 4-30. SRU_PIN0 Register

Figure 4-31. SRU_PIN1 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 1 0 0 1 1 0 0 1 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 1 0 1 0 0 1 0 1 0

DAI_PB04_I

DAI_PB03_I

DAI_PB03_I

DAI_PB02_I

DAI_PB01_I

SRU_PIN0 (0x2460)

DAI Pin Buffer 3 Input DAI Pin Buffer 1 Input

DAI Pin Buffer 2 Input

DAI Pin Buffer 4 Input

DAI Pin Buffer 3 Input

Reset = 0x04C80A94

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 1 0 0 1 1 1 0 1 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 0 0 1 0 1 1 1 0 0 1 0 1 1

DAI_PB08_I

DAI_PB07_I

DAI_PB07_I

DAI_PB06_I

DAI_PB05_I

SRU_PIN1 (0x2461)

DAI Pin Buffer 7 Input
DAI Pin Buffer 5 Input

DAI Pin Buffer 8 Input

DAI Pin Buffer 6 Input

DAI Pin Buffer 7 Input

Reset = 0x04E84B96

Making Connections in the SRUs

4-38 ADSP-21368 SHARC Processor Hardware Reference

Figure 4-32. SRU_PIN2 Register

Figure 4-33. SRU_PIN3 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 1 1 0 1 1 0 0 1 1

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 0 0 0 1 1 0 0 1 0 0 1 1 0 0

DAI_PB12_I

DAI_PB11_I

DAI_PB10_I

DAI_PB09_I

SRU_PIN2 (0x2462)

DAI_PB11_I

DAI Pin Buffer 11 Input

DAI Pin Buffer 9 Input

DAI Pin Buffer 10 Input

DAI Pin Buffer 12 Input

DAI Pin Buffer 11 Input

Reset = 0x03668C98

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 0 0 0 0 1 1 1 0 1 0 0 1 1

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 1 0 1 0 0 1 0 1 0 0 0 1

DAI_PB15_I

DAI_PB15_I

DAI_PB14_I

DAI_PB13_I

DAI_PB16_I

SRU_PIN3 (0x2463)

DAI Pin Buffer 13 Input

DAI Pin Buffer 14 Input

DAI Pin Buffer 16 Input

DAI Pin Buffer 15 Input

DAI Pin Buffer 15 Input

Reset = 0x03A714A3

ADSP-21368 SHARC Processor Hardware Reference 4-39

Digital Audio/Digital Peripheral Interfaces

Figure 4-34. SRU_PIN4 Register

Table 4-7. Group D Sources—Pin Signal Assignments

Selection Code Source Signal Description (Source)

0000000 (0x0) DAI_PB01_O Select DAI pin buffer 1

0000001 (0x1) DAI_PB02_O Select DAI pin buffer 2

0000010 (0x2) DAI_PB03_O Select DAI pin buffer 3

0000011 (0x3) DAI_PB04_O Select DAI pin buffer 4

0000100 (0x4) DAI_PB05_O Select DAI pin buffer 5

0000101 (0x5) DAI_PB06_O Select DAI pin buffer 6

0000110 (0x6) DAI_PB07_O Select DAI pin buffer 7

0000111 (0x7) DAI_PB08_O Select DAI pin buffer 8

0001000 (0x8) DAI_PB09_O Select DAI pin buffer 9

0001001 (0x9) DAI_PB10_O Select DAI pin buffer 10

0001010 (0xA) DAI_PB11_O Select DAI pin buffer 11

0001011 (0xB) DAI_PB12_O Select DAI pin buffer 12

0001100 (0xC) DAI_PB13_O Select DAI pin buffer 13

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 0 0 0 1 0 1 0 1 1 0 1 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 0 0 1 1 1 1 1 0 0 1 1 1 1

DAI_PB19_I

DAI_PB19_I

DAI_PB18_I

DAI_PB17_I

DAI_PB20_I

SRU_PIN4 (0x2464)

DAI Pin Buffer 19 Input
DAI Pin Buffer 17 Input

DAI Pin Buffer 18 Input

DAI Pin Buffer 20 Input

DAI Pin Buffer 19 Input

Reset = 0x05694F9E

Making Connections in the SRUs

4-40 ADSP-21368 SHARC Processor Hardware Reference

0001101 (0xD) DAI_PB14_O Select DAI pin buffer 14

0001110 (0xE) DAI_PB15_O Select DAI pin buffer 15

0001111 (0xF) DAI_PB16_O Select DAI pin buffer 16

0010000 (0x10) DAI_PB17_O Select DAI pin buffer 17

0010001 (0x11) DAI_PB18_O Select DAI pin buffer 18

0010010 (0x12) DAI_PB19_O Select DAI pin buffer 19

0010011 (0x13) DAI_PB20_O Select DAI pin buffer 20

0010100 (0x14) SPORT0_DA_O Select SPORT 0A data

0010101 (0x15) SPORT0_DB_O Select SPORT 0B data

0010110 (0x16) SPORT1_DA_O Select SPORT 1A data

0010111 (0x17) SPORT1_DB_O Select SPORT 1B data

0011000 (0x18) SPORT2_DA_O Select SPORT 2A data

0011001 (0x19) SPORT2_DB_O Select SPORT 2B data

0011010 (0x1A) SPORT3_DA_O Select SPORT 3A data

0011011 (0x1B) SPORT3_DB_O Select SPORT 3B data

0011100 (0x1C) SPORT4_DA_O Select SPORT 4A data

0011101 (0x1D) SPORT4_DB_O Select SPORT 4B data

0011110 (0x1E) SPORT5_DA_O Select SPORT 5A data

0011111 (0x1F) SPORT5_DB_O Select SPORT 5B data

0100000 (0x20) SPORT0_CLK_O Select SPORT 0 clock

0100001 (0x21) SPORT1_CLK_O Select SPORT 1 clock

0100010 (0x22) SPORT2_CLK_O Select SPORT 2 clock

0100011 (0x23) SPORT3_CLK_O Select SPORT 3 clock

0100100 (0x24) SPORT4_CLK_O Select SPORT 4 clock

Table 4-7. Group D Sources—Pin Signal Assignments (Cont’d)

Selection Code Source Signal Description (Source)

ADSP-21368 SHARC Processor Hardware Reference 4-41

Digital Audio/Digital Peripheral Interfaces

0100101 (0x25) SPORT5_CLK_O Select SPORT 5 clock

0100110 (0x26) SPORT0_FS_O Select SPORT 0 frame sync

0100111 (0x27) SPORT1_FS_O Select SPORT 1 frame sync

0101000 (0x28) SPORT2_FS_O Select SPORT 2 frame sync

0101001 (0x29) SPORT3_FS_O Select SPORT 3 frame sync

0101010 (0x2A) SPORT4_FS_O Select SPORT 4 frame sync

0101011 (0x2B) SPORT5_FS_O Select SPORT 5 frame sync

0101100 (0x2C) SPORT6_DA_O Select SPORT 6A data

0101101 (0x2D) SPORT6_DB_O Select SPORT 6B data

0101110 (0x2E) SPORT7_DA_O Select SPORT 7A data

0101111 (0x2F) SPORT7_DB_O Select SPORT 7B data

0110000 (0x30) PDAP_STRB_O Select PDAP data transfer request strobe

0110001–0110011 Reserved

0110100 (0x34) SPORT6_CLK_O Select SPORT 6 clock

0110101 (0x35) SPORT7_CLK_O Select SPORT 7 clock

0110110 (0x36) SPORT6_FS_O Select SPORT 6 frame sync

0110111 (0x37) SPORT7_FS_O Select SPORT 7 frame sync

0111000 (0x38) PCG_CLKA_O Select precision clock A

0111001 (0x39) PCG_CLKB_O Select precision clock B

0111010 (0x3A) PCG_FSA_O Select precision frame sync A

0111011 (0x3B) PCG_FSB_O Select precision frame sync B

0111100 (0x3C) Reserved

0111101 (0x3D) SRC0_DAT_OP_O SRC0 data output

0111110 (0x3E) SRC1_DAT_OP_O SRC1 data output

Table 4-7. Group D Sources—Pin Signal Assignments (Cont’d)

Selection Code Source Signal Description (Source)

Making Connections in the SRUs

4-42 ADSP-21368 SHARC Processor Hardware Reference

0111111 (0x3F) SRC2_DAT_OP_O SRC2 data output

1000000 (0x40) SRC3_DAT_OP_O SRC3 data output

1000001 (0x41) DIR_DAT_O SPDIF_RX data output

1000010 (0x42) DIR_FS_O SPDIF_RX frame sync output

1000011 (0x43) DIR_CLK_O SPDIF_RX clock output

1000100 (0x44) DIR_TDMCLK_O SPDIF_RX TDM clock output

1000101 (0x45) DIT_DAT_O SPDIF_TX data output

1000110 (0x46) SPORT0_TDV_O SPORT0 transmit data valid output

1000111 (0x47) SPORT1_TDV_O SPORT0 transmit data valid output

1001000 (0x48) SPORT2_TDV_O SPORT0 transmit data valid output

1001001 (0x49) SPORT3_TDV_O SPORT0 transmit data valid output

1001010 (0x4A) SPORT4_TDV_O SPORT0 transmit data valid output

1001011 (0x4B) SPORT5_TDV_O SPORT0 transmit data valid output

1001100 (0x4C) SPORT6_TDV_O SPORT0 transmit data valid output

1001101 (0x4D) SPORT7_TDV_O SPORT0 transmit data valid output

1001110 (0x4E) DIR_LRCLK_FB External PLL – feedback point connection

1001111 (0x4F) DIR_LRCLK_REF External PLL – reference point connection

1010000 (0x50) PCG_CLKC_O Select precision clock C

1011001 (0x51) PCG_CLKD_O Select precision clock D

1011010 (0x52) PCG_FSC_O Select precision frame sync C

1010011 (0x53) PCG_FSD_O Select precision frame sync D

1010100 – 1111101 Reserved

1111110 (0x7E) LOGIC_LEVEL_LOW Logic level low (0)

1111111 (0x7F) LOGIC_LEVEL_HIGH Logic level high (1)

Table 4-7. Group D Sources—Pin Signal Assignments (Cont’d)

Selection Code Source Signal Description (Source)

ADSP-21368 SHARC Processor Hardware Reference 4-43

Digital Audio/Digital Peripheral Interfaces

Group E Connections—Interrupts and Miscellaneous
Signals

Group E connections, shown in Table 4-8 on page 4-45, are slightly dif-
ferent from the others in that the inputs and outputs being routed vary
considerably in function. This group routes control signals (interrupts and
miscellaneous signals) and provides a means of connecting signals between
groups. Signals with names such as MISCxy appear as inputs in group E,
but do not directly feed any peripheral. Rather, they reappear as outputs
in group D and group F. The registers for this group are shown in
Figure 4-35 and Figure 4-36.

Additional connections among groups D, E, and F provide a surprising
amount of utility. Since group D routes signals off chip and group F dic-
tates pin direction, these few signal paths enable an enormous number of
possible uses and connections for DAI pins. A few examples include:

• One pin’s input can be patched to another pin’s output, allowing
board-level routing under software control.

• A pin input can be patched to another pin’s enable, allowing an
off-chip signal to gate an output from the processor.

• Any of the DAI pins can be used as interrupt sources or gen-
eral-purpose I/O (GPIO) signals.

• Many types of bidirectional signaling may be created by routing an
output of the PCG to a pin enable.

The SRUs enable many possible functional changes, both internally and
externally. Used creatively, the SRUs allow system designers to radically
change functionality at run time, and to potentially reuse circuit boards
across many products.

Making Connections in the SRUs

4-44 ADSP-21368 SHARC Processor Hardware Reference

The following notes apply to group E connections.

1. SRU_EXT_MISCB is a 30-bit register. On reads, bits 30 and 31
always return zero.

2. A detailed description of the DAI interrupt register and its
usage is provided in “DAI Interrupt Controller Registers”
on page A-112.

3. Setting SRU_MISCA[30] to high inverts the level of MISCA4_I,
and setting SRU_MISCA[31] to high inverts the level of
MISCA5_I.

Figure 4-35. SRU_MISCA Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 1 1 1 1 0 1 1 1 1 0 1 1 1

MISCA5_INVERT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 1 1 1 0 1 1 1 1 0 1 1 1 1

Invert Miscellaneous
Channel A 4

MISCA4_INVERT

External Miscellaneous
Channel A 3

MISCA3_I
Invert Miscellaneous
Channel A 5

External Miscellaneous
Channel A 5

MISCA5_I
External Miscellaneous
Channel A 3

MISCA4_I

External Miscellaneous
Channel A 2

MISCA2_I

External Miscellaneous
Channel A 0

MISCA0_I

External Miscellaneous
Channel A 1

MISCA1_I

DAI Interrupt 31
DAI_INT_31

DAI Interrupt 30
DAI_INT_30

DAI Interrupt 28
DAI_INT_28

DAI Interrupt 29
DAI_INT_29

SRU_MISCA (0x2470)

MISCA3_I

External Miscellaneous
Channel A 3

Reset = 0x3DEF7BDE

ADSP-21368 SHARC Processor Hardware Reference 4-45

Digital Audio/Digital Peripheral Interfaces

Figure 4-36. SRU_MISCB Register

Table 4-8. Group E Sources—Miscellaneous Signals

Selection Code Source Signal Description (Output Source)

00000 (0x0) DAI_PB01_O Select DAI pin buffer 1 output

00001 (0x1) DAI_PB02_O Select DAI pin buffer 2 output

00010 (0x2) DAI_PB03_O Select DAI pin buffer 3 output

00011 (0x3) DAI_PB04_O Select DAI pin buffer 4 output

00100 (0x4) DAI_PB05_O Select DAI pin buffer 5 output

00101 (0x5) DAI_PB06_O Select DAI pin buffer 6 output

00110 (0x6) DAI_PB07_O Select DAI pin buffer 7 output

00111 (0x7) DAI_PB08_O Select DAI pin buffer 8 output

01000 (0x8) DAI_PB09_O Select DAI pin buffer 9 output

01001 (0x9) DAI_PB10_O Select DAI pin buffer 10 output

01010 (0xA) DAI_PB11_O Select DAI pin buffer 11 output

01011 (0xB) DAI_PB12_O Select DAI pin buffer 12 output

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 1 1 1 1 0 1 1 1 1 0 1 1 1

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 1 1 1 0 1 1 1 1 0 1 1 1 1

DAI Interrupt 27

DAI_INT_27

DAI Interrupt 25

DAI_INT_25

DAI Interrupt 26

DAI_INT_26

DAI Interrupt 22
DAI_INT_22

DAI Interrupt 23
DAI_INT_23DAI Interrupt 24

DAI_INT_24

SRU_MISCB (0x2471)

DAI_INT_25

DAI Interrupt 25

Reset = 0x3DEF7BDE

Making Connections in the SRUs

4-46 ADSP-21368 SHARC Processor Hardware Reference

01100 (0xC) DAI_PB13_O Select DAI pin buffer 13 output

01101 (0xD) DAI_PB14_O Select DAI pin buffer 14 output

01110 (0xE) DAI_PB15_O Select DAI pin buffer 15 output

01111 (0xF) DAI_PB16_O Select DAI pin buffer 16 output

10000 (0x10) DAI_PB17_O Select DAI pin buffer 17 output

10001 (0x11) DAI_PB18_O Select DAI pin buffer 18 output

10010 (0x12) DAI_PB19_O Select DAI pin buffer 19 output

10011 (0x13) DAI_PB20_O Select DAI pin buffer 20 output

10100 (0x14) SPORT0_F0_O Select serial port0 frame sync

10101 (0x15) SPORT1_FS_O Select serial port1 frame sync

10110 (0x16) SPORT2_FS_O Select serial port2 frame sync

10111 (0x17) SPORT3_FS_O Select serial port3 frame sync

11000 (0x18) SPORT4_FS_O Select serial port4 frame sync

11001 (0x19) SPORT5_FS_O Select serial port5 frame sync

11010 (0x1A) PCG_CLKA_O Select precision clock A

11011 (0x1B) PCG_FSA_O Select precision frame sync A

11100 (0x1C) PCG_CLKB_O Select precision clock B

11101 (0x1D) PCG_FSB_O Select precision frame sync B

11110 (0x1E) LOW Select logic level low (0) as a source

11111 (0x1F) HIGH Select logic level high (1) as a source

Table 4-8. Group E Sources—Miscellaneous Signals (Cont’d)

Selection Code Source Signal Description (Output Source)

ADSP-21368 SHARC Processor Hardware Reference 4-47

Digital Audio/Digital Peripheral Interfaces

Group F—Pin Enable Signals

Group F signals, shown in Figure 4-37 through Figure 4-40 and described
in Table 4-9, are used to specify whether each DAI pin is used as an out-
put or an input by setting the source for the pin buffer enables. When a
pin buffer enable (DAI_PBENxx_I) is set (= 1) the signal present at the cor-
responding pin buffer input (DAI_PBxx_I) is driven off chip as an output.
When a pin buffer enable is cleared (= 0) the signal present at the corre-
sponding pin buffer input is ignored.

The pin enable control registers activate the drive buffer for each of the 20
DAI pins. When the pins are not enabled (driven), they can be used as
inputs.

The following note applies to the group F connections.

SRU_PBEN0, SRU_PBEN1, SRU_PBEN2 and SRU_PBEN3 are 30 bit regis-
ters. On reads, bits 30 and 31 always return zero.

Figure 4-37. SRU_PBEN0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 1 1 1 0 0 0 1 0 0 1 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 0 0 0 0 0 1 0 1 1 0 0 1 0 1

DAI Port 5 Pin Buffer Enable Input

PBEN05_I

DAI Port 3 Pin Buffer Enable Input

PBEN03_I DAI Port 1
Pin Buffer Enable Input

PBEN01_I

DAI Port 4
Pin Buffer Enable Input

PBEN04_I

DAI Port 2 Pin Buffer Enable Input

PBEN02_I

SRU_PBEN0 (0x2478)

PBEN03_I
DAI Port 3
Pin Buffer Enable Input

Reset = 0x0E2482CA

Making Connections in the SRUs

4-48 ADSP-21368 SHARC Processor Hardware Reference

Figure 4-38. SRU_PBEN1

Figure 4-39. SRU_PBEN2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 1 0 0 1 1 0 1 0 0 1 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 0 1 0 0 1 1 0 0 0 0 1 1 1

DAI Port 10 Pin Buffer Enable Input
PBEN10_I

DAI Port 8 Pin Buffer Enable Input
PBEN08_I

DAI Port 6
Pin Buffer Enable Input

PBEN06_I

DAI Port 9
Pin Buffer Enable Input

PBEN09_I

DAI Port 7 Pin Buffer Enable Input
PBEN07_I

SRU_PBEN1 (0x2479)

PBEN08_I
DAI Port 8
Pin Buffer Enable Input

Reset = 0x1348D30F

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 0 1 1 0 1 0 0 1 0 1 0 1 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 0 0 0 1 0 1 1 1 0 1 0 1 1

DAI Port 15 Pin Buffer Enable Input
PBEN15_I

DAI Port 13 Pin Buffer Enable Input
PBEN13_I

DAI Port 11
Pin Buffer Enable Input

PBEN11_I

DAI Port 14
Pin Buffer Enable Input

PBEN14_I

DAI Port 12 Pin Buffer Enable Input
PBEN12_I

SRU_PBEN2 (0x247A)

PBEN13_I

DAI Port 13
Pin Buffer Enable Input

Reset = 0x1A5545D6

ADSP-21368 SHARC Processor Hardware Reference 4-49

Digital Audio/Digital Peripheral Interfaces

Figure 4-40. SRU_PBEN3

Table 4-9. Group F Sources—Pin Output Enable

Selection Code Source Signal Description (Output Source)

000000 (0x0) LOW Select logic level low (0)

000001 (0x1) HIGH Select logic level high (1)

000010 (0x2) MISCA0_O Assign miscellaneous control A0 output to a pin

000011 (0x3) MISCA1_O Assign miscellaneous control A1 output to a pin

000100 (0x4) MISCA2_O Assign miscellaneous control A2 output to a pin

000101 (0x5) MISCA3_O Assign miscellaneous control A3 output to a pin

000110 (0x6) MISCA4_O Assign miscellaneous control A4 output to a pin

000111 (0x7) MISCA5_O Assign miscellaneous control A5 output to a pin

001000 (0x8) SPORT0_CLK_PBEN_O Select serial port 0 clock output enable

001001 (0x9) SPORT0_FS_PBEN_O Select serial port 0 frame sync output enable

001010 (0xA) SPORT0_DA_PBEN_O Select serial port 0 data channel A output enable

001011 (0xB) SPORT0_DB_PBEN_O Select serial port 0 data channel B output enable

001100 (0xC) SPORT1_CLK_PBEN_O Select serial port 1 clock output enable

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 0 1 1 1 0 1 0 1 1 1 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 0 1 1 1 1 0 0 1 1 0 1

DAI Port 20 Pin Buffer Enable Input
PBEN20_I

DAI Port 18 Pin Buffer Enable Input
PBEN18_I

DAI Port 16
Pin Buffer Enable Input

PBEN16_I

DAI Port 19
Pin Buffer Enable Input

PBEN19_I

DAI Port 17 Pin Buffer Enable Input
PBEN17_I

SRU_PBEN3 (0x247B)

PBEN18_I
DAI Port 18
Pin Buffer Enable Input

Reset = 0x1D71F79B

Making Connections in the SRUs

4-50 ADSP-21368 SHARC Processor Hardware Reference

001101 (0xD) SPORT1_FS_PBEN_O Select serial port 1 frame sync output enable

001110 (0xE) SPORT1_DA_PBEN_O Select serial port 1 data channel A output enable

001111 (0xF) SPORT1_DB_PBEN_O Select serial port 1 data channel B output enable

010000 (0x10) SPORT2_CLK_PBEN_O Select serial port 2 clock output enable

010001 (0x11) SPORT2_FS_PBEN_O Select serial port 2 frame sync output enable

010010 (0x12) SPORT2_DA_PBEN_O Select serial port 2 data channel A output enable

010011 (0x13) SPORT2_DB_PBEN_O Select serial port 2 data channel B output enable

010100 (0x14) SPORT3_CLK_PBEN_O Select serial port 3 clock output enable

010101 (0x15) SPORT3_FS_PBEN_O Select serial port 3 frame sync output enable

010110 (0x16) SPORT3_DA_PBEN_O Select serial port 3 data channel A output enable

010111 (0x17) SPORT3_DB_PBEN_O Select serial port 3 data channel B output enable

011000 (0x18) SPORT4_CLK_PBEN_O Select serial port 4 clock output enable

011001 (0x19) SPORT4_FS_PBEN_O Select serial port 4 frame sync output enable

011010 (0x1A) SPORT4_DA_PBEN_O Select serial port 4 data channel A output enable

011011 (0x1B) SPORT4_DB_PBEN_O Select serial port 4 data channel B output enable

011100 (0x1C) SPORT5_CLK_PBEN_O Select serial port 5 clock output enable

011101 (0x1D) SPORT5_FS_PBEN_O Select serial port 5 frame sync output enable

011110 (0x1E) SPORT5_DA_PBEN_O Select serial port 5 data channel A output enable

011111 (0x1F) SPORT5_DB_PBEN_O Select serial port 5 data channel B output enable

100000 (0x20) SPORT6_CLK_PBEN_O Select serial port 6 clock output enable

100001 (0x21) SPORT6_FS_PBEN_O Select serial port 6 frame sync output enable

100010 (0x22) SPORT6_DA_PBEN_O Select serial port 6 data channel A output enable

100011 (0x23) SPORT6_DB_PBEN_O Select serial port 6 data channel B output enable

100100 (0x24) SPORT7_CLK_PBEN_O Select serial port 7 clock output enable

Table 4-9. Group F Sources—Pin Output Enable (Cont’d)

Selection Code Source Signal Description (Output Source)

ADSP-21368 SHARC Processor Hardware Reference 4-51

Digital Audio/Digital Peripheral Interfaces

DPI/SRU2 Connection Groups
The DPI/SRU2 has the following default configurations where seven bits
are for SPI1 booting, two bits are for UART1, two bits are for the TWI,
and the remaining three bits are for the timers.

100101 (0x25) SPORT7_FS_PBEN_O Select serial port 7 frame sync output enable

100110 (0x26) SPORT7_DA_PBEN_O Select serial port 7 data channel A output enable

100111 (0x27) SPORT7_DB_PBEN_O Select serial port 7 data channel B output enable

101000 (0x28) SPORT0_TDV_PBEN_O Select serial port 0 transmit data valid output

101001 (0x29) SPORT1_TDV_PBEN_O Select serial port 1 transmit data valid output

101010 (0x2A) SPORT2_TDV_PBEN_O Select serial port 2 transmit data valid output

101011 (0x2B) SPORT3_TDV_PBEN_O Select serial port 3 transmit data valid output

101100 (0x2C) SPORT4_TDV_PBEN_O Select serial port 4 transmit data valid output

101101 (0x2D) SPORT5_TDV_PBEN_O Select serial port 5 transmit data valid output

100111 (0x2E) SPORT6_TDV_PBEN_O Select serial port 6 transmit data valid output

101110 (0x2F) SPORT7_TDV_PBEN_O Select serial port 7 transmit data valid output

110000 (0x30)–1111111 (0x3F) Reserved

Table 4-10. DPI/SRU2 Default Configuration

Pin Number Signal Pin Number Signal

DPI_01 SPIMOSI DPI_08 SPIFLG3

DPI_02 SPIMISO DPI_09 UART0_TX

DPI_03 SPICLK DPI_10 UART0_RX

DPI_04 SPIDS DPI_11 TWI_SDATA

DPI_05 SPIFLG0 DPI_12 TWI_SCLK

Table 4-9. Group F Sources—Pin Output Enable (Cont’d)

Selection Code Source Signal Description (Output Source)

Making Connections in the SRUs

4-52 ADSP-21368 SHARC Processor Hardware Reference

There are three separate groups of connections that are used in SRU2. The
following sections summarize each.

Group A Connections—Input Routing Signals

Group A is used to route the 14 external pin signals, timer, and UART
outputs to the inputs of the other peripherals. Unlike the DAI SRU, all
functions, such as serial clock and data, are combined into the same group
A connections.

All clock inputs that are not used should be set to logic low. The registers
and input signals for group A are summarized in Figure 4-41 through
Figure 4-46 and Table 4-11.

DPI_06 SPIFLG1 DPI_13 TIMER0_O

DPI_07 SPIFLG2 DPI_14 TIMER1_O

Figure 4-41. SRU2_INPUT0 Register

Table 4-10. DPI/SRU2 Default Configuration (Cont’d)

Pin Number Signal Pin Number Signal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 1 0 1 0 0 0 1 1 0 0 0 1

SPIB_MISO_I

SPI B MISO Input

SPI_CLK_I
SPI Clock Input

SPIB_MOSI_I
SPI B MOSI Input

SPI_DS_I
SPI Device Select Input SPI_MISO_I

SPI MOSI Input

SPI_MOSI_I

SPI MISO Input

SRU2_INPUT0
(0x1C00)

SPI_CLK_I
SPI Clock Input

Reset = 0x00021462

ADSP-21368 SHARC Processor Hardware Reference 4-53

Digital Audio/Digital Peripheral Interfaces

Figure 4-42. SRU2_INPUT1 Register

Figure 4-43. SRU2_INPUT2 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 1 1 0 1 0 1 1 0 0 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 1 0 1 1 0 0 0 0 0 0 0 0 0

TWI_SCLK_I

TWI Serial Clock Input

UART1_RX_I
UART 1 Receiver Input

TWI_SDATA_I
TWI Serial Data Input

UART0_RX_I
UART 0 Receiver Input SPIB_CLK_I

SPI B Clock Input

SPIB_DS_I

SPIB Device Select Input

SRU2_INPUT1
(0x1C01)

UART1_RX_I
UART 1 Receiver Input

Reset = 0x1AC02C00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FLAG6_I

Flag 6 Input

FLAG4_I
Flag 4 Input

FLAG5_I
Flag 5 Input

TIMER2_I
Timer 2 Input TIMER1_I

Timer 1 Input

TIMER0_I

Timer 0 Input

SRU2_INPUT2
(0x1C02)

FLAG4_I
Flag 4 Input

Reset = 0x00000000

Making Connections in the SRUs

4-54 ADSP-21368 SHARC Processor Hardware Reference

Figure 4-44. SRU2_INPUT3 Register

Figure 4-45. SRU2_INPUT4 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FLAG12_I

Flag 12 Input

FLAG10_I
Flag 10 Input

FLAG11_I
Flag 11 Input

FLAG9_I
Flag 9 Input FLAG8_I

Flag 8 Input

FLAG7_I

Flag 7 Input

SRU2_INPUT3
(0x1C03)

FLAG10_I
Flag 10 Input

Reset = 0x00000000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MISC2_I

Miscellaneous 2 Input

MISC0_I
Miscellaneous 0 Input

MISC1_I
MISC0_I

FLAG15_I
Flag 15 Input FLAG14_I

Flag 14 Input

FLAG13_I

Flag 13 Input

SRU2_INPUT4
(0x1C04)

MISC0_I
Miscellaneous 0 Input

Reset = 0x00000000

ADSP-21368 SHARC Processor Hardware Reference 4-55

Digital Audio/Digital Peripheral Interfaces

Figure 4-46. SRU2_INPUT5 Register

Table 4-11. Group A Connections

Binary Decimal Signal Description

00000 00 LOGIC_LEVEL_LOW Logic level low (0)

00001 01 LOGIC_LEVEL_HIGH logic level high (1)

00010 02 DPI_P01_O External pin 1

00011 03 DPI_P02_O External pin 2

00100 04 DPI_P03_O External pin 3

00101 05 DPI_P04_O External pin 4

00110 06 DPI_P05_O External pin 5

00111 07 DPI_P06_O External pin 6

01000 08 DPI_P07_O External pin 7

01001 09 DPI_P08_O External pin 8

01010 10 DPI_P09_O External pin 9

01011 11 DPI_P10_O External pin 10

01100 12 DPI_P11_O External pin 11

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MISC8_I

Miscellaneous 8 Input

MISC6_I
Miscellaneous 6 Input

MISC7_I
Miscellaneous 7 Input

MISC5_I
Miscellaneous 5 Input MISC4_I

Miscellaneous 4 Input

MISC3_I

Miscellaneous 3 Input

SRU2_INPUT5
(0x1C05)

MISC6_I
Miscellaneous 6 Input

Reset = 0x00000000

Making Connections in the SRUs

4-56 ADSP-21368 SHARC Processor Hardware Reference

Group B Connections—Pin Assignment Signals

Group B connections, shown in Figure 4-47 through Figure 4-49 and
Table 4-12, are used to route output signals to the 14 DPI pins.

01101 13 DPI_P12_O External pin 12

01110 14 DPI_P13_O External pin 13

01111 15 DPI_P14_O External pin 14

10000 16 TIMER0_O Timer0 output

10001 17 TIMER1_O Timer1 output

10010 18 TIMER2_O Timer2 output

10011 19 UART0_TX_O UART0 transmitter output

10100 20 UART1_TX_O UART1 transmitter output

10101-11111 21-31 RESERVED RESERVED

Figure 4-47. SRU2_PIN0 Register

Table 4-11. Group A Connections (Cont’d)

Binary Decimal Signal Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 1 1 0 0 0 0 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 1 1 0 1 0 1 0 1 0 1 0 1 1

DPI_PB05_I

DPI pin buffer 5 Input

DPI_PB03_I
DPI Pin Buffer 3 Input

DPI_PB04_I
DPI Pin Buffer 4 Input

DPI_PB03_I

DPI_PB02_I
DPI Pin Buffer2 Input

DPI_PB01_I

DPI Pin Buffer 1 Input

SRU2_PIN0
(0x01C10)

DPI Pin Buffer 3 Input

Reset = 0x30017556

ADSP-21368 SHARC Processor Hardware Reference 4-57

Digital Audio/Digital Peripheral Interfaces

Figure 4-48. SRU2_PIN1 Register

Figure 4-49. SRU2_PIN2 Register

Table 4-12. Group B Signals

Binary Decimal Signal Description

000000 00 LOGIC_LEVEL_LOW Logic level low (0)

000001 01 LOGIC_LEVEL_HIGH Logic level high (1)

000010 02 DPI_P01_O External pin 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 0 0 0 0 0 0 0 1 0 0 1 1 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 0 1 1 0 1 1 0 1 0 0 1 1 0 0

DPI_PB10_I

DPI Pin Buffer 10 Input

DPI_PB08_I
DPI Pin Buffer 8 Input

DPI_PB09_I
DPI Pin Buffer 9 Input

DPI_PB08_I

DPI_PB07_I
DPI Pin Buffer 7 Input

DPI_PB06_I

DPI Pin Buffer 6 Input

SRU2_PIN1
(0x01C11)

DPI Pin Buffer 8 Input

Reset = 0x002DB699

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 0 0 0 0 0 0 0 1 0 0 0 1 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DPI_PB13_I
DPI Pin Buffer 13 Input

DPI_PB14_I
DPI Pin Buffer 14 Input

DPI_PB13_I

DPI_PB12_I
DPI Pin Buffer 12 Input

DPI_PB11_I

DPI Pin Buffer 11 Input

SRU2_PIN2
(0x01C12)

DPI Pin Buffer 13 Input

Reset = 0x00450000

Making Connections in the SRUs

4-58 ADSP-21368 SHARC Processor Hardware Reference

000011 03 DPI_P02_O External pin 2

000100 04 DPI_P03_O External pin 3

000101 05 DPI_P04_O External pin 4

000110 06 DPI_P05_O External pin 5

000111 07 DPI_P06_O External pin 6

001000 08 DPI_P07_O External pin 7

001001 09 DPI_P08_O External pin 8

001010 10 DPI_P09_O External pin 9

001011 11 DPI_P10_O External pin 10

001100 12 DPI_P11_O External pin 11

001101 13 DPI_P12_O External pin 12

001110 14 DPI_P13_O External pin 13

001111 15 DPI_P14_O External pin 14

010000 16 TIMER0_O Timer0 output

010001 17 TIMER1_O Timer1 output

010010 18 TIMER2_O Timer2 output

010011 19 UART0_TX_O UART0 transmitter output

010100 20 UART1_TX_O UART1 transmitter output

010101 21 SPI_MISO_O MISO from SPI

010110 22 SP_IM0SI_O MOSI from SPI

010111 23 SPI_CLK_O Clock output from SPI

011000 24 SPI_FLG0_O Slave select 0 from SPI

011001 25 SPI_FLG1_O Slave select 1 from SPI

011010 26 SPI_FLG2_O Slave select 2 from SPI

Table 4-12. Group B Signals (Cont’d)

Binary Decimal Signal Description

ADSP-21368 SHARC Processor Hardware Reference 4-59

Digital Audio/Digital Peripheral Interfaces

011011 27 SPI_FLG3_O Slave select 3 from SPI

011100 28 SPIB_MISO_O MISO from SPIB

011101 29 SPIB_M0SI_O MOSI from SPIB

011110 30 SPIB_CLK_O Clock output from SPIB

011111 31 SPIB_FLG0_O Slave select 0 from SPIB

100000 32 SPIB_FLG1_O Slave select 1 from SPIB

100001 33 SPIB_FLG2_O Slave select 2 from SPIB

100010 34 SPIB_FLG3_O Slave select 3 from SPIB

100011 35 FLAG4_O Flag 4 output

100100 36 FLAG5_O Flag 5 output

100101 37 FLAG6_O Flag 6 output

100110 38 FLAG7_O Flag 7 output

100111 39 FLAG8_O Flag 8 output

101000 40 FLAG9_O Flag 9 output

101001 41 FLAG10_O Flag 10 output

101010 42 FLAG11_O Flag 11 output

101011 43 FLAG12_O Flag 12 output

101100 44 FLAG13_O Flag 13 output

101101 45 FLAG14_O Flag 14 output

101110 46 FLAG15_O Flag 15 output

101111 47 PCG_CLKC_O Precision clock generator clock C out

110000 48 PCG_CLKD_O Precision clock generator clock D out

110001 49 PCG_FSC_O Precision clock generator frame sync C out

Table 4-12. Group B Signals (Cont’d)

Binary Decimal Signal Description

Making Connections in the SRUs

4-60 ADSP-21368 SHARC Processor Hardware Reference

Group C Connections—Pin Enable Signals

Group C signals, shown in Table 4-13 on page 4-62, are used to specify
whether each DPI pin is used as an output or an input by setting the
source for the pin buffer enable. When a pin buffer enable (DPI_PBENxx_I)
is set (= 1), the signal present at the corresponding pin buffer input
(DPI_PBxx_I) is driven off chip as an output. When a pin buffer enable is
cleared (= 0), the signal present at the corresponding pin buffer input is
ignored.

The registers that control group C settings are shown in Figure 4-50
through Figure 4-52.

The TWI output is an open-drain output so the pins used for TWI
data and clock should be connected to logic level 0.

110010 50 PCG_FSD_O Precision clock generator frame sync D out

110011–
111111

51-63 RESERVED

Table 4-12. Group B Signals (Cont’d)

Binary Decimal Signal Description

ADSP-21368 SHARC Processor Hardware Reference 4-61

Digital Audio/Digital Peripheral Interfaces

Figure 4-50. SRU2_PBEN0 Register

Figure 4-51. SRU2_PBEN1 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 1 1 0 0 1 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 0 0 0 0 1 0 1 0 0 0 1 0 1

DPI_PBEN05_I

DPI Pin Buffer Enable 5 Input

DPI_PBEN03_I
DPI Pin Buffer Enable 3
Input

DPI_PBEN04_I
DPI Pin Buffer Enable 4
Input

DPI_PBEN03_I

DPI_PBEN02_I
DPI Pin Buffer Enable 2 Input

DPI_PBEN01_I

DPI Pin Buffer Enable 1
Input

SRU2_PBEN0
(0x01C20)

DPI Pin Buffer Enable 3 Input

Reset = 0x1900C28B

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 1 1 1 1 0 0 1 1 1

DPI_PBEN10_I

DPI Pin Buffer Enable 10 Input

DPI_PBEN08_I
DPI Pin Buffer Enable 8
Input

DPI_PBEN09_I
DPI Pin Buffer Enable 9
Input

DPI_PBEN08_I

DPI_PBEN07_I
DPI Pin Buffer Enable 7 Input

DPI_PBEN06_I

DPI Pin Buffer Enable 6
Input

SRU2_PBEN1
(0x01C21)

DPI Pin Buffer Enable 8 Input

Reset = 0x002103CE

Making Connections in the SRUs

4-62 ADSP-21368 SHARC Processor Hardware Reference

Figure 4-52. SRU2_PBEN2 Register

Table 4-13. Group C Signals

Binary Decimal Signal Description

000000 00 LOGIC_LEVEL_LOW Logic level low (0)

000001 01 LOGIC_LEVEL_HIGH Logic level high (1)

000010 02 EXT_MISC_0 Miscellaneous control 0

000011 03 EXT_MISC_1 Miscellaneous control 1

000100 04 EXT_MISC_2 Miscellaneous control 2

000101 05 TIMER0_PE_O Enable for timer 0 output

000110 06 TIMER1_PE_O Enable for timer 1 output

000111 07 TIMER2_PE_O Enable for timer 2 output

001000 08 UART0_TX_PE_0 Pin enable for UART 0 transmitter

001001 09 UART1_TX_PE_0 Pin enable for UART 1 transmitter

001010 10 SPIMISO_PE_O Pin enable for MISO from SPI

001011 11 SPIMOSI_PE_O Pin enable for MOSI froM SPI

001100 12 SPICLK_PE_O Pin enable for CLK from SPI

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 1 1 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 0 1 1 0 0 1 0 1 1 0 0 1 0

DPI_PBEN13_I
DPI Pin Buffer Enable 13
Input

DPI_PBEN14_I
DPI Pin Buffer Enable 14
Input

DPI_PBEN13_I

DPI_PBEN12_I
DPI Pin Buffer Enable 12 Input

DPI_PBEN11_I

DPI Pin Buffer Enable 11
Input

SRU2_PBEN2
(0x01C22)

DPI Pin Buffer Enable 13 Input

Reset = 0x00185964

ADSP-21368 SHARC Processor Hardware Reference 4-63

Digital Audio/Digital Peripheral Interfaces

001101 13 SPIFLG0_PE_O Pin enable for slave select 0 from SPI

001110 14 SPIFLG1_PE_O Pin enable for slave select 1 from SPI

001111 15 SPIFLG2_PE_O Pin enable for slave select 2 from SPI

010000 16 SPIFLG3_PE_O Pin enable for slave select 3 from SPI

010001 17 SPIBMISO_PE_O Pin enable for MISO from SPIB

010010 18 SPIBMOSI_PE_O Pin enable for MOSI from SPIB

010011 19 SPIBCLK_PE_O Pin enable for CLK from SPIB

010100 20 SPIBFLG0_PE_O Pin enable for slave select 0 from SPIB

010101 21 SPIBFLG1_PE_O Pin enable for slave select 1 from SPIB

010110 22 SPIBFLG2_PE_O Pin enable for slave select 2 from SPIB

010111 23 SPIBFLG3_PE_O Pin enable for slave select 3 from SPIB

011000 24 FLAG4_PE_O Pin enable for Flag 4 output

011001 25 FLAG5_PE_O Pin enable for Flag 5 output

011010 26 FLAG6_PE_O Pin enable for Flag 6 output

011011 27 FLAG7_PE_O Pin enable for Flag 7 output

011100 28 FLAG8_PE_O Pin enable for Flag 8 output

011101 29 FLAG9_PE_O Pin enable for Flag 9 output

011110 30 FLAG10_PE_O Pin enable for Flag 10 output

011111 31 FLAG11_PE_O Pin enable for Flag 11 output

100000 32 FLAG12_PE_O Pin enable for Flag 12 output

100001 33 FLAG13_PE_O Pin enable for Flag 13 output

100010 34 FLAG14_PE_O Pin enable for Flag 14 output

100011 35 FLAG15_PE_O Pin enable for Flag 15 output

100100 36 TWI_SDATA_OE Serial data output enable from TWI

Table 4-13. Group C Signals (Cont’d)

Binary Decimal Signal Description

General-Purpose I/O (GPIO) and Flags

4-64 ADSP-21368 SHARC Processor Hardware Reference

The pin enable control registers activate the drive buffer for each of the 14
DPI pins. When the pins are not enabled (driven), they can be used as
inputs.

General-Purpose I/O (GPIO) and Flags
Each interface is capable of using its pins for general-purpose I/O and
flags. The sections that follow describe this use for each interface.

DAI GPIO and Flags
In the DAI, any of the pins may also be considered general-purpose
input/output (GPIO) pins. Each of the DAI pins can also be set to drive a
high or low logic level signal to assert signals. They can also be connected
to miscellaneous signals and used as interrupt sources or as control inputs
to other blocks.

100101 37 TWI_SCLK_OE Serial clock output enable from TWI

100110 38 EXT_MISC_3 Miscellaneous control 3

100111 39 EXT_MISC_4 Miscellaneous control 4

101000 40 EXT_MISC_5 Miscellaneous control 5

101001 41 EXT_MISC_6 Miscellaneous control 6

101010 42 EXT_MISC_7 Miscellaneous control 7

101011 43 EXT_MISC_8 Miscellaneous control 8

101100–
111111

44-63 Reserved

Table 4-13. Group C Signals (Cont’d)

Binary Decimal Signal Description

ADSP-21368 SHARC Processor Hardware Reference 4-65

Digital Audio/Digital Peripheral Interfaces

DPI GPIO and Flags
In the DPI, the EXT_MISC signals are used for general-purpose I/O. An
interrupt controller processes these signals to generate an interrupt, for
example DPI_INT. The EXT_MISC signals can also be used to control pin
enables. Flags 4-15 can be routed using the DPI pins.

Miscellaneous Signals
In the ADSP-21367/8/9 and ADSP-2137x processors, exception applica-
tions can also configure signals to:

• Act as interrupt sources

• Act as inverted signals (forcing a signal to active low)

• Connect one pin to another

• Act as pin enables

DAI/DPI Interrupt Controller
The DAI contains a dedicated interrupt controller that signals the core
when DAI peripheral events occur.

Relationship to the Core
Generally, interrupts are classified as catastrophic or normal. Catastrophic
events include any hardware interrupts (for example, resets) and emula-
tion interrupts (under the control of the PC), math exceptions, and
“reads” of memory that do not exist. Catastrophic events are treated as
high priority events. In comparison, normal interrupts are “determinis-
tic”—specific events emanating from a source (the causes), the result of
which is the generation of an interrupt. The expiration of a timer can

DAI/DPI Interrupt Controller

4-66 ADSP-21368 SHARC Processor Hardware Reference

generate an interrupt, a signal that a serial port has received data that must
be processed, a signal that an SPI has either transmitted or received data,
and other software interrupts like the insertion of a trap that causes a
breakpoint—all are conditions, which identify to the core that an event
has occurred.

Since DAI specific events generally occur infrequently, the DAI IC classi-
fies such interrupts as either high or low priority interrupts. Within these
broad categories, programs can indicate which interrupts are high and
which are classified as low.

Any interrupt causes a four-cycle stall, since it forces the core to stop
instruction execution while in process, then vector to the interrupt service
routine (ISR), (which is basically an interrupt vector table (IVT) lookup),
then proceed to implement the instruction referenced in the IVT. For
more information, see Appendix B, Interrupts.

When an interrupt from the DAI needs servicing, one of the two core
interrupt service routines (ISR) must query the DAI’s interrupt controller
to determine the source(s). Sources can be any one or more of the inter-
rupt controller’s 32 configurable channels (DAI_INT[31:0]). For more
information, see “DAI Interrupt Controller Registers” on page A-112.

DAI events trigger two interrupts in the primary IVT—one each for low
or high priority.

DAI Interrupts
There are several registers in the DAI interrupt controller that can be con-
figured to control how the DAI interrupts are reported to and serviced by
the core’s interrupt controller. Among other options, each DAI interrupt
can be mapped either as a high or low priority interrupt in the primary
interrupt controller. Certain DAI interrupts can be triggered on either the
rising or the falling edge of the signals, and each DAI interrupt can also be
independently masked.

ADSP-21368 SHARC Processor Hardware Reference 4-67

Digital Audio/Digital Peripheral Interfaces

Just as the core has its own interrupt latch registers (IRPTL and LIRPTL),
the DAI has its own latch registers (DAI_IRPTL_L and DAI_IRPTL_H). When
a DAI interrupt is configured to be high priority, it is latched in the
DAI_IRPTL_H register. When any bit in the DAI_IRPTL_H register is set
(= 1), bit 11 in the IRPTL register is also set and the core services that
interrupt with high priority. When a DAI interrupt is configured to be
low priority, it is latched in the DAI_IRPTL_L register. Similarly, when any
bit in the DAI_IRPTL_L register is set (= 1), bit 6 in the LIRPTL register is
also set and the core services that interrupt with low priority. Regardless of
the priority, when a DAI interrupt is latched and promoted to the core
interrupt latch, the ISR must query the DAI’s interrupt controller to
determine the source(s). Sources can be any one or more of the interrupt
controller’s 32 configurable channels (DAI_INT31–0). For more informa-
tion, see “DAI Interrupt Controller Registers” on page A-112.

Reading the DAI’s interrupt latches clears them. Therefore, the
ISR must service all the interrupt sources it discovers. That is, if
multiple interrupts are latched in one of the DAI_IRPTL_x registers,
all of them must be serviced before executing an RTI instruction.

The IDP_FIFO_GTN_INT interrupt is not cleared when the DAI_IRPTL_H/L
registers are read. This interrupt is cleared automatically when the situa-
tion that caused the interrupt goes away.

DPI Interrupts
The DPI also has an interrupt controller, similar to that in the DAI. There
are 14 interrupts—4 from the UARTs, 1 from the two wire interface
(TWI) and 9 general-purpose I/O interrupts. All of these interrupts are
combined into a single interrupt, namely DPI_INT. The DPI_IRPTL register
contains the status on individual interrupts. Apart from DPI_IRPTL, there
are two additional registers, DPI_IRPTL_RE and DPI_IRPTL_FE which are
used for interrupt latching. Setting a corresponding bit in the
DPI_IRPTL_RE register enables interrupt latching at the rising edge of the
corresponding signal. Similarly, setting a corresponding bit in the

DAI/DPI Interrupt Controller

4-68 ADSP-21368 SHARC Processor Hardware Reference

DPI_IRPTL_FE register enables interrupt latching at the falling edge of that
signal. A particular interrupt can be latched at the rising or falling edge
independently. Keeping corresponding bits reset in both these registers
(DPI_IRPTL_RE and DPI_IRPTL_FE) disables the corresponding interrupt.

The DPI_INT interrupt is automatically cleared when the DPI_IRPTL
register is read for the EXT_MISC, UART_TX, and UART_RX (for DMA
mode only) interrupts. Furthermore, the UART_RX interrupt for I/O
mode must be cleared in the ISR. For information on using inter-
rupts in the UART, see “UARTxIER Register” on page 11-7, and
“UARTxIIR Register” on page 11-9. For information on using
interrupts in the TWI, see “Interrupt Source Register” on
page 12-7 and “Interrupt Enable Register” on page 12-8.

The UART and TWI interrupts are only used as rising edge interrupts.
The corresponding bits in the DPI_IRPTL_FE register are reserved. By
default, at reset, all interrupts are disabled (in other words, both the
DPI_IRPTL_RE and DPI_IRPTL_FE registers have zero values).

Interrupt service routines (ISR) must read the DPI_IRPTL register to dis-
cover all of the interrupts that are currently latched. A shadow register,
DPI_IRPTL_SH, is provided for the primary register DPI_IRPTL. Reads of
this register returns data in the DPI_IRPTL register without clearing the
contents of the register.

Note that the ISR must make sure that the current interrupt condition is
removed before exiting to the main program. Further note that for the
interrupts corresponding to the UART and the TWI, the bits in the
DPI_IRPTL_RE register are used as enable bits and corresponding bits from
the DPI_IRPTL_FE register are not used.

ADSP-21368 SHARC Processor Hardware Reference 4-69

Digital Audio/Digital Peripheral Interfaces

High and Low Priority Latches
In the ADSP-21367/8/9 and ADSP-2137x processors, a pair of registers
(DAI_IRPTL_H and DAI_IRPTL_L) replace functions normally performed by
the IRPTL register. A single register (DAI_IRPTL_PRI) specifies the latch to
which each of these interrupts are mapped.

Two registers (DAI_IRPTL_RE and DAI_IRPTL_FE) replace the DAI periph-
eral’s version of the IMASK register. As with the IMASK register, these DAI
registers provide a way to specify which interrupts to notice and handle,
and which interrupts to ignore. These dual registers function like IMASK
does, but with a higher degree of granularity.

Signals from the SRU can be used to generate interrupts. For example,
when SRU_EXTMISCA2_INT (bit 30) of DAI_IRPTL_H is set to one, any signals
from the external miscellaneous channel 2 generate an interrupt. If set to
one, DAI interrupts trigger an interrupt in the core and the interrupt latch
is set. A read of this bit does not reset it to zero. The bit is only set to zero
when the cause of the interrupt is cleared. A DAI interrupt indicates the
source (in this case, external miscellaneous A, channel 2), and checks the
IVT for an instruction (next operation) to perform.

The 32 interrupt signals within the interrupt controller are mapped to 2
interrupt signals in the primary interrupt controller of the SHARC pro-
cessor core. The DAI_IRPTL_PRI register specifies if the interrupt controller
interrupt is mapped to the high or low core interrupt (1 = high priority
and 0 = low priority).

The DAI_IRPTL_H register is a read-only register with bits set for every DAI
interrupt latched for the high priority core interrupts. The DAI_IRPTL_L
register is a read-only register with bits set for every DAI interrupt latched
for the low priority core interrupts. When a DAI interrupt occurs, the low
or high priority core ISR interrogates its corresponding register to deter-
mine which of the 32 interrupt sources to service. When the DAI_IRPTL_H

DAI/DPI Interrupt Controller

4-70 ADSP-21368 SHARC Processor Hardware Reference

register is read, the high priority latched interrupts are all cleared. When
the DAI_IRPTL_L register is read, the low priority latched interrupts are all
cleared.

Rising and Falling Edge Masks
For interrupt sources that correspond to waveforms (as opposed to DAI
event signals such as DMA complete or buffer full), the edge of a wave-
form may be used as an interrupt source as well. Just as interrupts can be
generated by a source, interrupts can also be generated and latched on the
rising (or falling) edges of a signal. This concept does not exist in the main
interrupt controller—only in the DAI interrupt controller.

When a signal comes in, the system needs to determine what kind of sig-
nal it is and what kind of protocol, as a result, to service. The preamble
indicates the signal type. When the protocol changes, output (signal) type
is noted.

For audio applications, the ADSP-21367/8/9 and ADSP-2137x processors
need information about interrupt sources that correspond to waveforms
(not event signals). As a result, the falling edge of the waveform may be
used as an interrupt source as well. Programs may select any of these four
conditions:

• Latch on the rising edge

• Latch on the falling edge

• Latch on both the rising and falling edge

The DAI interrupt controller may be configured using three registers.
Each of the 32 interrupt lines can be independently configured to trigger
in response to the incoming signal’s rising edge, its falling edge, or both
the rising edge and the falling edge. Setting a bit in either the

ADSP-21368 SHARC Processor Hardware Reference 4-71

Digital Audio/Digital Peripheral Interfaces

DAI_IRPTL_RE or DAI_IRPTL_FE registers enables the interrupt level on the
rising and falling edges, respectively. For more information on these regis-
ters, see “DAI Interrupt Controller Registers” on page A-112.

Programs can manage responses to signals by configuring registers. In a
sample audio application, for example, upon detection of a change of pro-
tocol, the output can be muted. This change of output and the resulting
behavior (causing the sound to be muted) results in an alert signal (an
interrupt) being introduced in response (if the detection of a protocol
change is a high priority interrupt).

The DAI_IRPTL_FE register can only be used for latching interrupts
on the falling edge.

Use of the DAI_IRPTL_RE or DAI_IRPTL_FE registers allows programs to
notice and respond to rising edges, falling edges, both rising and falling
edges, or neither rising nor falling edges so they can be masked separately.

Responses to changes in conditions of signals (including changes in DMA
state, introduction of error conditions, and so on) can only be enabled
using the DAI_IRPTL_RE register.

Configuring Peripherals Using SRU1
The following sections describe how the various peripherals associated
with SRU1 are configured.

Configuring the SPORTs
The serial port chapter provides the signal sensitivity information of the
SPORT signals which needs to be considered while configuring the serial
ports using DAI pins. For more information, see “Serial Port Signal Sensi-
tivity” on page 5-9.

Configuring Peripherals Using SRU2

4-72 ADSP-21368 SHARC Processor Hardware Reference

Configuring the PCGs
“Precision Clock Generators” on page 13-1 provides extensive informa-
tion on programming using the DAI. “Clock and Frame Sync Divisors
PCG Channel B” on page 13-20 is an example program that uses PCG
channel B to output a clock on DAI pin 1 and a frame sync on DAI pin 2.

Configuring Peripherals Using SRU2
The following sections describe how the various peripherals associated
with SRU2 are configured.

Configuring the SPI
All SPI signals are routed through the SRU2 and are routed as described
in “Signal Routing Units” on page 4-8, Figure 4-3 on page 4-6 and
Figure 4-4 on page 4-7. Normally, it is acceptable to enable (SRU2) out-
put buffers to permanently ground the pin enable signals. However, this
does not work for the open-drain mode, because the SRU2 buffer always
actively drives the output pin. Where open-drain mode is used, the pin
enable signals must be connected to the pin enable associated with the SPI
SRU2 buffers and connected with the SPIB_MISO_O, SPIB_MOSI_O,
SPIB_CLK_O, and SPIB_FLGx_O pins. For more information on open-drain
mode, see “Open Drain Mode (OPD)” on page 6-9.

Choosing the Pin Enable for the SPI Clock

When in SPI master mode, the SPICLK signal is sent from the processor.
The enable signal for the DPI pin being used for the clock must be con-
nected correctly depending on the SPI mode being used (based on the
setting of CPHASE and CLKPL bits in the SPICTL register). Table 4-14 shows
the correct pin enable to use by SPI mode.

ADSP-21368 SHARC Processor Hardware Reference 4-73

Digital Audio/Digital Peripheral Interfaces

As an example, the output of the clock to DPI pin 3 would be configured
in SPI mode 3 as follows.

SRU(SPI_CLK_O,DPI_PB03_I);

SRU(SPI_CLK_O,DPI_PBEN03_I);

Configuring the Two Wire Interface
Each TWI device, whether master or slave, responds to the other devices
with an acknowledge bit when data is received. For details, see
Chapter 12, Two Wire Interface Controller. For proper operation, the
SRU must be set up so that data communication is possible in both direc-
tions on the data pin.

The examples in Listing 4-1 through Listing 4-4 show the SRU settings
for different TWI modes.

Listing 4-1. TWI Master Transmit Mode

SRU(LOW,DPI_PB11_I) /* Since TWI output is an open-drain

 output, the TWI pin is connected

 to logic level low */

SRU(TWI_DATA_PBEN_O,DPI_PBEN11_I) /* TWI data output connected

 to DPI pin 11 input */

Table 4-14. SPI Pin Enable Selections

Mode CLKPL CPHASE Use Pin Enable...

0 0 0 HIGH

1 0 1 HIGH

2 1 0 SPI_CLK_O

3 1 1 SPI_CLK_O

Configuring Peripherals Using SRU2

4-74 ADSP-21368 SHARC Processor Hardware Reference

SRU(DPI_PB11_O, TWI_DATA_I); /* DPI pin 11 output connected

 to TWI data input */

SRU(LOW,DPI_PB12_I) /* Since TWI output is an open-drain

 output, the TWI pin is connected

 to logic level low */

SRU2(TWI_CLK_PBEN_O,DPI_PBEN12_I) /* TWI clock connected to DPI

 pin 12 */

Listing 4-2. TWI Master Receive Mode

SRU(DPI_PB11_O,TWI_DATA_I) /* DPI pin 11 output connected to

 TWI data input */

SRU(LOW,DPI_PB11_I) /* Since TWI output is an open-drain

 output the TWI pin is connected to

 logic level low */

SRU(TWI_DATA_PBEN_O,DPI_PBEN11_I)) /* TWI data output

 connected to DPI pin 11

 input */

SRU(LOW,DPI_PB12_I)) /* Since TWI output is an open-drain

 output the TWI pin is connected to

 logic level low */

SRU(TWI_CLK_PBEN_O,DPI_PBEN12_I) /* TWI Clock connected to DPI

 pin 12

ADSP-21368 SHARC Processor Hardware Reference 4-75

Digital Audio/Digital Peripheral Interfaces

Listing 4-3. TWI Slave Transmit Mode

SRU(LOW,DPI_PB11_I) /* Since TWI output is an open-drain

 output the TWI pin is connected

 to logic level low */

SRU(TWI_DATA_PBEN_O,DPI_PBEN11_I) /* TWI data output connected

 to DPI pin 11 input */

SRU(DPI_PB11_O,TWI_DATA_I) /* DPI pin 11 output connected to

 TWI data input */

SRU(DPI_PB12_O, TWI_CLK_I) /* clock signal from DPI pin 12 is

 connected to the TWI slave

 clock input */

SRU(LOW,DPI_PBEN12_I) /* Disables DPI pin 12 as input as

 the clock is not generated by

 the slave */

Listing 4-4. TWI Slave Receive Mode

SRU(DPI_PB11_O,TWI_DATA_I /* DPI pin 11 output connected to

 TWI data input */

SRU(LOW,DPI_PB11_I)) /* Since TWI output is an open

 drain output the TWI pin is

 connected to logic level low */

SRU2(TWI_DATA_PBEN_O,DPI_PBEN11_I) /* TWI data output

 connected to DPI pin

 11 input */

Using the SRU() Macro to Configure the DAI

4-76 ADSP-21368 SHARC Processor Hardware Reference

SRU2(DPI_PB12_O, TWI_CLK_I) /* Clock signal from DPI pin 12

 is connected to the TWI slave

 clock input */

SRU2(LOW,DPI_PBEN12_I)) /* Disables DPI pin 12 as input as

 the clock is not generated by

 the slave */

Using the SRU() Macro to Configure
the DAI

As discussed in the previous sections, the signal routing unit (SRU) is con-
trolled by writing values that correspond to signal sources into bit fields
that further correspond to signal inputs. The SRU is arranged into func-
tional groups such that registers that are made up of these bit fields accept
a common set of source signal values.

In order to ease the coding process, the header file sru.h is included with
the VisualDSP++ tools. This file implements a macro that automates most
of the work of signal assignments and functions. The macro has identical
syntax in C/C++ and assembly, and makes a single connection from an
output to an input:

SRU(Output Signal, Input Signal);

The names passed to the macro are the names given in Table 4-4 through
Table 4-9 and in the DAI registers section in “DAI/SRU1 Connection
Groups” on page 4-18. To use this macro, add the code shown in
Listing 4-5 to your source code.

ADSP-21368 SHARC Processor Hardware Reference 4-77

Digital Audio/Digital Peripheral Interfaces

Listing 4-5. DAI Macro Code

#include <sru.h>;

/* The following lines illustrate how the macro is used: */

/* Route SPORT 1 clock output to pin buffer 5 input */

 SRU(SPORT1_CLK_O,DAI_PB05_I);

 /* Route pin buffer 14 out to IDP3 frame sync input */

 SRU(DAI_PB14_O,IDP3_FS_I);

 /* Connect pin buffer enable 19 to logic low */

 SRU(LOW,DAI_PBEN19_I);

Additional example code is available on the Analog Devices Web site.

There is a macro that has been created to connect peripherals used
in a DAI configuration. This code can be used in both assembly
and C code. See the INCLUDE file SRU.H.

There is also a software plug-in called the Expert DAI that greatly
simplifies the task of connecting the signals described in this chap-
ter. This plug-in is described in Engineer-to-Engineer Note
EE-243, “Using the Expert DAI for ADSP-2126x and
ADSP-2136x SHARC Processors”. This EE note is also found on
the Analog Devices Web site.

Using the SRU() Macro to Configure the DAI

4-78 ADSP-21368 SHARC Processor Hardware Reference

ADSP-21368 SHARC Processor Hardware Reference 5-1

5 SERIAL PORTS

The ADSP-21367/8/9 and ADSP-2137x processors have up to eight inde-
pendent, synchronous serial ports (SPORTs) that provide an I/O interface
to a wide variety of peripheral devices. They are called SPORT0,
SPORT1, SPORT2, SPORT3, SPORT4, SPORT 5, SPORT6, and
SPORT7. Each SPORT has its own set of control registers and data buff-
ers. With a range of clock and frame synchronization options, the
SPORTs allow a variety of serial communication protocols and provide a
glueless hardware interface to many industry-standard data converters and
CODECs.

Serial ports can operate at one-eighth the full clock rate of the processor, a
maximum rate of 50M bit/s for (CCLK) = 3 ns. If channels A and B are
active, each SPORT has 83.3M bit/s maximum total throughput. Bidirec-
tional (transmit or receive) functions provide greater flexibility for serial
communications. Serial port data can be automatically transferred to and
from on-chip memory using DMA block transfers. In addition to standard
synchronous serial mode, each SPORT offers a time division multiplexed
(TDM) multichannel mode, left-justified sample pair mode, and I2S
mode.

Features

5-2 ADSP-21368 SHARC Processor Hardware Reference

Features
Serial ports offer the following additional features and capabilities:

• Two additional SPORTs, each with their own DMA channels and
interrupts, have been added to the ADSP-21367, ADSP-21368,
ADSP-21369, and ADSP-21371 SHARC processors.

• Two bidirectional channels (A and B) per SPORT, configurable as
either transmitters or receivers. Each SPORT can also be config-
ured as two receivers or two transmitters, permitting two
unidirectional streams into or out of the same SPORT. This bidi-
rectional functionality provides greater flexibility for serial
communications. Further, two SPORTs can be combined to enable
full-duplex, dual-stream communications.

• All serial data signals have programmable receive and transmit
functions and thus have one transmit and one receive data buffer
register (double buffer). There is also a bidirectional shift register
associated with each serial data signal. Double buffering provides
additional time to service the SPORT.

• A serial clock and frame sync provide signals in a wide range of fre-
quencies. Alternately, the SPORT can accept clock and frame sync
input from an external source, as described in Figure 5-10 on
page 5-70.

• The processors allow interrupt-driven, single word transfers to and
from on-chip memory controlled by the core, described in “Single
Word Transfers” on page 5-81.

• DMA transfers to and from on-chip memory. Each SPORT can
automatically receive or transmit an entire block of data. Further
the SPORTs on the processors offer chained DMA operations for
multiple data blocks, see “Chaining DMA Processes” on page 2-14.

ADSP-21368 SHARC Processor Hardware Reference 5-3

Serial Ports

New DMA channels are added for SPORT6 and 7. These new
SPORTs also have their own interrupt lines.

Operation Modes
Thee serial ports have four operation modes: standard DSP serial, left-jus-
tified sample pair, I2S, and multichannel. In standard DSP serial,
left-justified sample pair and I2S modes, when both A and B channels are
used, they transmit or receive data simultaneously, sending or receiving bit
0 on the same edge of the serial clock, bit 1 on the next edge of the serial
clock, and so on. In multichannel mode, SPORTs can receive and trans-
mit A and B channel data selectively from up to 128 channels of a TDM
serial bit stream. See “SPORT Operation Modes” on page 5-10.

For the ADSP-21367/8/9 and ADSP-2137x processors in multi-
channel mode, there are several enhancements from previous
SHARC processors.

• In previous SHARC processors, SPORTs were forced into pairs
when in multichannel mode. The SPORTs in the
ADSP-21367/8/9 and ADSP-2137x processors now operate
independently.

• In addition, control registers are added to each SPORT. In previ-
ous versions, there was only one TDM control register for each
SPORT pair.

• New data valid pins are added to each SPORT. In previous ver-
sions, in paired mode, the frame sync of one of the SPORTs was
used as a data valid pin so eight new pin definitions are added to
the SRU.

Operation Modes

5-4 ADSP-21368 SHARC Processor Hardware Reference

• In multichannel mode, support for packed I2S mode is new for the
ADSP-21367/8/9 and ADSP-2137x processors. However, it should
be noted that packed I2S mode is not identical to I2S mode in all
cases. For more information, see “Packed I2S Mode” on page 5-33.

• Even though SPORTs can operated independently in TDM mode,
compression and expansion logic is only available in SPORT0, 2,
4, and 6 and expansion logic is available only in SPORT1, 3, 5
and 7.

• The Frame sync error detection logic is added for the
ADSP-21367/8/9 and ADSP-2137x processors. It detects frame
syncs coming early where the frame sync arrives while transmis-
sion/reception of previous word is occurring. It does not detect
errors such as frame syncs arriving late. One dedicated error inter-
rupt is added which is shared by all sports.

The SPORTs are configurable for transferring data words between 3 and
32 bits in length, either most significant bit (MSB) first or least significant
bit (LSB) first. Words must be between 8 and 32 bits in length for I2S and
left-justified sample pair mode. Refer to “Data Word Formats” on
page 5-43 and the individual SPORTs operation mode sections for addi-
tional information.

Multichannel mode operation supports 128-channel TDM, described in
“Multichannel Operation” on page 5-25.

Receive comparison and two-dimensional DMA are not supported
in the ADSP-21367/8/9 and ADSP-2137x.

The SPTRAN bit in the SPCTLx register affects the operation of the transmit
or the receive data paths. The data path includes the data buffers and the
shift registers. When SPTRAN = 0, the primary and secondary RXSPxy data
buffers and receive shift registers are activated, and the transmit path is
disabled. When SPTRAN = 1, the primary and secondary TXSPxy data buff-
ers and transmit shift registers are activated, and the receive path is
disabled.

ADSP-21368 SHARC Processor Hardware Reference 5-5

Serial Ports

Serial Port Signals
Figure 5-1 shows the SPORT signals (note that not all models have eight
SPORTs). Any 20 of these 32 signals can be mapped to digital audio
interface (DAI_Px) pins through the signal routing unit (SRU1). For more
information, see Chapter 4, Digital Audio/Digital Peripheral Interfaces.

Figure 5-1. DSP Standard Serial Mode – Serial Port Signals

S P O R T 4

S P O R T 5

S P O R T4 _D A

S P O R T4 _D B

S P O R T 4_ C L K

S P O R T4 _F S

S P O R T5 _D A

S P O R T5 _D B

S P O R T 5_ C L K

S P O R T5 _F S

S P O R T 4 _ D A = S P O R T4 C H A N N E L A D A T A (R X O R T X)
S P O R T 4 _ D B = S P O R T4 C H A N N E L B D A T A (R X O R T X)
S P O R T 4 _ C L K = S P O R T4 S E R IA L C L O C K
S P O R T 4 _ FS = S P O R T4 F R A M E S Y N C
S P O R T 4 _ TD V = S P O R T4 T R A N S M IT D A TA V A L ID
S P O R T 5 _ D A = S P O R T5 C H A N N E L A D A T A (R X O R T X)
S P O R T 5 _ D B = S P O R T5 C H A N N E L B D A T A (R X O R T X)
S P O R T 5 _ C L K = S P O R T5 S E R IA L C L O C K
S P O R T 5 _ FS = S P O R T5 F R A M E S Y N C
S P O R T 5 _ TD V = S P O R T5 T R A N S M IT D A TA V A L ID

S P O R T 0

S P O RT 0 _D A

S P O RT 0 _D B

S P O R T 0_ C LK

S P O RT 0 _F S

S P O R T 1

S P O R T 1_ D A

S P O R T 1_ D B

S P O R T 1_C L K

S P O R T 1_ F S

S P O R T 0_ D A _ IO

S P O R T 0_ D B _ IO

S P O R T 0_ C L K _ IO

S P O R T 0 _F S _ IO

S P O R T 1_ DA _ IO

S P O R T 1_ DB _ IO

S P O R T1 _C L K _ IO

S P O R T 1_ F S _ IO

S P O R T 2_ D A _ IO

S P O R T 2_ D B _ IO

S P O R T 2_ C LK _ IO

S P O RT 2 _F S _ IO

S P O R T 3_ D A _ IO

S P O R T 3_ D B _ IO

S P O R T 3_ C LK _ IO

S P O RT 3 _F S _ IO

S P O R T 4_ D A _ IO

S P O R T 4_ D B _ IO

S P O R T 4_ C LK _ IO

S P O RT 4 _F S _ IO

S P O R T 5_ D A _ IO

S P O R T 5_ D B _ IO

S P O R T 5_ C LK _ IO

S P O RT 5 _F S _ IO

S IG N A L R O U T I N G
U N IT (S R U)

S P O R T 2

S P O R T 3

S P O R T2 _D A

S P O R T2 _D B

S P O R T 2 _C L K

S P O R T2 _F S

S P O R T3 _D A

S P O R T3 _D B

S P O R T 3 _C L K

S P O R T3 _F S

S E R IA L P O R T S P O R T S I G N A L S

S P O R T 2 _ D A = S P O R T2 C H A N N E L A D A T A (R X O R T X)
S P O R T 2 _ D B = S P O R T2 C H A N N E L B D A T A (R X O R T X)
S P O R T 2 _ C L K = S P O R T2 S E R IA L C LO C K
S P O R T 2 _ FS = S P O R T2 F R A M E S Y N C
S P O R T 2 _ TD V = S P O R T2 T R A N S M IT D A T A V A L ID
S P O R T 3 _ D A = S P O R T3 C H A N N E L A D A T A (R X O R T X)
S P O R T 3 _ D B = S P O R T3 C H A N N E L B D A T A (R X O R T X)
S P O R T 3 _ C L K = S P O R T3 S E R IA L C LO C K
S P O R T 3 _ FS = S P O R T3 F R A M E S Y N C
S P O R T 3 _ TD V = S P O R T3 T R A N S M IT D A T A V A L ID

S P O R T 0 _ D A = S P O R T0 C H A N N E L A D A T A (R X O R T X)
S P O R T 0 _ D B = S P O R T0 C H A N N E L B D A T A (R X O R T X)
S P O R T 0 _ C L K = S P O R T0 S E R IA L C L O C K
S P O R T 0 _ FS = S P O R T0 F R A M E S Y N C
S P O R T 0 _ TD V = S P O R T0 T R A N S M IT D A TA V A L ID
S P O R T 1 _ D A = S P O R T1 C H A N N E L A D A T A (R X O R T X)
S P O R T 1 _ D B = S P O R T1 C H A N N E L B D A T A (R X O R T X)
S P O R T 1 _ C L K = S P O R T1 S E R IA L C L O C K
S P O R T 1 _ FS = S P O R T1 F R A M E S Y N C
S P O R T 1 _ TD V = S P O R T1 T R A N S M IT D A TA V A L ID

S P O R T 6

S P O R T 7

S P O R T6 _D A

S P O R T6 _D B

S P O R T 6_ C L K

S P O R T6 _F S

S P O R T7 _D A

S P O R T7 _D B

S P O R T 7_ C L K

S P O R T7 _F S

S P O R T 6 _ D A = S P O R T6 C H A N N E L A D A T A (R X O R T X)
S P O R T 6 _ D B = S P O R T6 C H A N N E L B D A T A (R X O R T X)
S P O R T 6 _ C L K = S P O R T6 S E R IA L C L O C K
S P O R T 6 _ FS = S P O R T6 F R A M E S Y N C
S P O R T 6 _ TD V = S P O R T6 T R A N S M IT D A TA V A L ID
S P O R T 7 _ D A = S P O R T7 C H A N N E L A D A T A (R X O R T X)
S P O R T 7 _ D B = S P O R T7 C H A N N E L B D A T A (R X O R T X)
S P O R T 7 _ C L K = S P O R T7 S E R IA L C L O C K
S P O R T 7 _ FS = S P O R T7 F R A M E S Y N C
S P O R T 7 _ TD V = S P O R T7 T R A N S M IT D A TA V A L ID

S P O R T 6_ DA _ IO

S P O R T 6_ DB _ IO

S P O R T6 _C L K _ IO

S P O R T 6_ F S _ IO

S P O R T 7_ DA _ IO

S P O R T 7_ DB _ IO

S P O R T7 _C L K _ IO

S P O R T 7_ F S _ IO

S P O RT 0_T D VS P O R T 0_ T D V _P B E N _O

S P O R T 1_ TD VS P O R T1 _T D V _ P B E N _O

S P O R T 2_ T D VS P O R T 2 _T D V _P B E N _O

S P O R T 3_ T D VS P O R T3 _T D V _ P B E N _O

S P O R T 4_ T D VS P O R T 4_ T D V _P B E N _ O

S P O R T 5_ T D VS P O R T 5_ T D V _P B E N _ O

S P O R T 6_ T D VS P O R T 6 _T D V _ P B E N _O

S P O R T 7_ T D VS P O R T7 _T D V _ P B E N _ O

Serial Port Signals

5-6 ADSP-21368 SHARC Processor Hardware Reference

Pairings of SPORTs (0 and 1, 2 and 3, and 4 and 5, 6 and 7) are
used only in loopback mode for testing.

A SPORT receives serial data on one of its bidirectional serial data signals
configured as inputs, or transmits serial data on the bidirectional serial
data signals configured as outputs. It can receive or transmit on both
channels simultaneously and unidirectionally, where the pair of data sig-
nals can both be configured as either transmitters or receivers.

The SPORTx_DA and SPORTx_DB channel data signals on each SPORT can-
not transmit and receive data simultaneously for full-duplex operation.
Two SPORTs must be combined to achieve full-duplex operation. The
SPTRAN bit in the SPCTLx register controls the direction for both the A and
B channel signals. Therefore, the direction of channel A and channel B on
a particular SPORT must be the same.

Serial communications are synchronized to a clock signal. Every data bit
must be accompanied by a clock pulse. Each SPORT can generate or
receive its own clock signal (SPORTx_CLK). Internally-generated serial clock
frequencies are configured in the DIVx registers. The A and B channel data
signals shift data based on the rate of SPORTx_CLK. See Figure 5-10 on
page 5-70 for more details.

In addition to the serial clock signal, data may be signaled by a frame syn-
chronization signal. The framing signal can occur at the beginning of an
individual word or at the beginning of a block of words. The configura-
tion of frame sync signals depends upon the type of serial device
connected to the processor. Each SPORT can generate or receive its own
frame sync signal (SPORTx_FS) for transmitting or receiving data. Inter-
nally-generated frame sync frequencies are configured in the DIVx
registers. Both the A and B channel data signals shift data based on their
corresponding SPORTx_FS signal. See Figure 5-10 on page 5-70 for more
details.

ADSP-21368 SHARC Processor Hardware Reference 5-7

Serial Ports

Figure 5-2 shows a block diagram of a SPORT. Setting the SPTRAN bit
enables the data buffer path, which, once activated, responds by shifting
data in at the rate of SPORTx_CLK. An application program must use the
correct SPORT data buffers, according to the value of SPTRAN bit. The
SPTRAN bit enables either the transmit data buffers for the transmission of
A and B channel data, or it enables the receive data buffers for the recep-
tion of A and B channel data. Inactive data buffers are not needed.

If the SPORT is configured as a transmitter, the data transmitted is writ-
ten to the TXSPxA/TXSPxB buffer. The data is (optionally) companded in
hardware on the primary A channel (SPORT0, 2, 4, and 6 only), then
automatically transferred to the transmit shift register, because compand-
ing is not supported on the secondary B channels. The data in the shift
register is then shifted out via the SPORT’s SPORTx_DA or SPORTx_DB sig-
nal, synchronous to the SPORTx_CLK clock. If framing signals are used, the
SPORTx_FS signal indicates the start of the serial word transmission. The
SPORTx_DA or SPORTx_DB signal is always driven if the SPORT is enabled
(SPEN_A or SPEN_B = 1 in the SPCTLx control register), unless it is in multi-
channel mode and an inactive time slot occurs.

When the SPORT is configured as a transmitter (SPTRAN = 1), the TXSPxA
and TXSPxB buffers, and the channel transmit shift registers respond to
SPORTx_CLK and SPORTx_FS to transmit data. The receive RXSPxA and
RXSPxB buffers, and the receive shift registers are inactive and do not
respond to SPORTx_CLK and SPORTx_FS signals. Since these registers are
inactive, using the core to read them causes a core hang. Furthermore, a
DMA operation may read these registers erroneously without causing a
core hang.

If the SPORTs are configured as transmitters (SPTRAN bit = 1 in
SPCTL), programs should not read from the inactive RXSPxA and
RXSPxB buffers. This causes the core to hang indefinitely since the
receive buffer status is always empty.

Serial Port Signals

5-8 ADSP-21368 SHARC Processor Hardware Reference

If the SPORT is configured as a serial receiver (SPTRAN = 0), the receive
portion of the SPORT shifts in data from the SPORTx_DA or SPORTx_DB sig-
nal, synchronous to the SPORTx_CLK receive clock. If framing signals are
used, the SPORTx_FS signal indicates the beginning of the serial word being
received. When an entire word is shifted in on the primary

Figure 5-2. Serial Port Block Diagram

RXSPxA
RECEIVE DATA BUFFER

TXSPxB
TRANSMIT DATA BUFFER

HARDWARE
COMPANDING
(EXPANSION)

SPORTS 1, 3, 5 & 7 ONLY

RECEIVE SHIFT
REGISTER

TXSPxA
TRANSMIT DATA

BUFFER

32

RXSPxB
RECEIVE DATA BUFFER

32 3232 3232

32

3232

32

3232

TRANSMIT SHIFT
REGISTER

TRANSMIT SHIFT
REGISTER

RECEIVE SHIFT
REGISTER

SERIAL PORT
CONTROL

SPORTX_DA SPORTX_CLKSPORTX_FS

DM DATA BUS

PM DATA BUS

I/O DATA BUS

SPORTX_DB

SPTRAN CNTL

SPORTX_CLK

SPORTX_FS

SPTRAN=1
TX ENABLE

SPTRAN=0
RX ENABLE

SPORTX_DA_OUT SPORTX_DA_IN SPORTX_DB_OUT SPORTX_DB_IN

HARDWARE
COMPANDING

(COMPRESSION)
SPORTS 0, 2, 4 & 6 ONLY

SPTRAN=1
TX ENABLE

SPTRAN=0
RX ENABLE

ADSP-21368 SHARC Processor Hardware Reference 5-9

Serial Ports

A channel, the data is (optionally) expanded (SPORT1, 3, and 5 only),
then automatically transferred to the RXSPxA buffer. When an entire word
is shifted in on the secondary channel, it is automatically transferred to the
RXSPxB buffer.

When the SPORT is configured as a receiver (SPTRAN = 0), the RXSPxA and
RXSPxB buffers are activated along with the corresponding A and B chan-
nel receive shift registers, responding to SPORTx_CLK and SPORTx_FS for
reception of data. The transmit TXSPxA and TXSPxB buffer registers and
transmit A and B shift registers are inactive and do not respond to the
SPORTx_CLK and SPORTx_FS. Since the TXSPxA and TXSPxB buffers are inac-
tive, writing to a transmit data buffer causes the core to hang indefinitely.

If the SPORTs are configured as receivers (SPTRAN bit = 0 in
SPCTLx), programs should not write to the inactive TXSPxA and
TXSPxB buffers. If the core keeps writing to the inactive buffer, the
transmit buffer status becomes full. This causes the core to hang
indefinitely since data is never transmitted out of the deactivated
transmit data buffers.

The processor’s SPORTs are not UARTs and cannot communicate
with an RS-232 device or any other asynchronous communications
protocol. Instead, the ADSP-21367/8/9 and ADSP-2137x proces-
sors have two dedicated UART peripherals. For more information,
see Chapter 11, UART Port Controller.

Serial Port Signal Sensitivity
There is some sensitivity to noise on the SPORTx_CLK and SPORTx_FS sig-
nals. In certain cases, by correctly programming the signal routing unit
(SRU1) clock and frame sync registers, the reflection sensitivity in these
signals can be avoided.

Consider this SPORT clock example. In its default routing, SRU1 maps
the signal from the DAI pin (DAI_PBxx_O) back to the sport clock input
(SPORTx_CLK_I), as well as routing the SPORT clock output

SPORT Operation Modes

5-10 ADSP-21368 SHARC Processor Hardware Reference

(SPORTx_CLK_O) to the pin buffer input (PBxx_I). The connection of
PBxx_O to SPORTx_CLK_I opens a vulnerability to a glitch coming in even
though the SPORT is driving the clock as an output. By programming
SRU1 to remove this input path, programs can avoid this vulnerability.

This is done by leaving the routing of SPORTx_CLK_O to PBxx_I as before,
providing the SPORT clock off chip, but also routing it directly back to
SPORTx_CLK_I to give the state machine its signal. This effectively closes
off the external access to SPORTx_CLK_I. In the SRU programming code,
the following code should be added: SRU(SPORTx_CLK_O,SPORTx_CLK_I).
For more information, see Chapter 4, Digital Audio/Digital Peripheral
Interfaces.

SPORT Operation Modes
SPORTs operate in four modes:

• Standard DSP serial mode, described in “Standard DSP Serial
Mode” on page 5-12

• Left-justified sample pair mode, described in “Left-Justified Sam-
ple Pair Mode” on page 5-16

• I2S mode, described in “I2S Mode” on page 5-20

• Multichannel mode, described in “Multichannel Operation” on
page 5-25

Bit names and their functions change based on the SPORT operat-
ing mode. See the mode specific section for the bit names and their
functionality.

The SPORT operating mode can be selected via the SPCTLx register. See
Table 5-1 for a summary of the control bits as they relate to the four oper-
ating modes.

ADSP-21368 SHARC Processor Hardware Reference 5-11

Serial Ports

The operating mode (OPMODE) bit of the SPCTLx register selects between I2S
mode/left-justified sample pair mode, and non-I2S mode (DSP serial
port/multichannel mode). In multichannel mode, the MCEA bit in the SPM-
CTLx register enables the A channels and the MCEB bit in the
SPMCTLx register enables the B channels. The data direction bit (SPTRAN)
selects whether the port is a transmitter or receiver in all the SPORT oper-
ation modes.

If the SPTRAN bit is set (= 1), the SPORT becomes a transmitter and all the
other control bits are defined accordingly. Similarly, when SPTRAN = 0, the
SPORT becomes a receiver.

Companding logic is only supported for multi-channel mode and
packed I2S mode. Companding logic is available only for SPORT0,
2, 4 and 6 A channels. Expansion logic is now available only in
SPORT1, 3, 5 and 7 A channels.

The SPCTLx register is unique in that the name and functionality of its bits
changes depending on the operation mode selected. In each section that
follows, the bit names associated with the operating modes are described.
Table 5-1 provides values for each of the bits in the SPORT control
(SPCTLx) registers that must be set in order to configure each specific
SPORT operation mode. An X in a field indicates that the bit is not sup-
ported for the specified operating mode.

Table 5-1. SPORT Operation Modes

Operating Modes

Bits

OPMODE LAFS FRFS MCEA MCEB SLENx

Standard DSP Serial Mode 0 0, 1 X 0 0 3-321

I2S (Tx/Rx on Left Channel
First)

1 0 1 0 0 8-32

I2S (Tx/Rx on Right Channel
First)

1 0 0 0 0 8-32

SPORT Operation Modes

5-12 ADSP-21368 SHARC Processor Hardware Reference

Standard DSP Serial Mode
The standard DSP serial mode lets programs configure SPORTs for use by
a variety of serial devices such as serial data converters and audio
CODECs. In order to connect to these devices, a variety of clocking,
framing, and data formatting options are available.

Packed I2S Mode A Channel 1 0 X 1 0 3-32

Packed I2S Mode B Channel 1 0 X 0 1 3-32

Packed I2S Mode A and B
Channels

1 0 X 1 1 3-32

Left-justified Sample Pair
Mode
(Tx/Rx on FS Rising Edge)

1 1 0 0 0 8-32

Left-justified sample pair
(Tx/Rx on FS Falling Edge)

1 1 1 0 0 8-32

Multichannel A Channels 0 0 X 1 0 3-321

Multichannel B Channels 0 0 X 0 1 3-321

Multichannel A and B
Channels

0 0 X 1 1 3-321

1 Although SPORTs process word lengths of 3 to 32 bits, transmitting or receiving words smaller
than 7 bits at core clock frequency/4 of the processor may cause incorrect operation when DMA
chaining is enabled. Chaining disables the processor’s internal I/O bus for several cycles while
the new transfer control block (TCB) parameters are being loaded. Receive data may be lost (for
example, overwritten) during this period.

Table 5-1. SPORT Operation Modes (Cont’d)

Operating Modes

Bits

OPMODE LAFS FRFS MCEA MCEB SLENx

ADSP-21368 SHARC Processor Hardware Reference 5-13

Serial Ports

Standard DSP Serial Mode Control Bits

Several bits in the SPCTLx control register enable and configure standard
DSP serial mode operation:

• Operation mode, master mode enable (OPMODE)

• Word length (SLEN)

• SPORT enable (SPEN_A and SPEN_B)

Clocking Options

In standard DSP serial mode, the SPORTs can either accept an external
serial clock or generate it internally. The ICLK bit in the SPCTL register
determines the selection of these options (see “Clock Signal Options” on
page 5-36 for more details). For internally-generated serial clocks, the
CLKDIV bits in the DIVx register configure the serial clock rate (see
Figure 5-10 on page 5-70 for more details).

Finally, programs can select whether the serial clock edge is used for sam-
pling or driving serial data and/or frame syncs. This selection is performed
using the CKRE bit in the SPCTL register (see Table A-8 on page A-37 for
more details).

Frame Sync Options

A variety of framing options are available for the SPORTs. For detailed
descriptions of framing options, see “Frame Sync Options” on page 5-37.
In this mode, these options are independent of clocking, data formatting,
or other configurations. The frame sync signal (SPORTx_FS) is used as a
framing signal for serial word transfers.

Framing is optional for serial communications. The FSR bit in the SPCTL
register controls whether the frame sync signal is required for every serial
word transfer or if it is used simply to start a block of serial word transfers.
See “Framed Versus Unframed Frame Syncs” on page 5-37 for more

SPORT Operation Modes

5-14 ADSP-21368 SHARC Processor Hardware Reference

details on this option. Similar to the serial clock, the frame sync can be an
external signal or generated internally. The IFS bit in the SPCTL register
allows the selection between these options (see the internal frame sync
select bit description in Figure 5-10 on page 5-70 for more details). For
internally-generated frame syncs, the FSDIV bits in the DIVx register con-
figure the frame sync rate. For internally-generated frame syncs, it is also
possible to configure whether the frame sync signal is activated based on
the FSDIV setting and the transmit or receive buffer status, or by the FSDIV
setting only.

All settings are configured through the DIFS bit of the SPCTL register. See
“Data-Independent Frame Syncs” on page 5-41 for more details. The
frame sync can be configured to be active high or active low through the
LFS bit in the SPCTL register. See “Active Low Versus Active High Frame
Syncs” on page 5-39 for more details). The timing between the frame sync
signal and the first bit of data that are either transmitted or received is also
selected through the LAFS bit in the SPCTL register. See “Early Versus Late
Frame Syncs” on page 5-40 for more details.

Data Formatting

Several data formatting options are available for the SPORTs in DSP stan-
dard serial mode. Each SPORT has an A and B channel available. Both
can be configured for transmitting or receiving. The SPTRAN bit controls
the configuration of transmit versus receive operations. Serial ports can
transmit or receive a selectable word length, which is programmed by the
SLEN bits in the SPCTL register (see “Setting Word Length (SLEN)” on
page 5-17 for more details).

Serial ports also include companding hardware built into the A channels
that allows sign extension or zero-filling of upper bits of the serial data
word. These configurations are selected by the DTYPE bits in the SPCTL reg-
ister. See “Data Type” on page 5-46 and “Companding” on page 5-47 for
more information.

ADSP-21368 SHARC Processor Hardware Reference 5-15

Serial Ports

The endian format (LSB versus MSB first) is selectable by the LSBF bit of
the SPCTL register (see “Endian Format” on page 5-45 for more details).
Data packing of two serial words into a 32-bit word is also selectable. The
PACK bit in the SPCTL register controls this option. See “Data Packing and
Unpacking” on page 5-45 for more details.

Data Transfers

Serial port data is transferred using two different methods:

• DMA transfers

• Core-driven single word transfers

DMA transfers can be set up to transfer a configurable number of serial
words between the SPORT buffers (TXSPxA, TXSPxB, RXSPxA, and RXSPxB)
and internal memory automatically. For more information on Sport DMA
operations, see DMA Block transfers section on “DMA Block Transfers”
on page 5-73. Core-driven transfers use SPORT interrupts to signal the
processor core to perform single word transfers to/from the SPORT buff-
ers (TXSPxA, TXSPxB, RXSPxA, and RXSPxB). See “SPORT Interrupts” on
page 5-72 for more details.

Status Information

Serial ports provide status information about data buffers through the
DXS_A and DXS_B status bits and error status through the ROVF or TUVF bits
in the SPCTLx register. See “Serial Port Control Registers (SPCTLx)” on
page 5-59 for more details.

Depending on the SPTRAN setting, these bits reflect the status of either the
TXSPxy or RXSPxy data buffers.

SPORT Operation Modes

5-16 ADSP-21368 SHARC Processor Hardware Reference

Left-Justified Sample Pair Mode
In left-justified sample pair mode, each frame sync cycle receives or trans-
mits two samples of data—one sample on the high segment of the frame
sync, the other on the low segment of the frame sync. Prior to develop-
ment of the I2S standard, many manufacturers used a variety of
non-standard stereo modes. Some companies continue to use this mode,
which is supported by many of today’s audio front-end devices.

Programs have control over various attributes of this mode. One attribute
is the number of bits (8- to 32-bit word lengths). However each sample of
the pair that occurs on each frame sync must be the same length. Set the
late frame sync bit (LAFS bit) = 1 for left-justified sample pair mode. (See
Table 5-1 on page 5-11.) Then, choose the frame sync edge associated
with the first word in the frame sync cycle, using the FRFS bit
(1 = frame on falling edge of frame sync, 0 = frame on rising edge of frame
sync).

Refer to Table 5-1 on page 5-11 for additional information about specify-
ing left-justified sample pair mode.

In left-justified sample pair mode, if both transmit channels (TXSPxA and
TXSPxB) on a SPORT are enabled, then the SPORT transmits these chan-
nels simultaneously. In other words, each channel transmits a sample pair.
Data is transmitted in MSB-first format. If both receive channels (RXSPxA
and RXSPxB) on a SPORT are enabled, the SPORT receives
simultaneously.

Multichannel operation and companding are not supported in
left-justified sample pair mode.

Each SPORT transmit or receive channel has a buffer enable, DMA
enable, and chaining enable bits in its SPCTLx control register. The
SPORTx_FS signal is used as the transmit and/or receive word select signal.
DMA-driven or interrupt-driven data transfers can also be selected using
bits in the SPCTLx register.

ADSP-21368 SHARC Processor Hardware Reference 5-17

Serial Ports

Setting the Internal Serial Clock and Frame Sync Rates

The serial clock rate for internal clocks can be set using the CLKDIV bit
field in the DIVx register and the frame sync rate for internal frame sync
can be set using the FSDIV bit field in the DIVx register. For details, see
Figure 5-10 on page 5-70.

Left-Justified Sample Pair Mode Control Bits

Several bits in the SPCTLx control register enable and configure left-justi-
fied sample pair mode operation:

• Operation mode (OPMODE)

• Channel enable (SPEN_A and SPEN_B)

• Word length (SLEN)

• Left channel first (FRFS)

• Master mode enable (MSTR)

• Late frame sync (LAFS)

For complete descriptions of these bits, see “SPORT Serial Control Regis-
ters (SPCTLx)” on page A-29.

Setting Word Length (SLEN)

SPORTs handle data words containing 8 to 32 bits in left-justified sample
pair mode. Programs need to set the bit length for transmitting and receiv-
ing data words. For details, see “Word Length” on page 5-43.

The transmitter sends the MSB of the next word in the same clock cycle as
the word select (SPORTx_FS) signal changes.

SPORT Operation Modes

5-18 ADSP-21368 SHARC Processor Hardware Reference

To transmit or receive words continuously in left-justified sample pair
mode, load the DIV register with the FSDIV value the same as SLEN. For
example, for 8-bit data words where SLEN = 7, set FSDIV = 7.

Enabling SPORT Master Mode (MSTR)

The SPORTs transmit and receive channels can be configured for master
or slave mode. In master mode (MSTR = 1), the processor generates the
word select and serial clock signals for the transmitter or receiver. In slave
mode (MSTR = 0), an external source generates the word select and serial
clock signals for the transmitter or receiver. For more information, see
“Setting the Internal Serial Clock and Frame Sync Rates” on page 5-17.

Selecting Transmit and Receive Channel Order (FRFS)

Using the FRFS bit, it is possible to select which frame sync edge (rising or
falling) on which the serial ports transmit or receive the first sample. See
Table 5-1 on page 5-11 for more details.

Selecting Frame Sync Options (DIFS)

When using both SPORT channels (SPORTx_DA and SPORTx_DB) as trans-
mitters and MSTR = 1, SPTRAN = 1, and DIFS = 0, the processor generates a
frame sync signal only when both transmit buffers contain data.This is
because both transmitters share the same FSDIV and SPORTx_FS. For con-
tinuous transmission, both transmit buffers must contain new data.

When using both SPORT channels as transmitters and MSTR = 1,
SPTRAN = 1 and DIFS = 1, the processor generates a frame sync signal at the
frequency set by FSDIVx, whether or not the transmit buffers contain new
data. The DMA controller or the application is responsible for filling the
transmit buffers with data.

ADSP-21368 SHARC Processor Hardware Reference 5-19

Serial Ports

Enabling SPORT DMA (SDEN)

DMA can be enabled or disabled independently on any SPORT transmit
and receive channels. For more information, see “Moving Data Between
SPORTs and Internal Memory” on page 5-73. Set SDEN_A or SDEN_B (=1)
to enable DMA and set the channel in DMA-driven data transfer mode.
Clear SDEN_A or SDEN_B (=0) to disable DMA and set the channel in an
interrupt-driven data transfer mode.

Interrupt-Driven Data Transfer Mode

Both the A and B channels share a common interrupt vector, regardless of
whether they are configured as transmitters or receivers.

The SPORT generates an interrupt in every peripheral clock cycle when
the transmit buffer has a vacancy or the receive buffer has data. To deter-
mine the source of an interrupt, applications must check the transmit or
receive data buffer status bits. For details, see “Single Word Transfers” on
page 5-81.

DMA-Driven Data Transfer Mode

Each transmitter and receiver has its own DMA registers. For details, see
“Selecting Transmit and Receive Channel Order (FRFS)” on page 5-18
and “Moving Data Between SPORTs and Internal Memory” on
page 5-73. The same DMA channel drives both channels in the pair for
the transmitter or receiver. The software application must stop multiplex-
ing the left and right channel data received by the receive buffer, as the left
and right data is interleaved in the DMA buffers.

Channel A and B on each SPORT share a common interrupt vector. The
DMA controller generates an interrupt at the end of DMA transfer only.

Figure 5-3 shows the relationship between frame sync (word select), serial
clock, and left-justified sample pair mode data. Timing for word select is
the same as for frame sync.

SPORT Operation Modes

5-20 ADSP-21368 SHARC Processor Hardware Reference

I2S Mode
I2S mode is a three-wire serial bus standard protocol for transmission of
two-channel (stereo) pulse code modulation (PCM) digital audio data,
where each sample is transmitted in MSB-first format. Many of today’s
analog and digital audio front-end devices support the I2S protocol
including:

• Audio D/A and A/D converters

• PC multimedia audio controllers

• Digital audio transmitters and receivers that support serial digital
audio transmission standards, such as AES/EBU, SP/DIF, IEC958,
CP-340, and CP-1201

• Digital audio signal processors

• Dedicated digital filter chips

• Sample rate converters

Figure 5-3. Word Select Timing in Left-Justified Sample Pair Mode1

1 This figure illustrates only one possible combination of settings attainable in the left-justified sample
pair mode. In this example case, OPMODE =1, LAFS =1, and FRFS =1. For additional combinations,
refer to Table 5-1 on page 5-11.

SPORTX_CLK

SPORTx_FS/WS

LEFT-JUSTIFIED SAMPLE
PAIR MODE DATA OR

SPORTX_DA OR SPORTX_DB
MSBn

SAMPLE n SAMPLE n+1

LSBn MSBn+1

SAMPLE n-1

LSBn-1

ADSP-21368 SHARC Processor Hardware Reference 5-21

Serial Ports

The I2S bus transmits audio data and control signals over separate lines.
The data line carries two multiplexed data channels—the left channel and
the right channel. In I2S mode, if both channels on a SPORT are set up to
transmit, then SPORT transmit channels (TXSPxA and TXSPxB) transmit
simultaneously, each transmitting left and right I2S channels. If both
channels on a SPORT are set up to receive, the SPORT receive channels
(RXSPxA and RXSPxB) receive simultaneously, each receiving left and right
I2S channels. Data is transmitted in MSB-first format.

Companding is not supported in I2S mode.

Each SPORT transmit or receive channel has a channel enable, a DMA
enable, and chaining enable bits in its SPCTLx control register. The
SPORTx_FS signal is used as the transmit and/or receive word select signal.
DMA-driven or interrupt-driven data transfers can also be selected using
bits in the SPCTLx register.

Setting the Internal Serial Clock and Frame Sync Rates

The serial clock rate for internal clocks can be set using the CLKDIV bit
field in the DIVx register and the frame sync rate for internal frame sync
can be set using the FSDIV bit field in the DIVx register. For details, see
Figure 5-10 on page 5-70.

I2S Mode Control Bits

Table 5-1 on page 5-5 shows that I2S mode is simply a subset of the
left-justified sample pair mode which can be invoked by setting
OPMODE = 1, LAFS = 0, and FRFS = 1.

If FRFS = 0, the Tx/Rx is on the right channel first. For normal I2S
operation (FRFS = 1), the Tx/Rx starts on the left channel first.

SPORT Operation Modes

5-22 ADSP-21368 SHARC Processor Hardware Reference

Several bits in the SPCTLx register control register enable and configure I2S
operation:

• Operation mode enable (OPMODE)

• Channel enable (SPEN_A or SPEN_B)

• Word length (SLEN)

• I2S channel transfer order (FRFS)

• Master mode enable (MSTR)

• DMA enable (SDEN_A and SDEN_B)

• DMA chaining enable (SCHEN_A and SCHEN_B)

Setting the OPMODE bit = 1 selects the I2S mode of operation.

Setting Word Length (SLEN)

SPORTs handle data words containing 8 to 32 bits in standard I2S mode.
Programs need to set the bit length for transmitting and receiving data
words. For details, see “Word Length” on page 5-43.

More than 32-bit words can be handled using the packed I2S
mode. For more information, see “Packed I2S Mode” on
page 5-33.

The transmitter sends the MSB of the next word one clock cycle after the
word select (FS) signal changes.

In I2S mode, load the FSDIV value in the in the DIVx register with the same
value used for SLEN to transmit or receive words continuously. For exam-
ple, for 8-bit data words where SLEN = 7, set FSDIV = 7.

ADSP-21368 SHARC Processor Hardware Reference 5-23

Serial Ports

Enabling SPORT Master Mode (MSTR)

The SPORTs transmit and receive channels can be configured for master
or slave mode. In master mode, the processor generates the word select
and serial clock signals for the transmitter or receiver. In slave mode, an
external source generates the word select and serial clock signals for the
transmitter or receiver. When MSTR is cleared (=0), the processor uses an
external word select and clock source and the SPORT transmitter or
receiver is a slave. When MSTR is set (=1), the processor uses the processor’s
internal clock for word select and clock source and the SPORT transmit-
ter or receiver is the master. For more information, see “Setting the
Internal Serial Clock and Frame Sync Rates” on page 5-17.

Selecting Transmit and Receive Channel Order (FRFS)

In master and slave modes, programs can configure which I2S channel that
each SPORT channel transmits or receives first. By default, the SPORT
channels transmit and receive on the right I2S channel first. The left and
right I2S channels are time-duplexed data channels.

To select the channel order, set the FRFS bit (= 1) to transmit or receive on
the left channel first, or clear the FRFS bit (= 0) to transmit or receive on
the right channel first.

Selecting Frame Sync Options (DIFS)

The DIFS bit selects whether the serial port uses the data independent
frame sync or the data dependant frame sync. Normally, the internally
generated frame sync signal is output only when the transmit buffer has
data ready to transmit for the transmitter and when the receive buffer is
not full for the receiver. The data-independent frame sync (DIFS) mode
allows the continuous generation of the FSx signal, with or without new
data in the transmit register or the receive buffer.

SPORT Operation Modes

5-24 ADSP-21368 SHARC Processor Hardware Reference

When using both SPORT channels (SPORTx_DA and SPORTx_DB) as trans-
mitters and MSTR = 1, SPTRAN = 1, and DIFS = 0, the processor generates a
frame sync signal only when both transmit buffers contain data because
both transmitters share the same SPORTx_CLK and SPORTx_FS. For continu-
ous transmission, both transmit buffers must contain new data.

When using both SPORT channels (SPORTx_DA and SPORTx_DB) as receiv-
ers and MSTR = 1, SPTRAN = 1, and DIFS = 0, the processor generates a frame
sync signal only when both receive buffers are not full because they share
the same SPORTx_CLK and SPORTxFS.

When using both SPORT channels as transmitters and MSTR = 1,
SPTRAN = 1 and DIFS = 1, the processor generates a frame sync signal at the
frequency set by FSDIVx whether or not the transmit buffers contain new
data. The DMA controller or the application is responsible for filling the
transmit buffers with data.

When using both SPORT channels as receivers and MSTR = 1, SPTRAN = 1
and DIFS = 1, the processor generates a frame sync signal at the frequency
set by FSDIV, irrespective of the receive buffer status. Bits 31–16 of the DIV
register comprise the FSDIV bit field. For more information, see “SPORT
Divisor Registers (DIVx)” on page A-44.

Enabling SPORT DMA (SDEN)

DMA can be enabled or disabled independently on any SPORTs transmit
and receive channels. For more information, see “Moving Data Between
SPORTs and Internal Memory” on page 5-73. Set SDEN_A or SDEN_B (=1)
to enable DMA and set the channel in DMA-driven data transfer mode.
Clear SDEN_A or SDEN_B (=0) to disable DMA and set the channel in an
interrupt-driven data transfer mode.

ADSP-21368 SHARC Processor Hardware Reference 5-25

Serial Ports

Interrupt-Driven Data Transfer Mode

Both the A and B channels share a common interrupt vector in the inter-
rupt-driven data transfer mode, regardless of whether they are configured
as a transmitter or receiver.

The SPORT generates an interrupt when the transmit buffer has a
vacancy or the receive buffer has data. To determine the source of an
interrupt, applications must check the transmit or receive data buffer sta-
tus bits. For more information, see “Single Word Transfers” on page 5-81.

DMA-Driven Data Transfer Mode

Each transmitter and receiver has its own DMA registers. For details, see
“Selecting Transmit and Receive Channel Order (FRFS)” on page 5-18
and “Moving Data Between SPORTs and Internal Memory” on
page 5-73. The same DMA channel drives the left and right I2S channels
for the transmitter or the receiver. The software application must stop
multiplexing the left and right channel data received by the receive buffer,
because the left and right data is interleaved in the DMA buffers.

Channel A and B on each SPORT share a common interrupt vector. The
DMA controller generates an interrupt at the end of DMA transfer only.

Figure 5-4 shows the relationship between frame sync (word select), serial
clock, and I2S data. Timing for word select is the same as for frame sync.

The SPL bit applies to DSP standard serial and I2S modes only.

Multichannel Operation
The processor’s SPORTs offer a multichannel mode of operation, which
allows the SPORT to communicate in a time division multiplexed (TDM)
serial system. In multichannel communications, each data word of the

SPORT Operation Modes

5-26 ADSP-21368 SHARC Processor Hardware Reference

serial bit stream occupies a separate channel. Each word belongs to the
next consecutive channel. For example, a 24-word block of data contains
one word for each of the 24 channels.

In previous SHARC processors, μ-law and A-law compres-
sion/decompression hardware companding was available on
transmitted and received words when the SPORT operated in
TDM mode. In the ADSP-21367/8/9 and ADSP-2137x processors
companding logic is available only in SPORT0, 2, 4, and 6 A chan-
nels and expansion logic is available only in SPORT1, 3, 5, and 7
A channels.

The SPORT can automatically select some words for particular channels
while ignoring others. Up to 128 channels are available for transmitting or
receiving or both. Each SPORT can receive or transmit data selectively
from any of the 128 channels.

Data companding and DMA transfers can also be used in multichannel
mode on channel A. Channel B can also be used in multichannel mode,
but companding is not available on this channel.

Figure 5-4. Word Select Timing in I2S Mode

SPORTX_CLK

SPORTX_FS/WS

LEFT-JUSTIFIED SAMPLE
PAIR MODE DATA OR

SPORTX_DA OR SPORTX_DB

MSBn

WORD N
LEFT CHANNEL

WORD N+1
RIGHT CHANNEL

LSBn MSBn+1

WORD n-1
RIGHT CHANNEL

LSBn-1

ADSP-21368 SHARC Processor Hardware Reference 5-27

Serial Ports

Although the eight SPORTs are programmable for data direction in the
standard mode of operation, their programmability is restricted for multi-
channel operations. The following points summarize these limitations:

1. The primary A channels of SPORT1, 3, 5, and 7 are capable of
expansion only, and the primary A channels of SPORT0, 2, 4, and
6 are capable of companding only.

2. In previous SHARC processors in multichannel mode, SPORTs
worked in pairs where, for example, SPORT0 was the transmit
channel, and SPORT1 was the receive channel. In the
ADSP-21367/8/9 and ADSP-2137x processors, the SPORTs work
independently.

Since the SPORTs now work independently, clocks are not inter-
nally connected. Programs need to use SRU1 to connect clocks to
two SPORTs separately. For more information, see “Group A
Connections—Clock Signals” on page 4-19.

3. Receive comparison is not supported.

Figure 5-5 shows an example of timing for a multichannel transfer with
SPORT pairing using SPORT0 and 1. The transfer has the following
characteristics:

• The transfer uses the TDM method where serial data is sent or
received on different channels while sharing the same serial bus.

• SPORT1 is configured as the receiver and SPORT1_FS signals the
start of a frame for each multichannel SPORT pairing.

• Unlike previous SHARC processors where the SPORT0_FS was used
as a transmit data valid signal for external logic and was active only
on transmit channels, in the ADSP-21367/8/9 and ADSP-2137x
processors, SPORT0_FS is not used as a transmit data valid signal.
Each SPORT has a dedicated data valid pin (SPORTx_TDV) and pro-
grams use SRU1 to connect them to external pins.

SPORT Operation Modes

5-28 ADSP-21368 SHARC Processor Hardware Reference

• The multichannel transfer is received on channel 0 (word 0), and
transmits on channels 1 and 2 (word 1 and 2).

Frame Syncs in Multichannel Mode

In previous SHARC processors, all receiving and transmitting devices in a
multichannel system had to use the same timing reference. In the
ADSP-21367/8/9 and ADSP-2137x processors, SPORTs operate inde-
pendently and each use its own frame sync signal programmed using
SRU1. For more information, see “Group C Connections—Frame Sync
Signals” on page 4-31.

The frame sync signal synchronizes the channels and restarts each multi-
channel sequence. The SPORTx_FS signal initiates the beginning of the
channel 0 data word.

In the ADSP-21367/8/9 and ADSP-2137x processors, each SPORT has
its own transmit data valid signal, which is active during transmission of
an enabled word.

Figure 5-5. Multichannel Operation

SPORT1_CLK

SPORT1_DA/B

SPORT1_FS

B0 IGNORED

SPORT0_DA/B
B2B3 B0 B3 B2B1

WORD 0 WORD 1 WORD 2

SPORT0_TDV

B1B2B2

ADSP-21368 SHARC Processor Hardware Reference 5-29

Serial Ports

After the TXSPxA transmit buffer is loaded, transmission begins and the
SPORTx_TDV signal is generated. When SPORT DMA is used, this signal
may occur several cycles after the multichannel transmission is enabled. If
a deterministic start time is required, pre-load the transmit buffer.

Active State Multichannel Frame Sync Select

The LFS bit in the SPCTLx, registers selects the logic level of the multichan-
nel frame sync signals as active low (inverted) if set (=1), or active high if
cleared (=0). Active high (=0) is the default.

Multichannel Mode Control Bits

Several bits in the SPCTLx control register enable and configure multichan-
nel mode operation:

• Operation mode (OPMODE)

• Word length (SLEN)

• SPORT transmit/receive enable (SDEN_A and SDEN_B)

• Master mode enable (MSTR)

If the MCEA or MCEB bits are set (=1) in the SPMCTLx register, the
SPEN_A and SPEN_B bits in the SPCTL register must be cleared (=0).

The SPCTLx control registers contain several bits that enable and configure
multichannel operations. Refer to Table 5-9 on page 5-59.

Multichannel mode is enabled by setting the MCEA or MCEB bit in the
SPMCTL0 through SPMCTL7 control register:

• When the MCEA or MCEB bits are set (=1), multichannel operation is
enabled.

• When the MCEA or MCEB bits are cleared (=0), all multichannel oper-
ations are disabled.

SPORT Operation Modes

5-30 ADSP-21368 SHARC Processor Hardware Reference

Multichannel operation is activated three serial clock cycles after the
MCEA/MCEB bits are set. Internally-generated frame sync signals activate four
serial clock cycles after the MCEA/MCEB bits are set.

Select the number of channels used in multichannel operation by using
the 7-bit NCH field in the multichannel control register. Set NCH to the
actual number of channels minus one:

NCH = Number of channels – 1

The 7-bit CHNL field in the multichannel control registers indicates the
channel that is currently selected during multichannel operation. This
field is a read-only status indicator. The CHNL(6:0) bits increment modulo
NCH(6:0) as each channel is serviced.

The 4-bit MFD field (bits 4-1) in the multichannel control registers
(SPMCTL0–7) specifies a delay between the frame sync pulse and the first
data bit in multichannel mode. The value of MFD is the number of serial
clock cycles of the delay. Multichannel frame delay allows the processor to
work with different types of telephony interface devices.

A value of zero for MFD causes the frame sync to be concurrent with the
first data bit. The maximum value allowed for MFD is 15. A new frame sync
may occur before data from the last frame has been received, because
blocks of data occur back-to-back.

Multichannel Frame Sync Source

Bit 14 (IMFS) in the SPCTLx registers selects whether the SPORT uses an
internally-generated frame sync (if set, =1) or frame sync from an external
(if cleared, =0) source.

Multichannel Status Bits

Bits 29 and 26 (DERR_A and DERR_B) in the SPCTLx registers provide error
status information for the SPORT A and B channels. When the SPORT is
configured as a receiver this bit indicates the receiver overflow condition.

ADSP-21368 SHARC Processor Hardware Reference 5-31

Serial Ports

This bit is set when the channel has received new data while the RXSPxA or
RXSPxB buffer is full. New data then overwrites existing data. When the
SPORT is configured as a transmitter this bit indicates the transmit
underflow status (sticky, read-only). This bit is set, = 1 when multichannel
SPORTx_FS signal (from internal or external source) occurred while the
TXS buffer was empty.

Bits 31-30 and bits 28-27 (DXS_B) in the SPCTLx registers indicate the
buffer status of the channel A and B buffer contents as follows: 00 = buffer
empty, 01 = reserved, 10 = buffer partially full, 11 = buffer full.

Channel Selection Registers

Specific channels can be individually enabled or disabled to select the
words that are received and transmitted during multichannel communica-
tions. Data words from the enabled channels are received or transmitted,
while disabled channel words are ignored. Up to 128 channels are avail-
able for transmitting and receiving.

The multichannel selection registers enable and disable individual chan-
nels. The registers for each SPORT are shown in Table 5-2.

Table 5-2. Multichannel Selection Registers

Register Names Function

SP1CS(0–3)
SP3CS(0–3)
SP5CS(0–3)
SP7CS(0–3)
SP0CS(0–3)
SP2CS(0–3)
SP4CS(0–3)
SP6CS(0–3)

Multichannel Active Channels Select. Specifies the active trans-
mit/receive channels (4x32-bit registers for 128 channels).

SPORT Operation Modes

5-32 ADSP-21368 SHARC Processor Hardware Reference

Each of the four multichannel enable and compand select registers are 32
bits in length. These registers provide channel selection for 128 (32 bits x
4 channels = 128) channels. Setting a bit enables that channel so that the
SPORT selects its word from the multiple-word block of data (for either
receive or transmit). For example, setting bit 0 in SP0CS0 or SP2CS0 selects
word 0, setting bit 12 selects word 12, and so on. Setting bit 0 in SP0CS1
or SP2CS1 selects word 32, setting bit 12 selects word 44, and so on.

Setting a particular bit to 1 in the SPxCS (0–3)registers causes the SPORTx
to transmit or receive the word in that channel’s position of the data
stream. Clearing the bit in the register causes the SPORTx_DA data transmit
signal to three-state during the time slot of that channel if the SPORT is
configured as transmitter. If the SPORT is configured as receiver, the data
received is ignored.

Companding may be selected on a per-channel basis. Setting a bit to 1 in
any of the multichannel registers specifies that the data be companded for
that channel. A-law or μ-law companding can be selected using the DTYPE
bit in the SPCTLx control registers. SPORT1, 3, 5 and 7 expand selected
incoming time slot data, while SPORT0, 2, 4 and 6 can compand the
data.

SP1CCS(0–3)
SP3CCS(0–3)
SP5CCS(0–3)
SP7CCS(0–3)

Multichannel Receive Compand Select. Specifies which active receive
channels (out of 128 channels) are companded.

SP0CCS(0–3)
SP2CCS(0–3)
SP4CCS(0–3)
SP6CCS(0–3)

Multichannel Transmit Compand Select. Specifies which active trans-
mit channels (out of 128 channels) are companded.

Table 5-2. Multichannel Selection Registers (Cont’d)

Register Names Function

ADSP-21368 SHARC Processor Hardware Reference 5-33

Serial Ports

Packed I2S Mode
A packed I2S mode is available in ADSP-21367/8/9 SHARC processor
serial ports. This mode allows applications to send more than the standard
32 bits per channel available through standard I2S mode. Packed I2S
mode is implemented using standard TDM mode (and is therefore pro-
grammed similarly to TDM mode). Packed I2S mode also supports the
maximum of 128 channels as does TDM mode as well as the maximum of
(128 x 32) bits per left or right channel.

As shown in Figure 5-6, packed I2S waveforms are the same as the wave
forms used in TDM mode, except that the frame sync is toggled for every
frame, and therefore emulates I2S mode.

Figure 5-6. Packed I2S Mode Operation

Data

Frame
Sync

WORD 1WORD 0WORD 1WORD 0

CLK

SPORT Operation Modes

5-34 ADSP-21368 SHARC Processor Hardware Reference

Programming Packed I2S Mode

Since packed I2S mode is implemented on top of TDM, programming
this modes is the same as programming TDM. Use the serial port control
(SPCTLx) and channel selection registers to configure the serial ports to run
in packed I2S mode as follows.

1. Set the OPMODE bit (bit 11, = 1) in the SPCTLx register to configure
the processor to run in packed I2S mode.

2. Configure the ICLK (bit 10) and IFS (bit 14) bits to emulate I2S
master or slave which in this case is internal or external clock and
frame sync.

In the I2S standard, the master generates both clock and frame sync
and the slave uses external clock and frame sync.

3. Configure the channel select registers. See “Channel Selection Reg-
isters” on page 5-31.

4. Set the CKRE bit (bit 12) to 1 in both transmitter and receiver to
emulate I2S mode.

In the I2S standard, the transmitter drives output at the clock fall-
ing edge and the receiver samples the input at the clock rising edge.
This does not apply to packed I2S mode.

5. Clear (= 0) the LSBF bit in both transmitter and receiver to emulate
I2S mode. In the I2S standard, the MSB of a word is sent first. In
packed I2S mode, this is not the case.

6. To emulate I2S in packed I2S mode, set (=1) the MFD bit in the
SPMCTLx register. In TDM mode, the transmitter starts to transmit
the first bit of data immediately upon the frame sync pulsing high.
In the I2S standard, data transmission starts one cycle after the
frame sync pulse toggles.

ADSP-21368 SHARC Processor Hardware Reference 5-35

Serial Ports

SPORT Loopback
When the SPORT loopback bit, SPL bit 12, is set in the SPMCTLx, control
registers, the SPORT is configured in an internal loopback connection as
follows: SPORT0 and SPORT1 work as a pair for internal loopback,
SPORT2 and SPORT3 work as pairs, SPORT4 and SPORT5 and
SPORT6 and SPORT7 work as pairs. The loopback mode enables pro-
grams to internally test the SPORTs and to debug applications.

When loopback is configured:

• SPORTx_DA, SPORTx_DB, SPORTx_CLK and SPORTx_FS signals of
SPORT0 and SPORT1 are internally connected (where x = 0 or 1).

• SPORTy_DA, SPORTy_DB, SPORTy_CLK, and SPORTy_FS signals of
SPORT2 and SPORT3 are internally connected (where y = 2 or 3).

• SPORTz_DA, SPORTz_DB, SPORTz_CLK and SPORTz_FS signals of
SPORT4 and SPORT5 are internally connected (where z = 4 or 5).

• SPORTn_DA, SPORTn_DB, SPORTn_CLK and SPORTn_FS signals of
SPORT6 and SPORT7 are internally connected (where n = 6 or
7).

In loopback mode, either of the two paired SPORTs can be transmitters
or receivers. One SPORT in the loopback pair must be configured as a
transmitter; the other must be configured as a receiver. For example,
SPORT0 can be a transmitter and SPORT1 can be a receiver for internal
loopback. Or, SPORT0 can be a receiver and SPORT1 can be the trans-
mitter when setting up internal loopback. The processor ignores external
activity on the SPORTx_CLK, SPORTx_FS A and B channel data signals when
the SPORT is configured in loopback mode which prevents contention
with the internal loopback data transfer.

Only transmit clock and transmit frame sync options may be used
in loopback mode—programs must ensure that the SPORT is set
up correctly in the SPCTLx control registers. Multichannel mode is

Clock Signal Options

5-36 ADSP-21368 SHARC Processor Hardware Reference

not allowed. Only standard DSP serial, left-justified sample pair,
and I2S modes support internal loopback. In loopback, each
SPORT can be configured as transmitter or receiver, and each
SPORT is capable of generating an internal frame sync and clock.

Any of the four paired SPORTs can be set up to transmit or receive,
depending on their SPTRAN bit configurations.

Clock Signal Options
Each SPORT has a clock signal (SPORTx_CLK) for transmitting and receiv-
ing data on the two associated data signals. The clock signals are
configured by the ICLK and CKRE bits of the SPCTLx control registers. A sin-
gle clock signal clocks both A and B data signals (either configured as
inputs or outputs) to receive or transmit data at the same rate.

The serial clock can be independently generated internally or input from
an external source. The ICLK bit of the SPCTLx control registers determines
the clock source.

When ICLK is set (=1), the clock signal is generated internally by the pro-
cessor and the SPORTx_CLK signals are outputs. The clock frequency is
determined by the value of the serial clock divisor (CLKDIV) in the DIVx
registers.

When ICLK is cleared (=0), the clock signal is accepted as an input on the
SPORTx_CLK signals, and the serial clock divisors in the DIVx registers are
ignored. The externally-generated serial clock does not need to be syn-
chronous with the processor’s system clock. Refer to Table 5-10 on
page 5-70.

ADSP-21368 SHARC Processor Hardware Reference 5-37

Serial Ports

Frame Sync Options
Framing signals indicate the beginning of each serial word transfer. A vari-
ety of framing options are available on the SPORTs. The SPORTx_FS
signals are independent and are separately configured in the control
register.

Framed Versus Unframed Frame Syncs
The use of frame sync signals is optional in SPORT communications. The
FSR (transmit frame sync required) control bit determines whether frame
sync signals are required. Active low or active high frame syncs are selected
using the LFS bit. This bit is located in the SPCTLx control registers.

When FSR is set (=1), a frame sync signal is required for every data word.
To allow continuous transmission from the processor, each new data word
must be loaded into the transmit buffer before the previous word is shifted
out and transmitted.

When FSR is cleared (=0), the corresponding frame sync signal is not
required. A single frame sync is required to initiate communications but it
is ignored after the first bit is transferred. Data words are then transferred
continuously in what is referred to as an unframed mode.

When DMA is enabled in a mode where frame syncs are not
required, DMA requests may be held off by chaining or may not be
serviced frequently enough to guarantee continuous unframed data
flow.

Figure 5-7 illustrates framed serial transfers.

Frame Sync Options

5-38 ADSP-21368 SHARC Processor Hardware Reference

Internal Versus External Frame Syncs
Both transmit and receive frame syncs can be generated internally or input
from an external source. The IFS bit of the SPCTLx control registers deter-
mines the frame sync source.

When IFS is set (=1), the corresponding frame sync signal is generated
internally by the processor, and the SPORTx_FS signal is an output. The
frequency of the frame sync signal is determined by the value of the frame
sync divisor (FSDIV) in the DIVx registers. Refer to Figure 5-10 on
page 5-70.

When IFS is cleared (=0), the corresponding frame sync signal is accepted
as an input on the SPORTx_FS signals, and the frame sync divisors in the
DIVx registers are ignored.

All frame sync options are available whether the signal is generated inter-
nally or externally.

Figure 5-7. Framed Versus Unframed Data

SPORTX_CLK

FRAMED
DATA

UNFRAMED
DATA

B3 B2 B1 B0 B3 B2 B1 B0

B3 B2 B1 B0 B3 B2 B1 B0 B3 B2 B1

ADSP-21368 SHARC Processor Hardware Reference 5-39

Serial Ports

Active Low Versus Active High Frame Syncs
Frame sync signals may be active high or active low (for example,
inverted). The LFS bit (bit 16) of the SPCTLx control registers determines
the frame sync’s logic level:

• When LFS is cleared (=0), the corresponding frame sync signal is
active high.

• When LFS is set (=1), the corresponding frame sync signal is active
low.

Active high frame syncs are the default. The LFS bit is initialized to zero
after a processor reset.

