
a

ADSP-2126x SHARC® Processor
Peripherals Manual

 Revision 3.0, December 2005

Part Number
82-002002-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2005 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, EZ-KIT Lite, SHARC, the SHARC
logo, TigerSHARC, and VisualDSP++ are registered trademarks of Analog
Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

CONTENTS
PREFACE

Purpose of This Manual ... xxi

Intended Audience ... xxi

Manual Contents .. xxii

What’s New in This Manual .. xxiii

Technical or Customer Support ... xxiii

Supported Processors .. xxiv

Product Information ... xxv

MyAnalog.com .. xxv

Processor Product Information ... xxv

Related Documents .. xxvi

Online Technical Documentation .. xxvii

Accessing Documentation From VisualDSP++ xxviii

Accessing Documentation From Windows xxviii

Accessing Documentation From the Web xxix

Printed Manuals ... xxix

VisualDSP++ Documentation Set .. xxx

Hardware Tools Manuals ... xxx

Processor Manuals ... xxx
ADSP-2126x SHARC Processor Peripherals Manual iii

CONTENTS
Data Sheets .. xxx

Conventions .. xxxi

INTRODUCTION

ADSP-2126x Processor Design Advantages 1-1

Architectural Overview ... 1-6

Processor Core .. 1-6

Processor Peripherals ... 1-7

Dual-Ported Internal Memory (SRAM) 1-7

I/O Processor ... 1-8

Digital Audio Interface (DAI) ... 1-10

Development Tools ... 1-10

Differences From Previous SHARCs .. 1-11

Processor Core Enhancements ... 1-11

Processor Internal Bus Enhancements 1-12

Memory Organization Enhancements 1-12

Parallel Port Enhancements ... 1-12

I/O Architecture Enhancements .. 1-13

Instruction Set Enhancements ... 1-13

I/O PROCESSOR

General Procedure for Configuring DMA 2-2

IOP/Core Interaction Options .. 2-3

Interrupt Driven I/O ... 2-3

Polling/Status Driven I/O ... 2-7
iv ADSP-2126x SHARC Processor Peripherals Manual

CONTENTS
DMA Controller Operation ... 2-8

Chaining DMA Processes .. 2-10

Transfer Control Block Chain Loading (TCB) 2-12

Setting Up and Starting the Chain 2-14

Setting Up and Starting Chained DMA over the SPI 2-14

Inserting a TCB in an Active Chain 2-15

Setting Up DMA Channel Allocation and Priorities 2-16

Managing DMA Channel Priority 2-17

DMA Bus Arbitration ... 2-18

Setting Up DMA Parameter Registers .. 2-20

DMA Transfer Direction ... 2-21

Data Buffer Registers ... 2-23

Port, Buffer, and DMA Control Registers 2-24

Addressing .. 2-26

Setting Up DMA .. 2-30

PARALLEL PORT

Parallel Port Pins ... 3-3

Alternate Pin Functions ... 3-4

Parallel Ports as FLAG Pins ... 3-4

Parallel Data Acquisition Port as Address Pins 3-5

Parallel Port Operation .. 3-5

Basic Parallel Port External Transaction 3-5

Reading From an External Device or Memory 3-6

Writing to an External Device or Memory 3-7
ADSP-2126x SHARC Processor Peripherals Manual v

CONTENTS
Transfer Protocol ... 3-8

8-Bit Mode ... 3-9

16-Bit Mode ... 3-10

Comparison of 16-Bit and 8-Bit SRAM Modes 3-11

Parallel Port Interrupt ... 3-12

Parallel Port Throughput .. 3-12

8-Bit Access .. 3-14

16-Bit Access .. 3-14

Conclusion ... 3-15

Parallel Port Registers ... 3-15

Parallel Port Control Register (PPCTL) 3-16

Parallel Port DMA Registers .. 3-16

Parallel Port External Setup Registers 3-19

Using the Parallel Port .. 3-19

DMA Transfers ... 3-20

Core Driven Transfers ... 3-21

Known Duration Accesses ... 3-23

Status Driven Transfers (Polling) 3-24

Core-Stall Driven Transfers ... 3-24

Interrupt Driven Accesses ... 3-24

Parallel Port Programming Examples ... 3-25

SERIAL PORTS

Serial Port Signals ... 4-5

SPORT Operation Modes ... 4-9
vi ADSP-2126x SHARC Processor Peripherals Manual

CONTENTS
Standard DSP Serial Mode ... 4-11

Standard DSP Serial Mode Control Bits 4-11

Clocking Options ... 4-11

Frame Sync Options .. 4-12

Data Formatting ... 4-13

Data Transfers ... 4-13

Status Information .. 4-14

Left-Justified Sample Pair Mode ... 4-14

Setting the Internal Serial Clock and Frame Sync Rates 4-15

Left-Justified Sample Pair Mode Control Bits 4-15

Setting Word Length (SLEN) .. 4-15

Enabling SPORT Master Mode (MSTR) 4-16

Selecting Transmit and Receive Channel Order (FRFS) 4-16

Selecting Frame Sync Options (DIFS) 4-16

Enabling SPORT DMA (SDEN) 4-17

Interrupt-Driven Data Transfer Mode 4-17

DMA-Driven Data Transfer Mode 4-17

I2S Mode .. 4-18

I2S Mode Control Bits .. 4-19

Setting the Internal Serial Clock and Frame Sync Rates 4-20

I2S Control Bits .. 4-20

Setting Word Length (SLEN) .. 4-20

Enabling SPORT Master Mode (MSTR) 4-21

Selecting Transmit and Receive Channel Order (FRFS) 4-21
ADSP-2126x SHARC Processor Peripherals Manual vii

CONTENTS
Selecting Frame Sync Options (DIFS) 4-21

Enabling SPORT DMA (SDEN) 4-22

Interrupt-Driven Data Transfer Mode 4-22

DMA-Driven Data Transfer Mode 4-23

Multichannel Operation .. 4-24

Frame Syncs in Multichannel Mode 4-26

Active State Multichannel Receive Frame Sync Select 4-27

Multichannel Mode Control Bits 4-27

Receive Multichannel Frame Sync Source 4-29

Active State Transmit Data Valid 4-29

Multichannel Status Bits ... 4-29

Channel Selection Registers .. 4-30

SPORT Loopback .. 4-31

Clock Signal Options .. 4-33

Frame Sync Options ... 4-33

Framed Versus Unframed Frame Syncs 4-34

Internal Versus External Frame Syncs 4-35

Active Low Versus Active High Frame Syncs 4-35

Sampling Edge for Data and Frame Syncs 4-36

Early Versus Late Frame Syncs ... 4-36

Data-Independent Frame Sync .. 4-37

Data Word Formats .. 4-39

Word Length .. 4-39

Endian Format .. 4-40
viii ADSP-2126x SHARC Processor Peripherals Manual

CONTENTS
Data Packing and Unpacking ... 4-40

Data Type ... 4-41

Companding ... 4-42

SPORT Control Registers and Data Buffers 4-44

Register Writes and Effect Latency ... 4-50

Serial Port Control Registers (SPCTLx) 4-50

Transmit and Receive Data Buffers ... 4-59

Clock and Frame Sync Frequencies (DIV) 4-62

SPORT Reset .. 4-65

SPORT Interrupts ... 4-65

Moving Data Between SPORTS and Internal Memory 4-66

DMA Block Transfers .. 4-66

Setting Up DMA on SPORT Channels 4-68

SPORT DMA Parameter Registers ... 4-69

SPORT DMA Chaining .. 4-73

Single Word Transfers .. 4-74

SPORT Programming Examples .. 4-75

SERIAL PERIPHERAL INTERFACE PORT

Functional Description ... 5-2

SPI Interface Signals ... 5-3

SPI Clock Signal (SPICLK) ... 5-4

SPICLK Timing .. 5-5

SPI Slave Select Outputs (SPIDS0-3) 5-5

SPI Device Select Signal .. 5-5
ADSP-2126x SHARC Processor Peripherals Manual ix

CONTENTS
Master Out Slave In (MOSI) ... 5-6

Master In Slave Out (MISO) ... 5-6

SPI General Operations .. 5-8

SPI Enable .. 5-8

Open Drain Mode (OPD) ... 5-9

Master Mode Operation .. 5-9

Slave Mode Operation ... 5-11

Multimaster Conditions .. 5-12

SPI Data Transfer Operations ... 5-12

Core Transmit and Receive Operations 5-12

SPI DMA ... 5-13

Master Mode DMA Operation .. 5-14

Master Transfer Preparation .. 5-16

Slave Mode DMA Operation .. 5-17

Slave Transfer Preparation ... 5-18

Changing SPI Configuration ... 5-20

Switching From Transmit To Receive DMA 5-21

Switching From Receive to Transmit DMA 5-23

DMA Error Interrupts .. 5-24

DMA Chaining .. 5-25

SPI Transfer Formats .. 5-26

Beginning and Ending an SPI Transfer 5-27

SPI Word Lengths .. 5-30

8-Bit Word Lengths .. 5-30
x ADSP-2126x SHARC Processor Peripherals Manual

CONTENTS
16-Bit Word Lengths ... 5-31

32-Bit Word Lengths ... 5-31

Packing ... 5-31

SPI Interrupts ... 5-32

SPI Registers ... 5-34

Control and Status Registers .. 5-35

SPI Baud Setup Register (SPIBAUD) 5-36

SPI Control Register (SPICTL) ... 5-37

SPI Flag Register (SPIFLG) ... 5-40

Use of DSxEN Bits in SPIFLG for Multiple Slave
SPI Systems .. 5-42

SPI Device Select Input Pin ... 5-43

SPI Status Register (SPISTAT) .. 5-44

Buffering and Transmit/Receive Registers 5-46

SPI Transmit Data Buffer Register (TXSPI) 5-47

SPI Receive Data Buffer Register (RXSPI) 5-48

DMA Registers .. 5-48

SPI DMA Configuration (SPIDMAC) Register 5-48

SPI DMA Internal Index Register (IISPI) 5-50

SPI DMA Address Modifier Register (IMSPI) 5-50

SPI DMA Word Count Register (CSPI) 5-51

SPI DMA Chain Pointer Register (CPSPI) 5-51

Shift Registers ... 5-52

Receive Shift Register (RXSR) ... 5-52

Transmit Shift Register (TXSR) ... 5-52
ADSP-2126x SHARC Processor Peripherals Manual xi

CONTENTS
SPI Receive Data Buffer Shadow Register
(RXSPI_SHADOW) .. 5-53

Error Signals and Flags ... 5-53

Mode Fault Error (MME) ... 5-53

Transmission Error Bit (TUNF) .. 5-55

Reception Error Bit (ROVF) ... 5-55

Transmit Collision Error Bit (TXCOL) 5-55

SPI Programming Examples .. 5-56

INPUT DATA PORT

Serial Inputs ... 6-3

Parallel Data Acquisition Port (PDAP) .. 6-6

Masking .. 6-7

Packing Unit ... 6-8

Packing Mode 11 .. 6-8

Packing Mode 10 .. 6-9

Packing Mode 01 .. 6-9

Packing Mode 00 .. 6-10

Clocking Edge Selection .. 6-10

Hold Input ... 6-10

PDAP Strobe .. 6-12

FIFO Control and Status .. 6-13

FIFO to Memory Data Transfer .. 6-14

Interrupt-Driven Transfers .. 6-15

Starting an Interrupt-Driven Transfer 6-16
xii ADSP-2126x SHARC Processor Peripherals Manual

CONTENTS
Interrupt-Driven Transfer Notes .. 6-17

DMA Transfers .. 6-18

Starting DMA Transfers .. 6-18

DMA Transfer Notes ... 6-19

DMA Channel Parameter Registers .. 6-21

IDP (DAI) Interrupt Service Routines for DMAs 6-22

Input Data Port Programming Example 6-23

DIGITAL AUDIO INTERFACE

Structure of the DAI ... 7-1

DAI System Design ... 7-2

Signal Routing Unit .. 7-3

Connecting Peripherals .. 7-3

Pins Interface .. 7-7

Pin Buffers as Signal Output Pins .. 7-9

Pin Buffers as Signal Input Pins ... 7-10

Bidirectional Pin Buffers .. 7-11

Making Connections in the SRU ... 7-14

SRU Connection Groups ... 7-15

Group A Connections – Clock Signals 7-16

Group B Connections – Data Signals 7-18

Group C Connections – Frame Sync Signals 7-19

Group D Connections – Pin Signal Assignments 7-20

Group E Connections – Miscellaneous Signals 7-22

Group F – Pin Enable Signals .. 7-24
ADSP-2126x SHARC Processor Peripherals Manual xiii

CONTENTS
General-Purpose (GPIO) and Flags ... 7-25

Miscellaneous Signals .. 7-25

DAI Interrupt Controller .. 7-25

Relationship to the Core ... 7-25

DAI Interrupts .. 7-27

High and Low Priority Latches .. 7-28

Rising and Falling Edge Masks .. 7-29

Using the SRU() Macro .. 7-30

PRECISION CLOCK GENERATOR

Clock Outputs ... 8-2

Frame Sync Outputs ... 8-4

Frame Sync ... 8-4

Frame Sync Output Synchronization with External Clock 8-5

Phase Shift ... 8-6

Phase Shift Settings ... 8-7

Pulse Width .. 8-9

Bypass Mode ... 8-9

Bypass as a Pass Through .. 8-10

Bypass as a One Shot .. 8-10

PCG Programming Examples .. 8-12

SYSTEM DESIGN

Pin Descriptions ... 9-2

Pin Multiplexing ... 9-5
xiv ADSP-2126x SHARC Processor Peripherals Manual

CONTENTS
Address/Data Pins as FLAGs ... 9-7

Input Synchronization Delay ... 9-7

Clock Derivation ... 9-8

Power Management Control Register 9-8

Timing Specifications .. 9-11

RESET and CLKIN .. 9-13

Reset Generators ... 9-16

Interrupt and Timer Pins ... 9-17

Core-Based Flag Pins ... 9-18

JTAG Interface Pins .. 9-19

Phase-Locked Loop Startup ... 9-20

Conditioning Input Signals ... 9-21

RESET Input Hysteresis .. 9-21

Designing for High Frequency Operation 9-22

Clock Specifications and Jitter ... 9-22

Other Recommendations and Suggestions 9-23

Decoupling Capacitors and Ground Planes 9-23

Oscilloscope Probes ... 9-24

Recommended Reading ... 9-24

Booting .. 9-26

Parallel Port Booting .. 9-27

SPI Port Booting ... 9-29

32-bit SPI Host Boot .. 9-31

16-bit SPI Host Boot .. 9-32
ADSP-2126x SHARC Processor Peripherals Manual xv

CONTENTS
8-bit SPI Host Boot .. 9-33

Slave Boot Mode .. 9-35

Master Boot ... 9-36

Booting From an SPI Flash ... 9-39

Booting From an SPI PROM (16-bit address) 9-39

Booting From an SPI Host Processor 9-40

Data Delays, Latencies, and Throughput 9-40

Execution Stalls ... 9-41

DAG Stalls ... 9-42

Memory Stalls ... 9-42

IOP Register Stalls .. 9-42

DMA Stalls ... 9-42

IOP Buffer Stalls ... 9-43

REGISTERS REFERENCE

I/O Processor Registers ... A-2

Flag Value Register (FLAGS) ... A-6

System Control Register (SYSCTL) A-11

Hardware Breakpoint Control Register (BRKCTL) A-13

Serial Port Registers .. A-19

SPORT Serial Control Registers (SPCTLx) A-19

SPORT Multichannel Control Registers (SPMCTLxy) A-28

SPORT Transmit Buffer Registers (TXSPx) A-34

SPORT Receive Buffer Registers (RXSPx) A-34

SPORT Divisor Registers (DIVx) .. A-35
xvi ADSP-2126x SHARC Processor Peripherals Manual

CONTENTS
SPORT Count Registers (SPCNTx) A-36

SPORT Transmit Select Registers (MTxCSy) A-36

SPORT Transmit Compand Registers (MTxCCSy) A-37

SPORT Receive Select Registers (MRxCSx) A-37

SPORT Receive Compand Registers (MRxCCSx) A-38

SPORT DMA Index Registers (IISPx) A-39

SPORT DMA Modifier Registers (IMSPx) A-39

SPORT DMA Count Registers (CSPx) A-40

SPORT Chain Pointer Registers (CPSP) A-40

SPI Registers .. A-41

SPI Port Status Register (SPISTAT) A-41

SPI Port Flags Register (SPIFLG) .. A-43

SPI Control Register (SPICTL) ... A-44

SPI Receive Buffer Register (RXSPI) A-45

RXSPI Shadow Register (RXSPI_SHADOW) A-48

SPI Transmit Buffer Register (TXSPI) A-48

SPI Baud Rate Register (SPIBAUD) A-49

SPI DMA Registers .. A-50

SPI DMA Configuration Register (SPIDMAC) A-50

SPI DMA Start Address Register (IISPI) A-53

SPI DMA Address Modify Register (IMSPI) A-53

SPI DMA Word Count Register (CSPI) A-54

SPI DMA Chain Pointer Register (CPSPI) A-54

Parallel Port Registers ... A-54
ADSP-2126x SHARC Processor Peripherals Manual xvii

CONTENTS
Parallel Port Control Register (PPCTL) A-55

Parallel Port DMA Transmit Register (TXPP) A-56

Parallel Port DMA Receive Register (RXPP) A-58

Parallel Port DMA Start Internal Index Address Register
(IIPP) .. A-59

Parallel Port DMA Internal Modifier Address Register
(IMPP) .. A-59

Parallel Port DMA Internal Word Count Register (ICPP) A-59

Parallel Port DMA Start External Index Address Register
(EIPP) ... A-59

Parallel Port DMA External Modifier Address Register
(EMPP) ... A-59

Parallel Port DMA External Word Count Register
(ECPP) .. A-60

Signal Routing Unit Registers ... A-60

Clock Routing Control Registers (Group A) A-61

Serial Data Routing Registers (SRU_DATx, Group B) A-65

Frame Sync Routing Control Registers
(SRU_FSx, Group C) ... A-70

Pin Signal Assignment Registers
(SRU_PINx, Group D) .. A-73

Miscellaneous SRU Registers (SRU_EXT_MISCx,
Group E) ... A-79

DAI Pin Buffer Enable Registers (Group F) A-83

Precision Clock Generator Registers .. A-88

Input Data Port Registers .. A-95

Input Data Port Control Registers (IDP_CTL) A-95
xviii ADSP-2126x SHARC Processor Peripherals Manual

Input Data Port FIFO Register (IDP_FIFO) A-97

Input Data Port DMA Control Registers A-99

Parallel Data Acquisition Port Control Register
(IDP_PDAP_CTL) ... A-100

Digital Audio Interface Status Register (DAI_STAT) A-104

DAI Resistor Pull-up Enable Register (DAI_PIN_PULLUP) A-106

DAI Pin Status Register (DAI_PIN_STAT) A-109

DAI Interrupt Controller Registers A-110

INDEX
ADSP-2126x SHARC Processor Peripherals Manual xix

xx ADSP-2126x SHARC Processor Peripherals Manual

PREFACE

Thank you for purchasing and developing systems using SHARC®

processors from Analog Devices.

Purpose of This Manual
The ADSP-2126x SHARC Processor Peripherals Manual contains informa-
tion about the DSP architecture and DSP assembly language for SHARC
processors. These are 32-bit, fixed- and floating-point digital signal pro-
cessors from Analog Devices for use in computing, communications, and
consumer applications.

The manual provides information on how assembly instructions execute
on the SHARC processor’s architecture along with reference information
about DSP operations.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. This manual assumes that the audience
has a working knowledge of the appropriate processor architecture and
instruction set. Programmers who are unfamiliar with Analog Devices
processors can use this manual, but should supplement it with other texts
(such as the appropriate hardware reference manuals and data sheets) that
describe your target architecture.
ADSP-2126x SHARC Processor Peripherals Manual xxi

Manual Contents
Manual Contents
The manual consists of:

• Chapter 1, “Introduction”
Provides an architectural overview of the ADSP-2126x processor.

• Chapter 2, “I/O Processor”
Describes ADSP-2126x input/output processor architecture.

• Chapter 3, “Parallel Port”
Describes the processor’s on-chip DMA controller as a mechanism
for transferring data without core interruption.

• Chapter 4, “Serial Ports”
Describes the six dual data line serial ports. Each SPORT contains
a clock, a frame sync, and two data lines that can be configured as
either a receiver or transmitter pair.

• Chapter 5, “Serial Peripheral Interface Port”
Describes the operation of the SPI port. SPI devices communicate
using a master-slave relationship and can achieve high data transfer
rate because they can operate in full-duplex mode.

• Chapter 6, “Input Data Port”
Discusses the function of the input data port (IDP) which provides
a low overhead method of routing signal routing unit (SRU) sig-
nals back to the core’s memory.

• Chapter 7, “Digital Audio Interface”
Provides information about the digital audio interface (DAI) which
allows you to attach an arbitrary number and variety of peripherals
to the ADSP-2126x while retaining high levels of compatibility.

• Chapter 8, “Precision Clock Generator”
Details the precision clock generators (PCG) each of which gener-
ates a pair of signals derived from a clock input signal.
xxii ADSP-2126x SHARC Processor Peripherals Manual

Preface
• Chapter 9, “System Design”
Describes system features of the ADSP-2126x processor. These
include power, reset, clock, JTAG, and booting, as well as pin
descriptions and other system level information.

• Appendix A, “Registers Reference”
Provides ‘at-a-glance’ register figures and bit descriptions.

This hardware reference is a companion document to the
ADSP-2126x SHARC Processor Core Manual.

What’s New in This Manual
Revision 3.0 of the ADSP-2126x SHARC Processor Peripherals Manual dif-
fers in a number of ways from the revision 2.0 book. In revision 3.0 all
errata reports against the previous revision have been corrected.

Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following
ways:

• Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technicalSupport

• E-mail tools questions to
processor.tools.support@analog.com

• E-mail processor questions to
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

• Phone questions to 1-800-ANALOGD
ADSP-2126x SHARC Processor Peripherals Manual xxiii

mailto:dsptools.support@analog.com
mailto:processor.support@analog.com
http://www.analog.com/processors/technicalSupport
mailto:processor.china@analog.com
mailto:processor.europe@analog.com

Supported Processors
• Contact your Analog Devices, Inc. local sales office or authorized
distributor

• Send questions by mail to:

Analog Devices, Inc.

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA

Supported Processors
The following is the list of Analog Devices, Inc. processors supported in
VisualDSP++®.

TigerSHARC® (ADSP-TSxxx) Processors

The name TigerSHARC refers to a family of floating-point and
fixed-point (8-bit, 16-bit, and 32-bit) processors. VisualDSP++ currently
supports the following TigerSHARC families: ADSP-TS101 and
ADSP-TS20x.

SHARC (ADSP-21xxx) Processors

The name SHARC refers to a family of high-performance, 32-bit,
floating-point processors that can be used in speech, sound, graphics, and
imaging applications. VisualDSP++ currently supports the following
SHARC families: ADSP-2106x, ADSP-2116x, ADSP-2126x, and
ADSP-2136x.

Blackfin® (ADSP-BFxxx) Processors

The name Blackfin refers to a family of 16-bit, embedded processors.
VisualDSP++ currently supports the following Blackfin families:
ADSP-BF53x and ADSP-BF56x.
xxiv ADSP-2126x SHARC Processor Peripherals Manual

Preface
Product Information
You can obtain product information from the Analog Devices Web site,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our Web site provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices Web site that allows
the customizing of a Web page to display only the latest information on
products you are interested in. You can also choose to receive weekly
e-mail notifications containing updates to the Web pages that meet your
interests. MyAnalog.com provides access to books, application notes, data
sheets, code examples, and more.

Registration

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as a means to select the
information you want to receive.

If you are already a registered user, just log on. Your user name is your
e-mail address.

Processor Product Information
For information on embedded processors and DSPs, visit our Web site at
www.analog.com/processors, which provides access to technical publica-
tions, data sheets, application notes, product overviews, and product
announcements.
ADSP-2126x SHARC Processor Peripherals Manual xxv

http://www.analog.com
http://www.myanalog.com
http://www.myanalog.com
http://www.myanalog.com
http://www.myanalog.com
http://www.analog.com/processors

Product Information
You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• E-mail questions or requests for information to
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

• Fax questions or requests for information to
1-781-461-3010 (North America)
+49-89-76903-157 (Europe)

• Access the FTP Web site at
ftp ftp.analog.com (or ftp 137.71.25.69)
ftp://ftp.analog.com

Related Documents
The following publications that describe the ADSP-2126x processor (and
related processors) can be ordered from any Analog Devices sales office:

• ADSP-21261 SHARC Processor Data Sheet

• ADSP-21262 SHARC Processor Data Sheet

• ADSP-21266 SHARC Processor Data Sheet

• ADSP-21267 SHARC Processor Data Sheet

• ADSP-2126x SHARC Processor Core Manual

• ADSP-21160 SHARC DSP Instruction Set Reference
xxvi ADSP-2126x SHARC Processor Peripherals Manual

ftp://ftp.analog.com
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
ftp://ftp.analog.com
ftp://137.71.25.69
mailto:processor.china@analog.com

Preface
For information on product related development software and Analog
Devices processors, see these publications:

• VisualDSP++ User's Guide for SHARC Processors

• VisualDSP++ C/C++ Compiler and Library Manual for SHARC
Processors

• VisualDSP++ Assembler and Preprocessor Manual for SHARC
Processors

• VisualDSP++ Linker and Utilities Manual for SHARC Processors

• VisualDSP++ Kernel (VDK) User's Guide

Visit the Technical Library Web site to access all processor and tools
manuals and data sheets:

http://www.analog.com/processors/technical_library

Online Technical Documentation
Online documentation comprises the VisualDSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, the Dinkum
Abridged C++ library, and Flexible License Manager (FlexLM) network
license manager software documentation. You can easily search across the
entire VisualDSP++ documentation set for any topic of interest. For easy
printing, supplementary .PDF files of most manuals are also provided.
ADSP-2126x SHARC Processor Peripherals Manual xxvii

http://www.analog.com/processors/technical_library

Product Information
Each documentation file type is described as follows.

If documentation is not installed on your system as part of the software
installation, you can add it from the VisualDSP++ CD-ROM at any time
by running the Tools installation. Access the online documentation from
the VisualDSP++ environment, Windows® Explorer, or the Analog
Devices Web site.

Accessing Documentation From VisualDSP++

From the VisualDSP++ environment:

• Access VisualDSP++ online Help from the Help menu’s Contents,
Search, and Index commands.

• Open online Help from context-sensitive user interface items (tool-
bar buttons, menu commands, and windows).

Accessing Documentation From Windows

In addition to any shortcuts you may have constructed, there are many
ways to open VisualDSP++ online Help or the supplementary documenta-
tion from Windows.

File Description

.CHM Help system files and manuals in Help format

.HTM or

.HTML
Dinkum Abridged C++ library and FlexLM network license manager software doc-
umentation. Viewing and printing the HTML files requires a browser, such as
Internet Explorer 4.0 (or higher).

.PDF VisualDSP++ and processor manuals in Portable Documentation Format (PDF).
Viewing and printing the .PDF files requires a PDF reader, such as Adobe Acrobat
Reader (4.0 or higher).
xxviii ADSP-2126x SHARC Processor Peripherals Manual

Preface
Help system files (.CHM) are located in the Help folder, and .PDF files are
located in the Docs folder of your VisualDSP++ installation CD-ROM.
The Docs folder also contains the Dinkum Abridged C++ library and the
FlexLM network license manager software documentation.

Using Windows Explorer

• Double-click the vdsp-help.chm file, which is the master Help sys-
tem, to access all the other .CHM files.

• Double-click any file that is part of the VisualDSP++ documenta-
tion set.

Using the Windows Start Button

• Access VisualDSP++ online Help by clicking the Start button and
choosing Programs, Analog Devices, VisualDSP++, and
VisualDSP++ Documentation.

• Access the .PDF files by clicking the Start button and choosing
Programs, Analog Devices, VisualDSP++, Documentation for
Printing, and the name of the book.

Accessing Documentation From the Web

Download manuals at the following Web site:
http://www.analog.com/processors/technical_library

Select a processor family and book title. Download archive (.ZIP) files, one
for each manual. Use any archive management software, such as WinZip,
to decompress downloaded files.

Printed Manuals
For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.
ADSP-2126x SHARC Processor Peripherals Manual xxix

http://www.analog.com/processors/technical_library

Product Information
VisualDSP++ Documentation Set

To purchase VisualDSP++ manuals, call 1-603-883-2430. The manuals
may be purchased only as a kit.

If you do not have an account with Analog Devices, you are referred to
Analog Devices distributors. For information on our distributors, log onto
http://www.analog.com/salesdir.

Hardware Tools Manuals

To purchase EZ-KIT Lite® and In-Circuit Emulator (ICE) manuals, call
1-603-883-2430. The manuals may be ordered by title or by product
number located on the back cover of each manual.

Processor Manuals

Hardware reference and instruction set reference manuals may be ordered
through the Literature Center at 1-800-ANALOGD (1-800-262-5643),
or downloaded from the Analog Devices Web site. Manuals may be
ordered by title or by product number located on the back cover of each
manual.

Data Sheets

All data sheets (preliminary and production) may be downloaded from the
Analog Devices Web site. Only production (final) data sheets (Rev. 0, A,
B, C, and so on) can be obtained from the Literature Center at
1-800-ANALOGD (1-800-262-5643); they also can be downloaded from
the Web site.

To have a data sheet faxed to you, call the Analog Devices Faxback System
at 1-800-446-6212. Follow the prompts and a list of data sheet code
numbers will be faxed to you. If the data sheet you want is not listed,
check for it on the Web site.
xxx ADSP-2126x SHARC Processor Peripherals Manual

http://www.analog.com/salesdir

Preface
Conventions
Text conventions used in this manual are identified and described as
follows.

Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
VisualDSP++ environment’s menu system (for example, the Close
command appears on the File menu).

{this | that} Alternative items in syntax descriptions appear within curly brackets
and separated by vertical bars; read the example as this or that. One
or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipse; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note: provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this
symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution: identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning: identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.
ADSP-2126x SHARC Processor Peripherals Manual xxxi

Conventions
Additional conventions, which apply only to specific chapters, may
appear throughout this document.
xxxii ADSP-2126x SHARC Processor Peripherals Manual

1 INTRODUCTION

A digital signal processor’s data format determines its ability to handle sig-

nals of differing precision, dynamic range, and signal-to-noise ratios.
Because floating-point DSP math reduces the need for scaling and proba-
bility of overflow, using a floating-point DSP can ease algorithm and
software development. The extent to which this is true depends on the
floating-point processor’s architecture. Consistency with IEEE worksta-
tion simulations and the elimination of scaling are clearly two ease-of-use
advantages. High level language programmability, large address spaces,
and wide dynamic range allow system development time to be spent on
algorithms and signal processing concerns, rather than assembly language
coding, code paging, and error handling. The ADSP-2126x processors are
highly integrated, lower cost 32-bit floating-point DSPs which provide
many of these design advantages.

For brevity, the ADSP-21262, ADSP-21266 and ADSP-21267
SHARC processors will be referred to as the ADAP-2126x. For
instances where functionality applies to one or the other processor
specifically, it will be noted in the text.

ADSP-2126x Processor Design
Advantages

The ADSP-2126x processor is a high performance 32-bit processor used
for medical imaging, communications, military, audio, test equipment,
3D graphics, speech recognition, motor control, imaging, and other appli-
cations. By adding a dual-ported on-chip SRAM, integrated I/O
ADSP-2126x SHARC Processor Peripherals Manual 1-1

ADSP-2126x Processor Design Advantages
peripherals, and an additional processing element for Single-Instruction
Multiple-Data (SIMD) support, this processor builds on the ADSP-21000
Family processor core to form a complete system-on-a-chip.

The SHARC processor architecture balances a high performance processor
core with high performance buses (PM, DM, I/O). In the core, every
instruction can execute in a single cycle. The buses and instruction cache
provide rapid, unimpeded data flow to the core to maintain the execution
rate.

Figure 1-1 shows a detailed block diagram of the processor, illustrating the
following architectural features:

• Two processing elements (PEx and PEy), each containing 32-bit
IEEE floating-point computation units—multiplier, ALU, shifter,
and data register file

• Program sequencer with related instruction cache, interval timer,
and Data Address Generators (DAG1 and DAG2)

• Dual-ported SRAM

• Input/Output (I/O) processor with integrated DMA controller,
SPI-compatible port, and serial ports for point-to-point multipro-
cessor communications

• JTAG Test Access Port for emulation

• Parallel port for interfacing to off-chip memory and peripherals

Figure 1-1 also shows the three on-chip buses of the ADSP-2126x proces-
sor: the Program Memory (PM) bus, Data Memory (DM) bus, and
Input/Output (I/O) bus. The PM bus provides access to either instruc-
tions or data. During a single cycle, these buses let the processor access
two data operands from memory, access an instruction (from the cache),
and perform a DMA transfer.
1-2 ADSP-2126x SHARC Processor Peripherals Manual

Introduction
Further, the ADSP-2126x processor addresses the five central require-
ments for DSPs:

• Fast, flexible arithmetic computation units

• Unconstrained data flow to and from the computation units

• Extended precision and dynamic range in the computation units

• Dual address generators with circular buffering support

• Efficient program sequencing

Figure 1-1. ADSP-2126x SHARC Processor Block Diagram

PX REGISTER

4

3

DMA CONTROLLER

SERIAL PORTS (6)

IOP
REGISTERS

(MEMORY MAPPED)

CONTROL,
STATUS, &

DATA BUFFERS

I/O PROCESSOR

PARALLEL PORT

6

4

JTAG TEST & EMULATION

GPIO FLAGS/IRQ/TIMEXP

SPI PORT (1)

INPUT
DATA PORT (8)

TIMERS (3)

SIGNAL
ROUTING

UNIT

PRECISION CLOCK
GENERATOR (1)

3
ADDRES S/DATA BUS / GP IO

CONT RO L/GPIO

DAI

22 CHANNELS

16

20

TWO INDEPENDENT
BLOCKS

ADDR DATA DATA ADDR

DUAL-PORTED SRAM

ALU

MULT

DATA
REGISTER

FILE
(PEY)

16 X 40-BIT
BARREL
SHIFTER

BARREL
SHIFTER

ALU

DATA
REGISTER

FILE
(PEX)

16 X 40-BIT

TIMER
INSTRUCTION

CACHE
32 X 48-BIT

DAG1
8X4X32

DAG2
8X4X32

32

PM ADDRESS BUS

DM ADDRESS BUS

32

PM DATA BUS

DM DATA BUS

64

64

CORE PROCESSOR

IOA
18

IOD
32

DUAL-PORTED ROM

B
L

O
C

K
0

(2
M

B
IT

)

MULT

PROGRAM
SEQUENCER

DATA ADDRADDR DATA ADDR DATA

ADDR DATA

B
L

O
C

K
1

(2
M

B
IT

)

B
LO

C
K

1
(1

M
B

IT
)

B
LO

C
K

0
(1

M
B

IT
) TWO INDEPENDENT

BLOCKS
ADSP-2126x SHARC Processor Peripherals Manual 1-3

ADSP-2126x Processor Design Advantages
Fast, Flexible Arithmetic. The ADSP-21000 family processors execute all
instructions in a single cycle. They provide fast cycle times and a complete
set of arithmetic operations. The processor is IEEE floating-point compat-
ible and allows either interrupt on arithmetic exception or latched status
exception handling.

Unconstrained Data Flow. The ADSP-2126x processor has a Super Har-
vard Architecture combined with a ten-port data register file. In every
cycle, the processor can write or read two operands to or from the register
file, supply two operands to the ALU, supply two operands to the

Figure 1-2. Typical Single Processor System

DAI

SPORT5
SPO RT4

SPORT3
SPORT2

SPORT1
SPORT0

SCLK0

SD0A
SFS0

SD0B

SRU

DAI_P1
DAI_P2
DAI_P3

DAI_P18

DAI_P19
DAI_P20

DAC
(OPTIONAL)

ADC
(OPTIONAL)

FS
CLK

SDAT

FS
CLK

SDAT

3

CLOCK

FLAG 3-1

2

2

CLKIN
XTAL

CLK_CF G1-0

BOOTCFG1-0

ADDR
PARALLEL

PO RT
RAM ROM

BOO T ROM
I/O DEVICE

OE

DATA

WE

RD

WR

CLKOUT

ALE

AD15-0 LATCH

RESET JTAG

6

ADSP-2126x

A
D

D
R

E
S

S

D
A

TA

C
O

N
T

R
O

L

CSFL AG0

PCGB
PCGA

CLK

FS
1-4 ADSP-2126x SHARC Processor Peripherals Manual

Introduction
multiplier, and receive three results from the ALU and multiplier. The
processor’s 48-bit orthogonal instruction word supports parallel data
transfers and arithmetic operations in the same instruction.

40-Bit Extended-Precision. The processor handles 32-bit IEEE float-
ing-point format, 32-bit integer and fractional formats (twos-complement
and unsigned), and extended-precision 40-bit floating-point format. The
processors carry extended precision throughout their computation units,
limiting intermediate data truncation errors (up to 80 bits of precision are
maintained during multiply-accumulate operations).

Dual Address Generators. The processor has two Data Address Genera-
tors (DAGs) that provide immediate or indirect (pre- and post-modify)
addressing. Modulus, bit-reverse, and broadcast operations are supported
with no constraints on data buffer placement.

Efficient Program Sequencing. In addition to zero-overhead loops, the
processor supports single-cycle setup and exit for loops. Loops are both
nestable (six levels in hardware) and interruptable. The processors support
both delayed and non-delayed branches.

High Bandwidth I/O. The processors contain up to a dedicated, 4M bits
on-chip ROM, a parallel port, an SPI port, serial ports, Digital Audio
Interface (DAI), and JTAG. The DAI incorporates a precision clock gen-
erator, input data port, and a signal routing unit.

Serial Ports. Provides an inexpensive interface to a wide variety of digital
and mixed-signal peripheral devices. The serial ports can operate at up to
half the processor core clock (CCLK) rate.

Digital Audio Interface (DAI). The DAI includes a precision clock gener-
ator, an input data port and a signal routing unit.

Input Data Port (IDP). The IDP provides an additional input path to the
processor core configurable as eight channels of serial data or seven chan-
nels of serial data and a single channel of up to 20-bit wide parallel data.
ADSP-2126x SHARC Processor Peripherals Manual 1-5

Architectural Overview
Signal Routing Unit (SRU). Provides configuration flexibility by allowing
software-programmable connections to be made between the DAI compo-
nents, serial ports, three pulse-width modulation (PWM) timers, and 20
DAI pins.

Serial Peripheral Interface (SPI). The SPI provides master or slave serial
boot through SPI, full-duplex operation, master-slave mode multi-master
support, open drain outputs, Programmable baud rates, clock polarities,
and phases.

I/O Processor (IOP). The IOP manages the SHARC processor’s off-chip
data I/O to alleviate the core of this burden. This unit manages the other
processor peripherals such as the SPI, DAI, and IDP as well as direct
memory accesses (DMA).

Architectural Overview
The ADSP-2126x processor forms a complete system-on-a-chip, integrat-
ing a large, high speed SRAM and I/O peripherals supported by a
dedicated I/O bus. The following sections summarize the features of each
functional block in the ADSP-2126x processor architecture, which
appears in Figure 1-1.

Processor Core
The processor core of the ADSP-2126x processor consists of two process-
ing elements (each with three computation units and data register file), a
program sequencer, two data address generators, a timer, and an instruc-
tion cache. All digital signal processing occurs in the processor core. For
complete information, see the ADSP-2126x SHARC Processor Core
Manual.
1-6 ADSP-2126x SHARC Processor Peripherals Manual

Introduction
Processor Peripherals
The term processor peripherals refers to the multiple on-chip functional
blocks used to communicate with off-chip devices. The ADSP-2126x pro-
cessor peripherals include the JTAG, Parallel, Serial, SPI ports, DAI
components (PCG, Timers, and IDP), and any external devices that con-
nect to the processor.

Dual-Ported Internal Memory (SRAM)

The individual ADSP-2126x processor products contain varying amounts
of memory. For example, the ADSP-21262 processor provides 2M bits of
internal SRAM and 2M bits of internal ROM, each of which is organized
as two blocks of 1M bit. Each memory block of SRAM is dual-ported for
single cycle, independent accesses by the core processor and I/O processor.
The dual-ported memory and separate on-chip buses allow two data trans-
fers from the core and one from I/O, all in a single cycle.

All of the memory can be accessed as 16-, 32-, 48-, or 64-bit words. The
amount of memory for each word size changes, based on the part number.
On the ADSP-2126x processor, the memory can be configured as a maxi-
mum of 64K words of 32-bit data, 128K words of 16-bit data, 42K words
of 48-bit instructions (and 40-bit data), or combinations of different word
sizes up to 2M bits.

The processor also supports a 16-bit floating-point storage format, which
effectively doubles the amount of data that may be stored on chip. Con-
version between the 32-bit floating-point and 16-bit floating-point
formats completes in a single instruction.

While each memory block can store combinations of code and data,
accesses are most efficient when one block stores data, (using the DM bus
for transfers), and the other block stores instructions and data, (using the
PM bus for transfers). Using the DM bus and PM bus in this way, with
one dedicated to each memory block, assures single-cycle execution with
two data transfers. In this case, the instruction must be available in the
ADSP-2126x SHARC Processor Peripherals Manual 1-7

Architectural Overview
cache. The processor also maintains single-cycle execution when one of
the data operands is transferred to or from off-chip, using the processor
parallel port.

I/O Processor

The ADSP-2126x processor Input/Output Processor (IOP) manages the
SHARC processor’s off-chip data I/O to alleviate the core of this burden.
Up to 22 simultaneous DMA transfers (22 DMA channels) are supported
for transfers between internal memory and serial ports (12), the input data
port (IDP) (8), SPI port (1), and the parallel port. The I/O processor can
perform DMA transfers between the peripherals and internal memory at
the full core clock speed. The dual-ported architecture of the internal
memory allows the IOP and the core to access internal memory simulta-
neously with no reduction in throughput.

Serial Ports. The ADSP-2126x processor features up to six synchronous
serial ports that provide an inexpensive interface to a wide variety of digi-
tal and mixed-signal peripheral devices. The serial ports can operate at up
to up to half of the processor core clock rate with maximum of 50M bits
per second. Each serial port features two data pins that function as a pair
based on the same serial clock and frame sync. Accordingly, each serial
port has two DMA channels and serial data buffers associated with it to
service the dual serial data pins. Programmable data direction provides
greater flexibility for serial communications. Serial port data can automat-
ically transfer to and from on-chip memory using DMA. Each of the serial
ports offers a TDM multichannel mode (up to 128 channels) and supports
μ-law or A-law companding. I2S support is also provided.

The serial ports can operate with least significant bit first (LSBF) or most
significant bit first (MSBF) transmission order, with word lengths from
three to 32 bits. The serial ports offer selectable synchronization and
transmit modes. Serial port clocks and frame syncs can be internally or
externally generated.
1-8 ADSP-2126x SHARC Processor Peripherals Manual

Introduction
Parallel Port. The ADSP-2126x processor parallel port provides the pro-
cessor interface to asynchronous 8-bit memory. The parallel port supports
a 66M bytes per second transfer rate and 256 word page boundaries. The
on-chip DMA controller automatically packs external data into the appro-
priate word width during transfers.

The parallel port supports packing of 32-bit words into 8-bit or 16-bit
external memory and programmable external data access duration from 3
to 32 clock cycles.

Serial Peripheral (Compatible) Interface (SPI). The ADSP-2126x proces-
sor SPI is an industry standard synchronous serial link that enables the
SPI-compatible port to communicate with other SPI-compatible devices.
SPI is an interface consisting of two data pins, one device select pin, and
one clock pin. It is a full-duplex synchronous serial interface, supporting
both master and slave modes. It can operate in a multi master environ-
ment by interfacing with up to four other SPI-compatible devices, either
acting as a master or slave device.

The SPI-compatible peripheral implementation also supports programma-
ble baud rate and clock phase/polarities, as well as the use of open drain
drivers to support the multi master scenario to avoid data contention.

ROM Based Security. For ADSP-2126x processors with application code
in the on-chip ROM, an optional ROM security feature is included. This
feature provides hardware support for securing user software code by pre-
venting unauthorized reading from the enabled code. The processor does
not boot-load any external code, executing exclusively from internal
ROM. The processor also is not freely accessible via the JTAG port.
Instead, a 64-bit key is assigned to the user. This key must be scanned in
through the JTAG or Test Access Port. The device ignores a wrong key.
Emulation features and external boot modes are only available after the
correct key is scanned.
ADSP-2126x SHARC Processor Peripherals Manual 1-9

Development Tools
Digital Audio Interface (DAI)

The Digital Audio Interface (DAI) unit is a new addition to the SHARC
processor peripherals. This set of audio peripherals consists of an interrupt
controller, an interface data port, and a signal routing unit.

Interrupt Controller. The DAI contains its own interrupt controller that
indicates to the core when DAI audio events have occurred. This interrupt
controller offers up to 32 independently configurable channels.

Input Data Port (IDP). The input data port provides the DAI with a way
to transmit data from within the DAI to the core. The IDP provides a
means for up to eight additional DMA paths from the DAI into on-chip
memory. All eight channels support 24-bit wide data and share a 16-deep
FIFO.

Signal Routing Unit (SRU). Conceptually similar to a “patch-bay” or
multiplexer, the SRU provides a group of registers that define the inter-
connection of the serial ports, the interface data port, the DAI pins, and
the precision clock generators.

Development Tools
The ADSP-2126x processor is supported by VisualDSP++, an easy to use
Integrated Development & Debugging Environment (IDDE). Visu-
alDSP++ allows you to manage projects from start to finish from within a
single, integrated interface. Because the project development and debug
environments are integrated, you can move easily between editing, build-
ing, and debugging activities.
1-10 ADSP-2126x SHARC Processor Peripherals Manual

Introduction
Differences From Previous SHARCs
This section identifies differences between the ADSP-2126x processor and
previous SHARCs: ADSP-21161, ADSP-21160, ADSP-21060,
ADSP-21061, ADSP-21062, and ADSP-21065L. Like the ADSP-2116x
family, the ADSP-2126x processor family is based on the original
ADSP-2106x SHARC family. The ADSP-2126x processor preserves much
of the ADSP-2106x architecture and is code compatible to the
ADSP-21160, while extending performance and functionality. For back-
ground information on SHARC processors and the ADSP-2106x Family
processors, see the ADSP-2106x SHARC User’s Manual or the
ADSP-21065L SHARC DSP Technical Reference.

Processor Core Enhancements
Computational bandwidth on the ADSP-2126x processor is significantly
greater than that on the ADSP-2106x processors. The increase comes
from raising the operational frequency and adding another processing ele-
ment: ALU, shifter, multiplier, and register file. The new processing
element lets the processor process multiple data streams in parallel (SIMD
mode). The processor operates at 200 MHz using a three stage pipeline.

Like the ADSP-21160 processor, the program sequencer on the
ADSP-2126x processor differs from the ADSP-2106x processor family,
having several enhancements: new interrupt vector table definitions,
SIMD mode stack and conditional execution model, and instruction
decodes associated with new instructions. Interrupt vectors have been
added that detect illegal memory accesses. Also, mode stack and mode
mask support have been added to improve context switch time.

As with the ADSP-21160 processor, the DAGs on the ADSP-2126x pro-
cessor differ from the ADSP-2106x processors in that DAG2 (for the PM
bus) has the same addressing capability as DAG1 (for the DM bus). The
DAG registers move 64 bits per cycle. Additionally, the DAGs support the
new memory map and long word transfer capability. Circular buffering on
ADSP-2126x SHARC Processor Peripherals Manual 1-11

Differences From Previous SHARCs
the ADSP-2126x processor can be quickly disabled on interrupts and
restored on the return. Data “broadcast”, from one memory location to
both data register files, is determined by appropriate index register usage.

Processor Internal Bus Enhancements
The PM, DM, and I/O data buses have increased from 32 bits on the
ADSP-2106x DSPs to 64 bits. Additional multiplexing and control logic
enable 16-, 32-, or 64-bit wide moves between both register files and
memory. The processor is capable of broadcasting a single memory loca-
tion to each of the register files in parallel. Also, the processor permits
register contents to be exchanged between the two processing elements’
register files in a single cycle.

Memory Organization Enhancements
The ADSP-2126x processor memory map differs from that of the
ADSP-2106x DSPs. The system memory map supports double-word
transfers each cycle, reflects extended internal memory capacity for deriva-
tive designs, and works with an updated control register for SIMD
support. The ADSP-2126x processor family provides enough on-chip
memory for several audio decoders.

Parallel Port Enhancements
The parallel port differs from that of the ADSP-2106x DSPs. A new pack-
ing mode permits DMA for instructions and data to and from 8-bit
external memory. The parallel port supports SRAM, EPROM, and flash
memory. There are two modes supported for transfers. In one mode, 8-bit
data and 8-bit address can be transferred. In another mode, data and
address lines are multiplexed to transfer 16 bits of address/data.
1-12 ADSP-2126x SHARC Processor Peripherals Manual

Introduction
I/O Architecture Enhancements
The I/O processor on the provides much greater throughput than that on
the ADSP-2106x DSPs.

The ADSP-2126x processor DMA controller supports up to 22 channels
compared to 14 channels on the ADSP-21161 processor. DMA transfers
occur at clock speed in parallel with full speed processor execution.

Instruction Set Enhancements
The ADSP-2126x processor provides source code compatibility with the
previous SHARC processor family members, to the application assembly
source code level. All instructions, control registers, and system resources
available in the ADSP-2106x core programming model are also available
in the ADSP-2126x processor. Instructions, control registers, or other
facilities, required to support the new feature set of the ADSP-2116x core
include:

• Code compatibility to the ADSP-21160 SIMD core

• Supersets of the ADSP-2106x programming model

• Reserved facilities in the ADSP-2106x programming model

• Symbol name changes from the ADSP-2106x programming models

These name changes can be managed through reassembly by using the
development tools to apply the ADSP-2126x processor symbol definitions
header file and linker description file. While these changes have no direct
impact on existing core applications, system and I/O processor initializa-
tion code and control code do require modifications.
ADSP-2126x SHARC Processor Peripherals Manual 1-13

Differences From Previous SHARCs
Although the porting of source code written for the ADSP-2106x family
to the ADSP-2126x processor has been simplified, code changes will be
required to take full advantage of the new ADSP-2126x processor features.
For more information, see the ADSP-21160 SHARC DSP Instruction Set
Reference.
1-14 ADSP-2126x SHARC Processor Peripherals Manual

2 I/O PROCESSOR

In applications that use extensive off-chip data I/O, programs may find it

beneficial to use a processor resource other than the processor core to per-
form data transfers. The ADSP-2126x processor contains an I/O processor
(IOP) that supports a variety of DMA (direct memory access) operations.
Each DMA operation transfers an entire block of data. These operations
include the transfer types listed below and shown in Figure 2-3 on
page 2-22:

• Internal memory ↔ external memory devices

• Internal memory ↔ serial port I/O

• Internal memory ↔ SPI I/O

• Internal memory ← Digital Audio Interface (DAI)

By managing DMA, the I/O processor frees the processor core, allowing it
to perform other processor operations while off-chip data I/O occurs as a
background task. The dual-ported internal memory allows the core and
IOP to simultaneously access the same block of internal memory. This
means that DMA transfers to internal memory do not impact core perfor-
mance. The processor core continues to perform computations without
penalty.

To further increase off-chip I/O, multiple DMAs can occur at the same
time. The IOP accomplishes this by managing DMAs of processor mem-
ory through the parallel, SPI, input data port (IDP) and serial ports.

Each DMA is referred to as a channel, and each channel is configured
independently.
ADSP-2126x SHARC Processor Peripherals Manual 2-1

General Procedure for Configuring DMA
There are 22 channels of DMA available on the ADSP-2126x processor—
one channel for the SPI interface, one channel for the parallel port inter-
face, 12 channels via the serial ports, and eight channels for the input data
port (IDP). Another DMA feature is interrupt generation upon comple-
tion of a DMA transfer or upon completion of a chain of DMAs.

General Procedure for Configuring DMA
To configure the ADSP-2126x processor to use DMA, use the following
general procedure.

1. Determine which DMA options you want to use:

• IOP/Core interaction method – Interrupt driven or status
driven (polling)

• DMA transfer method – Chained or Non chained

• Channel priority scheme – fixed or rotating

2. Determine how you want the DMA to operate:

• Determine and set up the data’s source and/or destination
addresses (INDEX)

• Set up the word COUNT (data buffer size)

• Configure the MODIFY values (step size)

3. Configure the peripheral(s):

• Serial ports (SPORTs)

• Parallel port (PP)

• Input data port (IDP)
2-2 ADSP-2126x SHARC Processor Peripherals Manual

I/O Processor
4. Enable DMA

• Set the applicable bits in the appropriate registers:
–parallel port–PPDEN in PPCTL
–serial port–SDEN_x (SCHEN_x for chaining) in SPCTLx
–SPI–SPIDEN (SPICHEN for chaining) in SPIDMAC
–IDP–IDP_DMA_EN in the IDP_CTL

IOP/Core Interaction Options
There are two methods the processor uses to monitor the progress of
DMA operations—interrupts, which are the primary method, and status
polling. The same program can use either method for each DMA channel.
The following sections describe both methods in detail.

Interrupt Driven I/O
Interrupts on the ADSP-2126x processor are generated at the end of a
DMA transfer. This happens when the count register for a particular
channel decrements to zero. The interrupt vector locations for each of the
channels are listed in Table 2-1. The interrupt register diagram and bit
descriptions are given in the ADSP-2126x SHARC Processor Core Manual
and “DAI Interrupt Controller Registers” on page A-110.

Programs can check the appropriate status register (for example PPCTL for
the parallel port) to determine which channels are performing a DMA or
chained DMA.

All DMA channels can be active or inactive. If a channel is active, a DMA
is in progress on that channel. The I/O processor indicates the active sta-
tus by setting the channel’s bit in the status register. The only exception to
this is the IDP_DMAx_STAT bits of the DAI_STAT register can become active
even if DMA, through some IDP channel, is not intended.
ADSP-2126x SHARC Processor Peripherals Manual 2-3

IOP/Core Interaction Options
The following are some other I/O processor interrupt attributes.

• When an unchained (single block) DMA process reaches comple-
tion (as the count decrements to zero) on any DMA channel, the
I/O processor latches that DMA channel’s interrupt. It does this by
setting the DMA channel’s interrupt latch bit in the IRPTL, LIRPTL,
DAI_IRPTL_H, or DAI_IRPTL_L registers.

• For chained DMA, the I/O processor generates interrupts in one of
two ways: If PCI = 1, an interrupt occurs for each DMA in the
chain; if PCI = 0, an interrupt occurs at the end of a complete
chain. (For more information on DMA chaining, see “DMA Con-
troller Operation” on page 2-8).

• When a DMA channel’s buffer is not being used for a DMA pro-
cess, the I/O processor can generate an interrupt on single word
writes or reads of the buffer. This interrupt service differs slightly
for each port. For more information on single word inter-
rupt-driven transfers, see “Parallel Port Control Register (PPCTL)”
on page A-55, and SPCTL register in Table 4-6 on page 4-51.

During interrupt-driven DMA, programs use the interrupt mask bits in
the IMASK, LIRPTL, DAI_IRPTL_PRI, DAI_IRPTL_RE, and DAI_IRPTL_FE reg-
isters to selectively mask DMA channel interrupts that the I/O processor
latches into the IRPTL, LIRPTL, DAI_IRPTL_H, and DAI_IRPTL_L registers.

The I/O processor only generates a DMA complete interrupt when
the channel’s count register decrements to zero as a result of actual
DMA transfers. Writing zero to a count register does not generate
the interrupt. To stop a DMA preemptively, write a one to the
count register. This causes one more word to be transferred or
received and an interrupt is then generated.
2-4 ADSP-2126x SHARC Processor Peripherals Manual

I/O Processor
A channel interrupt mask in the IMASK, LIRPTL, DAI_IRPTL_PRI,
DAI_IRPTL_RE, and DAI_IRPTL_FE registers determines whether a latched
interrupt is to be serviced or not. When an interrupt is masked, it is
latched but not serviced.

By clearing a channel’s PCI bit during chained DMA, programs
mask the DMA complete interrupt for a DMA process within a
chained DMA sequence.

The I/O processor can also generate interrupts for I/O port operations
that do not use DMA. In this case, the I/O processor generates an inter-
rupt when data becomes available at the receive buffer or when the
transmit buffer is not full (when there is room for the core to write to the
buffer). Generating interrupts in this manner lets programs implement
interrupt-driven I/O under control of the processor core. Care is needed
because multiple interrupts can occur if several I/O ports transmit or
receive data in the same cycle.

Table 2-1. DMA Interrupt Vector Locations

Associated Register(s) Bits Vector
Address

Interrupt
Name

DMA
Channel

Data Buffer

IRPTL/IMASK 14 0x38 SP1I 0 RXSP1A, TXSP1A

LIRPTL 0 0x44 SP0I 2 RXSP0A, TXSP0A

IRPTL/IMASK 15 0x3C SP3I 4 RXSP3A, TXSP3A

LIRPTL 1 0x48 SP2I 6 RXSP2A, TXSP2A

IRPTL/IMASK 16 0x40 SP5I 8 RXSP5A, TXSP5A

LIRPTL 2 0x4C SP4I 10 RXSP4A, TXSP4A

IRPTL/IMASK 14 0x38 SP1I 1 RXSP1B, TXSP1B

LIRPTL 0 0x44 SP0I 3 RXSP0B, TXSP0B

IRPTL/IMASK 15 0x3C SP3I 5 RXSP3B, TXSP3B

LIRPTL 1 0x48 SP2I 7 RXSP2B, TXSP2B
ADSP-2126x SHARC Processor Peripherals Manual 2-5

IOP/Core Interaction Options
IRPTL/IMASK 16 0x40 SP5I 9 RXSP5B, TXSP5B

LIRPTL 2 0x4C SP4I 11 RXSP4B, TXSP4B

IRPTL/IMASK
(high priority option)
LIRPTL
(low priority option)

12

9

0x30

0x74

SPIHI

SPILI

20 RXSPI, TXSPI

LIRPTL 3 0x50 PPI 21 RXPP, TXPP

IRPTL/IMASK
(high priority option)
LIRPTL
(low priority option)

11

6

0x2C

0x5C

DAIHI

DAILI

12 IDP_FIF0

IRPTL/IMASK
(high priority option)
LIRPTL
(low priority option)

11

6

0x2C

0x5C

DAIHI

DAILI

13 IDP_FIF0

IRPTL/IMASK
(high priority option)
LIRPTL
(low priority option)

11

6

0x2C

0x5C

DAIHI

DAILI

14 IDP_FIF0

IRPTL/IMASK
(high priority option)
LIRPTL
(low priority option)

11

6

0x2C

0x5C

DAIHI

DAILI

15 IDP_FIF0

IRPTL/IMASK
(high priority option)
LIRPTL
(low priority option)

11

6

0x2C

0x5C

DAIHI

DAILI

16 IDP_FIF0

IRPTL/IMASK
(high priority option)
LIRPTL
(low priority option)

11

6

0x2C

0x5C

DAIHI

DAILI

17 IDP_FIF0

Table 2-1. DMA Interrupt Vector Locations (Cont’d)

Associated Register(s) Bits Vector
Address

Interrupt
Name

DMA
Channel

Data Buffer
2-6 ADSP-2126x SHARC Processor Peripherals Manual

I/O Processor
The SPI has two interrupts—a lower priority option (SPILI) and a higher
priority option (SPIHI). This allows two interrupts to have priorities that
are higher and lower than serial ports.

The DAI also has two interrupts—the lower priority option (DAILI) and
higher priority option (DAIHI). This allows two interrupts to have priori-
ties that are higher and lower than serial ports.

Polling/Status Driven I/O
The second method of controlling I/O is through status polling. The I/O
processor monitors the status of data transfers on DMA channels and indi-
cates interrupt status in the IRPTL, LIRPTL, DAI_IRPTL_H, and DAI_IRPTL_L
registers. Note that because polling uses processor resources it is not as
efficient as an interrupt-driven system. Also note that polling the DMA
status registers reduces I/O bandwidth. The following provide more infor-
mation on the registers that control and monitor I/O processes.

• All the bits in IRPTL and LIRPTL registers are shown in the
ADSP-2126x SHARC Processor Core Manual.

• Figure A-59 on page A-112 lists all the bits in DAI_IRPTL_H.

• Figure A-60 on page A-113 lists all the bits in DAI_IRPTL_L.

IRPTL/IMASK
(high priority option)
LIRPTL
(low priority option)

11

6

0x2C

0x5C

DAIHI

DAILI

18 IDP_FIF0

IRPTL/IMASK
(high priority option)
LIRPTL
(low priority option)

11

6

0x2C

0x5C

DAIHI

DAILI

19 IDP_FIF0

Table 2-1. DMA Interrupt Vector Locations (Cont’d)

Associated Register(s) Bits Vector
Address

Interrupt
Name

DMA
Channel

Data Buffer
ADSP-2126x SHARC Processor Peripherals Manual 2-7

IOP/Core Interaction Options
The DMA controller in the ADSP-2126x processor maintains the status
information of the channels in each of the peripherals registers, SPMCTLxy,
PPCTL, DAI_STAT, and SPIDMAC. More information on these registers can be
found at the following locations.

• Bit definitions for the SPIDMAC register are illustrated in “SPI DMA
Configuration Register (SPIDMAC)” on page A-50.

• Bit definitions for the SPMCTLxy register are illustrated in “SPORT
Multichannel Control Registers (SPMCTLxy)” on page A-28.

• Bit definitions for the PPCTL register are illustrated in “Parallel Port
Control Register (PPCTL)” on page A-55.

• Bit definitions for the DAI_STAT register are illustrated in
Figure A-56 on page A-105.

There is a one cycle latency between a change in DMA channel sta-
tus and the status update in the corresponding register.

If chaining is enabled on a DMA channel, programs should not use
polling to determine channel status as it can provide inaccurate
information. In this case, the DMA appears inactive if it is sampled
while the next transfer control block (TCB) is loading.

DMA Controller Operation
There are two methods you can use to start DMA sequences: chaining and
non-chaining.

Non-chained DMA. To start a new DMA sequence after the current one
is finished, a program must first clear the DMA enable bit, write new
parameters to the index, modify, and count registers, then set the DMA
enable bit to re-enable DMA.
2-8 ADSP-2126x SHARC Processor Peripherals Manual

I/O Processor
Chained DMA. Chained DMA sequences are a set of multiple DMA
operations, each autoinitializing the next in line. To start a new DMA
sequence after the current one is finished, the IOP automatically loads
new index, modify, and count values from an internal memory location
pointed to by that channel’s chain pointer (CP) register. Using chaining,
programs can set up consecutive DMA operations and each operation can
have different attributes.

Chaining is only supported on the SPI and SPORT DMA chan-
nels. The parallel port, and IDP port do not support chaining.

In general, a DMA sequence starts when one of the following occurs:

• Chaining is disabled, and the DMA enable bit transitions from low
to high.

• Chaining is enabled, DMA is enabled, and the chain pointer regis-
ter address field is written with a nonzero value. In this case, TCB
chain loading of the channel parameter registers occurs first.

• Chaining is enabled, the chain pointer register address field is non-
zero, and the current DMA sequence finishes. Again, TCB chain
loading occurs.

A DMA sequence ends when one of the following occurs:

• The count register decrements to zero, and the CP register is zero.

• Chaining is disabled and the channel’s DMA enable bit transitions
from high to low. If the DMA enable bit goes low (=0) and chain-
ing is enabled, the channel enters chain insertion mode and the
DMA sequence continues. For more information, see “Inserting a
TCB in an Active Chain” on page 2-15.

Once a program starts a DMA process, the process is influenced by two
external controls—DMA channel priority and DMA chaining. For more
information, see “Managing DMA Channel Priority” on page 2-17 or
“Chaining DMA Processes” below.
ADSP-2126x SHARC Processor Peripherals Manual 2-9

IOP/Core Interaction Options
Chaining DMA Processes

The location of the DMA parameters for the next sequence comes from
the chain pointer (CP) register. In chained DMA operations, the
ADSP-2126x processor automatically initializes and then begins another
DMA transfer when the current DMA transfer is complete. In addition to
the standard DMA parameter registers, each DMA channel (SP and SPI)
also has a CP register that points to the next set of DMA parameters stored
in the processor’s internal memory. In the SPI this is the CPSPI and in the
SPORT it is CPSPxy. Each new set of parameters is stored in a four-word,
user initialized buffer in internal memory known as a transfer control
block (TCB). In TCB chain loading, the ADSP-2126x processor’s IOP
automatically reads the TCB from internal memory and then loads the
values into the channel parameter registers to set up the next DMA
sequence.

The structure of a TCB is conceptually the same as that of a traditional
linked-list. Each TCB has several data values and a pointer to the next
TCB. Further, the chain pointer of a TCB may point to itself to con-
stantly reiterate the same DMA.

A DMA sequence is defined as the sum of the DMA transfers for a single
channel, from when the parameter registers initialize to when the count
register decrements to zero. Each DMA channel has a chaining enable bit
(CHEN) in the corresponding control register. This bit must be set to one to
enable chaining. When chaining is enabled, DMA transfers are initiated
by writing a memory address to the CP register. This is also an easy way to
start a single DMA sequence, with no subsequent chained DMAs.

The CP register can be loaded at any time during the DMA sequence. This
allows a DMA channel to have chaining disabled (CP register address
field = 0x0000) until some event occurs that loads the CP register with a
nonzero value. Writing all zeros to the address field of the chain pointer
register (CP) also disables chaining.
2-10 ADSP-2126x SHARC Processor Peripherals Manual

I/O Processor
Chained DMA operations may only occur within the same chan-
nel. The processor does not support cross-channel chaining.

The parallel port and IDP port do not support DMA chaining.

The chain pointer register is 20 bits wide. The lower 19 bits are the mem-
ory address field. Like other I/O processor address registers, the chain
pointer register’s value is offset to match the starting address of the proces-
sor’s internal memory before it is used by the I/O processor. On the
ADSP-2126x processor, this offset value is 0x0008 0000.

Bit 19 of the chain pointer register is the Program Controlled Interrupts
(PCI) bit. This bit controls whether an interrupt is latched after each
DMA completes or whether the interrupt is latched after the entire DMA
sequence completes. If set, the PCI bit enables a DMA channel interrupt to
occur after every DMA in the chain. If cleared, an interrupt occurs at the
completion of the entire DMA sequence.

The PCI bit only effects DMA channels that have chaining enabled.
Also, interrupt requests enabled by the PCI bit are maskable with
the IMASK register.

Figure 2-1. TCB Chaining

CPSPx

CSPx

IMSPx

IISPx

Address pointer
to next TCB

Lowest
Address

Highest
Address

Chaining is not available on the IDP or parallel ports.
An “x” denotes the DMA channel used.
ADSP-2126x SHARC Processor Peripherals Manual 2-11

IOP/Core Interaction Options
Because the PCI bit is not part of the memory address in the chain pointer
register, programs must use care when writing and reading addresses to
and from the register. To prevent errors, programs should mask out the
PCI bit (bit 19) when copying the address in a chain pointer to another
address register.

The DMA registers are shown in Figure 2-2.

Transfer Control Block Chain Loading (TCB)

During TCB chain loading, the I/O processor loads the DMA channel
parameter registers with values retrieved from internal memory. The
address in the chain pointer register points to the highest address of the

Figure 2-2. DMA Parameter Registers

PCI BIT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CPx

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EIPP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EMPP

ECPP

PROGRAM – CONTROLLED INTERRUPT BIT
IF THIS BIT IS SET, THE I/O PROCESSOR WILL GENERATE A

DMA INTERRUPT AFTER EVERY DMA IN THE CHAIN.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IIx

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMx

Cx
2-12 ADSP-2126x SHARC Processor Peripherals Manual

I/O Processor
TCB (containing the index parameter). This means that if a program
declares an array to hold the TCB, the CP register should not point to the
first location of the array. Instead the CP register should point to array[3].

Table 2-2 shows the TCB-to-register loading sequence for the serial port
and SPI port DMA channels. The I/O processor reads each word of the
TCB and loads it into the corresponding register. Programs must set up
the TCB in memory in the order shown in Table 2-2, placing the index
parameter at the address pointed to by the CP register of the previous
DMA operation of the chain. The end of the chain (no further TCBs are
loaded) is indicated by a TCB with a CP value of zero.

A TCB chain load request is prioritized like all other DMA operations.
The I/O processor latches a TCB loading request and holds it until the
load request has the highest priority. If multiple chaining requests are
present, the I/O processor services the TCB registers for the highest priority
DMA channel first. A channel that is in the process of chain loading can-
not be interrupted by a higher priority channel. For a list of DMA
channels in priority order, see Table 2-5 on page 2-28.

Table 2-2. TCB Chain Loading Sequence1

1 Chaining is not available using the IDP or parallel ports.

Address2

2 An “x” denotes the DMA channel used. While the TCB is eight locations
in length, SPI and serial ports only use the first four locations.

Serial Ports SPI Port

CPSPx + 0x0008 0000 IISPx IISPI

CPSPx – 1 + 0x0008 0000 IMSPx IMSPI

CPSPx – 2 + 0x0008 0000 CSPx CSPI

CPSPx – 3 + 0x0008 0000 CPSPx CPSPI
ADSP-2126x SHARC Processor Peripherals Manual 2-13

IOP/Core Interaction Options
Setting Up and Starting the Chain

To set up and initiate a chain of DMA operations, use these steps:

1. Set up all TCBs in internal memory.

2. Write to the appropriate DMA control register, setting the DMA
enable bit to one and the chaining enable bit to one.

3. Write the address containing the index register value of the first
TCB to the chain pointer register, which starts the chain.

The I/O processor responds by autoinitializing the first DMA parameter
registers with the values from the first TCB, and then starts the first data
transfer.

Setting Up and Starting Chained DMA over the SPI

Configuring and starting chained DMA transfers over the SPI port is the
same as for the serial port, with one exception. Contrary to SPORT DMA
chaining, (where the first DMA in the chain is configured by the first
TCB), for SPI DMA chaining, the first DMA is not initialized by a TCB.
Instead, the first DMA in the chain must be loaded into the SPI parameter
registers (IISPI, IMSPI, CSPI), and the chain pointer register (CPSPI)
points to a TCB that describes the second DMA in the sequence.

Writing an address to the CPSPI register does not begin a chained
DMA sequence unless IISPI, IMSPI, and CSPI are initialized, SPI
DMA is enabled, the SPI port is enabled, and SPI DMA chaining is
enabled.

The sequence for setting up and starting a chained DMA is outlined in the
following steps and can also be seen in Listing 5-3 on page 5-60.

1. Configure the TCB associated with each DMA in the chain except
for the first DMA in the chain.
2-14 ADSP-2126x SHARC Processor Peripherals Manual

I/O Processor
2. Write the first three parameters for the initial DMA to the IISPI,
IMSPI, and CSPI registers directly.

3. Select a baud rate using the SPIBAUD register.

4. Select which flag to use as the SPI slave select signal in the SPIFLG
register.

5. Configure and enable the SPI port with the SPICTL register.

6. Configure the DMA settings for the entire sequence, enabling
DMA and DMA chaining in the SPIDMAC register.

7. Begin the DMA by writing the address of a TCB (describing the
second DMA in the chain) to the CPSPI register.

The address field of the chain pointer registers is only 19 bits wide. If a
program writes a symbolic address to bit 19 of the chain pointer, there
may be a conflict with the PCI bit. Programs should clear the upper bits of
the address, then AND the PCI bit separately, if needed. For example:

R0 = next_TCB+3; /* addr of next chain */

R1 = 0x7FFFF; /* mask 19 bits */

R0 = R0 or R1;

CPx = R0;

Inserting a TCB in an Active Chain

This is supported by serial ports only. The SPI interface does not
support inserting a TCB in an active chain.

It is possible to insert a single DMA operation or another DMA chain
within an active DMA chain. Programs may need to perform insertion
when a high priority DMA requires service and cannot wait for the cur-
rent chain to finish.
ADSP-2126x SHARC Processor Peripherals Manual 2-15

IOP/Core Interaction Options
When DMA on a channel is disabled and chaining on the channel is
enabled, the DMA channel is in chain insertion mode. This mode lets a
program insert a new DMA or DMA chain within the current chain with-
out effecting the current DMA transfer. Use the following sequence to
insert a DMA subchain for the serial port 0A channel while another chain
is active:

1. Enter chain insertion mode by setting SCHEN_A = 1 and SDEN_A = 0
in the channel’s DMA control register, SPCTL0. The DMA inter-
rupt indicates when the current DMA sequence has completed.

2. Copy the address currently held in the chain pointer register to the
chain pointer position of the last TCB in the chain that is being
inserted.

3. Write the start address of the first TCB of the new chain into the
chain pointer register.

4. Resume chained DMA mode by setting SCHEN_A = 1 and
SDEN_A = 1.

Chain insertion mode operates the same as non-chained DMA mode.
When the current DMA transfer ends, an interrupt request occurs and no
TCBs are loaded. This interrupt request is independent of the PCI bit
state.

Chain insertion should not be set up as an initial mode of opera-
tion. This mode should only be used to insert one or more TCBs
into an active DMA chaining sequence.

Setting Up DMA Channel Allocation and Priorities
The ADSP-2126x processor has 22 DMA channels including 12 channels
accessible via the serial ports, one SPI channel, one parallel port channel,
and eight input data port channels. Each channel has a set of parameter
registers which are used to set up DMA transfers. Table 2-3 shows the
2-16 ADSP-2126x SHARC Processor Peripherals Manual

I/O Processor
DMA channel allocation and parameter register assignments for the
ADSP-2126x processor. DMA channel 0 has the highest priority and
DMA channel 21 has the lowest priority.

Managing DMA Channel Priority

The default channel priority is: DMA channel 0 as highest priority and
DMA channel 22 as lowest priority. Table 2-5 on page 2-28 lists the
DMA channels in priority order. When a channel becomes the highest
priority requester, the I/O processor services the channel’s request. In the
next clock cycle, the I/O processor starts the DMA transfer.

The I/O data (IOD) bus is 32 bits wide and is the only path that the IOP
uses to transfer data between internal memory and the peripherals. When
there are two or more peripherals with active DMAs in progress, they may
all require data to be moved to or from memory in the same cycle. For
example, the parallel port may fill its RXPP buffer just as a SPORT shifts a
word into its RXn buffer. To determine which word is transferred first, the
DMA channels for each of the processor’s I/O ports negotiate channel pri-
ority with the I/O processor using an internal DMA request/grant
handshake.

Each I/O port has one or more DMA channels, and each channel has a
single request and a single grant. When a particular channel needs to read
or write data to internal memory, the channel asserts an internal DMA
request. The I/O processor prioritizes the request with all other valid
DMA requests. When a channel becomes the highest priority requester,
the I/O processor asserts the channel’s internal DMA grant. In the next
clock cycle, the DMA transfer starts. Figure 2-4 on page 2-27 shows the
paths for internal DMA requests within the I/O processor.

If a DMA channel is disabled (PPDEN, SPIDEN, SDEN, or IDP_DMA_EN
bits =0), the I/O processor does not issue internal DMA grants to
that channel (whether or not the channel has data to transfer).
ADSP-2126x SHARC Processor Peripherals Manual 2-17

IOP/Core Interaction Options
The default DMA channel priority is fixed prioritization by DMA channel
group (serial ports, parallel port, IDP, or SPI port). Table 2-5 on
page 2-28 lists the DMA channels in descending order of priority.

For information on programming serial port priority modes, see Table 4-7
on page 4-65.

The I/O processor determines which DMA channel has the highest prior-
ity internal DMA request during every cycle between each data transfer.

Processor core accesses of I/O processor registers and TCB chain loading
(both of which occur after the IOD transfer) are subject to the same prior-
itization scheme as the DMA channels. Applying this scheme uniformly
prevents I/O bus contention, because these accesses are also performed
over the internal I/O bus. For more information, see “Chaining DMA
Processes” on page 2-10.

DMA Bus Arbitration

DMA channel arbitration is the method that the IOP uses to determine
how groups rotate priority with other channels. This feature is enabled by
setting the DCPR bit in the IOP’s SYSCTL register.

DMA-capable peripherals execute DMA data transfers to and from inter-
nal memory over the IOD bus. When more than one of these peripherals
requests access to the IOD bus in a clock cycle, the bus arbiter, which is
attached to the IOD bus, determines which master should have access to
the bus and grants the bus to that master.

IOP channel arbitration can be set to use either a fixed (SYSCTL[7] = 0) or
rotating (SYSCTL[7] = 1) algorithm.

In the fixed priority scheme, the lower indexed peripheral has the highest
priority.
2-18 ADSP-2126x SHARC Processor Peripherals Manual

I/O Processor
In the rotating priority scheme, the default priorities at reset are the same
as that of the fixed priority. However, the peripheral priority is deter-
mined by group, not individually. Peripheral groups are shown in
Table 2-3.

Initially, Group A has the highest priority and Group F the lowest. As one
group completes its DMA operation, it is assigned the lowest priority
(moves to the back of the line) and the next group is given the highest
priority.

When none of the peripherals request bus access, the highest priority
peripheral, for example, peripheral#0, is granted the bus. However, this
does not change the currently assigned priorities to various peripherals.

Within a peripheral group the priority is highest for the higher indexed
peripheral (see Table 2-3). For example in SP01 (group A), SP1 has the
highest priority.

Table 2-3. DMA Channel Allocation and Parameter Register
Assignments

DMA
Channel
Number

Data Buffer Group IOP Address of Data
Buffers

Description

0 (highest
priority)

RXSP1A, TXSP1A A 0xC65, 0xC64 Serial Port 1A Data

1 RXSP1B, TXSP1B A 0xC67, 0xC66 Serial Port 1B Data

2 RXSP0A, TXSP0A A 0xC61, 0xC60 Serial Port 0A Data

3 RXSP0B, TXSP0B A 0xC63, 0xC62 Serial Port 0
B Data

4 RXSP3A, TXSP3A B 0x465, 0x464 Serial Port 3A Data

5 RXSP3B, TXSP3B B 0x467, 0x466 Serial Port 3B Data

6 RXSP2A, TXSP2A B 0x461, 0x460 Serial Port 2A Data

7 RXSP2B, TXSP2B B 0x463, 0x462 Serial Port 2B Data
ADSP-2126x SHARC Processor Peripherals Manual 2-19

Setting Up DMA Parameter Registers
Setting Up DMA Parameter Registers
Once you have determined and configured the DMA options, you can
configure the DMA parameter registers. The parameter registers control
the source and destination of the data, the size of the data buffer, and the
step size used. These topics are described in detail in the following
sections.

8 RXSP5A, TXSP5A C 0x865 or 0x864 Serial Port 5A Data

9 RXSP5B, TXSP5B C 0x867 or 0x866 Serial Port 5B Data

10 RXSP4A, TXSP4A C 0x861 or 0x860 Serial Port 4A Data

11 RXSP4B, TXSP4B C 0x863 or 0x862 Serial Port 4B Data

12 IDP_FIF0 D 0x24D0 DAI IDP Channel 0

13 IDP_FIF0 D 0x24D0 DAI IDP Channel 1

14 IDP_FIF0 D 0x24D0 DAI IDP Channel 2

15 IDP_FIF0 D 0x24D0 DAI IDP Channel 3

16 IDP_FIF0 D 0x24D0 DAI IPD Channel 4

17 IDP_FIF0 D 0x24D0 DAI IDP Channel 5

18 IDP_FIF0 D 0x24D0 DAI IDP Channel 6

19 IDP_FIF0 D 0x24D0 DAI IDP Channel 7

20 RXSPI, TXSPI E 0x1004, 0x1003 SPI Data

21 (lowest
priority)

RXPP, TXPP F 0x1809, 0x1808 Parallel Port Data

Table 2-3. DMA Channel Allocation and Parameter Register
Assignments (Cont’d)

DMA
Channel
Number

Data Buffer Group IOP Address of Data
Buffers

Description
2-20 ADSP-2126x SHARC Processor Peripherals Manual

I/O Processor
DMA Transfer Direction
DMA transfers between internal memory and external memory devices use
the processor’s parallel port. For these types of transfers, a program pro-
vides the DMA controller with the internal memory buffer size, address,
and address modifier, as well as the external memory buffer size, address
and address modifier and the direction of transfer. After setup, the DMA
transfers begin when the program enables the channel and continues until
the I/O processor transfers the entire buffer to processor memory.
Table 2-4 on page 2-25 shows the parameter registers for each DMA
channel.

Similarly, DMA transfers between internal memory and serial, IDP or SPI
ports have DMA parameters. When the I/O processor performs DMA
between internal memory and one of these ports, the program sets up the
parameters, and the I/O uses the port instead of the external bus.

The direction (receive or transmit) of the I/O port determines the direc-
tion of data transfer. When the port receives data, the I/O processor
automatically transfers the data to internal memory. When the port needs
to transmit a word, the I/O processor automatically fetches the data from
internal memory. Figure 2-4 on page 2-27 shows more detail on DMA
channel data paths. Figure 2-3 shows the processor’s I/O processor,
related ports, and buses.
ADSP-2126x SHARC Processor Peripherals Manual 2-21

Setting Up DMA Parameter Registers
Figure 2-3. I/O Processor Block Diagram

EXTERNAL
ADDRESS

GENERATOR

RXSPI, TXSPI
(1 DEEP EACH)

SPI DMA
FIFO

(4 DEEP)

IOD BUS

IISPI, IMSPI,
CSPI, CPSPI

IISP5A-0A,
IISP5B-0B,
IMSP5A-0A,
IMSP5B-0B
CSP5A-0A,
CSP5B-0B,

CPSP5A-0A,
CPSP5B-0B

IOA BUS

EIPP, EMPP,
ECPP, IIPP,
IMPP, ICPP

INTERNAL
DMA

PRIORITIZER

DMD, PMD
BUSES (TO CORE)

I/O
PROCESSOR

MUX MUX

RXPP, TXPP
(2 DEEP EACH)

TXSP5A-0A,
TXSP5B-0B,
RXSP5A-0A,
RXSP5B-0B

(2 DEEP)

SPORTS

SPI PORT

IDP

IDP FIFO
8 DEEP

PARALLEL
PORT

IDP_DMA_IX
IDP_DMA_MX
IDP_DMA_CX

IDP

SPORT

SPI

PARALLEL
PORT
2-22 ADSP-2126x SHARC Processor Peripherals Manual

I/O Processor
Data Buffer Registers
The data buffer registers in Figure 2-3 on page 2-22 shows the data buffer
registers for each port. These registers include:

• Serial Port Receive Buffer (RXSPx). These receive buffers for the
serial ports have two position FIFOs for receiving data when con-
nected to another serial device.

• Serial Port Transmit Buffer (TXSPx). These transmit buffers for
the serial ports have two position FIFOs for transmitting data
when connected to another serial device.

• SPI Receive Buffer (RXSPI). This receive buffer for the SPI port has
a single position buffer for receiving data when connected to
another serial device.

• SPI Transmit Buffer (TXSPI). This transmit buffer for the SPI port
has a single position buffer for transmitting data when connected
to another serial device.

• Parallel Port Transmit Buffer (TXPP). This transmit buffer for the
parallel port has two-position FIFOs for transmitting data when
connected to another device.

• Parallel Port Receive Buffer (RXPP). This receive buffer for the par-
allel port has two position FIFOs for receiving data when
connected to another parallel device.

• Input Data Port Buffers (IDP_FIFO). This receive buffer for the
input data port has eight position buffers for receiving data when
connected to another device.
ADSP-2126x SHARC Processor Peripherals Manual 2-23

Setting Up DMA Parameter Registers
Port, Buffer, and DMA Control Registers
The Port, Buffer, and DMA Control Registers in Figure 2-3 shows the
control registers for the ports and DMA channels. These registers include:

• Parallel Port Control register (PPCTL). This register enables the
parallel port system, DMA, and external data width. It also config-
ures wait states, bus hold cycles and identifies the status of the
parallel port FIFO, internal, and external interfaces.

• Input Data Port Control register (IDP_CTL). This is the control
register for input data ports.

• Serial Port Control registers (SPCTLx, SPMCTLxy). These control
registers select the receive or transmit format, monitor FIFO status,
enable chaining, and start DMA for each serial port.

• SPI Port Control register (SPICTL). This control register config-
ures and enables the SPI interface, selects the device as master or
slave, and determines the data transfer and word size. The SPIDMAC
register also controls SPI DMA and FIFO status.

Table 2-4 shows the parameter registers for each DMA channel. These
registers function similarly to data address generator registers and include:

• Internal Index registers (IISPx, IISPI, IIPP, IDP_DMA_Ix). Index
registers provide an internal memory address, acting as a pointer to
the next internal memory DMA read or write location.

• Internal Modify registers (IMSPx, IMPP, IMSPI, IDP_DMA_Mx). Mod-
ify registers provide the signed increment by which the DMA
controller post-modifies the corresponding internal memory index
register after the DMA read or write.

• Count registers (CSPx, ICPP, CSPI, IDP_DMA_Cx). Count registers
indicate the number of words remaining to be transferred to or
from internal memory on the corresponding DMA channel.
2-24 ADSP-2126x SHARC Processor Peripherals Manual

I/O Processor
• Chain Pointer registers (CPSPx, CPSPI). Chain pointer registers
hold the starting address of the TCB (parameter register values) for
the next DMA operation on the corresponding channel. These reg-
isters also control whether the I/O processor generates an interrupt
when the current DMA process ends.

• External Index registers (EIPP). Index registers provide an external
memory address, acting as a pointer to the next external memory
DMA read or write location.

• External Modify registers (EMPP). Modify registers provide the
increment by which the DMA controller post-modifies the corre-
sponding external memory index register after the DMA read or
write.

• External Count registers (ECPP). External count registers indicate
the number of words remaining to be transferred to or from exter-
nal memory on the corresponding DMA channel.

Table 2-4. ADSP-2126x Processor DMA Parameter Registers

Register Function Width Description

IIy Internal Index Register 19 bits Address of buffer in internal
memory

IMxy Internal Modify Register 16 bits1

1 IDP_DMA_Mx are 6 bits wide only.

Stride for internal buffer

Cxy Internal Count Register 16 bits Length of internal buffer

CPxy Chain Pointer Register 20 bits Chain pointer for DMA
chaining

EIPP External Index Register 19 bits Address of buffer in external
memory

EMPP External Modify Register 2 bits Stride for external buffer

ECPP External Count Register 16 bits Length of external buffer
ADSP-2126x SHARC Processor Peripherals Manual 2-25

Setting Up DMA Parameter Registers
Addressing
Figure 2-4 shows a block diagram of the I/O processor’s address generator
(DMA controller). Table 2-4 lists the parameter registers for each DMA
channel. The parameter registers are uninitialized following a processor
reset.

The I/O processor generates addresses for DMA channels much the same
way that the Data Address Generators (DAGs) generate addresses for data
memory accesses. Each channel has a set of parameter registers including
an index register and modify register that the I/O processor uses to address
a data buffer in internal memory. The index register must be initialized
with a starting address for the data buffer. As part of the DMA operation,
the I/O processor outputs the address in the index register onto the pro-
cessor’s I/O address bus and applies the address to internal memory
during each DMA cycle—a clock cycle in which a DMA transfer is taking
place.

All addresses in the index registers are offset by a value matching the pro-
cessor’s first internal normal word addressed RAM location, before the
I/O processor uses the addresses. For the ADSP-2126x processor, this off-
set value is 0x0008 0000.

DMA addresses must always be normal word (32-bit) memory, and inter-
nal memory data transfer sizes are 32 bits. External data transfer sizes may
be 16 or 8 bits. The I/O processor can transfer short word data (16-bit)
using the packing capability of the serial port and SPI port DMA
channels.

After transferring each data word to or from internal memory, the I/O
processor adds the modify value to the index register to generate the
address for the next DMA transfer and writes the modified index value to
2-26 ADSP-2126x SHARC Processor Peripherals Manual

I/O Processor
Figure 2-4. DMA Address Generator

LOCAL BUS

CX
COUNT

CPX
CHAIN POINTER

MUX

– 1

WORKING REGISTER

+

LOCAL BUS

IMX
MODIFIER

INTERNAL
MEMORY
ADDRESS

IIX
INDEX (ADDRESS)

+/-
POST-MODIFY

DMA ADDRESS GENERATOR (INTERNAL ADDRESSES)

DMA WORD COUNTER

LOCAL BUS

EMPP
EXT. MODIFIER

ECPP
EXT. COUNT

– 1

EXTERNAL
MEMORY
ADDRESS

POST-MODIFY

EIPP
EXT. INDEX (ADDRESS)

+
+

DMA ADDRESS GENERATOR (EXTERNAL ADDRESSES)
ADSP-2126x SHARC Processor Peripherals Manual 2-27

Setting Up DMA Parameter Registers
the index register. The modify value in the modify register is a signed inte-
ger, which allows both increment and decrement modifies. The modify
value can have any positive or negative integer value.

If the I/O processor modifies the index register past the maximum
18-bit value to indicate an address out of internal memory, the
index wraps around to zero. With the offset for the ADSP-2126x
processor, the wraparound address is 0x0008 0000.

If a program loads the count register with zero, the I/O processor
does not disable DMA transfers on that channel. The I/O proces-
sor interprets the zero as a request for 216 transfers. This count
occurs because the I/O processor starts the first transfer before test-
ing the count value. The only way to disable a DMA channel is to
clear its DMA enable bit.

If a DMA channel is disabled, the I/O processor does not service
requests for that channel, whether or not the channel has data to
transfer.

The processor’s 22 DMA channels are numbered as shown in Table 2-5.
This table also shows the control, parameter, and data buffer registers that
correspond to each channel.

Note: In SP01, SP1 has a higher priority. Similarly, for SP23 and SP45,
the odd numbered SPs have a higher priority (SP3, SP5).

Table 2-5. DMA Channel Registers: Controls, Parameters,
and Buffers

DMA
Channel
Number

Control
Registers

Parameter Registers Buffer Registers Description

0 SPCTL1 IISP1A, IMSP1A,
CSP1A, CPSP1A

RXSP1A, TXSP1A Serial Port 1A Data

1 SPCTL1 IISP1B, IMSP1B,
CSP1B, CPSP1B

RXSP1B, TXSP1B Serial Port 1B Data
2-28 ADSP-2126x SHARC Processor Peripherals Manual

I/O Processor
2 SPCTL0 IISP0A, IMSP0A,
CSP0A, CPSP0A

RXSP0A, TXSP0A Serial Port 0A Data

3 SPCTL0 IISP0B, IMSP0B,
CSP0B, CPSP0B

RXSP0B, TXSP0B Serial Port 0B Data

4 SPCTL3 IISP3A, IMSP3A,
CSP3A, CPSP3A

RXSP3A, TXSP3A Serial Port 3A Data

5 SPCTL3 IISP3B, IMSP3B,
CSP3B, CPSP3B

RXSP3B, TXSP3B Serial Port 3B Data

6 SPCTL2 IISP2A, IMSP2A,
CSP2A, CPSP2A

RXSP2A, TXSP2A Serial Port 2A Data

7 SPCTL2 IISP2B, IMSP2B,
CSP2B, CPSP2B

RXSP2B, TXSP2B Serial Port 2B Data

8 SPCTL5 IISP5A, IMSP5A,
CSP5A, CPSP5A

RXSP5A, TXSP5A Serial Port 5A Data

9 SPCTL5 IISP5B, IMSP5B,
CSP5B, CPSP5B

RXSP5B, TXSP5B Serial Port 5B Data

10 SPCTL4 IISP4A, IMSP4A,
CSP4A, CPSP4A

RXSP4A, TXSP4A Serial Port 4A Data

11 SPCTL4 IISP4B, IMSP4B,
CSP4B, CPSP4B

RXSP4B, TXSP4B Serial Port 4B Data

12 IDP_CTL IDP_DMA_I0,
IDP_DMA_M0,
IDP_DMA_C0

IDP_FIFO DAI IDP Channel 0

13 IDP_CTL IDP_DMA_I1,
IDP_DMA_M1,
IDP_DMA_C1

IDP_FIFO DAI IDP Channel 1

14 IDP_CTL IDP_DMA_I2,
IDP_DMA_M2,
IDP_DMA_C2

IDP_FIFO DAI IDP Channel 2

Table 2-5. DMA Channel Registers: Controls, Parameters,
and Buffers (Cont’d)

DMA
Channel
Number

Control
Registers

Parameter Registers Buffer Registers Description
ADSP-2126x SHARC Processor Peripherals Manual 2-29

Setting Up DMA
All of the I/O processor’s registers are memory-mapped, ranging from
address 0x0000 0000 to 0x0003 FFFF. For more information on these
registers, see “I/O Processor Registers” on page A-2.

Setting Up DMA
Because the I/O processor registers are memory-mapped, the processor has
access to program DMA operations. A processor sets up a DMA channel
by writing the transfer’s parameters to the DMA parameter registers. After

15 IDP_CTL IDP_DMA_I3,
IDP_DMA_M3,
IDP_DMA_C3

IDP_FIFO DAI IDP Channel 3

16 IDP_CTL IDP_DMA_I4,
IDP_DMA_M4,
IDP_DMA_C4

IDP_FIFO DAI IPD Channel 4

17 IDP_CTL IDP_DMA_I5,
IDP_DMA_M5,
IDP_DMA_C5

IDP_FIFO DAI IDP Channel 5

18 IDP_CTL IDP_DMA_I6,
IDP_DMA_M6,
IDP_DMA_C6

IDP_FIFO DAI IDP Channel 6

19 IDP_CTL IDP_DMA_I7,
IDP_DMA_M7,
IDP_DMA_C7

IDP_FIFO DAI IDP Channel 7

20 SPICTL IISPI, IMSPI, CSPI,
CPSPI

RXSPI, TXSPI SPI Data

21 PPCTL EIPP, EMPP, ECPP, IIPP,
IMPP, ICPP

RXPP, TXPP Parallel Port Data

Table 2-5. DMA Channel Registers: Controls, Parameters,
and Buffers (Cont’d)

DMA
Channel
Number

Control
Registers

Parameter Registers Buffer Registers Description
2-30 ADSP-2126x SHARC Processor Peripherals Manual

I/O Processor
the index, modify, and count registers (among others) are loaded with a
starting source or destination address, an address modifier, and a word
count, the processor is ready to start the DMA.

The SPI port, parallel port, serial ports and input data ports each have a
DMA enable bit (SPIDEN, PPDEN, SDEN or IDP_DMA_EN) in their channel
control register. Setting this bit for a DMA channel with configured DMA
parameters starts the DMA on that channel. If the parameters configure
the channel to receive, the I/O processor transfers data words received at
the buffer to the destination in internal memory. If the parameters config-
ure the channel to transmit, the I/O processor transfers a word
automatically from the source memory to the channel’s buffer register.
These transfers continue until the I/O processor transfers the selected
number of words as determined by the count parameter. DMA through
the IDP ports occurs in internal memory only.
ADSP-2126x SHARC Processor Peripherals Manual 2-31

Setting Up DMA
2-32 ADSP-2126x SHARC Processor Peripherals Manual

3 PARALLEL PORT

The ADSP-2126x processor has a parallel port that allows bidirectional

transfers between it and external parallel devices. Using the parallel port
bus and control lines, the processor can interface to 8-bit or 16-bit wide
external memory devices. The parallel port provides a DMA interface
between internal and external memory and has the ability to support core
driven data transfer modes. Regardless of whether 8-bit or 16-bit external
memory devices are used, the internal data word size is always 32 bits
(normal word addressing), and the parallel port employs packing to place
the data appropriately.

The processor provides two data packing modes, 8/32 and 16/32. For
reads, data packing involves shifting multiple successive 8- or 16-bit ele-
ments from the parallel port to the ADSP-2126x processor’s Receive
register to form each 32-bit word, transferring multiple successive 8-bit or
16-bit elements. For writes, packing involves shifting each 32-bit word
out into 8- or 16-bit elements that are placed into the memory device.

This chapter describes the parallel port operation, registers, interrupt
function, and transfer protocol. Figure 3-1 shows a block diagram of the
parallel port.
ADSP-2126x SHARC Processor Peripherals Manual 3-1

Figure 3-1. Parallel Port Block Diagram

PARALLEL PORT
CONTROLLER

AD[15-8]

ALE

INTERNAL
MEMORY

EXTERNAL ADDRESS

RXPP

RD

WR

AD[7-0]

PPSI MUX

PPSOTXPP

DMA
PARALLEL

PORT

IMPP

ICPP

EIPP

EMPP

ECPP

PPCTL

IIPP

CORE
ACCESS

TRANSMIT REGISTER

RECEIVE REGISTER
3-2 ADSP-2126x SHARC Processor Peripherals Manual

Parallel Port
Parallel Port Pins
This section describes the pins that the parallel port uses for its operation.

For a complete list of pin descriptions and package pinouts, see the prod-
uct specific data sheet for your device.

Address/Data (AD15–0) pins. The ADSP-2126x processor provides time
multiplexed address/data pins that are used for providing both address and
data information. The state of the address/data pins is determined by the
8- or 16-bit operating mode and the state of the ALE, RD, and WR pins.

Read strobe (RD) pin. This output pin is asserted low to indicate a read
operation. Data is latched into the processor using the rising edge of this
signal.

Write strobe (WR) pin. This output pin is asserted low to indicate a write
operation. The rising edge of this signal can be used by memory devices to
latch the data from the processor.

Address Latch Enable (ALE) pin. The address latch enable pin is used to
strobe an external latch connected to the address/data pins (AD15–0). The
external latch holds the most significant bits (MSBs) of the external mem-
ory address. An ALE cycle is inserted for the first access after the parallel
port is enabled and anytime the upper 16 bits of the address change from a
previous cycle.

In 8-bit mode, a maximum of 24 bits of external address are facilitated
through latching the upper 16 bits, EA23–8, from AD15–0 into the external
latch during the ALE phase of the cycle. The remaining 8 bits of address
EA7–0 are provided through AD15–8 during the second half of the cycle
when the RD or WR signal is asserted.
ADSP-2126x SHARC Processor Peripherals Manual 3-3

Parallel Port Pins
In 16-bit mode, a maximum of 16 bits of external address are facilitated
through latching the upper 16 bits of AD15–0 from AD15–0 into the exter-
nal latch during the ALE phase of the cycle. The AD15–0 represent the
external 16 bits of data during the second half of the cycle when the RD or
WR signal is asserted.

The ALE pin is active high by default, but can be set active low via the
PPALEPL bit (bit 13) in the Parallel Port Control (PPCTL) register.

Since ALE polarity is active high by default, systems using parallel
port boot mode must use address latching hardware that can pro-
cess this active high signal.

Alternate Pin Functions
The following sections describe how to make the parallel port pins func-
tion as flag pins and how to make the parallel data acquisition port pins
function as address pins. For additional information on pin multiplexing,
see “Pin Multiplexing” on page 9-5.

Parallel Ports as FLAG Pins

Setting (= 1) bit 20 in the SYSCTL register, (PPFLGS) causes the 16 address
pins to function as FLAG0-FLAG15. To use the parallel port for data access,
this bit should be cleared (= 0). For more information, see “System
Design” on page 9-1.

The ADSP-2126x processor supports up to 16 general purpose FLAG pins.
These FLAG signals are multiplexed with other signals, and may be used in
several different ways. If the parallel port is disabled, then the 16 address
and data pins become FLAG0–FLAG15. If the parallel port is in use, then
these same 16 FLAG signals can be routed through the SRU, to 16 DAI
pins. Finally, FLAG0–FLAG3 are available on four separate pins. These pins
are shared with IRQ0–2 and TIMEXP.
3-4 ADSP-2126x SHARC Processor Peripherals Manual

Parallel Port
Configuring the parallel port pins to function as FLAG0–15 also
causes these four dedicated pins to change to their alternate role,
IRQ0–2 and TIMEXP.

Parallel Data Acquisition Port as Address Pins

PDAP use of AD[15:0] pins. When bit 26 of the IDP_PP_CTL register is
set, the Parallel Data Acquisition Port (PDAP) reads from the parallel
port’s AD0–15 pins. When this bit is cleared, the PDAP reads data using
DAI pins DAIP20–5. To use the parallel port, this bit must be cleared (= 0).
For more information, see “Parallel Data Acquisition Port (PDAP)” on
page 6-6.

Parallel Port Operation
This section describes how the parallel port transfers data. The SYSCTL and
PPCTL registers control the parallel port operating mode. The bits in the
SYSCTL register are listed in the ADSP-2126x SHARC Processor Core Man-
ual. Table 3-3 on page 3-17 lists all the bits in the PPCTL register.

Basic Parallel Port External Transaction
A parallel port external transaction consists of a combination of an ALE
cycle and a data cycle, which is either a read or write cycle. The following
section describes parallel port operation as it relates to processor timing.
Refer to the data sheet for your processor for detailed timing
specifications.

An ALE cycle is an address latch cycle. In this cycle the RD and WR signals
are inactive and ALE is strobed. The upper 16 bits of the address are driven
onto the AD15–0 lines, and shortly thereafter the ALE pin is strobed, with
AD15–0 remaining valid slightly after de-assertion to ensure a sufficient
hold time for the external latch. The ALE pin always remains high for
2 x CCLK, irrespective of the data cycle duration values that are set in the
ADSP-2126x SHARC Processor Peripherals Manual 3-5

Parallel Port Operation
PPCTL register. The parallel port runs at 1/3 the CCLK rate, and so the ALE
cycle is 3 x CCLK. An ALE cycle is inserted whenever the upper 16 bits of
address differs from a previous access, as well as after the parallel port is
enabled.

In a read cycle, the WR and ALE signals are inactive and RD is strobed. If the
upper 16 bits of the external address have changed, this cycle is always pre-
ceded by an ALE cycle. In 8-bit mode, the lower 8 bits of the address, EA7–
0, are driven on the AD15–8 pins, and data is sampled from the AD7–0 pins
on the rising edge of RD. In 16-bit mode, address bits are not driven in the
read cycle, the external address is provided entirely by the external latch,
and data is sampled from the AD15–0 pins at the rising edge of RD. Read
cycles can be lengthened by configuring the parallel port data cycle dura-
tion bits in the PPCTL register.

In a write cycle, RD and ALE are inactive and WR is strobed. If the upper 16
bits of the external address have changed, this cycle is always preceded by
an ALE cycle. In 8-bit mode, the lower 8 bits of the address are driven on
the AD15–8 pins and data is driven on the AD7–0 pins. In 16-bit mode,
address bits are not driven in the write cycle, the external address is pro-
vided entirely by the external latch, 16-bit data is driven onto the AD15-0
pins, and data is written to the external device on the rising edge of the WR
signal. Address and data are driven before the falling edge of WR and deas-
serted after the rising edge to ensure enough setup and hold time with
respect to the WR signal. Write cycles can be lengthened by configuring the
parallel port data cycle duration bits in the PPCTL register.

Reading From an External Device or Memory
The parallel port has a two stage data FIFO for receiving data (RXPP). In
the first stage, a 32-bit register (PPSI) provides an interface to the external
data pins and packs the 8- or 16-bit data into 32 bits. Once the 32-bit
data is received in PPSI, the data is transferred into the second 32-bit reg-
3-6 ADSP-2126x SHARC Processor Peripherals Manual

Parallel Port
ister (RXPP). Once the receive FIFO is full, the chip cannot initiate any
more external data transfers. The RXPP register acts as the interface to the
core or I/O processor (for DMA).

The PPTRAN bit must be zero in order to be read.

The order of 8 to 32-bit data packing is shown in Table 3-1. The first byte
received is [7:0], second [15:8] and so on. The 16- to 32-bit packing
scheme is shown in the third column of the table.

Table 3-1 does not show ALE cycles; it shows only the order of the
data reads and writes.

Writing to an External Device or Memory
The parallel port has a two stage data FIFO for transmitting data (TXPP).
The first stage (TXPP) is a 32-bit register that receives data from the inter-
nal memory via the DMA controller or a core write. The data in TXPP is
moved to the second 32-bit register, PPSO. The PPSO register provides an
interface to the external pins. Once a full word is transferred out of PPSO,
TXPP data is moved to PPSO, if TXPP is not empty.

The PPTRAN bit of the PPCTL register must be set to one in order to
enable writes to it.

Table 3-1. Packing Sequence for 32-Bit Data

Transfer AD7–0, 8-bit to 32-bit
(8-bit bus, LSW first)

AD15–0, 16-bit to 32-bit
(16-bit bus, LSW first)

First Word 1; bits 7–0 Word 1; bits 15–0

Second Word 1; bits 15–8 Word 1; bits 31–16

Third Word 1; bits 23–16

Fourth Word 1; bits 31–24
ADSP-2126x SHARC Processor Peripherals Manual 3-7

Parallel Port Operation
The order of 32- to 8-bit data unpacking is shown in Table 3-2. The first
byte transferred from PPSO is [7:0], the second [15:8] and so on. The
32-bit to 16-bit unpacking scheme is shown in column three of the table.

Table 3-2 does not show ALE cycles; it shows only the order of the
data reads and writes.

Parallel port DMAs can only be performed to 32-bit (normal word)
internal memory.

Transfer Protocol
The external interface follows the standard asynchronous SRAM access
protocol. The programmable Data Cycle Duration (PPDUR) and optional
Bus Hold Cycle (BHC) addition at the end of each data cycle are provided
to interface with memories having different access time requirements. The
data cycle duration is programmed via the PPDUR bit in the PPCTL register.
The hold cycle at the end of the data cycle is programmed via the PPBHC
bit in the PPCTL register.

Disabling the parallel port (PPEN bit is cleared) flushes both parallel
port FIFOs, RXPP, and TXPP.

For standard asynchronous SRAM there are two transfer modes—8-bit
and 16-bit mode. In 8-bit mode, the address range is 0x0 to 0xFFFFFF
which is 16M bytes (4M 32-bit words). In 16-bit mode, the address range

Table 3-2. Unpacking Sequence for 32-Bit Data

Transfer AD7–0, 32-bit to 8-bit
(8-bit bus, LSW first)

AD15–0, 32-bit to 16-bit
(16-bit bus, LSW first)

First Word 1; bits 7–0 Word 1; bits 15–0

Second Word 1; bits 15–8 Word 1; bits 31–16

Third Word 1; bits 23–16

Fourth Word 1; bits 31–24
3-8 ADSP-2126x SHARC Processor Peripherals Manual

Parallel Port
is 0x0 to 0xFFFF which is a 128K bytes (32K 32-bit words). Although
programs can initiate reads or writes on one and two byte boundaries, the
parallel port always transfers 4 bytes (two 16-bit or four 8-bit words).

8-Bit Mode

An ALE cycle always precedes the first transfer of data after the parallel port
is enabled. During ALE cycles for 8-bit mode, the upper 16 bits of the
external address (EA23–8) are driven on the 16-bit parallel port bus (pins
AD15–0). In data cycles (reads and writes), the processor drives the lower 8
bits of address EA7–0 on AD15–8. The 8 bits of external data, ED7–0, that
are provided by AD7–0, are sampled by the RD/WR signal respectively. The
processor continues to receive and or send data with the same ALE cycle
until the upper 16 bits of external address differ from the previous access.
For consecutive accesses (EMPP = 1), this occurs once every 256 cycles.
Figure 3-2 shows the connection diagram for the 8-bit mode.

Eight-bit mode enables a larger external address range.

Figure 3-2. External Transfer—8-bit Mode

LATCH

ADSP-2126x

AD[7-0]

ALE

RD

WR

AD[15-8] ADDR[7-0]

DATA[7-0]

D[7-0]

ALE

D[15-8] Q[15-0] ADDR[23-8]

RD

WR

SRAM

DATA[7-0]

180�

68�

CE

CESRAMCE

FLASHCE

8

8
FLASH
ADSP-2126x SHARC Processor Peripherals Manual 3-9

Parallel Port Operation
16-Bit Mode

In 16-bit mode, the external address range is EA15–0 (64K addressable
16-bit words). For a nonzero stride value (EMPP = 0), the transfer of data
occurs in two cycles. In cycle one, the processor performs an ALE cycle,
driving the 16 bits of external address, EA15–0, onto the 16-bit parallel
port bus (pins AD15–0), allowing the external latch to hold this address. In
the second cycle, the processor either drives or receives the 16 bits of
external data (ED15–0) through the 16-bit parallel port bus (pins AD15–0).
This pattern repeats until the transfer completes.

However, a special case occurs when the external address modifier is zero,
(EMPP = 0). In this case, the external address is latched only once, using the
ALE cycle before the first data transfer. After the address has been latched
externally, the processor continues receiving and sending 16-bit data on
AD15–0 until the transfer completes. This mode can be used with external
FIFOs and high speed A/D and D/A converters and offers the maximum
throughput available on the parallel port (132 Mbyte/sec).

Figure 3-3 shows the connection diagram in 16-bit mode.

Figure 3-3. External Transfer—16-bit Mode

LATCH

ADSP-2126x

ALE

RD

WR

AD[15-0] DATA[17-0]

ALE

Q[15-0] ADDR[23-8]

RD

WR

SRAM

DATA[7-0]

180�

68�

CE

CESRAMCE

FLASHCE

16

16

16

FLASH
3-10 ADSP-2126x SHARC Processor Peripherals Manual

Parallel Port
Comparison of 16-Bit and 8-Bit SRAM Modes
When considering whether to employ the 16- or 8-bit mode in a particu-
lar design, a few key points should be considered.

• The 8-bit mode provides a 24-bit address, and therefore can access
16M bytes of external memory. In contrast, the 16-bit mode can
only address 64K x 16 bit words, which is equivalent to 128K
bytes. Therefore, the 8-bit mode provides 128 times the storage
capacity of the 16-bit mode.

• For sequential accesses, the 8-bit mode requires only one ALE cycle
per 256 bytes. With minimum wait states selected, this represents a
worst case overhead of:
(1 ALE cycle)/(256 accesses + 1 ALE) x 100% = 0.39% overhead for
ALE cycles. In contrast, the 16-bit mode requires one ALE cycle per
external sequential access. Regardless of length (N), this represents
a worst case overhead of:
(N ALE cycles)/(N accesses + N ALE cycles) x 100% = 50% overhead
for ALE cycles. However, the 16-bit mode delivers two bytes per
cycle. Therefore, the total data transfer speed for sequential
accesses is nearly identical for both 8-bit and 16-bit modes.

The question that arises at this point is: If the total transfer rates are the
same for both 8-bit and 16-bit modes, and the 8-bit mode can also address
128 times as much external memory, why would a system use the 16-bit
mode?

• Sometimes an external device is only capable of interfacing to a
16-bit bus.

• When the DMA external modifier is set to zero, the address does
not change after the first cycle, therefore an ALE cycle is only
inserted on the first cycle. In this case, the 16-bit port can run
ADSP-2126x SHARC Processor Peripherals Manual 3-11

Parallel Port Interrupt
twice as fast as the 8-bit port, as the overhead for ALE cycles is zero.
This is convenient when interfacing to high speed 16-bit
FIFO-based devices, including A/D and D/A converters.

• In situations where a majority of address accesses are non-sequen-
tial and cross 256 byte boundaries, the overhead of the ALE cycles
in the 8-bit mode approaches 20%1. In this particular situation,
the 16-bit memory can provide a 40% speed advantage over the
8-bit mode.

Parallel Port Interrupt
The parallel port has one interrupt signal, PPI, (bit 3 in the LIRPTL regis-
ter). When DMA is enabled, the maskable interrupt PPI occurs when the
DMA block transfer has completed (when the DMA Internal Word Count
register ICPP decrements to zero). When DMA is disabled, the maskable
interrupt is latched in every cycle the receive buffer is not empty or the
transmit buffer is not full.

The parallel port receive (RXPP) and transmit (TXPP) buffers are memory
mapped IOP registers. The PPI bit is located at vector address 0x50. The
latch (PPI), mask (PPIMSK) and mask pointer (PPIMSKP) bits associated
with the parallel port interrupt are all located in the LIRPTL register.

Parallel Port Throughput
As described in “Parallel Port Operation”, each 32-bit word transferred
through the parallel port takes a specific period of time to complete. This
throughput depends on a number of factors, namely parallel port speed

1 This can be realized by recalling that four bytes must be packed/unpacked into a single 32-bit word.
For example when a 32-bit word is written/read, there is a single ALE cycle inserted per four consecu-
tive addresses. This results in: (N/4 ALE cycles)/(N accesses + N/4 ALE cycles) x 100% = 20%.
3-12 ADSP-2126x SHARC Processor Peripherals Manual

Parallel Port
(1/3 core instruction rate), memory width (8 bits or 16 bits), and memory
access constraints (occurrence of ALE cycles at page boundaries, duration
of data cycles, and/or addition of hold time cycles).

The maximum parallel port speed is 1/3 of the core. The relationship
between core clock and parallel port speed is static. For a 200 MHz core
clock, the parallel port runs at 66 MHz. Since there is no parallel port
clock signal, it is easiest to think of parallel port throughput in terms of
core clock cycles.

As described in “Parallel Port Operation”, parallel port accesses require
both ALE cycles to latch the external address and additional data cycles to
transmit or receive data. Therefore, the throughput on the parallel port is
determined by the duration and number of these cycles per word. The
duration of each type of cycle is shown below and the frequency is deter-
mined by the external memory width.

There is one case where the frequency is also determined by the
external address modifier register (EMPP).

• ALE cycles are fixed at 3 core cycles (CCLK) and are not affected by
the PPDUR or BHC bit settings. In this case, the ALE is high for 2 core
clock cycles. Address for ALE is set up a half core clock cycle before
ALE goes HIGH (active) and remains on bus a half cycle after ALE
goes LOW (inactive). Therefore, the total ALE cycles on the bus are
1/2 + 2 + 1/2 = 3 core clock cycles. Please refer to the data sheet for
more precise timing characteristics.

• Data cycle duration is programmable with a range of 3 to 31 CCLK
cycles. They may range from 4 to 32 cycles if the BHC bit is set (=1).

The following sections show examples of transfers that demonstrate the
expected throughput for a given set of parameters. Each word transfer
sequence is made up of a number of data cycles and potentially one addi-
tional ALE cycle.
ADSP-2126x SHARC Processor Peripherals Manual 3-13

Parallel Port Throughput
8-Bit Access
In 8-bit mode, the first data-access (whether a read or a write) always con-
sists of one ALE cycle followed by four data cycles. As long as the upper
16 bits of address do not change, each subsequent transfer consists of four
data cycles. The ALE cycle is inserted only when the parallel port address
crosses an 8-bit boundry page, in other words, after every 256 bytes that
are transferred.

For example, if PPDUR3, BHC = 0, and the processor is in 8-bit mode. The
first byte on a new page takes six core cycles (three for the ALE cycle and
three for the data cycle), and the next sequential 255 bytes consume three
core cycles each.

Therefore, the average data rate for a 256 byte page is:

(3 CCLK x 255 + 6 CCLK x 1) / 256 = 3.01 core clock cycles per byte.

For a 200 MHz core, this results in:

(200M CCLK /sec) x (1 byte/3.008 CCLK) = 66.4M Bytes/sec

16-Bit Access
In 16-bit mode, every word transfer consists of two ALE cycles and two
data cycles. Therefore, for every 32-bit word transferred, at least six CCLK
cycles are needed to transfer the data plus an additional six CCLK cycles for
the two ALE cycles, for a total of 12 CCLK cycles per 32-bit transfer (four
bytes). For a 200 MHz core clock, this results in a maximum sustained
data rate device of:

200 MHz /12 = 16.67 Million 32-bit words/sec = 66.6M Bytes/sec
3-14 ADSP-2126x SHARC Processor Peripherals Manual

Parallel Port
There is a specific case which allows this maximum rate to be exceeded. If
the external address modifier (EMPP) is set to a stride of zero, then only one
ALE cycle is needed at the very start of the transfer. Subsequent words,
essentially written to the same address, do not require any ALE cycles, and
every parallel port cycle may be a 16-bit data cycle. In this case, the
throughput is nearly doubled (except for the very first ALE cycle) to over
132M bytes per second. This mode is particularly useful for interfacing to
FPGA’s or other memory-mapped peripherals such as DAC/ADC
converters.

Conclusion
For sequential accesses, the average data rates are nearly identical in 8- and
16-bit modes. For help deciding between the two modes, please refer to
“Comparison of 16-Bit and 8-Bit SRAM Modes” on page 3-11.

Parallel Port Registers
The ADSP-2126x processor’s parallel port contains several user-accessible
registers. The Parallel Port Control Register, PPCTL, contains control and
status bits and is described below. Two additional registers, RXPP and
TXPP, are used for buffering receive and transmit data during DMA opera-
tions and can be accessed by the core. Finally, the following registers are
used for every parallel port access (both core-driven and DMA-driven).

• “Parallel Port DMA Start External Index Address Register (EIPP)”
on page A-59

• “Parallel Port DMA External Modifier Address Register (EMPP)”
on page A-59
ADSP-2126x SHARC Processor Peripherals Manual 3-15

Parallel Port Registers
For DMA transfers only, the following registers must also be initialized:

• “Parallel Port DMA Internal Word Count Register (ICPP)” on
page A-59

• “Parallel Port DMA Start Internal Index Address Register (IIPP)”
on page A-59

• “Parallel Port DMA Internal Modifier Address Register (IMPP)”
on page A-59

• “Parallel Port DMA External Word Count Register (ECPP)” on
page A-60

Additional information on Parallel Port registers can be found in “Parallel
Port Registers” on page A-54.

Parallel Port Control Register (PPCTL)
The Parallel Port Control (PPCTL) register is a memory-mapped register
located at address 0x1800 and is used to configure and enable the parallel
port system. This register also contains status information for the TX/RX
FIFO, the state of DMA, and for external bus availability. This read/write
register is also used to program the data cycle duration and to determine
the data transfer format.

Table 3-3 provides the bit descriptions for the PPCTL register.

Parallel Port DMA Registers
The following registers require initialization only when performing
DMA-driven accesses.

• DMA Start Internal Index Address Register (IIPP)

This 19-bit register contains the offset from the DMA starting
address of 32-bit internal memory.
3-16 ADSP-2126x SHARC Processor Peripherals Manual

Parallel Port
Table 3-3. Parallel Port Register (PPCTL) Bit Definitions

Bit Name Definition Default

0 PPEN Parallel Port Enable. Enables (if set, =1) or disables (if
cleared, =0) the parallel port. Clearing this bit clears the
FIFO and the parallel status information. If an RD, WR,
or ALE cycle has already started, it completes normally
before the port is disabled. The parallel port is ready to
transmit or receive two cycles after it is enabled.
An ALE cycle always occurs before the first read or write
cycle after PPEN is enabled.

0

5–1 PPDUR Parallel Port Duration. The duration of Parallel Port
data cycles is determined by these bits. ALE cycles are not
affected by this setting and are fixed at 3 CCLK cycles.
00000 = Reserved
00001 = Reserved
00010 = 3 clock cycles; 66 MHz throughput
00011 = 4 clock cycles; 50 MHz throughput
00100 = 5 clock cycles; 40 MHz throughput
00101 = 6 clock cycles; 33 MHz throughput
...
11111 = 32 clock cycles; 6.25 MHz throughput

Bit 1 = 1
Bit 2 = 1
Bit 3 = 1
Bit 4 = 0
Bit 5 = 1

6 PPBHC Bus Hold Cycle. If set (=1), this causes every data-cycle
to be prolonged for 1 CCLK period. If cleared (=0) no
bus hold cycle occurs, and the duration of data-cycle is
exactly the value specified in PPDUR. Bus hold cycles do
not apply to ALE cycles which are always 3 CCLK cycles.

1

7 PP16 Parallel Port External Data Width. Sets the external data
width to 16 bits (if set, =1) or 8 bits (if cleared, =0).

0

8 PPDEN Parallel Port DMA Enable. Enables (if set, =1) DMA on
the parallel port or disables DMA (if cleared, =0). When
PPDEN is cleared, any DMA requests already in the
pipeline complete, and no new DMA requests are made.
This does not affect FIFO status.

0

9 PPTRAN Parallel Port Transmit/Receive Select. Indicates whether
the processor is reading from external memory (if
cleared, =0) or writing to external memory (if set, =1).

0

ADSP-2126x SHARC Processor Peripherals Manual 3-17

Parallel Port Registers
• DMA Internal Modifier Address register (IMPP)

This 16-bit register contains the internal memory DMA address
modifier.

• DMA Internal Word Count register (ICPP)

11–10 PPS Parallel Port FIFO Status. These read-only bits indicate
the status of the parallel port FIFO:
00 = RXPP/TXPP is empty
01 = RXPP/TXPP is partially full
11 = RXPP/TXPP is full

0

12 PPBHD Parallel Port Buffer Hang Disable. When this bit is
cleared (=0), core stalls occur normally. The core stall
occurs when the core attempts to write to a full transmit
buffer or read from the empty receive buffer.
This bit prevents a core hang, when set (=1). Old data
present in the receive buffer is reread if the core tries to
read it. If a write to the transmit buffer is performed, the
core overwrites the current data in the buffer.

0

13 PPALEPL Parallel Port ALE Polarity Level. Asserts ALE active low
(if set, =1) or active high (if cleared, =0).

0

15–14 Reserved

16 PPDS DMA Status. This read-only bit indicates that the inter-
nal DMA interface is active (if set, =1) or not active (if
cleared, =0).

0

17 PPBS Parallel Port Bus Status. Indicates that the external bus
interface is busy (if set, =1) or available (if cleared, =0).
The bus will be “busy” for the duration of the 32-bit
transfer, including the ALE cycles. Note: This bit goes
high 2 cycles after data is ready to transmit (after a data is
written to PPTX, after PPRX is read with PPEN=1, after
writing PPCTL to have PPEN=1 and PPDEN=1).

0

31–18 Reserved

Table 3-3. Parallel Port Register (PPCTL) Bit Definitions (Cont’d)

Bit Name Definition Default
3-18 ADSP-2126x SHARC Processor Peripherals Manual

Parallel Port
This 16-bit register contains the number of words in internal mem-
ory to be transferred via DMA.

• Parallel Port DMA External Word Count Register (ECPP)

This 24-bit register contains the number of words in external
memory to be transferred via DMA.

Parallel Port External Setup Registers
The following registers must be initialized for both core-driven and
DMA-driven transfers.

• Parallel Port DMA External Index Address Register (EIPP)

This 24-bit register contains the external memory byte address used
for core-driven and DMA driven transfers.

• Parallel Port External Address Modifier Register (EMPP)

This 2-bit register contains the external memory DMA address
modifier. It supports only +1, 0, –1. After each data cycle, the EIPP
register is modified by this value.

Using the Parallel Port
There are a number of considerations to make when interfacing to parallel
external devices. This section describes the different the ways that the par-
allel port can be used to access external devices. Considerations for
choosing between an 8-bit and a 16-bit wide interface are discussed in
“Comparison of 16-Bit and 8-Bit SRAM Modes” on page 3-11.

External parallel devices can be accessed in two ways, either using
DMA-driven transfers or core-driven transfers. DMA transfers are per-
formed in the background by the I/O Processor and are generally used to
move blocks of data. To perform DMA transfers, the address, word-count,
ADSP-2126x SHARC Processor Peripherals Manual 3-19

Using the Parallel Port
and address-modifier are specified for both the source and destination
buffers (one internal, one external). Once initiated, (by setting PPEN = 1
and PPDEN = 1), the IOP performs the specified transfer in the background
without further core interaction. The main advantage of DMA transfers
over core driven transfers is that the core can continue executing code
while sequential data is imported/exported in the background.

Unlike the external port on previous SHARC processors, the ADSP-2126x
core cannot directly access the external parallel bus. Instead, the core ini-
tializes two registers to indicate the external address and address-modifier
and then accesses data through intermediate registers. Then, when the
core accesses either the PPTX or PPRX registers, the parallel port
writes/fetches data to/from the specified external address. The details of
this functionality and the four main techniques to manage each transfer
are detailed below. In general, core-driven transfers are most advantageous
when performing single-word accesses and/or accesses to non-sequential
addresses.

DMA Transfers
To use the parallel port for DMA programs, start by setting up values in
the DMA parameter registers. The program then writes to the PPCTL regis-
ter to enable PPDEN with all of the necessary settings like cycle duration
value, transfer direction, and so on. While a parallel port DMA is active,
the DMA parameter registers are not writable. Furthermore, only the PPEN
and DMAEN bits (in the PPCTL register) can be changed. If any other bit is
changed, the parallel port will malfunction. It is recommended that both
the PPDEN and PPEN bits be set and reset together to ensure proper DMA
operation.