Sampling Edge for Data and Frame Syncs
Data and frame syncs can be sampled on the rising or falling edges of the
SPORT clock signals. The CKRE bit of the SPCTLx control registers selects
the sampling edge.

For sampling receive data and frame syncs, setting CKRE to 1 in the SPCTLx
registers selects the rising edge of SPORTx_CLK. When CKRE is cleared (=0),
the processor selects the falling edge of SPORTx_CLK for sampling receive
data and frame syncs. Note that transmit data and frame sync signals
change their state on the clock edge that is not selected.

For example, the transmit and receive functions of any two SPORTs con-
nected together should always select the same value for CKRE so
internally-generated signals are driven on one edge and received signals are
sampled on the opposite edge.

Frame Sync Options

5-40 ADSP-21368 SHARC Processor Hardware Reference

Early Versus Late Frame Syncs
Frame sync signals can be early or late. Frame sync signals can occur dur-
ing the first bit of each data word or during the serial clock cycle
immediately preceding the first bit. The LAFS bit of the SPCTLx control
registers configures this option.

When LAFS is cleared (=0), early frame syncs are configured. This is the
normal mode of operation. In this mode, the first bit of the transmit data
word is available (and the first bit of the receive data word is latched) in
the serial clock cycle after the frame sync is asserted. The frame sync is not
checked again until the entire word has been transmitted (or received). In
multichannel operation, this is the case when the frame delay is one clock
cycle.

If data transmission is continuous in early framing mode (for example, the
last bit of each word is immediately followed by the first bit of the next
word), the frame sync signal occurs during the last bit of each word. Inter-
nally-generated frame syncs are asserted for one clock cycle in early
framing mode.

When LAFS is set (=1), late frame syncs are configured. In this mode, the
first bit of the transmit data word is available (and the first bit of the
receive data word is latched) in the same serial clock cycle that the frame
sync is asserted. In multichannel operation, this is the case when frame
delay is zero. Receive data bits are latched by serial clock edges, but the
frame sync signal is checked only during the first bit of each word. Inter-
nally-generated frame syncs remain asserted for the entire length of the
data word in late framing mode. Externally-generated frame syncs are only
checked during the first bit. They do not need to be asserted after that
time period.

Figure 5-8 illustrates the two modes of frame signal timing.

ADSP-21368 SHARC Processor Hardware Reference 5-41

Serial Ports

Data-Independent Frame Syncs
When transmitting data out of the SPORT (SPTRAN = 1), the inter-
nally-generated frame sync signal normally is output-only when the
transmit buffer has data ready to transmit. The data-independent frame
sync (DIFS) mode allows the continuous generation of the SPORTx_FS sig-
nal, with or without new data in the register. The DIFS bit of the SPCTLx
control registers configures this option.

When SPTRAN = 1, the DIFS bit selects whether the SPORT uses a
data-independent transmit frame sync (sync at selected interval, if set to 1)
or a data-dependent transmit frame sync. When SPTRAN = 0, this bit selects
whether the SPORT uses a data-independent receive frame sync or a
data-dependent receive frame sync.

When DIFS = 0 and SPTRAN = 1, the internally-generated transmit frame
sync is only output when a new data word has been loaded into the
SPORT channel’s transmit buffer. Once data is loaded into the transmit
buffer, it is not transmitted until the next frame sync is generated. This

Figure 5-8. Normal Versus Alternate Framing

B3 B2 B1 B0
...

SPORTX_CLK

LATE

FRAME
SYNC

DATA

EARLY

FRAME

SYNC

Frame Sync Options

5-42 ADSP-21368 SHARC Processor Hardware Reference

mode of operation allows data to be transmitted only at specific times.
When DIFS = 0 and SPTRAN = 0, a receive SPORTx_FS signal is generated
only when receive data buffer status is not full.

When DIFS = 1 and SPTRAN = 1, the internally-generated transmit frame
sync is output at its programmed interval regardless of whether new data is
available in the transmit buffer. The processor generates the transmit
SPORTx_FS signal at the frequency specified by the value loaded in the DIVx
registers. If a frame sync occurs when the transmitter FIFO is empty, the
MSB or LSB (depending on how the LSBF bit in SPCTL is set) of the previ-
ous word is transmitted. When DIFS = 1 and SPTRAN = 0, a receive
SPORTx_FS signal is generated regardless of the receive data buffer status.

Depending on the SPORT operating mode, the transmitter underflow
(TUVF_A or TUVF_B) bit is set if the transmit buffer does not have new data
when a frame sync occurs; or a receive overflow bit (ROVF_A or ROVF_B) is
set if the receive buffers are full and a new data word is received.

If the internally-generated frame sync is used and DIFS=0, a single write to
the transmit data register is required to start the transfer.

Frame Sync Error Detection
Similar to the SPORTs on previous SHARC processors, the SPORTs can
detect underflow and overflow errors. In addition to this, the SPORTs on
the ADSP-21367/8/9 and ADSP-2137x processors can also detect frame
syncs that are occurring early, even before the last transmit or receive
completes.

To detect these errors, these processors have a new error interrupt that
works for all eight SPORTs together. It is triggered on a data underflow,
data overflow, or frame sync error in their respective channels.

ADSP-21368 SHARC Processor Hardware Reference 5-43

Serial Ports

Unlike previous SHARC processors where programs had to poll the
SPORT control registers, on the ADSP-21367/8/9 and ADSP-2137x pro-
cessors, an interrupt is triggered and programs simply read the SPERRSTAT
register (Figure 5-9). This reduces the processor overhead needed to do
the register polling.

The frame sync error (which sets the error bit) is triggered when an early
frame sync occurs during data transmission or reception. However, the
current transmit/receive operation continues without interruption. Note
that a frame sync error is not detected in following cases.

• When there is no active data transmit/receive and the frame sync
pulse occurs due to noise in the input signal an error is not gener-
ated (and is considered as valid frame sync).

• If there is a underflow or overflow error, frame sync errors are not
detected.

Each SPORT can generate an interrupt if a DERRA, DERRB, or FSYNCERR
error occurs. The SPERRCTLx registers control and report the status of the
interrupts generated by each SPORT (see Figure 5-9).

Data Word Formats
The format of the data words transmitted over the SPORTs is configured
by the DTYPE, LSBF, SLEN, and PACK bits of the SPCTLx control registers.
This is discussed in the following sections.

Word Length
Serial ports can process word lengths of 3 to 32 bits for serial and multi-
channel modes and 8 to 32 bits for I2S and left-justified modes. Word
length is configured using the 5-bit SLEN field in the SPCTLx control regis-
ters. Refer to Table 5-1 on page 5-11 for further information.

Data Word Formats

5-44 ADSP-21368 SHARC Processor Hardware Reference

The value of SLEN is:

SLEN = serial word length – 1

Do not set the SLEN value to 0 or 1. Words smaller than 32 bits are
right-justified in the receive and transmit buffers, residing in the least sig-
nificant (LSB) bit positions.

Although the word lengths can be 3 to 32 bits, transmitting or receiving
words smaller than 7 bits at one-quarter the full clock rate of the SPORT
may cause incorrect operation when DMA chaining is enabled. Chaining
disables the processor’s internal I/O bus for several cycles while the new
transfer control block (TCB) parameters are being loaded. Receive data
may be lost (for example, overwritten) during this period.

Figure 5-9. SPERRSTAT Register

SP5 DERRB Int Status

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

SP7 DERRB Int Status

SP4 FSERR Int Status

SP2 FSERR Int Status

SP1 FSERR Int Status

SP0 FSERR Int Status

SP7 DERRA Int Status

SP6 DERRB Int Status

SP6 DERRA Int Status

SP0 DERRA Int Status

SP0 DERRB Int Status

SP1 DERRA Int Status

SP1 DERRB Int Status

SP2 DERRA Int Status

SP2 DERRB Int StatusSP5 DERRA Int Status

SP4 DERRB Int Status

SP4 DERRA Int Status

SP3 DERRA Int Status

SP3 DERRB Int Status

SP5 FSERR Int Status

SP6 FSERR Int Status

SP7 FSERR Int Status

SP3 FSERR Int Status

ADSP-21368 SHARC Processor Hardware Reference 5-45

Serial Ports

Transmitting or receiving words smaller than 5 bits may cause incorrect
operation when all the DMA channels are enabled with no DMA
chaining.

Endian Format
Endian format determines whether serial words transmit MSB first or LSB
first. Endian format is selected by the LSBF bit in the SPCTLx control regis-
ters. When LSBF = 0, serial words transmit (or receive) MSB first. When
LSBF = 1, serial words transmit (or receive) LSB first.

Data Packing and Unpacking
Received data words of 16 bits or less may be packed into 32-bit words,
and 32-bit words being transmitted may be unpacked into 16-bit words.
Word packing and unpacking is selected by the PACK bit in the SPCTLx
control registers.

When PACK = 1 in the control registers, two successive words received are
packed into a single 32-bit word, and each 32-bit word is unpacked and
transmitted as two 16-bit words.

The first 16-bit (or smaller) word is right-justified in bits 15–0 of the
packed word, and the second 16-bit (or smaller) word is right-justified in
bits 31–16. This applies to both receive (packing) and transmit (unpack-
ing) operations. Companding can be used when word packing or
unpacking is being used.

When SPORT data packing is enabled, the transmit and receive interrupts
are generated for the 32-bit packed words, not for each 16-bit word.

When 16-bit received data is packed into 32-bit words and stored
in normal word space in processor internal memory, the 16-bit
words can be read or written with short word space addresses.

Data Word Formats

5-46 ADSP-21368 SHARC Processor Hardware Reference

Data Type

The DTYPE field of the SPCTLx control registers specifies one of four data
formats (for non-multichannel operation) shown in Table 5-3. This bit
field is reserved in I2S and left-justified mode. In DSP serial mode, if com-
panding is selected for primary A channel, the secondary B channel
performs a zero-fill.

In multichannel mode, channel B looks at XDTYPE[0] only.
If DTYPE[0] = 1 sign-extend
If DTYPE[0] = 0 zero-fill

These formats are applied to serial data words loaded into the receive and
transmit buffers. Transmit data words are not zero-filled or sign-extended,
because only the significant bits are transmitted (shown in Table 5-4).

Table 5-3. DTYPE and Data Formatting (DSP Serial Mode)

DTYPE Data Formatting

00 Right-justify, zero-fill unused MSBs

01 Right-justify, sign-extend into unused MSBs

10 Compand using μ-law (primary A channels only)

11 Compand using A-law (primary A channels only)

Table 5-4. DTYPE and Data Formatting (Multichannel)

DTYPE Data Formatting

x0 Right-justify, zero-fill unused MSBs

x1 Right-justify, sign-extend into unused MSBs

0x Compand using μ-law (primary A channels only)

1x Compand using A-law (primary A channels only)

ADSP-21368 SHARC Processor Hardware Reference 5-47

Serial Ports

Linear transfers occur in the primary channel, if the channel is active and
companding is not selected for that channel. Companded transfers occur
if the channel is active and companding is selected for that channel. The
multichannel compand select registers, SPxCCSy, specify the transmit and
receive channels that are companded when multichannel mode is enabled.
For more information, see “SPORT Compand Registers (SPxCCSy)” on
page A-47.

Transmit or receive sign extension is selected by bit 0 of DTYPE in the
SPCTLx registers and is common to all transmit or receive channels. If bit 0
of DTYPE is set, sign extension occurs on selected channels that do not have
companding selected. If this bit is not set, the word contains zeros in the
MSB positions. Companding is not supported for B channel. For B chan-
nels, transmit or receive sign extension is selected by bit 0 of DTYPE in the
SPCTLx registers.

Companding

Companding (compressing/expanding) is the process of logarithmically
encoding and decoding data to minimize the number of bits that must be
sent. The processor’s SPORTs support the two most widely used com-
panding algorithms, A-law and μ-law, performed according to the CCITT
G.711 specification. The type of companding can be selected indepen-
dently for each SPORT. Companding is selected by the DTYPE field of the
SPCTLx registers.

Companding is supported on the A channel only. SPORT0, 2, 4
and 6 primary channels are capable of compression, while SPORTs
1, 3, 5 and 7 primary channels are capable of expansion.
In multichannel mode, when companding and expansion is
enabled, the number of channels must be programmed via the NCH
bit in the SPMCTLx registers before writing to the transmit FIFO.
The SPxCSn and SPxCCsn registers should also be written before
writing to transmit FIFO.

Data Word Formats

5-48 ADSP-21368 SHARC Processor Hardware Reference

When companding is enabled, the data in the RXSPxA buffers is the
right-justified, sign-extended expanded value of the eight received LSBs. A
write to TXSPxA compresses the 32-bit value to eight LSBs (zero-filled to
the width of the transmit word) before it is transmitted. If the 32-bit value
is greater than the 13-bit A-law or 14-bit μ-law maximum, it is automati-
cally compressed to the maximum value.

Since the values in the transmit and receive buffers are actually com-
panded in place, the companding hardware can be used without
transmitting (or receiving) any data, for example during testing or debug-
ging. This operation requires one peripheral clock cycle of overhead, as
described below. For companding to execute properly, program the
SPORT registers prior to loading data values into the SPORT buffers.

To compand data in place without transmitting:

1. Set the SPTRAN bit to 1 in the SPCTLx registers. The SPEN_A and
SPEN_B bits should be =0.

2. Enable companding in the DTYPE field of the SPCTLx transmit con-
trol registers.

3. Write a 32-bit data word to the transmit buffer. Companding is
calculated in this cycle.

4. Wait two cycles. Any instruction not accessing the Tx buffer can be
used to cause this delay. This allows the SPORT companding hard-
ware to reload the transmit buffer with the companded value.

5. Read the 8-bit companded value from the transmit buffer.

To expand data in place, use the same sequence of operations with the
receive buffer instead of the transmit buffer. When expanding data in this
way, set the appropriate serial word length (SLEN) in the SPCTLx registers.

ADSP-21368 SHARC Processor Hardware Reference 5-49

Serial Ports

With companding enabled, interfacing the SPORT to a codec requires lit-
tle additional programming effort. If companding is not selected, two
formats are available for received data words of fewer than 32 bits—one
that fills unused MSBs with zeros, and another that sign-extends the MSB
into the unused bits.

SPORT Control Registers and Data Buffers
The ADSP-21367/8/9 and ADSP-2137x processors have up to eight
SPORTs. Each SPORT has two data paths corresponding to channel A
and channel B. These data buffers are TXSPxA and RXSPxA (primary) and
TXSPxB and RXSPxB (secondary). Channel A and B in all eight SPORTS
operate synchronously to their respective SPORTx_CLK and SPORTx_FS sig-
nals. Companding is supported only on primary A channels.

The registers used to control and configure the SPORTs are part of the
IOP register set. Each SPORT has its own set of 32-bit control registers
and data buffers. The SPORT registers are described in Table 5-5 through
Table 5-8.

The SPORT control registers are programmed by writing to the appropri-
ate address in memory. The symbolic names of the registers and individual
control bits can be used in programs. The definitions for these symbols are
contained in the file def21367.h located in the INCLUDE directory of the
ADSP-21xxx DSP development software. All control and status bits in the
SPORT registers are active high unless otherwise noted.

Since the SPORT registers are memory-mapped, they cannot be written
with data directly. Instead, they must be written from (or read into) pro-
cessor core registers, usually one of the general-purpose universal registers
(R0–R15) of the register file or one of the general-purpose universal status
registers (USTAT1–USTAT4).

SPORT Control Registers and Data Buffers

5-50 ADSP-21368 SHARC Processor Hardware Reference

Table 5-5 through Table 5-8 provides a complete list of the SPORT regis-
ters in IOP address order, showing the memory-mapped IOP address and
a brief description of each register.

Table 5-5. SPORT0 and SPORT1 Registers

Register
Name

Function Width No. of
Registers

Memory Map
[17:0]

SPCTL0–1 SPORT Control Register for SPORT0,
SPORT1

32 2 00C00–00C01

DIV0–1 Clock and Frame Sync Divisors for
SPORT0, SPORT1

32 2 00C02–00C03

SPMCTL0 SPORT Multichannel Control Register
for SPORT0

32 1 00C04

SP0CS0–3 Multichannel Active channels select for
SPORT0

32 4 00C05–00C08

SP1CS0–3 Multichannel Active channels select for
SPORT1

32 4 00C09–00C0C

SP0CCS0–3 Multichannel Transmit Compand Select
(128 channels) for SPORT0

32 4 00C0D–00C10

SP1CCS0–3 Multichannel Receive Compand Select
(128 channels) for SPORT1

32 4 00C11–00C14

SPCNT0–1 Clock and Frame Sync Divider Counter
(Internal Use Only) for SPORT0,
SPORT1

32 2 00C15–00C16

SPMCTL1 SPORT Multichannel Control Register
for SPORT1

32 1 00C17

SPERRCTL
0–1

SPORT Error Interrupt Control Register
for SPORT0, SPORT1

7 2 00C18–00C19

Reserved 00C1A–00C3F

II0A Address for DMA Channel 0A 19 1 00C40

IM0A Internal Modifier for DMA Channel 0A 16 1 00C41

C0A Counter for DMA Channel 0A 16 1 00C42

ADSP-21368 SHARC Processor Hardware Reference 5-51

Serial Ports

CP0A Chain Pointer for DMA Chaining
Channel 0A

20 1 00C43

II0B Address for DMA Channel 0B 19 1 000C44

IM0B Internal Modifier for DMA Channel 0B 16 1 00C45

C0B Counter for DMA Channel 0B 16 1 00C46

CP0B Chain Pointer for DMA Chaining
Channel 0B

20 1 00C47

II1A Address for DMA Channel 1A 19 1 00C48

IM1A Internal Modifier for DMA Channel 1A 16 1 00C49

C1A Counter for DMA Channel 1A 16 1 00C4A

CP1A Chain Pointer for DMA Chaining
Channel 1A

20 1 00C4B

II1B Address for DMA Channel 1B 19 1 00C4C

IM1B Internal Modifier for DMA Channel 1B 16 1 00C4D

C1B Counter for DMA Channel 1B 16 1 00C4E

CP1B Chain Pointer for DMA Chaining
Channel 1B

20 1 00C4F

Reserved 00C50–00C5F

 TX0A Transmitter FIFO Register in SP0A 32 1 00C60

 RX0A Receiver FIFO Register in SP0A 32 1 00C61

 TX0B Transmitter FIFO Register in SP0B 32 1 00C62

 RX0B Receiver FIFO Register in SP0B 32 1 00C63

 TX1A Transmitter FIFO Register in SP1A 32 1 00C64

 RX1A Receiver FIFO Register in SP1A 32 1 00C65

Table 5-5. SPORT0 and SPORT1 Registers (Cont’d)

Register
Name

Function Width No. of
Registers

Memory Map
[17:0]

SPORT Control Registers and Data Buffers

5-52 ADSP-21368 SHARC Processor Hardware Reference

 TX1B Transmitter FIFO Register in SP1B 32 1 00C66

 RX1B Receiver FIFO Register in SP1B 32 1 00C67

Table 5-6. SPORT2 and SPORT3 Registers

Register
Name

Function Width No. of
Registers

Memory Map
[17:0]

SPCTL2–3 SPORT Control Register for SPORT2, 3 32 2 00400–00401

DIV2–3 Clock and Frame Sync Divisors for
SPORT2, SPORT3

32 2 00402–00403

SPMCTL2 SPORT Multichannel Control Register
for SPORT2

32 1 00404

SP2CS0–3 Multichannel Active channels select for
SPORT2

32 4 00405–00408

SP3CS0–3 Multichannel Active channels select for
SPORT3

32 4 00409–0040C

SP2CCS0–3 Multichannel Transmit Compand Select
(128 channels) for SPORT2

32 4 0040D–00410

SP3CCS0–3 Multichannel Receive Compand Select
(128 channels) for SPORT3

32 4 00411–00414

SPCNT2–3 Clock and Frame Sync; Divider Counter
(Internal Use Only) for SPORT2,
SPORT3

32 2 00415–00416

SPMCTL3 SPORT Multichannel Control Register
for SPORT3

32 1 00417

SPERRCT2–3 SPORT Error Interrupt Control Register
for SPORT2, SPORT3

7 2 00418–00419

Reserved 0041A–0043F

II2A Address for DMA Channel 2A 19 1 00440

Table 5-5. SPORT0 and SPORT1 Registers (Cont’d)

Register
Name

Function Width No. of
Registers

Memory Map
[17:0]

ADSP-21368 SHARC Processor Hardware Reference 5-53

Serial Ports

IM2A Internal Modifier for DMA Channel 2A 16 1 00441

C2A Counter for DMA Channel 2A 16 1 00442

CP2A Chain Pointer for DMA Chaining
Channel 2A

20 1 00443

II2B Address for DMA Channel 2B 19 1 00444

IM2B Internal Modifier for DMA Channel 2B 16 1 00445

C2B Counter for DMA Channel 2B 16 1 00446

CP2B Chain Pointer for DMA Chaining
Channel 2B

20 1 00447

II3A Address for DMA Channel 3A 19 1 00448

IM3A Internal Modifier for DMA Channel 3A 16 1 00449

C3A Counter for DMA Channel 3A 16 1 0044A

CP3A Chain Pointer for DMA Chaining
Channel 3A

20 1 0044B

II3B Address for DMA Channel 3B 19 1 0044C

IM3B Internal Modifier for DMA Channel 3B 16 1 0044D

C3B Counter for DMA Channel 3B 16 1 0044E

CP3B Chain Pointer for DMA Chaining
Channel 3B

20 1 0044F

Reserved 00450–0045F

TX2A Transmitter FIFO Register in SP2A 32 1 00460

RX2A Receiver FIFO Register in SP2A 32 1 00461

TX2B Transmitter FIFO Register in SP2B 32 1 00462

RX2B Receiver FIFO Register in SP2B 32 1 00463

TX3A Transmitter FIFO Register in SP3A 32 1 00464

Table 5-6. SPORT2 and SPORT3 Registers (Cont’d)

Register
Name

Function Width No. of
Registers

Memory Map
[17:0]

SPORT Control Registers and Data Buffers

5-54 ADSP-21368 SHARC Processor Hardware Reference

RX3A Receiver FIFO Register in SP3A 32 1 00465

TX3B Transmitter FIFO Register in SP3B 32 1 00466

RX3B Receiver FIFO Register in SP3B 32 1 00467

Table 5-7. SPORT4 and SPORT5 Registers

Register
Name

Function Width No. of
Registers

Memory Map
[17:0]

SPCTL4–5 SPORT Control Register for SPORT4, 5 32 2 00800–00801

DIV4–5 Clock and Frame Sync Divisors for
SPORT4, SPORT5

32 2 00802–00803

SPMCTL4 SPORT Multichannel Control Register
for SPORT4

32 1 00804

SP4CS0–3 Multichannel Active channels select for
SPORT4

32 4 00805–00808

SP5CS0–3 Multichannel Active channels select for
SPORT5

32 4 00809–0080C

SP4CCS0–3 Multichannel Transmit Compand Select
(128 channels) for SPORT4

32 4 0080D–00810

SP5CCS0–3 Multichannel Receive Compand Select
(128 channels) for SPORT5

32 4 00811–00814

SPCNT4–5 Clock and Frame Sync. Divider Counter
(Internal Use Only) for SPORT4,
SPORT5

32 2 00815–00816

SPMCTL5 SPORT Multichannel Control Register
for SPORT5

32 1 00817

SPERRCTL
4–5

SPORT Error Interrupt Control Register
for SPORT4, SPORT5

7 2 00818–00819

Reserved 0081A–0083F

Table 5-6. SPORT2 and SPORT3 Registers (Cont’d)

Register
Name

Function Width No. of
Registers

Memory Map
[17:0]

ADSP-21368 SHARC Processor Hardware Reference 5-55

Serial Ports

II4A Address for DMA Channel 4A 19 1 00840

IM4A Internal Modifier for DMA Channel 4A 16 1 00841

C4A Counter for DMA Channel 4A 16 1 00842

CP4A Chain Pointer for DMA Chaining
Channel 4A

20 1 00843

II4B Address for DMA Channel 4B 19 1 00844

IM4B Internal Modifier for DMA Channel 4B 16 1 00845

C4B Counter for DMA Channel 4B 16 1 00846

CP4B Chain Pointer for DMA Chaining
Channel 4B

20 1 00847

II5A Address for DMA Channel 5A 19 1 00848

IM5A Internal Modifier for DMA Channel 5A 16 1 00849

C5A Counter for DMA Channel 5A 16 1 0084A

CP5A Chain Pointer for DMA Chaining
Channel 5A

20 1 0084B

II5B Address for DMA Channel 5B 19 1 0084C

IM5B Internal Modifier for DMA Channel 5B 16 1 0084D

C5B Counter for DMA Channel 5B 16 1 0084E

CP5B Chain Pointer for DMA Chaining
Channel 5B

20 1 0084F

Reserved 00850–0085F

TX4A Transmitter FIFO Register in SP4A 32 1 00860

RX4A Receiver FIFO Register in SP4A 32 1 00861

TX4B Transmitter FIFO Register in SP4B 32 1 00862

RX4B Receiver FIFO Register in SP4B 32 1 00863

Table 5-7. SPORT4 and SPORT5 Registers (Cont’d)

Register
Name

Function Width No. of
Registers

Memory Map
[17:0]

SPORT Control Registers and Data Buffers

5-56 ADSP-21368 SHARC Processor Hardware Reference

TX5A Transmitter FIFO Register in SP5A 32 1 00864

RX5A Receiver FIFO Register in SP35A 32 1 00865

TX5B Transmitter FIFO Register in SP5B 32 1 00866

RX5B Receiver FIFO Register in SP5B 32 1 00867

Table 5-8. SPORT6 and SPORT7 Registers

Register Name Function Width No. of
Registers

Memory Map
[17:0]

SPCTL6–7 SPORT Control Register for
SPORT6, SPORT7

32 2 04800–04801

DIV6–7 Clock and Frame Sync Divisors for
SPORT6, 7

32 2 04802–04803

SPMCTL6 SPORT Multichannel Control Regis-
ter for SPORT6

32 1 04804

SP4CS0–3 Multichannel Active channels select
for SPORT6

32 4 04807–04808

SP7CS0–3 Multichannel Active channels select
for SPORT7

32 4 04809–0480C

SP6CCS0–3 Multichannel Transmit Compand
Select (128 channels) for SPORT6

32 4 0480D–04810

SP7CCS0–3 Multichannel Receive Compand
Select (128 channels) for SPORT7

32 4 04811–04814

SPCNT6–7 Clock and Frame Sync Divider
Counter (internal use only) for
SPORT6, 7

32 2 04815–04816

SPMCTL7 SPORT Multichannel Control Regis-
ter for SPORT7

32 1 04817

SPERRCTL6–
7

SPORT Error Interrupt Control
Register for SPORT6, SPORT7

7 2 04818–04819

Table 5-7. SPORT4 and SPORT5 Registers (Cont’d)

Register
Name

Function Width No. of
Registers

Memory Map
[17:0]

ADSP-21368 SHARC Processor Hardware Reference 5-57

Serial Ports

Reserved 0481A–0483F

II6A Address for DMA Channel 6A 19 1 04840

IM6A Internal Modifier for DMA Channel
6A

16 1 04841

C6A Counter for DMA Channel 6A 16 1 04842

CP6A Chain Pointer for DMA Chaining
Channel 6A

20 1 04843

II6B Address for DMA Channel 6B 19 1 04844

IM6B Internal Modifier for DMA Channel
6B

16 1 04845

C6B Counter for DMA Channel 6B 16 1 04846

CP6B Chain Pointer for DMA Chaining
Channel 6B

20 1 04847

II7A Address for DMA Channel 7A 19 1 04868

IM7A Internal Modifier for DMA Channel
7A

16 1 04849

C7A Counter for DMA Channel 7A 16 1 0484A

CP7A Chain Pointer for DMA Chaining
Channel 7A

20 1 0484B

II7B Address for DMA Channel 7B 19 1 0484C

IM7B Internal modifier for DMA Channel
7B

16 1 0484D

C7B Counter for DMA Channel 7B 16 1 0484E

CP7B Chain pointer for DMA chaining
Channel 7B

20 1 0484F

Reserved 04850–0485F

TX6A Transmitter FIFO Register in SP4A 32 1 04860

Table 5-8. SPORT6 and SPORT7 Registers (Cont’d)

Register Name Function Width No. of
Registers

Memory Map
[17:0]

SPORT Control Registers and Data Buffers

5-58 ADSP-21368 SHARC Processor Hardware Reference

In the ADSP-21367/8/9 and ADSP-2137x processors, there is one global
interrupt status register, SPERRSTAT, that checks the status of SPORT
interrupts. This read-only register is located at address 0x2300 and is 24
bits wide.

Register Writes and Effect Latency
SPORT register writes are internally completed at the end of five (worst
case) or four (best case) core clock cycles. The newly written value to the
SPORT register can be read back on the next cycle. Reads of the SPORT
registers take four core clock cycles.

After a write to a SPORT register, control and mode bit changes take
effect in the second serial clock cycle. The SPORTs are ready to start
transmitting or receiving three serial clock cycles after they are enabled in
the SPCTLx control registers. No serial clocks are lost from this point on.

RX6A Receiver FIFO Register in SP6A 32 1 04861

TX6B Transmitter FIFO Register in SP6B 32 1 04862

RX6B Receiver FIFO Register in SP6B 32 1 04863

TX7A Transmitter FIFO Register in SP7A 32 1 04864

RX7A Receiver FIFO Register in SP37A 32 1 04867

TX7B Transmitter FIFO Register in SP7B 32 1 04866

RX7B Receiver FIFO Register in SP7B 32 1 04867

Table 5-8. SPORT6 and SPORT7 Registers (Cont’d)

Register Name Function Width No. of
Registers

Memory Map
[17:0]

ADSP-21368 SHARC Processor Hardware Reference 5-59

Serial Ports

Serial Port Control Registers (SPCTLx)
The main control registers for each SPORT are the SPORT control regis-
ters, SPCTLx. These registers are described in “SPORT Serial Control
Registers (SPCTLx)” on page A-29. When changing operating modes,
clear the SPORT control registers before the new mode is written to the
registers.

There is one global control and status register for each SPORT (unlike
previous SHARC designs where SPORTs were paired) for multichannel
operation. These registers are SPMCTL0–7 and they define the number of
channels, provide the status of the current channel, enable multichannel
operation, and set the multichannel frame delay. These registers are
described in “SPORT Multichannel Control Registers (SPMCTLx)” on
page A-40.

The SPCTLx registers control the operating modes of the SPORTs for the
I/O processor. Table 5-9 lists all the bits in the SPCTLx registers.

Table 5-9. SPCTLx Control Bit Comparison in Four SPORT Operation
Modes

Bit Standard DSP Serial Mode Left-justified and I2S Mode Multichannel Mode

0 SPEN_A SPEN_A Reserved

1 DTYPE Reserved DTYPE

2 DTYPE Reserved DTYPE

3 LSBF Reserved LSBF

4 SLEN0 SLEN0 SLEN0

5 SLEN1 SLEN1 SLEN1

6 SLEN2 SLEN2 SLEN2

7 SLEN3 SLEN3 SLEN3

8 SLEN4 SLEN4 SLEN4

9 PACK PACK PACK

SPORT Control Registers and Data Buffers

5-60 ADSP-21368 SHARC Processor Hardware Reference

10 ICLK MSTR ICLK

11 OPMODE OPMODE OPMODE

12 CKRE Reserved CKRE

13 FSR Reserved Reserved

14 IFS Reserved IMFS

15 DIFS DIFS Reserved

16 LFS FRFS LMFS

17 LAFS LAFS Reserved

18 SDEN_A SDEN_A SDEN_A

19 SCHEN_A SCHEN_A SCHEN_A

20 SDEN_B SDEN_B SDEN_B

21 SCHEN_B SCHEN_B SCHEN_B

22 FS_BOTH No effect Reserved

23 BHD BHD BHD

24 SPEN_B SPEN_B Reserved

25 SPTRAN SPTRAN SPTRAN

26 ROVF_B, or TUVF_B ROVF_B, or TUVF_B DERR_B, ROVF_B, or
TUVF_B

27 DXS_B DXS_B DXS_B

28 DXS_B DXS_B DXS_B

29 ROVF_A, or TUVF_A ROVF_A, or TUVF_A DERR_A, ROVF_A, or
TUVF_A

30 DXS_A DXS_A DXS_A

31 DXS_A DXS_A DXS_A

Table 5-9. SPCTLx Control Bit Comparison in Four SPORT Operation
Modes (Cont’d)

Bit Standard DSP Serial Mode Left-justified and I2S Mode Multichannel Mode

ADSP-21368 SHARC Processor Hardware Reference 5-61

Serial Ports

The following bits, listed in bit number order, control SPORT modes and
are part of the SPCTLx (transmit and receive) control registers. Other bits
in the SPCTLx registers set up DMA and I/O processor-related SPORT fea-
tures. For information about configuring a specific operation mode, refer
to Table 5-1 on page 5-11 and “Standard DSP Serial Mode” on
page 5-12.

Serial port enable. SPCTLx registers, bits 0 and 24 (SPEN_A and SPEN_B).
These bits enable (if set, = 1) or disable (if cleared, = 0) the corresponding
SPORT channel A or B. Clearing these bits aborts any ongoing operation
and clears the status bits. The SPORTS are ready to transmit or receive
two serial clock cycles after enabling. This description applies to I2S,
left-justified sample pair, and DSP standard serial modes only.

Data type select. SPCTLx registers, bits 2–1 (DTYPE). These bits select the
companding and MSB data type formatting of serial words loaded into the
transmit and receive buffers. These bits applies to DSP standard serial and
multichannel modes only. The transmit shift register does not zero-fill or
sign-extend transmit data words; this only takes place for the receive shift
register.

For standard mode, selection of companding mode and MSB format are
exclusive:

00 = Right-justify; fill unused MSBs with 0s
01 = Right-justify; sign-extend into unused MSBs
10 = Compand using μ_law, (primary channels only)
11 = Compand using A_law, (primary channels only)

For multichannel mode, selection of companding mode and MSB format
are independent:

x0 = Right-justify; fill unused MSBs with 0s
x1 = Right-justify; sign-extend into unused MSBs
0x = Compand using μ_law
1x = Compand using A_law

SPORT Control Registers and Data Buffers

5-62 ADSP-21368 SHARC Processor Hardware Reference

This description applies only to DSP standard serial and multichannel
modes only.

Serial word endian select. SPCTLx registers, bit 3 (LSBF). This bit selects
little endian words (LSB first, if set, = 1) or big endian words (MSB first,
if cleared, = 0). This description applies to DSP standard serial and multi-
channel modes only.

Serial word length select. SPCTLx registers, bits 8–4 (SLENx). These bits
select the word length in bits. Word sizes can be from 3 bits (SLEN = 2) to
32 bits (SLEN = 31). This bit applies to all operation modes.

Use this formula to calculate the value for SLEN:
SLEN = actual serial word length – 1

The SLEN bit cannot equal 0 or 1. I2S, and left-justified sample pair
word length is limited to 8-32 bits. DSP standard mode word
length varies from 3-32 bits.

16-bit to 32-bit word packing enable. SPCTLx registers, bit 9 (PACK). This
bit enables (if set, = 1) or disables (if cleared, = 0) 16- to 32-bit word pack-
ing. This bit applies to all operation modes.

Internal clock select. SPCTLx registers, bit 10 (ICLK). This bit selects the
internal (if set, = 1) or external (if cleared, = 0) transmit or receive clock.
This bit applies to DSP standard serial mode and multichannel modes.

Sport operation mode. SPCTLx registers, bit 11 (OPMODE). This bit enables
I2S, left-justified sample pair, and packed I2S in multichannel modes if set
(= 1), or disables if cleared (= 0). This bit applies to all operation modes.
See Table 5-1 on page 5-11 and “Standard DSP Serial Mode” on
page 5-12.

Clock rising edge select. SPCTLx registers, bit 12 (CKRE). This bit selects
whether the SPORT uses the rising edge (if set, = 1) or falling edge (if
cleared, = 0) of the clock signal for sampling data and the frame sync. This
bit applies to DSP standard serial and multichannel modes only.

ADSP-21368 SHARC Processor Hardware Reference 5-63

Serial Ports

Frame sync required select. SPCTLx registers, bit 13 (FSR). This bit selects
whether the SPORT requires (if set, = 1) or does not require (if cleared,
= 0) a transfer frame sync. See “Frame Sync Options” on page 5-37 for
more details. This bit applies to DSP standard serial mode only.

Internal frame sync select. SPCTLx registers, bit 14 (IFS). This bit selects
whether the SPORT uses an internally-generated frame sync (if set, = 1) or
a frame sync from an external (if cleared, = 0) source. This bit is used for
standard DSP serial and multichannel modes only. This bit is referred as
IMFS in multichannel mode.

Low active frame sync select. SPCTLx registers, bit 16 (LFS). This bit
selects the logic level of the (transmit or receive) frame sync signals. This
bit selects an active low frame sync (if set, = 1) or active high frame sync (if
cleared, = 0). Active high is the default. This bit is called FRFS in I2S and
left-justified modes and LTDV/LMFS in multichannel mode.

Late frame sync select. SPCTLx registers, bit 17 (LAFS). This bit selects
when to generate the frame sync signal. This bit selects a late frame sync if
set (= 1) during the first bit of each data word. This bit selects an early
frame sync if cleared (= 0) during the serial clock cycle immediately pre-
ceding the first data bit. See “Frame Sync Options” on page 5-37 for more
details.

This bit applies to DSP standard serial mode only. This bit is also used to
select between I2S and left-justified sample pair modes. See Table 5-1 on
page 5-11 and “Standard DSP Serial Mode” on page 5-12 for more
information.

Serial port DMA enable. SPCTLx registers, bits 18 and 20 (SDEN_A and
SDEN_B). These bits enable (if set, = 1) or disable (if cleared, = 0) the
SPORT’s channel DMA. Bits 18 and 20 apply to all operating modes.

Serial port DMA chaining enable. SPCTLx registers, bits 19 and 21
(SCHEN_A and SCHEN_B). These bits enable (if set, = 1) or disable (if cleared,
= 0) SPORT’s channels A and B DMA chaining. Bits 19 and 21 apply to
all operating modes.

SPORT Control Registers and Data Buffers

5-64 ADSP-21368 SHARC Processor Hardware Reference

Frame sync both enable. SPCTLx registers, bit 22 (FS_BOTH). This bit
applies when the SPORTs channels A and B are configured to trans-
mit/receive data. If set (= 1), this bit issues frame sync only when data is
present in both transmit buffers, TXA and TXB. If cleared (= 0), a frame sync
is issued if data is present in either transmit buffers. This bit applies to
DSP standard serial mode only.

When a SPORT is configured as a receiver, if FS_BOTH is set (= 1), frame
sync is issued only when both the Rx FIFOs (RXSPA and RXSPB) are not
full.

This bit is not used for I2S and left-justified sample pair modes. If only
channel A or channel B is selected, the frame sync behaves as if FS_BOTH is
cleared (= 0). If both A and B channels are selected, the word select acts as
if FS_BOTH is set (= 1).

Buffer hang disable. SPCTLx registers, bit 23 (BHD). When cleared (= 0),
this bit causes the processor core to hang when it attempts to write to a
full buffer or read from an empty buffer. When set (= 1), this bit disables
the core hang. In this case, a core read from an empty receive buffer
returns previously read (invalid) data and core writes to a full transmit
buffer to overwrite (valid) data that has not yet been transmitted. This bit
is used in all modes.

Data direction control. SPCTLx registers, bit 25 (SPTRAN). This bit controls
the data direction of the SPORT channel A and B signals.

When cleared (= 0), the SPORT is configured to receive on both channels
A and B. When configured to receive, the RXSPxA and RXSPxB buffers are
activated, while the receive shift registers are controlled by SPORTx_CLK
and SPORTx_FS. The TXSPxA and TXSPxB buffers are inactive.

ADSP-21368 SHARC Processor Hardware Reference 5-65

Serial Ports

When set (= 1), the SPORT is configured to transmit on both channels A
and B. When configured to transmit, the TXSPxA and TXSPxB buffers are
activated, while the transmit shift registers are controlled by SPORTx_CLK
and SPORTx_FS. The RXSPxA and RXSPxB buffers are inactive. This bit
applies to operating modes.

Reading from or writing to inactive buffers cause the core to hang
indefinitely until the SPORT is cleared.

Data buffer error status (sticky, read-only). SPCTLx registers, bits 29 and
26 (DERR_A, DERR_B). These bits indicate whether the serial transmit opera-
tion has underflowed (if set, = 1 and SPTRAN = 1) or a receive operation has
overflowed (if set, = 1 and SPTRAN = 0) in the TXSPxA/RXSPxA and
TXSPxB/RXSPxB data buffers.

This description applies to all operating modes. In multichannel modes,
corresponding bits (TUVF, ROVF) are used for this function.

When the SPORT is configured as a transmitter, these bits provide trans-
mit underflow status. As a transmitter, if FSR = 1, these bits indicate
whether the SPORTx_FS signal (from an internal or external source)
occurred while the DXS buffer was empty. If FSR = 0, ROVF or TUVF is set
whenever the SPORT is required to transmit and the transmit buffer is
empty. The SPORTs transmit data whenever they detect a SPORTx_FS
signal.

Specifically, the operation of the TUVF bit is:

• 0 = No SPORTx_FS signal occurred while TXSPxA/B buffer is empty.

• 1 = SPORTx_FS signal occurred while TXSPxA/B buffer is empty.

When the SPORT is configured as a receiver, these bits provide receive
overflow status. As a receiver, it indicates when the channel has received
new data while the RXS_A buffer is full. New data overwrites existing data.

SPORT Control Registers and Data Buffers

5-66 ADSP-21368 SHARC Processor Hardware Reference

Specifically, the operation of the ROVF bit is:

• 0 = No new data while RXSPxA/B buffer is full.

• 1 = New data while RXSPxA/B buffer is full.

When the DIFS bit is cleared (the default setting), the frame sync signal
(SPORTx_FS) is dependent upon new data being present in the transmit
buffer. The SPORTx_FS signal is only generated for new data. Setting DIFS
to 1 selects data-independent frame syncs which causes the SPORTx_FS sig-
nal to be generated whether or not new data is present. With each
SPORTx_FS signal, the SPORT transmits the contents of the transmit
buffer. Serial port DMA typically keeps the transmit buffer full. The DIFS
bit is not applicable for multichannel mode.

In the ADSP-21367/8/9 and ADSP-2137x processors, programs
no longer need to poll these registers to detect an underflow or
overflow condition. Instead, an interrupt is generated and pro-
grams only need to read the new SPORT error status register
(SPERRSTAT) to determine what register contains the error and what
the error is. For more information, see “Frame Sync Error Detec-
tion” on page 5-42.

Data buffer status. SPCTLx registers, bits 31–30 (DXS_A) and bits 28-27
(DXS_B). These read-only bits indicate the status of the SPORT’s data
buffer as follows: 11 = buffer full, 00 = buffer empty, 10 = buffer partially
full, 01 = reserved.

The DXS_A or DXS_B status bits indicate whether the TXSPxA/RXSPxA or
TXSPxB/RXSPxB buffer is full (11), empty (00), or partially full (10). To
test for space in TXSPxA/B or RXSPxA/B, test whether DXS_A (bit 30) is equal
to zero for the A channel, or whether DXS_B (bit 27) is equal to zero for the
B channel. To test for the presence of any data in TXSPxA/B or RXSPxA/B,
test whether DXS_A (bit 31) is equal to one for the A channel, or whether
DXS_B (bit 28) is equal to one for the B channel. This description applies
to all operating modes.

ADSP-21368 SHARC Processor Hardware Reference 5-67

Serial Ports

When the SPORT is configured as a transmitter, these bits reflect
transmit buffer status for the TXSPxA and TXSPxB buffers. When the
SPORT is configured as a receiver, these bits reflect receive buffer
status for the RXSPxA and RXSPxB buffers.

Transmit and Receive Data Buffers
(TXSPxA/B, RXSPxA/B)

The transmit buffers (TXSP0A–TXSP7A and TXSP0B–TXSP7B) are the 32-bit
transmit data buffers for SPORT0 through SPORT7 respectively. These
buffers must be loaded with the data to be transmitted if the SPORT is
configured to transmit on the A and B channels. The data is loaded auto-
matically by the DMA controller or loaded manually by the program
running on the processor core.

The receive buffers (RXSP0A–RXSP7A and RXSP0B–RXSP7B) are the 32-bit
receive data buffers for SPORT0 through SPORT7 respectively. These
32-bit buffers become active when the SPORT is configured to receive
data on the A and B channels. When a SPORT is configured as a receiver,
the RXSPxA and RXSPxB registers are automatically loaded from the receive
shifter when a complete word has been received. The data is then loaded
to internal memory by the DMA controller or read directly by the pro-
gram running on the processor core.

Word lengths of less than 32 bits are automatically right-justified
in the receive and transmit buffers.

The transmit buffers act like a two-location FIFO because they have a data
register plus an output shift register. Two 32-bit words may both be
stored in the transmit queue at any one time. When the transmit register is
loaded and any previous word has been transmitted, the register contents
are automatically loaded into the output shifter. An interrupt occurs when
the output transmit shifter has been loaded, signifying that the transmit

SPORT Control Registers and Data Buffers

5-68 ADSP-21368 SHARC Processor Hardware Reference

buffer is ready to accept the next word (for example, the transmit buffer is
not full). This interrupt does not occur when SPORT DMA is enabled or
when the corresponding mask bit in the LIRPTL/IRPTL register is set.

When the SPORT is configured as a transmitter (SPTRAN =1) and a trans-
mit frame sync occurs and no new data has been loaded into the transmit
buffer, a transmit underflow status bit is set in the SPORT control regis-
ters. The TUVF_A/ROVF_A or TUVF_A status bit is sticky and is only cleared
by disabling the SPORT.

When the SPORT is configured as a receiver (SPTRAN = 0), the receive
buffers are activated. The receive buffers act like a three-location FIFO
because they have two data registers plus an input shift register. Two com-
plete 32-bit words can be stored in the receive buffer while a third word is
shifted in. The third word overwrites the second if the first word has not
been read out (by the processor core or the DMA controller). When this
happens, the receive overflow status bit is set in the SPORT control regis-
ters. Almost three complete words can be received without the receive
buffer being read before an overflow occurs. The overflow status is gener-
ated on the last bit of the third word. The ROVF_A/ROVF_A or TUVF_A status
bit is sticky and is cleared only by disabling the SPORT.

An interrupt is generated when the receive buffer is loaded with a received
word (for example, the receive buffer is not empty). This interrupt is
masked if SPORT DMA is enabled or if the corresponding bit in the
LIRPTL register is set.

If your program causes the core processor to attempt to read from an
empty receive buffer or to write to a full transmit buffer, the access is
delayed until the buffer is accessed by the external I/O device. This delay
is called a core processor hang. In order to access the receive or transmit
buffer without a hang, read the buffer’s status to determine whether the
access can be made.

ADSP-21368 SHARC Processor Hardware Reference 5-69

Serial Ports

To support debugging buffer transfers, the ADSP-21367/8/9 and
ADSP-2137x processors have a buffer hang disable (BHD) bit. When set
(= 1), this bit prevents the processor core from detecting a buffer-related
stall condition, permitting debugging of this type of stall condition. For
more information, see the BHD bit description on on page 5-64.

The status bits in SPCTLx are updated during reads and writes from the
core processor even when the SPORT is disabled. Disable the SPORT
when writing to the receive buffer or reading from the transmit buffer.

When programming the SPORT channel (A or B) as a transmitter,
only the corresponding TXSPxA and TXSPxB buffers become active
while the receive buffers RXSPxA and RXSPxB remain inactive. Simi-
larly, when the SPORT channel A and B are programmed as
receive-only, the corresponding RXSPxA and RXSPxB are activated.
Do not attempt to read or write to inactive data buffers. If the pro-
cessor operates on the inactive transmit or receive buffers while the
SPORT is enabled, unpredictable results may occur.

Clock and Frame Sync Frequency Registers (DIVx)
The DIVx registers contain divisor values that determine frequencies for
internally-generated clocks and frame syncs. The DIVx registers are
described in Appendix A in “SPORT Divisor Registers (DIVx)” on
page A-44 and are shown in Figure 5-10.

The CLKDIV bit field specifies how many times the processor’s internal
clock (CCLK) is divided to generate the transmit and receive clocks. The
frame sync (SPORTx_FS) is considered a receive frame sync if the data sig-
nals are configured as receivers. Likewise, the frame sync SPORTx_FS is
considered a transmit frame sync if the data signals are configured as

SPORT Control Registers and Data Buffers

5-70 ADSP-21368 SHARC Processor Hardware Reference

transmitters. The divisor is a 15-bit value, allowing a wide range of serial
clock rates. Use the following equation to calculate the serial clock
frequency:

The maximum serial clock frequency is equal to one-eighth the processor’s
internal clock (CCLK) frequency, which occurs when CLKDIV is set to zero.
Use the following equation to determine the value of CLKDIV, given the
CCLK frequency and desired serial clock frequency:

The FSDIV bit field specifies how many transmit or receive clock cycles are
counted before a frame sync pulse is generated. In this way, a frame sync
can initiate periodic transfers. The counting of serial clock cycles applies
to internally- or externally-generated serial clocks. The formula for the
number of cycles between frame sync pulses is:

of serial clocks between frame syncs = FSDIV + 1

Figure 5-10. DIVx Register

f
SPORTx_CLK

fCCLK
8 CLKDIV 1+()
---------------------------------------=

CLKDIV
fCCLK

8 fSPORTx_CLK()
---------------------------------- 1–=

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FSDIV

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CLKDIV
Clock Divisor

25

9

Frame Sync Divisor

Reserved

DIV0 (0xC02)
DIV1 (0xC03)
DIV2 (0x402)
DIV3 (0x403)
DIV4 (0x4802)
DIV5 (0x4803)

ADSP-21368 SHARC Processor Hardware Reference 5-71

Serial Ports

Use the following equation to determine the value of FSDIV, given the
serial clock frequency and desired frame sync frequency:

The frame sync is continuously active when FSDIV = 0. The value of FSDIV
should not be less than the serial word length minus one (the value of the
SLEN field in the SPORT control registers), as this may cause an external
device to abort the current operation or cause other unpredictable results.
If the SPORT is not being used, the FSDIV divisor can be used as a counter
for dividing an external clock or for generating a periodic pulse or periodic
interrupt. The SPORT must be enabled for this mode of operation to
work properly.

Exercise caution when operating with externally-generated transmit clocks
near the frequency of one-eighth of the processor’s internal clock. There is
a delay between when the clock arrives at the SPORTx_CLK node and when
data is output. This delay may limit the receiver’s speed of operation.
Refer to the product-specific data sheet for exact timing specifications.

Externally-generated late transmit frame syncs also experience a delay
from when they arrive to when data is output. This can also limit the max-
imum serial clock speed. Refer to the product-specific data sheet for exact
timing specifications.

SPORT Reset
There are two ways to reset the SPORTs, via software or hardware. Each
method has a different effect on the SPORT.

FSDIV
fSPORTx_CLK

fSPORTx_FS
---------------------------- 1–=

SPORT Control Registers and Data Buffers

5-72 ADSP-21368 SHARC Processor Hardware Reference

A software reset of the SPEN_A or SPEN_B enable bit disables the SPORT(s)
and aborts any ongoing operations. Status bits are also cleared. The
SPORTs are ready to start transmitting or receiving data two serial clock
cycles after they are enabled in the SPCTLx registers. No serial clocks are
lost from this point on.

A hardware reset (RESET) disables the entire processor, including the
SPORTs, by clearing the SPCTLx registers. Any ongoing operations are
aborted.

SPORT Interrupts
Each SPORT has an interrupt associated with it. For each SPORT, both
the A and B channel transmit and receive data buffers share the same
interrupt vector. The interrupts can be used to indicate the completion of
the transfer of a block of serial data when the SPORTs are configured for
DMA. They can also be used to perform single word transfers (refer to
“Single Word Transfers” on page 5-81). The priority of the SPORT inter-
rupts is shown in Table 5-10.

Table 5-10. Priority of the Serial Port Interrupts

Interrupt Name1

1 The interrupt names are defined in the def21367.h file supplied with the ADSP-21xxx DSP
development software.

Interrupt

SP1I SPORT1 DMA Channels (Highest Priority)

SP3I SPORT3 DMA Channels

SP5I SPORT5 DMA Channels

SP0I SPORT0 DMA Channels

SP2I SPORT2 DMA Channels

SP4I SPORT4 DMA Channels

SP6I SPORT6 DMA Channels

SP7I SPORT7 DMA Channels

ADSP-21368 SHARC Processor Hardware Reference 5-73

Serial Ports

SPORT interrupts occur on the second system clock (CLKIN) after the last
bit of the serial word is latched in or driven out.

Moving Data Between SPORTs and
Internal Memory

Transmit and receive data can be transferred between the SPORTs and
on-chip memory with single word transfers or with DMA block transfers.
Both methods are interrupt-driven, and use the same internally-generated
interrupts.

SPORT DMA provides a mechanism for receiving or transmitting an
entire block of serial data before the interrupt is generated. When SPORT
DMA is not enabled, the SPORT generates an interrupt every time it
receives or starts to transmit a data word. The processor’s on-chip DMA
controller handles the DMA transfer, allowing the processor core to
continue running until the entire block of data is transmitted or received.
Service routines can then operate on the block of data rather than on sin-
gle words, significantly reducing overhead.

DMA Block Transfers
The DSP’s on-chip DMA controller allows automatic DMA transfers
between internal memory and each of the two channels of each SPORT.
Each SPORT has two channels for transferring data, and each can be con-
figured to receive or to transmit. There are twelve DMA channels for
SPORT operations. The SPORT DMA channels are numbered as shown
in Table 5-11.

Moving Data Between SPORTs and Internal Memory

5-74 ADSP-21368 SHARC Processor Hardware Reference

Data-direction programmability is supported in standard DSP standard
serial, left-justified sample pair, and I2S modes. The value of the SPTRAN
bit in SPCTLx (0 = RX, 1 = TX) determines whether the receive or transmit
register for the SPORT becomes active.

The SPORT DMA channels are assigned higher priority than all other
DMA channels (for example, the SPI port) because of their relatively low
service rate and their inability to hold off incoming data. Having a higher
priority causes the SPORT DMA transfers to perform first when multiple
DMA requests occur in the same cycle.

Table 5-11. Serial Port DMA Channels

Channel Data Buffer Description Priority

0 RXSP1A/TXSP1A SPORT1 A data Highest

1 RXSP1B/TXSP1B SPORT1 B data

2 RXSP0A/TXSP0A SPORT0 A data

3 RXSP0B/TXSP0B SPORT0 B data

4 RXSP3A/TXSP3A SPORT3 A data

5 RXSP3B/TXSP3B SPORT3 B data

6 RXSP2A/TXSP2A SPORT2 A data

7 RXSP2B/TXSP2B SPORT2 B data

8 RXSP5A/TXSP5A SPORT5 A data

9 RXSP5B/TXSP5B SPORT5 B data

10 RXSP4A/TXSP4A SPORT4 A data

11 RXSP4B/TXSP4B SPORT4 B data

12 RXSP7A/TXSP7A SPORT7 A data

13 RXSP7B/TXSP7B SPORT7 B data

14 RXSP6A/TXSP6A SPORT6 A data

15 RXSP6B/TXSP6B SPORT6 B data Lowest

ADSP-21368 SHARC Processor Hardware Reference 5-75

Serial Ports

Although the DMA transfers are performed with 32-bit words, SPORTs
can handle word sizes from 3 to 32 bits, with 8 to 32 bits for I2S mode. If
serial words are 16 bits or smaller, they can be packed into 32-bit words
for each DMA transfer. DMA transfers are configured using the PACK bit
in the SPCTLx registers. When SPORT data packing is enabled (PACK = 1),
the transmit and receive interrupts are generated for the 32-bit packed
words, not for each 16-bit word.

The following sections present an overview of SPORT DMA operations;
additional details are covered in the “Memory” chapter in the
ADSP-2136x SHARC Processor Programming Reference.

• For information on SPORT DMA channel setup, see “Setting Up
DMA on SPORT Channels” on page 5-75.

• For information on SPORT DMA parameter registers, see
“SPORT DMA Parameter Registers” on page 5-76.

• For information on SPORT DMA chaining, see “SPORT DMA
Chaining” on page 5-81.

Setting Up DMA on SPORT Channels

Each SPORT DMA channel has an enable bit (SDEN_A and SDEN_B) in its
SPCTLx registers. When DMA is disabled for a particular channel, the
SPORT generates an interrupt every time it receives a data word or when-
ever there is a vacancy in the transmit buffer. For more information, see
“Single Word Transfers” on page 5-81.

Each channel also has a DMA chaining enable bit (SCHEN_A and SCHEN_B)
in its SPCTLx registers.

To set up a SPORT DMA channel, write a set of memory buffer parame-
ters to the SPORT DMA parameter registers as shown in Table 5-12.

Moving Data Between SPORTs and Internal Memory

5-76 ADSP-21368 SHARC Processor Hardware Reference

Load the II, IM, and C registers with a starting address for the buffer, an
address modifier, and a word count, respectively. These registers can be
written from the core processor.

Once SPORT DMA is enabled, the processor’s DMA controller automat-
ically transfers received data words in the receive buffer to the buffer in
internal memory. Likewise, when the SPORT is ready to transmit data,
the DMA controller automatically transfers a word from internal memory
to the transmit buffer. The controller continues these transfers until the
entire data buffer is received or transmitted.

When the count register of an active DMA channel reaches zero, the
SPORT generates the corresponding interrupt.

SPORT DMA Parameter Registers
A DMA channel consists of a set of parameter registers that implements a
data buffer in internal memory and the hardware the SPORT uses to
request DMA service. The parameter registers for each SPORT DMA
channel and their addresses are shown in Table 5-13. These registers are
part of the processor’s memory-mapped IOP register set.

Table 5-12. SPORT DMA Parameter Registers

Register
(Y = A or B, and
x = 0 – 5)

Width Description

IISPxy 19 bits DMA channel; x index; start address for data buffer

IMSPxy 16 bits DMA channel; x modify; address increment

CSPxy 16 bits DMA channel; x count; number of words to transmit

CPSPxy 20 bits DMA channel; x chain pointer; address containing the
next set of data buffer parameters

ADSP-21368 SHARC Processor Hardware Reference 5-77

Serial Ports

The DMA channels operate similarly to the processor’s data address gen-
erators (DAGs). Each channel has an index register (IISPxy) and a modify
register (IMSPxy) for setting up a data buffer in internal memory. It is nec-
essary to initialize the index register with the starting address of the data
buffer. After it transfers each serial I/O word to (or from) the SPORT, the
DMA controller adds the modify value to the index register to generate
the address for the next DMA transfer. The modify value in the IM register
is a signed integer, which provides capability for both incrementing and
decrementing the buffer pointer.

Each DMA channel has a count register (CSPxA/CSPxB) which must be ini-
tialized with a word count that specifies the number of words to transfer.
The count register decrements after each DMA transfer on the channel.
When the word count reaches zero, the SPORT generates an interrupt,
then automatically disables the DMA channel.

Each SPORT DMA channel also has a chain pointer register (CPSPxy).
The CPSPxy register functions are used in chained DMA operations. For
more information on SPORT DMA chaining registers, see Table 5-12 on
page 5-76.

Table 5-13. SPORT DMA Parameter Registers Addresses

Register Address DMA Channel SPORT Buffer

IISP0A 0xC40 0 RXSP0A or TXSP0A

IMSP0A 0xC41 0 RXSP0A or TXSP0A

CSP0A 0xC42 0 RXSP0A or TXSP0A

CPSP0A 0xC43 0 RXSP0A or TXSP0A

IISP0B 0xC44 1 RXSP0B or TXSP0B

IMSP0B 0xC45 1 RXSP0B or TXSP0B

CSP0B 0xC46 1 RXSP0B or TXSP0B

CPSP0B 0xC47 1 RXSP0B or TXSP0B

IISP1A 0xC48 2 RXSP1A or TXSP1A

Moving Data Between SPORTs and Internal Memory

5-78 ADSP-21368 SHARC Processor Hardware Reference

IMSP1A 0xC49 2 RXSP1A or TXSP1A

CSP1A 0xC4A 2 RXSP1A or TXSP1A

CPSP1A 0xC4B 2 RXSP1A or TXSP1A

IISP1B 0xC4C 3 RXSP1B or TXSP1B

IMSP1B 0xC4D 3 RXSP1B or TXSP1B

CSP1B 0xC4E 3 RXSP1B or TXSP1B

CPSP1B 0xC4F 3 RXSP1B or TXSP1B

Reserved

IISP2A 0x440 4 RXSP2A or TXSP2A

IMSP2A 0x441 4 RXSP2A or TXSP2A

CSP2A 0x442 4 RXSP2A or TXSP2A

CPSP2A 0x443 4 RXSP2A or TXSP2A

IISP2B 0x444 5 RXSP2B or TXSP2B

IMSP2B 0x445 5 RXSP2B or TXSP2B

CSP2B 0x446 5 RXSP2B or TXSP2B

CPSP2B 0x447 5 RXSP2B or TXSP2B

IISP3A 0x448 6 RXSP3A or TXSP3A

IMSP3A 0x449 6 RXSP3A or TXSP3A

CSP3A 0x44A 6 RXSP3A or TXSP3A

CPSP3A 0x44B 6 RXSP3A or TXSP3A

IISP3B 0x44C 7 RXSP3B or TXSP3B

IMSP3B 0x44D 7 RXSP3B or TXSP3B

CSP3B 0x44E 7 RXSP3B or TXSP3B

CPSP3B 0x44F 7 RXSP3B or TXSP3B

Table 5-13. SPORT DMA Parameter Registers Addresses (Cont’d)

Register Address DMA Channel SPORT Buffer

ADSP-21368 SHARC Processor Hardware Reference 5-79

Serial Ports

Reserved

IISP4A 0x840 8 RXSP4A or TXSP4A

IMSP4A 0x841 8 RXSP4A or TXSP4A

CSP4A 0x842 8 RXSP4A or TXSP4A

CPSP4A 0x843 8 RXSP4A or TXSP4A

IISP4B 0x844 9 RXSP4B or TXSP4B

IMSP4B 0x845 9 RXSP4B or TXSP4B

CSP4B 0x846 9 RXSP4B or TXSP4B

CPSP4B 0x847 9 RXSP4B or TXSP4B

IISP5A 0x848 10 RXSP5A or TXSP5A

IMSP5A 0x849 10 RXSP5A or TXSP5A

CSP5A 0x84A 10 RXSP5A or TXSP5A

CPSP5A 0x84B 10 RXSP5A or TXSP5A

IISP5B 0x84C 11 RXSP5B or TXSP5B

IMSP5B 0x84D 11 RXSP5B or TXSP5B

CSP5B 0x84E 11 RXSP5B or TXSP5B

CPSP5B 0x84F 11 RXSP5B or TXSP5B

IISP6A 0x4840 12 RXSP6A or TXSP6A

IMSP6A 0x4841 12 RXSP6A or TXSP6A

CSP6A 0x4842 12 RXSP6A or TXSP6A

CPSP6A 0x4843 12 RXSP6A or TXSP6A

IISP6B 0x4844 13 RXSP6B or TXSP6B

IMSP6B 0x4845 13 RXSP6B or TXSP6B

CSP6B 0x4846 13 RXSP6B or TXSP6B

Table 5-13. SPORT DMA Parameter Registers Addresses (Cont’d)

Register Address DMA Channel SPORT Buffer

Moving Data Between SPORTs and Internal Memory

5-80 ADSP-21368 SHARC Processor Hardware Reference

When programming a SPORT channel (either A or B) as a transmitter,
only the corresponding TXSPxA and TXSPxB SPORT buffer becomes active,
while the receive buffers (RXSPxA and RXSPxB) remain inactive. Similarly,
when the SPORT channel A and B is programmed as a receiver, only the
corresponding RXSP0A and RXSP0B SPORT buffer is activated.

When performing core-driven transfers, write to the buffer designated by
the SPTRAN bit setting in the SPCTLx registers. For DMA-driven transfers,
the SPORT logic performs the data transfer from internal memory
to/from the appropriate buffer depending on the SPTRAN bit setting. If the
inactive SPORT data buffers are read or written to by the core while the
port is enabled, the core hangs. For example, if a SPORT is programmed
to be a transmitter, while at the same time the core reads from the receive
buffer of the same SPORT, the core hangs just as it would if it were read-
ing an empty buffer that is currently active. This locks up the core until
the SPORT is reset.

CPSP6B 0x4847 13 RXSP6B or TXSP6B

IISP7A 0x4848 14 RXSP7A or TXSP7A

IMSP7A 0x4849 14 RXSP7A or TXSP7A

CSP7A 0x484A 14 RXSP7A or TXSP7A

CPSP7A 0x484B 14 RXSP7A or TXSP7A

IISP7B 0x484C 15 RXSP7B or TXSP7B

IMSP7B 0x484D 15 RXSP7B or TXSP7B

CSP7B 0x484E 15 RXSP7B or TXSP7B

CPSP7B 0x484F 15 RXSP7B or TXSP7B

Reserved (0x850 to 0x85F)

Table 5-13. SPORT DMA Parameter Registers Addresses (Cont’d)

Register Address DMA Channel SPORT Buffer

ADSP-21368 SHARC Processor Hardware Reference 5-81

Serial Ports

Therefore, set the direction bit, the SPORT enable bit, and DMA enable
bits before initiating any operations on the SPORT data buffers. If the
processor operates on the inactive transmit or receive buffers while the
SPORT is enabled, it can cause unpredictable results.

SPORT DMA Chaining

In chained DMA operations, the processor’s DMA controller automati-
cally sets up another DMA transfer when the contents of the current
buffer are transmitted (or received). The chain pointer registers (CPSPxy)
function as a pointer to the next set of buffer parameters stored in mem-
ory. The DMA controller automatically downloads these buffer
parameters to set up the next DMA sequence. For more information on
SPORT DMA chaining, see “Setting Up DMA Parameter Registers” on
page 2-24.

DMA chaining occurs independently for the transmit and receive channels
of each SPORT. Each SPORT DMA channel has a chaining enable bit
(SCHEN_A or SCHEN_B) that when set (= 1) enables DMA chaining and
when cleared (= 0) disables DMA chaining. Writing all zeros to the
address field of the chain pointer registers (CPSPxy) also disables chaining.

Single Word Transfers
Individual data words may also be transmitted and received by the
SPORTs, with interrupts occurring as each 32-bit word is transmitted or
received. When a SPORT is enabled and DMA is disabled, the SPORT
interrupts are generated whenever a complete 32-bit word has been
received in the receive buffer, or whenever the transmit buffer is not full.
Note that both channel A and B buffers share the same interrupt vector.
Single word interrupts can be used to implement interrupt-driven I/O on
the SPORTs.

SPORT Programming Examples

5-82 ADSP-21368 SHARC Processor Hardware Reference

To avoid hanging the processor core, check the buffer’s full/empty status
when the processor core’s program reads a word from a SPORT’s receive
buffer or writes a word to its transmit buffer. The full/empty status can be
read in the DXS bits of the SPCTLx registers. Reading from an empty receive
buffer or writing to a full transmit buffer causes the processor to hang,
while it waits for the status to change.

To support debugging buffer transfers, the processor has a buffer
hang disable (BHD) bit. When set (= 1), this bit prevents the proces-
sor core from detecting a buffer-related stall condition, permitting
debugging of this type of stall condition. For more information, see
the BHD bit discussion on on page 5-64.

Multiple interrupts can occur if both SPORTs transmit or receive data in
the same cycle. Any interrupt can be masked in the IMASK register; if the
interrupt is later enabled in the LIRPTL register, the corresponding inter-
rupt latch bit in the IRPTL or LIRPTL registers must be cleared in case the
interrupt has occurred in the same time period.

When SPORT data packing is enabled (PACK = 1 in the SPCTLx control
registers), the transmit and receive interrupts are generated for 32-bit
packed words, not for each 16-bit word.

SPORT Programming Examples
This section provides three programming examples written for the
ADSP-21367/8/9 and ADSP-2137x processors. The first, Listing 5-1,
transmits a buffer of data from SPORT5 to SPORT4 using DMA and the
internal loopback feature of the SPORT. In this example, SPORT5 drives
the clock and frame sync, and the buffer is transferred only one time.

The second listing, Listing 5-2, transmits a buffer of data from SPORT2 to
SPORT3 using direct core reads and writes and the internal loopback feature
of the SPORT. In this example, SPORT2 drives the clock and frame sync,
and the buffer is transferred only one time.

ADSP-21368 SHARC Processor Hardware Reference 5-83

Serial Ports

The third listing, Listing 5-3, transmits a buffer of data from SPORT1 to
SPORT0 using DMA chaining and the internal loopback feature of the
SPORT. In this example, SPORT5 drives the clock and frame sync, and the
two TCBs for each SPORT are set up to ping-pong back and forth to con-
tinually send and receive data.

Listing 5-1. SPORT Transmit Using DMA Chaining

/* SPORT DMA Parameter Registers */

#define IISP4A 0x840

#define IISP5A 0x848

#define IMSP4A 0x841

#define IMSP5A 0x849

#define CSP4A 0x842

#define CSP5A 0x84A

/* SPORT Control Registers */

#define DIV4 0x802

#define DIV5 0x803

#define SPCTL4 0x800

#define SPCTL5 0x801

#define SPMCTL4 0x804

/* SPMCTL Bits */

#define SPL 0x00001000

/* SPCTL Bits */

#define SPEN_A 0x00000001

#define SDEN_A 0x00040000

#define SLEN32 0x000001F0

#define SPTRAN 0x02000000

#define IFS 0x00004000

#define FSR 0x00002000

#define ICLK 0x00000400

SPORT Programming Examples

5-84 ADSP-21368 SHARC Processor Hardware Reference

/* Default Buffer Length */

#define BUFSIZE 10

.SECTION/DM seg_dmda;

/*Transmit buffer*/

.var tx_buf5a[BUFSIZE] = 0x11111111,

 0x22222222,

 0x33333333,

 0x44444444,

 0x55555555,

 0x66666666,

 0x77777777,

 0x88888888,

 0x99999999,

 0xAAAAAAAA;

/*Receive buffer*/

.var rx_buf4a[BUFSIZE];

/* Main code section */

.global _main;

.SECTION/PM seg_pmco;

_main:

/* SPORT Loopback: Use SPORT4 as RX & SPORT5 as TX */

/* initially clear SPORT control register */

r0 = 0x00000000;

dm(SPCTL4) = r0;

dm(SPCTL5) = r0;

dm(SPMCTL4) = r0;

SPORT_DMA_setup:

ADSP-21368 SHARC Processor Hardware Reference 5-85

Serial Ports

/* SPORT 5 Internal DMA memory address */

r0 = tx_buf5a; dm(IISP5A) = r0;

/* SPORT 5 Internal DMA memory access modifier */

r0 = 1; dm(IMSP5A) = r0;

/* SPORT 5 Number of DMA transfers to be done */

r0 = @tx_buf5a; dm(CSP5A) = r0;

/* SPORT 4 Internal DMA memory address */

r0 = rx_buf4a; dm(IISP4A) = r0;

/* SPORT 4 Internal DMA memory access modifier */

r0 = 1; dm(IMSP4A) = r0;

/* SPORT 4 Number of DMA5 transfers to be done */

r0 = @rx_buf4a; dm(CSP4A) = r0;

/* set internal loopback bit for SPORT4 & SPORT5 */

bit set ustat3 SPL;

dm(SPMCTL4) = ustat3;

/* Configure SPORT5 as a transmitter */

/* internally generating clock and frame sync */

/* CLKDIV = [fCCLK(333 MHz)/2 x FSCLK(8.325 MHz)] – 1 = 0x0004 */

/* FSDIV = [FSCLK(8.325 MHz)/TFS(.26 MHz)] – 1 = 31 = 0x001F */

R0 = 0x001F0004; dm(DIV5) = R0;

ustat4 = SPEN_A| /* Enable Channel A */

 SLEN32| /* 32-bit word length */

 FSR| /* Frame Sync Required */

 SPTRAN| /* Transmit on enabled channels */

 SDEN_A| /* Enable Channel A DMA */

 IFS| /* Internally Generated Frame Sync */

 ICLK; /* Internally Generated Clock */

dm(SPCTL5) = ustat4;

/* Configure SPORT4 as a receiver */

/* externally generating clock and frame sync */

SPORT Programming Examples

5-86 ADSP-21368 SHARC Processor Hardware Reference

r0 = 0x0; dm(DIV4) = R0;

ustat3 = SPEN_A| /* Enable Channel A */

 SLEN32| /* 32-bit word length */

 FSR| /* Frame Sync Required */

 SDEN_A; /* Enable Channel A DMA */

dm(SPCTL4) = ustat3;

_main.end: jump (pc,0);

Listing 5-2. SPORT Transmit Using Direct Core Access

/* SPORT Control Registers */

#define TXSP2A 0x460

#define RXSP3A 0x465

#define DIV2 0x402

#define DIV3 0x403

#define SPCTL2 0x400

#define SPCTL3 0x401

#define SPMCTL2 0x404

/* SPMCTL Bits */

#define SPL 0x00001000

/* SPCTL Bits */

#define SPEN_A 0x00000001

#define SDEN_A 0x00040000

#define SLEN32 0x000001F0

#define SPTRAN 0x02000000

#define IFS 0x00004000

#define FSR 0x00002000

#define ICLK 0x00000400

/* Default Buffer Length */

#define BUFSIZE 10

ADSP-21368 SHARC Processor Hardware Reference 5-87

Serial Ports

.SECTION/DM seg_dmda;

/* Transmit Buffer */

.var tx_buf2a[BUFSIZE] = 0x11111111,

 0x22222222,

 0x33333333,

 0x44444444,

 0x55555555,

 0x66666666,

 0x77777777,

 0x88888888,

 0x99999999,

 0xAAAAAAAA;

/* Receive Buffer */

.var rx_buf3a[BUFSIZE];

/* Main code section */

.global _main;

.SECTION/PM seg_pmco;

_main:

//bit set mode1 CBUFEN; /* enable circular buffers */

/* SPORT Loopback: Use SPORT2 as RX & SPORT3 as TX */

/* Initially clear SPORT control registers */

r0 = 0x00000000;

dm(SPCTL2) = r0;

dm(SPCTL3) = r0;

dm(SPMCTL2) = r0;

/* Set up DAG registers */

i4 = tx_buf2a;

m4 = 1;

i12 = rx_buf3a;

m12 = 1;

SPORT Programming Examples

5-88 ADSP-21368 SHARC Processor Hardware Reference

SPORT_DMA_setup:

/* set internal loopback bit for SPORT2 & SPORT3 */

bit set ustat3 SPL;

dm(SPMCTL2) = ustat3;

/* Configure SPORT2 as a transmitter */

/* internally generating clock and frame sync */

/* CLKDIV = [fCCLK(333MHz)/2 x FSCLK(8.325 MHz)] – 1 = 0x0004 */

/* FSDIV = [FSCLK(8.325 MHz)/TFS(.26 MHz)] – 1 = 31 = 0x001F */

R0 = 0x001F0004; dm(DIV2) = R0;

ustat4 = SPEN_A| /* Enable Channel A */

 SLEN32| /* 32-bit word length */

 FSR| /* Frame Sync Required */

 SPTRAN| /* Transmit on enabled channels */

 IFS| /* Internally Generated Frame Sync */

 ICLK; /* Internally Generated Clock */

dm(SPCTL2) = ustat4;

/* Configure SPORT3 as a receiver */

/* externally generating clock and frame sync */

r0 = 0x0; dm(DIV3) = R0;

ustat3 = SPEN_A| /* Enable Channel A */

 SLEN32| /* 32-bit word length */

 FSR; /* Frame Sync Required */

dm(SPCTL3) = ustat3;

/* Set up loop to transmit and receive data */

lcntr = LENGTH(tx_buf2a), do (pc,4) until lce;

/* Retrieve data using DAG1 and send TX via SPORT2 */

r0 = dm(i4,m4);

dm(TXSP2A) = r0;

/* Receive data via SPORT3 and save via DAG2 */

r0 = dm(RXSP3A);

pm(i12,m12) = r0;

_main.end: jump (pc,0);

ADSP-21368 SHARC Processor Hardware Reference 5-89

Serial Ports

Listing 5-3. SPORT Transmit Using DMA

/* SPORT DMA Parameter Registers */

#define CPSP0A 0xC43

#define CPSP1A 0xC4B

/* SPORT Control Registers */

#define DIV0 0xC02

#define DIV1 0xC03

#define SPCTL0 0xC00

#define SPCTL1 0xC01

#define SPMCTL0 0xC04

/* SPMCTL Bits */

#define SPL 0x00001000

/* SPCTL Bits */

#define SPEN_A 0x00000001

#define SDEN_A 0x00040000

#define SCHEN_A 0x00080000

#define SLEN32 0x000001F0

#define SPTRAN 0x02000000

#define IFS 0x00004000

#define FSR 0x00002000

#define ICLK 0x00000400

/* Default Buffer Length */

#define BUFSIZE 10

.SECTION/DM seg_dmda;

/* TX Buffers */

.var tx_buf1a[BUFSIZE] = 0x11111111,

 0x22222222,

 0x33333333,

SPORT Programming Examples

5-90 ADSP-21368 SHARC Processor Hardware Reference

 0x44444444,

 0x55555555,

 0x66666666,

 0x77777777,

 0x88888888,

 0x99999999,

 0xAAAAAAAA;

.var tx_buf1b[BUFSIZE] = 0x12345678,

 0x23456789,

 0x3456789A,

 0x456789AB,

 0x56789ABC,

 0x6789ABCD,

 0x789ABCDE,

 0x89ABCDEF,

 0x9ABCDEF0,

 0xABCDEF01;

/* RX Buffers */

.var rx_buf0a[BUFSIZE];

.var rx_buf0b[BUFSIZE];

/* TX Transfer Control Blocks */

.var tx_tcb1[4] = 0,BUFSIZE,1,tx_buf1a;

.var tx_tcb2[4] = 0,BUFSIZE,1,tx_buf1b;

/* RX Transfer Control Blocks */

.var rx_tcb1[4] = 0,BUFSIZE,1,rx_buf0a;

.var rx_tcb2[4] = 0,BUFSIZE,1,rx_buf0b;

/* Main code section */

.global _main;

.SECTION/PM seg_pmco;

ADSP-21368 SHARC Processor Hardware Reference 5-91

Serial Ports

_main:

// SPORT Loopback: Use SPORT0 as RX & SPORT1 as TX //

/* initially clear SPORT control register */

r0 = 0x00000000;

dm(SPCTL0) = r0;

dm(SPCTL1) = r0;

dm(SPMCTL1) = r0;

SPORT_DMA_setup:

/* set internal loopback bit for SPORT0 & SPORT1 */

bit set ustat3 SPL;

dm(SPMCTL1) = ustat3;

/* Configure SPORT1 as a transmitter */

/* internally generating clock and frame sync */

/* CLKDIV = [fCCLK(333 MHz)/8xFSCLK(8.325 MHz)]-1 = 0x0004 */

/* FSDIV = [FSCLK(8.325 MHz)/TFS(.26 MHz)]-1 = 31 = 0x001F */

R0 = 0x001F0004; dm(DIV1) = R0;

ustat4 = SPEN_A| /* Enable Channel A */

 SLEN32| /* 32-bit word length */

 FSR| /* Frame Sync Required */

 SPTRAN| /* Transmit on enabled channels */

 SDEN_A| /* Enable Channel A DMA */

 SCHEN_A| /* Enable Channel A DMA Chaining */

 IFS| /* Internally-generated Frame Sync */

 ICLK; /* Internally-generated Clock */

dm(SPCTL1) = ustat4;

/* Configure SPORT0 as a receiver */

/* externally generating clock and frame sync */

r0 = 0x0; dm(DIV0) = R0;

ustat3 = SPEN_A| /* Enable Channel A */

SPORT Programming Examples

5-92 ADSP-21368 SHARC Processor Hardware Reference

 SLEN32| /* 32-bit word length */

 FSR| /* Frame Sync Required */

 SDEN_A| /* Enable Channel A DMA */

 SCHEN_A; /* Enable Channel A DMA Chaining */

dm(SPCTL0) = ustat3;

/* Next TCB location for tx_tcb2 is tx_tcb1 */

/* Mask the first 19 bits of the TCB location */

r0 = (tx_tcb1 + 3) & 0x7FFFF;

dm(tx_tcb2) = r0;

/* Next TCB location for rx_tcb2 is rx_tcb1 */

/* Mask the first 19 bits of the TCB location */

r0 = (rx_tcb1 + 3) & 0x7FFFF;

dm(rx_tcb2) = r0;

/* Next TCB location for rx_tcb1 is rx_tcb2 */

/* Mask the first 19 bits of the TCB location */

r0 = (rx_tcb2 + 3) & 0x7FFFF;

dm(rx_tcb1) = r0;

/* Initialize SPORT DMA transfer by writing to the CP reg */

dm(CPSP0A) = r0;

/* Next TCB location for tx_tcb1 is tx_tcb2 */

/* Mask the first 19 bits of the TCB location */

r0 = (tx_tcb2 + 3) & 0x7FFFF;

dm(tx_tcb1) = r0;

/* Initialize SPORT DMA transfer by writing to the CP reg */

dm(CPSP1A) = r0;

_main.end: jump (pc,0);

ADSP-21368 SHARC Processor Hardware Reference 6-1

6 SERIAL PERIPHERAL
INTERFACE PORTS

The ADSP-21367/8/9 and ADSP-2137x processors are equipped with
two synchronous serial peripheral interface ports that are compatible with
the industry-standard serial peripheral interface (SPI). The SPI ports are
routed through the digital peripheral interface pins (DPI14–1). At reset,
SPI functionality is available on DPI pins 1–8. For more information, see
Chapter 4, Digital Audio/Digital Peripheral Interfaces. Each SPI port has
its own unique set of control registers (the secondary register set is differ-
entiated by a B in the register name as in SPIBAUDB). The SPI ports
support communication with a variety of peripheral devices including
CODECs, data converters, sample rate converters, S/PDIF or AES/EBU
digital audio transmitters and receivers, LCDs, shift registers, microcon-
trollers, and FPGA devices with SPI emulation capabilities.

Each SPI port provides the following features and capabilities:

• A simple 4-wire interface consisting of two data pins, a device
select pin, and a clock pin

• Full-duplex operation that allows the processor to transmit and
receive data simultaneously on the same port

• Special data formats to accommodate little and big endian data,
different word lengths, and various packing modes

• Master and slave modes as well as multimaster mode in which the
processors can be connected to four other SPI devices

• Open drain outputs to avoid possible driver damage due to data
contention and to support multimaster scenarios

Functional Description

6-2 ADSP-21368 SHARC Processor Hardware Reference

• Programmable baud rates, clock polarities, and phases

• Master or slave booting from a master SPI device (“DPI/SRU2
Connection Groups” on page 4-51)

• DMA capability to allow data transfers without core overhead

Functional Description
Each SPI port contain its own transmit shift (TXSR, TXSRB) and receive
shift (RXSR, RXSRB) registers which are not user accessible. The TXSRx regis-
ters serially transmit data and the RXSRx registers receive data
synchronously with the SPI clock signal (SPICLK). Figure 6-1 shows a
block diagram of the ADSP-21367/8/9 and ADSP-2137x processor’s SPI
interface. The data is shifted into or out of the shift registers on two sepa-
rate pins: the master in slave out (MISO) pin and the master out slave in
(MOSI) pin.

During data transfers, one SPI device acts as the SPI master by controlling
the data flow. It does this by generating the SPICLK and asserting the SPI
device select signal (SPIDS). The SPI master receives data using the MISO
pin and transmits using the MOSI pin. The other SPI device acts as the SPI
slave by receiving new data from the master into its RXSRx register using
the MOSI pin. It transmits requested data out of the TXSR register using the
MISO pin.

Each SPI port contains a dedicated transmit data buffer (TXSPI, TXSPIB)
and a receive data buffer (RXSPI, RXSPIB). Data to be transmitted is writ-
ten to TXSPIx and then automatically transferred into the TXSR register.
Once a full data word is received in the RXSR register, the data is automat-
ically transferred into RXSPI, from which the data is read. When the port is
in SPI master mode, programmable flag pins provide slave selection. Con-
nect these pins to the SPIDS of the slave devices.

ADSP-21368 SHARC Processor Hardware Reference 6-3

Serial Peripheral Interface Ports

Different CPUs or processors can take turns being master, or one master
may simultaneously shift data into multiple slaves (broadcast mode).
However, only one slave may drive its output to write data back to the
master at any given time. This must be enforced in broadcast mode, where
several slaves can be selected to receive data from the master, but only one
slave can be enabled to send data back to the master.

In a multimaster or multidevice environment where multiple processors
are connected through their SPI ports, all MOSI pins are connected
together, all MISO pins are connected together, as are the SPICLK pins. The
master’s FLAGx pins connect to each of the slave SPI devices in the system

Figure 6-1. SPI Block Diagram

RX SHIFT REGISTER

RXSPI
RECEIVE

REGISTER

SPI INTERNAL
CLOCK

GENERATOR

TXSPI
TRANSMIT
REGISTER

32

M M SS

SPI IRQ OR
DMA REQUEST

TX SHIFT REGISTER
TXSRRXSR

SPI INTERFACE LOGIC

MOSI MISO SPICLK SPIDS FLAGX

DM DATA BUS

PM DATA BUS

I/0 DATA BUS

SPICTL

SPISTAT

SPI Interface Signals

6-4 ADSP-21368 SHARC Processor Hardware Reference

through their SPIDS pins. The SPI ports also provide a mechanism to dis-
able the MISO pin for multimaster systems where the slave SHARC
processor does not need to transmit any data to the master.

SPI Interface Signals
The SPI uses a 4-wire protocol to enable full-duplex serial communica-
tion. This section describes the signals used to connect the
ADSP-21367/8/9 and ADSP-2137x processor’s SPI ports in a system that
has multiple devices. Figure 6-2 shows the master-slave connections
between two devices.

SPI Clock Signal (SPICLK)
The SPICLK signal is the serial peripheral interface clock signal. This con-
trol signal is driven by the master and regulates the flow of data bits. The
master may transmit data at a variety of baud rates. One data bit is trans-
ferred for each SPICLK cycle.

Figure 6-2. Master-Slave Interconnections

ADSP-213xx

SPI-Compatible Master Device
SPICLK
FLAGN

MOSI

TXSR

TXSPI

RXSPI

RXSR

MISO

ADSP-213xx

SPI-Compatible Slave Device
SPICLK
SPIDS

MOSI

TXSR

TXSPI

RXSPI

RXSR

MISO

ADSP-21368 SHARC Processor Hardware Reference 6-5

Serial Peripheral Interface Ports

The SPICLK signal is a gated clock that is active only during data transfers,
and only for the duration of the transferred word. The number of active
edges is equal to the number of bits driven on the data lines. The clock
rate can be as high as one-fourth the peripheral clock rate.1 For master
devices, the clock rate is determined by the 15-bit value of the baud rate
registers (SPIBAUD, SPIBAUDB). For more information, see “SPI Baud Rate
Registers (SPIBAUD, SPIBAUDB)” on page A-60. For slave devices, the
value in the SPIBAUDx register is ignored. When the SPI device is a master,
SPICLK is an output signal. When the SPI is a slave, SPICLK is an input sig-
nal. Slave devices ignore the serial clock if its device select (SPIDS) signal is
deasserted (HIGH).

Data is shifted in reference to SPICLK. The data is always shifted out on
one edge of the clock (referred to as the active edge) and sampled on the
opposite edge of the clock (referred to as the sampling edge). Clock polar-
ity and clock phase relative to data are programmable through bit 11
(CLKPL) and bit 10 (CPHASE) in the SPICTLx control registers.

SPICLK Timing

When the processor is configured as an SPI slave, the SPI master must
drive an SPICLK signal that conforms with Figure 6-3. For exact timing
parameters, please refer to the appropriate data sheet.

The SPIDS lead time (T1), the SPIDS lag time (T2), and the sequential
transfer delay time (T3) must always be greater than or equal to one-half
the SPICLK period. The minimum time between successive word transfers
(T4) is two SPICLK periods. This time period is measured from the last
active edge of SPICLK of one word to the first active edge of SPICLK of the
next word. This calculation is independent from the configuration of the
SPI (CPHASE, SPIMS, and so on).

1 For complete information on device clock signals and timing, see the processor-specific data sheet.

SPI Interface Signals

6-6 ADSP-21368 SHARC Processor Hardware Reference

SPI Slave Select Input (SPIDS)

The SPIDS signal is the serial peripheral interface device select input signal.
This active low signal is used to enable a processor that is configured as a
slave device. As an input only pin, SPIDS behaves like a chip select, and is
driven by the master device for the slave devices. When the processor is
the SPI master in a multimaster environment, the SPIDS pin acts as an
error signal. In multimaster mode, if the SPIDS input signal of a master is
asserted (driven low), a multimaster error condition occurs which means
that another device is also trying to be the master device. For a single-mas-
ter, multiple-slave configuration, the SPIDS signal of the master device
must be tied high, or the SPI port allows this signal to be disabled and
used as a GPIO input.

SPI Flag Signals (SPIFLG3-0)
These signals are driven by the processor as an SPI master to the SPIDS pin
of the slave. When CPHASE = 0, the SPI port hardware controls the
device-select signal automatically (determined by the DSxEN bits in the
SPIFLG register). Setting CPHASE = 1 requires these signals be manually
controlled by the software through the SPIFLGx bits in the SPIFLG and
SPIFLGB registers. The SPIFLGx bits are ignored when CPHASE = 0.

Figure 6-3. SPICLK Timing

SPICLK
CPHASE =0

T1 T2

T3

T4

SPIDS
TO SLAVE

ADSP-21368 SHARC Processor Hardware Reference 6-7

Serial Peripheral Interface Ports

Master Out Slave In (MOSI)
The MOSI pin is one of the bidirectional I/O data pins. If the
ADSP-21367/8/9 and ADSP-2137x processors are configured as masters,
the MOSI pin becomes a data transmit (output) pin. If the processors are
configured as slaves, the MOSI pin becomes a data receive (input) pin. In an
SPI interconnection, the data is shifted out from the MOSI output pin of
the master and shifted into the MOSI input of the slave.

Master In Slave Out (MISO)
The MISO pin is one of the bidirectional I/O data pins. If the processor is
configured as a master, the MISO pin becomes a data receive (input) pin. If
the processor is configured as a slave, the MISO pin becomes a data transmit
(output) pin. In an SPI interconnection, the data is shifted out from the
MISO output pin of the slave and shifted into the MISO input pin of the
master.

Figure 6-4 illustrates how the processor can be used as the slave SPI
device. The 8-bit host microcontroller is the SPI master. The processor
can be booted through its SPI interface to allow application code and data
to be downloaded prior to runtime. When a system is comprised of multi-
ple slaves, only one slave is allowed to transmit data back to the master at
any given time.

Figure 6-4 also shows an example SPI interface where a processor is the
SPI master. When it uses the SPI interface, the processor can be directed
to alter the conversion resources, mute the sound, modify the volume, and
power down the AD1855 stereo DAC by accessing the control register of
the DAC serially.

SPI General Operations

6-8 ADSP-21368 SHARC Processor Hardware Reference

SPI General Operations
The SPI in the ADSP-21367/8/9 and ADSP-2137x processors can be used
in a single master as well as in a multimaster environment. In both of
these configurations, every MOSI pin in the SPI system is connected. Like-
wise, every MISO pin in the system is on a single node, and every SPICLK
pin is connected. SPI transmission and reception are always enabled
simultaneously, unless broadcast mode has been selected. In broadcast
mode, several slaves can be configured to receive from the master, but only
one of the slaves can be in transmit mode. This is done by driving the MISO
line, to communicate back with the master. If the transmit or receive is
not needed, MISO can be ignored and does not need to be connected. This
section describes the clock signals, SPI operation as a master and as a slave,
and error generation conditions.

Figure 6-4. SHARC Processor as SPI Master and Slave

8-bit Host
MICROCONTROLLER

ADSP-213xx

ADSP-213xx AD1855

SPI SLAVE DEVICE

MASTER DEVICE STEREO 96 KHz DAC

SPICLK

SPIDS

MOSI

MISO

CCLK

CLATCH

DATA

FLAG0

S_SEL

SCLK

MOSI

MISO

SPICLK

MOSI

SHARC Processor as SPI Master

SHARC Processor as SPI Slave

ADSP-21368 SHARC Processor Hardware Reference 6-9

Serial Peripheral Interface Ports

SPI Enable
For slaves, the slave-select input acts like a reset for the internal SPI logic.
For this reason, the SPIDS line must be error free. The SPIEN signal can
also be used as a software reset of the internal SPI logic. An exception to
this is the W1C-type (write 1-to-clear) bits in the SPISTATx (SPI status)
registers which remain set if they are already set. For a list of write W1C
bits, see Table A-11 on page A-57.

Always clear the W1C-type bits before re-enabling the SPI, as these
bits do not get cleared even if SPI is disabled. This can be done by
writing 0xFF to the SPISTATx registers. In the case of an MME error,
enable the SPI ports after SPIDS is deasserted.

Open Drain Mode (OPD)
In a multimaster or multislave SPI system, the data output pins (MOSI and
MISO) can be configured to behave as open drain drivers to prevent possi-
ble damage to pin drivers due to contention. An external pull-up resistor is
required on both the MOSI and MISO pins when this option is selected.

When the OPD bit is set and the SPI ports are configured as masters, the
MOSI pin is three-stated when the data driven out on MOSI is logic high.
The MOSI pin is not three-stated when the driven data is logic low. A zero
is driven on the MOSI pin in this case. Similarly, when OPD is set and the
SPI ports are configured as slaves, the MISO pin is three-stated if the data
driven out on MISO is logic high.

SPI General Operations

6-10 ADSP-21368 SHARC Processor Hardware Reference

Master Mode Operation
When the SPI is configured as a master, configure the SPI port and start
transfers using the following steps:

1. Before enabling the SPI port, programs should specify which of the
slave-select signals to use, setting one or more of the required SPI
flag select bits (DSxEN) in the SPIFLGx registers.

2. Write to the SPICTLx and SPIBAUDx registers, enabling the device as
a master and configuring the SPI system by specifying the appro-
priate word length, transfer format, baud rate, and other necessary
information.

When CPHASE is set to 0, the slave-select signals are automatically
controlled by the SPI port. When CPHASE = 1, the slave selects are
controlled by the core and the user software has to control the pins
through the SPIFLGx bits. If CPHASE = 1 (user-controlled,
slave-select signals), activate the desired slaves by clearing one or
more of the SPI flag bits (SPIFLGx) in the SPIFLGx registers.

3. Initiate the SPI transfer. The trigger mechanism for starting the
transfer is dependant upon the TIMOD bits in the SPICTLx registers.
See “Master Transfer Preparation” on page 6-18 for details.

The SPI generates the programmed clock pulses on SPICLK. The
data is shifted out of MOSI and shifted in from MISO simultaneously.
Before starting to shift, the TXSR register is loaded with the contents
of the TXSPIx registers. At the end of the transfer, the contents of
the RXSR register are loaded into the RXSPIx registers.

With each new transfer initiate command, the SPI continues to
send and receive words, according to the SPI transfer mode (TIMOD
bit in the SPICTLx registers). See “Master Transfer Preparation” on
page 6-18 for more details.

ADSP-21368 SHARC Processor Hardware Reference 6-11

Serial Peripheral Interface Ports

In master mode, if the transmit buffer remains empty, or the receive
buffer remains full, the device operates according to the states of the SENDZ
and GM bits in the SPICTLx registers.

• If SENDZ = 1 and the transmit buffer is empty, the device repeatedly
transmits zeros on the MOSI pin. One word is transmitted for each
new transfer initiate command.

• If SENDZ = 0 and the transmit buffer is empty, the device repeatedly
transmits the last word it transmitted before the transmit buffer
became empty.

• If GM = 1 and the receive buffer is full, the device continues to
receive new data from the MISO pin, overwriting the older data in
the RXSPI buffer.

• If GM = 0 and the receive buffer is full, the incoming data is dis-
carded, and the RXSPI register is not updated.

Slave Mode Operation
When a device is enabled as a slave (and DMA mode is not selected), the
start of a transfer is triggered by a transition of the SPIDS select signal to
the active state (LOW) or by the first active edge of the clock (SPICLK),
depending on the state of CPHASE.

The following steps illustrate SPI operation in slave mode:

1. Write to the SPICTLx registers making sure that the slave’s configu-
ration matches the current SPI master.

2. To prepare for the data transfer, write the data to be transmitted
into the TXSPIx registers.

SPI General Operations

6-12 ADSP-21368 SHARC Processor Hardware Reference

Once the SPIDS signal’s falling edge is detected, the slave starts
sending and receiving data on active SPICLK edges.

The reception or transmission continues until SPIDS is released.
The slave device continues to receive or transmit with each new
active SPICLK clock edge while the SPIDS signal is active.

In slave mode, if the transmit buffer remains empty, or the receive buffer
remains full, the devices operate according to the states of the SENDZ and
GM bits in the SPICTLx registers.

• If SENDZ = 1 and the transmit buffer is empty, the device repeatedly
transmits zeros on the MISO pin.

• If SENDZ = 0 and the transmit buffer is empty, the device repeatedly
transmits the last word it transmitted before the transmit buffer
became empty.

• If GM = 1 and the receive buffer is full, the device continues to
receive new data from the MOSI pin, overwriting the older data in
the RXSPI buffer.

• If GM = 0 and the receive buffer is full, the incoming data is dis-
carded, and the RXSPIx registers are not updated.

Multimaster Operation
A multimaster mode is implemented in the processor to allow an SPI sys-
tem to transfer mastership from one SPI device to another. In a
multidevice SPI configuration, several SPI ports are connected and any
one (but only one) can become a master at any given time.

If a processor is a slave and wishes to become the SPI master, it asserts the
SPIDS pin for the processor that is currently master and then drives the
SPICLK signal. Once the master device receives the SPIDS signal, it is

ADSP-21368 SHARC Processor Hardware Reference 6-13

Serial Peripheral Interface Ports

immediately reconfigured as a slave. In order to safely transition from one
master to the other, the SPI port uses open drain outputs for the data pin
drivers. This helps to avoid possible damage from data contention.

More information on this topic is described in “Mode Fault Error
(MME)” on page 6-35.

SPI Data Transfer Operations
The following sections provide information on the two methods the pro-
cessors use to transfer data—through the core or through DMA.

SPI Operation Using the Core
For core-driven SPI transfers, the software must read from or write to the
RXSPIx and TXSPIx registers respectively to control the transfer. It is
important to check the buffer status before reading from or writing to
these registers because the core does not hang when it attempts to read
from an empty buffer or write to a full buffer. When the core writes to a
full buffer, the data that is in that buffer is overwritten and the SPI begins
transmitting the new data. Invalid data is obtained when the core reads
from an empty buffer.

For a master, when the transmit buffer becomes empty, or the receive
buffer becomes full, the SPI device stalls the SPI clock until all the data
from the receive buffer is read or it detects that the transmit buffer con-
tains a piece of data, depending upon the TIMOD setting in the SPICTL
register.

• When a master is configured with TIMOD = 01 and the transmit
buffer becomes empty, the SPI device stalls the SPI clock until a
piece of data is written to the transmit buffer.

SPI Data Transfer Operations

6-14 ADSP-21368 SHARC Processor Hardware Reference

• When a master is configured with TIMOD = 00 and the receive buffer
becomes full the SPI device stalls the SPI clock until all of the data
is read from the receive buffer.

SPI Operation Using DMA
Each SPI has a single DMA channel associated with it that can be config-
ured to support either an SPI transmit or a receive, but not both
simultaneously. In addition to the TXSPIx and RXSPIx data buffers, there is
a four-word deep DMA FIFO that the SPI ports use to improve the data
throughput.

The SPI ports support both master and slave mode DMA. The following
sections describe master and slave mode DMA operations, DMA chaining,
switching between transmit and receive DMA operations, and processing
DMA interrupt errors. The following are guidelines to follow when per-
forming DMA transfers over the SPI.

• Do not write to the TXSPIx registers during an active SPI transmit
DMA operation because DMA data will be overwritten.

• Similarly, do not read from the RXSPIx registers during active SPI
DMA receive operations because DMA data will be overwritten.

• Writes to the TXSPIx registers during an active SPI receive DMA
operation are permitted. The RXS register is cleared when the
RXSPIx registers are read.

• Reads from the RXSPIx registers are allowed at any time during
transmit DMA.

• Interrupts are generated based on DMA events and are configured
in the SPIDMACx registers.

In order for a transmit DMA operation to begin, the transmit buffer must
initially be empty (TXS = 0). While this is normally the case, this means
that the TXSPIx registers should not be used for any purpose other than

ADSP-21368 SHARC Processor Hardware Reference 6-15

Serial Peripheral Interface Ports

SPI transfers. For example, the TXSPIx registers should not be used as a
scratch register for temporary data storage. Writing to the TXSPIx registers
sets the TXS bit.

When the SPI DMA engine is configured for transmitting:

1. The receive interface cannot generate an interrupt, but the status
can be polled.

2. The four-deep FIFO is not available in the receive path.

3. The RXSPIx register is used to receive data.

Similarly, when the SPI DMA engine is configured for receiving,

1. The transmit interface cannot generate an interrupt, but the status
can be polled.

2. The four-deep FIFO is not available in the transmit path.

3. The TXSPIx register is used to transmit data.

Master Mode DMA Operation

To configure the SPI port for master mode DMA transfers:

1. Specify which FLAG pins to use as the slave-select signals by setting
one or more of the DSxEN bits (bits 3–0) in the SPI flag (SPIFLGx)
registers.

2. Enable the device as a master and configure the SPI system by
selecting the appropriate word length, transfer format, baud rate,
and so on in the SPIBAUDx and SPICTLx registers. The TIMOD field
(bits 1–0) in the SPICTLx registers is configured to select transmit
or receive with DMA mode (TIMOD = 10).

3. Activate the desired slaves by clearing one or more of the SPI flag
bits (SPIFLGx) of SPIFLGx registers if CPHASE = 1.

SPI Data Transfer Operations

6-16 ADSP-21368 SHARC Processor Hardware Reference

4. For a single DMA, define the parameters of the DMA transfer by
writing to the IISPIx, IMSPIx, and CSPIx registers. For DMA
chaining, also write the chain pointer address to the CPSPIx regis-
ters after the other DMA registers. For more information, see
“Setting Up and Starting Chained DMA over the SPI” on
page 2-42.

5. Write to the SPI DMA configuration registers, (SPIDMACx), to spec-
ify the DMA direction (SPIRCV, bit 1) and to enable the SPI DMA
engine (SPIDEN, bit 0). If DMA chaining is desired, set (= 1) the
SPICHEN bit (bit 4) in the SPIDMACx registers.

To avoid data corruption, enable the SPI port before enabling
DMA.

If flags are used as slave selects, programs should activate the flags by clear-
ing the flag after the SPICTLx and the SPIBAUDx registers are configured,
but before enabling the DMA. When CPHASE = 0, and a program is using
DMA, the flags are automatically activated by the SPI ports.

When enabled as a master, the DMA engine transmits or receives data as
follows:

1. If the SPI system is configured for transmitting, the DMA engine
reads data from memory into the SPI DMA FIFO. Data from the
DMA FIFO is loaded into the TXSPIx registers and then into the
transmit shift register. This initiates the transfer on the SPI port.

2. If configured to receive, data from the RXSPIx registers is automati-
cally loaded into the SPI DMA FIFO and the DMA engine reads
data from the SPI DMA FIFO and writes to memory. Finally, the
SPI initiates the receive transfer.

ADSP-21368 SHARC Processor Hardware Reference 6-17

Serial Peripheral Interface Ports

3. The SPI generates the SPICLK signal (as specified by CPHASE,
SPIBAUD, and other bit settings) and the data is shifted out of MOSI
and in from MISO simultaneously.

4. The SPI continues sending or receiving words until the SPI DMA
word count register decrements to 0.

If the DMA engine is unable to keep up with the transmit stream during a
transmit operation because the IOP requires the IOD (I/O data) bus to
service another DMA channel (or for another reason), the SPICLK signal
stalls until data is written into the TXSPI register. All aspects of SPI receive
operation should be ignored. The data in the RXSPI register is not
intended to be used, and the RXS (bits 28–27 and 31–30 in the SPCTLx reg-
isters) and SPISTAT bits (26 and 29) should be ignored. The ROVF overrun
condition cannot generate an error interrupt in this situation.

If the DMA engine cannot keep up with the receive data stream during
receive operations, then SPICLK stalls until data is read from RXSPI. While
performing a receive DMA, the processor core assumes the transmit buffer
is empty. If SENDZ = 1, the device repeatedly transmits zeros. If SENDZ = 0,
it repeatedly transmits the contents of the TXSPI register. The TUNF under-
run condition cannot generate an error interrupt in this situation.

For receive DMA in master mode, the SPICLK signal stops only
when the FIFO and the RXSPI buffer is full (even if the DMA
count is zero). Therefore, the SPICLK signal runs for an additional
five word transfers filling junk data in the FIFO and the RXSPIx
buffers. This data must be cleared before a new DMA is initiated.

A master SPI DMA sequence may involve back-to-back transmission
and/or reception of multiple chained DMA transfers. The SPI controller
supports such a sequence with minimal processor core interaction.

SPI Data Transfer Operations

6-18 ADSP-21368 SHARC Processor Hardware Reference

Master Transfer Preparation

When the processor is enabled as a master, the initiation of a transfer is
defined by the two bit fields (bits 1–0) of TIMOD in the SPICTLx registers.
Based on these two bits and the status of the interface, a new transfer is
started upon either a read of the RXSPIx registers or a write to the TXSPIx
registers. This is summarized in Table 6-1.

Table 6-1. Transfer Initiation

TIMOD Function Transfer Initiated
Upon

Action, Interrupt

00 Transmit and
Receive

Initiate new single
word transfer upon
read of RXSPI and pre-
vious transfer
completed.

The SPI interrupt is latched in every core
clock cycle in which the RXSPI buffer has a
word in it.
Emptying the RXSPI buffer or disabling the
SPI port at the same time (SPIEN = 0) stops
the interrupt latch.

01 Transmit and
Receive

Initiate new single
word transfer upon
write to TXSPI and
previous transfer
completed.

The SPI interrupt is latched in every core
clock cycle in which the TXSPI buffer is
empty.
Writing to the TXSPI buffer or disabling the
SPI port at the same time (SPIEN = 0) stops
the interrupt latch.

10 Transmit or
Receive with
DMA

Initiate new multiword
transfer upon write to
DMA enable bit. Indi-
vidual word transfers
begin with either a
DMA write to TXSPI
or a DMA read of
RXSPI depending on
the direction of the
transfer as specified by
the SPIRCV bit.

If chaining is disabled, the SPI interrupt is
latched in the cycle when the DMA count
decrements from 1 to 0.
If chaining is enabled, interrupt function is
based on the CPI bit in the CP register. If
CPI = 0, the SPI interrupt is latched at the
end of the DMA sequence. If CPI = 1, then
the SPI interrupt is latched after each DMA
in the sequence. For more information, see
“DMA Transfer Direction” on page 2-24.

11 Reserved

ADSP-21368 SHARC Processor Hardware Reference 6-19

Serial Peripheral Interface Ports

Slave Mode DMA Operation

A slave mode DMA transfer occurs when the SPI port is enabled and con-
figured in slave mode, and DMA is enabled. When the SPIDS signal
transitions to the low state or when the first active edge of SPICLK is
detected, it triggers the start of a transfer.

To configure for slave mode DMA:

1. Write to the SPICTLx registers to make the mode of the serial link
the same as the mode that is set up in the SPI master. Configure
the TIMOD field to select transmit or receive DMA mode
(TIMOD = 10).

2. Define DMA receive (or transmit) transfer parameters by writing
to the IISPIx, IMSPIx, and CSPIx registers. For DMA chaining,
write the chain pointer address to the CPSPIx registers.

3. Write to the SPIDMACx registers to enable the SPI DMA engine and
configure the following:

• A receive access (SPIRCV = 1) or

• A transmit access (SPIRCV = 0)

If DMA chaining is desired, set the SPICHEN bit in the
SPIDMACx registers.

Enable the SPI port before enabling DMA to avoid data
corruption.

SPI Data Transfer Operations

6-20 ADSP-21368 SHARC Processor Hardware Reference

Slave Transfer Preparation

When enabled as a slave, the device prepares for a new transfer according
to the function and actions described in Table 6-1.

The following steps illustrate the SPI receive or transmit DMA sequence
in an SPI slave in response to a master command:

1. Once the slave-select input is active, the processor starts receiving
and transmitting data on active SPICLK edges. The data for one
channel (TX or RX) is automatically transferred from/to memory by
the IOP. The function of the other channel is dependant on the GM
and SENDZ bits in the SPICTL register.

2. Reception or transmission continues until the SPI DMA word
count register transitions from 1 to 0.

3. A number of conditions can occur while the processor is configured
for the slave mode:

• If the DMA engine cannot keep up with the receive data
stream during receive operations, the receive buffer operates
according to the state of the GM bit in the SPICTLx registers.

• If GM = 0 and the DMA buffer is full, the incoming data is
discarded and the RXSPIx register is not updated. While per-
forming a receive DMA, the transmit buffer is assumed to
be empty. If SENDZ = 1, the device repeatedly transmits zeros
on the MISO pin. If SENDZ = 0, it repeatedly transmits the
contents of the TXSPIx registers.

• If GM = 1 and the DMA buffer is full, the device continues to
receive new data from the MOSI pin, overwriting the older
data in the DMA buffer.

• If the DMA engine cannot keep up with the transmit data
stream during a transmit operation because another DMA
engine has been granted the bus (or for another reason), the

ADSP-21368 SHARC Processor Hardware Reference 6-21

Serial Peripheral Interface Ports

transmit port operates according to the state of the SENDZ bit
in the SPICTLx registers.

If SENDZ = 1 and the DMA buffer is empty, the device
repeatedly transmits zeros on the MISO pin. If SENDZ = 0 and
the DMA buffer is empty, it repeatedly transmits the last
word it transmitted before the DMA buffer became empty.
All aspects of SPI receive operation should be ignored. The
data in the RXSPIx registers is not intended to be used, and
the RXS and ROVF bits should be ignored. The ROVF overrun
condition cannot generate an error interrupt in this
situation.

While a DMA transfer is occurring on one channel (TX or RX), the
core (based on the RXS and TXS status bits) can transfer data in the
other direction.

Changing SPI Configuration

Programs should take the following precautions when changing SPI
configurations.

• The SPI configuration must not be changed during a data transfer.

• Change the clock polarity only when no slaves are selected.

• Change the SPI configuration only when SPIEN = 0. For example, if
operating as a master in a multislave system, and there are slaves
that require different data or clock formats, then the master SPI
should be disabled, reconfigured, and then re-enabled.

However, when an SPI communication link consists of 1) a single
master and a single slave, 2) CPHASE = 1, and 3) the slave’s slave
select input is tied low, then the program can change the SPI

SPI Data Transfer Operations

6-22 ADSP-21368 SHARC Processor Hardware Reference

configuration. In this case, the slave is always selected. Data cor-
ruption can be avoided by enabling the slave only after configuring
both the master and slave devices.

When performing transmit operations with the SPI port, disabling the SPI
port prematurely can cause data corruption and/or faulty transmission.
Before the program disables the SPI port in order to reconfigure it, the
status bits should be polled to ensure that all valid data has been com-
pletely transferred. For core-driven transfers, data moves from the TXSPI
buffer into a shift register. The following bits should be checked before
disabling the SPI port:

1. Wait for the TXSPIx buffers to empty into the shift register. This is
done when the TXS bit (bit 3) of the SPISTATx registers becomes
zero.

2. Wait for the SPI shift registers to finish shifting out data. This is
done when the SPIF bit (bit 0 of SPISTATx registers) becomes one.

3. Disable the SPI ports by setting the SPIEN bit (bit 0) in the SPICTLx
registers to zero.

When performing transmit DMA transfers, data moves through a
four-deep SPI DMA FIFO, then into the TXSPIx buffers, and finally into
the shift register. DMA interrupts are latched when the I/O processor
moves the last word from memory to the peripheral. For the SPI, this
means that the SPI “DMA complete” interrupt is latched when there are
still six words yet to be fully transmitted (four in the FIFO, one in the
TXSPIx buffers, and one being shifted out of the shift register). To disable
the SPI port after a DMA transmit operation, use the following steps:

1. Wait for DMA FIFO to empty. This is done when the SPISx bits
(bits 13–12 in the SPIDMACx registers) become zero.

2. Wait for the TXSPIx registers to empty. This is done when the TXS
bit (bit 3) in the SPISTATx registers) becomes zero.

ADSP-21368 SHARC Processor Hardware Reference 6-23

Serial Peripheral Interface Ports

3. Wait for the SPI shift register to finish transferring the last word.
This is done when the SPIF bit (bit 0 of the SPISTATx registers),
becomes one.

4. Disable the SPI ports by setting the SPIEN bit (bit 0 of the SPICTLx
registers), to zero.

Switching From Transmit To Receive DMA

The following sequence details the steps for switching from transmit to
receive DMA.

With disabling the SPI:

1. Write 0x00 to the SPICTLx registers to disable SPI. Disabling the
SPI also clears the RXSPIx/TXSPIx registers and the buffer status.

2. Disable DMA by writing 0x00 to the SPIDMACx registers.

3. Clear all errors by writing to the W1C-type bits in the SPISTATx
registers. This ensures that no interrupts occur due to errors from a
previous DMA operation.

4. Reconfigure the SPICTLx registers and enable the SPI ports.

5. Configure DMA by writing to the DMA parameter registers and
enable DMA.

Without disabling the SPI:

1. Clear RXSPIx/TXSPIx and the buffer status without disabling SPI.
This can be done by ORing 0xC0000 with the present value in the
SPICTLx registers. For example, programs can use the RXFLSH and
TXFLSH bits to clear TXSPIx/RXSPIx and the buffer status.

2. Disable DMA by writing 0x00 to the SPIDMAC register.

SPI Data Transfer Operations

6-24 ADSP-21368 SHARC Processor Hardware Reference

3. Clear all errors by writing to the W1C-type bits in the SPISTATx
registers. This ensures that no interrupts occur due to errors from a
previous DMA operation.

4. Reconfigure the SPICTL register to remove the clear condition on
the TXSPI/RXSPI registers.

5. Configure DMA by writing to the DMA parameter registers and
enable DMA.

Switching From Receive to Transmit DMA

Use the following sequence to switch from receive to transmit DMA. Note
that TXSPIx and RXSPIx are registers but they may not contain any bits,
only address information.

With disabling of the SPI:

1. Write 0x00 to the SPICTLx registers to disable the SPI. Disabling
the SPI also clears the contents of the RXSPIx/TXSPIx registers and
the buffer status.

2. Disable DMA and clear the DMA FIFO by writing 0x80 to the
SPIDMACx registers. This ensures that any data from a previous
DMA operation is cleared because the SPICLK signal runs for five
more word transfers even after the DMA count falls to zero in the
receive DMA.

3. Clear all errors by writing to the SPISTATx registers. This ensures
that no interrupts occur due to errors from a previous DMA
operation.

4. Reconfigure the SPICTLx registers and enable the SPI.

5. Configure DMA by writing to the DMA parameter registers and
the SPIDMACx register.

ADSP-21368 SHARC Processor Hardware Reference 6-25

Serial Peripheral Interface Ports

Without disabling the SPI:

1. Clear the RXSPIx/TXSPIx registers and the buffer status without dis-
abling the SPI by ORing 0xc0000 with the present value in the
SPICTLx registers. Use the RXFLSH (bit 19) and TXFLSH (bit 18) bits
in the SPICTLx registers to clear the RXSPIx/TXSPIx registers and
the buffer status.

2. Disable DMA and clear the FIFO by writing 0x80 to the SPIDMACx
registers. This ensures that any data from a previous DMA opera-
tion is cleared because the SPICLK signal runs for five more word
transfers even after the DMA count is zero in receive DMA.

3. Clear all errors by writing to the W1C-type bits in the SPISTATx
registers. This ensures that no interrupts occur due to errors from a
previous DMA operation.

4. Reconfigure the SPICTLx registers to remove the clear condition on
the TXSPIx/RXSPIx registers.

5. Configure DMA by writing to the DMA parameter registers
(described in Table 2-6 on page 2-29) and the SPIDMACx registers
using the SPIDEN bit (bit 0).

DMA Error Interrupts

The SPIUNF and SPIOVF bits of the SPIDMACx registers indicate transmission
errors during a DMA operation in slave mode. When one of the bits is set,
an SPI interrupt occurs. The following sequence details the steps to
respond to this interrupt.

SPI Data Transfer Operations

6-26 ADSP-21368 SHARC Processor Hardware Reference

With disabling the SPI:

1. Disable the SPI port by writing 0x00 to the SPICTLx registers.

2. Disable DMA and clear the FIFO by writing 0x80 to the SPIDMACx
registers. This ensures that any data from a previous DMA opera-
tion is cleared before configuring a new DMA operation.

3. Clear all errors by writing to the W1C-type bits (see Table A-11 on
page A-57) in the SPISTATx registers. This ensures that the error
bits SPIOVF and SPIUNF (in the SPIDMACx registers) are cleared when
a new DMA is configured.

4. Reconfigure the SPICTLx registers and enable SPI using the SPIEN
bit.

5. Configure DMA by writing to the DMA parameter registers and
the SPIDMACx registers.

Without disabling the SPI:

1. Disable DMA and clear the FIFO by writing 0x80 to the SPIDMAC
register. This ensures that any data from a previous DMA opera-
tion is cleared before configuring a new DMA operation.

2. Clear the RXSPIx/TXSPIx registers and the buffer status without dis-
abling the SPI. This can be done by ORing 0xC0000 with the
present value in the SPICTLx registers. Use the RXFLSH and TXFLSH
bits to clear the RXSPIx/TXSPIx registers and the buffer status.

3. Clear all errors by writing to the W1C-type bits in the SPISTAT
register. This ensures that error bits SPIOVF and SPIUNF in the
SPIDMACx registers are cleared when a new DMA is configured.

4. Reconfigure SPICTL to remove the clear condition of the
RXSPI/TXSPI register bits.

ADSP-21368 SHARC Processor Hardware Reference 6-27

Serial Peripheral Interface Ports

5. Configure DMA by writing to the DMA parameter registers and
the SPIDMACx register.

DMA Chaining

For information about chaining, refer to “Setting Up and Starting
Chained DMA over the SPI” on page 2-42.

SPI Transfer Formats
The SPI ports support four different combinations of serial clock phases
and polarity. The application code can select any of these combinations
using the CLKPL and CPHASE bits in the SPICTL register.

Figure 6-5 on page 6-28 shows the transfer format when CPHASE = 0 and
Figure 6-6 on page 6-29 shows the transfer format when CPHASE = 1. Each
diagram shows two waveforms for SPICLK—one for CLKPL = 0 and the
other for CLKPL = 1. The diagrams may be interpreted as master or slave
timing diagrams since the SPICLK, MISO, and MOSI pins are directly con-
nected between the master and the slave. The MISO signal is the output
from the slave (slave transmission), and the MOSI signal is the output from
the master (master transmission).

The SPICLK signal is generated by the master, and the SPIDS signal repre-
sents the slave device select input to the SPI slave from the SPI master.
The diagrams represent 8-bit transfers (WL = 0) with MSB first (MSBF = 1).
Any combination of the WL and MSBF bits of the SPICTL register is allowed.
For example, a 16-bit transfer with the LSB first is one possible
configuration.

The clock polarity and the clock phase should be identical for the master
and slave devices involved in the communication link. The transfer format
from the master may be changed between transfers to adjust to various
requirements of a slave device.

SPI Transfer Formats

6-28 ADSP-21368 SHARC Processor Hardware Reference

When CPHASE = 0, the slave select line, SPIDS, must be inactive (HIGH)
between each word in the transfer. When CPHASE = 1, SPIDS may either
remain active (LOW) between successive transfers or be inactive (HIGH).

Figure 6-5 shows the SPI transfer protocol for CPHASE = 0. Note that
SPICLK starts toggling in the middle of the data transfer, WL = 0, and
MSBF = 1.

Figure 6-6 shows the SPI transfer protocol for CPHASE = 1. Note that
SPICLK starts toggling at the beginning of the data transfer, WL = 0, and
MSBF = 1.

Figure 6-5. SPI Transfer Protocol for CPHASE = 0

1CLOCK CYCLE
NUMBER

SPICLK
CLKPL=0
(SPI MODE 0)

MOSI
FROM MASTER

MISO
FROM SLAVE

SPIDS
FROM MASTER

SPICLK
CLKPL=1
(SPI MODE 2)

2 3 4 5 6 7 8

* 6

6 5 4 3

5 4 3 2 1 LSB *

2 1 LSB *

MSB

MSB

* = UNDEFINED

ADSP-21368 SHARC Processor Hardware Reference 6-29

Serial Peripheral Interface Ports

Beginning and Ending an SPI Transfer
An SPI transfer’s defined start and end depend on: whether the device is
configured as a master or a slave, whether CPHASE mode is selected, and
which transfer initiation mode (TIMOD) is selected. For a master SPI with
CPHASE = 0, a transfer starts when either the TXSPI register is written or the
RXSPI register is read, depending on the TIMOD selection. At the start of
the transfer, the enabled slave-select outputs are driven active (LOW). How-
ever, the SPICLK starts toggling after a delay equal to one-half the SPICLK
period. For a slave with CPHASE = 0, the transfer starts as soon as the SPIDS
input transitions to low.

For CPHASE = 1, a transfer starts with the first active edge of SPICLK for
both slave and master devices. For a master device, a transfer is considered
complete after it sends and simultaneously receives the last data bit. A
transfer for a slave device is complete after the last sampling edge of
SPICLK.

Figure 6-6. SPI Transfer Protocol for CPHASE = 1

1CLO CK CYCLE
NUMBER

SPICLK
CLKPL=0

(SPI MODE 1)

MOSI
FROM MASTER

MISO
FROM SLAVE

SPIDS
TO SLAVE

SPICLK
CLKPL=1

(SPI MODE 3)

2 3 4 5 6 7 8

* 6

6 5 4 3

5 4 3 2 1 LSB *

2 1 LSB

MSB

MSB

* = UNDEF INED

*

SPI Transfer Formats

6-30 ADSP-21368 SHARC Processor Hardware Reference

The RXS bit defines when the receive buffer can be read. The TXS bit
defines when the transmit buffer can be filled. The end of a single word
transfer occurs when the RXS bit is set. This indicates that a new word has
been received and latched into the receive buffer, RXSPI. The RXS bit is set
shortly after the last sampling edge of SPICLK. The latency is typically a
few core clock cycles and is independent of CPHASE, TIMOD, and the baud
rate. If configured to generate an interrupt when RXSPI is full
(TIMOD = 00), the interrupt becomes active one core clock cycle after RXS is
set. When not relying on this interrupt, the end of a transfer can be
detected by polling the RXS bit.

To maintain software compatibility with other SPI devices, the SPI trans-
fer finished bit (SPIF) is also available for polling. This bit may have
slightly different behavior from that of other commercially available
devices. For a slave device, SPIF is set at the same time as RXS. For a master
device, SPIF is set one-half of the SPICLK period after the last SPICLK edge,
regardless of CPHASE or CLKPL.

The baud rate determines when the SPIF bit is set. In general, when
(SPIBAUD < 4) SPIF is set after RXS. The SPIF bit is set before the RXS bit is
set, and consequently before new data has been latched into the RXSPI
buffer. Therefore, for SPIBAUD = 2 or SPIBAUD = 3, the processor must wait
for the RXS bit to be set (after SPIF is set) before reading the RXSPI buffer.
For larger SPIBAUD settings (SPIBAUD > 4), RXS is set before SPIF is set.

ADSP-21368 SHARC Processor Hardware Reference 6-31

Serial Peripheral Interface Ports

SPI Word Lengths
The processor’s SPI port can transmit and receive the word widths
described in the following sections.

8-Bit Word Lengths
Programs can use 8-bit word lengths when transmitting or receiving.
When transmitting, the SPI port sends out only the lower eight bits of the
word written to the SPI buffer.