To see an example program that sets up a parallel port DMA, see
Listing 3-1 on page 3-25.
3-20 ADSP-2126x SHARC Processor Peripherals Manual

Parallel Port
Core Driven Transfers
Core-driven transfers can be managed using four techniques. The transfers
can 1) use interrupts, 2) poll status bits in the PPCTL register, 3) predict
when each access will complete by calculating the data and ALE cycle dura-
tions, or 4) rely on the fact that the core stalls on certain accesses to PPRX
and PPTX. For all four of these methods, the core uses the same basic steps
to initiate the transfer. However, each method uses a different technique
to complete it. The following steps provide the basic procedure for setting
up and initiating a data transfer using the core.

1. Write the external byte address to the EIPP register and the external
address modifier to the EMPP register.

Before initializing or modifying any of the parallel port parameter
registers such as EIPP and EMPP, the parallel port must first be dis-
abled (bit 0, PPEN, of the PPCTL register must be cleared). Only
when PPEN=0, can those registers be modified and the port then
re-enabled. This sequence is most often used to perform
non-sequential, external transfers, such as when accessing taps in a
delay line.

For core-driven transfers, the ECPP, IIPP, IMPP, and ICPP are not
used. Although these registers are automatically updated by the
parallel port (the ECPP register decrements for example), they may
be left uninitialized without consequence.

2. Initialize the PPCTL register with the appropriate settings.

These include the parallel port data-cycle duration (PPDUR) and
whether the transfer is a receive or transmit operation (PPTRAN). For
core-driven transfers, be sure to clear the DMA enable bit, PPDEN.
In this same write to PPCTL, the port may also be enabled by setting
bit 0, PPEN, to 1.
ADSP-2126x SHARC Processor Peripherals Manual 3-21

Using the Parallel Port
When enabling the parallel port (setting PPEN = 1), the external bus activ-
ity varies, depending on the direction of data transfer (receive or
transmit). For transmit operations (PPTRAN = 1), the parallel port does not
perform any external accesses until valid data is written to the TXPP register
by the core.

For read operations (PPTRAN = 0), two core clock cycles after PPEN is set
(=1), the parallel port immediately fetches two 32-bit data words from the
external byte address indicated by EIPP. Subsequently, additional data is
fetched only when the core reads (empties) RXPP.

The following are guidelines that programs must follow when the proces-
sor core accesses parallel port registers.

• While a DMA transfer is active, the core may only write the PPEN
and PPDEN bits of PPCTL. Accessing any of the DMA parameter reg-
isters or other bits in PPCTL during an active transfer will cause the
parallel port to malfunction.

• Core reads of the FIFO register during a DMA operation are
allowed but do not affect the status of the FIFO.

If PPEN is cleared while a transfer is underway (whether core or
DMA-driven), the current external bus cycle (ALE cycle or data
cycle) will complete but no further external bus cycles occur. Dis-
abling the parallel port clears the data in the RXPP and TXPP
registers.

• Core reads and writes to the TXPP and RXPP registers update the sta-
tus of the FIFO when DMA is not active. This happens even when
the parallel port is disabled.

• The PPCTL register has a two-cycle effect-latency. This means that if
programs write to this register in cycle N, the new settings will not
be in effect until cycle N + 2. Avoid sampling PPBS until at least 2
cycles after the PPEN bit in PPCTL is set.
3-22 ADSP-2126x SHARC Processor Peripherals Manual

Parallel Port
• For core-driven transfers over the parallel port, the IIPP, IMPP,
ICPP, and ECPP registers are not used. Only the EIPP and EMPP regis-
ters need to be initialized before accessing the TXPP or RXPP buffers.

Known Duration Accesses

Of these methods, known duration accesses are the most efficient because
they allow the core to execute code while the transfer to/from the RXPP or
TXPP occurs on the external bus. For example, after the core reads the PPTX
register, it will take some number N core-cycles for the PP to shift out that
data to the memory. During that time, the core can go on doing other
tasks. After N core-cycles have passed, the parallel port may be disabled
and the external address register updated for another access.

To determine the duration for each access, the designer simply add's the
number of data-cycles and the duration of each (measured in CCLK cycles)
along with the number of ALE cycles (which are fixed at 3 CCLK cycles).
This duration is deterministic, and is based on two settings in the PPCTL
register—parallel port data-cycle duration (PPDUR) and Bus Hold Cycle
Enable (PPBHC).

Please refer to “Parallel Port Operation” for further explanation of the par-
allel port bus cycles, but in summary, programs can use the following
values:

• each ALE cycle is fixed at 3 CCLK cycles, regardless of the PPDUR or
PPBHC settings.

• each Data cycle is the setting in the PPDUR register (+1 if PPBHC =1)

For example, in 8-bit mode, a single-word transfer is comprised of 1 ALE
cycle and 4 Data cycles. If PPDUR3 is used (the fastest case) and
PPBHC = 0, this transfer completes in:

(1 ALE-cycle x 3 CCLK) + (4 data-cycles x 3 CCLK) = 15 core cycles per 32-bit
word.
ADSP-2126x SHARC Processor Peripherals Manual 3-23

Using the Parallel Port
This means that 15-instructions after data is written to TXPP or read from
RXPP, the parallel port has finished writing/fetching that data externally,
and the parallel port may be disabled. This case is shown in Listing 3-3 on
page 3-29.

Status Driven Transfers (Polling)

The second method that the core may use to manage parallel port transfers
involves the status bits in PPCTL register, specifically the Parallel Port Bus
Status (PPBS) bit. This bit reflects the status of the external address pins
AD0-AD15 and is used to determine when it is safe to disable and modify
the parallel port. The PPBS bit is set to 1 at the start of each transfer, and is
cleared once the entire 32-bit word has been transmitted/received.

Core-Stall Driven Transfers

The final method of managing parallel port transfers simply relies on the
fact that the core will stall execution when reading from an empty RX
buffer and when writing to a full TX buffer. This technique can only be
used for accesses to sequential addresses in external memory. For sequen-
tial external addresses, the parallel port does not need to be disabled after
each word in order to manually update the EIPP register. Instead, the
external address that is automatically incremented by the modifier (EMPP)
register on each access is used.

Interrupt Driven Accesses

With interrupt-driven accesses, parallel port interrupts are generated on a
word-by-word basis, rather than on a block transfer basis, as is the case
when DMA is enabled. In this non-DMA mode, the interrupt indicates to
the core that it is now safe to read a word from the RXPP buffer or to write
a word to the TXPP buffer (depending on the value of the PPTRAN bit).
3-24 ADSP-2126x SHARC Processor Peripherals Manual

Parallel Port
To facilitate this, the PPI (latch) bit of the LIRPTL register is set to one in
every core cycle where the TXPP buffer is not full or, in receive mode, in
every core cycle in which the RXPP buffer has valid data. When fast 16-bit
wide parallel devices are accessed, there may be as few as 10 core cycles
between each transfer. Because of this, interrupt-driven transfers are usu-
ally the least efficient method to use for core-driven accesses. Interrupt
driven transfers are most valuable when parallel port data-cycle durations
are very long (allowing the core may do some work between accesses).
Generally, interrupts are the best choice for DMA-driven parallel port
transfers rather than core-driven transfers.

Parallel Port Programming Examples
This section provides two programming examples written for the
ADSP-21262 processor. The first, Listing 3-1, uses the parallel port to
transfer a buffer to 16-bit external memory using DMA. The second
example Listing 3-2, uses the parallel port to transfer a buffer to 8-bit
external memory using status driven core writes. The last example, shows a
calculated duration example of core driven parallel port access.

Listing 3-1. Parallel Port DMA Buffer Transfer

/* Register Definitions */

#define PPCTL 0x1800

#define EIPP 0x1810

#define EMPP 0x1811

#define ECPP 0x1812

#define IIPP 0x1818

#define IMPP 0x1819

#define ICPP 0x181a

/* Register Bit Definitions */

#define PPEN 0x00000001
ADSP-2126x SHARC Processor Peripherals Manual 3-25

Parallel Port Programming Examples
#define PPDUR20 0x00000026

#define PPBHC 0x00000040

#define PP16 0x00000080

#define PPDEN 0x00000100

#define PPTRAN 0x00000200

#define PPBS 0x00020000

/* Source Buffer */

.section/dm seg_dmda;

.var source[8] = 0x11111111,

 0x22222222,

 0x33333333,

 0x44444444,

 0x55555555,

 0x66666666,

 0x77777777,

 0x88888888;

.global _main;

.section/pm seg_pmco;

_main:

ustat3 = dm(PPCTL); /*disable parallel port*/

bit clr ustat3 PPEN|PPDEN;

dm(PPCTL) = ustat3;

/* initiate parallel port DMA registers*/

r0 = source; dm(IIPP) = r0;

r0 = 1; dm(IMPP) = r0;

r0 = LENGTH(source); dm(ICPP) = r0;

r0 = 1; dm(EMPP) = r0;

r0 = 0x1000000; dm(EIPP) = r0;

/* For 16-bit external memory, the External count is

 double the internal count */
3-26 ADSP-2126x SHARC Processor Peripherals Manual

Parallel Port
r0 = LENGTH(source) * 2; dm(ECPP) = r0;

ustat3 = PP16| /*for a 16-bit external memory */

 PPTRAN| /* transmit (write) */

 PPBHC| /* implement a bus hold cycle*/

 PPDUR20; /* make pp data cycles last for a duration

 of 20 cclk cycles */

dm(PPCTL) = ustat3;

/* initiate PP DMA*/

/*Enable Parallel Port and PP DMA in same cycle*/

ustat4 = dm(PPCTL);

bit set ustat4 PPDEN|PPEN;

dm(PPCTL) = ustat4;

_main.end: jump(pc,0);

Listing 3-2. Parallel Port Status Driven Core Transfer

/* Register Definitions */

#define PPCTL 0x1800

#define TXPP 0x1808

#define RXPP 0x1809

#define EIPP 0x1810

#define EMPP 0x1811

#define ECPP 0x1812

/* Register Bit Definitions */

#define PPEN 0x00000001

#define PPDUR20 0x00000026

#define PPBHC 0x00000040

#define PPTRAN 0x00000200

#define PPBS 0x00020000
ADSP-2126x SHARC Processor Peripherals Manual 3-27

Parallel Port Programming Examples
/* Source Buffer */

.section/dm seg_dmda;

.var source[8] = 0x11111111,

 0x22222222,

 0x33333333,

 0x44444444,

 0x55555555,

 0x66666666,

 0x77777777,

 0x88888888;

/* Main code section */

.global _main;

.section/pm seg_pmco;

_main:

i4 = source;

m4 = 1;

/* setup ppdma registers for core use */

r0 = 1; dm(EMPP) = r0;

r0 = 0x1000000; dm(EIPP) = r0;

/* For 8-bit external memory, the External count is

 four times the internal count */

r0 = LENGTH(source) * 4; dm(ECPP) = r0;

ustat3 = PPEN| /* enable port */

 PPTRAN| /* transmit (write) */

 PPBHC| /* implement a bus hold cycle*/

 PPDUR20; /* make pp data cycles last for a */

 /* duration of 20 cclk cycles */

dm(PPCTL) = ustat3;

/* loop to write 10 words into TXPP */

lcntr = 10, do core_writes until lce;

write:
3-28 ADSP-2126x SHARC Processor Peripherals Manual

Parallel Port
r0 = dm(i4,m4);

core_writes: dm(TXPP) = r0;

/* poll to ensure parallel port has completed the transfer */

waiting: ustat4 = dm(PPCTL);

bit tst ustat4 PPBS;

if tf jump waiting;

_main.end: jump(pc,0);

Listing 3-3. Calculated Duration Core Driven Access

_main:
 /* Setup once=========================== */
 ustat3 = PPDUR3 | PPTRAN | PPEN; /* ustat3 enables PP */
 ustat4 = PPDUR3 | PPTRAN; /* ustat4 disables PP */

dm(PPCTL) = ustat4; /* initialize but disable PP */

/* NOTE: Internal DMA registers AND the EXTERNAL COUNT can be

left uninitialized for Core-driven transfers (External count

determined by bus width: 16bit = count of 2, 8-bit = count of 4,

since internal width always = 32-bits.) */

 r0=1; dm(EMPP)=r0; /* don't move external ptr */

 /* initialize external address and sample-to-write */
 r1=EZKIT_SRAM_BASE_ADDR; /* initialize R1 w/ first
 ext. byte address */

 r2=0x33221100; /* and R2 w/ first data to be
 written /*
/* == */

/* for testing */ do (write_loop.end - 1) until forever;
ADSP-2126x SHARC Processor Peripherals Manual 3-29

Parallel Port Programming Examples
/* ===Instructions required for each 32-bit word written===*/

/* (18 instructions per sample = 4 cycles overhead + 14 cycles

 work) /*
/* R1 holds external byte address to be written */

/* R2 holds data to be written */

write_loop:

 dm(EIPP) = r1;

 dm(PPCTL)= ustat3; /* enable PP */

 dm(TXPP) = r2; /* <-- write to PP FIFO */

/* -----14 core cycles (minimum) available while each word is

being transmitted. Writting to PPCTL has a 2 cycle

effect-latency, so the result of writing this register in the

14th cycle doesn't take effect until the 16th cycle - which is

one cycle after the cycle completes----- */

/* (NOTE: Modifying PP parameters before 14 cycles have passed

will cause the access to fail - Using more than 14 cycles is

fine. */

 nop;nop;
 nop;nop;
 nop;nop;
 nop;nop;
 nop;nop;
 nop;

 /* update addr and data for next loop iteration:
 r0 = 4;

 r1 = R1 + r0; /* next ext. destination address += 4
3-30 ADSP-2126x SHARC Processor Peripherals Manual

Parallel Port
 r2 = r2 + 1; /* next data to write /*
/*---*/

dm(PPCTL)=ustat4; /* <-- 14 cycles later, it's safe to

 disable/alter PP because each access takes

 15 CCLK cycles, and writing PPCTL has a

 2-cycle effect-latency. */

 /* NOTE: PPEN must be cleared before modifying

 EIPP /*
===
===========
ADSP-2126x SHARC Processor Peripherals Manual 3-31

Parallel Port Programming Examples
3-32 ADSP-2126x SHARC Processor Peripherals Manual

4 SERIAL PORTS

The ADSP-2126x processors have up to six independent, synchronous

serial ports (SPORTs) that provide an I/O interface to a wide variety of
peripheral devices. Each serial port has its own set of control registers and
data buffers. With a range of clock and frame synchronization options, the
SPORTs allow a variety of serial communication protocols and provide a
glueless hardware interface to many industry-standard data converters and
codecs.

The number of serial ports varies depending on the specific proces-
sor model you are using. This chapter was written using six serial
ports for examples. Programs need to be written accordingly.

Serial ports can operate at one-quarter the full clock rate of the processor,
at a maximum clock rate of n/4M bit/s, where n equals the processor
core-clock frequency (CCLK). If channels A and B are active, each SPORT
has 100M bit/s maximum throughput. Bidirectional (transmit or receive)
functions provide greater flexibility for serial communications. Serial port
data can be automatically transferred to and from on-chip memory using
DMA block transfers. In addition to standard synchronous serial mode,
each serial port offers a Time Division Multiplexed (TDM) multichannel
mode, Left-justified Sample Pair mode, and I2S mode.

Serial ports offer the following features and capabilities:

• Two bidirectional channels (A and B) per serial port, configurable
as either transmitters or receivers. Each serial port can also be con-
figured as two receivers or two transmitters, permitting two
unidirectional streams into or out of the same serial port. This
ADSP-2126x SHARC Processor Peripherals Manual 4-1

bidirectional functionality provides greater flexibility for serial
communications. Further, two SPORTs can be combined to enable
full-duplex, dual-stream communications.

• All serial data signals have programmable receive and transmit
functions and thus have one transmit and one receive data buffer
register (double-buffer) and a bidirectional shift register associated
with each serial data signal. Double-buffering provides additional
time to service the SPORT.

• μ-law and A-law compression/decompression hardware compand-
ing on transmitted and received words.

• An internally-generated serial clock and frame sync provide signals
in a wide range of frequencies. Alternately, the SPORT can accept
clock and frame sync input from an external source, as described in
Figure 4-8 on page 4-63.

• Interrupt-driven, single word transfers to and from on-chip mem-
ory controlled by the processor core, described in “Single Word
Transfers” on page 4-74.

• DMA transfers to and from on-chip memory. Each SPORT can
automatically receive or transmit an entire block of data.

• Chained DMA operations for multiple data blocks, see “Chaining
DMA Processes” on page 2-10.

• Four operation modes: DSP Standard Serial, Left-justified Sample
Pair, I2S, and multichannel. In standard DSP serial, Left-justified
Sample Pair, and I2S modes, when both A and B channels are used,
they transmit or receive data simultaneously, sending or receiving
bit 0 on the same edge of the serial clock, bit 1 on the next edge of
the serial clock, and so on. In multichannel mode, SPORT1, 3 or 5
can receive A and B channel data, and SPORT0, 2 or 4 transmits A
and B channel data selectively from up to 128 channels of a TDM
serial bitstream. This mode is useful for H.100/H.110 and other
4-2 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
telephony interfaces. In multichannel mode, SPORT0 and
SPORT1 work as a pair, SPORT2 and SPORT3 work as a pair,
and SPORT4 and SPORT5 work as a pair. See “SPORT Opera-
tion Modes” on page 4-9.

When programming the serial port channel (A or B) as a transmit-
ter, only the corresponding transmit buffers TXSPxA and TXSPxB
become active, while the receive buffers (RXSPxA and RXSPxB)
remain inactive. Similarly, when SPORT channels A and B are pro-
grammed to receive, only the corresponding RXSPxA and RXSPxB
buffers are activated.

SPORTs are forced into pairs when in multichannel mode. For
more information, see “Multichannel Operation” on page 4-24.

• The serial ports are configurable for transferring data words
between 3 and 32 bits in length, either most significant bit (MSB)
first or least significant bit (LSB) first. Words must be between 8
and 32 bits in length for I2S and Left-justified Sample Pair mode.
Refer to “Data Word Formats” on page 4-39 and the individual
SPORTs operation mode sections for additional information.

• 128-channel TDM is supported in multichannel mode operation,
described in “Multichannel Operation” on page 4-24.

Receive comparison and 2-dimensional DMA are not supported in
the ADSP-2126x processor.

The SPTRAN bit in the SPCTLx register affects the operation of the transmit
or the receive data paths. The data path includes the data buffers and the
shift registers. When SPTRAN = 0, the primary and secondary RXSPxy data
buffers and receive shift registers are activated, and the transmit path is
disabled. When SPTRAN = 1, the primary and secondary TXSPxy data buff-
ers and transmit shift registers are activated, and the receive path is
disabled.
ADSP-2126x SHARC Processor Peripherals Manual 4-3

Figure 4-1. Serial Port Block Diagram

RXSPxA
RECEIVE DATABUFFER

TXSPxB
TRANSMIT DATABUFFER

HARDWARE
COMPANDING
(EXPANSION)

SPORTS 1, 3 & 5 ONLY

RECEIVE SHIFT
REGISTER

TXSPxA
TRANSMITDATA

BUFFER

32

RXSPxB
RECEIVE DATA BUFFER

32 3232 3232

32

3232

32

3232

TRANSMIT SHIFT
REGISTER

TRANSMITSHIFT
REGISTER

RECEIVE SHIFT
REGISTER

SERIALPORT
CONTROL

SPORTX_DA SPORTX_CLKSPORTX_FS

DM DATA BUSDM DATA BUS

PM DATABUSPM DATABUS

I/O DATABUSI/O DATABUS

SPORTX_DB

SPTRAN
CNTL

SPORTX_CLK

SPORTX_FS

SPTRAN= 1
TX ENABLE

SPTRAN = 0
RX ENABLE

SPORTX_DA_OUT SPORTX_DA_IN SPORTX_DB_OUT SPORTX_DB_IN

HARDWARE
COMPANDING

(COMPRESSION)
SPORTS 0, 2 & 4 ONLY

SPTRAN = 1
TX ENABLE

SPTRAN = 0
RX ENABLE
4-4 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
Serial Port Signals
Figure 4-2 shows all of the signals used in the serial ports.

Pairings of SPORTs (0 and 1, 2 and 3, and 4 and 5) are only used
in multichannel mode and loopback mode for testing.

Figure 4-2. DSP Standard Serial Mode – Serial Port Signals

SPORT4

SPORT5

SPORT4_DA

SPORT4_DB

SPORT4_CLK

SPORT4_FS

SPORT5_DA

SPORT5_DB

SPORT5_CLK

SPORT5_FS

SPORT0

SPORT0_DA

SPORT0_DB

SPORT0_CLK

SPORT0_FS

SPORT1

SPORT1_DA

SPORT1_DB

SPORT1_CLK

SPORT1_FS

SPORT 0_DA_IO

SPORT 0_DB_IO

SPORT0_CLK_IO

SPORT 0_FS_IO

SPORT 1_DA_IO

SPORT 1_DB_IO

SPORT1_CLK_IO

SPORT 1_FS_IO

SPORT 2_DA_IO

SPORT 2_DB_IO

SPORT2_CLK_IO

SPORT 2_FS_IO

SPORT 3_DA_IO

SPORT 3_DB_IO

SPORT3_CLK_IO

SPORT 3_FS_IO

SPORT 4_DA_IO

SPORT 4_DB_IO

SPORT4_CLK_IO

SPORT 4_FS_IO

SPORT 5_DA_IO

SPORT 5_DB_IO

SPORT5_CLK_IO

SPORT 5_FS_IO

SIGNAL ROUTING
UNIT (SRU)

SPORT2

SPORT3

SPORT2_DA

SPORT2_DB

SPORT2_CLK

SPORT2_FS

SPORT3_DA

SPORT3_DB

SPORT3_CLK

SPORT3_FS

SERIAL PORT SPORT SIGNALS

SPORT4_DA = SPORT4 CHANNEL A DATA (RX OR TX)
SPORT4_DB = SPORT4 CHANNEL B DATA (RX OR TX)
SPORT4_CLK = SPORT4 SERIAL CLOCK
SPORT4_FS = SPORT4 FRAME SYNC
SPORT5_DA = SPORT5 CHANNEL A DATA (RX OR TX)
SPORT5_DB = SPORT5 CHANNEL B DATA (RX OR TX)
SPORT5_CLK = SPORT5 SERIAL CLOCK
SPORT5_FS = SPORT5 FRAME SYNC

SPORT2_DA = SPORT2 CHANNEL A DATA (RX OR TX)
SPORT2_DB = SPORT2 CHANNEL B DATA (RX OR TX)
SPORT2_CLK = SPORT2 SERIAL CLOCK
SPORT2_FS = SPORT2 FRAME SYNC
SPORT3_DA = SPORT3 CHANNEL A DATA (RX OR TX)
SPORT3_DB = SPORT3 CHANNEL B DATA (RX OR TX)
SPORT3_CLK = SPORT3 SERIAL CLOCK
SPORT3_FS = SPORT3 FRAME SYNC

SPORT0_DA = SPORT0 CHANNEL A DATA (RX OR TX)
SPORT0_DB = SPORT0 CHANNEL B DATA (RX OR TX)
SPORT0_CLK = SPORT0 SERIAL CLOCK
SPORT0_FS = SPORT0 FRAME SYNC
SPORT1_DA = SPORT1 CHANNEL A DATA (RX OR TX)
SPORT1_DB = SPORT1 CHANNEL B DATA (RX OR TX)
SPORT1_CLK = SPORT1 SERIAL CLOCK
SPORT1_FS = SPORT1 FRAME SYNC
ADSP-2126x SHARC Processor Peripherals Manual 4-5

Serial Port Signals
Any 20 of these 24 signals can be mapped to Digital Audio Interface
(DAI_Px) pins through the signal routing unit (SRU). For more informa-
tion, see Chapter 7, Digital Audio Interface., Table A-15 on page A-63,
and Table A-16 on page A-68.

A serial port receives serial data on one of its bidirectional serial data sig-
nals configured as inputs, or transmits serial data on the bidirectional
serial data signals configured as outputs. It can receive or transmit on both
channels simultaneously and unidirectionally, where the pair of data sig-
nals can both be configured as either transmitters or receivers.

The SPORTx_DA and SPORTx_DB channel data signals on each
SPORT cannot transmit and receive data simultaneously for
full-duplex operation. Two SPORTs must be combined to achieve
full-duplex operation. The SPTRAN bit in the SPCTLx register con-
trols the direction for both the A and B channel signals. Therefore,
the direction of channel A and channel B on a particular SPORT
must be the same.

Serial communications are synchronized to a clock signal. Every data bit
must be accompanied by a clock pulse. Each serial port can generate or
receive its own clock signal (SPORTx_CLK). Internally-generated serial clock
frequencies are configured in the DIVx registers. The A and B channel data
signals shift data based on the rate of SPORTx_CLK. See Figure 4-8 on
page 4-63 for more details.

In addition to the serial clock signal, data may be signaled by a frame syn-
chronization signal. The framing signal can occur at the beginning of an
individual word or at the beginning of a block of words. The configura-
tion of frame sync signals depends upon the type of serial device
connected to the processor. Each serial port can generate or receive its own
frame sync signal (SPORTx_FS) for transmitting or receiving data. Inter-
nally-generated frame sync frequencies are configured in the DIVx
registers. Both the A and B channel data signals shift data based on their
corresponding SPORTx_FS signal. See Figure 4-8 on page 4-63 for more
details.
4-6 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
Figure 4-1 shows a block diagram of a serial port. Setting the SPTRAN bit
enables the data buffer path, which, once activated, responds by shifting
data in response to a frame sync at the rate of SPORTx_CLK. An application
program must use the correct serial port data buffers, according to the
value of SPTRAN bit. The SPTRAN bit enables either the transmit data buffers
for the transmission of A and B channel data, or it enables the receive data
buffers for the reception of A and B channel data. Inactive data buffers are
not used.

If the serial port is configured as a serial transmitter, the data transmitted
is written to the TXSPxA/TXSPxB buffer. The data is (optionally) com-
panded in hardware on the primary A channel (SPORT 0, 2, and 4 only),
then automatically transferred to the transmit shift register, because com-
panding is not supported on the secondary B channels. The data in the
shift register is then shifted out via the SPORT’s SPORTx_DA or SPORTx_DB
signal, synchronous to the SPORTx_CLK clock. If framing signals are used,
the SPORTx_FS signal indicates the start of the serial word transmission.
The SPORTx_DA or SPORTx_DB signal is always driven if the serial port is
enabled (SPEN_A or SPEN_B = 1 in the SPCTLx control register), unless it is
in multichannel mode and an inactive time slot occurs.

When the SPORT is configured as a transmitter (SPTRAN = 1), the TXSPxA
and TXSPxB buffers, and the channel transmit shift registers respond to
SPORTx_CLK and SPORTx_FS to transmit data. The receive RXSPxA and
RXSPxB buffers, and the receive shift registers are inactive and do not
respond to SPORTx_CLK and SPORTx_FS signals. Since these registers are
inactive, reading from an empty buffer causes the core to hang
indefinitely.

If the SPORTs are configured as transmitters (SPTRAN bit = 1 in
SPCTL), programs should not read from the inactive RXSPxA and
RXSPxB buffers. This causes the core to hang indefinitely since the
receive buffer status is always empty.
ADSP-2126x SHARC Processor Peripherals Manual 4-7

Serial Port Signals
If the serial data signal is configured as a serial receiver (SPTRAN = 0), the
receive portion of the SPORT shifts in data from the SPORTx_DA or
SPORTx_DB signal, synchronous to the SPORTx_CLK receive clock. If framing
signals are used, the SPORTx_FS signal indicates the beginning of the serial
word being received. When an entire word is shifted in on the primary A
channel, the data is (optionally) expanded (SPORT1, 3, and 5 only), then
automatically transferred to the RXSPxA buffer. When an entire word is
shifted in on the secondary channel, it is automatically transferred to the
RXSPxB buffer.

When the SPORT is configured as a receiver (SPTRAN = 0), the RXSPxA and
RXSPxB buffers are activated along with the corresponding A and B chan-
nel receive shift registers, responding to SPORTx_CLK and SPORTx_FS for
reception of data. The transmit TXSPxA and TXSPxB buffer registers and
transmit A and B shift registers are inactive and do not respond to the
SPORTx_CLK and SPORTx_FS. Since the TXSPxA and TXSPxB buffers are inac-
tive, writing to a transmit data buffer causes the core to hang indefinitely.

If the SPORTs are configured as receivers (SPTRAN bit = 0 in
SPCTLx), programs should not write to the inactive TXSPxA and
TXSPxB buffers. If the core keeps writing to the inactive buffer, the
transmit buffer status becomes full. This causes the core to hang
indefinitely since data is never transmitted out of the deactivated
transmit data buffers.

The processor SPORTs are not UARTs and cannot communicate with an
RS-232 device or any other asynchronous communications protocol. One
way to implement RS-232 compatible communication with the processor
is to use two of the FLG pins as asynchronous data receive and transmit sig-
nals. Examples of this can be found in the following documents.

• “Software UART”, in Digital Signal Processing Applications Using
The ADSP-2100 Family, Volume 2.

• Engineer-to-Engineer Note (EE-191), Implementing a Glueless
UART Using the SHARC DSP SPORTs.
4-8 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
SPORT Operation Modes
Serial ports operate in four modes:

• Standard DSP Serial mode, described in “Standard DSP Serial
Mode” on page 4-11

• Left-justified Sample Pair mode, described in “Left-Justified Sam-
ple Pair Mode” on page 4-14

• I2S mode, described in “I2S Mode” on page 4-18

• Multichannel mode, described in “Multichannel Operation” on
page 4-24

Bit names and their functionality change based on the SPORT
operating mode. See the mode specific section for the bit names
and their functions.

The SPORT operating mode can be selected via the SPCTLx register. See
Table 4-1 for a summary of the control bits as they relate to the four oper-
ating modes.

The Operating mode bit (OPMODE) of SPCTLx register selects between I2S
mode, Left-justified Sample Pair mode, and non-I2S mode (DSP Serial
Port/Multichannel mode). In non-I2S Multichannel mode, the MCEA bit in
the SPMCTLxy register enables the A channels and the MCEB bit in the
SPMCTLxy register enables the B channels. In addition to these bits, the
Data Direction bit (SPTRAN) selects whether the port is a transmitter or
receiver in non-multichannel mode.

If the SPTRAN bit is set (= 1), the SPORT becomes a transmitter and all the
other control bits are defined accordingly. Similarly, when SPTRAN = 0, the
SPORT becomes a receiver.

Companding is not supported in I2S and Left-justified Sample Pair
modes.
ADSP-2126x SHARC Processor Peripherals Manual 4-9

SPORT Operation Modes
The SPCTLx register is unique in that the name and functionality of its bits
changes depending on the operation mode selected. In each section that
follows, the bit names associated with the operating modes are described.
Table 4-1 provides values for each of the bits in the SPORT Serial Con-
trol (SPCTLx) registers that must be set in order to configure each specific
SPORT operation mode. An X in a field indicates that the bit is not sup-
ported for the specified operating mode.

Table 4-1. SPORT Operation Modes

OPERATING MODES

Bits

OPMODE LAFS FRFS MCEA MCEB SLENx

Standard DSP Serial Mode 0 0, 1 X 0 0 3-321

1 Although serial ports process word lengths of 3 to 32 bits, transmitting or receiving words smaller
than 7 bits at core clock frequency/4 of the processor may cause incorrect operation when DMA
chaining is enabled. Chaining disables the processor’s internal I/O bus for several cycles while
the new Transfer Control Block (TCB) parameters are being loaded. Receive data may be lost
(for example, overwritten) during this period.

I2S (Tx/Rx on Left Channel
First)

1 0 1 0 0 8-32

I2S (Tx/Rx on Right Channel
First)

1 0 0 0 0 8-32

Left-justified Sample Pair Mode
(Tx/Rx on FS Rising Edge)

1 1 0 0 0 8-32

Left-justified Sample Pair (Tx/Rx
on FS Falling Edge)

1 1 1 0 0 8-32

Multichannel A Channels 0 0 X 1 0 3-321

Multichannel B Channels 0 0 X 0 1 3-321

Multichannel A and B Channels 0 0 X 1 1 3-321
4-10 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
Standard DSP Serial Mode
The Standard DSP Serial mode lets programs configure serial ports for use
by a variety of serial devices such as serial data converters and audio
codecs. In order to connect to these devices, a variety of clocking, framing,
and data formatting options are available.

Standard DSP Serial Mode Control Bits

Several bits in the SPCTLx Control register enable and configure standard
DSP serial mode operation:

• Operation mode, Master mode enable (OPMODE)

• Word length (SLEN)

• SPORT enable (SPEN_A and SPEN_B)

For more information, see Appendix A, Registers Reference.

Clocking Options

In standard DSP serial mode, the serial ports can either accept an external
serial clock or generate it internally. The ICLK bit in the SPCTL register
determines the selection of these options (see “Clock Signal Options” on
page 4-33 for more details). For internally-generated serial clocks, the
CLKDIV bits in the DIVx register configure the serial clock rate (see
Figure 4-8 on page 4-63 for more details).

Finally, programs can select whether the serial clock edge is used for sam-
pling or driving serial data and/or frame syncs. This selection is performed
using the CKRE bit in the SPCTL register (see Table A-5 on page A-26 for
more details).
ADSP-2126x SHARC Processor Peripherals Manual 4-11

SPORT Operation Modes
Frame Sync Options

A variety of framing options are available for the serial ports. For detailed
descriptions of framing options, see “Frame Sync Options” on page 4-33.
In this mode, these options are independent of clocking, data formatting,
or other configurations. The frame sync signal (SPORTx_FS) is used as a
framing signal for serial word transfers.

Framing is optional for serial communications. The FSR bit in the SPCTL
register controls whether the frame sync signal is required for every serial
word transfer or if it is used simply to start a block of serial word transfers.
See “Framed Versus Unframed Frame Syncs” on page 4-34 for more
details on this option. Similar to the serial clock, the frame sync can be an
external signal or generated internally. The IFS bit in the SPCTL register
allows the selection between these options. See the Internal Frame Sync
Select bit description in Figure 4-8 on page 4-63 for more details. For
internally-generated frame syncs, the FSDIV bits in the DIVx register con-
figure the frame sync rate. For internally-generated frame syncs, it is also
possible to configure whether the frame sync signal is activated based on
the FSDIV setting and the transmit or receive buffer status, or by the FSDIV
setting only.

All settings are configured through the DIFS bit of the SPCTL register. See
“Data-Independent Frame Sync” on page 4-37 for more details. The
frame sync can be configured to be active high or active low through the
LFS bit in the SPCTL register. See “Active Low Versus Active High Frame
Syncs” on page 4-35 for more details. The timing between the frame sync
signal and the first bit of data either transmitted or received is also select-
able through the LAFS bit in the SPCTL register. See “Early Versus Late
Frame Syncs” on page 4-36 for more details.
4-12 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
Data Formatting

Several data formatting options are available for the serial ports in the
DSP Standard Serial mode. Each serial port has an A channel and B chan-
nel available. Both can be configured for transmitting or receiving. The
SPTRAN bit controls the configuration of transmit versus receive opera-
tions. Serial ports can transmit or receive a selectable word length, which
is programmed by the SLEN bits in the SPCTL register. See “Setting Word
Length (SLEN)” on page 4-15 for more details. Serial ports also include
companding hardware built in to the A channels that allow sign extension
or zero-filling of upper bits of the serial data word. These configurations
are selected by the DTYPE bits in the SPCTL register. See “Data Type” on
page 4-41 and “Companding” on page 4-42 for more information. The
endian format (LSB versus MSB first) is selectable by the LSBF bit of the
SPCTL register. See “Endian Format” on page 4-40 for more details. Data
packing of two serial words into a 32-bit word is also selectable. The PACK
bit in the SPCTL register controls this option. See “Data Packing and
Unpacking” on page 4-40 for more details.

Data Transfers

Serial port data can be transferred for use by the processor in two different
methods:

• DMA transfers

• Core-driven single word transfers

DMA transfers can be set up to transfer a configurable number of serial
words between the serial port buffers (TXSPxA, TXSPxB, RXSPxA, and
RXSPxB) and internal memory automatically. For more information on
Sport DMA operations, see “DMA Block Transfers” on page 4-66. Core
driven transfers use SPORT interrupts to signal the processor core to per-
form single word transfers to/from the serial port buffers (TXSPxA, TXSPxB,
RXSPxA, and RXSPxB). See “SPORT Interrupts” on page 4-65 for more
details.
ADSP-2126x SHARC Processor Peripherals Manual 4-13

SPORT Operation Modes
Status Information

Serial ports provide status information about data buffers via the DXS_A
and DXS_B status bits and error status via ROVF or TUVF bits in the SPCTL
register. See “Serial Port Control Registers (SPCTLx)” on page 4-50 for
more details.

Depending on the SPTRAN setting, these bits reflect the status of either the
TXSPxy or RXSPxy data buffers.

Left-Justified Sample Pair Mode
Left-justified Sample Pair mode is a mode where in each frame sync cycle
two samples of data are transmitted/received—one sample on the high
segment of the frame sync, the other on the low segment of the frame
sync. Prior to development of the I2S standard, many manufacturers used
a variety of non-standard stereo modes. Some companies continue to use
this mode, which is supported by many of today’s audio front-end devices.

The programmer has control over various attributes of this mode. One
attribute is the number of bits (8- to 32-bit word lengths). However each
sample of the pair that occurs on each frame sync must be the same length.
Set the Late Frame Sync bit (LAFS bit) = 1 for Left-justified Sample Pair
mode. See Table 4-1 on page 4-10. Then, choose the frame sync edge
associated with the first word in the frame sync cycle, using the FRFS bit
(1 = Frame on Rising Frame Sync, 0 = Frame on Falling Frame Sync).

Refer to Table 4-1 on page 4-10 for additional information about specify-
ing Left-justified Sample Pair mode.

In Left-justified mode, if both channels on a SPORT are set up to trans-
mit, then the SPORT transmits on channels (TXSPxA and TXSPxB)
simultaneously; each transmits a sample pair. If both channels on a
SPORT are set up to receive, the SPORT receives channels (RXSPxA and
RXSPxB) simultaneously. Data is transmitted in MSB-first format.
4-14 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
Multichannel operation and companding are not supported in
Left-justified Sample Pair mode.

Each SPORT transmit or receive channel has a buffer enable, DMA
enable, and chaining enable bits in its SPCTLx Control register. The
SPORTx_FS signal is used as the transmit and/or receive word select signal.
DMA-driven or interrupt-driven data transfers can also be selected using
bits in the SPCTLx register.

Setting the Internal Serial Clock and Frame Sync Rates

The serial clock rate (CLKDIV value) for internal clocks can be set using a
bit field in the CLKDIV register. For details, see Figure 4-8 on page 4-63.

Left-Justified Sample Pair Mode Control Bits

Several bits in the SPCTLx register enable and configure Left-justified Sam-
ple Pair mode operation:

• Operation mode (OPMODE)

• Channel enable (SPEN_A and SPEN_B)

• Word length (SLEN)

• Frame on Rising Frame Sync (FRFS)

• Master mode enable (MSTR)

• Late Frame Sync (LAFS)

For more information, see “Serial Port Registers” on page A-19.

Setting Word Length (SLEN)

SPORTs handle data words containing 8 to 32 bits in Left-justified mode.
Programs need to set the bit length for transmitting and receiving data
words. For details, see “Word Length” on page 4-39.
ADSP-2126x SHARC Processor Peripherals Manual 4-15

SPORT Operation Modes
The transmitter sends the MSB of the next word in the same clock cycle as
the word select (SPORTx_FS) signal changes.

To transmit or receive words continuously in Left-justified Sample Pair
mode, load the FSDIV register with the same value as SLEN. For example,
for 8-bit data words (SLEN = 7), set FSDIV = 7.

Enabling SPORT Master Mode (MSTR)

The SPORTs transmit and receive channels can be configured for Master
or Slave mode. In Master mode, (MSTR = 1) the processor generates the
word select and serial clock signals for the transmitter or receiver. In Slave
mode, (MSTR = 0) an external source generates the word select and serial
clock signals for the transmitter or receiver. For more information, see
“Setting the Internal Serial Clock and Frame Sync Rates” on page 4-15.

Selecting Transmit and Receive Channel Order (FRFS)

Using the FRFS bit, it is possible to select which frame sync edge (rising or
falling) that the SPORTs transmit or receive the first sample. See
Table 4-1 on page 4-10 for more details.

Selecting Frame Sync Options (DIFS)

When using both SPORT channels (SPORTx_DA and SPORTx_DB) as trans-
mitters and MSTR = 1, SPTRAN = 1, and DIFS = 0, the processor generates a
frame sync signal only when both transmit buffers contain data because
both transmitters share the same CLKDIV and SPORTx_FS. For continuous
transmission, both transmit buffers must contain new data.

When using both SPORT channels as transmitters and MSTR = 1,
SPTRAN = 1 and DIFS = 1, the processor generates a frame sync signal at the
frequency set by FSDIVx whether or not the transmit buffers contain new
data. The DMA controller or the application is responsible for filling the
transmit buffers with data.
4-16 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
Enabling SPORT DMA (SDEN)

DMA can be enabled or disabled independently on any of the SPORT’s
transmit and receive channels. For more information, see “Moving Data
Between SPORTS and Internal Memory” on page 4-66. Set SDEN_A or
SDEN_B (=1) to enable DMA and set the channel in DMA-driven data
transfer mode. Clear SDEN_A or SDEN_B (=0) to disable DMA and set the
channel in an interrupt-driven data transfer mode.

Interrupt-Driven Data Transfer Mode

Both the A and B channels share a common interrupt vector, regardless of
whether they are configured as transmitters or receivers.

The SPORT generates an interrupt in every core clock cycle when the
transmit buffer has a vacancy or the receive buffer has data. To determine
the source of an interrupt, applications must check the transmit or receive
data buffer status bits. For details, see “Single Word Transfers” on
page 4-74.

DMA-Driven Data Transfer Mode

Each transmitter and receiver has its own DMA registers. For details, see
“Selecting Transmit and Receive Channel Order (FRFS)” on page 4-16
and “Moving Data Between SPORTS and Internal Memory” on
page 4-66. The same DMA channel drives both samples in the pair for the
transmitter or receiver. The software application must stop multiplexing
the left and right channel data received by the receive buffer, because the
left and right data is interleaved in the DMA buffers.

Channel A and B on each SPORT share a common interrupt vector. The
DMA controller generates an interrupt at the end of DMA transfer only.

Figure 4-3 shows the relationship between frame sync (word select), serial
clock, and Left-justified mode data. Timing for word select is the same as
for frame sync.
ADSP-2126x SHARC Processor Peripherals Manual 4-17

SPORT Operation Modes
I2S Mode
I2S mode is a three-wire serial bus standard protocol for transmission of
two-channel (stereo) Pulse Code Modulation (PCM) digital audio data, in
which each sample is transmitted in MSB-first format. Many of today’s
analog and digital audio front-end devices support the I2S protocol
including:

• Audio D/A and A/D converters

• PC multimedia audio controllers

• Digital audio transmitters and receivers that support serial digital
audio transmission standards, such as AES/EBU, SP/DIF, IEC958,
CP-340, and CP-1201

• Digital audio signal processors

• Dedicated digital filter chips

• Sample rate converters

Figure 4-3. Word Select Timing in Left-justified Sample Pair Mode1

1 This figure illustrates only one possible combination of settings attainable in the Left-justified Sample
Pair mode. In this example case, OPMODE =1, LAFS =1, and FRFS =1. For additional combinations,
refer to Table 4-1 on page 4-10.

SPORTX_CLK

SPORTx_FS/WS

LEFT-JUSTIFIED SAMPLE
PAIR MODE DATA OR

SPORTX_DA OR SPORTX_DB
MSBn

SAMPLE n SAMPLE n+1

LSBn MSBn+1

SAMPLE n-1

LSBn-1
4-18 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
The I2S bus transmits audio data and control signals over separate lines.
The data line carries two multiplexed data channels—the left channel and
the right channel. In I2S mode, if both channels on a SPORT are set up to
transmit, then SPORT transmit channels (TXSPxA and TXSPxB) transmit
simultaneously, each transmitting left and right I2S channels. If both
channels on a SPORT are set up to receive, the SPORT receive channels
(RXSPxA and RXSPxB) receive simultaneously, each receiving left and right
I2S channels. Data is transmitted in MSB-first format.

If the MCEA or MCEB bits are set (=1) in the SPMCTLxy register, the
SPEN_A and SPEN_B bits in the SPCTL register must be cleared (=0).

Multichannel operation and companding are not supported in I2S
mode. See “Multichannel Operation” on page 4-24.

Each SPORT transmit or receive channel has a channel enable, a DMA
enable, and chaining enable bits in its SPCTLx Control register. The
SPORTx_FS signal is used as the transmit and/or receive word select signal.
DMA-driven or interrupt-driven data transfers can also be selected using
bits in the SPCTLx register.

I2S Mode Control Bits

Several bits in the SPCTLx Control register enable and configure I2S mode
operation:

• Operation mode, Master mode enable (OPMODE)

• Word length (SLEN)

• SPORT enable (SPEN_A and SPEN_B)

For more information, see “Serial Port Registers” on page A-19.
ADSP-2126x SHARC Processor Peripherals Manual 4-19

SPORT Operation Modes
Setting the Internal Serial Clock and Frame Sync Rates

The serial clock rate (CLKDIV value) for internal clocks can be set using a
bit field in the CLKDIV register. For details, see Figure 4-8 on page 4-63.

I2S Control Bits

Table 4-8 on page 4-63 shows that I2S mode is simply a subset of the
Left-justified Sample Pair mode which can be invoked by setting
OPMODE = 1, LAFS = 0, and FRFS = 0.

If FRFS = 1, the Tx/Rx is on the right channel first. For normal I2S
operation (FRFS = 0), the Tx/Rx starts on the left channel first.

Several bits in the SPCTLx register Control register enable and configure
I2S operation:

• Channel enable (SPEN_A or SPEN_B)

• Word length (SLEN)

• I2S channel transfer order (FRFS)

• Master mode enable (MSTR)

• DMA enable (SDEN_A and SDEN_B)

• DMA chaining enable (SCHEN_A and SCHEN_B)

Setting Word Length (SLEN)

SPORTs handle data words containing 8 to 32 bits in I2S Mode. Pro-
grams need to set the bit length for transmitting and receiving data words.
For details, see “Word Length” on page 4-39.

The transmitter sends the MSB of the next word one clock cycle after the
word select (TFS) signal changes.
4-20 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
In I2S mode, load the FSDIV register with the same value as SLEN to trans-
mit or receive words continuously. For example, for 8-bit data words
(SLEN = 7), set FSDIV = 7.

Enabling SPORT Master Mode (MSTR)

The SPORTs transmit and receive channels can be configured for Master
or Slave mode. In Master mode, the processor generates the word select
and serial clock signals for the transmitter or receiver. In slave mode, an
external source generates the word select and serial clock signals for the
transmitter or receiver. When MSTR is cleared (=0), the processor uses an
external word select and clock source. The SPORT transmitter or receiver
is a slave. When MSTR is set (=1), the processor uses the processor’s internal
clock for word select and clock source. The SPORT transmitter or receiver
is the master. For more information, see “Setting the Internal Serial Clock
and Frame Sync Rates” on page 4-15.

Selecting Transmit and Receive Channel Order (FRFS)

In Master and Slave modes, it is possible to configure the I2S channel to
which each SPORT channel transmits or receives first. The left and right
I2S channels are time-duplexed data channels.

To select the channel order, set the FRFS bit (= 1) to transmit or receive on
the left channel first, or clear the FRFS bit (= 0) to transmit or receive on
the right channel first.

Selecting Frame Sync Options (DIFS)

When using both SPORT channels (SPORTx_DA and SPORTx_DB) as trans-
mitters and MSTR = 1, SPTRAN = 1, and DIFS = 0, the processor generates a
frame sync signal only when both transmit buffers contain data because
both transmitters share the same SPORTx_CLK and SPORTx_FS. For continu-
ous transmission, both transmit buffers must contain new data.
ADSP-2126x SHARC Processor Peripherals Manual 4-21

SPORT Operation Modes
When using both SPORT channels (SPORTx_DA and SPORTx_DB) as receiv-
ers and MSTR = 1, SPTRAN = 1, and DIFS = 0, the processor generates a frame
sync signal only when both receive buffers are not full because they share
the same SPORTx_CLK and SPORTxFS.

When using both SPORT channels as transmitters and MSTR = 1,
SPTRAN = 1 and DIFS = 1, the processor generates a frame sync signal at the
frequency set by FSDIVx whether or not the transmit buffers contain new
data. The DMA controller or the application is responsible for filling the
transmit buffers with data.

When using both SPORT channels as receivers and MSTR = 1, SPTRAN = 1
and DIFS = 1, the processor generates a frame sync signal at the frequency
set by FSDIV, irrespective of the receive buffer status. Bits 31–16 of the DIV
register comprise the FSDIV bit field. For more information, see “SPORT
Divisor Registers (DIVx)” on page A-35.

Enabling SPORT DMA (SDEN)

DMA can be enabled or disabled independently on any of the SPORT’s
transmit and receive channels. For more information, see “Moving Data
Between SPORTS and Internal Memory” on page 4-66. Set SDEN_A or
SDEN_B (=1) to enable DMA and set the channel in DMA-driven data
transfer mode. Clear SDEN_A or SDEN_B (=0) to disable DMA and set the
channel in an interrupt-driven data transfer mode.

Interrupt-Driven Data Transfer Mode

Both the A and B channels share a common interrupt vector in the inter-
rupt-driven data transfer mode, regardless of whether they are configured
as a transmitter or receiver.

The SPORT generates an interrupt when the transmit buffer has a
vacancy or the receive buffer has data. To determine the source of an
interrupt, applications must check the transmit or receive data buffer sta-
tus bits. For more information, see “Single Word Transfers” on page 4-74.
4-22 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
DMA-Driven Data Transfer Mode

Each transmitter and receiver has its own DMA registers. For details, see
“Selecting Transmit and Receive Channel Order (FRFS)” on page 4-16
and “Moving Data Between SPORTS and Internal Memory” on
page 4-66. The same DMA channel drives the left and right I2S channels
for the transmitter or the receiver. The software application must stop
multiplexing the left and right channel data received by the receive buffer,
because the left and right data is interleaved in the DMA buffers.

Channel A and B on each SPORT share a common interrupt vector. The
DMA controller generates an interrupt at the end of DMA transfer only.

Figure 4-4 shows the relationship between frame sync (word select), serial
clock, and I2S data. Timing for word select is the same as for frame sync.

The SPL bit applies to DSP Standard Serial and I2S modes only.

Figure 4-4. Word Select Timing in I2S Mode

SPORTX_CLK

SPORTX_FS/WS

LEFT-JUSTIFIED SAMPLE
PAIR MODE DATA OR

SPORTX_DA OR SPORTX_DB

MSBn

WORD n
LEFT CHANNEL

WORD n+1
RIGHT CHANNEL

LSBn MSBn+1

WORD n-1
RIGHT CHANNEL

LSBn-1
ADSP-2126x SHARC Processor Peripherals Manual 4-23

SPORT Operation Modes
Multichannel Operation
The serial ports offer a multichannel mode of operation, which allows the
SPORT to communicate in a Time Division Multiplexed (TDM) serial
system. In multichannel communications, each data word of the serial bit
stream occupies a separate channel. Each word belongs to the next consec-
utive channel. For example, a 24-word block of data contains one word
for each of the 24 channels.

The serial port can automatically select some words for particular channels
while ignoring others. Up to 128 channels are available for transmitting or
receiving or both. Each SPORT can receive or transmit data selectively
from any of the 128 channels.

Data companding and DMA transfers can also be used in Multichannel
mode on channel A. Channel B can also be used in Multichannel mode,
but companding is not available on this channel.

Although the six SPORTs are programmable for data direction in the
standard mode of operation, their programmability is restricted for multi-
channel operations. The following points summarize these limitations:

1. The primary A channels of SPORT1, 3, and 5 are capable of
expansion only, and the primary A channels of SPORT0, 2, and 4
are capable of compression only.

2. In Multichannel mode, SPORT0 and SPORT1 work in pairs;
SPORT0 is the transmit channel, and SPORT1 is the receive chan-
nel. The same is true for SPORT2, SPORT3, SPORT4, and
SPORT5.

3. Receive comparison is not supported.

In multichannel mode, SPORT0_CLK, SPORT2_CLK, and SPORT4_CLK
are input signals that are internally connected to their correspond-
ing SPORT1_CLK, SPORT3_CLK, and SPORT5_CLK signals.
4-24 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
Figure 4-5 shows an example of timing for a multichannel transfer with
SPORT pairing. The transfer has the following characteristics:

• The transfer uses the TDM method where serial data is sent or
received on different channels while sharing the same serial bus.

• The SPORT1_FS signals the start of a frame for each multichannel
SPORT pairing.

• The SPORT0_FS is used as transmit data valid for external logic. This
signal is active only during transmit channels.

• The transfer is received on channel 0 (word 0), and transmits on
channels 1 and 2 (word 1 and 2).

Figure 4-5. Multichannel Operation

SPORT1_DA
A0 IGNOREDA1A2A3

SPORT1_CLK

SPORT1_FS

SPORT0_DA
A2A3 A0 A3 A2A1

WORD 0 WORD 1 WORD 2

SPORT0_FS

SPORT1_DB
B0 IGNOREDB1B2B3

SPORT0_DB
B2B3 B0 B3 B2B1
ADSP-2126x SHARC Processor Peripherals Manual 4-25

SPORT Operation Modes
Frame Syncs in Multichannel Mode

All receiving and transmitting devices in a multichannel system must have
the same timing reference. The SPORT1_FS signal is used for this reference,
indicating the start of a block (or frame) of multichannel data words. Pairs
of SPORTs share the same frame sync signal for multichannel mode—
SPORT1_FS for SPORT0/1, SPORT3_FS for SPORT2/3, and SPORT5_FS for
SPORT4/5.

When multichannel mode is enabled on a SPORT0/1, SPORT2/3, or
SPORT4/5 pair, both the transmitter and receiver use the SPORT1_FS,
SPORT3_FS, or the SPORT5_FS signals respectively as a frame sync. This is
true whether SPORT1_FS, SPORT3_FS, or the SPORT5_FS is generated inter-
nally or externally. This signal synchronizes the channels and restarts each
multichannel sequence. The SPORT1_FS, SPORT3_FS, or SPORT5_FS signal
initiates the beginning of the channel 0 data word.

SPORTs are paired when multichannel mode is selected;
transmit/receive directions are fixed. SPORTS 0, 2, and 4 act as
transmitters, and SPORTs 1, 3, and 5 act as receivers.

The SPORT0_FS, SPORT2_FS or SPORT4_FS is used as a transmit data valid
signal, which is active during transmission of an enabled word. Because
the serial port’s SPORT0_DA/B, SPORT2_DA/B and SPORT4_DA/B signals are
three-stated when the time slot is not active, the
SPORT0_FS/SPORT2_FS/SPORT4_FS signal specifies if
SPORT0_DA/B/SPORT2_DA/B/SPORT4_DA/B is being driven by the processor.

The SPORT0_FS signal is renamed TDV01. The SPORT2_FS signal is renamed
TDV23 and the SPORT4_FS signal is renamed TDV45 in multichannel mode.
These signals become outputs. Do not connect SPORT2_FS (TDV23) to
SPORT0_FS, and SPORT4_FS (TDV45) to SPORT1_FS in multichannel mode.
Bus contention between the transmit data valid and multichannel frame
sync signals will result.
4-26 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
After the TXSPxA transmit buffer is loaded, transmission begins and the
SPORT0_FS, SPORT2_FS/SPORT4_FS signal is generated. When serial port
DMA is used, this may occur several cycles after the multichannel trans-
mission is enabled. If a deterministic start time is required, pre-load the
transmit buffer.

Active State Multichannel Receive Frame Sync Select

The LRFS bit in the SPCTL1, SPCTL3, and SPCTL5 registers selects the logic
level of the multichannel received frame sync signals as active low
(inverted) if set (=1) or active high if cleared (=0). Active high (=0) is the
default.

Multichannel Mode Control Bits

Several bits in the SPCTLx Control register enable and configure multi-
channel mode operation:

• Operation mode (OPMODE)

• Word length (SLEN)

• SPORT transmit/receive enable (SDEN_A and SDEN_B)

• Master mode enable (MSTR)

If the MCEA or MCEB bits are set (=1) in the SPMCTLxy register, the
SPEN_A and SPEN_B bits in the SPCTL register must be cleared (=0).

The SPCTLx Control registers contain several bits that enable and config-
ure multichannel operations. Refer to Table 4-6 on page 4-51.
ADSP-2126x SHARC Processor Peripherals Manual 4-27

SPORT Operation Modes
Multichannel mode is enabled by setting the MCEA or MCEB bit in the
SPMCTL01, SPMCTL23 or SPMCTL45 Control register.

• When the MCEA or MCEB bits are set (=1), multichannel operation is
enabled.

• When the MCEA or MCEB bits are cleared (=0), all multichannel oper-
ations are disabled.

Multichannel operation is activated three serial clock cycles after the MCEA
or MCEB bits are set. Internally-generated frame sync signals activate four
serial clock cycles after the MCEA or MCEB bits are set.

Setting the MCEA or MCEB bits enables multichannel operation for both
receive and transmit sides of the SPORT0/1, SPORT2/3 or SPORT4/5
pair. A transmitting SPORT0, 2, or 4 must be in multichannel mode if
the receiving SPORT1, 3, or 5 is in multichannel mode.

Select the number of channels used in multichannel operation by using
the 7-bit NCH field in the Multichannel Control register. Set NCH to the
actual number of channels minus one:

NCH = Number of channels – 1

The 7-bit CHNL field in the multichannel control registers indicates the
channel that is currently selected during multichannel operation. This
field is a read-only status indicator. The CHNL(6:0) bits increment modulo
NCH(6:0) as each channel is serviced.

The 4-bit MFD field (bits 4-1) in the Multichannel Control registers
(SPMCTL01, SPMCTL23, and SPMCTL45) specifies a delay between the frame
sync pulse and the first data bit in multichannel mode. The value of MFD is
the number of serial clock cycles of the delay. Multichannel frame delay
allows the processor to work with different types of telephony interface
devices.
4-28 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
A value of zero for MFD causes the frame sync to be concurrent with the
first data bit. The maximum value allowed for MFD is 15. A new frame sync
may occur before data from the last frame has been received, because
blocks of data occur back to back.

Receive Multichannel Frame Sync Source

Bit 14 (IMFS) in the SPCTL1, SPCTL3 and SPCTL5 registers selects whether
the serial port uses an internally generated frame sync (if set, =1) or frame
sync from an external (if cleared, =0) source.

Active State Transmit Data Valid

Bit 16 (LTDV) in the SPCTL0, SPCTL2 and SPCTL4 registers selects the logic
level of the transmit data valid signals (TDV01, TDV23, TDV45) as active low
(inverted) if set (=1) or active high if cleared (=0). These signals are actu-
ally SPORT0_FS, SPORT2_FS and SPORT4_FS reconfigured as outputs during
multichannel operation. They indicate which timeslots have valid data to
transmit. Active high (0) is the default.

Multichannel Status Bits

Bit 29 (ROVF) in the SPCTL1, SPCTL3, SPCTL5 registers provides status infor-
mation. This bit indicates if the channel has received new data if set (=1)
or not if cleared (=0) while the RXSPxA buffer is full. New data overwrites
existing data.

Bits 31-30 (RXS_A) in the SPCTL1, SPCTL3, SPCTL5 registers indicate the sta-
tus of the channel’s receive buffer contents as follows: 00 = buffer empty,
01 = reserved, 10 = buffer partially full, 11 = buffer full.

The SPCTL0, SPCTL2, SPCTL4 Bit 29 (TUVF_A). The Transmit Underflow
Status (sticky, read-only) bit indicates (if set, =1) if the multichannel
SPORTx_FS signal (from internal or external source) occurred while the TXS
buffer was empty. The SPORTs transmit data whenever they detect a
SPORTx_FS signal. If cleared (=0), no SPORTx_FS signal occurred.
ADSP-2126x SHARC Processor Peripherals Manual 4-29

SPORT Operation Modes
This bit applies to Multichannel mode only when the SPORTs are
configured as transmitters.

Bits 31-30 (TXS_A) in the SPCTL0, SPCTL2, SPCTL4 registers indicate the sta-
tus of the serial port channel’s transmit buffer as follows: 11= buffer full,
00=buffer empty, 10=buffer partially full. These bits apply to Multichan-
nel mode only.

Channel Selection Registers

Specific channels can be individually enabled or disabled to select the
words that are received and transmitted during multichannel communica-
tions. Data words from the enabled channels are received or transmitted,
while disabled channel words are ignored. Up to 128 channels are avail-
able for transmitting and receiving.

The Multichannel Selection registers enable and disable individual chan-
nels. The registers for each serial port are shown in Table 4-2.

Table 4-2. Multichannel Selection Registers

Register Names Function

MR1CS(0–3)
MR3CS(0–3)
MR5CS(0–3)

Multichannel Receive Select specifies the active receive channels
(4x32-bit registers for 128 channels).

MT0CS(0–3)
MT2CS(0–3)
MT4CS(0–3)

Multichannel Transmit Select specifies the active transmit channels
(4x32-bit registers for 128 channels).

MR1CCS(0–3)
MR3CCS(0–3)
MR5CCS(0–3)

Multichannel Receive Compand Select specifies which active receive
channels (out of 128 channels) are companded.

MT0CCS(0–3)
MT2CCS(0–3)
MT4CCS(0–3)

Multichannel Transmit Compand Select specifies which active trans-
mit channels (out of 128 channels) are companded.
4-30 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
Each of the four Multichannel Enable and Compand Select registers are
32 bits in length. These registers provide channel selection for 128 (32
bits x 4 channels = 128) channels. Setting a bit enables that channel so
that the serial port selects its word from the multiple-word block of data
(for either receive or transmit). For example, setting bit 0 in MT0CS0 or
MT2CS0 selects word 0, setting bit 12 selects word 12, and so on. Setting bit
0 in MT0CS1 or MT2CS1 selects word 32, setting bit 12 selects word 44, and
so on.

Setting a particular bit to 1 in the MT0CS (0–3), MT2CS (0–3) or MT4CS (0–3)
register causes SPORT0, 2, or 4 to transmit the word in that channel’s
position of the data stream. Clearing the bit in the register causes
SPORT0’s SPORT0_DA/B, SPORT2’s SPORT2_DA/B or SPORT4’s
SPORT4_DA data transmit signal to three-state during the time slot of that
channel.

Setting a particular bit to 1 in the MR1CS(0-3), MR3CS(0-3) or MR5CS(0-3)
register causes the serial port to receive the word in that channel’s position
of the data stream. The received word is loaded into the receive buffer.
Clearing the bit in the register causes the serial port to ignore the data.