For example, if the processor executes the following instructions:

r0 = 0x12345678

dm(TXSPI) = r0;

the SPI port transmits 0x78.

When receiving, the SPI port packs the 8-bit word to the lower 32 bits of
the RXSPI buffer while the upper bits in the registers are zeros.

For example, if an SPI host sends the processor the 32-bit word
0x12345678, the processor receives the following words:

0x00000078 //first word

0x00000056 //second word

0x00000034 //third word

0x00000012 //fourth word

This code works only if the MSBF bit is zero in both the transmitter and
receiver. If MSBF = 1 in the transmitter and receiver, the received words fol-
low the order 0x12, 0x34, 0x56, 0x78.

SPI Word Lengths

6-32 ADSP-21368 SHARC Processor Hardware Reference

16-Bit Word Lengths
Programs can use 16-bit word lengths when transmitting or receiving.
When transmitting, the SPI port sends out only the lower 16 bits of the
word written to the SPI buffer.

For example, if the processor executes the following instructions:

r0 = 0x12345678

dm(TXSPI) = r0;

the SPI port transmits 0x5678.

When receiving, the SPI port packs the 16-bit word to the lower 32 bits of
the RXSPI buffer while the upper bits in the register are zeros.

For example, if an SPI host sends the processor the 32-bit word
0x12345678, the processor receives the following words:

0x00005678 //first word

0x00001234 //second word

32-Bit Word Lengths
Programs can use 32-bit word lengths when transmitting or receiving. No
packing of the RXSPI or TXSPI registers is necessary as the entire 32-bit reg-
ister is used for the data word.

Packing
In order to communicate with 8-bit SPI devices and store 8-bit words in
internal memory, a packed transfer feature is built into the SPI port. Pack-
ing is enabled through the PACKEN bit in the SPICTL register. The SPI port
unpacks data when it transmits and packs data when it receives. When
packing is enabled, two 8-bit words are packed into one 32-bit word.

ADSP-21368 SHARC Processor Hardware Reference 6-33

Serial Peripheral Interface Ports

When the SPI port is transmitting, two eight-bit words are unpacked from
one 32-bit word. When receiving, words are packed into one 32-bit word
from two eight-bit words.

An example of unpacking the data before transmitting:

The value 0xXXLMXXJK (where XX is any random value and JK and LM
are the data words to be transmitted out of the SPI port) is written
to the TXSPI register. The processor transmits 0xJK first and then
transmits 0xLM.

An example of packing on the received data (SGN is sign extend data where
1 = sign extend and 0 = no sign extend):

The receiver packs the two words received, 0xJK and then 0xLM,
into a 32-bit word. They appear in the RXSPI register as:

0x00LM00JK => if SGN is configured to 0 or L, J < 7
0xFFLMFFJK => if SGN is configured to 1 and L, J > 7

SPI Interrupts
The SPI ports can generate interrupts in five different situations. During
core-driven transfers, an SPI interrupt is triggered:

1. When the TXSPI buffer has the capacity to accept another word
from the core.

2. When the RXSPI buffer contains a valid word to be retrieved by the
core.

The TIMOD (transfer initiation and interrupt) register determines whether
the interrupt is based on the TXSPI or RXSPI buffer status. For more infor-
mation, refer to the TIMOD bit descriptions in the SPICTL register in
Table A-10 on page A-54.

SPI Interrupts

6-34 ADSP-21368 SHARC Processor Hardware Reference

During IOP-driven transfers (DMA), an SPI interrupt is triggered:

3. At the completion of a single DMA transfer,

4. At the completion of a number of DMA sequences (if DMA chain-
ing is enabled),

5. When a DMA error has occurred.

Again, the SPIDMAC register must be initialized properly to enable DMA
interrupts.

Each of these five interrupts are serviced using the interrupt associated
with the module being used. The primary SPI uses the SPIHI (programma-
ble interrupt 1 by default, 0x90030) interrupt and the secondary SPI uses
the SPILI (programmable interrupt 18 by default, 0x90074) interrupt.
Whenever an SPI interrupt occurs (regardless of the cause), the SPILI or
SPIHI interrupts are latched. To service the primary SPI port, unmask (set
= 1) the SPIHI bit (bit 12) in the IMASK register. To service the secondary
SPI port, unmask (set = 1) the SPILIMSK bit (bit 19) in the LIRPTL register.
For a list of these bits, see Table 2-3 on page 2-9 and “LIRPTL Register
Bit Descriptions” on page B-8.

To globally enable interrupts, set (= 1) the IRPTEN bit in the MODE1 register.
When using DMA transfers, programs must also specify whether to gener-
ate interrupts based on transfer or error status. For DMA transfer status
based interrupts, set the INTEN bit in the SPIDMAC register; otherwise, set
the INTERR bit to trigger the interrupt if one of the error conditions occurs
during the transmission like multimaster error (MME), transmit buffer
underflow (TUNF – only if SPIRCV = 0), or receive buffer overflow (ROVF –
only if SPIRCV = 1). During core-driven transfers, the TUNF and ROVF error
conditions do not generate interrupts.

ADSP-21368 SHARC Processor Hardware Reference 6-35

Serial Peripheral Interface Ports

• See “Interrupt Registers” on page B-6 for IRPTL and LIRPTL register
bit descriptions.

• See “SPI DMA Configuration Registers (SPIDMAC, SPID-
MACB)” on page A-62 for SPIDMAC register bit descriptions.

Error Signals and Flags
This section describes the error signals and flags that determine the cause
of transmission errors for an SPI port. The bits MME, TUNF, and ROVF are set
in the SPISTAT register when a transmission error occurs. Corresponding
bits (SPIMME, SPIUNF, and SPIOVF) in the SPIDMAC register are set when an
error occurs during a DMA transfer. These W1C bits generate an SPI
interrupt when any one of them are set.

• See “SPI Port Status (SPISTAT, SPISTATB) Registers” on
page A-56 for more information about the SPISTAT register bits.

• See “SPI DMA Configuration Registers (SPIDMAC, SPID-
MACB)” on page A-62 for more information about the SPIDMAC
register bits.

Mode Fault Error (MME)
The MME bit is set in the SPISTAT register when the SPIDS input pin of a
device that is enabled as a master is driven low by some other device in the
system. This occurs in multimaster systems when another device is also
trying to be the master.

Error Signals and Flags

6-36 ADSP-21368 SHARC Processor Hardware Reference

The SPI ports are able to respond appropriately to this situation. To
enable this feature, set the ISSEN bit in the SPICTL register. As soon as this
error is detected, the following actions are taken:

1. The SPIMS control bit in SPICTL is cleared, configuring the SPI
interface as a slave.

2. The SPIEN control bit in SPICTL is cleared, disabling the SPI
system.

3. The MME status bit in SPISTAT is set.

4. An SPI interrupt is generated.

These four conditions persist until the MME bit is cleared by a write
1-to-clear (W1C-type) software operation. Until the MME bit is cleared, the
SPI cannot be re-enabled, even as a slave. Hardware prevents the program
from setting either SPIEN or SPIMS while MME is set.

When MME is cleared, the interrupt is deactivated. Before attempting to
re-enable the SPI as a master, the state of the SPIDS input pin should be
checked to ensure that it is high; otherwise, once SPIEN and SPIMS are set,
another mode-fault error condition occurs immediately. The state of the
input pin is reflected in the input slave-select status bit (bit 7) in the SPI-
FLG register.

As a result of SPIEN and SPIMS being cleared, the SPI data and clock
pin drivers (MOSI, MISO, and SPICLK) are disabled. However, the
slave-select output pins revert to control by the processor flag I/O
module registers. This may cause contention on the slave-select
lines if these lines are still being driven by the processor. In order to
ensure that the slave-select output drivers are disabled once a MME
error occurs, the program must configure these pins as inputs by
setting (= 1) the flag output select bits, FLAG3–0O, in the FLAGS reg-
ister prior to configuring the SPI port. See the FLAGs value
register description in the ADSP-2136x SHARC Processor Program-
ming Reference “Registers” Appendix.

ADSP-21368 SHARC Processor Hardware Reference 6-37

Serial Peripheral Interface Ports

Transmission Error Bit (TUNF)
The TUNF bit is set in the SPISTAT register when all of the conditions of
transmission are met and there is no new data in the TXSPI buffer (TXSPI is
empty). In this case, the transmission contents depend on the state of the
SENDZ bit in the SPICTL register. The TUNF bit is cleared by a W1C-type
software operation.

Reception Error Bit (ROVF)
The ROVF flag is set in the SPISTAT register when a new transfer has com-
pleted before the previous data could be read from the RXSPI register. This
bit indicates that a new word was received while the receive buffer was
full. The ROVF flag is cleared by a W1C-type software operation. The state
of the GM bit in the SPICTL register determines whether the RXSPI register is
updated with the newly received data or whether that new data is
discarded.

Transmit Collision Error Bit (TXCOL)
The TXCOL flag is set in the SPISTAT register when a write to the TXSPI reg-
ister coincides with the load of the shift register. The write to TXSPI can be
initiated by the core or by DMA. This bit indicates that corrupt data may
have been loaded into the shift register and transmitted. In this case, the
data in TXSPI may not match what was transmitted. This error can easily
be avoided by proper software control. The TXCOL bit is cleared by a
W1C-type software operation.

This bit is never set when the SPI is configured as a slave with
CPHASE = 0. The collision may occur, but it cannot be detected.

Programming Notes

6-38 ADSP-21368 SHARC Processor Hardware Reference

Programming Notes
The following sections provide information to help the programmer use
the SPI in an ADSP-21367/8/9 and ADSP-2137x processor system.

Routing SPI Signals Using The DPI
All signals of both SPI ports are routed to the DPI pins using the SRU2.
Special considerations must be made when routing the signals, especially
with regards to using the correct pin enables that work with the SPI mode
being used. In addition, open drain mode also has special requirements for
DPI routing. See “Configuring the SPI” on page 4-72 for more
information.

Programming Examples
The following three programming examples are for the ADSP-21369 pro-
cessor. The example shown in Listing 6-1 transmits a buffer of data from
the SPI port in master mode using DMA. In this example, the I/O proces-
sor (IOP) automatically moves data from internal memory to the SPI’s
four-deep DMA FIFO.

The second example, shown in Listing 6-2 on page 6-41, also transmits a
buffer, but the transfer is core-driven using interrupts. In this example,
only the SPI’s one-deep transmit buffer (TXSPI) is serviced by the core and
the four-deep DMA FIFO is not used. The core supplies the SPI port with
data in a short loop which causes the core to hang at each write to the
transmit buffer until the SPI is ready for new data.

The third example, shown in Listing 6-3 on page 6-43, receives multiple
buffers using DMA chaining. DMA chaining on the ADSP-21367/8/9
processor’s SPI is initialized differently than on other SHARC processors,
as described in Chapter 2, I/O Processor.

ADSP-21368 SHARC Processor Hardware Reference 6-39

Serial Peripheral Interface Ports

Listing 6-1. SPI Master Mode Core-Driven Transmit

/* SPI Control Registers */

#define SPICTL (0x1000)

#define SPIFLG (0x1001)

#define SPIBAUD (0x1005)

#define TXSPI (0x1003)

/*SPICTL bits*/

#define TIMOD1 (0x0001) /* Use TX buffer for transfers */

#define DMISO (0x0020) /* Disable MISO pin */

#define WL32 (0x0100) /* SPI Word Length = 32 */

#define SPIMS (0x1000) /* SPI Master if 1, Slave if 0 */

#define SPIEN (0x4000) /* SPI port Enable */

/*SPIFLG bits */

#define DS0EN (0x0001) /* use FLG0 as SPI device-select*/

/* Default Buffer Length */

#define BUFSIZE 10

.SECTION/DM seg_dmda;

/* Transmit Buffer */

.var tx_buf[BUFSIZE] = 0x11111111,

 0x22222222,

 0x33333333,

 0x44444444,

 0x55555555,

 0x66666666,

 0x77777777,

 0x88888888,

 0x99999999,

 0xAAAAAAAA;

Programming Examples

6-40 ADSP-21368 SHARC Processor Hardware Reference

/* Main code section */

.global _main;

.SECTION/PM seg_pmco;

_main:

/* Init SPI MASTER TX */

r0=0;

dm(SPICTL) = r0;

dm(SPIFLG) = r0;

/* Set up DAG registers */

i4 = tx_buf;

m4 = 1;

ustat3 = DMISO| /* Disable MISO on transfers */

 WL32| /* 32-bit words */

 SPIMS| /* Master mode (internal SPICLK) */

 SPIEN| /* Enable SPI port */

 TIMOD1; /* Initialize SPI port to begin

 transmitting when DMA is enabled */

dm(SPICTL) = ustat3;

/* set the SPI baud rate to CCLK/8*64 (650.39KHz @ 333MHz)*/

ustat3 = 0x80;

dm(SPIBAUD) = ustat3;

/* Set up loop to transmit data */

lcntr = LENGTH(tx_buf), do txloop until lce;

/* Retrieve data using DAG1 and send TX through SPI */

r0 = dm(i4,m4);

dm(TXSPI) = r0;

ustat3=dm(SPISTAT);

bit tst ustat3 SPITXS;

if tf jump (pc,-2);

txloop: nop;

_main.end: jump (pc,0);

ADSP-21368 SHARC Processor Hardware Reference 6-41

Serial Peripheral Interface Ports

Listing 6-2. SPI Master Mode DMA-Driven Transmit

/* SPI Control registers */

#define SPICTL (0x1000) /* SPI Control register */

#define SPIFLG (0x1001) /* SPI Flag register */

#define SPIBAUD (0x1005) /* SPI baud setup register */

/* SPI DMA registers */

#define IISPI (0x1080) /* Internal DMA address */

#define IMSPI (0x1081) /* Internal DMA access modifier */

#define CSPI (0x1082) /* Number of words to transfers */

#define CPSPI (0x1083) /* Points to next DMA parameters*/

#define SPIDMAC (0x1084) /* SPI DMA control register */

/*SPICTL bits */

#define TIMOD2 (0x0002) /* Use DMA for transfers */

#define DMISO (0x0020) /* Disable MISO pin */

#define WL32 (0x0100) /* SPI Word Length = 32 */

#define SPIMS (0x1000) /* SPI Master if 1, Slave if 0 */

#define SPIEN (0x4000) /* SPI port Enable */

/*SPIFLG bits */

#define DS0EN (0x0001) /* use FLG0 as SPI device-select*/

/*SPIDMAC bits */

#define SPIDEN (0x0001) /* enable DMA on the SPI port */

/* Default buffer size */

#define BUFSIZE 0x100

/*==*/

/* Source data to be transmitted through SPI DMA */

.section/dm seg_dmda;

.var src_buf[BUFSIZE] = "source.dat";

Programming Examples

6-42 ADSP-21368 SHARC Processor Hardware Reference

/* Application code */

.global _main;

.segment/pm seg_pmco;

_main:

/* Init SPI MASTER TX DMA */

r0 = 0;

dm(SPICTL) = r0;

dm(SPIFLG) = r0;

dm(SPIDMAC) = r0;

r0 = DS0EN;

dm(SPIFLG) = r0; /*use flag0 as spi device select */

ustat3 = src_buf; dm(IISPI) = ustat3; /* point to 'src_buf'*/

ustat3 = LENGTH(src_buf); dm(CSPI) = ustat3; /* count = 256 */

ustat3 = 1; dm(IMSPI) = ustat3; /* step size = 1 */

/* set the SPI baud rate to CCLK/8*64 (650.39KHz @ 333MHz)*/

ustat3 = 0x80;

dm(SPIBAUD) = ustat3;

ustat3 = DMISO| /* Disable MISO on transfers */

 WL32| /* 32-bit words */

 SPIMS| /* Master mode (internal SPICLK) */

 SPIEN| /* Enable SPI port */

 TIMOD2; /* Initialize SPI port to begin

 transmitting when DMA is enabled */

dm(SPICTL) = ustat3;

ustat3 = SPIDEN; dm(SPIDMAC) = ustat3; /* begin DMA */

/*==*/

_main.end: jump (pc,0);

ADSP-21368 SHARC Processor Hardware Reference 6-43

Serial Peripheral Interface Ports

Listing 6-3. SPI DMA Chaining Example

/* SPI Control registers */

#define SPICTL (0x1000) /* SPI Control register */

#define SPIFLG (0x1001) /* SPI Flag register */

#define SPIBAUD (0x1005) /* SPI baud setup register */

/* SPI DMA registers */

#define IISPI (0x1080) /* Internal DMA address */

#define IMSPI (0x1081) /* Internal DMA access modifier */

#define CSPI (0x1082) /* Number of words to transfers */

#define CPSPI (0x1083) /* Points to next DMA parameters*/

#define SPIDMAC (0x1084) /* SPI DMA control register */

/*SPIFLG bits */

#define DS0EN (0x0001) /* enable SPI device select 0 */

#define SPIFLG0 (0x0100) /* manually set SPIFLG0 state */

#define SPIFLG1 (0x0200) /* manually set SPIFLG1 state */

#define SPIFLG2 (0x0400) /* manually set SPIFLG2 state */

#define SPIFLG3 (0x0800) /* manually set SPIFLG3 state */

/*SPIDMAC bits */

#define SPIDEN (0x0001) /* enable DMA on the SPI port */

#define SPIRCV (0x0002) /* set to have DMA receive */

#define SPICHEN (0x0010) /* set to enable DMA chaining */

/*SPICTL bits */

#define TIMOD2 (0x0002) /* Use DMA for transfers */

#define SENDZ (0x0004) /* when TXSPI empty, MOSI sends 0 */

#define WL32 (0x0100) /* SPI Word Length = 32 */

#define SPIMS (0x1000) /* SPI Master if 1, Slave if 0 */

#define SPIEN (0x4000) /* SPI port Enable */

#define CLKPL (0x0800) /* if 1, rising edge samples data */

Programming Examples

6-44 ADSP-21368 SHARC Processor Hardware Reference

#define CPHASE (0x0400) /* if 1, data's sampled on second

 (middle) edge of SPICLK cycle*/

/*==*/

.section/dm seg_dmda;

/* Destinations for incoming data */

.var dest_bufC[8];

.var dest_bufB[8];

.var dest_bufA[8];

/* Transfer Control Blocks (TCB's) */

.var first_tcb[] =

 (0x7FFFF&second_tcb + 3), /* for CPSPI (next tcb) */

 LENGTH(dest_bufB), /* for CSPI (next count) */

 1, /* for IMSPI (next modify) */

 dest_bufB; /* for IISPI (next index) */

.var second_tcb[] = 0, /* null CPSPI ends chain */

 LENGTH(dest_bufC), /* count for final DMA */

 1, /* IM for final DMA */

 dest_bufC; /* II for final DMA */

/* NOTE: Chain Pointer registers must point to the LAST

 location in the TCB, "tcb + 3". */

/*Main code section */

.global _main;

.section/pm seg_pmco;

_main:

/* clear SPI settings */

r0 = 0;

dm(SPICTL) = r0;

dm(SPIFLG) = r0;

dm(SPIDMAC) = r0;

ADSP-21368 SHARC Processor Hardware Reference 6-45

Serial Peripheral Interface Ports

/* setup first DMA in chain */

ustat3 = 8; dm(CSPI) = ustat3; /* count = 8 words */

ustat3 = 1; dm(IMSPI) = ustat3; /* step size = 1 */

ustat3 = dest_bufA; dm(IISPI) = ustat3; /* point to dest_bufA */

/* set the SPI baud rate to CCLK/8*64 (650.39KHz @ 333MHz)*/

ustat3 = 0x80;

dm(SPIBAUD) = ustat3;

/* configure processor’s SPI slave-select signals */

ustat3 = DS0EN| /*enable SPI slave device select zero */

SPIFLG3|SPIFLG2|SPIFLG1; /* Set SPIFLG0 low to */

dm(SPIFLG) = ustat3; /*select SPI slave on FLAG0 pin */

/* configure SPI port to power-on settings */

ustat3 = CPHASE| /* sample MISO on second edge of SPICLK */

 CLKPL| /* sampling edge of SPICLK is rising */

 WL32| /* 32-bit words */

 SPIMS| /* Master mode (internal SPICLK) */

 SPIEN| /* Enable SPI port */

 SENDZ| /* when TXSPI empty, MOSI sends zeros */

 TIMOD2; /* Start SPICLK when DMA is enabled */

dm(SPICTL) = ustat3;

/*configure SPI for chained receive DMA operation */

ustat3 = SPIRCV| /* DMA direction = receive */

 SPICHEN| /* enable DMA chaining */

 SPIDEN; /* enabling DMA initiates the transfer */

dm(SPIDMAC) = ustat3;

/* 1st DMA starts when a valid address is written to CPSPI */

ustat3 = (0x7FFFF&(first_tcb+3));

dm(CPSPI) = ustat3; /* point to tcb_A */

_main.end: jump(pc,0);

Programming Examples

6-46 ADSP-21368 SHARC Processor Hardware Reference

ADSP-21368 SHARC Processor Hardware Reference 7-1

7 INPUT DATA PORT

The signal routing unit (SRU) provides paths among both on-chip and
off-chip peripherals. To make this feature effective in a real-world system,
a low overhead method of making data from various serial and parallel for-
mats and routing them back to the main core memory is needed. The
input data port (IDP) provides this mechanism for a large number of
asynchronous channels.

This chapter describes how data is routed into the core’s memory space.
Figure 7-1 provides a graphical overview of the input data port architec-
ture. Notice that each channel is independent and each contains a separate
clock and frame sync input.

Channels 0 through 7 can accept serial data in audio format. Channel 0
can also be configured to accept parallel data. The parallel input bypasses
the serial-to-parallel converter and latches up to 20 bits per clock cycle.

The parallel data is acquired through the parallel data acquisition port
(PDAP) which provides a means of moving high bandwidth data to the
core’s memory space. The data may be sent to memory as one 32-bit word
per input clock cycle or packed together (for up to four clock cycles worth
of data). Figure 7-2 on page 7-3 illustrates the data flow for IDP channel
0, where either the PDAP or serial input can be selected via IDP_PDAP_EN
(bit 31 of the IDP_PP_CTL register). At the falling edge of IDP_PDAP_EN, the
FIFO is cleared. Data transfer from the channels to the FIFO happens on
a fixed priority with channel 0 having the highest priority and channel 7
the lowest.

7-2 ADSP-21368 SHARC Processor Hardware Reference

Figure 7-1. Input Data Port

CH7

Serial
To

Parallel
Converter

CLK
FS

DATA
SMODE7

PDAP

FIFO
(8x32)
DATA
(8x3)

CH. I/O

32

32

CH0

Serial
To

Parallel
Converter

CLK
FS

DATA
SMODE0

32

32

32

32

32

32

32

CH6

Serial
To

Parallel
Converter

CLK
FS

DATA
SMODE6

CH5

Serial
To

Parallel
Converter

CLK
FS

DATA
SMODE5

CH4

Serial
To

Parallel
Converter

CLK
FS

DATA
SMODE4

CH3

Serial
To

Parallel
Converter

CLK
FS

DATA
SMODE3

CH2

Serial
To

Parallel
Converter

CLK
FS

DATA
SMODE2

CH1

Serial
To

Parallel
Converter

CLK
FS

DATA
SMODE1

CLK
HOLD

PARALLEL DATA
HANDLING

SERIAL DATA
HANDLING

IDP_FIFO

D
M

A

ADSP-21368 SHARC Processor Hardware Reference 7-3

Input Data Port

The IDP’s DMA engine implements DMA for all eight channels. Each of
the eight channels has a set of DMA parameter registers for directing the
data to memory location.

The following sections describe each of the input data port functions.

Serial Inputs
The IDP provides up to eight serial input channels—each with its own
clock, frame sync, and data inputs. The eight channels are automatically
multiplexed into a single 32-bit by eight-deep FIFO. Data is always for-
matted as a 64-bit frame and divided into two 32-bit words. The serial
protocol is designed to receive audio channels in I2S, left-justified sample
pair, or right-justified mode. One frame sync cycle indicates one 64-bit
left/right pair, but data is sent to the FIFO as 32-bit words (that is,
one-half of a frame at a time). The processor supports 24- and 32-bit I2S,
24- and 32-bit left-justified, and 24-, 20-, 18- and 16-bit right-justified
formats.

Figure 7-2. Detail of IDP Channel 0

PDAP ENABLE

DAI PINS
[20:1]

DATA
[31:12]

[19:0]
20

20 PACKING
UNIT

SERIAL
INPUT

29

32

32 TO
FIFO

PARALLEL DATA ACQUISITION PORT

Serial Inputs

7-4 ADSP-21368 SHARC Processor Hardware Reference

An audio signal that is normally 24 bits wide is contained within the
32-bit word. Four more bits are available for status and formatting data
(compliant with the IEC 90958, S/PDIF, and AES3 standards). An addi-
tional bit identifies the left/right one-half of the frame. If the data is not in
IEC standard format, the serial data can be any data word up to 28 bits
wide. Regardless of mode, bit 3 always specifies whether the data is
received in the first half (left channel) or the second half (right channel) of
the same frame, as shown in Figure 7-3. The remaining three bits are used
to encode one of the eight channels being passed through the FIFO to the
core. The FIFO output may feed eight DMA channels, where the appro-
priate DMA channel (corresponding to the channel number) is selected
automatically.

Note that each input channel has its own clock and frame sync input, so
unused IDP channels do not produce data and therefore have no impact
on FIFO throughput. The clock and frame sync of any unused input
should be assigned to low to avoid unintentional acquisition. The input
data port supports a maximum clock speed of 41.6 MHz.

The framing format is selected by using the IDP_SMODEx bits (three bits per
channel) in the IDP_CTL0 register. The bits (31–8) of the IDP_CTL0 register
control the input format modes for each of the eight channels. The eight
groups of three bits indicate the mode of the serial input for each of the
eight IDP channels, as shown in Table 7-1.

Figure 7-4 through Figure 7-9 show the FIFO data packing for the differ-
ent serial modes.

Figure 7-3. Word Format

31 8 7 4 3 2 0

AUDIO DATA (24 BITS) AUDIO STREAM
STATUS L/R

IDP
CHNL

ADSP-21368 SHARC Processor Hardware Reference 7-5

Input Data Port

Table 7-1. Serial Modes

Bit Field Values
IDP_SMODEx

Mode

000 Left-justified sample pair

001 I2S

010 Left-justified 32 bits. This is a single data and not a left/right
channel pair. It can be read as 32-bit data.

011 I2S-32 bit. This is a single data and not a left/right channel
pair. It can be read as 32-bit data.

100 Right-justified sample pair 24 bits

101 Right-justified sample pair 20 bits

110 Right-justified sample pair 18 bits

111 Right-justified sample pair 16 bits

Figure 7-4. FIFO Data Packing for I2S and Left-Justified

Figure 7-5. FIFO Data Packing for Right-Justified

Channel
Encoding
Bits (2–0)

L/R Encoding

Block Status

Channel

User Data

Validity

24-Bit
Audio
Data (31–8)

34567

Status

Channel
Encoding
Bits (2–0)

L/R Encoding

Spare Bits (7–4)
24-Bit
Audio
Data (31–8)

3Set to LOW

Serial Inputs

7-6 ADSP-21368 SHARC Processor Hardware Reference

The polarity of left/right encoding is independent of the serial mode
frame sync polarity selected in IDP_SMODE for that channel (Table 7-1).
Note that I2S mode uses a low frame sync (left/right) signal to dictate the
first (left) channel, and left-justified sample pair mode uses a HIGH frame
sync (left/right) signal to dictate the first (left) channel of each frame. In
either mode, the left channel has bit 3 set (= 1) and the right channel has
bit 3 cleared (= 0).

Figure 7-6. FIFO Data Packing for Right-Justified (20-Bit Data)

Figure 7-7. FIFO Data Packing for Right-Justified (18-Bit Data)

Figure 7-8. FIFO Data Packing for Right-Justified (16-Bit Data)

Figure 7-9. FIFO Data Packing for I2S and Left-Justified (32-Bit Data)

Channel
Encoding
Bits (2–0)

L/R Encoding

Spare Bits (11–4)
20-Bit
Audio
Data (31–12)

3Set to LOW

Channel
Encoding
Bits (2–0)

L/R Encoding

Spare Bits (13–4) 18-Bit
Audio
Data (31–14)

3Set to LOW

Channel
Encoding
Bits (2–0)

L/R Encoding

Spare Bits (15–4) 16-Bit
Audio
Data (31–16)

3Set to LOW

16-Bit Audio Data (31–0)

ADSP-21368 SHARC Processor Hardware Reference 7-7

Input Data Port

Figure 7-10 shows the relationship between frame sync, serial clock, and
left-justified sample pair data.

Figure 7-11 shows the relationship between frame sync, serial clock, and
I2S data.

Figure 7-10. Timing in Left-justified Sample Pair Mode

Figure 7-11. Timing in I2S Mode

SERIAL CLOCK
IDPx_CLK_I

FRAME SYNC (L/R)
IDPx_FS_I

LEFT-JUSTIFIED
SAMPLE PAIR
SERIAL DATA

IDPx_DAT_I

MSBn

F RAME [n] FRAME [n]

LSBn MSBn

FRAME [n-1]

LSBn-1

RIGHT LEFT RIGHT

0 63 62 3261 31

SERIAL CLOCK
IDPx_CLK_I

FRAME SYNC (L/R)
IDPx_F S_I

I2S SERIAL DATA
IDPx_DAT_I MSBn

F RAME [n] FRAME [n]

LSBn MSBn

FRAME [n-1]

LSBn-1

0 63 62 32 3133

RIGHT LEFT RIGHT

Parallel Data Acquisition Port (PDAP)

7-8 ADSP-21368 SHARC Processor Hardware Reference

Parallel Data Acquisition Port (PDAP)
The input to channel 0 of the IDP is multiplexed, and may be used either
in the serial mode, described in “Serial Inputs” on page 7-3, or in a direct
parallel input mode. Serial or parallel input is selected by setting
IDP_PDAP_EN bit 31 in the IDP_PP_CTL register. When used in parallel
mode, the clock input for channel 0 is used to latch parallel subwords.
Multiple latched parallel subword samples may be packed into 32-bit
words for efficiency. The frame sync input is used to hold off latching of
the next sample (that is, ignore the clock edges). The data then flows
through the FIFO and is transferred by a dedicated DMA channel into the
core’s memory as with any IDP channel. As shown in Figure 7-12, the
PDAP can accept input words up to 20 bits wide, or can accept input
words that are packed as densely as 4 input words up to 8 bits wide.

The IDP_PP_CTL register also provides a reset bit that zeros any data that is
waiting in the packing unit to be latched into the FIFO. When asserted,
the IDP_PDAP_RESET bit (bit 30 in the IDP_PP_CTL register) causes the reset
circuit to strobe, then automatically clear itself. Therefore, this bit always
returns a value of zero when read. The IDP_PORT_SELECT bit

Figure 7-12. Parallel Data Acquisition Port (PDAP) Functions

DATA[31:12]

DAI PINS
[20:1]

IDP_PORT_SELECT
(IDP_PP_CTL[26])

1

[19:0]

MASK

20

IDP_Pxx_MASK
(IDP_PP_CTL[19:0])

20 PACKING
UNIT

IDP_PP_PACKING
(IDP_PP_CTL[28:27])

2

SERIAL
INPUT

29

32

IDP_PP_EN
(IDP_PP_CTL[31])

32 TO
FIFO

20 1

ADSP-21368 SHARC Processor Hardware Reference 7-9

Input Data Port

(bit 26 in the IDP_PP_CTL register) selects between the two sets of pins that
may be used as the parallel input port. When IDP_PORT_SELECT is set (= 1),
the data bits are read from DATA31–12 and the control signals come from
DATA11-8. When IDP_PORT_SELECT is cleared (= 0), the data bits are read
from DAI_P20–1. When IDP_PORT_SELECT is set to 1, the PDAP can be
operated through data pins alone (data and controls can be completely
routed through the DATA pins).

Masking
The IDP_PP_CTL register provides 20 mask bits that allow the input from
any of the 20 pins to be ignored. The mask is specified by setting the
IDP_Pxx_PDAPMASK bits (bits 19–0 of the IDP_PP_CTL register) for the 20
parallel input signals. For each of the parallel inputs, a bit is set (= 1) to
indicate the bit is unmasked and therefore its data can be passed on to
read, or a bit is masked (= 0) so its data is not read. After this masking pro-
cess, data gets passed along to the packing unit.

Packing Unit
The parallel data acquisition port (PDAP) packing unit receives masked
parallel subwords from the 20 parallel input signals and packs them into a
32-bit word. The IDP_PDAP_PACKING bit field (bits 28–27 of the
IDP_PP_CTL register), indicates how data is to be packed. Data can be
packed in any of four modes. Selection of packing mode is made based on
the application.

Packing Mode 11

Mode 11 provides for 20 bits coming into the packing unit and 32 bits
going out to the FIFO in a single cycle. On every clock edge, 20 bits of
data are moved and placed in a 32-bit register, left-aligned. That is, bit 19
maps to bit 31. The lower bits, 11–0, are always set to zero, as shown in
Figure 7-13.

Parallel Data Acquisition Port (PDAP)

7-10 ADSP-21368 SHARC Processor Hardware Reference

This mode sends one 32-bit word to FIFO for each input clock cycle—the
DMA transfer rate matches the PDAP input clock rate.

Packing Mode 10

On the first clock edge (cycle A), the packing unit latches parallel data up
to 16 bits wide (bits 19–4 of the parallel input) and places it in bits 15–0
(the lower half of the word), then waits for the second clock edge (cycle
B). On the second clock edge (cycle B), the packing unit takes the same
set of inputs and places the word into bits 31–16 (the upper half of the
word).

This mode sends one packed 32-bit word to FIFO for every two input
clock cycles—the DMA transfer rate is one-half the PDAP input clock
rate.

Figure 7-13. Packing Modes in PDAP

31 24 23 16 15 7 0

31 21 20 10 9 0

31 16 15 0

MODE 10
2x16-bit

MODE 01
tri-word

MODE 00
4x8-bit

B A

ABC

ABCD

MODE 11
1x20-bit

31 12 11 0

A RESERVED

8

ADSP-21368 SHARC Processor Hardware Reference 7-11

Input Data Port

Packing Mode 01

Mode 01 packs three acquired samples together. Since the resulting 32-bit
word is not divisible by three, up to 10 bits are acquired on the first clock
edge and up to 11 bits are acquired on each of the second and third clock
edges:

• On clock edge 1, bits 19–10 are moved to bits 9–0 (10 bits)

• On clock edge 2, bits 19–9 are moved to bits 20–10 (11 bits)

• On clock edge 3, bits 19–9 are moved to bits 31–21 (11 bits)

This mode sends one packed 32-bit word to FIFO for every three input
clock cycles—the DMA transfer rate is one-third the PDAP input clock
rate.

Packing Mode 00

Mode 00 moves data in four cycles. Each input word can be up to 8 bits
wide.

• On clock edge 1, bits 19–12 are moved to bits 7–0

• On clock edge 2, bits 19–12 are moved to bits 15–8

• On clock edge 3, bits 19–12 are moved to bits 23–16

• On clock edge 4, bits 19–12 are moved to bits 31–24

This mode sends one packed 32-bit word to FIFO for every four input
clock cycles—the DMA transfer rate is one-quarter the PDAP input clock
rate.

Parallel Data Acquisition Port (PDAP)

7-12 ADSP-21368 SHARC Processor Hardware Reference

Clocking Edge Selection
Notice that in all four packing modes described, data is read on a clock
edge, but the specific edge used (rising or falling) is not indicated. Clock
edge selection is configured using the IDP_PDAP_CLKEDGE bit (bit 29 of the
IDP_PP_CTL register). Setting this bit (= 1) causes the data to latch on the
falling edge. Clearing this bit (= 0) causes data to latch on the rising edge
(default).

Hold Input
A synchronous clock enable signal can be passed from any DAI pin to the
PDAP packing unit. This signal is called PDAP_HOLD.

The PDAP_HOLD signal is actually the same physical internal signal as
the frame sync for IDP channel 0. Its functionality is determined
by the PDAP enable bit (IDP_PDAP_EN).

When the PDAP_HOLD signal is HIGH, all latching clock edges are ignored
and no new data is read from the input pins. The packing unit operates as
normal, but it pauses and waits for the PDAP_HOLD signal to be deasserted
and waits for the correct number of distinct input samples before passing
the packed data to the FIFO.

Figure 7-14 shows the affect of the hold input (B) for four 8-bit words in
packing mode 00, and Figure 7-15 shows the affect of the hold input (B)
for two 16-bit words in packing mode 10.

ADSP-21368 SHARC Processor Hardware Reference 7-13

Input Data Port

Figure 7-14. Hold Timing for Four 8-Bit Words to 32 Bits (Mode 00)

PDAP_CLK

PDAP_DAT[19:12]

PDAP_HOLD

B0A0 C0 D0 A1 B1

PDAP_CLK

PDAP_DAT[19:12]

PDAP_HOLD

B0A0 C0 D0

B

A

Parallel Data Acquisition Port (PDAP)

7-14 ADSP-21368 SHARC Processor Hardware Reference

As shown in Figure 7-15, PDAP_DATA and PDAP_HOLD are driven by the
inactive edges of the clock (falling edge in the above figures) and these sig-
nals are sampled by the active edge of the clock (rising edge in the above
figures).

PDAP Strobe
Whenever the PDAP packing unit receives the number of subwords corre-
sponding to its select mode, it asserts the PDAP output strobe signal. This
signal can be routed through the SRU using the MISC unit to any of the
DAI pins. See “DAI/SRU1 Connection Groups” on page 4-18 for more
information.

Figure 7-15. Hold Timing for Two 16-Bit Words to 32 Bits (Mode 10)

PDAP_CLK

PDAP_DAT[19:4]

PDAP_HOLD

BA A B A B

PDAP_CLK

PDAP_DAT[19:4]

PDAP_HOLD

BA A B

B

A

ADSP-21368 SHARC Processor Hardware Reference 7-15

Input Data Port

FIFO Control and Status
Several bits can be used to control and monitor FIFO operations:

• IDP Enable. The IDP_ENABLE bit (bit 7 of the IDP_CTL0 register)
enables the IDP. This is a global control bit. This bit and the corre-
sponding IDP channel enable bit (IDP_ENx) in the IDP_CTL1
register must be set for data from a channel to get into the FIFO.

• IDP Buffer Hang Disable. The IDP_BHD bit (bit 4 in the IDP_CTL0
register) determines whether or not the core hangs on reads when
the FIFO is empty.

• Number of Samples in FIFO. The IDP_FIFOSZ bits (bits 31–28 in
the DAI_STAT register) monitor the number of valid data words in
the FIFO.

• FIFO Overflow Status. The SRU_OVFx bits in the DAI_STAT register
monitor the overflow error conditions in the FIFO for each of the
channels.

• FIFO Overflow Clear. The IDP_CLROVR bit (bit 6 of the IDP_CTL0
register) clears an indicated FIFO overflow error.

To enable the IDP, two separate bits in two different registers must be set.
The first is the IDP_ENABLE bit in the IDP_CTL0 register and the second is
the specific channel enable bit which is located in the IDP_CTL1 register.
When these bits are set (= 1), the IDP is enabled. When these bits are
cleared (= 0), the IDP is disabled, and data cannot come to the IDP_FIFO
register from the IDP channels. When the IDP_ENABLE bit transitions from
1 to 0, all data in the IDP FIFO is cleared. Writing a 1 to bit 31 of the
IDP_CTL1 register also clears the FIFO. This is a write-only bit and always
returns a zero on reads.

The IDP_BHD bit is used for buffer hang disable control. When there is no
data in the FIFO, reading the IDP_FIFO register causes the core to hang.
This condition continues until the FIFO contains valid data. Setting the

FIFO to Memory Data Transfer

7-16 ADSP-21368 SHARC Processor Hardware Reference

IDP_BHD bit (= 1) prevents the core from hanging on reads from an empty
IDP_FIFO register. Clearing this bit (= 0) causes the core to hang under the
conditions described previously.

The IDP_FIFOSZ bits track the number of words in the FIFO. This 4-bit
field identifies the number of valid data samples in the IDP FIFO.

The SRU_OVF bits (bits 8–15) in the DAI_STAT register provide IDP FIFO
overflow status information for each of the channels. These bits are set
(= 1), whenever an overflow occurs. When these bits are cleared (= 0), it
indicates there is no overflow condition. These read-only bits are W1C
bits, which do not automatically reset to 0 when an overflow condition
changes to a no-overflow condition. These bits must be reset manually,
using the IDP_CLROVR bit in the IDP_CTL0 register. Writing one to this bit
clears the overflow conditions for the channels in the DAI_STAT register.
Since IDP_CLROVR is a write-only bit, it always returns low when read.

FIFO to Memory Data Transfer
The data from each of the eight IDP channels is inserted into an eight-reg-
ister deep FIFO, which can only be transferred to the core’s memory space
sequentially. Data is moved into the FIFO as soon as it is fully received.
When more than one channel has data ready, the channels access the
FIFO with fixed priority, from a low to high channel number (that is,
channel 0 is the highest priority and channel 7 is the lowest priority).

One of two methods can be used to move data from the IDP FIFO to
internal memory:

• The core can remove data from the FIFO manually by reading the
memory-mapped register, IDP_FIFO. The output of the FIFO is
held in the (read-only) IDP_FIFO register. When this register is
read, the corresponding element is removed from the IDP FIFO,
and the next element is moved into the IDP_FIFO register.

ADSP-21368 SHARC Processor Hardware Reference 7-17

Input Data Port

A mechanism is provided to generate an interrupt when more than
a specified number of words are in the FIFO. This interrupt signals
the core to read the IDP_FIFO register.

This method of moving data from the IDP FIFO is described in
the next section, “IDP Transfers Using the Core”.

• Eight dedicated DMA channels can sort and transfer the data into
one buffer per source channel. When the memory buffer is full, the
DMA channel raises an interrupt in the DAI interrupt controller.

This method of moving data from the IDP FIFO is described in
“IDP Transfers Using DMA” on page 7-20.

IDP Transfers Using the Core
The output of the FIFO can be directly fetched by reading from the
IDP_FIFO register. The IDP_FIFO register is used only to read and remove
the top sample from the FIFO, which is eight locations deep.

As data is read from the IDP_FIFO register, it is removed from the FIFO
and new data is copied into the register. The contents of the IDP_NSET bits
(bits 3–0 in the IDP_CTL0 register) represent a threshold number of entries
(N) in the FIFO. When the FIFO fills to a point where it has more than N
words (data in FIFO exceeds the value set in the IDP_NSET bit field), a DAI
interrupt is generated. This DAI interrupt corresponds to the
IDP_FIFO_GTN_INT bit, the eighth-level interrupt in the DAI_IRPTL_L or
DAI_IRPTL_H registers. The core uses this interrupt to detect when data
needs to be read.

FIFO to Memory Data Transfer

7-18 ADSP-21368 SHARC Processor Hardware Reference

Starting an Interrupt-Driven Transfer

To start an interrupt-driven transfer:

1. Clear and halt FIFO by setting (= 1) and clearing (= 0) the
IDP_ENABLE bit (bit 7 in the IDP_CTL0 register).

2. Set the required values for:

• IDP_SMODEx bits in the IDP_CTL0 register to specify the frame
sync format for the serial inputs (left-justified sample pair,
right-justified sample pair, or I2S mode).

• IDP_Pxx_PDAPMASK bits in the IDP_PP_CTL register to specify
the input mask, if the PDAP is used.

• IDP_PORT_SELECT bits in the IDP_PP_CTL register to specify
input from the DAI pins, if the PDAP is used.

• IDP_PDAP_CLKEDGE bit (bit 29) in the IDP_PP_CTL register to
specify if data is latched on the rising or falling clock edge, if
the PDAP is used.

3. Keep the clock and frame sync inputs of all serial inputs and/or the
PDAP connected to low. Use the SRU_CLK2, SRU_CLK3, SRU_FS2,
and SRU_FS3 registers to specify these inputs. See “Group A Con-
nections—Clock Signals” on page 4-19 and “Group C
Connections—Frame Sync Signals” on page 4-31.

4. Connect all of the inputs to the IDP by writing to the SRU_DAT4,
SRU_DAT5, SRU_FS2, SRU_FS3, SRU_CLK2, and SRU_CLK3 registers.
Connect the clock and frame sync of any unused ports to low.

5. Set the desired value for the N_SET variable (the IDP_NSET bits,
3–0, in the IDP_CTL0 register).

ADSP-21368 SHARC Processor Hardware Reference 7-19

Input Data Port

6. Set the IDP_FIFO_GTN_INT bit (bit 8 of the DAI_IRPTL_RE register)
to HIGH and set the corresponding bit in the DAI_IRPTL_FE register
to low to unmask the interrupt. Set bit 8 of the DAI_IRPTL_PRI reg-
ister (IDP_FIFO_GTN_INT) as needed to generate a high priority or
low priority core interrupt when the number of words in the FIFO
is greater than the value of N set.

7. Enable the PDAP by setting the IDP_PDAP_EN bit (bit 31 in the
IDP_PP_CTL register), if required.

8. Enable the IDP by setting the IDP_ENABLE bit (bit 7 in the
IDP_CTL0 register) and the IDP_ENx bits in the IDP_CTL1 register.

Do not set the IDP_DMA_EN bit (bit 5 of the IDP_CTL0 register) as
this enables DMA transfers.

Core Transfer Notes

The following items provide general information about interrupt-driven
transfers.

• The three LSBs of FIFO data are the encoded channel number.
These are transferred “as is” for this mode. These bits can be used
by software to decode the source of data.

• The number of data samples in the FIFO at any time is reflected in
the IDP_FIFOSZ bit field (bits 31–28 in the DAI_STAT register),
which tracks the number of samples in FIFO.

When using the interrupt scheme, the IDP_NSET bits (bits 3–0 of
the IDP_CTL0 register) can be set to N, so N + 1 data can be read
from the FIFO in the interrupt service routine (ISR).

• If the IDP_BHD bit (bit 4 in the IDP_CTL0 register) is not set,
attempts to read more data than is available in the FIFO results in a
core hang.

FIFO to Memory Data Transfer

7-20 ADSP-21368 SHARC Processor Hardware Reference

• When the data transfer to the core is 32 bits, as in the case of
PDAP data or I2S and left-justified modes with 32 bits, there is no
channel information in the data. Therefore, PDAP or I2S and
left-justified 32 bit modes can not be used with other channels in
the core/interrupt-driven mode.

IDP Transfers Using DMA
The ADSP-21367/8/9 and ADSP-2137x processors support two types of
DMA transfers, simple and ping-pong.

Simple DMA

This DMA access is enabled when the IDP_DMA_EN bit (bit 5 of the
IDP_CTL0 register) is set (= 1) and the IDP_DMA_ENx bits in the IDP_CTLl
register are set to select a particular channel.

The DMA is performed according to the parameters set in the various
DMA registers and IDP control registers. The DMA transfer is completed
when the count register (IDP_DMA_Cx) reaches zero. The IDP_DMA_EN bit
and IDP_DMA_ENx bits must be reset before starting another DMA. An
interrupt is generated at the end of DMA transfer.

Starting a Simple DMA Transfer

To start a DMA transfer from the FIFO to memory:

1. Clear and halt the FIFO by setting (= 1) and then clearing (= 0) the
IDP_ENABLE bit (bit 7 in the IDP_CTL0 register).

2. While the IDP_DMA_EN and IDP_ENABLE bits are low, set the values
for the DMA parameter registers that correspond to channels 7–0.
If some channels are not going to be used, then the corresponding
parameter registers can be left in their default states:

ADSP-21368 SHARC Processor Hardware Reference 7-21

Input Data Port

• Index registers (IDP_DMA_Ix)

• Modifier registers (IDP_DMA_Mx)

• Counter registers (IDP_DMA_Cx)

For each of these registers, x is 0 to 7. Refer to “DMA
Channel Parameter Registers” on page 7-27.

3. Keep the clock and the frame sync input of the serial inputs and/or
the PDAP connected to low, by setting proper values in the
SRU_CLK2, SRU_CLK3, SRU_FS2, and SRU_FS3 registers.

4. Set required values for:

• IDP_SMODEx bits in the IDP_CTL0 register to specify the frame
sync format for the serial inputs (left-justified sample pair,
right-justified sample pair, or I2S modes).

• IDP_Pxx_PDAPMASK bits in the IDP_PP_CTL register to specify
the input mask, if the PDAP is used.

• IDP_PORT_SELECT bits in the IDP_PP_CTL register to specify
input from the DAI pins or the IDP, if the PDAP is used.

• IDP_PDAP_CLKEDGE bit (bit 29) in the IDP_PP_CTL register to
specify if data is latched on the rising or falling clock edge, if
the PDAP is used.

5. Connect all of the inputs to the IDP by writing to the SRU_DAT4,
SRU_DAT5, SRU_FS2, SRU_FS3, SRU_CLK2, and SRU_CLK3 registers.
Keep the clock and frame sync of the ports connected to low when
data transfer is not intended.

FIFO to Memory Data Transfer

7-22 ADSP-21368 SHARC Processor Hardware Reference

6. Enable DMA, IDP, and PDAP (if required) by setting each of the
following bits = 1:

• IDP_DMA_EN bit (bit 5 of the IDP_CTL0 register)

• IDP_DMA_ENx bits in IDP_CTL1 register to enable the DMA of
the selected channel

• IDP_PDAP_EN bit (bit 31 in IDP_PP_CTL register)

• IDP_ENx of IDP_CTL1 to enable the selected channel

• IDP_ENABLE bit (bit 7 in the IDP_CTL0 register)

A DAI interrupt is generated at the end of each DMA.

7. After the DMA completes, connect the clock and frame sync sig-
nals to 0.

Ping-Pong DMA

This mode gets activated when the IDP_DMA_EN bit of the IDP_CTL0 register
and the IDP_PINGx bit in the IDP_CTL1 register are set for a particular
channel.

In ping-pong DMA, the parameters have two memory index values (index
A and index B), one count value and one modifier value. The DMA starts
the transfer with the memory indexed by A. When the transfer is com-
pleted as per the value in the count register, the DMA restarts with the
memory location indexed by B. The DMA restarts with index A after the
transfer to memory with index B is completed as per the count value. This
repeats until the DMA is stopped by resetting the IDP_DMA_EN or
IDP_PINGx bits.

ADSP-21368 SHARC Processor Hardware Reference 7-23

Input Data Port

Starting Ping-Pong DMA Transfers

To start a ping-pong DMA transfer from the FIFO to memory:

1. Clear and halt the FIFO by setting (= 1) and then clearing (= 0) the
IDP_ENABLE bit (bit 7 in the IDP_CTL0 register).

2. While the IDP_DMA_EN and IDP_ENABLE bits are low, set the values
for the following DMA parameter registers that correspond to
channels 7–0. If some channels are not going to be used, then the
corresponding parameter registers can be left in their default states:

• First index registers IDP_DMA_AIx

• Second index registers IDP_DMA_BIx

• Modifier register IDP_DMA_Mx

• Counter register IDP_DMA_PCx. For each of these registers x
is 0–7 which corresponds to channels 0 to 7. See “IDP
Ping-Pong Count Registers (IDP_DMA_PCx)” on
page A-73.

3. Keep the clock and the frame sync input of the serial inputs and/or
the PDAP connected to low, by setting proper values in the
SRU_CLK2 and SRU_CLK3 as well as the SRU_FS2 and SRU_FS3 regis-
ters. For more information, see “DAI/SRU1 Connection Groups”
on page 4-18.

4. Set the required values for:

• IDP_SMODEx bits in the IDP_CTL0 register to specify the frame
sync format for the serial inputs (I 2S, left-justified sample
pair, or right-justified sample pair modes).

FIFO to Memory Data Transfer

7-24 ADSP-21368 SHARC Processor Hardware Reference

• IDP_Pxx_PDAPMASK bits in the IDP_PP_CTL register to specify
the input mask, if the PDAP is used. For more information,
see “Parallel Data Acquisition Port Control Register
(IDP_PP_CTL)” on page A-74.

• IDP_PORT_SELECT bits in the IDP_PP_CTL register to specify
input from the DAI pins or the data pins, if the PDAP is
used.

• IDP_PDAP_CLKEDGE bit (bit 29) in the IDP_PP_CTL register to
specify if data is latched on the rising or falling clock edge, if
the PDAP is used.

5. Connect all of the inputs to the IDP by writing to the SRU_DAT4
and SRU_DAT5, SRU_FS2 and SRU_FS3, SRU_CLK2 and SRU_CLK3 regis-
ters. Keep the clock and frame sync of the ports connected to low
when data transfer is not intended.

6. Enable DMA, IDP, and PDAP (if required) by setting each of the
following bits = 1:

• IDP_DMA_EN bit (bit 5 of the IDP_CTL0 register)

• IDP_PINGx bit in IDP_CTL1 register to enable the ping-pong
DMA of the selected channel

• IDP_PDAP_EN bit (bit 31 in IDP_PP_CTL register)

• IDP_ENx of IDP_CTL1 to enable the selected channel

• IDP_ENABLE bit (bit 7 in the IDP_CTL0 register)

7. After the DMA completes, connect the clock and frame sync sig-
nals to 0.

An interrupt is generated after every ping and pong DMA transfer
(when the count = 0).

ADSP-21368 SHARC Processor Hardware Reference 7-25

Input Data Port

DMA Transfer Notes

The following items provide general information about DMA transfers.

• A DMA can be interrupted by changing the IDP_DMA_EN bit in the
IDP_CTL0 register. None of the other control settings (except for
the IDP_ENABLE bit) should be changed. Clearing the IDP_DMA_EN
bit (= 0) does not affect the data in the FIFO, it only stops DMA
transfers. If the IDP remains enabled, an interrupted DMA can be
resumed by setting the IDP_DMA_EN bit again. But resetting the
IDP_ENABLE bit flushes the data in the FIFO. If the bit is set again,
FIFO starts accepting new data.

• Using DMA transfers overrides the mechanism that is used for
interrupt-driven manual reads from the FIFO. When the
IDP_DMA_EN bit and at least one IDP_DMA_ENx bit in the IDP_CTL1
register are set, the eighth interrupt in the DAI_IRPTL_L or
DAI_IRPTL_H registers (IDP_FIFO_GTN_INT) is not generated. This
interrupt detects the condition that the number of data available in
FIFO is more than the number set in the IDP_NSET bits (bits 3–0 of
the IDP_CTL0 register).

• At the end of the DMA transfer for individual channels, interrupts
are generated. These interrupts are generated after the last DMA
data from a particular channel has been transferred to memory.
These interrupts are mapped to the IDP_DMA7_INT bit (bit 17), and
to the IDP_DMA0_INT bit (bit 10) in the DAI_IRPTL_L or
DAI_IRPTL_H registers and they generate interrupts when they are
set (= 1). These bits are ORed and reflected in high-level interrupts
sent to the core.

• If the combined data rate from the channels is more than the DMA
can service, a FIFO overflow occurs. This condition is reflected for
each channel by the individual overflow bits (SRU_OVF) in the
DAI_STAT register. These are W1C bits that must be cleared by
writing to the IDP_CLROVR bit (bit 6 of the IDP_CTL0 register).

FIFO to Memory Data Transfer

7-26 ADSP-21368 SHARC Processor Hardware Reference

When an overflow occurs, incoming data from IDP channels is not
accepted into the FIFO, and data values are lost. New data is only
accepted once space is again created in the FIFO.

• For serial input channels, data is received in an alternating fashion
from left and right channels. Data is not pushed into the FIFO as a
full left/right frame. Rather, data is transferred as alternating
left/right words as it is received. For the PDAP and 32-bit
(non-audio) serial input, data is transferred as packed 32-bit words.

• The state of all eight DMA channels is reflected in the
IDP_DMAx_STAT bits (bits 24–17 of DAI_STAT register). These bits
are set once the IDP_DMA_EN bit and IDP_DMA_ENx bits are set, and
remain set until the last data from that channel is transferred. Even
if IDP_DMA_EN bit and IDP_DMA_ENx bits remain set, this bit clears
once the required number of data transfers takes place. For more
information, see “DAI Pin Buffer Status Register
(DAI_PIN_STAT)” on page A-112.

Note that when a DMA channel is not used (that is, parameter reg-
isters are at their default values) that DMA channel’s
corresponding IDP_DMAx_STAT bit is set (= 1).

• The three LSBs of data from the serial inputs are channel encoding
bits. Since the data is placed into a separate buffer for each channel,
these bits are not required and are set to low when transferring data
to internal memory through the DMA. Bit 3 still contains the
left/right status information. In the case of PDAP data or 32-bit
I2S and left-justified modes, these three bits are part of the 32-bit
data.

• An interrupt is generated at the end of a DMA, which is cleared by
reading the DAI_IRPTL_H or DAI_IRPTL_L registers.

• A read of the DAI_IRPTL_H_SH register provides the same data as a
read of the DAI_IRPTL_H register. Likewise, a read of the
DAI_IRPTL_L_SH register provides the same data as a read of the

ADSP-21368 SHARC Processor Hardware Reference 7-27

Input Data Port

DAI_IRPTL_L register. Reading these DAI shadow registers
(DAI_IRPTL_H_SH and DAI_IRPTL_L_SH) does not destroy the con-
tents of the DAI_IRPTL_H and DAI_IRPTL_L registers.

• The IDP can run both simple and ping-pong DMAs in different
channels. When running simple DMA, initialize the corresponding
IDP_DMA_Ix, IDP_DMA_Mx, and IDP_DMA_Mx registers. When running
ping-pong DMA, initialize the corresponding IDP_DMA_AIx,
IDP_DMA_BIx, IDP_DMA_Mx, and IDP_DMA_PCx registers.

• A new feature of dropping DMA requests from the FIFO has been
added. If one channel has finished its DMA, but the IDP_DMA_EN
bit is still high, any data corresponding to that channel is skipped
by the DMA controller. This feature is provided to avoid stalling
the DMA of other channels, which are still in an active DMA state.
To avoid this data loss, programs can toggle IDP_DMA_EN low.

• Disabling IDP DMA by resetting the IDP_DMA_EN bit requires 1
HCLK cycle. Disabling an individual channel DMA by resetting the
IDP_DMA_ENx bits requires 2 HCLK cycles.

DMA Channel Parameter Registers
The eight DMA channels each have two sets of registers for simple and
ping-pong DMA. For simple DMA, an I-register (index pointer, 19 bits),
an M-register (modifier/stride, 6 bits), and a C-register (count, 16 bits)
are used. For ping-pong DMA, A and B index registers (AI/BI register
pointer, 19 bits) and a PC register (DMA count, 16 bits) are used, along
with the M-register.

FIFO to Memory Data Transfer

7-28 ADSP-21368 SHARC Processor Hardware Reference

The IDP DMA parameter registers have these functions:

• Internal index registers (IDP_DMA_Ix, IDP_DMA_AIx, IDP_DMA_BIx).
Index registers provide an internal memory address, acting as a
pointer to the next internal memory location where data is to be
written.

• Internal modify registers (IDP_DMA_Mx). Modify registers provide
the signed increment by which the DMA controller post-modifies
the corresponding internal memory index register after each DMA
write.

• Count registers (IDP_DMA_Cx, IDP_DMA_PCx). Count registers indi-
cate the number of words remaining to be transferred to internal
memory on the corresponding DMA channel.

For a descriptions of these registers see “Input Data Port DMA Control
Registers” on page A-70 and “Input Data Port Ping-Pong DMA Regis-
ters” on page A-72.

IDP (DAI) Interrupt Service Routines for DMAs
The IDP can trigger either the high priority DAI core interrupt reflected
in the DAI_IRPTL_H register or the low priority DAI core interrupt
reflected in the DAI_IRPTL_L register. The ISR must read the correspond-
ing DAI_IRPTL_H or DAI_IRPTL_L register to find all the interrupts
currently latched. The DAI_IRPTL_H register reflects the high priority inter-
rupts and the DAI_IRPTL_L register reflects the low priority interrupts.
When these registers are read, it clears the latched interrupt bits. This is a
destructive read.

ADSP-21368 SHARC Processor Hardware Reference 7-29

Input Data Port

The following steps describe how an IDP ISR is handled.

1. When the DMA for a channel completes, an interrupt is generated
and program control jumps to the ISR.

2. The program clears the IDP_DMA_EN bit in the IDP_CTL0 register
(= 0).

3. The program should read the DAI_IRPTL_L or DAI_IRPTL_H registers
to determine which DMA channels have completed. Programs may
read these register’s shadow registers (DAI_IRPTL_L_SH and
DAI_IRPTL_H_SH) without clearing the contents of the primary
registers.

To ensure that the DMA of a particular IDP channel is complete,
(all data is transferred into internal memory) wait until the
IDP_DMAx_STAT bit of that channel becomes zero in the DAI_STAT
register. This is required if a high priority DMA (for example a
SPORT DMA) is occurring at the same time as the IDP DMA.

As each DMA channel completes, a corresponding bit in either the
DAI_IRPTL_L or DAI_IRPTL_H registers for each DMA channel is set
(IDP_DMAx_INT). Refer to “DAI Interrupt Controller Registers” on
page A-112 for more information on the DAI_IRPTL_L or
DAI_IRPTL_H registers.

4. Reprogram the DMA registers for finished DMA channels.

More than one DMA channel may have completed during this
time period. For each channel, a bit is latched in the DAI_IRPTL_L
or DAI_IRPTL_H registers. Ensure that the DMA registers are repro-
grammed. If any of the channels are not used, then its clock and
frame sync must be held low.

FIFO to Memory Data Transfer

7-30 ADSP-21368 SHARC Processor Hardware Reference

5. Read the DAI_IRPTL_L or DAI_IRPTL_H registers to see if more inter-
rupts have been generated.

• If the value(s) are not zero, repeat step 4.

• If the value(s) are zero, continue to step 6.

6. Re-enable the IDP_DMA_EN bit in the IDP_CTL0 register (set to 1).

7. Exit the ISR.

If a zero is read in step 5 (no more interrupts are latched), then all of the
interrupts needed for that ISR have been serviced. If another DMA com-
pletes after step 5 (that is, during steps 6 or 7), as soon as the ISR
completes, the ISR is called again because the OR of the latched bits will
be nonzero again. DMAs in process run to completion.

If step 5 is not performed, and a DMA channel expires during step
4, then when IDP DMA is re-enabled (step 6), the completed
DMA will not have been reprogrammed and its buffer will overrun.

FIFO Overflow
If the data out of the FIFO (either through DMA or core reads) is not suf-
ficient to transfer at the combined data rate of all the channels, then a
FIFO overflow can occur. When this happens, new data is not accepted.
Additionally, data coming from the serial input channels (except for
32-bit I2S and left-justified modes) are not accepted in pairs, so that alter-
nate data from a channel is always from left and right channels. If overflow
occurs, then sticky bits in the DAI_STAT register are set and an interrupt is
generated. Data is accepted again when space has been created in the
FIFO.

ADSP-21368 SHARC Processor Hardware Reference 7-31

Input Data Port

Input Data Port Programming Example
Listing 7-1 shows a data transfer using an interrupt service routine (ISR).
The transfer takes place through the digital applications interface (DAI).
This code implements the algorithm outlined in “FIFO to Memory Data
Transfer” on page 7-16.

Listing 7-1. Interrupt-Driven Data Transfer

/* Using Interrupt-Driven Transfers from the IDP FIFO */

#define IDP_ENABLE (8) /* IDP_ENABLE = IDP_CTL0[7] */

#define IDP_CTL0 (0x24B0) /* Memory-mapped register */

#define IDP_FIFO_GTN_INT (8) /* Bit 8 in interrupt regs */

#define IDP_FIFO (0x24D0) /* IDP FIFO packing mode */

#define DAI_IRPTL_FE (0x2480) /* Falling edge int latch */

#define DAI_IRPTL_RE (0x2481) /* Rising edge int latch */

#define DAI_IRPTL_PRI (0x2484) /* Interrupt priority */

.section/dm seg_dmda;

.var OutBuffer[6];

.section/pm seg_pmco;

initIDP:

 r0 = dm(IDP_CTL0); /* Reset the IDP */

 r0 = BSET r0 BY IDP_ENABLE;

 dm(IDP_CTL0) = r0;

 r0 = BCLR r0 BY IDP_ENABLE;

 r0 = BCLR r0 BY 10; /* Set IDP serial input channel 0 */

 r0 = BCLR r0 BY 9; /* to receive in I2S format */

 r0 = BCLR r0 BY 8;

Input Data Port Programming Example

7-32 ADSP-21368 SHARC Processor Hardware Reference

 dm(IDP_CTL0) = r0;

 /***/

 /* Connect the clock, data and frame sync of IDP */

 /* channel 0 to DAI pin buffers 10, 11 and 12. */

 /***/

 /* Connect IDP0_CLK_I to DAI_PB10_O */

 /* (SRU_CLK1[19:15] = 01001) */

 /* Connect IDP0_DAT_I to DAI_PB11_O */

 /* (SRU_DAT3[11:6] = 001010) */

 /* Connect IDP0_FS_I to DAI_PB12_O */

 /* (SRU_FS1[19:15] = 01011) */

 /**/

 /* Pin buffers 10, 11 and 12 are always being used as */

 /* inputs. Tie their enables to LOW (never driven). */

 /**/

 /* Connect PBEN10_I to LOW */

 /* (SRU_PIN1[29:24] = 111110) */

 /* Connect PBEN11_I to LOW */

 /* (SRU_PIN2[5:0] = 111110) */

 /* Connect PBEN12_I to LOW */

 /* (SRU_PIN2 11–6 = 111110) */

 /**/
 /* Assign a value to N_SET. An interrupt will be raised */

 /* when there are N_SET+1 words in the FIFO. */

 /**/

ADSP-21368 SHARC Processor Hardware Reference 7-33

Input Data Port

 r0 = dm(IDP_CTL0); /* N_SET = 6 */

 r0 = BSET r0 BY 0;

 r0 = BSET r0 BY 1;

 r0 = BSET r0 BY 2;

 r0 = BCLR r0 BY 3;

 dm(IDP_CTL0) = r0;

 r0 = dm(DAI_IRPTL_RE); /* Unmask for rising edge */

 r0 = BSET r0 BY IDP_FIFO_GTN_INT;

 dm(DAI_IRPTL_RE) = r0;

 r0 = dm(DAI_IRPTL_FE); /* Mask for falling edge */

 r0 = BCLR r0 BY IDP_FIFO_GTN_INT;

 dm(DAI_IRPTL_FE) = r0;

 r0 = dm(DAI_IRPTL_PRI); /* Map to high priority in core */

 r0 = BSET r0 BY IDP_FIFO_GTN_INT;

 dm(DAI_IRPTL_PRI) = r0;

 r0 = dm(IDP_CTL0); /* Start the IDP */

 r0 = BSET r0 BY IDP_ENABLE;

 dm(IDP_CTL0) = r0;

initIDP.end:

IDP_ISR:

 i0 = OutBuffer;

 m0 = 1;

 LCNTR = 5, DO RemovedFromFIFO UNTIL LCE;

 r0 = dm(IDP_FIFO);

 dm(i0,m0) = r0;

RemovedFromFIFO:

 RTI;

IDP_ISR.end:

Input Data Port Programming Example

7-34 ADSP-21368 SHARC Processor Hardware Reference

ADSP-21368 SHARC Processor Hardware Reference 8-1

8 PULSE WIDTH MODULATION

Pulse width modulation (PWM) is a technique for controlling analog cir-
cuits with a microprocessor’s digital outputs. PWM is employed in a wide
variety of applications, ranging from measurement to communications to
power control and conversion.

One of the advantages of PWM is that the signal remains digital all the
way from the processor to the controlled system; no digital-to-analog con-
version is necessary. By maintaining a digital signal throughout a system,
noise effects are minimized.

PWM Implementation
The PWM modules in the ADSP-21367/8/9 and ADSP-2137x SHARC
processors are flexible, programmable, PWM waveform generators that
produces switching patterns for various purposes related to motor control,
electronic valve control, or audio power control. The PWM module is
comprised of four identical groups that contain four PWM outputs each,
allowing 16 PWM outputs in total. Figure 8-1 shows a single group. The
PWM generator can produce either center-aligned or edge-aligned PWM
waveforms. In addition, it can generate complementary signals on two
outputs in paired mode or independent signals in non-paired mode.

PWM Waveforms
The PWM module can generate waveforms that are either edge-aligned
(left-justified) or center-aligned. Each waveform is described in detail in
the following sections.

PWM Implementation

8-2 ADSP-21368 SHARC Processor Hardware Reference

Edge-Aligned Mode

In edge-aligned mode, the PWM waveform is left-justified in the period
window. A duty value of zero, programmed through the PWMAx registers,
produces a PWM waveform with 50% duty cycle. For even values of
period, the PWM pulse width is exactly period ÷ 2, whereas for odd values

Figure 8-1. Example PWM Module Block Diagram

PWMCHA
PWMCHB

PWMTM
PWMCTRL

PWM
CONFIGURATION

REGISTERS

PWM
DUTY CYCLE
REGISTERS

PWMSTAT

PWMDT
PWMSEG

PWM
Timing

Unit

Dead
Time

Control
Unit

Gate
Drive
Unit

PWM
Sync Pulse
Control Unit

PWM
Interrupt

Control Unit

PWM_AH

PWM_AL

PWM_BH

PWM_BL

CLK SYNC SR RESET

SYNC CLK

RESETB

PWM_SYNC_IRQ

CLK

PWMSEG
PHB BUS

Output
Control

Unit

PWMGSTAT

PWMGCTL
} GLOBAL

REGISTERS

ADSP-21368 SHARC Processor Hardware Reference 8-3

Pulse Width Modulation

of period, it is equal to period ÷ 2 (rounded up). Therefore, for a duty
value programmed in two’s-complement, the PWM pulse width is given
by:

To generate constant logic high on PWM output, program the duty regis-
ter with the value ≥ + period ÷ 2.

To generate constant logic low on PWM output, program the duty regis-
ter with the value ≥ – period ÷ 2.

For example, using an odd period of p = 2n + 1, the counter within the
PWM generator counts as (–n...0...+n). If the period is even (p = 2n), then
the counter counts as (–n+1...0...n).

For more information, see “PWM Channel Duty Control Registers
(PWMAx, PWMBx)” on page A-84.

Center-Aligned Mode

Most of the following description applies to paired mode, but it can also
be applied to non-paired mode, the difference being that each of the four
outputs from a PWM group is independent. Within center-aligned mode,
there are several options to choose from.

Center-aligned single update mode. Duty cycle values are programmable
only once per PWM period, so the resultant PWM patterns are symmetri-
cal about the midpoint of the PWM period.

Center-aligned, double-update mode. Duty cycle values are programma-
ble only twice per PWM period. This second updating of the PWM
registers is implemented at the midpoint of the PWM period, producing
asymmetrical PWM patterns that produce lower harmonic distortion in
three-phase PWM inverters.

Width period() 2÷ duty+=

PWM Implementation

8-4 ADSP-21368 SHARC Processor Hardware Reference

Center-aligned, paired mode. Generates complementary signals on two
outputs.

Center-aligned, non-paired mode. Generates complementary signals on
independent signals.

In paired mode, the two’s-complement integer value in the 16-bit
read/write duty cycle registers, (PWMAx and PWMBx), control the duty cycles
of the four PWM output signals on the pwm_a, pwm_ah, pwm_bl, and pwm_bh
respectively. The duty cycle registers are programmed in two’s-comple-
ment integer counts of the fundamental time unit, tPCLK (the peripheral
clock of the ADSP-21367/8/9 and ADSP-2137x processors) and define
the desired on-time of the high-side PWM signal over half the PWM
period. The duty cycle register range is from
(–PWMPERIOD ÷ 2 – PWMDT) to (+PWMPERIOD ÷ 2 + PWMDT),
which, by definition, is scaled such that a value of 0 represents a 50%
PWM duty cycle.

Each group in the PWM module (0–3) has its own set of registers which
control the operation of that group. The operating mode of the PWM
block (single or double-update mode) is selected by the PWM_UPDATE bit
(bit 2) in the PWM control (PWMCTRL3–0) registers. Status information
about each individual PWM group is available to the program in the
PWM status (PWMSTAT3–0) registers. Apart from the local control and sta-
tus registers for each PWM group, there is a single PWM global control
register (PWMGCTL) and a single PWM global status register (PWMGSTAT).
The global control register allows programs to enable or disable the four
groups in any combination, which provides synchronization across the
four PWM groups. The global status register shows the period completion
status of each group.

On period completion, the corresponding bit in the PWMGSTAT register is
set and remains sticky. In the interrupt service routine (ISR), the program
should first read the global status register and clear all the intended bits by
explicitly writing 1. This also clears the PWM_INT bit. Interrupts from indi-
vidual groups can be disabled by the PWM_IRQEN bit in the local PWMCTRLx

ADSP-21368 SHARC Processor Hardware Reference 8-5

Pulse Width Modulation

registers of that group. The period completion status bits in the PWM_GSTAT
register are set independently of the corresponding PWM_IRQEN bit, but
interrupt generation depends on the PWM_IRQEN bit.

Switching Frequencies
The 16-bit read/write PWM period registers, (PWMPERIOD3–0), control the
PWM switching frequency. The fundamental timing unit of the PWM
controller is tPCLK. Therefore, for a 100 MHz peripheral clock (PCLK), the
fundamental peripheral clock increment, PCLK, is 10 ns. The value written
to the PWMPERIODx register is effectively the number of tPCLK clock incre-
ments in half a PWM period. The required PWMPERIODx value as a function
of the desired PWM switching frequency (fPWM) is given by:

Therefore, the PWM switching period, Ts, can be written as:

For example, for a 100 MHz fPCLK and a desired PWM switching fre-
quency of 10 kHz (Ts = 100 ms), the correct value to load into the
PWMPERIODx register is:

PWMPERIOD
f
PCLK

2 f
PWM

×
----------------------=

Ts 2 PWMTM 2PCLK××=

PWMPERIOD
100 10

6×

2 10× 10
3×

------------------------------ 5000= =

PWM Implementation

8-6 ADSP-21368 SHARC Processor Hardware Reference

The largest value that can be written to the 16-bit PWMPERIODx register is
0xFFFF = 65,535 which corresponds to a minimum PWM switching fre-
quency of:

Also note that PWMPERIOD values of 0 and 1 are not defined and should not
be used when the PWM outputs or PWM sync is enabled.

Dead Time
The second important parameter that must be set up in the initial config-
uration of the PWM block is the switching dead time. This is a short delay
time introduced between turning off one PWM signal (say AH) and turn-
ing on the complementary signal, (AL). This short time delay is introduced
to permit the power switch to turn off (AH in this case) to completely
recover its blocking capability before the complementary switch is turned
on. This time delay prevents a potentially destructive short-circuit condi-
tion from developing across the dc link capacitor of a typical voltage
source inverter.

The 10-bit, read/write PWMDT3–0 registers control the dead time. The dead
time, Td, is related to the value in the PWMDTx registers by:

Therefore, a PWMDT value of 0x00A (= 10), introduces a 200 ns delay
between when the PWM signal (for example AH) is turned off and its com-
plementary signal (AL) is turned on. The amount of dead time can
therefore be programmed in increments of 2 tPCLK (or 20 ns for a 100
MHz peripheral clock). The PWMDTx registers are 10-bit registers, and the

f
PWM() min,

100 10
6×

2 65535×
------------------------ 763Hz= =

Td PWMDT 2× tPCLK×=

ADSP-21368 SHARC Processor Hardware Reference 8-7

Pulse Width Modulation

maximum value they can contain is 0x3FF (= 1023) which corresponds to
a maximum programmed dead time of:

This equates to an fPCLKrate of 100 MHz. Note that the dead time can be
programmed to be 0 by writing 0 to the PWMDTx registers (see “PWM Dead
Time Registers (PWMDTx)” on page A-85.

Duty Cycles
The two 16-bit read/write duty cycle registers, PWMA and PWMB control the
duty cycles of the four PWM output signals on the PWM pins when not
in switch reluctance mode. The two’s-complement integer value in the
PWMA register controls the duty cycle of the signals on pwm_ah and pwm_al.
The two’s-complement integer value in the PWMB register controls the duty
cycle of the signals on pwm_bh and pwm_bl. The duty cycle registers are pro-
grammed in two’s-complement integer counts of the fundamental time
unit, tPCLK, and define the desired on-time of the high-side PWM signal
produced by the three-phase timing unit over half the PWM period. The
duty cycle register range is from:

(–PWPERIOD ÷ 2 – PWMDT) to (+PWPERIOD ÷ 2 + PWMDT)

which, by definition, is scaled such that a value of 0 represents a 50%
PWM duty cycle. The switching signals produced by the three-phase tim-
ing unit are also adjusted to incorporate the programmed dead time value
in the PWMDT register. The three-phase timing unit produces active low sig-
nals so that a low level corresponds to a command to turn on the
associated power device.

Td max, 1023 2× tPCLK× 1023 2× 10 10
9–×× 20.5μs==d=

PWM Implementation

8-8 ADSP-21368 SHARC Processor Hardware Reference

Duty Cycles and Dead Time

A typical pair of PWM outputs (in this case for pwm_ah and pwm_al) from
the timing unit are shown in Figure 8-2 for operation in single-update
mode. All illustrated time values indicate the integer value in the associ-
ated register and can be converted to time by simply multiplying by the
fundamental time increment, (tPCLK) and comparing this to the
two’s-complement counter. Note that the switching patterns are perfectly
symmetrical about the midpoint of the switching period in single-update
mode since the same values of the PWMAx, PWMPERIODx, and PWMDTx registers
are used to define the signals in both half cycles of the period. Further, the
programmed duty cycles are adjusted to incorporate the desired dead time
into the resulting pair of PWM signals. As shown in Figure 8-2, the dead
time is incorporated by moving the switching instants of both PWM sig-
nals (pwm_ah and pwm_al) away from the instant set by the PWMAx registers.
Both switching edges are moved by an equal amount (PWMDT x tPCLK)
to preserve the symmetrical output patterns. Also shown is the PWM_PHASE
bit of the PWMSTAT register that indicates whether operation is in the first
or second half cycle of the PWM period.

ADSP-21368 SHARC Processor Hardware Reference 8-9

Pulse Width Modulation

The resulting on-times (active low) of the PWM signals over the full
PWM period (two half periods) produced by the PWM timing unit and
illustrated in Figure 8-3 on page 8-11 may be written as:

The range of TAH is:

and the corresponding duty cycles are:

Figure 8-2. Center-Aligned Paired PWM in Single-Update Mode,
Low Polarity

......................

.....

......................

.....

PWMPERIOD PWMPERIOD

PWMCHA PWMCHA

PWMPERIOD

2
+

0

PWMPERIOD

2

_ PWMPERIOD

2
+

0

2xPWMDT 2xPWMDT
PWMSYNCWT + 1

count

pwm_ah

pwm_al

PWMPHASE

pwm_pwmsync_out

0 2– PWMPERIOD tPCLK]××[

TAH PWMPERIOD 2 PWMCHA PWMDT)+(× tPCLK×–(=

PWM Implementation

8-10 ADSP-21368 SHARC Processor Hardware Reference

The range of TAL is:

and the corresponding duty cycles are:

The minimum permissible value of TAH and TAL is zero, which corre-
sponds to a 0% duty cycle, and the maximum value is TS, the PWM
switching period, which corresponds to a 100% duty cycle. Negative val-
ues are not permitted.

The output signals from the timing unit for operation in double-update
mode are shown in Figure 8-3. This illustrates a general case where the
switching frequency, dead time, and duty cycle are all changed in the sec-
ond half of the PWM period. The same value for any or all of these
quantities can be used in both halves of the PWM cycle. However, there is
no guarantee that a symmetrical PWM signal will be produced by the tim-
ing unit in this double-update mode. Additionally, Figure 8-3 shows that
the dead time is inserted into the PWM signals in the same way as in sin-
gle-update mode.

In general, the on-times (active low) of the PWM signals over the full
PWM period in double-update mode can be defined as:

0 2– PWMPERIOD tPCLK]××[

dAH

tAH

TS

-------- 1
2
--- PWMCHA PWMDT–

PWMPERIOD
---+= =

dAL

tAL

TS
------- 1

2
--- PWMCHA PWMDT–

PWMPERIOD
---+= =

TS PWMPERIOD1 PWMPERIOD2+() tPCLK×=

ADSP-21368 SHARC Processor Hardware Reference 8-11

Pulse Width Modulation

Figure 8-3. Center-Aligned Paired PWM in Double-Update Mode,
Low Polarity

......................

.....

......................

.....

PWMCHA1 PWMCHA2

PWMPERIOD1

2
+

0 0

2xPWMDT1 2xPWMDT2

PWMSYNCWT2 + 1

count

pwm_ah

pwm_al

PWMPHASE

pwm_pwmsync_out

PWMSYNCWT1 + 1

PWMPERIOD1

2 PWMPERIOD2

2

PWMPERIOD2

2

_
_ +

PWMPERIOD2PWMPERIOD1

TAH

PWMPERIOD1
2

PWMPERIOD2

2
--- PWMCHA1 PWMCHA2 PWMDT1 PWMDT2––+ + +⎝ ⎠

⎛ ⎞ tPCLK×=

TAL

PWMPERIOD1
2

PWMPERIOD2

2
--- PWMCHA1– PWMCHA2– PWMDT1 PWMDT2––+⎝ ⎠

⎛ ⎞ tPCLK×=

PWM Implementation

8-12 ADSP-21368 SHARC Processor Hardware Reference

where subscript 1 refers to the value of that register during the first half
cycle and subscript 2 refers to the value during the second half cycle. The
corresponding duty cycles are:

since for the general case in double- update mode, the switching period is
given by:

Again, the values of TAH and TAL are constrained to lie between zero and
TS. Similar PWM signals to those illustrated in Figure 8-2 and Figure 8-3
can be produced on the BH and BL outputs by programming the PWMBx
registers in a manner identical to that described for the PWMAx registers.

Over Modulation

The PWM timing unit is capable of producing PWM signals with variable
duty cycle values at the PWM output pins. At the extreme side of the
modulation process, settings of 0% and 100% modulation are possible.
These two modes are termed full off and full on respectively. Settings that
fall between the extremes are considered normal modulation. These set-
tings are explained in further detail below.

dAH

TAH

TH
---------- 1

2

PWMCHA1 PWMCHA2 PWMDT1 PWMDT2––+()
PWMPERIOD1 PWMPERIOD2+()

---+= =

dAL

TAL

TS
--------- 1

2

PWMCHA1 PWMCHA2 PWMDT1 PWMDT2+ + +()
PWMPERIOD1 PWMPERIOD2+()

--–= =

TS PWMPERIOD1 PWMPERIOD2+() tPCLK×=

ADSP-21368 SHARC Processor Hardware Reference 8-13

Pulse Width Modulation

• Full on. The PWM for any pair of PWM signals is said to operate
in full on when the desired high side output of the three-phase tim-
ing unit is in the on state (low) between successive PWMSYNC rising
edges. This state may be entered by virtue of the commanded duty
cycle values in conjunction with the setting in the PWMDTx registers.

• Full off. The PWM for any pair of PWM signals is said to operate
in full off when the desired high side output of the three-phase tim-
ing unit is in the off state (high) between successive PWMSYNC pulses.
This state may be entered by virtue of the commanded duty cycle
values in conjunction with the setting in the PWMDTx registers.

• Normal modulation. The PWM for any pair of PWM signals is
said to operate in normal modulation when the desired output duty
cycle is other than 0% or 100% between successive PWMSYNC pulses.

There are certain situations, when transitioning either into or out of either
full on or full off, where it is necessary to insert additional emergency dead
time delays to prevent potential shoot through conditions in the inverter.
The use of crossover, described in “Crossover” on page 8-16, can also cause
outputs to violate the shoot through conditions criteria. These transitions
are detected automatically and, if appropriate, the emergency dead time is
inserted to prevent the shoot through conditions.

Inserting additional emergency dead time into one of the PWM signals of
a given pair during these transitions is only needed if both PWM signals
would otherwise be required to toggle within a dead time of each other.
The additional emergency dead time delay is inserted into the PWM sig-
nal that is toggling into the on state. In effect, the turn on (if turning on
during this dead time region) of this signal is delayed by an amount
2 × PWMDT × tPCLK from the rising edge of the opposite output. After
this delay, the PWM signal is allowed to turn on, provided the desired
output is still scheduled to be in the on state after the emergency dead
time delay.

PWM Implementation

8-14 ADSP-21368 SHARC Processor Hardware Reference

Figure 8-4 illustrates two examples of such transitions. In Figure 8-4 (A),
when transitioning from normal modulation to full on at the half cycle
boundary in double-update mode, no special action is needed. However,
in Figure 8-4 (B), when transitioning into full off at the same boundary,
an additional emergency dead time is necessary. This inserted dead time is
a little different to the normal dead time as it is impossible to move one of
the switching events back in time because this would move the event into
the previous modulation cycle. Therefore, the entire emergency dead time
is inserted by delaying the turn on of the appropriate signal by the full
amount.

Figure 8-4. Full On to Full Off Transition

..

PWMPERIOD PWMPERIOD

PWMPERIOD1

2
+ 0 _ +

pwm_ah

pwm_al

pwm_ah

pwm_al

..

FULL OFF

FULL ON

2xPWMDT

PWMCHA1

DeadTime Inserted

(A)

(B)

2xPWMDT

PWMPERIOD1

2

PWMPERIOD2

2

ADSP-21368 SHARC Processor Hardware Reference 8-15

Pulse Width Modulation

Update Modes
Update modes determine the frequency with which the waveforms are
sampled.

Single Update

In this mode, duty cycle values are programmable only once per PWM
period, so that the resultant PWM patterns are symmetrical about the
midpoint of the PWM period.

Double Update

In this mode, a second updating of the PWM registers is implemented at
the midpoint of the PWM period. In this mode, it is possible to produce
asymmetrical PWM patterns that produce lower harmonic distortion in
three-phase PWM inverters. This technique also permits closed-loop con-
trollers to change the average voltage applied to the machine windings at a
faster rate, and so permits faster closed-loop bandwidths to be achieved.

Configurable Polarity
The polarity of the generated PWM signals is programmed using the
PWMPOLARITY3–0 registers (see “PWM Polarity Select Registers (PWM-
POLx)” on page A-83), so that either active high or active low PWM
patterns can be produced. The polarity values can be changed on-the-fly if
required, provided the change is done a few cycles before the next period
change.

PWM Implementation

8-16 ADSP-21368 SHARC Processor Hardware Reference

PWM Pins and Signals
The entire PWM module has four groups of four PWM outputs, for a
total of 16 PWM outputs. The modules are controlled by the PWM_AH and
PWM_BH pins which produce high side drive signals and the PWM_AL and
PWM_BL pins which produce low side drive signals. These are shown in
Figure 8-1 on page 8-2.

Each PWM group is able to generate complementary signals on two out-
puts in paired mode or each group can provide independent outputs in
non-paired mode.

The switching frequency and dead time of the generated PWM patterns
are programmable using the PWMPERIODx and PWMDTx registers. In addition,
two duty cycle control registers (PWMAx and PWMBx) directly control the
duty cycles of the two pairs of PWM signals. In non-paired mode the low
side signals can have different duty cycles programmed through another
pair of registers (PWMALx and PWMBLx). It should be further noted that the
choice of center or edge-aligned mode applies to a single group of four
PWM waveforms. Each of the four PWM output signals can be enabled or
disabled by separate output enable bits in the PWMSEG0–3 register (see
“PWM Output Disable Registers (PWMSEGx)” on page A-82). Addition-
ally, in center-aligned paired mode, an emergency dead time insertion
circuit enforces a dead time defined by the PWMDT0–3 registers between the
high and low side drive signals of each PWM channel. This ensures that
the correct dead time occurs at the power inverter. In many applications,
there is a need to provide an isolation barrier in the gate-drive circuits that
turn on the power devices of the inverter.

Crossover

The PWMSEG3–0 registers contain four bits, one for each PWM output (see
Table A-28 on page A-82). If crossover mode is enabled for any pair of
PWM signals, the high side PWM signal from the timing unit (for exam-
ple AH) is diverted to the associated low side output of the output control

ADSP-21368 SHARC Processor Hardware Reference 8-17

Pulse Width Modulation

unit so that the signal ultimately appears at the AL pin. The corresponding
low side output of the timing unit is also diverted to the complementary
high side output of the output control unit so that the signal appears at
the AH pin. Following a reset, the three crossover bits are cleared so that
the crossover mode is disabled on all three pairs of PWM signals. Even
though crossover is considered an output control feature, dead time inser-
tion occurs after crossover transitions as necessary to eliminate shoot
through safety issues.

PWM Accuracy
The PWM has 16-bit resolution but accuracy is dependent on the PWM
period. In single-update mode, the same values of PWMA and PWMB are used
to define the on-times in both half cycles of the PWM period. As a result
the effective accuracy of the PWM generation process is 2tPCLK (or 20 ns
for a 100 MHz clock). Incrementing one of the duty cycle registers by one
changes the resultant on-time of the associated PWM signals by tPCLK in
each half period (or 2tPCLK for the full period). In double-update mode,
improved accuracy is possible since different values of the duty cycles reg-
isters are used to define the on-times in both the first and second halves of
the PWM period. As a result, it is possible to adjust the on-time over the
whole period in increments of tPCLK. This corresponds to an effective
PWM accuracy of tPCLK in double-update mode (or 10 ns for a 100 MHz
clock). The achievable PWM switching frequency at a given PWM accu-
racy is tabulated in Table 8-1.

Table 8-1. PWM Accuracy in Single and Double-Update Modes

Resolution (bits) Single-Update Mode
PWM Frequency (kHz)

Double-Update Mode
PWM Frequency (kHz)

8 195.3 390.6

9 97.7 195.3

10 48.8 97.7

PWM Registers

8-18 ADSP-21368 SHARC Processor Hardware Reference

PWM Registers
The registers described below control the operation and provide the status
of pulse width modulation on the ADSP-21367/8/9 and ADSP-2137x
processors. For more information, see “Pulse Width Modulation Regis-
ters” on page A-78.

• PWM global control register. The PWMGCTL register enables or dis-
ables the four PWM groups in any combination. This provides
synchronization across the four PWM groups. This 16-bit,
read/write register is located at address 0x3800.

• PWM global status register. The PWMGSTAT register provides the
status of each PWM group and is located at address 0x3801. The
bits in this register are W1C-type (write one-to-clear).

• PWM control registers. The PWMCTL3–0 registers are used to set the
operating modes of each PWM block. These registers also allow
programs to disable interrupts from individual groups.

• PWM status registers. The PWMSTAT3–0 registers are 16-bit
read-only registers report the status of the phase and mode for each
PWM group.

11 24.4 48.8

12 12.2 24.4

13 6.1 12.2

14 3.05 6.1

Table 8-1. PWM Accuracy in Single and Double-Update Modes (Cont’d)

Resolution (bits) Single-Update Mode
PWM Frequency (kHz)

Double-Update Mode
PWM Frequency (kHz)

ADSP-21368 SHARC Processor Hardware Reference 8-19

Pulse Width Modulation

• PWM period registers. The PWMPERIOD3–0 registers are 16-bit,
read/write registers that control the period of the four PWM
groups.

• PWM dead time registers. The PWMDT3–0 registers are 16-bit,
read/write registers that are used to set the switching dead time.

• PWM channel A and B duty control registers. The PWMA3–0 and
PWMBx registers directly control the duty cycles of the two pairs of
PWM output signals on the pwm_ah to pwm_cl pins when not in
switch reluctance mode.

• PWM output enable registers. The PWMSEG3–0 registers are 16-bit
read/write registers that are used to control the output signals of
the four PWM groups.

• PWM channel A and B low side duty control registers. In
non-paired mode, the PWMAL3–0 and PWMBL3–0 registers are used to
program the low side duty cycle of the two pairs of PWM output
signals. These can be different for the high side cycles.

• PWM output polarity select registers. The PWMPOL3–0 registers are
16-bit read/write registers that are used to determine whether the
polarity of the generated PWM signals are active high or active low.
The polarity values can be changed on-the-fly if required, provided
the change is done a few cycles before the next period change.

Duty Cycles
The PWMAx and PWMBx registers directly control the duty cycles of the two
pairs of PWM output signals on the pwm_ah to pwm_cl pins when not in
switch reluctance mode.

PWM Registers

8-20 ADSP-21368 SHARC Processor Hardware Reference

• The two’s-complement integer value in the PWMAx registers controls
the duty cycle of the signals on the pwm_ah and pwm_al pins.

• The two’s-complement integer value in the PWMBx registers control
the duty cycle of the signals on pwm_bh and pwm_bl pins.

The duty cycle registers are programmed in two’s-complement integer
counts of the fundamental time unit, tPCLK, and define the desired
on-time of the high side PWM signal produced by the three-phase timing
unit over half the PWM period. The duty cycle register range is from

(–PWMPERIOD ÷ 2 – PWMDT) to (+PWMPERIOD ÷ 2 + PWMDT)

which, by definition, is scaled such that a value of 0 represents a 50%
PWM duty cycle. The switching signals produced by the three-phase tim-
ing unit are also adjusted to incorporate the programmed dead time value
in the PWMDT register. The three-phase timing unit produces active low sig-
nals so that a low level corresponds to a command to turn on the
associated power device.

Output Enable
The PWMSEG register contains six bits (0 to 5) that can be used to individu-
ally enable or disable each of the six PWM outputs. If the associated bit of
the PWMSEG register is set (=1), then the corresponding PWM output is dis-
abled, regardless of the value of the corresponding duty cycle register. This
PWM output signal remains disabled as long as the corresponding
enable/disable bit of the PWMSEGx register is set. Programs should imple-
ment this function after the crossover function. After reset, all six enable
bits of the PWMSEG register are cleared so that all PWM outputs are enabled
(default). In the same manner as the duty cycle registers, the PWMSEG regis-
ter is latched on the rising edge of the pwm_pwmsync_out signal. Therefore,
in single-update mode, changes to this register only become effective at
the start of each PWM cycle. In double-update mode, the PWMSEG register
can also be updated at the midpoint of the PWM cycle.

ADSP-21368 SHARC Processor Hardware Reference 8-21

Pulse Width Modulation

Programming Example
The following program shows the four steps used to configure a PWM
module.

Listing 8-1. Generic PWM Configuration Example

 #include "def21369.h"

.global start;

/* define for PWM frequency used in PWMPERIOD0 */

#define fPWM 0x1388; /* 200MHz/2(20kHz) => 50us */

.section/pm seg_pmco;

start:

call default_int_enable;

call PWM_setup;

call PWM_enables;

nop;

finish: jump finish;

start.end: nop;

/* enable interrupts */

default_int_enable:

 LIRPTL = 0;

 IRPTL = 0;

 bit set MODE1 IRPTEN; /* Global interrupt enable

 bit set LIRPTL P13IMSK; /* Enable PWM default interrupt -

 location 13 */

default_int_enable.end: rts;

/* PWM setup registers */

PWM_setup:

Programming Example

8-22 ADSP-21368 SHARC Processor Hardware Reference

/* 1. Configure frequency */

ustat3=fPWM; /* fPCLK/2xfPWM */

dm(PWMPERIOD0)=ustat3; /* PWM Period Register for switching

 frequency (unsigned integer) */

/* 2. Configure duty cycles Width=[period/2] + duty program in

the two’s-complement of the high side width for individual con-

trol this only programs AH signal. If PWMAL0 is not programmed

then the AL and AH signals have the same duty cycle */

ustat3=0; /* PWM Channel A Duty Control

 (two’s-complement integer) */

dm(PWMA0)=ustat3; /* Set up the duty cycle register to 0

 (50% duty cycle) */

ustat3 = 0x63C; /* two’s-complement of 0x9C4 = 0x63C - 80%

 high - 20% low */

dm(PWMAL0)=ustat3; /* PWM Channel AL Duty Control */

/* 3. Configure Dead Time */

ustat3=0x0; /* PWM Dead Time Register (unsigned integer) */

dm(PWMDT0)=ustat3;

/* 4. Configure Polarity (this can be changed on the fly

 after the PWM port is enabled) */

ustat3=0; /* PWM Polarity Select Register */

bit set ustat3 PWM_POL1AL | PWM_POL1AH; /* Enables high polarity

 A output /*

dm(PWMPOL0)=ustat3;

PWM_setup.end: nop;

ADSP-21368 SHARC Processor Hardware Reference 8-23

Pulse Width Modulation

/* PWM enables */

PWM_enables:

ustat3=dm(SYSCTL); /* System Control Register */

bit set ustat3 PWM0EN | PPFLGS;

dm(SYSCTL)=ustat3; /* Selects AD11–8 in PWM0 mode instead

 of PP mode */

ustat3=dm(PWMSEG0); /* PWM Output Enable. Should probably be

 changed to PWM Output Disable since you

 write it to disable it. */

bit set ustat3 PWM_BH | PWM_BL; /* disables B outputs */

dm(PWMSEG0)=ustat3;

ustat3=dm(PWMCTL0); /* PWM0 Control Register

ustat3=0;

dm(PWMCTL0)=ustat3; /* Enables edge-aligned, individual pair

 mode with single update and no

 interrupt */

ustat3=dm(PWMGCTL); /* PWM General Control Register */

bit set ustat3 PWM_EN0 | PWM_DIS1 | PWM_DIS2 | PWM_DIS3 |

PWM_SYNCEN0 | PWM_SYNCDIS1| PWM_SYNCDIS2| PWM_SYNCDIS3;

dm(PWMGCTL)=ustat3; /* Enables only PWM 0 and its internal

 timer; Disables other PWMs globally. The

 write to PWMGCTL will kick off the

 transfer */

PWM_enables.end: rts;

idle;

Programming Example

8-24 ADSP-21368 SHARC Processor Hardware Reference

ADSP-21368 SHARC Processor Hardware Reference 9-1

9 S/PDIF
TRANSMITTER/RECEIVER

S/PDIF (Sony/Philips Digital Interface) is a standard audio data transfer
format that allows the transfer of digital audio signals from one device to
another without having to be converted to an analog signal. The
ADSP-21367/8/9 and ADSP-2137x processors have AES3-compliant
S/PDIF receivers/transmitters that allow programs to interface to other
S/PDIF devices.

This chapter provides information on the function of the S/PDIF module
in the ADSP-21367/8/9 and ADSP-2137x SHARC processors. It is
important to be familiar with the serial digital audio interface standards
IEC-60958, EIAJ CP-340, AES3, and AES11.

The S/PDIF receiver and transmitter reside in the digital audio interface
(DAI). This allows applications to use the serial ports and/or the external
DAI pins to interface to other S/PDIF devices. This can include using the
receiver to decode incoming bi-phase encoded audio streams and passing
them through the SPORTs to internal memory for processing or using the
transmitter to encode audio or digital data and transfer it to another
S/PDIF receiver in the audio system. Other features include:

• Managing user status information and providing error-handling
capabilities in both the receiver and transmitter.

• Transmitting a bi-phase encoded signal that may contain any num-
ber of audio channels (compressed or linear PCM) or encoded data
streams.

AES3/SPDIF Stream Format

9-2 ADSP-21368 SHARC Processor Hardware Reference

• In regards to handling channel status information, the SPDIF
transmitter can operate in standalone and full serial modes. In stan-
dalone mode, channel status bits, user bits, and validity bits are
taken from the corresponding buffers or control register. In full
serial mode, all these bits are transferred with data bits from the
SDATA pin. This allows programs to have control over the status
fields and the ability to pass on status information which may have
been supplied from an encoder, for instance.

AES3/SPDIF Stream Format
The data carried by the SPDIF interface is transmitted serially. In order to
identify the assorted bits of information the data stream is divided into
frames, each of which are 64 time slots (or 128 unit intervals1) in length
(Figure 9-1). Since the time slots correspond with the data bits, the frame
is often described as being 64 bits in length.

1 The unit interval is the minimum time interval between condition changes of a data transmission sig-
nal.

Figure 9-1. S/PDIF Block Structure

CHANNEL
1X Y

CHANNEL
2 Z Y

CHANNEL
1

CHANNEL
2

CHANNEL
1

CHANNEL
2X Y

START OF
BLOCK

FRAME 0FRAME 191 FRAME 1

SUBFRAME
1

SUBFRAME
2

ADSP-21368 SHARC Processor Hardware Reference 9-3

S/PDIF Transmitter/Receiver

A frame is uniquely composed of two subframes. The first subframe nor-
mally starts with preamble X. However, the preamble changes to preamble
Z once every 192 frames. This defines the block of frames structure used
to organize the channel status information. The second subframe always
starts with preamble Y.

Subframe Format
Each frame consists of two subframes. Figure 9-2 shows an illustration of
a subframe, which consists of 32 time slots numbered 0 to 31. A subframe
is 64 unit intervals in length. The first four time slots of each subframe
carry the preamble information. The preamble marks the subframe start
and identifies the subframe type. The next 24 time slots carry the audio
sample data, which is transmitted in a 24-bit word with the least signifi-
cant bit (LSB) first. When a 20-bit coding range is sufficient, time slots 8
to 27 carry the audio sample word with the LSB in time slot 8. Time slots
4 to 7 may be used for other applications. Under these circumstances, the
bits in time slots 4 to 7 are designated auxiliary sample bits. If the source
provides fewer bits than the interface allows (either 20 or 24), the unused
LSBs are set to logic 0.

This functionality is important when using the SPDIF receiver in com-
mon applications where there are multiple types of data to handle. If there
are PCM audio data streams as well as encoded data streams, for example a
CD audio stream and a DVD audio stream with encoded data, there is a
danger of incorrectly passing the encoded data directly to the DAC. This
results in the ‘playing’ of encoded data as audio, causing loud odd noises
to be played. The non-audio flag provides an easy method to mark the this
type of data.

After the audio sample word, there are four final time slots which carry:

1. Validity bit (time slot 28). The validity bit is logic 0 if the audio
sample word is suitable for conversion to an analog audio signal,
and logic 1 if it is not. This bit is set if the CHST_BUF_ENABLE bit

AES3/SPDIF Stream Format

9-4 ADSP-21368 SHARC Processor Hardware Reference

and the VALIDITY_A (VALIDITY_B for channel 2) bit is set in the
SPDIF_TX_CTL register. This bit is also set if the corresponding bit
given with the sample is set.

2. User data bit (time slot 29). This bit carries user-specified infor-
mation that may be used in any way. This bit is set if the
corresponding bit given with the left/right sample is set.

3. Channel status bit (time slot 30). The channel status for each
audio signal carries information associated with that audio signal,
making it possible for different channel status data to be carried in
the two subframes of the digital audio signal. Examples of informa-
tion to be carried in the channel status are: length of audio sample
words, number of audio channels, sampling frequency, sample
address code, alphanumeric source and destination codes, and
emphasis.

Figure 9-2. Subframe Format

P
R

E
A

M
B

L
E

L
S

B

M
S

B

24-BIT AUDIO WORD

VA
L

ID
IT

Y

U
S

E
R

C
H

A
N

N
E

L

PA
R

IT
Y

0 3 4 27 28 29 30 31

D
A

TA

S
TA

T
U

S

P
R

E
A

M
B

L
E

L
S

B

M
S

B

20-BIT AUDIO WORD

VA
L

ID
IT

Y

U
S

E
R

C
H

A
N

N
E

L

PA
R

IT
Y

0 3 4 27 28 29 30 31

D
A

TA

S
TA

T
U

S

7 8

A
U

X
IL

IA
R

Y
S

A
M

P
L

E
B

IT
S

ADSP-21368 SHARC Processor Hardware Reference 9-5

S/PDIF Transmitter/Receiver

Channel status information is organized in 192-bit blocks, subdi-
vided into 24 bytes. The first bit of each block is carried in the
frame with preamble Z.

For convenience, the first five bytes of the channel status may be
written all at once to control registers for both channels A and B
(SPDIF_TX_CTL, SPDIF_TX_CHSTA, and SPDIF_TX_CHSTB). If the
CHST_BUF_ENABLE bit is set in the SPDIF_TX_CTL register, the appro-
priate CS bit is ORed into the channel status bit of the 192-word
frame. In addition, the CS bit can also be provided along with the
data samples to be transmitted.

4. Parity bit (time slot 31). The parity bit indicates that time slots 4
to 31 inclusive will carry an even number of ones and an even
number of zeros (even parity). The parity bit is automatically gen-
erated for each subframe and inserted into the encoded data.

The two subframes in a frame can be used to transmit two channels of
data (channel 1 in subframe 1, channel 2 in subframe 2) with a sample
rate equal to the frame rate. Alternatively, the two subframes can carry
successive samples of the same channel of data, but at a sample rate that is
twice the frame rate. This is called single-channel, double-frequency
(SCDF). For more information, see “Single-Channel, Double-Sampling
Frequency Mode” on page 9-21.

Channel Coding
To minimize the direct-current (dc) component on the transmission line,
to facilitate clock recovery from the data stream, and to make the interface
insensitive to the polarity of connections, time slots 4 to 31 are encoded in
bi-phase mark.

AES3/SPDIF Stream Format

9-6 ADSP-21368 SHARC Processor Hardware Reference

Each bit to be transmitted is represented by a symbol comprising two con-
secutive binary states. The first state of a symbol is always different from
the second state of the previous symbol. The second state of the symbol is
identical to the first if the bit to be transmitted is logic 0. However, it is
different if the bit is logic 1.

Figure 9-3 shows that the ones in the original data end up with mid cell
transitions in the bi-phase mark encoded data, while zeros in the original
data do not. Note that the bi-phase mark encoded data always has a transi-
tion between bit boundaries.

Preambles
Preambles are specific patterns that provide synchronization and identify
the subframes and blocks. To achieve synchronization within one sam-
pling period and to make this process completely reliable, these patterns
violate the bi-phase mark code rules, thereby avoiding the possibility of
data imitating the preambles.

Figure 9-3. Bi-phase Mark Encoding

10 1 1 0 0

CLOCK
(2 TIMES BIT RATE

DATA

BI-PHASE-MARK
DATA

ADSP-21368 SHARC Processor Hardware Reference 9-7

S/PDIF Transmitter/Receiver

A set of three preambles, shown in Table 9-1, are used. These preambles
are transmitted in the time allocated to four time slots at the start of each
subframe (time slots 0 to 3) and are represented by eight successive states.
The first state of the preamble is always different from the second state of
the previous symbol (representing the parity bit).

Like bi-phase code, the preambles are dc free and provide clock recovery.
They differ in at least two states from any valid bi-phase sequence.

S/PDIF Transmitter
The S/PDIF transmitter resides within the DAI, and its inputs and out-
puts can be routed through the signal routing unit (SRU1). It receives
audio data in serial format, encloses the specified user status information,
and converts it into the bi-phase encoded signal. The serial data input to
the transmitter can be formatted as left-justified, I2S, or right-justified
with word widths of 16, 18, 20 or 24 bits.

The serial data, clock, external sync signal, and frame sync inputs to the
S/PDIF transmitter are routed through SRU1. They can come from a
variety of sources such as the SPORTs, external pins, the precision clock
generators (PCG), or the sample rate converters (SRC). The signal routing
is selected in the SRU1 control registers. For more information, see
“DAI/SRU1 Connection Groups” on page 4-18.

Table 9-1. Preambles

Preamble Preceding state 0 Preceding state 1 Description

X 11100010 00011101 Subframe 1

Y 11100100 00011011 Subframe 2

Z 11101000 00010111 Subframe 1 and
block start

S/PDIF Transmitter

9-8 ADSP-21368 SHARC Processor Hardware Reference

The S/PDIF transmitter output may be routed to an output pin through
SRU1 and then routed to another S/PDIF receiver or to components for
off-board connections to other S/PDIF receivers. The output is also avail-
able to the S/PDIF receiver for loop-back testing through SRU1.

Two output data formats are supported by the transmitter: two channel
mode and single channel double frequency (SCDF) mode. The output for-
mat is determined by the transmitter control register (DITCTL). For more
information, see “Transmitter Control Register (DITCTL)” on
page A-86.

In two channel mode, the left channel (channel A) is transmitted when the
LRCLK is high and the right channel (channel B) is transmitted when the
LRCLK is low.

Figure 9-4. S/PDIF Transmitter Block Diagram

TRANSMITTER
CONTROL
REGISTER

SERIAL TO
PARALLEL

CONVERTER

TRANSMITTER

BI-PHASE
CLOCK

GENERATOR

SCLK (BCLK)

SDATA

LRCLK (FS)

TX_CLK

TX_BI-PHASE_CLOCK

BI-PHASE_OUT
AUDIO

SAMPLES

CONTROL

EXT_SYNC

ADSP-21368 SHARC Processor Hardware Reference 9-9

S/PDIF Transmitter/Receiver

In SCDF mode, the transmitter sends successive audio samples of the
same signal across both subframes, instead of channel A and B. This mode
also allows programs to select which channel is sent when using bits in the
S/PDIF transmit control register. The channel status bits are set to pro-
vide the downstream receiver with information about which channel is
used.

Channel Status
In addition to encoding the audio data in the bi-phase format, the trans-
mitter also provides a way to easily add the channel status information to
the outgoing bi-phase stream. There are status registers in the transmitter
that correspond to each channel or subframe. Byte 0 for each channel A
and B reside in the DITCTL register, and bytes 1–4 reside in the DITCHANxx
registers. For more information, see “Transmitter Control Register
(DITCTL)” on page A-86, “Left Channel Status for Subframe A Registers
(DITCHANAx)” on page A-89 and “Right Channel Status for Subframe
B Registers (DITCHANBx)” on page A-90.

The first five bytes of the channel status may be written all at once to the
control registers for both A and B channels. As the data is serialized and
transmitted, the appropriate bit is inserted into the channel status area of
the 192-word frame. Validity bits for both channels may also be con-
trolled by the transmitter control register. Optionally, the user bit, validity
bit, and channel status bit are sent to the transmitter with each left/right
sample. For each subframe the parity bit is automatically generated and
inserted into the bi-phase encoded data. A mute control and support for
double-frequency single-channel mode are also provided. The serial data
input format may be selected as left-justified, I2S, or right-justified with
16-, 18-, 20- or 24-bit word widths. The over sampling clock is also
selected by the transmitter control register.

S/PDIF Transmitter

9-10 ADSP-21368 SHARC Processor Hardware Reference

SRU1 Signals for the S/PDIF Transmitter
To use the transmitter, route the five required inputs using SRU1 as
described below. Also, use SRU1 to connect the two outputs, bi-phase
encoded output, and block start to the desired DAI (digital audio inter-
face) pin.

DIT_CLK_I is the serial clock. It controls the rate at which serial data
enters the S/PDIF module. This is typically 64 time slots1. The SCLK input
to the S/PDIF transmitter is controlled by the 5-bit clock routing (SRU1
group A) register field SRU_CLK2[14:10] (DIT_CLK_I). This clock input can
come from the SPORTS, the PCG, external pins, or from the S/PDIF
receiver. By default it is connected to LOGIC_LEVEL_LOW. For more infor-
mation, see “Group A Connections—Clock Signals” on page 4-19.

DIT_DAT_I provides serial data. The format of the serial data can be I2S
and right/left-justified. The SDATA input to the S/PDIF transmitter is con-
trolled by the 6-bit serial data routing (SRU1 group B) register field
SRU_DAT4[5:0] (DIT_DAT_I). The data input can come from the SPORTs,
the SRC, external pins, or from the S/PDIF receiver. By default, SDATA is
connected to external pin 0. For more information, see “Group B Connec-
tions—Data Signals” on page 4-25.

DIT_FS_I is the frame sync input to the S/PDIF transmitter. It is con-
trolled by the 5-bit LRCLK routing (SRU1 group C) register field
SRU_FS2[14:10]. The frame sync input can come from the SPORTs, the
PCGs, external pins, or from the S/PDIF receiver. By default the frame
sync is connected to LOGIC_LEVEL_LOW. For more information, see “Group
C Connections—Frame Sync Signals” on page 4-31.

1 Timing for the S/PDIF format consists of time slots, unit intervals, subframes and frames. For a com-
plete explanation of S/PDIF timing, see one of the digital audio interface standards listed at the begin-
ning of this chapter.

ADSP-21368 SHARC Processor Hardware Reference 9-11

S/PDIF Transmitter/Receiver

DIT_HFCLK_I is the oversampling clock. This clock is divided down
according to the FREQMULT bit in the transmitter control register to gener-
ate the bi-phase clock. It can also be selected from various sources since it
is routed through SRU1. The TX_CLK input to the S/PDIF transmitter is
controlled by the 5-bit clock routing (SRU1 group A) register field
SRU_CLK3[29:25] (DIT_HFCLK_I). This clock input can come from the
SPORTS, the PCG, external pins, or from the S/PDIF receiver. By default
TX_CLK is connected to LOGIC_LEVEL_LOW. For more information, see
“Group A Connections—Clock Signals” on page 4-19.

DIT_EXTSYNC_I is a clock input to the SPDIF transmitter and is con-
trolled by the 5-bit clock routing (SRU1 group A) register field
SRU_CLK4[19:15] (SPDIF_TX_EXT_SYNC). This clock can come from any of
20 external DAI pins. By default it is connected to LOGIC_LEVEL_LOW.

DIT_O is the bi-phase encoded data stream. It can be routed to any of the
external pins or to the S/PDIF receiver for loop-back testing through
SRU1. The SRU_PINx registers control this routing. For more information,
see “Group D Connections—Pin Signal Assignments” on page 4-36.

BLK_START indicates the last frame of the current block. This is high
for the entire duration of the frame. The BLK_START output can be routed
to any of the external pins controlled by the SRU_PINx registers. This can
also be connected to the DAI interrupts [31–22] using the SRU_MISCx reg-
isters. Use of this signal is optional.

S/PDIF Transmitter

9-12 ADSP-21368 SHARC Processor Hardware Reference

S/PDIF Transmitter Registers
The SPDIF transmitter contains registers that are used to enable/disable
the transmitter, to manage its operation, and to report status. The regis-
ters are described below.

• DITCTL is the S/PDIF transmit control register. This 32-bit
read/write register is located at address 0x24A0. It is used to enable
the transmitter, control mute, over sampling, mode and data for-
mat. This register is described in detail in “Transmitter Control
Register (DITCTL)” on page A-86.

• DITCHANAx and DITCHANBx are the S/PDIF channel A and
B transmit status registers. These 32-bit read/write registers,
located at addresses 0x24A1 and 0x24A2, provide status informa-
tion for transmitter subframe A and B. These registers are
described in detail in “Left Channel Status for Subframe A Regis-
ters (DITCHANAx)” on page A-89 and “Right Channel Status for
Subframe B Registers (DITCHANBx)” on page A-90. These regis-
ters are used in standalone mode only.

• DITUSRBITAx and DITUSRBITBx are the user bit buffers.
Once programmed, they are used only for the next block of data.
This allows programs to change the user bit information with every
block of data. After writing to the appropriate registers to change
the user bits for the next block, DITUSRBITAx and DITUSRBITBx
must be written to enable the use of these bits. These registers are
used in standalone mode only.

Modes of Operation
The SPDIF transmitter can operate in standalone and full serial modes.
The following sections describe these modes in detail.

ADSP-21368 SHARC Processor Hardware Reference 9-13

S/PDIF Transmitter/Receiver

Standalone Mode

This mode is selected by setting bit 9 in the DITCTL register. In this mode,
the block start bit (indicating start of a frame) is generated internally. The
channel status bits come from the channel status buffer registers (DITCHA-
NAx and DITCHANBx). The user status bits come from the user bits buffers
(DITUSRBITAx and DITUSRBITBx). The channel status buffer must be pro-
grammed before the SPDIF transmitter is enabled and used for all the
successive blocks of data.

Once the user bits buffer registers (DITUSRBITA0-5 and DITUSRBITB0-5) are
programmed, they are used only for the next block of data. This allows
programs to change the user bit information in every block of data. After
writing to the required user bit buffer registers to change the user bits for
the next block, these registers must be rewritten to enable the use of these
bits in the next block. The validity bit for channel A and B are taken from
bit 10 and bit 11 of the DITCTL register. In this mode only audio data
comes from the SDATA pin. All other data, including the status bit and
block start bit is either generated internally or taken from the internal
register.

Full Serial Mode

This mode is selected by clearing bit 9 in the DITCTL register. In this mode
all the status bits, audio data and the block start bit (indicating start of a
frame), come through the SDATA pin. The transmitter should be enabled
after or at the same time as all of the other control bits.

S/PDIF Transmitter

9-14 ADSP-21368 SHARC Processor Hardware Reference

Structure of the Serial Input Data
Figure 9-5 shows the format of data that is sent to the S/PDIF transmitter
using a 24-bit I2S interface. The upper 24 bits (bits 8 through 31) contain
the audio data. Bits 3–7 are used to transmit status information and to
generate preambles and or headers. Bits 0 through 3 are empty.

When I2S format is used with 20-bit or 16-bit data, the audio data
should be placed from the MSB of the 24-bit audio data.

Figure 9-5. Data Packing for I2S and Left-Justified Format

Figure 9-6. Data Packing for Right-Justified Format, 24 Bits

Bits 31–8: 24-Bit Audio Data 7 6 5 4 BITS 3–0

Padding (zero)
BLK_STRT

Channel Status

User Data
Validity Bit

Bits 27–4: 24-Bit Audio Data 3 2 1 0

Channel Status

User Data

Validity Bit

Block Status

ADSP-21368 SHARC Processor Hardware Reference 9-15

S/PDIF Transmitter/Receiver

Figure 9-7. Data Packing for Right-Justified Format, 20 Bits

Figure 9-8. Data Packing for Right-Justified Format, 18 Bits

Figure 9-9. Data Packing for Right-Justified Format, 16 Bits

Bits 27–8: 20-Bit Audio Data 7 6 5 4 BITS 3–0

Padding (zero)
Block Status

Channel Status

User Data
Validity Bit

Bits 27–10: 18-Bit Audio Data 9 8 7 6 BITS 5–0

Padding (zero)
Block Status

Channel Status

User Data
Validity Bit

Bits 27–12: 16-Bit Audio Data 11 10 9 8 BITS 7–0

Padding (zero)
Block Status

Channel Status

User Data
Validity Bit

S/PDIF Receiver

9-16 ADSP-21368 SHARC Processor Hardware Reference

S/PDIF Receiver
The S/PDIF receiver is compliant with all common serial digital audio
interface standards including IEC-60958, IEC-61937, AES3, and AES11.
These standards define a group of protocols that are commonly associated
with the S/PDIF interface standard defined by AES3, which was devel-
oped and is maintained by the Audio Engineering Society. AES3
effectively defines the data and status bit structure of an S/PDIF stream.
AES3-compliant data is sometimes referred to as AES/EBU compliant.
This term highlights the adoption of the AES3 standard by the European
Broadcasting Union. The S/PDIF receiver in the ADSP-21367/8/9 and
ADSP-2137x processors receives an S/PDIF bi-phase encoded stream and
decodes it into an I2S serial data format, and provides the programmer
with several methods of managing the incoming status bit information.

The input to the receiver is a bi-phase encoded signal that may contain
two audio channels (compressed or linear PCM) or non-audio data. The
receiver decodes the single bi-phase encoded stream, producing an
I2S-compatible serial data output that consists of a serial clock (SCLK), a
left/right clock (FS), and data (channel A/B).

The receiver can recover the clock from the bi-phase encoded stream using
either a dedicated on-chip digital phased-locked loop (PLL) or an external
analog PLL. (The dedicated on-chip digital PLL is separate from the PLL
that supplies the core clock to the ADSP-213xx processor core.)

The S/PDIF receiver input stream can be selected from any of the DAI
pins, DAI_P20–1, or from the output of the S/PDIF transmitter for
loop-back testing using signal routing group C. The first five bytes of the
channel status are identified and stored in dedicated status registers for
both A and B channels. The registers are DIR_CHANL and DIR_CHANR. As the
serial data is received, the appropriate bits (first five bytes – bit 0 through
bit 39) are updated from the 192-word frame. If the channel status bits
change, an interrupt may optionally be generated to notify the core.

ADSP-21368 SHARC Processor Hardware Reference 9-17

S/PDIF Transmitter/Receiver

The receiver also detects errors in the S/PDIF stream. These error bits are
stored in the status register, which can be read by the core. Optionally, an
interrupt may be generated to notify the core on error conditions. The
extracted serial data is transmitted on the data pin in I2S format. The
extracted clock, frame sync, and data are routed through SRU1.

The S/PDIF receiver receives any S/PDIF stream with a sampling fre-
quency range of 32 kHz – 15% to 192 kHz + 15% range.

The serial output from the receiver is 24-bit I2S serial data which con-
forms to the format shown in Figure 9-5 on page 9-14.

S/PDIF Receiver Registers
The S/PDIF receiver uses the registers described in the following sections.
More detail can be found in “Sony/Philips Digital Interface Registers” on
page A-86.

DIRCTL is the receiver control register. It is a 32-bit, read/write register
located at address 0x24A8 and is used to enable the receiver, control mute,
PLL and SCDF mode. This register is described in detail in “Receiver
Control Register (DIRCTL)” on page A-92.

DIRSTAT is the receiver status register. It is a 32-bit, read-only register
that is used to store the error bits. The error bits are sticky on read. Once
they are set, they remain set until the register is read. This register also
contains the lower byte of the 40-bit channel status information.

DIRCHANL, DIRCHANR are the channel status for the subframes regis-
ters. They provide status information for subframe A (left channel) bytes
1, 2, 3, and 4 and subframe B (right channel) bytes 1, 2, 3, and 4. These
32-bit, read/write registers are located at address 0x24AA and 0x24AB.
See also “Left Channel Status for Subframe A Registers (DITCHANAx)”
on page A-89 and “Right Channel Status for Subframe B Registers (DIT-
CHANBx)” on page A-90.

S/PDIF Receiver

9-18 ADSP-21368 SHARC Processor Hardware Reference

SRU1 Receiver Signals
The bi-phase encoded data and the external PLL clock inputs to the
receiver are routed through the signal routing unit (SRU1). The extracted
clock, frame sync, and data are also routed through SRU1.

The SRU1 inputs to the S/PDIF receiver are configured through the fol-
lowing signals.

• SPDIF_PLLCLK_I is the external 512 x FS (frame sync) PLL
clock input. This signal is controlled by the 5-bit clock routing reg-
ister field SRU_CLK4[14:10] (Figure 4-16 on page 4-22). This clock
input can come from the external pins connected to the external
PLL.

• DIR_I is the bi-phase encoded data input. This signal is controlled
by the 5-bit frame sync routing register field SRU_FS3[29:25]
(Figure 4-16 on page 4-22). This data may be received from exter-
nal pins or from the S/PDIF receiver.

The SRU1 outputs from the S/PDIF receiver are configured through the
following signals.

• DIR_DAT_O is the extracted audio data output. This signal can
be routed to any of the external pins or to one of the serial receivers
(SPORT, input data port) through SRU1.

• DIR_CLK_O is the extracted receiver sample clock output. This
signal can be routed to any of the external pins or to one of the
serial receivers (SPORT, input data port) through SRU1.

• DIR_FS_O is the extracted receiver frame sync out. This signal can
be routed to any of the external pins or to one of the serial receivers
(SPORT, input data port) through SRU1.

ADSP-21368 SHARC Processor Hardware Reference 9-19

S/PDIF Transmitter/Receiver

• DIR_TDMCLK_O is the receiver TDM clock output. This signal
can be routed to any of the external pins or to one of the serial
receivers (SPORT, input data port) through SRU1.

• DIR_LRCLK_FB is the external PLL feedback point connection.

• DIR_LRCLK_REF is the external PLL reference point connection.

Phase-Locked Loop
The phase-locked loop for the AES3/SPDIF receiver is intended to recover
the clock that generated the AES3/SPDIF bi-phase encoded stream. This
clock is used by the receiver to clock in the bi-phase encoded data stream
and also to provide clocks for either the serial ports, sample rate converter,
or AES3/SPDIF transmitter. The recovered clock may also be used exter-
nally to the chip for clocking D/A and A/D converters.

In order to maintain performance, jitter on the clock is sourced to several
peripherals. Jitter on the recovered clock must be less than 200 ps and, if
possible, less than 100 ps across all the sampling frequencies ranging from
27.2 kHz to 220.8 kHz (32 kHz – 15% and 192 kHz + 15%). Further-
more, once the PLL achieves lock, it is able to vary ±15% in frequency
over time. This allows for applications that do not use PLL unlocking.

The receiver can be used with the on-chip digital PLL or with an external
analog PLL. There are various performance characteristics to consider
when configuring for analog PLL mode, and more information can be
found on the Analog Devices Web site.

Channel Status Decoding
The S/PDIF receiver processes compressed as well as non-linear audio data
according to the supported standards. The following sections describe how
the S/PDIF receiver handles different data.

Channel Status Decoding

9-20 ADSP-21368 SHARC Processor Hardware Reference

Compressed or Non-Linear Audio Data
The AES3/SPDIF receiver is required to detect compressed or non-linear
audio data according to the AES3, IEC60958, and IEC61937 standards.
Bit 1 of byte 0 in the DIR_B0CHAN register indicates whether the audio data
is linear PCM, (bit 1 = 0), or non-PCM audio, (bit 1 = 1). If the channel
status indicates non-PCM audio, the DIR_NOAUDIO bit flag is set. (This bit
can be used to generate an interrupt.) The DIR_VALID bit (bit 3 in the
DIRSTAT register) when set (=1) may indicate non-linear audio data as well.
Whenever this bit is set, the VALIDITY bit flag in the SPDIF_RX_STAT regis-
ter is also set.

The MPEG-2, AC-3, DTS, and AAC compressed data may be transmitted
without setting either the DIR_VALID bit or bit 1 of byte 0. To detect this
data, the IEC61937 and SPMTE 337M standards dictate that there be a
96-bit sync code in the 16-, 20- or 24-bit audio data stream. This sync
code consists of four words of zeros followed by a word consisting of
0xF872 and another word consisting of 0x4E1F. When this sync code is
detected, the DIR_NOAUDIO bit flag is set. If the sync code is not detected
again within 4096 frames, the DIR_NOAUDIO bit flag is deasserted.

The last two words of the sync code, 0xF872 and 0x4E1F, are called the
preamble-A and preamble-B of the burst preamble. Preamble-C of the
burst preamble contains burst information and is captured and stored by
the receiver. Preamble-D of the burst preamble contains the length code
and is captured by the receiver. Even if the validity bit or bit 1 of byte 0
has been set, the receiver still looks for the sync code in order to record the
preamble-C and D values. Once the sync code has not been detected in
4096 frames, the preamble-C and D registers are set to zero.

The SPDIF receiver supports the DTS stream. The DTS specifica-
tions support frame sizes of 256, 512, 1024, 2048 and 4096. The
on-chip SPDIF receiver supports the 256, 512 and 1024 DTS
frames. The DTS test kit frames with 2048 and 4096 frame sizes

ADSP-21368 SHARC Processor Hardware Reference 9-21

S/PDIF Transmitter/Receiver

can be detected by adding the sync detection logic in software by
using a software counter to check for the DTS header every 2048
and 4096 frames respectively.

Emphasized Audio Data
The receiver must indicate to the program whether the received audio data
is emphasized using the channel status bits as detailed below.

• In professional mode, (bit 0 of byte 0 = 1), channel status bits 2–4
of byte 0 indicate the audio data is emphasized if they are equal to
110 or 111.

• In consumer mode, (bit 0 of byte 0 = 0), channel status bits 3–5
indicate the audio data is emphasized if they are equal to 100, 010
or 110.

If emphasis is indicated in the channel status bits, the receiver asserts the
EMPHASIS bit flag. This bit flag is used to generate an interrupt as shown in
“Error Handling” on page 9-22.

Single-Channel, Double-Sampling Frequency
Mode

Single-channel, double-frequency mode (SCDF) is selected with the
DIR_SCDF and DIR_SCDF_LR bits in the DIRCTL register. The DIR_B0CHANL/R
bits in the DIRSTAT register also contain information about the SCDF
mode. When the DIR_B0CHANL/R indicates single-channel, double-fre-
quency mode, the two subframes of a frame carry successive audio samples
of the same signal.

Error Handling

9-22 ADSP-21368 SHARC Processor Hardware Reference

Bits 0–3 of channel status byte 1 are decoded by the receiver to determine
one of the following:

• 0111 = single-channel, double-frequency mode

• 1000 = single-channel, double-frequency mode – stereo left

• 1001 = single-channel, double-frequency mode – stereo right

Error Handling
The following five types of errors can occur in the receiver and are
reported on the error flag bits.

1. Lock Error. When bit 4 in the DIRSTAT register is set (=1), the PLL
is locked.

2. Bi-phase Error. When bit 7 in the DIRSTAT register is set (=1), it
indicates that a bi-phase error has occurred and the data sampled
from the bi-phase stream may not be correct.

3. Parity Error. When bit 6 in the DIRSTAT register is set (=1), it indi-
cates that the AES3/SPDIF stream was received with the correct
even parity. When the DIR_PARITYERROR bit is low (=0), it indicates
that an error has occurred and the parity is odd.

4. CRCC Error. The CRCCERROR bit is asserted high whenever the
CRCC check of the DIR_B0CHANL/R bits fails. The CRCC check is
only performed if the channel status bit 0 of byte 0 is high, indicat-
ing professional mode.

5. No Stream Error. The DIR_NOSTREAM bit is asserted whenever the
AES3/SPDIF stream is disconnected.

When the DIR_NOSTREAM bit is asserted and the audio data in the stream is
linear PCM, the receiver performs a soft mute of the last valid sample
from the AES3/SPDIF stream. A soft mute consists of taking the last valid

ADSP-21368 SHARC Processor Hardware Reference 9-23

S/PDIF Transmitter/Receiver

audio sample and slowly and linearly decrementing it to zero, over a
period of 4096 frames. During this time, the PLL three-states the charge
pump until the soft mute has been completed. If non-linear PCM audio
data is in the AES3/SPDIF stream when the NOSTREAM bit is asserted, the
receiver sends out zeros after the last valid sample.

When the DIR_LOCK bit is deasserted, it means that the PLL has become
unlocked and the audio data is handled according to the
DIR_NOAUDIO[1:0] bits in the DIRCTL register. When this happens, the
receiver functions as follows.

• 00 = no action is taken with the audio data.

• 01 = the last valid audio sample is held.

• 10 = zeros are sent out after the last valid sample.

• 11 = soft mute of the last valid audio sample is performed (as if
DIR_NOSTREAM is asserted).

This is valid only when linear PCM audio data is in the stream.
When non-linear audio data is in the stream, this mode defaults to
the case of DIR_NOAUDIO[1:0] bits = 10.

When a parity or bi-phase error occurs, the audio data is handled accord-
ing to the DIR_BIPHASEERROR_CTL[1:0] bits in the following manner.

• 00 = no action is taken with the audio data.

• 01 = the last valid sample is held.

• 10 = the invalid sample is replaced with zeros.

The VALIDITY, NONAUDIO, NOSTREAM, BIPHERR, PARITY and LOCK bits are also
stored in the receiver status register as W1C bits.

Interrupts

9-24 ADSP-21368 SHARC Processor Hardware Reference

Interrupts
The following error/status bits can be used to interrupt the processor core.

• The DIR_LOCK, DIR_VALID, DIR_NOSTREAM and DIR_NOAUDIO bits can
generate interrupts. Parity errors and bi-phase errors are ORed
together to form a PARITY_BIPHASE_ERROR interrupt. Whenever
there is a change in channel status information, a
CHANNEL_STAT_CHANGE interrupt occurs.

• The DIR_BIPHASEERROR and DIR_VALID interrupts are one PCLK
pulse wide.

• All interrupts are processed through the interrupt controller which
can generate an interrupt on the rising or falling edge of the signal.

DAI Programming Examples
The following examples show how the S/PDIF receiver and transmitter
are programmed using the digital audio interface/SRU1.

S/PDIF Transmitter Programming Guidelines
The following guidelines are intended to help in programming the
S/PDIF transmitter.

Control Register

The DITCTL register contains control parameters for the S/PDIF transmit-
ter. The control parameters include transmitter enable, mute information,
oversampling clock division ratio, SCDF mode select and enable, serial
data input format select and validity, and channel status buffer selects. By
default, all the bits in this register are zero.

ADSP-21368 SHARC Processor Hardware Reference 9-25

S/PDIF Transmitter/Receiver

SRU1 Programming for Input and Output Streams

Signal routing unit 1 (SRU1) is used to connect the S/PDIF transmitter
bi-phase data out to the output pins or to the S/PDIF receiver. The serial
data input and the over sampling clock input also needs to be routed
through SRU1. See For more information, see “Group A Connections—
Clock Signals” on page 4-19 and “Group B Connections—Data Signals”
on page 4-25.

Control Register Programming and Enable

After SRU1 programming is complete, if the channel status or validity
buffer needs enabling, write to the buffers first with the required data and
then enable the buffers using the DIT_CHANBUF bit in the DITCTL register.
Also write other control values such as DIT_SMODEIN, and DIT_FREQ and
enable the transmitter by setting the DIT_EN bit.

S/PDIF Receiver Programming Guidelines
The following guidelines are intended to help in programming the
S/PDIF receiver.

Control Register

The S/PDIF receiver is enabled at default to receive in two channel mode.
Therefore, if the receiver is not used, programs should disable the digital
PLL to avoid unnecessary switching. This is accomplished by writing into
the DIR_PLLDIS bit (bit 7) in the DIRCTL register. In most cases, when the
S/PDIF receiver is used, this register does not need to be changed. For a
detailed description of this register, see “Receiver Control Register
(DIRCTL)” on page A-92.

The DIRCTL register contains control parameters for the S/PDIF receiver.
The control parameters include mute information, error controls, SCDF
mode select and enable, and digital PLL disable.

DAI Programming Examples

9-26 ADSP-21368 SHARC Processor Hardware Reference

SRU1 Programming

The SRU1 needs to be programmed in order to connect the S/PDIF
receiver to the output pins or any other peripherals and also for the input
bi-phase stream.

Program the corresponding SRU1 registers to connect the above outputs
to the required destination. See “SRU1 Receiver Signals” on page 9-18,
“Group A Connections—Clock Signals” on page 4-19, and “Group C
Connections—Frame Sync Signals” on page 4-31.

Control Register Programming

After SRU1 programming is complete, write to the SPDIF_RX_CTL register
with control values, and enable the internal digital PLL by clearing the
DIR_PLLDIS bit if it was cleared initially. At this point, the receiver
attempts to lock.

Receiver Locking

Once the receiver is locked, the corresponding LOCK bit in the DIRSTAT reg-
ister is set. This bit can be polled to detect the LOCK condition. Another
option is to use the SPDIF_RX_LOCK_START interrupt in the DAI_IRPTL_H/L
register. This triggers the DAI_INTH/L interrupt once the receiver is locked.
From this point on, the S/PDIF starts producing extracted output serial
data. The data is guaranteed to be correct only after the LOCK goes high.

Status Bits

After the receiver is locked, the other status bits in the receiver status
(DIRSTAT) and the channel status (DIRCHANL/R) registers can be read. Inter-
rupts can also be used with some status bits.

ADSP-21368 SHARC Processor Hardware Reference 9-27

S/PDIF Transmitter/Receiver

Interrupted Data Streams on the Receiver

When using the SPDIF receiver with data streams that are likely to be
interrupted, (in other words unplugged and reconnected), it is necessary
to take some extra steps to ensure that the SPDIF receiver’s digital PLL
will re lock to the stream. The steps to accomplish this are described
below.

1. Setup interrupts within the DAI so that the SPDIF RX can gener-
ate an interrupt when the stream is reconnected.

2. Within the interrupt service routine (ISR), stop and restart the dig-
ital PLL. This is accomplished by setting and then clearing bit 7 of
the SPDIF receiver control register.

3. Return from the ISR and continue normal operation.

This method of resetting the digital PLL has been shown to provide
extremely reliable performance when SPDIF inputs that are interrupted or
unplugged momentarily occur.

The following procedure and the example code show how to reset the dig-
ital PLL. Note that all of the SPDIF receiver interrupts are handled
through the DAI interrupt controller. For more information, see
“DAI/DPI Interrupt Controller” on page 4-65.

1. Initialize the No Stream Interrupt

/* Enable interrupts (globally) */

BIT SET MODE1 IRPTEN;

/* unmask DAI Hi=Priority Interrupt */

bit set imask DAIHI;

ustat1 = DIR_NOSTREAM_INT;

/* Enable no-stream Interrupt on Falling Edge. Interrupt

occurs when the stream is reconnected */

dm(DAI_IRPTL_FE) = ustat1;

DAI Programming Examples

9-28 ADSP-21368 SHARC Processor Hardware Reference

/* Enable Hi-priority DAI interrupt */

dm(DAI_IRPTL_PRI) = ustat1;

/* If more than 1 DAI interrupt is being used, it is neces-

sary to determine which interrupt occurred here */

/* Interrupt Service Routine for the DAI Hi-Priority Inter-

rupt. This ISR triggered when the DIR sets no_stream bit */

_DAIisrH:

2. Reset the Digital PLL Inside of the ISR

r8=dm(DAI_IRPTL_H); /* Reading DAI_IRPTL_H

 clears interrupt */

ustat2=dm(DIRCTL);

 bit set ustat2 DIR_PLLDIS; /* bit_7 disables Dpll only */

 dm(DIRCTL)=ustat2;

 bit clr ustat2 DIR_PLLDIS; /*reenable the digital pll */

 dm(DIRCTL)=ustat2;

ADSP-21368 SHARC Processor Hardware Reference 10-1

10 ASYNCHRONOUS SAMPLE
RATE CONVERTER

Sample rate conversion is the process of converting a digital signal from
one sampling rate to another, while modifying the information that is car-
ried by the signal as little as possible.

Sample rate conversion is useful because different systems use different
sampling rates for a variety reasons. Because the physics of sampling
require a minimum sampling rate, other factors determine the actual rates
used. For example, different audio systems can use rates of 44.1, 48, and
96 kHz and programs need to transfer source material between these sys-
tems. Just replaying the existing data at the new rate does not work — it
introduces large changes in pitch (for audio) and movement as well (for
video), plus it cannot be done in real time.

The asynchronous sample rate converter (SRC), as it is implemented in
the ADSP-21367/8/9 and ADSP-2137x processors, is used to perform
asynchronous sample rate conversion across independent stereo channels
without using any internal processor resources. Furthermore, the SRC
blocks can be configured to operate together to convert multichannel
audio data without phase mismatches. Finally, the SRC is used to clean up
audio data from jittery clock sources such as the S/PDIF receiver.

The SRC contains four blocks (SRC0–3). It also is the same core that is
used in the Analog Devices AD1896 192 kHz Stereo Asynchronous Sam-
ple Rate Converter. The top-level block diagram of the SRC module is
shown in Figure 10-4 on page 10-9.

The SRC has a 3-wire interface for the serial input and output ports that
supports left-justified, I2S, and right-justified (16-, 18-, 20-, 24-bit)
modes. Additionally, the serial interfaces support time-division

Theory of Operation

10-2 ADSP-21368 SHARC Processor Hardware Reference

multiplexing (TDM) mode for daisy-chaining multiple SRCs to a proces-
sor. The serial output data is dithered down to 20, 18, or 16 bits when
20-, 18-, or 16-bit output data is selected.

Theory of Operation
The SRC sample rate converts the data from the serial input port to the
sample rate of the serial output port. The sample rate at the serial input
port can be asynchronous with respect to the output sample rate of the
output serial port.

Conceptually, the SRC interpolates the serial input data by a rate of 220
and samples the interpolated data stream by the output sample rate. In
practice, a 64-tap FIR filter with 220 poly phases, a FIFO, a digital-servo
loop that measures the time difference between the input and output sam-
ples within 5 ps, and a digital circuit to track the sample rate ratio are used
to perform the interpolation and output sampling. The digital-servo loop
and sample rate ratio circuit automatically track the input and output
sample rates.

The digital-servo loop measures the time difference between the input and
output sample rates within 5 ps. This is necessary in order to select the
correct polyphase filter coefficient. The digital-servo loop has excellent jit-
ter rejection for both input and output sample rates as well as the master
clock. The jitter rejection begins at less than 1 Hz. This requires a long
settling time whenever the SRC is enabled or when the input or output
sample rate changes.

To reduce the settling time when the SRC is enabled or there is a change
in the sample rate, the digital-servo loop enters the fast settling mode.
When the digital-servo loop has adequately settled in the fast mode, it
switches into the normal or slow settling mode and continues to settle
until the time difference measurement between input and output sample
rates is within 5 ps. During fast mode, the MUTE_OUT signal is asserted high.

ADSP-21368 SHARC Processor Hardware Reference 10-3

Asynchronous Sample Rate Converter

Normally, the MUTE_OUT signal is connected to the MUTE_IN signal. The
MUTE_IN signal is used to softly mute the SRC upon assertion and softly
stop muting the SRC when it is deasserted.

The sample rate ratio circuit is used to scale the filter length of the FIR fil-
ter for decimation. Hysteresis in measuring the sample rate ratio is used to
avoid oscillations in the scaling of the filter length, which would cause dis-
tortion on the output.

However, when multiple SRCs are used with the same serial input port
clock and the same serial output port clock, the hysteresis causes different
group delays between multiple SRCs. A phase-matching mode feature was
added to the SRC to address this problem. In phase-matching mode, one
SRC, (the master), transmits its sample rate ratio to the other SRCs, (the
slaves), so that the group delay between the multiple SRCs remains the
same.

Asynchronous sample rate conversion is converting data from one clock
source at a sample rate to another clock source at the same or a different
sample rate. The simplest approach to an asynchronous sample rate con-
version is the use of a zero-order hold between the two samplers shown in
Figure 10-1. In the figure, fS_IN and fS_OUT are the input and output
sampling frequencies, respectively, and T1 and T2 are the time periods
that correspond to the input and output. In an asynchronous system, T2
is never equal to T1 nor is the ratio between T2 and T1 rational. As a
result, samples at fS_OUT are repeated or dropped, thus producing an error
in the resampling process. The frequency domain shows the wide side
lobes that result from this error when the sampling of fS_OUT is convolved
with the attenuated images from the sin(x)/x nature of the zero-order
hold. The images at fS_IN, (dc signal images), of the zero-order hold are
infinitely attenuated. Since the ratio of T2 to T1 is an irrational number,
the error resulting from the resampling at fS_OUT can never be eliminated.
However, the error can be significantly reduced through interpolation of
the input data at fS_IN. The SRC is conceptually interpolated by a factor
of 220.

Theory of Operation

10-4 ADSP-21368 SHARC Processor Hardware Reference

Conceptual Model
In SRC theory, interpolation of the input data by a factor of 220 involves
placing (220 – 1) samples between each fS_IN sample. Figure 10-2 and
Figure 10-3 on page 10-6 shows both the time domain and the frequency
domain of interpolation by a factor of 220. Conceptually, interpolation by
220 involves the steps of zero-stuffing (220 – 1) samples between each
fS_IN sample and convolving this interpolated signal with a digital
low-pass filter to suppress the images. In the time domain, it can be seen
that fS_OUT selects the closest fS_IN × 220 sample from the zero-order hold
as opposed to the nearest fS_IN sample in the case of no interpolation.
This significantly reduces the resampling error.

Figure 10-1. Zero-Order Hold Used by fS_OUT to Resample Data
From fS_IN

ZERO-ORDER
HOLD

IN OUT

fS_IN = 1/T1 fS_OUT = 1/T2

ORIGINAL SIGNAL

SAMPLED AT fS_IN

SIN(X)/X OF ZERO-ORDER HOLD

SPECTRUM OF ZERO-ORDER HOLD OUTPUT

SPECTRUM OF fS_OUT SAMPLING

fS_OUT 2 × fS_OUT

FREQUENCY RESPONSE OF fS_OUT CONVOLVED WITH ZERO-ORDER

HOLD SPECTRUM

ADSP-21368 SHARC Processor Hardware Reference 10-5

Asynchronous Sample Rate Converter

In the frequency domain shown in Figure 10-3 on page 10-6, the interpo-
lation expands the frequency axis of the zero-order hold. The images from
the interpolation can be sufficiently attenuated by a good low-pass filter.
The images from the zero-order hold are now pushed by a factor of 220
closer to the infinite attenuation point of the zero-order hold, which is
fS_IN × 220. The images at the zero-order hold are the determining factor
for the fidelity of the output at fS_OUT. The worst-case images that can be
computed from the zero-order hold frequency response are:

Figure 10-2. Time Domain of the Interpolation and Resampling

IN OUT

fS_IN fS_OUT

TIME DOMAIN OF fS_IN SAMPLES

TIME DOMAIN OUTPUT OF THE LOW-PASS FILTER

TIME DOMAIN OF fS_OUT RESAMPLING

TIME DOMAIN OF THE ZERO-ORDER HOLD OUTPUT

INTERPOLATE
BY N

LOW-PASS
FILTER

ZERO-ORDER
HOLD

Maximum Image

π F×
fS_INTERP
----------------------------⎝ ⎠
⎛ ⎞sin

π F×
fS_INTERP
----------------------------⎝ ⎠
⎛ ⎞

---=

Theory of Operation

10-6 ADSP-21368 SHARC Processor Hardware Reference

F is the frequency of the worst-case image which is:

 and fS_INTERP is

The following worst-case images would appear for fS_IN = 192 kHz:

Image at fS_INTERP – 96 kHz = –125.1 dB

Image at fS_INTERP + 96 kHz = –125.1 dB

Figure 10-3. Frequency Domain of the Interpolation and Resampling

2
20

fS_IN×
fS_IN

2
------------±

fS_IN 2
20×

FREQUENCY DOMAIN OF SAMPLES AT fS_IN

FREQUENCY DOMAIN OF THE INTERPOLATION

FREQUENCY DOMAIN OF fS_OUT RESAMPLING

FREQUENCY DOMAIN AFTER
RESAMPLING

IN OUT

fS_IN fS_OUT

INTERPOLATE
BY N

LOW-PASS
FILTER

ZERO-ORDER
HOLD

fS_IN

220 × fS_IN

220 × fS_IN

220 × fS_IN

SIN(X)/X OF ZERO-ORDER HOLD

ADSP-21368 SHARC Processor Hardware Reference 10-7

Asynchronous Sample Rate Converter

Hardware Model
The output rate of the low-pass filter of Figure 10-2 is the interpolation
rate, 220 × 192 kHz = 201.3 GHz. Sampling at a rate of 201.3 GHz is
clearly impractical, not to mention the number of taps required to calcu-
late each interpolated sample. However, since interpolation by 220
involves zero-stuffing 220– 1 samples between each fS_IN sample, most of
the multiplies in the low-pass FIR filter are by zero. A further reduction
can be realized by the fact that since only one interpolated sample is taken
at the output at the fS_OUT rate, only one convolution needs to be per-
formed per fS_OUT period instead of 220 convolutions. A 64-tap FIR filter
for each fS_OUT sample is sufficient to suppress the images caused by the
interpolation.

The difficulty with the above approach is that the correct interpolated
sample needs to be selected upon the arrival of fS_OUT. Since there are 220
possible convolutions per fS_OUT period, the arrival of the fS_OUT clock
must be measured with an accuracy of 1/201.3 GHz = 4.96 ps. Measuring
the fS_OUT period with a clock of 201.3 GHz frequency is clearly impossi-
ble; instead, several coarse measurements of the fS_OUT clock period are
made and averaged over time.

Another difficulty with the above approach is the number of coefficients
required. Since there are 220 possible convolutions with a 64-tap FIR fil-
ter, there needs to be 220 polyphase coefficients for each tap, which
requires a total of 226 coefficients. To reduce the amount of coefficients in
ROM, the SRC stores a small subset of coefficients and performs a
high-order interpolation between the stored coefficients. So far the above
approach works for the case of fS_OUT > fS_IN. However, in the case when
the output sample rate, fS_OUT, is less than the input sample rate, fS_IN,
the ROM starting address, input data, and the length of the convolution
must be scaled. As the input sample rate rises over the output sample rate,
the anti-aliasing filter’s cutoff frequency has to be lowered because the
Nyquist frequency of the output samples is less than the Nyquist fre-
quency of the input samples. To move the cutoff frequency of the

Sample Rate Converter Architecture

10-8 ADSP-21368 SHARC Processor Hardware Reference

anti-aliasing filter, the coefficients are dynamically altered and the length
of the convolution is increased by a factor of (fS_IN/fS_OUT). This tech-
nique is supported by the Fourier transform property that if f(t) is F(ω),
then f(k × t) is F(ω/k). Thus, the range of decimation is simply limited by
the size of the RAM.

Sample Rate Converter Architecture
Figure 10-4 shows a top level block diagram of the SRC module and
Figure 10-5 shows architecture details. The sample rate converter’s FIFO
block adjusts the left and right input samples and stores them for the FIR
filter’s convolution cycle. The fS_IN counter provides the write address to
the FIFO block and the ramp input to the digital-servo loop. The ROM
stores the coefficients for the FIR filter convolution and performs a
high-order interpolation between the stored coefficients. The sample rate
ratio block measures the sample rate by dynamically altering the ROM
coefficients and scaling the FIR filter length and input data. The digi-
tal-servo loop automatically tracks the fS_IN and fS_OUT sample rates and
provides the RAM and ROM start addresses for the start of the FIR filter
convolution.

The master clock input (MCLK) shown in Figure 10-4 is peripheral
clock (PCLK) divided by 4 (which is core clock divided by 8). There-
fore, MCLK = PCLK ÷ 4 = CCLK ÷ 8

ADSP-21368 SHARC Processor Hardware Reference 10-9

Asynchronous Sample Rate Converter

The FIFO receives the left and right input data and adjusts the amplitude
of the data for both the soft muting of the SRC and the scaling of the
input data by the sample rate ratio before storing the samples in RAM.
The input data is scaled by the sample rate ratio because as the FIR filter
length of the convolution increases, so does the amplitude of the convolu-
tion output. To keep the output of the FIR filter from saturating, the
input data is scaled down by multiplying it by (fS_OUT/fS_IN) when
fS_OUT < fS_IN. The FIFO also scales the input data to mute and stop
muting the SRC.

The RAM in the FIFO is 512 words deep for both left and right channels.
An offset to the write address, provided by the fS_IN counter, is added to
prevent the RAM read pointer from overlapping the write address. The
offset is selectable by the GRPDLYS (group delay select) signal. A small offset
(16) is added to the write address pointer when GRPDLYS is high, and a
large offset, (64), is added to the write address pointer when GRPDLYS is

Figure 10-4. Sample Rate Converter Block Diagram

SERIAL
INPUT
PORT

LRCLK_I

SCLK_I

SDATA_I

SMODE_IN2-0

HARD_MUTE_IN

TDM_OUT

DE-EMPHASIS
FILTER

MUTE_OUT

DE-EMPHASIS1-0

SAMPLE
RATE

CONVERTER

MUTE_IN

SRC_RATIO14-0

SERIAL
OUTPUT

PORT

LRCLK_O

SCLK_O

SDATA_O

TDM_IN

SMODE_OUT1-0

WLENGTH_OUT1-0

21BIT_DITHER

MATCHED_PHASED_MODE

MCLK

Sample Rate Converter Architecture

10-10 ADSP-21368 SHARC Processor Hardware Reference

low. Increasing the offset of the write address pointer is useful for applica-
tions when small changes in the sample rate ratio between fS_IN and
fS_OUT are expected. The maximum decimation rate can be calculated
from the RAM word depth and GRPDLYS as (512 – 16)/64 taps = 7.75 for
short group delay and (512 – 64)/64 taps = 7 for long group delay.

The digital-servo loop is essentially a ramp filter that provides the initial
pointer to the address in RAM and ROM for the start of the FIR convolu-
tion. The RAM pointer is the integer output of the ramp filter while the
ROM pointer is the fractional part. The digital-servo loop must be able to
provide excellent rejection of jitter on the fS_IN and fS_OUT clocks as well
as measure the arrival of the fS_OUT clock within 4.97 ps. The digi-
tal-servo loop also divides the fractional part of the ramp output by the
ratio of fS_IN/fS_OUT for the case when fS_IN > fS_OUT, to dynamically
alter the ROM coefficients.

Figure 10-5. Sample Rate Converter Architecture

fS_IN
COUNTER

FIFO
HIGHROM A

DIGITAL
SERVO LOOP FIR FILTER

ROM B

ROM C

ROM D

ORDER

INTERP

SAMPLE RATE
RATIO

SAMPLE RATE RATIO L/R DATA OUT

EXTERNAL
RATIO

RIGHT DATA IN

LEFT DATA IN

fS_ IN

fS_OUT

ADSP-21368 SHARC Processor Hardware Reference 10-11

Asynchronous Sample Rate Converter

The digital-servo loop is implemented with a multi-rate filter. To settle
the digital-servo loop filter quickly at startup or at a change in the sample
rate, a fast mode has been added to the filter. When the digital-servo loop
starts up or the sample rate is changed, the digital-servo loop kicks into
fast mode to adjust and settle on the new sample rate. Upon sensing the
digital-servo loop settling down to some reasonable value, the digital-servo
loop kicks into normal or slow mode. During fast mode, the MUTE_OUT sig-
nal of the SRC is asserted to remind the user to mute the SRC which
avoids clicks and pops.

The FIR filter is a 64-tap filter in the case of fS_OUT < fS_IN and is
(fS_IN/fS_OUT) × 64 taps for the case when fS_IN > fS_OUT. The FIR filter
performs its convolution by loading in the starting address of the RAM
address pointer and the ROM address pointer from the digital-servo loop
at the start of the fS_OUT period. The FIR filter then steps through the
RAM by decrementing its address by 1 for each tap, and the ROM
pointer increments its address by the (fS_OUT/fS_IN) × 220 ratio for
fS_IN > fS_OUT or 220 for fS_OUT < fS_IN. Once the ROM address rolls
over, the convolution is complete. The convolution is performed for both
the left and right channels, and the multiply/accumulate circuit used for
the convolution is shared between the channels.

The fS_IN/fS_OUT sample rate ratio circuit is used to dynamically alter the
coefficients in the ROM for the case when fS_IN > fS_OUT. The ratio is
calculated by comparing the output of an fS_OUT counter to the output of
an fS_IN counter. If fS_OUT > fS_IN, the ratio is held at one. If fS_IN
>fS_OUT, the sample rate ratio is updated if it is different by more than
two fS_OUT periods from the previous fS_OUT to fS_IN comparison. This is
done to provide some hysteresis to prevent the filter length from oscillat-
ing and causing distortion.

However, the hysteresis of the fS_OUT/fS_IN ratio circuit can cause phase
mismatching between two SRCs operating with the same input and out-
put clocks. Since the hysteresis requires a difference of more than two
fS_OUT periods to update the fS_OUT/fS_IN ratio, two SRCs may have

SRC Operation

10-12 ADSP-21368 SHARC Processor Hardware Reference

differences in their ratios from 0 to 4 fS_OUT period counts. The
fS_OUT/fS_IN ratio adjusts the filter length of the SRC, which corresponds
directly with the group delay. Thus, the magnitude in the phase difference
depends upon the resolution of the fS_OUT and fS_IN counters. The
greater the resolution of the counters, the smaller the phase difference
error.

Group Delay
When multiple SRCs are used with the same serial input port clock and
the same serial output port clock, the hysteresis causes different group
delays between multiple SRCs. The filter group delay of the SRC is given
by the equations:

SRC Operation
The following sections provide details on the SRC’s operation within the
ADSP-21367/8/9 and ADSP-2137x processors.

The maximum data that is transferred through the SRCs is 24-bit.
When 32-bit clock and data is provided to the 128 dB SRC, the
least significant 8-bits are zero. However for a 140 dB SRC, the
least significant 8-bits contain the ratio information. This informa-
tion should be considered while interfacing the SRC to interfaces
such as the S/PDIF.

GDS 16
fS_IN
-------------- 32

fS_IN
-------------- onds for fS_OUT

fS_IN>sec+=

GDS 16
fS_IN

32
fS_IN
--------------⎝ ⎠
⎛ ⎞

fS_IN
fS_OUT

⎝ ⎠
⎜ ⎟
⎛ ⎞

× onds for fS_OUT
fS_IN<sec+=

ADSP-21368 SHARC Processor Hardware Reference 10-13

Asynchronous Sample Rate Converter

Enabling the SRC
When the SRCx_ENABLE bit (bit 31 in the SRC control registers) is set
(= 1), the SRC begins its initialization routine where all locations in the
FIFO are initialized to zero, MUTE_OUT is cleared, and any output pins are
enabled.

The SRCx_ENABLE bit should be held low for a minimum of five PCLK cycles
when setting or clearing the bit. It is recommended that the SRC be dis-
abled when changing modes.

When the SRCx_ENABLE bit is set or there is a change in the sample rate
between LRCLK_I and LRCLK_O, the MUTE_OUT pin is cleared. The MUTE_OUT
pin remains cleared until the digital-servo loop’s internal fast settling
mode is complete. When the digital-servo loop has switched to slow set-
tling mode, the MUTE_OUT pin is set. While MUTE_OUT is cleared, the
MUTE_IN pin should be cleared as well to prevent any major distortion in
the audio output samples.

Serial Data Ports
The serial data ports provide the interface through which data is trans-
ferred into and out of the SRC modules. The following sections describe
the various data formats and the available modes of operation.

Data Format

The serial data input port mode is set by the logic levels on the
SRCx_SMODEIN[0:2] bits that are located in the SRCCTLx registers. The
serial data input port modes available are left-justified, I2S, TDM and
right-justified, 16, 18, 20, or 24 bits as defined in Table 10-1.

The serial data output port mode is set by the logic levels on the
SRCx_SMODE_OUT[0:1] bits. The serial mode can be changed to left-justi-
fied, I2S, right-justified, or TDM as defined in Table 10-2. The output
word width can be set by using the SRCx_LENOUT[0:1] bits as shown in

SRC Operation

10-14 ADSP-21368 SHARC Processor Hardware Reference

Table 10-3. When the output word width is less than 24 bits, dither is
added to the truncated bits. The right-justified serial data out mode
assumes 64 SCLK_O cycles per frame, divided evenly for left and right.
Please note that 8 bits of each 32-bit subframe are used for transmitting
matched-phase mode data as shown in Figure 10-9 on page 10-18. The
SRC also supports 16-bit, 32-clock packed input and output serial data in
left-justified and I2S format.

Table 10-1. Serial Data Input Port Mode

SRCx_SMODE_0:2
Interface Format

2 1 0

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Left-justified
I2S
TDM
RESERVED
Right-justified, 16 bits
Right-justified, 18 bits
Right-justified, 20 bits
Right-justified, 24 bits

Table 10-2. Serial Data Output Port Mode

SRCx_SMODEOUT_0:1
Interface Format

1 0

0
0
1
1

0
1
0
1

Left-justified
I2S
TDM
Right-justified

ADSP-21368 SHARC Processor Hardware Reference 10-15

Asynchronous Sample Rate Converter

Time-Division Multiplex (TDM) Output Mode

In TDM output mode, several SRCs can be daisy-chained together and
connected to the serial input port of an ADSP-21367/8/9 and
ADSP-2137x processor or other processor (Figure 10-6). The SRC con-
tains a 64-bit parallel load shift register. When the LRCLK_O pulse arrives,
each SRC parallel loads its left and right data into the 64-bit shift register.
The input to the shift register is connected to the TDM_IN signal, while the
output is connected to the SDATA_O signal. By connecting the SDATA_O sig-
nal to the TDM_IN signal of the next SRC, a large shift register is created,
which is clocked by the SCLK_O signal.

The number of SRCs that can be daisy-chained together is limited by the
maximum frequency of SCLK_O signals, which is about 25 MHz. For exam-
ple, if the output sample rate, fS, is 48 kHz, up to eight SRCs could be
connected since 512 × fS is less than 25 MHz.

Table 10-3. Word Width

SRCx_LENOUT_0:1
Interface Format

1 0

0
0
1
1

0
1
0
1

24 bits
20 bits
18 bits
16 bits

Figure 10-6. TDM Output Mode

SRCx

TDM_INSDATA_O

LRCLK_O

SCLK_O

ADSP-2136x

DR0

RFS0

RCLK0

SCLK

LRCLK

SRCx

TDM_INSDATA_O

LRCLK_O

SCLK_O

SRCx

TDM_INSDATA_O

LRCLK_O

SCLK_O

SRC Operation

10-16 ADSP-21368 SHARC Processor Hardware Reference

TDM Input Mode

In TDM input mode, several SRCs can be daisy-chained together and
connected to the serial input port of an ADSP-21367/8/9 and
ADSP-2137x processor or other processor (Figure 10-7). The SRC con-
tains a 64-bit parallel load shift register. When the LRCLK_I pulse arrives,
each SRC parallel loads its left and right data into the 64-bit shift register.
The input to the shift register is connected to the SDATA_IN, while the
output is connected to the TDM_I signal. By connecting the SDATA_I signal
to the TDM_I signal of the next SRC, a large shift register is created, which
is clocked by the SCLK_I signal.

The number of SRCs that can be daisy-chained together is limited by the
maximum frequency of the SCLK_O signal, which is about 25 MHz. For
example, if the output sample rate, fS, is 48 kHz, up to eight SRCs could
be connected since 512 × fS is less than 25 MHz.

Matched-Phase Mode

The matched-phase mode is the mode discussed in “Theory of Operation”
on page 10-2. This mode eliminates the phase mismatch between multiple
SRCs. The master SRC device transmits its fS_OUT/fS_IN ratio through
the SDATA_O pin to the slave SRC’s TDM_IN pins. The slave SRCs receive
the transmitted fS_OUT/fS_IN ratio and use the transmitted fS_OUT/fS_IN
ratio instead of their own internally-derived fS_OUT/fS_IN ratio as shown

Figure 10-7. TDM Input Mode

SRCx

SDATA_I

LRCLK_I

SCLK_I

ADSP-2136x

DR0

TFS0

TCLK0

SRCx

TDM_OUTSDATA_I

LRCLK_I

SCLK_I

SRCx

SDATA_I

LRCLK_I

SCLK_I

SCLK

LRCLK

TDM_OUT TDM_OUT

ADSP-21368 SHARC Processor Hardware Reference 10-17

Asynchronous Sample Rate Converter

in Figure 10-8. The master device can have both its serial ports in slave
mode as depicted, or either one in master mode. The slave SRCs must
have their MATASE_2 bits set to 1, respectively. The LRCLK_I and LRCLK_O
signals may be asynchronous with respect to each other in this mode.

There must be 32 SCLK_O cycles per subframe in matched-phase mode.
The SRC supports the matched-phase mode for all serial output data for-
mats: left-justified, I2S, right-justified, and TDM mode.

Note that in the left-justified, I2S, and TDM modes, the lower eight bits
of each channel subframe are used to transmit the matched-phase data. In
right-justified mode, the upper eight bits are used to transmit the
matched-phase data. This is shown in Figure 10-9.

Figure 10-8. Typical Configuration for Matched-Phase Mode Operation

SRCx
SLAVE1

SDATA_O

SRCx
PHASE-MASTER

SRCx
SLAVE2

SRCX
SLAVEn

LRCLKI (FS_IN)

SCLKI

LRCLKO
(FS_OUT)

SCLKO
(64FS_OUT)

RESET

SDOM
SDO1
SDO2

SDON

TDM_IN

SDATA_I

LRCLK_I

SCLK_I

RESET

SCLK_O

LRCLK_O

SDATA_O

TDM_IN

SDAT A_I

LRCLK_I

SCLK_I

RESET

SCLK_O

LRCLK_O

SDATA_O

TDM_IN

SDATA_I

LRCLK_I

SCLK_I

RESET

SCLK_O

LRCLK_O

SDATA_O

TDM_IN

SDATA_I

LRCLK_I

SCLK_I

RESET

SCLK_O

LRCLK_O

SRC Operation

10-18 ADSP-21368 SHARC Processor Hardware Reference

Bypass Mode

When the BYPASS bit is set (=1), the input data bypasses the sample rate
converter and is sent directly to the serial output port. Dithering of the
output data when the word length is set to less than 24 bits is disabled.
This mode is ideal when the input and output sample rates are the same
and the LRCLK_I and LRCLK_O signals are synchronous with respect to each
other. This mode can also be used for passing through non-audio data
since no processing is performed on the input data in this mode.

De-Emphasis Filter
As discussed, the serial input port generates a frame synchronization sig-
nal, UN_fS_IN, that derives its clock from the positive edge of the PCLK
signal. The UN_fS_IN signal asserts when a new frame of left and right
data is available for the de-emphasis filter and the SRC. The de-emphasis
filter is used to de-emphasize audio data that has been emphasized. The
type of de-emphasis filter is selected by the SRCn_DEEMPHASIS1–0 bits and
is based on the input sample rate as follows:

• 00 – No de-emphasis, audio data is passed directly to the SRC

• 01 – 32 kHz sample rate de-emphasis filter

Figure 10-9. Matched-Phase Data Transmission

AUDIO DATA RIGHT
CHANNEL, 16 BITS - 24 BITS

MATCHED-PHASE

DATA, 8 BITS

MATCHED-PHASE

DATA, 8 BITS

AUDIO DATA LEFT
CHANNEL, 16 BITS - 24 BITS

Left-Justified, I2S, and TDM Mode

Right-Justified Mode

AUDIO DATA LEFT CHANNEL, MATCHED-PHASE

DATA, 8 BITS

AUDIO DATA RIGHT

24 BITS CHANNEL, 24 BITS
MATCHED-PHASE

DATA, 8 BITS

ADSP-21368 SHARC Processor Hardware Reference 10-19

Asynchronous Sample Rate Converter

• 10 – 44.1 kHz sample rate de-emphasis filter

• 11 – 48 kHz sample rate de-emphasis filter

After the audio data is passed from the de-emphasis filter to the SRC, the
SRC converts the audio data from the input sample rate to the output
sample rate. When the serial output port needs new data, the frame syn-
chronization signal, (UN_fS_OUT), is asserted from the serial output port.
Like the UN_fS_IN signal, the UN_fS_OUT signal derives its clock from
the positive edge of the PCLK signal. The UN_fS_OUT and UN_fS_IN sig-
nals are used by the SRC to perform the sample rate conversion. The
SRCRAT register indicates the sample rate ratio of UN_fS_OUT/UN_fS_IN.

Mute Control
When the SRCx_ENABLE bit is enabled (set = 1), or when the sample rate
between the input and output LRCLK changes, the SRC begins its initializa-
tion routine and the MUTE_OUT signal is asserted. When MUTE_OUT is
asserted, the MUTE_IN signal should also be asserted to avoid any unwanted
output.

When the MUTE_IN pin is asserted high, the MUTE_IN control performs a
soft mute by linearly decreasing the input data to the SRC FIFO to zero,
(–144 dB attenuation). A 12-bit counter, clocked by the LRCLK_I signal, is
used to control the mute attenuation. Therefore, the time it takes from the
assertion of the MUTE_IN signal to –144 dB, (full mute attenuation) is 4096
LRCLK clock cycles. Likewise, the time it takes to reach 0 dB mute attenua-
tion from the deassertion of the MUTE_IN signal is 4096 LRCLK cycles.

The mute feature of the SRC can be controlled automatically in hardware
using the MUTE_IN signal by connecting it to the MUTE_OUT signal. By
default, the two signals for each SRC are connected. Automatic muting
can be disabled using the SRCx_MUTE_DIS bits in the SRCMUTE register.

SRC Operation

10-20 ADSP-21368 SHARC Processor Hardware Reference

Muting can also be controlled in software using the MUTE bits
(SRCx_SOFTMUTE, SRCx_HARD_MUTE, SRCx_AUTO_MUTE) in the SRC control
register (SRCCTL) as described below. For more information, see “SRC
Registers” on page 10-21.

Soft Mute

When the SRCx_SOFTMUTE bit in the SRCCTL register is set, the MUTE_IN sig-
nal is asserted, and the SRC performs a soft mute by linearly decreasing
the input data to the SRC FIFO to zero, (–144 dB attenuation) as
described for automatic hardware muting.

Hard Mute

When the SRCx_HARD_MUTE bit in the SRCCTL register is set, the SRC imme-
diately mutes the input data to the SRC FIFO to zero, (–144 dB
attenuation).

Auto Mute

When the SRCx_AUTO_MUTE bit in the SRCCTL register is set, the SRC com-
municates with the SPDIF receiver peripheral to determine when the
input should mute. Each SRC is connected to the NOAUDIO bits in the out-
put of the SPDIF receiver (see “Receiver Status Register (DIRSTAT)” on
page A-94). When this signal is asserted, the SRC immediately mutes the
input data to the SRC FIFO to zero, (–144 dB attenuation). This mode is
useful for automatic detection of non-PCM audio data received from the
S/PDIF receiver.

ADSP-21368 SHARC Processor Hardware Reference 10-21

Asynchronous Sample Rate Converter

SRC Registers
The SRC uses five 32-bit registers to configure and operate the SRC
module.

• SRCCTL0, SRC control 0. This read/write register is used to con-
trol the operating modes, filters, and data formats used in the
SRC0 and SRC1 modules. This register is located at address
0x2490.

• SRCCTL1, SRC control 1. This read/write register is used to con-
trol the operating modes, filters, and data formats used in the
SRC2 and SRC3 modules. This register is located at address
0x2491.

• SRCMUTE, SRC mute. This read/write register performs mute-
out to mute-in control and provides status information for the
SRC3–0 modules. This register is located at address 0x2492.

• SRCRAT0, SRC output to input ratio 0. This read-only register
reports the mute and I/O sample ratio for SRC0 and SRC1. This
register is located at address 0x2498.

• SRCRAT1, SRC output to input ratio 1. This read-only register
reports the mute and I/O sample ratio for SRC2 and SRC3. This
register is located at address 0x2499.

For complete register bit descriptions, see “SRC Control Registers (SRC-
CTLx)” on page A-97.

Programming the SRC Module

10-22 ADSP-21368 SHARC Processor Hardware Reference

Programming the SRC Module
Use the following guidelines when developing programs that include the
SRC module.

SRC Control Register Programming
Initially, programs configure the SRC control registers SRCCTL0 and
SRCCTL1. The SRCCTL0 register contains control parameters for the SRC0
and SRC1 modules and the SRCCTL1 register contains control values for
the SRC2 and SRC3 modules. The control parameters include mute
information, data formats for input and output ports, de-emphasis enable,
dither enable, and matched-phase mode enable for multiple SRCs. Write
the settings to the desired control register at least one cycle before setting
the corresponding SRC module enable bit, SRCx_ENABLE.

SRU Programming
The SRU (signal routing unit) needs to be programmed in order to con-
nect the SRCs to the output pins or any other peripherals.

For normal operation, the data, clock, and frame sync signals need to be
routed as shown in Table 10-4.

Table 10-4. SRC Signal Routing

Signal Definition

SRCx_DAT_IP_I SRC module data input

SRCx_CLK_IP_I SRC module clock input

SRCx_FS_IP_I SRC module frame sync input

SRCx_DAT_OP_I SRC module data output

SRCx_CLK_OP_I SRC module clock output

SRCx_FS_OP_O SRC module frame sync output

ADSP-21368 SHARC Processor Hardware Reference 10-23

Asynchronous Sample Rate Converter

For information on using the SRU, see “Making Connections in the
SRUs” on page 4-15, and “DAI/SRU1 Connection Groups” on
page 4-18.

SRC Mute-Out Interrupt
Once the SRC is locked (after 4K input samples), the corresponding
SRCx_MUTE_OUT bit in the DAI_IRPTL_H/L register is set. This generates the
DAI_INTH/L interrupt. From this point, the SRC produces output serial
data at the output sampling frequency. The SRC mute signals can be used
to generate interrupts on their leading edge, falling edge, or both, depend-
ing on how the DAI_IRPT_RE/FE registers are programmed.

Sample Rate Ratio
Once the SRC mute interrupt has triggered, the SRCRAT0 and SRCRAT1 reg-
isters can be read to find the ratio of output to input sampling frequency.
This ratio is reported in 4.11 (integer.fraction) format.

Programming Summary
Since the SRC data is not available to the core, programming the SRC
peripheral involves simply connecting the SRU to the on-chip (serial ports
or input data port) or off-chip (DAI pins) serial devices. These devices
provide the clock and data to be converted, and select the desired operat-
ing mode in the SRC control register. This setup can be accomplished in
two steps.

1. Connect each of the four SRCs to their two serial clocks
(SRCx_CLK_IP_I, SRCx_CLK_OP_I) and frame sync inputs
(SRCx_FS_IP_I, SRCx_FS_OP_I). Also connect one data input
(SRCx_DAT_IP_I) and one data output (SRCx_DAT_OP_O) in the SRU.

Programming the SRC Module

10-24 ADSP-21368 SHARC Processor Hardware Reference

In multichannel, or matched-phase modes, the TDM signals must
also be connected. (See Table 10-1 on page 10-14 and Table 10-2
on page 10-14.)

2. Initialize the SRCCTLx register to enable the SRCs.

ADSP-21368 SHARC Processor Hardware Reference 11-1

11 UART PORT CONTROLLER

The universal asynchronous receiver/transmitter (UART) is a full-duplex
peripheral compatible with the PC-style, industry-standard UART. The
UART converts data between serial and parallel formats. The serial format
follows an asynchronous protocol that supports various word lengths, stop
bits, and parity generation options. The UART includes interrupt han-
dling hardware. Interrupts can be generated from 12 different events.

The ADSP-21367/8/9 and ADSP-2137x processors contain two UARTs
which support multiprocessor communication using 9-bit address detec-
tion. This allows the units to be used in multi-drop networks using the
RS-485 data interface standard.

The two independent UARTs are referred to as UART0 and UART1.
Both are identical and each has its own set of control and status registers.
The content in this chapter applies to both UARTs unless otherwise
specified.

The UART is a DMA-capable peripheral with support for separate trans-
mit and receive DMA master channels. It can be used in either DMA or
programmed non-DMA modes of operation. The non-DMA mode
requires software management of the data flow using either interrupts or
polling. The DMA method requires minimal software intervention as the
DMA engine itself moves the data. For more information, see “UART
DMA” on page 2-44.

Either one of the peripheral timers can be used to provide a hard-
ware-assisted autobaud detection mechanism for use with the UART. See
the ADSP-2136x SHARC Processor Programming Reference, “Timers” chap-
ter for more information.

Serial Communications

11-2 ADSP-21368 SHARC Processor Hardware Reference

Serial Communications
The UART follows an asynchronous serial communication protocol with
these options:

• 5 – 8 data bits

• 1 or 2 stop bits

• None, even, or odd parity

• Baud rate = PCLK/(16 × divisor), where PCLK is the system clock fre-
quency and the divisor can be a value from 1 to 65,536

All data words require a start bit and at least one stop bit. With the
optional parity bit, this creates a 7- to 12-bit range for each word. The for-
mat of received and transmitted character frames is controlled by the line
control register (UARTxLCR). Data is always transmitted and received least
significant bit (LSB) first.

Figure 11-1 shows a typical physical bit stream measured on the transmit
pin.

Figure 11-1. Bit Stream on the Transmit Pin

DATA BITS STOP BIT(S)

START BIT LSB PARITY BIT (OPTIONAL, ODD OR EVEN)

D0 D1 D2 D3 D4 D5 D6 D7

ADSP-21368 SHARC Processor Hardware Reference 11-3

UART Port Controller

UART Control and Status Registers
The processor provides a set of PC-style, industry-standard control and
status registers for each UART. These memory-mapped registers (MMRs)
are byte-wide registers that are mapped as half-words with the most signif-
icant byte zero-filled.

Consistent with industry-standard interfaces, multiple registers are
mapped to the same address location. The transmit holding, divisor latch
low, and receive buffer registers share an address and the interrupt enable
and divisor latch high registers share an address. The divisor latch access
bit (UARTDLAB, bit 7) in the line control register (UARTxLCR) controls which
set of registers is accessible at a given time.

Transmit and receive channels are both buffered. The UARTxTHR register
buffers the transmit shift register (UARTxTSR) and the UARTxRBR register
buffers the receive shift register (UARTxRSR). The shift registers are not
directly accessible by software.

These registers are also shown and described in “UART Control and Sta-
tus Registers” on page A-118.

UARTxLCR Registers
The UART line control register (UARTxLCR) controls the format of received
and transmitted character frames. The UARTSB bit (bit 6) functions even
when the UART clock is disabled. Since the transmit pin normally drives
high, it can be used as a flag output pin when the UART is not used. The
parity and word length select controls are not valid in 9-bit mode. In 9-bit
mode, the word length is always 8 and the 9th bit is transmitted instead of
the parity bit.

UART Control and Status Registers

11-4 ADSP-21368 SHARC Processor Hardware Reference

UARTxLSR Register
The UART line status register (UARTxLSR) contains UART status informa-
tion as shown in Figure A-49 on page A-120.

The break interrupt (UARTBI), overrun error (UARTOE), parity error
(UARTPE), and framing error (UARTFE) bits are cleared when the UART line
status register (UARTxLSR) is read. The data ready (UARTDR) bit is cleared
when the UART receive buffer register (UARTxRBR) is read.

Because of the destructive nature of reading these registers, shadow
registers are provided for reading the contents of the corresponding
main registers. The shadow registers, UARTxIIRSH, return exactly
the same contents as the main register, but without changing the
register’s status in any way. These registers are 32-bit registers
located at address 0x3C0A (for UATR0LSRSH) and 0x400A (for
UART1LSRSH).

The UARTTHRE bit (bit 6) indicates that the UART transmit channel is
ready for new data, and software can write to the UARTxTHR register. Writes
to UARTxTHR clear the UARTTHRE bit. It is set again when data is copied from
UARTxTHR to the transmit shift register (UARTxTSR). The UARTTEMT bit can
be evaluated to determine whether a recently initiated transmit operation
has been completed.

UARTxTHR Register
A write to the UART transmit holding register (UARTxTHR) initiates the
transmit operation. The data is moved to the internal transmit shift regis-
ter (UARTxTSR) where it is shifted out at a baud rate equal to
PCLK/(16 × Divisor) with start, stop, and parity bits appended as required.
All data words begin with a 1-to-0 transition start bit. The transfer of data
from the UARTxTHR register to the transmit shift register sets the transmit
holding register empty status flag (UARTTHRE) in the UART line status reg-
ister (UARTxLSR).

ADSP-21368 SHARC Processor Hardware Reference 11-5

UART Port Controller

This 32-bit write only register uses only 18-bits. The other bits are filled
with zeros during writes. In no-pack mode (default), only the lower byte is
used—all other bits are zero filled. However in pack mode, both the high
and low bytes are used (Figure 11-2). The TX9Dx bits are the ninth bit in
9-bit transmission mode. This register is mapped to the same address as
the UARTxRBR and UARTxDLL registers. A write to the UART transmit hold-
ing register (UARTxTHR) initiates the transmit operation.

To access the UARTxTHR register, the UARTDLAB bit in the UARTxLCR register
must be cleared. When the UARTDLAB bit is cleared, writes to this address
target the UARTxTHR register, and reads from this address return the UAR-
TxRBR register.

Note that data is transmitted and received by the least significant bit
(LSB) first (bit 0) followed by the most significant bits (MSBs).

UARTxRBR Register
The receive operation uses the same data format as the transmit configura-
tion, except that the number of stop bits is always assumed to be 1. After
detection of the start bit, the received word is shifted into the receive shift
register (UARTxRSR) at a baud rate of PCLK/(16 x Divisor). After the appro-
priate number of bits (including stop bit) is received, the data and any
status are updated and the UARTxRSR register is transferred to the UART
receive buffer register (UARTxRBR), shown in Figure 11-3 and Figure A-51
on page A-122. After the transfer of the received word to the UARTxRBR
buffer and the appropriate synchronization delay, the data ready status
flag (UARTDR) is updated.

Figure 11-2. Transmit Holding Register (Packing Enabled)

31 0781524 23

TX9D0

9

TX9D1 ZERO-FILLED LOWER BYTEHIGHER BYTEZERO-FILLED

UART Control and Status Registers

11-6 ADSP-21368 SHARC Processor Hardware Reference

A sampling clock equal to 16 times the baud rate samples the data as close
to the midpoint of the bit as possible. Because the internal sample clock
may not exactly match the asynchronous receive data rate, the sampling
point drifts from the center of each bit. The sampling point is synchro-
nized again with each start bit, so the error accumulates only over the
length of a single word. A receive filter removes spurious pulses of less
than two times the sampling clock period.

The 32-bit, read-only UARTxRBR register is mapped to the same address as
the write-only UARTxTHR and UARTxDLL registers. In no pack mode
(default), only the lower byte is used—all other bits are zero-filled. How-
ever in pack mode, both the high and low bytes are used. The RX9Dx bits
are the 9th bit in 9-bit transmission mode. To access UARTxRBR, the UARTD-
LAB bit in the UARTxLCR register must be cleared. When the UARTDLAB bit is
cleared, writes to this address target the UARTxTHR register, while reads
from this address return the UARTxRBR register.

Because of the destructive nature of reading these registers, shadow
registers are provided for reading the contents of the corresponding
main registers. The shadow registers, UARTxRBRSH, return exactly
the same contents as the main register, but without changing the
status in any way. These registers are 32-bit registers located at
address 0x3C08 (for UART0RBRSH) and 0x4008 (for UART1RBRSH).

Figure 11-3. Receive Buffer Register (Packing Enabled)

31 0781524 23

RX9D0

9

RX9D1 ZERO-FILLED LOWER BYTEHIGHER BYTEZERO-FILLED

ADSP-21368 SHARC Processor Hardware Reference 11-7

UART Port Controller

UARTxIER Register
The UART interrupt enable registers (UARTxIER) are used to enable
requests for system handling of empty or full states of UART data regis-
ters. Unless polling is used as a means of action, the UARTRBFIE and/or
UARTTBEIE bits in this register are normally set.

Setting these registers without enabling system DMA causes the UART to
notify the processor of the state of the data inventory by means of inter-
rupts. For proper operation in this mode, system interrupts must be
enabled, and appropriate interrupt handling routines must be present. For
backward compatibility, the UARTxIIR registers still reflect the correct
interrupt status.

With system DMA enabled, the UART uses DMA to transfer data to or
from the processor. Dedicated DMA channels are available to receive and
transmit operations. Line error handling can be configured completely
independently from the receive/transmit setup.

The UARTxIER register is mapped to the same address as the UARTxDLH reg-
ister. To access the UARTxIER register, the UARTDLAB bit in the UARTxLCR
register must be cleared.

The UART interrupts are all combined into the digital peripheral inter-
face (DPI) interrupt. The DPI_IRPTL register determines whether an
interrupt is for the transmitter or receiver. For DMA, the transmit inter-
rupt is generated when a DMA in transmit mode is complete whereas the
receive interrupt is generated when receive DMA is complete or when a
receive error occurs. The UARTxRXSTAT register reports whether the inter-
rupt is due to DMA completion or errors.

The UART receive and transmit interrupt can also be programmed
through the peripheral interrupt control registers (PICR) as separate inter-
rupts for DMA. (By default, these interrupts are not configured in the
IRPTL register—the PICR register has to be programmed to configure
them.) For I/O mode, both the transmit and receive interrupt can be

UART Control and Status Registers

11-8 ADSP-21368 SHARC Processor Hardware Reference

programmed through the PICR register using the code select value for the
UART receive interrupt (0x13 for UART0 interrupt and 0x14 for UART1
receive interrupt). Similar to I/O mode, both the transmit and receive
interrupts are mapped to the receive interrupt. Then the UARTxIER register
can be used to select the transmit or receive interrupt respectively for I/O
mode. The following examples show two methods of enabling transmit
DMA in I/O mode. The first method uses the DPI interrupt directly.

Listing 11-1. Enabling Transmit DMA (DPI Direct Method)

bit set mode1 IRPTEN; /* enables global interrupts */

bit set imask DPII; /* unmasks DPI interrupt */

ustat1 = UART0_RX_INT;

dm(DPI_IRPTL_RE) = ustat1; /* enables transmit interrupt in

 I/O mode */

The second method uses the DPI interrupt by programming the PICR
with the code value of the UART0 receive interrupt (0x13).

Listing 11-2. Enabling Transmit DMA (DPI PICR Method)

#define MASKP14 (0x1f<<10)

#define UART0Rx (0x13<<10)

bit set mode1 IRPTEN;

/* Map the UART0 receive interrupt to P14 using the programmable

interrupt controller */

ustat1 = dm(PICR2);

bit clr ustat1 MASKP14;

bit set ustat1 UART0Rx;

dm(PICR2) = ustat1;

bit set IMASK P14I; /* Unmasks the UART Receive interrupt */

ADSP-21368 SHARC Processor Hardware Reference 11-9

UART Port Controller

For information on using the UART for DMA transfers, see “UART
DMA” on page 2-44, “DAI/DPI Interrupt Controller” on page 4-65, and
“Peripheral Interrupt Priority Control Registers” on page A-164.

Even though the UART has two interrupts for receive and trans-
mit, in I/O mode, all interrupts are grouped as a single receive
interrupt.

The UARTLSIE bit (bit 2) enables interrupt generation on an independent
interrupt channel when any of the following conditions are raised by the
respective bit in the UART line status register (UARTxLSR):

• Receive overrun error (UARTOE)

• Receive parity error (UARTPE)

• Receive framing error (UARTFE)

• Break interrupt (UARTBI)

When the UARTTBEIE bit is set in the UARTxIER register in I/O mode, the
UART module immediately issues an interrupt. When initiating the trans-
mission of a string, no special handling of the first character is required.
Set the UARTTBEIE bit (bit 1) and let the interrupt service routine (ISR)
load the first character from memory and write it to the UARTxTHR register
in the normal manner. Accordingly, the UARTTBEIE bit should be cleared if
the string transmission has completed.

UARTxIIR Register
For legacy reasons, the UART interrupt identification register (UARTxIIR)
still reflects the UART interrupt status (see Table 11-1). Legacy operation
may require bundling all UART interrupt sources to a single interrupt
channel and servicing them all by the same software routine. This can be
established by globally assigning all UART interrupts to the same

UART Control and Status Registers

11-10 ADSP-21368 SHARC Processor Hardware Reference

interrupt priority using the peripheral interrupt priority control registers.
For more information, see “Peripheral Interrupt Priority Control Regis-
ters” on page A-164.

When cleared, the pending interrupt bit (NINT) signals that an interrupt is
pending. The STATUS field indicates the highest priority pending inter-
rupt. The receive line status has the highest priority; the UARTTXFI
interrupt has the lowest priority. In the case where both interrupts are sig-
nalling, the UARTxIIR register reads 0x06.

When a UART interrupt is pending, the interrupt service routine (ISR)
needs to clear the interrupt latch explicitly. For information on how to
clear the latches see “Interrupt Identification Registers (UARTxIIR)” on
page A-124.

The transmit interrupt request is cleared by writing new data to the UAR-
TxTHR register or by reading the UARTxIIR register. Please note the special
role of the UARTxIIR register read in the case where the service routine does
not want to transmit further data.

Table 11-1. IIR Register in I/O Mode

Bit Status NINT Interrupt
Priority

Interrupt Type Cleared When...

000 1 – No interrupt –

011 0 1 Rx line status LSR is read

100 0 2 Address detect RBR is read

010 0 3 Rx data ready RBR is read

001 0 4 THR empty Write THR or Read
IIR when priority = 4

000 0 5 THR and TSR empty Write THR or Read
IIR when priority = 5

ADSP-21368 SHARC Processor Hardware Reference 11-11

UART Port Controller

If software stops transmission, it must read the UARTxIIR register to reset
the interrupt request. As long as the UARTxIIR register reads 0x04 or 0x06
(indicating that another interrupt of higher priority is pending), the UAR-
TxTHR empty latch cannot be cleared by reading the UARTxIIR register.

The following restrictions should be noted.

1. If either the line status interrupt or the receive data interrupt has
been assigned a lower interrupt priority by the interrupt controller,
a deadlock condition can occur. To avoid this, always assign the
lowest priority of the enabled UART interrupts to the UARTxTHR
empty event.

2. Because of the destructive nature of reading these registers, shadow
registers are provided for reading the contents of the corresponding
main registers. The shadow registers, UARTxIIRSH, return exactly
the same contents as the main register, but without changing the
status in any way. These registers are 32-bit registers located at
address 0x3C09 (for UART0IIRSH) and 0x4009 (for UART1IIRSH).

UARTxDLL and UARTxDLH Registers
The bit rate is characterized by the peripheral clock (PCLK = 2 x CCLK) and
the 16-bit divisor. The divisor is split into the UART divisor latch low
byte register (UARTxDLL) and the UART divisor latch high byte register
(UARTxDLH). These registers form a 16-bit divisor. The baud clock is
divided by 16 so that:

Divisor = 1 when UARTxDLL = UARTxDLH = 1

Divisor = 65,535 when UARTxDLL = UARTxDLH = FF

The UARTxDLL register is mapped to the same address as the UARTxTHR and
UARTxRBR registers. The UARTxDLH register is mapped to the same address as
the interrupt enable register (UARTxIER). The DLAB bit in the UARTxLCR reg-
ister must be set before the UART divisor latch registers can be accessed.

UART Control and Status Registers

11-12 ADSP-21368 SHARC Processor Hardware Reference

The 16-bit divisor formed by the UARTxDLH and UARTxDLL registers
resets to 0x0001, resulting in the highest possible clock frequency
by default. If the UART is not used, disabling the UART clock
saves power (see bits 13 and 14 in the “Power Management Con-
trol Register (PMCTL)” on page A-170). The UARTxDLH and
UARTxDLL registers can be programmed by software before or after
turning on the clock.

Table 11-2 provides example divide factors required to support most stan-
dard baud rates.

Careful selection of PCLK frequencies, that is, even multiples of
desired baud rates, can result in lower error percentages.

UARTxSCR Register
The contents of the 8-bit UART scratch register (UARTxSCR) is reset to
0x00. It is used for general-purpose data storage and does not control the
UART hardware in any way.

Table 11-2. UART Baud Rate Examples With 100 MHz PCLK

Baud Rate DL Actual % Error

2400 2604 2400.15 0.006

4800 1302 4800.31 0.007

9600 651 9600.61 0.006

19200 326 19,171.78 0.147

38400 163 38,343.56 0.147

57600 109 57,339.45 0.452

115200 54 115,740.74 0.469

921,600 7 892,857.14 3.119

6,250,000 1 6,250,000 –

ADSP-21368 SHARC Processor Hardware Reference 11-13

UART Port Controller

For information on UART DMA registers, see “UART DMA” on
page 2-44.

UARTxMODE Register
The UART mode register controls miscellaneous settings such as packing
and address detection. For more information, see “Mode Registers (UAR-
TxMODE)” on page A-126.

I/O Mode
In I/O mode, data is moved to and from the UART by the processor core.
To transmit a character, load it into the UARTxTHR register. Received data
can be read from the UARTxRBR register. The processor must write and read
one character at time.

To prevent any loss of data and misalignments of the serial data stream,
the UART line status register (UARTxLSR) provides two status flags for
handshaking—UARTTHRE and UARTDR.

The UARTTHRE flag is set when the UARTxTHR register is ready for new data
and cleared when the processor loads new data into the UARTxTHR register.
Writing this register when it is not empty overwrites the register with the
new value and the previous character is never transmitted.

The UARTDR flag signals when new data is available in the UARTxRBR regis-
ter. This flag is cleared automatically when the processor reads from this
register. Reading the UARTxRBR register when it is not full returns the pre-
viously received value. When the UARTxRBR register is not read in time,
newly received data overwrites the UARTxRBR register and the overrun (UAR-
TOE) flag is set.

With interrupts disabled, these status flags can be polled to determine
when data is ready to move. Note that because polling is processor-inten-
sive, it is not typically used in real-time signal processing environments.

I/O Mode

11-14 ADSP-21368 SHARC Processor Hardware Reference

Software can write up to two words into the UARTxTHR register before
enabling the UART clock. As soon as the UART DMA engine is enabled,
those two words are sent.

Alternatively, UART writes and reads can be accomplished by interrupt
service routines (ISRs). Separate interrupt lines are provided for the trans-
mit, receive, and error signals. The independent interrupts can be enabled
individually by the UARTxIER register. In I/O mode, the receive interrupt is
generated for the following cases.

• When UARTxRBR is full

• On a receive overrun error

• On a receive parity error

• On a receive framing error

• On a break interrupt (RXSIN held low)

• When UARTxTHR is empty

• A transmit complete (UARTTXFI) interrupt

• An address detect (UARTADI) interrupt (for 9-bit mode)

The ISRs can evaluate the status bit field within the UART interrupt iden-
tification register (UARTxIIR) to determine the signalling interrupt source.
If more than one source is signalling, the status field displays the one with
the highest priority. Interrupts also must be assigned and unmasked by the
processor’s interrupt controller. The ISRs must clear the interrupt latches
explicitly. See Figure A-54 on page A-125 and “Interrupt Priorities” on
page B-4.

ADSP-21368 SHARC Processor Hardware Reference 11-15

UART Port Controller

Packing Mode
The UART provides packed and unpacked modes of data transfer to and
from the internal memory of the ADSP-21367/8/9 and ADSP-2137x pro-
cessors. This mode is set using the UARTPACK bit (bit 0) in the UARTxMODE
register. In unpacked mode, the data word is appended to the left with 24
zeros during transmission or reception. In packed mode, two words of
data are transmitted or received with their corresponding higher bytes
filled with zeros. For example, consecutive data words 0xAB and 0xCD
are packed as 0x00CD 00AB in the receiver, and 0x00CD 00AB is trans-
mitted as two words of 0xAB and 0xCD successively from the transmitter.
The packed feature is provided to use the internal memory of the proces-
sor in a more efficient manner. Packing is available in both I/O and DMA
modes. A control bit, UARTPKSYN, can be used to re synchronize the pack-
ing. For information on using the UART for DMA transfers, see “UART
DMA” on page 2-44.

Note that in packed mode, both the transmitter and receiver operate with
an even number of words. A transmit-buffer-empty or receive-buffer-full
interrupt is generated only after an even number of words are transferred.
In 9-bit mode, the address detect interrupt can be generated whenever the
receiver gets an address word, irrespective of the packing mode. This helps
programs respond to an address word immediately. The program is
expected to take into account these features when using packed mode.

Programs must use care when using the packing feature in 9-bit
mode.

Programs should write the UARTPKSYN bit (bit 1) with a 1 each time
an address is received. This starts the reception of the following
data from the lower half-word of the UARTxRBR register.

The address-detect interrupt is generated whenever the UART
receiver receives an address, irrespective of the packing. The DR bit
in the UARTxLSR register can be used to discover whether the
address is in the lower (DR = 0) or higher half-word (DR = 1).

Packing Mode

11-16 ADSP-21368 SHARC Processor Hardware Reference

The LSR register must be read before reading the UARTxRBR register,
because the latter clears the DR bit. Reading the UARTxRBR register
clears both the address-detect and the data-ready interrupts. In
non-packed mode, when the address-detect interrupt is generated,
it means that the data is ready in the RBR buffer while in packed
mode, this is not the case.

ADSP-21368 SHARC Processor Hardware Reference 12-1

12 TWO WIRE INTERFACE
CONTROLLER

The two wire interface (TWI) controller allows a device to interface to an
inter-IC bus as specified by the Philips I2C Bus Specification version 2.1
dated January 2000.

Overview
The TWI is fully compatible with the widely used I2C bus standard. It
was designed with a high level of functionality and is compatible with
multimaster, multislave bus configurations. To preserve processor band-
width, the TWI controller can be set up and a transfer initiated with
interrupts only. This allows the processor to service FIFO buffer data
reads and writes. Protocol-related interrupts are optional.

The TWI moves 8-bit data externally while maintaining compliance with
the I2C bus protocol. The TWI controller includes the following features.

• Simultaneous master and slave operation on multiple device
systems

• Support for multimaster data arbitration

• 7-bit addressing

• 100K bits/second and 400K bits/second data rates

• General call address support

• Master clock synchronization and support for clock low extension

Architecture

12-2 ADSP-21368 SHARC Processor Hardware Reference

• Separate multiple-byte receive and transmit FIFOs

• Low interrupt rate

• Individual override control of data and clock lines in the event of a
bus lockup

• Input filter for spike suppression

Table 12-1 shows the pins for the TWI. Two bidirectional pins externally
interface the TWI controller to the I2C bus. The interface is simple and
no other external connections or logic are required.

Architecture
Figure 12-1 illustrates the overall architecture of the TWI controller.

The peripheral interface supports the transfer of 32-bit wide data and is
used by the processor in the support of register and FIFO buffer reads and
writes.

The register block contains all control and status bits and reflects what can
be written or read as outlined by the programmer’s model. Status bits can
be updated by their respective functional blocks.

The FIFO buffer is configured as a 1-byte-wide, 2-deep transmit FIFO
buffer and a 1-byte-wide, 2-deep receive FIFO buffer.

Table 12-1. TWI Pins

Pin Description

SDA In/Out TWI serial data, high impedance reset value

SCL In/Out TWI serial clock, high impedance reset value

ADSP-21368 SHARC Processor Hardware Reference 12-3

Two Wire Interface Controller

The transmit shift register serially shifts its data out externally off chip.
The output can be controlled to generate acknowledgements or it can be
manually overwritten.

The receive shift register receives its data serially from off chip. The
receive shift register is 1 byte wide and data received can either be trans-
ferred to the FIFO buffer or used in an address comparison.

The address compare block supports address comparison in the event the
TWI controller module is accessed as a slave.

The prescaler block must be programmed to generate a 10 MHz time ref-
erence relative to the peripheral clock. This time base is used for filtering
data and timing events specified by the electrical parameters in the data
sheet (see the I2C bus specification from Philips), as well as for SCL clock
generation.

Figure 12-1. TWI Block Diagram

IRQ

SDA

REGISTERS

PERIPHERAL
INTERFACE

CLOCK GENERATION

PRESCALER

ADDRESS COMPARE

RECEIVE SHIFT
REGISTER

ARBITRATION

SCL

TRANSMIT SHIFT
REGISTER

FIFO

Register Descriptions

12-4 ADSP-21368 SHARC Processor Hardware Reference

The clock generation module is used to generate an external serial clock
(SCL) when in master mode. It includes the logic necessary for synchroni-
zation in a multimaster clock configuration and clock stretching when
configured in slave mode.

Register Descriptions
The TWI controller has 16 registers which are described in the following
sections. More information on these registers can be found in “Two Wire
Interface Registers” on page A-130.

TWI Master Internal Time Register
The TWI control register (TWIMITR) is used to enable the TWI module as
well as to establish a relationship between the peripheral clock (PCLK) and
the TWI controller’s internally-timed events. The internal time reference
is derived from PCLK using a prescaled value.

PRESCALE = fPCLK/10 MHz

Additional information for the TWIMITR register bits includes:

TWI Enable (TWIEN). This bit must be set for slave or master mode opera-
tion. It is recommended that this bit be set and remain set at the time
PRESCALE is initialized. This guarantees accurate operation of bus busy
detection logic.

Prescale (PRESCALE). This value should be set to the number of peripheral
clock periods that equals the time period corresponding to a 10 MHz fre-
quency. This number is represented as a 7-bit binary value.

ADSP-21368 SHARC Processor Hardware Reference 12-5

Two Wire Interface Controller

TWIDIV Register
During master mode operation, the serial clock divider register (TWIDIV)
values are used to create the high and low durations of the serial clock
(SCL). Serial clock frequencies can vary from 400 kHz to less than 20 kHz.
The resolution of the generated clock is 1/10 MHz or 100 ns.

CLKDIV = TWI SCL period ÷ 10 MHz time reference

For example, for an SCL of 400 kHz (period = 1/400 kHz = 2500 ns) and
an internal time reference of 10 MHz (period = 100 ns):

CLKDIV = 2500 ns ÷ 100 ns = 25

For an SCL with a 30% duty cycle, then CLKLOW = 17 and CLKHI = 8.

Note that CLKLOW and CLKHI add up to CLKDIV.

Additional information for the TWIDIV register bits can be found in “Clock
Divider Register (TWIDIV)” on page A-132.

Slave Mode Control Register
The TWI slave mode control register (TWISCTL) controls the logic associ-
ated with slave mode operation. Settings in this register do not affect
master mode operation and should not be modified to control master
mode functionality.

Additional information for the TWISCTL register bits can be found in
“Slave Mode Control Register (TWISCTL)” on page A-133.

Register Descriptions

12-6 ADSP-21368 SHARC Processor Hardware Reference

Slave Mode Address Register
The TWI slave mode address register (TWISADDR) holds the slave mode
address, which is the valid address that the slave-enabled TWI controller
responds to. The TWI controller compares this value with the received
address during the addressing phase of a transfer. For more information,
see “Slave Address Register (TWISADDR)” on page A-135.

Slave Mode Status Register
During and at the conclusion of slave mode transfers, the TWI slave mode
status register (TWISSTAT) holds information on the current transfer. Gen-
erally, slave mode status bits are not associated with the generation of
interrupts. Master mode operation does not affect slave mode status bits.
For more information, see “Slave Status Register (TWISSTAT)” on
page A-135.

Master Mode Control Register
The TWI master mode control register (TWIMCTL) controls the logic associ-
ated with master mode operation. Bits in this register do not affect slave
mode operation and should not be modified to control slave mode func-
tionality. For more information, see “Master Control Register
(TWIMCTL)” on page A-136.

Master Mode Address Register
During the addressing phase of a transfer, the TWI controller, with its
master enabled, transmits the contents of the TWI master mode address
register (TWIMADDR). When programming this register, omit the read/write
bit. That is, only the upper 7 bits that make up the slave address should be
written to this register. For example, if the slave address is 1010000, then
the TWI_MASTER_ADDR register is programmed with 1010000, which corre-
sponds to 0x50. When sending out the address on the bus, the TWI

ADSP-21368 SHARC Processor Hardware Reference 12-7

Two Wire Interface Controller

controller appends the read/write bit as appropriate based on the state of
the MDIR bit in the master mode control register. For more information,
see “Master Address Register (TWIMADDR)” on page A-139.

Master Mode Status Register
The TWI master mode status register (TWIMSTAT) holds information dur-
ing master mode transfers and at their conclusion. Generally, master mode
status bits are not directly associated with the generation of interrupts but
offer information on the current transfer. Slave mode operation does not
affect master mode status bits. This is a read-only register. For more infor-
mation, see “Master Status Register (TWIMSTAT)” on page A-140.

FIFO Control Register
The TWI FIFO control register (TWIFIFOCTL) affect only the FIFO and is
not tied in any way with master or slave mode operation. For more infor-
mation, see “FIFO Control Register (TWIFIFOCTL)” on page A-143.

FIFO Status Register
The fields in the TWI FIFO status register (TWIFIFOSTAT) indicate the
state of the FIFO buffers’ receive and transmit contents. The FIFO buffers
do not discriminate between master data and slave data. By using the sta-
tus and control bits provided, the FIFO can be managed to allow
simultaneous master and slave operation. All bits in this register are
read-only. For more information, see “FIFO Status Register (TWIFIFOS-
TAT)” on page A-145.

Interrupt Source Register
The TWI interrupt source register (TWIIRPTL) contains information about
functional areas requiring servicing. Many of the bits in this register serve
as an indicator to further read and service various status registers.

Register Descriptions

12-8 ADSP-21368 SHARC Processor Hardware Reference

After servicing the interrupt source associated with a bit, programs must
clear that interrupt source bit. All bits are sticky and W1C-type. For more
information, see “Interrupt Source Register (TWIIRPTL)” on
page A-147.

Interrupt Enable Register
The TWI interrupt enable register (TWIIMASK) allows interrupt sources to
assert the interrupt output. Each enable bit corresponds with one inter-
rupt source bit in the TWI interrupt source register (TWIIRPTL). Reading
and writing the TWI interrupt enable register does not affect the contents
of the TWI interrupt source register. For all bits, 0 = interrupt generation
disabled and 1 = interrupt generation enabled. For more information, see
“Interrupt Enable Register (TWIIMASK)” on page A-150.

8-Bit Transmit FIFO Register
The TWI 8-bit transmit FIFO register (TXTWI8) holds an 8-bit data value
written into the FIFO buffer. Transmit data is entered into the corre-
sponding transmit buffer in a first-in, first-out order. Although peripheral
bus writes are 32 bits, a write access to the TXTWI8 register adds only one
transmit data byte to the FIFO buffer. With each access, the transmit sta-
tus (TWITXS) field in the TWIFIFOSTAT register is updated. If an access is
performed while the FIFO buffer is full, the core waits until there is at
least one byte space in the transmit FIFO buffer and then completes the
write access. The bits in this register are write-only. For more information,
see “8-Bit Transmit FIFO Register (TXTWI8)” on page A-152.

16-Bit Transmit FIFO Register
The TWI 16-bit FIFO transmit register (TXTWI16) holds a 16-bit data
value written into the FIFO buffer. Although peripheral bus writes are 32
bits, a write access to the TXTWI16 register adds only two transmit data
bytes to the FIFO buffer. To reduce interrupt output rates and peripheral

ADSP-21368 SHARC Processor Hardware Reference 12-9

Two Wire Interface Controller

bus access times, a double byte transfer data access can be performed. Two
data bytes can be written, effectively filling the transmit FIFO buffer with
a single access.

The data is written in little-endian byte order as shown in Figure 12-2,
where byte 0 is the first byte to be transferred and byte 1 is the second byte
to be transferred. With each access, the transmit status (TWITXS) field in
the TWIFIFOSTAT register is updated. If an access is performed while the
FIFO buffer is not empty, the core waits until the FIFO buffer is com-
pletely empty and then completes the write access. All bits in this register
are write-only. This register always reads as 0x00000000. For more infor-
mation, see “16-Bit Transmit FIFO Register (TXTWI16)” on
page A-153.

8-Bit Receive FIFO Register
The TWI 8-bit FIFO receive register (RXTWI8) holds an 8-bit data value
read from the FIFO buffer. Receive data is read from the corresponding
receive buffer in a first-in, first-out order. Although peripheral bus reads
are 32 bits, a read access to the RXTWI8 register can only access one receive
data byte from the FIFO buffer. With each access, the receive status
(TWIRXS) field in the TWIFIFOSTAT register is updated. If an access is per-
formed while the FIFO buffer is empty, the core waits until there is at
least one byte in the receive FIFO buffer and then completes the read
access. All bits in this register are read-only. For more information, see
“8-Bit Receive FIFO Register (RXTWI8)” on page A-154.

Figure 12-2. Little-Endian Byte Order

B1 B0

DATA IN REGISTER

07816 15232431

UNUSEDUNUSED

Data Transfer Mechanics

12-10 ADSP-21368 SHARC Processor Hardware Reference

16-Bit Receive FIFO Register
The TWI 16- bit FIFO receive register (RXTWI16) holds a 16-bit data value
read from the FIFO buffer. Although peripheral bus reads are 32 bits, a
read access to the RXTWI16 register can only access two receive data bytes
from the FIFO buffer. To reduce interrupt output rates and peripheral
bus access times, a double-byte receive data access can be performed. Two
data bytes can be read, effectively emptying the receive FIFO buffer with a
single access.

The data is read in little-endian byte order, as shown in Figure 12-2 on
page 12-9, where byte 0 is the first byte received and byte 1 is the second
byte received. With each access, the receive status (TWIRXS) field in the
TWIFIFOSTAT register is updated to indicate it is empty. If an access is per-
formed while the FIFO buffer is not full, the core waits until the receive
FIFO buffer is full and then completes the read access. All bits in this reg-
ister are write-only. For more information, see “16-Bit Receive FIFO
Register (RXTWI16)” on page A-154.

Data Transfer Mechanics
The TWI controller follows the transfer protocol of the Philips I2C Bus
Specification version 2.1 dated January 2000. A simple complete transfer is
diagrammed in Figure 12-3.

Figure 12-3. Basic Data Transfer

7-BIT ADDRESS 8-BIT DATAR/W ACK PACKS

S = START

P = STOP

ACK = ACKNOWLEDGE

ADSP-21368 SHARC Processor Hardware Reference 12-11

Two Wire Interface Controller

To better understand the mapping of TWI controller register contents to
a basic transfer, Figure 12-4 details the same transfer as above noting the
corresponding TWI controller bit names. In this illustration, the TWI
controller successfully transmits one byte of data. The slave has acknowl-
edged both address and data.

Clock Generation and Synchronization
The TWI controller only issues a clock during master mode operation and
only at the time a transfer has been initiated. If arbitration for the bus is
lost, the serial clock output immediately three-states. If multiple clocks
attempt to drive the serial clock line, the TWI controller synchronizes its
clock with the other remaining clocks. This is illustrated in Figure 12-5.

The TWI controller’s serial clock (SCL) output follows these rules:

• Once the clock high (CLKHI) count is complete, the serial clock out-
put is driven low and the clock low (CLKLOW) count begins.

• Once the clock low count is complete, the serial clock line is
three-stated and the clock synchronization logic enters into a delay
mode (shaded area) until the SCL line is detected at a logic 1 level.
At this time, the clock high count begins.

Figure 12-4. Data Transfer With Bit Illustration

MADDR[6:0] MDIR ACK PACKS

S = START

P = STOP

ACK = ACKNOWLEDGE

TWI_XMT_BYTE

Data Transfer Mechanics

12-12 ADSP-21368 SHARC Processor Hardware Reference

Bus Arbitration
The TWI controller initiates a master mode transmission (TWIMEN) only
when the bus is idle. If the bus is idle and two masters initiate a transfer,
arbitration for the bus begins. This is illustrated in Figure 12-6.

The TWI controller monitors the serial data bus (SDA) while SCL is high.
If SDA is determined to be an active logic 0 level while the internal TWI
controller’s data is a logic 1 level, the TWI controller has lost arbitration
and ends generation of clock and data. Note that arbitration is performed
not only at serial clock edges, but also during the entire time SCL is high.

Start and Stop Conditions
Start and stop conditions involve serial data transitions while the serial
clock is at logic 1 level. The TWI controller generates and recognizes these
transitions. Typically, start and stop conditions occur at the beginning
and at the conclusion of a transmission, with the exception of repeated
start “combined” transfers, as shown in Figure 12-7.

Figure 12-5. TWI Clock Synchronization

HIGH
COUNT

LOW
COUNT

TWI CONTROLLER
CLOCK

SECOND MASTER
CLOCK

SCL
RESULT

ADSP-21368 SHARC Processor Hardware Reference 12-13

Two Wire Interface Controller

The TWI controller’s special-case start and stop conditions include:

• TWI controller addressed as a slave-receiver

If the master asserts a stop condition during the data phase of a
transfer, the TWI controller concludes the transfer (TWISCOMP).

Figure 12-6. TWI Bus Arbitration

Figure 12-7. TWI Start and Stop Conditions

START

SCL (BUS)

TWI CONTROLLER
DATA

SECOND MASTER
DATA

SDA (BUS)
ARBITRATION
LOST

START

SCL (BUS)

SDA (BUS)

STOP

Data Transfer Mechanics

12-14 ADSP-21368 SHARC Processor Hardware Reference

• TWI controller addressed as a slave-transmitter

If the master asserts a stop condition during the data phase of a
transfer, the TWI controller concludes the transfer (TWISCOMP) and
indicates a slave transfer error (TWISERR).

• TWI controller as a master-transmitter or master-receiver

If the stop bit is set during an active master transfer, the TWI con-
troller issues a stop condition as soon as possible to avoid any error
conditions (as if data transfer count had been reached).

General Call Support
The TWI controller always decodes and acknowledges a general call
address if it is enabled as a slave (TWISEN) and if general call is enabled
(TWIGC). General call addressing (0x00) is indicated by the setting of the
GCALL bit, and by the nature of the transfer, the TWI controller is a
slave-receiver. If the data associated with the transfer is to be not acknowl-
edged (NAKed), the TWINAK bit can be set.

If the TWI controller is to issue a general call as a master-transmitter, the
appropriate address and transfer direction can be set along with loading
transmit FIFO data.

Fast Mode
Fast mode essentially uses the same mechanics as standard mode. It is the
electrical specifications and timing that are different. When fast mode is
enabled (TWIFAST), the following timings are modified to meet the electri-
cal requirements.

• Serial data rise times before arbitration evaluation (tr)

• Stop condition setup time from serial clock to serial data (tSUSTO)

• Bus free time between a stop and start condition (tBUF)

ADSP-21368 SHARC Processor Hardware Reference 12-15

Two Wire Interface Controller

Programming Examples
The following sections include programming examples for general setup,
slave mode, and master mode, as well as guidance for repeated start condi-
tions. For an example of programming the TWI using the digital
peripheral interface and SRU2, see “Configuring the Two Wire Interface”
on page 4-73.

General Setup
General setup refers to register writes that are required for both slave
mode and master mode operation. General setup should be performed
before either the master or slave enable bits are set.

Programs should enable the TWI controller through the TWIMITR register
and set the prescale value. Program the prescale value to the binary repre-
sentation of fPCLK/10 MHz.

All values should be rounded up to the next whole number. The TWIEN
enable bit must be set. Note that once the TWI controller is enabled, a
bus busy condition may be detected.

Slave Mode
When enabled, slave mode supports both receive and transmit data trans-
fers. It is not possible to enable only one data transfer direction and not
acknowledge (NAK) the other. This is reflected in the following setup.

1. Program the TWISADDR register. The appropriate 7 bits are used in
determining a match during the address phase of the transfer in
case of 7-bit addressing.

Programming Examples

12-16 ADSP-21368 SHARC Processor Hardware Reference

2. Program the TXTWI8 or TXTWI16 register. These are the initial data
values to be transmitted in the event the slave is addressed as a
transmitter. This is an optional step. If no data is written and the
slave is addressed and a transmit is required, the serial clock (SCL) is
stretched and an interrupt is generated.

3. Program the TWIFIFOCTL register. Indicate if transmit (or receive)
FIFO buffer interrupts should occur with each byte transmitted
(received) or with each 2 bytes transmitted (received).

4. Program the TWIIMASK register. Enable bits associated with the
desired interrupt sources. As an example, programming the value
0x000F results in an interrupt output to the processor when a valid
address match is detected, a valid slave transfer completes, a slave
transfer has an error, or a subsequent transfer has begun but the
previous transfer has not been serviced.

5. Program the TWISCTL register. This prepares and enables slave
mode operation. As an example, programming the value 0x0005
enables slave mode operation, requires 7-bit addressing, and indi-
cates that data in the transmit FIFO buffer is intended for slave
mode transmission.

Table 12-2 shows what the interaction between the TWI controller and
the processor might look like when the slave is addressed as a receiver.

Table 12-2. Slave Mode Setup Interaction (Slave Addressed as Receiver)

TWI Controller Master Processor

Interrupt: TWISINIT – Slave transfer has been
initiated.

Acknowledge: Clear interrupt source bits.

Interrupt: TWIRXS – Receive buffer has 1 or 2
bytes (according to TWIRXINT).

Read receive FIFO buffer.
Acknowledge: Clear interrupt source bits.

... ...

Interrupt: TWISCOMP – Slave transfer com-
plete.

Read receive FIFO buffer.
Acknowledge: Clear interrupt source bits.

ADSP-21368 SHARC Processor Hardware Reference 12-17

Two Wire Interface Controller

Master Mode Clock Setup
Master mode operation is set up and executed on a per-transfer basis. An
example of programming steps for a receive and for a transmit are given
separately in following sections. The clock setup programming step listed
here is common to both transfer types.

Program the TWIDIV register. This defines the clock high duration and
clock low duration.

Master Mode Transmit
Follow these programming steps for a single master mode transmit:

1. Program the TWIMADDR register. This defines the address transmit-
ted during the address phase of the transfer.

2. Program the TXTWI8 or TXTWI16 registers. This is the initial data
transmitted. It is considered an error to complete the address phase
of the transfer and not have data available in the transmit FIFO
buffer.

3. Program the TWIFIFOCTL register. Indicate if transmit FIFO buffer
interrupts should occur with each byte transmitted (8 bits) or with
each 2 bytes transmitted (16 bits).

4. Program the TWIIMASK register. Enable bits associated with the
desired interrupt sources. As an example, programming the value
0x0030 results in an interrupt output to the processor in the event
that the master transfer completes, or if the master transfer has an
error.

Programming Examples

12-18 ADSP-21368 SHARC Processor Hardware Reference

5. Program the TWIMCTL register. This prepares and enables master
mode operation. As an example, programming the value 0x0201
enables master mode operation, generates a 7-bit address, sets the
direction to master-transmit, uses standard mode timing, and
transmits 8 data bytes before generating a stop condition.

Table 12-3 shows what the interaction between the TWI controller and
the processor might look like using this example.

Master Mode Receive
Follow these programming steps for a single master mode transmit:

1. Program the TWIMADDR register. This defines the address transmit-
ted during the address phase of the transfer.

2. Program the TWIFIFOCTL register. Indicate if receive FIFO buffer
interrupts should occur with each byte received (8 bits) or with
each 2 bytes received (16 bits).

3. Program the TWIIMASK register. Enable bits associated with the
desired interrupt sources. For example, programming the value
0x0030 results in an interrupt output to the processor in the event
that the master transfer completes, and the master transfer has an
error.

Table 12-3. Master Mode Transmit Setup Interaction

TWI Controller Master Processor

Interrupt: TWITXINT – Transmit buffer has 1 or
2 bytes empty (according to XMTINTLEN).

Write transmit FIFO buffer.
Acknowledge: Clear interrupt source bits.

... ...

Interrupt: TWIMCOMP – Master transfer com-
plete.

Acknowledge: Clear interrupt source bits.

ADSP-21368 SHARC Processor Hardware Reference 12-19

Two Wire Interface Controller

4. Program the TWIMCTL register. Ultimately this prepares and enables
master mode operation. As an example, programming the value
0x0201 enables master mode operation, generates a 7-bit address,
sets the direction to master-receive, uses standard mode timing,
and receives 8 data bytes before generating a stop condition.

Table 12-4 shows what the interaction between the TWI controller and
the processor might look like using this example.

Repeated Start Condition
In general, a repeated start condition is the absence of a stop condition
between two transfers initiated by the same master. The two transfers can
be of any direction type. Examples include a transmit followed by a
receive, or a receive followed by a transmit. During a repeated start trans-
fer, each interrupt must be serviced correctly to avoid errors. The
following sections are intended to assist the programmer with service rou-
tine development.

Transmit/Receive Repeated Start Sequence

Figure 12-8 illustrates a repeated start data transmit followed by a data
receive sequence.

Table 12-4. Master Mode Receive Setup Interaction

TWI Controller Master Processor

Interrupt: TWIRXINT – Receive buffer has 1
or 2 bytes (according to RCVINTLEN).

Read receive FIFO buffer.
Acknowledge: Clear interrupt source bits.

... ...

Interrupt: TWIMCOMP – Master transfer
complete.

Read receive FIFO buffer.
Acknowledge: Clear interrupt source bits.

Programming Examples

12-20 ADSP-21368 SHARC Processor Hardware Reference

The tasks performed at each interrupt are:

• TWITXINT interrupt

This interrupt is generated every time the transmit FIFO has one
or two byte locations available to be written. To service this inter-
rupt, write a byte or word into the transmit FIFO registers (TXTWI8
or TXTWI16). During one of these interrupts (preferably the first
time), do the following:

• Set the RSTART bit (or earlier when TWIMCTL register is pro-
grammed first).

• Set the TWIMDIR bit to indicate the next transfer direction is
receive. This should be done before the addressing phase of
the next transfer begins.

• TWIMCOMP interrupt

This interrupt is generated because all data has been transferred
(DCNT = 0). If no errors were generated, a start condition is initi-
ated. At this time, program the following bits of TWI_MASTER_CTRL
register:

• Clear RSTART (if this is the last transfer).

Figure 12-8. Transmit/Receive Data Repeated Start

7-BIT ADDRESS 7-BIT ADDRESSS ACK 8-BIT DATA 8-BIT DATAACK ACKS PACK

TWITXINT INTERRUPT

START

TWIMCOM INTERRUPT
TWIMCOM INTERRUPT

TWIRXINT INTERRUPT

REPEATED
START STOP

Shaded region indicates slave to master transmission.

ADSP-21368 SHARC Processor Hardware Reference 12-21

Two Wire Interface Controller

• Re-program DCNT with the desired number of bytes to
receive.

• TWISERR interrupt

This interrupt is generated due to the arrival of a byte into the
receive FIFO. Simple data handling is all that is required.

Receive/Transmit Repeated Start Sequence

Figure 12-9 illustrates a repeated start data receive followed by a data
transmit sequence. The shading in the figure indicates the slave has the
bus.

The tasks performed at each interrupt are:

• TWIRXINT interrupt

This interrupt is generated due to the arrival of one or two data
bytes into the receive FIFO. The TWIRSTART bit should be set at this
time (or earlier) and MDIR should be cleared to reflect the change in
direction of the next transfer. The TWIMDIR bit must be cleared
before the addressing phase of the subsequent transfer begins.

Figure 12-9. Receive/Transmit Data Repeated Start

7-BIT ADDRESS 7-BIT ADDRESSS ACK 8-BIT DATA 8-BIT DATANACK ACKS PACK

TWIRXINT INTERRUPT

START

TWIMCOM INTERRUPT
TWIMCOM INTERRUPT

TWITXINT INTERRUPT

REPEATED
START STOP

SHADING INDICATES
SLAVE HAS THE BUS

Electrical Specifications

12-22 ADSP-21368 SHARC Processor Hardware Reference

• TWIMCOMP interrupt

This interrupt has occurred due to the completion of the data
receive transfer. At this time the data transmit transfer begins. The
TWIDCNT field should be set to reflect the number of bytes to be
transmitted. Clear the TWIRSTART bit if this is the last transfer.

• TWITXINT interrupt

This interrupt is generated when there is one or two bytes of empty
space in the FIFO. Simple data handling is all that is required.

• TWIMCOM interrupt

The transfer is complete.

Electrical Specifications
All logic complies with the electrical specification outlined in the Philips
I2C Bus Specification version 2.1 dated January, 2000.

ADSP-21368 SHARC Processor Hardware Reference 13-1

13 PRECISION CLOCK
GENERATORS

The precision clock generators (PCG) consist of four units, each of which
generates a pair of signals (clock and frame sync) derived from a clock
input signal. The units, A B, C, and D, are identical in functionality and
operate independently of each other. The two signals generated by each
unit are normally used as a serial bit clock/frame sync pair.

Note the definitions of various clock periods that are a function of CLKIN
and the appropriate ratio control (Table 13-1).

The unit that generates the bit clock is relatively simple, since digital clock
signals are usually regular and symmetrical. The unit that generates the
frame sync output, however, is designed to be extremely flexible and capa-
ble of generating a wide variety of framing signals needed by many types
of peripherals that can be connected to the signal routing unit (SRU1).
For more information, see “Signal Routing Units” on page 4-8.

Table 13-1. Clock Periods

Timing Requirements Description

tCK CLKIN clock period

tCCLK Processor core clock period

tPCLK Peripheral clock period = 2 × tCCLK

13-2 ADSP-21368 SHARC Processor Hardware Reference

The core phase-locked loop (PLL) has been designed to provide clocking
for the processor core. Although the performance specifications of this
PLL are appropriate for the core, they have not been optimized or speci-
fied for precision data converters where jitter directly translates into time
quantization errors and distortion.

As shown in Figure 13-1, the PCGs can accept clock inputs either directly
from the external oscillator (or discrete crystal) connected to the CLKIN
pin, from the peripheral clock (PCLK), or from any of the 20 DAI pins.
This allows a design to contain an external clock with performance specifi-
cations appropriate for the application target.

Note that clock and frame sync signals generated by the serial ports are
also subject to these jitter problems because the SPORT clock is generated
from the core clock. However, a SPORT can produce data output while

Figure 13-1. Clock Inputs

EXTERNAL
OSCILLATOR

CORE
PLL

SHARC ADSP-213xx

PRECISION
CLOCK

GENERATORS
(A-D)

M/N
CORE CLOCK
GENERATOR

SERIAL
PORT

SIGNAL
ROUTING

UNIT

CORECORE CLOCK
BUFFER

AMP

SCLK

FSYNC

INPUT0

INPUT1 F
S

Y
N

C

P
C

L
K

S
C

L
K

ADSP-21368 SHARC Processor Hardware Reference 13-3

Precision Clock Generators

being a clock and frame sync slave. The clock generated by the SPORT is
sufficient for most of the serial communications, but it is suboptimal for
analog/digital conversion. Therefore, all precision data converters should
be synchronized to a clock generated by the PCG or to a clean (low jitter)
clock that is fed into SRU1 off-chip through a pin.

Any clock or frame sync unit should be disabled (have its enable bit
cleared) before changing any of the associated parameters.

Clock Outputs
Each of the four units (A, B, C, and D) produces a clock output and a
frame sync output. The clock output is derived from the input to the PCG
with a 20-bit divisor as shown in the following equation.

If the divisor is zero or one, the PCG’s clock generation unit is bypassed,
and the clock input is connected directly to the clock output. Otherwise,
the PCG unit clock output frequency is equal to the input clock fre-
quency, divided by a 20-bit integer. This integer is specified in bits 19–0
of the PCG_CTLx1 registers for units A, B, C and D respectively. These reg-
isters and bits are also described in Table A-63 on page A-156 and
Table A-64 on page A-157.

The clock outputs have four other control bits that enable the A, B, C,
and D units, ENCLKA, ENCLKB, ENCLKC, and ENCLKD respectively (bits 31 of
the PCG_CTLx0 registers). These bits enable (= 1) and disable (= 0) the
clock output signal for units A, B, C, and D respectively. When disabled,
clock output is held at logic low.

Frequency of Clock Output =
 Frequency of Clock Input

Clock Divisor

Frame Sync Outputs

13-4 ADSP-21368 SHARC Processor Hardware Reference

The CLKASOURCE bit (bit 31 in the PCG_CTLA1 registers) specifies the input
source for the clock of the respective units (A, B, C, and D). When this bit
is cleared (= 0), the input is sourced from the external oscillator, as shown
in Figure 13-1. When set (= 1), the input is sourced from SRU1, as speci-
fied in the PCG_EXTA_I bits in the SRU_CLK4 register. The CLKASOURCE bit is
overridden if CLKA_SOURCE_IOP bit (bit 2) in the PCG_SYNC register is set. If
the CLKA_SOURCE_IOP bit is set, the input is sourced from the peripheral
clock. See “Group A Connections—Clock Signals” on page 4-19.

The PCG units B, C, and D function identically, except that the
PCG_CTLB1, PCG_CTLC1, and PCG_CTLD1 bits (bit 31) indicate that the exter-
nal source for these units is specified in PCG_EXTB_I, PCG_EXTC_I, and
PCG_EXTD_I bits in the SRU_CLK4 and SRU_CLK5 registers. See Figure 4-16
on page 4-22 and Figure 4-17 on page 4-23.

Note that the clock output is always set (as closely as possible) to a 50%
duty cycle. If the clock divisor is even, the duty cycle of the clock output is
exactly 50%. If the clock divisor is odd, then the duty cycle is slightly less
than 50%. The low period of the output clock is one input clock period
more than the high period of the output clock. For higher values of an
odd divisor, the duty cycle is close to 50%.

A PCG clock output cannot be fed to its own input. Setting
SRU_CLK4[4:0] = 0x1C connects PCG_EXTA_I to logic low, not
PCG_CLKA_O. Setting SRU_CLK4[9:5] = 0x1D connects PCG_EXTB_I
to logic low, not PCG_CLKB_O.

Frame Sync Outputs
Each of the four units (A through D) also produces a synchronization sig-
nal for framing serial data. The frame sync outputs are much more flexible
since they need to accommodate the wide variety of serial protocols used
by peripherals.

ADSP-21368 SHARC Processor Hardware Reference 13-5

Precision Clock Generators

Frame sync generation from a unit is independently enabled and con-
trolled. Sources for the frame sync generation can be either from the
crystal buffer output, PCLK, or an external pin source. There is only one
external source pin for both frame sync and clock output for a unit. If an
external source is selected for both frame sync and clock output for a unit,
then they operate on the same input signal. Apart from enable and source
select control bits, frame sync generation is controlled by a 20-bit divisor,
a 16-bit pulse width control, and a 20-bit phase control.

There are two modes of operation for the PCG frame sync. The divisor
field determines if the frame sync operates in normal mode
(divisor > 1) or bypass mode (divisor = 0 or 1).

Normal Mode
In normal mode, the frequency of the frame sync output is determined by
the divisor where:

The high period of the frame sync output is controlled by the value of the
pulse width control. The value of the pulse width control should be less
than the value of the divisor.

The phase of the frame sync output is determined by the value of the
phase control. If the phase is zero, then the positive edges of the clock and
frame sync coincide, provided the divisors of the clock and frame sync are
the same, the source for the clock and frame sync is also the same, and if
clock and frame sync are enabled at the same time using a single
instruction.

The number of input clock cycles that have already elapsed before the
frame sync is enabled is equal to the difference between the divisor and the
phase values. If the phase is a small fraction of the divisor, then the frame

Frequency of Clock Input
 Frame Sync Divisor

Frequency of Frame Sync Output = ()

Frame Sync Outputs

13-6 ADSP-21368 SHARC Processor Hardware Reference

sync appears to lead the clock. If the phase is only slightly less than the
divisor, then the frame sync appears to lag the clock. The frame sync phase
should not be greater than the divisor.

Bypass Mode
In bypass mode, the frame sync divisor is either 0 or 1. There are two ways
the bypass mode operates, depending on the STROBEA, STROBEB, STROBEC
and STROBED bits of the PCG_PW and PCG_PW2 registers of the pulse width
control register (PCG_PWx, see Table A-66 on page A-159). This is shown
below.

• Direct bypass. If the STROBEA/B/C/D of the pulse width control reg-
ister (PCG_PW, PCG_PW2) is reset to 0, then the input is directly
passed to the frame sync output, either not inverted or inverted,
depending on the INVFSA, INVFSB, INVFSC and INVFSD bits of the
PCG_PW and PCG_PW2 registers.

• One-shot. In the bypass mode, if the least significant bit (LSB) of
the PCG_PW register is set to 1, then a one-shot pulse is generated.
This one-shot-pulse has a duration equal to the period of MISCA2_I
for unit A, MISCA3_I for unit B, MISCA4_I for unit C, and MISCA5_I
for unit D (see “Group E Connections—Interrupts and Miscella-
neous Signals” on page 4-43). This pulse is generated either at the
rising or at the falling edge of the input clock, depending on the
value of the INVFSA, INVFSB, INVFSC, and INVFSD bits of the PCG_PW
and PCG_PW2 registers.

ADSP-21368 SHARC Processor Hardware Reference 13-7

Precision Clock Generators

Frame Sync Output Synchronization With
an External Clock

The frame sync output may be synchronized with an external clock by
programming the PCG_SYNC and PCG_SYNC2 registers (shown in
Figure A-77 on page A-160) and the PCG control registers (PCG_CTLA0–1,
PCG_CTLB0–1, PCG_CTLC0–1, and PCG_CTLD0–1) appropriately. In this mode,
the rising edge of the external clock is aligned with that of the frame sync
output (shown in Figure 13-2). The external clock is routed to the PCG
block from any of the SRU1 group A source signals through the SRU_CLK4
and SRU_CLK5 registers (described in Table 4-4 on page 4-23).

The synchronization with the external clock is enabled by setting bits 0
and 16 of the PCG_SYNC register for frame sync A or B and the PCG_SYNC2
register for C or D output. The phase must be programmed to 3, so that
the rising edge of the external clock is in sync with the frame sync.

Programming should occur in the following order.

1. Program the PCG_SYNC and PCG_SYNC2 and the PCG_CTLA0–1,
PCG_CTLB0–1, PCG_CTLC0–1, and PCG_CTLD0–1 registers
appropriately.

2. Enable clock or frame sync, or both.

Since the rising edge of the external clock is used to synchronize with the
frame sync, the frame sync output is not generated until a rising edge of
the external clock is sensed.

The clock output cannot be aligned with the rising edge of the external
clock as there is no phase programmability. Once CLKA through CLKD have
been enabled (by programming bit 1 and bit 17 of the PCG_SYNC register
for CLKA and CLKB respectively and, bit 1 and 17 of PCG_SYNC2 register for
CLKC and CLKD respectively) these outputs are activated when a low-to-high
transition is sensed in the external clock (MISCA4_I, MISCA5_I).

Frame Sync Output Synchronization With an External Clock

13-8 ADSP-21368 SHARC Processor Hardware Reference

Frame Sync
For a given frame sync, the output is determined by the following:

• Divisor. A 20-bit divisor of the input clock that determines the
period of the frame sync. When set to 0 or 1, the frame sync oper-
ates in bypass mode, otherwise it operates in normal mode.

• Phase. A 20-bit value that determines the phase relationship
between the clock output and the frame sync output. Settings for
phase can be anywhere between 0 to DIV – 1.

• Pulse width. A 16-bit value that determines the width of the fram-
ing pulse. Settings for pulse width can be 0 to DIV – 1. If the pulse
width is equal to 0 or the frame sync is even, then the actual pulse
width of the output frame sync is:

For odd divisors the actual pulse width of the output frame sync is:

Figure 13-2. Clock Output Synchronization With External Clock

FSA OUTPUT

MCLK

EXT CLK

Pulse Width
FrameSyncDivisor

2
--=

Pulse Width
FrameSyncDivisor 1–

2
---=

ADSP-21368 SHARC Processor Hardware Reference 13-9

Precision Clock Generators

The frequency of the frame sync output is determined by:

When the divisor is set to any value other than 0 or 1, the processors oper-
ate in normal mode.

The frame sync divisors (FSxDIV bits) are specified in bits 19–0 of the cor-
responding PCG control registers (PCG_CTLx0). The pulse width of the
frame sync output is equal to the number of input clock periods specified
in the 16-bit field of the corresponding PCG pulse width register (PCG_PW
for A and B, PCG_PW2 for C and D). Bits 15–0 specify the pulse width of
frame sync A and C, and bits 31–16 specify the pulse width of frame sync
B and D.

Phase Shift
Phase shift is a frame sync parameter that defines the phase shift of the
frame sync with respect to the clock of the same unit. This feature allows
shifting of the frame sync signal in time relative to clock signals. Frame
sync phase shifting is often required by peripherals that need a frame sync
signal to lead or lag a clock signal.

The amount of phase shifting is specified as a 20-bit value in the
FSAPHASE_HI bit field (bits 29–20) of the appropriate PCG_CTLAO register
and in the FSAPHASE_LO bit field (bits 29–20) of the PCG_CTLA1 register for
unit A. A single 20-bit value spans these two bit fields. The upper half of
the word (bits 19–10) resides in the PCG_CTLAO register, and the lower half
(bits 9–0) resides in the PCG_CTLA1 register.

Similarly, the phase shift for frame syncs B, C, and D is specified in the
corresponding PCG_CTLxO and PCG_CTLx1 registers.

Frequency of Clock Input
Frame Sync Divisor

Phase Shift

13-10 ADSP-21368 SHARC Processor Hardware Reference

When using a clock and frame sync as a synchronous pair, the units
must be enabled in a single atomic instruction before their parame-
ters are modified. Both units must also be disabled in a single
atomic instruction.

Phase Shift Settings
The phase shift between clock and frame sync outputs may be pro-
grammed under these conditions:

• The input clock source for the clock generator output and the
frame sync generator output is the same.

• Clock and frame sync are enabled at the same time using a single
atomic instruction.

• Frame sync divisor is an integral multiple of the clock divisor.

If the phase shift is 0, the clock and frame sync outputs rise at the same
time. If the phase shift is 1, the frame sync output transitions one input
clock period ahead of the clock transition. If the phase shift is
divisor – 1, the frame sync transitions divisor – 1 input clock periods
ahead of the clock transitions. This translates to the one input clock
period after the clock transition (Figure 13-3).

Phase shifting is represented as a full 20-bit value so that even when frame
sync is divided by the maximum amount, the phase can be shifted to the
full range, from zero to one input clock short of the period.

Pulse Width
Pulse width is the number of input clock periods for which the frame sync
output is high. Pulse width should be less than the divisor of the frame
sync. The pulse width of frame sync A is specified in the PWFSA bits (15–0)
of the PCG_PW register and the pulse width of frame sync B is specified in
the PWFSB bits (31–16) of the PCG_PW register. Similarly, the pulse width of

ADSP-21368 SHARC Processor Hardware Reference 13-11

Precision Clock Generators

frame sync C is specified in the PWFSC bits (15–0) of the PCG_PW2 register
and the pulse width of frame sync D is specified in the PWFSD bits (31–16)
of the PCG_PW2 register.

If the pulse width is equal to 0 or if the divisor is even, then the actual
pulse width of the frame sync output is equal to:

If the pulse width is equal to 0 or if the divisor is odd, then the actual
pulse width of the frame sync output is equal to:

Figure 13-3. Phase Shift Settings

FRAME SYNC OUTPUT
(PHASE SHIFT = PERIOD -1)

CLOCK INPUT
(FOR BOTH CLOCK
AND FRAME SYNC)

ENABLE

FRAME SYNC OUT PUT
(PHASE SHIFT = 0)

FRAME SYNC OUT PUT
(PHASE SHIFT = 1)

CLOCK OUTPUT

FRAME SYNC OUT PUT
(PHASE SHIFT = 2)

OTHER VALUES:
CLOCK DIVISOR = 4
F RAME SYNC DIVISOR = 16
PULSE WIDTH = 8

Pulse Width
FrameSyncDivisor

2
--=

Pulse Width
FrameSyncDivisor 1–

2
---=

Phase Shift

13-12 ADSP-21368 SHARC Processor Hardware Reference

Bypass Mode
When the divisor for the frame sync has a value of 0 or 1, the frame sync is
in bypass mode, and the PCG_PW and PCG_PW2 registers have different func-
tionality than in normal mode. Two bit fields determine the operation in
this mode. The one-shot (which is a strobe pulse) frame sync A, B, C, or
D (STROBEx) bit (bits 0 and 16 in the PCG_PW and PCG_PW2 registers, respec-
tively) determines if the frame sync has the same width as the input, or of
a single strobe. The active low frame sync select for the frame syncs
(INVFSx) bit (bits 1 and 17 of the PCG_PW and PCG_PW2 registers respec-
tively) determines the nature of the output in the simple bypass and single
strobe modes as described below. For additional information about the
PCG_PWx registers, see Figure A-76 on page A-159.

In bypass mode, bits 15–2 and bits 31–18 of the PCG_PWx registers
are ignored.

Bypass as a Pass Through

When the STROBEx bit in the PCG_PWx register equals 0, the unit is
bypassed and the output equals the input. If, for example, INVFSA (bit 1)
for unit A or INVFSB (bit 17) for unit B is set, then the signal is inverted
(see Figure 13-4).

Figure 13-4. Frame Sync Bypass

CLOCK INPUT
FOR FRAME SYNC

FRAME SYNC OUTPUT
(INVFSA = 0, STROBEA = 0)

FRAME SYNC OUTPUT
(INVFSA = 1, STROBEA = 0)

ADSP-21368 SHARC Processor Hardware Reference 13-13

Precision Clock Generators

Bypass mode also enables the generation of a strobe pulse (one-shot).
Strobe usage ignores the counter and looks to SRU1 to provide the input
signal.

Bypass as a One-Shot

When the STROBEA or STROBEB bits (bit 0, bit 16 of the PCG_PW register) or
STROBEC or STROBED bits (bit 0, bit 16 of the PCG_PW2 register) are set (= 1),
the one-shot option is used. When the STROBEx bit is set (= 1), the frame
sync is a pulse with a duration equal to one period, or one full cycle of
MISCA2_I for unit A, MISCA3_I for unit B, MISCA4_I for unit C, and
MISCA5_I for unit D that repeats at the beginning of every clock input
period. This pulse is generated during the high period of the input clock
when the INVFSA/B/C/D bits (bits 1 or 17, respectively of the PCG_PW and
PCG_PW2 registers) are cleared (INVFSA/B=0) or during the low period of the
input clock when invert bits INVFSA/B/C/D are set (= 1).

A strobe period is equal to the period of the normal clock input signal spec-
ified by the FSASOURCE bit (bit 30 in the PCG_CTLA1 register for unit A) and
the corresponding FSxSOURCE bit (bit 30 in the PCG_CTLx1 registers for
units B, C, and D).

As shown in Figure 13-5, the output pulse width is equal to the period of
the SRU1 source signal (MISCA2_I for frame sync A, MISCA3_I for frame
sync B, MISCA4_I for frame sync C, and MISCA5_I, for frame sync D). The
pulse begins at the second rising edge of MISCAx_I following a rising edge
of the clock input. When the INVFSA/B/C/D bit is set, the pulse begins at
the second rising edge of MISCAx_I, coincident or following a falling edge
of the clock input.

For more information, see “Group E Connections—Interrupts and Mis-
cellaneous Signals” on page 4-43.

Programming Examples

13-14 ADSP-21368 SHARC Processor Hardware Reference

The second INVFSA bit (bit 1) of the pulse width control register (PCG_PW)
determines whether the falling or rising edge is used. When set (= 1), this
bit selects an active low frame sync, and the pulse is generated during the
low period of clock input. When cleared (= 0), this bit is set to active high
frame sync and the pulse is generated during the high period of clock
input. For more information on the PCG_PWx registers, refer to Table A-66,
“PCG_PWx Register Bit Descriptions (in Bypass Mode),” on page A-159.

Programming Examples
This section contains three programming examples:

1. “PCG Setup for I2S or Left-Justified DAI” on page 13-15

2. “Clock and Frame Sync Divisors PCG Channel B” on page 13-20

3. “PCG Channel A and B Output Example” on page 13-23

Figure 13-5. One-Shot (Synchronous Clock Input and MISCA2_I)

CLOCK INPUT
FOR FRAME SYNC

MISCA2_I

FRAME SYNC OUTPUT
(INVFSA = 0, STROBEA = 1)

FRAME SYNC OUTPUT
(INVFSA = 1, STROBEA = 1)

ADSP-21368 SHARC Processor Hardware Reference 13-15

Precision Clock Generators

PCG Setup for I2S or Left-Justified DAI
This example shows how to set up two precision clock generators using
the S/PDIF receiver and an asynchronous sample rate converter (SRC) to
interface to an external audio DAC. In this example an input clock
(CLKIN) of 33.330 MHz is assumed and the PCG is configured to provide
a fixed SRC/DAC output sample rate of 65.098 kHz. The input to the
S/PDIF receiver is typically 44.1 kHz if supplied by a CD player but can
also be from another source at any nominal sample rate from about 22
kHz to 192 kHz.

Three synchronous clocks are required: a framesync (FSYNC; FS), a master
clock (PCGx_CLK; 256 × FS), and a serial bit clock (SCLK; 64 × FS). Since
each PCG has only two outputs, this example requires two PCGs. Fur-
thermore, because the digital audio interface requires a fixed-phase
relation between SCLK and FSYNC, these two outputs should come from one
PCG while the master clock comes from the other.

The CLKIN = 33.330 MHz is divided by the two PCGs to provide the three
synchronous clocks — PCGx_CLK, SCLK, and FSYNC for the SRCs and exter-
nal DAC. These divisors are stored in 20-bit fields in the PCG_CTL
registers. For more information, see “Precision Clock Generator Registers”
on page A-155.

The integer divisors for several possible sample rates based on 33.330
MHz CLKIN are shown in Table 13-2.

Programming Examples

13-16 ADSP-21368 SHARC Processor Hardware Reference

For more information, see “Power Management Control Register
(PMCTL)” on page A-170. The equation and procedure for programming
a master clock input is:

1. Set the core clock rate using the values below.

PLLM/PLLN = CCLK
where M = 29, N = 4 for a CCLK of 241.64 MHz

2. Divide CCLK rate by 2 (fixed) to provide a PCLK (peripheral clock)
rate of 120.82 MHz.

3. PCLK is divided by 4 (fixed) to provide the PCG_CLKx_O rate of
30.21 MHz for each of the SRCs.

Table 13-2. Precision Clock Generator Division Ratios
(33.330 CLKIN)

Sample Rate kHz)

PCG Divisors

PCG CLOCK
INPUT

SCLK FSYNC1

130.195 1 4 256

65.098 2 8 512

43.398 3 12 768

32.549 4 16 1024

26.039 5 20 1280

21.699 6 24 1536

18.599 7 28 1792

1 The frame sync divisor should be an even integer in order to produce a 50% duty cycle
waveform. See “Frame Sync Outputs” on page 13-4.

ADSP-21368 SHARC Processor Hardware Reference 13-17

Precision Clock Generators

The combined PCGs can provide a selection of synchronous clock
frequencies to support alternate sample rates for the SRCs and
external DACs. However, the range of choices is limited by CLKIN
and the ratio of PCG_CLKx_O:SCLK:FSYNC which is normally fixed at
256:64:1 to support digital audio, left-justified, I2S, and right-jus-
tified interface modes. Many DACs also support 384, 512, and
786 × FSYNC for PCG_CLKx_O, which allows some additional flexibil-
ity in choosing CLKIN.

Note also that in all three DAI modes, the falling edge of SCLK
must always be synchronous with both edges of FSYNC. This
requires that the phase of the SCLK and FSYNC for a common PCG
be adjustable.

While the frequency of PCG_CLKx_O must be synchronous with the
sample rate supplied to the external DAC, there is no fixed-phase
requirement. For complete timing information, see the processor
specific data sheet.

Figure 13-6 shows an example of the internal interconnections between
the SPDIF receiver, SRC, and the PCGs. The interconnections are made
by programming the signal routing unit. Note that in this example, CCLK is
set at 242 MHz. This frequency can be adjusted up to the maximum CCLK
for the chosen processor. Also note that master clock (MCLK) is the input
source provided for the PCG. This input can come from CLKIN, any
peripheral output, or from one of the DAI pins.

Programming Examples

13-18 ADSP-21368 SHARC Processor Hardware Reference

In the following example code, the most significant two bits of the control
registers (PCG_CTLx) specify the clock source and enable the clock genera-
tors. Set the clock divisor and source and low phase word first, followed by
the control register enable bits, which must be set together. When the
PCG_PW register is set to 0 (default) the FS pulse width is divisor/2 for even
divisors and (divisor – 1)/2 for odd divisors. Alternatively, the PCG_PW reg-
ister could be set high for exactly half the period of CLKIN cycles for a 50%
duty cycle, provided the FSYNC divisor is an even number.

Figure 13-6. PCG Setup for I2S or Left-Justified DAI

ADSP-21369

S/PDIF
Rx

SRC

RxSCLK

RxLRCLK

SDATAIN

PCGA

PCGB

PLL CCLK ÷ 2 CCLK ÷ 4

CCLK
(242 MHz)

HCLK
(121 MHz)

SDATAOUT DAI_P8

DAI_P9

DAI_P10

STEREO DAC

LEFTOUT RIGHTOUT

MCLKIN
DAI_P11

MCLK
(30 MHz)

FSYNCA (FSOUT) ÷ 512 = 65.1 kHz

SCLKA (64 FSOUT) ÷ 8 = 4.167 MHz

MCLKB (256 FSOUT) ÷ 2 = 16.67 MHz

FCLKIN
(33.330 MHz)

S/PDIFIN
(FSIN, 44.1 kHz

DAI_P19
SDATAIN

LRCLKIN

SCLKIN

FSOUT = 65.1 kHz

24-BIT, LEFT-JUSTIFIEDCD
PLAYER

HEAD PHONES

ADSP-21368 SHARC Processor Hardware Reference 13-19

Precision Clock Generators

Listing 13-1. PCG Initialization

/***

Required Output Sample Rate = 65.098 kHz

Function Control Reg Phase/ Reg Hex

 reg Address Divisor Contents

FS_A_Ph_Hi/FS_A_Div PCG_CTLA0 0x24C0 0/512 0xC00/00200

FS_A_Ph_Lo/CLK_A_Div PCG_CTLA1 0x24C1 4/8 0x004/00008

--

FS_B_Ph_Hi/FS_B_Div PCG_CTLB0 0x24C2 -/- 0x800/00000

FS_B_Ph_Lo/CLK_B_Div PCG_CTLB1 0x24C3 0/2 0x000/00002

PW_FS_B/PW_FS_A PCG_PW 0x24C4 0/0 0x0000:0000

**/

#include <def21369.h>

/* PCGA --> SCLK & FSYNC Divisors, Sample Rate = 65.098 kHz */

#define PCGA_CLK_DIVISOR 0x0008 /* SCLK output = Fs */

#define PCGA_FS_DIVISOR 0x0200 /* FSYNC output = 64xFs */

#define PCGA_FS_PHASE_LO 0x04 /* Set FSYNC/SCLK Phase for

 digital audio IF mode */

PCGB --> PCG_CLKx_O Divisor

#define PCGB_CLK_DIVISOR 0x0002 /* PCG_CLKx_O output =

 256xFs */

#define ENCLKA 0x80000000

#define ENFSA 0x40000000

#define PCGB_FS_DIVISOR 0x0000 /* Not used - disabled */

#define PCGB_FS_PHASE_LO 0x00 /* Don’t care */

.section/pm seg_pmco; .global Init_PCG;

/***/

Init_PCG:

/* Set PCGA SCLK & FSYNC Source first to Xtal Buffer and set

 SCLK_A divisor */

r0 = ((PCGA_FS_PHASE_LO << 20) | PCGA_CLK_DIVISOR);

dm(PCG_CTLA1) = r0;

Programming Examples

13-20 ADSP-21368 SHARC Processor Hardware Reference

/* Enable PCGA SCLK & FSYNC and set FSYNC_A divisor */

r0 = (ENCLKA | ENFSA | PCGA_FS_DIVISOR);

dm(PCG_CTLA0) = r0;

/* Set PCGB SCLK & FSYNC Source first to Xtal Buffer and set

 SCLK_B divisor */

r0 = ((PCGB_FS_PHASE_LO << 20) | PCGB_CLK_DIVISOR);

dm(PCG_CTLB1) = r0;

/* Enable PCGB SCLK and disable FSYNC_B */

r0 = (ENCLKB | ENFSB | PCGB_FS_DIVISOR);

dm(PCG_CTLB0) = r0;

ustat1 = dm(PCG_CTLB0);

bit clr ustat1 ENFSA;

dm(PCG_CTLB0) = ustat1;

/* Set FSYNC_A and FSYNC_B Pulse Width to 50% Duty Cycle

 (default) */

r0 = 0x00000000;

dm(PCG_PW) = r0;

dm(PCG_SYNC) = r0;

Init_PCG.end:

rts;

Clock and Frame Sync Divisors PCG Channel B
This section provides two programming examples written for the
ADSP-21369 processor. The first listing, Listing 13-2, uses PCG channel
B to output a clock on DAI pin 1 and frame sync on DAI pin 2. The input
used to generate the clock and frame sync is CLKIN. This example demon-
strates the clock and frame sync divisors, as well as the pulse width and
phase shift capabilities of the PCG.