Companding may be selected on a per-channel basis. Setting a bit to 1 in
any of the multichannel registers specifies that the data be companded for
that channel. A-law or μ-law companding can be selected using the DTYPE
bit in the SPCTLx control registers. SPORT1, 3, and 5 expand selected
incoming time slot data, while SPORT0, 2, and 4 compress selected out-
going time slot data.

SPORT Loopback

When the SPORT loopback bit, SPL bit 12 is set in the SPMCTL01,
SPMCTL23, or SPMCTL45 control registers, the serial port is configured in an
internal loopback connection as follows: SPORT0 and SPORT1 work as a
pair for internal loopback, SPORT2 and SPORT3 work as pairs, and
SPORT4 and SPORT5 work as pairs. The Loopback mode enables pro-
grams to test the serial ports internally and to debug applications.
ADSP-2126x SHARC Processor Peripherals Manual 4-31

SPORT Operation Modes
When loopback is configured the:

• SPORTx_DA, SPORTx_DB, SPORTx_CLK and SPORTx_FS signals of
SPORT0 and SPORT1 are internally connected (where x = 0 or 1)

• The SPORTy_DA, SPORTy_DB, SPORTy_CLK, and SPORTy_FS signals of
SPORT2 and SPORT3 are internally connected (where y = 2 or 3)

• The SPORTz_DA, SPORTz_DB, SPORTz_CLK and SPORTz_FS signals of
SPORT4 and SPORT5 are internally connected (where z = 4 or 5)

In Loopback mode, either of the two paired SPORTS can be transmitters
or receivers. One SPORT in the loopback pair must be configured as a
transmitter; the other must be configured as a receiver. For example,
SPORT0 can be a transmitter and SPORT1 can be a receiver for internal
loopback. Or, SPORT0 can be a receiver and SPORT1 can be the trans-
mitter when setting up internal loopback. The processor ignores external
activity on the SPORTx_CLK, SPORTx_FS A and B channel data signals when
the SPORT is configured in Loopback mode. This prevents contention
with the internal loopback data transfer.

Only transmit clock and transmit frame sync options may be used
in loopback mode—programs must ensure that the serial port is set
up correctly in the SPCTLx control registers. Multichannel mode is
not allowed. Only Standard DSP Serial, Left-justified Sample Pair,
and I2S modes support internal loopback. In loopback, each
SPORT can be configured as transmitter or receiver, and each one
is capable of generating internal frame sync and clock.

Any of the three paired SPORTs can be set up to transmit or receive,
depending on their SPTRAN bit configurations.
4-32 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
Clock Signal Options
Each serial port has a clock signal (SPORTx_CLK) for transmitting and
receiving data on the two associated data signals. The clock signals are
configured by the ICLK and CKRE bits of the SPCTLx Control registers. A
single clock signal clocks both A and B data signals (either configured as
inputs or outputs) to receive or transmit data at the same rate.

The serial clock can be independently generated internally or input from
an external source. The ICLK bit of the SPCTLx Control registers deter-
mines the clock source.

When ICLK is set (=1), the clock signal is generated internally by the pro-
cessor and the SPORTx_CLK signals are outputs. The clock frequency is
determined by the value of the serial clock divisor (CLKDIV) in the DIVx
registers.

When ICLK is cleared (=0), the clock signal is accepted as an input on the
SPORTx_CLK signals, and the serial clock divisors in the DIVx registers are
ignored. The externally-generated serial clock does not need to be syn-
chronous with the processor system clock. Refer to Table 4-8 on
page 4-63.

Frame Sync Options
Framing signals indicate the beginning of each serial word transfer. A vari-
ety of framing options are available on the SPORTs. The SPORTx_FS
signals are independent and are separately configured in the Control
register.
ADSP-2126x SHARC Processor Peripherals Manual 4-33

Frame Sync Options
Framed Versus Unframed Frame Syncs
The use of frame sync signals is optional in serial port communications.
The FSR (transmit frame sync required) control bit determines whether
frame sync signals are used. Active low or high frame syncs are selected
using the LFS bit. This bit is located in the SPCTLx control registers.

When FSR is set (=1), a frame sync signal is required for every data word.
To allow continuous transmission from the processor, each new data word
must be loaded into the transmit buffer before the previous word is shifted
out and transmitted.

When FSR is cleared (=0), the corresponding frame sync signal is not
required. A single frame sync is required to initiate communications but it
is ignored after the first bit is transferred. Data words are then transferred
continuously in what is referred to as an unframed mode.

When DMA is enabled in a mode where frame syncs are not required,
DMA requests may be held off by chaining or may not be serviced fre-
quently enough to guarantee continuous unframed data flow.

Figure 4-6 illustrates framed serial transfers.

Figure 4-6. Framed Versus Unframed Data

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

SPORTX_CLK

FRAMED
DATA

UNFRAMED

DATA
4-34 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
Internal Versus External Frame Syncs
Both transmit and receive frame syncs can be generated internally or input
from an external source. The IFS bit of the SPCTLx Control register deter-
mines the frame sync source.

When IFS is set (=1), the corresponding frame sync signal is generated
internally by the processor, and the SPORTx_FS signal is an output. The
frequency of the frame sync signal is determined by the value of the frame
sync divisor (FSDIV) in the DIVx register. Refer to Figure 4-8 on page 4-63.

When IFS is cleared (=0), the corresponding frame sync signal is accepted
as an input on the SPORTx_FS signals, and the frame sync divisors in the
DIVx registers are ignored.

All frame sync options are available whether the signal is generated inter-
nally or externally.

Active Low Versus Active High Frame Syncs
Frame sync signals may be active high or active low (for example,
inverted). The LFS bit of the SPCTLx Control register determines the frame
sync’s logic level.

• When LFS is cleared (=0), the corresponding frame sync signal is
active high.

• When LFS is set (=1), the corresponding frame sync signal is active
low.

Active high frame syncs are the default. The LFS bit is initialized to zero
after a processor reset.

Active low or active high frame syncs are selected using the LTDV and LRFS
bits. These bits are located in the SPCTLx Control registers.
ADSP-2126x SHARC Processor Peripherals Manual 4-35

Frame Sync Options
Sampling Edge for Data and Frame Syncs
Data and frame syncs can be sampled on the rising or falling edges of the
serial port clock signals. The CKRE bit of the SPCTLx Control registers
selects the sampling edge.

For sampling receive data and frame syncs, setting CKRE to 1 in the SPCTLx
register selects the rising edge of SPORTx_CLK. When CKRE is cleared (=0),
the processor selects the falling edge of SPORTx_CLK for sampling receive
data and frame syncs. Note that transmit data and frame sync signals
change their state on the clock edge that is not selected.

For example, the transmit and receive functions of any two serial ports
connected together should always select the same value for CKRE so inter-
nally-generated signals are driven on one edge and received signals are
sampled on the opposite edge.

Early Versus Late Frame Syncs
Frame sync signals can be early or late. Frame sync signals can occur dur-
ing the first bit of each data word or during the serial clock cycle
immediately preceding the first bit. The LAFS bit of the SPCTLx Control
register configures this option.

When LAFS is cleared (=0), early frame syncs are configured. This is the
normal mode of operation. In this mode, the first bit of the transmit data
word is available (and the first bit of the receive data word is latched) in
the serial clock cycle after the frame sync is asserted. The frame sync is not
checked again until the entire word has been transmitted (or received). In
multichannel operation, this is the case when the frame delay is one.

If data transmission is continuous in early Framing mode (for example,
the last bit of each word is immediately followed by the first bit of the next
word), the frame sync signal occurs during the last bit of each word. Inter-
nally generated frame syncs are asserted for one clock cycle in early
Framing mode.
4-36 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
When LAFS is set (=1), late frame syncs are configured. In this mode, the
first bit of the transmit data word is available (and the first bit of the
receive data word is latched) in the same serial clock cycle that the frame
sync is asserted. In multichannel operation, this is the case when frame
delay is zero. Receive data bits are latched by serial clock edges, but the
frame sync signal is checked only during the first bit of each word. Inter-
nally-generated frame syncs remain asserted for the entire length of the
data word in late Framing mode. Externally-generated frame syncs are
only checked during the first bit. They do not need to be asserted after
that time period.

Figure 4-7 illustrates the two modes of frame signal timing.

Data-Independent Frame Sync
When transmitting data out of the SPORT (SPTRAN = 1), the inter-
nally-generated frame sync signal normally is output-only when the
transmit buffer has data ready to transmit. The Data-Independent Frame
Sync (DIFS) mode allows the continuous generation of the SPORTx_FS sig-
nal, with or without new data in the register. The DIFS bit of the SPCTLx
Control register configures this option.

Figure 4-7. Normal Versus Alternate Framing

B3 B2 B1 B0
...

SPORTX_CLK

LATE

FRAME
SYNC

DATA

EARLY

FRAME

SYNC
ADSP-2126x SHARC Processor Peripherals Manual 4-37

Frame Sync Options
When SPTRAN = 1, the DIFS bit selects whether the serial port uses a
data-independent transmit frame sync (sync at selected interval, if set to 1)
or a data-dependent transmit frame sync. When SPTRAN = 0, this bit selects
whether the serial port uses a data-independent receive frame sync or a
data-dependent receive frame sync.

When DIFS = 0 and SPTRAN = 1, the internally-generated transmit frame
sync is only output when a new data word has been loaded into the
SPORT channel’s transmit buffer. Once data is loaded into the transmit
buffer, it is not transmitted until the next frame sync is generated. This
mode of operation allows data to be transmitted only at specific times.
When DIFS = 0 and SPTRAN = 0, a receive SPORTx_FS signal is generated
only when receive data buffer status is not full.

When DIFS = 1 and SPTRAN = 1, the internally-generated transmit frame
sync is output at its programmed interval regardless of whether new data is
available in the transmit buffer. The processor generates the transmit
SPORTx_FS signal at the frequency specified by the value loaded in the DIV
register. If a frame sync occurs when the transmitter FIFO is empty, the
MSB or LSB (depending on how the LSBF bit in SPCTL is set) of the previ-
ous word is transmitted. When DIFS = 1 and SPTRAN = 0, a receive
SPORTx_FS signal is generated regardless of the receive data buffer status.

Depending on the SPORT operating mode, the Transmitter Underflow
(TUVF_A or TUVF_B) bit is set if the transmit buffer does not have new data
when a frame sync occurs; or a Receive Overflow bit (ROVF_A or ROVF_B) is
set if the receive buffers are full and a new data word is received.

If the internally-generated frame sync is used and DIFS=0, a single write to
the transmit data register is required to start the transfer.
4-38 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
Data Word Formats
The format of the data words transmitted over the serial ports is config-
ured by the DTYPE, LSBF, SLEN, and PACK bits of the SPCTLx control
registers.

Word Length
Serial ports can process word lengths of 3 to 32 bits for Serial and Multi-
channel modes and 8 to 32 bits for I2S mode. Word length is configured
using the 5-bit SLEN field in the SPCTLx Control registers. Refer to
Table 4-1 on page 4-10 for further information.

The value of SLEN is:

SLEN = serial word length – 1

Do not set the SLEN value to 0 or 1. Words smaller than 32 bits are
right-justified in the receive and transmit buffers, residing in the least sig-
nificant (LSB) bit positions.

Although serial ports process word lengths of 3 to 32 bits, transmitting or
receiving words smaller than 7 bits at one-quarter the full clock rate of the
processor may cause incorrect operation when DMA chaining is enabled.
Chaining disables the processor’s internal I/O bus for several cycles while
the new transfer control block (TCB) parameters are being loaded.
Receive data may be lost (for example, overwritten) during this period.

Transmitting or receiving words smaller than five bits may cause incorrect
operation when all the DMA channels are enabled with no DMA
chaining.
ADSP-2126x SHARC Processor Peripherals Manual 4-39

Data Word Formats
Endian Format
Endian format determines whether serial words transmit MSB-first or
LSB-first. Endian format is selected by the LSBF bit in the SPCTLx Control
registers. When LSBF = 0, serial words transmit (or receive) MSB-first.
When LSBF = 1, serial words transmit (or receive) LSB-first.

Data Packing and Unpacking
Received data words of 16 bits or less may be packed into 32-bit words,
and 32-bit words being transmitted may be unpacked into 16-bit words.
Word packing and unpacking is selected by the PACK bit in the SPCTLx
control registers.

When PACK = 1 in the Control register, two successive words received are
packed into a single 32-bit word, and each 32-bit word is unpacked and
transmitted as two 16-bit words.

The first 16-bit (or smaller) word is right-justified in bits 15–0 of the
packed word, and the second 16-bit (or smaller) word is right-justified in
bits 31–16. This applies to both receive (packing) and transmit (unpack-
ing) operations. Companding can be used when word packing or
unpacking is being used.

When serial port data packing is enabled, the transmit and receive inter-
rupts are generated for the 32-bit packed words, not for each 16-bit word.

When 16-bit received data is packed into 32-bit words and stored
in normal word space in processor internal memory, the 16-bit
words can be read or written with short word space addresses.
4-40 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
Data Type

The DTYPE field of the SPCTLx Control registers specifies one of four data
formats (for non-multichannel operation) shown in Table 4-3. This bit
field is reserved for I2S mode. In DSP Serial mode, if companding is
selected for primary A channel, the secondary B channel performs a
zero-fill.

In Multichannel mode, channel B looks at XDTYPE[0] only.
If DTYPE[0] = 1 sign-extend
If DTYPE[0] = 0 zero-fill

These formats are applied to serial data words loaded into the receive and
transmit buffers. Transmit data words are not zero-filled or sign-extended,
because only the significant bits are transmitted.

Table 4-3. DTYPE and Data Formatting (DSP Serial Mode)

DTYPE Data Formatting

00 Right-justify, zero-fill unused MSBs

01 Right-justify, sign-extend into unused MSBs

10 Compand using μ-law (primary A channels only)

11 Compand using A-law (primary A channels only)

Table 4-4. DTYPE and Data Formatting (Multichannel)

DTYPE Data Formatting

x0 Right-justify, zero-fill unused MSBs

x1 Right-justify, sign-extend into unused MSBs

0x Compand using μ-law (primary A channels only)

1x Compand using A-law (primary A channels only)
ADSP-2126x SHARC Processor Peripherals Manual 4-41

Data Word Formats
Linear transfers occur in the primary channel, if the channel is active and
companding is not selected for that channel. Companded transfers occur
if the channel is active and companding is selected for that channel. The
Multichannel Compand Select registers, MTxCCSy and MRxCCSy, specify the
transmit and receive channels that are companded.

Transmit or receive sign extension is selected by bit 0 of DTYPE in the
SPCTLx register and is common to all transmit or receive channels. If bit 0
of DTYPE is set, sign extension occurs on selected channels that do not have
companding selected. If this bit is not set, the word contains zeros in the
MSB positions. Companding is not supported for B channel. For B chan-
nels, transmit or receive sign extension is selected by bit 0 of DTYPE in the
SPCTLx register.

Companding

Companding (compressing/expanding) is the process of logarithmically
encoding and decoding data to minimize the number of bits that must be
sent. The serial ports support the two most widely used companding algo-
rithms, A-law and μ-law, performed according to the CCITT G.711
specification. The type of companding can be selected independently for
each SPORT. Companding is selected by the DTYPE field of the SPCTLx
Control register.

Companding is supported on the A channel only. SPORTs 0, 2,
and 4 primary channels are capable of compression, while SPORTs
1, 3, and 5 primary channels are capable of expansion.
In Multichannel mode, when companding is enabled, the number
of channels must be programmed via the NCH bit in the SPMCTLxy
register before writing to the transmit FIFO. The MTxCSn and MTx-
CCsn registers should also be written before writing to transmit
FIFO.

When companding is enabled, the data in the RXSPxA buffers is the
right-justified, sign-extended expanded value of the eight received LSBs. A
write to TXSPxA compresses the 32-bit value to eight LSBs (zero-filled to
4-42 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
the width of the transmit word) before it is transmitted. If the 32-bit value
is greater than the 13-bit A-law or 14-bit μ-law maximum, it is automati-
cally compressed to the maximum value.

Since the values in the transmit and receive buffers are actually com-
panded in place, the companding hardware can be used without
transmitting (or receiving) any data, for example during testing or debug-
ging. This operation requires one cycle of overhead, as described below.
For companding to execute properly, program the SPORT registers prior
to loading data values into the SPORT buffers.

To compand data in place without transmitting:

1. Set the SPTRAN bit to 1 in the SPCTLx register. The SPEN_A and
SPEN_B bits should be =0.

2. Enable companding in the DTYPE field of the SPCTLx Transmit
Control register.

3. Write a 32-bit data word to the transmit buffer. Companding is
calculated in this cycle.

4. Wait one cycle. A NOP instruction can be used to cause this delay; if
a NOP is not inserted, the processor core is paused for one cycle any-
way. This allows the serial port companding hardware to reload the
transmit buffer with the companded value.

5. Read the 8-bit companded value from the transmit buffer.

To expand data in place, use the same sequence of operations (above) with
the receive buffer instead of the transmit buffer. When expanding data in
this way, set the appropriate serial word length (SLEN) in the SPCTLx Con-
trol register.
ADSP-2126x SHARC Processor Peripherals Manual 4-43

SPORT Control Registers and Data Buffers
With companding enabled, interfacing the serial port to a codec requires
little additional programming effort. If companding is not selected, two
formats are available for received data words of fewer than 32 bits—one
that fills unused MSBs with zeros, and another that sign-extends the MSB
into the unused bits.

SPORT Control Registers and Data Buffers
The ADSP-2126x processor has six serial ports. Each SPORT has two data
paths corresponding to channel A and channel B. These data buffers are
TXSPxA and RXSPxA (primary) and TXSPxB and RXSPxB (secondary). Chan-
nel A and B in all six SPORTS operate synchronously to their respective
SPORTx_CLK and FSx signals. Companding is supported only on primary A
channels.

The registers used to control and configure the serial ports are part of the
IOP register set. Each SPORT has its own set of 32-bit control registers
and data buffers. The SPORT registers are described in Table 4-5.

The SPORT Control registers are programmed by writing to the appro-
priate address in memory. The symbolic names of the registers and
individual control bits can be used in programs. The definitions for these
symbols are contained in the file def2126x.h located in the INCLUDE direc-
tory of the ADSP-21xxx DSP Development Software. All control and
status bits in the SPORT registers are active high unless otherwise noted.

Since the SPORT registers are memory-mapped, they cannot be written
with data directly from memory. Instead, they must be written from (or
read into) processor core registers, usually one of the general-purpose Uni-
versal registers (R0–R15) of the register file or one of the general-purpose
Universal Status registers (USTAT1–USTAT4). The SPORT Control registers
can also be written or read by external devices (for example, another pro-
cessor or a host processor) to set up a serial port DMA operation.
4-44 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
Table 4-5 provides a complete list of the SPORT registers in IOP address
order, showing the memory-mapped IOP address and a brief description
of each register.

Table 4-5. SPORT Registers

IOP
Address

Register Reset Description

0x400 SPCTL2 0x0000 0000 SPORT2 Serial Control Register

0x401 SPCTL3 0x0000 0000 SPORT3 Serial Control Register

0x402 DIV2 None SPORT2 Divisor for Transmit/Receive
SPORT2_CLK and SPORT2_FS

0x403 DIV3 None SPORT3 Divisor for Transmit/Receive
SPORT3_CLK and SPORT3_FS

0x404 SPMCTL23 None SPORT 2/3 Multichannel Control Register

0x405 MT2CS0 None SPORT2 Multichannel Transmit Select 0
(Channel 31-0)

0x406 MT2CS1 None SPORT2 Multichannel Transmit Select 1
(Channel 63-32)

0x407 MT2CS2 None SPORT2 Multichannel Transmit Select 2
(Channel 95–64)

0x408 MT2CS3 None SPORT2 Multichannel Transmit Select 3
(Channel 127–96)

0x409 MR3CS0 None SPORT3 Multichannel Receive Select 0
(Channel 31–0)

0x40A MR3CS1 None SPORT3 Multichannel Receive Select 1
(Channel 63–32)

0x40B MR3CS2 None SPORT3 Multichannel Receive Select 2
(Channel 95–64)

0x40C MR3CS3 None SPORT3 Multichannel Receive Select 3
(Channel 127–96)

0x40D MT2CCS0 None SPORT2 Multichannel Transmit Compand Select 0
(Channel 31–0)
ADSP-2126x SHARC Processor Peripherals Manual 4-45

SPORT Control Registers and Data Buffers
0x40E MT2CCS1 None SPORT2 Multichannel Transmit Compand Select 1
(Channel 63–32)

0x40F MT2CCS2 None SPORT2 Multichannel Transmit Compand Select 2
(Channel 95–64)

0x410 MT2CCS3 None SPORT2 Multichannel Transmit Compand Select 3
(Channel 127–96)

0x411 MR3CCS0 None SPORT3 Multichannel Receive Compand Select 0
(Channel 31–0)

0x412 MR3CCS1 None SPORT3 Multichannel Receive Compand Select 1
(Channel 63–32)

0x413 MR3CCS2 None SPORT3 Multichannel Receive Compand Select 2
(Channel 95–64)

0x414 MR3CCS3 None SPORT3 Multichannel Receive Compand Select 3
(Channel 127–96)

0x460 TXSP2A None SPORT2 Transmit Data Buffer; A channel data

0x461 RXSP2A None SPORT2 Receive Data Buffer; A channel data

0x462 TXSP2B None SPORT2 Transmit Data Buffer; B channel data

0x463 RXSP2B None SPORT2 Receive Data Buffer; B channel data

0x464 TXSP3A None SPORT3 Transmit Data Buffer; A channel data

0x465 RXSP3A 0x0000 0000 SPORT3 Receive Data Buffer; A channel data

0x466 TXSP3B 0x0000 0000 SPORT3 Transmit Data Buffer; B channel data

0x467 RXSP3B 0x0000 0000 SPORT3 Receive Data Buffer; B channel data

0x800 SPCTL4 0x0000 0000 SPORT4 Serial Control Register

0x801 SPCTL5 0x0000 0000 SPORT5 Serial Control Register

0x802 DIV4 0x0000 0000 SPORT4 Divisor for Transmit/Receive
SPORT4_CLK and SPORT4_FS

Table 4-5. SPORT Registers (Cont’d)

IOP
Address

Register Reset Description
4-46 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
0x803 DIV5 0x0000 0000 SPORT5 Divisor for Transmit/Receive
SPORT4_CLK and SPORT5_FS

0x804 SPMCTL45 0x0000 0000 SPORT 4/5 Multichannel Control Register

0x805 MT4CS0 0x0000 0000 SPORT4 Multichannel Transmit Select 0
(Channel 31–0)

0x806 MT4CS1 0x0000 0000 SPORT4 Multichannel Transmit Select 1
(Channel 63–32)

0x807 MT4CS2 0x0000 0000 SPORT4 multichannel transmit select 2
(Channel 95–64)

0x808 MT4CS3 0x0000 0000 SPORT4 multichannel transmit select 3
(Channel 127–96)

0x809 MR5CS0 0x0000 0000 SPORT5 Multichannel Receive Select 0
(Channel 31–0)

0x80A MR5CS1 0x0000 0000 SPORT5 Multichannel Receive Select 1
(Channel 63–32)

0x80B MR5CS2 0x0000 0000 SPORT5 Multichannel Receive Select 2
(Channel 95–64)

0x80C MR5CS3 0x0000 0000 SPORT5 Multichannel Receive Select 3
(Channel 127–96)

0x80D MT4CCS0 0x0000 0000 SPORT4 Multichannel Transmit Compand Select 0
(Channel 31–0)

0x80E MT4CCS1 0x0000 0000 SPORT4 Multichannel Transmit Compand Select 1
(Channel 63–32)

0x80F MT4CCS2 0x0000 0000 SPORT4 Multichannel Transmit Compand Select 2
(Channel 95–64)

0x810 MT4CCS3 0x0000 0000 SPORT4 Multichannel Transmit Compand Select 3
(Channel 127–96)

0x811 MR5CCS0 0x0000 0000 SPORT5 Multichannel Receive Compand Select
0(Channel 31–0)

Table 4-5. SPORT Registers (Cont’d)

IOP
Address

Register Reset Description
ADSP-2126x SHARC Processor Peripherals Manual 4-47

SPORT Control Registers and Data Buffers
0x812 MR5CCS1 0x0000 0000 SPORT5 Multichannel Receive Compand Select 1
(Channel 63–32)

0x813 MR5CCS2 0x0000 0000 SPORT5 Multichannel Receive Compand Select 2
(Channel 95–64)

0x814 MR5CCS3 0x0000 0000 SPORT5 Multichannel Receive Compand Select 3
(Channel 127–96)

0x860 TXSP4A 0x0000 0000 SPORT4 Transmit Data Buffer; A channel data

0x861 RXSP4A 0x0000 0000 SPORT4 Receive Data Buffer; A channel data

0x862 TXSP4B 0x0000 0000 SPORT4 Transmit Data Buffer; B channel data

0x863 RXSP4B 0x0000 0000 SPORT4 Receive Data Buffer; B channel data

0x864 TXSP5A 0x0000 0000 SPORT5 Transmit Data Buffer; A channel data

0x865 RXSP5A 0x0000 0000 SPORT5 Receive Data Buffer; A channel data

0x866 TXSP5B 0x0000 0000 SPORT5 Transmit Data Buffer; B channel data

0x867 RXSP5B 0x0000 0000 SPORT5 Receive Data Buffer; B channel data

0xC00 SPCTL0 0x0000 0000 SPORT0 Serial Control Register

0xC01 SPCTL1 0x0000 0000 SPORT1 Serial Control Register

0xC02 DIV0 0x0000 0000 SPORT0 Divisor for Transmit/Receive
SPORT0_CLK and SPORT0_FS

0xC03 DIV1 0x0000 0000 SPORT1 Divisor for Transmit/Receive
SPORT1_CLK and SPORT1_FS

0xC04 SPMCTL01 0x0000 0000 SPORT 0/1 Multichannel Control Register

0xC05 MT0CS0 0x0000 0000 SPORT0 Multichannel Transmit Select 0
(Channels 31–0)

0xC06 MT0CS1 0x0000 0000 SPORT0 Multichannel Transmit Select 1
(Channels 63–32)

0xC07 MT0CS2 0x0000 0000 SPORT0 Multichannel Transmit Select 2
(Channels 95–64)

Table 4-5. SPORT Registers (Cont’d)

IOP
Address

Register Reset Description
4-48 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
0xC08 MT0CS3 0x0000 0000 SPORT0 Multichannel Transmit Select 3
(Channels 127–96)

0xC09 MR1CS0 0x0000 0000 SPORT1 Multichannel Receive Select 0
(Channels 31–0)

0xC0A MR0CS1 0x0000 0000 SPORT0 Multichannel Receive Select 1
(Channels 63–32)

0xC0B MR0CS2 0x0000 0000 SPORT0 Multichannel Receive Select 2
(Channels 95–64)

0xC0C MR1CS3 0x0000 0000 SPORT0 Multichannel Receive Select 3
(Channels 127–96)

0xC0D MT0CCS0 0x0000 0000 SPORT0 Multichannel Transmit Compand Select 0
(Channels 31–0)

0xC0E MT0CCS1 0x0000 0000 SPORT0 Multichannel Transmit Compand Select 1
(Channels 63–32)

0xC0F MT0CCS2 0x0000 0000 SPORT0 multichannel transmit compand select 2
(Channels 95–64)

0xC10 MT0CCS3 0x0000 0000 SPORT0 Multichannel Transmit Compand Select 3
(Channels 127–96)

0xC11 MR1CCS0 0x0000 0000 SPORT1 Multichannel Receive Compand Select 0
(Channels 31–0)

0xC12 MR1CCS1 0x0000 0000 SPORT1 Multichannel Receive Compand Select 1
(Channels 63–32)

0xC13 MR1CCS2 0x0000 0000 SPORT1 Multichannel Receive Compand Select 2
(Channels 95–64)

0xC14 MR1CCS3 0x0000 0000 SPORT1 Multichannel Receive Compand select 3
(Channels 127–96)

0xC60 TXSP0A 0x0000 0000 SPORT0 Transmit Data Buffer; A channel data

0xC61 RXSP0A 0x0000 0000 SPORT0 Receive Data Buffer; A channel data

0xC62 TXSP0B 0x0000 0000 SPORT0 Transmit Data Buffer; B channel data

Table 4-5. SPORT Registers (Cont’d)

IOP
Address

Register Reset Description
ADSP-2126x SHARC Processor Peripherals Manual 4-49

SPORT Control Registers and Data Buffers
Register Writes and Effect Latency
SPORT register writes are internally completed at the end of three (worst
case) or two (best case) core clock cycles. The newly written value to the
SPORT register can be read back on the next cycle. Reads of the SPORT
registers take four core clock cycles.

After a write to a SPORT register, control and mode bit changes take
effect in the second serial clock cycle. The serial ports are ready to start
transmitting or receiving three serial clock cycles after they are enabled in
the SPCTLx control register. No serial clocks are lost from this point on.

Serial Port Control Registers (SPCTLx)
The main control register for each serial port is the Serial Port Control
register, SPCTLx. These registers are described in “SPORT Serial Control
Registers (SPCTLx)” on page A-19. When changing operating modes,
clear the Serial Port Control register before the new mode is written to the
register.

There is one Global Control and Status register for each paired SPORT
(SPORT0/1, SPORT 2/3 and SPORT 4/5) for multichannel operation.
These are SPMCTL01, SPMCTL23, or SPMCTL45. These registers define the
number of channels, provide the status of the current channel, enable

0xC63 RXSP0B 0x0000 0000 SPORT0 Receive Data Buffer; B channel data

0xC64 TXSP1A 0x0000 0000 SPORT1 Transmit Data Buffer; A channel data

0xC65 RXSP1A 0x0000 0000 SPORT1 Receive Data Buffer; A channel data

0xC66 TXSP1B 0x0000 0000 SPORT1 Transmit Data Buffer; B channel data

0xC67 RXSP1B 0x0000 0000 SPORT1 Receive Data Buffer; B channel data

Table 4-5. SPORT Registers (Cont’d)

IOP
Address

Register Reset Description
4-50 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
multichannel operation, and set the multichannel frame delay. These reg-
isters are described in “SPORT Multichannel Control Registers
(SPMCTLxy)” on page A-28.

The SPCTLx registers control the operating modes of the serial ports for the
I/O processor. Table 4-6 lists all the bits in the SPCTLx register.

Table 4-6. SPCTLx Control Bit Comparison in Four SPORT Operation
Modes

Bit
Standard DSP
Serial Mode

Left-justified and I2S
Sample Pair Mode

Multichannel Mode

Transmit Control
Bits (SPORT0, 2,
and 4)

Receive Control
Bits (SPORT1, 3,
and 5)

0 SPEN_A SPEN_A Reserved Reserved

1 DTYPE Reserved DTYPE DTYPE

2 DTYPE Reserved DTYPE DTYPE

3 LSBF Reserved LSBF LSBF

4 SLEN0 SLEN0 SLEN0 SLEN0

5 SLEN1 SLEN1 SLEN1 SLEN1

6 SLEN2 SLEN2 SLEN2 SLEN2

7 SLEN3 SLEN3 SLEN3 SLEN3

8 SLEN4 SLEN4 SLEN4 SLEN4

9 PACK PACK PACK PACK

10 ICLK MSTR Reserved ICLK

11 OPMODE OPMODE OPMODE OPMODE

12 CKRE Reserved CKRE CKRE

13 FSR Reserved Reserved Reserved

14 IFS Reserved Reserved IMFS

15 DIFS DIFS Reserved Reserved
ADSP-2126x SHARC Processor Peripherals Manual 4-51

SPORT Control Registers and Data Buffers
The following bits, listed in bit number order, control serial port modes
and are part of the SPCTLx (transmit and receive) Control registers. Other
bits in the SPCTLx registers set up DMA and I/O processor-related serial

16 LFS FRFS LTDV LRFS

17 LAFS LAFS Reserved Reserved

18 SDEN_A SDEN_A SDEN_A SDEN_A

19 SCHEN_A SCHEN_A SCHEN_A SCHEN_A

20 SDEN_B SDEN_B SDEN_B SDEN_B

21 SCHEN_B SCHEN_B SCHEN_B SCHEN_B

22 FS_BOTH No effect Reserved Reserved

23 BHD BHD BHD BHD

24 SPEN_B SPEN_B Reserved Reserved

25 SPTRAN SPTRAN Reserved Reserved

26 ROVF_B, or
TUVF_B

ROVF_B, or
TUVF_B

TUVF_B ROVF_B

27 DXS_B DXS_B TXS_B RXS_B

28 DXS_B DXS_B TXS_B RXS_B

29 ROVF_A, or
TUVF_A

ROVF_A, or
TUVF_A

TUVF_A ROVF_A

30 DXS_A DXS_A TXS_A RXS_A

31 DXS_A DXS_A TXS_A RXS_A

Table 4-6. SPCTLx Control Bit Comparison in Four SPORT Operation
Modes (Cont’d)

Bit
Standard DSP
Serial Mode

Left-justified and I2S
Sample Pair Mode

Multichannel Mode

Transmit Control
Bits (SPORT0, 2,
and 4)

Receive Control
Bits (SPORT1, 3,
and 5)
4-52 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
port features. For information about configuring a specific operation
mode, refer to Table 4-1 on page 4-10 and “Standard DSP Serial Mode”
on page 4-11.

Serial Port Enable. SPCTLx bits 0 and 24 (SPEN_A and SPEN_B). This bit
enables (if set, = 1) or disables (if cleared, = 0) the corresponding serial
port channel A or B. Clearing this bit aborts any ongoing operation and
clears the status bits. The SPORTS are ready to transmit or receive two
serial clock cycles after enabling.

This description applies to I2S and DSP Standard Serial modes only.

Data Type Select. SPCTLxx bits 2–1 (DTYPE). These bits select the com-
panding and MSB data type formatting of serial words loaded into the
transmit and receive buffers. This bit applies to DSP standard Serial and
Multichannel modes only. The Transmit Shift register does not zero-fill
or sign-extend transmit data words; this only takes place for the receive
shift register.

For Standard mode, selection of Companding mode and MSB format are
exclusive:

00 = Right-justify; fill unused MSBs with 0s
01 = Right-justify; sign-extend into unused MSBs
10 = Compand using μ_law, (primary channels only)
11 = Compand using A_law, (primary channels only)

For Multichannel mode, selection of companding mode and MSB format
are independent:

x0 = Right-justify; fill unused MSBs with 0s
x1 = Right-justify; sign-extend into unused MSBs
0x = Compand using μ_law
1x = Compand using A_law

This description applies only to DSP Standard Serial mode and Multi-
channel modes only.
ADSP-2126x SHARC Processor Peripherals Manual 4-53

SPORT Control Registers and Data Buffers
Serial Word Endian Select. SPCTLx Bit 3 (LSBF). This bit selects little
endian words (LSB first, if set, = 1) or big endian words (MSB first, if
cleared, = 0). This description applies to DSP Standard Serial And Multi-
channel modes only.

Serial Word Length Select. SPCTLx Bit 8–4 (SLENx). These bits select the
word length in bits. Word sizes can be from 3 bits (SLEN = 2) to 32 bits
(SLEN = 31). This bit applies to all operation modes.

Use this formula to calculate the value for SLEN:

SLEN = Actual serial word length – 1

In this case, the SLEN bit cannot equal 0 or 1, I2S, Left-justified Sample
Pair word length is limited to 8-32 bits, and DSP Standard mode word
length varies from 3 to 32 bits.

16-bit to 32-bit Word Packing Enable. SPCTLx bit 9 (PACK). This bit
enables (if set, = 1) or disables (if cleared, = 0) 16- to 32-bit word packing.
This bit applies to all operation modes.

Internal Clock Select. SPCTLx bit 10 (ICLK). This bit selects the internal (if
set, =1) or external (if cleared, =0) transmit or receive clock. This bit
applies to DSP Standard Serial mode and SPORTs 1, 3 and 5 for multi-
channel modes.

Sport Operation Mode. SPCTLx bit 11 (OPMODE). This bit enables
I2S/Left-justified Sample Pair modes if set (= 1), or disables if cleared
(= 0). This bit applies to all operation modes. See Table 4-1 on page 4-10
and “Standard DSP Serial Mode” on page 4-11.

Clock Rising Edge Select. SPCTLx bit 12 (CKRE). This bit selects whether
the serial port uses the rising edge (if set, = 1) or falling edge (if cleared,
= 0) of the clock signal for sampling data and the frame sync. This bit
applies to DSP Standard Serial and Multichannel modes only.
4-54 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
Frame Sync Required Select. SPCTLx bits 13 (FSR). This bit selects
whether the serial port requires (if set, = 1) or does not require (if cleared,
= 0) a transfer frame sync. See “Frame Sync Options” on page 4-33 for
more details. This bit applies to DSP Standard Serial mode only.

Internal Frame Sync Select. SPCTLx bit 14 (IFS). This bit selects whether
the serial port uses an internally-generated frame sync (if set, = 1) or a
frame sync from an external (if cleared, = 0) source. This bit is used for
Standard DSP Serial mode only.

Low Active Frame Sync Select. SPCTLx bit 16 (LFS). This bit selects the
logic level of the (transmit or receive) frame sync signals. This bit selects
an active low frame sync (if set, = 1) or active high frame sync (if cleared,
= 0). Active high (0) is the default. This bit applies to DSP Standard Serial
mode only.

Late Transmit Frame Sync Select. SPCTLx bit 17 (LAFS). This bit selects
when to generate the frame sync signal. This bit selects a late frame sync if
set (= 1) during the first bit of each data word. This bit selects an early
frame sync if cleared (= 0) during the serial clock cycle immediately pre-
ceding the first data bit. See “Frame Sync Options” on page 4-33 for more
details.

This bit applies to DSP Standard Serial mode. This bit is also used to
select between I2S and Left-justified Sample Pair modes. See Table 4-1 on
page 4-10 and “Standard DSP Serial Mode” on page 4-11 for more
information.

Serial Port DMA Enable. SPCTLx bits 18 and 20 (SDEN_A and SDEN_B).
This bit enables (if set, = 1) or disables (if cleared, = 0) the serial port’s
channel DMA. Bits 18 and 20 apply to all operating modes.

Serial Port DMA Chaining Enable. SPCTLx bits 19 and 21 (SCHEN_A and
SCHEN_B). These bits enable (if set, = 1) or disables (if cleared, = 0) serial
port’s channels A and B DMA chaining. Bits 19 and 21 apply to all oper-
ating modes.
ADSP-2126x SHARC Processor Peripherals Manual 4-55

SPORT Control Registers and Data Buffers
Frame Sync Both Enable. SPCTLx bit 22 (FS_BOTH). This bit applies when
the SPORTS channels A and B are configured to transmit/receive data. If
set (= 1), this bit issues frame sync only when data is present in both trans-
mit buffers, TXA and TXB. If cleared (= 0), a frame sync is issued if data is
present in either transmit buffers. This bit applies to DSP Standard Serial
mode only.

When a SPORT is configured as a receiver, if FS_BOTH is set (= 1), frame
sync is issued only when both the Rx FIFOs (RXSPA and RXSPB) are not
full.

This bit is not used for I2S and Left-justified Sample Pair modes. If only
channel A or channel B is selected, the frame sync behaves as if FS_BOTH is
cleared (= 0). If both A and B channels are selected, the word select acts as
if FS_BOTH is set (= 1).

Buffer Hang Disable. SPCTLx bit 23 (BHD). When cleared (= 0), this bit
causes the processor core to hang when it attempts to write to a full buffer
or read from an empty buffer. When set (= 1), this bit disables the
core-hang. In this case, a core read from an empty receive buffer returns
previously-read (invalid) data and core writes to a full transmit buffer to
overwrite (valid) data that has not yet been transmitted. This bit is used in
all modes.

Data Direction Control. SPCTLx bit 25 (SPTRAN). This bit controls the
data direction of the serial port channel A and B signals.

• 0 = SPORT is configured to receive on both channels A and B. In
this configuration, the RXSPxA and RXSPxB buffers are activated,
while the Receive Shift registers are controlled by SPORTx_CLK and
SPORTx_FS. The TXSPxA and TXSPxB buffers are inactive.

• 1 = SPORT is configured to transmit on both channels A and B.
In this configuration, the TXSPxA and TXSPxB buffers are activated,
while the Transmit Shift registers are controlled by SPORTx_CLK and
SPORTx_FS. The RXSPxA and RXSPxB buffers are inactive.
4-56 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
This bit applies to I2S, Left-justified Sample Pair, and DSP Standard
Serial modes.

Reading from or writing to inactive buffers cause the core to hang
indefinitely until the SPORT is cleared.

Data Buffer Error Status (sticky, read-only). SPCTLx bit 29 and 26 (ROVF,
TUVF). These bits indicate whether the serial transmit operation has under-
flowed (if set, = 1 and SPTRAN = 1) or a receive operation has overflowed (if
set, = 1 and SPTRAN = 0) in the TXSPxA/RXSPxA and TXSPxB/RXSPxB data
buffers.

This description applies to I2S, Left-justified Sample Pair, and DSP Stan-
dard Serial modes. In multichannel modes, corresponding bits (TUVF,
ROVF) are used for this function.

When the SPORT is configured as a transmitter, this bit provides transmit
underflow status. As a transmitter, if FSR = 1, this bit indicates whether
the SPORTx_FS signal (from an internal or external source) occurred while
the DXS buffer was empty. If FSR = 0, ROVF or TUVF is set whenever the
SPORT is required to transmit and the transmit buffer is empty. The
SPORTs transmit data whenever they detect a SPORTx_FS signal.

• 0 = No SPORTx_FS signal occurred while TXSPxA/B buffer is empty.

• 1 = SPORTx_FS signal occurred while TXSPxA/B buffer is empty.

When the SPORT is configured as a receiver, these bits provide receive
overflow status. As a receiver, it indicates when the channel has received
new data while the RXS_A buffer is full. New data overwrites existing data.

• 0 = No new data while RXSPxA/B buffer is full.

• 1 = New data while RXSPxA/B buffer is full.

Transmit Underflow Status (sticky, read-only). SPCTL0, SPCTL2, and
SPCTL4 bit 29 (TUVF_A). This bit indicates (if set, = 1) whether the multi-
channel SPORTx_FS signal (from an internal or external source) occurred
ADSP-2126x SHARC Processor Peripherals Manual 4-57

SPORT Control Registers and Data Buffers
while the TXS buffer was empty. SPORTs transmit data whenever they
detect a SPORTx_FS signal. If cleared (= 0), no SPORTx_FS signal occurs
because the TXS buffer is empty.

The Transmit Underflow Status bit (TUVF_A/ROVF_A or TUVF_A and
TUVF_B/ROVF_B or TUVF_B) is set when the SPORTx_FS signal occurs from
either an external or internal source while the TXSPxA or TXSPxB buffer is
empty. The internally-generated SPORTx_FS signal may be suppressed
whenever TXSPxA or TXSPxB is empty by clearing the DIFS control bit when
SPTRAN = 1.

When the DIFS bit is cleared (the default setting) the frame sync signal
(SPORTx_FS) is dependent upon new data being present in the transmit
buffer. The SPORTx_FS signal is only generated for new data. Setting DIFS
to 1 selects data-independent frame syncs which causes the SPORTx_FS sig-
nal to be generated whether or not new data is present. With each
SPORTx_FS signal, the SPORT transmits the contents of the transmit
buffer. Serial port DMA typically keeps the transmit buffer full.

The DIFS bit applies to Multichannel mode only when the
SPORTs are configured as transmitters.

Receive Overflow Status (read-only, sticky). SPCTL1, SPCTL3 and SPCTL5
Bit 29 (ROVF). This bit indicates if the channel has received new data if set
(=1) or not if cleared (=0) while the RXS_A/B buffer is full. New data over-
writes existing data.

This bit applies to Multichannel mode only.

Data Buffer Status Channel A (read-only). SPCTL1, SPCTL3 and SPCTL5
bits 31–30 (RXS_A). These bits indicate the status of the channel’s receive
buffer contents as follows: 00 = buffer empty, 01 = reserved, 10 = buffer
partially full, 11 = buffer full.
4-58 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
DXS Data Buffer Status. SPCTLx Bits 31–30 (DXS_A) and bits 28-27
(DXS_B). These read-only bits indicate the status of the serial port’s data
buffer as follows: 11 = buffer full, 00 = buffer empty, 10 = buffer partially
full, 01 = reserved.

The DXS_A or DXS_B Status bits indicate whether the TXSPxA/RXSPxA or
TXSPxB/RXSPxB buffer is full (11), empty (00), or partially full (10). To
test for space in TXSPxA/B or RXSPxA/B, test whether DXS_A (bit 30) is equal
to zero for the A channel, or whether DXS_B (bit 27) is equal to zero for the
B channel. To test for the presence of any data in TXSPxA/B or RXSPxA/B,
test whether DXS_A (bit 31) is equal to one for the A channel, or whether
DXS_B (bit 28) is equal to one for the B channel.

This description applies to I2S, Left-justified Sample Pair, and DSP Stan-
dard Serial modes.

When the SPORT is configured as a transmitter, these bits reflect
transmit buffer status for the TXSPxA and TXSPxB buffers. When the
SPORT is configured as a receiver, these bits reflect receive buffer
status for the RXSPxA and RXSPxB buffers.

Transmit Data Buffer Status (read-only). SPCTL0, SPCTL2 and SPCTL4 Bits
30 and 31(TXS_A). These bits indicate the status of the serial port chan-
nel’s transmit buffer as follows: 11 = buffer full, 00 = buffer empty,
10 = buffer partially full.

Transmit and Receive Data Buffers
The transmit buffers (TXSP0A, TXSP0B, TXSP1A, TXSP1B, TXSP2A, TXSP2B,
TXSP3A, TXSP3B, TXSP4A, TXSP4B, TXSP5A, and TXSP5B) are the 32-bit trans-
mit data buffers for SPORT0, SPORT1, SPORT2, SPORT3, SPORT4,
and SPORT5 respectively. These buffers must be loaded with the data to
be transmitted if the SPORT is configured to transmit on the A and B
channels. The data is loaded automatically by the DMA controller or
loaded manually by the program running on the processor core.
ADSP-2126x SHARC Processor Peripherals Manual 4-59

SPORT Control Registers and Data Buffers
The receive buffers (RXSP0A, RXSP0B, RXSP1A, RXSP1B, RXSP2A, RXSP2B,
RXSP3A, RXSP3B, RXSP4A, RXSP4B, RXSP5A, and RXSP5B) are the 32-bit
receive data buffers for SPORT0, SPORT1, SPORT2, SPORT3,
SPORT4, and SPORT5 respectively. These 32-bit buffers become active
when the SPORT is configured to receive data on the A and B channels.
When a SPORT is configured as a receiver, the RXSPxA and RXSPxB regis-
ters are automatically loaded from the receive shifter when a complete
word has been received. The data is then loaded to internal memory by the
DMA controller or read directly by the program running on the processor
core.

Word lengths of less than 32 bits are automatically right-justified
in the receive and transmit buffers.

The transmit buffers act like a two-location FIFO because they have a data
register plus an Output Shift register. Two 32-bit words may both be
stored in the transmit queue at any one time. When the transmit register is
loaded and any previous word has been transmitted, the register contents
are automatically loaded into the output shifter. An interrupt occurs when
the Output Transmit shifter has been loaded, signifying that the transmit
buffer is ready to accept the next word (for example, the transmit buffer is
not full). This interrupt does not occur when serial port DMA is enabled
or when the corresponding mask bit in the LIRPTL register is set.

In non-Multichannel modes (I2S, Left-justified Sample Pair, and DSP
Standard Serial modes), the ROVF_A or TUVF_A and ROVF_B, or TUVF_B
Overflow/Underflow status bits are set when an overflow or underflow
occurs. In multichannel mode, the ROVF_A or TUVF_A bits are redefined due
to the fixed-directional functionality of the SPCTLx registers. When the
SPCTL1, SPCTL3 and SPCTL5 registers are configured for Multichannel
mode, the Receive Overflow bit ROVF_A indicates when the A channel has
received new data while the RXS_A buffer is full. Similarly, when the
SPCTL0, SPCTL2 and SPCTL4 registers are configured for Multichannel
4-60 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
mode, the transmit overflow bit (TUVF_A) indicates that a new frame sync
signal (SPORT0_FS/SPORT2_FS/SPORT4_FS) was generated while the TXSPxA
buffer was empty.

The ROVF_A or TUVF_A (bit 29) Overflow/Underflow status bit in
the SPCTLx register becomes fixed in Multichannel mode only as
either the ROVF Overflow Status bit (SPORTs 1, 3, and 5) or
TUVF_A Underflow Status bit (SPORTs 0, 2, and 4).

When the SPORT is configured as a transmitter (SPTRAN =1), and a trans-
mit frame sync occurs and no new data has been loaded into the transmit
buffer, a Transmit Underflow status bit is set in the Serial Port Control
register. The TUVF_A/ROVF_A or TUVF_A status bit is sticky and is only
cleared by disabling the serial port.

When the SPORT is configured as a receiver (SPTRAN = 0), the receive
buffers are activated. The receive buffers act like a three-location FIFO
because they have two data registers plus an input shift register. Two com-
plete 32-bit words can be stored in the receive buffer while a third word is
being shifted in. The third word overwrites the second if the first word has
not been read out (by the processor core or the DMA controller). When
this happens, the Receive Overflow Status bit is set in the Serial Port Con-
trol register. Almost three complete words can be received without the
receive buffer being read before an overflow occurs. The overflow status is
generated on the last bit of the third word. The ROVF_A/ROVF_A or TUVF_A
status bit is sticky and is cleared only by disabling the serial port.

An interrupt is generated when the receive buffer has been loaded with a
received word (for example, the receive buffer is not empty). This inter-
rupt is masked if serial port DMA is enabled or if the corresponding bit in
the LIRPTL register is set.

If your program causes the core processor to attempt to read from an
empty receive buffer or to write to a full transmit buffer, the access is
delayed until the buffer is accessed by the external I/O device. This delay
ADSP-2126x SHARC Processor Peripherals Manual 4-61

SPORT Control Registers and Data Buffers
is called a core processor hang. If you do not know if the core processor
can access the receive or transmit buffer without a hang, the buffer’s status
should be read first (in SPCTLx) to determine if the access can be made.

To support debugging buffer transfers, the processor has a Buffer
Hang Disable (BHD) bit. When set (= 1), this bit prevents the pro-
cessor core from detecting a buffer-related stall condition,
permitting debugging of this type of stall condition. For more
information, see the BHD bit description on on page 4-56.

The status bits in SPCTLx are updated during reads and writes from the
core processor even when the serial port is disabled. Disable the serial port
when writing to the receive buffer or reading from the transmit buffer.

When programming the serial port channel (A or B) as a transmit-
ter, only the corresponding TXSPxA and TXSPxB buffers become
active while the receive buffers RXSPxA and RXSPxB remain inactive.
Similarly, when the SPORT channel A and B are programmed as
receive-only the corresponding RXSPxA and RXSPxB is activated. Do
not attempt to read or write to inactive data buffers. If the proces-
sor operates on the inactive transmit or receive buffers while the
SPORT is enabled, unpredictable results may occur.

Clock and Frame Sync Frequencies (DIV)
The DIVx registers contain divisor values that determine frequencies for
internally-generated clocks and frame syncs. The DIVx registers are
described in Appendix A in “SPORT Divisor Registers (DIVx)” on
page A-35.

The CLKDIV bit field specifies how many times the processor’s internal
clock (CCLK) is divided to generate the transmit and receive clocks. The
frame sync (SPORTx_FS) is considered a receive frame sync if the data sig-
nals are configured as receivers. Likewise, the frame sync SPORTx_FS is
4-62 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
considered a transmit frame sync if the data signals are configured as
transmitters. The divisor is a 15-bit value, allowing a wide range of serial
clock rates.

Use the following equation to calculate the serial clock frequency:

The maximum serial clock frequency is equal to one-quarter the proces-
sor’s internal clock (CCLK) frequency, which occurs when CLKDIV is set to
zero. Use the following equation to determine the value of CLKDIV, given
the CCLK frequency and desired serial clock frequency:

Figure 4-8. DIVx Register

fSPORTx_CLK = fCCLK
4(CLKDIV+1)

CLKDIV = fCCLK
4(fSPORTx_CLK)

–1

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FSDIV

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CLKDIV
Clock Divisor

25

9

Frame Sync Divis

Reserved

DIV0 (0xC02)
DIV1 (0xC03)
DIV2 (0x402)
DIV3 (0x403)
DIV4 (0x802)
DIV5 (0x803)
ADSP-2126x SHARC Processor Peripherals Manual 4-63

SPORT Control Registers and Data Buffers
The bit field FSDIV specifies how many transmit or receive clock cycles are
counted before a frame sync pulse is generated. In this way, a frame sync
can initiate periodic transfers. The counting of serial clock cycles applies
to internally- or externally-generated serial clocks. The formula for the
number of cycles between frame sync pulses is:

of serial clocks between frame syncs = FSDIV + 1

Use the following equation to determine the value of FSDIV, given the
serial clock frequency and desired frame sync frequency:

The frame sync is continuously active when FSDIV = 0. The value of FSDIV
should not be less than the serial word length minus one (the value of the
SLEN field in the Serial Port Control register), as this may cause an external
device to abort the current operation or cause other unpredictable results.
If the serial port is not being used, the FSDIV divisor can be used as a
counter for dividing an external clock or for generating a periodic pulse or
periodic interrupt. The serial port must be enabled for this mode of oper-
ation to work properly.

Exercise caution when operating with externally-generated transmit clocks
near the frequency of one-quarter of the processor’s internal clock. There
is a delay between when the clock arrives at the SPORTx_CLK node and
when data is output. This delay may limit the receiver’s speed of opera-
tion. Refer to the data sheet for exact timing specifications.

Externally-generated late transmit frame syncs also experience a delay
from when they arrive to when data is output. This can also limit the max-
imum serial clock speed. Refer to the product specific data sheet for exact
timing specifications.

FSDIV = fSPORTx_CLK
fSPORTx_FS

–1
4-64 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
SPORT Reset
There are two ways to reset the serial ports, via software or hardware. Each
method has a different effect on the serial port.

A software reset of the SPEN_A or SPEN_B Enable bit disables the serial
port(s) and aborts any ongoing operations. Status bits are also cleared. The
serial ports are ready to start transmitting or receiving data two serial clock
cycles after they are enabled in the SPCTLx Control register. No serial
clocks are lost from this point on.

A hardware reset (RESET) disables the entire processor, including the serial
ports, by clearing the SPCTLx control register. Any ongoing operations are
aborted.

SPORT Interrupts
Each serial port has an interrupt associated with it. For each SPORT, both
the A and B channel transmit and receive data buffers share the same
interrupt vector. The interrupts can be used to indicate the completion of
the transfer of a block of serial data when the serial ports are configured
for DMA. They can also be used to perform single word transfers. Refer to
“Single Word Transfers” on page 4-74. The priority of the serial port
interrupts is shown in Table 4-7.

The interrupt names are defined in the def2126x.h file supplied
with the ADSP-21xxx DSP Development Software.

Table 4-7. Priority of the Serial Port Interrupts

Interrupt Name Interrupt

SPR1I SPORT1 DMA Channels (Highest Priority)

SPR3I SPORT3 DMA Channels

SPR5I SPORT5 DMA Channels
ADSP-2126x SHARC Processor Peripherals Manual 4-65

Moving Data Between SPORTS and Internal Memory
SPORT interrupts occur on the second system clock (CLKIN) after
the last bit of the serial word is latched in or driven out.

Moving Data Between SPORTS and
Internal Memory

Transmit and receive data can be transferred between the serial ports and
on-chip memory with single word transfers or with DMA block transfers.
Both methods are interrupt-driven, and use the same internally-generated
interrupts.

SPORT DMA provides a mechanism for receiving or transmitting an
entire block of serial data before the interrupt is generated. When serial
port DMA is not enabled, the SPORT generates an interrupt every time it
receives or starts to transmit a data word. The processor’s on-chip DMA
controller handles the DMA transfer, allowing the processor core to con-
tinue running until the entire block of data is transmitted or received.
Service routines can then operate on the block of data rather than on sin-
gle words, significantly reducing overhead.

DMA Block Transfers
The processor’s on-chip DMA controller allows automatic DMA transfers
between internal memory and each of the two channels of each serial port.
Each SPORT has two channels for transferring data, and each can be con-

SPR0I SPORT0 DMA Channels

SPR2I SPORT2 DMA Channels

SPR4I SPORT4 DMA Channels

Table 4-7. Priority of the Serial Port Interrupts (Cont’d)

Interrupt Name Interrupt
4-66 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
figured to receive or to transmit. There are twelve DMA channels for serial
port operations. The serial port DMA channels are numbered as shown in
Table 4-8.

Data-direction programmability is supported in Standard DSP Standard
Serial, Left-justified Sample Pair, and I2S modes. The value of the SPTRAN
bit in SPCTLx (0 = RX, 1 = TX) determines whether the receive or transmit
register for the SPORT becomes active.

The SPORT DMA channels are assigned higher priority than all other
DMA channels (for example, the SPI port and the parallel port) because of
their relatively low service rate and their inability to hold off incoming
data. Having higher priority causes the SPORT DMA transfers to be per-
formed first when multiple DMA requests occur in the same cycle.

Table 4-8. Serial Port DMA Channels

Channel Data Buffer Description Priority

0 RXSP1A/TXSP1A SPORT1 A data Highest

1 RXSP1B/TXSP1B SPORT1 B data

2 RXSP0A/TXSP0A SPORT0 A data

3 RXSP0B/TXSP0B SPORT0 B data

4 RXSP3A/TXSP3A SPORT3 A data

5 RXSP3B/TXSP3B SPORT3 B data

6 RXSP2A/TXSP2A SPORT2 A data

7 RXSP2B/TXSP2B SPORT2 B data

8 RXSP5A/TXSP5A SPORT5 A data

9 RXSP5B/TXSP5B SPORT5 B data

10 RXSP4A/TXSP4A SPORT4 A data

11 RXSP4B/TXSP4B SPORT4 B data Lowest
ADSP-2126x SHARC Processor Peripherals Manual 4-67

Moving Data Between SPORTS and Internal Memory
Although the DMA transfers are performed with 32-bit words, serial ports
can handle word sizes from 3 to 32 bits, with 8 to 32 bits for I2S mode. If
serial words are 16 bits or smaller, they can be packed into 32-bit words
for each DMA transfer. DMA transfers are configured using the PACK bit
in the SPCTLx Control registers. When serial port data packing is enabled
(PACK = 1), the transmit and receive interrupts are generated for the 32-bit
packed words, not for each 16-bit word.

The following sections present an overview of serial port DMA operations;
additional details are covered in the Memory chapter in the ADSP-2126x
SHARC DSP Core Manual.

• For information on SPORT DMA Channel Setup, see “Selecting
Transmit and Receive Channel Order (FRFS)” on page 4-16.

• For information on SPORT DMA Parameter Registers, see “Select-
ing Transmit and Receive Channel Order (FRFS)” on page 4-16.

• For information on SPORT DMA Chaining, see “SPORT DMA
Chaining” on page 4-73.

Setting Up DMA on SPORT Channels

Each SPORT DMA channel has an Enable bit (SDEN_A and SDEN_B) in its
SPCTLx Control register. When DMA is disabled for a particular channel,
the SPORT generates an interrupt every time it receives a data word or
whenever there is a vacancy in the transmit buffer. For more information,
see “Single Word Transfers” on page 4-74.

Each channel also has a DMA Chaining Enable bit (SCHEN_A and SCHEN_B)
in its SPCTLx control register.

To set up a serial port DMA channel, write a set of memory buffer param-
eters to the SPORT DMA parameter registers as shown in Table 4-9.
4-68 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
Load the II, IM, and C registers with a starting address for the buffer, an
address modifier, and a word count, respectively. These registers can be
written from the core processor or from an external processor.

Once serial port DMA is enabled, the processor’s DMA controller auto-
matically transfers received data words in the receive buffer to the buffer
in internal memory. Likewise, when the serial port is ready to transmit
data, the DMA controller automatically transfers a word from internal
memory to the transmit buffer. The controller continues these transfers
until the entire data buffer is received or transmitted.

When the count register of an active DMA channel reaches zero (0), the
SPORT generates the corresponding interrupt.

SPORT DMA Parameter Registers
A DMA channel consists of a set of parameter registers that implements a
data buffer in internal memory and the hardware the serial port uses to
request DMA service. The parameter registers for each SPORT DMA
channel and their addresses are shown in Table 4-10 below. These regis-
ters are part of the processor’s memory-mapped IOP register set.

Table 4-9. SPORT DMA Parameter Registers

Register
(Y = A or B, and x = 0 – 5)

Width Description

IISPxy 19 bits DMA channel; x index; start address for data
buffer

IMSPxy 16 bits DMA channel; x modify; address increment

CSPxy 16 bits DMA channel; x count; number of words to trans-
mit

CPSPxy 20 bits DMA channel; x chain pointer; address containing
the next set of data buffer parameters
ADSP-2126x SHARC Processor Peripherals Manual 4-69

Moving Data Between SPORTS and Internal Memory
The DMA channels operate similarly to the processor’s Data Address
Generators (DAGs). Each channel has an Index register (IISPxy) and a
Modify register (IMSPxy) for setting up a data buffer in internal memory.
It is necessary to initialize the Index register with the starting address of
the data buffer. After it transfers each serial I/O word to (or from) the
SPORT, the DMA controller adds the modify value to the Index register
to generate the address for the next DMA transfer. The modify value in
the IM register is a signed integer, which provides capability for both incre-
menting and decrementing the buffer pointer.

Each DMA channel has a Count register (CSPxA/CSPxB), which must be
initialized with a word count that specifies the number of words to trans-
fer. The Count register decrements after each DMA transfer on the
channel. When the word count reaches zero, the SPORT generates an
interrupt, then automatically disables the DMA channel.

Each SPORT DMA channel also has a Chain Pointer register (CPSPxy).
The CPSPxy register functions are used in chained DMA operations. For
more information on SPORT DMA chaining registers, see Table 4-9 on
page 4-69.