ADSP-21368 SHARC Processor Hardware Reference 13-21

Precision Clock Generators

Listing 13-2. PCG Channel B Output Example

/* Register Definitions */

#define SRU_CLK4 0x2434

#define SRU_PIN0 0x2460

#define SRU_PBEN0 0x2478

#define PCG_CTLB0 0x24C2

#define PCG_CTLB1 0x24C3

#define PCG_PW 0x24C4

/* SRU Definitions */

#define PCG_CLKB_P 0x39

#define PCG_FSB_P 0x3B

#define PBEN_HIGH_Of 0x01

//Bit Positions

#define DAI_PB02 7

#define DAI_PBE02 6

#define PCG_PWB 16

/* Bit Definitions */

#define ENFSB 0x40000000

#define ENCLKB 0x80000000

/* Main code section */

.global _main;

.section/pm seg_pmco;

_main:

/* Route PCG Channel B clock to DAI Pin 1 via SRU */

/* Route PCG Channel B frame sync to DAI Pin 2 via SRU */

r0 = PCG_CLKB_P|(PCG_FSB_P<<DAI_PBE02);

dm(SRU_PIN0) = r0;

Programming Examples

13-22 ADSP-21368 SHARC Processor Hardware Reference

/* Enable DAI Pins 1 & 2 as outputs */

r0 = PBEN_HIGH_Of|(PBEN_HIGH_Of<<DAI_PB02);

dm(SRU_PBEN0) = r0;

r0 = (100<<PCG_PWB); /* PCG Channel B FS Pulse width = 100 */

dm(PCG_PW) = r0;

r2 = 1000; /* Define 20-bit Phase Shift */

r0 = (ENFSB|ENCLKB| /*Enable PCG Channel B Clock and FS*/

 1000000); /* FS Divisor = 1000000 */

r1 = lshift r2 by -10;

/* Deposit the upper 10 bits of the Phase Shift in the */

/* correct position in PCG_CTLB0 (Bits 20-29) */

r1 = fdep r1 by 20:10;

r0 = r0 or r1; /* Phase Shift 19-10 = 0 */

dm(PCG_CTLB0) = r0;

r0 = (100000); /* Clk Divisor = 100000 */

 /* Use CLKIN as clock source */

/* Deposit the lower 10 bits of the Phase Shift in the correct

 position in PCG_CTLB1 (Bits 20-29) */

r1 = fdep r2 by 20:10;

r0 = r0 or r1; /* Phase Shift 9–0 = 0x3E8 */

dm(PCG_CTLB1) = r0;

_main.end: jump(pc,0);

ADSP-21368 SHARC Processor Hardware Reference 13-23

Precision Clock Generators

PCG Channel A and B Output Example
Listing 13-3 uses two PCG channels. Channel A is set up to only generate
a clock signal. This clock signal is used as the input to channel B through
SRU1. The clock and frame sync are routed to DAI pins 1 and 2, respec-
tively, in the same manner as Listing 13-1. The frame sync generated in
this example is set for a 50% duty cycle, with no phase shift.

Listing 13-3. PCG Channel A and B Output Example

/* Register Definitions */

#define SRU_CLK4 0x2434

#define SRU_PIN0 0x2460

#define SRU_PBEN0 0x2478

#define PCG_CTLA0 0x24C0

#define PCG_CTLA1 0x24C1

#define PCG_CTLB0 0x24C2

#define PCG_CTLB1 0x24C3

#define PCG_PW 0x24C4

/* SRU Definitions */

#define PCG_CLKA_O 0x1c

#define PCG_CLKB_P 0x39

#define PCG_FSB_P 0x3B

#define PBEN_HIGH_Of 0x01

//Bit Positions

#define PCG_EXTB_I 5

#define DAI_PB02 7

#define DAI_PBE02 6

#define PCG_PWB 16

Programming Examples

13-24 ADSP-21368 SHARC Processor Hardware Reference

/* Bit Definitions */

#define ENCLKA 0x80000000

#define ENFSB 0x40000000

#define ENCLKB 0x80000000

#define CLKBSOURCE 0x80000000

#define FSBSOURCE 0x40000000

/* Main code section */

.global _main; /* Make main global to be accessed by ISR */

.section/pm seg_pmco;

_main:

/*Route PCG Channel A clock to PCG Channel B Input via SRU*/

r0 = (PCG_CLKA_O<<PCG_EXTB_I);

dm(SRU_CLK4) = r0;

/* Route PCG Channel B clock to DAI Pin 1 via SRU */

/* Route PCG Channel B frame sync to DAI Pin 2 via SRU */

r0 = (PCG_CLKB_P|(PCG_FSB_P<<DAI_PEB02));

dm(SRU_PIN0) = r0;

/* Enable DAI Pins 1 & 2 as outputs */

r0 = (PBEN_HIGH_Of|(PBEN_HIGH_Of<<DAI_PB02));

dm(SRU_PBEN0) = r0;

r0 = ENCLKA; /* Enable PCG Channel A Clock, No Channel A FS */

 /* FS Divisor = 0, FS Phase 10-19 = 0 */

dm(PCG_CTLA0) = r0;

r1 = 0xfffff; /* Clk Divisor = 0xfffff, FS Phase 0-9 = 0 */

 /* Use CLKIN as clock source */

dm(PCG_CTLA1) = r1;

r0 = (5<<PCG_PWB); /* PCG Channel B FS Pulse width = 1 */

dm(PCG_PW) = r0;

ADSP-21368 SHARC Processor Hardware Reference 13-25

Precision Clock Generators

r0 = (ENFSB|ENCLKB|10); /*Enable PCG Channel B Clock and FS*/

 /* FS Divisor = 10, FS Phase 10-19 = 0 */

dm(PCG_CTLB0) = r0;

r0 = (CLKBSOURCE|FSBSOURCE|10); /* Clk Divisor = 10 */

/* FS Phase 0-9 = 0, Use SRU_MISC4 as clock source */

dm(PCG_CTLB1) = r0;

_main.end: jump(pc,0);

Programming Examples

13-26 ADSP-21368 SHARC Processor Hardware Reference

ADSP-21368 SHARC Processor Hardware Reference 14-1

14 SYSTEM DESIGN

The ADSP-21367/8/9 and ADSP-2137x processors support many system
design options. The options implemented in a system are influenced by
cost, performance, and system requirements. This chapter provides the
following system design information:

• “Processor Pin Descriptions” on page 14-2

• “Clock Derivation” on page 14-13. Includes “Power Management
Control Register”, “Phase-Locked Loop Startup”, “RESET and
CLKIN”.

• “Conditioning Input Signals” on page 14-32

• “Designing for High Frequency Operation” on page 14-33

• “Booting” on page 14-37

• “Data Delays, Latencies, and Throughput” on page 14-52

Other chapters also discuss system design issues. Some other locations for
system design information include:

• “SPORT Operation Modes” on page 5-10

• “SPI General Operations” on page 6-8

By following the guidelines described in this chapter, you can ease the
design process for your ADSP-21367/8/9 and ADSP-2137x processor
product. Development and testing of your application code and hardware
can begin without debugging the debug port.

Processor Pin Descriptions

14-2 ADSP-21368 SHARC Processor Hardware Reference

Before proceeding with this chapter it is recommended that you
become familiar with the ADSP-21367/8/9 and ADSP-2137x pro-
cessor’s core architecture. This information is presented in the
ADSP-2136x SHARC Processor Programming Reference.

Processor Pin Descriptions
Refer to the processor-specific data sheet for pin information, including
package pinouts for the currently available package options.

Pin Multiplexing
The ADSP-21367/8/9 and ADSP-2137x processors provide the same
functionality as other SHARC processors but with a much lower pin
count (reducing system cost). Pin multiplexing is used in the following
ways.

• Reset output/local clock output/running reset input (ADSP-2137x
processors only)

For more information, see “RESETOUT/CLKOUT/RUNRSTIN”
on page 14-12.

• External memory interface data (input/output)

For more information, see “Choosing EP Data Mode” on
page 14-6.

• PDAP (input only)

• FLAGS (input/output)

For more information, see “Core-Based Flag Pins” on page 14-8.

• PWM channels (output, not available on all models)

See Table 1-1 on page 1-5.

ADSP-21368 SHARC Processor Hardware Reference 14-3

System Design

The processors also include the multiplexers for FLAG0–3 pins. The
FLAG0–2 pins can act as core FLAGS0–2 or IRQ0–2, and the FLAG3 pin can act
as a core FLAG3 or as the TMREXPEN signal of the system timer.

Table 14-1 on page 14-7 shows the SYSCTL register bit settings for the dif-
ferent data pin functions, and Figure 14-1 and Figure 14-2 show the
block diagrams of data pin multiplexing in the ADSP-21367/8/9 and
ADSP-2137x processors respectively. Note that:

• In the PDAP control register (IDP_PP_CTL), the IDP_EP_SELECT bit
(bit 26) is the logical AND of the IDP_PDAP_EN bit (bit 31). When
IDP_EP_SELECT is set (= 1), the data bits are read from DATA31–12
and the control signals come from DATA11-8. When IDP_EP_SELECT
is cleared (= 0), the data bits are read from DAI_P20–1. When
IDP_EP_SELECT is set to 1, the PDAP can be operated through data
pins alone (data and controls are completely routed through data
pins). For bit descriptions, see “Parallel Data Acquisition Port
Control Register (IDP_PP_CTL)” on page A-74.

• The PDAP, PWM, and memory-to-memory (MTM_DATA) signals can
be mapped only to the upper bits of the data pins. Therefore, they
can be used even when 8- or 16-bit external SRAM is used.

• The FLAGS and PWM can be mapped (in groups of four) to any
of upper 16 data pins. The FLAGS alone can be mapped to any of
the 32 data pins.

• For PDAP mode, the SYSCTL register must be explicitly pro-
grammed to put DATA pins in PDAP mode. For bit descriptions, see
“System Control Register (SYSCTL)” on page A-5.

• By default, after reset, all data pins are in external memory mode
and the FLAG0-3 pins are in FLAGS mode.

Processor Pin Descriptions

14-4 ADSP-21368 SHARC Processor Hardware Reference

Figure 14-1. Block Diagram of Data Pin Multiplexing (ADSP-2136x)

F LAG S3-0

FLAG S7-4

3-0

7-4

11-8

15-12

P W M 3-0

P W M 7-4

FLAG S11-8

PW M 11-8

FLAGS15-12

PW M 15-12

FLAG S/PW M 15-0
D

A
T

A
31-

0

0

7

15

31
EP_DATA 16-31

PDAP_DATA15-0

FLAG S/PW M 15-0

M TM _DATA15-0

EP_DATA8-15

PDAP_DAT A/CTRL

F LAGS8-15

EP_DATA7-0

FL AGS7-0

ADSP-21368 SHARC Processor Hardware Reference 14-5

System Design

Figure 14-2. Block Diagram of Data Pin Multiplexing (ADSP-2137x)

FLAGS3-0

FLAGS7-4

3-0

7-4

11-8

15-12

PWM3-0

PWM7-4

FLAGS11-8

PWM11-8

FLAGS15-12

PWM15-12

FLAGS/PWM15-0

D
A

T
A

31-
0

0

7

15

31
EP_DATA16-31

PDAP_DATA15-0

FLAGS/PWM15-0

MTM_DATA15-0

EP_DATA8-15

PDAP_DATA/CTRL

FLAGS8-15

EP_DATA7-0

FLAGS7-0

FLAG0

IRQ0

FLAG0
FLAG1
FLAG2
FLAG3

FLAG0 PIN

FLAG1 PIN

FLAG2 PIN

FLAG3 PIN

FLAG1

IRQ1

FLA2

IRQ2

FLAG0

TIMEXP

MS2

MS2

A
D

D
R

23-
0

23

0

FROM EXTERNAL
PORT

NOTE: ONLY 16 DATA LINES (DATA15-0)
ARE AVAILABLE ON THE ADSP-21375.

Processor Pin Descriptions

14-6 ADSP-21368 SHARC Processor Hardware Reference

Choosing EP Data Mode

The FLAG/IRQ (0, 1, 2, 3) and DATA31–0 pins are completely independent.
Any mode of programming in one group does not affect the other.

Case 1

If 32-bit external SDRAM/FLASH/SRAM is used, then all data pins
should be connected to the memory device so that no other functionality
can be programmed in the data pins. In this case, use MODE 0. If flags
are required, they can be moved to the DPI SRU2.

Case 2

If 16-bit external SDRAM/FLASH/SRAM is used, and if 16 flag inputs
are required, then use MODE 1. Since 16 flags are required, set
FLAG/PWM_SEL = 0000. The flag input mode should be specified in the
FLAGS register.

Case 3

If 16-bit external SDRAM/FLASH/SRAM is used, and if 8 flag outputs
and 8 PWM outputs are required, then use MODE 1. Since 8 flags and
PWM outputs are required, set FLAG/PWM_SEL = 1100. (In this mode,
DATA31–24 are PWM outputs and DATA23–16 are flag outputs.) The flag
output mode should be specified in FLAGS register.

Case 4

If 8-bit external SDRAM/FLASH/SRAM is used, and if 8 flag inputs, 8
flag outputs, and 8 PWM outputs are required, then use MODE 2. Since
16 flags are required, then all flags on DATA31–16 are programmed. This
means that there are not enough pins left for the PWM outputs (DATA15–
8). Therefore, program the PWM outputs on DATA23–16 and program the
FLAGS on DATA31–24 and DATA15–8. Set FLAGS/PWM_SEL = 0011. The flag
I/O direction should be specified in the FLAGS register.

ADSP-21368 SHARC Processor Hardware Reference 14-7

System Design

Case 5

If no external memory is used, and if the PDAP data lines are connected
to DATA pins, and if 8 flags are required, then use MODE 6. Connect
the PADP control lines to the DATA pins, and program the flag direction
in the FLAGS register.

The upper 32 data pins of the external memory interface are muxed (using
bits 23–21 in the SYSCTL register) to support the external memory inter-
face data (input/output), the PDAP (input only), the FLAGS
(input/output), and the PWM channels (output). Table 14-1 provides the
pin settings for these functions.

In PDAP mode, the DATA pins function as follows.

• DATA12–31 pins act as PDAP0–19 (inputs)

• DATA11 pin acts as PDAP HLD (input)

• DATA10 pin acts as PDAP CLK (input)

Table 14-1. Function of Data Pins

SYSCTL bits
23–21 Settings

DATA31–161

1 Not available on the ADSP-21375 processor.

DATA15–8 DATA7–0

000 EPDATA32–0 (default at RESET)

001 FLAGS/PWM15–02

2 These signals can be FLAGS or PWM or a mix of both. However, they can be selected only in
groups of four. Their function is determined by the control signals FLAGS/PWM_SEL.

EPDATA15–0

010 FLAGS/PWM15–01 FLAGS15–8 EPDATA7–0

011 FLAGS/PWM15–01 FLAGS15–0

100 PDAP (DATA + CTRL) EPDATA7–0

101 PDAP (DATA + CTRL) FLAGS7–0

110 Reserved

111 Three-state all pins

Processor Pin Descriptions

14-8 ADSP-21368 SHARC Processor Hardware Reference

• DATA9 pin is not used

• DATA8 pin acts as PDAP STROBE (output)

Interrupt and Timer Pins
The processor’s external interrupt pins, flag pins, and timer pin can be
used to send and receive control signals to and from other devices in the
system. The IRQ2–0 pins are mapped on the FLAG2–0 pins and the TIMEXP
pin is mapped on the FLAG3 pin. Hardware interrupt signals (IRQ2–0) are
received on the FLAG2–0 pins. Interrupts can come from devices that
require the processor to perform some task on demand. A
memory-mapped peripheral, for example, can use an interrupt to alert the
processor that it has data available. For more information, see
Appendix B, Interrupts..

The TIMEXP output is generated by the on-chip timer. It indicates to other
devices that the programmed time period has expired. For more informa-
tion, see the ADSP-2136x SHARC Processor Programming Reference.

Core-Based Flag Pins
The FLAG3–0 pins allow single bit signalling between the processor and
other devices. For example, the processor can raise an output flag to inter-
rupt a host processor. Each flag pin can be programmed to be either an
input or output. In addition, many processor instructions can be condi-
tioned on a flag’s input value, enabling efficient communication and
synchronization between multiple processors or other interfaces.

The flags are bidirectional pins and all have the same functionality. The
FLGxO bits in the FLAGS register program the direction of each flag pin. For
more information, see the ADSP-2136x SHARC Processor Programming
Reference.

ADSP-21368 SHARC Processor Hardware Reference 14-9

System Design

When the SPIPDN bit (bit 30 in the PMCTL register) is set (= 1 which
shuts down the clock to the SPI), the FLAGx pins cannot be used
(through the FLAGS7–0 register bits) because the FLAGx pins are syn-
chronized with the clock.

Programming Flags

There are 16 system flags and they can be programmed using the FLAGS
register shown in Figure 14-3. Only four flags are connected to
FLAG/IRQ0-3 pins after reset. If more flags are required, they can be pro-
grammed in the DATA pins (using the SYSCTL register, see Table A-1 on
page A-6) or they can be programmed with the SRU2 pins (using SRU2
registers, see “DPI/SRU2 Connection Groups” on page 4-51).

The FLAGS register consists of two bits for each flag, one bit to specify flag
direction (or output select) where 0 = input, 1 = output and the other bit
to specify the flag’s value. If flags are in input mode, the flag value in
FLAGS register is read-only and it shows the input flag status. If flags are in
output mode, then the flag value can be written to change output flags
and it can also be read to determine the last value written.

FLAGS can be mapped into any of the following three pin groups:

1. Four FLAG/IRQ pins

• Only FLAG0–3 can be mapped.

• Should be programmed through SYSCTL register according
to EPDATA mode, IRQxEN, TMREXPEN, and MSEN.

• IRQEN and TMREXPEN take priority over all other modes of
these pins.

Processor Pin Descriptions

14-10 ADSP-21368 SHARC Processor Hardware Reference

Figure 14-3. FLAGS Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

U0 U 0 U 0 U 0 U 0 U 0 U 0 U 0

FLG15O
FLAG15 Output Select
FLG15
FLAG15 Value

FLG14O
FLAG14 Output Select

FLG14
FLAG14 Value

FLG13O
FLAG13 Output Select

FLG13
FLAG13 Value

FLG12O
FLAG12 Output Select

FLG12
FLAG12 Value

FLG8
FLAG8 Value
FLG8O
FLAG8 Output Select
FLG9
FLAG9 Value

FLG9O
FLAG9 Output Select
FLG10
FLAG10 Value

FLG10O
FLAG10 Output Select

FLG11
FLAG11 Value

FLG11O
FLAG11 Output Select

-For all FLGx bits, FLAGx values are as follows: 0=LOW, 1=HIGH.
-For all FLGxO bits, FLAGx output selects are as follows: 0=FLAGx Input, 1=FLAGx Output.
-U indicates the bit value is unknown at reset.

FLAGS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

U0 U 0 U 0 U 0 U 0 U 0 U 0 U 0

FLG7O
FLAG7 Output Select
FLG7
FLAG7 Value
FLG6O
FLAG6 Output Select
FLG6
FLAG6 Value
FLG5O
FLAG5 Output Select
FLG5
FLAG5 Value
FLG4O
FLAG4 Output Select
FLG4
FLAG4 Value

FLG0
FLAG0 Value

FLG0O
FLAG0 Output Select
FLG1
FLAG1 Value

FLG1O
FLAG1 Output Select

FLG2
FLAG2 Value

FLG2O
FLAG2 Output Select

FLG3
FLAG3 Value

FLG3O
FLAG3 Output Select

ADSP-21368 SHARC Processor Hardware Reference 14-11

System Design

2. 32 data pins

• All 16 flags can be mapped.

• Can be mapped only in groups of four.

• Should be programmed through the SYSCTL register. For
more information, see “System Control Register (SYSCTL)”
on page A-5.

3. 14 DPI pins

• 12 flags (FLAG4–15) can be mapped.

• Any flag can go to any DPI pins.

• Should be programmed through the SRU2 registers. For
more information, see “DPI/SRU2 Connection Groups” on
page 4-51.

The flag data paths from the processor core to the data pin multiplexer
block and SRU2 are parallel (Figure 14-1 on page 14-4). Therefore, for
FLAGS0–3:

• In output mode, if the same flag is mapped to both data pins and
flag pins, then the output comes from both pins.

• In input mode, if the same flag is mapped to both data pins and
flag pins, then the input from data pins is given priority.

Processor Pin Descriptions

14-12 ADSP-21368 SHARC Processor Hardware Reference

And for FLAGS4–15:

• In output mode, if the same flag is mapped to both data pins and
DPI pins, then the output comes from both pins.

• In input mode, if the same flag is mapped to both data pins and
DPI pins, the input from data pins is given priority.

• In input mode, if the same flag is mapped to both upper and lower
data pins, the input from the lower data pins is given priority.

RESETOUT/CLKOUT/RUNRSTIN

The default behavior of the RESETOUT pin is to provide a 4096 cycle delay
that allows the PLL to lock. In PLL bypass mode, where the CLK_CFG pins
= 11, this pin functions as a CLKOUT signal to clock synchronous peripher-
als and memory. This can also be accomplished by setting (= 1) bit 12
(CLKOUTEN) in the power management control register and this functional-
ity applies to all ADSP-21367/8/9 and ADSP-2137x processors. Finally,
on the ADSP-2137x processors only, the RESETOUT pin can configured to
provide a running reset. For more information, see “Running Reset
(ADSP-2137x)” on page 14-22.

JTAG Interface Pins
The JTAG test access port (TAP) consists of the TCK, TMS, TDI, TDO, and
TRST pins. The JTAG port can be connected to a controller that performs
a boundary scan for testing purposes. This port is also used by the Analog
Devices DSP Tools product line of JTAG emulators and development
software to access on-chip emulation features. To allow the use of the
emulator, a connector for its in-circuit probe must be included in the tar-
get system.

ADSP-21368 SHARC Processor Hardware Reference 14-13

System Design

If the TRST pin is not asserted (or held low) at power-up, the JTAG port is
in an undefined state that may cause the processor to drive out on I/O
pins that would normally be three-stated at reset. The TRST pin can be
held low with a jumper to ground on the target board connector.

A detailed discussion of JTAG and its uses can be found in Engi-
neer-to-Engineer Note EE-68, Analog Devices JTAG Emulation Technical
Reference. This document is available on the Analog Devices Web site at
www.analog.com/processors.

Clock Derivation
The processor uses a PLL (phased-locked loop) to provide clocks that
switch at higher frequencies than the system clock (CLKIN). The PLL-based
clocking methodology used on the ADSP-21367/8/9 and ADSP-2137x
processors influences the clock frequencies and behavior for the serial,
SPI, and external ports, in addition to the processor core and internal
memory. In each case, the processor PLL provides a non-skewed clock to
the core, internal memory, port logic and I/O pins.

The PLL provides a clock that switches at the processor core frequency to
the serial ports. Each of the serial ports can be programmed to operate at
clock frequencies derived from this clock. The six serial ports’ transmit
and receive clocks are divided down from the processor core clock fre-
quency by setting the DIVx registers appropriately.

On power-up, the CLKCFG1–0 pins are used to select ratios of 32:1, 16:1,
and 6:1. After booting, numerous other ratios (slowing or speeding up the
clock) can be selected through software control.

Clock Derivation

14-14 ADSP-21368 SHARC Processor Hardware Reference

Power Management Control Register
The ADSP-21367/8/9 and ADSP-2137x processors have a power manage-
ment control register (PMCTL) that allows programs to determine the
amount of power dissipated. This includes the ability to program the PLL
dynamically in software, achieving a slower core instruction rate that min-
imizes power use. For a complete register description, see “Power
Management Control Register (PMCTL)” on page A-170.

The PMCTL register also allows programs to disable the clock source to a
particular processor peripheral, for example the serial ports or the timers,
to further conserve power. By default, each peripheral block has its inter-
nal clock enabled only after it is initialized. Programs can use the PMCTL
register to turn the specific peripheral off after the application no longer
needs it. After reset, these peripheral clocks are not enabled until the
peripheral itself is initialized by the program. Listing 14-1 and
Listing 14-2 show some clock management options.

Listing 14-1. Using the System Clock for the SPI Module

ustat2 = dm(PMCTL);

bit set ustat2 SPIPDN; /* disable internal peripheral clock for

 SPI module. SPIPDN is defined as bit

 30 of PMCTL */
dm(PMCTL) = ustat2;

ADSP-21368 SHARC Processor Hardware Reference 14-15

System Design

Listing 14-2. PMCTL Example Code

ENABLING CLKOUT:

ustat2 = dm(PMCTL);

bit set ustat2 CLKOUTEN; /* switch pin function from Reset Out

 (RSTOUT) to CLKOUT */

dm(PMCTL) = ustat2;

PLL Divisor modification:

ustat2 = dm(PMCTL);

bit clr ustat2 PLLM63|PLLD8; /* clear old multiplier and

 divisor*/

bit set ustat2 DIVEN|PLLD8; /* set and enable PLL Divisor for

 CoreCLK = CLKIN/8 */

dm(PMCTL) = ustat2;

PLL Multiplier modification:

ustat2 = dm(PMCTL);

bit clr ustat2 PLLM63|PLLD8; /* clear old multiplier and

 divisor*/

bit set ustat2 PLLM8 | PLLBP; /* set a multiplier of 8

 (default divisor is 2) and put

 PLL in Bypass */

dm(PMCTL) = ustat2;

waiting loop:r0 = 4096; /* wait for PLL to lock at new rate

 (requirement for modifying

 multiplier only) */

lcntr = r0, do pllwait until lce;

pllwait: nop;

ustat2 = dm(PMCTL);

bit clr ustat2 PLLBP; /* take PLL out of Bypass, PLL is

 now at CLKIN*4 (CoreCLK = CLKIN *

 M/N = CLKIN* 16/4) */

dm(PMCTL) = ustat2;

Clock Derivation

14-16 ADSP-21368 SHARC Processor Hardware Reference

When the PLL is programmed using a multiplier and a divisor, the DIVEN
and PLLBP bits should NOT be programmed in the same core clock cycle.
There should be a delay of at least one core clock cycle between program-
ming these bits. The approaches described below and shown in
Listing 14-3, Listing 14-4 and Listing 14-5 can be used to accomplish
this.

PLL Programming Examples

Use the following procedure to program the PLL. Please include the corre-
sponding processor-specific header definition files def21367.h,
def21368.h, def21369.h, def21371.h, def21375.h and cdef21367.h,
cdef21368.h, cdef21369.h, cdef21371.h, and cdef21375.h, which contain
the register and bit definitions.

1. Set the PLL multiplier and divisor value and enable the divisor by
setting the DIVEN bit.

2. After one core clock cycle, place the PLL in bypass mode by setting
(= 1) the PLLBP bit.

3. Wait in bypass mode until the PLL locks.

4. Take the PLL out of bypass mode by clearing (= 0) the bypass bit.

Listing 14-3. PLL Programming Example 1

ustat2 = dm(PMCTL);

bit clr ustat2 PLLM63|PLLD8; /* clear old multiplier and

 divisor*/

bit set ustat2 DIVEN | PLLD4 |PLLM16; /* set a multiplier of

 16 and a divider of 4 */

dm(PMCTL) = ustat2;

bit set ustat2 PLLBP; /* Put PLL in bypass mode. */

ADSP-21368 SHARC Processor Hardware Reference 14-17

System Design

dm(PMCTL) = ustat2;

waiting_loop:

r0 = 4096; /* wait for PLL to lock at new rate

 (requirement for modifying

 multiplier only) */

lcntr = r0, do pllwait until lce;

pllwait: nop;

ustat2 = dm(PMCTL);

bit clr ustat2 PLLBP; /* take PLL out of Bypass, PLL is now at

 CLKIN*4 (CoreCLK = CLKIN * M/N =

 CLKIN* 16/4) */

dm(PMCTL) = ustat2;

Use the following alternate procedure to program the PLL.

1. Set the PLL multiplier and divisor values and place the PLL in
bypass mode by setting the PLLBP bit.

2. Wait in the bypass mode until the PLL locks.

3. Take the PLL out of bypass mode by clearing the bypass bit.

4. Wait for one core clock cycle.

5. Enable the divisor by setting the DIVEN bit.

Clock Derivation

14-18 ADSP-21368 SHARC Processor Hardware Reference

Listing 14-4. PLL Programming Example 2

ustat2 = dm(PMCTL);

bit clr ustat2 PLLM63|PLLD8; /* clear old multiplier and

 divisor*/

bit set ustat2 PLLBP | PLLD4 |PLLM16; /* set a multiplier of 16

 and a divider of 4 and

 enable Bypass mode*/

ustat2 = dm(PMCTL);

waiting_loop:

r0 = 4096; /* wait for PLL to lock at new rate

 (requirement for modifying multiplier only) */

lcntr = r0, do pllwait until lce;

pllwait: nop;ustat2 = dm(PMCTL);

bit clr ustat2 PLLBP; /* take PLL out of Bypass*/

dm(PMCTL) = ustat2;

ustat2 = dm(PMCTL);

bit set ustat2 DIVEN; /* Enable the DIVEN bit, PLL is now at

 CLKIN*4 (CoreCLK = CLKIN * M/N = CLKIN* 16/4) */

dm(PMCTL) = ustat2;

Listing 14-5 is a PLL programming example in C.

Listing 14-5. PLL Programming Sequence (C)

pmctlsetting= *pPMCTL;

pmctlsetting &= ~(0xFF); /* Clear */

/* CLKIN= 24.576 MHz, Multiplier= 27, Divisor= 2,

 CCLK_SDCLK_RATIO 2. */

ADSP-21368 SHARC Processor Hardware Reference 14-19

System Design

/* Core clock = (24.576 MHz * 27) /2 = 331.776 MHz */

 pmctlsetting= SDCKR2|PLLM27|PLLD2|DIVEN;

 *pPMCTL= pmctlsetting;
 pmctlsetting|= PLLBP;

 *pPMCTL= pmctlsetting;

 pmctlsetting ^= DIVEN;

/* Wait for around 4096 cycles for the pll to lock. */

 for (i=0; i<4096; i++)

 asm("nop;");

 pPMCTL ^= PLLBP; / Clear Bypass Mode */

 pPMCTL |= (CLKOUTEN); / and start clkout */

Phase-Locked Loop Startup
The RESET signal can be held low long enough to guarantee a stable CLKIN
source and stable VDDINT/VDDEXT power supplies before the PLL is reset.

The PLL needs time to lock to the CLKIN frequency before the core can
execute or begin the boot process. A delayed core reset (RESETOUT) has
been added through the delay circuit to provide this time. There is a
12-bit counter that counts up to 4096 CLKIN cycles after RESET is transi-
tioned from low to high. This is normally 1.3 μs for the minimum CLKIN
frequency. The delay circuit is activated at the same time the PLL is taken
out of reset.

The advantage of the delayed core reset is that the PLL can be reset any
number of times without having to power down the system. If there is a
brownout situation, the watchdog circuit only has to control the RESET.

For more information on device power up, see the processor spe-
cific data sheet.

Clock Derivation

14-20 ADSP-21368 SHARC Processor Hardware Reference

RESET and CLKIN
The processor receives its clock input on the CLKIN pin. The processor uses
an on-chip, phase-locked loop (PLL) to generate its internal clock, which
is a multiple of the CLKIN frequency. Because the PLL requires some time
to achieve phase lock, CLKIN must be valid for a minimum time period
during reset before the RESET signal can be deasserted. For information on
minimum clock setup, see the appropriate ADSP-2136x or ADSP-2137x
SHARC processor data sheet.

Table 14-2 describes the internal clock to CLKIN frequency ratios sup-
ported by the processor. Note that programs control the PLL through the
PMCTL register. For more information, see “Power Management Control
Register (PMCTL)” on page A-170.

When using an external crystal, the maximum crystal frequency
cannot exceed 25 MHz. The internal clock generator, when used in
conjunction with the XTAL pin and an external crystal, is designed
to support up to a maximum of 25 MHz external crystal frequency.
For all other external clock sources, the maximum CLKIN frequency
is 50 MHz.

Table 14-3 demonstrates the internal core clock switching frequency
across a range of CLKIN frequencies. The minimum operational range for
any given frequency may be constrained by the operating range of the
phase-lock loop. Note that the goal in selecting a particular clock ratio for

Table 14-2. Pin Selectable Clock Rate Ratios

CLKCFG1-0 Core to CLKIN
Ratio

00 6:1

01 32:1

10 16:1

ADSP-21368 SHARC Processor Hardware Reference 14-21

System Design

the application is to provide the highest permissible internal frequency for
a given CLKIN frequency. For more information on available clock rates,
see the processor-specific data sheet.

Shared memory processor designs that use several ADSP-21368
processors must have the same CLKIN source. These devices should
also be brought out of reset together.

If an external master clock is used, it should not drive the CLKIN pin when
the processor is not powered. The clock must be driven immediately after
power-up; otherwise, internal gates stay in an undefined (hot) state and
can draw excess current. After power-up, there should be sufficient time
for the oscillator to start up, reach full amplitude, and deliver a stable
CLKIN signal to the processor before the reset is released. This may take
100 μs depending on the choice of crystal, operating frequency, loop gain
and capacitor ratios. For details on timing, refer to the processor-specific
data sheet.

After the external processor RESET signal is deasserted, the PLL starts oper-
ating. The rest of the chip is held in reset for 4096 CLKIN cycles after RESET
is deasserted by an internal reset signal. This sequence allows the PLL to
lock and stabilize. Add one CLKIN cycle if RESET does not meet setup
requirements with respect to the CLKIN falling edge.

Table 14-3. Selecting Core to CLKIN Ratio

 Typical Crystal and Clock Oscillators Inputs

12.500 16.667 25.000 33.333 40.000 50.000

Clock Ratios Core CLK (MHz)

3:1 N/A N/A N/A 100.000 120.000 150.000

8:1 100 133.33 200.00 266.67 320.00 400.00

16:1 200 266.67 400 N/A N/A N/A

Clock Derivation

14-22 ADSP-21368 SHARC Processor Hardware Reference

Running Reset (ADSP-2137x)
All members of the SHARC processor family, including the ADSP-21375
and ADSP-21371, continue to support the hardware reset controlled with
the RESET pin. The de-assertion of this hardware reset enables the PLL and
asserting it resets the PLL. In the time it takes the PLL to acquire lock (set
to 4096 CLKIN cycles), the processor, internal memory, and the peripherals
are held in reset. Upon completion of the 4096 CLKIN cycles, the chip is
brought out of reset. This is indicated on the RESETOUT/CLKOUT pin for the
three valid boot modes (00, 01, 10 settings of BOOT_CFG1-0 pins). For
more information, see “Booting” on page 14-37.

In addition to the hardware reset, there is also support for a software reset,
which can be asserted by setting bit 0 of the SYSCTL register.

In the ADSP-21375 and ADSP-21371 processors, an additional feature,
called running reset, has been added. Running reset resets everything on
the chip, including the core and peripheral registers and the program
counter (PC). Running reset also clears all stacks and counters. However,
it does NOT reset the PLL (like the software reset) and the SDRAM con-
troller (to maintain SDRAM auto-refresh). De-assertion of this reset does
not result in a boot (unlike any of the other resets) even if a valid boot
mode is configured on the BOOT_CFG1-0 pins. Instead, the program
counter value is reset to the first location of internal memory (0x90005)
and the sequencer begins executing instructions starting from this address.

This feature has been added to allow the ADSP-2137x processors to exe-
cute self-modifying code that has previously overwritten existing code in
internal memory or as an external watchdog that activates in case there is a
malfunction or exception within a peripheral occurs, and a context reset of
the processor is sufficient to restore the state, (whereas a complete boot is
not required).

ADSP-21368 SHARC Processor Hardware Reference 14-23

System Design

System Design Considerations

It is important that an external 10 kΩ pull-up resistor is placed on the
RESETOUT/CLKOUT/RUNRSTOUT pin if it is intended to be used as an input for
initiating a running reset on the ADSP-2137x processor as shown in
Figure 14-4. Also, it is extremely important to ensure that an external
device, such as a micro controller, does not drive this signal during or after
coming out of a power-on or hard-reset.

Figure 14-4 shows the active state of the pin during and after RESET. The
ADSP-2137x processor is actively driving this pin as an output.

If the system uses an external host or micro controller to control running
reset, ensure that the external device waits until the ADSP-2137x proces-
sor driver has been internally disabled (by writing to the RUNRSTCTL
register) before actively driving this signal at RESET. Connect the CLKOUT
pin to an open-drain pin on the host side, or use an external three-state
buffer.

Figure 14-4. RESETOUT/CLKOUT Pin Muxed with RUNRSTIN

PAD
DRIVER

CLKOUT/
RESETOUT

RUNRSTIN

+Vdd

10 kΩ
Ensure that host
processor has an
open drain output
and is not actively
driving this pin
during or after
RESET

ADSP-2137x

Clock Derivation

14-24 ADSP-21368 SHARC Processor Hardware Reference

There are several possible methods that can be used to implement running
reset. The following illustrates one example of a running reset implemen-
tation involving an ADSP-2137x processor and a host processor.

External Host

In an AVR (audio-video receiver) system, a host micro controller may
communicate with the ADSP-2137x processor using the serial peripheral
interface (SPI). Or, if no SPI pins are available on the host device, it can
use spare flag I/Os to connect with the SPI of SHARC as shown in
Figure 14-5). In this case, the host implements the SPI protocol on the
port pins.

Using the SPI protocol with additional control words and commands,
running reset can become an addition command from the host or from the
ADSP-2137x processor as described in the following procedure.

1. The host initiates a running reset by informing the processor over
the command interface.

Figure 14-5. Example System Interface With an External Host

RUNRSTIN

+Vdd

10 kΩ
ADSP-2137x

S
P

I
P

O
R

T

S
P

I O
R

P

O
R

T
 P

IN
S

Open
Drain

Use an external pull-up
if host pin does not have
an internal pull-up

Host Processor

ADSP-21368 SHARC Processor Hardware Reference 14-25

System Design

2. The ADSP-2137x processor receives the command and completes
any unfinished work which may also include writing to the RUN-
RSTCTL register.

3. When the ADSP-2137x processor is ready to accept the running
reset, it signals the host over the command interface.

4. The host drives the running reset input into the ADSP-21375/71
processor.

Running Reset Control Register (RUNRSTCTL)

To program the running reset feature, (by toggling the RESETOUT pin), a
new register, running reset control (RUNRSTCTL) has been added to the
ADSP-2137x processor architecture.

This register is located at memory-mapped address 0x2100. On previous
generations of SHARCs, the RESETOUT/CLKOUT pin was an output. On the
ADSP-2137x processors, this pin is an input/output, and the sense and
direction of the pin is controlled by bit 0 of the RUNRSTCTL register (see
Table 14-4).

Table 14-4. Running Reset Control Register Bit Descriptions

Bit Name Description

0 PM_RUNRST_PINEN Configures the RESETOUT pin for RUNRST input.
Read Write
0 = RESETOUT pin is CLKOUT/RESETOUT
1 = RESETOUT pin is RUNRST input
Reset value = 0

1 PM_RUNRST_EN Enable the running reset functionality.
0 = Running reset disabled
1 = Running reset enabled
Reset value = 0

31–2 Reserved Reads return 0
Reset value = 0

Clock Derivation

14-26 ADSP-21368 SHARC Processor Hardware Reference

Programming The RUNRSTCTL Register

To configure running reset:

1. Set bit 0 (=1) to change RESETOUT/CLKOUT pin direction to input.

2. Ensure that the RESETOUT/CLKOUT pin is driven to a proper state,
and then assert RUNRSTEN to sensitize logic to the state of the
RESETOUT/CLKOUT pin.

If bit 1 of the RUNRSTCTL register is not set, attempting to cause a
running reset by toggling the RESETOUT/CLKOUT pin does not result
in a reset.

The RUNRSTCTL register is reset only on assertion of a hardware
reset, software reset, emulator reset, or by writing to the appropri-
ate bits of the RUNRSTCTL register via software.

The system reacts to the assertion and recognition of a running reset in the
following way.

• The core-PLL is NOT reset, and continues to run

• Internal memory SRAM contents remain unaltered

• The processor core and peripherals are reset exactly as if a
Power-on (hardware) reset is asserted, except:

• The SDRAM controller continues to run and refresh as
programmed.

• The contents of external SDRAM are unaffected, and retain
their values prior to a running reset.

• A system boot is NOT initiated. Instead, the program
counter is cleared and program execution begins from the
very first location of program memory (from the reset inter-
rupt vector table).

ADSP-21368 SHARC Processor Hardware Reference 14-27

System Design

Reset Generators

It is important that a processor (or programmable device) have a reliable
active RESET that is released once the power supplies and internal clock cir-
cuits have stabilized. The RESET signal should not only offer a suitable
delay, but it should also have a clean monotonic edge. Analog Devices has
a range of microprocessor supervisory ICs with different features. Features
include one or more of the following:

• Power-up reset

• Optional manual reset input

• Power low monitor

• Backup battery switching

The part number series for reset and supervisory circuits from Analog
Devices are as follows:

• ADM69x

• ADM70x

• ADM80x

• ADM1232

• ADM181x

• ADM869x

A simple power-up reset circuit is shown in Figure 14-6 using the
ADM809-RART reset generator. The ADM809 provides an active low
RESET signal whenever the supply voltage is below 2.63 V. At power-up, a
240 μs active reset delay is generated to give the power supplies and oscil-
lators time to stabilize.

Clock Derivation

14-28 ADSP-21368 SHARC Processor Hardware Reference

Another part, the ADM706TAR, provides power on RESET and optional
manual RESET. It allows designers to create a more complete supervisory
circuit that monitors the supply voltage. Monitoring the supply voltage
allows the system to initiate an orderly shutdown in the event of power
failure. The ADM706TAR also allows designers to create a watchdog
timer that monitors for software failure. This part is available in an 8-lead
SOIC package. Figure 14-7 shows a typical application circuit using the
ADM706TAR.

Timing Specifications
The ADSP-21367/8/9 and ADSP-2137x processor’s internal clock (a mul-
tiple of CLKIN) provides the clock signal for timing internal memory,
processor core, serial ports, and SPI (as required for read/write strobes).
During reset, program the ratio between the processor’s internal clock fre-
quency and external (CLKIN) clock frequency with the CLK_CFG1–0 pins.

Figure 14-6. Simple Reset Generator

VCC

RESET

GND

ADM809-RART

VDDEXT

RESET

GND

+3.3VDDEXT

10µF

VDDINT

+1.2VDDINT

a
ADSP-213xx
S

ADSP-21368 SHARC Processor Hardware Reference 14-29

System Design

To determine switching frequencies for the serial ports, divide down the
internal clock, using the programmable divider control of each port (DIVx
for the serial ports). For the SPI port, the BAUDR bit in the SPICTL register
controls the SPICLK baud rate based on the core clock frequency.

Note the following definition and Figure 14-8 for various clock periods
that are functions of CLKIN and the appropriate ratio control:

CCLK = core clock = PLLICLK × PLL multiply ratio (determined by CLK_CFG
pins)

Programs can modify this setting using bits in the PMCTL register. For more
information, see “Power Management Control Register (PMCTL)” on
page A-170.

Performing a hard reset on the processor also resets the PLL.

Figure 14-7. Reset Generator and Power Supply Monitor

RESET

NMI

IRQx

FLAGx

GND
RESET

VDDEXT

PFI

OSCSEL

PFO

WDI

WDO

4

8

7

15

11

14

ADM8697

VCC9

RST

10

VDDEXT +3.3V

a
ADSP-213xx
S

3

15

OSCIN

GND TST

LLW

NC
3.3V

Vt> 1.3V

Vt> 1.3V

VLINE SENSE

Clock Derivation

14-30 ADSP-21368 SHARC Processor Hardware Reference

Figure 14-8. Core Clock and System Clock Relationship to CLKIN

Table 14-5. CLKOUT and CCLK Clock Generation Operation

Timing
Requirements

Calculation Description

CLKIN = 1/tCKIN = Input Clock

CLKOUT = 1/tTCK = Local Clock Out

PLLICLK = 1/tPLLIN = PLL Input Clock

CCLK = 1/tCCLK = Core Clock

÷2
+

–

0

1

INDIV[8]

LOOP
FILTER

VCO ÷1, 2, 4, 8

N
PLLD[7..6]

DIVEN[9]

01

1

PLLBP[15]

AMP

÷1-64

M
PLLM[5..0]

C
LK

_
C

F
G

[1
..0

]

00 = x6

01 = x32

10 = x16

11 = x6

DELAY
4096 x CLKIN

CLKOUTEN[12]

BUFF

÷2

0

1

CCLK
100 MHz

to
400 MHz

PCLK
(IOP)

CLKOUT
or

CORERST

RESETOUT

CLKIN
(see data sheet)

RESET

XTAL

BOOT CLKCFG[]->PLLM[] CFG

Notes
1. CLKOUT is muxed with RESETOUT. After reset, RESETOUT is selected. CLKOUT is selected by setting bit 12 in the PMCTL register.
2.The PLL ratio is controlled by the states of the CLKCFG[1:0] pins at reset and can be modified in software through the
PLLMand PLLDx bits in the PMCTL register.
3.To place the PLL in bypass mode, set bit 15 in the PMCTL register. (CCLK = PLLICLK when set.)
4. Programs can interrupt the internal clock source to each of the following peripherals: timer, SPI, SPORTs, and parallel port.
These internal clock sources are disabled at reset and are enabled and left enabled after each peripheral is enabled.
Note that these peripherals DO NOT RUN at the core clock frequency. For more information please see the respective peripheral
chapters in the ADSP-2136x SHARC Processor Hardware Reference.
5. Please refer to the processor specific data sheets for maximum CLKIN and crystal source specifications.

160 MHz < VCO_OUT < 800 MHz

÷2, 2.5,
3, 3.5, 4 SDCLK

SDRATIO[20..18]

PLL BYP ASS; Reserved

C
L

K
C

F
G

[1
..

0]

MULTIPLIER
BLOCK

ADSP-21368 SHARC Processor Hardware Reference 14-31

System Design

Table 14-7 describes clock ratio requirements. Table 14-8 shows an exam-
ple clock derivation.

Table 14-6. Clock Relationships

Timing
Requirements

Description1

tCK = CLKOUT Clock Period

tPLLICK = PLL Input Clock

tCCLK = Core Clock Period (Processor)

tPCLK = Peripheral Clock Period = 2 × tCCLK

tSCLK = Serial Port Clock Period = (tPCLK) × SR

tSPICLK = SPI Clock Period = (tCCLK) * SPIR

1 where:
SR = serial port-to-core clock ratio (wide range, determined by CLKDIV)
SPIR = SPI-to-core clock ratio (wide range, determined by SPICTL register)
SCLK = serial port clock
SPICLK = SPI clock

Table 14-7. Clock Ratios

Timing
Requirements

Description

cRTO = Core to CLKOUT ratio (3:1, 8:1, or 16:1, determined by CLK_CFGx
pins at reset). Programs can modify this ratio using the PMCTL register.

sRTO = Sport:core clock ratio (wide range determined by xCLKDIV)

Table 14-8. Clock Derivation

Timing
Requirements

Description

tCCLK = (tCK) × cRTO

tSCLK = (tCCLK) × sRTO

Conditioning Input Signals

14-32 ADSP-21368 SHARC Processor Hardware Reference

Input Synchronization Delay
The processor has several asynchronous inputs—RESET, TRST, IRQ2–0,
MS3–0, and FLAG16-0 (when configured as inputs). These inputs can be
asserted in arbitrary phase to the processor clock, CLKIN. The processor
synchronizes the inputs prior to recognizing them. The delay associated
with recognition is called the synchronization delay.

Any asynchronous input must be valid prior to the recognition point in a
particular cycle. If an input does not meet the setup time on a given cycle,
it may be recognized in the current cycle or during the next cycle.

To ensure recognition of an asynchronous input, it must be asserted for at
least one full processor cycle plus setup and hold time, except for RESET,
which must be asserted for at least four processor cycles. The minimum
time prior to recognition (the setup and hold time) is specified in the pro-
cessor’s data sheet.

Conditioning Input Signals
The processor is a CMOS device. It has input conditioning circuits which
simplify system design by filtering or latching input signals to reduce sus-
ceptibility to glitches or reflections.

The following sections describe why these circuits are needed and their
effect on input signals.

A typical CMOS input consists of an inverter with specific N and P device
sizes that cause a switching point of approximately 1.4 V. This level is
selected to be the midpoint of the standard TTL interface specification of
VIL = 0.8 V and VIH = 2.0 V. This input inverter, unfortunately, has a fast
response to input signals and external glitches wider than 1 ns. Filter cir-
cuits and hysteresis are added after the input inverter on some processor
inputs, as described in the following sections.

ADSP-21368 SHARC Processor Hardware Reference 14-33

System Design

RESET Input Hysteresis
Hysteresis is used only on the RESET input signal. Hysteresis causes the
switching point of the input inverter to be slightly above 1.4 V for a rising
edge and slightly below 1.4 V for a falling edge. The value of the hysteresis
is approximately ± 0.1 V. The hysteresis is intended to prevent multiple
triggering of signals which are allowed to rise slowly, as might be expected
on a reset line with a delay implemented by an RC input circuit. Hystere-
sis is not used to reduce the effect of ringing on processor input signals
with fast edges, because the amount of hysteresis that can be used on a
CMOS chip is too small to make a difference. The small amount of hys-
teresis allowable is due to the restrictions on the tolerance of the VIL and
VIH TTL input levels under worst-case conditions. Refer to the prod-
uct-specific processor data sheet for exact specifications.

Designing for High Frequency Operation
Because the processor must be able to operate at very high clock frequen-
cies, signal integrity and noise problems must be considered for circuit
board design and layout. The following sections discuss these topics and
suggest various techniques to use when designing and debugging target
systems.

All synchronous processor behavior is specified to CLKIN. System designers
are encouraged to clock synchronous peripherals with this same clock
source (or a different low-skew output from the same clock driver).

Clock Specifications and Jitter
The clock signal must be free of ringing and jitter. Clock jitter can easily
be introduced into a system where more than one clock frequency exists.
Jitter should be kept to an absolute minimum. High frequency jitter on
the clock to the processor may result in abbreviated internal cycles.

Designing for High Frequency Operation

14-34 ADSP-21368 SHARC Processor Hardware Reference

Keep the portions of the system that operate at different frequencies as
physically separate as possible. The clock supplied to the processor must
have a rise time of 3 ns or less and must meet or exceed a high and low
voltage of 2 V and 0.4 V, respectively.

Never share a clock buffer IC with a signal of a different clock fre-
quency as this introduces excessive jitter.

Other Recommendations and Suggestions
• Use more than one ground plane on the PCB to reduce crosstalk.

Be sure to use lots of vias between the ground planes. One VDD
plane for each supply is sufficient. These planes should be in the
center of the PCB.

• To reduce crosstalk, keep critical signals such as clocks, strobes,
and bus requests on a signal layer next to a ground plane and away
from these signals, or layout critical signals perpendicular to other
non-critical signals.

• If possible, position the processors on both sides of the board to
reduce area and distances.

• To allow better control of impedance and delay, and to reduce
crosstalk, design for lower transmission line impedances.

• Use 3.3 V peripheral components and power supplies to help
reduce transmission line problems, ground bounce and noise cou-
pling (the receiver switching voltage of 1.5 V is close to the middle
of the voltage swing).

• Experiment with the board and isolate crosstalk and noise issues
from reflection issues. This can be done by driving a signal wire
from a pulse generator and studying the reflections while other
components and signals are passive.

ADSP-21368 SHARC Processor Hardware Reference 14-35

System Design

Decoupling Capacitors and Ground Planes
Extended copper planes must be used for the ground and power supplies.
Designs should use an absolute minimum of 12 bypass capacitors (four
0.1 μF, four 10 nF and four 1 nF ceramic) for each VDDEXT and VDDINT
supply. More extensive bypassing may be required for some applications.
The capacitors should be placed close to the package as shown in
Figure 14-9. The decoupling capacitors should be tied directly to the
power and ground planes with vias that touch their solder pads. Sur-
face-mount capacitors are recommended because of their lower series
inductances (ESL) and higher series resonant frequencies. Connect the
power and ground planes to the ADSP-21367/8/9 and ADSP-2137x pro-
cessor’s power supply pins directly with vias—do not use traces. The
ground planes should not be densely perforated with vias or traces as this
reduces their effectiveness. In addition, there should be several large tanta-
lum capacitors on the board.

Designs can use either bypass placement case shown in
Figure 14-9, or combinations of the two. Designs should try to
minimize signal feedthroughs that perforate the ground plane.

Oscilloscope Probes
When making high speed measurements, be sure to use a “bayonet”-type
ground clip (or similarly short, < 0.5 inch), attached to the tip of the oscil-
loscope probe. The probe should be a low capacitance active probe
with 3 pF or less of loading. The use of a standard ground clip with 4
inches of ground lead causes ringing to be seen on the displayed trace and
makes the signal appear to have excessive overshoot and undershoot.
A 1 GHz or better sampling oscilloscope is needed to see the signals
accurately.

Designing for High Frequency Operation

14-36 ADSP-21368 SHARC Processor Hardware Reference

Recommended Reading
The text High-Speed Digital Design: A Handbook of Black Magic is recom-
mended for further reading. This book is a technical reference that covers
the problems encountered in state-of-the-art, high frequency digital cir-
cuit design. It is also an excellent source of information and practical
ideas. Topics covered in the book include:

• High-Speed Properties of Logic Gates

• Measurement Techniques

• Transmission Lines

Figure 14-9. Bypass Capacitor Placement

CASE 1:
BYPASS CAPACITORS ON NON-COMPONENT
(BOTTOM) SIDE OF BOARD, BENEATH DSP
PACKAGE

a
ADSP-213xx

S

CASE 2:
BYPASS CAPACITORS ON COMPONENT (TOP)
SIDE OF BOARD, AROUND DSP PACKAGE

ADSP-21368 SHARC Processor Hardware Reference 14-37

System Design

• Ground Planes and Layer Stacking

• Terminations

• Vias

• Power Systems

• Connectors

• Ribbon Cables

• Clock Distribution

• Clock Oscillators

High-Speed Digital Design: A Handbook of Black Magic, Johnson & Gra-
ham, Prentice Hall, Inc., ISBN 0-13-395724-1.

Booting
When a processor is initially powered up, its internal SRAM is undefined.
Before actual program execution can begin, the application must be
loaded from an external non-volatile source such as flash memory or a host
processor. This process is known as bootstrap loading or booting and is
automatically performed by the processor after power-up or after a soft-
ware reset.

The ADSP-21367/8/9 and ADSP-2137x processors support three booting
modes—EPROM, SPI master and SPI slave. Each of these modes uses the
following general procedure:

1. At reset, the processor is hardwired to load 256 48-bit instruction
words through a DMA starting at location 0x90000. In this sec-
tion, these instructions are referred to as the boot kernel or loader
kernel.

Booting

14-38 ADSP-21368 SHARC Processor Hardware Reference

2. The DMA completes and the interrupt associated with the periph-
eral that the processor is booting from is activated. The processor
jumps to the applicable interrupt vector location and executes the
code located there. (Typically, the first instruction at the interrupt
vector is a return from interrupt (RTI) instruction.)

3. The loader kernel executes a series of direct memory accesses
(DMAs) to import the rest of the application, overwriting itself
with the applications’ interrupt vector table (IVT).

4. After executing the kernel, the processor returns to location
0x90005 where normal program execution begins.

To support this process, a 256-word loader kernel and loader (which con-
verts executables into boot-loader images) are supplied with the
VisualDSP++ development tools for both SPI and external port booting.
For more information on the loader, see the tools documentation in
Related Documents on page xxxviii.

The boot source is determined by strapping the two BOOT_CFG1-0 pins to
either logic low or logic high. These settings are shown in Table 14-9.

Table 14-9. Booting Modes

BOOT_CFG1-0 Description

00 SPI Slave Boot

01 SPI Master Boot

10 EPROM/FLASH Boot Through The
External Port

11 Bypass Mode, Reserved

ADSP-21368 SHARC Processor Hardware Reference 14-39

System Design

External Port Booting
The ADSP-21367/8/9 processors allow booting through the external port.
There are two options, which are described in the following sections.

Booting Through the AMI

The asynchronous memory interface (AMI) supports an 8-bit user boot
called AMI boot. Only the MS1 signal is used for AMI(FLASH/EEPROM)
booting. Table 14-10 shows the bit settings for AMI boot. These bits are
described in detail in “AMI Control Registers (AMICTLx)” on page A-17.

Table 14-10. AMI Boot Bit Settings (AMICTLx)

Bit Setting

AMI Enable (AMIEN) 1

Bus Width (BW) 00

Packing Disabled (PKDIS) 0

Most Significant Word First (MSWF) 0

ACK Pin Enable (ACKEN) 0

Wait States (WS) 10111

Bus Hold Cycle at the End of Write Access (HC) 000

Idle Cycle (IC) 000

Buffer Flush (FLSH) 0

Read Hold Cycle at the End of Read Access (RHC) 000

Disable Predictive Reads (NO_OPT) 0

Booting

14-40 ADSP-21368 SHARC Processor Hardware Reference

Shared Memory Booting

To boot multiple processors from a single EPROM/FLASH, the processor
performs the following steps.

1. Arbitrate for the bus.

2. Receive through DMA the 256-word boot kernel, after becoming
bus master.

3. Release the bus, allowing the next processor access to the
EPROM/FLASH.

4. Execute the loaded instructions. These usually consist of the boot
kernel, which brings in the remaining application code.

For more information on developing executables for shared-memory boot-
ing, see the VisualDSP++ Loader Manual or the VisualDSP++ Loader and
Linker Manual (depending on the VisualDSP++ release you are using).

The MS1 signals from each processor may be wire ORed together to drive
the chip select pin of the EPROM. Each processor boots in turn, accord-
ing to its priority. When the last processor has finished booting, it must
inform the others (which may be in the idle state) that program execution
can begin (if all the processors are to begin executing instructions simulta-
neously). An example system that uses an alternating technique appears in
Figure 14-10. When multiple processors boot from one EPROM, they
can boot either identical code or different code from the EPROM.

ADSP-21368 SHARC Processor Hardware Reference 14-41

System Design

Figure 14-10. Alternating Booting From an EPROM

ADSP-21368

MS

RD

DATA

ADDR

ADSP-21368

MS

RD

DATA

ADDR

ADSP-21368

MS

RD

DATA

ADDR

ADSP-21368

MS

RD

DATA

ADDR

C
O

N
T

R
O

L

A
D

D
R

E
S

S

D
A

T
A

EPROM

RD

DATA

ADDR

CS

Booting

14-42 ADSP-21368 SHARC Processor Hardware Reference

SPI Port Booting
The ADSP-21367/8/9 and ADSP-2137x processors support booting from
a host processor through the SPI slave (BOOT_CFG1–0 = 00), and booting
from an SPI flash, SPI PROM, or a host processor through SPI master
mode (BOOT_CFG1–0 = 01).

The SPI can also be configured to boot using the pins in the digital
peripheral interface. For more information, see “DPI/SRU2 Con-
nection Groups” on page 4-51.

Both SPI boot modes support booting from 8-, 16-, or 32-bit SPI devices.
In all SPI boot modes, the data word size in the shift register is hardwired
to 32 bits. Therefore, for 8- or 16-bit devices, data words are packed into
the shift register to generate 32-bit words least significant bit (LSB) first,
which are then shifted into internal memory. The relationship between
the 32-bit words received into the RXSPI register and the instructions that
need to be placed in internal memory is shown in Figure 14-11.

For more information about 32- and 48-bit internal memory addressing,
see the “Memory” chapter in the ADSP-2136x SHARC Processor Program-
ming Reference.

Figure 14-11. SPI Data Packing

MOSI

32
-b

it
R

ec
ei

ve
S

hi
ft

R
eg

is
te

r

S
P

IR
x

DMA
Internal
Memory

32 32 32

0x900FF

0x90000

256 48-bit
Words

ADSP-21368 SHARC Processor Hardware Reference 14-43

System Design

For 16-bit SPI devices, two words shift into the 32-bit receive shift regis-
ter (RXSR) before a DMA transfer to internal memory occurs. For 8-bit SPI
devices, four words shift into the 32-bit receive shift register before a
DMA transfer to internal memory occurs.

When booting, the ADSP-21367/8/9 and ADSP-2137x processors expect
to receive words into the RXSPI register seamlessly. This means that bits
are received continuously without breaks. For more information, see “SPI
Operation Using the Core” on page 6-13. For different SPI host sizes, the
processor expects to receive instructions and data packed in a least signifi-
cant word (LSW) format.

Figure 14-12 shows how a pair of instructions are packed for SPI booting
using a 32-, 16-, and an 8-bit device. These two instructions are received
as three 32-bit words as illustrated in Figure 14-11.

The following sections examine how data is packed into internal memory
during SPI booting for SPI devices with widths of 32, 16, or 8 bits.

32-Bit SPI Host Boot

Figure 14-13 shows 32-bit SPI host packing of 48-bit instructions exe-
cuted at PM addresses 0x90000 and 0x90001. The 32-bit word is shifted
to internal program memory during the 256-word kernel load.

Figure 14-12. Instruction Packing for Different Hosts

16-BIT HOST

CCDD1122

1122

33445566 7788AABB

CCDD AABB 778833445566

66 55 44 33 22 11 DD CC BB AA 88 77

32-BIT HOST

8-BIT HOST

[0x80000] 0x1122 33445566

[0x80001] 0x7788 AABBCCDD

WORDS

INSTRUCTIONS IN
INTERNAL MEMORY

t=0 t=96 SPICLK

Booting

14-44 ADSP-21368 SHARC Processor Hardware Reference

The following example shows a 48-bit instructions executed.

[0x90000] 0x112233445566

[0x90001] 0x7788AABBCCDD

The 32-bit SPI host packs or prearranges the data as:

16-Bit SPI Host Boot

Figure 14-14 shows how a 16-bit SPI host packs 48-bit instructions at PM
addresses 0x90000 and 0x90001. For 16-bit hosts, two 16-bit words are
packed into the shift register to generate a 32-bit word. The 32-bit word
shifts to internal program memory during the kernel load.

Figure 14-13. 32-Bit SPI Host Packing

SPI word 1 = 0x33445566

SPI word 2 = 0xCCDD1122

SPI word 3 = 0x7788AABB

MOSI

32
-b

it
W

or
d

N

R
X

S
P

I

DMA
Internal
Memory

32 32 32

0x90000

0x900FF

ADSP-21368 SHARC Processor Hardware Reference 14-45

System Design

The following example shows a 48-bit instructions executed.

[0x90000] 0x112233445566

[0x90001] 0x7788AABBCCDD

The 16-bit SPI host packs or prearranges the data as:

The initial boot of the 256-word loader kernel requires a 16-bit host to
transmit 768 16-bit words. Two packed 16-bit words comprise the 32-bit
word. The SPI DMA count value of 0x180 is equivalent to 384 words.
Therefore, the total number of 16-bit words loaded is 768.

Figure 14-14. 16-Bit SPI Host Packing

SPI word 1 = 0x5566

SPI word 2 = 0x3344

SPI word 3 = 0x1122

SPI word 4 = 0xCCDD

SPI word 5 = 0xAABB

SPI word 6 = 0x7788

MOSI

16
-b

it
W

or
d

N

R
X

S
P

I

DMA
Internal
Memory

32 32 32

0x90000

0x900FF

16
-b

it
W

or
d

N

(Loader Kernel)

Booting

14-46 ADSP-21368 SHARC Processor Hardware Reference

8-Bit SPI Host Boot

Figure 14-15 shows 8-bit SPI host packing of 48-bit instructions executed
at PM addresses 0x90000 and 0x90001. For 8-bit hosts, four 8-bit words
pack into the shift register to generate a 32-bit word. The 32-bit word
shifts to internal program memory during the load of the 256-instruction
word kernel.

The following example shows a 48-bit instructions executed.

[0x90000] 0x112233445566

[0x90001] 0x7788AABBCCDD

The 8-bit SPI host packs or prearranges the data as:

Figure 14-15. 8-Bit SPI Host Packing

SPI word 1 = 0x66

SPI word 2 = 0x55

SPI word 3 = 0x44

SPI word 4 = 0x33

SPI word 5 = 0x22

SPI word 6 = 0x11

SPI word 7 = 0xDD

SPI word 8 = 0xCC

MOSI

8-
bi

t
W

or
d

N

R
X

S
P

I

DMA
Internal
Memory

32 32 32

0x90000

0x900FF

8-
bi

t
W

or
d

N

(Loader Kernel)

8-
bi

t
W

or
d

N
8-

bi
t

W
or

d
N

ADSP-21368 SHARC Processor Hardware Reference 14-47

System Design

The initial boot of the 256-word loader kernel requires an 8-bit host to
transmit 1536 8-bit words. The SPI DMA count value of 0x180 is equal
to 384 words. Since one 32-bit word is created from four packed 8-bit
words, the total number of 8-bit words transmitted is 1536.

For all boot modes, the VisualDSP++ loader automatically outputs the
correct word width and count based on the project settings. For more
information, see the VisualDSP++ tools documentation.

Slave Boot Mode

In slave boot mode, the host processor initiates the booting operation by
activating the SPICLK signal and asserting the SPIDS signal to the active
low state. The 256-word kernel is loaded 32 bits at a time, through the
SPI receive shift register (RXSR). To receive 256 instructions (48-bit
words) properly, the SPI DMA initially loads a DMA count of 0x180
(384) 32-bit words, which is equivalent to 0x100 (256) 48-bit words.

The processor’s SPIDS pin should not be tied low. When in SPI
slave mode, including booting, the SPIDS signal is required to tran-
sition from high to low. SPI slave booting uses the default bit
settings shown in Table 14-11.

SPI word 9 = 0xBB

SPI word 10 = 0xAA

SPI word 11 = 0x88

SPI word 12 = 0x77

Table 14-11. SPI Slave Boot Bit Settings

Bit Setting Comment

SPIEN Set (= 1) SPI enabled

SPIMS Cleared (= 0) Slave device

MSBF Cleared (= 0) LSB first

WL 10, 32-bit SPI Receive shift register word length

Booting

14-48 ADSP-21368 SHARC Processor Hardware Reference

The SPI DMA channel is used when downloading the boot kernel infor-
mation to the processor. At reset, the DMA parameter registers are
initialized to the values listed in Table 14-12.

Master Boot

In master boot mode, the ADSP-21367/8/9 and ADSP-2137x processors
initiate the booting operation by:

1. Activating the SPICLK signal and asserting the FLAG0 signal to the
active low state.

2. Writing the read command 0x03 and address 0x00 to the slave
device as shown in Figure 14-12 on page 14-43.

DMISO Set (= 1) MISO MISO disabled

SENDZ Cleared (= 0) Send last word

SPIRCV Set (= 1) Receive DMA enabled

CLKPL Set (= 1) Active low SPI clock

CPHASE Set (= 1) Toggle SPICLK at the beginning of the first bit

Table 14-12. Parameter Initialization Value for Slave Boot

Parameter Register Initialization Value Comment

SPICTL 0x0000 4D22

SPIDMAC 0x0000 0007 Enabled, receive, initialized on completion

IISPI 0x0008 0000 Start of Block 0 NW memory

IMSPI 0x0000 0001 32-bit data transfers

CSPI 0x0000 0180

Table 14-11. SPI Slave Boot Bit Settings (Cont’d)

Bit Setting Comment

ADSP-21368 SHARC Processor Hardware Reference 14-49

System Design

Master boot mode is used when the processor is booting from an
SPI-compatible serial PROM, serial FLASH, or slave host processor. The
specifics of booting from these devices are discussed individually. On
reset, the interface starts up in master mode performing a 384 32-bit word
DMA transfer.

SPI master booting uses the default bit settings shown in Table 14-13.

The SPI DMA channel is used when downloading the boot kernel infor-
mation to the processor. At reset, the DMA parameter registers are
initialized to the values listed in Table 14-14.

Table 14-13. SPI Master Boot Mode Bit Settings

Bit Setting Comment

SPIEN Set (= 1) SPI Enabled

SPIMS Set (= 1) Master device

MSBF Cleared (= 0) LSB first

WL 10 32-bit SPI receive shift register word length

DMISO Cleared (= 0) MISO enabled

SENDZ Set (= 1) Send zeros

SPIRCV Set (= 1) Receive DMA enabled

CLKPL Set (= 1) Active low SPI clock

CPHASE Set (= 1) Toggle SPICLK at the beginning of the first bit

Table 14-14. Parameter Initialization Value for Master Boot

Parameter Register Initialization Value Comment

SPICTL 0x0000 5D06

SPIBAUD 0x0064 CCLK/400 =500 KHz@ 200 MHz

SPIFLG 0xfe01 FLAG0 used as slave-select

Booting

14-50 ADSP-21368 SHARC Processor Hardware Reference

From the perspective of the processor, there is no difference between boot-
ing from the three types of SPI slave devices. Since SPI is a full-duplex
protocol, the processor is receiving the same amount of bits that it sends as
a read command. The read command comprises a full 32-bit word (which
is what the processor is initialized to send) comprised of a 24-bit address
with an 8-bit opcode. The 32-bit word that is received while this read
command is transmitted is thrown away in hardware, and can never be
recovered by the user. Because of this, special measures must be taken to
guarantee that the boot stream is identical in all three cases. The processor
boots in least significant bit first (LSBF) format, while most serial memory
devices operate in most significant bit first (MSBF) format. Therefore, it
is necessary to program the device in a fashion that is compatible with the
required LSBF format.

Also, because the processor always transmits 32 bits before it begins read-
ing boot data from the slave device, it is necessary for the VisualDSP++
tools to insert extra data to the boot image (in the loader file) if using
memory devices that do not use the LSBF format. VisualDSP++ has
built-in support for creating a boot stream compatible with both endian
formats and devices requiring 16-bit and 24-bit addresses, as well as those
requiring no read command at all.

Figure 14-16 shows the initial 32-bit word sent out from the processor. As
shown in the figure, the processor initiates the SPI master boot process by
writing an 8-bit opcode (LSB first) to the slave device to specify a read
operation. This read opcode is fixed to 0xC0 (0x03 in MSBF format).

SPIDMAC 0x0000 0007 Enable receive, interrupt on completion

IISPI 0x0008 0000 Start of block 0 normal word memory

IMSPI 0x0000 0001 32-bit data transfers

CSPI 0x0000 0180 0x100 instructions = 0x180 32-bit words

Table 14-14. Parameter Initialization Value for Master Boot (Cont’d)

Parameter Register Initialization Value Comment

ADSP-21368 SHARC Processor Hardware Reference 14-51

System Design

Following that, a 24-bit address (all zeros) is always driven by the proces-
sor. On the following SPICLK cycle (cycle 32), the processor expects the
first bit of the first word of the boot stream. This transfer continues until
the kernel has finished loading the user program into the processor.

Booting From an SPI Flash

For SPI flash devices, the format of the boot stream is identical to that
used in SPI slave mode, with the first byte of the boot stream being the
first byte of the kernel. This is because SPI flash devices do not drive out
data until they receive an 8-bit command and a 24-bit address.

Figure 14-16. SPI Master Mode Booting Using Various Serial Devices

0X000X 03 0X00 0X00

1S T KERNE L
BY TE

0X00 1 ST KERNEL
BYTE

SPI FLAS H DRIV ES DATA AFTER IT
RE CE IVE S THE 8-BIT RE AD CO MMAND

AND A 24-BIT ADDRE SS

S PI EEP ROMS DRIVE DATA AFTER
RECEIVING THE 8-BIT RE AD CO MMAND

AND A 16-BIT ADDRES S

SP I S LAV E
FLAS H

(24-BIT ADDRES S)

SP I S LAV E
EEP RO M

(16-BIT ADDRES S)

SP I S LAV E
HOST

(NO COMMAND)

LOADER P ADS ONE DUMMY BYTE
TO T HE BO OT STREAM OF

HOST S PI DE VICES

SPI HO ST DRIVE S DATA
THROUGHOUT THE 8-BIT READ

CO MMAND AND 24-BIT ADDRESS

0X0 00X 00 0X00 0X00 1 ST KERNEL
BYTE

LOADER P ADS F OUR DUMMY
BYTES TO THE BO OT

STREAM OF HOS T SPI DE VICES

S PICLK
DRIVE N BY MAS TE R

MASTER OUT
S LAV E IN

(MOS I)

MASTER IN
S LAV E OUT

(MISO)

t= 0 t= 32 S PICLK

Data Delays, Latencies, and Throughput

14-52 ADSP-21368 SHARC Processor Hardware Reference

Booting From an SPI PROM (16-Bit address)

Figure 14-16 shows the initial 32-bit word sent out from the processor
from the perspective of the serial PROM device.

As shown in Figure 14-16, SPI EEPROMS only require an 8-bit opcode
and a 16-bit address. These devices begin transmitting on clock cycle 24.
However, because the processor is not expecting data until clock cycle 32,
it is necessary to pad an extra byte to the beginning of the boot stream
when programming the PROM. In other words, the first byte of the ker-
nel is the second byte of the boot stream. The VisualDSP++ tools
automatically handles this in the loader file generation process for SPI
PROM devices.

Booting From an SPI Host Processor

Typically, host processors in SPI slave mode transmit data on every SPICLK
cycle. This means that the first four bytes that are sent by the host proces-
sor are part of the first 32-bit word that is thrown away by the processor
(see Figure 14-16). Therefore, it is necessary to pad an extra four bytes to
the beginning of the boot stream when programming the host. For exam-
ple, the first byte of the kernel is the fifth byte of the boot stream.
VisualDSP++ automatically handles this in the loader file generation
process.

Data Delays, Latencies, and Throughput
Table 14-15 specifies latencies and throughput for the ADSP-21367/8/9
and ADSP-2137x processors. Latency is defined as the number of cycles,
after the first cycle, required to complete the operation. A zero wait state
memory has a latency of zero. A single wait state memory has a data delay
of one. Throughput is the maximum rate at which the operation is per-
formed. Data delay and throughput are the same whether the access is
from a host processor or from another SHARC processor.

ADSP-21368 SHARC Processor Hardware Reference 14-53

System Design

Execution Stalls
The following events can cause an execution stall for the
ADSP-21367/8/9 and ADSP-2137x SHARC processors:

• One cycle on a program memory data access with instruction cache
miss

• Two cycles on non-delayed branches

• Two cycles on normal interrupts

• One to two cycles on short loops with small iterations

• On an IDLE instruction, execution is halted while waiting for an
external event, such as an interrupt

• In a sequence of three instructions of the types shown below, the
processor may stall for one cycle:

Instruction 1: Compute instruction affecting flags such as
R2 = R3 - R4;

Instruction 2: Conditional instruction involving post-modify
addressing such as IF EQ DM(I1,M1) = R15;

Table 14-15. Latencies and Throughput

Operation Minimum Data
Delay (cycles)

Maximum Throughput
(cycles/ transfer)

Interrupts (IRQ2-0) 3 -

DMA chain initialization 7–11 -

Serial ports1 35 32

1 Processor-to -processor transfers using 32-bit words.

Data Delays, Latencies, and Throughput

14-54 ADSP-21368 SHARC Processor Hardware Reference

Instruction 3: Instruction involving post-modify addressing involv-
ing same I register such as R0 = DM(I1,M2);. This last instruction
stalls the processor for one cycle.

• Any read reference to a memory-mapped register located physically
within the core (registers like SYSCTL, which are not situated in the
IOP) requires two cycles; therefore, the processor stalls for one
cycle.

• Any read reference to a memory-mapped register located within a
peripheral such as the SPI, SPORTS, or IDP requires a minimum
of four cycles; so the minimum stall is three cycles.

• Any reference to a memory-mapped register in a conditional
instruction stalls the processor for one extra cycle (with respect to
an unconditional instruction).

• Writes to program memory breakpoint address registers (PMDAS,
PMDAE) have an effect latency of one cycle. Therefore, the break-
point address ranges are effective one cycle after the breakpoint
address registers are initialized.

DAG Stalls
One cycle hold on register conflict. For more information on DAG opera-
tions, see the ADSP-2136x SHARC Processor Programming Reference.

Memory Stalls
One cycle on PM and DM bus access to the same block of internal
memory.

ADSP-21368 SHARC Processor Hardware Reference 14-55

System Design

When a new external memory instruction fetch occurs on the
ADSP-2137x processor due to a jump from internal to external memory,
or after a cache hit while executing instructions from external memory,
there is one stall cycle present in the fetch1 stage. This stall avoids
resource conflicts at the cache interface.

The FLUSH CACHE instruction has an effect latency of one instruction when
executing program instructions from internal memory, and two instruc-
tions when executing from external memory. This applies to the
ADSP-2137x processors only.

A one cycle stall is generated whenever an instruction that contains a con-
ditional external memory access is in the decode stage, where the
evaluation of the condition is dependent on the outcome of the previous
instruction in address stage. It applies to all kinds of conditions, except for
conditions based on FLAG status. The following is an example.

f12=f11+f10;

if eq then dm(ext) = r0;

There is one cycle latency between a multiplier status change and an arith-
metic loop abort. This extra cycle is machine cycle and not the instruction
cycle. Therefore, if there is a pipeline stall (due to external memory access
etc.) then the latency does not apply.

IOP Register Stalls
Read of the IOP registers takes a minimum of four cycles, therefore the
processor stalls for at least three cycles.

Data Delays, Latencies, and Throughput

14-56 ADSP-21368 SHARC Processor Hardware Reference

DMA Stalls
• One cycle if an access to a DMA parameter register conflicts with

the DMA address generation (for example, writing to the register
while a register update is taking place) or reading while a DMA
register conflicts with DMA chaining.

• Attempting to write to (or read from) a full (or empty) DMA
buffer causes the core to hang indefinitely, unless the BHD (buffer
hang disable) bit for that peripheral is set (for example in the corre-
sponding SPCTLx register for a serial port).

IOP Buffer Stalls
Table 14-16 shows the number of stalls incurred with the I/O processor
when writing to a full buffer or reading from an empty buffer.

Table 14-16. Latencies and Throughput

Operation Minimum Data
Delay (cycles)

Maximum
Throughput
(cycles/ transfer)

Interrupts (IRQ2-0) 3 -

DMA chain initialization 7–11 -

Serial ports1

1 ADSP-2136x SHARC processor-to-ADSP-2136x SHARC processor transfers using 32-bit
words.

35 32

ADSP-21368 SHARC Processor Hardware Reference A-1

A REGISTER REFERENCE

The ADSP-21367/8/9 and ADSP-2137x processors have general-purpose
and dedicated registers in each of their functional blocks. The register ref-
erence information for each functional block includes bit definitions,
initialization values, and memory-mapped addresses (for I/O processor
registers). Information on each type of register is available at the following
locations:

• “I/O Processor Registers” on page A-2

• “External Port Registers” on page A-10

• “Serial Port Registers” on page A-29

• “Serial Peripheral Interface Registers” on page A-52

• “Input Data Port Registers” on page A-65

• “Pulse Width Modulation Registers” on page A-78

• “Sample Rate Converter Registers” on page A-97

• “Sony/Philips Digital Interface Registers” on page A-86

• “DAI/DPI Registers” on page A-109

• “UART Control and Status Registers” on page A-118

• “Two Wire Interface Registers” on page A-130

• “Precision Clock Generator Registers” on page A-155

• “Peripheral Interrupt Priority Control Registers” on page A-164

I/O Processor Registers

A-2 ADSP-21368 SHARC Processor Hardware Reference

• “Power Management Control Register (PMCTL)” on page A-170

• “Hardware Breakpoint Control Register” on page A-175

• “Enhanced Emulation Status Register” on page A-179

When writing programs, it is often necessary to set, clear, or test bits in
the processor’s registers. While these bit operations can all be done by
referring to the bit’s location within a register or (for some operations) the
register’s address with a hexadecimal number, it is much easier to use sym-
bols that correspond to the bit or register name. For convenience and
consistency, Analog Devices provides a header file that provides these bit
and registers definitions. An #include file is provided with VisualDSP++
tools and can be found in the VisualDSP/2136x/include directory.

Many registers have reserved bits. When writing to a register, pro-
grams may only clear (write zero) the register’s reserved bits.

I/O Processor Registers
The I/O processor’s registers are accessible as part of the processor’s mem-
ory map. These registers occupy addresses 0x0000 0000 through 0x0003
FFFF of the memory map. The I/O registers control the following DMA
operations: serial port, serial peripheral interface port (SPI), and input
data port (IDP), and internal memory-to-memory transfers.

I/O processor registers have a one cycle effect latency (changes take
effect on the second cycle after the change).

Since the I/O processor’s registers are part of the processor’s memory map,
buses access these registers as locations in memory. While these registers
act as memory-mapped locations, they are separate from the processor’s
internal memory and have different bus access. One bus can access one
I/O processor register from one I/O processor register group at a time.

ADSP-21368 SHARC Processor Hardware Reference A-3

Register Reference

When there is contention among the buses for access to registers in the
same I/O processor register group, the processor arbitrates register access
as follows:

• Data memory (DM) bus accesses

• Program memory (PM) bus accesses

• I/O processor (IO) bus (lowest priority) accesses

The bus with highest priority gets access to the I/O processor register
group, and the other buses are held off from accessing that I/O processor
register group until that access has been completed.

Since the I/O processor registers are memory-mapped, the processor’s
architecture does not allow programs to directly transfer data between
these registers and other memory locations, except as part of a DMA oper-
ation. To read or write I/O processor registers, programs must use the
processor core registers.

The register names for I/O processor registers are not part of the proces-
sor’s assembly syntax. To ease access to these registers, programs should
use the header file containing the registers’ symbolic names and addresses.

Notes on Reading Register Drawings
The register drawings in this appendix provide “at a glance” information
about the register in question. They are designed to give experienced users
basic information about a register and its bits. When using these registers,
the following should be noted.

1. The register name and address are provided in the upper left-hand
corner of the drawing.

2. The bit settings in the drawings represent their state at reset.

I/O Processor Registers

A-4 ADSP-21368 SHARC Processor Hardware Reference

3. In cases where there are multiple registers that have the same bits
(such as serial ports), one register drawing is shown and the names
and addresses of the others are simply listed.

4. The bit descriptions are intentionally brief. More detailed informa-
tion can be found in the tables that follow the register drawings
and in the chapters that describe the particular module.

5. The VisualDSP++ tools suite contains the complete listing of regis-
ters in a header file, def21369.h and def21371.h.

ADSP-21368 SHARC Processor Hardware Reference A-5

Register Reference

System Control Register (SYSCTL)
The SYSCTL register configures memory use, interrupts, and many aspects
of pin multiplexing. (For more information, see “Pin Multiplexing” on
page 14-2.) This register’s address is 0x30024. The reset value for this reg-
ister is 0. Bit descriptions for this register are shown in Figure A-1 and
Figure A-2, and described in Table A-1.

Figure A-1. SYSCTL Register (Bits 16–31)

IRQ0EN

TMREXPEN

MSEN

Reserved

Memory Select Enable
0=FLAG/IRQx pins are selected
1=Enables FLAG2 and 3 (IRQ2
and TIMEXP) as MS2 and 3

Flag3 Mode
0=FLAG3 mode
1=TIMEXP mode

Flag0 Mode
0=IRQ0 interrupt mode
1=Flag 0 mode

IRQ1EN
Flag1 Mode
0=IRQ1 interrupt mode
1=Flag 1 mode

IRQ2EN
Flag2 Mode
0=IRQ2 interrupt mode
1=Flag 2 mode

SYSCTL (0x30024)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BUSLK

Bus Lock
0=Do not lock the bus
1=Lock the shared memory bus

FSYNC

Force Synchronization
0=Do not force synchronization
1=Force synchronization of the shared
memory bus
PWM12_15

FLAGS/Pulse Width Modulation Select
1=Enables DATA31–28 as PWM15–12

PWM8_11

FLAGS/Pulse Width Modulation Select
1=Enables DATA27–24 as PWM11–8

PWM4_7

FLAGS/Pulse Width Modulation Select
1=Enables DATA23–20 as PWM7–4

PWM0_3

FLAGS/Pulse Width Modulation Select
1=Enables DATA19–16 as PWM3–0

EPDATAMODE
Data Pin Mode Select
000=DATA31–0 pins are data lines (Default at RESET)
001=DATA15–0 pins are data lines
010=DATA7–0 pins are data lines
011=DATA31–0 pins are FLAGS/PWM
100=DATA31–8 pins are PDAP, DATA7–0 are data lines
101=DATA31–8 pins are PDAP, DATA7–0 are flags
111=Threestate DATA31–0 pins

I/O Processor Registers

A-6 ADSP-21368 SHARC Processor Hardware Reference

Figure A-2. SYSCTL Register (Bits 15–0)

Table A-1. SYSCTL Register Bit Descriptions

Bit Name Description

0 SRST Software Reset. When set, this bit resets the processor and the proces-
sor responds to the non-maskable RSTI interrupt and clears (=0)
SRST. Permits core writes.
0 = No software reset
1 = Software reset

1 Reserved

2 IIVT Internal Interrupt Vector Table. This bit forces placement of the
interrupt vector table at address 0x0008 0000 regardless of booting
mode or allows placement of the interrupt vector table as selected by
the booting mode. Permits core writes.
0 = Interrupt vector table not in internal RAM
1 = Interrupt vector table in internal RAM

6–3 Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SRST

IMDW2

IMDW3

Reserved

Internal Memory Block 3 Data Width
1=Data bus width is 48 bits
0=Data bus is 32 bits

Software Reset
1=Software reset
0=No software reset

Internal Memory Block 2 Data Width
1=Data bus width is 48 bits
0=Data bus is 32 bits

Reserved

Reserved

IIVT

Internal Interrupt Vector
Table
1=Interrupt vector table in
internal RAM
0=Interrupt vector table not
in internal RAM
Reserved
RPBR
Rotating Priority Bus
Arbitration
1=Rotating priority
0=Fixed priority

SYSCTL (0x30024)

IMDW0

IMDW1

Internal Memory Block 1 Data Width
1=Data bus width is 48 bits
0=Data bus is 32 bits

Internal Memory Block 0 Data Width
1=Data bus width is 48 bits
0=Data bus is 32 bits

ADSP-21368 SHARC Processor Hardware Reference A-7

Register Reference

7 RBPR Rotating Priority Bus Arbitration. This bit enables or disables prior-
ity rotation among DMA channels. Permits core writes.
0 = Arbiter uses fixed priority
1 = Arbiter uses rotating priority

8 Reserved

9 IMDW0 Internal Memory Data Width 0. Selects the data access size for inter-
nal memory block0 as 48- or 32-bit data. Permits core writes.
0 = Data bus width is 32 bits
1 = Data bus width is 48 bits

10 IMDW1 Internal Memory Data Width 1. Selects the data access size for inter-
nal memory block1 as 48- or 32-bit data. Permits core writes.
0 = Data bus width is 32 bits
1 = Data bus width is 48 bits

11 IMDW2 Internal Memory Data Width 2. Selects the data access size for inter-
nal memory block2 as 48- or 32-bit data. Permits core writes.
0 = Data bus width is 32 bits
1 = Data bus width is 48 bits

12 IMDW3 Internal Memory Data Width 3. Selects the data access size for inter-
nal memory block3 as 48- or 32-bit data. Permits core writes.
0 = Data bus width is 32 bits
1 = Data bus width is 48 bits

15-13 Reserved

16 IRQ0EN Flag0 Interrupt Mode.
0 = Flag0 pin is a general-purpose I/O pin. Permits core writes.
1 = Flag0 pin is allocated to interrupt request IRQ0.

17 IRQ1EN Flag1 Interrupt Mode.
0 = Flag1 pin is a general-purpose I/O pin. Permits core writes.
1 = Flag1 pin is allocated to interrupt request IRQ1.

18 IRQ2EN Flag2 Interrupt Mode.
0 = Flag2 pin is a genera-purpose I/O pin. Permits core writes.
1 = Flag2 pin is allocated to interrupt request IRQ2.

Table A-1. SYSCTL Register Bit Descriptions (Cont’d)

Bit Name Description

I/O Processor Registers

A-8 ADSP-21368 SHARC Processor Hardware Reference

19 TMREXPEN Flag Timer Expired Mode.
0 = Flag3 pin is a general-purpose I/O pin. Permits core writes.
1 = Flag3 pin output is timer expired signal (TIMEXP).

20 MSEN Memory Select. Selects FLGx or MSx. Detailed modes of program-
ming for these bits are given in “Programming Flags” on page 14-9.
0=FLAG/IRQx pins are selected
1=Enables FLAG2 and 3 (IRQ2 and TIMEXP) as MS2 and 3

23–21 EPDATA Data Pin Mode Select.
000 = DATA31–0 pins are data lines (default at RESET)
001 = DATA15–0 pins are data lines
010 = DATA7–0 pins are data lines
011 = DATA31–0 pins are FLAGS/PWM
100 = DATA31–8 pins are PDAP, DATA7–0 are data lines
101 = DATA31–8 pins are PDAP, DATA7–0 are flags
111 = Threestate DATA31–0 pins.

24 PWM0_3 Pulse Width Modulation Select.
When set (=1), enables DATA19–16 as PWM3–0.

25 PWM4_7 Pulse Width Modulation Select.
When set (=1), enables DATA23–20 as PWM7–4.

26 PWM8_11 Pulse Width Modulation Select.
When set (=1), enables DATA27–24 as PWM11–8.

27 PWM12_15 Pulse Width Modulation Select.
When set (=1), enables DATA31–28 as PWM15–12.

28 FSYNC Force Synchronization of the Shared Memory Bus.
0 = Do not force synchronization
1 = Force synchronization of the shared memory bus

29 BUSLK Bus Lock Request. Requests bus lock where the processor maintains
bus master control (if set, =1) or does not request bus lock (normal
bus master control) id cleared (=0).

31–30 Reserved

Table A-1. SYSCTL Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference A-9

Register Reference

System Status Register (SYSTAT)
The SYSTAT register’s address is 0x180F. The reset value has all bits initial-
ized to zero, except for the IDC, CRBM, and CRAT fields, which are set from
values on the ADSP-21367/8/9 and ADSP-2137x’s pins. This register is
shown in Figure A-3 and described in Table A-2.

Table A-2. System Status Register (SYSTAT) Bit Descriptions

Bit Name Description

0 BSYN Bus Synchronized. Indicates whether the processor’s bus arbitration
logic is synchronized (if set, =1) or is not synchronized (if cleared,
=0, reset value).

3–1 Reserved (reset value =0)

6-4 CRBM Current Bus Master. These bits indicate the ID of the processor
that currently is the bus master in a multiprocessor system. Because
CRBM is only valid for DSPs with ID inputs other than zero (for
example, a multiprocessor system), the processor keeps CRBM set
to 001 when ID equals 000. The reset value of CRBM is undefined.

Figure A-3. SYSTAT Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BSYN

IDC

CRBM
Current Bus Master
Status of ID of processor that is
current bus master

Bus Synchronized
1=Bus arbitration synchronized
0=Not synchronized

SYSTAT(0x180F)

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

25

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID Code. State of ID2–0 pins

ReservedReserved

Reserved

External Port Registers

A-10 ADSP-21368 SHARC Processor Hardware Reference

External Port Registers
The following registers are used to control asynchronous memory inter-
face (AMI), the SDRAM controller (SDC), and the shared memory
interface (ADSP-21368 only).

External Port Control Register (EPCTL)
The external port control register can be programmed to arbitrate the
accesses between the processor core and DMA, and between different
DMA channels. These registers are shown in Figure A-4 and described in
Table A-3.

7 Reserved (reset value =0)

10–8 IDC ID Code. These bits indicate the state of the ID pins on the proces-
sor. The reset value of IDC is undefined.

31-11 Reserved (reset value =0)

Table A-2. System Status Register (SYSTAT) Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference A-11

Register Reference

Figure A-4. External Port Control Register

Table A-3. EPCTL Register Bit Descriptions

Bit Name Description

0 B0SD Select Bank 0 SDRAM.
1 = Bank 0 SDRAM
0 = Bank 0 Non-SDRAM

1 B1SD Select Bank 1 SDRAM.
1 = Bank 1 SDRAM
0 = Bank 1 Non-SDRAM

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DATE

9

EPCTL (0x1801) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B0SD
Bank 0 SDRAM
1=Bank 0 SDRAM
0=Bank 0 Non-SDRAM

Reserved

B1SD
Bank 1 SDRAM
1=Bank 1 SDRAM
0=Bank 1 Non-SDRAM

B2SD
Bank 2 SDRAM
1=Bank 2 SDRAM
0=Bank 2 Non-SDRAM

B0SD
Bank 3 SDRAM
1=Bank 3 SDRAM
0=Bank 3 Non-SDRAM

DMAPR
DMA Channel Priority for CH0 and CH1
11 = Rotating priority
10 = Fixed priority
01 = Reserved
00 = Reserved

EPBR
External Port Bus Priority
11=Rotating Priority
10=Core has high priority
01=DMA has high priority
00=Reserved

FRZDMA
Arbitration Freezing Length for DMA
0=No freezing
1=4 Accesses
2=8 Accesses
3=16 Accesses

FRZCR
Arbitration Freezing Length for CORE
Accesses
0 = No Freezing
1 = 4 Accesses
2 = 8 Accesses
3 = 16 Accesses

DATE

DATA Enable
In no pack mode, masks
those bits of the data lane
with zeros.

Reserved

Reserved

External Port Registers

A-12 ADSP-21368 SHARC Processor Hardware Reference

2 B2SD Select Bank 2 SDRAM.
1 = Bank 2 SDRAM
0 = Bank 2 Non-SDRAM

3 B3SD Select Bank 3 SDRAM.
1 = Bank 3 SDRAM
0 = Bank 3 Non-SDRAM

5–4 EPBR External Port Bus Priority.
00 = Reserved
01 = DMA has high priority
10 = Core has high priority
11 = Rotating Priority

7–6 DMAPR DMA Channel Priority for CH0 and CH1.
00 = Reserved
01 = Reserved
10 = Fixed priority
11 = Rotating priority

8 Reserved

10–9 FRZDMA Arbitration Freezing Length for DMA.
0 = No freezing
1 = 4 Accesses
2 = 8 Accesses
3 = 16 Accesses

12–11 Reserved

14–13 FRZCR Arbitration Freezing Length for CORE Accesses.
0 = No freezing
1 = 4 Accesses
2 = 8 Accesses
3 = 16 Accesses

Table A-3. EPCTL Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference A-13

Register Reference

18–15 DATE Data Enable.
In no pack mode of the sdram/ami memory controller,
masks those bits of the data lane with zeros. The data
lane is 8 bits. The 32-bit data bus has four data lanes.
DATA31–0 is mapped to {dl3, dl2, dl1, dl0}
For example, If DATE is 1010, then dl3 and dl1 are
masked with zeros.

31–19 Reserved

Table A-3. EPCTL Register Bit Descriptions (Cont’d)

Bit Name Description

External Port Registers

A-14 ADSP-21368 SHARC Processor Hardware Reference

External Port DMA Control Registers (DMACx)
The DMAC0–1 registers control the DMA function of their respective DMA
channels. These registers are shown in Figure A-5 and described in
Table A-4.

Figure A-5. External Port DMA Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMAEN
EXTS

TLS
Tap List Loading Status (RO)
1=Loading active
0=Loading inactive

DMAS
DMA Transfer Status (RO)
0=DMA idle
1=DMA in progress

DMADR
DMA Direction
0 = Write to internal memory
(external reads)
1 = Read from Internal memory
(external writes)

DMA Enable
1=Enable
0=Disable

CHEN

Chaining Enable
1=Enable
0=Disable

DFS
DMA FIFO Status (RO)
00=FIFO empty, 01=FIFO partially full
11=FIFO full, 10=Reserved

TFS
Tap List FIFO Status (RO)
00=FIFO empty, 01=FIFO partially full
11=FIFO full, 10=Reserved

DMAC0 (0x180B)
DMAC1 (0x180C)

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIRSReserved

25

DLEN

Delay Line DMA Enable
1=Enable
0=Disable

CBEN

Circular Buffering Enable
1=Enable
0=Disable

DFLSH

Flush DMA FIFO (WO)

TFLSH

Flush Tap List FIFO (WO)

CHS
DMA Chaining Status (RO)
1=DMA in progress
0=DMA Idle

DMA Transfer Direction Status
1=Direction is external writes
0=Direction is external reads

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

WBS
Delay Line Write Back Status (RO)
1=Write back is active
0=Write back is not active

DMA External Interface
Status (RO)
1=Access pending
0=No access pending

ADSP-21368 SHARC Processor Hardware Reference A-15

Register Reference

Table A-4. External Port DMA Register Bit Descriptions

Bit Name Description

0 DMAEN DMA Enable.
0 = External port channel x DMA is disabled
1 = Enable External port DMA for channel x

1 DMADR DMA Direction
0 = Write to internal memory (external reads)
1 = Read from internal memory (external writes)
Note: If delay line DMA is enabled then the DMADR bit doesn’t
have any effect. For delay line DMA, transfer direction depends
on the state of delay line transfers

2 CHEN Enable Chaining.
0 = Chaining disabled
1 = Chaining enabled

3 DLEN Enable Delay Line DMA. DLEN is applicable only if CHEN=1.
0 = Delay-line DMA disabled
1 = Delay-line DMA enabled

4 CBEN Circular Buffering Enable.
0 = Disables circular buffering with delay line DMA
1 = Enables circular buffering with delay line DMA
Circular Buffering can be used with normal DMA as well

5 DFLSH Flush DMA FIFO (write-only).

6 TFLSH Flush Tap List FIFO (write-only).

8–7 DFS DMA FIFO Status (read-only).
00 = FIFO empty
01 = FIFO partially full
11 = FIFO full
10 = Reserved

10–9 TFS Tap List FIFO Status (read-only).
00 = FIFO empty
01 = FIFO partially full
11 = FIFO full
10 = Reserved

11 DMAS DMA Transfer Status (read-only).
0 = DMA idle
1 = DMA in progress

External Port Registers

A-16 ADSP-21368 SHARC Processor Hardware Reference

12 CHS DMA Chaining Status (read-only).
0 = DMA chain loading is not active
1 = DMA chain loading is active

13 TLS Tap List Loading Status (read-only).
0 = Tap list loading is not active
1 = Tap list loading is active

14 WBS Delay Line Write Pointer Write Back Status (read-only).
0 = Write pointer write back is not active
1 = Write pointer write back is active

15 EXTS DMA External Interface Status (read-only).
0 = DMA external interface does not have any access pending
1 = DMA external interface has access pending

16 DIRS DMA Transfer Direction Status (read-only).
0 = DMA direction is external reads
1 = DMA direction is external writes
Note: This is useful for delay line DMA where the transfer direc-
tion changes with the state of the DMA state machine.
For normal DMA, DIRS will reflect the state of the DMADR
bit.

31–17 Reserved

Table A-4. External Port DMA Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference A-17

Register Reference

AMI Control Registers (AMICTLx)
The AMICTL0–3 registers control the mode of operations for the four banks
of external memory. These registers are shown in Figure A-6 and
described in Table A-5.

Figure A-6. AMICTLx Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AMIEN
IC

HC
Bus Hold Cycle (at end of write access)
000=Disable bus hold cycle
001=Hold address for 1 EP cycle
010=Hold address for 2 EP cycles

WS
Wait States
00000=Reserved
00001=Reserved
00010=Wait state = 2
...
11111=Wait state = 31

BW
External Data Bus Width
00=8-bit
01=16-bit
10=32-bit
11=Reserved

AMI Enable
1=Enable
0=Disable

PKDIS
Packing/Unpacking Disable
1=8/16-bit data zero-filled
0=8/16 bit data packed to
32-bit data

MSWF
Most Significant Word First
1=1st 8/16-bit word occupies the most significant position in 32-bit packed word
0=1st 8/16-bit word occupies the least significant position in the 32-bit packed word

ACKEN
ACK Pin Enable
1=Enable ACK pin
0=Disable ACK pin

AMICTL0 (0x1804)
AMICTL1 (0x1805)
AMICTL2 (0x1806)
AMICTL3 (0x1807)

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RHC
Read Hold Cycle
000=Disable read hold cycle
001=Hold address for 1 EP clock cycle
010=Read hold cycle 2

IC
Bus Idle Cycle
000=0 cycles, 001=1 cycle
010=2 cycles, 011=3 cycles
100=4 cycles, 101=5 cycles
110=6 cycles, 111=7 cycles

NO_OPT
Disable Predictive Reads
1=Disable predictive reads
0=Default, predictive reads are enabled

FLSH
AMI Buffer Flush
1=Flush buffer
0=Buffer holds data

Reserved

25

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

External Port Registers

A-18 ADSP-21368 SHARC Processor Hardware Reference

Table A-5. AMICTLx Register Bit Descriptions

Bit Name Description

0 AMIEN AMI Enable.
0 = AMI is disabled
1 = AMI is enabled

2–1 BW External Data Bus Width.
00 = 8 bits
01 = 16 bits
10 = 32 bits
11 = Reserved

3 PKDIS Disable Packing/Unpacking.
0 = 8/16-bit data received packed to 32-bit data. Similarly, 32-bit
data to be transmitted is unpacked to two 16-bit data or four 8-bit
data.
1 = 8/16-bit data received zero-filled, for transmitted data only
16-bit or the 8-bit LSB part of the 32-bit data is written to external
memory.

4 MSWF Most Significant Word First. Applicable only with packing dis-
abled (PKDIS=0).
0 = 1st 8/16-bit word read/write occupies the least significant posi-
tion in the 32-bit packed word.
1 = 1st 8/16-bit word read/write occupies the most significant posi-
tion in the 32-bit packed word.

5 ACKEN Enable the ACK pin.
If enabled, reads/writes to devices have to be extended by the corre-
sponding devices by pulling ACK low. When ACKEN is set then
the ACK pin is sampled after the waitstate value is programmed.

10–6 WS Wait States.
00000 = Reserved (wait state value of 32 if used)
00001 = Reserved for internal use (can be used when the clock fre-
quencies are low)
00010 = wait state = 2 external port clock cycles
...
11111 = Wait state = 31 external port clock cycles

13–11 HC Bus Hold Cycle at the End of Write Access.
000 = Disable bus hold cycle
001 = Hold address for one external port clock cycle
010 = Hold address for two external port clock cycles

ADSP-21368 SHARC Processor Hardware Reference A-19

Register Reference

16–14 IC Bus Idle Cycle. Idle cycle to be inserted whenever read from exter-
nal memory is followed by a write to external memory – to avoid
contention. 'IC' EP clock cycles are ensured between a read to
write.
000 = 0 cycles, 001 = 1 cycle
010 = 2 cycles, 011 = 3 cycles
100 = 4 cycles, 101 = 5 cycles
110 = 6 cycles, 111 = 7 cycles

17 FLSH AMI Buffer Flush (Write-only).
0 = Buffer holds the data
1 = Flush the buffer

20–18 RHC Read Hold Cycle at the End of Read Access. Controls the delay
between two reads.
000 = Disable read hold cycle
001 = Hold address for one external port clock cycle
010 = Hold address for two external port clock cycles

21 NO_OPT Disable Predictive Reads.
Default is predictive reads are enabled. For more information, see
“SDRAM Read Optimization” on page 3-75.

31–22 Reserved

Table A-5. AMICTLx Register Bit Descriptions (Cont’d)

Bit Name Description

External Port Registers

A-20 ADSP-21368 SHARC Processor Hardware Reference

AMI Status Register (AMISTAT)
This 32-bit, read-only register provides status information for the AMI
interface and can be read at any time. This register is shown in Figure A-7.

Figure A-7. AMISTAT Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AMIMS

AMIRXS
AMI External Receive Register (AMIRX) Status
1=Receive register has valid data
0=Receive register empty

Reserved (Bits 31–4)

AMI External Transmit Register (AMITX) Status
1=Transmit register has valid data
0=Transmit register empty

AMI Master
1=AMI controls the external
pins
0=SDC controls the exter-
nal pins

AMIS
External Interface Status
1=AMI access pending
0=AMI interface idle

AMITXS

AMISTAT (0x180A)

ADSP-21368 SHARC Processor Hardware Reference A-21

Register Reference

SDRAM Control Register (SDCTL)
The SDRAM memory control register includes all programmable parame-
ters associated with the SDRAM access timing and configuration. This
32-bit register is located at address 0x1800 and is shown in Figure A-8
and described in Table A-6. For more information, see “SDRAM Control
Register (SDCTL)” on page 3-39.

Figure A-8. SDRAM Control Register (Bits 16–31)

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDBUF

Row Address Width
000=8, 001=9
010=10, 011=11
100=12, 101=13
110=14, 111=15

X16DE
SDRAM External Data Path Width
(ADSP-21371 only)
1=16 bits
0=32 bits

SDRAW

SDRAM tRCD Specification
tRCD = 1–7 SDCLK cycles

SDTWR
SDRAM tWR Specification
tWR = 1–3 SDCLK cycles

NO BSTOP

25

SDORF

Pipeline Option with External Register Buffer
1=External SDRAM CTL/ADDR control buffer enable
0=No buffer option

Force AR

Optional Refresh
1=Auto refresh not performed
0=Auto refresh occurs when
refresh counter expires

Force Auto Refresh
1=Force auto refresh
0=No effect
Force PC
Force Precharge
1=Force precharge
0=No effect

STDRCD

Force LMR

SDCTL (0x1800)

Disable
1=Disable burst stop
0=Issue burst stop on a
read/write break

PGSZ 128
Disable
1=Page size is 128 words
(Col width = 7 bits)
0=No effect

Force Auto Refresh
1=Force mode register write
0=No effect

External Port Registers

A-22 ADSP-21368 SHARC Processor Hardware Reference

Figure A-9. SDRAM Control Register (Bits 0–15)

Table A-6. SDRAM Control Register Bit Descriptions

Bit Name Description

1–0 SDCL SDRAM CAS Latency. The delay in clock cycles between when
the SDRAM detects the read command and when it provides the
data at its output pins.
00, 01 = Reserved
10 = 2 cycles
11 = 3 cycles

2 DSDCTL Disable SDCLK and Control Signals. Used to enable or disable
the SDC. If DSDCTL is disabled, any access to SDRAM address
space does not occur externally. When DSDCTL is disabled, all
SDC control pins are in their inactive states and the SDRAM
clock SDCLK is not running.
1 = Disable
0 = Activate

3 Reserved.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SDCL
SDSRF
SDRAM Self Refresh Enable
1=Starts self refresh mode
0=No effect
SDPSS
SDRAM Power-up Sequence Start
1=Enable power-up on next
SDRAM access
0=No effect

DSDCTL
Disable SDCLK and Control Sig-
nals
1=Disable
0=Activate

CAS Latency
00, 01=Reserved
10=2 cycles, 11=3 cycles

Reserved

SDPM
SDRAM Power-Up Mode
1=Precharge, mode reg set, 8CBR refresh cycles
0=Precharge, 8CBR refresh cycles, mode reg set

SDCAW
SDRAM Bank Column Address Width
00=8 bits
01=9 bits
10=10 bits
11=11 bits

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDTRAS
SDRAM tRAS Specification
Active command delay = 1–15
SDCLK cycles
SDTRP
SDRAM tRP Specification
Precharge delay = 1–7 SDCLK
cycles

ADSP-21368 SHARC Processor Hardware Reference A-23

Register Reference

7–4 SDTRAS tRAS Specification. Based on the system clock frequency and the
timing specifications of the SDRAM used. Programmed parame-
ters apply to all four banks in the external memory.
See tRAS on page 3-35.

10–8 SDTRP tRP Specification. Based on the system clock frequency and the
timing specifications of the SDRAM used. Programmed parame-
ters apply to all four banks in the external memory.
See tRP on page 3-35.

11 SDPM SDRAM Power-Up Mode. The SDPM and SDPSS bits work
together to specify and trigger an SDRAM power-up (initializa-
tion) sequence. If the SDPM bit is set (=1), the SDC does a pre-
charge all command, followed by a load mode register command,
followed by eight auto-refresh cycles. If the SDPM bit is cleared
(=0), the SDC does a precharge all command, followed by eight
auto-refresh cycles, followed by a load mode register command.

13–12 SDCAW SDRAM Bank Column Address Width.
00 = 8 bits
01 = 9 bits
10 = 10 bits
11 = 11 bits

14 SDPSS SDRAM Power-Up Sequence Start. The power-up sequence
occurs and is followed immediately by the read or write transfer
to SDRAM that is used to trigger the SDRAM power-up
sequence. Note that there is a long latency for this first access to
SDRAM because the SDRAM power-up sequence takes many
cycles to complete.
1 = Enable power-up on next SDRAM access
0 = No effect

15 SDSRF Self Refresh Enable. When the SDSRF bit is set to 1, self-refresh
mode is triggered. Once the SDC completes any active transfers,
the SDC executes the sequence of commands to put the SDRAM
into self-refresh mode. The next access to the enabled SDRAM
bank causes the SDC to execute the commands to exit from
self-refresh and execute the access.

Table A-6. SDRAM Control Register Bit Descriptions (Cont’d)

Bit Name Description

External Port Registers

A-24 ADSP-21368 SHARC Processor Hardware Reference

16 X16DE SDRAM External Data Path Width. Selects whether the
SDRAM interface is 32 or 16 bits wide.
If X16DE = 0, DATA31–0 should be connected to the SDRAM.
If X16DE = 1, DATA15–0 should be connected to the SDRAM
and 16 to 32-bit packing is performed. (Valid for all processors
except for the ADSP-21375 processor).

18–17 SDTWR SDRAM tWR Specification. tWR = 1–3 SDCLK cycles. Based
on the system clock frequency and the timing specifications of
the SDRAM used. Programmed parameters apply to all four
banks in the external memory.
See tWR on page 3-35.

19 SDORF Optional Refresh.
1 = Auto refresh not performed
0 = Auto refresh occurs when refresh counter expires
(see “Auto-Refresh” on page 3-70).

20 Force AR Force Auto Refresh.
1 = Force auto refresh
0 = No effect

21 Force PC Force Precharge.
1 = Force precharge
0 = No effect

22 Force LMR Force Load Mode Register Write. This command performs a
load mode register command immediately. This is in contrast to
the normal load mode register set which requires some delay. This
command performs a precharge all (if not precharged already)
followed by a mode register write. (Valid for ADSP-2137x pro-
cessors only).

23 SDBUF Pipeline Option with External Register Buffer.
1 = External SDRAM CTL/ADDR control buffer enable
0 = No buffer option

26–24 SDTRCD SDRAM tRCD Specification. tRCD = 1–7 SDCLK cycles. Based
on the system clock frequency and the timing specifications of
the SDRAM used. Programmed parameters apply to all four
banks in the external memory.
See tRCD on page 3-35.

Table A-6. SDRAM Control Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference A-25

Register Reference

29–27 SDRAW Row Address Width.
000=8, 001=9
010=10, 011=11
100=12, 101=13
110=14, 111=15

30 PGSZ 128 Program the SDRAM Controller for Page Size of 128 Words.
This bit allows programs to configure the SDC for a page size of
128 words (7 bits) which supports most available 32 Mb
SDRAMs.
1 = Page size 128 words. Column width = 7 bits, override CAW
settings.
0 = No effect, page size decided by SDCAW bits.
(Valid for ADSP-2137x processors only).

31 NO BSTOP No Burst Mode. This bit is used to select between full page burst
or no burst mode (BL=1). If set (=1), no burst mode is active and
the burst stop command is ignored. If cleared, full page burst is
active using the burst stop command for access interruption. This
bit must be cleared if the SDRAM does not support no burst
mode but supports full page burst.
(Valid for ADSP-2137x processors only).

Table A-6. SDRAM Control Register Bit Descriptions (Cont’d)

Bit Name Description

External Port Registers

A-26 ADSP-21368 SHARC Processor Hardware Reference

SDRAM Control Status Register (SDSTAT)
The SDRAM control status register provides information on the state of
the SDC. This information can be used to determine when it is safe to
alter SDC control parameters or as a debug aid. This register is located at
address 0x1803 and is shown in Figure A-10.

SDRAM Refresh Rate Control Register (SDRRC)
The SDRAM refresh rate control register provides a flexible mechanism
for specifying the auto-refresh timing. The SDC provides a programmable
refresh counter which has a period based on the value programmed into
the RDIV field of this register, that coordinates the supplied clock rate with
the SDRAM device’s required refresh rate. This register is located at
address 0x1802 and is shown in Figure A-11. For more information, see
“SDRAM Refresh Rate Control Register (SDRRC)” on page 3-49 and for
information on using the SMODIFY bit see “SDRAM Read Optimization”
on page 3-75.

Figure A-10. SDRAM Control Status Register

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Reserved

SDPUA

SDCI

SDRAM Controller Idle
1=SDC is idle
0=SDC busy is busy in per-
forming an access or
auto-refresh
SDSRA

SDRAM Self-Refresh Active
1=In self-refresh mode
0=Not in self-refresh mode

SDRAM Power-Up Active
1=SDC in power-up sequence
0=SDC not in power-up sequence

SDRS
SDRAMs In Reset State
1=No power-up sequence has been initiated since last SDC reset
0=Power-up sequence has been initiated since last SDC reset

9SDSTAT (0x1803)

ADSP-21368 SHARC Processor Hardware Reference A-27

Register Reference

Figure A-11. SDRAM Control Refresh Rate Register

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 1 1 0 10

Reserved RDIV
Delay (SDCLK cycles)
between consecutive
refresh counter time-outs

SDROPT

SDRAM Optimization
1=Enable
0=Disable

SDMODIFY

Used for Predictive Addressing
(0–15)

9

SDRRC (0x1802) 31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

10 0 0 0 0 0 0 0 0 0 0 0 0 0 1

25

Reserved

Memory-to-Memory DMA Register

A-28 ADSP-21368 SHARC Processor Hardware Reference

Memory-to-Memory DMA Register
The memory-to-memory (MTM) DMA register (MTMCTL) allows programs
to transfer blocks of 64-bit data from one internal memory location to
another. This transfer method uses two DMA channels, one for reading
data and one for writing data. These transfers are controlled using the
MTMCTL register shown in Figure A-12. For more information, see “Mem-
ory-to-Memory DMA” on page 2-48.

Figure A-12. MTM DMA Register (MTMCTL)

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Read of bits 29–4
returns 0

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

00 0 0 0 1 1 1 1 0 0 0 0 0 0 0

MTMDMA0ACT

MTMDEN
MTM DMA Enable
1=Enable
0=Disable

Reserved

Memory Write DMA Status

MTMFLUSH
1=Flush the FIFO and reset the
read/write pointers

24

9

MTMCTL (0x2C01)

MTMDMA1ACT

Memory Read DMA Status

ADSP-21368 SHARC Processor Hardware Reference A-29

Register Reference

Serial Port Registers
The following section describes serial port (SPORT) registers.

SPORT Serial Control Registers (SPCTLx)
The SPORT serial control registers’ addresses are:

The reset value for these registers is 0x0000 0000. The SPCTLx registers are
transmit and receive control registers for the corresponding serial ports
(SPORT 0 through 7). The following figures show the bit descriptions
and settings for the SPORT operating modes.

• Figure A-13 and Figure A-14 provide bit definitions for standard
DSP serial mode.

• Figure A-15 provides bit definitions in left-justified sample-pair
and I2S mode.

• Figure A-16, Figure A-17 and Figure A-18 provide bit definitions
for packed I2S and multichannel mode.

When changing SPORT operating modes, programs should clear
the serial port’s control register before writing the new settings to
the control register. See Table A-7 for a complete description of
SPORT operation modes and Table A-8 for complete bit
descriptions.

SPCTL0 – 0xC00 SPCTL1 – 0xC01

SPCTL2 – 0x400 SPCTL3 – 0x401

SPCTL4 – 0x800 SPCTL5 – 0x801

SPCTL6 – 0x4800 SPCTL7 – 0x4801

Serial Port Registers

A-30 ADSP-21368 SHARC Processor Hardware Reference

Table A-7. SPORT Operation Modes

Operating Modes

Bits

OPMODE LAFS FRFS MCEA MCEB SLENx

Standard DSP Serial Mode 0 0, 1 X 0 0 3-321

I2S (Tx/Rx on Left Channel
First)

1 0 1 0 0 8-32

I2S (Tx/Rx on Right Channel
First)

1 0 0 0 0 8-32

Packed I2S Mode A Channel 1 0 X 1 0 3-32

Packed I2S Mode B Channel 1 0 X 0 1 3-32

Packed I2S Mode A and B
Channels

1 0 X 1 1 3-32

Left-Justified Sample Pair
Mode
(Tx/Rx on FS Rising Edge)

1 1 0 0 0 8-32

Left-Justified Sample Pair
(Tx/Rx on FS Falling Edge)

1 1 1 0 0 8-32

Multichannel A Channels 0 0 X 1 0 3-321

Multichannel B Channels 0 0 X 0 1 3-321

Multichannel A and B
Channels

0 0 X 1 1 3-321

1 Although serial ports process word lengths of 3 to 32 bits, transmitting or receiving words small-
er than 7 bits at core clock frequency/4 of the processor may cause incorrect operation when
DMA chaining is enabled. Chaining disables the processor’s internal I/O bus for several cycles
while the new transfer control block (TCB) parameters are being loaded. Receive data may be
lost (for example, overwritten) during this period.

ADSP-21368 SHARC Processor Hardware Reference A-31

Register Reference

Figure A-13. SPCTLx Register (Bits 16–31) for Standard DSP Serial
Mode

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DXS_A
Data Buffer Channel A Status
11=Full, 10=Partially Full, 00=Empty

LFS
Active Low Frame Sync
1=Active low
0=Active highDERR_A

Channel A Error Status (sticky)
SPTRAN=1 Transmit underflow status
SPTRAN=0 Receive overflow status

SDEN_A
DMA Channel A Enable
1=Enable
0=Disable

DXS_B
Data Buffer Channel B Status
11=Full, 10=Partially Full, 00=Empty

DERR_B
Channel B Error Status (sticky)
SPTRAN=1 Transmit underflow status
SPTRAN=0 Receive overflow status

SPTRAN
SPORT Data Direction
1=Transmit
0=Receive

SPEN_B
SPORT Enable B
1=Enable
0=Disable

BHD
Buffer Hang Disable
1=Ignore core hang
0=Core stall when TXSPx full or RXSPx empty

LAFS
Late Frame Sync
1=Late frame sync
0=Early frame sync

SCHEN_A
DMA Channel A
Chaining Enable
1=Enable
0=Disable

SDEN_B
DMA Channel B Enable
1=Enable
0=Disable

SCHEN_B
DMA Channel B
Chaining Enable
1=Enable
0=Disable

25

FS_BOTH

Frame Sync Both
1=Issue word select if data is present in both
TXSPxy and RXSPxy
0=Issue word select if data is present in either of
TXSPxy or RXSPxy buffers

SPCTL0 (0xC00) SPCTL1 (0xC01)
SPCTL2 (0x400) SPCTL3 (0x401)
SPCTL4 (0x800) SPCTL5 (0x800)
SPCTL6 (0x4800) SPCTL7 (0x4801)

Serial Port Registers

A-32 ADSP-21368 SHARC Processor Hardware Reference

Figure A-14. SPCTLx Register (Bits 0–15) for Standard DSP Serial Mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPEN_A
DIFS
Data Independent TX FS
(if SPTRAN=1) or RX FS (if
SPTRAN=0)
1=Data independent
0=Data dependent

IFS
Internally-Generated FS
1=Internal
0=External

FSR
Frame Sync Requirement
1=Frame sync required
0=Frame sync not required

CKRE
Clock Edge for Data Frame Sync
Sampling or Driving
1=Rising edge
0=Falling edge

OP MODE
SPORT Operation Mode
0=DSP serial mode/multichannel mode,
this bit must be set to 0

DTYPE
Data Type
00=Right-justify
01=Right-justify, sign extend MS
10=Compand mu-law
11=Compand A-law

ICLK
Internally-Generated
SPORTx_CLK
1=Internal clock
0=External clock

SPORT Enable A
1=Enable
0=Disable

LSBF
Least Significant Bit Format
1=LSB first
0=MSB first

SLEN
Serial Word Length=1

PACK
16/32 Packing
1=Packing
0=No packing

SPCTL0 (0xC00) SPCTL1 (0xC01)
SPCTL2 (0x400) SPCTL3 (0x401)
SPCTL4 (0x800) SPCTL5 (0x801)
SPCTL6 (0x4800) SPCTL7 (0x4801)

ADSP-21368 SHARC Processor Hardware Reference A-33

Register Reference

Figure A-15. SPCTLx Register (Bits 31–16) for I2S and Left-Justified
Sample Pair Modes

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 1 0 0 0 0 0

DXS_A
Data Buffer Channel A Status
11=Full, 10=Partially Full, 00=Empty

FRFS
See Table 5-1 on page 5-11

DERR_A
Channel A Error Status (Sticky)
SPTRAN=1 Transmit underflow status
SPTRAN=0 Receive overflow status

SDEN_A
DMA Channel A Enable
1=Enable
0=Disable

DXS_B
Data Buffer Channel B Status
11=Full, 10=Partially Full, 00=Empty

DERR_B
Channel B Error Status (Sticky)
SPTRAN=1 Transmit underflow status
SPTRAN=0 Receive overflow status

SPTRAN
SPORT Transaction
1=Active transmit buffers TXSPXA/TXSPXB
0=Enable receive buffers RXSPXA/RXSPXB
SPEN_B
SPORT Enable B
1=Enable
0=Disable BHD

Buffer Hang Disable
1=Ignore core hang
0=Core stall when TXSPx Full
or RXSPx empty

LAFS
Late Frame Sync

SCHEN_A
DMA Channel A Chaining Enable
1=Enable
0=Disable
SDEN_B
DMA Channel B Enable
1=Enable
0=Disable

SCHEN_B
DMA Channel B Chaining Enable
1=Enable
0=Disable
Reserved

25

SPCTL0 (0xC00) SPCTL1 (0xC01)
SPCTL2 (0x400) SPCTL3 (0x401)
SPCTL4 (0x800) SPCTL5 (0x801)
SPCTL6 (0x4800) SPCTL7 (0x4801)

Serial Port Registers

A-34 ADSP-21368 SHARC Processor Hardware Reference

Figure A-16. SPCTLx Register (Bits 15 – 0) for I2S and Left-Justified
Sample Pair Modes

SPCTL0 (0xC00) SPCTL1 (0xC01)
SPCTL2 (0x400) SPCTL3 (0x401)
SPCTL4 (0x800) SPCTL5 (0x801)
SPCTL6 (0x4800) SPCTL7 (0x4801)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPEN_A
DIFS
Data Independent Frame Sync
1=Data independent
0=Data dependent

Reserved
OP MODE
SPORT Operation Mode
1=I2S or left-justified sample pair mode,
this bit must be set to 1

MSTR
I2S Serial and L/R Clock Master2
1=Internal clock and word select
0=External clock and word select

SPORT Enable A
1=Enable
0=Disable

Reserved
SLEN
Serial word length=1

PACK
16/32 Packing
1=Packing
0=No packing

ADSP-21368 SHARC Processor Hardware Reference A-35

Register Reference

Figure A-17. SPCTLx Register (Bits 31–16) for Packed I2S and
Multichannel Mode

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DXS_A
Data Buffer Channel A Status
11=Full 10=Partially full 00=Empty

LMFS
Active Low Multichannel Frame
Sync
1=Active low FS
0=Active high FS

DERR_A (TUVF_A or
ROVF_A)
Channel A Error Status (sticky)
SPTRAN=1 Transmit underflow status
SPTRAN=0 Receive overflow status

SDEN_A
Receive DMA Channel A Enable
1=Enable
0=Disable

DXS_B
Data Buffer Channel B Status
11=Full 10=Partially full 00=Empty

BHD
Buffer Hang Disable
1=Ignore core hang
0=Core stall when TXn full or RXn empty

SCHEN_A
Receive DMA Channel A
Chaining Enable
1=Enable
0=Disable

SDEN_B
Receive DMA Channel B Enable
1=Enable
0=Disable
SCHEN_B
Receive DMA Channel B Chaining
Enable
1=Enable
0=Disable

Reserved

Reserved

25

SPTRAN
SPORT Data Direction
1=Transmit
0=Receive

SPCTL0 (0xC00) SPCTL1 (0xC01)
SPCTL2 (0x400) SPCTL3 (0x401)
SPCTL4 (0x800) SPCTL5 (0x801)
SPCTL6 (0x4800) SPCTL7 (0x4801)

DERR_B (TUVF_B or
ROVF_B)
Channel B Error Status (sticky)
SPTRAN=1 Transmit underflow status
SPTRAN=0 Receive overflow status

Reserved

Serial Port Registers

A-36 ADSP-21368 SHARC Processor Hardware Reference

Figure A-18. SPCTLx Register (Bits 15–0) for Packed I2S and
Multichannel Mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved Reserved

IMFS DTYPE
Data Type
00=Right-justify, fill MSB with 0’s
01=Right-justify, sign-extend MSB
10=Compand υ-law
11=Compand A-law
LSBF
Serial Word Bit Order
1=LSB first
0=MSB first

SLEN
Serial Word Length-1

PACK
16/32 Packing
1=Packing
0=No packing

Internally Generated Multichannel
Frame Sync
1=Internal frame sync
0=External frame sync

OPMODE
SPORT Operation Mode
1=Packed I2S mode
0=Multichannel mode

CKRE
Active Clock Edge for Data and Frame
Sync Sampling
1=Rising edge
0=Falling edge

Reserved

ICLK
Internally Generated Clock
1=Internal clock
0=External clock

SPCTL0 (0xC00) SPCTL1 (0xC01)
SPCTL2 (0x400) SPCTL3 (0x401)
SPCTL4 (0x800) SPCTL5 (0x801)
SPCTL6 (0x4800) SPCTL7 (0x4801)

ADSP-21368 SHARC Processor Hardware Reference A-37

Register Reference

Table A-8. SPCTLx Register Bit Descriptions

Bit Name Description

0 SPEN_A Enable Channel A Serial Port.
0 = Serial port A channel disabled
1 = Serial port A channel enabled
This bit is reserved when the SPORT is in packed I2S and multichan-
nel modes.

2–1 DTYPE Data Type Select. Selects the data type formatting for normal and
multichannel transmissions as follows:
Normal Multichannel Data Type Formatting
00 x0 Right-justify, zero-fill unused MSBs
01 x1 Right-justify, sign-extend unused MSBs
10 0x Compand using μ-law
11 1x Compand using A-law

3 LSBF Serial Word Endian Select.
0 = Big endian (MSB first)
1 = Little endian (LSB first)
This bit is reserved when the SPORT is in I2S or left-justified sample
pair modes.

8–4 SLEN Serial Word Length Select. Selects the word length in bits. For DSP
serial and multichannel modes, word sizes can be from 3 bits
(SLEN = 2) to 32 bits (SLEN = 31). For I2S and left-justified modes,
word sizes can be from 8 bits (SLEN = 7) to 32 bits (SLEN = 31).

9 PACK 16-Bit to 32-Bit Word Packing Enable.
0 = Disable 16- to 32-bit word packing
1 = Enable 16- to 32-bit word packing

10 ICLK Internal Clock Select.
0 = Select external transmit clock
1 = Select the internal transmit clock
This bit applies to DSP serial and multichannel modes, including
packed I2S modes.

MSTR (I2S
mode only)

In I2S and left-justified sample pair mode, this bit selects the word
source and internal clock (if set, = 1) or external clock (if cleared, = 0)

11 OPMODE Sport Operation Mode.
0 = DSP serial/multichannel mode if cleared
1 = Selects the I2S, packed I2S, left-justified sample pair mode

Serial Port Registers

A-38 ADSP-21368 SHARC Processor Hardware Reference

12 CKRE Clock Rising Edge Select. Determines clock signal to sample data and
the frame sync selection.
0 = Falling edge
1 = Rising edge
CKRE is reserved when the SPORT is in I2S and left-justified sample
pair modes.

13 FSR Frame Sync Required Select. Selects whether the serial port requires
(if set, = 1) or does not require a transfer frame sync (if cleared, = 0).
FSR is reserved when the SPORT is in packed I2S, I2S, left-justified
sample pair, and multichannel modes. See Table A-7 on page A-30.

14 IFS
(IMFS)

Internal Frame Sync Select. Selects whether the serial port uses an
internally-generated frame sync (if set, = 1) or uses an external frame
sync (if cleared, = 0). This bit is reserved when the SPORT is in I2S
mode, left-justified sample pair mode. See Table A-7 on page A-30.

15 DIFS Data Independent Frame Sync Select.
1 = Serial port uses a data-independent frame sync (sync at selected
interval)
0 = Serial port uses a data-dependent frame sync (sync when TX FIFO
is not empty or when RX FIFO is not full). This bit is reserved when
the SPORT is in packed I2S and multichannel modes. See Table A-7
on page A-30.

16 LFS, FRFS,
LMFS

Active Low Frame Sync Select. Depending on the OPMODE, selects
an active high or low, left or right channel frame sync. See Table A-7
on page A-30.

17 LAFS Late Transmit Frame Sync Select.
0 = Early frame sync (FS before first bit).
1 = Late frame sync (FS during first bit)
This bit is reserved when the SPORT is in packed I2S and multichan-
nel modes. See Table A-7 on page A-30.

18 SDEN_A Enable Channel A Serial Port DMA.
0 = Disable serial port channel A DMA
1 = Enable serial port channel A DMA

19 SCHEN_A Enable Channel A Serial Port DMA Chaining.
0 = Disable serial port channel A DMA chaining
1 = Enable serial port channel A DMA chaining

Table A-8. SPCTLx Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference A-39

Register Reference

20 SDEN_B Enable Channel B Serial Port DMA.
0 = Disable serial port channel B DMA
1 = Enable serial port channel B DMA

21 SCHEN_B Enable Channel B Serial Port DMA Chaining.
0 = Disable serial port channel B DMA chaining
1 = Enable serial port channel B DMA chaining

22 FS_BOTH FS Both Enable.
0 = Issue WS if data is present in either transmit buffer
1 = Issue WS if data is present in both transmit buffers
This bit is reserved when the SPORT is in packed I2S, multichannel,
I2S and left-justified sample pair modes.

23 BHD Buffer Hang Disable.
0 = Indicates a core stall. The core stalls when it tries to write to a full
transmit buffer or read an empty receive buffer FIFO.
1 = Ignore a core hang
This bit applies to all modes.

24 SPEN_B Enable Channel B Serial Port.
0 = Serial port A channel disabled
1 = Serial port A channel enabled
This bit is reserved when the SPORT is in packed I2S and multichan-
nel modes.

25 SPTRAN Data Direction Control.
0 = Enable receive buffers
1 = Activate transmit buffers

26 DERR_B
(TUVF_B or
ROVF_B)

Channel B Error Status (sticky, read-only). Indicates if the serial
transmit operation has underflowed or a receive operation has over-
flowed in the channel B data buffer.

28–27 DXS_B Channel B Data Buffer Status (read-only). Indicates the status of the
serial port’s channel B data buffer as follows:
11 = Full
00 = Empty
10 = Partially full
This bit is reserved when the SPORT is in multichannel mode.

Table A-8. SPCTLx Register Bit Descriptions (Cont’d)

Bit Name Description

Serial Port Registers

A-40 ADSP-21368 SHARC Processor Hardware Reference

SPORT Multichannel Control Registers (SPMCTLx)
Unlike previous SHARC designs, the serial ports in the ADSP-21367/8/9
and ADSP-2137x processors work individually, not in pairs. Therefore,
each SPORT has its own multichannel control register. These registers are
shown in Figure A-19 and described in Table A-9. The reset value for
these registers is undefined and their addresses are:

29 DERR_A
(TUVF_A or
ROVF_A)

Channel A Error Status (sticky, read-only). Indicates if the serial
transmit operation has underflowed or a receive operation has over-
flowed in the channel A data buffer.

31–30 DXS_A Channel A Data Buffer Status (read-only). Indicates the status of the
11 = Full
00 = Empty
10 = Partially full

SPMCTL0 – 0xC04

SPMCTL1 – 0xC17

SPMCTL2 – 0x404

SPMCTL3 – 0x417

SPMCTL4 – 0x804

SPMCTL5 – 0x817

SPMCTL6 – 0x4804

SPMCTL7 – 0x4817

Table A-8. SPCTLx Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference A-41

Register Reference

Figure A-19. SPMCTLx Registers – Multichannel Mode

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMACHSxB
SPORTx Channel B Status
DMA Chaining Status
x = 0,2,4,6

CHNL
Current Channel Status
(read-only)

DMASxA
SPORTx Channel A DMA
status x = 0,2,4,6

MCEB
Multichannel Enable
B Channels
0=Disable
1=Enable

DMACHSxA
SPORTx Channel A Status
DMA Chaining Status x = 0,2,4,6

DMACHSyB
SPORTx Channel B Status
DMA Chaining Status y = 1,3,5,7

DMACHSyA
SPORTx Channel A Status
DMA Chaining Status y = 1,3,5,7

DMASyB
SPORTx Channel B DMA Status
y = 1,3,5,7

DMASyA
SPORTx Channel A DMA
Status y = 1,3,5,7

DMASxB
SPORTx Channel B DMA
status x = 0,2,4,6

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved
SPL

MCEA
Multichannel Enable
A Channels
1=Enable
0=Disable

MFDx
Multichannel Frame Delay

SPORT Loopback
SPORT0 A to SPORT1 A only
SPORT0 B to SPORT1 B only

NCH
Number of Channels – 1

25

9

SPMCTL0 (0xC04) SPMCTL1 (0xC17)
SPMCTL2 (0x404) SPMCTL3 (0x417)
SPMCTL4 (0x804) SPMCTL5 (0x817)
SPMCTL6 (0x4804) SPMCTL7 (0x4817)

Serial Port Registers

A-42 ADSP-21368 SHARC Processor Hardware Reference

Table A-9. SPMCTLx Register Bit Descriptions

Bit Name Description

0 MCEA Multichannel Mode Enable. Standard and multichannel modes
only. One of two configuration bits that enable and disable mul-
tichannel mode on serial port channels. See OPMODE bit
on page A-37.
0 = Disable multichannel operation
1 = Enable multichannel operation if OPMODE = 0

4–1 MFD Multichannel Frame Delay. Set the interval, in number of serial
clock cycles, between the multichannel frame sync pulse and the
first data bit. These bits provide support for different types of T1
interface devices. Valid values range from 0 to 15 with bits [4:1].
Values of 1 to15 correspond to the number of intervening serial
clock cycles. A value of 0 corresponds to no delay. The multi-
channel frame sync pulse is concurrent with first data bit.

11–5 NCH Number of Multichannel Slots (minus one). Select the number
of channel slots (maximum of 128) to use for multichannel oper-
ation. Valid values for actual number of channel slots range from
1 to 128. Use this formula to calculate the value for NCH:
NCH = Actual number of channel slots – 1.

12 SPL SPORT Loopback Mode. Enables if set (= 1) or disables if
cleared (= 0) the channel loopback mode. Loopback mode
enables developers to run internal tests and to debug applications.
Loopback works under the following SPORT configurations
where either of the two paired SPORTs can be set up to transmit
or receive, depending on their SPTRAN bit setting.

SPORT0 and SPORT1. SPORT0 can only be paired with
SPORT1, controlled by the SPL bit in the SPMCTL0 register.

SPORT2 and SPORT3. SPORT2 can only be paired with
SPORT3, controlled by the SPL bit in the SPMCTL2 register.

SPORT4 and SPORT5. SPORT4 can only be paired with
SPORT5, controlled by the SPL bit in the SPMCTL4 register.

SPORT6 and SPORT7. SPORT6 can only be paired with
SPORT7, controlled via SPL bit in the SPMCTL6 register

15–13 Reserved

ADSP-21368 SHARC Processor Hardware Reference A-43

Register Reference

SPORT Transmit Buffer Registers (TXSPx)
The addresses of the TXSPx registers are:

The 32-bit TXSPx registers hold the output data for serial port transmit
operations. The reset value for these registers is undefined. For more
information on how transmit buffers work, see “Transmit and Receive
Data Buffers (TXSPxA/B, RXSPxA/B)” on page 5-67.

22–16 CHNL Current Channel Selected (read-only, sticky). Identify the cur-
rently selected transmit channel slot (0 to 127).

23 MCEB Multichannel Enable, B Channels.
0 = Disable
1 = Enable

27–24 DMASxy DMA Status. Selects the transfer status.
0 = Inactive
1 = Active
(read-only)

31–28 DMACHSxy DMA Chaining Status.
0 = Inactive
1 = Active
(read-only)

TXSP0A – 0xC60 TXSP0B – 0xC62

TXSP1A – 0xC64 TXSP1B – 0xC66

TXSP2A – 0x460 TXSP2B – 0x462

TXSP3A – 0x464 TXSP3B – 0x466

TXSP4A – 0x860 TXSP4B – 0x862

TXSP5A – 0x864 TXSP5B – 0x866

TXSP6A – 0x4860 TXSP6B – 0x4862

TXSP7A – 0x4864 TXSP7B – 0x4866

Table A-9. SPMCTLx Register Bit Descriptions (Cont’d)

Bit Name Description

Serial Port Registers

A-44 ADSP-21368 SHARC Processor Hardware Reference

SPORT Receive Buffer Registers (RXSPx)
The 32-bit RXSPx registers hold the input data from serial port receive
operations. The reset value for these registers is undefined. For more
information on how receive buffers work, see “Transmit and Receive Data
Buffers (TXSPxA/B, RXSPxA/B)” on page 5-67. The addresses of the
RXSPx registers are:

SPORT Divisor Registers (DIVx)
The addresses of the DIVx registers are:

These registers, shown in Figure A-20, have an undefined reset value.
These registers contain two fields:

• Bits 15–1 are CLKDIV. These bits identify the serial clock divisor
value for internally-generated SCLK as follows:

RXSP0A – 0xc61 RXSP0B – 0xc63

RXSP1A – 0xc65 RXSP1B – 0xc67

RXSP2A – 0x461 RXSP2B – 0x463

RXSP3A – 0x465 RXSP3B – 0x467

RXSP4A – 0x861 RXSP4B – 0x863

RXSP5A – 0x865 RXSP5B – 0x867

RXSP6A – 0x4861 RXSP6B – 0x4863

RXSP7A – 0x4865 RXSP7B – 0x4867

DIV0 – 0xc02 DIV1 – 0xc03

DIV2 – 0x402 DIV3 – 0x403

DIV4 – 0x802 DIV5 – 0x803

DIV6 – 0x4802 DIV7 – 0x4803

CLKDIV
fCCLK

8 fSCLK()
----------------------- 1–=

ADSP-21368 SHARC Processor Hardware Reference A-45

Register Reference

• Bits 31–16 are FSDIV. These bits select the frame sync divisor for
internally-generated TFS as follows:

SPORT Count Registers (SPCNTx)
The SPCNTx registers provides status information for the internal clock and
frame sync. The addresses of the SPCNTx registers are:

The reset value for these registers is undefined.

Figure A-20. DIVx Register

SPCNT0 – 0xC15 SPCNT1 – 0xC16

SPCNT2 – 0x415 SPCNT3 – 0x416

SPCNT4 – 0x815 SPCNT5 – 0x816

SPCNT6 – 0x4815 SPCNT7 – 0x4816

FSDIV
fSCLK

fSFS
--------------- 1–=

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 1 0 0 0 0 0

FSDIV

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 1 0 0 0 0 0

CLKDIV
Clock Divisor

25

9

Frame Sync Divisor

Reserved

Serial Port Registers

A-46 ADSP-21368 SHARC Processor Hardware Reference

SPORT Active Channel Select Registers (SPxCSy)
Each bit, 31–0, set (= 1) in one of the four SPxCSy registers corresponds to
the active channel, 127–0, on a multichannel mode serial port. When the
SPxCSy registers activate a channel, the serial port transmits or receives the
word in that channel’s position of the data stream. When a channel’s bit
in the SPxCSy register is cleared (= 0), the serial port’s data transmit pin
three-states during the channel’s transmit time slot if the serial port is con-
figured as transmitter. If the serial port is configured as the receiver it
ignores the incoming data. The addresses of the SPxCSy registers are:

The reset value for these registers is undefined.

SP0CS0 – 0xC05 SP0CS1 – 0xC06

SP0CS2 – 0xC07 SP0CS3 – 0xC08

SP2CS0 – 0x405 SP2CS1 – 0x406

SP2CS2 – 0x407 SP2CS3 – 0x408

SP4CS0 – 0x805 SP4CS1 – 0x806

SP4CS2 – 0x807 SP4CS3 – 0x808

SP6CS0 – 0x4805 SP6CS1 – 0x4806

SP6CS2 – 0x4807 SP64CS3 – 0x4808

ADSP-21368 SHARC Processor Hardware Reference A-47

Register Reference

SPORT Compand Registers (SPxCCSy)
Each bit, 31–0, set (= 1) in one of the four SPxCCSy registers corresponds
to a companded channel, 127–0, on a multichannel mode serial port.
When the SPxCCSy register activates companding for a channel, the serial
port applies the companding from the serial port’s DTYPE selection to the
word transmitted or received in that channel’s position of the data stream.
When a channel’s bit in the SPxCCSy register is cleared (= 0), the serial port
does not compand the outgoing or incoming data during the channel’s
time slot.

The addresses and channel assignments of the SPxCCSy registers are shown
below.

The reset value for these registers is undefined.

SP0CCS0 – 0xC0D, SPORT0 channels 31 - 0 SP0CCS1 – 0xC0E, SPORT0 channels 63 - 32

SP0CCS2 – 0xC0F, SPORT0, channels 95 - 64 SP0CCS3 – 0xC10, SPORT0 channels 127 - 96

SP1CCS0 – 0xC11, SPORT1 channels 31 - 0 SP1CCS1 – 0xC12, SPORT1 channels 63 - 32

SP1CCS2 – 0xC13, SPORT1, channels 95 - 64 SP1CCS3 – 0xC14, SPORT1 channels 127 - 96

SP2CCS0 – 0x40D SPORT2 channels 31 - 0 SP2CCS1 – 0x40E, SPORT2 channels 63 - 32

SP2CCS2 – 0x40F, SPORT2, channels 95 - 64 SP2CCS3 – 0x410, SPORT2 channels 127 - 96

SP3CCS0 – 0x411, SPORT3 channels 31 - 0 SP3CCS1 – 0x412, SPORT3 channels 63 - 32

SP3CCS2 – 0x413, SPORT3, channels 95 - 64 SP3CCS3 – 0x414, SPORT3 channels 127 - 96

SP4CCS0 – 0x80D, SPORT4 channels 31 - 0 SP4CCS1 – 0x80E, SPORT4 channels 63 - 32

SP4CCS2 – 0x80F, SPORT4, channels 95 - 64 SP4CCS3 – 0x810, SPORT4 channels 127 - 96

SP5CCS0 – 0x811, SPORT5 channels 31 - 0 SP5CCS1 – 0x812, SPORT5 channels 63 - 32

SP5CCS2 – 0x813, SPORT5, channels 95 - 64 SP5CCS3 – 0x814, SPORT5 channels 127 - 96

SP6CCS0 – 0x480D, SPORT6 channels 31 - 0 SP6CCS1 – 0x480E, SPORT6 channels 63 - 32

SP6CCS2 – 0x480F, SPORT6, channels 95 - 64 SP6CCS3 – 0x4810, SPORT6 channels 127 - 96

SP7CCS0 – 0x4811 SPORT7 channels 31 - 0 SP7CCS1 – 0x4812, SPORT7 channels 63 - 32

SP7CCS2 – 0x4813, SPORT7, channels 95 - 64 SP7CCS3 – 0x4814, SPORT7 channels 127 - 96

Serial Port Registers

A-48 ADSP-21368 SHARC Processor Hardware Reference

SPORT Error Control Register (SPERRCTLx)
The SPERRCTLx registers control and report the status of the interrupts
generated by each SPORT (see Figure A-21).

Figure A-21. SPERRCTLx Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DERRA_EN

DERRB_EN

FSERRA_EN

DERRA_STAT

DERRB_STAT

FSERRA_STAT

SPERRCTL0 (0xC18), SPERRCTL1 (0xC19)
SPERRCTL2 (0x418), SPERRCTL3 (0x419)
SPERRCTL4 (0x818), SPERRCTL5 (0x819)
SPERRCTL6 (0x4818), SPERRCTL7 (0x4819)

Enable Channel A Error
Detection
0=Disable
1=Enable

Enable Channel B Error
Detection
0=Disable
1=Enable

Enable Frame Sync Error
Detection
0=Disable
1=Enable

Channel A Interrupt Status (W1C)
SPTRAN=0 Receive overflow status
SPTRAN=1 Transmit underflow status

Channel A Interrupt Status (W1C)
SPTRAN=0 Receive overflow status
SPTRAN=1 Transmit underflow status

Frame Sync Interrupt Status (W1C)
0=No frame sync error
1=Frame sync error detected

Reserved

ADSP-21368 SHARC Processor Hardware Reference A-49

Register Reference

SPORT Error Status Register (SPERRSTAT)
In the ADSP-21367/8/9 and ADSP-2137x processors, there is one global
interrupt status register, SPERRSTAT, that checks the status of SPORT
interrupts. This read-only register is located at address 0x2300 and is 24
bits wide (see Figure A-22).

Figure A-22. SPERRSTATx Register

SP5 DERRB Int Status

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

SP7 DERRB Int Status

SP4 FSERR Int Status

SP2 FSERR Int Status

SP1 FSERR Int Status

SP0 FSERR Int Status

SP7 DERRA Int Status

SP6 DERRB Int Status

SP6 DERRA Int Status

SP0 DERRA Int Status

SP0 DERRB Int Status

SP1 DERRA Int Status

SP1 DERRB Int Status

SP2 DERRA Int Status

SP2 DERRB Int StatusSP5 DERRA Int Status

SP4 DERRB Int Status

SP4 DERRA Int Status

SP3 DERRA Int Status

SP3 DERRB Int Status

SP5 FSERR Int Status

SP6 FSERR Int Status

SP7 FSERR Int Status

SP3 FSERR Int Status

Serial Port Registers

A-50 ADSP-21368 SHARC Processor Hardware Reference

SPORT DMA Index Registers (IISPx)
The IISPx register is 19 bits wide. It holds an address and acts as a pointer
to memory for a DMA transfer. For more information, see “I/O Proces-
sor” on page 2-1. The addresses of the IISPx registers are:

The reset value for these registers is undefined.

SPORT DMA Modifier Registers (IMSPx)
The IMSPx register is 16 bits wide and it provides the increment or step
size by which an IISPx register is post-modified during a DMA operation.
For more information, see “I/O Processor” on page 2-1. The reset value
for these registers is undefined. The addresses of the IMSPx registers are:

IISP0A – 0xC40 IISP0B – 0xC44

IISP1A – 0xC48 IISP1B – 0xC4C

IISP2A – 0x440 IISP2B – 0x444

IISP3A – 0x448 IISP3B – 0x44C

IISP4A – 0x840 IISP4B – 0x844

IISP5A – 0x848 IISP5B – 0x84C

IISP6A – 0x4840 IISP6B – 0x4844

IISP7A – 0x4848 IISP7B – 0x484C

IMSP0A – 0xC41 IMSP0B – 0xC45

IMSP1A – 0xC49 IMSP1B – 0xC4D

IMSP2A – 0x441 IMSP2B – 0x445

IMSP3A – 0x449 IMSP3B – 0x44D

IMSP4A – 0x841 IMSP4B – 0x845

IMSP5A – 0x849 IMSP5B – 0x84D

IMSP6A – 0x4841 IMSP6B – 0x4845

IMSP7A – 0x4849 IMSP7B – 0x484D

ADSP-21368 SHARC Processor Hardware Reference A-51

Register Reference

SPORT DMA Count Registers (CSPx)
The CSPx registers are 16 bits wide and they hold the word count for a
DMA transfer. For more information, see “I/O Processor” on page 2-1
The reset value for these registers is undefined. The addresses of the CSPx
registers are:

SPORT Chain Pointer Registers (CPSPx)
The CPSPx registers are 20 bits wide. They hold the address for the next
transfer control block in a chained DMA operation. For more informa-
tion, see “I/O Processor” on page 2-1. The reset value for these registers is
undefined. The addresses of the CPSPx registers are:

CSP0A – 0xC42 CSP0B – 0xC46

CSP1A – 0xC4A CSP1B – 0xC4E

CSP2A – 0x442 CSP2B – 0x446

CSP3A – 0x44A CSP3B – 0x44E

CSP4A – 0x842 CSP4B – 0x846

CSP5A – 0x84A CSP5B – 0x84E

CSP6A – 0x4842 CSP6B – 0x4846

CSP7A – 0x484A CSP7B – 0x484E

CPSP0A – 0xC43 CPSP0B – 0xC47

CPSP1A – 0xC4B CPSP1B – 0xC4F

CPSP2A – 0x443 CPSP2B – 0x447

CPSP3A – 0x44B CPSP3B – 0x44F

CPSP4A – 0x843 CPSP4B – 0x847

CPSP5A – 0x84B CPSP5B – 0x84F

CPSP6A – 0x4843 CPSP6B – 0x4847

CPSP7A – 0x484B CPSP7B – 0x484F

Serial Peripheral Interface Registers

A-52 ADSP-21368 SHARC Processor Hardware Reference

Serial Peripheral Interface Registers
The following sections describe the registers associated with the two serial
peripheral interfaces (SPIs). The SPI B port is routed through the DAI.

SPI Control Registers (SPICTL, SPICTLB)
The addresses of these registers are 0x1000 and 0x2800 (SPICTLB). The
reset value for these registers is 0x0400. The SPI control (SPICTL) regis-
ters, shown in Figure A-23 and described in Table A-10, are used to
configure and enable the SPI system.

ADSP-21368 SHARC Processor Hardware Reference A-53

Register Reference

Figure A-23. SPICTL, SPICTLB Registers

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PACKEN TIMOD
Transfer Initiation Mode
00=Initiate transfer by read of
receive buffer
01=Initiate transfer by write of
transmit buffer
10=Enable DMA transfer mode
11=Reserved

Reserved

8-Bit Packing Enable
1=8- to 16-bit packing
0=No packing
SPIEN
SPI System Enable
1=Enable
0=Disable

OPD
Open Drain Output Enable for Data Pins
1=Open drain
0=Normal
SPIMS
Master Slave Mode Bit
1=SPI master device
0=SPI slave device
CLKPL

CPHASE

MSBF
Most Significant Byte First
1=MSB sent/received first
0=LSB sent/received first

SENDZ
Send Zero or Last Byte
when SPITX Empty
1=Send zeros
0=Send last word

GM
Fetch/Discard Incoming Data
when SPIRX Full
1=Overwrite with new data
0=Discard incoming data

ISSEN
Input Slave Select Enable
1=Enable
0=Disable

DMISO
Disable MISO Pin (Broadcast)
1=MISO disabled
0=MISO enabled

WL
Word Length
00=8 bits, 01=16 bits,
10=32 bits, 11=Reserved

9SPICTL (0x1000)
SPICTLB (0x2800)

Clock Polarity
0=Active high SPICLK (low is the idle state)
1=Active low SPICLK (high is the idle state)

Clock Phase
0=SPICLK toggles at middle of 1st data bit
1=SPICLK toggles at start of 1st data bit

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved
SGN
Sign Extend Data
1=Sign extend
0=No sign extend

SMLS
Seamless Transfer
1=Enable
0=Disable
TXFLSH
Transmit Buffer Flush
1=SPITX cleared
0=SPITX not cleared

RXFLSH
Receive Buffer Flush
1=SPIRX cleared
0=SPIRX not cleared

25

ILPBK
Internal Loopback Enable
1=Internal loopback enabled
0=Internal loopback not enabled

Serial Peripheral Interface Registers

A-54 ADSP-21368 SHARC Processor Hardware Reference

Table A-10. SPICTL Register Bit Descriptions

Bit Name Description

1–0 TIMOD Transfer Initiation Mode. Defines transfer initiation mode and
interrupt generation.
00 = Initiate transfer by read of receive buffer. Interrupt active when
receive buffer is full.
01 = Initiate transfer by write to transmit buffer. Interrupt active
when transmit buffer is empty.
10 = Enable DMA transfer mode. Interrupt configured by DMA.
11 = Reserved

2 SENDZ Send Zero. Send zero or the last word when TXSPI is empty.
0 = Send last word
1 = Send zeros

3 GM Get Data. When RXSPI is full, get data or discard incoming data
0 = Discard incoming data
1 = Get more data, overwrites the previous data

4 ISSEN Input Slave-Select Enable. Enables slave-select (SPIDS) input for
the master. When not used, SPIDS can be disabled, freeing up a
chip pin as a general-purpose I/O pin.
0 = Disable
1 = Enable

5 DMISO Disable MISO Pin. Disables MISO as an output. This is needed in
an environment where a master wishes to transmit to various slaves
at one time (broadcast). However, only one slave is allowed to trans-
mit data back to the master. This bit should be set for all slaves,
except the one from whom the master wishes to receive data.
0 = MISO enabled
1 = MISO disabled

6 Reserved

8–7 WL Word Length.
00 = 8 bits
01 = 16 bits
10 = 32 bits

9 MSBF Most Significant Byte First.
0 = LSB sent/received first
1 = MSB sent/received first

ADSP-21368 SHARC Processor Hardware Reference A-55

Register Reference

10 CPHASE Clock Phase. Selects the transfer format.
0 = SPICLK starts toggling at the middle of 1st data bit.
1 = SPICLK starts toggling at the start of 1st data bit.

11 CLKPL Clock Polarity.
0 = Active high SPICLK (SPICLK low is the idle state)
1 = Active low SPICLK (SPICLK high is the idle state)

12 SPIMS SPI Master Select. Configures SPI module as master or slave.
0 = Device is a slave device
1 = Device is a master device

13 OPD Open Drain Output Enable. Enables open drain data output
enable (for MOSI and MISO).
0 = Normal
1 = Open drain

14 SPIEN SPI Port Enable.
0 = SPI module is disabled
1 = SPI module is enabled

15 PACKEN Packing Enable.
0 = No packing
1 = 8- to16-bit packing
Note: This bit may be 1 only when WL = 00 (8-bit transfer). When
in transmit mode, the PACKEN bit unpacks data.

16 SGN Sign Extend.
0 = No sign extension
1 = Sign extension

17 SMLS Seamless Transfer.
0 = Seamless transfer disabled
1 = Seamless transfer enabled, not supported in mode
TIMOD1–0 = 00 and CPHASE=0 for all modes

18 TXFLSH Flush Transmit Buffer. Write a 1 to this bit to clear TXSPI.
0 = TXSPI not cleared
1 = TXSPI cleared

19 RXFLSH Clear RXSPI. Write a 1 to this bit to clear RXSPI.
0 = RXSPI not cleared
1 = RXSPI cleared

Table A-10. SPICTL Register Bit Descriptions (Cont’d)

Bit Name Description

Serial Peripheral Interface Registers

A-56 ADSP-21368 SHARC Processor Hardware Reference

SPI Port Status (SPISTAT, SPISTATB) Registers
These registers’ addresses are 0x1002 and 0x2802 (SPISTATB). The reset
value for these registers is 0x01.The SPISTAT and SPISTATB registers,
shown in Figure A-24 and described in Table A-11, are read-only registers
used to detect when an SPI transfer is complete, if transmission/reception
errors occur, and the status of the TXSPI and RXSPI FIFOs. The bits in
these registers are W1C-type (write 1-to-clear).

20 ILPBK Internal Loop Back.
0 = No internal loopback
1 = Internal loopback enabled

31–21 Reserved

Figure A-24. SPISTAT, SPISTATB Registers

Table A-10. SPICTL Register Bit Descriptions (Cont’d)

Bit Name Description

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

TXCOL

SPIF
SPI Transmit Transfer
Complete
1=Transfer complete
0=Transfer active

MME
Multimaster Error
1=SPIDS asserted by slave
0=No error

Transmit collision error

RXS

TXSPI Data Buffer Status (Read-Only)
1=Full
0=Empty

ROVF
Reception Error (Overflow)
1=New data received with full RXSPI buffer

TUNF
Transmission Error (Underflow)
1=Transmission occurred with
no new data in TXSPI bufferTXS

RXSPI Data Buffer Status (Read-Only)
1=Full
0=Empty

25

9

SPISTAT (0x1002)
SPISTATB (0x2802)

SPIFE
Transaction is complete on the external interface

ADSP-21368 SHARC Processor Hardware Reference A-57

Register Reference

Table A-11. SPISTAT Register Bit Descriptions

Bit Name Description

0 SPIF SPI Transmit or Receive Transfer Complete. SPIF is set when an
SPI single-word transfer is complete.

1 MME Multimaster Error or Mode-Fault Error. MME is set in a master
device when some other device tries to become the master.

2 TUNF Transmission Error. TUNF is set when transmission occurred with
no new data in TXSPI register.

3 TXS Transmit Data Buffer Status. TXSPI data buffer status.
0 = Empty
1 = Full

4 ROVF Reception Error. ROVF is set when data is received with receive
buffer full

5 RXS Receive Data Buffer Status.
0 = Empty
1 = Full

6 TXCOL Transmit Collision Error. When TXCOL is set, it is possible that
corrupt data was transmitted.

7 SPIFE External Transaction Complete. Set (= 1) when the SPI transaction
is complete on the external interface.

31-8 Reserved

Serial Peripheral Interface Registers

A-58 ADSP-21368 SHARC Processor Hardware Reference

SPI Port Flags Registers (SPIFLG, SPIFLGB)
These registers’ addresses are 0x1001 and 0x2801 (SPIFLGB). The reset
value is 0x0F80.The SPIFLG and SPIFLGB registers, shown in Figure A-25
and described in Table A-12, are used to enable individual SPI slave-select
lines when the SPI is enabled as a master.

Figure A-25. SPIFLG, SPIFLGB Registers

Table A-12. SPIFLG, SPIFLGB Register Bit Descriptions

Bit Name Description

3–0 DSxEN (3-0) SPI Device Select Enable. Enables or disables the corresponding
flag as a flag output to be used for SPI slave-select.
0 = Disable
1 = Enable

6–4 Reserved

7 ISSS Input Service Select. This read-only bit reflects the status of the
slave-select input pin.

11–8 SPIFLGx
(3-0)

SPI Device Select Control. Selects (if cleared, = 0) a correspond-
ing flag output to be used for an SPI slave-select.

12–31 Reserved

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

00 0 0 0 1 1 1 1 0 0 0 0 0 0 0

Reserved
SPIFLGx

DSxEN
SPI Device Select Enable
1=Enable
0=Disable

Reserved

SPI Device Select Control
1=Disable
0=Enable
ISSS
Status of Input Slave Select Pin

24

9

SPIFLG (0x1001)
SPIFLGB (0x2801)

ADSP-21368 SHARC Processor Hardware Reference A-59

Register Reference

SPI Receive Buffer Registers (RXSPI, RXSPIB)
These registers’ addresses are 0x1004 (for RXSPI) and 0x2804 (for RXSPIB).
The reset values are undefined. These are 32-bit, read-only registers acces-
sible by the core or DMA controller. At the end of a data transfer, RXSPIx
is loaded with the data in the shift register. During a DMA receive opera-
tion, the data in RXSPIx is automatically loaded into the internal memory.
For core- or interrupt-driven transfers, you can also use the RXS status bits
in the SPISTAT register to determine if the receive buffer is full.

RXSPI Shadow Registers
(RXSPI_SHADOW, RXSPIB_SHADOW)

These registers’ addresses are 0x1006 (for RXSPI_SHADOW) and 0x2806 (for
RXSPIB_SHADOW). The reset values are undefined. These registers act as
shadow registers for the receive data buffer, RXSPI and RXSPIB registers,
and are used to aid software debugging. These registers, are at a different
address from RXSPI and RXSPIB but their contents are identical to that of
RXSPI and RXSPIB. When a software read of RXSPIx occurs, the RXS bit is
cleared and an SPI transfer may be initiated (if TIMOD=00). No such hard-
ware action occurs when the shadow register is read.

SPI Transmit Buffer Registers (TXSPI, TXSPIB)
These registers’ addresses are 0x1003 (for TXSPI) and 0x2803 (for TXSPIB).
The reset values are undefined. These SPI transmit data registers are
32-bit registers that are part of the IOP register set and can be accessed by
the core or the DMA controller. Data is loaded into these registers before
being transmitted. Prior to the beginning of a data transfer, data in TXSPIx
is automatically loaded into the transmit shift register. During a DMA
transmit operation, the data in TXSPIx is automatically loaded from inter-
nal memory.

Serial Peripheral Interface Registers

A-60 ADSP-21368 SHARC Processor Hardware Reference

SPI Baud Rate Registers (SPIBAUD, SPIBAUDB)
These registers’ addresses are 0x1005 (for SPIBAUD) and 0x2805 (for
SPIBAUDB) and their reset values are undefined (Table A-13). These SPI
registers are 16-bit, read-write registers that are used to set the bit transfer
rate for a master device. When configured as slaves, the value written to
these registers is ignored. The (SPIBAUDx) registers can be read or written
at any time. The serial clock rate is determined by the following formula:

SPI Baud Rate = (Peripheral clock rate (PCLK)) ÷ (4 × SPIBAUD15–1)

Writing a value of 0 or 1 to these registers disables the serial clock. There-
fore, the maximum serial clock rate is one-fourth the peripheral clock rate
(PCLK).

Various possible baud rate configurations are shown in Table A-14.

Table A-13. SPIBAUD, SPIBAUDB Register Bit Descriptions

Bit Name Description

0 Reserved

15–1 BAUDR Baud Rate Enable. Enables the SPICLK per the following equa-
tion:
SPICLK baud rate = core clock (CCLK)/8 x BAUDR)
Default=0

31–16 Reserved

Table A-14. SPI Master Baud Rate Example

BAUDR
(Decimal Value)

SPI CLock Divide Factor Baud Rate for CCLK

0 N/A N/A

1 8 41.7 MHz

2 16 20.8 MHz

ADSP-21368 SHARC Processor Hardware Reference A-61

Register Reference

SPI DMA Registers
There are ten SPI DMA-specific registers:

• “SPI DMA Configuration Registers (SPIDMAC, SPIDMACB)”
on page A-62

• “SPI DMA Start Address Registers (IISPI, IISPIB)” on page A-64

• “SPI DMA Address Modify Registers (IMSPI, IMSPIB)” on
page A-64

• “SPI DMA Word Count Registers (CSPI, CSPIB)” on page A-64

• “SPI DMA Chain Pointer Registers (CPSPI, CPSPIB)” on
page A-65

For information on configuring DMA using the SPI, see “Setting Up and
Starting Chained DMA over the SPI” on page 2-42.

3 24 13.9 MHz

4 32 10.4 MHz

32,767, (0x7FFF) 262136 1.3 KHz

Table A-14. SPI Master Baud Rate Example (Cont’d)

BAUDR
(Decimal Value)

SPI CLock Divide Factor Baud Rate for CCLK

Serial Peripheral Interface Registers

A-62 ADSP-21368 SHARC Processor Hardware Reference

SPI DMA Configuration Registers (SPIDMAC, SPIDMACB)

These registers addresses are 0x1084 (for SPIDMAC) and 0x2884 (for SPID-
MACB) and their reset value is undefined. These 17-bit SPI registers, shown
in Figure A-26 and described in Table A-15, are used to control DMA
transfers.

Figure A-26. SPIDMAC, SPIDMACB Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPICHSReserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPIDENSPIDMAS
DMA Transfer Status
1=DMA transfer in progress
0=DMA Idle

DMA Chain Loading Status
1=DMA chain pointer loading
in progress
0=DMA chain idle

SPIERRS
DMA Error Status
1=Error during transfer
0=Successful DMA transfer

SPISx
DMA FIFO Status
00=FIFO empty, 11=FIFO full,
10=FIFO partially full

DMA Enable
1=DMA enabled
0=DMA disabled
SPIRCV
DMA Write/Read
1=Memory read (SPI transmit)
0=Memory write (SPI receive)

SPIMME
Multimaster Error
1=Error during transfer
0=Successful transfer

SPIUNF
Transmit Underflow Error (SPIRCV=1)
1=Transmission error occurred with transmit
buffer empty
0=Successful transfer

Receive Overflow Error (SPIRCV=1)
1=Error: data received with receive buffer full
0=Successful transfer

SPIOVF

INTEN
Enable DMA Interrupt on
Transfer
1=Enable
0=Disable

Reserved

DMA FIFO Clear
1=Enable
0=Disable

FIFOFLSH

Enable Interrupt on Error
1=Enable
0=Disable

INTERR

SPI DMA Chaining Enable
1=Enable
0=Disable

SPICHEN

Reserved

SPIDMAC (0x1084)
SPIDMACB (0x2884)

ADSP-21368 SHARC Processor Hardware Reference A-63

Register Reference

Table A-15. SPIDMAC, SPIDMACB Register Bit Descriptions

Bit Name Description

0 SPIDEN DMA Enable.
0 = Disable
1 = Enable

1 SPIRCV DMA Write/Read.
0 = Memory write (SPI transmit)
1 = Memory read (SPI receive)

2 INTEN Enable DMA Interrupt on Transfer.
0 = Disable
1 = Enable

3 Reserved

4 SPICHEN SPI DMA Chaining Enable.
0 = Disable
1 = Enable

6–5 Reserved

7 FIFOFLSH DMA FIFO Clear.
0 = Disable
1 = Enable

8 INTERR Enable Interrupt on Error.
0 = Disable
1 = Enable

9 SPIOVF Receive OverFlow Error (SPIRCV = 1).
0 = Successful transfer
1 = Error – data received with RXSPI full

10 SPIUNF Transmit Underflow Error (SPIRCV = 0).
0 = Successful transfer
1 = Error occurred in transmission with no new data in
TXSPI.

11 SPIMME Multimaster Error.
0 = Successful transfer
1 = Error during transfer

Serial Peripheral Interface Registers

A-64 ADSP-21368 SHARC Processor Hardware Reference

SPI DMA Start Address Registers (IISPI, IISPIB)

The reset values for these registers are undefined. These 19-bit read-write
SPI registers contain the start address of the buffer in memory. Their
addresses are 0x1080 (for IISPI) and 0x2880 (for IISPIB).

SPI DMA Address Modify Registers (IMSPI, IMSPIB)

The reset values for these registers are undefined. These 16-bit, read-write
SPI registers contain the address modifier. Their addresses are 0x1081 (for
IMSPI) and 0x2881 (for IMSPIB).

SPI DMA Word Count Registers (CSPI, CSPIB)

The reset values for these registers are undefined. These 16-bit, read-write
SPI registers contain the number of words to be transferred. Their
addresses are 0x1082 (for CSPI) and 0x2882 (for CSPIB).

13–12 SPISx DMA FIFO Status.
00 = FIFO empty
11 = FIFO full
10 = FIFO partially full
01 = Reserved

14 SPIERRS DMA Error Status.
0 = Successful DMA transfer
1 = Errors during DMA transfer

15 SPIDMAS DMA Transfer Status.
0 = DMA idle
1 = DMA in progress

16 SPICHS DMA Chain Loading Status.
0 = Chain idle
1 = Chain loading in progress

31–17 Reserved

Table A-15. SPIDMAC, SPIDMACB Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference A-65

Register Reference

SPI DMA Chain Pointer Registers (CPSPI, CPSPIB)

The reset values for these registers are undefined. These 20-bit, read-write
SPI registers contain the address of the next TCB when DMA chaining is
enabled. Their addresses are 0x1083 (for CPSPI) and 0x2883 (for CPSPIB).

Input Data Port Registers
The input data port (IDP) provides an additional input path to the pro-
cessor core. The IDP is configurable as eight channels of serial data or
seven channels of serial data and a single channel of up to a 20-bit wide
parallel data. Six registers are used to specify modes, track status of inputs
and outputs, and permit the IDP FIFO buffer to be read.

• “Input Data Port Control Register 0 (IDP_CTL0)” on page A-66

• “Input Data Port Control Register 1 (IDP_CTL1)” on page A-68

• “Input Data Port FIFO Register (IDP_FIFO)” on page A-69

• “Input Data Port DMA Control Registers” on page A-70

• “Input Data Port Ping-Pong DMA Registers” on page A-72

• “Parallel Data Acquisition Port Control Register (IDP_PP_CTL)”
on page A-74

Input Data Port Registers

A-66 ADSP-21368 SHARC Processor Hardware Reference

Input Data Port Control Register 0 (IDP_CTL0)
Use the IDP_CTL0 registers to configure and enable the input data port and
each of its channels. This register is shown in Figure A-27 and described
in Table A-16.

The IDP may also be routed through the DAI using its bits. For
more information, see “DAI/DPI Registers” on page A-109.

Figure A-27. IDP_CTL0 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IDP_SMODE7

Buffer Hang Disable
0 = Core hang is enabled
1 = Core hang is disabled

IDP_SMODE6

IDP_SMODE3

IDP_SMODE4

IDP_SMODE5

IDP_SMODE2

IDP_SMODE1

IDP_ENABLE

IDP_NSET

IDP_BHD

IDP_DMA_EN

IDP_CLROVER

IDP_CTL0 (0x24B0)

Channel 7 Serial Mode Select

Channel 6 Serial Mode Select

Channel 3 Serial
Mode Select

Channel 4 Serial
Mode SelectChannel 5 Serial Mode Select

Channel 2 Serial Mode Select

Channel 1 Serial Mode Select

Global IDP Enable
1=Enable all IDP channels
0=IDP disabled

Number of FIFO Entries

IDP_SMODE0
Channel 0 Serial Mode Select

Global IDP DMA Enable
0=IDP DMA disabled
1=IDP DMA enable

Clear FIFO Overflow (WO)
1=Clear overflow

ADSP-21368 SHARC Processor Hardware Reference A-67

Register Reference

Table A-16. IDP_CTL0 Register Bit Descriptions

Bit Name Description

3–0 IDP_NSET Monitors number of FIFO entries where N > samples
raises interrupt controller bit 8.

4 IDP_BHD IDP Buffer Hang Disable. Reads of an empty FIFO or
writes to a full FIFO make the core hang. This condi-
tion continues until the FIFO has valid data (in the case
of reads) or the FIFO has at least one empty location (in
the case of writes).
0 = Core hang is enabled
1 = Core hang is disabled

5 IDP_DMA_EN DMA Enable. Enables DMA on all IDP channels.
0 = DMA not enabled
1 = DMA enabled

6 IDP_CLROVR FIFO Overflow Clear Bit. Writes of 1 to this bit clear
the overflow condition in the DAI_STAT register.
Because this is a write-only bit, it always returns LOW
when read.

7 IDP_ENABLE Enable IDP. 1 to 0 transition on this bit clears
IDP_FIFO.
0 = IDP is disabled. Data does not come to IDP_FIFO
from IDP channels.
1 = IDP is enabled.

10–8 IDP_SMODE0 Serial Input Mode Select. These eight inputs (0-7), each
of which contains 3 bits, indicate the mode of the serial
input for each of the eight IDP channels.
Input format:
000 = Left-justified sample pair mode
001 = I2S mode
010 = Left-justified 32 bits
011 = I2S 32 bits
100 = Right-justified 24 bits
101 = Right-justified 20 bits
110 = Right-justified 18 bits
111 = Right-justified 16 bits

13–11 IDP_SMODE1

16–14 IDP_SMODE2

19–17 IDP_SMODE3

22–20 IDP_SMODE4

25–23 IDP_SMODE5

28–26 IDP_SMODE6

31–29 IDP_SMODE7

Input Data Port Registers

A-68 ADSP-21368 SHARC Processor Hardware Reference

Input Data Port Control Register 1 (IDP_CTL1)
Use the IDP_CTL1 register to configure and enable individual IDP chan-
nels. This register is shown in Figure A-28 and described in Table A-17.

Figure A-28. IDP_CTL1 Register

Table A-17. IDP_CTL1 Register Bit Descriptions

Bit Name Description

7–0 IDP_ENx IDP Channel Enable. Enables individual IDP channels. Bit
0 enables channel 0, bit 1 enables channel 1, and so on.

15–8 IDP_DMA_ENx IDP DMA Enable. Enables standard DMA on all IDP
channels. Bit 8 enables channel 0, bit 9 enables channel 1,
and so on.
0 = DMA Disabled
1 = DMA Enabled

23–16 IDP_PINGx DMA Ping-Pong Enable. Enables ping-pong DMA on all
IDP channels. Bit 16 enables channel 0, bit 17 enables
channel 1 and so on.

30–24 Reserved

31 IDP_FFCLR Clear IDP FIFO. Setting this bit to 1 clears IDP FIFO.
This is a write-only bit and always returns 0 on reads.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IDP_PINGx
IDP Channel x Ping-Pong
DMA Enable
1=Enable
0=DisableReserved

IDP_FFCLI
Clear IDP FIFO (WO)
1=Clear

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IDP_ENx
IDP Channel x Enable
1=Enable
0=Disable

9

IDP_CTL1 (0x24B2)

IDP_DMA_ENx
IDP Channel x DMA Enable
1=Enable
0=Disable

ADSP-21368 SHARC Processor Hardware Reference A-69

Register Reference

Input Data Port FIFO Register (IDP_FIFO)
This register (shown in Figure A-29) provides information about the out-
put of the IDP FIFO. Normally, IDP_FIFO is used only to read and remove
the top sample from the FIFO. However, the core may also write to this
register. When it does so, the audio data word is pushed into the input
side of the FIFO as if it had come from the SRU on the channel encoded
in the three LSBs. This can be useful for verifying the operation of the
FIFO, the DMA channels, and the status portions of the IDP. The IDP
FIFO is an 8-deep FIFO.

Channel-encoding provides for eight combinations, corresponding to the
eight inputs. This register format applies when using channels 1–7 and
also when using Channel 0 in serial mode. When using channel 0 in paral-
lel mode, refer to the description of the four possible packing modes. For
more information, see “Packing Unit” on page 7-9.

The information in Table A-18 is not valid when data comes from
the PDAP channel.

Figure A-29. IDP_FIFO Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Serial Input Data

Indicates serial input
port channel number

IDP Channel Encoding
Bits

Left/Right channel as specified by
frame sync

LR_STAT

IDP_FIFO (0x24D0)

Serial Input Data

Input Data Port Registers

A-70 ADSP-21368 SHARC Processor Hardware Reference

Input Data Port DMA Control Registers
Each of the eight DMA channels have an I-register with an index pointer
(19 bits), an M-register with a modifier/stride (6 bits), and a C-register
with a count (16 bits). For example, IDP_DMA_I0, IDP_DMA_M0 and
IDP_DMA_C0 control the DMA for IDP channel 0. The following sections
describe these registers.

IDP_DMA_Ix

Table A-19 provides information about the IDP DMA index registers.

Table A-18. IDP_FIFO Register Bit Descriptions

Bit Name Description

2–0 IDP Channel Encoding. These bits indicate the serial input port
channel number that provided this serial input data.
Note: This information is not valid when data comes from the PDAP.

3 LR_STAT Left/Right Channel Status. Indicates whether the data in bits 31-4 is
the left or the right audio channel as dictated by the frame sync sig-
nal. The polarity of the encoding depends on the serial mode selected
in IDP_SMODE for that channel. See Table A-16 on page A-67.

31–4 Input Data (Serial). Some LSBs can be zero, depending on the mode.

Table A-19. IDP_DMA_Ix Registers

Register Address Reset State Description

IDP_DMA_I0 0x2400 0x00000 IDP channel 0 DMA index register

IDP_DMA_I1 0x2401 0x00000 IDP channel 1 DMA index register

IDP_DMA_I2 0x2402 0x00000 IDP channel 2 DMA index register

IDP_DMA_I3 0x2403 0x00000 IDP channel 3 DMA index register

IDP_DMA_I4 0x2404 0x00000 IDP channel 4 DMA index register

IDP_DMA_I5 0x2405 0x00000 IDP channel 5 DMA index register

ADSP-21368 SHARC Processor Hardware Reference A-71

Register Reference

IDP_DMA_Mx

Table A-20 provides information about the IDP DMA modifier registers.

IDP_DMA_Cx

Table A-21 provides information about the IDP DMA counter registers.

IDP_DMA_I6 0x2406 0x00000 IDP channel 6 DMA index register

IDP_DMA_I7 0x2407 0x00000 IDP channel 7 DMA index register

Table A-20. IDP_DMA_Mx Registers

Register Address Reset State Description

IDP_DMA_M0 0x2410 0x00 IDP channel 0 DMA modifier register

IDP_DMA_M1 0x2411 0x00 IDP channel 1 DMA modifier register

IDP_DMA_M2 0x2412 0x00 IDP channel 2 DMA modifier register

IDP_DMA_M3 0x2413 0x00 IDP channel 3 DMA modifier register

IDP_DMA_M4 0x2414 0x00 IDP channel 4 DMA modifier register

IDP_DMA_M5 0x2415 0x00 IDP channel 5 DMA modifier register

IDP_DMA_M6 0x2416 0x00 IDP channel 6 DMA modifier register

IDP_DMA_M7 0x2417 0x00 IDP channel 7 DMA modifier register

Table A-21. IDP_DMA_Cx Registers

Register Address Reset State Description

IDP_DMA_C0 0x2420 0x00000 IDP channel 0 DMA count register

IDP_DMA_C1 0x2421 0x00000 IDP channel 1 DMA count register

IDP_DMA_C2 0x2422 0x00000 IDP channel 2 DMA count register

Table A-19. IDP_DMA_Ix Registers (Cont’d)

Register Address Reset State Description

Input Data Port Registers

A-72 ADSP-21368 SHARC Processor Hardware Reference

Input Data Port Ping-Pong DMA Registers
Each of the eight DMA channels have an index register with an index
pointer (19 bits) and a counter register with a count (16 bits) that are used
when performing ping-pong DMA. For example, IDP_DMA_I1A and
IDP_DMA_PC1 control ping-pong DMA for IDP channel 1. The following
sections describe these registers.

IDP Ping-Pong Index Registers (IDP_DMA_IxA)

Table A-22 provides information about the IDP ping-pong DMA index
registers.

IDP_DMA_C3 0x2423 0x00000 IDP channel 3 DMA count register

IDP_DMA_C4 0x2424 0x00000 IDP channel 4 DMA count register

IDP_DMA_C5 0x2425 0x00000 IDP channel 5 DMA count register

IDP_DMA_C6 0x2426 0x00000 IDP channel 6 DMA count register

IDP_DMA_C7 0x2427 0x00000 IDP channel 7 DMA count register

Table A-22. IDP_DMA_IxA Registers

Register Address Reset State Description

IDP_DMA_I0A 0x2408 0x00000 IDP channel 0 index A ping-pong DMA register

IDP_DMA_I1A 0x2409 0x00000 IDP channel 1 index A ping-pong DMA register

IDP_DMA_I2A 0x240A 0x00000 IDP channel 3 index A ping-pong DMA register

IDP_DMA_I3A 0x240B 0x00000 IDP channel 4 index A ping-pong DMA register

IDP_DMA_I4A 0x240C 0x00000 IDP channel 4 index A ping-pong DMA register

IDP_DMA_I5A 0x240D 0x00000 IDP channel 5 index A ping-pong DMA register

IDP_DMA_I6A 0x240E 0x00000 IDP channel 6 index A ping-pong DMA register

Table A-21. IDP_DMA_Cx Registers (Cont’d)

Register Address Reset State Description

ADSP-21368 SHARC Processor Hardware Reference A-73

Register Reference

IDP Ping-Pong Count Registers (IDP_DMA_PCx)

Table A-23 provides information about the IDP ping-pong DMA count
registers.

IDP_DMA_I7A 0x240F 0x00000 IDP channel 7 index A ping-pong DMA register

IDP_DMA_I0B 0x2418 0x00000 IDP channel 0 index B ping-pong DMA register

IDP_DMA_I1B 0x2419 0x00000 IDP channel 1 index B ping-pong DMA register

IDP_DMA_I2B 0x241A 0x00000 IDP channel 2 index B ping-pong DMA register

IDP_DMA_I3B 0x241B 0x00000 IDP channel 3 index B ping-pong DMA register

IDP_DMA_I4B 0x241C 0x00000 IDP channel 4 index B ping-pong DMA register

IDP_DMA_I5B 0x241D 0x00000 IDP channel 5 index B ping-pong DMA register

IDP_DMA_I6B 0x241E 0x00000 IDP channel 6 index B ping-pong DMA register

IDP_DMA_I7B 0x241F 0x00000 IDP channel 7 index B ping-pong DMA register

Table A-23. IDP_DMA_PCx Registers

Register Address Reset State Description

IDP_DMA_PC0 0x2428 0x00000 IDP DMA channel 0 ping-pong count

IDP_DMA_PC1 0x2429 0x00000 IDP DMA channel 1 ping-pong count

IDP_DMA_PC2 0x242A 0x00000 IDP DMA channel 2 ping-pong count

IDP_DMA_PC3 0x242B 0x00000 IDP DMA channel 3 ping-pong count

IDP_DMA_PC4 0x242C 0x00000 IDP DMA channel 4 ping-pong count

IDP_DMA_PC5 0x242D 0x00000 IDP DMA channel 5 ping-pong count

IDP_DMA_PC6 0x242E 0x00000 IDP DMA channel 6 ping-pong count

IDP_DMA_PC7 0x242F 0x00000 IDP DMA channel 7 ping-pong count

Table A-22. IDP_DMA_IxA Registers (Cont’d)

Register Address Reset State Description

Input Data Port Registers

A-74 ADSP-21368 SHARC Processor Hardware Reference

Parallel Data Acquisition Port Control Register
(IDP_PP_CTL)

Setting IDP_PP_CTL[31] enables either the 20 DAI pins or the DATA31–8
pins to be used as a parallel input channel. These parallel words may be
packed into 32-bit words for efficiency. The data then flows through the
FIFO and is transferred by a dedicated DMA channel into the core’s
memory, as with any IDP channel.

The IDP_PP_CTL register, shown in Figure A-30 and described in
Table A-24, provides 20 mask bits that allow the input from any of the 20
pins to be ignored. The mask is specified by setting the IDP_Pxx_PDAPMASK
bits (bits 19–0 of the IDP_PP_CTL register) for the 20 parallel input signals.
For each of the parallel inputs, a bit is set (= 1) to indicate the bit is
unmasked and therefore its data can be passed on to be read, or masked
(= 0), so its data is not read. After this masking process, data gets passed
along to the packing unit.

For more information on the operation of the parallel data acquisition
port, see “Parallel Data Acquisition Port (PDAP)” on page 7-8. For infor-
mation on the pin muxing that is used in conjunction with this module,
see “Pin Multiplexing” on page 14-2.

ADSP-21368 SHARC Processor Hardware Reference A-75

Register Reference

Figure A-30. IDP_PP_CTL Register

Table A-24. IDP_PP_CTL Register Bit Descriptions

Bit Name Description

0 IDP_P01_PDAPMASK Parallel Data Acquisition Port Mask.
0 = Input data from DAI_01 is masked
1 = Input data from DAI_01 is unmasked

1 IDP_P02_PDAPMASK Parallel Data Acquisition Port Mask.
0 = Input data from DAI_02 is masked
1 = Input data from DAI_02 is unmasked

2 IDP_P03_PDAPMASK Parallel Data Acquisition Port Mask.
0 = Input data from DAI_03 is masked
1 = Input data from DAI_03 is unmasked

3 IDP_P04_PDAPMASK Parallel Data Acquisition Port Mask.
0 = Input data from DAI_04 is masked
1 = Input data from DAI_04 is unmasked

IDP_P12_PDAPMASK

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

IDP_P16_PDAPMASK

IDP_PDAP_EN

IDP_P19_PDAPMASK

IDP_P18_PDAPMASK

IDP_P17_PDAPMASK

IDP_P15_PDAPMASK

IDP_P14_PDAPMASK

IDP_P13_PDAPMASK

IDP_P01_PDAPMASK

IDP_P02_PDAPMASK

IDP_P03_PDAPMASK

IDP_P04_PDAPMASK

IDP_P05_PDAPMASK

IDP_P06_PDAPMASKIDP_P11_PDAPMASK

IDP_P10_PDAPMASK

IDP_P09_PDAPMASK

IDP_P07_PDAPMASK

IDP_P08_PDAPMASK

IDP_PDAP_RESET

IDP_PDAP_CLKEDGE

IDP_PDAP_PACKINGX

IDP_PORT_SELECT

IDP_P20_PDAPMASK

IDP_PP_CTL (0x24B1)

Input Data Port Registers

A-76 ADSP-21368 SHARC Processor Hardware Reference

4 IDP_P05_PDAPMASK Parallel Data Acquisition Port Mask.
0 = Input data from DAI_05/DATA0 is masked
1 = Input data from DAI_05/DATA0 is unmasked

5 IDP_P06_PDAPMASK Parallel Data Acquisition Port Mask.
0 = Input data from DAI_06/DATA1 is masked
1 = Input data from DAI_06/DATA1 is unmasked

6 IDP_P07_PDAPMASK Parallel Data Acquisition Port Mask.
0 = Input data from DAI_07/DATA2 is masked
1 = Input data from DAI_07/DATA2 is unmasked

7 IDP_P08_PDAPMASK Parallel Data Acquisition Port Mask.
0 = Input data from DAI_08/DATA3 is masked
1 = Input data from DAI_08/DATA3 is unmasked

8 IDP_P09_PDAPMASK Parallel Data Acquisition Port Mask.
0 = Input data from DAI_09/DATA4 is masked
1 = Input data from DAI_09/DATA4 is unmasked

9 IDP_P10_PDAPMASK Parallel Data Acquisition Port Mask.
0 = Input data from DAI_10/DATA5 is masked
1 = Input data from DAI_10/DATA5 is unmasked

10 IDP_P11_PDAPMASK Parallel Data Acquisition Port Mask.
0 = Input data from DAI_11/DATA6 is masked
1 = Input data from DAI_11/DATA6 is unmasked

11 IDP_P12_PDAPMASK Parallel Data Acquisition Port Mask.
0 = Input data from DAI_12/DATA7 is masked
1 = Input data from DAI_12/DATA7 is unmasked

12 IDP_P13_PDAPMASK Parallel Data Acquisition Port Mask.
0 = Input data from DAI_13/ADDR0 is masked
1 = Input data from DAI_13/ADDR0 is unmasked

13 IDP_P14_PDAPMASK Parallel Data Acquisition Port Mask.
0 = Input data from DAI_14/ADDR1 is masked
1 = Input data from DAI_14/ADDR1 is unmasked

14 IDP_P15_PDAPMASK Parallel Data Acquisition Port Mask.
0 = Input data from DAI_15/ADDR2 is masked
1 = Input data from DAI_15/ADDR2 is unmasked

Table A-24. IDP_PP_CTL Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference A-77

Register Reference

15 IDP_P16_PDAPMASK Parallel Data Acquisition Port Mask.
0 = Input data from DAI_16/ADDR3 is masked
1 = Input data from DAI_16/ADDR3 is unmasked

16 IDP_P17_PDAPMASK Parallel Data Acquisition Port Mask.
0 = Input data from DAI_17/ADDR4 is masked
1 = Input data from DAI_17/ADDR4 is unmasked

17 IDP_P18_PDAPMASK Parallel Data Acquisition Port Mask.
0 = Input data from DAI_18/ADDR5 is masked
1 = Input data from DAI_18/ADDR5 is unmasked

18 IDP_P19_PDAPMASK Parallel Data Acquisition Port Mask.
0 = Input data from DAI_19/ADDR6 is masked
1 = Input data from DAI_19/ADDR6 is unmasked

19 IDP_P20_PDAPMASK Parallel Data Acquisition Port Mask.
0 = Input data from DAI_20/ADDR7 is masked
1 = Input data from DAI_20/ADDR7 is unmasked

25–20 Reserved

26 IDP_PORT_SELECT Port Select: Input Pins Select.
0 = Data bits are read from DAI_P20–1
1 = Data bits are read from DATA31–12 and the
control signals come from DATA11-8 and the PDAP
can be operated through data pins alone (data and
controls can be completely routed through DATA
pins)

28–27 IDP_PDAP_PACKING Packing. Selects PDAP packing mode.
00 = 8- to 32-bit packing
01 = (11, 11, 10) to 32-bit packing
10 = 16- to 32-bit packing
11 = 20- to 32-bit packing. 12 LSBs are set to 0

29 IDP_PDAP_CLKEDGE PDAP (Rising or Falling) Clock Edge.
0 = Data is latched on the rising edge of the clock
(IDP0_CLK_I)
1 = Data is latched on the falling edge

Table A-24. IDP_PP_CTL Register Bit Descriptions (Cont’d)

Bit Name Description

Pulse Width Modulation Registers

A-78 ADSP-21368 SHARC Processor Hardware Reference

Pulse Width Modulation Registers
The following registers control the operation of pulse width modulation
on the ADSP-21367/8/9 and ADSP-2137x processors.

PWM Global Control Register (PWMGCTL)
Use this register, shown in Figure A-31, to enable or disable the four
PWM groups in any combination. This provides synchronization across
the groups. This 16-bit, read/write register is located at address 0x3800.

30 IDP_PDAP_RESET PDAP Reset. Setting this bit (=1) causes the PDAP
reset circuit to strobe, then this bit is cleared auto-
matically.
This bit always returns a value of zero when read.

31 IDP_PDAP_EN PDAP Enable.
0 = Disables the 20 DAI pins or the DATA31–8 pins
from use as parallel input channels.
1 = Enables either the 20 DAI pins or the
DATA31–8 pins to be used as a parallel input chan-
nel. IDP channel 0 cannot be used as a serial input
port with this setting.

Table A-24. IDP_PP_CTL Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference A-79

Register Reference

PWM Global Status Register (PWMGSTAT)
This register, described in Table A-25, provides the status of each PWM
group and is located at address 0x3801. The bits in this register are
W1C-type (write one-to-clear).

Figure A-31. PWMGCTL Register

Table A-25. PWMGSTAT Register Bit Descriptions

Bit Name Description

0 PWM_STAT0 PWM Group 0 Period Completion Status

1 PWM_STAT1 PWM Group 1 Period Completion Status

2 PWM_STAT2 PWM Group 2 Period Completion Status

3 PWM_STAT3 PWM Group 3 Period Completion Status

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM_DIS3

PWM_DIS1

PWM_EN0
PWM_SYNCDIS3
PWM Group 3 Disable

PWM Group 1 Disable

PWM Group 0 Disable

PWM_EN1

PWM Group 0 EnablePWM_SYNCEN3
PWM Group 3 Enable
PWM_SYNCDIS2
PWM Group 2 Disable
PWM_SYNCEN2
PWM Group 2 Enable

PWM_SYNCDIS1
PWM Group 1 Disable

PWM_SYNCEN1
PWM Group 1 Enable

PWM Group 0 Disable
PWM_SYNCDIS0

PWM_DIS0

PWM Group 1 Enable

PWM_EN2
PWM Group 2 Enable
PWM_DIS2

PWM Group 3 Enable

PWM Group 0 Enable
PWM_SYNCEN0

PWM_EN3

PWMGCTL (0x3800)

PWM Group 2 Disable

PWM Group 3 Disable

Pulse Width Modulation Registers

A-80 ADSP-21368 SHARC Processor Hardware Reference

PWM Control Register (PWMCTLx)
These registers, described in Table A-26, are used to set the operating
modes of each PWM block. These registers also allow programs to disable
interrupts from individual groups. These registers addresses are:

PWMCTL0 — 0x3000

PWMCTL1 — 0x3010

PWMCTL2 — 0x3400

PWMCTL3 — 0x3410

Table A-26. PWMCTLx Register Bit Descriptions

Bit Name Function

0 PWM_ALIGN Align Mode.
0 = Edge-aligned. The PWM waveform is left-justified in the
period window.
1 = Center-aligned. The PWM waveform is symmetrical.

1 PWM_PAIR Pair Mode.
0 = Non-paired mode. The PWM generates independent signals
1 = Paired mode. The PWM generates complementary signals on
two outputs.

2 PWM_UPDATE Update Mode.
0 = Single-update mode. The duty cycle values are programma-
ble only once per PWM period. The resulting PWM patterns are
symmetrical about the midpoint of the PWM period.
1 = Double-update mode. A second update of the PWM registers
is implemented at the midpoint of the PWM period.

5 PWM_IRQEN Enable PWM Interrupts. Enables interrupts.
0 = Interrupts not enabled
1 = Interrupts enabled

ADSP-21368 SHARC Processor Hardware Reference A-81

Register Reference

PWM Status Registers (PWMSTATx)
These 16-bit read-only registers, described in Table A-27, report the sta-
tus of the phase and mode for each PWM group. The addresses for these
registers are:

PWM Period Registers (PWMPERIODx)
These 16-bit read/write registers control the period of the four PWM
groups. The value written to the PWMPERIODx register is effectively the
number of tCK clock increments in one-half a PWM period. The addresses
for these registers are:

PWMSTAT0 — 0x3001

PWMSTAT1 — 0x3011

PWMSTAT2 — 0x3401

PWMSTAT3 — 0x3411

Table A-27. PWMSTATx Register Bit Descriptions

Bit Name Description

0 PWM_PHASE PWM Phase Status. Set during operation in the second
half of each PWM period. Allows programs to determine
the particular half-cycle during implementation of the
PWMSYNC interrupt service routine, if required.
0 = First half
1 = Second half

2 PWM_PAIRSTAT PWM Paired Mode Status.
0 = Inactive paired mode
1 = Active paired mode

PWMPERIOD0 — 0x3002

PWMPERIOD1 — 0x3012

PWMPERIOD2 — 0x3402

PWMPERIOD3 — 0x3412

Pulse Width Modulation Registers

A-82 ADSP-21368 SHARC Processor Hardware Reference

PWM Output Disable Registers (PWMSEGx)
These 16-bit read/write registers, described in Table A-28, control the
output signals of the four PWM groups. The addresses for these registers
are:

PWMSEG0 — 0x3008

PWMSEG1 — 0x3018

PWMSEG2 — 0x3408

PWMSEG3 — 0x3418

Table A-28. PWMSEGx Register Bit Descriptions

Bit Name Description

0 PWM_BH Channel B High Disable. Enables or disables the channel B
output signal.
0 = Enable
1 = Disable

1 PWM_BL Channel B Low Disable. Enables or disables the channel B out-
put signal.
0 = Enable
1 = Disable

2 PWM_AH Channel A High Disable. Enables or disables the channel A
output signal.
0 = Enable
1 = Disable

3 PWM_AL Channel A Low Disable. Enables or disables the channel A
output signal.
0 = Enable
1 = Disable

ADSP-21368 SHARC Processor Hardware Reference A-83

Register Reference

PWM Polarity Select Registers (PWMPOLx)
These registers, described in Table A-29, control the polarity of the four
PWM groups which can be set to either active hi or active lo. The
addresses for these registers are:

PWMPOL0 — 0x300F

PWMPOL1 — 0x301F

PWMPOL2 — 0x340F

PWMPOL3 — 0x341F

Table A-29. PWMPOLx Register Bit Descriptions

Bit Name Description

0 PWM_POL1AL Write to Set Channel A Low Polarity 1

1 PWM_POL0AL Write to Set Channel A Low Polarity 0

2 PWM_POL1AH Write to Set Channel A High Polarity 1

3 PWM_POL0AH Write to Set Channel A High Polarity 0

4 PWM_POL1BL Write to Set Channel B Low Polarity 1

5 PWM_POL0BL Write to Set Channel B Low Polarity 0

6 PWM_POL1BH Write to set channel B High Polarity 1

7 PWM_POL0BH Write to set channel B High Polarity 0

Pulse Width Modulation Registers

A-84 ADSP-21368 SHARC Processor Hardware Reference

PWM Channel Duty Control Registers
(PWMAx, PWMBx)

The duty cycle control registers, described in Table A-30, directly control
the duty cycles of the two pairs of PWM signals. These 16-bit, read/write
registers are located at addresses:

PWM Channel Low Duty Control Registers
(PWMALx, PWMBLx)

In non-paired mode, these registers, described in Table A-31 are used to
program the low side duty cycle. These can be different then the high-side
cycles. These 16-bit read/write registers are located at addresses:

PWMA0 — 0x3005 PWMB0 — 0x3006

PWMA1 — 0x3015 PWMB1 — 0x3016

PWMA2 — 0x3405 PWMB2 — 0x3406

PWMA3 — 0x3415 PWMB3 — 0x3416

Table A-30. PWMAx/PWMBx Register Bit Descriptions

Bit Name Description

15–0 PWMAx Channel A Duty Cycle. Program a two’s complement
duty cycle with a value of 0x0000 through 0xFFFF.
Default = 0

15–0 PWMBx Channel B Duty Cycle. Program a two’s complement
duty cycle with a value of 0x0000 through 0xFFFF.
Default = 0

PWMAL0 — 0x300A PWMBL0 — 0x300B

PWMAL1 — 0x301A PWMBL1 — 0x301B

PWMAL2 — 0x340A PWMBL2 — 0x340B

PWMAL3 — 0x341A PWMBL3 — 0x341B

ADSP-21368 SHARC Processor Hardware Reference A-85

Register Reference

PWM Dead Time Registers (PWMDTx)
These registers, described in Table A-32, set up a short time delay between
turning off one PWM signal and turning on its complementary signal.
These 10-bit, read/write registers are located at addresses:

Table A-31. PWMALx/PWMBLx Register Bit Descriptions

Bit Name Description

15–0 PWMALx Channel AL Duty Cycle. Program a two’s complement
duty cycle with a value of 0x0000 through 0xFFFF.
Default = 0

15–0 PWMBLx Channel BL Duty Cycle. Program a two’s complement
duty cycle with a value of 0x0000 through 0xFFFF.
Default = 0

PWMDT0—0x3003 PWMDT2—0x3403

PWMDT1—0x0013 PWMDT3—0x3413

Table A-32. PWMDTx Register Bit Descriptions

Bit Name Description

9–0 PWMDT PWM Dead Time (unsigned). Program a time delay
setting of 0x0000 to 0x03FF. Default = 0

15–10 Reserved

Sony/Philips Digital Interface Registers

A-86 ADSP-21368 SHARC Processor Hardware Reference

Sony/Philips Digital Interface Registers
The following sections describe the registers that are used to configure,
enable and report status information for the S/PDIF transceiver.

Transmitter Control Register (DITCTL)
The S/PDIF transmit control register (DITCTL) is a 32-bit, read/write reg-
ister located at address 0x24A0. The register’s bits are shown in
Figure A-32, Figure A-33 and described in Table A-33.

Figure A-32. DITCTL Register (Bits 31–16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIT_B0CHANR
Channel Status Byte 0 For Subframe B

DITCTL (0x24A0)

DIT_B0CHANL
Channel Status Byte 0 for Subframe A

ADSP-21368 SHARC Processor Hardware Reference A-87

Register Reference

Figure A-33. DITCTL Register (Bits 15–0)

Table A-33. DITCTL Register Bit Descriptions

Bit Name Description

0 DIT_EN Transmitter Enable. Enables the transmitter and resets the
control registers to their defaults.
0 = Transmitter disabled
1 = Transmitter enabled

1 DIT_MUTE Mute. Mutes the serial data output.

DIT_EN

DIT_MUTE

DIT_VALIDL

DIT_VALIDR

Validity bit B use with channel status buffer

Validity bit A use with channel status buffer

Mute Serial Data Output
0=Not muted
1=Muted

Transmitter Enable
0=Transmitter disabled
1=Transmitter enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

DIT_SMODE_IN
Serial Data Input Format
000=Left-justified
001=I2S
010–011=Reserved
100=Right-justified, 24 bits
101=Right-justified, 20 bits
110=Right-justified, 18 bits
111=Right-justified, 16 bits

DIT_FREQ
Oversampling Ratio
00=256 x Fs
01=384 x Fs
10=512 x Fs
11=786 x Fs
DIT_SCDF
Single Channel Double Fre-
quency Mode Enable
0=Disabled, 2 channel mode
1=Enabled
DIT_SCDF_LR
Select SCDF Channel
0=Left channel
1=Right channel

DIT_EXT_SYNCEN

External Sync Enable
0=Internal frame counter not
set to zero at the next LRCLK
rising edge
1=Internal frame counter is
set to zero at the next LRCLK
rising edge

DIT_STANDALONE_MODE
Standalone Mode
0=Full serial mode
1=Standalone mode

DIT_USERS

This bit is high if user bits buffer
has been written but not fully
transmitted.

DIT_BLK_STAT
Block Status (Based on Bit 9 = 1)
0 =Current word is not block start
1 =Current word is block start

Sony/Philips Digital Interface Registers

A-88 ADSP-21368 SHARC Processor Hardware Reference

3–2 DIT_FREQ Frequency Multiplier. Sets the oversampling ratio to the fol-
lowing:
00 = 256 x Frame sync
01 = 384 x Frame sync
10 = 512 x Frame sync
11 = 768 x Frame sync

4 DIT_SCDF Transmit Single-Channel, Double-Frequency Enable.

5 DIT_SCDF_LR Select single-channel, double-frequency mode channel.
(L = 0, R = 1)

8–6 DIT_SMODEIN Serial Data Input Format. Select the input format as follows:
000 = Left-justified
001 = I2S
010 = Reserved
011 = Reserved
100 = Right-justified, 24-bits
101 = Right-justified, 20-bits
110 = Right-justified, 18-bits
111 = Right-justified, 16-bits

9 DIT_
STANDALONE_
MODE

Standalone Mode Enable. When this bit is set (=1), the trans-
mitter is in standalone mode. In this mode the transmitter
inserts block start bits automatically. Channel status bits and
user bits are taken from the respective buffers. Valid bit is set
based on bits 10 and 11 in this DITCTL register for channel
A and B respectively. Bits received with serial data are ignored.
When this bit is cleared (=0), the transmitter is in full serial
mode. In this mode, all the status bits, including the block
start bit, (indicating start of a frame) come through the
SDATA pin along with audio data. The transmitter should be
enabled after or with all other control bits.

10 DIT_VALIDL Validity Bit A. Use with channel status buffer.

11 DIT_VALIDR Validity Bit B. Use with channel status buffer.

12 DIT_BLK_STAT Block Status (read-only). Status bit that indicates block start
(when bit 9, DIT_AUTO, = 1).
0 = Current word is not block start
1 = Current word is block start

Table A-33. DITCTL Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference A-89

Register Reference

Left Channel Status for Subframe A
Registers (DITCHANAx)

There are six channel status buffer registers associated with subframe A.
These registers are listed with their locations in Table A-34.

13 DIT_USERS User Bits Status. This bit is high if user bits buffer has been
written but data has not been transmitted completely.

14 Reserved

15 DIT_EXT_SYNCEN External Sync Enable. When this bit is set, the internal frame
counter is set to zero at the next LRCLK rising edge.

23–16 DIT_B0CHANL Channel status byte 0 for subframe A

31–24 DIT_B0CHANR Channel status byte 0 for subframe B

Table A-34. DITCHANAx Registers

Register (Address) Bits 7–0 Bits 15–8 Bits 23–16 Bits 31–24

DITCHANA0 (0x24A1) BYTE1 BYTE2 BYTE3 BYTE4

DITCHANA1 (0x24D4) BYTE5 BYTE6 BYTE7 BYTE8

DITCHANA2 (0x24D5) BYTE9 BYTE10 BYTE11 BYTE12

DITCHANA3 (0x24D6) BYTE13 BYTE14 BYTE15 BYTE16

DITCHANA4 (0x24D7) BYTE17 BYTE18 BYTE19 BYTE20

DITCHANA5 (0x24D8) BYTE21 BYTE22 BYTE23 Reserved

Table A-33. DITCTL Register Bit Descriptions (Cont’d)

Bit Name Description

Sony/Philips Digital Interface Registers

A-90 ADSP-21368 SHARC Processor Hardware Reference

Right Channel Status for Subframe B
Registers (DITCHANBx)

There are six channel status buffer registers associated with subframe B.
These registers are listed with their locations in Table A-35.

User Bits Buffer Registers for Subframe A
Registers (DITUSRBITAx)

There are six user bits buffer registers associated with subframe A (left
channel). These registers are listed with their locations in Table A-36.

Table A-35. DITCHANBx Registers

Register (Address) Bits 7–0 Bits 15–8 Bits 23–16 Bits 31–24

DITCHANB0 (0x24A2) BYTE1 BYTE2 BYTE3 BYTE4

DITCHANB1 (0x24DA) BYTE5 BYTE6 BYTE7 BYTE8

DITCHANB2 (0x24DB) BYTE9 BYTE10 BYTE11 BYTE12

DITCHANB3 (0x24DC) BYTE13 BYTE14 BYTE15 BYTE16

DITCHANB4 (0x24DD) BYTE17 BYTE18 BYTE19 BYTE20

DITCHANB5 (0x24DE) BYTE21 BYTE22 BYTE23 Reserved

Table A-36. DITUSRBITAx Registers

Register (Address) Bits 7–0 Bits 15–8 Bits 23–16 Bits 31–24

DITUSRBITA0 (0x24E0) BYTE0 BYTE1 BYTE2 BYTE3

DITUSRBITA1 (0x24E1) BYTE4 BYTE5 BYTE6 BYTE7

DITUSRBITA2 (0x24E2) BYTE8 BYTE9 BYTE10 BYTE11

DITUSRBITA3 (0x24E3) BYTE12 BYTE13 BYTE14 BYTE15

DITUSRBITA4 (0x24E4) BYTE16 BYTE17 BYTE18 BYTE19

DITUSRBITA5 (0x24E5) BYTE20 BYTE21 BYTE22 BYTE23

ADSP-21368 SHARC Processor Hardware Reference A-91

Register Reference

User Bits Buffer Registers for Subframe B
Registers (DITUSRBITBx)

There are six user bits buffer registers associated with subframe B (right
channel). These registers are listed with their locations in Table A-37.

Table A-37. DITUSRBITBx Registers

Register (Address) Bits 7–0 Bits 15–8 Bits 23–16 Bits 31–24

DITUSRBITB0 (0x24E8) BYTE0 BYTE1 BYTE2 BYTE3

DITUSRBITB1 (0x24E9) BYTE4 BYTE5 BYTE6 BYTE7

DITUSRBITB2 (0x24EA) BYTE8 BYTE9 BYTE10 BYTE11

DITUSRBITB3 (0x24EB) BYTE12 BYTE13 BYTE14 BYTE15

DITUSRBITB4 (0x24EC) BYTE16 BYTE17 BYTE18 BYTE19

DITUSRBITB5 (0x24ED) BYTE20 BYTE21 BYTE22 BYTE23

Sony/Philips Digital Interface Registers

A-92 ADSP-21368 SHARC Processor Hardware Reference

Receiver Control Register (DIRCTL)
This 32-bit read/write register is used to set up error control and sin-
gle-channel, double-frequency mode. The register is located at address
0x24A8. The register’s bits are shown in Figure A-34 and described in
Table A-38.

Figure A-34. DIRCTL Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIR_BIPHASE

DIR_PLLDIS
Disable PLL
0=Use derived clock from the digital PLL
1=Use clock input from external PLL

Parity Biphase Error Control
00=No action taken
01=Hold last valid sample
10=Replace invalid sample with
zeros
11=Reserved

DIRCTL (0x24A8)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

Reserved

DIR_LOCK
Lock Error Control
00=No action taken
01=Hold last valid sample
10=Send zeros after the last
valid sample
11=Soft mute of the last valid
audio sample is performed

DIR_MUTE
Mute
0=Mute disabled
1=Mute serial data outputs, maintaining
clocks (digital black)

DIR_SCDF
Single-Channel, Double-Frequency Mode Enable
0=2 channel mode disabled
1=2 channel mode enabled

DIR_SCDF_LR
Single-Channel, Double-Frequency Channel Select
0=Left channel
1=Right channel

ADSP-21368 SHARC Processor Hardware Reference A-93

Register Reference

Table A-38. DIRCTL Register Bit Descriptions

Bit Name Description

1–0 DIR_BIPHASE Parity Biphase Error Control.
00 = No action taken
01 = Hold last valid sample
10 = Replace invalid sample with zeros
11 = Reserved

3–2 DIR_LOCK Lock Error Control.
00 = No action taken
01 = Hold last valid sample
10 = Send zeros after the last valid sample
11 = Soft mute of the last valid audio sample is performed as
if NOSTREAM is asserted. This is valid only when linear
PCM audio data is in the stream. With non-linear audio
data, this mode defaults to LOCKERROR_CTL = 10.

4 DIR_SCDF_LR Single-Channel, Double-Frequency Channel Select.
0 = Left channel
1 = Right channel

5 DIR_SCDF Single-Channel, Double-Frequency Mode Enable.
0 = 2 channel mode disabled
1 = 2 channel mode enabled

6 DIR_MUTE Mute.
0 = Mute disabled
1 = Mute serial data outputs, maintaining clocks (digital
black)

7 DIR_PLLDIS Disable PLL. Determines clock input.
0 = Use derived clock from the digital PLL
1 = Use clock input from external PLL

31–8 Reserved

Sony/Philips Digital Interface Registers

A-94 ADSP-21368 SHARC Processor Hardware Reference

Receiver Status Register (DIRSTAT)
This 32-bit, read-only register is used to store the error bits. The error bits
are sticky on read. Once they are set, they remain set until the register is
read. This register also contains the lower byte of the 40-bit channel status
information. The register is located at address 0x24A9. The register’s bits
are shown in Figure A-35 and described in Table A-39.

Figure A-35. DIRSTAT Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIR_NOAUDIOL

DIR_BIPHASEERROR

Biphase Error
0=No biphase error
1=Biphase error

Non-Audio Subframe Mode
Channel 1
0=Not non-audio subframe
mode
1=Non-audio subframe mode,
channel 1

DIRSTAT (0x24A9)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIR_B0CHANL

Reserved

DIR_VALID
Validity Bit. ORed Value of Channel 1 and 2
0=Linear PCM data
1=Non-linear audio data

DIR_PARITYERROR
Parity Bit. Indicates Parity Error
0=No parity error
1=Parity error

DIR_NOSTREAM
Stream Disconnected
0=Stream not disconnected
1=Stream disconnected

DIR_LOCK
Lock Receiver
0=Receiver not locked
1=Receiver locked

DIR_NOAUDIOR
Non-Audio Subframe Mode
Channel 2
0=Not non-audio subframe
mode
1=Non-audio subframe mode,
channel 2
DIR_NOAUDIOLR
Non-Audio Subframe Mode
Channel 1 and 2
0=Not non-audio frame mode
1=Non audio frame mode

DIR_B0CHANR

Channel Status Byte 0 for
Subframe A

Channel Status Byte 0 for Subframe B

ADSP-21368 SHARC Processor Hardware Reference A-95

Register Reference

Table A-39. DIRSTAT Register Bit Descriptions

Bit Name Description

0 DIR_NOAUDIOL Non-Audio Subframe Mode Channel 1. Based on
SMPTE 337M.
0 = Not non-audio subframe mode
1 = Non-audio subframe mode, Channel 1

1 DIR_NOAUDIOR Non-Audio Subframe Mode Channel 2. Based on
SMPTE 337M.
0 = Not non-audio subframe mode
1 = Non-audio subframe mode, Channel 2

2 DIR_NOAUDIOLR Non-Audio Frame Mode Channel 1 and 2. Based on
SMPTE 337M.
0 = Not non-audio frame mode
1 = Non audio frame mode

3 DIR_VALID Validity Bit. ORed value of channel 1 and 2.
0 = Linear PCM data
1 = Non-linear audio data

4 DIR_LOCK Lock Receiver.
0 = Receiver not locked
1 = Receiver locked

5 DIR_NOSTREAM Stream Disconnected. Indicates that the data stream is
disconnected.
0 = Stream not disconnected
1 = Stream disconnected

6 DIR_PARITYERROR Parity Bit. Indicates parity error.
0 = No parity error
1 = Parity error

7 DIR_BIPHASEERROR Biphase Error Indicates biphase error.
0 = No biphase error
1 = Biphase error

15–8 Reserved

23–16 DIR_B0CHANL Channel Status Byte 0 for Subframe A.

31–24 DIR_B0CHANR Channel Status Byte 0 for Subframe B.

Sony/Philips Digital Interface Registers

A-96 ADSP-21368 SHARC Processor Hardware Reference

Left Channel Status for Subframe A
Register (DIRCHANL)

This register (DIRCHANL, described in Table A-40) is a 32-bit, read/write
register located at address 0x24AA.

Right Channel Status for Subframe B
Register (DIRCHANR)

This register (DIRCHANR, described in Table A-41) is a 32-bit, read/write
register located at address 0x24AB.

Table A-40. DIRCHANL Register

Bit Name Description

7–0 DIR_B1CHANL Channel status byte 1 for subframe A

15–8 DIR_B2CHANL Channel status byte 2 for subframe A

23–16 DIR_B3CHANL Channel status byte 3 for subframe A

31–24 DIR_B4CHANL Channel status byte 4 for subframe A

Table A-41. DIRCHANR Register

Bit Name Description

7–0 DIR_B1CHANR Channel status byte 1 for subframe B

15–8 DIR_B2CHANR Channel status byte 2 for subframe B

23–16 DIR_B3CHANR Channel status byte 3 for subframe B

31–24 DIR_B4CHANR Channel status byte 4 for subframe B

ADSP-21368 SHARC Processor Hardware Reference A-97

Register Reference

Sample Rate Converter Registers
The sample rate converter (SRC) is composed of five registers which are
described in the following sections.

SRC Control Registers (SRCCTLx)
These registers (read/write) control the operating modes, filters, and data
formats used in the SRCs and are shown in Figure A-36 through
Figure A-39 and described in Table A-42 and Table A-43. The SRCCTL0
register controls the SRC0 and SRC1 modules and SRCCTL1 register con-
trols the SRC2 and SRC3 modules.

Figure A-36. SRCCTL0 Register (Bits 16–31)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SRCCTL0 (0x2490)

SRC1_ENABLE
SRC1 Enable
1=SRC enabled
0=SRC disabled

SRC1_MPHASE
SRC1 Matched- Phase Mode
1=Enabled
0=Disabled

SRC1_LENOUT
SRC1 Output Word Length
00=24-bit, 01=20-bit
10=18-bit, 11=16-bit

SRC1_SMODEOUT
SRC1 Serial Output Format
00=Left-justified (default)
01=I2S
10=TDM Mode
11=Right-justified

SRC1_DITHER
SRC1 Dither Enable
1=Enable
0=Disable

SRC1 Soft Mute Enable
1=Mute (default)
0=No mute

SRC1_SOFTMUTE

SRC1_HARD_MUTE
SRC1 Hard Mute Enable
1=Enabled
0=Disabled

SRC1_AUTO_MUTE
SRC1 Auto Hard Mute
Enable (from SPDIF RX)
1=Enabled
0=Disabled

SRC1_BYPASS

SRC1 De-emphasis Filter
1=Enabled
0=Disabled (default)

SRC1 Bypass Mode
1=Bypass enabled
0=Bypass disabled

SRC1_DEEMPHASIS

SRC1_SMODEIN
SRC1 Serial Input Format
000=Left-justified (Default)
001=I2S
010=TDM
100=24-bit right-justified
101=20-bit right-justified
110=18-bit right-justified
111=16-bit right-justified

Sample Rate Converter Registers

A-98 ADSP-21368 SHARC Processor Hardware Reference

Figure A-37. SRCCTL0 Register (Bits 0–15)

Table A-42. SRCCTL0 Register Bit Descriptions

Bit Name Description

0 SRC0_HARD_MUTE Hard Mute. Hard mutes SRC 0.
1 = Mute (default)

1 SRC0_AUTO_MUTE Auto Hard Mute. Auto hard mutes SRC 0 when one of
the non-audio bits is asserted by the SPDIF receiver. See
Table A-39 on page A-95.
0 = No mute
1 = Mute (default)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SRC0_HARD_MUTESRC0_RESET
SRC0 Reset
1=SRC enabled
0=SRC disabled

SRC0 Hard Mute Enable
1=Enabled
0=Disabled

SRC0_AUTO_MUTE
SRC0 Auto Hard Mute
Enable (from SPDIF RX)
1=Enabled
0=Disabled

SRC0_BYPASS

SRC0 De-emphasis Filter
1=Enabled
0=Disabled (default)

SRC0 Bypass Mode
1=Bypass enabled
0=Bypass disabled

SRC0_DEEMPHASIS

SRC0_MPHASE
SRC0 Matched-Phase Mode
1=Enabled
0=Disabled

SRC0_LENOUT
SRC0 Output Word Length
00=24-bit, 01=20-bit
10=18-bit, 11=16-bit

SRC0_SMODEOUT
SRC0 Serial Output Format
00=Left-justified (default)
01=I2S
10=TDM
11=Right-justified

SRC0_DITHER
SRC Dither Enable
1=Enable
0=Disable

SRC0 Soft Mute Enable
1=Mute (default)
0=No Mute

SRC0_SOFTMUTE

SRC0_SMODEIN
SRC0 Serial Input Format
000=Left-justified (Default)
001=I2S
010=TDM
100=24-bit right-justified
101=20-bit right-justified
110=18-bit right-justified
111=16-bit right-justified

SRCCTL0 (0x2490)

ADSP-21368 SHARC Processor Hardware Reference A-99

Register Reference

4–2 SRC0_SMODEIN Serial Input Format. Selects the serial input format for
SRC 0 as follows.
000 = Default, format is left-justified
001 = I2S
010 = TDM
100 = 24-bit right-justified
101 = 20-bit right-justified
110 = 18-bit right-justified
111 = 16-bit right-justified

5 SRC0_BYPASS Bypass SRC0. Output of SRC 0 is the same as the input.

7–6 SRC0_DEEMPHASIS De-emphasis Filter Select. Enables de-emphasis on
incoming audio data for SRC 0.
00 = No Deemphasis
01 = 33 kHz
10 = 44.1 kHz
11 = 48 kHz

8 SRC0_SOFTMUTE Soft Mute. Enables soft mute on SRC 0.
0 = No mute
1 = Mute (default)

9 SRC0_DITHER Dither Select. Enables dithering on SRC 0 when a word
length less than 24 bits is selected.
0 = Dithering is disabled (default)
1 = Dithering is enabled

11–10 SRC0_SMODEOUT Serial Output Format. Selects the serial output format
on SRC 0, as follows:
00 = Left-justified (default)
01 = I2S
10 = TDM mode
11 = Right-justified

Table A-42. SRCCTL0 Register Bit Descriptions (Cont’d)

Bit Name Description

Sample Rate Converter Registers

A-100 ADSP-21368 SHARC Processor Hardware Reference

13–12 SRC0_LENOUT Output Word Length Select. Selects the serial output
word length on SRC 0 as follows:
00 = 24 bits
01 = 20 bits
10 = 18 bits
11 = 16 bits
Any word length less than 24 bits will have dither added
to the unused LSBs if SRCx_DITHER is enabled (= 1).

14 SRC0_MPHASE Match-Phase Mode Select. Configures the SRC 0 mod-
ules to not use their own internally-generated sample rate
ratio but use an externally-generated ratio. Used with
TDM data.
0 = Matched-phase mode disabled (default)
1 = Matched-phase mode enabled

15 SRC0_ENABLE SRC0 Enable. Enables SRC 0.
0 = Disabled
1 = Enabled

16 SRC1_HARD_MUTE Hard Mute. Hard mutes SRC 1.
1 = Mute (default)

17 SRC1_AUTO_MUTE Auto Hard Mute. Auto hard mutes SRC 1 when one of
the non-audio bits is asserted by the SPDIF receiver. See
Table A-39 on page A-95.
0 = No mute
1 = Mute (default)

20–18 SRC1_SMODEIN Serial Input Format. Selects the serial input format for
SRC 1 as follows.
000 = Default, format is left-justified
001 = I2S
010 = TDM
100 = 24-bit right-justified
101 = 20-bit right-justified
110 = 18-bit right-justified
111 = 16-bit right-justified

21 SRC1_BYPASS Bypass Mode Enable. Output of SRC 1 is the same as
input.

Table A-42. SRCCTL0 Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference A-101

Register Reference

23–22 SRC1_DEEMPHASIS De-emphasis Filter Select. Enables deemphasis on
incoming audio data for SRC 1.
00 = No de-emphasis
01 = 33 kHz
10 = 44.1 kHz
11 = 48 kHz

24 SRC1_SOFTMUTE Soft Mute. Enables soft mute on SRC 1.
0 = No mute
1 = Mute (default)

25 SRC1_DITHER Dither Select. Disables dithering on SRC 1 when a word
length less than 24 bits is selected.
0 = Dithering is disabled (default)
1 = Dithering is enabled

27–26 SRC1_SMODEOUT Serial Output Format. Selects the serial output format
for SRC 1 as follows.
00 = Left-justified (default)
01 = I2S
10 = TDM mode
11 = Right-justified

29–28 SRC1_LENOUT Output Word Length Select. Selects the serial output
word length for SRC 1 as follows.
00 = 24 bits
01 = 20 bits
10 = 18 bits
11 = 16 bits
Any word length less than 24 bits will have dither added
to the unused LSBs if SRCx_DITHER is enabled (= 1).

30 SRC1_MPHASE Match-Phase Mode Select. Configures the SRC 1 mod-
ules to not use their own internally-generated sample rate
ratio but use an externally-generated ratio. Used with
TDM data.
0 = Matched-phase disabled (default)
1 = Matched-phase enabled

31 SRC1_ENABLE SRC Enable. Enables SRC 1.
0 = Disabled
1 = Enabled

Table A-42. SRCCTL0 Register Bit Descriptions (Cont’d)

Bit Name Description

Sample Rate Converter Registers

A-102 ADSP-21368 SHARC Processor Hardware Reference

Figure A-38. SRCCTL1 Register (Bits 16–31)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SRCCTL1 (0x2491)

SRC3_ENABLE
SRC 3 Enable
1=SRC enabled
0=SRC disabled
SRC3_MPHASE
SRC 3 Matched-Phase Mode
1=Enabled
0=Disabled
SRC3_LENOUT
SRC 3 Output Word Length
00=24-bit
01=20-bit
10=18-bit
11=16-bit

SRC3_SMODEOUT
SRC 3 Serial Output Format
00=Left-justified (default)
01=I2S
10=TDM
11=Right-justified

SRC3_DITHER
SRC 3 Dither Enable
1=Enable
0=Disable

SRC 3 Soft Mute Enable
1=Mute (default)
0=No mute

SRC3_SOFTMUTE

SRC3_HARD_MUTE
SRC 3 Hard Mute Enable
1=Enabled
0=Disabled
SRC3_AUTO_MUTE
SRC 3 Auto Hard Mute
Enable (from SPDIF RX)
1=Enabled
0=Disabled

SRC3_BYPASS

SRC 3 De-emphasis Filter
1=Enabled
0=Disabled (default)

SRC 3 Bypass Mode
1=Bypass enabled
0=Bypass disabled

SRC3_DEEMPHASIS

SRC3_SMODEIN

SRC 3 Serial Input Format
000=Left-justified (Default)
001=I2S
010=TDM
100=24-bit right-justified
101=20-bit right-justified
110=18-bit right-justified
111=16-bit right-justified

ADSP-21368 SHARC Processor Hardware Reference A-103

Register Reference

Figure A-39. SRCCTL1 Register (Bits 0–15)

Table A-43. SRCCTL1 Register Bit Descriptions

Bit Name Description

0 SRC2_HARD_MUTE Hard Mute. Hard mutes SRC 2.
1 = Mute (default)

1 SRC2_AUTO_MUTE Auto Hard Mute. Auto hard mutes SRC 2 when one of
the non-audio bits is asserted by the SPDIF receiver. See
Table A-39 on page A-95.
0 = No mute
1 = Mute (default)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SRC2_HARD_MUTESRC2_RESET
SRC0, 2 Reset
1=SRC enabled
0=SRC disabled

SRC 2 Hard Mute Enable
1=Enabled
0=Disabled

SRC2_AUTO_MUTE
SRC 2 Auto Hard Mute
Enable (from SPDIF RX)
1=Enabled
0=Disabled

SRC2_BYPASS

SRC 2 Deemphasis Filter
1=Enabled
0=Disabled (default)

SRC 2 Bypass Mode
1=Bypass enabled
0=Bypass disabled

SRC2_DEEMPHASIS

SRC2_MPHASE
SRC 2 Matched-Phase Mode
1=Enabled
0=Disabled

SRC2_LENOUT
SRC 2 Output Word Length
00=24-bit, 01=20-bit
10=18-bit, 11=16-bit

SRC2_SMODEOUT
SRC 2 Serial Output Format
00=Left-justified (default)
01=I2S
10=TDM
11=Right-justified

SRC2_DITHER
SRC 2 Dither Enable
1=Enable
0=Disable

SRC 2 Soft Mute Enable
1=Mute (default)
0=No mute

SRC2_SOFTMUTE

SRC2_SMODEIN
SRC 2 Serial Input Format
000=Left-justified (default)
001=I2S
010=TDM
100=24-bit right-justified
101=20-bit right-justified
110=18-bit right-justified
111=16-bit right-justified

SRCCTL1 (0x2491)

Sample Rate Converter Registers

A-104 ADSP-21368 SHARC Processor Hardware Reference

4–2 SRC2_SMODEIN Serial Input Format. Selects the serial input format for
SRC 2 as follows.
000 =Default, format is left-justified
001 = I2S
010 = TDM
100 = 24-bit right-justified
101 = 20-bit right-justified
110 = 18-bit right-justified
111 = 16-bit right-justified

5 SRC2_BYPASS Bypass SRCx. Output of SRC 2 is the same as input

7–6 SRC2_DEEMPHASIS De-emphasis Filter Select. Enables de-emphasis on
incoming audio data for SRC 2.
00 = No de-emphasis
01 = 33 kHz
10 = 44.1 kHz
11 = 48 kHz

8 SRC2_SOFTMUTE Soft Mute. Enables soft mute on SRC 2.
0 = No mute
1 = Mute (default)

9 SRC2_DITHER Dither Select. Enables dithering on SRC 2 when a word
length less than 24 bits is selected.
0 = Dithering is disabled (default)
1 = Dithering is enabled

11–10 SRC2_SMODEOUT Serial Output Format. Selects the serial output format
on SRC 2 as follows:
00 = Left-justified (default)
01 = I2S
10 = TDM mode
11 = Right-justified

Table A-43. SRCCTL1 Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference A-105

Register Reference

13–12 SRC2_LENOUT Output Word Length Select. Selects the serial output
word length on SRC 2 as follows:
00 = 24 bits
01 = 20 bits
10 = 18 bits
11 = 16 bits
Any word length less than 24 bits will have dither added
to the unused LSBs if SRCx_DITHER is enabled (= 1).

14 SRC2_MPHASE Match-Phase Mode Select. Configures the SRC 2 mod-
ules to not use their own internally-generated sample rate
ratio but use an externally-generated ratio. Used with
TDM data.
0 = Matched-phase disabled (default)
1 = Matched-phase enabled

15 SRC2_ENABLE SRCx Enable. Enables SRC 2.
0 = Disabled
1 = Enabled

16 SRC3_HARD_MUTE Hard Mute. Hard mutes SRC 3.
1 = Mute (default)

17 SRC3_AUTO_MUTE Auto Hard Mute. Auto hard mutes SRC 3 when one of
the non-audio bits is asserted by the SPDIF receiver. See
Table A-39 on page A-95.
0 = No mute
1 = Mute (default)

20–18 SRC3_SMODEIN Serial Input Format. Selects the serial input format for
SRC 3 as follows:
000 = Default, format is left-justified
001 = I2S
010 = TDM
100 = 24-bit right-justified
101 = 20-bit right-justified
110 = 18-bit right-justified
111 = 16-bit right-justified

21 SRC3_BYPASS Bypass Mode Enable. Output of SRC 3 is the same as
input.

Table A-43. SRCCTL1 Register Bit Descriptions (Cont’d)

Bit Name Description

Sample Rate Converter Registers

A-106 ADSP-21368 SHARC Processor Hardware Reference

23–22 SRC3_DEEMPHASIS De-emphasis Filter Select. Enables de-emphasis on
incoming audio data for SRC 3.
00 = No de-emphasis
01 = 33 kHz
10 = 44.1 kHz
11 = 48 kHz

24 SRC3_SOFTMUTE Soft Mute. Enables soft mute on SRC 3.
0 = No mute
1 = Mute (default)

25 SRC3_DITHER Dither Select. Disables dithering on SRC 3 when a word
length less than 24 bits is selected.
0 = Dithering is disabled (default)
1 = Dithering is enabled

27–26 SRC3_SMODEOUT Serial Output Format. Selects the serial output format
for SRC 3 as follows:
00 = Left-justified (default)
01 = I2S
10 = TDM mode
11 = Right-justified

29–28 SRC3_LENOUT Output Word Length Select. Selects the serial output
word length for SRC 3 as follows:
00 = 24 bits
01 = 20 bits
10 = 18 bits
11 = 16 bits
Any word length less than 24 bits will have dither added
to the unused LSBs if SRCx_DITHER is enabled (= 1).

30 SRC3_MPHASE Match-Phase Mode Select. Configures the SRC 3 mod-
ules to not use their own internally-generated sample rate
ratio but use an externally-generated ratio. Used with
TDM data.
0 = Matched-phase disabled (default)
1 = Matched-phase enabled

31 SRC3_ENABLE SRC Enable. Enables SRC 3.
0 = Disabled
1 = Enabled

Table A-43. SRCCTL1 Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference A-107

Register Reference

SRC Mute Register (SRCMUTE)
This read-write register, described in Table A-44, connects an SRCx mute
input and output (when cleared) to automatically mute input while the
SRC is initializing. Bit 0 controls SRC0, bit 1 controls SRC1, bit 2 controls
SRC2, and bit 3 controls SRC3. This register is located at address 0x2492.
Note that the SRC mute interrupts are latched in the DAI_IRPTL_H and
DAI_IRPTL_L registers.

Table A-44. SRCMUTE Register Bit Descriptions

Bit Name Description

0 SRC0_MUTE_EN 0 = Connect SRC0 mute input and output
1 = Do not connect SRC0 mute input and output

1 SRC1_MUTE_EN 0 = Connect SRC1 mute input and output
1 = Do not connect SRC1 mute input and output

2 SRC2_MUTE_EN 0 = Connect SRC2 mute input and output
1 = Do not connect SRC2 mute input and output

3 SRC3_MUTE_EN 0 = Connect SRC3 mute input and output
1 = Do not connect SRC3 mute input and output

Sample Rate Converter Registers

A-108 ADSP-21368 SHARC Processor Hardware Reference

SRC Ratio Registers (SRCRATx)
These read-only status registers (shown in Figure A-40) report the mute
and I/O sample ratio as follows: the SRCRAT0 register reports for SRC0 and
1 and the SRCRAT1 register reports the mute and I/O sample ratio for
SRC2 and 3.

Figure A-40. SRC Ratio Register (SRCRAT0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SRC1_RATIOxSRC1_MUTEOUT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SRC0_RATIOx
SRC0_MUTEOUT
SRC0 Mute Output Enabled

SRC1 Ratio Bit Field

SRC0 Ratio Bit Field

SRCRAT0 (0x2498)

SRC1 Mute Output Enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SRC3_RATIOxSRC3_MUTEOUT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SRC2_RATIOxSRC2_MUTEOUT

SRC2 Mute Output Enabled

SRC3 Ratio Bit Field

SRC 2 Ratio Bit Field

SRC_RAT1 (0x2499)

SRC3 Mute Output Enabled

ADSP-21368 SHARC Processor Hardware Reference A-109

Register Reference

DAI/DPI Registers
The registers that are described in the following sections are contained
within the digital audio and digital peripheral interfaces. The bits in these
registers are used to enable the connection of peripherals and to view sta-
tus of data transfers. For complete information on using the DAI/DPI, see
Chapter 4, Digital Audio/Digital Peripheral Interfaces.

Digital Audio Interface Status Register (DAI_STAT)
The DAI_STAT register is a read-only register and is shown in Figure A-41
and described in Table A-45. The state of all eight DMA channels is
reflected in IDP_DMAx_STAT (bits 24-17 of the DAI_STAT register). These
bits are set once the IDP_DMA_EN bit is set and remains set till the last data
of that channel is transferred (see “Input Data Port Control Register 0
(IDP_CTL0)” on page A-66). Even if the IDP_DMA_EN bit is set, it goes low
once the required number of data transfers occurs. And even when DMA
through some channel is not intended, its IDP_DMAx_STAT bit goes high.

DAI/DPI Registers

A-110 ADSP-21368 SHARC Processor Hardware Reference

Figure A-41. DAI_STAT Register

Table A-45. DAI_STAT Register Bit Descriptions

Bit Name Description

7–0 SRU_PINGx_STAT Ping-pong DMA Status (Channel). Indicates the status of
ping-pong DMA in each respective channel (channel 0–7).
0 = DMA is not active
1 = DMA is active

15–8 SRU_OVFx Sticky Overflow Status (Channel). Provides overflow status
information for each channel (bit 8 for channel 0 through bit
15 for channel 7).
0 = No overflow
1 = Overflow has occurred

16 Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IDP_FIFOSZ

Reserved

Number of Valid Data in IDP FIFO

IDP_DMA7_STAT

IDP_DMA6_STAT

IDP_DMA3_STAT

IDP_DMA4_STAT

IDP_DMA1_STAT

IDP_DMA2_STAT

IDP_DMA0_STAT

IDP_DMA5_STAT

SRU_PING1_STAT

SRU_OVF0

DAI_STAT (0x24B8)

SRU_PING0_STAT

SRU_PING2_STAT
SRU_PING3_STAT
SRU_PING4_STAT
SRU_PING5_STAT
SRU_PING6_STAT
SRU_PING7_STAT

SRU_OVF1
SRU_OVF2

SRU_OVF4

SRU_OVF7
SRU_OVF6
SRU_OVF5

SRU_OVF3

Reserved

IDP Channel Overflow (Sticky) Ping-Pong DMA Chan-
nel Status

DMA Active Status for
IDP Channel

ADSP-21368 SHARC Processor Hardware Reference A-111

Register Reference

DAI Resistor Pull-up Enable Register
(DAI_PIN_PULLUP)

This 20-bit, read/write register is shown in Figure A-42. Bits 19–0 of this
register control the enabling/disabling 22.5 KΩ pull-up resistor on
DAI_P0[19:0]. Setting a bit to 1 enables a pull-up resistor on the corre-
sponding pin. After RESET, the value of this register is 0xFFFFF, which
means pull-ups are enabled on all 20 DAI pins.

24–17 IDP_DMAx_STAT Input Data Port DMA Status.
0 = DMA is not active
1 = DMA is active

27–25 Reserved

31–28 IDP_FIFOSZ IDP FIFO Size.
Number of samples in the IDP FIFO.

Figure A-42. DAI_PIN_PULLUP Register

Table A-45. DAI_STAT Register Bit Descriptions (Cont’d)

Bit Name Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 0 0 0 0 0 0 0 0 0 0 1 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Reserved

DAI_P16_PULLUP

DAI_P20_PULLUP DAI_P19_PULLUP

DAI_P18_PULLUP

DAI_P17_PULLUP

DAI_P15_PULLUP

DAI_P14_PULLUP

DAI_P13_PULLUP

DAI_P12_PULLUP

DAI_P01_PULLUP

DAI_P02_PULLUP

DAI_P03_PULLUP

DAI_P04_PULLUP

DAI_P05_PULLUP

DAI_P06_PULLUPDAI_P11_PULLUP

DAI_P10_PULLUP

DAI_P09_PULLUP

DAI_P07_PULLUP

DAI_P08_PULLUP

DAI_STAT (0x247D)

DAI/DPI Registers

A-112 ADSP-21368 SHARC Processor Hardware Reference

DAI Pin Buffer Status Register (DAI_PIN_STAT)
This 20-bit, read-only register is shown in Figure A-43. Bits 19–0 of this
register indicate the status of DAI_PB[20:1]. Reads from bits 31–20 always
return 0. This register is updated at one-half the core clock rate.

DAI Interrupt Controller Registers
The DAI contains its own interrupt controller that indicates to the core
when DAI audio peripheral related events have occurred. Since audio
events generally occur infrequently relative to the SHARC core, the DAI
interrupt controller reduces all of its interrupts onto two interrupt signals
within the core’s primary interrupt systems—one mapped with low prior-
ity and one mapped with high priority. This architecture allows programs
to indicate priority broadly. In this way, the DAI interrupt controller reg-
isters provide 32 independently configurable interrupts labeled
DAI_INT[31:0], respectively.

Figure A-43. DAI_PIN_STAT Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 0 0 0 0 0 0 0 0 0 0 1 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Reserved

DAI_PB16

DAI_PB20 DAI_PB19

DAI_PB18

DAI_PB17

DAI_PB15

DAI_PB14

DAI_PB13

DAI_PB12

DAI_PB01

DAI_PB02

DAI_PB03

DAI_PB04

DAI_PB05

DAI_PB06DAI_PB11

DAI_PB10

DAI_PB09

DAI_PB07

DAI_PB08

DAI_PIN_STAT (0x24B9)

ADSP-21368 SHARC Processor Hardware Reference A-113

Register Reference

The DAI interrupt controller is configured using three registers. Each of
the 32 interrupt lines can be independently configured to trigger based on
the incoming signal’s rising edge, falling edge, both, or neither. Setting a
bit in DAI_IRPTL_RE or DAI_IRPTL_FE enables that interrupt level on the
rising and falling edges, respectively.

The 32 interrupt signals within the DAI are mapped to two interrupt sig-
nals in the primary interrupt controller of the SHARC core. The
DAI_IRPTL_PRI register selects if the DAI interrupt is mapped to the high
priority or low priority core interrupt (1=high priority, 0 =low priority).

The DAI_IRPTL_H register is a read-only register that has bits set for every
DAI interrupt latched for the high priority core interrupt. The
DAI_IRPTL_L register is a read-only register that has bits set for every DAI
interrupt latched for the low priority core interrupt. When a DAI inter-
rupt occurs, the low or high priority core ISR queries its corresponding
register to determine which of the 32 interrupt sources requires service.
When DAI_IRPTL_H is read, the high priority latched interrupts are cleared.
When DAI_IRPTL_L is read, the low priority latched interrupts are cleared.

DMA overflow greater than N interrupts can be sensed only at rising
edges. Falling edges are not used for these ten interrupts (eight DMA, one
overflow, and one FIFO valid data greater than N).

The IDP_FIFO_GTN_INT interrupt is not cleared when the DAI_IRPTL_H/L
register is read. This gets cleared when cause of this interrupt is zero.

A read resets the value to 0, except under the following condition:
The IDP_FIFO_GTN_INT interrupt is not cleared when the DAI_IRPTL_H/L
registers are read. This register is cleared when the cause of this interrupt
is zero.

All of the DAI interrupt registers are used primarily to provide the status
of the resident interrupt controller. These registers are shown in
Figure A-44 described in Table A-46. Note that for each of these registers
the bit names and numbers are the same.

DAI/DPI Registers

A-114 ADSP-21368 SHARC Processor Hardware Reference

Figure A-44. DAI Interrupt Latch Register

Table A-46. DAI Interrupt Registers

Register Description Address

DAI_IRPTL_H
DAI_IRPTL_HS

High Priority Interrupt Latch Register
Shadow High Priority Interrupt Latch Register

0x2488
0x248C

DAI_IRPTL_L
DAI_IRPTL_LS

Low Priority Interrupt Latch Register
Shadow Low Priority Interrupt Latch Register

0x2489
0x248D

DAI_IRPTL_PRI Core Interrupt Priority Assignment Register 0x2484

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SRC0_MUTE_INT

IDP_DMA3_INT

SRU_EXTMISCA3_INT

ISRU_EXTMISCB1_INT

IDP_DMA7_INT

IDP_DMA6_INT

IDP_DMA2_INT

IDP_DMA1_INT

IDP_DMA0_INT

IDP_FIFO_GTN_INT

SPDIF_RX_VALID

ISRU_EXTMISCB0_INT

SRU_EXTMISCA2_INT

SRU_EXTMISCA1_INT

SRU_EXTMISCA0_INT

SRU_EXTMISCB5_INT

SRU_EXTMISCB4_INT

SRU_EXTMISCB3_INT

ISRU_EXTMISCB2_INT

SRC2_MUTE_INT

SRC1_MUTE_INT

SRC3_MUTE_INT

SPDIF_RX_LOCK_START

SPDIF_RX_CRC_ERROR

SPDIF_RX_NO_STREAM

SPDIF_RX_PARITY_ERROR

SPDIF_RX_NON_AUDIO

SPDIF_RX_EMPHASIS

SPDIF_RX_CH_STAT_CHNG

IDP_FIFO_OVR_INT

IDP_DMA4_INT

IDP_DMA5_INT

DAI_IRPTL_RE(0x2480) DAI_IRPTL_FE(0x2481)
DAI_IRPTL_PRI(0x2484) DAI_IRPTL_H(0x2488)
DAI_IRPTL_L(0x2489) DAI_IRPTL_HS(0x248C)
DAI_IRPTL_LS(0x248D)

ADSP-21368 SHARC Processor Hardware Reference A-115

Register Reference

DPI Resistor Pull-up Enable Register
(DPI_PIN_PULLUP)

This 16-bit read/write register is shown in Figure A-45. Bits 13–0 of this
register control the enabling/disabling 22.5 KΩ pull-up resistor on
DPI_P0[13:0]. Setting a bit to 1 enables a pull-up resistor on the corre-
sponding pin. After RESET, the value of this register is 0xFFFFF, which
means pull-ups are enabled on all 14 DPI pins.

DAI_IRPTL_RE Rising Edge Interrupt Mask Register 0x2481

DAI_IRPTL_FE Falling Edge Interrupt Mask Register 0x2480

Figure A-45. DPI_PIN_PULLUP Register

Table A-46. DAI Interrupt Registers (Cont’d)

Register Description Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 1 1 1 1 1 1 1 1 1 1 1 1 1

DPI_P14_PULLUP

DPI_P13_PULLUP

DPI_P12_PULLUP

DPI_P01_PULLUP

DPI_P02_PULLUP

DPI_P03_PULLUP

DPI_P04_PULLUP

DPI_P05_PULLUP

DPI_P06_PULLUP
DPI_P11_PULLUP

DPI_P10_PULLUP

DPI_P09_PULLUP DPI_P07_PULLUP

DPI_P08_PULLUP

DPI_PIN_PULLUP (0x1C30)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

Reserved

DAI/DPI Registers

A-116 ADSP-21368 SHARC Processor Hardware Reference

DPI Pin Buffer Status Register (DPI_PIN_STAT)
This 16-bit, read-only register is shown in Figure A-46. Bits 13–0 of this
register indicate the status of DPI_PB[14:1]. Reads from bits 15–14 always
return 0. This register is updated at one-half the core clock rate.

DPI Interrupt Controller Registers
The digital peripheral interface (DPI) also has an interrupt controller,
similar to that in the DAI. All of these interrupts are combined into a sin-
gle interrupt, namely DPI_INT. The DPI_IRPTL register located at address
0x1C32, contains the status on individual interrupts. Apart from the
DPI_IRPTL register, there are two additional registers, DPI_IRPTL_RE and
DPI_IRPTL_FE that are used for interrupt latching.

Figure A-46. DPI_PIN_STAT Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 1 1 1 1 1 1 1 1 1 1 1 1 1

DPI_PB14
DPI_PB13

DPI_PB12

DPI_PB01

DPI_PB02

DPI_PB03

DPI_PB04

DPI_PB05

DPI_PB06

DPI_PB11

DPI_PB10

DPI_PB09 DPI_PB07
DPI_PB08

DPI_PIN_STAT (0x1C31)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

Reserved

ADSP-21368 SHARC Processor Hardware Reference A-117

Register Reference

All of the DPI interrupt registers are used primarily to provide the status
of the interrupt controller. These registers are shown in Figure A-47 and
listed in Table A-47. Note that for each of these registers the bit names
and numbers are the same.

Table A-47. DPI Interrupt Registers

Register Description Address

DPI_IRPTL_RE Rising Edge Interrupt Mask Register 0x1C35

DPI_IRPTL_FE Falling Edge Interrupt Mask Register 0x1C34

DPI_IRPTL_SH DPI_IRPTL Shadow Register. Reads of this register
returns data in DPI_IRPTL without clearing con-
tents of the register.

0x1C33

Figure A-47. DPI Interrupt Latch Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

EXT_MISC_8_INT

EXT_MISC_7_INT

EXT_MISC_6_INT

EXT_MISC_5_INT

EXT_MISC_3_INT

UART0_TX_INT

UART1_TX_INT

UART1_RX_INT

UART0_RX_INT

EXT_MISC_1_INT

TWI_INT

EXT_MISC_0_INT

EXT_MISC_2_INT

EXT_MISC_4_INT

Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

UART Control and Status Registers

A-118 ADSP-21368 SHARC Processor Hardware Reference

UART Control and Status Registers
The processor provides a set of PC-style, industry-standard control and
status registers for each UART. These memory-mapped registers (MMRs)
are byte-wide registers that are mapped as half-words with the most signif-
icant byte zero-filled. Transmit and receive channels are buffered. The
UARTxTHR register buffers the transmit shift register (UARTxTSR) and the
UARTxRBR register buffers the receive shift register (UARTxLSR). The shift
registers are not directly accessible by software.

Line Control Registers (UARTxLCR)
The UART line control registers (UARTxLCR, shown in Figure A-48) con-
trol the format of received and transmitted character frames. The UARTSB
bit functions even when the UART clock is disabled. Since the transmit
pin normally drives high, it can be used as a flag out pin, if the UART is
not used. In 9-bit mode, the word length is always 8 and the 9th bit is
transmitted instead of the parity bit.

ADSP-21368 SHARC Processor Hardware Reference A-119

Register Reference

Figure A-48. UART Line Control Registers

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved UARTWLS
Word Length Select
00=5-bit word(UARTWLS5)
01=6-bit word(UARTWLS6)
10=7-bit word(UARTWLS7)
11=8-bit word(UARTWLS8)

UARTSTB
Stop Bits
1=2 stop bits for non-5-bit
word length or 1 1/2 stop bits
for 5-bit word length
0=1 stop bit

UARTSB

Stick Parity
Forces parity to defined value if set and PEN = 1
1=Parity transmitted and checked as 0
0=Parity transmitted and checked as 1

UARTSTP

UARTPEN
Parity Enable
1=Transmit and check parity
0=Parity not transmitted or
checkedUARTEPS

Set Break
1=Force Tx pin to 0
0=No force

9

UARTDLAB
Divisor Latch Access
1=Enable access to UARTxDLL and UARTxDLH
0=Enable access to UARTxTHR, UARTxRBR, and
UART_IER

Even Parity Select
1=Even parity
0=Odd parity when PEN = 1 and STP = 0

UART0LCR (0x3C03)
UART1LCR (0x4003)

UART Control and Status Registers

A-120 ADSP-21368 SHARC Processor Hardware Reference

Line Status Registers (UARTxLSR)
The UART line status registers (UARTxLSR) contain UART status informa-
tion as shown in Figure A-49. There are also shadow registers,
UARTxLSRSH, with the following addresses: UART0LSRSH (0x3C0A) and
UART1LSRSH (0x400A). These registers allow programs to read the contents
of the corresponding main register without affecting the status the UART.