Table 4-10. SPORT DMA Parameter Registers Addresses

Register Address DMA Channel SPORT Buffer

IISP0A 0xc40 0 RXSP0A or TXSP0A

IMSP0A 0xc41 0 RXSP0A or TXSP0A

CSP0A 0xc42 0 RXSP0A or TXSP0A

CPSP0A 0xc43 0 RXSP0A or TXSP0A

IISP0B 0xc44 1 RXSP0B or TXSP0B

IMSP0B 0xc45 1 RXSP0B or TXSP0B

CSP0B 0xc46 1 RXSP0B or TXSP0B

CPSP0B 0xc47 1 RXSP0B or TXSP0B

IISP1A 0xc48 2 RXSP1A or TXSP1A
4-70 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
IMSP1A 0xc49 2 RXSP1A or TXSP1A

CSP1A 0xc4A 2 RXSP1A or TXSP1A

CPSP1A 0xc4B 2 RXSP1A or TXSP1A

IISP1B 0xc4C 3 RXSP1B or TXSP1B

IMSP1B 0xc4D 3 RXSP1B or TXSP1B

CSP1B 0xc4E 3 RXSP1B or TXSP1B

CPSP1B 0xc4F 3 RXSP1B or TXSP1B

Reserved

IISP2A 0x440 4 RXSP2A or TXSP2A

IMSP2A 0x441 4 RXSP2A or TXSP2A

CSP2A 0x442 4 RXSP2A or TXSP2A

CPSP2A 0x443 4 RXSP2A or TXSP2A

IISP2B 0x444 5 RXSP2B or TXSP2B

IMSP2B 0x445 5 RXSP2B or TXSP2B

CSP2B 0x446 5 RXSP2B or TXSP2B

CPSP2B 0x447 5 RXSP2B or TXSP2B

IISP3A 0x448 6 RXSP3A or TXSP3A

IMSP3A 0x449 6 RXSP3A or TXSP3A

CSP3A 0x44A 6 RXSP3A or TXSP3A

CPSP3A 0x44B 6 RXSP3A or TXSP3A

IISP3B 0x44C 7 RXSP3B or TXSP3B

IMSP3B 0x44D 7 RXSP3B or TXSP3B

CSP3B 0x44E 7 RXSP3B or TXSP3B

CPSP3B 0x44F 7 RXSP3B or TXSP3B

Table 4-10. SPORT DMA Parameter Registers Addresses (Cont’d)

Register Address DMA Channel SPORT Buffer
ADSP-2126x SHARC Processor Peripherals Manual 4-71

Moving Data Between SPORTS and Internal Memory
When programming a serial port channel (either A or B) as a transmitter,
only the corresponding TXSPxA and TXSPxB SPORT buffer becomes active,
while the receive buffers (RXSPxA and RXSPxB) remain inactive. Similarly,
when the SPORT channel A and B is programmed as a receiver, only the
corresponding RXSP0A and RXSP0B SPORT buffer is activated.

Reserved

IISP4A 0x840 8 RXSP4A or TXSP4A

IMSP4A 0x841 8 RXSP4A or TXSP4A

CSP4A 0x842 8 RXSP4A or TXSP4A

CPSP4A 0x843 8 RXSP4A or TXSP4A

IISP4B 0x844 9 RXSP4B or TXSP4B

IMSP4B 0x845 9 RXSP4B or TXSP4B

CSP4B 0x846 9 RXSP4B or TXSP4B

CPSP4B 0x847 9 RXSP4B or TXSP4B

IISP5A 0x848 10 RXSP5A or TXSP5A

IMSP5A 0x849 10 RXSP5A or TXSP5A

CSP5A 0x84A 10 RXSP5A or TXSP5A

CPSP5A 0x84B 10 RXSP5A or TXSP5A

IISP5B 0x84C 11 RXSP5B or TXSP5B

IMSP5B 0x84D 11 RXSP5B or TXSP5B

CSP5B 0x84E 11 RXSP5B or TXSP5B

CPSP5B 0x84F 11 RXSP5B or TXSP5B

Reserved (0x850 to 0x85F)

Table 4-10. SPORT DMA Parameter Registers Addresses (Cont’d)

Register Address DMA Channel SPORT Buffer
4-72 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
When performing core-driven transfers, write to the buffer designated by
the SPTRAN bit setting in the SPCTLx register. For DMA-driven transfers,
the serial port logic performs the data transfer from internal memory
to/from the appropriate buffer depending on the SPTRAN bit setting. If the
inactive SPORT data buffers are read or written to by core while the port
is being enabled, the core will hang. For example, if a SPORT is pro-
grammed to be a transmitter, while at the same time the core reads from
the receive buffer of the same SPORT, the core hangs just as it would if it
were reading an empty buffer that is currently active. This locks up the
core until the SPORT is reset.

Therefore, set the Direction bit, the Serial Port Enable bit, and DMA
Enable bits before initiating any operations on the SPORT data buffers. If
the DSP operates on the inactive transmit or receive buffers while the
SPORT is enabled, it can cause unpredictable results.

SPORT DMA Chaining

In chained DMA operations, the processor’s DMA controller automati-
cally sets up another DMA transfer when the contents of the current
buffer have been transmitted (or received). The Chain Pointer register
(CPSPxy) functions as a pointer to the next set of buffer parameters stored
in memory. The DMA controller automatically downloads these buffer
parameters to set up the next DMA sequence. For more information on
SPORT DMA chaining, see “Setting Up DMA Parameter Registers” on
page 2-20.

DMA chaining occurs independently for the transmit and receive channels
of each serial port. Each SPORT DMA channel has a chaining enable bit
(SCHEN_A or SCHEN_B) that when set (= 1) enables DMA chaining and
when cleared (= 0) disables DMA chaining. Writing all zeros to the
address field of the chain pointer register (CPSPxy) also disables chaining.
ADSP-2126x SHARC Processor Peripherals Manual 4-73

Moving Data Between SPORTS and Internal Memory
Single Word Transfers
Individual data words may also be transmitted and received by the serial
ports, with interrupts occurring as each 32-bit word is transmitted or
received. When a serial port is enabled and DMA is disabled, the SPORT
interrupts are generated whenever a complete 32-bit word has been
received in the receive buffer, or whenever the transmit buffer is not full.
Note that both channel A and B buffers share the same interrupt vector.
Single word interrupts can be used to implement interrupt-driven I/O on
the serial ports.

To avoid hanging the processor core—check the buffer’s full/empty status
when the core’s program reads a word from a serial port’s receive buffer or
writes a word to its transmit buffer. This condition can also happen to an
external device, for example a host processor, when it is reading or writing
a serial port buffer. The full/empty status can be read in the DXS bits of the
SPCTLx register. Reading from an empty receive buffer or writing to a full
transmit buffer causes the processor (or external device) to hang, while it
waits for the status to change.

To support debugging buffer transfers, the processor has a Buffer
Hang Disable (BHD) bit. When set (= 1), this bit prevents the pro-
cessor core from detecting a buffer-related stall condition,
permitting debugging of this type of stall condition. For more
information, see the BHD bit discussion on on page 4-56.

Multiple interrupts can occur if both SPORTs transmit or receive data in
the same cycle. Any interrupt can be masked in the IMASK register; if the
interrupt is later enabled in the LIRPTL register, the corresponding inter-
rupt latch bit in the IRPTL or LIRPTL registers must be cleared in case the
interrupt has occurred in the same time period.

When serial port data packing is enabled (PACK=1 in the SPCTLx Control
registers), the transmit and receive interrupts are generated for 32-bit
packed words, not for each 16-bit word.
4-74 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
SPORT Programming Examples
The third listing, Listing 4-1, transmits a buffer of data from SPORT1 to
SPORT0 using DMA chaining and the internal loopback feature of the
serial port. In this example, SPORT5 drives the clock and frame sync, and
the two TCBs for each SPORT are set up to ping-pong back and forth to
continually send and receive data.

The second listing, Listing 4-2, transmits a buffer of data from SPORT5 to
SPORT4 using DMA and the internal loopback feature of the serial port. In
this example, SPORT5 drives the clock and frame sync, and the buffer will
be transferred only one time.

This section provides three programming examples written for the
ADSP-21262 processor. The first listing, Listing 4-3, transmits a buffer of
data from SPORT2 to SPORT3 using direct core reads and writes and the
internal loopback feature of the serial port. In this example, SPORT2 drives
the clock and frame sync, and the buffer is transferred only one time.

Listing 4-1. SPORT Transmit Using DMA Chaining

/* SPORT DMA Parameter Registers */

#define CPSP0A 0xC43

#define CPSP1A 0xC4B

/* SPORT Control Registers */

#define DIV0 0xC02

#define DIV1 0xC03

#define SPCTL0 0xC00

#define SPCTL1 0xC01

#define SPMCTL01 0xC04

/* SPMCTL Bits */

#define SPL 0x00001000
ADSP-2126x SHARC Processor Peripherals Manual 4-75

SPORT Programming Examples
/* SPCTL Bits */

#define SPEN_A 0x00000001

#define SDEN_A 0x00040000

#define SCHEN_A 0x00080000

#define SLEN32 0x000001F0

#define SPTRAN 0x02000000

#define IFS 0x00004000

#define FSR 0x00002000

#define ICLK 0x00000400

/* Default Buffer Length */

#define BUFSIZE 10

.SECTION/DM seg_dmda;

/* TX Buffers */

.var tx_buf1a[BUFSIZE] = 0x11111111,

 0x22222222,

 0x33333333,

 0x44444444,

 0x55555555,

 0x66666666,

 0x77777777,

 0x88888888,

 0x99999999,

 0xAAAAAAAA;

.var tx_buf1b[BUFSIZE] = 0x12345678,

 0x23456789,

 0x3456789A,

 0x456789AB,

 0x56789ABC,

 0x6789ABCD,

 0x789ABCDE,

 0x89ABCDEF,
4-76 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
 0x9ABCDEF0,

 0xABCDEF01;

/* RX Buffers */

.var rx_buf0a[BUFSIZE];

.var rx_buf0b[BUFSIZE];

/* TX Transfer Control Blocks */

.var tx_tcb1[4] = 0,BUFSIZE,1,tx_buf1a;

.var tx_tcb2[4] = 0,BUFSIZE,1,tx_buf1b;

/* RX Transfer Control Blocks */

.var rx_tcb1[4] = 0,BUFSIZE,1,rx_buf0a;

.var rx_tcb2[4] = 0,BUFSIZE,1,rx_buf0b;

/* Main code section */

.global _main;

.SECTION/PM seg_pmco;

_main:

/* SPORT loopback: use SPORT0 as RX and SPORT1 as TX.

For no loopback (TDM mode), program MTaCSb [a=0,2,4 & b=0,1,2,3]

and MRcCSd [a=1,3,5 & b=0,1,2,3], */

/* initially clear SPORT control register */

r0 = 0x00000000;

dm(SPCTL0) = r0;

dm(SPCTL1) = r0;

dm(SPMCTL01) = r0;

SPORT_DMA_setup:

/* set internal loopback bit for SPORT0 & SPORT1 */

bit set ustat3 SPL;

dm(SPMCTL01) = ustat3;
ADSP-2126x SHARC Processor Peripherals Manual 4-77

SPORT Programming Examples
/* Configure SPORT1 as a transmitter */

/* internally generating clock and frame sync */

/* CLKDIV = [fCCLK(200 MHz)/4xFSCLK(20 MHz)]-1 = 0x004 */

/* FSDIV = [FSCLK(20 MHz)/TFS(.625 MHz)]-1 = 31 = 0x001F */

R0 = 0x001F0004; dm(DIV1) = R0;

ustat4 = SPEN_A| /* Enable Channel A */

 SLEN32| /* 32-bit word length */

 FSR| /* Frame Sync Required */

 SPTRAN| /* Transmit on enabled channels */

 SDEN_A| /* Enable Channel A DMA */

 SCHEN_A| /* Enable Channel A DMA Chaining */

 IFS| /* Internally-generated Frame Sync */

 ICLK; /* Internally-generated Clock */

dm(SPCTL1) = ustat4;

/* Configure SPORT0 as a receiver */

/* externally generating clock and frame sync */

r0 = 0x0; dm(DIV0) = R0;

ustat3 = SPEN_A| /* Enable Channel A */

 SLEN32| /* 32-bit word length */

 FSR| /* Frame Sync Required */

 SDEN_A| /* Enable Channel A DMA */

 SCHEN_A; /* Enable Channel A DMA Chaining */

dm(SPCTL0) = ustat3;

/* Next TCB location for tx_tcb2 is tx_tcb1 */

/* Mask the first 19 bits of the TCB location */

r0 = (tx_tcb1 + 3) & 0x7FFFF;

dm(tx_tcb2) = r0;

/* Next TCB location for rx_tcb2 is rx_tcb1 */

/* Mask the first 19 bits of the TCB location */

r0 = (rx_tcb1 + 3) & 0x7FFFF;

dm(rx_tcb2) = r0;
4-78 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
/* Next TCB location for rx_tcb1 is rx_tcb2 */

/* Mask the first 19 bits of the TCB location */

r0 = (rx_tcb2 + 3) & 0x7FFFF;

dm(rx_tcb1) = r0;

/* Initialize SPORT DMA transfer by writing to the CP reg */

dm(CPSP0A) = r0;

/* Next TCB location for tx_tcb1 is tx_tcb2 */

/* Mask the first 19 bits of the TCB location */

r0 = (tx_tcb2 + 3) & 0x7FFFF;

dm(tx_tcb1) = r0;

/* Initialize SPORT DMA transfer by writing to the CP reg */

dm(CPSP1A) = r0;

_main.end: jump (pc,0);

Listing 4-2. SPORT Transmit Using Direct Core Access

/* SPORT Control Registers */

#define TXSP2A 0x460

#define RXSP3A 0x465

#define DIV2 0x402

#define DIV3 0x403

#define SPCTL2 0x400

#define SPCTL3 0x401

#define SPMCTL23 0x404

/* SPMCTL Bits */

#define SPL 0x00001000

/* SPCTL Bits */

#define SPEN_A 0x00000001

#define SDEN_A 0x00040000
ADSP-2126x SHARC Processor Peripherals Manual 4-79

SPORT Programming Examples
#define SLEN32 0x000001F0

#define SPTRAN 0x02000000

#define IFS 0x00004000

#define FSR 0x00002000

#define ICLK 0x00000400

/* Default Buffer Length */

#define BUFSIZE 10

.SECTION/DM seg_dmda;

/* Transmit Buffer */

.var tx_buf2a[BUFSIZE] = 0x11111111,

 0x22222222,

 0x33333333,

 0x44444444,

 0x55555555,

 0x66666666,

 0x77777777,

 0x88888888,

 0x99999999,

 0xAAAAAAAA;

/* Receive Buffer */

.var rx_buf3a[BUFSIZE];

/* Main code section */

.global _main;

.SECTION/PM seg_pmco;

_main:

bit set mode1 CBUFEN; /* enable circular buffers */

/* SPORT Loopback: Use SPORT2 as RX & SPORT3 as TX.

 For no loopback (TDM mode), program MTaCSb

 [a=0,2,4 & b=0,1,2,3] and MRcCSd [a=1,3,5 & b=0,1,2,3], /*
4-80 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
/* Initially clear SPORT control registers */

r0 = 0x00000000;

dm(SPCTL2) = r0;

dm(SPCTL3) = r0;

dm(SPMCTL23) = r0;

/* Set up DAG registers */

i4 = tx_buf2a;

m4 = 1;

i12 = rx_buf3a;

m12 = 1;

SPORT_DMA_setup:

/* set internal loopback bit for SPORT2 & SPORT3 */

bit set ustat3 SPL;

dm(SPMCTL23) = ustat3;

/* Configure SPORT2 as a transmitter */

/* internally generating clock and frame sync */

/* CLKDIV = [fCCLK(200MHz)/4 x FSCLK(20MHz)] – 1 = 0x004 */

/* FSDIV = [FSCLK(20 MHz)/TFS(.625 MHz)] – 1 = 31 = 0x001F */

R0 = 0x001F0004; dm(DIV2) = R0;

ustat4 = SPEN_A| /* Enable Channel A */

 SLEN32| /* 32-bit word length */

 FSR| /* Frame Sync Required */

 SPTRAN| /* Transmit on enabled channels */

 IFS| /* Internally Generated Frame Sync */

 ICLK; /* Internally Generated Clock */

dm(SPCTL2) = ustat4;

/* Configure SPORT3 as a receiver */

/* externally generating clock and frame sync */

r0 = 0x0; dm(DIV3) = R0;

ustat3 = SPEN_A| /* Enable Channel A */
ADSP-2126x SHARC Processor Peripherals Manual 4-81

SPORT Programming Examples
 SLEN32| /* 32-bit word length */

 FSR; /* Frame Sync Required */

dm(SPCTL3) = ustat3;

/* Set up loop to transmit and receive data */

lcntr = LENGTH(tx_buf2a), do (pc,4) until lce;

/* Retrieve data using DAG1 and send TX via SPORT2 */

r0 = dm(i4,m4);

dm(TXSP2A) = r0;

/* Receive data via SPORT3 and save via DAG2 */

r0 = dm(RXSP3A);

pm(i12,m12) = r0;

_main.end: jump (pc,0);

Listing 4-3. SPORT Transmit Using DMA

/* SPORT DMA Parameter Registers */

#define IISP4A 0x840

#define IISP5A 0x848

#define IMSP4A 0x841

#define IMSP5A 0x849

#define CSP4A 0x842

#define CSP5A 0x84A

/* SPORT Control Registers */

#define DIV4 0x802

#define DIV5 0x803

#define SPCTL4 0x800

#define SPCTL5 0x801

#define SPMCTL45 0x804

/* SPMCTL Bits */

#define SPL 0x00001000
4-82 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
/* SPCTL Bits */

#define SPEN_A 0x00000001

#define SDEN_A 0x00040000

#define SLEN32 0x000001F0

#define SPTRAN 0x02000000

#define IFS 0x00004000

#define FSR 0x00002000

#define ICLK 0x00000400

/* Default Buffer Length */

#define BUFSIZE 10

.SECTION/DM seg_dmda;

/*Transmit buffer*/

.var tx_buf5a[BUFSIZE] = 0x11111111,

 0x22222222,

 0x33333333,

 0x44444444,

 0x55555555,

 0x66666666,

 0x77777777,

 0x88888888,

 0x99999999,

 0xAAAAAAAA;

/*Receive buffer*/

.var rx_buf4a[BUFSIZE];

/* Main code section */

.global _main;

.SECTION/PM seg_pmco;

_main:
ADSP-2126x SHARC Processor Peripherals Manual 4-83

SPORT Programming Examples
/* SPORT Loopback: Use SPORT4 as RX & SPORT5 as TX.

 For no loopback (TDM mode), program MTaCSb

 [a=0,2,4 & b=0,1,2,3] and MRcCSd [a=1,3,5 & b=0,1,2,3], */

/* initially clear SPORT control register */

r0 = 0x00000000;

dm(SPCTL4) = r0;

dm(SPCTL5) = r0;

dm(SPMCTL45) = r0;

SPORT_DMA_setup:

/* SPORT 5 Internal DMA memory address */

r0 = tx_buf5a; dm(IISP5A) = r0;

/* SPORT 5 Internal DMA memory access modifier */

r0 = 1; dm(IMSP5A) = r0;

/* SPORT 5 Number of DMA transfers to be done */

r0 = @tx_buf5a; dm(CSP5A) = r0;

/* SPORT 4 Internal DMA memory address */

r0 = rx_buf4a; dm(IISP4A) = r0;

/* SPORT 4 Internal DMA memory access modifier */

r0 = 1; dm(IMSP4A) = r0;

/* SPORT 4 Number of DMA5 transfers to be done */

r0 = @rx_buf4a; dm(CSP4A) = r0;

/* set internal loopback bit for SPORT4 & SPORT5 */

bit set ustat3 SPL;

dm(SPMCTL45) = ustat3;

/* Configure SPORT5 as a transmitter */

/* internally generating clock and frame sync */

/* CLKDIV = [fCCLK(200 MHz)/4 x FSCLK(20 MHz)] – 1 = 0x004 */

/* FSDIV = [FSCLK(20 MHz)/TFS(.625 MHz)] – 1 = 31 = 0x001F */

R0 = 0x001F0004; dm(DIV5) = R0;
4-84 ADSP-2126x SHARC Processor Peripherals Manual

Serial Ports
ustat4 = SPEN_A| /* Enable Channel A */

 SLEN32| /* 32-bit word length */

 FSR| /* Frame Sync Required */

 SPTRAN| /* Transmit on enabled channels */

 SDEN_A| /* Enable Channel A DMA */

 IFS| /* Internally Generated Frame Sync */

 ICLK; /* Internally Generated Clock */

dm(SPCTL5) = ustat4;

/* Configure SPORT4 as a receiver */

/* externally generating clock and frame sync */

r0 = 0x0; dm(DIV4) = R0;

ustat3 = SPEN_A| /* Enable Channel A */

 SLEN32| /* 32-bit word length */

 FSR| /* Frame Sync Required */

 SDEN_A; /* Enable Channel A DMA */

dm(SPCTL4) = ustat3;

_main.end: jump (pc,0);
ADSP-2126x SHARC Processor Peripherals Manual 4-85

SPORT Programming Examples
4-86 ADSP-2126x SHARC Processor Peripherals Manual

5 SERIAL PERIPHERAL
INTERFACE PORT

The ADSP-2126x processor is equipped with a synchronous serial periph-

eral interface port that is compatible with the industry-standard Serial
Peripheral Interface (SPI). The SPI port supports communication with a
variety of peripheral devices including codecs, data converters, sample rate
converters, S/PDIF or AES/EBU digital audio transmitters and receivers,
LCDs, shift registers, microcontrollers, and FPGA devices with SPI emu-
lation capabilities.

The processor’s SPI port provides the following features and capabilities:

• A simple 4-wire interface consisting of two data pins, a device
select pin, and a clock pin

• Full-duplex operation that allows the ADSP-2126x processor to
transmit and receive data simultaneously on the same port

• Special data formats to accommodate little and big endian data,
different word lengths, and packing modes

• Master and Slave modes as well as Multimaster mode in which the
ADSP-2126x processor can be connected to up to four other SPI
devices

• Open drain outputs to avoid data contention and to support multi-
master scenarios

• Programmable baud rates, clock polarities, and phases

• Master or slave booting from a master SPI device

• DMA capability to allow transfer of data without core overhead
ADSP-2126x SHARC Processor Peripherals Manual 5-1

Functional Description
Functional Description
The SPI interface contains a Transmit Shift (TXSR) and a Receive Shift
(RXSR) register. The TXSR register serially transmits data and the RXSR regis-
ter receives data synchronously with the SPI clock signal (SPICLK).
Figure 5-1 shows a block diagram of the SPI interface. The data is shifted
into or out of the shift registers on two separate pins: the Master In Slave
Out (MISO) pin and the Master Out Slave In (MOSI) pin.

During data transfers one SPI device acts as the SPI master by controlling
the data flow. It does this by generating the SPICLK and asserting the SPI
Device Select signal (SPIDS). The SPI master receives data using the MISO

Figure 5-1. SPI Block Diagram

RXSR
RX SHIFT REGISTER

MOSI MISO SPICLK SPIDS

RXSPI
RECEIVE

REGISTER

SPI INTERNAL
CLOCK

GENERATOR

TXSPI
TRANSMIT
REGISTER

32

DM DATA BUS
PM DATA BUS
I/0 DATA BUS

M M SS

SPICTL

SPISTAT

SPI IRQ OR
DMA REQUEST

FLAGX

TXSR
TX SHIFT REGISTER

TXSR

SPI INTERFACE
LOGIC
5-2 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
pin and transmits using the MOSI pin. The other SPI device acts as the SPI
slave by receiving new data from the master into its Receive Shift register
using the MOSI pin. It transmits requested data out of the Transmit Shift
register using the MISO pin.

The SPI port contains a transmit data buffer (TXSPI) and a receive data
buffer (RXSPI). Data to be transmitted is written to TXSPI and then auto-
matically transferred into the Transmit Shift register. Once a full data
word has been received in the Receive Shift register, the data is automati-
cally transferred into RXSPI, from which the data can be read. When the
processor is in SPI Master mode, programmable flag pins provide slave
selection. These pins are connected to the SPIDS of the slave devices.

Different CPUs or DSPs can take turns being master, and one master may
simultaneously shift data into multiple slaves (Broadcast mode). However,
only one slave may drive its output to write data back to the master at any
given time. This must be enforced in the Broadcast mode, where several
slaves can be selected to receive data from the master, but only one slave
can be enabled to send data back to the master.

In a multimaster or multidevice ADSP-2126x processor environment
where multiple processors are connected via their SPI ports, all MOSI pins
are connected together, all MISO pins are connected together, and the SPI-
CLK pins are connected together as well. The FLGx pins connect to each of
the slave SPI devices in the system via their SPIDS pins.

SPI Interface Signals
The SPI protocol uses a 4-wire protocol to enable bidirectional serial com-
munication. This section describes the signals used to connect the SPI
ports in a system that has multiple devices. Figure 5-2 shows the mas-
ter-slave connections between two ADSP-2126x processor devices.
ADSP-2126x SHARC Processor Peripherals Manual 5-3

SPI Interface Signals
SPI Clock Signal (SPICLK)
The SPICLK signal is the Serial Peripheral Interface Clock signal. This con-
trol signal is driven by the master and regulates the flow of data bits. The
master may transmit data at a variety of baud rates. The SPICLK cycles
once for each bit transmitted.

The SPICLK signal is a gated clock that is only active during data transfers,
and only for the duration of the transferred word. The number of active
edges is equal to the number of bits driven on the data lines. The clock
rate can be as high as one-fourth the core clock rate. For master devices,
the clock rate is determined by the 15-bit value of the Baud Rate register
(SPIBAUD). For more information, see “SPI Baud Setup Register
(SPIBAUD)” on page 5-36. For slave devices, the value in the SPIBAUD
register is ignored. When the SPI device is a master, SPICLK is an output
signal; when the SPI is a slave, SPICLK is an input signal. Slave devices
ignore the serial clock if the slave-select input is deasserted (HIGH).

Figure 5-2. Master-Slave Interconnections

TXSR

RXSR TXSR

RXSR

SPICLK

FLAGN

MOSI

ADSP-2126x
SPI-COMPATIBLE MASTER DEVICE

SPICLK

SPIDS

MISO

MOSI

MISO

ADSP-2126x
SPI-COMPATIBLE SLAVE DEVICE

RXSPI

RXSPI

TXSPI

TXSPI
5-4 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
The SPICLK signal is used to shift out the data driven onto the MISO lines
and shift in the data driven onto the MOSI lines. The data is always shifted
out on one edge of the clock (referred to as the active edge) and sampled
on the opposite edge of the clock (referred to as the sampling edge). Clock
polarity and clock phase relative to data are programmable via bit 11
(CLKPL) and bit 10 (CPHASE) in the SPICTL control register.

SPICLK Timing

When the processor is configured as an SPI-Slave, the SPI-master must
drive an SPICLK signal that conforms with Figure 5-3. For exact timing
parameters, please refer to the appropriate ADSP-2126x processor data
sheet.

The SPIDS lead time (T1), the SPIDS lag time (T2), and the sequential
transfer delay time (T3) must always be greater than or equal to one-half
the SPICLK period. The minimum time between successive word transfers
(T4) is two SPICLK periods. This time period is measured from the last
active edge of SPICLK of one word to the first active edge of SPICLK of the
next word. This calculation is independent from the configuration of the
SPI (CPHASE, SPIMS, and so on).

SPI Slave Select Outputs (SPIDS0-3)

When CPHASE=0, the SPI port hardware controls the device-select signal
automatically (determined by DSxEN bits in SPIFLG). Setting CPHASE=1
requires these signals to be manually controlled in software via the SPIDSx
bits in the SPIFLG register (the SPIDSx bits are ignored when CPHASE=0).

SPI Device Select Signal
The SPIDS signal is the Serial Peripheral Interface Device Select Input sig-
nal. This is an active low signal used to enable an ADSP-2126x processor
configured as a slave device. This input-only pin behaves like a chip select,
and is provided by the master device for the slave devices. When the pro-
ADSP-2126x SHARC Processor Peripherals Manual 5-5

SPI Interface Signals
cessor is the SPI-master in a multimaster environment, the SPIDS pin acts
as an error signal. In multimaster mode, if the SPIDS input signal of a mas-
ter is asserted (driven low), an error has occurred. This means that another
device is also trying to be the master device.

Master Out Slave In (MOSI)
The MOSI pin is one of the bidirectional I/O data pins. If the processor is
configured as a master, the MOSI pin becomes a data transmit (output) pin.
If the processor is configured as a slave, the MOSI pin becomes a data
receive (input) pin. In an ADSP-2126x processor processor SPI intercon-
nection, the data is shifted out from the MOSI output pin of the master and
shifted into the MOSI input of the slave.

Master In Slave Out (MISO)
The MISO pin is one of the bidirectional I/O data pins. If the ADSP-2126x
processor is configured as a master, the MISO pin becomes a data receive
(input) pin. If the ADSP-2126x processor is configured as a slave, the MISO
pin becomes a data transmit (output) pin. In an SPI interconnection, the
data is shifted out from the MISO output pin of the slave and shifted into
the MISO input pin of the master.

Figure 5-3. SPICLK Timing

SPICLK
CPHASE =0

T1 T2

T3

T4

SPIDS
TO SLAVE
5-6 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
Only one slave is allowed to transmit data at any given time. Figure 5-4
illustrates how the ADSP-2126x processor can be used as the slave SPI
device. The 8-bit host microcontroller is the SPI master. The processor
can be booted via its SPI interface to allow application code and data to be
downloaded prior to runtime.

Figure 5-5 illustrates an example of an ADSP-2126x processor SPI inter-
face where the processor is the SPI master. When it uses the SPI interface,
the processor can be directed to alter the conversion resources, mute the
sound, modify the volume, and power down the AD1855 stereo DAC.

Figure 5-4. ADSP-2126x Processor as SPI Slave

Figure 5-5. ADSP-2126x Processor as SPI Master

MICROCONTROLLER

SCLK

S_SEL

MOSI

ADSP-2126x
SLAVE SPI DEVICE

SPICLK

SPIDS

MOSI

8-bit Host

MISO MISO

ADSP-2126x
MASTER DEVICE

SPICLK

FLAG0

MOSI

AD1855
STEREO 96 KHZ DAC

CCLK

CLATCH

DATA
ADSP-2126x SHARC Processor Peripherals Manual 5-7

SPI General Operations
SPI General Operations
The SPI in the ADSP-2126x processor can be used in a single master as
well as in a multimaster environment. In both configurations, every MOSI
pin in the SPI system is connected. Likewise, every MISO pin in the system
is on a single node, and every SPICLK pin should be connected. SPI trans-
mission and reception are always enabled simultaneously, unless the
Broadcast mode has been selected. In Broadcast mode, several slaves can
be configured to receive, but only one of the slaves can be in Transmit
mode, driving the MISO line. If the transmit or receive is not needed, MISO
can be ignored. This section describes the clock signals, SPI operation as a
master and as a slave, and error generation.

SPI Enable
When the SPI is disabled (SPIEN = 0), the flag pins used as slave device
selects (FLG0–FLG3) are controlled by the general-purpose flag I/O module,
and no data transfers will occur. For slaves, the slave-select input acts like
a reset for the internal SPI logic.

When the SPIPDN bit (bit 30 in the PMCTL register) is set (= 1 which
shuts down the clock to the SPI), the FLGx pins cannot be used (via
the FLGS7–0 register bits) because the FLGx pins are synchronized
with the clock.

For this reason, the SPIDS line must be error free. The SPIEN signal can
also be used as a software reset of the internal SPI logic. An exception to
this is the W1C-type (write 1-to-clear) bits in the SPISTAT Status register
will remain set if they are already set. For a list of write 1 to-clear-bits, see
Table 5-8 on page 5-45.

Always clear the W1C-type bits before re-enabling the SPI, as these
bits will not get cleared even if SPI is disabled. This can be done by
writing 0xFF to the SPISTAT register. In the case of an MME error,
enable the SPI port after SPIDS is deasserted.
5-8 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
Open Drain Mode (OPD)
In a multimaster or multislave SPI system, the data output pins (MOSI and
MISO) can be configured to behave as open drain drivers to prevent conten-
tion and possible damage to pin drivers. An external pull-up resistor is
required on both the MOSI and MISO pins when this option is selected.

When the OPD is set and the SPI port is configured as a master, the MOSI
pin is three-stated when the data driven out on MOSI is logic-high. The
MOSI pin is not three-stated when the driven data is logic-low. A zero is
driven on the MOSI pin in this case. Similarly, when OPD is set and the SPI
port is configured as a slave, the MISO pin is three-stated if the data driven
out on MISO is logic-high.

Master Mode Operation
When the SPI is configured as a master (and DMA mode is not selected),
the SPI port should be configured and transfers started using the following
steps:

1. When CPHASE is set to 0, the slave selects are automatically con-
trolled by the SPI port. Otherwise [CPHASE = 1] the slave selects are
controlled by the core, and user software controls the pins through
the SPIFLGx bits. Before enabling the SPI port, programs should
specify which slave-select signal to use by writing to the SPIFLG reg-
ister, setting one or more of the SPI Flag Select bits (DSxEN).

2. Write to the SPICTL and SPIBAUD registers, enabling the device as a
master and configuring the SPI system by specifying the appropri-
ate word length, transfer format, baud rate, and other necessary
information.

3. If CPHASE = 1 (user-controlled slave-select signals), activate the
desired slaves by clearing one or more of the SPI flag bits (SPIFLG)
in the SPIFLG register.
ADSP-2126x SHARC Processor Peripherals Manual 5-9

SPI General Operations
4. Initiate the SPI transfer. The trigger mechanism for starting the
transfer is dependant upon the TIMOD bits in the SPICTL register.
See Table 5-1 on page 5-17 for details.

5. The SPI generates the programmed clock pulses on SPICLK and
simultaneously shifts data out of MOSI and shifts data in from MISO.
Before starting to shift, the Transmit Shift register is loaded with
the contents of the TXSPI register. At the end of the transfer, the
contents of the Receive Shift register are loaded into RXSPI.

6. With each new transfer initiate command, the SPI continues to
send and receive words, according to the SPI Transfer mode (TIMOD
in SPICTL). See Table 5-1 on page 5-17 for more details.

If the transmit buffer remains empty, or the receive buffer remains full,
the device operates according to the states of the SENDZ and GM bits in the
SPICTL register.

• If SENDZ = 1 and the transmit buffer is empty, the device repeatedly
transmits zero’s on the MOSI pin; one word is transmitted for each
new transfer initiate command.

• If SENDZ = 0 and the transmit buffer is empty, the device repeatedly
transmits the last word it transmitted before the transmit buffer
became empty.

• If GM = 1 and the receive buffer is full, the device continues to
receive new data from the MISO pin, overwriting the older data in
the RXSPI buffer.

• If GM = 0 and the receive buffer is full, the incoming data is dis-
carded, and the RXSPI register is not updated.
5-10 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
Slave Mode Operation
When a device is enabled as a slave, the start of a transfer is triggered by a
transition of the SPIDS Select signal to the active state (LOW) or by the first
active edge of the clock (SPICLK), depending on the state of CPHASE.

The following steps illustrate SPI operation in the slave mode:

1. Write to the SPICTL register to make the mode of the serial link the
same as the mode that is setup in the SPI master.

2. To prepare for the data transfer, write the data to be transmitted
into the TXSPI register.

3. Once the SPIDS signal’s falling edge is detected, the slave starts
sending and receiving data on active SPICLK edges.

4. The reception or transmission continues until SPIDS is released or
until the slave has received the proper number of clock cycles.

5. The slave device continues to receive or transmit with each new
falling-edge transition on SPIDS or active SPICLK clock edge.

If the transmit buffer remains empty, or the receive buffer remains full,
the devices operate according to the states of the SENDZ and GM bits in the
SPICTL register.

• If SENDZ = 1 and the transmit buffer is empty, the device repeatedly
transmits zero’s on the MISO pin.

• If SENDZ = 0 and the transmit buffer is empty, it repeatedly trans-
mits the last word it transmitted before the transmit buffer became
empty.

• If GM = 1 and the receive buffer is full, the device continues to
receive new data from the MOSI pin, overwriting the older data in
the RXSPI buffer.
ADSP-2126x SHARC Processor Peripherals Manual 5-11

SPI Data Transfer Operations
• If GM = 0 and the receive buffer is full, the incoming data is dis-
carded, and the RXSPI register is not updated.

Multimaster Conditions
A Multimaster mode is implemented to allow an SPI system to transition
mastership from one SPI device to another. In a multidevice SPI configu-
ration, several SPI ports are connected and any one of them can become a
master at a given time, but only one master is allowed at any one time.

If a processor is a slave and wishes to become the SPI master, it asserts the
SPIDS pin for the processor that is currently master and then drives the
SPICLK signal. Once it receives the SPIDS signal, the device that was master
is immediately reconfigured as a slave. In order to safely transition from
one master to the other the SPI port features the use of open drain outputs
for the data pad drivers in order to avoid data contention.

More information on this topic is described in “Mode Fault Error
(MME)” on page 5-53.

SPI Data Transfer Operations
The following sections provide information on the two methods the
ADSP-2126x processor uses to transfer data; through the core or through
DMA.

Core Transmit and Receive Operations
For core-driven SPI transfers, the software has to read from or write to the
RXSPI and TXSPI registers to control the transfer. It is important to check
the buffer status before reading from or writing to these registers because
the core does not hang when it attempts to read from an empty buffer or
5-12 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
write to a full buffer. When the core writes to a full buffer, the data that is
in that buffer is overwritten and the SPI begins transmitting the new data.
Invalid data is obtained when the core reads from an empty buffer.

For a master, when the transmit buffer becomes empty, or the receive
buffer becomes full, the SPI device stalls the SPI clock until it reads all the
data from the receive buffer or it detects that the transmit buffer contains
a piece of data.

• For a master configured with TIMOD = 01: When the transmit buffer
becomes empty, the SPI device stalls the SPI clock until a piece of
data is written to the transmit buffer.

• For a master configured with TIMOD = 00: When the receive buffer
becomes full the SPI device stalls the SPI clock until all of the data
is read from the receive buffer.

SPI DMA
The SPI has a single DMA channel associated with it that can be config-
ured to support either an SPI transmit or a receive channel, but not both
simultaneously. In addition to the TXSPI and RXSPI data buffers, there is a
four-word deep DMA FIFO the SPI port uses to improve throughput.

The SPI port supports both Master mode and Slave mode DMA. The fol-
lowing sections describe Slave and Master mode DMA operation, DMA
chaining, switching between transmit and receive DMA operations, and
processing DMA interrupt errors.

Do not write to the TXSPI register during an active SPI transmit
DMA operation because DMA data will be overwritten. However,
writes to the TXSPI register during an active SPI receive DMA oper-
ation are permitted. The RXS register is cleared when the RXSPI
register is read. Reads from the RXSPI register are allowed at any
time during transmit DMA. Interrupts are generated based on
DMA events and are configured in the SPIDMAC register.
ADSP-2126x SHARC Processor Peripherals Manual 5-13

SPI Data Transfer Operations
Similarly, do not read from the RXSPI register during active SPI
DMA receive operations.

In order for a transmit DMA operation to begin, the transmit buffer must
initially be empty (TXS = 0). While this is normally the case, this means
that the TXSPI register should not be used for any purpose other than SPI
transfers. For example, the TXSPI register should not be used as a scratch
register for temporary data storage. Writing to the TXSPI register via the
software sets the TXS bit.

When the SPI DMA engine is configured for transmitting:

1. The receive interface cannot generate an interrupt, but the status
can be polled.

2. The four-deep FIFO is not available in the receive path.

Similarly, when the SPI DMA engine is configured for receiving,

1. The transmit interface cannot generate an interrupt, but the status
can be polled.

2. The four-deep FIFO is not available in the transmit path.

Master Mode DMA Operation

To configure the SPI port for Master mode DMA transfers:

1. Specify which FLG pin(s) to use as the slave-select signal(s) by set-
ting one or more of the SPI Flag (SPIFLG register) Select bits (DSxEN
bits 3–0).

2. Enable the device as a master and configure the SPI system by
selecting the appropriate word length, transfer format, baud rate,
and so on in the SPIBAUD and SPICTL registers. The TIMOD field (bits
1–0) in the SPICTL register is configured to select transmit or
receive with DMA mode (TIMOD = 10).
5-14 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
3. Activate the desired slaves by clearing one or more of the SPI flag
bits (SPIFLGx) of SPIFLG if CPHASE = 1.

4. For a single DMA, define the parameters of the DMA transfer by
writing to the IISPI, IMSPI, and CSPI registers. For DMA chaining,
write the chain pointer address to the CPSPI register. The CPSPI
register is a 20-bit read-write register that can contain address
information.

5. Write to the SPI DMA configuration register, (SPIDMAC), to specify
the DMA direction (SPIRCV, bit 1) and to enable the SPI DMA
engine (SPIDEN, bit 0). If DMA chaining is desired, set (= 1) the
SPICHEN bit (bit 4) in the SPIDMAC register.

To avoid data corruption, enable the SPI port before enabling
DMA.

If flags are used as slave selects, programs should activate the flags by clear-
ing the flag after SPICTL and SPIBAUD are configured, but before enabling
the DMA. When CPHASE = 0, and a program is using DMA, the program
must use automatic flags using SPIFLGx.

When enabled as a master, the DMA engine transmits or receives data as
follows:

1. If the SPI system is configured for transmitting, the DMA engine
reads data from memory into the SPI DMA FIFO. Data from the
DMA FIFO is loaded into the TXSPI register and then into the
Transmit Shift register. This initiates the transfer on the SPI port.

2. If configured to receive, data from RXSPI is automatically loaded
into the SPI DMA FIFO, the DMA engine reads data from the SPI
DMA FIFO and writes to memory. Finally, the SPI initiates the
receive transfer.

3. The SPI generates the programmed signal pulses on SPICLK and
simultaneously shifts data out of MOSI and shifts data in from MISO.
ADSP-2126x SHARC Processor Peripherals Manual 5-15

SPI Data Transfer Operations
4. The SPI continues sending or receiving words until the SPI DMA
word count register transitions from 1 to 0.

If the DMA engine is unable to keep up with the transmit stream during a
transmit operation because the IOP requires the IOD (I/O data) bus to
service another DMA channel (or for another reason), the SPICLK stalls
until data is written into the TXSPI register. All aspects of SPI receive oper-
ation should be ignored. The data in the RXSPI register is not intended to
be used, and the RXS (bits 28–27 and 31–30 in the SPCTLx register) and
SPISTAT bits (bits 26 and 29) should be ignored. The ROVF overrun condi-
tion cannot generate an error interrupt in this mode.

If the DMA engine cannot keep up with the receive data stream during
receive operations, then SPICLK stalls until data is read from RXSPI. While
performing a receive DMA, the processor core assumes the transmit buffer
is empty. If SENDZ = 1, the device repeatedly transmits 0’s on the MOSI pin.
If SENDZ = 0, it repeatedly transmits the contents of the TXSPI register. The
TUNF underrun condition cannot generate an error interrupt in this mode.

For receive DMA in master mode the SPICLK stops only when the
FIFO and RXSPI buffer is full (even if the DMA count is zero).
Therefore, SPICLK runs for an additional five word transfers filling
junk data in the FIFO and the RXSPI buffer. This data must be
cleared before a new DMA is initiated.

A master SPI DMA sequence may involve back-to-back transmission
and/or reception of multiple DMA transfers. The SPI controller supports
such a sequence with minimal processor core interaction.

Master Transfer Preparation

When the processor is enabled as a master, the initiation of a transfer is
defined by the two bit fields (bits 1–0) of TIMOD in the SPICTL register.
Based on these two bits and the status of the interface, a new transfer is
started upon either a read of the RXSPI register or a write to the TXSPI reg-
ister. This is summarized in Table 5-1.
5-16 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
Slave Mode DMA Operation

A Slave mode DMA transfer occurs when the SPI port is enabled and con-
figured in Slave mode, and DMA is enabled. When the SPIDS signal
transitions to the active-low state or when the first active edge of SPICLK is
detected, it triggers the start of a transfer.

Table 5-1. Transfer Initiation

TIMOD Function Transfer Initiated Upon Action, Interrupt

00 Transmit and
Receive

Initiate new single word
transfer upon read of
RXSPI and previous
transfer completed.

The SPI interrupt is latched in every
core clock cycle in which the RXSPI
buffer has a word in it.
Emptying the RXSPI buffer or dis-
abling the SPI port at the same time
(SPIEN = 0) stops the interrupt
latch.

01 Transmit and
Receive

Initiate new single word
transfer upon write to
TXSPI and previous
transfer completed.

The SPI interrupt is latched in every
core clock cycle in which the TXSPI
buffer is empty.
Writing to the TXSPI buffer or dis-
abling the SPI port at the same time
(SPIEN = 0) stops the interrupt
latch.

10 Transmit or
Receive with
DMA

Initiate new multiword
transfer upon write to
DMA Enable bit. Individ-
ual word transfers begin
with either a DMA write
to TXSPI or a DMA read
of RXSPI depending on
the direction of the trans-
fer as specified by the
SPIRCV bit.

If chaining is disabled, the SPI inter-
rupt is latched in the cycle when the
DMA count decrements from 1 to 0.
If chaining is enabled, interrupt
function is based on the PCI bit in
the CP register. If PCI = 0, the SPI
interrupt is latched at the end of the
DMA sequence. If PCI = 1, then the
SPI interrupt is latched after each
DMA in the sequence. For more
information, see “DMA Transfer
Direction” on page 2-21.

11 Reserved
ADSP-2126x SHARC Processor Peripherals Manual 5-17

SPI Data Transfer Operations
To configure for Slave mode DMA:

1. Write to the SPICTL register to make the mode of the serial link the
same as the mode that is set up in the SPI master. Configure the
TIMOD field to select transmit or receive DMA mode
(TIMOD = 10).

2. Define a DMA receive (or transmit) transfer by writing to the
IISPI, IMSPI, and CSPI registers. For DMA chaining, write to the
chain pointer address of the CPSPI register.

3. Write to the SPIDMAC register to enable the SPI DMA engine and
configure:

• A receive access (SPIRCV = 1) or

• A transmit access (SPIRCV = 0)

If DMA chaining is desired, set the SPICHEN bit in the
SPIDMAC register.

Enable the SPI port before enabling DMA to avoid data
corruption.

Slave Transfer Preparation

When enabled as a slave, the device prepares for a new transfer according
to the function and actions described in Table 5-1.

The following steps illustrate the SPI receive or transmit DMA sequence
in an SPI slave in response to a master command:

1. Once the slave-select input is active, the processor starts receiving
and transmitting data on active SPICLK edges. The data for one
channel (TX or RX) is automatically transferred to/from memory by
the IOP. The function of the other channel is dependant on the GM
and SENDZ bits in the SPICTL register.
5-18 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
2. Reception or transmission continues until the SPI DMA word
count register transitions from 1 to 0.

3. A number of conditions can occur while the processor is configured
for Slave mode:

• If the DMA engine cannot keep up with the receive data
stream during receive operations, the receive buffer operates
according to the state of the GM bit in the SPICTL register.

• If GM = 0 and the DMA buffer is full, the incoming data is
discarded, and the RXSPI register is not updated. While per-
forming a receive DMA, the transmit buffer is assumed to
be empty. If SENDZ = 1, the device repeatedly transmits
zero’s on the MOSI pin. If SENDZ = 0, it repeatedly transmits
the contents of the TXSPI register.

• If GM = 1 and the DMA buffer is full, the device continues to
receive new data from the MISO pin, overwriting the older
data in the DMA buffer.

• If the DMA engine cannot keep up with the transmit data
stream during a transmit operation because another DMA
engine has been granted the bus (or for another reason), the
transmit port operates according to the state of the SENDZ bit
in the SPICTL register.

If SENDZ = 1 and the DMA buffer is empty, the device
repeatedly transmits zero’s on the MOSI pin. If SENDZ = 0 and
the DMA buffer is empty, it repeatedly transmits the last
word it transmitted before the DMA buffer became empty.
All aspects of SPI receive operation should be ignored. The
data in the RXSPI register is not intended to be used, and the
RXS and ROVF bits should be ignored. The ROVF overrun con-
dition cannot generate an error interrupt in this mode.
ADSP-2126x SHARC Processor Peripherals Manual 5-19

SPI Data Transfer Operations
While a DMA transfer may be used on one channel (TX or RX), the
core, (based on the RXS and TXS status bits), can transfer data in the
other direction.

Changing SPI Configuration

Programs should take the following precautions when changing SPI
configurations.

• The SPI configuration must not be changed during a data transfer.

• Change the clock polarity only when no slaves are selected.

• Change the SPI configuration when SPIEN = 0. For example, if
operating as a master in a multislave system, and there are slaves
that require different data or clock formats, then the master SPI
should be disabled, reconfigured, and then re-enabled.

However, when an SPI communication link consists of the follow-
ing: 1) a single master and a single slave, 2) CPHASE = 1, and 3) the
slave’s slave select input is tied low, the program can change the
SPI configuration. In this case, the slave is always selected. Data
corruption can be avoided by enabling the slave only after config-
uring both the master and slave devices.

When performing transmit operations with the SPI port, disabling the SPI
port prematurely can cause data to be corrupted and or not fully transmit-
ted. Before the program disables the SPI port in order to reconfigure it,
the status bits should be polled to ensure that all valid data has been com-
pletely transferred. For core-driven transfers, data moves from the TXSPI
buffer into a shift register. The following bits should be checked before
disabling the SPI port:

1. Wait for the TXSPI buffer to empty into the shift register. This is
done when the TXS bit, (bit 3) of the SPISTAT register becomes zero.
5-20 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
2. Wait for the SPI Shift register to finish shifting out data This is
done when the SPIF bit, (bit 0) of the SPISTAT register becomes
one.

3. Disable the SPI Port by setting the SPIEN bit, (bit 0) in the SPICTL
register, to zero.

When performing transmit DMA transfers, data moves through a four
deep SPI DMA FIFO, then into the TXSPI buffer, and finally into the shift
register. DMA interrupts are latched when the I/O processor moves the
last word from memory to the peripheral. For the SPI, this means that the
SPI “DMA complete” interrupt is latched when there are still six words
left to be fully transmitted (four in the FIFO, one in the TXSPI buffer, and
one being shifted out of the Shift register). To disable the SPI port after a
DMA transmit operation, use these steps:

1. Wait for DMA FIFO to empty. This is done when the SPISx bits
(bits 13–12) in the SPIDMAC register become zero.

2. Wait for the TXSPI register to empty. This is done when the TXS bit
(bit 3) in the SPISTAT register becomes zero.

3. Wait for the SPI Shift register to finish transferring the last word.
This is done when the SPIF bit, (bit 0) of the SPISTAT register,
becomes one.

4. Disable the SPI Port by setting the SPIEN bit, (bit 0) of the SPICTL
register, to zero.

Switching From Transmit To Receive DMA

The following sequence details the steps for switching from transmit to
receive DMA.
ADSP-2126x SHARC Processor Peripherals Manual 5-21

SPI Data Transfer Operations
With disabling the SPI:

1. Write 0x00 to the SPICTL register to disable SPI. Disabling the SPI
also clears the RXSPI/TXSPI registers and the buffer status.

2. Disable DMA by writing 0x00 to the SPIDMAC register.

3. Clear all errors by writing to the W1C-type bits in the SPISTAT reg-
ister. This ensures that no interrupts occur due to errors from a
previous DMA operation.

4. Reconfigure the SPICTL register and enable the SPI port.

5. Configure DMA by writing to the DMA parameter registers and
enable DMA.

Without disabling the SPI:

1. Clear RXSPI/TXSPI without disabling SPI. This can be done by
ORing 0xc0000 with the present value in the SPICTL register. For
example programs can use the RXFLSH and TXFLSH bits to clear
TXSPI/RXSPI.

2. Disable DMA by writing 0x00 to the SPIDMAC register.

3. Clear all errors by writing to the MME bit (bit 1) in the SPISTAT reg-
ister. This ensures that no interrupts occur due to errors from a
previous DMA operation.

4. Reconfigure the SPICTL register to clear the TXSPI/RXSPI register
values.

5. Configure DMA by writing to the DMA parameter registers and
enabling DMA.
5-22 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
Switching From Receive to Transmit DMA

Use the following sequence to switch from receive to transmit DMA. Note
that TXSPI and RXSPI are registers but they may not contain any bits, only
address information.

With disabling of the SPI:

1. Write 0x00 to the SPICTL register to disable SPI. Disabling SPI also
clears the RXSPI/TXSPI register contents and the buffer status.

2. Disable DMA and clear the DMA FIFO by writing 0x80 to the
SPIDMAC register. This ensures that any data from a previous DMA
operation is cleared because the SPICLK signal runs for five more
word transfers even after the DMA count falls to zero in receive
DMA.

3. Clear all errors by writing to the SPISTAT register. This ensures that
no interrupts occur due to errors from a previous DMA operation.

4. Reconfigure the SPICTL register and enable SPI.

5. Configure DMA by writing to the DMA parameter registers and
the SPIDMAC register.

Without disabling the SPI:

1. Clear RXSPI/TXSPI without disabling the SPI. This can be done by
ORing 0xc0000 with the present value in the SPICTL register. Use
the RXFLSH (bit 19) and TXFLSH (bit 18 in the SPICTL register) bits
to clear the RXSPI/TXSPI registers.

2. Disable DMA and clear the FIFO. For example, write 0x80 to the
SPIDMAC register. This ensures that any data from a previous DMA
operation clears because the SPICLK runs for five more word trans-
fers even after the DMA count is zero in receive DMA.
ADSP-2126x SHARC Processor Peripherals Manual 5-23

SPI Data Transfer Operations
3. Clear all errors by writing to the W1C-type bits in the SPISTAT reg-
ister. This ensures that no interrupts occur due to errors from a
previous DMA operation.

4. Reconfigure the SPICTL register to clear the TXSPI/RXSPI registers.

5. Configure DMA by writing to the DMA parameter registers and
the SPIDMAC register using the SPIDEN bit (bit 0). These registers are
described in Table 2-4 on page 2-25.

DMA Error Interrupts

The SPIUNF and SPIOVF bits of the SPIDMAC register indicate transmission
errors during a DMA operation in Slave mode. When one of the bits is set,
an SPI interrupt occurs. The following sequence details the steps to
respond to this interrupt.

With disabling the SPI:

1. Disable the SPI port by writing 0x00 to the SPICTL register.

2. Disable DMA and clear the FIFO. For example, write 0x80 to the
SPIDMAC register. This ensures that any data from a previous DMA
operation clears before configuring a new DMA operation.

3. Clear all errors by writing to the W1C-type bits (see Table 5-8 on
page 5-45) in the SPISTAT register. This ensures that the error bits
SPIOVF and SPIUNF (in the SPIDMAC register) clear when a new
DMA is configured.

4. Reconfigure the SPICTL register and enable SPI using the SPIEN bit.

5. Configure DMA by writing to the DMA parameter registers and
the SPIDMAC register.
5-24 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
Without disabling the SPI:

1. Disable DMA and clear the FIFO. For example, write 0x80 to the
SPIDMAC register. This ensures that any data from a previous DMA
operation clears before configuring a new DMA operation.

2. Clear RXSPI/TXSPI without disabling SPI. This can be done by
ORing 0xc0000 with the present value in the SPICTL register. Use
the RXFLSH and TXFLSH bits to clear the RXSPI/TXSPI registers.

3. Clear all errors by writing to the W1C-type bits in the SPISTAT
register. This ensures that error bits SPIOVF and SPIUNF in the
SPIDMAC register are cleared when a new DMA is configured.

4. Reconfigure SPICTL to clear the RXSPI/TXSPI register bits.

5. Configure DMA by writing to the DMA parameter registers and
the SPIDMAC register.

DMA Chaining

DMA chaining is enabled when the SPICHEN bit is set to 1 in the SPIDMAC
register. In this mode, the DMA registers are loaded using a DMA transfer
from a predefined Transfer Control Block (TCB). When this load occurs,
it causes the Chaining Status bit (SPICHS) to be set. Once the chain
pointer load completes, the SPICHS bit is cleared. Upon completion of the
transfer block load, the normal DMA transfer is initiated. Table 5-2
describes the order of loading. For more information about chaining, refer
to “Chaining DMA Processes” on page 2-10.

Table 5-2. DMA Chaining Sequence

Address Register Description

CPSPI DMA Start Address Address in Memory

CPSPI – 1 DMA Address Modifier Address increment
ADSP-2126x SHARC Processor Peripherals Manual 5-25

SPI Transfer Formats
SPI Transfer Formats
The ADSP-2126x processor SPI supports four different combinations of
serial clock phases and polarity. The application code can select any of
these combinations using the CLKPL and CPHASE bits in the SPICTL register.

Figure 5-6 on page 5-27 shows the transfer format when CPHASE = 0 and
Figure 5-7 on page 5-28 shows the transfer format when CPHASE = 1. Each
diagram shows two waveforms for SPICLK—one for CLKPL = 0 and the
other for CLKPL = 1. The diagrams may be interpreted as master or slave
timing diagrams since the SPICLK, MISO, and MOSI pins are directly con-
nected between the master and the slave. The MISO signal is the output
from the slave (slave transmission), and the MOSI signal is the output from
the master (master transmission).

The SPICLK signal is generated by the master, and the SPIDS signal repre-
sents the slave device select input to the processor from the SPI master.
The diagrams represent 8-bit transfers (WL = 0) with MSB first (MSBF = 1).
Any combination of the WL and MSBF bits of the SPICTL register is allowed.
For example, a 16-bit transfer with the LSB first is one possible
configuration.

The clock polarity and the clock phase should be identical for the master
device and slave devices involved in the communication link. The transfer
format from the master may be changed between transfers to adjust to var-
ious requirements of a slave device.

CPSPI – 2 DMA Word Count Number of words to transfer

CPSPI – 3 DMA Next TCB Pointer to address of next TCB

Table 5-2. DMA Chaining Sequence (Cont’d)

Address Register Description
5-26 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
When CPHASE = 0, the slave select line, SPIDS, must be inactive (HIGH)
between each word in the transfer. When CPHASE = 1, SPIDS may either
remain active (LOW) between successive transfers or be inactive (HIGH).

Figure 5-6 shows the SPI transfer protocol for CPHASE = 0. Note that
SPICLK starts toggling in the middle of the data transfer, WL = 0, and
MSBF = 0.

Figure 5-7 shows the SPI transfer protocol for CPHASE = 1. Note that
SPICLK starts toggling at the beginning of the data transfer, WL = 0, and
MSBF = 0.

Beginning and Ending an SPI Transfer
An SPI transfer’s defined start and end depend on the following: whether
the device is configured as a master or a slave, whether the CPHASE mode is
selected, and whether the transfer initiation mode is (TIMOD) selected. For

Figure 5-6. SPI Transfer Protocol for CPHASE = 0

1CLOCK CYCLE
NUMBER

SPICLK
CLKPL = 0

MOSI
FROM MASTER

MISO
FROM SLAVE

SPIDS
FROM MASTER

SPICLK
CLKPL = 1

2 3 4 5 6 7 8

* 6

6 5 4 3

5 4 3 2 1 LSB *

2 1 LSB *

MSB

MSB

* = UNDEFINED
ADSP-2126x SHARC Processor Peripherals Manual 5-27

SPI Transfer Formats
a master SPI with CPHASE = 0, a transfer starts when either the TXSPI regis-
ter is written or the RXSPI register is read, depending on the TIMOD
selection. At the start of the transfer, the enabled slave-select outputs are
driven active (LOW). However, the SPICLK starts toggling after a delay equal
to one-half the SPICLK period. For a slave with CPHASE = 0, the transfer
starts as soon as the SPIDS input transitions to low.

For CPHASE = 1, a transfer starts with the first active edge of SPICLK for
both slave and master devices. For a master device, a transfer is considered
complete after it sends and simultaneously receives the last data bit. A
transfer for a slave device is complete after the last sampling edge of
SPICLK.

The RXS bit defines when the receive buffer can be read; the TXS bit defines
when the transmit buffer can be filled. The end of a single word transfer
occurs when the RXS bit is set. This indicates that a new word has just been
received and latched into the receive buffer, RXSPI. The RXS bit is set

Figure 5-7. SPI Transfer Protocol for CPHASE = 1

1CLOCK CYCLE
NUMBER

SPICLK
CLKPL=0

MOSI
FROM MASTER

MISO
FROM SLAVE

SPIDS
TO SLAVE

SPICLK
CLKPL=1

2 3 4 5 6 7 8

* 6

6 5 4 3

5 4 3 2 1 LSB *

2 1 LSB

MSB

MSB

* = UNDEF INED

*

5-28 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
shortly after the last sampling edge of SPICLK. The latency is typically a
few core clock cycles and is independent of CPHASE, TIMOD, and the baud
rate. If configured to generate an interrupt when RXSPI is full (TIMOD =
00), the interrupt becomes active one core clock cycle after RXS is set.
When not relying on this interrupt, the end of a transfer can be detected
by polling the RXS bit.

To maintain software compatibility with other SPI devices, the SPI Trans-
fer Finished bit (SPIF) is also available for polling. This bit may have
slightly different behavior from that of other commercially available
devices. For a slave device, SPIF is set at the same time as RXS; for a master
device, SPIF is set one-half of the SPICLK period after the last SPICLK edge,
regardless of CPHASE or CLKPL.

The baud rate determines when the SPIF bit is set. In general, SPIF is set
after RXS, but at the lowest baud rate settings (SPIBAUD<4). The SPIF bit is
set before the RXS bit is set, and consequently before new data has been
latched into the RXSPI buffer. For SPIBAUD = 2 or SPIBAUD = 3, the proces-
sor must wait for the RXS bit to be set (after SPIF is set) before reading the
RXSPI buffer. For larger SPIBAUD settings (SPIBAUD > 4), RXS is set before
SPIF is set.
ADSP-2126x SHARC Processor Peripherals Manual 5-29

SPI Word Lengths
SPI Word Lengths
The processor’s SPI port can transmit and receive the word widths
described in the following sections.

8-Bit Word Lengths
Eight-bit word lengths can be used when transmitting or receiving. When
transmitting, the SPI port sends out only the lower eight bits of the word
written to the SPI buffer.

For example, if the processor executes the instructions below, the SPI port
transmits 0x78.

r0 = 0x12345678

dm(TXSPI) = r0;

When receiving, the SPI port packs the 8-bit word to the lower 32 bits of
the RXSPI buffer while the upper bits in the registers are zeros.

For example, if an SPI host sends the processor the 32-bit word
0x12345678, the processor receives the following words:

0x00000078 //first word

0x00000056 //second word

0x00000034 //third word

0x00000012 //forth word

This code works only if the MSBF bit is zero in both the transmitter and
receiver, and the SPICLK frequency is small. If MSBF = 1 in the transmitter
and receiver, and SPICLK has a small frequency, the received words follow
the order 0x12, 0x34, 0x56, 0x78.
5-30 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
16-Bit Word Lengths
Sixteen-bit word lengths can be used when transmitting or receiving.
When transmitting, the SPI port sends out only the lower 16 bits of the
word written to the SPI buffer.

For example, if the processor executes the following instructions, the SPI
port transmits 0x5678.

r0 = 0x12345678

dm(TXSPI) = r0;

When receiving, the SPI port packs the 16-bit word to the lower 32 bits of
the RXSPI buffer while the upper bits in the register are zeros.

For example, if an SPI host sends the processor the 32-bit word
0x12345678, the processor receives the following words:

0x00005678 //first word

0x00001234 //second word

32-Bit Word Lengths
Thirty-two bit word lengths can be used when transmitting or receiving.
No packing of the RXSPI or TXSPI registers is necessary as the entire 32-bit
register is used for the data word.

Packing
In order to communicate with 8-bit SPI devices and store 8-bit words in
internal memory, a packed transfer feature is built into the SPI port. Pack-
ing is enabled through the PACKEN bit in the SPICTL register. The SPI is
unpacks data when it transmits and packs data when it receives. When
packing is enabled, two 8-bit words are packed into one 32-bit word.
ADSP-2126x SHARC Processor Peripherals Manual 5-31

SPI Interrupts
When the SPI port is transmitting, two eight-bit words are packed into
one 32-bit word. When receiving, words are unpacked from one 32-bit
word into two eight-bit words.

Transmitter packing example:

The value 0xXXLMXXJK (where XX is any random value and JK and LM are
the data words to be transmitted out of the SPI port) is written to the
TXSPI register. The processor transmits 0xJK first and then transmits 0xLM.

Receiver packing example:

The receiver unpacks the value and two words are received, 0xJK and then
0xLM. They appear in the RXSPI register as:

0x00LM00JK => if SGN is configured to 0
0xFFLMFFJK => if SGN is configured to 1 and L, J > 7.

SPI Interrupts
The SPI port can generate an interrupt in five different situations. During
core-driven transfers, an SPI interrupt is triggered in these instances:

1. When the TXSPI buffer has the capacity to accept another word
from the core

2. When the RXSPI buffer contains a valid word to be retrieved by the
core

The TIMOD (Transfer Initiation and Interrupt) register determines whether
the interrupt is based on the TXSPI or RXSPI buffer status. For more infor-
mation, refer to the TIMOD bit descriptions in the SPICTL register in
Table 5-6 on page 5-37.
5-32 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
During IOP-driven transfers (DMA), an SPI interrupt is triggered in these
instances:

1. When a single DMA transfer completes

2. When a number of DMA sequences (if DMA chaining is enabled)
completes

3. When a DMA error has occurred

Again, the TIMOD register must be initialized properly to enable DMA
interrupts.

All of these interrupts are serviced using the high priority (SPIHI) or low
priority (SPILI) SPI interrupt. Whenever an SPI interrupt occurs (regard-
less of the cause), both SPILI and SPIHI are latched. Programs specify the
SPI interrupt priority by masking (disabling) one of the interrupts. To ser-
vice the SPI port using the high priority interrupt, unmask (set = 1) the
SPIHI bit (bit 12) in the IMASK register. To service the SPI port using the
low priority interrupt, unmask (set = 1) the SPILIMSK bit (bit 19) in the
LIRPTL register. For a list of these bits, see Table 2-1 on page 2-5.

To globally enable interrupts set (= 1), the IRPTEN bit in the MODE1 register.
When using DMA transfers, programs must also specify whether to gener-
ate interrupts based on transfer or error status. For DMA transfer status
based interrupts, set the INTEN bit in the SPIDMAC register; otherwise, set
the INTERR bit to trigger the interrupt if one of the error conditions is trig-
gered during the transmission—multimaster error (MME), transmit
buffer underflow (TUNF – only if SPIRCV = 0), or receive buffer overflow
(ROVF – only if SPIRCV = 1). During core-driven transfers, the TUNF and
ROVF error conditions do not generate interrupts.

When DMA is disabled, the processor core may read from the RXSPI regis-
ter or write to the TXSPI data buffer. The RXSPI and TXSPI buffers are
memory-mapped IOP registers. A maskable interrupt is generated when
the receive buffer is not empty or the transmit buffer is not full. The
TUNF and ROVF error conditions do not generate interrupts in these modes.
ADSP-2126x SHARC Processor Peripherals Manual 5-33

SPI Registers
• See the ADSP-2126x SHARC DSP Core Manual for IRPTL and
LIRPTL register bit descriptions.

• See “SPI DMA Configuration Register (SPIDMAC)” on page A-50
for SPIDMAC register bit descriptions.

SPI Registers
The SPI peripheral in the ADSP-2126x SHARC processor includes several
memory mapped registers, some of which are accessible by the IOP. Four
registers contain control and status information—SPIBAUD, SPICTL,
SPIFLG, and SPISTAT. Two registers are used for buffering receive and
transmit data—RXSPI and TXSPI. Five registers are related to DMA func-
tionality—SPIDMAC, IISPI, IMSPI, CSPI and CPSPI. Additionally, the
four-deep SPI DMA FIFO and the SPI Transmit and Receive Shift regis-
ters, TXSR and RXSR, are not accessible.

SPI registers are provided in several functional groups.

Table 5-3. SPI Registers

SPI Register Type Registers Found On

Control and Status Registers SPIBAUD page 5-36

SPICTL page 5-37

SPIFLG page 5-41

SPISTAT page 5-45

Buffering and Transmit/Receive Registers TXSPI on page 5-47

RXSPI on page 5-48

Shift Registers RXSR on page 5-52

TXSR on page 5-52

Debugging Register RXSPI_SHADOW on page 5-53
5-34 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
Also see “Error Signals and Flags” on page 5-53 for more information
about how the bits in these registers are used to signal errors and other
conditions, and on page 5-48 for a table that shows the mapping of all SPI
registers.

Control and Status Registers
The following registers are used to control certain functions of the SPI or
to provide SPI status information:

• SPIBAUD

• SPICTL

• SPIFLG

• SPISTAT

DMA Registers SPIDMAC on page 5-48

IISPI on page 5-48

IMSPI on page 5-48

CSPI on page 5-48

CPSPI on page 5-48

Table 5-3. SPI Registers (Cont’d)

SPI Register Type Registers Found On
ADSP-2126x SHARC Processor Peripherals Manual 5-35

SPI Registers
SPI Baud Setup Register (SPIBAUD)

The SPI Baud Rate register (SPIBAUD) is used to set the bit transfer rate for
a master device. When configured as a slave, the value written to this reg-
ister is ignored. The serial clock frequency is determined by the following
formula:

Writing a value of zero to the register disables the serial clock. Therefore,
the maximum serial clock rate is one-fourth the core clock rate (CCLK).

Table 5-4 provides the bit descriptions for the SPIBAUD register.

Table 5-5 lists several possible baud rate values for the SPIBAUD register.

Table 5-4. SPIBAUD Register Bits

Bit(s) Name Function Default

0 Reserved

15:1 BAUDR Baud Rate enables the SPICLK baud rate per the following
equation:
SPI Baud Rate = Core clock (CCLK) divided by (4* BAUDR)

0

31:16 Reserved

Table 5-5. SPI Master Baud Rate Example

BAUDR Decimal Value SPI Clock Divide Factor Baud Rate for CCLK @ 200 MHz

0 N/A N/A

1 4 50 MHz

2 8 25 MHz

3 12 16.67 MHz

4 16 12.5 MHz

SPI Baud Rate =
Core Clock Rate

(4)x(BAUDR)
5-36 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
SPI Control Register (SPICTL)

The SPI Control register (SPICTL) is used to configure and enable the SPI
system. This read/write register is used to enable the SPI interface, select
the device as a master or slave, and determine the data transfer format and
word size. Table 5-6 provides the bit descriptions for the SPICTL register.

5 20 10.0 MHz

and up to 32,767 (0x7FFF)1 131,068 1.526 kHz

1 BAUDR decimal values of 6 to 32,766 are also possible.

Table 5-6. SPICTL Register Bits

Bit(s) Name Function Default

1:0 TIMOD Transfer Initiation Mode. Defines the transfer initia-
tion mode and interrupt generation as follows:
00 = Initiate transfer by read of receive buffer. Interrupt
is active when receive buffer is full.
01 = Initiate transfer by write to transmit buffer.
Interrupt is latched when transmit buffer is empty
10 = Enable DMA transfer mode. Interrupt is
 configured by DMA.
11 = Reserved

00

2 SENDZ Send Zero. When receiving via the RXSPI register, the
SPI also transmits the contents of the TXSPI register.
When TXSPI is empty, the SPI data output pin (MOSI
or MISO) can either transmit zeros or retransmit the
last word written to TXSPI.
0 = Resend last word written to TXSPI
1 = Send zero

0

Table 5-5. SPI Master Baud Rate Example (Cont’d)

BAUDR Decimal Value SPI Clock Divide Factor Baud Rate for CCLK @ 200 MHz
ADSP-2126x SHARC Processor Peripherals Manual 5-37

SPI Registers
3 GM Get Data. When transmitting, the RXSPI register also
latches in data. When RXSPI is full, it can either latch
in more data or discard all further incoming data.
0 = Discard incoming data
1 = Get more data (overwrites the previous data)

0

4 ISSEN Input Slave Select Enable. Enables if set (= 1) or dis-
ables if cleared (= 0) Slave-Select (SPIDS) input for
master. When not used, SPIDS can be disabled, freeing
up a chip pin as general-purpose I/O.
Note: This bit is ignored for slave mode.

0

5 DMISO Disable MISO Pin. Disables the MISO pin as an out-
put. This is needed when the master wishes to transmit
to various slaves at one time (broadcast). Only one slave
is allowed to transmit data back to the master. All slaves
(except for the one from whom the master wishes to
receive) should have this bit set.
1 = MISO disabled
0 = MISO enabled

0

6 Reserved

8:7 WL Word Length. The SPI port can transmit the least sig-
nificant 8 bits, 16 bits, or all 32 bits of the TXSPI regis-
ter. Likewise, when receiving, the RXSPI buffer can be
considered “full” after 8 bits, 16 bits, or 32 bits have
been shifted in. These bits select word length as follows:
00 = 8 bits
01 = 16 bits
10 = 32 bits

00

9 MSBF Data Format. Selects the data format as follows:
1 = MSB sent/received first
0 = LSB sent/received first

0

Table 5-6. SPICTL Register Bits (Cont’d)

Bit(s) Name Function Default
5-38 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
10 CPHASE Clock Phase. Selects the relationship between SPICLK
and the SPI data. It also determines whether the
slave-select output flags are controlled by the SPI port
or manually by the core.
0 = SPICLK starts toggling at the middle of the first
data bit; slave-select flags are automatically asserted by
the SPI port.
1 = SPICLK starts toggling at the beginning of the first
data bit; slave-select flags require manual assertion by
the core.

1

11 CLKPL Clock Polarity. Selects the clock polarity as follows:
0 = Active high SPICLK (SPICLK low is the idle state)
1 = Active low SPICLK (SPICLK high is the idle state)

0

12 SPIMS Master Select. This bit configures the SPI as master or
slave as follows:
0 = Device is a slave device
1 = Device is a master device

0

13 OPD Open Drain Data Output Enable. Enables an open
drain data output for MOSI and MISO.
0 = Normal
1 = Open Drain

0

14 SPIEN SPI Port Enable. Enables the SPI port if set (= 1) or dis-
ables the port if cleared (= 0).

0

15 PACKEN Packing Enable. Selects the word packing mode in
receive mode as follows:
0 = No Packing
1 = 8- to 32-bit packing is enabled
This is valid when WL = 00.
When in Transmit mode, this bit will unpack data.

0

16 SGN Sign Extend Bit. When packing is enabled, only the
eight LSB's of each word contain valid data. This bit
determines whether the upper 24 MSB’s are
sign-extended based on bit 7 or left as zeros.

0

Table 5-6. SPICTL Register Bits (Cont’d)

Bit(s) Name Function Default
ADSP-2126x SHARC Processor Peripherals Manual 5-39

SPI Registers
SPI Flag Register (SPIFLG)

The SPI Flag register (SPIFLG) is a read/write register used to enable indi-
vidual SPI slave-select output flags when the SPI is enabled as a master.
The SPIFLG register has four bits to select the outputs to be driven as
slave-select lines (DSxEN) and four bits to activate the selected slave-selects
(SPIFLG).

If the SPI is enabled and configured as a master, up to four of the chip’s
general-purpose flag I/O pins may be used as slave-select outputs. For each
DSxEN bit set in the SPIFLG register, the corresponding FLG pin is config-
ured as a slave-select output. For example, if bit DS1EN is set in the SPIFLG
register, the SPIFLG1 pin is driven as a slave-select.

For those DSxEN bits that are not set, the corresponding FLG pins are con-
figured and controlled by the chip’s FLG I/O module.

17 SMLS Seamless Transfer Bit. Enables seamless transfers.
When it is set (= 1), this bit indicates no delay before
the next word starts, a seamless operation. When this
bit is cleared (= 0), it indicates that after each word
transfer there is a delay before the next word transfer
starts. The delay is 2.5 SPICLK cycles.

0

18 TXFLSH Clear TXS Bit. When set to 1, clears the TXS bit but
does not clear the buffer. Any data in the buffer
becomes invalid.
0 = TXS not cleared
1 = TXS cleared

0

19 RXFLSH Clear RXS Bit. When set to 1, clears the RXS bit but
does not clear the buffer. Any data in the buffer
becomes invalid.
0 = RXS not cleared
1 = RXS cleared

0

31:20 Reserved

Table 5-6. SPICTL Register Bits (Cont’d)

Bit(s) Name Function Default
5-40 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
Table 5-7 provides the bits for the SPIFLG register.

When the FLG pins are configured as slave-select outputs, the value that is
driven onto these outputs depends on the value of the CPHASE bit in the
SPICTL register:

• If CPHASE = 1, the slave-select flags are manually controlled in soft-
ware by setting and clearing the appropriate FLGx bit.

• If CPHASE = 0, the slave-select flags enabled by DSxEN bits of the
SPIFLG register are automatically asserted by the SPI port when
appropriate, and the SPIFLGx bit is ignored.

When CPHASE = 1, the SPI protocol permits the slave-select line to either
remain asserted (LOW) or be deasserted between transferred words. This
requires a program write to the SPIFLG register, setting or clearing the
appropriate SPIFLG bits as needed. For example, to drive FLG1 as a
slave-select, set the DS1EN bit field (bits 3–0) in the SPIFLG register to one.
Clear the SPIFLG1 bit field (bit 2) in the FLAGS register to drive FLG1 low;
set the SPIFLG1 bit to drive it high. As soon as this SPIFLG register write

Table 5-7. SPIFLG Register Bits

Bit Name Function Default

3:0 DSxEN
(3–0)

SPI Device Select Enable Bits. Selects (if set = 1)
the corresponding FLG as a pin to be used for SPI
slave-select.

0

6:4 Reserved

7 ISSS Input Slave Select Status. This read-only bit reflects
the status of the slave-select input pin.

11:8 SPIFLGx
(3–0)

SPI Flags. Drives the value of the FLG selected
using DSxEN (if CPHASE = 1). If cleared (= 0) the
corresponding slaves will be selected.

1

15:12 Reserved

31:16 Reserved
ADSP-2126x SHARC Processor Peripherals Manual 5-41

SPI Registers
takes effect, the FLG1 slave-select output pin becomes active (LOW). If
needed, FLG1 can be cycled high and low between transfers by setting
SPIFLG1 and then clearing SPIFLG1. Otherwise, FLG1 remains active
(LOW) between transfers. This feature can be used to emulate the DCPH
functionality supported by the ADSP-21161 processor. For more infor-
mation on FLG pins, see the ADSP-2126x SHARC Processor Core Manual.

When CPHASE = 1 and DMA is used for the SPI transfer, it is not
possible to deselect the flag pins between transfers.

When CPHASE = 0, the SPI protocol requires that the slave-select be deas-
serted between transferred words. In this case, the SPI hardware controls
the pins. For example, to configure FLG1 as a slave-select pin, it is only
necessary to set the DS1EN bit in the SPIFLG register. Writing to the
SPIFLG1 bit is not required, because the SPI hardware automatically drives
the FLG1 pin.

Note that the flag outputs behave as a slave-select output only if
the SPI port is enabled as a master. Otherwise, none of the bits in
the SPIFLG register have any effect and the FLG pins are controlled
by the FLAGS register.

Use of DSxEN Bits in SPIFLG for Multiple Slave SPI Systems

The DSxEN bits in the SPIFLG register are used in a multiple slave SPI envi-
ronment. For example, if there are five SPI devices in the system with an
ADSP-2126x processor master, then the master ADSP-2126x processor
can support the SPI mode transactions across all four other devices. This
configuration requires that only one ADSP-2126x processor be a master.
For example, assume that SPI0 is the master. The four flag pins on the
ADSP-2126x processor master can be connected to each of the slave SPI
device’s SPIDS pins. In this configuration, the DSxEN bits in the SPIFLG reg-
ister can be used in three ways.
5-42 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
In cases 1 and 2, the processor acts as the master, and the four SPI micro-
controllers/peripherals act as slaves. In this configuration, the
ADSP-2126x processor can:

1. Transmit to all four SPI devices at the same time in Broadcast
mode. Here, all the DSxEN bits are set.

2. Receive and transmit from one SPI device by enabling only one
slave SPI device at a time.

In case 3, all five devices connected via SPI ports can be ADSP-2126x
processors.

3. If all the slaves are also ADSP-2126x processors, then the requestor
can receive data from only one ADSP-2126x processor (enable this
by setting the DMISO bit in the other slave processors) at a time and
transmit broadcast data to all four at the same time. This DMISO fea-
ture may be available in some other microcontrollers. Therefore, it
would be possible to use the DMISO feature with any other SPI
device which includes this functionality.

Figure 5-8 shows one ADSP-2126x processor as a master with three
ADSP-2126x processors (or other SPI-compatible devices) as slaves.

SPI Device Select Input Pin

The behavior of the SPIDS input depends on the configuration of the SPI.
If the SPI is a slave, SPIDS acts as the slave-select input. When enabled as a
master, SPIDS can serve as an error-detection input for the SPI in a multi-
master environment. The ISSEN bit (bit 4) in the SPICTL register enables
the SPI master mode feature. When ISSEN=1, the SPIDS input is the mas-
ter mode error input; otherwise, SPIDS is ignored. The state of these input
pins can be observed in the flag I/O module’s data register.
ADSP-2126x SHARC Processor Peripherals Manual 5-43

SPI Registers
SPI Status Register (SPISTAT)

The SPI Status register (SPISTAT) is used to detect when an SPI transfer is
complete or if transmission/reception errors occur. The SPISTAT register
can be read at any time.

Some of the bits in the SPISTAT register are read-only (RO) and cannot be
cleared. The remainder of the bits can be read, but can also be cleared by a
write one-to-clear (W1C-type) operation. Bits that provide information
about the SPI are also read-only; these bits get set and cleared by the hard-
ware. Bits that are W1C-type are set when an error condition occurs (see
Table 5-8 on page 5-45); these bits are set by hardware and must be
cleared by software. To clear a W1C-type bit, the program must write
a one to the desired bit position of the SPISTAT register. For example, if
the TUNF bit is set, the program must write a one to bit 2 of SPISTAT to
clear the TUNF error condition. This allows the program to read the status
register without changing its value.

Figure 5-8. Single Master, Multiple Slave Configuration

MISO

SPICLK

MOSI

SPIDS

SLAVE DEVICE

MISO

SPICLK

MOSI

SPIDS

SLAVE DEVICE

MISO

SPICLK

MOSI

SPIDS

SLAVE DEVICE

MISO

SPICLK

MOSI

SPIDS

MASTER
DEVICE

FLAGFLAG

FLAG

VDD
5-44 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
Write one-to-clear (W1C-type) bits can only be cleared by writing
1 to them. Writing zero does not clear (or have any effect on) a
W1C-type bit. Table 5-8 provides the bit descriptions for the
SPISTAT register.

Table 5-8. SPISTAT Register Bits

Bit Name Function Type Default

0 SPIF SPIRCV bits in SPICTL. Set to 1 when the
appropriate shift-register has completed shift-
ing in or out data.

RO 1

1 MME Multimaster Error or Mode-fault Error. Set
when the processor is configured as the SPI
master and another device tries to become
the master by driving the SPIDS signal low.
See “Mode Fault Error (MME)” on
page 5-53.

W1C 0

2 TUNF Transmission Error (Underflow). Set when a
transmission occurred with no new data in
the TXSPI register. See “Transmission Error
Bit (TUNF)” on page 5-55.

W1C 0

3 TXS Transmit Data Buffer Status. Indicates the
TXSPI data buffer status.
0 = Empty
1 = Full

RO 0

4 ROVF Reception Error (Overflow). Set when data
is received and the receive buffer is full.
1 = New data received with full RXSPI regis-
ter. See “Reception Error Bit (ROVF)” on
page 5-55.

W1C 0

5 RXS Receive Data Buffer Status. Indicates the
RXSPI data buffer status.
0 = Empty
1 = Full

RO 0
ADSP-2126x SHARC Processor Peripherals Manual 5-45

SPI Registers
The transmit buffer is full after data is written to it and is empty when a
transfer begins and the transmit value loads into the Shift register. The
receive buffer is full at the end of a transfer when the Shift register value is
loaded into the receive buffer. It is empty when the receive buffer is read.

The SPI status also depends on the PACKEN bit in the SPICTL register. If
packing is enabled, then the receive buffer status is set to full only after
two transfers from the Shift register.

Buffering and Transmit/Receive Registers
The TXSPI and RXSPI registers are 32-bit memory-mapped registers that
hold SPI data for transmit and receive operations.

Check the buffer status before reading from or writing to these registers
because the core does not hang when it attempts to read from an empty
buffer or write to a full buffer. When the core writes to a full buffer, the
data in that buffer is overwritten and the SPI begins transmitting the new
data. Invalid data is obtained when the core reads from an empty buffer.

6 TXCOL Transmission Collision Error. The TXCOL
flag is set in the SPISTAT register when a
write to the TXSPI register coincides with
the load of the shift register. See “Transmit
Collision Error Bit (TXCOL)” on page 5-55

W1C 0

31–7 Reserved

Table 5-8. SPISTAT Register Bits (Cont’d)

Bit Name Function Type Default
5-46 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
SPI Transmit Data Buffer Register (TXSPI)

The Transmit Data Buffer register (TXSPI) is a 32-bit read-write (RW)
register. Data is loaded into this register before being transmitted. Just
prior to the beginning of a data transfer, the data in TXSPI is loaded into
the Transmit Shift Data (SFDR) register. A normal core read of TXSPI can
be done at any time and does not interfere with, or initiate, SPI transfers.

With DMA enabled for transmit operations, the IOP loads data into this
register. Core writes to TXSPI should not be made to prevent corrupting
the DMA data to be transmitted.

With DMA enabled for receive operations, the contents of the TXSPI regis-
ter are repeatedly transmitted. A normal core write to TXSPI is permitted
in this mode, and this data is transmitted. If the Send Zeroes Control bit
(SENDZ) is set, TXSPI resets once the data is transferred from TX to TXSR.

If multiple writes to TXSPI occur while a transfer is already in progress,
only the last data written is transmitted. None of the intermediate values
written to TXSPI are transmitted. Multiple writes to TXSPI are possible but
not recommended. To avoid overwriting data, be sure to poll the TXS bit
before writing to TXSPI.

To prevent transmit collision errors, ensure that the program writes
to the TXSPI register before the load to the Shift register occurs by
writing to TXSPI whenever TXS is cleared. Programs should refrain
from writing to TXSPI when TXS is set. For slave mode, data should
exist in TXSPI before the first SPI clock edge (or negative edge of
device select) occurs.

The TXCOL bit can be set when there is a TUNF condition and there
are attempts to write to the TXSPI register. In this case, TXS is not
set and the program wants to send new data. To ensure that TXSPI
is written into before the next load to a Shift register occurs, write
to the TXSPI register as soon as the SPIF bit (bit 0 in the SPISTAT
register) goes from one to zero.
ADSP-2126x SHARC Processor Peripherals Manual 5-47

SPI Registers
SPI Receive Data Buffer Register (RXSPI)

The Receive Data Buffer register (RXSPI) is a 32-bit read-only (RO) regis-
ter that is accessible by both the software and DMA. At the end of a data
transfer, the data in the Receive Shift register (RXSR) loads into the RXSPI
register. During a DMA receive operation, the data in the RXSPI register is
automatically read by the DMA. A shadow register for the receive data
buffer, RXSPI, supports software debugging functions. See “SPI Receive
Data Buffer Shadow Register (RXSPI_SHADOW)” on page 5-53.

DMA Registers
The following registers configure and manage SPI DMA functions:

• SPIDMAC

• IISPI

• IMSPI

• CSPI

• CPSPI

SPI DMA Configuration (SPIDMAC) Register

The SPI DMA Configuration Register contains the control bits for SPI
DMA transfers. Table 5-9 provides the bit descriptions for the SPIDMAC
register.

The SPIMME, SPIUNF, and SPIOVF bits are sticky; these bits remain set even
if the corresponding SPISTAT bits (MME, TUNF, and ROVF) are cleared. To
clear these bits, clear corresponding bits in the SPISTAT, register then con-
figure a new DMA.
5-48 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
Table 5-9. SPIDMAC Register Bits

Bit(s) Name Function Type Default

0 SPIDEN DMA Enable. Enables if set (= 1) or dis-
ables if cleared (= 0) DMA for the SPI
port.

Control 0

1 SPIRCV DMA Direction. When set, the IOP emp-
ties the RXSPI buffer, when cleared, the
IOP fills the TXSPI buffer.
0 = SPI Transmit DMA (Memory read)
1 = SPI Receive DMA (Memory write)

Control 0

2 INTEN Enable DMA Interrupt. Enables if set
(= 1) or disables if cleared (= 0) an inter-
rupt upon completion of the DMA trans-
fer.

Control 0

3 Reserved

4 SPICHEN SPI DMA Chaining Enable. Enables if set
(=1) or disables if cleared (= 0) DMA
chaining.

Control 0

6:5 Reserved

7 FIFOFLSH DMA FIFO Flush. Clears the four-deep
FIFO and FIFO status bits if set (= 1).

Control 0

8 INTERR Enable Interrupt on Error. Enables if set
(= 1) or disables if cleared (= 0) an inter-
rupt when an error in the transmission
occurs.

Control 0

9 SPIOVF Receive Overflow Error (SPIRCV=1). Set
when SPIRCV = 1 and data is received
with the receive buffer full (1 = error data
received with receive data buffer RXSPI
full in receive mode DMA).

Status 0

10 SPIUNF SPI Transmit Underrun Error. Set when
SPIRCV = 0 and the SPI transmits with-
out any new data in the transmit buffer
TXSPI.

Status 0
ADSP-2126x SHARC Processor Peripherals Manual 5-49

SPI Registers
SPI DMA Internal Index Register (IISPI)

This 19-bit register contains the address where the IOP transfers data to
or from. Initially, this register holds the first address of the source or desti-
nation buffer, and then as the DMA progresses, this register is modified by
the value in IMSPI.

SPI DMA Address Modifier Register (IMSPI)

This 16-bit register contains the DMA address modifier. After the IOP
transfers each word between memory and the TXSPI/RXSPI register, this
value is used to increment the internal index, IISPI.

11 SPIMME SPI Multimaster Error. Set when MME is
set in the SPISTAT register and DMA is
enabled.

Status 0

13:12 SPISx DMA FIFO Status 0. Indicates the status
of the DMA FIFO as follows:
00 = FIFO empty
11 = FIFO full
10 = FIFO partially full
01 = Reserved

Status

14 SPIERRS DMA Error Status. Set if any of the fol-
lowing error bits get set: SPIOVF,
SPIUNF, or SPIMME

Status 0

15 SPIDMAS DMA Transfer Status. Indicates the status
of the DMA transfer as follows:
1 = DMA in progress, 0 = DMA idle

Status 0

16 SPICHS DMA Chain Loading Status. Indicates
the status of the DMA chain loading as
follows:
1 = DMA chain pointer loading in
progress, 0 = Chain idle

Status 0

31:17 Reserved

Table 5-9. SPIDMAC Register Bits (Cont’d)

Bit(s) Name Function Type Default
5-50 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
SPI DMA Word Count Register (CSPI)

This 16-bit register contains the number of DMA words to be transferred.
When this register decrements from one to zero, the DMA is complete,
and an interrupt may be triggered.

To prematurely end a DMA transfer, software should write the
value one to the Count register so that it will decrement to zero.
Writing a value of zero causes the count to decrement to a negative
number, and this is not advised.

SPI DMA Chain Pointer Register (CPSPI)

This register contains the address of the Transfer Control Block (TCB) in
memory when DMA chaining is enabled. This register’s address is 0x1083
and its reset value is undefined. For more information, see “Transfer Con-
trol Block Chain Loading (TCB)” on page 2-12.

Table 5-10 provides the bit descriptions for the CPSPI register.

Table 5-10. CPSPI Register Bits

Bits Function Default

18:0 Next Chain Pointer Address. The address of the next transfer control
block (TCB) in memory.

0

19 PCI – Program Controlled Interrupt. Affects interrupt functionality
when DMA chaining is enabled. Setting this bit (= 1) causes an inter-
rupt to occur after each DMA in the chain completes. Clearing this
bit (= 0) causes an interrupt to occur only after the final DMA trans-
fer in the chain is completed.

0

ADSP-2126x SHARC Processor Peripherals Manual 5-51

SPI Registers
Shift Registers
The processor core contains two separate 32-bit shift registers—one for
reception (RXSR) and one for transmission (TXSR).

Receive Shift Register (RXSR)

The RXSR register is clocked on the sampling edge of the SPICLK clock. The
active edge is the opposite edge from the sampling edge. The RXSR register
behaves the same way whether the device is in Slave or Master mode.

The register is configured by the MSBF and WL bits of the SPICTL register.
The MSBF bit indicates the data format (LSB-first or MSB-first) and selects
the direction of the shift. The WL bit indicates the length of the transfer—
8 bits if WL = 00, 16 bits if WL = 01, and 32 bits if WL = 10. For more infor-
mation, see “SPI Control Register (SPICTL)” on page A-44.

Transmit Shift Register (TXSR)

The TXSR register is clocked on the active or shifting edge. The active edge
is the opposite edge from the sampling edge. The TXSR register can be
shifted right or left, depending on the direction of the data flow. This reg-
ister can also be loaded from the TXSPI register with data that is to be
transmitted.

This register behaves the same way whether the device is in Slave or Mas-
ter mode. The TXSR register contains 32 shift cells.

Each Shift register is configured by the MSBF and WL bits of the SPICTL reg-
ister. The MSBF bit indicates the data format (LSB-first or MSB-first) and
selects the direction of the shift. The WL bit indicates the length of the
transfer—8 bits if WL = 00, 16 bits if WL = 01, and 32 bits if WL = 10. When
WL = 00, the upper 24 MSBs of the register loads with zeroes after a write
to the TXSPI register. For more information, see “SPI Control Register
(SPICTL)” on page A-44.
5-52 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
SPI Receive Data Buffer Shadow Register (RXSPI_SHADOW)

Use the RXSPI_SHADOW register for the receive data buffer (RXSPI) to debug
software. The RXSPI_SHADOW register resides at a different address from
RXSPI, but its contents are identical to the RXSPI. When RXSPI is read via
the software, the RXS bit clears and an SPI transfer may be initiated (if
TIMOD = 00). No such hardware action occurs when the shadow register is
read. The RXSPI_SHADOW register is a read-only (RO) register accessible
only by the software and not the DMA. For more information, see “SPI
Receive Buffer Register (RXSPI)” on page A-45.

Error Signals and Flags
This section describes the error signals and flags that determine the cause
of transmission errors for an SPI port. The bits MME, TUNF and ROVF are set
in the SPISTAT register when a transmission error occurs. Corresponding
bits (SPIMME, SPIUNF and SPIOVF) in the SPIDMAC register are set when an
error occurs during a DMA transfer. These sticky bits generate an SPI
interrupt when any one of them are set.

• See “SPI Status Register (SPISTAT)” on page 5-44 for more infor-
mation about the SPISTAT register bits.

• See “SPI DMA Configuration (SPIDMAC) Register” on page 5-48
for more information about the SPIDMAC register bits.

Mode Fault Error (MME)
The MME bit is set in the SPISTAT register when the SPIDS input pin of a
device that is enabled as a master is driven low by some other device in the
system. This occurs in multimaster systems when another device is also
trying to be the master.
ADSP-2126x SHARC Processor Peripherals Manual 5-53

Error Signals and Flags
To enable this feature, set the ISSEN bit in the SPICTL register. As soon as
this error is detected, the following actions are taken.

1. The SPIMS Control bit in SPICTL is cleared, configuring the SPI
interface as a slave.

2. The SPIEN Control bit in SPICTL is cleared, disabling the SPI
system.

3. The MME Status bit in SPISTAT is set.

4. An SPI interrupt is generated.

These four conditions persist until the MME bit is cleared by a write
1-to-clear (W1C-type) software operation. Until the MME bit is cleared, the
SPI cannot be re-enabled, even as a slave. Hardware prevents the program
from setting either SPIEN or SPIMS while MME is set.

When MME is cleared, the interrupt is deactivated. Before attempting to
re-enable the SPI as a master, the state of the SPIDS input pin should be
checked to ensure that it is high; otherwise, once SPIEN and SPIMS are set,
another mode-fault error condition will immediately occur. The state of
the input pin is reflected in the Input Slave Select Status bit (bit 7) in the
SPIFLG register.

As a result of SPIEN and SPIMS being cleared, the SPI data and clock pin
drivers (MOSI, MISO, and SPICLK) are disabled. However, the slave-select
output pins revert to control by the flag I/O module registers. This may
cause contention on the slave-select lines if these lines are still being driven
by the ADSP-2126x processor. In order to ensure that the slave-select out-
put drivers are disabled once a MME error occurs, the program must
configure these pins as inputs by clearing (= 0) the FLG0O, FLG1O, FLG2O,
and FLG3O bits in the FLAGS register prior to configuring the SPI port. See
also the FLAGs value register description in the ADSP-2126x SHARC Pro-
cessor Core Manual.
5-54 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
Transmission Error Bit (TUNF)
The TUNF bit is set in the SPISTAT register when all of the conditions of
transmission are met and there is no new data in TXSPI (TXSPI is empty).
In this case, the transmission contents depend on the state of the SENDZ bit
in the SPICTL register. The TUNF bit is cleared by a W1C-type software
operation.

Reception Error Bit (ROVF)
The ROVF flag is set in the SPISTAT register when a new transfer has com-
pleted before the previous data could be read from the RXSPI register. This
bit indicates that a new word was received while the receive buffer was
full. The ROVF flag is cleared by a W1C-type software operation. The state
of the GM bit in the SPICTL register determines whether the RXSPI register is
updated with the newly received data or whether that new data is
discarded.

Transmit Collision Error Bit (TXCOL)
The TXCOL flag is set in the SPISTAT register when a write to the TXSPI reg-
ister coincides with the load of the Shift register. The write to TXSPI can
be via the software or the DMA. This bit indicates that corrupt data may
have been loaded into the Shift register and transmitted. In this case, the
data in TXSPI may not match what was transmitted. This error can easily
be avoided by proper software control. The TXCOL bit is cleared by a
W1C-type software operation.

This bit is never set when the SPI is configured as a slave with
CPHASE = 0. The collision may occur, but it cannot be detected.
ADSP-2126x SHARC Processor Peripherals Manual 5-55

SPI Programming Examples
SPI Programming Examples
The following three programming examples are for the ADSP-21262 pro-
cessor. The example shown in Listing 5-1 transmits a buffer of data from
the SPI port in Master mode using DMA. In this example, the I/O Proces-
sor (IOP) automatically moves data from internal memory to the SPI’s
four-deep DMA-FIFO.

The second example, shown in Listing 5-2, also transmits a buffer, but the
transfer is core-driven using interrupts. In this example, only the SPI’s
one-deep transmit buffer (TXSPI) is serviced by the core and the four-deep
DMA-FIFO is not used. The core supplies the SPI port with data in a
short loop which causes the core to hang at each write to the transmit
buffer until the SPI is ready for new data.

The third example, shown in Listing 5-3, receives multiple buffers using
DMA chaining. DMA chaining on the ADSP-21262 processor SPI is ini-
tialized differently than on other SHARC processors, as described
in Chapter 2, I/O Processor.

Listing 5-1. SPI Master Mode Transmit DMA

/* SPI Control Registers */

#define SPICTL (0x1000)

#define SPIFLG (0x1001)

#define SPIBAUD (0x1005)

#define TXSPI (0x1003)

/*SPICTL bits*/

#define TIMOD1 (0x0001) /* Use DMA for transfers */

#define DMISO (0x0020) /* Disable MISO pin */

#define WL32 (0x0100) /* SPI Word Length = 32 */

#define SPIMS (0x1000) /* SPI Master if 1, Slave if 0 */

#define SPIEN (0x4000) /* SPI Port Enable */
5-56 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
/*SPIFLG bits */

#define DS0EN (0x0001) /* use FLG0 as SPI device-select*/

/* Default Buffer Length */

#define BUFSIZE 10

.SECTION/DM seg_dmda;

/* Transmit Buffer */

.var tx_buf[BUFSIZE] = 0x11111111,

 0x22222222,

 0x33333333,

 0x44444444,

 0x55555555,

 0x66666666,

 0x77777777,

 0x88888888,

 0x99999999,

 0xAAAAAAAA;

/* Main code section */

.global _main;

.SECTION/PM seg_pmco;

_main:

/* Init SPI MASTER TX */

r0=0;

dm(SPICTL) = r0;

dm(SPIFLG) = r0;

/* set the SPI baud rate to CCLK/4x64 (781.25KHz @ 200MHz)*/

ustat3 = 0x64;

dm(SPIBAUD) = ustat3;

/* Set up DAG registers */
ADSP-2126x SHARC Processor Peripherals Manual 5-57

SPI Programming Examples
i4 = tx_buf;

m4 = 1;

ustat3 = DMISO| /* Disable MISO on transfers */

 WL32| /* 32-bit words */

 SPIMS| /* Master mode (internal SPICLK) */

 SPIEN| /* Enable SPI port */

 TIMOD1; /* Initialize SPI port to begin

 transmitting when DMA is enabled */

dm(SPICTL) = ustat3;

/* Set up loop to transmit data */

lcntr = LENGTH(tx_buf), do (pc,2) until lce;

/* Retrieve data using DAG1 and send TX via SPI */

r0 = dm(i4,m4);

dm(TXSPI) = r0;

_main.end: jump (pc,0);

Listing 5-2. Core Driven Interrupt SPI Transfer

/* SPI Control Registers */

#define SPICTL (0x1000) /* SPI Control Register */

#define SPIFLG (0x1001) /* SPI Flag register */

#define SPIBAUD (0x1005) /* SPI baud setup register */

/* SPI DMA Registers */

#define IISPI (0x1080) /* Internal DMA address */

#define IMSPI (0x1081) /* Internal DMA access modifier */

#define CSPI (0x1082) /* Number of words to transfers */

#define CPSPI (0x1083) /* Points to next DMA parameters*/

#define SPIDMAC (0x1084) /* SPI DMA control register */

/*SPICTL bits */
5-58 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
#define TIMOD2 (0x0002) /* Use DMA for transfers */

#define DMISO (0x0020) /* Disable MISO pin */

#define WL32 (0x0100) /* SPI Word Length = 32 */

#define SPIMS (0x1000) /* SPI Master if 1, Slave if 0 */

#define SPIEN (0x4000) /* SPI Port Enable */

/*SPIFLG bits */

#define DS0EN (0x0001) /* use FLG0 as SPI device-select*/

/*SPIDMAC bits */

#define SPIDEN (0x0001) /* enable DMA on the SPI port */

/* Default buffer size */

#define BUFSIZE 0x100

/*==*/

/* Source data to be transmitted via SPI DMA */

.section/dm seg_dmda;

.var src_buf[BUFSIZE] = "source.dat";

/* Application code */

.global _main;

.segment/pm seg_pmco;

_main:

/* set the SPI baud rate to CCLK/4x64 (781.25KHz @ 200MHz)*/

ustat3 = 0x64;

dm(SPIBAUD) = ustat3;

/* Init SPI MASTER TX DMA */

r0 = 0;

dm(SPICTL) = r0;

dm(SPIFLG) = r0;

dm(SPIDMAC) = r0;
ADSP-2126x SHARC Processor Peripherals Manual 5-59

SPI Programming Examples
r0 = DS0EN;

dm(SPIFLG) = r0; /*use flag0 as spi device select */

ustat3 = src_buf; dm(IISPI) = ustat3; /* point to 'src_buf'*/

ustat3 = LENGTH(src_buf); dm(CSPI) = ustat3; /* count = 256 */

ustat3 = 1; dm(IMSPI) = ustat3; /* step size = 1 */

ustat3 = DMISO| /* Disable MISO on transfers */

 WL32| /* 32-bit words */

 SPIMS| /* Master mode (internal SPICLK) */

 SPIEN| /* Enable SPI port */

 TIMOD2; /* Initialize SPI port to begin

 transmitting when DMA is enabled */

dm(SPICTL) = ustat3;

ustat3 = SPIDEN; dm(SPIDMAC) = ustat3; /* begin DMA */

/*==*/

_main.end: jump (pc,0);

Listing 5-3. SPI DMA Chaining Example

/* SPI Control Registers */

#define SPICTL (0x1000) /* SPI Control Register */

#define SPIFLG (0x1001) /* SPI Flag register */

#define SPIBAUD (0x1005) /* SPI baud setup register */

/* SPI DMA Registers */

#define IISPI (0x1080) /* Internal DMA address */

#define IMSPI (0x1081) /* Internal DMA access modifier */

#define CSPI (0x1082) /* Number of words to transfers */

#define CPSPI (0x1083) /* Points to next DMA parameters*/

#define SPIDMAC (0x1084) /* SPI DMA control register */
5-60 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
/*SPIFLG bits */

#define DS0EN (0x0001) /* enable SPI device select 0 */

#define SPIFLG0 (0x0100) /* manually set SPIFLG0 state */

#define SPIFLG1 (0x0200) /* manually set SPIFLG1 state */

#define SPIFLG2 (0x0400) /* manually set SPIFLG2 state */

#define SPIFLG3 (0x0800) /* manually set SPIFLG3 state */

/*SPIDMAC bits */

#define SPIDEN (0x0001) /* enable DMA on the SPI port */

#define SPIRCV (0x0002) /* set to have DMA receive */

#define SPICHEN (0x0010) /* set to enable DMA chaining */

/*SPICTL bits */

#define TIMOD2 (0x0002) /* Use DMA for transfers */

#define SENDZ (0x0004) /* when TXSPI empty, MOSI sends 0 */

#define WL32 (0x0100) /* SPI Word Length = 32 */

#define SPIMS (0x1000) /* SPI Master if 1, Slave if 0 */

#define SPIEN (0x4000) /* SPI Port Enable */

#define CLKPL (0x0800) /* if 1, rising edge samples data */

#define CPHASE (0x0400) /* if 1, data's sampled on second */

 /* (middle) edge of SPICLK cycle*/

/*==*/

.section/dm seg_dmda;

/* Destinations for incoming data */

.var dest_bufC[8];

.var dest_bufB[8];

.var dest_bufA[8];

/* Transfer Control Blocks (TCB's) */

.var first_tcb[] =

 (0x7FFFF&second_tcb + 3), /* for CPSPI (next tcb) */
ADSP-2126x SHARC Processor Peripherals Manual 5-61

SPI Programming Examples
 LENGTH(dest_bufB), /* for CSPI (next count) */

 1, /* for IMSPI (next modify) */

 dest_bufB; /* for IISPI (next index) */

.var second_tcb[] = 0, /* null CPSPI ends chain */

 LENGTH(dest_bufC), /* count for final DMA */

 1, /* IM for final DMA */

 dest_bufC; /* II for final DMA */

/* NOTE: Chain Pointer registers must point to the LAST */

/* location in the TCB, "tcb + 3". */

/*Main code section */

.global _main;

.section/pm seg_pmco;

_main:

/* clear SPI settings */

r0 = 0;

dm(SPICTL) = r0;

dm(SPIFLG) = r0;

dm(SPIDMAC) = r0;

/* setup first DMA in chain */

ustat3 = 8; dm(CSPI) = ustat3; /* count = 8 words */

ustat3 = 1; dm(IMSPI) = ustat3; /* step size = 1 */

ustat3 = dest_bufA; dm(IISPI) = ustat3; /* point to dest_bufA */

/* set the SPI baud rate to CCLK/4x64 (781.25KHz @ 200MHz)*/

ustat3 = 0x64;

dm(SPIBAUD) = ustat3;

/* configure processor's SPI slave-select signals */

ustat3 = DS0EN| /*enable SPI slave device select zero */

 SPIFLG3|SPIFLG2|SPIFLG1;/* Set SPIFLG0 low to */

dm(SPIFLG) = ustat3; /*select SPI slave on FLG0 pin */
5-62 ADSP-2126x SHARC Processor Peripherals Manual

Serial Peripheral Interface Port
/* configure SPI port to power-on settings */

ustat3 = CPHASE| /* sample MISO on second edge of SPICLK */

 CLKPL| /* sampling edge of SPICLK is rising */

 WL32| /* 32-bit words */

 SPIMS| /* Master mode (internal SPICLK) */

 SPIEN| /* Enable SPI port */

 SENDZ| /* when TXSPI empty, MOSI sends zeros */

 TIMOD2; /* Start SPICLK when DMA is enabled */

dm(SPICTL) = ustat3;

/*configure SPI for chained receive DMA operation */

ustat3 = SPIRCV| /* DMA direction = receive */

 SPICHEN| /* enable DMA chaining */

 SPIDEN; /* enabling DMA initiates the transfer */

dm(SPIDMAC) = ustat3;

/* 1st DMA starts when a valid address is written to CPSPI*/

ustat3 = (0x7FFFF&(first_tcb+3));

dm(CPSPI) = ustat3; /* point to tcb_A */

_main.end: jump(pc,0);

/*==*/
ADSP-2126x SHARC Processor Peripherals Manual 5-63

SPI Programming Examples
5-64 ADSP-2126x SHARC Processor Peripherals Manual

6 INPUT DATA PORT

The signal routing unit (SRU) provides paths among both on-chip and

off-chip peripherals. To make this feature effective in a real-world system,
a low overhead method of making data from various serial formats parallel
and routing them back to the main core memory is needed. The Input
Data Port (IDP) provides this mechanism for a large number of asynchro-
nous channels.

This chapter describes how data is routed into the core’s memory space.
Figure 6-1 provides a graphical overview of the Input Data Port architec-
ture. Notice that each channel is independent and each contains a separate
clock and frame sync input.

Channels 0 through 7 can accept serial data in audio format. Channel 0
can also be configured to accept parallel data. The parallel input bypasses
the serial-to-parallel converter and latches up to 20 bits per clock cycle.

The parallel data is acquired through the Parallel Data Acquisition Port
(PDAP) which provides a means of moving high bandwidth data to the
core’s memory space. The data may be sent to memory as one 32-bit word
per input clock or packed together (up to four clock cycles of data).
Figure 6-2 illustrates the data flow for the IDP channel 0, where either the
PDAP or serial input can be selected via control bit IDP_PDAP_EN (bit 31 of
the IDP_PDAP_CTL register).

The following sections describe each of the Input Data Port functions.
ADSP-2126x SHARC Processor Peripherals Manual 6-1

Figure 6-1. The Input Data Port

CH7

Serial
To

Parallel
Converter

CLK
FS

DATA
SMODE7

PDAP

FIFO
(8 x 32)

32

29

CH0

Serial
To

Parallel
Converter

CLK
FS

DATA
SMODE0

29

29

29

29

29

29

29

CH6

Serial
To

Parallel
Converter

CLK
FS

DATA
SMODE6

CH5

Serial
To

Parallel
Converter

CLK
FS

DATA
SMODE5

CH4

Serial
To

Parallel
Converter

CLK
FS

DATA
SMODE4

CH3

Serial
To

Parallel
Converter

CLK
FS

DATA
SMODE3

CH2

Serial
To

Parallel
Converter

CLK
FS

DATA
SMODE2

CH1

Serial
To

Parallel
Converter

CLK
FS

DATA
SMODE1

CLK
HOLD

PARALLEL DATA
HANDLING

SERIAL DATA
HANDLING

IDP_FIFO

D
M

A

6-2 ADSP-2126x SHARC Processor Peripherals Manual

Input Data Port
Serial Inputs
The IDP provides up to eight serial input channels—each with its own
clock, frame sync, and data inputs. The eight channels are automatically
multiplexed into a single 32-bit by eight-deep FIFO. Data is always for-
matted as a 64-bit frame and divided into two 32-bit words. The serial
protocol is designed to receive audio channels in I2S, Left-justified Sample
Pair, or Right-justified mode. One frame sync cycle indicates one 64-bit
left-right pair, but data is sent to the FIFO as 32-bit words (that is,
one-half a frame at a time).

Contained within the 32-bit word is an audio signal that is normally 24
bits wide. An additional four bits are available for status and formatting
data (compliant with the IEC 90958, S/PDIF, and AES3 standards). An
additional bit identifies the left-right one-half of the frame. If the data is
not in IEC standard format, the serial data can be any data word up to 28
bits wide. Regardless of mode, bit 3 always specifies if the data is received
in the first half (left channel), or the second half (right channel) of the
same frame, as shown in Figure 6-3. The remaining three bits are used to
encode one of the eight channels being passed through the FIFO to the

Figure 6-2. Detail of IDP Channel 0

PDAP ENABLE

DAI PINS
[20:5]

DAI PINS
[4:1]

[19:4]

[3:0]

MASK

16

4

20 Packing
Unit

Serial
Input

29

32

32 To
FIFO

Parallel Data Acquisition Port

AD[15:0]
ADSP-2126x SHARC Processor Peripherals Manual 6-3

Serial Inputs
core. The FIFO output may feed eight DMA channels, where the appro-
priate DMA channel (corresponding to the channel number) is selected
automatically.

Note that each input channel has its own clock and frame sync
input, so unused IDP channels do not produce data and therefore
have no impact on FIFO throughput. The clock and frame sync of
any unused input should be assigned to LOW to avoid unintentional
acquisition.

The framing format is selected by using IDP_SMODEx bits (three bits per
channel) in the IDP_CTL register. The bits [31:8] of the IDP_CTL register
control the input format modes for each of the eight channels. The eight
groups of three bits indicate the mode of the serial input for each of the
eight IDP channels, as shown in Table 6-1.

Figure 6-3. Word Format

Table 6-1. Serial Modes

Bit Field Values
IDP_SMODEx

Mode

000 Left-justified Sample Pair

001 I2S

010 Reserved

011 Reserved

100 Right-justified Sample Pair 24 bits

101 Right-justified Sample Pair 20 bits

31 8 7 4 3 2 0

AUDIO DATA (24 BITS) AUDIO STREAM
STATUS L/R

IDP
CHNL
6-4 ADSP-2126x SHARC Processor Peripherals Manual

Input Data Port
The polarity of left-right encoding is independent of the serial mode frame
sync polarity selected in IDP_SMODE for that channel (Table 6-1). Note that
I2S mode uses a LOW frame sync (left-right) signal to dictate the first (left)
channel, and Left-justified Sample Pair mode uses a HIGH frame sync
(left-right) signal to dictate the first (left) channel of each frame. In either
mode, the left channel has bit 3 set (= 1) and the right channel has bit 3
cleared (= 0).

Figure 6-4 shows the relationship between frame sync, serial clock, and
Left-justified Sample Pair data.

Figure 6-5 shows the relationship between frame sync, serial clock, and
I2S data.

110 Right-justified Sample Pair 18 bits

111 Right-justified Sample Pair 16 bits

Figure 6-4. Timing in Left-justified Sample Pair Mode

Table 6-1. Serial Modes (Cont’d)

Bit Field Values
IDP_SMODEx

Mode

SERIAL CLOCK
IDPx_CLK_I

FRAME SYNC (L/R)
IDPx_FS_I

LEFT-JUSTIFIED
SAMPLE PAIR
SERIAL DATA

IDPx_DAT_I

MSBn

F RAME [n] FRAME [n]

LSBn MSBn

FRAME [n-1]

LSBn-1

RIGHT LEFT RIGHT

0 63 62 3261 31
ADSP-2126x SHARC Processor Peripherals Manual 6-5

Parallel Data Acquisition Port (PDAP)
Parallel Data Acquisition Port (PDAP)
The input to channel 0 of the IDP is multiplexed, and may be used either
in the serial mode, described in “Serial Inputs” on page 6-3, or in a direct
Parallel Input mode. Serial or parallel input is selected by setting
IDP_PDAP_EN bit 31 in the IDP_PDAP_CTL register. When used in parallel
mode, the clock input for channel 0 is used to latch parallel sub words.
Multiple latched parallel sub-word samples may be packed into 32-bit
words for efficiency. The frame sync input is used to hold off latching of
the next sample (that is, ignore the clock edges). The data then flows
through the FIFO and is transferred by a dedicated DMA channel into the
core’s memory as with any IDP channel. As shown in Figure 6-6, the
PDAP can accept input words up to 20 bits wide, or can accept input
words that are packed as densely as four input words up to eight bits wide.

The IDP_PDAP_CTL register also provides a reset bit that zeros any data that
is waiting in the packing unit to be latched into the FIFO. When asserted,
the IDP_PDAP_RESET bit (bit 30 in the IDP_PDAP_CTL register) causes the
reset circuit to strobe, then automatically clear itself. Therefore, this bit
always returns a value of zero when read. The IDP_PORT_SELECT bit (bit 26

Figure 6-5. Timing in I2S Mode

SERIAL CLOCK
IDPx_CLK_I

FRAME SYNC (L/R)
IDPx_FS_I

I2S SERIAL DATA
IDPx_DAT_I MSBn

FRAME [n] FRAME [n]

LSBn MSBn

F RAME [n-1]

LSBn-1

0 63 62 32 3133

RIGHT LEF T RIGHT
6-6 ADSP-2126x SHARC Processor Peripherals Manual

Input Data Port
in the IDP_PDAP_CTL register) selects between the two sets of pins that may
be used as the parallel input port. When IDP_PORT_SELECT is set (= 1), the
upper 16 bits are read from the AD[15:0]. When IDP_PORT_SELECT is
cleared (= 0), the upper 16 bits are read from DAI_P[20:5]. Note that the
four least significant bits (LSB’s) of the parallel port input are not multi-
plexed. These input bits are always read from Digital Audio Interface
(DAI) pins 4–1, as shown in Figure 6-6. The DAI_P[4:1] pins are always
connected as bits 3 through 0. A sample PDAP program is located at the
end of this chapter. See Listing 6-2.

Masking
The IDP_PDAP_CTL register provides 20 mask bits that allow the input
from any of the 20 pins to be ignored. The mask is specified by setting the
IDP_Pxx_PDAPMASK bits (bits 19–0 of the IDP_PDAP_CTL register) for the 20
parallel input signals. For each of the parallel inputs, a bit is set (= 1) to

Figure 6-6. Parallel Data Acquisition Port (PDAP) Functions

AD[15:0]

DAI PINS
[20:5]

DAI PINS
[4:1]

IDP_PORT_SELECT
(IDP_PP_CTL[26])

1

[19:4]

[3:0]

MASK

16

4

IDP_Pxx_MASK
(IDP_PP_CTL[19:0])

20 Packing
Unit

IDP_PP_PACKING
(IDP_PP_CTL[28:27])

2

Serial
Input

29

32

IDP_PP_EN
(IDP_PP_CTL[31])

32 To
FIFO

20 1
ADSP-2126x SHARC Processor Peripherals Manual 6-7

Parallel Data Acquisition Port (PDAP)
indicate the bit is unmasked and therefore its data can be passed on to be
read, or masked (= 0) so its data will not be read. After this masking pro-
cess, data gets passed along to the packing unit.

Packing Unit
The Parallel Data Acquisition Port (PDAP) packing unit receives masked
parallel sub words from the 20 parallel input signals and packs them into a
32-bit word. The IDP_PDAP_PACKING bit field (bits 28–27 of the
IDP_PDAP_CTL register), indicates how data is to be packed. Data can be
packed in any of four modes. Selection of Packing mode is made based on
the application.

Packing Mode 11

Mode 11 provides for 20 bits coming into the packing unit and 32 bits
going out to the FIFO in a single cycle. On every clock edge, 20 bits of
data are moved and placed in a 32-bit register, left-aligned. That is, bit 19
maps to bit 31. The lower bits [11:0] are always set to zero, as shown in
Figure 6-7 on page 6-8.

Figure 6-7. Packing Modes in IDP_PDAP_CTL

31 24 23 16 15 7 0

31 21 20 10 9 0

31 16 15 0

MODE 10
2x16-bit

MODE 01
tri-word

MODE 00
4x8-bit

B A

ABC

ABCD

MODE 11
1x20-bit

31 12 11 0

A RESERVED

8

6-8 ADSP-2126x SHARC Processor Peripherals Manual

Input Data Port
This mode sends one 32-bit word to FIFO for each input clock cycle—the
DMA transfer rate will match the PDAP input clock rate.

Packing Mode 10

On the first clock edge (cycle A), the packing unit latches parallel data up
to 16 bits wide (bits 19–4 of the parallel input) and places it in bits 15–0
(the lower half of the word), then waits for the second clock edge (cycle
B). On the second clock edge (cycle B), the packing unit takes the same
set of inputs and places the word into bits 31–16 (the upper half of the
word).

This mode sends one packed 32-bit word to FIFO for every two input
clock cycles—the DMA transfer rate is one-half the PDAP input clock
rate.

Packing Mode 01

Mode 01 packs three acquired samples together. Since the resulting 32-bit
word is not divisible by three, up to ten bits are acquired on the first clock
edge and up to eleven bits are acquired on each of the second and third
clock edges:

• On clock edge 1, bits 19:10 are moved to bits 9:0 (10 bits)

• On clock edge 2, bits 19:9 are moved to bits 20:10 (11 bits)

• On clock edge 3, bits 19:9 are moved to bits 31:21 (11 bits)

This mode sends one packed 32-bit word to FIFO for every three input
clock cycles—the DMA transfer rate is one-third the PDAP input clock
rate.
ADSP-2126x SHARC Processor Peripherals Manual 6-9

Parallel Data Acquisition Port (PDAP)
Packing Mode 00

Mode 00 moves data in four cycles. Each input word can be up to 8 bits
wide.

• On clock edge 1, bits 19:12 are moved to bits 7:0

• On clock edge 2, bits 19:12 are moved to bits 15:8

• On clock edge 3, bits 19:12 are moved to bits 23:16

• On clock edge 4, bits 19:12 are moved to bits 31:24

This mode sends one packed 32-bit word to FIFO for every four input
clock cycles—the DMA transfer rate is one-quarter the PDAP input clock
rate.

Clocking Edge Selection
Notice that in all four packing modes described, data is read on a clock
edge, but the specific edge used (rising or falling) is not indicated. Clock
edge selection is configurable using the IDP_PDAP_CLKEDGE bit (bit 29 of
the IDP_PDAP_CTL register). Setting this bit (= 1) causes the data to be
latched on the falling edge. Clearing this bit (= 0) causes data to be latched
on the rising edge (default).

Hold Input
A synchronous clock enable can be passed from any DAI pin to the PDAP
packing unit. This signal is called PDAP_HOLD.

The PDAP_HOLD signal is actually the same physical internal signal as
the frame sync for IDP channel 0. Its functionality is determined
by the PDAP Enable bit (IDP_PDAP_EN).
6-10 ADSP-2126x SHARC Processor Peripherals Manual

Input Data Port
When the PDAP_HOLD signal is HIGH, all latching clock edges are ignored
and no new data is read from the input pins. The packing unit operates as
normal, but it pauses and waits for the PDAP_HOLD signal to be deasserted
and waits for the correct number of distinct input samples before passing
the packed data to the FIFO.

Figure 6-8 shows the affect of the hold input (B) for four 8-bit words in
Packing Mode 00, and Figure 6-9 shows the affect of the hold input (B)
for two 16-bit words in Packing Mode 10.

Figure 6-8. Hold Timing for Four 8-bit Words to 32 bits (Mode 00)

PDAP_CLK

PDAP_DAT[19:12]

PDAP_HOLD

B0A0 C0 D0 A1 B1

PDAP_CLK

PDAP_DAT[19:12]

PDAP_HOLD

B0A0 C0 D0

B

A

ADSP-2126x SHARC Processor Peripherals Manual 6-11

Parallel Data Acquisition Port (PDAP)
PDAP Strobe
Whenever the PDAP packing unit receives the number of sub words cor-
responding to its select mode, it asserts the PDAP Output Strobe signal.
This signal can be routed through the SRU using the MISC unit to any of
the DAI pins. See “SRU Connection Groups” on page 7-15 for more
information.

Figure 6-9. Hold Timing for Two 16-bit Words to 32 bits (Mode 10)

PDAP_CLK

PDAP_DAT[19:4]

PDAP_HOLD

BA A B A B

PDAP_CLK

PDAP_DAT[19:4]

PDAP_HOLD

BA A B

B

A

6-12 ADSP-2126x SHARC Processor Peripherals Manual

Input Data Port
FIFO Control and Status
Several bits can be used to control and monitor FIFO operations:

• IDP Enable. The IDP_ENABLE bit (bit 7 of the IDP_CTL register)
enables the IDP.

• IDP Buffer Hang Disable. The IDP_BHD bit (bit 4 in the IDP_CTL
register) determines whether or not the core hangs on reads when
the FIFO is empty.

• Number of Samples in FIFO. The IDP_FIFOSZ bits (bits 31–28 in
the DAI_STAT register) monitors the number of valid data words in
the FIFO.

• FIFO Overflow Status. The IDP_FIFO_OVER bit (bit 25 in the
DAI_STAT register) monitors overflow error conditions in the FIFO.

• FIFO Overflow Clear bit. The IDP_CLROVR bit (bit 6 of the
IDP_CTL register) clears an indicated FIFO overflow error.

Figure 6-10. PDAP Timing

DAI_P[20:1]
(PDAP_CLK)

SAMPLE EDGE

tPDSD tPDHD

tSPHLD tHPHLD

tPDCLKW

DATA

DAI_P[20:1]
(PDAP_CLKEN)

tPDSTRB

tPDHLDD

DAI_P[20:1]
(PDAP_STROBE)
ADSP-2126x SHARC Processor Peripherals Manual 6-13

FIFO to Memory Data Transfer
The IDP is enabled through the IDP_ENABLE bit. When this bit is set (= 1),
the IDP is enabled. When this bit is cleared (= 0), the IDP is disabled, and
data can not come to the IDP_FIFO register from the IDP channels. When
this bit transitions from 1 to 0, all data in the IDP FIFO is cleared.