Figure A-49. UART Line Status Registers

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved UARTDR
Data Ready
1=UARTx_RBR holds new
data
0=No new data
UARTOE
Overrun Error
1=UARTx_RBR overwritten
before read
0=No overrunUARTTHRE

Break Interrupt
1=Break interrupt. This indicates Rx pin was held
low for more than the max word length.
0=No break interrupt

UARTBI

UARTPE
Parity Error
1=Parity error
0=No parity error
UARTFE

UARTx_THR Empty
1=Empty
0=Not empty

9

UARTTEMT
TSR and UARTx_THR Empty
1=Both empty
0=Full

Framing Error
1=Invalid stop bit error
0=No error

UART0LSR (0x3C05)
UART1LSR (0x4005)

UARTRX9D
9th bit of the received charac-
ter-address detect

ADSP-21368 SHARC Processor Hardware Reference A-121

Register Reference

Transmit Hold Registers (UARTxTHR)
In no pack mode (default), only the lower byte of these registers is used—
all other bits are zero-filled. However in pack mode, both the high and
low bytes are used. The TX9D and RX9D are the 9th bit in 9-bit transmission
mode. These registers are mapped to the same address as the UARTxRBR and
UARTxDLL registers. A write to the UART transmit holding registers
(UARTxTHR) initiates the transmit operation.

To access UARTxTHR (shown in Figure A-50), the UARTDLAB bit in UARTxLCR
must be cleared. When the UARTDLAB bit is cleared, writes to this address
target the UARTxTHR registers, and reads from this address return the UAR-
TxRBR registers.

Figure A-50. UART Transmit Holding Registers (Packing Enabled)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Higher Byte

UART0THR (0x3C00)
UART1THR (0x4000)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lower Byte

TX9D0

TX9D1

Zero-Filled

Zero-Filled

UART Control and Status Registers

A-122 ADSP-21368 SHARC Processor Hardware Reference

Receive Buffer Registers (UARTxRBR)
These read-only registers (shown in Figure A-51) are mapped to the same
address as the write-only UARTxTHR and DLL registers. To access UARTxRBR,
the UARTDLAB bit in the UARTxLCR register must be cleared. When the
UARTDLAB bit is cleared, writes to this address target the UARTxTHR registers,
while reads from this address return the UARTxRBR registers.

There are also shadow registers, UARTxRBRSH, with the following addresses:
UART0RBRSH (0x3C08) and UART1RBRSH (0x4008). These registers allow
programs to read the contents of the corresponding main register without
affecting the status of the UART.

Figure A-51. UART Receive Buffer Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Higher Byte

UART0RBR (0x3C00)
UART1RBR (0x4000)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lower Byte

RX9D0

RX9D1

Zero-Filled

Zero-Filled

ADSP-21368 SHARC Processor Hardware Reference A-123

Register Reference

Interrupt Enable Registers (UARTxIER)
The UART interrupt enable registers (UARTxIER) are used to enable
requests for system handling of empty or full states of UART data regis-
ters. Unless polling is used as a means of action, the UARTRBFIE and/or
UARTTBEIE bits in these registers are normally set.

The UARTxIER register (shown in Figure A-52) is mapped to the same
address as the UARTxDLH register. To access the UARTxIER register, the
UARTDLAB bit in the UARTxLCR register must be cleared.

Figure A-52. UART Interrupt Enable Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTRBFIE

UARTTBEIE

Enable Receive Buffer Full
Interrupt
0=No interrupt
1=Generate RX interrupt if DR bit
in UART_LSR is set

Enable Transmit Buffer Empty
Interrupt
0=No interrupt
1=Generate TX interrupt if THRE
bit in UART_LSR is set

UART0IER (0x3C01)
UART1IER (0x4001)

UARTLSIE
Enable RX Status Interrupt
0=No interrupt
1=Generate line status interrupt if any
of UART_LSR[4–1] is set

UARTTXFIE
Enable Transmit Complete Interrupt
0=No interrupt
1=Generate TX interrupt if TEMT bit
in UART_LSR is set

UARTADIE
Enable Address Detect Interrupt in 9-Bit Mode
0=No interrupt
1=Generate RX interrupt when address is
detected in 9-bit mode

UART Control and Status Registers

A-124 ADSP-21368 SHARC Processor Hardware Reference

Interrupt Identification Registers (UARTxIIR)
For legacy reasons, the UART interrupt identification registers (UARTxIIR,
shown in Figure A-53) still reflect the UART interrupt status. Legacy
operation may require bundling all UART interrupt sources to a single
interrupt channel and servicing them all by the same software routine.
This can be established by globally assigning all UART interrupts to the
same interrupt priority. For more information, see “Peripheral Interrupt
Priority Control Registers” on page A-164.

There are also shadow registers, UARTxIIRSH, with the following addresses:
UART0IIRSH (0x3C09) and UART1IIRSH (0x4009). These registers allow
programs to read the contents of the corresponding main register without
affecting the status of the UART.

Figure A-53. UART Interrupt Identification Register

UARTISTAT
In the order of interrupt priority, highest first.
011=Receive line status. Read UART_LSR to clear interrupt request.

100=Address detect. Read RBR to clear interrupt request.

010=Receive data ready. Read UART RBR to clear interrupt request.

001=UART_THR empty. Write UART_THR or read UART_IIR to clear
 interrupt request, when priority = 4.

000=UART THR & TSR empty (TEMT = transmit complete). Write
 UART_THR or read UART_IIR to clear interrupt request, when priority = 5.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UART0IIR (0x3C02)
UART1IIR (0x4002)

Pending Interrupt
0=Interrupt pending
1=No interrupt pending

UARTNOINT

ADSP-21368 SHARC Processor Hardware Reference A-125

Register Reference

Divisor Latch Registers (UARTxDLL, UARTxDLH)
The bit rate is characterized by the system clock (SCLK) and the 16-bit
divisor. The divisor is split into the UART divisor latch low byte register
(UARTxDLL) and the UART divisor latch high byte register (UARTxDLH),
both shown in Figure A-54.

The UARTxDLL registers are mapped to the same address as the UARTxTHR
and UARTxRBR registers. The UARTxDLH registers are mapped to the same
address as the interrupt enable registers (UARTxIER). The UARTDLAB bit in
the UARTxLCR register must be set before the UART divisor latch registers
can be accessed.

Figure A-54. UART Divisor Latch Registers

Divisor Latch Low Byte[7:0]

Divisor Latch High Byte[15:8]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UART0DLL (0x3C00)
UART1DLL (0x4000)

UART0DLL (0x3C01)
UART1DLL (0x4001)

UART Control and Status Registers

A-126 ADSP-21368 SHARC Processor Hardware Reference

Scratch Registers (UARTxSCR)
The contents of the 8-bit UART scratch registers (UARTxSCR shown in
Figure A-55) is reset to 0x00. It is used for general-purpose data storage
and does not control the UART hardware in any way.

Mode Registers (UARTxMODE)
The UART mode registers control miscellaneous settings as shown in
Figure A-56 and described Table A-48.

Figure A-55. UART Scratch Registers

Figure A-56. UART Mode Registers

Scratch[7:0]

UART0SCR (0x3C07)
UART1SCR (0x4007)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTPACK

UARTPKSYN

Packing Enable
0=No pack
1=Pack

Synchronize Data Packing in Rx

UART0MODE (0x3C04)
UART1MODE (0x4004)

UARTRX9
Enable 9-Bit Tx in Receiver
0=I/O mode
1=9-bit transmission in receiver

UARTAEN
Enable Address Detect (if Rx9 = 1)
0=Disable address detection
1=Enable address detection

UARTPST0, UARTPST1
Pin Status
11=UART output is high in disabled state (default)
00=UART output is low in disabled state
01/10=UART output is three-stated in disabled state

UARTTX9
Enable 9-Bit Tx in Transmitter
0=I/O mode
1=9-bit transmission in transmitter

ADSP-21368 SHARC Processor Hardware Reference A-127

Register Reference

UART DMA Registers
The UART supports full-duplex DMA. Separate receive and transmit
DMA channels are responsible for moving data between the peripheral
and memory in this mode. The UART uses eight registers to control and
provide status on DMA. The following sections provide descriptions of
these registers.

Table A-48. UART Mode Register Bit Descriptions

Bit Name Description

0 UARTPACK Packing Enable.
0 = No pack
1 = Packing enabled. Consecutive data words (example 0xAB
and 0xCD) are packed as 0x00CD 00AB in the receiver, and
0x00CD 00AB is transmitted as two words of 0xAB and
0xCD successively from the transmitter. For more informa-
tion, see “Packing Mode” on page 11-15.

1 UARTPKSYN Synchronize Data Packing in RX. When written with a 1,
the next data byte goes to the lower byte position of the RBR
register. This is a write-only bit and always returns zero on
reads.

2 UARTTX9 Enable 9-Bit Tx in Transmitter.
0 = I/O mode
1 = 9-bit transmission in transmitter

3 UARTRX9 Enable 9-Bit Tx in Receiver.
0 = I/O mode
1 = 9-bit transmission in receiver

4 UARTAEN Enable Address Detect (If RX9 = 1).
0 = Disable address detection; all bytes are received
1 = Enable address detection; interrupt and load of RBR
when RX9D is set

6–5 UARTPST1,
UARTPST0

Pin Status.
11 = UART output is high in disabled state (default)
00 = UART output is low in disabled state
01/10 = UART output is three-stated in the disabled state

UART Control and Status Registers

A-128 ADSP-21368 SHARC Processor Hardware Reference

DMA Control Registers (UARTxTXCTL, UARTxRXCTL)

Use these registers (described in Table A-49 and Table A-50) to enable
DMA, DMA chaining, and to clear the transmit and receive buffers. The
transmit and receive registers are read-write registers and their addresses
are:

UART0TXCTL – 0x3F04

UART1TXCTL – 0x4304

UART0RXCTL – 0x3E04

UART1RXCTL – 0x4204

Table A-49. UARTxTXCTL Register Descriptions

Bit Name Description

0 UARTEN DMA Transmit Buffer Enable. When set (=1), enables the
transmit buffer. When cleared, clears the transmit buffer.

1 UARTDEN DMA Enable. When set (=1), enables DMA on the speci-
fied channel. When cleared, disables DMA.

2 UARTCHEN Chain Pointer DMA Enable. When set (=1), enables chain
pointer DMA on the specified channel. When cleared, dis-
ables chained DMA.

Table A-50. UARTxRXCTL Register Descriptions

Bit Name Description

0 UARTEN DMA Receive Buffer Enable. When set (=1), enables the
receive buffer. When cleared, clears the receive buffer.

1 UARTDEN DMA Enable. When set (=1), enables DMA on the speci-
fied channel. When cleared, disables DMA.

2 UARTCHEN Chain Pointer DMA Enable. When set (=1), enables chain
pointer DMA on the specified channel. When cleared, dis-
ables chained DMA.

ADSP-21368 SHARC Processor Hardware Reference A-129

Register Reference

DMA Status Registers (UARTxTXSTAT, UARTxRXSTAT)

These read-only registers (described in Table A-51 and Table A-52) pro-
vide DMA status information and their addresses are:

UART0TXSTAT – 0x3F05

UART1TXSTAT – 0x4305

UART0RXSTAT – 0x3E05

UART1RXSTAT – 0x4205

Table A-51. UARTxTXSTAT Register Bit Descriptions

Bit Name Description

0 Reserved

1 UARTDMASTAT DMA Status. Provides DMA status.
0 = TX DMA is inactive
1 = TX DMA is active

2 UARTCHSTAT DMA Chaining Status. Provides DMA chaining status.
0 = TX DMA chain loading is inactive
1 = TX DMA chain loading is active

Table A-52. UARTxRXSTAT Register Bit Descriptions

Bit Name Description

0 UARTERRIRQ Receive Channel Error Interrupt.
0 = No error interrupt
1 = Error interrupt generated due to receive error (par-
ity/overrun/framing). This bit is cleared on a read of the
LSR register.

1 UARTDMASTAT DMA Status. Provides DMA status.
0 = RX DMA is inactive
1 = RX DMA is active

2 UARTCHSTAT DMA Chaining Status. Provides DMA chaining status.
0 = RX DMA chain loading is inactive
1 = RX DMA chain loading is active

Two Wire Interface Registers

A-130 ADSP-21368 SHARC Processor Hardware Reference

Apart from the DMA control and status registers there are index,
modifier, count, and chain pointer registers for both the transmit
and receive DMA channels. For more information on these regis-
ters, see “Port, Buffer, and DMA Control Registers” on page 2-26,
and Table 2-13, “UART DMA Registers,” on page 2-44.

Two Wire Interface Registers
The two wire interface (TWI) registers (described in Table A-53) provide
all control and status bits for this peripheral. Status bits can be updated by
their respective functional blocks.

Table A-53. TWI Register Descriptions

Address Name Description

0x4400 TWIDIV SCL Clock Divider

0x4404 TWIMITR Master Internal Time Reference

0x4408 TWISCTL Slave Mode Control

0x440C TWISSTAT Slave Mode Status

0x4410 TWISADDR Slave Mode Address

0x4414 TWIMCTL Master Mode Control

0x4418 TWIMSTAT Master Mode Status

0x441C TWIMADDR Master Mode Address

0x4420 TWIIRPTL Interrupt Latch

0x4424 TWIIMASK Interrupt Mask

0x4428 TWIFIFOCTL FIFO Control

0x442C TWIFIFOSTAT FIFO Status

0x4480 TXTWI 8 8-bit FIFO Transmit Register

0x4484 TXTWI 16 16-bit FIFO Transmit Register

ADSP-21368 SHARC Processor Hardware Reference A-131

Register Reference

Master Internal Time Register (TWIMITR)
The TWI control register (TWIMITR, shown in Figure A-57 and described
in Table A-54) is used to enable the TWI module as well as to establish a
relationship between the peripheral clock (PCLK) and the TWI controller’s
internally-timed events. The internal time reference is derived from PCLK
using the prescaled value:

PRESCALE = fPCLK/10 MHz

0x4488 RXTWI8 8-Bit FIFO Receive Register

0x448C RXTWI16 16-Bit FIFO Receive Register

Figure A-57. Master Internal Time Register

Table A-53. TWI Register Descriptions (Cont’d)

Address Name Description

TWIMITR (0x4404)

PRESCALE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

TWIEN Prescale
The number of peripheral
clock (PCLK) periods used in
the generation of one internal
time reference.

TWI Enable
0=Disable TWI
1=Enable TWI master and slave mode operation

Two Wire Interface Registers

A-132 ADSP-21368 SHARC Processor Hardware Reference

Clock Divider Register (TWIDIV)
During master mode operation, the SCL clock divider register (TWIDIV
shown in Figure A-58 and described in Table A-55) values are used to cre-
ate the high and low durations of the serial clock (SCL). Serial clock
frequencies can vary from 400 KHz to less than 20 KHz. The resolution
of the clock generated is 1/10 MHz or 100 ns.

Table A-54. Master Internal Time Register Bit Descriptions

Bit Name Description

0–6 PRESCALE Prescale. The number of peripheral clock (PCLK) periods
used in the generation of one internal time reference. The
value of PRESCALE must be set to create an internal time
reference with a period of 10 MHz. This is represented as a
7-bit binary value.

7 TWIEN TWI Enable. This bit must be set for slave or master mode
operation. It is recommended that this bit be set at the time
PRESCALE is initialized and remain set. This guarantees
accurate operation of bus busy detection logic.
0 = Disable TWI
1 = Enable TWI master and slave mode operation.

Figure A-58. Clock Divider Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CLKLOW[7:0]

TWIDIV (0x4400)

CLKHI[7:0]

ADSP-21368 SHARC Processor Hardware Reference A-133

Register Reference

Slave Mode Control Register (TWISCTL)
The TWI slave mode control register (TWISCTL) shown in Figure A-59 and
described in Table A-56, controls the logic associated with slave mode
operation. Settings in this register do not affect master mode operation
and should not be modified to control master mode functionality.

Table A-55. Clock Divider Register Bit Descriptions

Bit Name Description

7–0 CLKLOW Clock Low. Number of internal time reference periods the serial
clock (SCL) is held low. Represented as an 8-bit binary value.

15–8 CLKHI Clock High. Number of internal time reference periods the
serial clock (SCL) waits before a new clock low period begins
(assuming a single master). Represented as an 8-bit binary value.

Figure A-59. Slave Mode Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWISCTL (0x4408)

TWISEN

TWIDVAL

TWINAK

TWIGCE

TWISLEN

Slave Enable
0=Slave not enabled
1=Slave enabled

Slave Address Length
0=Address is a 7-bit address
1=Reserved

Slave Transmit Data Valid
0=Data is for master mode
transmits only
1=Data is available for slave
mode transmits

Not Acknowledge
0=Slave RX transfer generates ACK at the conclu-
sion of a data transfer
1=Slave RX transfer generates a data NAK at the
conclusion of a data transfer

General Call Enable
0=General call address matching is not enabled
1=General call address matching is enabled

Two Wire Interface Registers

A-134 ADSP-21368 SHARC Processor Hardware Reference

Table A-56. Slave Mode Control Register Bit Descriptions

Bit Name Description

0 TWISEN Slave Enable.
0 = The slave is not enabled. No attempt is made to identify a
valid address. If cleared during a valid transfer, clock stretching
ceases, the serial data line is released and the current byte is not
acknowledged.
1 = The slave is enabled. Enabling slave and master modes of
operation concurrently is allowed.

1 TWISLEN Slave Address Length.
0 = Address is a 7-bit address
1= Reserved. Setting this bit to 1 causes unpredictable behavior.

2 TWIDVAL Slave Transmit Data Valid.
0 = Data in the transmit FIFO is for master mode transmits and
is not allowed to be used during a slave transmit, and the transmit
FIFO is treated as if it is empty.
1 = Data in the transmit FIFO is available for a slave transmis-
sion.

3 TWINAK Not Acknowledged.
0 = Slave receive transfer generates an ACK at the conclusion of a
data transfer.
1 = Slave receive transfer generates a data NAK at the conclusion
of a data transfer. The slave is still considered to be addressed.

4 TWIGCE General Call Enable. General call address detection is available
only when slave mode is enabled.
0 = General call address matching is not enabled
1 = General call address matching is enabled. Regardless of the
selected address length of slave address, a general call slave receive
transfer is accepted. All status and interrupt source bits associated
with transfers are updated.

ADSP-21368 SHARC Processor Hardware Reference A-135

Register Reference

Slave Address Register (TWISADDR)
The TWI slave mode address register (TWISADDR, shown in Figure A-60)
holds the slave mode address, which is the valid address that the
slave-enabled TWI controller responds to. The TWI controller compares
this value with the received address during the addressing phase of a
transfer.

Slave Status Register (TWISSTAT)
During and at the conclusion of slave mode transfers, the TWI slave mode
status register (TWISSTAT, shown in Figure A-61) holds information on the
current transfer. Generally slave mode status bits are not associated with
the generation of interrupts. Master mode operation does not affect the
slave mode status bits.

Figure A-60. Slave Mode Address Register

Figure A-61. Slave Mode Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SADDR

TWISADDR (0x4410)

Slave Mode Address
Valid address which this slave enabled
TWIC Master responds to

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

TWISSTAT (0x440C)

TWISDIR Slave Transfer
Direction

TWIGC (General Call)

Two Wire Interface Registers

A-136 ADSP-21368 SHARC Processor Hardware Reference

Master Control Register (TWIMCTL)
The TWI master mode control register (TWIMCTL, shown in Figure A-62
and described in Table A-57) controls the logic associated with master
mode operation. Bits in this register do not affect slave mode operation
and should not be modified to control slave mode functionality.

Figure A-62. Master Mode Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWIMCTL (0x4414)

TWIMEN

TWIMDIR

TWISDAOVR

TWISCLOVR

TWIDCNT

TWIFAST

TWISTOP

TWIRSTART

TWIMLEN

Master Mode Enable
0=Master mode is disabled
1=Master mode is enabled

Master Address Length
0=Master address is 7-bit
1=Reserved

Master Transfer Direction
0=Transfer is master transmit
1=Transfer is master receive

Fast Mode
0=Standard mode timing
1=Fast mode timing

Issue Stop Condition
0=Normal transfer operation.
1=The transfer will conclude
as soon as possible

Serial Data Override
0=Normal serial data operation
1=Serial data output is driven to an active
“zero” level

Indicates the Number of Data
Bytes to Transfer

Repeat Start
0=Transfer concludes with a STOP condition
1=Issue a repeat START condition at the
conclusion of the current transfer

Serial Clock Override
0=Normal serial clock
operation
1=Serial clock output is driven
to an active “zero” level

ADSP-21368 SHARC Processor Hardware Reference A-137

Register Reference

Table A-57. Master Control Register Bit Descriptions

Bit Name Description

0 TWIMEN Master Mode Enable. Clears itself at the completion of a transfer.
This includes transfers terminated due to errors.
0 = Master mode functionality is disabled. If MEN is cleared during
operation, the transfer is aborted and all logic associated with master
mode transfers are reset. Serial data and serial clock (SDA, SCL) are
no longer driven. Write 1-to-clear status bits are not effected.
1 = Master mode functionality is enabled. A START condition is
generated if the bus is idle.

1 TWIMLEN Master Address Length.
0 = Address is 7-bit
1 = Reserved. Setting this bit to one causes unpredictable behavior

2 TWIMDIR Master Transfer Direction.
0 = The initiated transfer is master transmit
1 = The initiated transfer is master receive

3 TWIFAST Fast Mode.
0 = Standard mode timing specifications in use
1 = Fast mode timing specifications in use

4 TWISTOP Issue STOP Condition.
0 = Normal transfer operation
1 = The transfer concludes as soon as possible avoiding any error
conditions (as if data transfer count had been reached) and at that
time the interrupt source register is updated along with any associ-
ated status bits.

5 TWIRSTART Repeat START.
0 = Transfer concludes with a STOP condition
1 = Issue a repeat START condition at the conclusion of the current
transfer (DCNT = 0) and begin the next transfer. The current trans-
fer is concluded with updates to the appropriate status and interrupt
bits. If errors occurred during the previous transfer, a repeat START
does not occur. In the absence of any errors, master enable (MEN)
does not clear itself on a repeat start.

Two Wire Interface Registers

A-138 ADSP-21368 SHARC Processor Hardware Reference

13–6 TWIDCNT Data Transfer Count. Indicates the number of data bytes to transfer.
As each data word is transferred, the data transfer count is decre-
mented. When DCNT is zero, a STOP (or restart condition) is
issued. Setting DCNT to 0xFF disables the counter. In this transfer
mode, data continues to be transferred until it is concluded by set-
ting the STOP bit.

14 TWISDAOVR Serial Data (SDA) Override. For use when direct control of the
Serial Data line is required. Normal master and slave mode operation
should not require override operation.
0 = Normal serial data operation under the control of the transmit
shift register and acknowledge logic
1 = Serial data output is driven to an active “zero” level, overriding all
other logic. This state is held until the bit location is cleared.

15 TWISCLOVR Serial Clock (SCL) Override. For use when direct control of the
serial clock line is required. Normal master and slave mode operation
should not require override operation.
0 = Normal serial clock operation under the control of master mode
clock generation and slave mode clock stretching logic
1 = Serial clock output is driven to an active “zero” level, overriding
all other logic. This state is held until the bit location is cleared.

Table A-57. Master Control Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference A-139

Register Reference

Master Address Register (TWIMADDR)
During the addressing phase of a transfer, the TWI controller, with its
master enabled, transmits the contents of the TWI master mode address
register (TWIMADDR, shown in Figure A-63). When programming this regis-
ter, omit the read/write bit. That is, only the upper 7 bits that make up
the slave address should be written to this register. For example, if the
slave address is 1010000X, then TWIMADDR is programmed with 1010000,
which corresponds to 0x50. When sending out the address on the bus, the
TWI controller appends the read/write bit as appropriate, based on the
state of the MDIR bit in the master mode control register.

Figure A-63. Master Mode Address Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

TWIMADDR(0x441C)

MADDR
Master Mode Address

Two Wire Interface Registers

A-140 ADSP-21368 SHARC Processor Hardware Reference

Master Status Register (TWIMSTAT)
The TWI master mode status register (TWIMSTAT, shown in Figure A-64
and described in Table A-58) holds information during master mode
transfers and at their conclusions. Generally, master mode status bits are
not directly associated with the generation of interrupts but offer informa-
tion on the current transfer. Slave mode operation does not affect master
mode status bits. This is a read-only register.

Figure A-64. Master Mode Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWIMSTAT (0x4418)

TWIMPROG

TWILOST

TWISCLSEN

TWIBUSY

TWISDASEN

TWIANAK

TWIDNAK

TWIWERR

TWIRERR

Master Tx in Progress
0=No transfer is taking place
1=Master transfer is in progress

Lost Arbitration
0=Transfer has not lost arbitration
1=Current transfer aborted

Address Not Acknowledged
0=Transfer has not detected a NAK
during addressing
1=Transfer was aborted

Data Not Acknowledged
0=Transfer has not detected a NAK
1=Transfer was aborted

Bus Busy
0=The bus is free
1=The bus is busy

Serial Clock Sense
0=An inactive 1 is sensed on SCLK
1=An active 0 is sensed on SCLK

Serial Data Sense
0 =An inactive 1 is sensed on serial data line
1=An active 0 is sensed on serial data line

Buffer Write Error
0=Buffer write error not detected
1=Transfer aborted due to receive buffer write error

Buffer Read Error
0=Buffer read error not detected
1=Transfer aborted due to transmit buffer read error

ADSP-21368 SHARC Processor Hardware Reference A-141

Register Reference

Table A-58. Master Status Register Bit Descriptions

Bit Name Description

0 TWIMPROG Master Transfer In Progress.
0 = Currently no transfer is taking place. This can occur once
a transfer is complete or while an enabled master is waiting
for an idle bus.
1 = A master transfer is in progress.

1 TWILOST Lost Arbitration.
0 = The current transfer has not lost arbitration with another
master.
1 = The current transfer was aborted due to the loss of arbi-
tration with another master. This bit is cleared by writing a 1
to its bit location.

2 TWIANAK Address Not Acknowledged.
0 = The current master transfer has not detected a NAK dur-
ing addressing.
1 = The current master transfer was aborted due to the detec-
tion of a NAK during the address phase of the transfer. This
bit is cleared by writing a 1 to its bit location.

3 TWIDNAK Data Not Acknowledged.
0 = The current master transfer has not detected a NAK dur-
ing data transmission.
1 = The current master transfer was aborted due to the detec-
tion of a NAK during data transmission. This bit is cleared
by writing a 1 to its bit location.

4 TWIRERR Buffer Read Error.
0 = The current master transmit has not detected a buffer
read error.
1 = The current master transfer was aborted due to a transmit
buffer read error. At the time data was required by the trans-
mit shift register, the buffer was empty. This bit is cleared by
writing a 1 to its bit location.

Two Wire Interface Registers

A-142 ADSP-21368 SHARC Processor Hardware Reference

5 TWIWERR Buffer Write Error.
0 = The current master receive has not detected a receive
buffer write error.
1 = The current master transfer was aborted due to a receive
buffer write error. The receive buffer and receive shift register
were both full at the same time. This bit is cleared by writing
a one to its bit location

6 TWISDASEN Serial Data Sense. For use when direct sensing of the serial
data line is required. The register value is delayed due to the
input filter (nominally 50 ns). Normal master and slave
mode operation should not require this feature.
0 = An inactive “one” is currently being sensed on serial data
line.
1 = An active “zero” is currently being sensed on serial data
line. The source of the active driver is not known and can be
internal or external.

7 TWISCLSEN Serial Clock Sense. For use when direct sensing of the serial
clock line is required. The register value is delayed due to the
input filter (nominally 50 ns). Normal master and slave
mode operation should not require this feature.
0 = An inactive “one” is currently being sensed on SCLK.
1 = An active “zero” is currently being sensed on SCLK. The
source of the active driver is not known and can be internal
or external.

8 TWIBUSY Bus Busy. Indicates whether the bus is currently busy or free.
This indication applies to all devices. Upon a START condi-
tion, setting the register value is delayed due to the input fil-
tering. Upon a STOP condition, clearing the register value
occurs after time tBUF.
0 = The bus is free. The clock and data bus signals have been
inactive for the appropriate bus free time.
1 = The bus is busy. Clock and/or data activity has been
detected.

Table A-58. Master Status Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference A-143

Register Reference

FIFO Control Register (TWIFIFOCTL)
The TWI FIFO control register (TWIFIFOCTL, shown in Figure A-65 and
described in Table A-59) affects only the FIFO and is not tied in any way
with master or slave mode operation.

Figure A-65. FIFO Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWITXFLUSH

TWIRXFLUSH
TWIRXINT2

TWITXINT2

TWIFIFOCTL (0x4428)

Receive Buffer Flush
0=Normal operation
1=Flush receive buffer and
update the status

Transmit Buffer Flush
0=Normal operation
1=Flush transmit buffer and
update the status

Transmit Buffer Interrupt Length
0=Interrupt is set when XMTSTAT indicates one or two
bytes in the FIFO are empty (01 or 00)
1=Interrupt is set when XMTSTAT indicates two bytes in
the FIFO are empty (00)

Receive Buffer Interrupt Length
0=Interrupt is set when RCVSTAT indicates one or two
bytes in the FIFO are full (01 or 11)
1=Interrupt is set when RCVSTAT indicates two bytes in
the FIFO are full (11)

TWIBHD

Buffer Hang Disable
0 = Read of FIFO happens only when Rx FIFO has a
valid byte. Write of FIFO happens only when Tx FIFO
has at least one empty space.
1 = Read/write happens irrespective of FIFO status

Two Wire Interface Registers

A-144 ADSP-21368 SHARC Processor Hardware Reference

Table A-59. TWIFIFOCTL Register Bit Descriptions

Bit Name Description

0 TWITXFLUSH Transmit Buffer Flush.
0 = Normal operation of the transmit buffer and its status bits
1 = Flush the contents of the transmit buffer and update the status
to indicate the buffer is empty. This state is held until this bit is
cleared. During an active transmit, the transmit buffer in this state
responds as if the transmit buffer is empty.

1 TWIRXFLUSH Receive Buffer Flush.
0 = Normal operation of the receive buffer and its status bits.
1 = Flush the contents of the receive buffer and update the status
to indicate the buffer is empty. This state is held until this bit is
cleared. During an active receive the receive buffer in this state
responds to the receive logic as if it is full.

2 TWITXINT2 Transmit Buffer Interrupt Length. Determines the rate at which
transmit buffer interrupts are generated. Interrupts may be gener-
ated with each byte transmitted or after two bytes are transmitted.
0 = An interrupt (TWITXINT) is set when TWITXS indicates
one or two bytes in the FIFO are empty (01 or 00).
1 = An interrupt (TWITXINT) is set when TWITXS indicates
two bytes in the FIFO are empty (00).

3 TWIRXINT2 Receive Buffer Interrupt Length. Determines the rate at which
receive buffer interrupts are generated. Interrupts may be gener-
ated with each byte received or after two bytes are received.
0 = An interrupt (TWIRXINT) is set when TWIRXS indicates
one or two bytes in the FIFO are full (01 or 11).
1 = An interrupt (TWIRXINT) is set when TWIRXS indicates
two bytes in the FIFO are full (11).

4 TWIBHD Receive Buffer Hang Disable.
0 = Read of FIFO happens only when Rx FIFO has a valid byte.
Write of FIFO happens only when Tx FIFO has at least one empty
space.
1 = Read/write happens irrespective of FIFO status

ADSP-21368 SHARC Processor Hardware Reference A-145

Register Reference

FIFO Status Register (TWIFIFOSTAT)
The fields in the TWI FIFO status register (TWIFIFOSTAT, shown in
Figure A-66 and described in Table A-60) indicate the state of the FIFO
buffers’ receive and transmit contents. The FIFO buffers do not discrimi-
nate between master data and slave data. By using the status and control
bits provided, the FIFO can be managed to allow simultaneous master and
slave operation. All bits in this register are read-only.

Figure A-66. FIFO Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWITXS
TWIRXS

TWIFIFOSTAT (0x442C)

Receive FIFO Status
00=FIFO is empty
01=FIFO contains one byte of data
11=FIFO is full and contains two bytes of data
10=Illegal

Transmit FIFO Status
00=FIFO is empty
01=FIFO contains one byte of data
11=FIFO is full and contains two
bytes of data
10=Illegal

Two Wire Interface Registers

A-146 ADSP-21368 SHARC Processor Hardware Reference

Table A-60. FIFO Status Register Bit Descriptions

Bit Name Description

1–0 TWITXS Transfer FIFO Status. These read-only bits indicate the num-
ber of valid data bytes in the FIFO buffer. The status is
updated with each FIFO buffer write using the peripheral data
bus or read access by the transmit shift register. Simultaneous
accesses are allowed.
00 = FIFO is empty. Either a single- or double-byte peripheral
write of the FIFO goes through immediately.
01 = FIFO contains one byte of data. A single byte peripheral
write of the FIFO goes through immediately. A double-byte
peripheral write waits until the FIFO is empty
11 = FIFO is full and contains two bytes of data.
10 = Illegal

3–2 TWIRXS Receive FIFO Status. These read-only bits indicate the num-
ber of valid data bytes in the receive FIFO buffer. The status is
updated with each FIFO buffer read using the peripheral data
bus or write access by the receive shift register. Simultaneous
accesses are allowed.
00 = FIFO is empty
01 = FIFO contains one byte of data. A single-byte peripheral
read of the FIFO goes through immediately. A double-byte
peripheral read waits until the FIFO is full.
11 = FIFO is full and contains two bytes of data. Either a sin-
gle- or double-byte peripheral read of the FIFO is allowed.
10 = Illegal

ADSP-21368 SHARC Processor Hardware Reference A-147

Register Reference

Interrupt Source Register (TWIIRPTL)
The TWI interrupt source register (TWIIRPTL, shown in Figure A-67 and
described in Table A-61) contains information about functional areas
requiring servicing. Many of the bits serve as an indicator to further read
and service various status registers. After servicing the interrupt source
associated with a bit, the user must clear that interrupt source bit. All bits
are sticky and W1C.

Figure A-67. Interrupt Source Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWISINIT

TWISCOMP

TWISERR

TWISOVF

TWIRXINT

TWITXINT

TWIIRPTL (0x4420)

TWIMERR

TWIMCOM

Slave Transfer Initiated
0=Transfer is not in progress
1=Transfer in progress

Slave Transfer Complete
0=Transfer not detected
1=Transfer is complete

Slave Transfer Error
0=No errors detected
1=An error has occurred

Slave Overflow
0=No overflow detected
1=The slave transfer complete
(SCOMP) was set at the time a sub-
sequent transfer has acknowledged
an address phase

Receive FIFO Service
0=Receive FIFO empty
1=The receive FIFO buffer has one or two 8-bit loca-
tions containing data to be read

Transmit FIFO Service
0=Transmit FIFO is full
1=The transmit FIFO buffer has one or two 8-bit
locations available to be written

Master Transfer Error
0=No errors detected
1=A master error has occurred

Master Transfer Complete
0=Transfer complete not detected
1=Master transfer completed

Two Wire Interface Registers

A-148 ADSP-21368 SHARC Processor Hardware Reference

Table A-61. Interrupt Source Register Bit Descriptions

Bit Name Description

0 TWISINIT Slave Transfer Initiated.
0 = A transfer is not in progress. An address match has not occurred
since the last time this bit was cleared.
1 = The slave has detected an address match and a transfer has been
initiated. This bit is sticky and is cleared by writing 1 to its bit loca-
tion.

1 TWISCOMP Slave Transfer Complete.
0 = The completion of a transfer not detected
1 = The transfer is complete and either a stop, or a restart was
detected. This bit is sticky and is cleared by writing a one to its bit
location

2 TWISERR Slave Transfer Error.
0 = No errors detected.
1 = An error has occurred. A restart or stop condition has occurred
during the data receive phase of a transfer. This bit is sticky and is
cleared by writing a one to its bit location.

3 TWISOVF Slave Over Flow.
0 = No overflow detected.
1 = The slave transfer complete (TWISCOMP) was set at the time a
subsequent transfer has acknowledged an address phase. The trans-
fer continues, however, it may be difficult to delineate data of one
transfer from another. This bit is sticky and is cleared by writing a
one to its bit location.

4 TWIMCOM Master Transfer Complete.
0 = The completion of a transfer not detected.
1 = The initiated master transfer is complete. In the absence of a
repeat start, the bus is released. This bit is sticky and is cleared by
writing a 1 to its bit location.

5 TWIMERR Master Transfer Error.
0 = No errors detected.
1 = A master error occurred. The conditions surrounding the error
are indicated by the master status register (TWIMSTAT). This bit is
sticky and is cleared by writing a 1 to its bit location.

ADSP-21368 SHARC Processor Hardware Reference A-149

Register Reference

6 TWITXINT Transmit FIFO Service.
0 = No errors detected.
1 = The transmit FIFO buffer has one or two 8-bit locations avail-
able to be written. If TWITXINT2 is 0, this bit is set each time
TWITXS is updated to either 01 or 00. If TWITXINT2 is 1, this
bit is set each time TWITXS is updated to 00. This bit is sticky and
is cleared by writing 1 to its bit location.

7 TWIRXINT Receive FIFO Service.
0 = No errors detected.
1 = The receive FIFO buffer has one or two 8-bit locations contain-
ing data to be read. If TWIRXINT2 is 0, this bit is set each time
TWIRXS is updated to either 01 or 11. If RTWIRXINT2 is 1, this
bit is set each time TWIRXS is updated to 11. This bit is sticky and
is cleared by writing 1 to its bit location.

Table A-61. Interrupt Source Register Bit Descriptions (Cont’d)

Bit Name Description

Two Wire Interface Registers

A-150 ADSP-21368 SHARC Processor Hardware Reference

Interrupt Enable Register (TWIIMASK)
The TWI interrupt enable register (TWIIMASK, shown in Figure A-68 and
described in Table A-62) enables interrupt sources to assert the interrupt
output. Each enable bit corresponds with one interrupt source bit in the
TWI interrupt source register (TWIIRPTL). Reading and writing the TWI
interrupt enable register does not affect the contents of the TWI interrupt
source register. For all bits, 0 = interrupt generation disabled and
1 = interrupt generation enabled.

Figure A-68. Interrupt Mask Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWISINIT

TWISCOMP

TWISERR

TWISOVF

TWIRXINT

TWITXINT

TWIIMASK (0x4420)

TWIMERR

TWIMCOM

Slave Transfer Initiate Interrupt Enable
1=Interrupt generation enabled
0=Interrupt generation disabled

Slave Transfer Complete Interrupt Enable
1=Interrupt generation enabled
0=Interrupt generation disabled

Slave Transfer Error Interrupt Enable
1=Interrupt generation enabled
0=Interrupt generation disabled

Slave Overflow Interrupt Enable
1=Interrupt generation enabled
0=Interrupt generation disabled

Receive FIFO Service Interrupt Enable
1=Interrupt generation enabled
0=Interrupt generation disabled

Transmit FIFO Service Interrupt Enable
1=Interrupt generation enabled
0=Interrupt generation disabled

Master Transfer Complete Interrupt Enable
1=Interrupt generation enabled
0=Interrupt generation disabled

Master Transfer Complete Interrupt Enable
1=Interrupt generation enabled
0=Interrupt generation disabled

ADSP-21368 SHARC Processor Hardware Reference A-151

Register Reference

Table A-62. Interrupt Mask Register Bit Descriptions

Bit Name Description

0 TWISINIT Slave Transfer Initiate Interrupt Enable.
0 = The corresponding interrupt source is prevented from
asserting the interrupt output.
1 = The corresponding interrupt source asserts the interrupt
output.

1 TWISCOMP Slave Transfer Complete Interrupt.
0 = The corresponding interrupt source is prevented from
asserting the interrupt output.
1 = The corresponding interrupt source asserts the interrupt
output.

2 TWISERR Slave Transfer Error Interrupt.
0 = The corresponding interrupt source is prevented from
asserting the interrupt output.
1 = The corresponding interrupt source asserts the interrupt
output.

3 TWISOVF Slave Over Flow Interrupt Enable.
0 = The corresponding interrupt source is prevented from
asserting the interrupt output.
1 = The corresponding interrupt source asserts the interrupt
output.

4 TWIMCOM Master Transfer Complete Interrupt Enable.
0 = The corresponding interrupt source is prevented from
asserting the interrupt output.
1 = The corresponding interrupt source asserts the interrupt
output.

5 TWIMERR Master Transfer Error Interrupt Enable.
0 = The corresponding interrupt source is prevented from
asserting the interrupt output.
1 = The corresponding interrupt source asserts the interrupt
output.

Two Wire Interface Registers

A-152 ADSP-21368 SHARC Processor Hardware Reference

8-Bit Transmit FIFO Register (TXTWI8)
The TWI FIFO transmit 8-bit register (TXTWI8, shown in Figure A-69)
holds an 8-bit data value written into the FIFO buffer. Transmit data is
entered into the corresponding transmit buffer in a first-in, first-out order.
Although peripheral bus writes are 32 bits, a write access to TXTWI8 adds
only one transmit data byte to the FIFO buffer. With each access, the
transmit status (TWITXS) field in the TWIFIFOSTAT register is updated. If an
access is performed while the FIFO buffer is full, the core waits until there
is at least one byte space in the transmit FIFO buffer and then completes
the write access. The bits in this register are write-only.

6 TWITXINT Transmit FIFO Service Interrupt Enable.
0 = The corresponding interrupt source is prevented from
asserting the interrupt output.
1 = The corresponding interrupt source asserts the interrupt
output.

7 TWIRXINT Receive FIFO Service Interrupt Enable.
0 = The corresponding interrupt source is prevented from
asserting the interrupt output.
1 = The corresponding interrupt source asserts the interrupt
output.

Figure A-69. 8-Bit Transmit FIFO Register

Table A-62. Interrupt Mask Register Bit Descriptions (Cont’d)

Bit Name Description

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XMTDATA8[7:0]
Transmit FIFO 8-Bit Data

TXTWI8 (0x4480)

ADSP-21368 SHARC Processor Hardware Reference A-153

Register Reference

16-Bit Transmit FIFO Register (TXTWI16)
The TWI FIFO transmit 16-bit register (TXTWI16, shown in Figure A-70)
holds a 16-bit data value written into the FIFO buffer. To reduce inter-
rupt output rates and peripheral bus access times, a 16-bit transfer data
access can be performed. Two data bytes can be written, effectively filling
the transmit FIFO buffer with a single access. The data is written in lit-
tle-endian byte order as shown in Figure A-70, where byte 0 is the first
byte to be transferred and byte 1 is the second byte to be transferred.

Figure A-70. 16-Bit Transmit FIFO Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XMTDATA16[7:0]

TXTWI16 (0x4484)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XMTDATA16[23:16]

Byte0–Transmitted first

Byte1–Transmitted second

Two Wire Interface Registers

A-154 ADSP-21368 SHARC Processor Hardware Reference

8-Bit Receive FIFO Register (RXTWI8)
The TWI FIFO receive data 8-bit register (RXTWI8, shown in Figure A-71)
holds an 8-bit data value read from the FIFO buffer. Receive data is read
from the corresponding receive buffer in a first-in first-out order.
Although peripheral bus reads are 32 bits, a read access to RXTWI8 can only
access one receive data byte from the FIFO buffer. With each access, the
receive status (TWIRXS) field in the TWIFIFOSTAT register is updated. If an
access is performed while the FIFO buffer is empty, the core waits until
there is at least one byte in the receive FIFO buffer and then completes the
read access. All bits in this register are read-only.

16-Bit Receive FIFO Register (RXTWI16)
The TWI FIFO receive data-double byte register (RXTWI16, shown in
Figure A-72) holds a 16-bit data value read from the FIFO buffer. To
reduce interrupt output rates and peripheral bus access times, a dou-
ble-byte receive data access can be performed. Two data bytes can be read,
effectively emptying the receive FIFO buffer with a single access. The data
is read in little-endian byte order, as shown in Figure A-72, where byte 0
is the first byte received and byte 1 is the second byte received. With each
access, the receive status (TWIRXS) field in the TWIFIFOSTAT register is
updated to indicate it is empty. If an access is performed while the FIFO
buffer is not full, the core waits until the receive FIFO buffer is full and
then completes the read access. All bits in this register are read-only.

Figure A-71. 8-Bit Receive FIFO Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RCVDATA8[7:0]
(Receive FIFO 8-Bit
Data)

RXTWI8 (0x4488)

ADSP-21368 SHARC Processor Hardware Reference A-155

Register Reference

Precision Clock Generator Registers
The precision clock generator (PCG) consists of four identical units. Each
of these units (A, B, C, and D) generates one clock (CLKA_O CLKB_O,
CLKC_O or CLKD_O) and one frame sync (FSA_O, FSB_O, FSC_O or FSD_O) out-
put. These units can take an input clock signal from a crystal oscillator
buffer output or any of the sources in Group A of the signal routing unit
(SRU).

Control Registers (PCG_CTLxx)
The control registers operate exactly the same for each clock unit. The
control registers enable clocks, frame syncs, and select divisors for each
clock unit. These registers are shown in Figure A-73 and Figure A-74 and
described in Table A-63 and Table A-64. Note that where letters and
slashes appear, for example A/B/C/D, any clock unit can be chosen.

Figure A-72. 16-Bit Receive FIFO Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RCVDATA16[7:0]

RXTWI16 (0x4484)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RCVDATA16[23:16]

Byte0

Byte1

Precision Clock Generator Registers

A-156 ADSP-21368 SHARC Processor Hardware Reference

Figure A-73. PCG_CTLx0 Registers

Table A-63. PCG_CTLx0 Register Bit Descriptions

Bit Name Description

19–0 FSxDIV Divisor for Frame Sync A/B/C/D.

29–20 FSxPHASE_HI Phase for Frame Sync A/B/C/D.
This field represents the upper half of the 20-bit value for the
channel A/B/C/D frame sync phase.
See also FSXPHASE_LO (Bits 29-20) in PCG_CTLX_1
described on page A-157.

30 ENFSx Enable Frame Sync A/B/C/D.
0 = Specified frame sync generation disabled
1 = Specified frame sync generation enabled

31 ENCLKx Enable Clock A/B/C/D.
0 = Specified clock generation disabled
1 = Specified clock generation enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ENCLKA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Enable Clock A/B/C/D

Frame Sync A/B/C/D Divisor
FSADIV

Frame Sync A/B/C/D Phase
FSAPHASE_HI

ENFSA
Enable Frame Sync A/B/C/D

PCG_CTLA0 (0x24C0)
PCG_CTLB0 (0x24C2)
PCG_CTLC0 (0x24C6)
PCG_CTLD0 (0x24C8)

ADSP-21368 SHARC Processor Hardware Reference A-157

Register Reference

Figure A-74. PCG_CTLx1 Register

Table A-64. PCG_CTLx1 Register Bit Descriptions

Bit Name Description

19–0 CLKxDIV Divisor for Clock A/B/C/D.

29–20 FSxPHASE_LO Phase for Frame Sync A/B/C/D.
This field represents the lower half of the 20-bit value for
the channel A/B/C/D frame sync phase. See also
FSXPHASE_HI (Bits 29-20) in PCG_CTLx1 described on
page A-156.

30 FSxSOURCE Frame Sync Source. Master clock source for frame sync
A/B/C/D.
0 = XTAL buffer output selected for specified frame sync
1 = PCG_EXTX_I selected for specified frame sync

31 CLKxSOURCE Clock Source. Master clock source for clock A/B/C/D.
0 = XTAL buffer output selected for specified clock
1 = PCG_EXTx_I selected for specified clock

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CLKXSOURCE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Clock A/B/C/D Source

CLK A/B/C/D Divisor
CLKXDIV

Frame Sync
A/B/C/D Phase 9:0

FSXPHASE_LO

FSXSOURCE
Frame Sync A/B/C/D Source

PCG_CTLA1 (0x24C1)
PCG_CTLB1 (0x24C3)
PCG_CTLC1 (0x24C7)
PCG_CTLD1 (0x24C9)

Precision Clock Generator Registers

A-158 ADSP-21368 SHARC Processor Hardware Reference

PCG Pulse Width Registers
Pulse width is the number of input clock periods for which the frame sync
output is HIGH. Pulse width should be less than the divisor of the frame
sync. The pulse width control registers are shown in Figure A-75 and
Figure A-76 and described in Table A-65 and Table A-66. Note that
where letters and slashes appear, for example A/B/C/D, any clock unit can
be chosen.

Figure A-75. PCG_PWx Registers (in Normal Mode)

Table A-65. PCG_PWx Register Bit Descriptions (in Normal Mode)

Bit Name Description

15–0 PWFSA Pulse Width for Frame Sync A/C.
Note: This is valid when not in bypass mode

31–16 PWFSB Pulse Width for Frame Sync B/D.
Note: This is valid when not in bypass mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWFSB

Pulse Width Frame Sync A/C

PWFSA

Pulse Width Frame Sync B/D

PCG_PW (0x24C4)
PCG_PW2 (0x24CA)

ADSP-21368 SHARC Processor Hardware Reference A-159

Register Reference

Figure A-76. PCG_PWx Registers (in Bypass Mode)

Table A-66. PCG_PWx Register Bit Descriptions
(in Bypass Mode)

Bit Name Description

0 STROBEx One Shot Frame Sync A/C. Frame sync is a pulse with dura-
tion equal to one period of the MISCA2_I signal repeating at
the beginning of every frame.
Note: This is valid in bypass mode only.

1 INVFSx Active Low Frame Sync Select for Frame Sync A/C.
0 = Active high frame sync
1 = Active low frame sync

15–2 Reserved (In bypass mode, bits 15-2 are ignored.)

16 STROBEx One Shot Frame Sync B/D. Frame sync is a pulse with dura-
tion equal to one period of the MISCA3_I signal repeating at
the beginning of every frame.
Note: This is valid in bypass mode only

17 INVFSx Active Low Frame Sync Select.
0 = Active high frame sync
1 = Active low frame sync

31–18 Reserved (In bypass mode, bits 31–18 are ignored.)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

One Shot Frame
Sync B/D

STROBEB

INVFSB
Active Low Frame Sync B/D

Reserved One Shot Frame
Sync A/C

STROBEA

INVFSA
Active Low Frame Sync A/C

PCG_PW (0x24C4)
PCG_PW2 (0x24CA)

Precision Clock Generator Registers

A-160 ADSP-21368 SHARC Processor Hardware Reference

PCG Frame Synchronization Registers
(PCG_SYNCx)

These registers, shown in Figure A-77, and Figure A-78 and described in
Table A-67 and Table A-68, allow programs to synchronize the clock
frame syncs units with external frame syncs. For more information, see
“Frame Sync” on page 13-8.

Figure A-77. PCG_SYNC Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCG_SYNC (0x24C5)

Enable synchronization of
FSB with external LRCLK

FSB_SYNC

FSA_SOURCE_IOP

Enable frame sync A input source.
0 = XTAL buffer output selected for frame sync A
1 = EXT_CLKA_I selected for frame sync A

Enable synchronization of
FSA with external LRCLK

FSA_SYNC

Enable synchronization of clock
A with external LRCLK

CLKA_SYNC
CLKA_SOURCE_IOP
Enable clock A input source.
0 = XTAL buffer output selected for clock A
1 = EXT_CLKA_I selected for clock A

Enable synchronization of
clock B with external LRCLK

CLKB_SYNC

FSB_SOURCE_IOP

CLKB_SOURCE_IOP
Enable clock B input source.
0 = XTAL buffer output selected for clock B
1 = EXT_CLKA_I selected for clock B

Enable frame sync B input source.
0 = XTAL buffer output selected for frame sync B
1 = EXT_CLKA_I selected for frame sync B

ADSP-21368 SHARC Processor Hardware Reference A-161

Register Reference

Table A-67. PCG_SYNC Register Bit Descriptions

Bit Name Description

0 FSA_SYNC Enable synchronization of frame sync A with external
frame sync.
0 = Frame sync disabled
1 = Frame sync enabled

1 CLKA_SYNC Enable synchronization of clock A with external frame
sync.
0 = Clock disabled
1 = Clock enabled

2 CLKA_SOURCE_IOP Enable clock A input source.
0 = XTAL buffer output selected for clock A
1 = EXT_CLKA_I selected for clock A

3 FSA_SOURCE_IOP Enable frame sync A input source.
0 = XTAL buffer output selected for frame sync A
1 = EXT_CLKA_I selected for frame sync A

16 FSB_SYNC Enable synchronization of frame sync B with external
frame sync.
0 = Frame sync disabled
1 = Frame sync enabled

17 CLKB_SYNC Enable synchronization of clock B with external frame
sync.
0 = Clock disabled
1 = Clock enabled

18 CLKB_SOURCE_IOP Enable clock B input source.
0 = XTAL buffer output selected for clock B
1 = EXT_CLKA_I selected for clock B

19 FSB_SOURCE_IOP Enable frame sync B input source.
0 = XTAL buffer output selected for frame sync B
1 = EXT_CLKA_I selected for frame sync B

Precision Clock Generator Registers

A-162 ADSP-21368 SHARC Processor Hardware Reference

Figure A-78. PCG_SYNC2 Register

Table A-68. PCG_SYNC2 Register Bit Descriptions

Bit Name Description

0 FSC_SYNC Enable synchronization of frame sync C with external
frame sync.
0 = Frame sync disabled
1 = Frame sync enabled

1 CLKC_SYNC Enable synchronization of clock C with external frame
sync.
0 = Clock disabled
1 = Clock enabled

2 CLKC_SOURCE_IOP Enable clock C input source.
0 = XTAL buffer output selected for clock C
1 = EXT_CLKA_I selected for clock C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCG_SYNC2 (0x24CB)

Enable synchronization of
FSD with external LRCLK

FSD_SYNC

FSC_SOURCE_IOP

Enable frame sync C input source.
0 = XTAL buffer output selected for frame sync C
1 = EXT_CLKA_I selected for frame sync C

Enable synchronization of
FSC with external LRCLK

FSC_SYNC

Enable synchronization of clock
C with external LRCLK

CLKC_SYNC
CLKC_SOURCE_IOP
Enable clock C input source.
0 = XTAL buffer output selected for clock C
1 = EXT_CLKA_I selected for clock C

Enable synchronization of
clock D with external LRCLK

CLKD_SYNC

FSD_SOURCE_IOP

CLKD_SOURCE_IOP
Enable clock D input source.
0 = XTAL buffer output selected for clock D
1 = EXT_CLKA_I selected for clock D

Enable frame sync D input source.
0 = XTAL buffer output selected for frame sync D
1 = EXT_CLKA_I selected for frame sync D

ADSP-21368 SHARC Processor Hardware Reference A-163

Register Reference

3 FSC_SOURCE_IOP Enable frame sync C input source.
0 = XTAL buffer output selected for frame sync C
1 = EXT_CLKA_I selected for frame sync C

16 FSD_SYNC Enable synchronization of frame sync D with external
frame sync.
0 = Frame sync disabled
1 = Frame sync enabled

17 CLKD_SYNC Enable synchronization of clock D with external frame
sync.
0 = Clock disabled
1 = Clock enabled

18 CLKD_SOURCE_IOP Enable clock D input source.
0 = XTAL buffer output selected for clock D
1 = EXT_CLKA_I selected for clock D

19 FSD_SOURCE_IOP Enable frame sync D input source.
0 = XTAL buffer output selected for frame sync D
1 = EXT_CLKA_I selected for frame sync D

Table A-68. PCG_SYNC2 Register Bit Descriptions (Cont’d)

Bit Name Description

Peripheral Interrupt Priority Control Registers

A-164 ADSP-21368 SHARC Processor Hardware Reference

Peripheral Interrupt Priority Control
Registers

The following sections provide descriptions of the programmable inter-
rupts that are used in the ADSP-21367/8/9 and ADSP-2137x processors.
For information on the interrupt registers and the interrupt vector table,
see Appendix B, Interrupts.

Peripheral Interrupt Priority Control
Registers (PICRx)

These registers allow programs to substitute the default interrupts for
some other interrupt source. Table A-69 lists the locations to program
into the IOP programmable interrupt control registers (PICR) to route an
IOP interrupt source to a corresponding processor interrupt location.

Table A-69 defines the PICR bits which are programmed to select the
source for each peripheral interrupt. Priority programming can be accom-
plished by changing the sources for each peripheral interrupt. For
example, if peripheral x needs high priority, the high priority peripheral
interrupt source is set as that peripheral.

ADSP-21368 SHARC Processor Hardware Reference A-165

Register Reference

Table A-69. Peripheral Interrupt Controller Routing Table

Interrupt
Name

Vector
Address

Programmable
Interrupt Control
Register (PICR)

Default
Select
Value

Default Function Priority

P0I 0x2C PICR0[4:0] 0x00 DAI1I interrupt HIGHEST

P1I 0x30 PICR0[9:5] 0x01 SPIA interrupt

P2I 0x34 PICR0[14:10] 0x02 IOP GP timer-0 interrupt

P3I 0x38 PICR0[19:15] 0x03 SPORT1 interrupt

P4I 0x3C PICR0[24:20] 0x04 SPORT3 interrupt

P5I 0x40 PICR0[29:25] 0x05 SPORT5 interrupt

P6I 0x44 PICR1[4:0] 0x06 SPORT0 interrupt

P7I 0X48 PICR1[9:5] 0x07 SPORT2 interrupt

P8I 0X4C PICR1[14:10] 0x08 SPORT4 interrupt

P9I 0X50 PICR1[19 :15] 0x09 External port DMA
channel0 interrupt

P10I 0X54 PICR1[24:20] 0x0A IOP GP timer-1 interrupt

P11I 0x58 PICR1[29:25] 0x0B SPORT7 interrupt

P12I 0x5C PICR2[4:0] 0x0C DAI2I interrupt

P13I 0x60 PICR2[9:5] 0x0D External port DMA
channel1 interrupt

P14I 0x64 PICR2[14:10] 0x0E DPI interrupt

P15I 0x68 PICR2[19:15] 0x0F MEM/MEM interrupt

P16I 0x6C PICR2[24:20] 0x10 SPORT6 interrupt

P17I 0x70 PICR2[29:25] 0x11 IOP GP timer-2 interrupt

P18I 0x74 PICR3[4:0] 0x12 SPIB interrupt

UART0RxI 0x13 UART 0 receive interrupt

UART1RxI 0x14 UART 1 receive interrupt

Peripheral Interrupt Priority Control Registers

A-166 ADSP-21368 SHARC Processor Hardware Reference

UART0TxI 0x15 UART 0 transmit interrupt

UART1TxI 0x16 UART 0 transmit interrupt

TWII 0x17 Two wire interface interrupt

PWMI 0x18 PWM interrupt

Reserved 0x19 –
0x1E

Reserved

Logic High 0x1F Software option to set IOP
interrupts

LOWEST

Table A-69. Peripheral Interrupt Controller Routing Table (Cont’d)

Interrupt
Name

Vector
Address

Programmable
Interrupt Control
Register (PICR)

Default
Select
Value

Default Function Priority

ADSP-21368 SHARC Processor Hardware Reference A-167

Register Reference

Peripheral Interrupt Priority0 Control
Register (PICR0)

This 32-bit, read/write register controls programmable peripheral inter-
rupts 0–5 and the default sources shown in Figure A-79. This register is
located at address 0x2200. The reset value of this register is 0x0A418820.

Figure A-79. PICR0 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P5I

SPI Interrupt
Programmable Interrupt 1

P1I

SPORT5 Interrupt
Programmable Interrupt 5

PICR0 (0x2200)

P4I
SPORT3 Interrupt
Programmable Interrupt 4

P3I
SPORT1 Interrupt
Programmable Interrupt 3

DAI High Priority Interrupt
Programmable Interrupt 0

P0I

General-Purpose IOP Timer0 Interrupt
Programmable Interrupt 2

P2I

RESET=0x0A418820

Peripheral Interrupt Priority Control Registers

A-168 ADSP-21368 SHARC Processor Hardware Reference

Peripheral Interrupt Priority1 Control
Register (PICR1)

This register controls programmable peripheral interrupts 6–11 and the
default sources shown in Figure A-80. This 32-bit, read/write register is
located at address 0x2201. The reset value of this register is 0x16A4A0E6.

Figure A-80. PICR1 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P11I

SPORT2 Interrupt
Programmable Interrupt 7

P7I

P9I
External Port DMA
Channel 0 Interrupt
Programmable Interrupt 9

SPORT0 Interrupt
Programmable Interrupt 6

P6I

SPORT4 Interrupt
Programmable Interrupt 8

P8I

P10I

General-Purpose I/O Timer1 Interrupt
Programmable Interrupt 10

PICR1 (0x2201)

SPORT7 Interrupt
Programmable Interrupt 11

RESET=0x16A4A0E6

ADSP-21368 SHARC Processor Hardware Reference A-169

Register Reference

Peripheral Interrupt Priority2 Control
Register (PICR2)

This register controls programmable peripheral interrupts 12–17 as well as
the default sources shown in Figure A-81. This 32-bit, read/write register
is located at address 0x2202. The reset value of this register is
0x2307B9AC.

Figure A-81. PICR2 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

External Port DMA
Channel 1 Interrupt
Programmable Interrupt 13

P13I

P16I

P15I
Memory-to-Memory
Interrupt
Programmable Interrupt 15

DAI Interrupt Low
Programmable Interrupt 12

P12IP14I

P17I
General-Purpose I/O Timer1 Interrupt
Programmable Interrupt 17

PICR2 (0x2202)

DPI Interrupt
Programmable Interrupt 14

SPORT6 Interrupt
Programmable Interrupt 16

RESET=0x2307B9AC

Power Management Control Register (PMCTL)

A-170 ADSP-21368 SHARC Processor Hardware Reference

Peripheral Interrupt Priority3 Control
Register (PICR3)

This register controls programmable peripheral interrupt 18 as shown in
Figure A-82. This 32-bit, read/write register is located at address 0x2203.
The reset value of this register is 0x00000012.

Power Management Control
Register (PMCTL)

The power management control register is a 32-bit, memory-mapped reg-
ister. The PMCTL register’s addresses is 0x2000. This register contains bits
to control phase-lock loop (PLL) multiplier and divider (both input and
output) values, PLL bypass mode, and clock enabling control for peripher-
als (see Figure A-83 and Table A-70). This register also contains status
bits, which keep track of the status of the CLK_CFG pins (read-only).

The core can write to all bits except the read-only status bits. The DIVEN
bit is a logical bit, that is, it can be set, but on reads it always responds
with zero.

Figure A-82. PICR3 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

P18I
SPI B Interrupt
Programmable Interrupt 18

PICR3 (0x2203)

Reserved

RESET=0x00000012

ADSP-21368 SHARC Processor Hardware Reference A-171

Register Reference

Figure A-83. PMCTL Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIMEROFF

PLLBP

Timer Enable/Disable

CLKOUTEN

Reserved
Mux Select For CLKOUT and
RESETOUT
0=Mux output = RESETOUT
1=Mux output = CLKOUT

DIVEN

CRAT0

PLL Clock Ratio Bit 0

PPPDN

Shut Down Clock to External Port

PLLM
PLL Multiplier

SPIOFF

Shut Down Clock to SPIs

SP23POFF

Shut Down Clock to SPORT2–3

SP01OFF

Shut Down Clock to SPORT0–1

SRCOFF

Shut Down Clock to SRC, SPDIF,
SRU, PCG, DAI IDP, PDAP

DTCPOFF

Shut Down Clock to DTCP

SP67OFF

PLL Divider Enable

PLLDx
Divide by 2, 4, 8, or 16

INDIV
Input Divider

PMCTL (0x2000)

Shut Down Clock to SPORT 6,

UART1OFF

Shut Down Clock to UART0

UART0OFF
Shut Down Clock to UART0

PLL Bypass

CRAT1

PLL Clock Ratio Bit 1

SDCKR

SDRAM Clock Ratio (Core
Clock to SDRAM Clock)
000=2, 001=2.5
010=3.0, 011=3.5
100=4.0
101, 110, 111=Reserved

TWIOFF
Shut Down Clock to TWI

SDRAMOFF
Shut Down Clock to
SDRAM Controller
PWMOFF
Shut Down Clock to PWM

SP45POFF

Shut Down Clock to SPORT4–5

Power Management Control Register (PMCTL)

A-172 ADSP-21368 SHARC Processor Hardware Reference

Table A-70. PMCTL Register Bit Descriptions

Bit Name Description

5–0 PLLM PLL Multiplier (read/write).
PLLM = 0 PLL multiplier = 64
0<PLLM<63 PLL multiplier = PLLM
CLK_CFG1–0 reset value
00 = 0000110
01 = 100000
10 = 010000
11 = 000110

7–6 PLLDx PLL Divider (read/write).
00 = CK divider = 1
01 = CK divider = 2
10 = CK divider = 4
11 = CK divider = 8
CLK_CFG1–0 reset value x x 00

8 INDIV Input Divisor (read/write).
0 = divide by 1
1 = divide by 2
Reset Value = 0

9 DIVEN Enable PLL Divider Value Loading (read/write).
0 = Do not load PLLDx
1 = Load PLLDx
Reset value = 0

10 Reserved

11 SP67OFF Serial Port 6, 7 Clock Enable.
0 = SPORT 6, 7 in normal mode
1 = Shut down clock to SPORT 6, 7

12 CLKOUTEN Clockout Enable.
Mux select for CLKOUT and RESETOUT
0 = Mux output = RESETOUT
1 = Mux output = CLKOUT
Reset value = 0

13 UART0OFF UART0 Clock Enable.
0 = UART0 is in normal mode
1 = Shut down clock to UART0

ADSP-21368 SHARC Processor Hardware Reference A-173

Register Reference

14 UART1OFF UART1 Clock Enable.
0 = UART1 is in normal mode
1 = Shut down clock to UART1

15 PLLBP PLL Bypass Mode Indication.
0 = PLL is in normal mode
1 = Put PLL in bypass mode
Reset value = 0

16 CRAT0 PLL Clock Ratio, CLKIN to CK (read only). Read only. For
more detail, see the PLLM and PLLDx bit descriptions in this
table.
Reset value = CLK_CFG[1:0]

17 CRAT1 PLL Clock Ratio, CLKIN to CK (read only). For more
detail, see the PLLM and PLLDx bit descriptions in this table.
Reset value = CLK_CFG[1:0]

20–18 SDCKR SDCLK Ratio. Core clock to SDRAM clock.
000 = RATIO = 2
001 = RATIO = 2.5
010 = RATIO = 3.0
011 = RATIO = 3.5
100 = RATIO = 4.0
101, 110, 111 = Reserved

21 TWIOFF TWI Clock Enable.
0 = TWI is in normal mode
1 = Shut down clock to TWI

22 SDRAMOFF SDRAM Clock Enable.
0 = SDRAM is in normal mode
1 = Shut down clock to SDRAM

23 PWMOFF PWM Clock Enable.
0 = PWM is in normal mode
1 = Shut down clock to PWM

24 DTCPOFF DTCP Clock Enable.
0 = DTCP is in normal mode
1 = Shut down clock to DTCP

Table A-70. PMCTL Register Bit Descriptions (Cont’d)

Bit Name Description

Power Management Control Register (PMCTL)

A-174 ADSP-21368 SHARC Processor Hardware Reference

25 SRCOFF SRC Off.
0 = SRC, SPDIF, SRU, PCG, DAI, IDP, PDAP blocks in nor-
mal mode
1 = Turn OFF clock to SRC, SPDIF, SRU, PCG, DAI, IDP,
PDAP

26 PPPDN External Port Enable/Disable. Shuts down the clock to the
asynchronous memory interface as well as SDRAM.
0 = Port is in normal mode
1 = Shut down clock to external port
Reset value = 0

27 SP01OFF SPORT0, 1 Enable/Disable.
0 = SPORTs 0–1 are in normal mode
1 = Shut down clock to SPORTs 0–1
Reset value = 0

28 SP23OFF SPORT2, 3 Enable/Disable.
0 = SPORTs 2–3 are in normal mode
1 = Shut down clock to SPORTs 2–3
Reset value = 0

29 SP45OFF SPORT4, 5 Enable/Disable.
0 = SPORTs 4–5 are in normal mode
1 = Shut down clock to SPORTs 4–5
Reset value = 0

30 SPIOFF SPI Enable/Disable.
0 = SPI is in normal mode
1 = Shut down clock to SPI
Note: When this bit is set (= 1), the FLAGx pins cannot be
used (via the FLAGS7–0 register bits) because the FLAGx
pins are synchronized with the clock.
Reset value = 0

31 TMEROFF Timer Enable/Disable.
0 = Timer is in normal mode
1 = Shutdown clock to Timer
Reset value = 0

Table A-70. PMCTL Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference A-175

Register Reference

Hardware Breakpoint Control Register
The BRKCTL register controls how breakpoints are used if bit 25, UMODE, is
set. This user-accessible register, shown in Figure A-84 and Figure A-85
and described in Table A-71, is located at address 0x30025.

The register is a 32-bit, memory-mapped I/O register. The core can write
into this register. The bits related to the register are the same as in the
“Enhanced Emulation Status Register” on page A-179.

Note that instruction address breakpoint negates such as NEGPA1
and NEGDA1 have an effect latency of four core clock cycles.

Figure A-84. BRKCTL Register (Bits 16–31)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NEGIA4

UMODE

Reserved

Enable IOX Breakpoint

Enable User Mode Breakpoint
1=Enable breakpoint
0=Disable breakpoint

Negate Instruction Address
Breakpoint #4
1=Enable breakpoint
0=Disable breakpoint

ANDBKP
AND composite breakpoints
1=AND breakpoint types
0=OR breakpoint types

ENBEP
Enable External Port Address Break-
point (See ENBPA Bit Description)

Reserved

Enable Instruction Address Break-
points (See ENBPA Bit Description)

ENBIA

NEGIO1
Negate I/O Address
Breakpoint #1
1=Enable breakpoint
0=Disable breakpoint

NEGEP1
Negate External Address
Breakpoint #1
1=Enable breakpoint
0=Disable breakpoint

ENBPA
Enable Program Memory
Address Breakpoints
1=Enable breakpoint
0=Disable breakpoint

ENBDA
Enable Data Memory
Breakpoints
1=Enable breakpoint
0=Disable breakpoint

BRKCTL (Bits 31-16)

ENBIOY

ENBIOX

Enable IOY Breakpoint

Hardware Breakpoint Control Register

A-176 ADSP-21368 SHARC Processor Hardware Reference

Figure A-85. BRKCTL Register (Bits 0–15)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NEGIA3
Negate Instruction Address
Breakpoint #3
1=Enable breakpoint
0=Disable breakpoint

PA1MODE
PA1 Triggering Mode
00=Breakpoint disabled
01=WRITE access
10=READ access
11=Any accessNEGIA2

Negate Instruction Address
Breakpoint #2
1=Enable breakpoint
0=Disable breakpoint

NEGIA1
Negate Instruction Address
Breakpoint #1
1=Enable breakpoint
0=Disable breakpoint

NEGDA2
Negate DM Address Breakpoint #2
1=Enable breakpoint
0=Disable breakpoint

NEGDA1
Negate DM Address Breakpoint #1
1=Enable breakpoint
0=Disable breakpoint

DA1MODE
DA1 Triggering Mode
00=Breakpoint disabled
01=WRITE access
10=READ access
11=Any access

DA2MODE
DA2 Triggering Mode
00=Breakpoint disabled
01=WRITE access
10=READ access
11=Any access

IO1MODE
IO1 Triggering Mode
00=Breakpoint disabled
01=WRITE access
10=READ access
11=Any access

EP1MODE
EP1 Triggering Mode
00=Breakpoint disabled
01=WRITE access
10=READ access
11=Any access

NEGPA1
Negate PM Address Breakpoint #1
1=Enable breakpoint
0=Disable breakpoint

BRKCTL (0x30025)
(Bits 15-0)

ADSP-21368 SHARC Processor Hardware Reference A-177

Register Reference

Table A-71. BRKCTL Register Bit Descriptions

Bit Name Description

1–0 PA1MODE PA1Triggering Mode.
00 = Breakpoint disabled
01 = WRITE access
10 = READ access
11 = Any access

3–2 DA1MODE DA1 Triggering Mode.
00 = Breakpoint disabled
01 = WRITE access
10 = READ access
11 = Any access

5–4 DA2MODE DA2 Triggering Mode.
00 = Breakpoint disabled
01 = WRITE access
10 = READ access
11 = Any access

7–6 IO1MODE IO1 Triggering Mode.
00 = Breakpoint is disabled
01 = WRITE accesses only
10 = READ accesses only
11 = Any access

9–8 EP1MODE EP1 Triggering Mode.
00 = Breakpoint disabled
01 = WRITE access
10 = READ access
11 = Any access

10 NEGPA1 Negate Program Memory Data Address Breakpoint.
Enable breakpoint events if the address is greater than the end
register value OR less than the start register value. This func-
tion is useful to detect index range violations in user code.
0 = Do not negate breakpoint
1 = Negate breakpoint

11 NEGDA1 Negate Data Memory Address Breakpoint #1.
For more information, see NEGPA1 bit description.

12 NEGDA2 Negate Data Memory Address Breakpoint #2.
For more information, see NEGPA1 bit description.

Hardware Breakpoint Control Register

A-178 ADSP-21368 SHARC Processor Hardware Reference

13 NEGIA1 Negate Instruction Address Breakpoint #1.
0 = Do not negate breakpoint
1 = Negate breakpoint

14 NEGIA2 Negate Instruction Address Breakpoint #2.
For more information, see NEGPA1 bit description.

15 NEGIA3 Negate Instruction Address Breakpoint #3.
For more information, see NEGPA1 bit description.

16 NEGIA4 Negate Instruction Address Breakpoint #4.
For more information, see NEGPA1 bit description.

17 NEGIO1 Negate I/O Address Breakpoint.
For more information, see NEGPA1 bit description.

18 NEGEP1 Negate EP Address Breakpoint.
For more information, see NEGPA1 bit description.

19 ENBPA Enable Program Memory Data Address Breakpoints.
The ENB bits enable each breakpoint group. Note that when
the ANDBKP bit is set, breakpoint types not involved in the
generation of the effective breakpoint must be disabled.
0 = Disable breakpoints
1 = Enable breakpoints

20 ENBDA Enable Data Memory Address Breakpoints.
For more information, see ENBPA bit description.

21 ENBIA Enable Instruction Address Breakpoints.
For more information, see ENBPA bit description.

22 Reserved

23 ENBEP Enable External Port Address Breakpoint.
For more information, see ENBPA bit description.

24 ANDBKP AND Composite Breakpoints. Enables ANDing of each break-
point type to generate an effective breakpoint from the com-
posite breakpoint signals.
0 = OR breakpoint types
1 = AND breakpoint types

Table A-71. BRKCTL Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference A-179

Register Reference

Enhanced Emulation Status Register
The EEMUSTAT register reports the breakpoint status of the programs that
run on the ADSP-21367/8/9 and ADSP-2137x processors. This register is
a memory-mapped IOP register that can be accessed by the core. The
EEMUSTAT register contains two status bits that report I/O breakpoints, one
each for the two I/O buses (IOX and IOY).

When a breakpoint is reached, an interrupt occurs and the breakpoint’s
status bits are set. When the core returns from an interrupt, the break-
point’s status bits are cleared. This register is shown in Figure A-86 and
described in Table A-72.

25 UMODE User Mode Breakpoint Functionality Enable. Address Break-
point 3.
0 = Disable user controlled breakpoint
1 = Enable user controlled breakpoint

26 ENBIOY IOY Breakpoint Enable.
0 = Disable IOY breakpoint
1 = Enable IOY breakpoint 0

27 ENBIOX IOX Breakpoint Enable.
0 = Disable IOX breakpoint
1 = Enable IOX breakpoint

31–28 Reserved

Table A-71. BRKCTL Register Bit Descriptions (Cont’d)

Bit Name Description

Enhanced Emulation Status Register

A-180 ADSP-21368 SHARC Processor Hardware Reference

Figure A-86. EEMUSTAT Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OSPIDENS

EEMUIN Interrupt Enable
1= EEMUIN interrupt enable
0= EEMUIN interrupt disable

EEMUINENS

Operating System Processor ID
Enable
1=OSPID Register enable
0=OSPID Register disable
EEMUENS
Enhanced Emulation Feature Enable
Status
1=Feature is enabled
0=Feature is disabled
EEMUINFULL

EEMUOUTFULL

EEMUIN FIFO Full Status
1= EEMUIN FIFO full
0= EEMUIN FIFO is not full

EEMUOUTRDY

EEMUOUT FIFO Full Status
1= EEMUOUT FIFO full
0= EEMUOUT FIFO is not full

EEMUOUT Valid Data Status
1= EEMUOUT FIFO contains valid data
0= EEMUOUT FIFO is empty
EEMUOUTIRQEN
EEMUOUT Interrupt Enable
1= EEMUOUT interrupt enabled
0= EEMUOUT interrupt disabled

STATPA
Program Memory Break-
point Status
1=Break occurs
0=No break occurs
STATDA0
DM Breakpoint #0 Status
1=Break occurs
0=No break occurs
STATDA1
DM Breakpoint #1 Status
1=Break occurs
0=No break occurs
STATIA0
Instruction Breakpoint #0 Status
1=Break occurs
0=No break occurs
STATIA1
Instruction Breakpoint #1 Status
1=Break occurs
0=No break occurs
STATIA2
Instruction Breakpoint #2 Status
1=Break occurs
0=No break occurs

STATIA3
Instruction Breakpoint #3 Status
1=Break occurs
0=No break occurs
STATIO0
I/O Breakpoint #0 Status
1=Break occurs
0=No break occurs

STATEP
External Memory Breakpoint Status
1=Break occurs
0=No break occurs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

STATIOY
Reserved IOY Memory Breakpoint Status

0= No breakpoint occurs
1= Breakpoint occurs

EEMUSTAT
(0x30021)

ADSP-21368 SHARC Processor Hardware Reference A-181

Register Reference

Table A-72. EEMUSTAT Register Bit Descriptions

Bit Name Description

0 STATPA Program Memory Data Breakpoint Hit.1

0 = No program memory breakpoint occurs
1 = Program memory breakpoint occurs

1 STATDA0 Data Memory Breakpoint Hit.1

0 = No data memory #0 breakpoint occurs
1 = Data memory #0 breakpoint occurs

2 STATDA1 Data Memory Breakpoint Hit.1

0 = No data memory #1 breakpoint occurs
1 = Data memory #1 breakpoint occurs

3 STATIA0 Instruction Address Breakpoint Hit.1

0 = No instruction address #0 breakpoint occurs
1 = Instruction address #0 breakpoint occurs

4 STATIA1 Instruction Address Breakpoint Hit.1

0 = No instruction address #1 breakpoint occurs
1 = Instruction address #1 breakpoint occurs

5 STATIA2 Instruction Address Breakpoint Hit.1

0 = No instruction address #2 breakpoint occurs
1 = Instruction address #2 breakpoint occurs

6 STATIA3 Instruction Address Breakpoint Hit.1

0 = No instruction address #3 breakpoint occurs
1 = Instruction address #3 breakpoint occurs

7 STATIO I/O Address Breakpoint Hit.1

0 = No I/OX address breakpoint occurs
1 = I/OX address breakpoint occurs

8 Reserved1

9 EEMUOUTIRQEN Enhanced Emulation EEMUOUT Interrupt Enable.2

0 = EEMUOUT interrupt disable
1 = EEMUOUT interrupt enable
Note: Interrupts are of the low priority variety

10 EEMUOUTRDY Enhanced Emulation EEMUOUT Ready.3

1 = EEMUOUT FIFO contains valid data
0 = EEMUOUT FIFO is empty

Enhanced Emulation Status Register

A-182 ADSP-21368 SHARC Processor Hardware Reference

11 EEMUOUTFULL Enhanced Emulation EEMUOUT FIFO Status.3

0 = EEMUOUT FIFO is not full
1 = EEMUOUT FIFO full

12 EEMUINFULL Enhanced Emulation EEMUIN Register Status.4

0 = EEMUIN register is empty
1 = EEMUIN register full

13 EEMUENS Enhanced Emulation Feature Enable.4

0 = Enhanced emulation feature enable
1 = Enhanced emulation feature disable

14 OSPIDENS OSPID Register Enable.4

0 = OSPID register enable
1 = OSPID register disable

15 EEMUINENS EEMUIN Interrupt Enable.4

0 = EEMUIN interrupt disable
1 = EEMUIN interrupt enable

16 STATIOY IOY Memory Breakpoint Status
0 = No breakpoint occurs
1 = Breakpoint occurs

31–17 Reserved

1 Internal hardware sets this bit.
2 This bit is set and reset by the core.
3 The FIFO controller sets and resets this bit.
4 Internal hardware sets and resets this bit.

Table A-72. EEMUSTAT Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference B-1

B INTERRUPTS

This chapter provides a complete listing of the registers that are used to
configure and control interrupts. Table B-2 shows all the processor inter-
rupts, listed according to their bit position in the IRPTL, LIRPTL, and
IMASK registers. Also shown are the addresses of the interrupt vectors. Each
vector is separated by four memory locations.

Interrupt Vector Tables
The addresses in the vector table represent offsets from a base address. For
an interrupt vector table in internal RAM, the base address is 0x9 0000
and for internal ROM, the base address is 0x8 0000 (see Table B-1).
These are 48-bit addresses.

The interrupt name column in Table B-2 lists a mnemonic name for each
interrupt as they are defined by the definitions file (def21369.h) that
comes with the software development tools.

Table B-1. Interrupt Vector Table Base Address

Address1

1 These are 48-bit addresses.

Description

0x0009 0000 Internal RAM (block 0)

0x0008 0000 Internal ROM (block 0)

Interrupt Vector Tables

B-2 ADSP-21368 SHARC Processor Hardware Reference

Note that the SPI has only one interrupt for both transmit and receive
operations and each serial port (SPORT) has only one interrupt for both
transmit and receive.

Table B-2. Interrupt Vector Addresses

Interrupt
Number

Register IRPTL/
LIRPTL/
MASK Bit#

Vector
Address

Interrupt
Name

Function

0 IRPTL 0 0x00 EMUI Emulator (read-only,
non-maskable)
HIGHEST PRIORITY

1 IRPTL 1 0x04 RSTI1 Reset (read-only non-maskable)

2 IRPTL 2 0x08 IICDI Illegal input condition detected

3 IRPTL 3 0x0C SOVFI Status loop or mode stack over-
flow; or PC stack full

4 IRPTL 4 0x10 TMZHI Timer=0 (high priority option)

5 IRPTL 5 0x14 SPERRI SP error interrupt

6 IRPTL 6 0x18 BKPI Hardware breakpoint interrupt

7 IRPTL 7 0x1C Reserved

8 IRPTL 8 0x20 IRQ2I IRQ2I asserted

9 IRPTL 9 0x24 IRQ1I IRQ1I asserted

10 IRPTL 10 0x28 IRQ0I IRQ0I asserted

11 IRPTL 11 0x2C P0I Programmable interrupt 0
(DAI1)

12 IRPTL 12 0x30 P1I2 Programmable interrupt 1 (SPIA)

13 IRPTL 13 0x34 P2I Programmable interrupt 2
(GPTMR0)

14 IRPTL 14 0x38 P3I Programmable interrupt 3 (SP1)

15 IRPTL 15 0x3C P4I Programmable interrupt 4 (SP3)

16 IRPTL 16 0x40 P5I Programmable interrupt 5 (SP5)

17 LIRPTL 0 0x44 P6I Programmable interrupt 6 (SP0)

18 LIRPTL 1 0x48 P7I Programmable interrupt 7 (SP2)

ADSP-21368 SHARC Processor Hardware Reference B-3

Interrupts

19 LIRPTL 2 0x4C P8I Programmable interrupt 8 (SP4)

20 LIRPTL 3 0x50 P9I3 Programmable interrupt 9
(EPDMA0)

21 LIRPTL 4 0x54 P10I Programmable interrupt 10
(GPTMR1)

22 LIRPTL 5 0x58 P11I3 Programmable interrupt 11 (SP7)

23 LIRPTL 6 0x5C P12I Programmable interrupt 12
(DAI2)

24 LIRPTL 7 0x60 P13I Programmable interrupt 13
(EPDMA1)

25 IRPTL 17 0x64 P14I3 Programmable interrupt 14 (DPI)

26 IRPTL 18 0x68 P15I Programmable interrupt 15
(M2MI)

27 IRPTL 19 0x6C P16I Programmable interrupt 16 (SP6)

28 LIRPTL 8 0x70 P17I Programmable interrupt 17
(GPTMR2)

29 LIRPTL 9 0x74 P18I3 Programmable interrupt 18 (SPIB)

30 IRPTL 20 0x78 CB7I Circular buffer 7 overflow

31 IRPTL 21 0x7C CB15I Circular buffer 15 overflow

32 IRPTL 22 0x80 TMZLI Timer=0 (low priority option)

33 IRPTL 23 0x84 FIXI Fixed-point overflow

34 IRPTL 24 0x88 FLTOI Floating-point overflow exception

35 IRPTL 25 0x8C FLTUI Floating-point underflow
exception

36 IRPTL 26 0x90 FLTII Floating-point invalid exception

37 IRPTL 27 0x94 EMULI Emulator low priority interrupt

38 IRPTL 28 0x98 SFT0I User software interrupt 0

39 IRPTL 29 0x9C SFT1I User software interrupt 1

Table B-2. Interrupt Vector Addresses (Cont’d)

Interrupt
Number

Register IRPTL/
LIRPTL/
MASK Bit#

Vector
Address

Interrupt
Name

Function

Interrupt Vector Tables

B-4 ADSP-21368 SHARC Processor Hardware Reference

Interrupt Priorities
The ADSP-21367/8/9 and ADSP-2137x SHARC processors support 19
prioritized IOP interrupts which are shown in Table B-3. Table B-3 also
lists the value corresponding to each interrupt source. To route an IOP
interrupt source to a corresponding programmable interrupt location, see
“Peripheral Interrupt Priority Control Registers” on page A-164.

40 IRPTL 30 0xA0 SFT2I User software interrupt 2

41 IRPTL 31 0xA4 SFT3I User software interrupt 3
LOWEST PRIORITY

1 If configured for internal ROM boot mode, then the base address for the interrupt vector table is
the starting address of internal ROM or 0x00080000.

2 These interrupts have options to unmask at reset. Therefore, the peripherals that boot the processor
should be allocated these interrupts: P1I, P9I.

Table B-3. Interrupt Selection Values

No Interrupt Source Interrupt Select
Value (5-Bits)

Comments

1 DAI1 0x00 DAI high priority interrupt

2 SPIAI 0x01 SPIA high priority interrupt

3 GPTMR0I 0x02 General-purpose IOP timer 0 interrupt

4 SP1I 0x03 Serial port 1 interrupt

5 SP3I 0x04 Serial port 3 interrupt

6 SP5I 0x05 Serial port 5 interrupt

7 SP0I 0x06 Serial port 0 interrupt

8 SP2I 0x07 Serial port 2 interrupt

9 SP4I 0x08 Serial port 4 interrupt

10 EP0I 0x09 External port channel 0 interrupt

Table B-2. Interrupt Vector Addresses (Cont’d)

Interrupt
Number

Register IRPTL/
LIRPTL/
MASK Bit#

Vector
Address

Interrupt
Name

Function

ADSP-21368 SHARC Processor Hardware Reference B-5

Interrupts

11 GPTMR1I 0x0A Genera-purpose Timer 1 interrupt

12 SP7I 0x0B Serial port 7 interrupt

13 DAI 0x0C DAI low priority interrupt

14 EP1I 0x0D External port channel 1 interrupt

15 DPI 0x0E DPI interrupt

16 MTMDMAI 0x0F Memory-to-memory DMA interrupt

17 SP6I 0x10 Serial Port 6 interrupt

18 GPTMR2I 0x11 General-purpose timer 2 interrupt

19 SPIBI 0x12 SPI B interrupt

20 UART0RXI 0x13 UART0 RX interrupt1

21 UART1RXI 0x14 UART1 RX interrupt1

22 UART0TXI 0x15 UART0 TX interrupt1

23 UART1TXI 0x16 UART1 TX interrupt1

24 TWII 0x17 TWI interrupt1

25 PWMI 0x18 PWM interrupt1

26 Reserved 0x18–0x1E Reserved

27 LOGIC HIGH 0x1F Software option to set IOP interrupts1

1 These interrupts are not connected to the processor core interrupts by default. If these interrupts
are required, then the PICR registers should be programmed explicitly. For more information,
see “Peripheral Interrupt Priority Control Registers” in Appendix A, Register Reference.

Table B-3. Interrupt Selection Values (Cont’d)

No Interrupt Source Interrupt Select
Value (5-Bits)

Comments

Interrupt Registers

B-6 ADSP-21368 SHARC Processor Hardware Reference

Interrupt Registers
This section provides information on the registers that are used to config-
ure and control interrupts. These registers are:

• “Interrupt Register (LIRPTL)” on page B-6

• “Interrupt Latch Register (IRPTL)” on page B-13

• “Interrupt Mask Register (IMASK)” on page B-18

• “Interrupt Mask Pointer Register (IMASKP)” on page B-22

Interrupt Register (LIRPTL)
The LIRPTL register is a non-memory-mapped, universal, system register
(Ureg and Sreg). The reset value for these registers is 0x0000 0000. The
LIRPTL register indicates latch status, select masking, and displays mask
pointers for interrupts. Figure B-1, Figure B-2, and Table B-4 provide bit
definitions for the LIRPTL register.

The MSKP bits in the LIRPTL register and the entire IMASKP register
are for interrupt controller use only. Modifying these bits interferes
with the proper operation of the interrupt controller.

The interrupt bits 0 through 19 are programmable through the program-
mable interrupt controller registers (PICRx). The descriptions provided are
their default sources. For information on their optional use, see “Periph-
eral Interrupt Priority Control Registers” on page A-164.

ADSP-21368 SHARC Processor Hardware Reference B-7

Interrupts

Figure B-1. LIRPTL Register (Bits 16–31)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P13IMSK

P12IMSK
Reserved Programmable Interrupt 12

Mask (DAI1 Interrupt Mask)P18IMSKP
Programmable Interrupt 18 Mask
Pointer (SPI B Interrupt Mask Pointer)

P17IMSKP
Programmable Interrupt 17 Mask Pointer
(General-purpose IOP Timer2 Interrupt
Mask Pointer)
P13MASKP

Programmable Interrupt 12 Mask Pointer
(DAI1 Interrupt Mask Pointer)

P12IMSKP

P11MSKP

Programmable Interrupt 9 Mask Pointer
(External Port DMA Channel 0 Interrupt
Mask Pointer)

P10IMSKP
Programmable Interrupt 10 Mask Pointer
(General-Purpose IOP Timer1 Interrupt
Mask Pointer)
P9IMSKP

P17IMSK
Programmable Interrupt 17
Mask (General-Purpose IOP
Timer2 Interrupt Mask)

P18IMSK
Programmable Interrupt 18
Mask (SPI B Interrupt Mask)

P6IMSKP
Programmable Interrupt 6
Mask Pointer (SPORT0
Interrupt Mask Pointer)

P7IMSKP
Programmable Interrupt 7
Mask Pointer (SPORT2
Interrupt Mask Pointer)

P8IMSKP
Programmable Interrupt 8
Mask Pointer (SPORT4
Interrupt Mask Pointer)

LIRPTL

Programmable Interrupt 13
Mask (EPDMA1 Interrupt
Mask)

Defaults in parenthesis

Programmable Interrupt 13 Mask Pointer
(EPDMA1 Interrupt Mask Pointer)

Programmable Interrupt 11 Mask Pointer
(SPORT7 Interrupt Mask Pointer)

Interrupt Registers

B-8 ADSP-21368 SHARC Processor Hardware Reference

Figure B-2. LIRPTL Register (Bits 0–15)

Table B-4. LIRPTL Register Bit Descriptions

Bit Name Description

0 P6I (SP01) Programmable Interrupt 6 (SPORT 0 Interrupt). Indicates
if an SP0I interrupt is latched and is pending (if set, = 1), or
no SP0I is pending (if cleared, = 0). An SP0I interrupt occurs
two cycles after the last bit of an input/output serial word is
latched into/from RXSP0A/TXSP0A, RXSP0B/TXSP0B.

1 P7I (SP2I) Programmable Interrupt 7 (SPORT 2 Interrupt). Indicates
if an SP2I interrupt is latched and is pending (if set, = 1), or
no SP2I is pending (if cleared, = 0). An SP2I interrupt occurs
two cycles after the last bit of an input/output serial word is
latched into/from RXSP2A/TXSP2A, RXSP2B/TXSP2B.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P13I

P11IMSK

P9IMSK

P10I
Programmable Interrupt 10
(General-Purpose IOP
Timer1 Interrupt 0x54)
P11I

Programmable Interrupt 12
(DAI Low Priority Interrupt
0x5C)

P12I

P10IMASK
Programmable Interrupt 10 Mask
(General-purpose IOP Timer1
Interrupt Mask)

P8IMSK
Programmable Interrupt 8 Mask
(SPORT4 Interrupt Mask)

Programmable Interrupt 9 Mask
(External Port DMA Channel 0
Interrupt Mask)

P7IMSK
Programmable Interrupt 7 Mask
(SPORT2 Interrupt Mask)

P6IMSK
Programmable Interrupt 6 Mask
(SPORT0 Interrupt Mask)

P18I
Programmable Interrupt 18
(SPI B Interrupt 0x74)

P6I
Programmable Interrupt 6
(SPORT0 Interrupt 0x44)

P7I
Programmable Interrupt 7
(SPORT2 Interrupt 0x48)

P8I
Programmable Interrupt 8
(SPORT4 Interrupt 0x4C)

P9I
Programmable Interrupt 9
(External Port DMA Chan-
nel 0 Interrupt 0x50)

P17I
Programmable Interrupt 17
(General-Purpose IOP
Timer2 Interrupt 0x70)

Programmable Interrupt 13
(External Port DMA Chan-
nel 1 Interrupt 0x60)

LIRPTL

Defaults in parenthesis

Programmable Interrupt 11
(SPORT7 Interrupt 0x5C)

Programmable Interrupt 11
Mask (SPORT7 Interrupt Mask)

ADSP-21368 SHARC Processor Hardware Reference B-9

Interrupts

2 P8I (SP4I) Programmable Interrupt 8 (SPORT 4 Interrupt). Indicates
if an SP4I interrupt is latched and is pending (if set, = 1), or
no SP4I is pending (if cleared, = 0). An SP4I interrupt occurs
two cycles after the last bit of an input/output serial word is
latched into/from RXSP4A/TXSP4A, RXSP4B/TXSP4B.

3 P9I (EPDMA0I) Programmable Interrupt 9 (External Port DMA Channel 0
Interrupt). Indicates if an external port interrupt (EPDMA0)
is latched and pending (if set, = 1), or that no external port
interrupt is pending (if cleared, = 0). An external port inter-
rupt occurs when the DMA block transfer has completed.
This interrupt also occurs during core-driven transfers when
the Tx buffer is not full or the Rx buffer is not empty.

4 P10I (GPTMR1I) Programmable Interrupt 10 (General-Purpose IOP Timer 1
Interrupt). Indicates if a GPTMR1I is latched and is pend-
ing (if set, = 1), if no GPTMR1I is pending (if cleared, = 0).

5 P11I (SP7I) Programmable Interrupt 11 (SPORT 7 Interrupt). Indicates
if an SP7I interrupt is latched and is pending (if set, = 1), or
no SP7I is pending (if cleared, = 0). An SP7I interrupt occurs
two cycles after the last bit of an input/output serial word is
latched into/from RXSP7A/TXSP7A, RXSP7B/TXSP7B.

6 P12I (DAI2I) Programmable Interrupt 12 (DAI2 Interrupt). Indicates if a
DAI2 interrupt is latched and is pending (if set, = 1) or no
DAI2 interrupt is pending (if cleared, = 0). This is the lower
priority option.

7 P13I (EPDMA1I) Programmable Interrupt 13 (External Port DMA Channel 1
Interrupt). Indicates if an external port interrupt (EPDMA1)
is latched and pending (if set, = 1), or that no external port
interrupt is pending (if cleared, = 0). An external port inter-
rupt occurs when the DMA block transfer has completed.
This interrupt also occurs during core-driven transfers when
the Tx buffer is not full or the Rx buffer is not empty.

8 P17I (GPTMR2I) Programmable Interrupt 17 (General-Purpose IOP Timer 2
Interrupt). Indicates if a GPTMR2I is latched and is pend-
ing (if set, = 1), or no GPTMR2I is pending (if cleared, = 0).

Table B-4. LIRPTL Register Bit Descriptions (Cont’d)

Bit Name Description

Interrupt Registers

B-10 ADSP-21368 SHARC Processor Hardware Reference

9 P18I (SPIB) Programmable Interrupt 18 (SPI B Interrupt). Indicates if
an SPIB interrupt is latched and pending (if set, = 1), or no
SPIBI interrupt is pending (if cleared, = 0).

10 P6IMSK
(SP0IMSK)

Programmable Interrupt Mask 6 (SPORT0 Interrupt
Mask). Unmasks the SP0I interrupt (if set, = 1), or masks the
SP0I interrupt (if cleared, = 0).

11 P7IMSK
(SP2IMSK)

Programmable Interrupt Mask 7 (SPORT2 Interrupt
Mask). Unmasks the SP2I interrupt (if set, = 1), or masks the
SP2I interrupt (if cleared, = 0).

12 P8IMSK
(SP4IMSK)

Programmable Interrupt Mask 8 (SPORT4 Interrupt
Mask). Unmasks the SP4I interrupt (if set, = 1), or masks the
SP4I interrupt (if cleared, = 0).

13 P9IMSK
(EPDMA0MSK)

Programmable Interrupt Mask 9 (External Port DMA
Channel 0 Interrupt Mask). Unmasks the EPDMA0 inter-
rupt (if set, = 1), or masks the EPDMA0 interrupt (if cleared,
= 0).

14 P10IMSK
(GPTMR1IMSK)

Programmable Interrupt Mask 9 (General-Purpose IOP
Timer 1 Interrupt Mask). Unmasks the GPTMR1I interrupt
(if set, = 1), or masks the GPTMR1I interrupt
(if cleared, = 0).

15 P11IMSK Programmable Interrupt Mask 11 (SPORT7 Interrupt
Mask). Unmasks the SP7I interrupt (if set, = 1), or masks the
SP7I interrupt (if cleared, = 0).

16 P12IMSK
(DAI2IMSK)

Programmable Interrupt Mask 12 (DAI2 Interrupt Mask).
Unmasks the DAI2I (if set, = 1), or masks DAI2I
(if cleared, = 0).

17 P13IMSK
(EPDMA1IMSK)

Programmable Interrupt Mask 12 (External Port DMA
Channel 1 Interrupt Mask). Unmasks the EPDMA1I inter-
rupt (if set, = 1), or masks EPDMA1I interrupt (if set, = 0).

18 P17IMSK
(GPTMR2IMSK)

Programmable Interrupt Mask 17 (General-Purpose IOP
Timer 2 Interrupt Mask.) Unmasks the GPTMR2I interrupt
(if set, = 1), or masks the GPTMR2I interrupt
(if cleared, = 0).

Table B-4. LIRPTL Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference B-11

Interrupts

19 P18IMSK
(SPIBMSK)

Programmable Interrupt Mask 18 (SPI Interrupt Mask Sec-
ondary SPI Port). Unmasks the SPIB interrupt (if set, = 1),
or masks the SPIB interrupt (if cleared, = 0).

20 P6IMSKP
(SP0IMSKP)

Programmable Interrupt Mask Pointer 9 (SPORT0 Inter-
rupt Mask Pointer). When the processor is servicing another
interrupt, this bit indicates if the SP0I interrupt is unmasked
(if set, = 1), or the SP0I interrupt is masked (if cleared, = 0).

21 P7IMSKP
(SP2IMSKP)

Programmable Interrupt Mask Pointer 7 (SPORT2 Inter-
rupt Mask Pointer). When the processor is servicing another
interrupt, this bit indicates if the SP2I interrupt is unmasked
(if set, = 1), or the SP2I interrupt is masked (if cleared, = 0).

22 P8IMSKP
(SP4IMSKP)

Programmable Interrupt Mask Pointer 8 (SPORT4 Inter-
rupt Mask Pointer). When the processor is servicing another
interrupt, this bit indicates if the SP4I interrupt is unmasked
(if set, = 1), or the SP4I interrupt is masked (if cleared, = 0).

23 P9IMSKP
(EPDMA0IMSKP)

Programmable Interrupt Mask Pointer 9 (External Port
DMA Channel 0 Interrupt Mask Pointer). When the pro-
cessor is servicing another interrupt, this bit indicates if the
EPDMA0 interrupt is unmasked (if set, = 1), or masked (if
cleared, = 0).

24 P10IMSKP
(GPTMR1MSKP)

Programmable Interrupt Mask Pointer 10 (General-Pur-
pose IOP Timer 1 Interrupt Mask Pointer).
When the processor is servicing another interrupt, this bit
indicates if the GPTMR1I interrupt is unmasked (if set, = 1),
or the GPTMR1I interrupt is masked (if cleared, = 0).

25 P11MSKP Programmable Interrupt Mask Pointer 11 (SPORT7 Inter-
rupt Mask Pointer). When the processor is servicing another
interrupt, this bit indicates if the SP7I interrupt is unmasked
(if set, = 1), or the SP7I interrupt is masked (if cleared, = 0).

26 P12IMSKP
(DAI2IMSKP)

Programmable Interrupt Mask Pointer 12 (DAI Low Prior-
ity Interrupt Mask Pointer).
When the processor is servicing another interrupt, this bit
indicates if the DAI2I is unmasked (if set, = 1), or masked (if
cleared, = 0).

Table B-4. LIRPTL Register Bit Descriptions (Cont’d)

Bit Name Description

Interrupt Registers

B-12 ADSP-21368 SHARC Processor Hardware Reference

27 P13IMASKP
(EPDMA1IMSKP)

Programmable Interrupt 13 Mask Pointer (External Port
DMA Channel 1 Interrupt Mask Pointer).
When the processor is servicing another interrupt, this bit
indicates if the EPDMA1I is unmasked (if set, = 1) or
masked (if cleared, = 0).

28 P17MSKP
(GPTMR2IMSKP)

Programmable Interrupt Mask Pointer 17 (General-Pur-
pose IOP Timer 2 Interrupt Mask Pointer).
When the processor is servicing another interrupt, this bit
indicates if the GPTMR2I interrupt is unmasked (if set, = 1),
or the GPTMR2I interrupt is masked (if cleared, = 0).

29 P18MSKP
(SPIBIMSKP)

Programmable Interrupt Mask Pointer 8 (SPIBI Interrupt
Mask Pointer). When the processor is servicing another
interrupt, this bit indicates if the SPIBI interrupt is
unmasked (if set, = 1), or the SPIBI interrupt is masked (if
cleared, = 0).

31–30 Reserved

Table B-4. LIRPTL Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference B-13

Interrupts

Interrupt Latch Register (IRPTL)
The IRPTL register is a non-memory-mapped, universal, system register
(Ureg and Sreg). The reset value for this register is 0x0000 0000. The
IRPTL register indicates latch status for interrupts. Figure B-3, Figure B-4
and Table B-5 provide bit definitions for the IRPTL register.

Figure B-3. IRPTL, IMASK, and IMASKP Registers (Bits 31–16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P14I

TMZLI

P5ISFT3I
User Software
Interrupt 3 (0xA4)

Timer Expired Low Priority
(0x80)

CB15I

Programmable Interrupt 5
(SPORT5 Interrupt 0x40)

SFT2I
User Software Interrupt 2 (0xA0)
SFT1I
User Software Interrupt 1 (0x9C)

SFT0I
User Software Interrupt 0 (0x98)

EMULI
Emulator Interrupt (0x94)

FLTII
Floating-Point Invalid Operation (0x90)

Floating-Point Underflow (0x8C)
FLTUI

CB7I

DAG1 Circular Buffer 15
Overflow (0x7C)

FIXI
Fixed-Point Overflow (0x84)

FLTOI
Floating-Point Overflow (0x88)

IRPTL (Bits 31-16)

DAG1 Circular Buffer 7I
Overflow 0x78

P15I
Programmable Interrupt 15
(MTMDMA interrupt 0x68)
P16I

Defaults in parenthesis

Programmable Interrupt 14
(DPI Interrupt 0x64)

Programmable Interrupt 16
(SPORT6 Interrupt 0x6C)

Interrupt Registers

B-14 ADSP-21368 SHARC Processor Hardware Reference

The interrupt latch bits 11 through 19 are programmable through the
programmable interrupt controller register (PICR). The descriptions pro-
vided are their default sources. For information on their optional use, see
“Peripheral Interrupt Priority Control Registers” on page A-164.

Figure B-4. IRPTL, IMASK, and IMASKP Registers (Bits 15–0)

Table B-5. Interrupt Latch (IRPTL) Register Bit Descriptions

Bit Name Description

0 EMUI Emulator Interrupt. Indicates if an EMUI is latched and is pending
(if set, = 1,) or no EMUI is pending (if cleared, = 0). An EMUI
occurs on reset and when an external device asserts the EMU pin.

1 RSTI Reset Interrupt. Indicates if an RSTI is latched and is pending
(if set, = 1), or no RSTI is pending (if cleared, = 0). An RSTI occurs
on reset as an external device asserts the RESET pin.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

SOVFI

EMUI
P4I
Programmable Interrupt 4
(SPORT 3 Interrupt 0x3C)

Stack Full/Overflow (0x0C)

Reset (Reset 0x04)

IICDI

Emulator Interrupt
(Interrupt Vector Address
0x00)P3I

Programmable Interrupt 3 (SPORT
1 Interrupt 0x38)

P2I
Programmable Interrupt 2 (Gen-
eral-Purpose IOP Timer 0
Interrupt 0x34)

P1I
Programmable Interrupt 1
(SPI Transmit or Receive High Priority
Interrupt 0x30)

P0I
Programmable Interrupt 0
(DAI1 Interrupt 0x2C)

IRQ0I
IRQ0_I Hardware Interrupt (0x28)

IRQ1_I Hardware Interrupt (0x24)
IRQ1I

RSTI

Illegal Input Condition
Detected (0x08)

TMZHI
Timer Expired
High Priority (0x10)

SPERRI

Hardware Breakpoint
Interrupt (0x18)

IRQ2_I Hardware Interrupt (0x20)
IRQ2I

BKPI

IRPTL (Bits 15-0)

Defaults in parenthesis

SP Error Interrupt
Interrupt (0x18)

ADSP-21368 SHARC Processor Hardware Reference B-15

Interrupts

2 IICDI Illegal Input Condition Detected Interrupt. Indicates if an IICDI is
latched and is pending (if set, = 1), or no IICDI is pending
(if cleared, = 0). An IICDI occurs when a true results from the logical
Oring of the illegal I/O processor register access (IIRA) and unaligned
64-bit memory access bits in the STKYx registers.

3 SOVFI Stack Overflow/Full Interrupt. Indicates if a SOVFI is latched and is
pending (if set, = 1), or no SOVFI is pending (if cleared, = 0). An
SOVFI occurs when a stack in the program sequencer overflows or is
full.

4 TMZHI Timer Expired High Priority. Indicates if a TMZHI is latched and is
pending (if set, = 1), or TMZHI is not pending (if cleared, = 0). A
TMZHI occurs when the timer decrements to zero. Note that this
event also triggers a TMZLI. The timer operations are controlled as
follows:

• The TCOUNT register contains the timer counter. The
timer decrements the TCOUNT register each clock cycle.

• The TPERIOD value specifies the frequency of timer inter-
rupts. The number of cycles between interrupts is TPE-
RIOD + 1. The maximum value of TPERIOD is 232 – 1.

• The TIMEN bit in the MODE2 register starts and stops the
timer.

Since the timer expired event (TCOUNT decrements to zero) gener-
ates two interrupts, TMZHI and TMZLI, programs should unmask
the timer interrupt with the desired priority and leave the other one
masked.

5 SPERRI SP Error Interrupt.

6 BKPI Hardware Breakpoint Interrupt. Indicates if an BKPI is latched and
is pending (if set, = 1), or no BKPI is pending (if cleared, = 0).

7 Reserved

8 IRQ2I IRQ2 Hardware Interrupt. Indicates if an IRQ2I is latched and is
pending (if set, = 1), or no IRQ2I is pending (if cleared, = 0). An
IRQ2I occurs when an external device asserts the FLAG2 pin config-
ured as IRQ2.

Table B-5. Interrupt Latch (IRPTL) Register Bit Descriptions (Cont’d)

Bit Name Description

Interrupt Registers

B-16 ADSP-21368 SHARC Processor Hardware Reference

9 IRQ1I IRQ1 Hardware Interrupt. Indicates if an IRQ1I is latched and is
pending (if set, = 1), or no IRQ1I is pending (if cleared, = 0). An
IRQ1I occurs when an external device asserts the FLAG1 pin config-
ured as IRQ1.

10 IRQ0I IRQ0 Hardware Interrupt. Indicates if an IRQ0I is latched and is
pending (if set, = 1), or no IRQ0I is pending (if cleared, = 0). An
IRQ0I occurs when an external device asserts the FLAG0 pin config-
ured as IRQ0.

11 P0I
(DAI1I)

Programmable Interrupt 0 (DAI High Priority Interrupt). Indicates
if a DAI1I interrupt is latched and is pending (if set, = 1), or no
DAI1I interrupt is pending (if cleared, = 0). This is the higher prior-
ity option.

12 P1I
(SPIAI)

Programmable Interrupt 1 (SPI Transmit or Receive High Priority
Interrupt). Indicates if an interrupt in the primary SPIAI is latched
and is pending (if set, = 1), or no interrupt is pending (if cleared, =
0). This is the higher priority option.

13 P2I
(GPTMR0I)

Programmable Interrupt 2 (General-Purpose IOP Timer 0 Inter-
rupt). Indicates if a GPTMR0I is latched and is pending (if set, = 1),
or no GPTMR0I is pending (if cleared, = 0).

14 P3I (SP1I) Programmable Interrupt 3 (SPORT 1 Interrupt). Indicates if an
SP1I interrupt is latched and is pending (if set, = 1), or no SP1I is
pending (if cleared, = 0). An SP1I interrupt occurs two cycles after
the last bit of an input/output serial word is latched into/from
RXSP1A/TXSP1A, RXSP1B/TXSP1B.

15 P4I (SP3I) Programmable Interrupt 4 (SPORT 3 Interrupt). Indicates if an
SP3I interrupt is latched and is pending (if set, = 1), or no SP3I is
pending (if cleared, = 0). An SP3I interrupt occurs two cycles after
the last bit of an input/output serial word is latched into/from
RXSP3A/TXSP3A, RXSP3B/TXSP3B.

16 P5I (SP5I) Programmable Interrupt 5 (SPORT 5 Interrupt). Indicates if an
SP5I interrupt is latched and is pending (if set, = 1), or no SP5I is
pending (if cleared, = 0). An SP5I interrupt occurs two cycles after
the last bit of an input/output serial word is latched into/from
RXSP5A/TXSP5A, RXSP5B/TXSP5B.

Table B-5. Interrupt Latch (IRPTL) Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference B-17

Interrupts

17 P14I (DPI) Programmable Interrupt 14. Indicates if a DPI interrupt is latched
and is pending (if set, = 1), or no DPI interrupt is pending (if cleared,
= 0).

18 P15I
(MTMDMA)

Programmable Interrupt 15 (MTMDMA Interrupt).

19 P16I (SP6I) Programmable Interrupt 16. Indicates if an SP6I interrupt is latched
and is pending (if set, = 1), or no SP6I is pending (if cleared, = 0). An
SP6I interrupt occurs two cycles after the last bit of an input/output
serial word is latched into/from RXSP6A/TXSP6A,
RXSP6B/TXSP6B.

20 CB7I DAG1 Circular Buffer 7 Overflow Interrupt. Indicates if a CB7I is
latched and is pending (if set, = 1), or no CB7I interrupt is pending
(if cleared, = 0). A circular buffer overflow occurs when the DAG cir-
cular buffering operation increments the I register past the end of the
buffer.

21 CB15I DAG2 Circular Buffer 15 Overflow Interrupt. Indicates if a CB15I
is latched and is pending (if set, = 1), or no CB15I is pending (if
cleared, = 0). A circular buffer overflow occurs when the DAG circu-
lar buffering operation increments the I register past the end of the
buffer.

22 TMZLI Timer Expired (Low Priority) Interrupt. Indicates if a TMZLI is
latched and is pending (if set, = 1), or no TMZLI is pending (if
cleared, = 0). For more information, see “TMZHI” on page B-15.

23 FIXI Fixed-Point Overflow Interrupt. Indicates if a FIXI is latched and is
pending (if set, = 1), or no FIXI is pending (if cleared, = 0).

24 FLTOI Floating-Point Overflow Interrupt. Indicates if a FLTOI is latched
and is pending (if set, = 1), or no FLTOI is pending (if cleared, = 0).

25 FLTUI Floating-Point Underflow Interrupt. Indicates if a FLTUI is latched
and is pending (if set, = 1), or no FLTUI is pending (if cleared, = 0).

26 FLTII Floating-Point Invalid Operation Interrupt. This bit
indicates if a FLTII is latched and is pending (if set, = 1), or no FLTII
is pending (if cleared, = 0).

Table B-5. Interrupt Latch (IRPTL) Register Bit Descriptions (Cont’d)

Bit Name Description

Interrupt Registers

B-18 ADSP-21368 SHARC Processor Hardware Reference

Interrupt Mask Register (IMASK)
The IMASK register is a non-memory-mapped, universal, system register
(Ureg and Sreg). The reset value for this register is 0x0000 0003. Each bit
in the IMASK register corresponds to a bit with the same name in the IRPTL
registers. The bits in the IMASK register unmask (enable if set, = 1), or
mask (disable if cleared, = 0) the interrupts that are latched in the IRPTL
register. Except for RSTI and EMUI, all interrupts are maskable.

When the IMASK register masks an interrupt, the masking disables the pro-
cessor’s response to the interrupt. The IRPTL register still latches an
interrupt even when masked, and the processor responds to that latched
interrupt if it is later unmasked. Figure B-3, Figure B-4 and Table B-6
provide bit definitions for the IMASK register.

27 EMULI Emulator (Lower Priority) Interrupt. Indicates if an EMULI is
latched and is pending (if set, = 1), or no EMULI is pending (if
cleared, = 0). An EMULI occurs on reset and when an external device
asserts the EMU pin. This interrupt has a lower priority than
EMULI, but higher priority than software interrupts.

28 SFT0I User Software Interrupt 0. Indicates if a SFT0I is latched and is
pending (if set, = 1), or no SFT0I is pending (if cleared, = 0). An
SFT0I interrupt occurs when a program sets (= 1) this bit.

29 SFT1I User Software Interrupt 1. Indicates if a SFT1I is latched and is
pending (if set, = 1), or no SFT1I is pending (if cleared, = 0). An
SFT1I interrupt occurs when a program sets (= 1) this bit.

30 SFT2I User Software Interrupt 2. Indicates if a SFT2I is latched and is
pending (if set, = 1), or no SFT2I is pending (if cleared, = 0). An
SFT2I interrupt occurs when a program sets (= 1) this bit.

31 SFT3I User Software Interrupt 3. Indicates if a SFT3I is latched and is
pending (if set, = 1), or no SFT3I is pending (if cleared, = 0). An
SFT3I interrupt occurs when a program sets (= 1) this bit.

Table B-5. Interrupt Latch (IRPTL) Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference B-19

Interrupts

Table B-6. IMASK Register Bit Descriptions

Bit Name Description

0 EMUI Emulator Interrupt. This bit is set to 1 (unmasked). An EMUI occurs
on reset and when an external device asserts the EMU pin.

1 RSTI Reset Interrupt. This bit is set to 1 (unmasked). An RSTI occurs on
reset as an external device asserts the RESET pin.

2 IICDI Illegal Input Condition Detected Interrupt. Unmasks the IICDI inter-
rupt (if set, = 1), or masks (if cleared, = 0). An IICDI occurs when a
true results from the logical ORing of the illegal I/O processor register
access (IIRA) and unaligned 64-bit memory access bits in the STKYx
registers.

3 SOVFI Stack Overflow/Full Interrupt. Unmasks the SOVFI interrupt
(if set, = 1), or masks the SOVFI interrupt (if cleared, = 0). An SOVFI
occurs when a stack in the program sequencer overflows or is full.

4 TMZHI Timer Expired High Priority. Unmasks the TMZHI interrupt
(if set, = 1), or masks the TMZHI interrupt (if cleared, = 0). A TMZHI
occurs when the timer decrements to zero. Note that this event also
triggers a TMZLI. The timer operations are controlled as follows:

• The TCOUNT register contains the timer counter. The timer
decrements the TCOUNT register each clock cycle.

• The TPERIOD value specifies the frequency of timer inter-
rupts. The number of cycles between interrupts is
TPERIOD + 1. The maximum value of TPERIOD is 232 – 1.

• The TIMEN bit in the MODE2 register starts and stops the
timer.

Since the timer expired event (TCOUNT decrements to zero) generates
two interrupts, TMZHI and TMZLI, programs should unmask the
timer interrupt with the desired priority and leave the other one
masked.

5 Reserved

6 BKPI Hardware Breakpoint Interrupt. Unmasks the BKPI interrupt
(if set, = 1), or masks the BKPI interrupt (if cleared, = 0).

7 Reserved

8 IRQ2I IRQ2 Hardware Interrupt. Unmasks the IRQ2I interrupt (if set, = 1),
or masks the interrupt (if cleared, = 0). An IRQ2I occurs when an
external device asserts the FLAG2 pin configured as IRQ2.

Interrupt Registers

B-20 ADSP-21368 SHARC Processor Hardware Reference

9 IRQ1I IRQ1 Hardware Interrupt. Unmasks the IRQ1I interrupt (if set, = 1),
or masks the IRQ1I interrupt (if cleared, = 0). An IRQ1I occurs when
an external device asserts the FLAG1 pin configured as IRQ1.

10 IRQ0I IRQ0 Hardware Interrupt. Unmasks the IRQ0I interrupt (if set, = 1),
or masks the IRQ0I interrupt (if cleared, = 0). An IRQ0I occurs when
an external device asserts the FLAG0 pin configured as IRQ0.

11 DAI1I DAI High Priority Interrupt. Unmasks the DAI1I interrupt
(if set, = 1), or masks the DAI1I interrupt (if cleared, = 0). This is the
higher priority option.

12 SPIAI SPI Transmit or Receive High Priority Interrupt. Unmasks the SPIAI
interrupt (if set, = 1), or masks the SPIAI interrupt (if cleared, = 0).
This is the higher priority option.

13 GPTMR0I General-Purpose IOP Timer 0 Interrupt. Unmasks the GPTMR0I
interrupt (if set, = 1), or masks the GPTMR0I interrupt
(if cleared, = 0).

14 SP1I SPORT 1 Interrupt. Unmasks the SP1I interrupt (if set, = 1), or masks
the SP1I interrupt (if cleared, = 0). An SP1I interrupt occurs two cycles
after the last bit of an input/output serial word is latched into/from
RXSP1A/TXSP1A, or RXSP1B/TXSP1B.

15 SP3I SPORT 3 Interrupt. Unmasks the SP3I interrupt (if set, = 1), or masks
the SP3I interrupt (if cleared, = 0). An SP3I interrupt occurs two cycles
after the last bit of an input/output serial word is latched into/from
RXSP3A/TXSP3A, or RXSP3B/TXSP3B.

16 SP5I SPORT 5 Interrupt. Unmasks the SP5I interrupt (if set, = 1), or masks
the SP5I interrupt (if cleared, = 0). An SP5I interrupt occurs two cycles
after the last bit of an input/output serial word is latched into/from
RXSP5A/TXSP5A, or RXSP5B/TXSP5B.

17 Reserved

18 P15I Programmable Interrupt 15 (MTMDMA Interrupt).

19 Reserved

Table B-6. IMASK Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference B-21

Interrupts

20 CB7I DAG1 Circular Buffer 7 Overflow Interrupt. Unmasks the CB7I inter-
rupt (if set, = 1), or masks the CB7I interrupt (if cleared, = 0). A circu-
lar buffer overflow occurs when the DAG circular buffering operation
increments the I register past the end of the buffer.

21 CB15I DAG2 Circular Buffer 15 Overflow Interrupt. Unmasks the CB15I
interrupt (if set, = 1), or masks the CB15I interrupt (if cleared, = 0). A
circular buffer overflow occurs when the DAG circular buffering opera-
tion increments the I register past the end of the buffer.

22 TMZLI Timer Expired (Low Priority) Interrupt. Unmasks the TMZLI inter-
rupt (if set, = 1), or masks the TMZLI interrupt (if cleared, = 0). For
more information, see “TMZHI” on page B-19.

23 FIXI Fixed-Point Overflow Interrupt. Unmasks the FIXI interrupt (if set, =
1), or masks the FIXI interrupt (if cleared, = 0).

24 FLTOI Floating-Point Overflow Interrupt. Unmasks the FLTOI interrupt (if
set, = 1), or masks the FLTOI interrupt (if cleared, = 0).

25 FLTUI Floating-Point Underflow Interrupt. Unmasks the FLTUI interrupt (if
set, = 1), or masks the FLTUI interrupt (if cleared, = 0).

26 FLTII Floating-Point Invalid Operation Interrupt. Unmasks the FLTII inter-
rupt (if set, = 1), or masks the FLTII interrupt (if cleared, = 0).

27 EMULI Emulator (Lower Priority) Interrupt. Unmasks the EMULI interrupt
(if set, = 1), or masks the EMULI interrupt (if cleared, = 0). An EMULI
occurs on reset and when an external device asserts the EMU pin.
This interrupt has a lower priority than EMUI, but higher
priority than software interrupts.

28 SFT0I User Software Interrupt 0. Unmasks the SFT0I interrupt (if set, = 1),
or masks the SFT0I interrupt (if cleared, = 0). An SFT0I occurs when a
program sets (= 1) this bit.

29 SFT1I User Software Interrupt 1. Unmasks the SFT1I interrupt (if set, = 1),
or masks the SFT1I interrupt (if cleared, = 0).

30 SFT2I User Software Interrupt 2. Unmasks the SFT2I interrupt (if set, = 1),
or masks the SFT2I interrupt (if cleared, = 0).

31 SFT3I User Software Interrupt 3. Unmasks the SFT3I interrupt (if set, = 1),
or masks the SFT3I interrupt (if cleared, = 0).

Table B-6. IMASK Register Bit Descriptions (Cont’d)

Bit Name Description

Interrupt Registers

B-22 ADSP-21368 SHARC Processor Hardware Reference

Interrupt Mask Pointer Register (IMASKP)
The IMASKP register is a non-memory-mapped, universal, system register
(Ureg and Sreg). The reset value for this register is 0x0000 0000. Each bit
in the IMASKP register corresponds to a bit with the same name in the
IRPTL registers. The IMASKP register field descriptions are shown in
Figure B-3 and Figure B-4 and described in Table B-7.

This register supports an interrupt nesting scheme that lets higher priority
events interrupt an interrupt service routine (ISR) and keeps lower prior-
ity events from interrupting.

When interrupt nesting is enabled, the bits in the IMASKP register mask
interrupts with lower priorities than the interrupt that is currently being
serviced. Other bits in this register unmask interrupts having higher prior-
ity than the interrupt that is currently being serviced. Interrupt nesting is
enabled using NESTM in the MODE1 register. The IRPTL register latches a
lower priority interrupt even when masked, and the processor responds to
that latched interrupt if it is later unmasked.

When interrupt nesting is disabled (NESTM = 0 in the MODE1 register), the
bits in the IMASKP register mask all interrupts while an interrupt is cur-
rently being serviced. The IRPTL register still latches these interrupts even
when masked, and the processor responds to the highest priority latched
interrupt after servicing the current interrupt.