The IDP_BHD bit is used for buffer hang disable control. When there is no
data in the FIFO, reading the IDP_FIFO register causes the core to hang.
This condition continues until the FIFO contains valid data. Setting the
IDP_BHD bit (= 1) prevents the core from hanging on reads from an empty
IDP_FIFO register. Clearing this bit (= 0) causes the core to hang under the
conditions described previously.

The IDP_FIFOSZ bits track the number of words in the FIFO. This
four-bit field identifies the number of valid data samples in the IDP
FIFO.

The IDP_FIFO_OVER bit provides IDP FIFO overflow status information.
This bit is set (= 1), whenever an overflow occurs. When this bit is cleared
(= 0), it indicates there is no overflow condition. This read-only bit is a
sticky bit, which does not automatically reset to 0 when it is no longer in
overflow condition. This bit must be reset manually, using the IDP_CLROVR
bit in the IDP_CTL register. Writing one to this bit clears the overflow con-
dition in the DAI_STAT register. Since IDP_CLROVR is a write-only bit, it
always returns LOW when read.

FIFO to Memory Data Transfer
The data from each of the eight IDP channels is inserted into an eight reg-
ister deep FIFO, which can only be transferred to the core’s memory space
sequentially. Data is moved into the FIFO as soon as it is fully received.
When more than one channel has data ready, the channels access the
FIFO with fixed priority, from low to high channel number (that is, chan-
nel 0 is the highest priority and channel 7 is the lowest priority).
6-14 ADSP-2126x SHARC Processor Peripherals Manual

Input Data Port
One of two methods can be used to move data from the IDP FIFO to
internal memory:

• The core can remove data from the FIFO manually by reading the
memory-mapped register, IDP_FIFO. The output of the FIFO is
held in the (read-only) IDP_FIFO register. When this register is
read, the corresponding element is removed from the IDP FIFO,
and the next element is moved into the IDP_FIFO register. A mech-
anism is provided to generate an interrupt when more than a
specified number of words are in the FIFO. This interrupt signals
the core to read the IDP_FIFO register.

This method of moving data from the IDP FIFO is described in
“Interrupt-Driven Transfers” on page 6-15.

• Eight dedicated DMA channels can sort and transfer the data into
one buffer per source channel. When the memory buffer is full, the
DMA channel raises an interrupt in the DAI Interrupt Controller.

This method of moving data from the IDP FIFO is described in
“DMA Transfers” on page 6-18.

Interrupt-Driven Transfers
The output of the FIFO can be directly fetched by reading from the
IDP_FIFO register. The IDP_FIFO register is used only to read and remove
the top sample from the FIFO, which is eight locations deep.

As data is read from the IDP_FIFO register, it is removed from the FIFO
and new data is copied into the IDP_FIFO register. The contents of the
IDP_NSET bits (bits 3–0 in the IDP_CTL register) represent a threshold
number of entries (N) in the FIFO. When the FIFO fills to a point where
it has more than N words (data in FIFO exceeds the value set in the
IDP_NSET bit field, bits 3–0 of IDP_CTL register), a DAI interrupt is gener-
ADSP-2126x SHARC Processor Peripherals Manual 6-15

FIFO to Memory Data Transfer
ated. This DAI interrupt corresponds to the IDP_FIFO_GTN_INT bit, the
eighth interrupt in DAI_IRPTL_L or DAI_IRPTL_H. The core can use this
interrupt to detect when data needs to be read.

Starting an Interrupt-Driven Transfer

To start an interrupt-driven transfer:

1. Clear and halt FIFO by setting (= 1) and clearing (= 0) the
IDP_ENABLE bit (bit 7 in the IDP_CTL register).

2. Set the required values for:

• IDP_SMODEx bits in the IDP_CTL register to specify the frame
sync format for the serial inputs (I2S, Left-justified Sample
Pair, or Right-justified Sample Pair Mode).

• IDP_Pxx_PDAPMASK bits in the IDP_PDAP_CTL register to spec-
ify the input mask, if the PDAP is used.

• IDP_PORT_SELECT bits in the IDP_PDAP_CTL register to spec-
ify input from the DAI pins or the Parallel Port pins, if the
PDAP is used.

• IDP_PDAP_CLKEDGE bit (bit 29) in the IDP_PDAP_CTL register
to specify if data is latched on the rising or falling clock
edge, if the PDAP is used.

3. Keep the clock and frame sync inputs of all serial inputs and/or
PDAP connected to LOW. Use the SRU_CLK1, SRU_CLK2, SRU_FS1,
and SRU_FS2 registers to specify these inputs.

4. Connect all of the inputs to the IDP by writing to the SRU_DAT3,
SRU_DAT4, SRU_FS1, SRU_FS2, SRU_CLK1 and SRU_CLK2 registers.
Connect the clock and frame sync of any unused ports to LOW.

5. Set the desired value for N_SET variable (the IDP_NSET bits, 3–0,
in the IDP_CTL register).
6-16 ADSP-2126x SHARC Processor Peripherals Manual

Input Data Port
6. Set the IDP_FIFO_GTN_INT bit (bit 8 of the DAI_IRPTL_RE register)
to HIGH and set the corresponding bit in the DAI_IRPTL_FE register
to LOW to unmask the interrupt. Set bit 8 of the DAI_IRPTL_PRI reg-
ister (IDP_FIFO_GTN_INT) as needed to generate a high priority or
low priority core interrupt when the number of words in the FIFO
is greater than the value of N set in step 5.

7. Enable the PDAP by setting IDP_PDAP_EN (bit 31 in the
IDP_PDAP_CTL register), if required.

8. Enable the IDP by setting IDP_ENABLE bit (bit 7 in the IDP_CTL
register).

Do not set the IDP_DMA_EN bit (bit 5 of the IDP_CTL register).

Interrupt-Driven Transfer Notes
The following items provide general information about interrupt driven
transfers.

• The three LSBs of FIFO data are the encoded channel number.
These are transferred “as is” for this mode. These bits can be used
by software to decode the source of data.

• The number of data samples in the FIFO at any time is reflected in
the IDP_FIFOSZ bit field (bits 31–28 in the DAI_STAT register),
which tracks the number of samples in FIFO.

When using the interrupt scheme, the IDP_NSET bits (bits 3–0 of
the IDP_CTL register) can be set to N, so N + 1 data can be read
from the FIFO in the interrupt service routine (ISR).

• If the IDP_BHD bit (bit 4 in the IDP_CTL register) is not set, attempts
to read more data than is available in the FIFO results in a core
hang.
ADSP-2126x SHARC Processor Peripherals Manual 6-17

FIFO to Memory Data Transfer
DMA Transfers
DMA access is enabled when the IDP_DMA_EN bit (bit 5 of the IDP_CTL reg-
ister) is set (= 1).

Starting DMA Transfers

To start a DMA transfer from the FIFO to memory:

1. Clear and halt the FIFO by setting (= 1) and then clearing (= 0) the
IDP_ENABLE bit (bit 7 in the IDP_CTL register).

2. While the IDP_DMA_EN and IDP_ENABLE bits are LOW, set the values
for the DMA parameter registers that correspond to channels 7–0.
If some channels are not going to be used, then the corresponding
parameter registers can be left in their default states:

• Index registers (IDP_DMA_Ix)

• Modifier registers (IDP_DMA_Mx)

• Counter registers (IDP_DMA_Cx)

For each of these registers, “x” is 0 to 7. Refer to “DMA
Channel Parameter Registers” on page 6-21.

3. Keep the clock and the frame sync input of the serial inputs and/or
the PDAP connected to LOW, by setting proper values in the
SRU_CLK1, SRU_CLK2, SRU_FS1, and SRU_FS2 registers.

4. Set required values for:

• IDP_SMODEx bits in the IDP_CTL register to specify the frame
sync format for the serial inputs (I2S, Left-justified Sample
Pair, or Right-justified Sample Pair modes).

• IDP_Pxx_PDAPMASK bits in the IDP_PDAP_CTL register to spec-
ify the input mask, if the PDAP is used.
6-18 ADSP-2126x SHARC Processor Peripherals Manual

Input Data Port
• IDP_PORT_SELECT bits in the IDP_PDAP_CTL register to spec-
ify input from the DAI pins or the Parallel Port pins, if the
PDAP is used.

• IDP_PDAP_CLKEDGE bit (bit 29) in the IDP_PDAP_CTL register
to specify if data is latched on the rising or falling clock
edge, if the PDAP is used.

5. Connect all of the inputs to the IDP by writing to the SRU_DAT3,
SRU_DAT4, SRU_FS1, SRU_FS2, SRU_CLK1, and SRU_CLK2 registers.
Keep the clock and frame sync of the ports connected to LOW when
data transfer is not intended.

6. Enable DMA, IDP, and PDAP (if required) by setting each of the
following bits to one:

• The IDP_DMA_EN bit (bit 5 of the IDP_CTL register)

• The IDP_PDAP_EN bit (bit 31 in IDP_PDAP_CTL register)

• The IDP_ENABLE bit (bit 7 in the IDP_CTL register)

A DAI interrupt is generated at the end of each DMA.

DMA Transfer Notes

The following items provide general information about DMA transfers.

• A DMA can be interrupted by changing the IDP_DMA_EN bit in the
IDP_CTL register. None of the other control settings (except for the
IDP_ENABLE bit) should be changed. Clearing the IDP_DMA_EN bit
(= 0) does not affect the data in the FIFO, it only stops DMA
transfers. If the IDP remains enabled, an interrupted DMA can be
resumed by setting the IDP_DMA_EN bit again.

• Using DMA transfer overrides the mechanism used for inter-
rupt-driven manual reads from the FIFO. When the IDP_DMA_EN
bit is set, the eighth interrupt in the DAI_IRPTL_L or DAI_IRPTL_H
ADSP-2126x SHARC Processor Peripherals Manual 6-19

FIFO to Memory Data Transfer
registers (IDP_FIFO_GTN_INT) is not generated. This interrupt
detects the condition that the number of data available in FIFO is
more than the number set in the IDP_NSET bits (bits [3:0]) of the
IDP_CTL register).

• At the end of the DMA transfer for individual channels, interrupts
are generated. These interrupts are generated after the last DMA
data from a particular channel have been transferred to memory.
These interrupts are mapped to the IDP_DMA7_INT bit (bit 17), to
the IDP_DMA0_INT bit (bit 10) in the DAI_IRPTL_L or DAI_IRPTL_H
registers and generate interrupts when they are set (= 1). These bits
are ORed and reflected in high-level interrupts sent to the core.

• If the combined data rate from the channels is more than the DMA
can service, a FIFO overflow occurs. This condition is reflected by
the IDP_FIFO_OVER bit (25) in the DAI_STAT register. This is a sticky
bit that must be cleared by writing to the IDP_CLROVR bit (bit 6 of
the IDP_CTL register). When an overflow occurs, incoming data
from IDP channels is not accepted into the FIFO, and data values
are lost. New data is only accepted once space is again created in
the FIFO.

• For serial input channels, data is received in an alternating fashion
from left and right channels. Data is not pushed into the FIFO as a
full left/right frame. Rather, data is transferred as alternating
left/right words as it is received. For the PDAP, data is transferred
as packed 32-bit words.

• The state of all eight DMA channels is reflected in the
IDP_DMAx_STAT bits (bits 24–17 of DAI_STAT register). These bits
are set once IDP_DMA_EN is set, and remain set until the last data
from that channel is transferred. Even if IDP_DMA_EN remains set,
this bit clears once the required number of data transfers takes
place. For more information, see “DAI Pin Status Register
(DAI_PIN_STAT)” on page A-109.
6-20 ADSP-2126x SHARC Processor Peripherals Manual

Input Data Port
Note that when a DMA channel is not used (that is, parameter reg-
isters are at their default values), that DMA channel’s
corresponding IDP_DMAx_STAT bit is set (= 1).

• The three LSBs of data from the serial inputs are channel encoding
bits. Since the data is placed into a separate buffer for each channel,
these bits are not required and are set to LOW when transferring data
to internal memory through the DMA. Bit 3 will still contain the
left/right status information.

DMA Channel Parameter Registers
The eight DMA channels each have an I-register (pointer, 19 bits), an
M-register (modifier/stride, 6 bits), and a C-register (count, 16 bits). For
example, IDP_DMA_I0, IDP_DMA_M0 and IDP_DMA_C0 are the registers that
control the DMA for Channel 0. For a detailed description of addressing
using the I-register, see “Addressing” on page 2-26.

The IDP DMA parameter registers have these functions:

• Internal Index registers (IDP_DMA_Ix). Index registers provide an
internal memory address, acting as a pointer to the next internal
memory location where data is to be written.

• Internal Modify registers (IDP_DMA_Mx). Modify registers provide
the signed increment by which the DMA controller post-modifies
the corresponding internal memory Index register after each DMA
write.

• Count registers (IDP_DMA_Cx). Count registers indicate the number
of words remaining to be transferred to internal memory on the
corresponding DMA channel.

For a descriptions of these registers see “Input Data Port DMA Control
Registers” on page A-99.
ADSP-2126x SHARC Processor Peripherals Manual 6-21

FIFO to Memory Data Transfer
IDP (DAI) Interrupt Service Routines for DMAs
The IDP can trigger either the high priority DAI core interrupt reflected
in the DAI_IRPTL_H register or the low priority DAI core interrupt
reflected in the DAI_IRPTL_L register. The ISR must read the correspond-
ing DAI_IRPTL_H or DAI_IRPTL_L register to find all the interrupts
currently latched. The DAI_IRPTL_H register reflects the high priority inter-
rupts and the DAI_IRPTL_L register reflects the low priority interrupts.
When these registers are read, it clears the latched interrupt bits. This is a
destructive read.

The following steps describe how an IDP ISR should be handled.

1. When the DMA for a channel completes, an interrupt is generated
and program control jumps to the ISR.

2. The program should clear the IDP_DMA_EN bit in the IDP_CTL
register (= 0).

3. The program should read the DAI_IRPTL_L or DAI_IRPTL_H registers
to determine which DMA channels have completed.

To ensure that the DMA of a particular IDP channel is complete,
(all data is transferred into internal memory) wait until the
IDP_DMAx_STAT bit of that channel becomes zero in the DAI_STAT
register. This is required if a high priority DMA (for example a
SPORT DMA) is occurring at the same time as the IDP DMA.

As each DMA channel completes, a corresponding bit in either the
DAI_IRPTL_L or DAI_IRPTL_H registers for each DMA channel is set
(IDP_DMAx_INT). Refer to Figure A-59 on page A-112 and
Figure A-60 on page A-113 for more information on the
DAI_IRPTL_L or DAI_IRPTL_H registers.
6-22 ADSP-2126x SHARC Processor Peripherals Manual

Input Data Port
4. Reprogram the DMA registers for finished DMA channels.

More than one DMA channel may have completed during this
time period. For each, a bit is latched in the DAI_IRPTL_L or
DAI_IRPTL_H registers. Ensure that the DMA registers are repro-
grammed. If any of the channels is not used, then its clock and
frame sync must be held LOW.

5. Read the DAI_IRPTL_L or DAI_IRPTL_H registers to see if more inter-
rupts have been generated.

• If the value(s) are not zero, repeat step 4.

• If the value(s) are zero, continue to step 6.

6. Re-enable the IDP_DMA_EN bit in the IDP_CTL register (set to 1).

7. Exit the ISR.

If a zero is read in step 5 (no more interrupts are latched), then all of the
interrupts needed for that ISR have been serviced. If another DMA com-
pletes after step 5 (that is, during steps 6 or 7), as soon as the ISR
completes, the ISR is called again because the OR of the latched bits will
be nonzero again. DMAs in process run to completion.

If step 5 is not performed, and a DMA channel expires during step
4, then when IDP DMA is re-enabled (step 6) the completed DMA
will not have been reprogrammed and its buffer will overrun.

Input Data Port Programming Example
Listing 6-1 shows a data transfer using an interrupt service routine (ISR).
The transfer takes place through the Digital Audio Interface (DAI). This
code implements the algorithm outlined in “FIFO to Memory Data
Transfer” on page 6-14.
ADSP-2126x SHARC Processor Peripherals Manual 6-23

Input Data Port Programming Example
Listing 6-1. Interrupt-Driven Data Transfer

/* Using Interrupt-Driven Transfers from the IDP FIFO */

#define IDP_ENABLE (8) /* IDP_ENABLE = IDP_CTL[7] */

#define IDP_CTL (0x24B0) /* Memory-mapped register */

#define IDP_FIFO_GTN_INT (8) /* Bit 8 in interrupt regs */

#define IDP_FIFO (0x24D0) /* IDP FIFO packing mode */

#define DAI_IRPTL_FE (0x2480) /* Falling edge int latch */

#define DAI_IRPTL_RE (0x2481) /* Rising edge int latch */

#define DAI_IRPTL_PRI (0x2484) /* Interrupt priority */

.section/dm seg_dmda;

.var OutBuffer[6];

.section/pm seg_pmco;

initIDP:

 r0 = dm(IDP_CTL); /* Reset the IDP */

 r0 = BSET r0 BY IDP_ENABLE;

 dm(IDP_CTL) = r0;

 r0 = BCLR r0 BY IDP_ENABLE;

 r0 = BCLR r0 BY 10; /* Set IDP serial input channel 0 */

 r0 = BCLR r0 BY 9; /* to receive in I2S format */

 r0 = BCLR r0 BY 8;

 dm(IDP_CTL) = r0;

 /***/

 /* Connect the clock, data and frame sync of IDP */

 /* channel 0 to DAI pin buffers 10, 11 and 12. */

 /***/

 /* Connect IDP0_CLK_I to DAI_PB10_O */
6-24 ADSP-2126x SHARC Processor Peripherals Manual

Input Data Port
 /* (SRU_CLK1[19:15] = 01001) */

 /* Connect IDP0_DAT_I to DAI_PB11_O */

 /* (SRU_DAT3[11:6] = 001010) */

 /* Connect IDP0_FS_I to DAI_PB12_O */

 /* (SRU_FS1[19:15] = 01011) */

 /**/

 /* Pin buffers 10, 11 and 12 are always being used as */

 /* inputs. Tie their enables to LOW (never driven). */

 /**/

 /* Connect PBEN10_I to LOW */

 /* (SRU_PIN1[29:24] = 111110) */

 /* Connect PBEN11_I to LOW */

 /* (SRU_PIN2[5:0] = 111110) */

 /* Connect PBEN12_I to LOW */

 /* (SRU_PIN2[11:6] = 111110) */

 /**/
 /* Assign a value to N_SET. An interrupt will be raised */

 /* when there are N_SET+1 words in the FIFO. */

 /**/

 r0 = dm(IDP_CTL); /* N_SET = 6 */

 r0 = BSET r0 BY 0;

 r0 = BSET r0 BY 1;

 r0 = BSET r0 BY 2;

 r0 = BCLR r0 BY 3;

 dm(IDP_CTL) = r0;
ADSP-2126x SHARC Processor Peripherals Manual 6-25

Input Data Port Programming Example
 r0 = dm(DAI_IRPTL_RE); /* Unmask for rising edge */

 r0 = BSET r0 BY IDP_FIFO_GTN_INT;

 dm(DAI_IRPTL_RE) = r0;

 r0 = dm(DAI_IRPTL_FE); /* Mask for falling edge */

 r0 = BCLR r0 BY IDP_FIFO_GTN_INT;

 dm(DAI_IRPTL_FE) = r0;

 r0 = dm(DAI_IRPTL_PRI); /* Map to high priority in core */

 r0 = BSET r0 BY IDP_FIFO_GTN_INT;

 dm(DAI_IRPTL_PRI) = r0;

 r0 = dm(IDP_CTL); /* Start the IDP */

 r0 = BSET r0 BY IDP_ENABLE;

 dm(IDP_CTL) = r0;

initIDP.end:

IDP_ISR:

 i0 = OutBuffer;

 m0 = 1;

 LCNTR = 5, DO RemovedFromFIFO UNTIL LCE;

 r0 = dm(IDP_FIFO);

 dm(i0,m0) = r0;

RemovedFromFIFO:

 RTI;

IDP_ISR.end:

Listing 6-2. PDAP Example

main:

 IRPTL=0x0; /* clear all latched interrupts */

 bit set IMASK DAIHI; /* enable hi-priority DAI interrupt

 in core interrupt register */

 bit set MODE1 CBUFEN; /* enable circular buffering */
6-26 ADSP-2126x SHARC Processor Peripherals Manual

Input Data Port
 r0 = 0x000FFFFF;

 dm(DAI_PIN_PULLUP) = r0; /* pullup un-used DAI pins */

 ustat2 = dm(IDP_CTL); /* Reset the IDP by enabling... */

 bit set ustat2 IDP_EN;

 dm(IDP_CTL) = ustat2;

 bit clr ustat2 IDP_EN; /* ...and then disabling it */

 dm(IDP_CTL) = ustat2;

/*setup for DMA-driven data handling FIFO-->Internal memory */

 r9=INTERNAL_MEM_ADDRESS;

 dm(IDP_DMA_I0)=r9; /* initialize the index register with the

 normal-word alias of data buffer to

 store the data*/

 r0= 1;
 dm(IDP_DMA_M0)=r0; /* initialize the modify register with

 a stride of 1 */

 r0= 8;

 dm(IDP_DMA_C0)=r0; /* FIFO is 8-deep x32, so initialize the

 count register to 8 */

 ustat2=

 IDP_PDAP_PACKING2| /* two 16-bit words per 32-bit location

 in fifo */

 DP_PP_SELECT| /* Use AD[15-0] if set, if cleared use

 DAI_P[20-5] */

 IDP_P20_PDAPMASK| /* Bits in the data buffer can be
 masked out */

 IDP_P19_PDAPMASK| /* cclr=masked*/
 IDP_P18_PDAPMASK| /* set=unmasked*/ */
 IDP_P17_PDAPMASK|
 IDP_P16_PDAPMASK|

 IDP_P15_PDAPMASK|
 IDP_P14_PDAPMASK|
ADSP-2126x SHARC Processor Peripherals Manual 6-27

Input Data Port Programming Example
 IDP_P13_PDAPMASK|
 IDP_P12_PDAPMASK|
 IDP_P11_PDAPMASK|
 IDP_P10_PDAPMASK|
 IDP_P09_PDAPMASK|
 IDP_P08_PDAPMASK|
 IDP_P07_PDAPMASK|

 IDP_PDAP_CLKEDGE; /* latch data in falling
 edge of the clock that is

 provided to the PDAP */

 dm(IDP_PP_CTL) = ustat2;

 ustat2 = IDP_DMA0_INT;

 dm(DAI_IRPTL_PRI)=ustat2; /* unmask individual interrupt

 for DMA_INT (PDAP) in RIC */

 dm(DAI_IRPTL_RE)=ustat2; /* PDAP interrupt latches on

 the rising edge only */

/* Following are two macros that setup the Signal Routing Unit

(SRU) to configure the two pins we'll be using there, PDAP_CLK &

PDAP_HOLD. The data pins in this case are routed through the par-

allel ports AD15-0 pins, but could alternatively be routed via

the SRU */

/* Hold */

SRU(LOW,DAI_PB01_I);

SRU(DAI_PB01_O, IDP0_FS_I);

SRU(LOW,PBEN01_I);

/* Clk */

SRU(LOW,DAI_PB02_I);

SRU(DAI_PB02_O, IDP0_CLK_I);

SRU(LOW,PBEN02_I);

ustat2 = dm(IDP_PP_CTL);
6-28 ADSP-2126x SHARC Processor Peripherals Manual

Input Data Port
bit set ustat2 IDP_PDAP_EN; /* PDAP if set, IDP channel 0

 if cleared */

ustat2 = dm(IDP_CTL); /* Start the IDP */

bit set ustat2 IDP_EN;

dm(IDP_CTL) = ustat2;

/* in packing mode 2, the data is stored in the buffer like this:

1|OOOOPPPP|

2|MMMMNNNN|

3|KKKKLLLL|

4|IIIIJJJJ|

5|GGGGHHHH|

6|EEEEFFFF|

7|CCCCDDDD|

8|BBBBAAAA|

where AAAA is Sample 1 and BBBB is Sample 2, etc. */

IDP_ISR: /* This interrupt indicates that the current DMA

 has completed */

/* test for IDP_DMA0_INT (Read of DAI_IRPTL clears latched

 interrupt) */

 r0=dm(DAI_IRPTL_H);

 btst r0 by 10;

 if not SZ call dma_again; /* SZ flag cleared if tested

 bit = 1 */

 rti;

dma_again:

 ustat2 = dm(IDP_CTL);

 bit clr ustat2 IDP_DMA_EN; /* disable DMA */

 dm(IDP_CTL) = ustat2;

 rts;

 IDP_ISR.end:
ADSP-2126x SHARC Processor Peripherals Manual 6-29

Input Data Port Programming Example
6-30 ADSP-2126x SHARC Processor Peripherals Manual

7 DIGITAL AUDIO INTERFACE

The Digital Audio Interface (DAI) is comprised of a group of peripherals

and the signal routing unit (SRU). The inputs and outputs of the periph-
erals are not directly connected to external pins. Rather, the SRU connects
the peripherals to a set of pins and to each other, based on a set of config-
uration registers. This allows the peripherals to be interconnected to suit a
wide variety of systems. It also allows the ADSP-2126x processor to
include an arbitrary number and variety of peripherals while retaining
high levels of compatibility without increasing pin count.

Structure of the DAI
The DAI incorporates a set of peripherals and a very flexible routing (con-
nection) system permitting a large combination of signal flows. A set of
DAI-specific registers make such design, connectivity, and functionality
variations possible. All routing related to peripheral states for the DAI
interface is specified using DAI registers. For more information on pin
states, refer to Figure 7-5 on page 7-7.

The function of the DAI in the ADSP-2126x processor can be compared
with the SPORTs’ communication with the core. SPORTs communicate
with the core directly, just as the DAI communicates directly with the
core. The DAI, however, makes use of the SRU to communicate with the
core.

The DAI may be used to connect any combination of inputs to any com-
bination of outputs. This function is performed by the SRU via
memory-mapped registers.
ADSP-2126x SHARC Processor Peripherals Manual 7-1

DAI System Design
This virtual connectivity design offers a number of distinct advantages:

• Flexibility

• Increased numbers and kinds of configurations

• Connections can be made via software—no hard-wiring is required

Inputs may only be connected to outputs.

DAI System Design
Figure 7-1 and Figure 7-2 show how the DAI pin buffers are connected
via the SRU. The SRU allows for very flexible data routing. In its design,
the DAI makes use of several types of data from a large variety of sources,
including:

• Timers, which are shown in Figure 7-1.

• Six serial ports (SPORTS). Serial ports offer Left-justified Sample
Pair and I2S mode support via 12 programmable and simultaneous
receive or transmit pins. These pins support up to 24 transmit or
24 receive I2S channels of audio when all six SPORTs are enabled,
or six full-duplex TDM streams of up to 128 channels per frame.
For more information, see “Serial Ports” on page 4-1.

• Precision Clock Generators (PCG). The PCG consists of two units,
each of which generates a pair of signals derived from a clock input
signal. See “Precision Clock Generator” on page 8-1 for more
information.

• Input Data Port (IDP). The IDP provides an additional mecha-
nism for peripherals to communicate with memory. Part of the
IDP’s function is to convert information from serial format to par-
allel format so that it can be moved into memory using a parallel
FIFO. IDP is described in “Input Data Port” on page 6-1.
7-2 ADSP-2126x SHARC Processor Peripherals Manual

Digital Audio Interface
• Digital Audio Interface Pins. These pins provide the physical inter-
face to the SRU. The DAI pins are described in “Pins Interface” on
page 7-7.

• Signal Routing Unit. The SRU provides the connection between
the serial ports, IDP, and PCG and DAI_P20-1 pins. The SRU is
described in “Signal Routing Unit” on page 7-3.

For a sample of a DAI system configuration, refer to “Using the SRU()
Macro” on page 7-30.

Signal Routing Unit
This section describes how to use the signal routing unit (SRU) to connect
inputs to outputs.

Connecting Peripherals
The SRU can be likened to a set of patch bays, which contains a bank of
inputs and a bank of outputs. For each input, there is a set of permissible
output options. Outputs can feed any number of inputs in parallel, but
every input must be patched to exactly one valid output source. Together,
the set of inputs and outputs are called a group. The signal’s inputs and
outputs that comprise each group all serve similar purposes. They are
compatible such that almost any output-to-input patch makes functional
sense.

The SRU contains six groups that are named sequentially A through F.
Each group routes a unique set of signals with a specific purpose. For
example, Group A routes clock signals, Group B routes serial data signals,
and Group C routes frame sync signals. Together, the SRU’s six groups
include all of the inputs and outputs of the DAI peripherals, a number of
additional signals from the core, and all of the connections to the DAI
pins.
ADSP-2126x SHARC Processor Peripherals Manual 7-3

Signal Routing Unit
Figure 7-1. DAI System Design

SPORT4

C
L

K
F

S
D

A
D

B

SPORT0_CLK_PE_O
SPORT0_CLK_O
SPORT0_CLK_I

SPORT0_FS_PE_O
SPORT0_FS_O
SPORT0_FS_I

SPORT0_DA_PE_O
SPORT0_DA_O

SPORT0_DB_PE_O
SPORT0_DB_O
SPORT0_DB_I

SPORT0

SPORT1

SPORT2

SPORT0_DA_I

SPORT3

SPORT5

DAI_P20
DAI_PB20_O

DAI_PB20_I

DAI_PB20_PE_I

DAI_P19
DAI_PB19_O

DAI_PB19_I

DAI_PB19_PE_I

DAI_P18
DAI_PB18_O

DAI_PB18_I

DAI_PB18_PE_I

DAI_P17
DAI_PB17_O

DAI_PB17_I

DAI_PB17_PE_I

DAI_P16
DAI_PB16_O

DAI_PB16_I

DAI_PB16_PE_I

DAI_P15
DAI_PB15_O

DAI_PB15_I

DAI_PB15_PE_I

DAI_P14
DAI_PB14_O

DAI_PB14_I

DAI_PB14_PE_I

DAI_P13
DAI_PB13_O

DAI_PB13_I

DAI_PB13_PE_I

DAI_P12
DAI_PB12_O

DAI_PB12_I

DAI_PB12_PE_I

DAI_P11
DAI_PB11_O

DAI_PB11_I

DAI_PB11_PE_I

DAI PINS

TIMER1_O

TIMER1_I

TIMER2_O

GENERAL-PURPOSE
COUNTER/TIMERS

TIMER3_O

TIMER2_I

TIMER3_I

SIGNAL ROUTING UNIT

SERIAL
PORTS
(SPORTS[5:0])

DAI
CORE

INTERFACE

DAI PIN
BUFFERS
7-4 ADSP-2126x SHARC Processor Peripherals Manual

Digital Audio Interface
Figure 7-2. DAI System Design (continued)

PDAP

IDP0_CLK_I
IDP0_FS_I
IDP0_DAT_I
IDP0

IDP
DMA
[7:1]

IDP1

IDP2

IDP3

IDP4

IDP5

IDP6

IDP

PCG

PCG_CLKB_O

PCG_EXTB_I

PCG_FSB_O

PCG_CLKA_O

PCG_EXTA_I

PCG_FSA_ODAI
CORE

INTERFACE

DAI_P10
DAI_PB10_O

DAI_PB10_I

DAI_PB10_PE_I

DAI_P09
DAI_PB09_O

DAI_PB09_I

DAI_PB09_PE_I

DAI_P08
DAI_PB08_O

DAI_PB08_I

DAI_PB08_PE_I

DAI_P07
DAI_PB07_O

DAI_PB07_I

DAI_PB07_PE_I

DAI_P06
DAI_PB06_O

DAI_PB06_I

DAI_PB06_PE_I

DAI_P05
DAI_PB05_O

DAI_PB05_I

DAI_PB05_PE_I

DAI_P04
DAI_PB04_O

DAI_PB04_I

DAI_PB04_PE_I

DAI_P03
DAI_PB03_O

DAI_PB03_I

DAI_PB03_PE_I

DAI_P02
DAI_PB02_O

DAI_PB02_I

DAI_PB02_PE_I

DAI_P01
DAI_PB01_O

DAI_PB01_I

DAI_PB01_PE_I

DAI PINS

SIGNAL ROUTING UNIT

SHARC
SIMD CORE

AND MEMORY

IDP7_DAT_I

IDP7_CLK_I
IDP7_FS_I

IDP7

PDAP_STRB_O

IDP
DMA0 M

U
X

DAI PIN
BUFFERS
ADSP-2126x SHARC Processor Peripherals Manual 7-5

Signal Routing Unit
Each input and output in each group is given a unique mnemonic. In the
few cases where a signal appears in more than one group, the mnemonic is
slightly different to distinguish between the connections. The convention
is to begin the name with an identifier for the peripheral that the signal is
coming to/from followed by the signal’s function. A number is included if
the DAI contains more than one peripheral type (for example, serial ports)
or if the peripheral has more than one signal that performs this function
(for example, IDP channels). The mnemonic always ends with _I if the
signal is an input, or with _O if the signal is an output.

Note that it is not possible to connect a signal in one group directly to a
signal in a different group (analogous to wiring from one patch bay to
another). However, Group D is largely devoted to routing in this vein.

Figure 7-3. Group A as a Patch Bay

SRU: GROUP A
Inputs to

peripherals in DAI
(signal sinks)

Outputs from
peripherals in DAI
(signal sources)
7-6 ADSP-2126x SHARC Processor Peripherals Manual

Digital Audio Interface
Pins Interface
Within the context of the SRU, physical connections to the DAI pins are
replaced by a logical interface known as a pin buffer. This is a three termi-
nal active device capable of sourcing/sinking output current when its
driver is enabled, and passing external input signals when disabled. Each
pin has a pin input, output, and enable as shown in Figure 7-5. The
inputs and the outputs are defined with respect to the pin, similar to a
peripheral device. This is consistent with the SRU naming convention.

Figure 7-4. Example SRU Mnemonic

Figure 7-5. Pin Buffer Example

SPORT0_CLK_O

PERIPHERAL

SIGNAL’S
FUNCTION

DIRECTION
RELATIVE

TO SIGNAL’S
PERIPHERAL

IN OUT

ENABLE

PBxx_I

PBxx_O

PBENxx_I

External
Package

Connection
Pin

Interface
to SRU

PBxx_O
PIN

BUFFER
ADSP-2126x SHARC Processor Peripherals Manual 7-7

Signal Routing Unit
The notation for pin input and output connections can be quite confusing
at first because, in a typical system, a pin is simply a wire that connects to
a device. The manner in which pins are connected within the SRU
requires additional nomenclature. The pin interface’s input may be
thought of as the input to a buffer amplifier that can drive a load on the
physical external lead. The pin interface enable is the input signal that
enables the output of the buffer by turning it on when its value is logic
high, and turning it off when its value is logic low.

When the pin enable is asserted, the pin output is logically equal to pin
input, and the pin is driven. When the pin enable is deasserted, the output
of the buffer amplifier becomes high impedance. In this situation, an
external device may drive a level onto the line, and the pin is used as an
input to the ADSP-2126x processor.

While the pin is high impedance and another device is driving a logic level
onto the external pin, this value is sent to the SRU as the pin interface
output. Even though the signal is an input to the processor, it is an output
from the pin interface (as a three-terminal device) and may be patched to

Figure 7-6. Input Signal from Off-chip Drives Pin Output when Pin is not
Enabled

IN OUT
PIN

ENABLE

PBxx_I

PBxx_O

PINENxx_I

EXTERNAL
PACKAGE

CONNECTION
PIN

INTERFACE
TO SRU

PBxx_O
PAD

DRIVER
7-8 ADSP-2126x SHARC Processor Peripherals Manual

Digital Audio Interface
the signal inputs of peripherals within the SRU. Pin output is equal to pin
input when the pin enable is asserted, but pin output is equal to the exter-
nal (input) signal when the pin enable is deasserted.

If a DAI pin is not being used, the pin enable (DAI_PBxx_I) for its
pin buffer should be connected to LOW and its associated bit in the
DAI_PIN_PULLUP register should be set (= 1) to enable a 22.5 kΩ
pull-up resistor for that pin.

Pin Buffers as Signal Output Pins
In a typical embedded system, most pins are designated as either inputs or
outputs when the circuit is designed, even if they may have the ability to
be used in either direction. Each of the DAI pins can be used as either an
output or an input. Although the direction of a DAI pin is set simply by
writing to a memory-mapped register, most often the pin’s direction is
dictated by the designated use of that pin. For example, if the DAI pin is
hard-wired to only the input of another interconnected circuit, it would
not make sense for the corresponding pin buffer to be configured as an
input. Input pins are commonly tied to logic high or logic low to set the
input to a fixed value. Similarly, setting the direction of a DAI pin at sys-
tem startup by tying the pin buffer enable to a fixed value (either logic
high or logic low) is often the simplest and cleanest way to configure the
SRU.

When the DAI pin is to be used only as an output, connect the corre-
sponding pin buffer enable to logic high as shown in Figure 7-7. This
enables the buffer amplifier to operate as a current source and to drive the
value present at the pin buffer input onto the DAI pin and off-chip. When
the pin buffer enable (PBENxx_I) is set (= 1), the pin buffer output
(PBxx_O) will be the same signal as the pin buffer input (PBxx_I), and this
signal will be driven as an output.
ADSP-2126x SHARC Processor Peripherals Manual 7-9

Signal Routing Unit
Pin Buffers as Signal Input Pins
When the DAI pin is to be used only as an input, connect the correspond-
ing pin buffer enable to logic low as shown in Figure 7-8. This disables the
buffer amplifier and allows an off-chip source to drive the value present on
the DAI pin and at the pin buffer output. When the pin buffer enable
(PBENxx_I) is cleared (= 0), the pin buffer output (PBxx_O) will be the sig-
nal driven onto the DAI pin by an external source, and the pin buffer
input (PBxx_I) is not used.

Although not strictly necessary, it is recommended programming practice
to tie the pin buffer input to logic low whenever the pin buffer enable is
tied to logic low. By default, the pin buffer enables are connected to
SPORT pin enable signals that may change value. Tying the pin buffer
input low decouples the line from irrelevant signals and can make code
simpler to debug. It also ensures that no voltage is driven by the pin if a
bug in your code accidentally asserts the pin enable.

Figure 7-7. Pin Buffer as Output

IN OUT
PIN

ENABLE

PBxx_I

PBxx_O

PINENxx_I

EXTERNAL
PACKAGE

CONNECTION
PIN

INTERFACE
TO SRU

PBxx_O
PAD

DRIVER

PIN BUFFER
OUTPUT

PIN BUFFER
INPUT

PIN BUFFER
ENABLE
(= HIGH)
7-10 ADSP-2126x SHARC Processor Peripherals Manual

Digital Audio Interface
Bidirectional Pin Buffers
All peripherals within the DAI that have bidirectional pins generate a cor-
responding pin enable signal. Typically, the settings within a peripheral’s
Control registers determine if a bidirectional pin is an input or an output,
and is then is driven accordingly. Both the peripherals Controls registers
and the configuration of the SRU can effect the direction of signal flow in
a pin buffer.

For example, from an external perspective, when a serial port (SPORT) is
completely routed off-chip, it uses four pins—clock, frame sync, data
channel A, and data channel B. Because all four of these pins comprise the
interface that the serial port presents to the SRU, there is a total of 12 con-
nections as shown in Figure 7-9.

For each bidirectional line, the serial port provides three separate signals.
For example, a SPORT clock has three separate SRU connections—an
input clock to the SPORT (SPORTx_CLK_I), an output clock from the
SPORT (SPORTx_CLK_O), and an output enable from the SPORT

Figure 7-8. Pin Buffer as Input

IN OUT
PIN

ENABLE

PBxx_I

PBxx_O

PINENxx_I

EXTERNAL
PACKAGE

CONNECTION
PIN

INTERFACE
TO SRU

PBxx_O
PAD

DRIVER

PIN BUFFER
OUTPUT

PIN BUFFER
INPUT

(NOT USED)

PIN BUFFER
ENABLE
(= LOW)
ADSP-2126x SHARC Processor Peripherals Manual 7-11

Signal Routing Unit
(SPORTx_CLK_PE_O). Note that the input and output signal pair are never
used simultaneously. The pin enable signal dictates which of the two
SPORT lines appears at the DAI pin at any given time. By connecting all
three signals through the SRU, the standard SPORT configuration regis-
ters behave as documented in Chapter 4, Serial Ports. The SRU then
becomes transparent to the peripheral. Figure 7-10 demonstrates
SPORT0 properly routed to DAI pins one through four; although it can
be equally well routed to any of the 20 DAI pins.

Though SPORT signals are capable of operating in this bidirectional man-
ner, it is not required that they be connected to the pin buffer this way. As
mentioned above, if the system design only uses a SPORT signal in one
direction, it is simpler and safer to connect the pin buffer enable pin
directly high or low as appropriate. Furthermore, signals in the SRU other
than the pin buffer enable signal (which is generated by the peripheral)
may be routed to the pin buffer enable input. For example, an outside
source may be used to ‘gate’ a pin buffer output by controlling the corre-
sponding pin buffer enable.

Figure 7-9. SRU Connections for SPORTx

Interface
to SRU

SPORT0_DA_O

SPORT0_DA_I

SPORT0_DA_PBEN_O

SPORT0_FS_O

SPORT0_FS_I

SPORT0_FS_PBEN_O

SPORT0_CLK_O

SPORT0_CLK_I

SPORT0_CLK_PBEN_O

SPORT0_DB_O

SPORT0_DB_I

SPORT0_DB_PBEN_O
7-12 ADSP-2126x SHARC Processor Peripherals Manual

Digital Audio Interface
Figure 7-10. SRU Connection to Four Bidirectional SPORT Pins

SPORT0_DA_O

SPORT0_DA_I

SPORT0_DA_PBEN_O

SPORT0_FS_O

SPORT0_FS_I

SPORT0_FS_PBEN_O

SPORT0_CLK_O

SPORT0_CLK_I

SPORT0_CLK_PBEN_O

SPORT0_DB_O

SPORT0_DB_I

SPORT0_DB_PBEN_O

PIN
ENABLE

PB01_I

PB01_O

PBEN01_I

PB01_O
IN OUT

EXTERNAL
PACKAGE

CONNECTION

PIN
ENABLE

PB02_I

PB02_O

PBEN02_I

PB02_O
IN OUT

PIN
ENABLE

PB03_I

PB03_O

PBEN03_I

PB03_O
IN OUT

PIN
ENABLE

PB04_I

PB04_O

PBEN04_I

PB04_O
IN OUT

EXTERNAL
PACKAGE

CONNECTION

EXTERNAL
PACKAGE

CONNECTION

EXTERNAL
PACKAGE

CONNECTION
ADSP-2126x SHARC Processor Peripherals Manual 7-13

Making Connections in the SRU
Making Connections in the SRU
As described previously, the SRU is similar to a set of patch bays. Each bay
routes a distinct set of outputs to compatible inputs. These connections
are implemented as a set of memory-mapped registers with a bit field for
each input. The outputs are implemented as a set of bit encodings. Con-
ceptually, a patch cord is used to connect an output to an input. In the
SRU, a bit pattern that is associated with a signal output (shown as item 1
in Figure 7-11) is written to a bit field corresponding to a signal input
(shown as item 2 in Figure 7-11).

The memory-mapped SRU registers are arranged by groups, referred to as
Group A through Group F and described in “Signal Routing Unit Regis-
ters” on page A-60. Each group has unique encodings for its associated
output signals and a set of Configuration registers. For example, Group A
is used to route clock signals. Four memory-mapped registers,
SRU_CLK[3:0], contain 5-bit wide fields corresponding to the clock inputs
of various peripherals. The values written to these bit fields specify a signal
source that is an output from another peripheral. All of the possible
encodings represent sources that are clock signals (or at least could be
clock signals in some systems). Figure 7-11 diagrams the input signals that
are controlled by the Group A register, SRU_CLK0. All bit fields in the SRU
Configuration registers correspond to inputs. The value written to the bit
field specifies the signal source. This value is also an output from some
other component within the SRU.

Note that the lower portion of the patch bay in Figure 7-11 is shown with
a large number of ports to reinforce the point that one output can be con-
nected to many inputs. The same encoding can be written to any number
of bit fields in the same group. It is not possible to run out of patch points
for an output signal.

Just as Group A routes clock signals, each of the other groups route a col-
lection of compatible signals. Group B routes serial data streams. Group C
routes frame sync signals. Group D routes signals to pins so that they may
7-14 ADSP-2126x SHARC Processor Peripherals Manual

Digital Audio Interface
be driven off-chip. Note that all of the groups have encodings that allow a
signal to flow from a pin output to the input being specified by the bit
field, but Group D is required to route a signal to the pin input. Group F
routes signals to the pin enables, and the value of these signals determines
if a DAI pin is used as an output or an input. These groups are described
in more detail in the following sections.

SRU Connection Groups
There are five separate groups of connections that are used in the SRU.
The following sections summarize each.

Figure 7-11. Patching to the Group A Register SRU_CLK0

SRU: GROUP ASRU_CLK0

SPORT5_CLK_I
(11001)

SPORT4_CLK_I
(11000)

SPORT3_CLK_I
(10111)

SPORT0_CLK_I
(10100)

SPORT1_CLK_I
(10101)

SPORT2_CLK_I
(10110)

4:09:514:1019:1524:2029:25
ADSP-2126x SHARC Processor Peripherals Manual 7-15

Making Connections in the SRU
Group A Connections – Clock Signals

Group A is used to route signals to clock inputs. The SPORTs clock
inputs (when the SPORTs are in clock slave mode), the clock inputs to
the eight IDP channels and the two Precision Clock Generators (PCGs)
external sources are selected from the list of Group A sources and set in
the Group A registers. When channel 0 of the IDP is configured for
PDAP input, the clock source set here is used as the parallel word latch
instead of the serial bit clock.

All unused clock inputs should be set to logic LOW. Any IDP
channels that receive clock signals set here will send data to the
FIFO. When a SPORT is used as a clock master, setting the
unused SPORT clock input to logic LOW improves signal integ-
rity. The registers, and input and output signals for group A are
shown in Table 7-5.
7-16 ADSP-2126x SHARC Processor Peripherals Manual

Digital Audio Interface
Table 7-1. Group A Sources – Serial Clock

Signal Inputs Signal Sources

Clock Register Bit field

SRU_CLK0 SPORT0_CLK_I
SPORT1_CLK_I
SPORT2_CLK_I
SPORT3_CLK_I
SPORT4_CLK_I
SPORT5_CLK_I

• 20 External Pins
(DAI_PBxx_O)

• 6 Serial Port x Clock Outs
(SPORTx_CLK_O)

• 2 Precision Clock Genera-
tors (A/B)
(PCG_CLKx_O)

• 2 Logic Level
(HIGH/LOW) Options

SRU_CLK1 IDP0_CLK_I
IDP1_CLK_I
IDP2_CLK_I

SRU_CLK2 IDP3_CLK_I
IDP4_CLK_I
IDP5_CLK_I
IDP6_CLK_I
IDP7_CLK_I

SRU_CLK3 PCG_EXTA_I
PCG_EXTB_I
ADSP-2126x SHARC Processor Peripherals Manual 7-17

Making Connections in the SRU
Group B Connections – Data Signals

Group B connections, shown in Table 7-2, are used to route signals to
serial data inputs. The serial data inputs to both the A and B channels of
the SPORTs and to each of the eight IDP channels are selected from the
list of Group B sources and set in the Group B registers. When a SPORT
is not configured to receive, the data source set here is ignored. Likewise,
when channel 0 of the IDP is used for the PDAP, the serial data source set
here is ignored.

Table 7-2. Group B Sources – Serial Data

Signal Inputs Signal Sources

Serial Data Register Bit field

SRU_DAT0 SPORT0_DA_I
SPORT0_DB_I
SPORT1_DA_I
SPORT1_DB_I
SPORT2_DA_I

• 20 External Pins (DAI_PBxx_O)
• 12 Serial Port x Data Outs

(SPORTx_DB_O)
• 2 Logic Level (High/Low) Options

SRU_DAT1 SPORT2_DB_I
SPORT3_DA_I
SPORT3_DB_I
SPORT4_DA_I
SPORT4_DB_I

SRU_DAT2 SPORT5_DA_I
SPORT5_DB_I

SRU_DAT3 IDP0_DAT_I
IDP1_DAT_I
IDP2_DAT_I
IDP3_DAT_I

SRU_DAT4 IDP4_DAT_I
IDP5_DAT_I
IDP6_DAT_I
IDP7_DAT_I
7-18 ADSP-2126x SHARC Processor Peripherals Manual

Digital Audio Interface
Group C Connections – Frame Sync Signals

Group C connections are used to route signals to frame sync inputs. The
SPORT frame sync inputs (when the SPORT is in slave mode) and the
frame sync inputs to the eight IDP channels are selected from the list of
Group C sources and set in the Group C registers.

Each of the frame sync inputs specified is connected to a frame sync
source based on the 5-bit values described in the Group C frame sync
sources, listed in Table 7-3. Thirty-two possible frame sync sources can be
connected using the registers SRU_FS0-2 described in Figure A-31 on
page A-70 through Figure A-33 on page A-71.

Table 7-3. Group C Sources – Frame Sync

Signal Inputs Signal Sources

Frame Sync Register Bit field

SRU_FS0 SPORT0_FS_I
SPORT1_FS_I
SPORT2_FS_I
SPORT3_FS_I
SPORT4_FS_I
SPORT5_FS_I

• 20 External Pins (DAI_PBxx_O)
• 6 Serial Port FS Output Options

(SPORTx_FS_O)
• 2 Precision Frame Sync (A/B) Outputs

(PCG_FSx_O)
• 2 Frame Sync Logic Level (High/Low)

Options
SRU_FS1 IDP0_FS_I

IDP1_FS_I
IDP2_FS_I

SRU_FS2 IDP3_FS_I
IDP4_FS_I
IDP5_FS_I
IDP6_FS_I
IDP7_FS_I
ADSP-2126x SHARC Processor Peripherals Manual 7-19

Making Connections in the SRU
Group D Connections – Pin Signal Assignments

Group D is used to specify any signals that will be driven off-chip by the
pin buffers. A pin buffer input (DAI_PBxx_I) is driven as an output from
the processor when the pin buffer enable is set (= 1). Note that DAI pins
19 and 20 may be configured as either active high or active low by setting
the corresponding invert bit.

Each physical pin (connected to a bonded pad) may be routed via the SRU
to any of the outputs of the DAI audio peripherals, based on the 6-bit val-
ues listed in Table 7-4. The SRU also may be used to route signals that
control the pins in other ways. These signals may be configured for use as
flags, timers, precision clock generators, or miscellaneous control signals.

Group D registers are SRU_PIN0-3, described in Figure A-34 on page A-74
through Figure A-37 on page A-75.
7-20 ADSP-2126x SHARC Processor Peripherals Manual

Digital Audio Interface
Table 7-4. Group D Sources – Pin Signal Assignments

Signal Inputs Signal Sources

DAI Pin
Register

Bit field

SRU_PIN0 DAI_PB01_I
DAI_PB02_I
DAI_PB03_I
DAI_PB04_I
DAI_PB05_I

• 20 External Pins (DAI_PBxx_O)
• 12 Serial Port Data Channel Output

Options (two for each SPORT, and one for
each Channel A/B) (SPORTx_DB_O)

• 6 Serial Port Clock Output Options (one
for each SPORT) (SPORTx_CLK_O)

• 6 Serial Port FS Output Options (one for
each SPORT) (SPORTx_FS_O)

• 3 Timers (TIMERx_O)
• 6 Flags (FLGxx_O)
• 4 Miscellaneous Control B Options

(MISCBx_O)
• 2 PCG Clock (A/B) Outputs
• 2 PCG Frame Sync (A/B) Outputs
• 2 Pin Logic Level (High/Low)

Designations

SRU_PIN1 DAI_PB06_I
DAI_PB07_I
DAI_PB08_I
DAI_PB09_I
DAI_PB10_I

SRU_PIN2 DAI_PB11_I
DAI_PB12_I
DAI_PB13_I
DAI_PB14_I
DAI_PB15_I

SRU_PIN3 DAI_PB16_I
DAI_PB17_I
DAI_PB18_I
DAI_PB19_I
DAI_PB20_I
DAI_PB19_INVERT
DAI_PB20_INVERT
ADSP-2126x SHARC Processor Peripherals Manual 7-21

Making Connections in the SRU
Group E Connections – Miscellaneous Signals

Group E connections, shown in Table 7-5, are slightly different from the
others in that the inputs and outputs being routed vary considerably in
function. This group routes control signals (flags, timers, and so on) and
provides a means of connecting signals between groups. Signals with
names such as MISCxy appear as inputs in Group E, but do not directly
feed any peripheral. Rather, they reappear as outputs in Group D and
Group F.

Additional connections among Groups D, E, and F provide a surprising
amount of utility. Since Group D routes signals off-chip and Group F dic-
tates pin direction, these few signal paths enable an enormous number of
possible uses and connections for DAI pins. A few examples include:

• One pin’s input can be patched to another pin’s output, allowing
board-level routing under software control.

• A pin input can be patched to another pin’s enable, allowing an
off-chip signal to gate an output from the processor.

• Any of the DAI pins can be used as interrupt sources or gen-
eral-purpose I/O (GPIO) signals.

• Both input and output signals of the timers can be routed to DAI
pins. These peripherals are capable of counting in up, down, or
elapsed time modes.

• Many types of bidirectional signaling may be created by routing an
output of the PCG to a pin enable.

The SRU enables many possible functional changes, both within the pro-
cessor as well as externally. Used creatively, it allows system designers to
radically change functionality at run time, and potentially to reuse circuit
boards across many products.
7-22 ADSP-2126x SHARC Processor Peripherals Manual

Digital Audio Interface
Table 7-5. Group E Sources – Misc. Assignment

Signal Inputs Signal Sources

DAI Pin Register Bit field

SRU_EXT_MISCA MISCA0_I
DAI_INT_28
FLG13_I
MISCA1_I
DAI_INT_29
MISCA2_I
DAI_INT_30
FLG14_I
MISCA_3_I
DAI_INT_31
MISCA_4_I
MISCA_5_I
INV_MISCA4_I
INV_MISCA5_I
MISCB_0_I
DAI_INT_22
TIMER0_I
MISCB_1_I
DAI_INT_23
TIMER1_I

• 20 External Pins (DAI_PBxx_O)
• 3 Timers (TIMERx_O)
• 1 IDP Parallel Input Strobe Output

(PDAP_STRB_O)
• 2 Clock A/B Outputs

(PCG_CLKx_O)
• 2 PCG Frame Sync A/B Outputs

(PCG_FSx_O)
• 2 Logic Level (High/Low) Options

SRU_EXT_MISCB MISCB_2_I
DAI_INT_24
TIMER2_I
MISCB_3_I
DAI_INT_25
FLG10_I
MISCB_4_I
DAI_INT26
FLG11_I
MISCB_5_I
DAI_INT_27
FLG12_I
ADSP-2126x SHARC Processor Peripherals Manual 7-23

Making Connections in the SRU
Group F – Pin Enable Signals

Group F signals, shown in Table 7-6, are used to specify whether each
DAI pin is used as an output or an input by setting the source for the pin
buffer enables. When a pin buffer enable (DAI_PBENxx_I) is set (= 1) the
signal present at the corresponding pin buffer input (DAI_PBxx_I) is driven
off-chip as an output. When a pin buffer enable is cleared (= 0) the signal
present at the corresponding pin buffer input is ignored.

The Pin Enable Control registers activate the drive buffer for each of the
20 DAI pins. When the pins are not enabled (driven), they can be used as
inputs.

Table 7-6. Group F Sources – Pin Output Enable

Signal Inputs Signal Sources

DAI Pin Register Bit field

SRU_PBEN0 DAI_PB01_I
DAI_PB02_I
DAI_PB03_I
DAI_PB04_I
DAI_PB05_I

• 2 Pin Enable Logic Level (High/Low) Options
• 6 Miscellaneous A Control Pins

(MISCAx_O)
• 24 Pin Enable Options for 6 Serial Ports (one

each for FS, Data Channel A/B, and Clock)
(SPORTx_CLK_PBEN_O),
(SPORTx_FS_PBEN_O),
(SPORTx_DA_PBEN_O),
(SPORTx_DB_PBEN_O)

• 3 Timer Pin Enables (TIMERx_PBEN_O)
• 6 Flags Pin Enables (FLGxx_PBEN_O)

SRU_PBEN1 DAI_PB06_I
DAI_PB07_I
DAI_PB08_I
DAI_PB09_I
DAI_PB10_I

SRU_PBEN2 DAI_PB11_I
DAI_PB12_I
DAI_PB13_I
DAI_PB14_I
DAI_PB15_I

SRU_PBEN3 DAI_PB16_I
DAI_PB17_I
DAI_PB18_I
DAI_PB19_I
DAI_PB20_I
7-24 ADSP-2126x SHARC Processor Peripherals Manual

Digital Audio Interface
General-Purpose (GPIO) and Flags
Any of the DAI pins may also be considered general-purpose input/output
(GPIO) pins. Each of the DAI pins can also be set to drive a high or low
logic level signal to assert signals. They can also be connected to miscella-
neous signals and used as interrupt sources or as control inputs to other
blocks. Other than these, out of the 16 flags available, six (10:15) can use
20 DAI pins.

Miscellaneous Signals
In a standard SHARC processor, a clock out connects to a clock in. Like-
wise, a frame sync out is connected to a frame sync in, and a data out is
connected to a data in, and so on. In the ADSP-2126x processor there are
exceptions to these standard connection practices. Signals:

• May also be configured as interrupt sources

• Can be configured as invert signals (forcing a signal to active low)

• Can connect one pin to another

• Can be configured as pin enables

DAI Interrupt Controller
The DAI contains a dedicated Interrupt Controller that signals the core
when DAI-peripheral events have occurred.

Relationship to the Core
Generally, interrupts are classified as catastrophic or normal. Catastrophic
events include any hardware interrupts (for example, resets) and emula-
tion interrupts (under the control of the PC), math exceptions, and
ADSP-2126x SHARC Processor Peripherals Manual 7-25

DAI Interrupt Controller
“reads” of memory that do not exist. Catastrophic events are treated as
high priority events. In comparison, normal interrupts are “determinis-
tic”—specific events emanating from a source (the causes), the result of
which is the generation of an interrupt. The expiration of a timer can gen-
erate an interrupt, a signal that a serial port has received data that must be
processed, a signal that an SPI has either transmitted or received data, and
other software interrupts like the insertion of a trap that causes a break-
point—all are conditions which identify to the core that an event has
occurred.

Since DAI-specific events generally occur infrequently, the DAI IC classi-
fies such interrupts as either high or low priority interrupts. Within these
broad categories, users can indicate which interrupts are high and which
are classified as low.

Any interrupt causes a two-cycle stall, since it forces the core to stop pro-
cessing an instruction in process, then vector to the Interrupt Service
routine (ISR), (which is basically an Interrupt Vector Table (IVT)
lookup), then proceed to implement the instruction referenced in the
IVT. For more information, see the appendix “Interrupt Vector Table” in
the ADSP-2126x SHARC DSP Core Manual.

When an interrupt from the DAI must be serviced, one of the two core
ISRs must query the DAI’s Interrupt Controller to determine the
source(s). Sources can be any one or more of the Interrupt Controller’s
32-configurable channels (DAI_INT[31:0]). For more information, see
“DAI Interrupt Controller Registers” on page A-110.

DAI events trigger two interrupts in the primary IVT—one each for low
or high priority. When any interrupt from the DAI needs to be serviced,
one of the two core ISRs must interrogate the DAI’s Interrupt Controller
to determine the source(s).

Reading the DAI’s interrupt latches clears them. Therefore, the
ISR must service all the interrupt sources it discovers.
7-26 ADSP-2126x SHARC Processor Peripherals Manual

Digital Audio Interface
DAI Interrupts
There are several registers in the DAI Interrupt Controller that can be
configured to control how the DAI interrupts are reported to and serviced
by the core’s Interrupt Controller. Among other options, each DAI inter-
rupt can be mapped either as a high or low priority interrupt in the
primary interrupt controller, certain DAI interrupts can be triggered on
either the rising or falling edge of signals, and each DAI interrupt can also
be independently masked.

Just as the core has its own interrupt latch registers (IRPTL and LIRPTL),
the DAI has its own latch registers (DAI_IRPTL_L and DAI_IRPTL_H). When
a DAI interrupt is configured to be high priority, it is latched in the
DAI_IRPTL_H register. When any bit in the DAI_IRPTL_H register is set
(= 1), bit 11 in the IRPTL register is also set and the core services that
interrupt with high priority. When a DAI interrupt is configured to be
low priority, it is latched in the DAI_IRPTL_L register. Similarly, when any
bit in the DAI_IRPTL_L register is set (= 1), bit 6 in the LIRPTL register is
also set and the core services that interrupt with low priority. Regardless of
the priority, when a DAI interrupt is latched and promoted to the core
interrupt latch, the ISR must query the DAI’s Interrupt Controller to
determine the source(s). Sources can be any one or more of the Interrupt
Controller’s 32-configurable channels (DAI_INT[31:0]). For more infor-
mation, see “DAI Interrupt Controller Registers” on page A-110.

Reading the DAI’s interrupt latches clears them. Therefore, the
ISR must service all the interrupt sources it discovers. That is, if
multiple interrupts are latched in one of the DAI_IRPTL_x registers,
all of them must be serviced before executing an RTI instruction.

The IDP_FIFO_GTN_INT interrupt is not cleared when the
DAI_IRPTL_H/L registers are read. This interrupt is cleared automat-
ically when the situation that caused of the interrupt goes away.
ADSP-2126x SHARC Processor Peripherals Manual 7-27

DAI Interrupt Controller
High and Low Priority Latches
In the ADSP-2126x processor, a pair of registers (DAI_IRPTL_H and
DAI_IRPTL_L) replace functions normally performed by the IRPTL register.
A single register (DAI_IRPTL_PRI) specifies the latch to which each of these
interrupts are mapped.

Two registers (DAI_IRPTL_RE and DAI_IRPTL_FE) replace the DAI periph-
eral’s version of the IMASK register. As with the IMASK register, these DAI
registers provide a way to specify which interrupts to notice and handle,
and which interrupts to ignore. These dual registers function like IMASK
does, but with a higher degree of granularity.