ADSP-21368 SHARC Processor Hardware Reference B-23

Interrupts

Table B-7. IMASKP Register Bit Descriptions

Bit Name Description

0 EMUI Emulator Interrupt. When the processor is servicing another interrupt,
this bit indicates if the EMUI interrupt is unmasked (if set, = 1), or
masked (if cleared, = 0). An EMUI occurs on reset and when an external
device asserts the EMU pin.

1 RSTI Reset Interrupt. When the processor is servicing another interrupt, this
bit indicates if the RSTI interrupt is unmasked (if set, = 1), or masked
(if cleared, = 0). An RSTI occurs on reset as an external device asserts
the RESET pin.

2 IICDI Illegal Input Condition Detected Interrupt. When the processor is ser-
vicing another interrupt, this bit indicates if the IICDI interrupt is
unmasked (if set, = 1), or masked (if cleared, = 0). An IICDI occurs
when a TRUE results from the logical ORing of the illegal I/O proces-
sor register access (IIRA) and unaligned 64-bit memory access bits in
the STKYx registers.

3 SOVFI Stack Overflow/Full Interrupt. When the processor is servicing another
interrupt, this bit indicates if the SOVFI interrupt is unmasked
(if set, = 1), or masked (if cleared, = 0). A SOVFI occurs when a stack in
the program sequencer overflows or is full.

4 TMZHI Timer Expired High Priority. When the processor is servicing another
interrupt, this bit indicates if the TMZHI interrupt is unmasked
(if set, = 1), or masked (if cleared, = 0). A TMZHI occurs when the
timer decrements to zero. Note that this event also triggers a TMZLI.
Timer operations are controlled as follows:

• The TCOUNT register contains the timer counter. The timer
decrements the TCOUNT register each clock cycle.

• The TPERIOD value specifies the frequency of timer inter-
rupts. The number of cycles between interrupts is
TPERIOD + 1. The maximum value of TPERIOD is 232 – 1.

• The TIMEN bit in the MODE2 register starts and stops the
timer.

Since the timer expired event (TCOUNT decrements to zero) generates
two interrupts, TMZHI and TMZLI, programs should unmask the
timer interrupt with the desired priority and leave the other one
masked.

5 Reserved

Interrupt Registers

B-24 ADSP-21368 SHARC Processor Hardware Reference

6 BKPI Hardware Breakpoint Interrupt. When the processor is servicing
another interrupt, this bit indicates if the BKPI interrupt is unmasked
(if set, = 1), or masked (if cleared, = 0).

7 Reserved

8 IRQ2I IRQ2 Hardware Interrupt. When the processor is servicing another
interrupt, this bit indicates if the IRQ2I interrupt is unmasked
(if set, = 1), or masked (if cleared, = 0). An IRQ2I occurs when an exter-
nal device asserts the FLAG2 pin configured as IRQ2.

9 IRQ1I IRQ1 Hardware Interrupt. When the processor is servicing another
interrupt, this bit indicates if the IRQ1I interrupt is unmasked
(if set, = 1), or masked (if cleared, = 0). An IRQ1I occurs when an exter-
nal device asserts the FLAG1 pin configured as IRQ1.

10 IRQ0I IRQ0 Hardware Interrupt. When the processor is servicing another
interrupt, this bit indicates if the IRQ0I interrupt is unmasked
(if set, = 1), or masked (if cleared, = 0). An IRQ0I occurs when an exter-
nal device asserts the FLAG0 pin configured as IRQ0.

11 DAI1I DAI High Priority Interrupt. When the processor is servicing another
interrupt, this bit indicates if the DAI1I interrupt is unmasked
(if set, = 1), or masked (if cleared, = 0). This is the higher priority
option.

12 SPIAI SPI Transmit or Receive High Priority Interrupt. When the processor
is servicing another interrupt, this bit indicates if the SPIAI interrupt is
unmasked (if set, = 1), or the SPIAI interrupt is masked (if cleared, = 0).
This is the higher priority option.

13 GPTMR0I General-Purpose IOP Timer 0 Interrupt. When the processor is servic-
ing another interrupt, this bit indicates if the GPTMR0I interrupt is
unmasked (if set, = 1), or masked (if cleared, = 0).

14 SP1I SPORT 1 Interrupt. When the processor is servicing another interrupt,
this bit indicates if the SP1I interrupt is unmasked (if set, = 1), or
masked (if cleared, = 0). An SP1I interrupt occurs two cycles after the
last bit of an input/output serial word is latched into/from
RXSP1A/TXSP1A, or RXSP1B/TXSP1B.

Table B-7. IMASKP Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference B-25

Interrupts

15 SP3I SPORT 3 Interrupt. When the processor is servicing another interrupt,
this bit indicates if the SP3I interrupt is unmasked (if set, = 1), or
masked (if cleared, = 0). An SP3I interrupt occurs two cycles after the
last bit of an input/output serial word is latched into/from
RXSP3A/TXSP3A, or RXSP3B/TXSP3B.

16 SP5I SPORT 5 Interrupt. When the processor is servicing another interrupt,
this bit indicates if the SP5I interrupt is unmasked (if set, = 1), or
masked (if cleared, = 0). An SP5I interrupt occurs two cycles after the
last bit of an input/output serial word is latched into/from
RXSP5A/TXSP5A, RXSP5B/TXSP5B.

17 Reserved

18 P15I Programmable Interrupt 15 (MTMDMA Interrupt).

19 Reserved

20 CB7I DAG1 Circular Buffer 7 Overflow Interrupt. When the processor is
servicing another interrupt, this bit indicates if the CB7I interrupt is
unmasked (if set, = 1), or masked (if cleared, = 0). A circular buffer
overflow occurs when the DAG circular buffering operation increments
the I register past the end of the buffer.

21 CB15I DAG2 Circular Buffer 15 Overflow Interrupt. When the processor is
servicing another interrupt, this bit indicates if the CB15I interrupt is
unmasked (if set, = 1), or masked (if cleared, = 0). A circular buffer
overflow occurs when the DAG circular buffering operation increments
the I register past the end of the buffer.

22 TMZLI Timer Expired (Low Priority) Interrupt. When the processor is servic-
ing another interrupt, this bit indicates if the TMZLI interrupt is
unmasked (if set, = 1), or masked (if cleared, = 0). For more informa-
tion, see “TMZHI” on page B-15.

23 FIXI Fixed-Point Overflow Interrupt. When the processor is servicing
another interrupt, this bit indicates if the FIXI interrupt is unmasked
(if set, = 1), or the FIXI interrupt is masked (if cleared, = 0).

24 FLTOI Floating-Point Overflow Interrupt. When the processor is servicing
another interrupt, this bit indicates if the FLTOI interrupt is unmasked
(if set, = 1), or masked (if cleared, = 0).

Table B-7. IMASKP Register Bit Descriptions (Cont’d)

Bit Name Description

Interrupt Registers

B-26 ADSP-21368 SHARC Processor Hardware Reference

25 FLTUI Floating-Point Underflow Interrupt. When the processor is servicing
another interrupt, this bit indicates if the FLTUI interrupt is unmasked
(if set, = 1), or masked (if cleared, = 0).

26 FLTII Floating-Point Invalid Operation Interrupt. When the processor is ser-
vicing another interrupt, this bit indicates if the FLTII interrupt is
unmasked (if set, = 1), or masked (if cleared, = 0).

27 EMULI Emulator (Lower Priority) Interrupt. When the processor is servicing
another interrupt, this bit indicates if the EMULI interrupt is unmasked
(if set, = 1), or masked (if cleared, = 0). An EMULI occurs on reset and
when an external device asserts the EMU pin. This interrupt has a lower
priority than EMUI, but higher priority than software interrupts.

28 SFT0I User Software Interrupt 0. When the processor is servicing another
interrupt, this bit indicates if the SFT0I interrupt is unmasked
(if set, = 1), or masked (if cleared, = 0). An SFT0I occurs when a pro-
gram sets (= 1) this bit.

29 SFT1I User Software Interrupt 1. When the processor is servicing another
interrupt, this bit indicates if the SFT1I interrupt is unmasked
(if set, = 1), or masked (if cleared, = 0).

30 SFT2I User Software Interrupt 2. When the processor is servicing another
interrupt, this bit indicates if the SFT2I interrupt is unmasked
(if set, = 1), or masked (if cleared, = 0).

31 SFT3I User Software Interrupt 3. When the processor is servicing another
interrupt, this bit indicates if the SFT3I interrupt is unmasked
(if set, = 1), or masked (if cleared, = 0).

Table B-7. IMASKP Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-21368 SHARC Processor Hardware Reference I-1

I INDEX

Numerics
128-channel TDM, 5-4
16-bit to 32-bit word packing enable

(PACK), 5-62
16-bit word lengths, 5-45, 6-32, 7-14
32-bit word lengths, 5-45, 6-32, 7-14
8-bit word lengths, 6-31

A
accessing IOP registers, latency in, 2-3
accuracy, PWM, 8-17
ACK (acknowledge) signal, 3-2, 3-19, 3-21
acknowledge (ACK) pin, 3-20
activate command, bank, 3-31
active low frame sync select for frame sync

(INVFSx) bit, 13-12
active low versus active high frame syncs,

5-39
active state multichannel receive frame sync

select (LMFS) bit, 5-29
AD1855 stereo DAC

power down, 6-7
address

column, row and bank address mapping
(32-bit), 3-53

core to external memory, 3-52
decoding address bank, 3-53
row in SDRAM, 3-34
SDRAM (external memory space), 3-52
SPORT IOP (listing), 5-50

address bus (ADDR) pin, 3-20, 3-83

addressing, 14-53
7-bit in TWI, 12-1, 12-15
general call in TWI, 12-14
IOP, 2-29
pre-modify, 2-39
restrictions on external memory, 3-3
transfer phase in TWI, 12-6

AMI
See also external port, SDRAM

controller, shared memory
ADDR23-0 bits, 3-28
control (AMICTLx) register, 3-25, A-17

to A-19
DMA, 3-20
hold cycles, 3-23
idle cycle, 3-22
memory bank support, 3-28
modes, setting, 3-24
most significant word first (MSWF) bit,

3-25
packing data (PKDIS) bit, 3-25
read/write throughput, 3-28
reading external memory, 3-25
receive (AMIRX) register, 3-25
signals, 3-20
status (AMISTAT) register, A-20
unpacking data, 3-27
wait states, 3-21
writing external memory, 3-26

Index

I-2 ADSP-21368 SHARC Processor Hardware Reference

AMI bits
ACK pin enable (ACKEN), A-18
AMI enable (AMIEN), A-18
buffer flush (FLSH), A-19
bus hold cycle (HC), A-18
bus idle cycle (HC), A-19
disable packing (PKDIS), A-18
external bus data width (BW), A-18
most significant word first (MSWF),

A-18
predictive read disable (NO_OPT), A-19
read hold cycle (RHC), A-19
wait state enable (WS), A-18

AND breakpoints (ANDBKP) bit, A-178
AND, logical, 2-43, 14-3, A-178
architecture

I/O processor, 2-25
PWM, 8-2
SPDIF transmitter, 9-8
SPORT, 5-8
TWI controller, 12-3

asynchronous access mode (external
memory), 3-81

asynchronous memory interface. See AMI
asynchronous serial communications

(UART), 11-2
audience, intended, xxxi
autobaud detection, 11-1

B
bandwidth in the I/O processor, 2-12
bank

internal memory, 3-33
SDRAM address mapping, 3-51 to 3-57

bank activate command, 3-31
bank column address width, setting, 3-42
baud rate, 6-30, 14-49

setting, 2-43, 6-10

baud rate (continued)
SPIBAUD (serial peripheral interface

baud rate) register, 6-5, A-60
UART, 11-4, 11-5, 11-12

beginning and ending an SPI transfer, 6-29
BHD (buffer hang disable) bit, 5-64, 5-69
BI (break interrupt) bit, 11-4
bidirectional connections through the

signal routing unit, 4-13
bidirectional functions (transmit, receive),

5-1
biphase

encoded audio stream, 9-10
encoded data register (SPDIF_RX_I),

9-18
encoding, 9-11

bits
 See also peripheral specific bits
circular buffer x overflow interrupt

(CBxI), B-17, B-21, B-25
emulator lower priority interrupt

(EMUI), B-14, B-18, B-19, B-21,
B-23, B-26

timer expired high priority (TMZHI),
B-15, B-19, B-23

timer expired low priority (TMZLI),
B-17, B-21, B-25

block diagram
I/O processor, 2-25
input data port, 7-2
PWM, 8-2
SPDIF transmitter, 9-8
SPORT, 5-8
SRC, 10-9
TWI controller, 12-3

boolean operator
AND, 2-43, 14-3, A-178
OR, 7-30, 9-24, A-175, A-177, A-178

boot memory select (BMS) pin, 3-30,
14-39

ADSP-21368 SHARC Processor Hardware Reference I-3

Index

booting
boot kernel, 14-37
BOOT_CFGx (boot source

configuration) pins, 14-38
bootstrap loading, 14-37
from SPI flash, 14-42
SPI port, 14-42

broadcast mode, 6-3, 6-8
buffer, 2-39, 5-7

chain pointer load sequence, 2-38
circular, 2-37
DAI pin, 4-3
data buffer registers, 2-25
data, addressing, 2-29
external, 3-75
external register, 3-45
flash (AMI boot mode), 14-39
output example, 4-12
pin, defined, example, 4-10
SPORT data, 5-1
SPORT DMA, 5-15
SPORT transmit and receive, 5-61
SPORTs, activating, 5-4
system example (multiple SDRAM),

3-46, 3-47
UART restriction, 2-47

buffer hang disable (BHD) bit, 5-64, 5-69,
A-39

burst length, in SDRAM, 3-32
burst stop command (SDRAM), 3-32
burst type definition, 3-32
bus lock (BUSLK) bit, 3-88, 3-92
bus lock and semaphores, 3-92
bus master (Bm) condition, 3-82, 3-93
bus master count (BCNT) register, 3-87
bus master max time-out (BMAX) register,

3-87
bus master, current (CRBMx) bit, 3-93,

A-9
bus request BRx signal, 3-85

bus request, shared memory (BRx) pins,
3-81, 3-92

bus synchronized (BSYN) bit, 3-89, 3-93,
A-9

bus transition cycle (BTC), 3-82
buses

arbitration, 2-20, 3-79, 3-82
bus lock, 3-92
bus lock (BUSLK) bit, A-8
bus master

timeout, 3-87
conflict resolution ratio, 3-25
contention, 2-20, 6-17, A-3
errors in, 3-71
external bus data width (BW) bit, A-18
force sync of shared memory bus

(FSYNC) bit, A-8
granting, 2-21, 6-20
hold cycle bit, A-18
I/O address (IOA), 2-29
I/O data (IOD), 2-19, 2-20, 6-17
I/O processor (IOP), 2-25, 5-44
I2S and, 5-20
idle cycle bit, A-19
master, 3-84
master timeout, 3-87
serial, 5-27
shared memory bus arbitration, 3-79
slave, 3-84
stalls on, 14-54
synchronization, 3-88
TDM method over serial, 5-27

bypass as a one-shot (strobe pulse), 13-13

C
capacitors

bypass, 14-35
decoupling, 14-35

Index

I-4 ADSP-21368 SHARC Processor Hardware Reference

CAS latency
bit (SDCL), A-22
definition, 3-32
setting, 3-40

catastrophic interrupts, 4-65
CBR (CAS before RAS) definition, 3-33
CBxI (circular buffer x overflow interrupt)

bit, B-17, B-21, B-25
center-aligned paired PWM

double-update mode, 8-11
single-update mode, 8-9

chain loading sequence, 2-18
chain pointer registers, 2-15, 2-16

defined, 2-27
DMA buffer, 5-76
SPI address in memory (CPSPI), 2-42,

6-16, 6-19
SPORT address in memory (CPSPx),

A-51
SPORTs, 5-77, 5-81, A-51
starting address, 2-27

chained DMA, 2-14
chaining, 2-13 to 2-42

chain insertion mode, 2-41
chained DMA enable (SCHEN_A and

SCHEN_B) bit, 5-22, 5-63, 5-75,
5-81, A-38

chained DMA sequences, 2-14
DMA, 2-13 to 2-42, 6-27
in serial ports, 5-81, A-38
SPI chained DMA enable (SPICHEN)

bit, 6-19
chaining requests, multiple, 2-18
changing SPI configuration, 6-21
channel

buffer, 2-7
DMA, 2-9, 2-12, 2-13
interrupt, 2-8
priority scheme, 2-2
status, 2-7, 2-13

channel B transmit status register
(SPDIF_TX_CHSTB), A-90, A-91

channel double frequencey mode, single,
9-8

channel mode (SPDIF), two, 9-8
channel number, encoded, 7-19
channel selection registers, 5-31
channels, input data port, 7-1
circular, 2-39
circular buffering, 2-37, 2-39
CLKOUT (clock output) signal, 14-12
clock A source (CLKASOURCE) bit,

A-157
clock divisor (CLKDIV) bits, A-44
clock input (CLKIN) pin, 4-72, 13-2,

13-20, 14-20
clock rising edge select (CKRE) bit, 5-62
clocks and system clocking

CLKOUT and CCLK clock generation,
14-30

clock and frame sync frequencies (DIVx)
registers, 5-69, A-44

clock distribution, 14-34
clock divisor (CLKDIV) bit, A-44
clock input (CLKIN) pin, 14-13, 14-20
clock output enable, 13-3
clock polarity (CLKPL) bit, A-55
clock ratio, 14-31
clock relationships, 14-31
clock rising edge select (CKRE) bit, 5-62,

A-38
clock signal options, 5-71
clocking edge selection, 7-12
core clock ratio, 14-31
definitions, 14-31
determining switching frequencies,

14-29
external master clock, 14-21
frame sync bypass mode, 13-6

ADSP-21368 SHARC Processor Hardware Reference I-5

Index

clocks and system clocking (continued)
frame sync bypass mode, direct bypass,

13-6
frame sync bypass mode, one shot, 13-6
internal clock select (ICLK) bit, A-37
jitter, 14-33
master clock (MCLK), 10-8, 13-18
output control (ENCLKA/B) bits, 13-3
precision clock generator registers, 13-3,

13-7
SDRAM controller, 3-37
serial port count (SPCNTx) registers,

A-45
source select (MSTR) bit, A-37
SPI clock phase select (CPHASE) bit,

A-55
SPI clock rate, 6-5

code select (CSEL) bit, 3-82
column, row and bank address mapping

(32-bit), 3-53
commands

auto-refresh, 3-70
bank activate, 3-31, 3-65
booting, 14-48, 14-51
burst stop, 3-32
load mode register, 3-64
NOP, 3-72
precharge, 3-34, 3-66
read/write, 3-67, 14-50
SDRAM read, A-22
self-refresh, 3-70
SPI master, 6-20
SPI transfer, 6-10

compand data in place, 5-48
companding (compressing/expanding), 5-3
conditioning input signals, 14-32
configurable channels, digital audio

interface interrupts, A-112
configuring frame sync signals, 5-6
connecting peripherals, 4-8

connections
group A, DAI, clock signals, 4-19
group A, DPI, input routing signals,

4-52
group B, DAI data signals, 4-25
group B, DPI, pin assignment signals,

4-56
group C, DAI, frame sync signals, 4-31
group C, DPI, pin enable signals, 4-64
group D, DAI, pin signal assignments,

4-36
group E, DAI, miscellaneous signals,

4-43
group F, DAI, pin enable signals, 4-47

controller, SDRAM, 3-30
conventions, manual, xliii
core access to IOP registers, 2-3
core address mapping, 3-52
core clock cycle, 6-30
core PLL, 13-2
core transmit/receive operations, 6-13
count registers

DMA sport (CSPx), A-51
DMA, defined, 2-27
DMA, restrictions, 2-31
IDP DMA (IDP_DMA_Cx), 7-28

CPSPI (SPI chain pointer) registers, A-65
crossover mode, PWM, 8-16
crosstalk, reducing, 14-34
CSPI, CSPIB (SPI DMA word count)

registers, A-64
CSPx (peripheral DMA counter) registers,

2-31, A-51
customer support, xxxv

D
DAI

buffers, pin, 4-3
channel number, encoded, 7-19

Index

I-6 ADSP-21368 SHARC Processor Hardware Reference

DAI (continued)
clock routing control registers (group A),

4-19
configurable interrupts, A-112
configuration macro, 4-77
connecting peripherals with, 4-8
default configuration, 4-18
general-purpose (GPIO) and flags, 4-64
interrupt controller, 4-65 to 4-71
interrupt controller registers, A-112
interrupts, 4-66, 7-22, A-112
latches, high and low priority, 4-69
miscellaneous signals, 4-65
pin buffer example, 4-3, 4-10, 4-12
pin buffer, bidirectional, 4-13
rising and falling edge masks, 4-70
selection group B (data), 4-25
selection group C (frame sync), 4-31
selection group D (pin assignments),

4-36
selection group E (miscellaneous signals),

4-43 to 4-46
selection group F, 4-47
SRU1 connections for SPORTx, 4-14,

4-16
system configuration, sample, 4-76
system design, 4-3

DAI registers
core interrupt priority assignment

(DAI_IRPTL_PRI), 4-69
core interrupt priority assignment

register (DAI_IRPTL_PRI), 7-19,
A-114

DAI_IRPTL_FE register
as replacement to IMASK, 4-69

DAI_IRPTL_H register as replacement
to IRPTL, 4-69

DAI_IRPTL_L register as replacement
to IRPTL, 4-69

DAI registers (continued)
DAI_IRPTL_RE register as replacement

to IMASK register, 4-69
falling edge interrupt mask register

(DAI_IRPTL_FE), A-115
high priority interrupt

(DAI_IRPTL_H), A-113
high priority interrupt latch register

(DAI_IRPTL_H), 7-17, 7-28, A-114
interrupt falling edge (DAI_IRPTL_FE),

7-19, A-113
interrupt high priority

(DAI_IRPTL_H), A-114
interrupt rising edge (DAI_IRPTL_RE),

7-19, A-113
low priority interrupt (DAI_IRPTL_L),

A-113
low priority interrupt latch register

(DAI_IRPTL_L), 7-17, A-114
pin status (DAI_PIN_STAT), A-112,

A-116
ping-pong DMA status

(SRU_PINGx_STAT), A-110
resistor pull up enable

(DAI_PIN_PULLUP), A-111, A-115
resistor pullup enable

(DAI_PIN_PULLUP), A-111, A-115
rising edge interrupt mask register

(DAI_IRPTL_RE), A-115
shadow high priority interrupt latch

register (DAI_IRPTL_HS), A-114
shadow low priority interrupt latch

register (DAI_IRPTL_LS), A-114
status (DAI_STAT), 7-19, 7-25, 7-26,

A-109
data

alignment, external port, 3-25
buffers in DMA registers, 2-32
direction control (SPTRAN) bit, 5-64,

A-39

ADSP-21368 SHARC Processor Hardware Reference I-7

Index

data (continued)
packing and unpacking, 5-45

data buffers, in serial ports, 5-4
data bus (DATA) pins, 3-20
data direction control (SPTRAN) bit, 5-64,

A-39
data fetch, external port, 3-25
data memory breakpoint hit (STATDx)

bit, A-181
data pin multiplexing, A-8
data pins, function of, 14-7
data ready (DR) status flag (UART), 11-5
data status (DXS_A, DSX_B) bits, 5-66
data type, 5-46

formatting (multichannel), 5-46
formatting (non-multichannel), 5-46
select (DTYPE) bit, 5-61, A-37

data words
in FIFO, 7-15
packing, 5-45, 14-42
single word transfers, 5-81
transferring, 2-49, 5-4, 5-17, 5-22, 5-31,

5-37, 6-33
UART, 11-4

data-independent frame sync, 5-41
(DIFS) mode, 5-41

dead time equation, 8-8
definition

burst type, SDRAM, 3-32
CAS latency, SDRAM, 3-32
CBR, SDRAM, 3-33

delay line DMA, 2-40
diagrams

uniprocessor system with multiple
SDRAM devices diagram, 3-46, 3-47

DIFS (data independent frame sync select)
bit, A-38

digital audio interface. See DAI
DIVEN (PLL divider enable) bit, A-170,

A-172

division multiplexed (TDM) mode, time,
9-19

divisor
clock output, 13-3
reset, UART, 11-12
SPORT (DIVx) registers, 5-6, A-44

divisor, UART, 11-11, A-125
DIVx (divisor) registers, 5-6, 5-69, A-44
DLAB (divisor latch access) bit, 11-6, 11-7,

A-119, A-122, A-123
DMA

 See also I/O processor, external port, SPI,
SPORTs

active chain TCB, 2-41
and UART, 2-44
chain insertion mode, 2-41
chain insertion, active chain, 2-41
chaining in SPI, 2-42
channel buffer registers, listed, 2-32
channel parameter registers, 2-32
channel priority, 2-19
complete interrupt, 2-8
configuring in the I/O processor, 2-2
control registers, 2-32
controller enhancements, 1-11
count registers, A-73
data buffer registers, 2-25
delay line, 2-40
enable bits, 2-48
enabling, 2-48
error interrupts, 6-25
external port throughput, 3-18
IDP index registers, A-70
IDP modify registers, A-71
index registers, 2-29, A-72
input data port enable (IDP_DMA_EN)

bit, 7-20
interrupt regeneration, 2-11
interrupt-driven, 2-8
latency, 2-13

Index

I-8 ADSP-21368 SHARC Processor Hardware Reference

DMA (continued)
master mode operation, 6-15
memory-to-memory, 2-48
multiple chain requests, 2-18
non-chained, 2-13
parameter registers, 2-17
ping-pong, 7-22 to 7-24
ping-pong enable (IDP_PING) bits,

A-68
sequence start, end, 2-14
sequences, TCB loading, 2-16
slave mode operation, 6-19
SPI chain pointer registers, A-65
SPI count registers, A-64
SPI modifier registers, A-64
SPI slave mode, 6-11, 6-12
SPORT chain status bits (DMACHSxy),

A-43
SPORT index registers, A-50
SPORT modify registers, A-50
SPORT status bit (DMASxy), A-43
switching from receive to transmit mode,

6-24
switching from transmit to receive mode,

6-23
transfers in IDP, 7-20
transmit or receive operations (SPI), 6-16
UART, 11-7

DMA enable bits (all peripherals), 2-48
DMA registers

channel listed, 2-32
DMACx (external port DMA registers),

A-14
Dolby, DTS audio standards, 9-16
double frequencey mode, single channel,

9-8
DPI

connections, group A, 4-52 to 4-56
connections, group B, 4-56 to 4-60
connections, group C, 4-60 to 4-64

DPI (continued)
default configuration, 4-51
input routing (group A) signals, 4-52
interrupts, 4-67
pin assignment (group B) signals, 4-56
pin enable (group C) signals, 4-60
registers, A-109

DSP serial mode, 5-74
DSxEN (SPI device select) bits, 6-15, A-58
DTYPE (data type) bits, 5-61, A-37

DSP serial mode data formatting, 5-46
multichannel data formatting, 5-46

duty cycles and dead time in PWM, 8-8
DXS_A (data buffer channel B status) bit,

A-40
DXS_B, DSX_A (data buffer channel A/B

status) bit, 5-66, A-39, A-40

E
early vs. late frame syncs, 5-40
edge-related interrupts

four conditions, 4-70
EEMUINENS bit, A-182
EEMUINFULLS bit, A-182
EEMUOUIRQENS bit, A-181
EEMUOUTRDY bit, A-181
EEMUSTAT register, A-179
EIPPx (DMA external index) registers,

2-27
ELSI (enable RX status interrupt) bit, 11-9,

A-123
EMPPx (DMA external modify) registers,

2-28
EMUI (emulator lower priority interrupt)

bit, B-14, B-18, B-19, B-21, B-23,
B-26

emulator
interrupt (EMUI) bit, B-14, B-18, B-19,

B-21, B-23, B-26

ADSP-21368 SHARC Processor Hardware Reference I-9

Index

enable
breakpoint (ENBx) bit, A-178
clock outputs, 13-3
DMA, 7-20
DMA interrupt (INTEN) bit, 6-34
external port (asynchronous memory

interface), A-18
input data port, 7-15
multichannel mode in SPORTs, A-42
PCGs, 13-7
PDAP, 7-12
pulse width modulation groups, 8-4
sample rate converters, 10-22
SPDIF transmit buffer, 9-25
SPI DMA, 6-16
SPI slave, 6-20
SPORT DMA (SDEN bit), 5-24
SPORT master mode (MSTR), 5-18

enable receive buffer full interrupt (ERBFI)
bit, 11-7, A-123

enable transmit buffer empty interrupt
(ETBEI) bit, 11-7, A-123

endian format, 5-15, 5-45, 5-62, 6-1, A-37
enhanced emulation

feature enable (EEMUENS) bit, A-182
FIFO status (EEMUOUTFULLS) bit,

A-182
INDATA FIFO status

(EEMUINFULLS) bit, A-182
OUTDATA FIFO status

(EEMUOUTFULLS) bit, A-182
OUTDATA interrupt enable

(EEMUOUIRQENS) bit, A-181
OUTDATA ready (EEMUOUTRDY)

bit, A-181
equation

clock, 14-30
dead time, 8-8
duty cycles in PWM, 8-10
frame sync frequency, 5-71

equation (continued)
PWM dead time, 8-8
PWM switching frequency, 8-5
SDRAM refresh rate, 3-50
serial clock frequency, 5-70
serial port clock divisor, 5-70
SPI clock baud rate, A-60
TWI clock divider, 12-5

error signals and flags, 6-35
errors

clearing in SPI, 6-23, 6-25
conditions in DAI/DPI, 4-71
data buffer status (SPORT), 5-65
data in SPORTs, 5-42
data truncation, 1-4
frame sync (SPORT), 5-26, 5-42
IDP FIFO, 7-15
internal bus (SDRAM), 3-71
PCG quantization, 13-2
preventing in DMA chaining, 2-16
reception (SPI), 6-37
S/PDIF error handling, 9-1, 9-22 to 9-23
S/PDIF receiver, 9-17
SDRAM, 3-77
SPI DMA, 6-14, 6-19
SPI master, 6-6
SPI mode fault, 6-36
SPI transmission, 6-21, 6-37
SPORT, 5-15
SRC, 10-3
SRC phase difference, 10-12
SRC resampling, 10-4
TWI master mode, 12-17, 12-18
TWI repeat start, 12-19
TWI slave transfer, 12-14, 12-16
UART, 11-4, 11-9
UART baud rate, 11-12
UART DMA, 2-46, 11-7
UART line, 11-7
UART sampling, 11-6

Index

I-10 ADSP-21368 SHARC Processor Hardware Reference

errors/flags, DMA, external port, host port,
serial port, SPI port, UART port, 6-35

examples
bidirectional DAI pin buffer, 4-13
DAI pin buffer, 4-10
DAI pin buffer output, 4-12
hold time in AMI, 3-24
idle cycle in AMI, 3-23
interrupt latency, regeneration, 2-11
PCG setup for I2S or left-justified DAI,

13-15
pin buffer, 4-10
PLL, 14-16
programming SPORTs (DMA

chaining), 5-83
programming SPORTs direct core

access, 5-86
programming SPORTs transmit

(DMA), 5-89
programming the IDP, 7-31 to 7-33
programming the PCG channels, 13-23

to 13-25
rotating priority arbitration, 3-86
SPI DMA chaining, 2-43
SRU1 connections for SPORTx, 4-14,

4-16
examples, timing

IDP hold timing mode 00, 7-13
IDP hold timing mode 01, 7-14
IDP I2S, 7-7
IDP left-justified sample pair, 7-7
PDAP, 7-14
SPI clock, 6-5
SPI transfer protocol, 6-28, 6-29
SPORT framed vs. unframed data, 5-40
SPORT left-justified sample pair mode,

5-19
SPORT normal vs. alternate framing,

5-40
SPORT word select, 5-25

execution stalls, bus transition, 3-84
external data path width, setting, 3-43
external master clock, 14-21
external memory

access timing, 3-36
address bank decoding, 3-53
banked, 3-30
banks, 3-30
external physical address, 3-29
interface, 3-20
most significant word first (MSWF) bit,

A-18
packing and unpacking (PKDIS) bits,

A-18
pin descriptions, 3-19
signals, 3-16, 3-20

external memory DMA
chained, setting up, 2-36
DMA count (ECEPx) registers, 2-28
DMA index (EIPPx) registers, 2-27
DMA modifier (EMEPx) registers, 2-28

external memory restrictions, 3-52
external port

buffer regsiter pipeline option, 3-45
bus hold cycle bit, A-18
bus idle cycle bit, A-19
chain pointer loading sequence, 2-38,

2-40
chain pointer register (CPEP), 2-36
channel freezing, 3-18
conflict resolution, 3-25
core address mapping, 3-52
data pin mode select (EPDATA) bits,

A-8
delay line DMA, 2-40
DMA, 2-35 to 2-40
DMA registers, A-14 to A-16
DMA throughput, 3-18
hold cycles, 3-23
modes, 3-24

ADSP-21368 SHARC Processor Hardware Reference I-11

Index

external port (continued)
modes, setting, 3-24
read hold cycle (RHC) bits, A-19

external port bits
bank select (BxSD), A-11
bus priority (EPBR), A-12
data enable (DATA), A-13
delay line write pointer write back status

(WBS), A-16
DMA chain status (CHS), A-16
DMA chaining enable (CHEN), A-15
DMA channel priority, A-12
DMA circular buffer enable (CBEN),

A-15
DMA delay-line enable (DLEN), A-15
DMA direction (DMADR), A-15
DMA enable (DMAEN), A-15
DMA external interface status (EXTS),

A-16
DMA FIFO status (DFS), A-15
DMA flush FIFO (DFLSH), A-15
DMA transfer direction status (DIRS),

A-16
DMA transfer status (DMAS), A-15
flush tap list FIFO (TFLSH), A-15
freeze length (FRZDMA), A-12
freeze length core (FRZCR), A-12
tap list FIFO status (TFS), A-15
tap list loading status (TLS), A-16

external port control bus, 3-25, 3-26
external port DMA

chain pointer loading sequence, 2-37
chained, 2-36
channel priority, 2-35
delay line, 2-39
FIFO, 2-35
set up, 2-36

external port registers, A-10 to A-26
AMI control (AMICTLx), A-17
DMA control (DMACx), 2-26

external port registers (continued)
length and base (ELEP, EBEP), 2-37

F
FE (framing error) bit, 11-4
FIFO

control and status in input data port,
7-15

overflow clear bit, 7-15
to memory data transfer, 7-16

FIR filter in SRC, 10-2, 10-7
fixed-point overflow interrupt (FIXI) bit,

B-17, B-21, B-25
flag select bits (SPI), 6-10
flags

digital audio interface, 4-64
errors DMA, external port, host port,

serial port, SPI port, and UART port,
6-35

flag interrupt mode (IRQxEN) bits, A-7
input/output (FLAGx) pins, 6-4, 14-8

FLAGx pins, 6-4, 14-8
floating-point

compatibility, 1-3
FLTII (invalid operation interrupt) bit,

B-17, B-21, B-26
FLTOI (overflow interrupt) bit, B-17,

B-21, B-25
FLTUI (underflow interrupt) bit, B-17,

B-21, B-26
overflow interrupt (FLTOI) bit, B-17,

B-21, B-25
underflow interrupt (FLTUI) bit, B-17,

B-21, B-26
FLTII (floating-point invalid operation

interrupt) bit, B-21, B-26
formula, for frame sync pulse, 5-70
frame sync

A source (FSASOURCE) bit, A-157
active low vs. active high, 5-39

Index

I-12 ADSP-21368 SHARC Processor Hardware Reference

frame sync (continued)
both enable (FS_BOTH) bit, 5-64
early vs. late, 5-40
equations, 13-11
frequencies, 5-69
in multichannel mode, 5-28
internal vs. external, 5-38
options (FS_BOTH and DIFS), 5-18,

5-24
options (FS_BOTH), 5-18
output, synchronizing, 13-7
PCG B source (FSBSOURCE) bit,

13-13
signals, configuring, 5-6
SPORT frame on rising frame sync

(FRFS) bit, 5-17
SPORT frame sync required (FSR) bit,

5-63
frame sync rates

setting in SPORTs, 5-17, 5-21
setting the internal serial clock in

SPORTs, 5-21
framed versus unframed data in SPORTs,

5-37
framing bits, SPORT, 5-17
freezing, channel (in external port DMA),

3-18
frequencey mode, single-channel,

double-frequency, 9-8
frequency of the frame sync output, 13-9
full-duplex operation, specifications, 5-6

G
general-purpose (GPIO) and flags for

digital audio interface, 4-64
general-purpose IOP timer 2 interrupt

mask (GPTMR2IMSK) bit, B-10
general-purpose IOP timer interrupt mask

(GPTMRxIMSK) bits, B-10
generators, optional reset, 14-27

glitch vulnerability (SPORTs), 5-10
GM (get more data) bit, 6-11, 6-20, 6-37,

A-54
ground plane, in PCB design, 14-34
groupings of signals in DAI/DPI, 4-8

H
handshaking, external port, 3-20, 3-79
hardware interrupt

bits, B-15, B-16, B-19, B-20, B-24
signals IRQ2-0, 14-4, 14-6, 14-8, B-16,

B-24
high and low priority latches, 2-7, 4-69
hold cycle (external bus) bit, A-18
hold cycles, external port, 3-23
hold off, processor bus transition, 3-84
hold time

inputs, 14-32
recognition of asynchronous input,

14-32
hold time cycles, setting, 3-23
hysteresis on RESET pin, 14-33

I
I/O address breakpoint hit (STATI0) bit,

A-181
I/O interface to peripheral devices, 5-1
I/O processor

See also DMA; specific peripherals
address bus (IOA), 2-29
addressing in, 2-29
bandwidth, 2-12
baud rate, 2-43
bus arbitration and contention, 2-20
bus diagram, 2-25
bus grant, 2-21
chain insertion mode (DMA), 2-41
chain pointer (CPSPI) register, 2-16
chain pointer registers, 2-27, 2-43

ADSP-21368 SHARC Processor Hardware Reference I-13

Index

I/O processor (continued)
chained DMA, 2-14
configuring DMA, 2-2
count registers, 2-27, 2-31
DAI interrupt registers (DAI_IRPTL_H,

DAI_IRPTL_L), 2-7
data (IOD) bus, 2-20
data buffers in DMA, 2-32
DMA channel priority, 2-19
DMA channel registers, 2-32
DMA enable (DEN) bit, 2-48
DMA interrupt registers, 2-7
DMA interrupt vector locations, 2-8
DMA parameter registers, 2-17
DMA sequence complete interrupt, 2-8
external count (ECEPx) registers, 2-28
external index (EIPPx) registers, 2-27
external modify (EMEPx) registers, 2-28
interrupt driven I/O, 2-6
interrupt service routine restriction, 2-5
latency, 2-11 to 2-13
memory access, DMA, 2-8
polling driven I/O, 2-12
program control interrupt (PCI) bit, 2-8
regenerated interrupts, avoiding, 2-11
registers, listed, A-2
restrictions, 2-2, 2-31
restrictions (ISR), 2-5
stall conditions, 2-3
stall cycles in, 2-5
status driven I/O, 2-12
status polling, 2-12
transfer types, 2-1
type 1 or LW instructions, 2-2

I2C port. See TWI controller
I2S

(Tx/Rx on left channel first), 5-11, 5-12,
A-30

(Tx/Rx on right channel first), 5-11,
5-12, A-30

I2S (continued)
control bits, 5-21
example for DAI, 13-15
mode, 5-74
mode (IDP), 7-3, 7-5, 7-21
SPCTLx control bits, 5-22
timing (IDP), 7-7
transmit and receive channel order

(FRFS), 5-18, 5-23
ICLK (internal clock select) bit, A-37
identification (ID2-0) pin, 3-81
identification code (IDC) bit, 3-93, A-10
idle cycle (external bus) bit, A-19
idle cycle in external port, 3-22
IDP

(DAI) interrupt service routine
steps, 7-28

clocking select, 7-12
FIFO control, 7-15
FIFO memory data transfer, 7-16
FIFO status, 7-15
hold input, 7-12
illustrated, 7-1
interrupt-driven transfers, 7-17, 7-18
interrupts, 7-17, 7-19, 7-22, 7-24
masking, 7-9, A-74
memory data transfer, 7-16
packing modes, 7-9, 7-11
packing unit, 7-9
parallel input mode, 7-8
PDAP control (IDP_PP_CTL) register,

7-9
ping-pong DMA, 7-22 to 7-24
programming examples, 7-31
serial inputs, 7-3
serial modes, setting, 7-5

IDP bits
bus hang disable (IDP_BHD), 7-15,

7-19, A-67

Index

I-14 ADSP-21368 SHARC Processor Hardware Reference

IDP bits (continued)
clear buffer overflow (IDP_CLROVR),

7-15, 7-16, 7-25, A-67
DMA enable (IDP_DMA_EN), 7-20,

7-22, 7-25, A-67
DMA status (IDP_DMAx_STAT),

7-26, A-111
enable (IDP_ENABLE), 7-15, 7-18,

7-20, 7-22, 7-23, A-67
FIFO number of samples

(IDP_FIFOSZ), 7-15, 7-16, 7-19,
A-111

FIFO overflow (IDP_FIFO_OVER),
7-15, 7-16

FIFO overflow (SRU_OVF), 7-25
FIFO samples exceed interrupt

(IDP_FIFO_GTN_INT), 7-17,
7-19, A-113

frame sync format (IDP_SMODEx),
7-4, 7-18, 7-21, A-67, A-70

IDP_DMA_EN (DMA enable
restriction), 7-19

IDP_DMA_EN (input data port DMA
enable), 7-20

monitor number of samples
(IDP_NSET), 7-17, 7-18, 7-19, A-67

PDAP clock edge
(IDP_PDAP_CLKEDGE), 7-12,
7-18, 7-21, A-77

PDAP enable (IDP_PDAP_EN), 7-12,
7-22, A-78

PDAP input mask bits, 7-18
PDAP mask (IDP_Pxx_PPMASK), 7-9,

7-21, A-74
PDAP packing mode

(IDP_PDAP_PACKING), 7-9, A-77
PDAP reset (IDP_PDAP_RESET), 7-8,

A-78
ping-pong DMA enable (IDP_PING)

bits, A-68

IDP bits (continued)
port select (IDP_PORT_SELECT), 7-8,

7-18, 7-21, A-77
reset (IDP_PDAP_RESET) bit, A-78

IDP registers
control (IDP_CTL0), 7-18, 7-19, 7-20,

A-66
control (IDP_CTL1), 7-19, A-68
DMA control, 2-26, A-70
DMA count (IDP_DMA_Cx), 7-21,

7-28, A-71
DMA index (IDP_DMA_Ix), 7-21,

7-28, A-70
DMA modify (IDP_DMA_Mx), 7-21,

7-28, A-71
FIFO (IDP_FIFO), 7-15, 7-16, 7-17,

A-69
IDP_CTLx (input data port control),

7-18, 7-19, 7-20, A-66, A-68
IDP_DMA_AIx (ping-pong DMA

index), 7-23
IDP_DMA_PCx (ping-pong DMA

count), 7-23
PDAP control (IDP_PP_CTL), 7-8, 7-9,

7-12, A-74
ping-pong DMA count

(IDP_DMA_PCx) registers, 7-23
ping-pong DMA index

(IDP_DMA_AIx), 7-23
IFS (SPORT internal frame sync select) bit,

5-63, A-38
IICD (illegal input condition interrupt) bit,

B-15, B-19, B-23
IISPI (SPI DMA start address) register,

A-64
IISPx (serial port DMA internal index)

registers, 2-27, 2-29, A-50
illegal input condition detected (IICD) bit,

B-15, B-19, B-23
IMASK (interrupt mask) register, B-18

ADSP-21368 SHARC Processor Hardware Reference I-15

Index

IMASKP (interrupt mask pointer) register,
B-22

IMSPI (serial peripheral interface address
modify) register, 6-16, 6-19, A-64

IMSPx (SPORT DMA address modifier)
registers, 2-27, 2-29, A-50

INCLUDE directory, 5-49
INDATA interrupt enable

(EEMUINENS) bit, A-182
INDIV (input divisor) bit, A-172
input data port. See IDP
input setup and hold time, 14-32
input signal conditioning, 14-32
input slave select enable (ISSEN) bit, 6-36,

A-54
input synchronization delay, 14-8
instruction address breakpoint hit

(STATIx) bit, A-181
instruction rate, 14-14
instructions

atomic, using for clock and frame sync,
13-10

conditional in SDRAM, 3-82, 3-93
dual data move restriction, 3-78
external memory fetch, 3-25
packed, 3-20
return from interrupt, 4-67

INTEN (DMA interrupt enable) bit, 6-34
interconnections, master-slave, 6-4
internal clock select (ICLK) bit, 5-62
internal frame sync (SPORT IFS) bit, 5-63
internal I/O bus, 2-19
internal I/O bus arbitration (request and

grant), 2-19
internal interrupt vector table (IIVT) bit,

A-6
internal memory

DMA count (CSPx) registers, A-51
DMA index (IDP_DMA_Ix) registers,

7-28

internal memory (continued)
DMA index (IISPx) registers, 2-27, 2-29,

A-50
DMA modifier (IDP_DMA_Mx)

registers, 7-28
DMA modifier (IMSPx) registers, 2-27,

2-29
memory-to-memory data transfers, 2-48
transfers, 2-48

internal memory banks, 3-33
internal serial clock

(ICLK) bit, 5-62
setting, 5-17

internal transmit frame sync (IFS) bit, 5-63
internal vs. external frame syncs, 5-38
INTERR (enable interrupt on error) bit,

6-34
interrupt

hardware, B-15, B-20
input x interrupt (IRQxI) bit, B-15,

B-16, B-20, B-24
latch (IRPTL) register, B-13
latch/mask (LIRPTL) register, B-6
mask (IMASK) register, B-18
mask pointer (IMASKP) register, B-22
peripheral interrupt priority registers

(PICR), A-164
PWM interrupt (P13I) bit, B-9
transfers, starting, 7-18, 7-20, 7-23

interrupt and timer pins, 14-8
interrupt controller, digital audio interface,

4-65, A-112
interrupt driven DMA, I/O processor, 2-8
interrupt input (IRQ2-0) pins, 14-8
interrupt input x interrupt (IRQxI) bit,

B-19, B-24
interrupt latch (IRPTL) register, 6-34,

B-13
interrupt latch/mask (LIRPTL) registers,

6-34, B-6

Index

I-16 ADSP-21368 SHARC Processor Hardware Reference

interrupt mask (IMASK) control register,
B-18

interrupt vector, sharing, 5-72
interrupts, B-15, B-19, B-24

(enable RX status interrupt) bit, A-123
assigning priority for UART, 11-11
catastrophic, 4-65
conditions for generating interrupts in

SPORTs, 5-75
conditions, UART, 11-9
digital audio interface, 4-66, 7-22
digital peripheral interface, 4-67
I/O processor, using in the, 2-6
latch status for, B-13
listed in registers, B-1
non-maskable software (RSTI), A-6
normal, 4-65
UARTLSIE (enable UART RX status

interrupt) bit, 11-9
INVFSx (active low frame sync select for

frame sync) bits, 13-12
IOP register set, 5-49
IRPTL (interrupt latch) register, B-13
IRQ2-0 (hardware interrupt) pins, 14-8
IRQxI (hardware interrupt) bit, B-15,

B-16, B-19, B-20, B-24
ISSS (input service select) bit, A-58

J
jitter, clock, 14-33
JTAG interface pins, 14-12

L
LAFS (late transmit frame sync select) bit,

A-38
LAFS (SPORT late transmit frame sync

select) bit, 5-11, 5-14, 5-16, 5-20,
5-21, 5-40, 5-63, A-30, A-38

latching
high and low priority (DAI/DPI), 4-69
interrupt latch (IRPTL) register, B-13
status for interrupts, B-13

latchup, 14-32
latency

CAS, setting, 3-40
definition, CAS, 3-32
I/O processor registers, A-2
in SPORT registers, 5-58
input synchronization, 14-8
instruction fetch, external memory, 3-25
setting CAS, 3-40

left-justified data (S/PDIF), 9-7, 9-10
left-justified data (SRC), 10-13

framing, 10-17
matched-phase mode, 10-17
setting, 10-14

left-justified sample pair mode (IDP), 7-21
data transfer, core, 7-18
data transfer, DMA, 7-21
DMA, 7-26
FIFO data packing, 7-6
setting, 7-5
timing, 7-7

left-justified sample pair mode (SPORTs),
5-10, 5-16, 5-17

control bits, 5-17
Tx/Rx on FS falling edge, 5-12, A-30
Tx/Rx on FS rising edge, 5-12, A-30

left-justified waveform (PWM), 8-1
LIRPTL (interrupt) registers, 6-34, B-6
little endian (TWI controller), 12-9
loader kernel, 14-37
low active transmit frame sync (LFS, LTFS

and LTDV) bits, 5-63, A-159
LRFS (SPORT logic level) bit, 5-29
LSBF (least significant bit first) bit, 5-62,

A-37

ADSP-21368 SHARC Processor Hardware Reference I-17

Index

M
making connections via the signal routing

unit, 4-15
manual

contents, xxxii
conventions, xliii
new in this edition, xxxiv
related documents, xxxviii
revisions, xxxiv

maskable interrupts, A-6
masking data (SDRAM), 3-33
master clock, external, 14-21
master input slave output (MISOx) pins,

6-2, 6-7, 6-8, 6-27
master mode enable (SPORT), 5-13, 5-29
master mode operation, SPI, 6-10
master out slave in (MOSIx) pin, 6-2, 6-7,

6-27
master-slave interconnections, 6-4
memory

boot memory, 3-30, 14-39
data transfer, FIFO, 7-16
internal banks, 3-33

memory banks, internal, 3-33
memory read RD pin, 3-21, 3-83
memory select (flags) programming

(MSEN) bit, A-8
memory select (MSx) pins, 3-21, 3-53,

3-83, 3-84, 3-89
memory transfer types, 2-1
memory-mapped emulation, breakpoint

registers, 2-4
memory-mapped IOP RXSPI buffer

registers, A-59
memory-to-memory DMA, 2-48
memory-to-memory DMA register, A-28
MISCAx_I (signal routing unit external

miscellaneous) register, 13-13
miscellaneous signals, 4-65
MISOx pins, 6-27

mode
broadcast (SPI), 6-8
chain insertion, 2-14, 2-41
chained DMA, 2-41
left-justified (SPORT), 5-16
left-justified sample pair (IDP), 7-3
loopback (SPORT), 5-6, A-42
master (SPI), 6-38
multichannel (SPORT), 5-3
open drain (SPI), 6-9
packing (IDP), 7-9, 7-10
right-justified (IDP), 7-3
self-refresh, 3-34
serial mode settings (IDP), 7-4
single channel double frequency

(S/PDIF), 9-8
standard serial (SPORT), 5-12
standard serial, signals (SPORT), 5-5
TDM (SPORT), 5-26
time division multiplexed (TDM), 9-19
two channel (SPDIF), 9-8
UART DMA, 2-44
UART non-DMA, 11-13

mode (SPDIF), two channel, 9-8
mode fault (multimaster error) SPI DMA

status (MME) bit, 6-35, 6-36
mode fault error (MME) bit, 6-9, 6-35,

6-36
mode register (SDRAM controller), 3-33
MOSIx pins, 6-27
MSBF (most significant byte first) bit, A-54
MSx pins, memory select, 3-52, 3-53
MTM_FLUSH (memory-to-memory

FIFO flush) bit, 2-48
MTMDMACTL (memory-to-memory

DMA control) register, 2-48
MTxCCSx (serial port transmit compand)

registers, A-47
MTxCCSy and MRxCCSy (multichannel

compand select) registers, 5-47

Index

I-18 ADSP-21368 SHARC Processor Hardware Reference

MTxCSx (serial port transmit select)
registers, A-46

multichannel A and B channels, A-30
multichannel compand select (MTxCCSy

and MRxCCSy) registers, 5-47
multichannel operation (SPORT), 5-25
multichannel selection registers (SPORT),

5-31
multichannel, A and B channels, 5-12
multi-device SPI configuration, 6-12
multimaster conditions, 6-12
multimaster environment, 6-8
multiplexed (TDM) mode, time division,

9-19
multiplexing

in external port data pins, A-8
pins, 14-3 to 14-12
PWM pins, A-8

multiprocessing. See shared memory

N
negate breakpoint (NEGx) bit, A-175,

A-177
NINT (pending interrupt) bit, 11-10
non-chained DMA, 2-13
normal frame sync (SPORT), 5-40
normal interrupts, 4-65

O
OE (overrun error) bit, 11-4
one shot frame sync A or B (STROBEx)

bits, 13-12
one shot option (STROBEB) bit, 13-13
one shot, defined, 13-13
OPD (open drain output) pin, 6-9
OPMODE (SPORT serial port operation

mode) bit, 5-13, 5-17
OR, logical, 7-30, 9-24, A-175, A-177,

A-178

OSPID (operating system process ID), 2-4,
A-182

OSPIDENS (operating system process ID)
register enable bit, A-182

output control unit, PWM, 8-17
output pulse width, defined, 13-13
output strobe, PDAP, 7-14
over-modulation, PWM, 8-12

P
PACK (SPORT packing enable) bit, A-37
packing modes in PDAP, illustrated, 7-10
packing, data, 6-32
page size (SDRAM), A-25
page sizes in SDRAM, 3-34
parallel data acquisition port. See PDAP,

IDP
parallel input mode, 7-8
parameter registers, I/O processor, 2-25
PCG

active low frame sync select for frame
sync (INVFSx) bits, 13-12

bypass mode, 13-12
clock A source (CLKASOURCE) bit,

A-157
clock input (CLKIN) pin, 4-72, 13-2,

13-20
clock input source enable

(CLKx_SOURCE_IOP) bit, A-161
clock with external frame sync enable

(FSx_SYNC) bit, A-161
control (PCG_CTL_Ax) registers,

13-13, A-156
division ratios, 13-16
enable clock (ENCLKx) bit, A-156
enable frame sync (ENFSx) bit, A-156
frame sync A source (FSASOURCE) bit,

13-13, A-157
frame sync B source (FSBSOURCE) bit,

13-13, A-157

ADSP-21368 SHARC Processor Hardware Reference I-19

Index

PCG (continued)
frame sync input source enable

(CLKx_SOURCE_IOP) bit, A-161
frame sync with external frame sync

enable (FSx_SYNC) bit, A-161,
A-162

frame syncs, 13-11
frequency of the frame sync output, 13-9
one shot frame sync A or B (STROBEx)

bits, 13-12
one shot option, 13-13
PCG_CTLA0 (control) register, A-156
phase shift of frame sync, 13-9
pulse width (PCG_PW) register, 13-11,

13-13
pulse width for frame sync (PWFSx) bit,

A-158
setup for I2S or left-justified DAI

example, 13-15
synchronization with the external clock,

13-7
PCI (program control interrupt) bit, 2-8,

2-16
PDAP, 7-8 to 7-14

(rising or falling) clock edge
(IDP_PDAP_CLKEDGE) bit, A-77

control (IDP_PP_CTL) register, 7-8,
A-74

data signal, 7-14
enable (IDP_PDAP_EN) bit, A-78
hold signal, 7-14
port mask bits (IDP_Pxx_PDAPMASK),

A-75
strobe, output, 7-14
timing, 7-14

PE (parity error) bit, 11-4
peripheral devices, I/O interface to, 5-1
peripheral DMA counter registers, 2-27
peripheral interrupt priority control

(PICR) registers, A-164

peripherals
memory mapped, 3-20
overview, 1-7

peripherals, processor specific, 1-5
phase shift of frame sync, 13-9
PICR (peripheral interrupt priority)

registers, A-164
ping-pong DMA, 7-22 to 7-24
pins

See also signals
ACK, enabling, A-18
data, function of, 14-7
descriptions, 14-2
external memory, 3-19
memory select (MSx), 3-53
multiplexing, 14-2 to 14-12
open drain output, 6-9
pin states during SDRAM commands,

3-72
RESET, 14-33
test clock (TCK), 14-12
test data input (TDI), 14-12
test data output (TDO), 14-12
test mode select (TMS), 14-12
test reset (TRST), 14-12

plane, ground, 14-34
PLL programming restrictions, 14-16
PLL startup, 14-19, 14-21
PLL-based clocking, 14-13 to 14-19
PLLDx (PLL divider) bits, A-172
PLLM (PLL multiplier) bit, A-172
PMCTL (power management control)

register, A-170, A-172
polarity

clock polarity (CLKPL) bit, A-55
IDP encoding, 7-6
PWM configuration, 8-15
PWM double-update mode, 8-11
PWM polarity select registers

(PWMPOLx), A-83

Index

I-20 ADSP-21368 SHARC Processor Hardware Reference

polarity (continued)
PWM single update mode, 8-9
SPDIF connections, 9-5
SPI clock, 6-21, 6-27

polling the I/O processor, 2-12
porting from previous SHARCs

paged DRAM boundary, 3-22
symbol changes, 1-12

post-modify, 14-53
power management control register

(PMCTL), A-170, A-172
power supply, monitor and reset generator,

14-28
power-up reset circuit, 14-27, 14-28
power-up sequence start, SDRAM

controller, 3-43
power-up, SDRAM (SDPM) bit, A-23
preambles, S/PDIF, 9-7
precharge command, 3-34
precision clock generators. See PCG
predictive reads, disable bit (NO_OPT),

A-19
printed circuit board design, 14-34
priority of the SPORT interrupts, 5-72
priority, rotating priority arbitration

example, 3-86
processor

architectural overview, 1-6
clock frequency, 5-1
core overview, 1-7
peripheral set by model, 1-5
product information, xxxvii
stalls, 14-52

product-related documents, xxxvii
program control interrupt (PCI) bit, 2-8,

2-16
program memory breakpoint hit

(STATPA) bit, A-181
programmable interrupt bits, B-6 to B-9

programmable interrupt registers (PICRx),
A-164 to A-170

programming examples
input data port, 7-31 to 7-33
power management, 14-14 to 14-16
precision clock generators, 13-23 to

13-25
SPORTs, 5-83 to 5-86
TWI controller, 12-15

programming guidelines, S/PDIF
transmitter, 9-24

pulse code modulation (PCM), 5-20
PWM

16-bit read/write duty cycle registers, 8-7
accuracy, 8-17
center-aligned modes, 8-3
center-aligned paired PWM

double-update mode, 8-11
channel duty control (PWMA, PWMB)

registers, A-84
channel low duty control (PWMAL,

PWMBL) registers, A-84
control (PWMCTL) register, A-80
control register use, 8-4
crossover mode, 8-16
dead time equation, 8-8
double update mode, 8-15
duty cycles, 8-8
edge-aligned mode, 8-3
emergency dead time, 8-13
equations, 8-5 to 8-12
full on to full off transition, 8-14
full on, off conditions, 8-12
global control (PWMGCTL) register,

A-78
global status (PWMGSTAT) register,

A-79
interrupts, 8-5
output control unit, 8-17
over-modulation, 8-12

ADSP-21368 SHARC Processor Hardware Reference I-21

Index

PWM (continued)
period (PWMPERIOD) registers, 8-5,

A-81
period completion status bits, 8-5
polarity select (PWMPOL) registers,

A-83
short-circuit condition, 8-6
single update mode, 8-15
status (PWMSTAT) register, A-81
switching dead time, 8-6
switching frequencies, 8-5
switching frequency equation, 8-5
three-phase timing unit, 8-7, 8-13

PWMAL, PWMBL (pulse width
modulation channel low duty control)
registers, A-84

PWMCTL (pulse width modulation
control) register, A-80

PWMGCTL (pulse width modulation
global control) register, A-78

PWMGSTAT (pulse width modulation
global status) register, A-79

PWMPERIOD (pulse width modulation
period) registers, A-81

PWMPOL (pulse width modulation
polarity select) registers, A-83

PWMSTAT (pulse width modulation
status) register, A-81

R
RAS definition, CBR (CAS before RAS),

3-33
read (RD) pin, 3-21, 3-83
receive busy (overflow error) SPI DMA

status (SPIOVF) bit, 6-35, A-63
receive busy (overflow error) SPI status

(ROVF) bit, 6-37
receive data (RXSPI) buffer, 6-2
receive data buffer shadow

(RXSPI_SHADOW) register, A-59

receive data buffer status (RXS) bit, 6-30
receive data, serial port (RXSPx) registers,

2-25
receive data, SPI (RXSPI) register, 6-37
receive overflow error (SPIOVF) bit, 6-25,

6-26, 6-34
receive shift (RXSR) register, 6-2
reception error bit (ROVF, in SPI), 6-37
refresh rate in SDRAM, 3-50
register writes and effect latency (SPORT),

5-67
registers. See peripheral specific registers
related documents, xxxviii
reset

default settings, 14-3, 14-9
generators, 14-27
input hysteresis, 14-33
interrupt (RSTI) bit, B-14, B-19, B-23
partial, 14-22
pin, 14-20, 14-33
PLL startup, 14-19, 14-21
running, 14-22 to 14-26
running (RUNRST), 14-22
running reset control register

(RUNRSTCTL), 14-25
RESET pin, 14-33
RESETOUT (reset output) signal, 14-12
restrictions

core hang in SPORTS, 5-7, 5-9
count (DMA) registers, 2-31
DMA, 2-47
external port, 3-94
I/O processor, 2-2, 2-31
idle cycle in page boundary, 3-22
PLL clock, 14-16
RESET input, 14-33
RS-232, 5-9
SDRAM, 3-52
SPORTS read/write inactive buffer, 5-69
SPORTs SLEN value, 5-44

Index

I-22 ADSP-21368 SHARC Processor Hardware Reference

restrictions (continued)
UART port controller, 11-11

right channel status for subframe B
(DIRCHANR) register, A-96

right-justify format (SPORTs)
companding, 5-61
setting, 5-46, A-37

rising and falling edge masks
digital audio interface, 4-70

rotating priority arbitration example, 3-86
rotating priority bus arbitration (RPBA)

pin, 3-81, 3-86
ROVF bit, 6-37
ROVF_A or TUVF_A (channel A error

status) bit, A-40
ROVF_A or TUVF_A (serial port error

status) bits, A-40
ROVF_B or TUVF_B (channel B error

status) bit, A-39
row addresses, 3-34
RS-232 device restrictions, 5-9
RSTI (reset interrupt) bit, B-14, B-19,

B-23
running reset, 14-22
running reset control register

(RUNRSTCTL), 14-25
RUNRSTIN (running reset input) signal,

14-12
RX_UACEN (DMA receive buffer enable)

bit, 11-12
RXFLSH (flush receive buffer) bit, 6-23,

6-25, 6-26
RXS (SPI data buffer status) bit, 6-30, A-57
RXSPI, RXSPIB (SPI receive buffer)

registers, 6-13, 6-37, A-59
RXSPI_SHADOW, RXSPIB_SHADOW

(SPI receive buffer shadow) registers,
A-59

RXSPx (serial port receive buffer) registers,
2-25, A-44

RXSR (SPI receive shift) register, 6-2

S
S/PDIF

audio standards, 9-16
biphase encoded data input, 9-18
biphase encoding, 9-11
BLK_START signal, 9-11
block structure, 9-2
channel status bit, 9-9
clock, 9-10
clock (SCLK) input, 9-10
DIR_I (receiver input) signal, 9-18
DIR_LRCLK_O (receiver frame sync

feed back out) signal, 9-19
DIR_LRCLK_REF_O (receiver frame

sync reference out) signal, 9-19
DIR_PLLCLK_I (External 512 x FS

(frame sync) PLL clock input) signal,
9-18

DIT_CLK_I (transmitter serial clock)
signal, 9-10

DIT_DAT_I (transmitter serial data)
signal, 9-10

DIT_EXT_SYNCEN signal, 9-11
DIT_FS_I (frame sync input to the

S/PDIF transmitter) signal, 9-10
DIT_HFCLK_I (transmitter over

sampling clock) signal, 9-11
DIT_O (transmitter biphase encoded

data stream) signal, 9-11
feed back out, 9-19
frame sync, 9-10
frame sync (LRCLK) input, 9-10
output routing, 9-8
oversampling clock, 9-11
PLL clock input, 9-18
preambles, 9-7
programming guidelines, 9-24
reference clock out, 9-19

ADSP-21368 SHARC Processor Hardware Reference I-23

Index

S/PDIF (continued)
serial clock input, 9-24
serial data, 9-10
single-channel, double-frequencey

format, 9-8
SRU control registers, 9-8, 9-18
SRU routing, 9-11
stream disconnected

(DIR_NOSTREAM) bit, A-95
subframe format, 9-4
two channel mode, 9-8

S/PDIF bits
biphase error (DIR_BIPHASEERROR),

A-95
buffer enable (DIT_CHANBUF), 9-25
channel status buffer enable

(DIT_CHANBUF), A-88
channel status byte 0 A

(DIT_B0CHANL), A-89
channel status byte 0 B

(DIT_B0CHANR), A-89
channel status byte 0 for subframe A

(DIR_B0CHANL), A-95
channel status byte 0 for subframe B

(DIR_B0CHANR), A-95
disable PLL (DIR_PLLDIS), A-93
frequency multiplier (DIT_FREQ),

A-88
lock error (DIR_LOCK), A-93
lock receiver (DIR_LOCK), A-95
non-audio frame mode channel 1 and 2

(DIR_NOAUDIOLR), A-95
non-audio subframe mode channel 1

(DIR_NOAUDIOL), A-95
parity (DIR_PARITYERROR), A-95
parity biphase error (DIR_BIPHASE),

A-93
receive mute (DIR_MUTE), A-93

S/PDIF bits (continued)
select single-channel, double-frequency

mode channel (DIT_SCDF_LR),
A-88

serial data input format
(DIT_SMODEIN), A-88

single channel enable (TX_SCDF_EN),
9-9

single channel enable left right
(TX_SCDF_EN), 9-9

single channel left right
(TX_SCDF_LR), 9-9

single-channel, double-frequency
channel select (DIR_SCDF_LR),
A-93

single-channel, double-frequency mode
enable (DIR_SCDF), A-93

transmit mute (DIT_MUTE), A-87
transmit single-channel,

double-frequency enable
(DIT_SCDF), A-88

transmitter enable (DIT_EN), A-87
user, 9-9
validity (DIR_VALID), A-95
validity bit A (DIT_VALIDL), A-88
validity bit B (DIT_VALIDR), A-88,

A-89
S/PDIF registers

audio data output
(SPDIF_RX_DAT_O), 9-18

bi-phase encoded data (SPDIF_RX_I),
9-18

channal A transmit status
(SPDIF_TX_CHSTA), A-89, A-90

channal B transmit status
(SPDIF_TX_CHSTB), A-90

channel status, 9-12
control (DITCTL), 9-12
external frame sync

(SPDIF_EXTPLLCLK_I), 9-18

Index

I-24 ADSP-21368 SHARC Processor Hardware Reference

S/PDIF registers (continued)
extracted receiver frame sync output

(SPDIF_RX_FS_O), 9-18
extracted receiver sample clock output

(SPDIF_RX_CLK_O), 9-18
receive control (DIRCTL), 9-12
receiver status (DIRSTAT), A-94
receiver TDM output

(SPDIF_RX_TDMCLK_O), 9-19
right channel status for subframe A

(DIRCHANL), A-96
right channel status for subframe B

(DIRCHANR), A-96
right channel transmit status

(DITCHANR), 9-12
transmit control (DITCTL), 9-12, 9-17,

A-86
transmit status (DITCHANL) left

channel, 9-12
user bit buffer (DITUSRBITAx), 9-12

sampling clock period, UART, 11-6
sampling point, UART, 11-6
SB (UART set break) bit, 11-3, A-118
SCHEN_A and SCHEN_B (serial port

chaining enable) bit, 5-63, A-38
SDEN (serial port DMA enable) bit, 2-48,

5-63, A-38
SDRAM

buffered system, 3-46, 3-47
bus errors, 3-71
core address mapping, 3-52
errors, 3-77
page size, 3-34
refresh rate, 3-50
restrictions, 3-52

SDRAM bits
burst stop (NOBSTOP), A-25
CAS latency (SDCL), A-22
column address width (SDCAW), A-23

SDRAM bits (continued)
disable clock and control (DSDCTL),

A-22
external data path width (X16DE), A-24
force auto refresh (Force AR), A-24
force load mode register write (Force

LMR), A-24
force precharge (Force PC), A-24
optimization (SDROPT), A-27
optional refresh (SDORF), A-24
page size is 128 words (PGSZ 128), A-25
pipeline option with external register

buffer (SDBUF), A-24
power-up mode (SDPM), A-23
power-up sequence start (SDPSS), A-23
predictive addressing (SDMODIFY),

A-27
RAS setting (SDTRAS), A-23
RDC setting (SDTRCD), A-24
refresh delay (RDIV), A-27
row address width (SDRAW), A-25
RP setting (SDTRP), A-23
self-refresh enable (SDSRF), A-23
WR setting (SDTWR), A-24

SDRAM controller, 3-30
address space, external memory, 3-52
addressing (16-bit), 3-55 to 3-57
addressing (32-bit), 3-53 to 3-54
bank activate, 3-36
burst disable, A-25
burst length definition, 3-32
burst type, 3-32
calculating refresh rate, 3-50
CAS latency, 3-32
CAS latency (SDCL) bit, 3-37
CBR (CAS before RAS), 3-33
clock frequencies, 3-37
configuring, 3-62
control (SDCTL) register, 3-39
data mask, 3-33

ADSP-21368 SHARC Processor Hardware Reference I-25

Index

SDRAM controller (continued)
definitions, 3-31 to 3-36
disable, 3-40
external data path width, setting, 3-43
external memory access timing, 3-36
forcing auto refresh, 3-45
forcing precharge, 3-45
internal bank, 3-33
mode register, 3-33
optimal data throughput, 3-74 to 3-77
page size, 3-34
power-up sequence, A-23, A-24
power-up sequence start, 3-43
precharge (SDTRP) bit, 3-37
RAS to CAS delay (SDTRCD) bit, 3-37
read/write command, 3-67
refresh rate (SDRRC) register, 3-49
row address and page size, 3-34
row address width, setting, 3-48
self-refresh, 3-34
setting bank column address width, 3-42,

A-25
setting CAS latency, 3-40
status (SDSTAT) register, 3-49
stop burst, 3-32
timing, 3-74
tMRD definition, 3-35
tRAS definition, 3-35
tRC definition, 3-36
tRCD definition, 3-35
tRFC definition, 3-36
tRP definition, 3-35
tRRD definition, 3-36
tWR definition, 3-35
tXSR definition, 3-36
uniprocessor system with multiple

SDRAM devices diagram, 3-46, 3-47
write before precharge (SDTWR) bit,

3-37

SDRAM controller commands
auto-refresh, 3-70
bank activate, 3-31, 3-65
burst stop, 3-32, 3-69
command pin states, 3-72
load mode register, 3-64
NOP/command inhibit, 3-72
precharge, 3-34
precharge all, 3-66
self-refresh, 3-70
single precharge, 3-66
stop command, burst, 3-32

SDRAM controller registers, A-21 to A-26
control (SDCTL), A-21 to A-25
control status (SDSTAT), A-26
refresh rate control (SDRRC), A-26

select (MSx) pins, memory, 3-53
self-refresh mode, 3-34
semaphores, 3-92
SENDZ (send zeros) bit, 6-11, 6-37
serial clock (SPORTx_CLK) pins, 5-6
serial communications, 11-2
serial inputs, 7-3
serial modes, specifying, 7-5
serial port transmit 4 (SP4I) bit, B-9
serial word

endian select (LSBF) bit, 5-62
length select bits (SLENx) bits, 5-17,

5-62
setting CAS latency, 3-40
setting hold time cycles, 3-23
setting the internal serial clock and frame

sync rates, 5-21
setting up DMA on SPORT channels, 5-75
setting word length (SLEN) bits, 5-17,

5-22
setup time, inputs, 14-32
SFTx (user software interrupt) bits, B-18,

B-21, B-26

Index

I-26 ADSP-21368 SHARC Processor Hardware Reference

shared memory
See also external port
asynchronous access mode, 3-81
bus arbitration, 3-79
code select (CSEL) bit, 3-82
force sync of shared memory bus

(FSYNC) bit, A-8
interface status, 3-93
memory select (MSx) pins, 3-83
pins, 3-81
rotating priority bus arbitration select

(RPBA) pin, 3-81
system design diagram, 3-79
write (WR) pin, 3-83

short-circuit condition, PWM, 8-6
signal naming convention, 4-9
signal routing unit external miscellaneous

(MISCAx) registers, 13-13
signal routing unit. See SRU, DAI, DPI
signals

acknowledge (ACK), 3-2, 3-19, 3-21
AMI, listed, 3-20
bidirectional, 4-13
BLK_START, 9-11
bus grant HBG, 3-89
bus request BRx, 3-79, 3-85, 3-89, 3-92
CLKIN, 14-20
clock (serial port), 5-13
external memory, 3-16
falling edge, 4-70
frame sync (serial port), 5-13
groups in signal routing units, 4-8
input pins in DAI/DPI, 4-12
interrupt generation from SRU, 4-69
memory read RD, 3-21
memory select MSx, 3-89
miscellaneous for general-purpose I/O

SRU, 4-65
mnemonics in signal routing units, 4-9
output pins in DAI/DPI, 4-11

signals (continued)
pin buffers, 4-10
pin output routing, 4-12
pin routing, 4-10
read, 3-25
responding to, 4-71
rising edge, 4-70
rotating priority bus select (RPBA), 3-81
routing in SRU, 4-18
sensitivity in serial ports, 5-9
serial port, 5-5 to 5-10
signal routing group assignments, 4-8
slave select (SPI), 2-43
SPDIF bi-phase encoded data input

(DIR_I), 9-18
SPDIF bi-phase output (DIT_O), 9-11
SPDIF clock (DIT_CLK_I), 9-10
SPDIF external sync

(DIT_EXT_SYNCEN), 9-11
SPDIF frame sync (DIT_FS_I), 9-10
SPDIF frame sync feed back out

(DIR_LRCLK_O), 9-19
SPDIF frame sync reference out

(DIR_LRCLK_REF_O), 9-19
SPDIF oversampling clock

(DIT_HFCLK_I), 9-11
SPDIF PLL clock (DIR_PLLCLK_I),

9-18
SPDIF serial data (DIT_DAT_I), 9-10
SPI clock (SPICLK), 6-2
SPI device select (SPIDS), 6-2
structure in signal routing units, 4-8
write WR, 3-21

single-channel, double-frequencey mode
(S/PDIF), 9-8

sizes in SDRAM, page, 3-34
slave mode DMA operations (SPI), 6-19
slave mode operation, configure for, 6-11
SLEN (select word length) bits, 5-17, 5-22,

5-29, 5-62

ADSP-21368 SHARC Processor Hardware Reference I-27

Index

software interrupt (SFT0x) bit, B-18, B-21,
B-26

software interrupt x, user (SFTxI) bit, B-18,
B-21, B-26

software reset (SRST) bit, A-6
SOVFI (stack overflow/full) bit, B-15,

B-19, B-23
SP0I (serial port interrupt) bit, B-8
SP2I (serial port interrupt) bit, B-8
SP4I (serial port interrupt) bit, B-9
SPCNTx (serial port count) registers, A-45
SPCTLx (serial port control) registers,

2-26, 5-4, 5-6, 5-7, 5-59, 5-72
SPCTLx control bits for left-justify sample

pair mode, 5-13
SPDIF_TX_CHSTA (Sony/Philips digital

interface channel status) register,
A-89, A-90, A-91

SPDIF_TX_CTL (Sony/Philips digital
interface transmit control) register,
A-86

special IDP registers, A-109
specifications, timing, 14-28
SPEN_A (serial port channel A enable) bit,

5-17, 5-61, A-37
SPEN_B (serial port channel B enable) bit,

5-17, 5-61
SPI

See also SPI bits, registers
block diagram, 6-3
broadcast mode, 6-3, 6-8
chaining, DMA, 6-16
change clock polarity, 6-21
changing configuration, 6-21
clock (SPICLK) pin, 6-4, 6-5, 6-8, 6-27
clock (SPICLK) signal, 6-2
clock phase, 6-28
clock rate, 6-5
clock signal (SPICLK), 6-4
clock, active edge, defined, 6-5

SPI (continued)
clock, sampling edge, defined, 6-5
configuring and enabling, 6-15
data transfer operations, 6-13
device select signal, 6-6
DMA, 6-14 to 6-27, A-61 to A-65
DMA, switching from transmit to receive

mode, 6-23
error signals and flags, 6-35
features, 6-1
finished (SPIF) bit, 6-30
FLAGx pins, 6-4
formats, 6-35
functional description, 6-2
general operations, 6-8
interface signals, 6-4
interrupts, 6-14, 6-17, 6-33
master input slave output (MISOx) pins,

6-2, 6-7
master mode operation, configuring for,

6-10
master out slave in (MOSIx) pins, 6-2,

6-7, 6-8
master-slave interconnections, 6-4
MISOx (master in, slave out) pins, 6-7
multidevice configuration, 6-12
multimaster environment, 6-8
multimaster error or mode-fault error

(MME) bit, 6-9
open drain output enable (OPD) pin,

6-9
operation, master mode, 6-15
operation, slave mode, 6-19
operations, 6-8, 6-10
packed data transfers, 6-32
programming examples, 6-38
receive buffer register (RXSPI, RXSPIB),

2-26
receive data (RXSPI) buffer, 6-2, 6-10
registers, A-52 to A-65

Index

I-28 ADSP-21368 SHARC Processor Hardware Reference

send zero (SENDZ) bit, 6-11, 6-37
serial peripheral interface clock

(SPICLK) signal, 6-4
slave mode, 6-11, 6-20
slave mode operation, 6-11
slave select outputs (SPIDS0-3), 6-6
SPIDS pin, 6-6, 6-9, 6-11, 6-19, A-54
switching from receive to transmit mode,

6-23, 6-24
system, configuring and enabling bits,

6-16, A-52
transfer formats, 6-27
transfer, beginning and ending, 6-29
transfers, data, 6-30
transmit data (TXSPI) buffer, 6-2
transmit underrun error (SPIUNF) bit,

6-25, 6-26, 6-34
TXFLSH (flush transmit buffer) bit,

6-23, A-55
unpacking data, 6-33
word lengths, 6-31

SPI bits
baud rate enable (BAUDR), A-60
chain loading status (SPICHS), A-64
chained DMA enable (SPICHEN_A and

SPICHEN_B), 6-16, A-63
clock phase (CPHASE), A-55
clock polarity (CLKPL), 6-5, 6-27, A-55
device select control (SPIFLGx3-0),

A-58
device select enable (DSxEN), 6-15
DMA control, A-63
DMA interrupt enable (INTEN), 6-34
enable (SPIEN), A-55
enable interrupt on error (INTERR),

6-34
external transaction complete (SPIFE),

A-57
flag select (FLGx), 6-10

SPI bits (continued)
flush receive buffer (RXFLSH), 6-23,

6-25, A-55
flush transmit buffer (TXFLSH), A-55
get more data (GM), 6-11, 6-37
input service select (ISSS), A-58
input slave select (ISSEN), A-54
input slave select enable (ISSEN), 6-36
internal loop back (ILPBK), A-56
low priority interrupt (SPILI), 6-34
master select (SPIMS), A-55
MISO disable (DMISO), A-54
mode-fault error (MME), 6-35, A-57
most significant byte first (MSBF), A-54
multimaster error (SPIMME), 6-35
open drain output select (OPD), A-55
packing enable (PACKEN), A-55
reception error (ROVF), 6-34, 6-35,

6-37, A-57
seamless transfer (SMLS), A-55
send zero (SENDZ), A-54
sign-extend (SGN), A-55
transfer finished (SPIF), 6-30
transfer initiation mode (TIMOD), A-54
transmission error (TUNF), 6-35, 6-37,

A-57
transmit collision error (TXCOL), 6-37,

A-57
transmit data buffer status (TXS), 6-15,

6-21, 6-30, A-57
transmit underrun error (SPIUNF),

A-63
transmit underrun error (SPIUNFE),

6-35
word length (WL), A-54

SPI master booting, 14-37
SPI receive DMA interrupt mask

(SPILIMSK) bit, B-11
SPI receive DMA interrupt mask pointer

(SPILIMSKP) bit, B-12

Index

I-29 ADSP-21368 SHARC Processor Hardware Reference

SPI registers
baud rate (SPIBAUDx), A-60
DMA address modify (IMSPI), A-64
DMA chain pointer (CPSPI), A-65
DMA configuration (SPIDMAC), 6-14,

6-16, 6-19, 6-22, 6-23, 6-35, A-62
DMA start address (IISPI), A-64
DMA word count (CSPI), A-64
flag (SPIFLGx), A-58
interrupt (LIRPTL), 6-34
interrupt latch/mask (LIRPTL), 6-34
receive buffer (RXSPI), 2-26
receive control (SPICTL, SPICTLB),

2-26, A-52
RXSR (SPI receive shift), 6-2
SPIBAUD (baud rate) register, 6-5, A-60
status (SPISTAT), 6-9, 6-17, 6-22, 6-24,

6-25, 6-35, 6-36, A-56, A-59
status (SPISTAT, SPISTATB), A-56
transmit buffer (TXSPI), 6-10, 6-37,

A-59, A-60
TXSR (SPI transmit shift), 6-2

SPI slave booting, 14-37
SPIBAUDx (SPI baud rate) registers, A-60
SPICHEN_A and SPICHEN_B (SPI

DMA chaining enable) bits, 6-16,
6-19, A-38

SPICLK (serial peripheral interface)
timing, 6-5

SPICLK (SPI clock) pins, signals, 6-2, 6-4,
6-27

SPICTL (SPI port control) registers, 2-26,
A-52

SPIDMAC (SPI DMA control) register,
6-14, 6-35, A-62

SPIDS (SPI device select) pin, 6-27
SPIEN (SPI enable) bit, 2-48
SPIF (SPI transfer finished) bit, 6-30
SPIFLGx (SPI device select control) bits,

A-58

SPILI (SPI low priority interrupt) bit, 6-34
SPIMME bit, 6-35
SPIOVF (SPI receive overflow error) bit,

6-25, 6-26, 6-34, 6-35
SPISTAT, SPISTATB (SPI status)

registers, 6-35, A-56, A-59
SPIUNF (SPI transmit underrun error) bit,

6-25, 6-26, 6-34, 6-35
SPORT bits

B channels enable (MCEB), A-43
chained DMA enable (SCHEN), 5-63,

A-38
channel A enable (SPEN_A), 5-17, 5-61,

A-37
channel B enable (SPEN_B), 5-17, 5-61
channel error status (ROVF_A or

TUVF_A), A-40
clock rising edge select (CKRE), 5-62
clock, internal (ICLK), MSTR (I2S

mode only), A-37
control (SPCTLx), 5-22
current channel selected (CHNL), A-43
data buffer channel A/B status (DXS_A),

A-40
data direction control (SPTRAN), 5-4,

5-64
data independent transmit/receive frame

sync (DIFS), A-38
DERR_B error status (ROVF_B or

TUVF_B), A-39
DMA chaining enable (SCHEN_x),

5-63, A-38, A-39
DMA chaining status (DMACHSxy),

A-43
DMA enable (SDEN), 2-48, 5-63, A-38
DMA status (DMASxy), A-43
DXS_B (data buffer status), A-39
enable (SPEN_x), 5-61
frame on rising frame sync (FRFS), 5-17,

A-38

Index

I-30 ADSP-21368 SHARC Processor Hardware Reference

SPORT bits (continued)
frame sync both (FS_BOTH), 5-64,

A-39
frame sync required (FSR), A-38
FS both enable (FS_BOTH), A-39
internal clock select (ICLK), 5-62, A-37
internal frame sync select (IFS), 5-63,

A-38
late frame sync (LAFS), A-38
left-justified sample pair mode control,

5-17
loopback mode (SPL), A-42
multichannel frame delay (MFD), A-42
multichannel mode enable (MCEA),

A-42
number of multichannel slots (NCH),

A-42
operation mode (OPMODE), 5-17
packing enable (PACK), A-37
receive underflow status (DERR_A,

ROVF_A or TUVF_A), A-40
serial word endian select (LSBF), 5-62,

A-37
serial word length (SLEN), 5-17, 5-62
serial word length select (SLEN), A-37
transmit underflow status (TUVF_A),

5-65, A-40
word packing enable (packing 16-bit to

32-bit words) PACK, 5-62
SPORT modes

I2S, 5-10, 5-20
I2S (Tx/Rx on left channel first), 5-11,

5-12, A-30
I2S (Tx/Rx on right channel first), 5-11,

5-12, A-30
left-justified sample pair, 5-12, 5-16,

5-18, 5-19, A-30
multichannel, 5-3, 5-25
multichannel, A and B channels, 5-12,

A-30

SPORT modes (continued)
operation mode (OPMODE) bit, 5-62
standard DSP, 5-11, A-30

SPORTs
 See also SPORT bits, modes, registers
128-channel TDM, 5-4
16-bit to 32-bit word packing enable

(PACK), 5-62
bidirectional functions, 5-1
buffer, DMA, 5-15
buffers, using, 5-7
clock (SCLKx) pins, 5-6
companding (compressing/expanding),

5-2
configuring frame sync signals, 5-6
configuring standard DSP serial mode,

5-13
connections, 5-6
control (SPCTLx) registers, 5-59
DAI pin routing, 5-5
data buffers, 5-4
data types, 5-46
debugging, A-42
disabling the serial port(s), 5-72
DMA chaining, 5-81
DMA channels, 5-73, 5-74
enabling B channels, A-43
enabling I2S mode (OPMODE), 5-17,

5-22
enabling master mode (MSTR), 5-18
enabling SPORT DMA (SDEN), 5-19
features, 5-2
finding currently selected channel, A-43
frame sync rates, setting the internal

serial clock, 5-21
full-duplex operation, 5-6
I/O processor bus, 5-44
I2S control bits, 5-21
internal serial clock setting, 5-17
interrupts, 5-72, 5-75

ADSP-21368 SHARC Processor Hardware Reference I-31

Index

SPORTs (continued)
interrupts, priority of, 5-72
latency in writes, 5-58
operation modes, 5-10, 5-11, 5-59
pairing, 5-27
primary and secondary data buffers, 5-4
pulse code modulation (PCM), 5-20
registers, listed, 5-50 to 5-58
reset, 5-71
serial clock pins, 5-6
setting frame sync rates, 5-17
setting word length, 5-17, 5-22
signal sensitivity, 5-9
signals, 5-6
SPORTx_DA and SPORTx_DB

channel data signal, 5-6
SPORTx_FS (serial port frame sync)

pins, 5-6
SPxI (serial port interrupt priority) bit,

5-72
standard DSP serial operation mode,

5-12
timing, left-justified sample pair mode,

5-19
timing, word select timing in I2S mode,

5-25
transferring data words, 5-4
transmit and receive data buffers, 5-4
Tx/Rx on FS falling, rising edge, 5-12,

A-30
Tx/Rx on FS rising edge, 5-12
using, 5-7
using with SRU, 5-5
word length, 5-43
word select timing in left-justified sample

pair mode, 5-19
SPORTs registers

control (SPCTLx), 2-26, 5-4, 5-6, 5-7,
5-59, 5-72

count (SPCNTx), A-45

SPORTs registers (continued)
divisor (DIVx), 5-6
DMA parameter, 5-76
modify (IMSPx), A-50
receive buffer (RXSPx), A-44
SPCTLx (serial port control), A-29
transmit buffer (TXSPx), A-43
transmit compand (MTxCSx,

MTxCCSx), A-47
SPTRAN (serial port data direction

control) bit, A-39
sample rate converter. See SRC
SRC

AD1896 core use with, 10-1
block diagram, 10-9
clocking, 10-15
configuring modes, 10-13, 10-21
control (SRCCTLx) register, 10-13,

10-21
data paths, 10-19
data ports and, 10-13, 10-21
de-emphasis (DEEMPHASIS) bits,

10-18
FIR filter, 10-2, 10-7, 10-10
frame sync signal, 10-18, 10-22
I2S, 10-14
input formats, A-99, A-104
MCLK (master clock), 10-2
mute (MUTE_OUT/MUTE_IN)

signals, 10-19
mute (SRCMUTE) register, 10-19,

10-21
muting, 10-19
normal, slow, fast modes, 10-11
parallel load shift register, 10-15
programming, 10-22
ratio (SRCRAT) register, 10-19, 10-21
registers, described, 10-21
right justified mode, 10-14
right-justified mode, 10-14, 10-18

Index

I-32 ADSP-21368 SHARC Processor Hardware Reference

SRC (continued)
sample rate ratio, 10-2, 10-19
sample rates, input, 10-18
servo loop, 10-2
time division multiplexing mode, 10-16,

10-18
tracking input and output rates, 10-2

SRC bits
auto hard mute

(SRCx_AUTO_MUTE), A-98,
A-103

bypass SRC (SRCx_BYPASS), A-99,
A-104

de-emphasis filter select
(SRCx_DEEMPHASIS), A-99,
A-104

dither select (SRCx_DITHER), A-99,
A-104

hard mute (SRCx_HARD_MUTE),
A-98, A-103

match phase mode select
(SRCx_MPHASE), A-100, A-105

output word length (SRCx_LENOUT),
A-100, A-105

serial input format (SRCx_SMODEIN),
A-99, A-104

serial output format
(SRCx_SMODEOUT), A-99, A-104

soft mute (SRCx_SOFTMUTE), A-99,
A-104

SRC enable (SRCx_ENABLE), A-100
SRU

bidirectional pin buffer, 4-13
buffers, 4-13
connecting peripherals with, 4-8
connecting through, 4-15
connection to precision clock generator

(PCG), 13-1
group A (clock) signals, 4-19, 4-52
group B (data) signals, 4-25

SRU (continued)
group C (frame sync) signals, 4-31
group D (pin assignments) signals, 4-36
group E (miscellaneous) signals, 4-43 to

4-46
group F signals, 4-47
inputs, 4-8
mnemonics, 4-9
naming conventions, 4-9
outputs, 4-8
register groups, 4-17
register use of, 4-15
serial ports and, 5-5
signal groups, 4-8, 4-18
SPORT connection example, 4-14, 4-16
SRU_CLKx (SRU clock) registers, 7-18,

7-21
SRU_DATx (SRU data) registers, 7-18,

7-21
SRU_PINGx_STAT (ping-pong DMA

status) register, A-110
SRU2

default configuration, 4-51
group A (input routing) signals, 4-52
group B (pin assingment) signals, 4-56
group C (pin enable) signals, 4-60

stack overflow/full interrupt (SOVFI) bit,
B-15, B-19, B-23

stall cycles, in IOP register access, 2-5
stalls, core, 14-54
stalls, execution, 14-53 to 14-56
standard DSP serial mode, 5-12
starting an interrupt driven transfer, 7-18,

7-20, 7-23
STATDAx (data memory breakpoint hit)

bit, A-181
STATI0 (I/O address breakpoint hit) bit,

A-181
STATIx (instruction address breakpoint

hit) bit, A-181

ADSP-21368 SHARC Processor Hardware Reference I-33

Index

STATPA (program memory data
breakpoint hit) bit, A-181

STATUS field, 11-10
strobe period, 13-13
strobe pulse, 13-13
strobe, PDAP output, 7-14
STROBEA (one shot frame sync A) bit,

13-13, A-159
STROBEB (one shot frame sync B) bit,

13-13, A-159
supervisory circuits, 14-27
support, technical or customer, xxxv
switching frequencies

determining, 14-29
switching from receive to transmit DMA

(SPI), 6-24
switching from transmit to receive DMA

(SPI), 6-23
synchronization with the external clock,

13-7
synchronizing frame sync output, 13-7
synchronous access mode, 3-81
synchronous access mode (external port),

3-22
SYSCTL (system control) register, A-5
SYSCTL register

bus lock request (BUSLK) bit, A-8
external port data pin mode select

(EPDATA) bits, A-8
force sync of shared memory bus

(FSYNC) bit, A-8
internal interrupt vector table (IIVT) bit,

A-6
internal memory data width (IMDWx)

bits, A-7
interrupt request enable (IRQxEN) bits,

A-7
memory select (MSEN) bit, A-8
pulse width modulation select (PWMx)

bits, A-8

SYSCTL register (continued)
rotating priority bus arbitration (RBPR)

bit, A-7
SRST (software reset) bit, A-6
timer (flag) expired mode

(TMREXPEN) bit, A-8
system control register. See SYSCTL

register
system design

baud rate, init value, 14-49
boot configuration (BOOT_CFGx)

pins, 14-38
bypass capacitors, 14-35
CLKIN pin, 14-13, 14-20
CLKOUT and CCLK clock generation,

14-30
clock distribution, 14-34
clock input, 14-20
conditioning input signals, 14-32
crosstalk, reducing, 14-34
decoupling capacitors, 14-35
designing for high frequency operation,

14-33
determining switching frequencies,

14-29
flags (FLAGx) pins, 14-8
FLAGx pins, 14-8
generators, reset, 14-28
ground plane, 14-34
hold time, inputs, 14-32
input setup and hold time, 14-32
input signal conditioning, 14-32
JTAG interface pins, 14-12
latchup, 14-32
latency, input synchronization, 14-8
pins, descriptions, 14-2
plane, ground, 14-34
PLL-based clocking, 14-13
power supply, monitor and reset

generator, 14-28

Index

I-34 ADSP-21368 SHARC Processor Hardware Reference

system design (continued)
recommendations and suggestions,

14-34
RESET pin, 14-33
shared memory system diagram, 3-79
stalls, 14-54
switching frequencies, 14-29
timing specifications, 14-28

system status (SYSTAT) register, A-9

T
TCB chain loading, 2-15, 2-16
TCK (test clock) pin, 14-12
TDI (test data input) pin, 14-12
TDM mode, time division multiplexed,

9-19
TDO (test data output) pin, 14-12
technical or customer support, xxxv
technical publications online or on the web,

-xxxix
TFSDIV (frame sync divisor) bit, A-45
THR register empty (THRE) flag, 11-4,

11-13
time division multiplexed (TDM) mode,

5-25, 5-27, 9-19, 10-15, 10-19
timeout, bus mastership, 3-87
timer expired (TIMEXP) pin, 14-8
timers, UART, 11-1
timing

definitions, 14-29
external memory accesses, 3-36
IDP hold timing mode 00, 7-13
IDP hold timing mode 01, 7-14
IDP I2S, 7-7
IDP left-justified sample pair, 7-7
PDAP, 7-14
SDRAM, 3-74
specifications, system design, 14-28
SPI clock, 6-5
SPI transfer protocol, 6-28, 6-29

timing (continued)
SPORT framed vs. unframed data, 5-40
SPORT left-justified sample pair mode,

5-19
SPORT normal vs. alternate framing,

5-40
SPORT word select, 5-25

TIMOD (SPI transfer initiation mode) bit,
6-10, 6-34

TMS (test mode select) pin, 14-12
TMZHI (timer expired high priority) bit,

B-15, B-19, B-23
TMZLI (timer expired low priority) bit,

B-17, B-21, B-25
transfer control block (TCB), 2-16
transfer initiation and interrupt (SPI

TIMOD) mode, 6-34
transferring data words, 5-4
transmission error (SPI TUNF) bit, 6-37
transmit and receive channel order (FRFS),

5-18, 5-23
transmit and receive data buffers

(TXSPxA/B, RXSPxA/B), 5-67
transmit collision error (SPI TXCOL) bit,

6-37
transmit data (SPI TXSPI) buffer, 6-2
transmit frame sync divisor. See TFSDIV

bit
transmit shift register (SPI TXSR), 6-2
TRST (test reset) pin, 14-12
TUNF (SPI transmission error) bit, 6-37
TUVF_A (channel error status) bit, 5-65,

A-40
TWI controller

architecture, 12-2
block diagram, 12-3
bus arbitration, 12-12
call address, 12-14
clocking, 12-11
fast mode, setting, 12-14

ADSP-21368 SHARC Processor Hardware Reference I-35

Index

TWI controller (continued)
little endian word order, 12-9
prescale register, 12-4
programming examples, 12-15
start and stop conditions, 12-13
transferring data, 12-10

TWI controller bits
address not acknowledged (TWIANAK),

A-141
buffer write error (TWIWERR), A-142
clock high (TWICLKHI), A-133
clock low (TWICLKLOW), A-133
data not acknowledged (TWIDNAK),

A-141
data transfer count (TWIDCNT), A-138
enable (TWIEN), 12-4, A-132
fast mode (TWIFAST), A-137
general call enable (TWIGCE), A-134
issue stop condition (TWISTOP), A-137
lost arbitration (TWILOST), A-141
master address length (TWIMLEN),

A-137
master mode enable (TWIMEN), A-137
master transfer direction (TWIMDIR),

A-137
master transfer in progress

(TWIMPROG), A-141
not acknowledged (TWINAK), A-134
repeat START (TWIRSTART), A-137
serial clock override (TWISCLOVR),

A-138
serial clock sense (TWISCLSEN), A-142
serial data override (TWISDAOVR),

A-138
serial data sense (TWISDASEN), A-142
slave address length (TWISLEN), A-134
slave enable (TWISEN), A-134

slave transmit data valid (TWIDVAL),
A-134

TWI controller registers
clock divider (TWIDIV), 12-5, A-132
RXTWI16 (16-bit receive FIFO)

register, 12-10
RXTWI8 (8-bit receive FIFO), 12-9
TWIFIFOCTL (FIFO control), 12-7
TWIFIFOSTAT (FIFO status), 12-7
TWIIMASK (interrupt mask), 12-8
TWIIRPTL (interrupt), 12-7
TWIMADDR (master mode address),

12-6, A-139
TWIMCTL (master mode control),

12-6, A-136
TWIMSTAT (master mode status),

12-7, A-140
TWISADDR (slave mode address),

12-6, A-135
TWISCTL (slave mode control), A-133
TWISSTAT (slave mode status), 12-6,

A-135
TXTWI16 (16-bit transmit FIFO), 12-8
TXTWI8 (8-bit transmit FIFO), 12-8

two channel mode (SPDIF), 9-8
TX_UACEN (DMA transmit buffer

enable) bit, 11-12
TXCOL (SPI transmit collision error) bit,

6-37
TXFLSH (flush SPI transmit buffer) bit,

6-23, A-55
TXS_A (data buffer channel B status) bit,

A-40
TXSPI, TXSPIB (SPI transmit buffer)

registers, 2-26, 6-10, 6-13, 6-37,
A-59, A-60

TXSPx (serial port transmit buffer)
registers, 2-26, A-43

Index

I-36 ADSP-21368 SHARC Processor Hardware Reference

U
UART, 11-1

assigning interrupt priority, 11-11
baud rate, 11-4, 11-5
baud rate examples, 11-12
data ready flag, 11-13
data word, 11-4
divisor, 11-11, A-125
divisor reset, 11-12
DMA channel latency requirement, 2-44
DMA channels, 2-44
DMA mode, 2-44
interrupt conditions, 11-9
non-DMA mode, 11-13
restrictions, 11-11
sampling clock period, 11-6
sampling point, 11-6
standard, 1-10, 11-1
system DMA and, 11-7
timers, 11-1

UART bits
9-bit RX enable (RX9), A-127
9-bit TX enable (TX9), A-127
address detect enable (UARTAEN),

A-127
data ready (DR), 11-4
DMA TX/RX control, A-128
DMA TX/RX status, A-129
enable receive buffer full interrupt

(UARTRBFIE), 11-7, A-123
enable transmit buffer empty interrupt

(UARTTBEIE), 11-7, A-123
interrupt enable, A-123
packing enable (PACK), A-127
pin status (UARTPSTx), A-127
synch data packing in RX

(UARTPKSYN), A-127
THR register empty (UARTTHRE),

11-4, A-120

UART bits (continued)
TSR and UARTxTHR empty

(UARTTEMT), 11-4
UARTNOINT (pending interrupt),

A-124
UARTSTAT (interrupt), A-124

UART registers
divisor latch (UARTxDLH), 11-11,

A-125
divisor latch register

(UARTxDLL), 11-11, A-125
DMA control, 2-27
interrupt enable register (UARTxIER),

11-7, A-123
interrupt identification register

(UARTxIIR), 11-9, A-124
line control register (UARTxLCR), 11-3,

A-118
line status register (UARTxLSR), 11-4,

A-120
receive buffer register (UARTxRBR),

11-5, A-122
scratch register (UARTxSCR), 11-12,

A-126
shadow, A-122
transmit holding (UARTxTHR), 11-4,

11-5, A-121
transmit shift register (UART_TSR),

11-4
UARTxDLH (divisor latch register),

11-11, A-125
UARTxDLL (divisor latch register),

11-11, A-125
UARTxIER (interrupt enable register),

11-7, A-123
UARTxIIR (interrupt identification

register), 11-9, A-124
UARTxLCR (line control register), 11-3,

A-118

ADSP-21368 SHARC Processor Hardware Reference I-37

Index

UART registers (continued)
UARTxLSR (line status register), 11-4,

A-120
UARTxRBR (receive buffer register),

11-5
UARTxSCR (scratch register), 11-12,

A-126
UARTxTHR (transmit holding register),

11-4, 11-5, A-121
UARTxTSR (transmit shift register),

11-4
UARTBI (UART break interrupt), 11-9
UARTFE (UART framing error), 11-9
UARTOE (UART overrun error), 11-9

UARTPE (UART parity error), 11-9
UMODE (user mode breakpoint) bit,

A-175
user mode breakpoint (UMODE), A-175

W
wait states, enabling (WS bit), A-18
word length, 5-43
word length (SLEN) bits, 5-17, 5-29
word packing enable (packing 16-bit to

32-bit words) PACK bit, 5-62, A-37
word select timing in I2S mode, 5-25
write (WR) pin, 3-21, 3-83

Index

I-38 ADSP-21368 SHARC Processor Hardware Reference

	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	Processor Product Information
	Related Documents
	Online Technical Documentation
	Printed Manuals

	Conventions

	1 Introduction
	Design Advantages
	Architectural Overview
	Processor Core
	Processor Peripherals
	I/O Processor
	Digital Audio Interface (DAI)
	Digital Peripheral Interface (DPI)

	Development Tools
	Differences From Previous Processors
	I/O Architecture Enhancements
	Instruction Set Enhancements

	2 I/O Processor
	General Procedure for Configuring DMA
	Core Access to IOP Registers
	Configuring IOP/Core Interaction
	Interrupt-Driven I/O
	Interrupt Latency in Interrupt-Driven Transfers

	Polling/Status-Driven I/O
	DMA Controller Operation
	Chaining DMA Processes
	Transfer Control Block Chain Loading (TCB)

	Setting Up DMA Channel Allocation and Priorities
	Managing DMA Channel Priority
	DMA Bus Arbitration

	Setting Up DMA Parameter Registers
	DMA Transfer Direction
	Data Buffer Registers
	Port, Buffer, and DMA Control Registers
	Addressing

	External Port DMA
	Setting Up and Starting Chained DMA
	Delay Line DMA

	Serial Port DMA
	Setting Up and Starting Chained DMA
	Inserting a TCB in an Active Chain

	Serial Peripheral Interface DMA
	Setting Up and Starting Chained DMA over the SPI

	UART DMA
	Notes On Using DMA With the UART

	Memory-to-Memory DMA
	Summary
	Programming Example

	3 External Port
	External Memory Interface
	External Memory Interface on the ADSP-2137x Processors
	Direct Execution of Instructions From External Memory
	Throughput and Instruction Execution Rate
	Location of Interrupt Vector Table (IVT)
	Instruction Cache
	Instruction Storage and Packing
	Register Configurations for External Memory Execution

	EMI Registers and Signals
	External Port Arbitration Logic
	Channel Freezing
	Managing Data Paths

	External Memory Interface Pins

	Asynchronous Memory Interface
	AMI Timing Control
	Wait States
	Bus Idle Cycles
	Bus Hold Cycles

	Setting AMI Modes
	External Memory Reads
	Data Packing

	External Memory Writes
	Data Packing

	Read/Write Throughput
	External Access Addressing
	External Port DMA
	Booting Through the AMI

	SDRAM Controller
	Definition of Terms
	Timing External Memory Accesses
	Parallel Connection of SDRAMs
	SDRAM Control Register (SDCTL)
	SDRAM Control Status Register (SDSTAT)
	SDRAM Refresh Rate Control Register (SDRRC)
	SDRAM Initialization
	SDRAM Address Mapping
	SDRAM Controller Address Mapping

	SDC Operation
	Single Bank Operation
	Multibank Operation (ADSP-2137x Processors)
	Data Mask (DQM)

	SDC Configuration
	SDC Commands
	Load Mode Register
	Single Bank Activation
	Multibank Activation (ADSP-2137x Processors)
	Single Precharge (ADSP-2137x Processors)
	Precharge All
	Read/Write
	Read/Write (ADSP-2137x Processors)
	Burst Stop (ADSP-2137x Processors)
	Auto-Refresh
	Self-Refresh Mode
	No Operation/Command Inhibit
	Changing System Clock During Runtime

	SDRAM Timing
	SDRAM Read Optimization
	Achieving Maximum Throughput Using Core Accesses

	External Memory Access Restrictions

	Shared Memory Interface
	Shared Memory Bus Arbitration
	Bus Arbitration Protocol
	Bus Arbitration Priority (RPBA)
	Bus Mastership Time-out

	Bus Synchronization After Reset
	Bus Synchronization Notes

	Bus Lock and Semaphores
	Shared Memory Interface Status

	Shared Memory and the SDRAM Controller
	Shared Memory Booting

	4 Digital Audio/Digital Peripheral Interfaces
	Structure of the Interfaces
	DAI/DPI System Design
	Signal Routing Units
	Connecting Peripherals
	Pin Interface
	Pin Buffers as Signal Output Pins
	Pin Buffers as Signal Input Pins
	Bidirectional Pin Buffers

	Making Connections in the SRUs
	DAI/SRU1 Connection Groups
	Group A Connections-Clock Signals
	Group B Connections-Data Signals
	Group C Connections-Frame Sync Signals
	Group D Connections-Pin Signal Assignments
	Group E Connections-Interrupts and Miscellaneous Signals
	Group F-Pin Enable Signals

	DPI/SRU2 Connection Groups
	Group A Connections-Input Routing Signals
	Group B Connections-Pin Assignment Signals
	Group C Connections-Pin Enable Signals

	General-Purpose I/O (GPIO) and Flags
	DAI GPIO and Flags
	DPI GPIO and Flags

	Miscellaneous Signals
	DAI/DPI Interrupt Controller
	Relationship to the Core
	DAI Interrupts
	DPI Interrupts
	High and Low Priority Latches
	Rising and Falling Edge Masks

	Configuring Peripherals Using SRU1
	Configuring the SPORTs
	Configuring the PCGs

	Configuring Peripherals Using SRU2
	Configuring the SPI
	Choosing the Pin Enable for the SPI Clock

	Configuring the Two Wire Interface

	Using the SRU() Macro to Configure the DAI

	5 Serial Ports
	Features
	Operation Modes
	Serial Port Signals
	Serial Port Signal Sensitivity

	SPORT Operation Modes
	Standard DSP Serial Mode
	Standard DSP Serial Mode Control Bits
	Clocking Options
	Frame Sync Options
	Data Formatting
	Data Transfers
	Status Information

	Left-Justified Sample Pair Mode
	Setting the Internal Serial Clock and Frame Sync Rates
	Left-Justified Sample Pair Mode Control Bits
	Setting Word Length (SLEN)
	Enabling SPORT Master Mode (MSTR)
	Selecting Transmit and Receive Channel Order (FRFS)
	Selecting Frame Sync Options (DIFS)
	Enabling SPORT DMA (SDEN)
	Interrupt-Driven Data Transfer Mode
	DMA-Driven Data Transfer Mode

	I2S Mode
	Setting the Internal Serial Clock and Frame Sync Rates
	I2S Mode Control Bits
	Setting Word Length (SLEN)
	Enabling SPORT Master Mode (MSTR)
	Selecting Transmit and Receive Channel Order (FRFS)
	Selecting Frame Sync Options (DIFS)
	Enabling SPORT DMA (SDEN)
	Interrupt-Driven Data Transfer Mode
	DMA-Driven Data Transfer Mode

	Multichannel Operation
	Frame Syncs in Multichannel Mode
	Active State Multichannel Frame Sync Select

	Multichannel Mode Control Bits
	Multichannel Frame Sync Source
	Multichannel Status Bits
	Channel Selection Registers

	Packed I2S Mode
	Programming Packed I2S Mode

	SPORT Loopback

	Clock Signal Options
	Frame Sync Options
	Framed Versus Unframed Frame Syncs
	Internal Versus External Frame Syncs
	Active Low Versus Active High Frame Syncs
	Sampling Edge for Data and Frame Syncs
	Early Versus Late Frame Syncs
	Data-Independent Frame Syncs
	Frame Sync Error Detection

	Data Word Formats
	Word Length
	Endian Format
	Data Packing and Unpacking
	Data Type
	Companding

	SPORT Control Registers and Data Buffers
	Register Writes and Effect Latency
	Serial Port Control Registers (SPCTLx)
	Transmit and Receive Data Buffers (TXSPxA/B, RXSPxA/B)
	Clock and Frame Sync Frequency Registers (DIVx)
	SPORT Reset
	SPORT Interrupts

	Moving Data Between SPORTs and Internal Memory
	DMA Block Transfers
	Setting Up DMA on SPORT Channels

	SPORT DMA Parameter Registers
	SPORT DMA Chaining

	Single Word Transfers

	SPORT Programming Examples

	6 Serial Peripheral Interface Ports
	Functional Description
	SPI Interface Signals
	SPI Clock Signal (SPICLK)
	SPICLK Timing
	SPI Slave Select Input (SPIDS)

	SPI Flag Signals (SPIFLG3-0)
	Master Out Slave In (MOSI)
	Master In Slave Out (MISO)

	SPI General Operations
	SPI Enable
	Open Drain Mode (OPD)
	Master Mode Operation
	Slave Mode Operation
	Multimaster Operation

	SPI Data Transfer Operations
	SPI Operation Using the Core
	SPI Operation Using DMA
	Master Mode DMA Operation
	Master Transfer Preparation

	Slave Mode DMA Operation
	Slave Transfer Preparation

	Changing SPI Configuration
	Switching From Transmit To Receive DMA
	Switching From Receive to Transmit DMA
	DMA Error Interrupts
	DMA Chaining

	SPI Transfer Formats
	Beginning and Ending an SPI Transfer

	SPI Word Lengths
	8-Bit Word Lengths
	16-Bit Word Lengths
	32-Bit Word Lengths
	Packing

	SPI Interrupts
	Error Signals and Flags
	Mode Fault Error (MME)
	Transmission Error Bit (TUNF)
	Reception Error Bit (ROVF)
	Transmit Collision Error Bit (TXCOL)

	Programming Notes
	Routing SPI Signals Using The DPI

	Programming Examples

	7 Input Data Port
	Serial Inputs
	Parallel Data Acquisition Port (PDAP)
	Masking
	Packing Unit
	Packing Mode 11
	Packing Mode 10
	Packing Mode 01
	Packing Mode 00

	Clocking Edge Selection
	Hold Input
	PDAP Strobe

	FIFO Control and Status
	FIFO to Memory Data Transfer
	IDP Transfers Using the Core
	Starting an Interrupt-Driven Transfer
	Core Transfer Notes

	IDP Transfers Using DMA
	Simple DMA
	Starting a Simple DMA Transfer

	Ping-Pong DMA
	Starting Ping-Pong DMA Transfers

	DMA Transfer Notes

	DMA Channel Parameter Registers
	IDP (DAI) Interrupt Service Routines for DMAs
	FIFO Overflow

	Input Data Port Programming Example

	8 Pulse Width Modulation
	PWM Implementation
	PWM Waveforms
	Edge-Aligned Mode
	Center-Aligned Mode

	Switching Frequencies
	Dead Time
	Duty Cycles
	Duty Cycles and Dead Time
	Over Modulation

	Update Modes
	Single Update
	Double Update

	Configurable Polarity
	PWM Pins and Signals
	Crossover

	PWM Accuracy

	PWM Registers
	Duty Cycles
	Output Enable

	Programming Example

	9 S/PDIF Transmitter/Receiver
	AES3/SPDIF Stream Format
	Subframe Format
	Channel Coding
	Preambles

	S/PDIF Transmitter
	Channel Status
	SRU1 Signals for the S/PDIF Transmitter
	S/PDIF Transmitter Registers
	Modes of Operation
	Standalone Mode
	Full Serial Mode

	Structure of the Serial Input Data

	S/PDIF Receiver
	S/PDIF Receiver Registers
	SRU1 Receiver Signals

	Phase-Locked Loop
	Channel Status Decoding
	Compressed or Non-Linear Audio Data
	Emphasized Audio Data
	Single-Channel, Double-Sampling Frequency Mode

	Error Handling
	Interrupts
	DAI Programming Examples
	S/PDIF Transmitter Programming Guidelines
	Control Register
	SRU1 Programming for Input and Output Streams
	Control Register Programming and Enable

	S/PDIF Receiver Programming Guidelines
	Control Register
	SRU1 Programming
	Control Register Programming
	Receiver Locking
	Status Bits
	Interrupted Data Streams on the Receiver

	10 Asynchronous Sample Rate Converter
	Theory of Operation
	Conceptual Model
	Hardware Model

	Sample Rate Converter Architecture
	Group Delay

	SRC Operation
	Enabling the SRC
	Serial Data Ports
	Data Format
	Time-Division Multiplex (TDM) Output Mode
	TDM Input Mode
	Matched-Phase Mode
	Bypass Mode

	De-Emphasis Filter
	Mute Control
	Soft Mute
	Hard Mute
	Auto Mute

	SRC Registers
	Programming the SRC Module
	SRC Control Register Programming
	SRU Programming
	SRC Mute-Out Interrupt
	Sample Rate Ratio
	Programming Summary

	11 UART Port Controller
	Serial Communications
	UART Control and Status Registers
	UARTxLCR Registers
	UARTxLSR Register
	UARTxTHR Register
	UARTxRBR Register
	UARTxIER Register
	UARTxIIR Register
	UARTxDLL and UARTxDLH Registers
	UARTxSCR Register
	UARTxMODE Register

	I/O Mode
	Packing Mode

	12 Two Wire Interface Controller
	Overview
	Architecture
	Register Descriptions
	TWI Master Internal Time Register
	TWIDIV Register
	Slave Mode Control Register
	Slave Mode Address Register
	Slave Mode Status Register
	Master Mode Control Register
	Master Mode Address Register
	Master Mode Status Register
	FIFO Control Register
	FIFO Status Register
	Interrupt Source Register
	Interrupt Enable Register
	8-Bit Transmit FIFO Register
	16-Bit Transmit FIFO Register
	8-Bit Receive FIFO Register
	16-Bit Receive FIFO Register

	Data Transfer Mechanics
	Clock Generation and Synchronization
	Bus Arbitration
	Start and Stop Conditions
	General Call Support
	Fast Mode

	Programming Examples
	General Setup
	Slave Mode
	Master Mode Clock Setup
	Master Mode Transmit
	Master Mode Receive
	Repeated Start Condition
	Transmit/Receive Repeated Start Sequence
	Receive/Transmit Repeated Start Sequence

	Electrical Specifications

	13 Precision Clock Generators
	Clock Outputs
	Frame Sync Outputs
	Normal Mode
	Bypass Mode

	Frame Sync Output Synchronization With an External Clock
	Frame Sync

	Phase Shift
	Phase Shift Settings
	Pulse Width
	Bypass Mode
	Bypass as a Pass Through
	Bypass as a One-Shot

	Programming Examples
	PCG Setup for I2S or Left-Justified DAI
	Clock and Frame Sync Divisors PCG Channel B
	PCG Channel A and B Output Example

	14 System Design
	Processor Pin Descriptions
	Pin Multiplexing
	Choosing EP Data Mode

	Interrupt and Timer Pins
	Core-Based Flag Pins
	Programming Flags
	RESETOUT/CLKOUT/RUNRSTIN

	JTAG Interface Pins

	Clock Derivation
	Power Management Control Register
	PLL Programming Examples

	Phase-Locked Loop Startup
	RESET and CLKIN
	Running Reset (ADSP-2137x)
	System Design Considerations
	External Host

	Running Reset Control Register (RUNRSTCTL)
	Programming The RUNRSTCTL Register
	Reset Generators

	Timing Specifications
	Input Synchronization Delay

	Conditioning Input Signals
	RESET Input Hysteresis

	Designing for High Frequency Operation
	Clock Specifications and Jitter
	Other Recommendations and Suggestions
	Decoupling Capacitors and Ground Planes
	Oscilloscope Probes
	Recommended Reading

	Booting
	External Port Booting
	Booting Through the AMI
	Shared Memory Booting

	SPI Port Booting
	32-Bit SPI Host Boot
	16-Bit SPI Host Boot
	8-Bit SPI Host Boot
	Slave Boot Mode
	Master Boot
	Booting From an SPI Flash
	Booting From an SPI PROM (16-Bit address)
	Booting From an SPI Host Processor

	Data Delays, Latencies, and Throughput
	Execution Stalls
	DAG Stalls
	Memory Stalls
	IOP Register Stalls
	DMA Stalls
	IOP Buffer Stalls

	A Register Reference
	I/O Processor Registers
	Notes on Reading Register Drawings
	System Control Register (SYSCTL)
	System Status Register (SYSTAT)

	External Port Registers
	External Port Control Register (EPCTL)
	External Port DMA Control Registers (DMACx)
	AMI Control Registers (AMICTLx)
	AMI Status Register (AMISTAT)
	SDRAM Control Register (SDCTL)
	SDRAM Control Status Register (SDSTAT)
	SDRAM Refresh Rate Control Register (SDRRC)

	Memory-to-Memory DMA Register
	Serial Port Registers
	SPORT Serial Control Registers (SPCTLx)
	SPORT Multichannel Control Registers (SPMCTLx)
	SPORT Transmit Buffer Registers (TXSPx)
	SPORT Receive Buffer Registers (RXSPx)
	SPORT Divisor Registers (DIVx)
	SPORT Count Registers (SPCNTx)
	SPORT Active Channel Select Registers (SPxCSy)
	SPORT Compand Registers (SPxCCSy)
	SPORT Error Control Register (SPERRCTLx)
	SPORT Error Status Register (SPERRSTAT)
	SPORT DMA Index Registers (IISPx)
	SPORT DMA Modifier Registers (IMSPx)
	SPORT DMA Count Registers (CSPx)
	SPORT Chain Pointer Registers (CPSPx)

	Serial Peripheral Interface Registers
	SPI Control Registers (SPICTL, SPICTLB)
	SPI Port Status (SPISTAT, SPISTATB) Registers
	SPI Port Flags Registers (SPIFLG, SPIFLGB)
	SPI Receive Buffer Registers (RXSPI, RXSPIB)
	RXSPI Shadow Registers (RXSPI_SHADOW, RXSPIB_SHADOW)
	SPI Transmit Buffer Registers (TXSPI, TXSPIB)
	SPI Baud Rate Registers (SPIBAUD, SPIBAUDB)
	SPI DMA Registers
	SPI DMA Configuration Registers (SPIDMAC, SPIDMACB)
	SPI DMA Start Address Registers (IISPI, IISPIB)
	SPI DMA Address Modify Registers (IMSPI, IMSPIB)
	SPI DMA Word Count Registers (CSPI, CSPIB)
	SPI DMA Chain Pointer Registers (CPSPI, CPSPIB)

	Input Data Port Registers
	Input Data Port Control Register 0 (IDP_CTL0)
	Input Data Port Control Register 1 (IDP_CTL1)
	Input Data Port FIFO Register (IDP_FIFO)
	Input Data Port DMA Control Registers
	IDP_DMA_Ix
	IDP_DMA_Mx
	IDP_DMA_Cx

	Input Data Port Ping-Pong DMA Registers
	IDP Ping-Pong Index Registers (IDP_DMA_IxA)
	IDP Ping-Pong Count Registers (IDP_DMA_PCx)

	Parallel Data Acquisition Port Control Register (IDP_PP_CTL)

	Pulse Width Modulation Registers
	PWM Global Control Register (PWMGCTL)
	PWM Global Status Register (PWMGSTAT)
	PWM Control Register (PWMCTLx)
	PWM Status Registers (PWMSTATx)
	PWM Period Registers (PWMPERIODx)
	PWM Output Disable Registers (PWMSEGx)
	PWM Polarity Select Registers (PWMPOLx)
	PWM Channel Duty Control Registers (PWMAx, PWMBx)
	PWM Channel Low Duty Control Registers (PWMALx, PWMBLx)
	PWM Dead Time Registers (PWMDTx)

	Sony/Philips Digital Interface Registers
	Transmitter Control Register (DITCTL)
	Left Channel Status for Subframe A Registers (DITCHANAx)
	Right Channel Status for Subframe B Registers (DITCHANBx)
	User Bits Buffer Registers for Subframe A Registers (DITUSRBITAx)
	User Bits Buffer Registers for Subframe B Registers (DITUSRBITBx)
	Receiver Control Register (DIRCTL)
	Receiver Status Register (DIRSTAT)
	Left Channel Status for Subframe A Register (DIRCHANL)
	Right Channel Status for Subframe B Register (DIRCHANR)

	Sample Rate Converter Registers
	SRC Control Registers (SRCCTLx)
	SRC Mute Register (SRCMUTE)
	SRC Ratio Registers (SRCRATx)

	DAI/DPI Registers
	Digital Audio Interface Status Register (DAI_STAT)
	DAI Resistor Pull-up Enable Register (DAI_PIN_PULLUP)
	DAI Pin Buffer Status Register (DAI_PIN_STAT)
	DAI Interrupt Controller Registers
	DPI Resistor Pull-up Enable Register (DPI_PIN_PULLUP)
	DPI Pin Buffer Status Register (DPI_PIN_STAT)
	DPI Interrupt Controller Registers

	UART Control and Status Registers
	Line Control Registers (UARTxLCR)
	Line Status Registers (UARTxLSR)
	Transmit Hold Registers (UARTxTHR)
	Receive Buffer Registers (UARTxRBR)
	Interrupt Enable Registers (UARTxIER)
	Interrupt Identification Registers (UARTxIIR)
	Divisor Latch Registers (UARTxDLL, UARTxDLH)
	Scratch Registers (UARTxSCR)
	Mode Registers (UARTxMODE)
	UART DMA Registers
	DMA Control Registers (UARTxTXCTL, UARTxRXCTL)
	DMA Status Registers (UARTxTXSTAT, UARTxRXSTAT)

	Two Wire Interface Registers
	Master Internal Time Register (TWIMITR)
	Clock Divider Register (TWIDIV)
	Slave Mode Control Register (TWISCTL)
	Slave Address Register (TWISADDR)
	Slave Status Register (TWISSTAT)
	Master Control Register (TWIMCTL)
	Master Address Register (TWIMADDR)
	Master Status Register (TWIMSTAT)
	FIFO Control Register (TWIFIFOCTL)
	FIFO Status Register (TWIFIFOSTAT)
	Interrupt Source Register (TWIIRPTL)
	Interrupt Enable Register (TWIIMASK)
	8-Bit Transmit FIFO Register (TXTWI8)
	16-Bit Transmit FIFO Register (TXTWI16)
	8-Bit Receive FIFO Register (RXTWI8)
	16-Bit Receive FIFO Register (RXTWI16)

	Precision Clock Generator Registers
	Control Registers (PCG_CTLxx)
	PCG Pulse Width Registers
	PCG Frame Synchronization Registers (PCG_SYNCx)

	Peripheral Interrupt Priority Control Registers
	Peripheral Interrupt Priority Control Registers (PICRx)
	Peripheral Interrupt Priority0 Control Register (PICR0)
	Peripheral Interrupt Priority1 Control Register (PICR1)
	Peripheral Interrupt Priority2 Control Register (PICR2)
	Peripheral Interrupt Priority3 Control Register (PICR3)

	Power Management Control Register (PMCTL)
	Hardware Breakpoint Control Register
	Enhanced Emulation Status Register

	B Interrupts
	Interrupt Vector Tables
	Interrupt Priorities

	Interrupt Registers
	Interrupt Register (LIRPTL)
	Interrupt Latch Register (IRPTL)
	Interrupt Mask Register (IMASK)
	Interrupt Mask Pointer Register (IMASKP)

	I Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