Signals from the SRU can be used to generate interrupts. For example,
when SRU_EXTMISCA2_INT (bit 30) or DAI_IRPTL_H is set to one, any signal
from the external miscellaneous Channel 2 generates an interrupt. If set to
one, DAI interrupts trigger an interrupt in the core and the interrupt latch
is set. A read of this bit does not reset it to zero. The bit is only set to zero
when the cause of the interrupt is cleared. A DAI interrupt indicates the
source (in this case, external miscellaneous A, Channel 2), and checks the
IVT for an instruction (next operation) to perform.

The 32 interrupt signals within the Interrupt Controller are mapped to
two interrupt signals in the primary Interrupt Controller of the SHARC
core. The DAI_IRPT_PRI register specifies if the Interrupt Controller inter-
rupt is mapped to the high or low core interrupt (1 = high priority and 0 =
low priority).

The DAI_IRPTL_H register is a read-only register with bits set for every DAI
interrupt latched for the high priority core interrupt. The DAI_IRPTL_L
register is a read-only register with bits set for every DAI interrupt latched
for the low priority core interrupt. When a DAI interrupt occurs, the low
or high priority core ISR should interrogate its corresponding register to
determine which of the 32 interrupt sources to service. When the
7-28 ADSP-2126x SHARC Processor Peripherals Manual

Digital Audio Interface
DAI_IRPTL_H register is read, the high priority latched interrupts are all
cleared. When the DAI_IRPTL_L register is read, the low priority latched
interrupts are all cleared.

Rising and Falling Edge Masks
For interrupt sources that correspond to waveforms (as opposed to DAI
event signals such as DMA complete or buffer full), the edge of a wave-
form may be used as an interrupt source as well. Just as interrupts can be
generated by a source, interrupts can also be generated latched on the ris-
ing (or falling) edges of a signal. This concept does not exist in the main
Interrupt Controller, only in the DAI Interrupt Controller.

When a signal comes in, the system needs to determine what kind of sig-
nal it is and what kind of protocol, as a result, to service. The preamble
indicates the signal type. When the protocol changes, output (signal) type
is noted.

For audio applications, the ADSP-2126x processor needs information
about interrupt sources that correspond to waveforms (not event signals).
As a result, the falling edge of the waveform may be used as an interrupt
source as well. Programs may elect to use any of four conditions:

• Latch on the rising edge

• Latch on the falling edge

• Latch on both the rising and falling edge

• Latch on neither the rising nor falling edge

The DAI Interrupt Controller may be configured using three registers.
Each of the 32 interrupt lines can be independently configured to trigger
in response to the incoming signal’s rising edge, its falling edge, both the
rising edge and the falling edge, or neither the rising edge nor the falling
edge. Setting a bit in either the DAI_IRPTL_RE or DAI_IRPTL_FE registers
ADSP-2126x SHARC Processor Peripherals Manual 7-29

Using the SRU() Macro
enables the interrupt level on the rising and falling edges, respectively. For
more information on these registers, see Figure A-62 on page A-115 and
Figure A-62 on page A-115.

Programs can manage responses to signals by configuring registers. In a
sample audio application, for example, upon detection of a change of pro-
tocol, the output can be muted. This change of output and the resulting
behavior (causing the sound to be muted) results in an alert signal (an
interrupt) being introduced in response (if the detection of a protocol
change is a high priority interrupt).

The DAI_IRPTL_FE register can only be used for latching interrupts
on the falling edge.

Use of the DAI_IRPT_RE or DAI_IRPT_FE registers allows programs to notice
and respond to rising edges, falling edges, both rising and falling edges, or
neither rising nor falling edges so they can be masked separately.

Enabling responses to changes in condition signals (including changes in
DMA state, introduction of error conditions, and so on) can only be
enabled using the DAI_IRPT_RE register.

Using the SRU() Macro
As discussed above, the Signal Routing Unit is controlled by writing val-
ues that correspond to signal sources into bit fields that further correspond
to signal inputs. The SRU is arranged into functional groups such that the
registers that are made up of these bit fields accept a common set of source
signal values.

In order to ease the coding process, the include file sru2126x.h, is
included with the VisualDSP++ tools. This file implements a macro that
abstracts away most of the work of signal assignments and functions.

The macro has identical syntax in C/C++ and assembly, and makes a sin-
gle connection from an output to an input:
7-30 ADSP-2126x SHARC Processor Peripherals Manual

Digital Audio Interface
SRU(OutputSignal,InputSignal);

The names passed to the macro are the names given in Table 7-1 through
Table 7-6 and in the DAI registers section in “Signal Routing Unit Regis-
ters” on page A-60. Note that each processor has its own specific version
of the macro that implements the bit field encodings appropriate to that
part. For example, in code for the ADSP-21262, add the following line in
your source code:

#include <sru21262.h>;

The following lines illustrate how the macro is used:

 /* Route SPORT 1 clock output to pin buffer 5 input */

 SRU(SPORT1_CLK_O,DAI_PB05_I);

 /* Route pin buffer 14 out to IDP3 frame sync input */

 SRU(DAI_PB14_O,IDP3_FS_I);

 /* Connect pin buffer enable 19 to logic low */

 SRU(LOW,DAI_PBEN19_I);

Additional example code is available on the Analog Devices Web site.

There is a macro that has been created to connect peripherals used
in a DAI configuration. This code can be used in both Assembly
and C code. See the INCLUDE file SRU.H.
ADSP-2126x SHARC Processor Peripherals Manual 7-31

Using the SRU() Macro
7-32 ADSP-2126x SHARC Processor Peripherals Manual

8 PRECISION CLOCK
GENERATOR

The Precision Clock Generator (PCG) consists of two units, each of

which generates a pair of signals derived from a clock input signal. The
pair of units, A and B, are identical in functionality and operate indepen-
dently of each other. Each unit generates two signals that are normally
used as a clock frame sync pair. The unit that generates the clock is rela-
tively simple, since digital clock signals are usually regular and
symmetrical. The unit that generates the frame sync output, however, is
designed to be extremely flexible and capable of generating the wide vari-
ety of framing signals needed by the many types of peripherals that can be
connected to the signal routing unit (SRU). For more information, see
“Signal Routing Unit” on page 7-3.

The core phase locked loop (PLL) has been designed to provide clocking
for the processor core. Although the performance specifications of this
PLL are appropriate for the core, they have not been optimized or speci-
fied for precision data converters where jitter directly translates into time
quantization errors and distortion.

The PCG can accept its clock input either directly from the external oscil-
lator (or discrete crystal) connected to the CLKIN/XTAL pins or from any of
the 20 DAI pins. This allows a design to contain an external clock with
performance specifications appropriate for the application target.

Note that any clock and frame sync signals generated by the serial ports
are also subject to these jitter problems because the SPORT clock is gener-
ated from the core clock. However, a SPORT can produce data output
while being a clock and frame sync slave. The clock generated by the
SPORT is sufficient for most serial communications, but it is suboptimal
ADSP-2126x SHARC Processor Peripherals Manual 8-1

Clock Outputs
for analog conversion. Therefore, all precision data converters should be
synchronized to a clock generated by the PCG or to a clean (low jitter)
clock that is fed into the SRU off-chip via a pin.

Any clock or frame sync unit should be disabled (have its enable bit
cleared) before changing any of the associated parameters.

Clock Outputs
As stated in the overview, each of the two units (A and B) produces a clock
output and a frame sync output. The clock output is derived from the
input to the PCG with a 20-bit divisor.

Figure 8-1. Clock Inputs

EXTERNAL
OSCILLATOR

CORE
PLL

SHARC ADSP-2126x

PRECISION
CLOCK

GENERATOR

M/N
CORE CLOCK
GENERATOR

SPORT
SRU

CORECORE CLOCK
BUFFER

AMP

Frequency of Clock Output = Frequency of Clock Input

Clock Divisor
8-2 ADSP-2126x SHARC Processor Peripherals Manual

Precision Clock Generator
If the divisor is either zero or one, the PCG’s clock generation unit is
bypassed, and the clock input is connected directly to the clock output.
Otherwise, the PCG unit clock output frequency is equal to the input
clock frequency, divided by a 20-bit integer. The integer is specified in the
CLKADIV bit field (bits 19–0 of the PCG_CTLA_1 register) for unit A and a
corresponding bit field in the PCG_CTLB_1 register for unit B. See also
Figure A-45 on page A-90 and Figure A-47 on page A-92.

The clock outputs have two other control bits that enable the A and B
units, ENCLKA and ENCLKB, respectively (bits 31 of the PCG_CTLA_0 and
PCG_CTLB_0 registers). These bits enable (= 1) and disable (= 0) the clock
output signal for units A and B, respectively. When disabled, clock output
is held at logic low.

The CLKASOURCE bit (bit 31 in the PCG_CTLA_1 register) specifies the input
source for the clock of unit A. When this bit is cleared (= 0), the input is
sourced from the external oscillator, as shown in Figure 8-1. When set
(= 1), the input is sourced from the SRU, as specified in the SRU_CLK3
register in PCG_EXTA_I (bits 4–0). See Table A-22 on page A-90.

The PCG unit B functions identically, except that the PCG_CTLB_1 bit (bit
31) indicates that the external source for unit B is specified in PCG_EXTB_I
(bits 9–5 of the SRU_CLK3 register). See Table A-25 on page A-93.

Note that the clock output is always set (as closely as possible) to a 50%
duty cycle. If the clock divisor is even, the duty cycle of the clock output is
exactly 50%. If the clock divisor is odd, then the duty cycle is slightly less
than 50%. The low period of the output clock is one input clock period
more than the high period of the output clock.

A PCG clock output cannot be fed to its own input. Setting
SRU_CLK3[4:0] = 28 connects PCG_EXTA_I to logic low, not to
PCG_CLKA_O. Setting SRU_CLK3[9:5] = 29 connects PCG_EXTB_I to
logic low, not to PCG_CLKB_0.
ADSP-2126x SHARC Processor Peripherals Manual 8-3

Frame Sync Outputs
Frame Sync Outputs
Each of the two units (A and B) also produces a synchronization signal for
framing serial data. The frame sync outputs are much more flexible since
they need to accommodate the wide variety of serial protocols used by
peripherals.

There are two modes of operation for the PCG frame sync. The divisor
field determines if the frame sync will operate in Normal mode
(divisor > 1) or Bypass mode (divisor = 0 or 1).

Frame Sync
For a given frame sync, the output is determined by the following:

• Divisor. A 20-bit divisor of the input clock that determines the
period of the frame sync. When set to zero or one, the frame sync
operates in Bypass mode, otherwise it operates in Normal mode.

• Phase. A 20-bit value that determines the phase relationship
between the clock output and the frame sync output. Settings for
phase can be anywhere between zero to DIV - 1.

• Pulse width. A 16-bit value that determines the width of the fram-
ing pulse. Settings for pulse width can be zero to DIV-1. If the pulse
width is equal to zero, then the actual pulse width of the output
frame sync is:

 Frame Sync Divisor

2
For even divisors:

Frame Sync Divisor – 1

2
For odd divisors:
8-4 ADSP-2126x SHARC Processor Peripherals Manual

Precision Clock Generator
The frequency of the frame sync output is determined by:

When the divisor is set to any value other than zero or one, the
ADSP-2126x processor operates in Normal mode.

The frame sync A divisor is specified in bits 19–0 of the PCG_CTLA_0
register and the frame sync B divisor is specified in bits 19–0 of the
PCG_CTLB_0 register. The pulse width of frame sync output is equal to the
number of input clock periods specified in the 16-bit field of the PCG_PW
register. Bits 15–0 specify the pulse width of frame sync A, and bits 31–16
specify the pulse width of frame sync B.

Frame Sync Output Synchronization with External
Clock

The frame sync output may be synchronized with an external clock by
programming the SRU_EXT_MISCA, SRU_CLK2 and SRU_CLK3 registers appro-
priately. In this mode, the PCG frame sync output is synchronized with
the rising edge of the external clock (shown in Figure 8-2). The external
clock is routed to the PCG block from any of the SRU group E sources
through the MISCA4_I (for PCGA) and MISCA5_I (for PCGB) signals of the
SRU_EXT_MISCA register. For more information, see “Miscellaneous SRU
Registers (SRU_EXT_MISCx, Group E)” on page A-79.

Synchronization with the external clock is enabled by setting bit 25 of the
SRU_CLK2 register for PCGA frame sync output and bit 10 of the SRU_CLK3
register for PCGB frame sync output. For more information, see “Clock
Routing Control Registers (Group A)” on page A-61. The phase must be
programmed to three, so that the rising edge of the external clock is in
sync with the frame sync. Programming should occur in the following
order:

Frequency of Frame Sync Output =
Frequency of Clock Input

Frame Sync Divisor
ADSP-2126x SHARC Processor Peripherals Manual 8-5

Phase Shift
1. Program PCG control registers SRU_EXT_MISCA, SRU_CLK2 and
SRU_CLK3 as mentioned above.

2. Enable the clock, frame sync, or both. In other words, program all
the values before enabling the PCG (clock and frame sync).

Since the rising edge of the external clock is used to synchronize
with the frame sync, the frame sync output is not generated until a
rising edge of the external clock is sensed.

The clock output cannot be aligned with the rising edge of the external
clock as there is no phase programmability. Once CLKA and CLKB have
been enabled, by programming bit 31 of PCG_CTLA_0 and PCG_CTLB_0 reg-
isters respectively, these outputs are activated when a low to high
transition is sensed in the external clock (MISCA4_I, MISCA5_I).

Phase Shift
Another PCG frame sync parameter provides for phase shifting with
respect to the clock of the same unit. This feature allows shifting in time
relative to clock signals. Frame sync phase shifting is often required by
peripherals that need to lead or lag a clock signal. For example, the I2S
protocol specifies that the frame sync should transition from high to low

Figure 8-2. Clock Output Synchronization with External Clock

FSA
(OUTPUT)

PCGx_CLKIN

EXT CLK
(INPUT)
8-6 ADSP-2126x SHARC Processor Peripherals Manual

Precision Clock Generator
one clock cycle before the beginning of a frame. Since an I2S frame is 64
clock cycles long, delaying the frame sync by 63 cycles produces the
required framing.

The amount of phase shifting is specified as a 20-bit value in the
FSAPHASE_HI bit field (bits 29–20) of the PCG_CTLA_O register and in the
FSAPHASE_LO bit field (bits 29–20) of the PCG_CTLA_1 register for unit A.
A single 20-bit value spans these two bit fields. The upper half of the word
[19:10] is in the PCG_CTLA_O register, and the lower half [9:0] is in the
PCG_CTLA_1 register.

Similarly, the phase shift for frame sync B is specified in the PCG_CTLB_O
and PCG_CTLB_1 registers.

When using a clock and frame sync as a synchronous pair, the units
must be enabled in a single atomic instruction before their parame-
ters are modified. Both units must also be disabled in a single
atomic instruction.

Phase Shift Settings
The phase shift between clock and frame sync outputs may be pro-
grammed under these conditions:

• The input clock source for the clock generator output and the
frame sync generator output is the same.

• Clock and frame sync are enabled at the same time using a single
atomic instruction.

• Frame sync divisor is an integral multiple of the clock divisor.

If the phase shift is zero, the clock and frame sync outputs rise at the same
time. If the phase shift is one, the frame sync output transitions one input
clock period ahead of the clock transition. If the phase shift is
DIVISOR – 1, the frame sync transitions DIVISOR – 1 input clock periods
ADSP-2126x SHARC Processor Peripherals Manual 8-7

Phase Shift
ahead of the clock transitions. This translates to the input clock period
after the clock transition, which further translates to one input clock
period after the clock transition.

Phase shifting is represented as a full 20-bit value so that even when frame
sync is divided by the maximum amount, the phase can be shifted to the
full range, from zero to one input clock short of the period.

Figure 8-3. Adjusting Frame Sync Phase Shift

FRAME SYNC OUTPUT
(PHASE SHIFT = DIVISOR -1)

CLOCK INPUT
(FOR BOTH CLOCK
AND FRAME SYNC)

ENABLE

FRAME SYNC OUTPUT
(PHASE SHIFT = 0)

FRAME SYNC OUTPUT
(PHASE SHIFT = 1)

CLOCK OUTPUT

FRAME SYNC OUTPUT
(PHASE SHIFT = 2)

OTHER VALUES:

CLOCK DIVISOR = 2
FRAME SYNC DIVISOR = 8
PULSE WIDTH = 4
8-8 ADSP-2126x SHARC Processor Peripherals Manual

Precision Clock Generator
Pulse Width
Pulse width is the number of input clock periods for which the frame sync
output is HIGH. Pulse width should be less than the divisor of the frame
sync. The pulse width of frame sync A is specified in bits 15–0 of the
PCG_PW register and the pulse width of frame sync B is specified in bits
31–16 of the PCG_PW register.

If the pulse width is equal to zero, then the actual pulse width of the frame
sync output is equal to:

 if the divisor is even, or

if the divisor is odd.

Bypass Mode
When the divisor for the frame sync has a value of zero or one, the frame
sync is in Bypass mode, and the PCG_PW register has different functionality
than in Normal mode. Two bit fields determine the operation in this
mode. The One Shot Frame Sync A or B (STROBEx) bit (bits 0 and 16,
respectively) determines if the frame sync has the same width as the input,
or of a single strobe. These bits also determine whether the Active Low
Frame Sync Select for the Frame Sync A or B (INVFSx) bit (bits 1 and 17,
respectively) inverts the input. For additional information about the
PCG_PW register, see Figure A-48 on page A-93.

In Bypass mode, bits 15–2 and bits 31–18 of the PCG_PW register
are ignored.

DIVISOR
2

DIVISOR – 1
2

ADSP-2126x SHARC Processor Peripherals Manual 8-9

Phase Shift
Bypass as a Pass Through

When the STROBEA bit in the PCG_PW register for unit A or the STROBEB bit
in the PCG_PW register for unit B equals zero, the unit is bypassed and the
output equals the input. If INVFSA (bit 1) for unit A or INVFSB (bit 17) for
unit B is set, then the signal is inverted.

Bypass mode also enables the generation of a strobe pulse (“one shot”).
Strobe usage ignores the counter and looks to the SRU to provide the
input signal.

Bypass as a One Shot

When the STROBEA bit (bit 0 of the PCG_PW register) or STROBEB bit (bit 16
of the PCG_PW register) is set (= 1), the One Shot option is used. When the
STROBEx bit is set (= 1), the frame sync is a pulse with a duration equal to
one period, or one full cycle, of MISCA2_I for unit A and MISCA3_I for unit
B that repeats at the beginning of every clock input period. This pulse is
generated during the high period when the INVFSA/B bits (bits 1 or 17,
respectively = 0), are cleared or low period when invert bit (INVFSA/B = 1)
of the input clock.

A strobe period is equal to the period of the normal clock input signal spec-
ified by FSASOURCE (bit 30 in the PCG_CTLA_1 register for unit A) and
FSBSOURCE (bit 30 in the PCG_CTLB_1 register for unit B).

Figure 8-4. Frame Sync Bypass

CLOCK INPUT
FOR FRAME SYNC

FRAME SYNC OUTPUT
(INVFSA = 0, STROBEA = 0)

FRAME SYNC OUTPUT
(INVFSA = 1, STROBEA = 0)
8-10 ADSP-2126x SHARC Processor Peripherals Manual

Precision Clock Generator
The output pulse width is equal to the period of the SRU source signal
(MISCA2_I for frame sync A and MISCB3_I for frame sync B). The pulse
begins at the second rising edge of MISCxx_I following a rising edge of the
clock input. When the INVFSA/B bit is set, the pulse begins at the second
rising edge of MISCxx_I coincident or following a falling edge of the clock
input.

For more information, see “Group E Connections – Miscellaneous Sig-
nals” on page 7-22.

The second INVFSA bit (bit 1) of the Pulse Width Control (PCG_PW) regis-
ter determines whether the falling or rising edge is used. When set (= 1),
this bit selects an active low frame sync, and the pulse comes during the
low period of clock input. When cleared (= 0) this bit is set to active high
frame sync and the pulse comes during the high period of clock input. For
more information on the PCG_PW register, refer to Table A-25 on
page A-93.

Figure 8-5. One Shot (Synchronous Clock Input and MISCA2_I)

CLOCK INPUT
FOR FRAME SYNC

MISCA2_I

FRAME SYNC OUTPUT
(INVFSA = 0, STROBEA = 1)

FRAME SYNC OUTPUT
(INVFSA = 1, STROBEA = 1)
ADSP-2126x SHARC Processor Peripherals Manual 8-11

PCG Programming Examples
PCG Programming Examples
This section provides two programming examples written for the
ADSP-21262 processor. The first listing, Listing 8-1, uses PCG channel B
to output a clock on DAI pin 1 and frame sync on DAI pin 2. The input
used to generate the clock and frame sync is CLKIN. This example demon-
strates the clock and frame sync divisors, as well as the pulse width and
phase shift capabilities of the PCG.

The second listing, Listing 8-2, uses both PCG channels. Channel A is set
up to only generate a clock signal. This clock signal is used as the input to
channel B via the SRU. The clock and frame sync are routed to DAI pins
1 and 2, respectively, in the same manner as the first example. This frame
sync generated in this example is set for a 50% duty cycle, with no phase
shift.

Listing 8-1. PCG Channel B Output Example

/* Register definitions */

#define SRU_CLK3 0x2434

#define SRU_PIN0 0x2460

#define SRU_PBEN0 0x2478

#define PCG_CTLB0 0x24C2

#define PCG_CTLB1 0x24C3

#define PCG_PW 0x24C4

/* SRU definitions */

#define PCG_CLKB_P 0x39

#define PCG_FSB_P 0x3B

#define PBEN_HIGH_Of 0x01

//Bit Positions

#define DAI_PB02 6

#define PCG_PWB 16
8-12 ADSP-2126x SHARC Processor Peripherals Manual

Precision Clock Generator
/* Bit definitions */

#define ENFSB 0x40000000

#define ENCLKB 0x80000000

/* Main code section */

.global _main;

.section/pm seg_pmco;

_main:

/* Route PCG Channel B clock to DAI Pin 1 via SRU */

/* Route PCG Channel B frame sync to DAI Pin 2 via SRU */

r0 = PCG_CLKB_P|(PCG_FSB_P<<DAI_PB02);

dm(SRU_PIN0) = r0;

/* Enable DAI Pins 1 & 2 as outputs */

r0 = PBEN_HIGH_Of|(PBEN_HIGH_Of<<DAI_PB02);

dm(SRU_PBEN0) = r0;

r0 = (100<<PCG_PWB); /* PCG Channel B FS Pulse width = 100 */

dm(PCG_PW) = r0;

r2 = 1000; /* Define 20-bit Phase Shift */

r0 = (ENFSB|ENCLKB| /*Enable PCG Channel B Clock and FS*/

 1000000); /* FS Divisor = 1000000 */

r1 = lshift r2 by -10;

/* Deposit the upper 10-bits of the Phase Shift in the */

/* correct position in PCG_CTLB0 (Bits 20-29) */

r1 = fdep r1 by 20:10;

r0 = r0 or r1; /* Phase Shift 10-19 = 0 */

dm(PCG_CTLB0) = r0;

r0 = (100000); /* Clk Divisor = 100000 */

 /* Use CLKIN as clock source */
ADSP-2126x SHARC Processor Peripherals Manual 8-13

PCG Programming Examples
/* Deposit the lower 10-bits of the Phase Shift in the */

/* correct position in PCG_CTLB1 (Bits 20-29) */

r1 = fdep r2 by 20:10;

r0 = r0 or r1; /* Phase Shift 10-19 = 0x3E8 */

dm(PCG_CTLB1) = r0;

//--

_main.end: jump(pc,0);

Listing 8-2. PCG Channel A and B Output Example

/* Register Definitions */

#define SRU_CLK3 0x2434

#define SRU_PIN0 0x2460

#define SRU_PBEN0 0x2478

#define PCG_CTLA0 0x24C0

#define PCG_CTLA1 0x24C1

#define PCG_CTLB0 0x24C2

#define PCG_CTLB1 0x24C3

#define PCG_PW 0x24C4

/* SRU Definitions */

#define PCG_CLKA_O 0x1c

#define PCG_CLKB_P 0x39

#define PCG_FSB_P 0x3B

#define PBEN_HIGH_Of 0x01

//Bit Positions

#define PCG_EXTB_I 5

#define DAI_PB02 6

#define PCG_PWB 16

/* Bit Definitions */

#define ENCLKA 0x80000000
8-14 ADSP-2126x SHARC Processor Peripherals Manual

Precision Clock Generator
#define ENFSB 0x40000000

#define ENCLKB 0x80000000

#define CLKBSOURCE 0x80000000

#define FSBSOURCE 0x40000000

/* Main code section */

.global _main; /* Make main global to be accessed by ISR */

.section/pm seg_pmco;

_main:

/*Route PCG Channel A clock to PCG Channel B Input via SRU*/

r0 = (PCG_CLKA_O<<PCG_EXTB_I);

dm(SRU_CLK3) = r0;

/* Route PCG Channel B clock to DAI Pin 1 via SRU */

/* Route PCG Channel B frame sync to DAI Pin 2 via SRU */

r0 = (PCG_CLKB_P|(PCG_FSB_P<<DAI_PB02));

dm(SRU_PIN0) = r0;

/* Enable DAI Pins 1 & 2 as outputs */

r0 = (PBEN_HIGH_Of|(PBEN_HIGH_Of<<DAI_PB02));

dm(SRU_PBEN0) = r0;

r0 = ENCLKA; /* Enable PCG Channel A Clock, No Channel A FS */

 /* FS Divisor = 0, FS Phase 10-19 = 0 */

dm(PCG_CTLA0) = r0;

r1 = 0xfffff; /* Clk Divisor = 0xfffff, FS Phase 0-9 = 0 */

 /* Use CLKIN as clock source */

dm(PCG_CTLA1) = r1;

r0 = (5<<PCG_PWB); /* PCG Channel B FS Pulse width = 1 */

dm(PCG_PW) = r0;

r0 = (ENFSB|ENCLKB|10); /*Enable PCG Channel B Clock and FS*/
ADSP-2126x SHARC Processor Peripherals Manual 8-15

PCG Programming Examples
 /* FS Divisor = 10, FS Phase 10-19 = 0 */

dm(PCG_CTLB0) = r0;

r0 = (CLKBSOURCE|FSBSOURCE|10); /* Clk Divisor = 10 */

 /* FS Phase 0-9 = 0, Use SRU_MISC4 as clock source */

dm(PCG_CTLB1) = r0;

_main.end: jump(pc,0);
8-16 ADSP-2126x SHARC Processor Peripherals Manual

9 SYSTEM DESIGN

The processor supports many system design options. The options imple-

mented in a system are influenced by cost, performance, and system
requirements. This chapter provides the following system design
information:

• “Pin Descriptions” on page 9-2

• “Phase-Locked Loop Startup” on page 9-20

• “Conditioning Input Signals” on page 9-21

• “Designing for High Frequency Operation” on page 9-22

• “Booting” on page 9-26

• “Data Delays, Latencies, and Throughput” on page 9-40

Other chapters also discuss system design issues. Some other locations for
system design information include:

• “SPORT Operation Modes” on page 4-9

• “SPI General Operations” on page 5-8
ADSP-2126x SHARC Processor Peripherals Manual 9-1

Pin Descriptions
By following the guidelines described in this chapter, you can ease the
design process for your ADSP-2126x processor product. Development
and testing of your application code and hardware can begin without
debugging the debug port.

Before proceeding with this chapter it is recommended that you
become familiar with the ADSP-2126x core architecture. This
information is presented in the ADSP-2126x SHARC Processor Core
Manual.

Pin Descriptions
This section describes the pins and shows how these signals can be used in
a processor system. Table 9-1 illustrates how the pins are used in a typical
system.

Pin definitions are listed in Table 9-1. The following symbols appear in
the Type column of Table 9-1:

• A = Asynchronous

• G = Ground

• I = Input

• O = Output

• P = Power Supply

• S = Synchronous

• (A/D) = Active Drive

• (O/D) = Open Drain

• T = Three-State
9-2 ADSP-2126x SHARC Processor Peripherals Manual

System Design
Unlike previous SHARC processors, the ADSP-2126x processor contains
internal series resistance equivalent to 360 Ω on the input path of all pins.

Table 9-1 includes only a brief description of pins. For a complete
description, refer to the product specific data sheet. The data sheet
contains the most current and detailed information about this
product.

Table 9-1. Pin Descriptions

Pin Type State During and
After Reset

Function

AD15–0 I/O/T Three-state with
pull-up enabled

Parallel Port Address/Data

RD O Output only, driven
high1

Parallel Port Read Enable

WR O Output only, driven
high1

Parallel Port Write Enable

ALE O Output only, driven
low1

Parallel Port Address Latch Enable

FLG3–0 I/O/A Three-state Flag Pins

DAI_P20–1 I/O/T Three-state with
programmable
pull-up

Digital Audio Interface Pins

SPICLK I/O Three-state with
pull-up enabled

Serial Peripheral Interface Clock
Signal

SPIDS I Input only Serial Peripheral Interface Slave
Device Select

MOSI I/O (O/D) Three-state with
pull-up enabled

SPI Master Out Slave In

MISO I/O (O/D) Three-state with
pull-up enabled

SPI Master In Slave Out

BOOTCFG1–0 I Input only Boot Configuration Select

CLKIN I Input only Local Clock In
ADSP-2126x SHARC Processor Peripherals Manual 9-3

Pin Descriptions
Inputs identified as synchronous (S) must meet timing requirements with
respect to CLKIN (or with respect to TCK for TMS, TDI). Inputs identified as
asynchronous (A) can be asserted asynchronously to CLKIN (or to TCK for
TRST).

XTAL O Output only2 Crystal Oscillator Terminal

CLKCFG1–0 I Input only Core/CLKIN Ratio Control

CLKOUT O Output only Local Clock Out/ Reset Out

RESET I/A Input only Processor Reset

TCK I Input only Test Clock (JTAG)

TMS I/S Three-state with
pull-up enabled

Test Mode Select (JTAG)

TDI I/S Three-state with
pull-up enabled

Test Data Input (JTAG)

TDO O Three-state Test Data Output (JTAG)

TRST I/A Three-state with
pull-up enabled

Test Reset (JTAG)

EMU O (O/D) Three-state with
pull-up enabled

Emulation Status

VDDINT P Core Power Supply

VDDEXT P I/O Power Supply

AVDD P Analog Power Supply

AVSS G Analog Power Supply Return

GND G Power Supply Return

1 RD, WR, and ALE are continuously driven by the processor and will not be three-stated.
2 Output only is a three-state driver with its output path always enabled.

Table 9-1. Pin Descriptions (Cont’d)

Pin Type State During and
After Reset

Function
9-4 ADSP-2126x SHARC Processor Peripherals Manual

System Design
Tie or pull unused inputs to VDDEXT or GND, except for the following:
AD15–0, DAI_Px, SPICLK, MISO, MOSI, EMU, TMS, and TDI. These pins have a
pull-up resistor and can be left floating. See the pin list in Table 9-1.

The TRST input of the JTAG interface must be asserted (pulsed low) or
held low after power-up for proper operation of the processor. Do not
leave this pin unconnected.

Pin Multiplexing
The ADSP-2126x processor provides the same functionality as other
SHARC processors but with a much lower pin count which helps to
reduce total system costs. It does this through extensive use of pin multi-
plexing. Table 9-3 shows an example multiplexing scheme. The following
registers (addresses) and bits are used.

Table 9-2. Register and their Bits Used for Multiplexing

Registers Used (Address) Bits Used

SYSCTL (0x3024) PPFLGS, TMREXPEN, IRQxEN

SPIFLG (0x1001) SPIFLGx (3:0)

SPICTL (0x1000) SPIMS

IDP_PDAP_CTL
(0x24B1)

IDP_PP_SELECT

PMCTL (0x2000) CLOCKOUTEN
ADSP-2126x SHARC Processor Peripherals Manual 9-5

Pin Descriptions
Table 9-3. ADSP-2126x Processor Pin Multiplexing Scheme

External Pin Function Type
I = input
O = output

Control
0 = cleared
1 = set
x = do not care

FLGn1 FLGn I/O PPFLGS = 0
SPIFLG[n] = 0 and SPIMS=0
IRQxEN = 0

IRQn2 I PPFLGS=0
SPIFLG[n] = 0 and SPIMS = 0
IRQxEN = 1

SPI Device Select3 O PPFLGS=0
SPIFLG[n] = 1 and SPIMS = 1
IRQxEN = 0

AD[15:0] AD[15:0] I/O PPFLGS = 04

IDP_PP_SELECT = 0

PDAP I PPFLGS = 0
IDP_PP_SELECT = 1

FLG[15:0] I/O PPFLGS = 15

IDP_PP_SELECT = 0

DAI_P[20:1]6 PDAP I IDP_PP_SELECT = 0

FLG[15:10] I/O Note7

Other I/O Note 6

CLKOUT CLKOUT O PMCTL [12] = 1

RESETOUT O PMCTL [12] = 0

1 n = 0, 1, 2, 3.
2 For n = 3 function is FLG3 or TIMEXP, not IRQ3.
3 These pins are used at boot time as device selects during SPI Master booting.
4 Setting PPFLGS = 1 and IDP_PP_SELECT = 1 at the same time is illegal.
5 When PPFLGS = 1, the FLG pins toggle then alternate functions. For example IRQx and

TIMEXP.
6 For complete information on the operation of these pins, see “Digital Audio Interface” on

page 7-1.
7 For complete information on the operation of these pins, see “Clock Routing Control Reg-

isters (Group A)” on page A-61.
9-6 ADSP-2126x SHARC Processor Peripherals Manual

System Design
If the system clock to the SPICLK module is shut off in the PMCTL
register, FLG0–3 are not usable.

Address/Data Pins as FLAGs

To use these pins as flags (FLGS15–0) set (= 1) bit 20 of the SYSCTL register
and disable the Parallel Port.

Input Synchronization Delay
The processor has several asynchronous inputs—RESET, TRST, IRQ2–0, and
FLG11-0 (when configured as inputs). These inputs can be asserted in arbi-
trary phase to the processor clock, CLKIN. The processor synchronizes the
inputs prior to recognizing them. The delay associated with recognition is
called the synchronization delay.

Any asynchronous input must be valid prior to the recognition point in a
particular cycle. If an input does not meet the setup time on a given cycle,
it may be recognized in the current cycle or during the next cycle.

Table 9-4. AD[15:0] to FLAG Pin Mapping

AD Pin FLAG PIN AD Pin FLAG Pin

AD0 FLAG8 AD8 FLAG0

AD1 FLAG9 AD9 FLAG1

AD2 FLAG10 AD10 FLAG2

AD3 FLAG11 AD11 FLAG3

AD4 FLAG12 AD12 FLAG4

AD5 FLAG13 AD13 FLAG5

AD6 FLAG14 AD14 FLAG6

AD7 FLAG15 AD15 FLAG7
ADSP-2126x SHARC Processor Peripherals Manual 9-7

Pin Descriptions
To ensure recognition of an asynchronous input, it must be asserted for at
least one full processor cycle plus setup and hold time, except for RESET,
which must be asserted for at least four processor cycles. The minimum
time prior to recognition (the setup and hold time) is specified in the data
sheet.

Clock Derivation
The processor uses a PLL on the chip, to provide clocks that switch at
higher frequencies than the system clock (CLKIN). The PLL-based clocking
methodology used influences the clock frequencies and behavior for the
serial, SPI, and parallel ports, in addition to the processor core and inter-
nal memory. In each case, the processor PLL provides a non-skewed clock
to the port logic and I/O pins.

The PLL provides a clock that switches at the processor core frequency to
the serial ports. Each of the serial ports can be programmed to operate at
clock frequencies derived from this clock. The six serial ports’ transmit
and receive clocks are divided down from the processor core clock fre-
quency by setting the DIVx registers appropriately.

On power-up, the CLKCFG1–0 pins are used to select ratios of 16:1, 8:1,
and 3:1. After booting, numerous other ratios (slowing or speeding up the
clock) can be selected via software control using the Power Management
Control register.

Power Management Control Register

The ADSP-2126x processor has a Power Management Control register
(PMCTL) that allows programs to determine the amount of power dissi-
pated. This includes the ability to program the PLL dynamically in
software. This feature eases design for systems that need to use specific
clock frequencies or are sensitive to power consumption.
9-8 ADSP-2126x SHARC Processor Peripherals Manual

System Design
In addition to changing the clock rate on the fly, The PMCTL register also
allows programs to disable the clock source to a particular processor
peripheral completely, (for example the serial ports or the timers), to fur-
ther conserve power. By default, each peripheral block has its internal CLK
enabled only after it is initialized. Programs can use the PMCTL register to
turn the specific peripheral off after the application no longer needs it.
After reset these clocks are not enabled until the peripheral is initialized by
the program.

Listing 9-1 and Listing 9-2 are examples that show how to use the Power
Management Control register to enable/disable clocking to a peripheral.

Listing 9-1. Power Management Example

ustat2 = dm(PMCTL);

bit set ustat2 SPIPDN; /* disable internal peripheral clock for

 SPI module. SPIPDN is defined as bit 3

 of PMCTL*/
dm(PMCTL) = ustat2;

Listing 9-2. PMCTL Example Code.

ENABLING CLKOUT:

 ustat2 = dm(PMCTL);
 bit set ustat2 CLKOUTEN; /* switch pin function from Reset
 Out(RSTOUT) to CLKOUT */

 dm(PMCTL) = ustat2;

PLL Divisor modification:

 ustat2 = dm(PMCTL);
 bit set ustat2 DIVEN|PLLD8; /* set and enable PLL Divisor for
 CoreCLK = CLKIN/8 */

 dm(PMCTL) = ustat2;
ADSP-2126x SHARC Processor Peripherals Manual 9-9

Pin Descriptions
PLL Multiplier modification:

 ustat2 = dm(PMCTL);
 bit set ustat2 PLLM8 | PLLBP; /* set a multiplier of 8
 (default divisor is 2) and put

 PLL in Bypass */

 dm(PMCTL) = ustat2;
 waiting loop:
 r0 = 4096; /* wait for PLL to lock at new rate
 (requirement for modifying multiplier only) */

 lcntr = r0, do pllwait until lce;
 pllwait:nop;
 ustat2 = dm(PMCTL);
 bit clr ustat2 PLLBP;
 /* take PLL out of Bypass, PLL is now at CLKIN*4 (CoreCLK = CLKIN

* M/N = CLKIN* 8/2) */

 dm(PMCTL) = ustat2;

PLL Input Divider Usage:

ustat2 = dm(PMCTL);

bit set ustat2 INDIV | PLLBP; /* divide clkin/2, put

 PLL in Bypass */

dm(PMCTL) = ustat2;

waiting loop:

r0 = 4096; /* wait for PLL to lock at new rate

 (requirement for modifying multiplier

 and setting INDIV bit only) */

lcntr = r0, do pllwait until lce;

pllwait:nop;

ustat2 = dm(PMCTL);

bit clr ustat2 PLLBP;

/* take PLL out of Bypass */

dm(PMCTL) = ustat2;
9-10 ADSP-2126x SHARC Processor Peripherals Manual

System Design
PMCTL register bit definitions:

/* Power Management Control register (PMCTL) */

#define PLLM8 (BIT_3) // PLL Multiplier 8

#define PLLD8 (BIT_7) // PLL Divisor 8

#define INDIV (BIT_8) // Input Divider

#define DIVEN (BIT_9) // Enable PLL Divisor

#define CLKOUTEN (BIT_12) // Mux select for CLKOUT/RESETOUT

#define PLLBP (BIT_15) // PLL Bypass mode indication

#define SPIPDN (BIT_30) // Shutdown clock to SPI

Timing Specifications

The ADSP-2126x processor’s internal clock (a multiple of CLKIN) provides
the clock signal for timing internal memory, the processor core, serial
ports, the SPI, and the parallel port (as required for read/write strobes).
During reset, program the ratio between the processor’s internal clock fre-
quency and external (CLKIN) clock frequency with the CLK_CFG1–0 pins.

To determine switching frequencies for the serial ports, divide down the
internal clock, using the programmable divider control of each port. For
the SPI port, the BAUDR bit in the SPICTL register controls the SPICLK baud
rate based on the core clock frequency. For the serial ports, use the appro-
priate DIVx register.

Use the equation CCLK = PLLICLK x PLL Multiply Ratio to set clock peri-
ods. The PLL multiply ratio is determined by the CLK_CFG1–0 pins. See
Figure 9-1 and Table 9-9 on page 9-14.

The following tables provide descriptions of the various clock definitions,
inputs, outputs and uses in an ADSP-2126x processor system.

Table 9-7 describes clock ratio requirements. Table 9-8 shows an example
clock derivation.
ADSP-2126x SHARC Processor Peripherals Manual 9-11

Pin Descriptions
Figure 9-1. Core Clock and System Clock Relationship to CLKIN

Table 9-5. CLKOUT and CCLK Clock Generation Operation

Timing
Requirements

Calculation Description

CLKIN = 1/tCKIN = Input Clock

CLKOUT = 1/tTCK = Local Clock Out

PLLICLK = 1/tPLLIN = PLL Input Clock

CCLK = 1/tCCLK = Core Clock

Table 9-6. Clock Relationships

Timing
Requirements

Description1

tCK = CLKOUT Clock Period

tPLLICK = PLL Input Clock

CLKIN5 CCLK
(CORE CLOCK)PLLICLK3

XTAL5
XTAL
OSC

PLL2

CLKOUT1

CLK-CFG [1:0]

Notes
1. CLKOUT is muxed with RSTOUT. After reset, RSTOUT is selected. CLKOUT is selected by setting bit 12 in the PMCTL register.
2.The PLL ratio is controlled by the states of the CLKCFG[1:0] pins at reset and can be modified in software via the
PLLM & PLLDx bits in the PMCTL register.
3.To place the PLL in Bypass mode, set bit 15 in the PMCTL register. (CCLK = PLLICLK when set.)
4. Programs can interrupt the internal clock source to each of the following peripherals: Timer, SPI, SPORTs, and Parallel Port.
These internal clock sources are disabled at reset and are enabled and left enabled after each peripheral is enabled. A modest
power savings can be achieved by disabling these clocks when they are no longer needed. Note that these peripherals
DO NOT RUN at the Core Clock frequency. For more information please see the respective chapters in the
ADSP-2126x SHARC DSP Peripherals Manual.
5. Please refer to one of the ADSP-2126x family datasheets for maximum CLKIN and crystal source specifications.

TIMER4

SPI

SPORT 0-1

SPORT 2-3

SPORT 4-5

PP

PLLM AND
PLLDx

6/1 OR /2

INDIV
(PMCTL register, bit 8)
9-12 ADSP-2126x SHARC Processor Peripherals Manual

System Design
RESET and CLKIN
The processor receives its clock input on the CLKIN pin. The processor uses
an on-chip phase-locked loop (PLL) to generate its internal clock, which is
a multiple of the CLKIN frequency (Figure 9-1 on page 9-12). Because the
PLL requires some time to achieve phase lock, CLKIN must be valid for a

tCCLK = Core Clock Period (Processor)

tSCLK = Serial Port Clock Period = (tCCLK) x SR

tSPICLK = SPI Clock Period = (tCCLK) x SPIR

1 where:
SR = serial port-to-core clock ratio (wide range, determined

 by the DIVx register)
SPIR = SPI-to-core clock ratio (wide range, determined by the SPICTL register)
SCLK = serial port clock
SPICLK = SPI clock

Table 9-7. Clock Ratios

Timing
Requirements

Description

cRTO = Core:CLKOUT ratio, (3:1, 8:1, or 16:1, determined by CLK_CFGx pins
at reset. Programs can modify this ratio using the PMCTL register.)

sRTO = Sport:core clock ratio (wide range determined by xCLKDIV)

Table 9-8. Clock Derivation

Timing
Requirements

Description

tCCLK = (tCK) x cRTO

tSCLK = (tCCLK) x sRTO

Table 9-6. Clock Relationships (Cont’d)

Timing
Requirements

Description1
ADSP-2126x SHARC Processor Peripherals Manual 9-13

Pin Descriptions
minimum time period during reset before the RESET signal can be deas-
serted. For information on minimum clock setup, see the specific
ADSP-2126x data sheet.

Table 9-9 and Table 9-10 show the internal clock to CLKIN frequency
ratios supported by the processor. Note that programs control the PLL
through the PMCTL register. This register is described in the ADSP-2126x
SHARC Processor Core Manual.

When using an external crystal, the maximum crystal frequency cannot
exceed 25 MHz. The internal clock generator, when used in conjunction
with the XTAL pin and an external crystal, is designed to support up to a
maximum of 25 MHz external crystal frequency. For all other external
clock sources, the maximum CLKIN frequency is 50 MHz.

Table 9-9. Clock Rate Ratios After Reset (Default)

CLKCFG[1-0] Core to CLKIN Ratio

00 3:1, PLLD = 2, PLLM = 6

01 16:1, PLLD = 2, PLLM = 32

10 8:1, PLLD = 2, PLLM = 16

11 Reserved

Table 9-10. PLL Multiplier and Divider Settings

PLLD[7:6] PLL Divider Ratio PLLM[5:0] PLL Multiplier Ratio

00 (= reset) Clock Divider = 2 000000 Clock Multiplier = 64

01 Clock Divider = 4 000001 Clock Multiplier = 1

10 Clock Divider = 8

11 Clock Divider = 16 111111 Clock Multiplier = 63
9-14 ADSP-2126x SHARC Processor Peripherals Manual

System Design
Table 9-11 shows the internal core clock switching frequency across a
range of CLKIN frequencies. The minimum operational range for any given
frequency is constrained by the operating range of the PLL. Note that the
goal in selecting a particular clock ratio for the processor application is to
provide the highest internal frequency, given a CLKIN frequency.

If an external master clock is used, it should not drive the CLKIN pin when
the processor is not powered. The clock must be driven immediately after
power-up—otherwise, internal gates stay in an undefined (hot) state and
can draw excess current. After power-up, there should be sufficient time
for the oscillator to start up, reach full amplitude, and deliver a stable
CLKIN signal to the processor before the reset is released. This may take
100 μs depending on the choice of crystal, operating frequency, loop gain
and capacitor ratios. For details on timing, refer to the product specific
data sheet.

After the external processor RESET signal is deasserted, the PLL starts oper-
ating. The rest of the chip will be held in reset for 4096 CLKIN cycles after
RESET is deasserted by an internal reset signal. This sequence allows the
PLL to lock and stabilize. Add one CLKIN cycle if RESET doesn’t meet setup
requirements with respect to the CLKIN falling edge.

Table 9-11. Selecting Core to CLKIN Ratio

 Typical Crystal and Clock Oscillators Inputs

12.5 16.67 25 33.3 40 50

Clock Ratios Core CLK (MHz)

3:1 37.5 50 75 100 120 150

8:1 100 133.36 200 N/A N/A N/A

16:1 200 N/A N/A N/A N/A N/A
ADSP-2126x SHARC Processor Peripherals Manual 9-15

Pin Descriptions
Reset Generators
It is important that a processor (or programmable device) have a reliable
active RESET that is released once the power supplies and internal clock cir-
cuits have stabilized. The RESET signal should not only offer a suitable
delay, but it should also have a clean monotonic edge. Analog Devices has
a range of microprocessor supervisory ICs with different features. Features
include one or more of the following:

• Power-up reset

• Optional manual reset input

• Power low monitor

• Backup battery switching

The part number series for supervisory circuits from Analog Devices are:

• ADM69x

• ADM70x

• ADM80x

• ADM1232

• ADM181x

• ADM869x

A simple power-up reset circuit is shown below, using the
ADM809-RART reset generator. The ADM809 provides an active low
RESET signal whenever the supply voltage is below 2.63 V. At power-up, a
240 μs active reset delay is generated to give the power supplies and oscil-
lators time to stabilize.
9-16 ADSP-2126x SHARC Processor Peripherals Manual

System Design
Another part, the ADM706TAR, provides power on RESET and optional
manual RESET. It allows designers to create a more complete supervisory
circuit that monitors the supply voltage. Monitoring the supply voltage
allows the system to initiate an orderly shutdown in the event of power
failure. The ADM706TAR also allows designers to create a watchdog
timer that monitors for software failure. This part is available in an
eight-lead SOIC package. Figure 9-3 shows a typical application circuit
using the ADM706TAR.

Interrupt and Timer Pins
The processor’s external interrupt pins, flag pins, and timer pin can be
used to send and receive control signals to and from other devices in the
system. Hardware interrupt signals IRQ2–0 are received on the FLG2–0 pins
and the TIMEXP pin is mapped on the FLG3 pin. Hardware interrupt signals

Figure 9-2. Simple Reset Generator

VCC

GND

ADM809-RART

VDDEXT

RESET

GND

+3.3VDDEXT

10µF

VDDINT

+1.8VDDINT

ADSP-2126x
ADSP-2126x SHARC Processor Peripherals Manual 9-17

Pin Descriptions
(IRQ2–0) are received on the FLG2–0 pins. Interrupts can come from
devices that require the processor to perform some task on demand. A
memory-mapped peripheral, for example, can use an interrupt to alert the
processor that it has data available. For more information, see the
ADSP-2126x SHARC DSP Core Manual.

The TIMEXP output is generated by the on-chip timer. It indicates to other
devices that the programmed time period has expired. For more informa-
tion, see the ADSP-2126x SHARC DSP Core Manual.

Core-Based Flag Pins
The FLG3–0 pins allow single bit signalling between the processor and
other devices. For example, the processor can raise an output flag to inter-
rupt a host processor. Each flag pin can be programmed to be either an

Figure 9-3. Reset Generator and Power Supply Monitor

RESET

IRQ0

IRQ1

FLAG0

GND
RESET

Vt=+1.25V

VSENSE

VDDEXT

PFI

MR

WDI

PFO

WDO

GND

4

1

6

5

8

3

ADM706TAR
VCC

2
RST

7

100nF

10µF

100nF

VDDEXT +3.3V

a
ADSP-2126x
S

9-18 ADSP-2126x SHARC Processor Peripherals Manual

System Design
input or output. In addition, many instructions can be conditioned on a
flag’s input value, enabling efficient communication and synchronization
between multiple processors or other interfaces.

The flags are bidirectional pins and all have the same functionality. The
FLGxO bits in the FLAGS register program the direction of each flag pin. For
more information, see the ADSP-2126x SHARC DSP Core Manual.

When the SPIPDN bit (bit 30 in the PMCTL register) is set (= 1 which
shuts down the clock to the SPI), the FLGx pins cannot be used (via
the FLGS7–0 register bits) because the FLGx pins are synchronized
with the clock.

JTAG Interface Pins
The JTAG Test Access Port (TAP) consists of the TCK, TMS, TDI, TDO, and
TRST pins. The JTAG port can be connected to a controller that performs
a boundary scan for testing purposes. This port is also used by the Analog
Devices Tools product line of JTAG emulator and development software
to access on-chip emulation features. To allow the use of the emulator, a
connector for its in-circuit probe must be included in the target system.

If the TRST pin is not asserted (or held low) at power-up, the JTAG port is
in an undefined state that may cause the processor to drive out on I/O
pins that would normally be three-stated at reset. The TRST pin can be
held low with a jumper to ground on the target board connector.

A detailed discussion of JTAG and its use can be found in the Engi-
neer-to-Engineer Note (EE-68), Analog Devices JTAG Emulation Technical
Reference. This document is available on the Analog Devices Web site at
www.analog.com.
ADSP-2126x SHARC Processor Peripherals Manual 9-19

Pin Descriptions
Phase-Locked Loop Startup
The RESET signal can be held low long enough to guarantee a stable CLKIN
source and stable VDDINT/VDDEXT power supplies before the PLL is reset.

In order for the PLL to lock to the CLKIN frequency, the PLL needs time to
lock before the core can execute or begin the boot process. A delayed core
reset has been added via the delay circuit. There is a 12-bit counter that
counts up to 4096 CLKIN cycles after RESET is transitioned from low to
high. The delay circuit is activated at the same time the PLL is taken out
of reset.

The advantage of the delayed core reset is that the PLL can be reset any
number of times without having to power-down the system. If there is a
brown-out situation, the watchdog circuit only has to control the RESET.

Figure 9-4. Chip Reset Circuit

CLKIN

RESET

Delayed Internal
Core Processor

PLL
Core Reset Delay Circuit

CLKIN CORE_RST

CLKIN

ENA_CLK

PLL_RESET

12-bit Counter

Count 4096 CLKIN Cycles

ENA_CNT

RSTOUT

PLL reset and PLL clock
input enable occur on the
rising edge of RESET

Reset
9-20 ADSP-2126x SHARC Processor Peripherals Manual

System Design
Conditioning Input Signals
The processor is a CMOS device. It has input conditioning circuits which
simplify system design by filtering or latching input signals to reduce sus-
ceptibility to glitches or reflections.

The following sections describe why these circuits are needed and their
effect on input signals.

A typical CMOS input consists of an inverter with specific N and P device
sizes that cause a switching point of approximately 1.4 V. This level is
selected to be the midpoint of the standard TTL interface specification of
VIL = 0.8 V and VIH = 2.0 V. This input inverter, unfortunately, has a fast
response to input signals and external glitches wider than 1 ns. Filter cir-
cuits and hysteresis are added after the input inverter on some processor
inputs, as described in the following sections.

RESET Input Hysteresis
Hysteresis is used only on the RESET input signal. Hysteresis causes the
switching point of the input inverter to be slightly above 1.4 V for a rising
edge and slightly below 1.4 V for a falling edge. The value of the hysteresis
is approximately ± 0.1 V. The hysteresis is intended to prevent multiple
triggering of signals which are allowed to rise slowly, as might be expected
on a reset line with a delay implemented by an RC input circuit. Hystere-
sis is not used to reduce the effect of ringing on processor input signals
with fast edges, because the amount of hysteresis that can be used on a
CMOS chip is too small to make a difference. The small amount of hys-
teresis allowable is due to the restrictions on the tolerance of the VIL and
VIH TTL input levels under worst case conditions. Refer to the product
specific processor data sheet for exact specifications.
ADSP-2126x SHARC Processor Peripherals Manual 9-21

Designing for High Frequency Operation
Designing for High Frequency Operation
Because the processor can operate at very fast clock frequencies, signal
integrity and noise problems must be considered for circuit board design
and layout. The following sections discuss these topics and suggest various
techniques to use when designing and debugging processor systems.

All synchronous behavior is specified to CLKIN. System designers are
encouraged to clock synchronous peripherals with this same clock source
(or a different low-skew output from the same clock driver).

Clock Specifications and Jitter
The clock signal must be free of ringing and jitter. Clock jitter can easily
be introduced into a system where more than one clock frequency exists.
Jitter should be kept to an absolute minimum. High frequency jitter on
the clock to the processor may result in abbreviated internal cycles.

Never share a clock buffer IC with a signal of a different clock fre-
quency. This introduces excessive jitter.

As shown in Figure 9-5, keep the portions of the system that operate at
different frequencies as physically separate as possible. The clock supplied
to the processor must have a rise time of 3 ns or less and must meet or
exceed a high and low voltage of 2 V and 0.4 V, respectively.

Figure 9-5. Reducing Clock Jitter and Ring

FREQUENCY 1 CLOCK a
ADSP-2126x

S

9-22 ADSP-2126x SHARC Processor Peripherals Manual

System Design
Other Recommendations and Suggestions
• Use more than one ground plane on the PCB to reduce crosstalk.

Be sure to use lots of vias between the ground planes. One VDD
plane for each supply is sufficient. These planes should be in the
center of the PCB.

• To reduce crosstalk, keep critical signals such as clocks, strobes,
and bus requests on a signal layer next to a ground plane and away
from or layout perpendicular to other non-critical signals.

• If possible, position the processors on both sides of the board to
reduce area and distances.

• To allow better control of impedance and delay, and to reduce
crosstalk, design for lower transmission line impedances.

• Use 3.3 V peripheral components and power supplies to help
reduce transmission line problems, ground bounce and noise cou-
pling (the receiver switching voltage of 1.5 V is close to the middle
of the voltage swing).

• Experiment with the board and isolate crosstalk and noise issues
from reflection issues. This can be done by driving a signal wire
from a pulse generator and studying the reflections while other
components and signals are passive.

Decoupling Capacitors and Ground Planes
Ground planes must be used for the ground and power supplies. Designs
should use a minimum of eight bypass capacitors (six 0.1 μF and two
0.01 μF ceramic). The capacitors should be placed very close to the
VDDEXT and VDDINT pins of the package as shown in Figure 9-6. Use short
and fat traces for this. The ground end of the capacitors should be tied
directly to the ground plane inside the package footprint of the processor
(underneath, on the bottom of the board), not outside the footprint. A
ADSP-2126x SHARC Processor Peripherals Manual 9-23

Designing for High Frequency Operation
surface-mount capacitor is recommended because of its lower series induc-
tance. Connect the power plane to the power supply pins directly with
minimum trace length. The ground planes must not be densely perforated
with vias or traces as their effectiveness is reduced. In addition, there
should be several large tantalum capacitors on the board.

Designs can use either bypass placement case shown in Figure 9-6,
or combinations of the two. Designs should try to minimize signal
feedthroughs that perforate the ground plane.

Oscilloscope Probes
When making high speed measurements, be sure to use a “bayonet” type
or similarly short (< 0.5 inch) ground clip, attached to the tip of the oscil-
loscope probe. The probe should be a low capacitance active probe
with 3 pF or less of loading. The use of a standard ground clip with four
inches of ground lead causes ringing to be seen on the displayed trace and
makes the signal appear to have excessive overshoot and undershoot.
A 1 GHz or better sampling oscilloscope is needed to see the signals
accurately.

Recommended Reading
The text High-Speed Digital Design: A Handbook of Black Magic is recom-
mended for further reading. This book is a technical reference that covers
the problems encountered in state-of-the-art, high frequency digital cir-
cuit design. It is also an excellent source of information and practical
ideas. Topics covered in the book include:

• High-Speed Properties of Logic Gates

• Measurement Techniques

• Transmission Lines

• Ground Planes and Layer Stacking
9-24 ADSP-2126x SHARC Processor Peripherals Manual

System Design
• Terminations

• Vias

• Power Systems

• Connectors

• Ribbon Cables

• Clock Distribution

• Clock Oscillators

Figure 9-6. Bypass Capacitor Placement

CASE 1:
BYPASS CAPACITORS ON NON-COMPONENT
(BOTTOM) SIDE OF BOARD, BENEATH DSP PACKAGE

a
ADSP-21262

S

CASE 2:
BYPASS CAPACITORS ON COMPONENT (TOP)
SIDE OF BOARD, AROUND DSP PACKAGE
ADSP-2126x SHARC Processor Peripherals Manual 9-25

Booting
High-Speed Digital Design: A Handbook of Black Magic, Johnson & Gra-
ham, Prentice Hall, Inc., ISBN 0-13-395724-1.

Booting
When a processor is initially powered up, its internal SRAM is undefined.
Before actual program execution can begin, the application must be
loaded from an external non-volatile source such as flash memory or a host
processor. This process is known as bootstrap loading or booting and is
automatically performed by the ADSP-2126x processor processor after
power-up or after a software reset.

The ADSP-2126x processor supports three booting modes—EPROM,
SPI master and SPI slave. Each of these modes uses the following general
procedure:

1. At reset, the ADSP-2126x processor is hardwired to load two hun-
dred fifty-six 32-bit instruction words via a DMA starting at
location 0x80000. In this chapter, these instructions are referred to
as the boot kernel or loader kernel.

2. The DMA completes and the interrupt associated with the periph-
eral that the processor is booting from is activated. The processor
jumps to the applicable interrupt vector location (0x80030 for SPI
and 0x80050 for the parallel port) and executes the code located
there. (Typically, the first instruction at the interrupt vector is a
Return From Interrupt (RTI) instruction.)

3. The loader kernel executes a series of Direct Memory Accesses
(DMAs) to import the rest of the application, overwriting itself
with the applications’ Interrupt Vector Table (IVT).

4. After executing the kernel, the processor returns to location
0x80005 where normal program execution begins.
9-26 ADSP-2126x SHARC Processor Peripherals Manual

System Design
To support this process, a 256-word loader kernel and loader (which con-
verts executables into boot-loader images) are supplied with the
VisualDSP++ development tools for both SPI and parallel port booting.
For more information on the loader, see the tools documentation in “Pro-
cessor Product Information” on page -xxv.

The boot source is determined by strapping the two BOOTCFGx pins to
either logic low or logic high. These settings are shown in Table 9-12.

Parallel Port Booting
The ADSP-2126x processor supports an 8-bit boot mode through the par-
allel port. This mode is used to boot from external 8-bit wide memory
devices. The processor is configured for 8-bit boot mode when the
BOOT_CFG1–0 pins = 10. When configured for parallel boot loading, the
parallel port transfers occur with the default bit settings (shown in
Table 9-13) for the PPCTL register.

Table 9-12. Booting Modes

BOOT_CFG1-0 Description

00 SPI Slave boot

01 SPI Master boot

10 EPROM boot via parallel port

11 Internal Boot mode (not available on all
ADSP-2126x processors)

Table 9-13. Parallel Port Boot Mode Settings in the PPCTL
Register

Bit Setting

PPALEPL = 0; ALE is active high

PPEN = 1
ADSP-2126x SHARC Processor Peripherals Manual 9-27

Booting
For a complete description of the Parallel Port Control register, see “Paral-
lel Port Control Register (PPCTL)” on page A-55.

The parallel port DMA channel is used when downloading the boot kernel
information to the processor. At reset, the DMA Parameter registers are
initialized to the values listed in Table 9-14.

Unlike previous SHARC processors, the ADSP-2126x processor
does not have a Boot Memory Select (BMS) pin.

PPDUR = 10111; (23 core clock cycles per data transfer cycle)

PPBHC = 1; insert a bus hold cycle on every access

PP16 = 0; external data width = 8 bits

PPDEN = 1; use DMA

PPTRAN = 0; receive (read) DMA

PPBHD = 0; buffer hang enabled

Table 9-14. Parameter Initialization Value

Parameter Register Initialization Value Comment

PPCTL 0x0000 016F See Table 9-13.

IIPP 0 This is the offset from internal memory
normal word starting address of 0x80000.

ICPP 0x180 (384) This is the number of 32-bit words that
are equivalent to 256 instructions.

IMPP 0x01

EIPP 0x00

Table 9-13. Parallel Port Boot Mode Settings in the PPCTL
Register (Cont’d)

Bit Setting
9-28 ADSP-2126x SHARC Processor Peripherals Manual

System Design
SPI Port Booting
The ADSP-2126x processor supports booting from a host processor via
SPI Slave mode (BOOT_CFG1–0 = 00), and booting from an SPI Flash, SPI
PROM, or a host processor via SPI Master mode (BOOT_CFG1–0 = 01).

Both SPI boot modes support booting from 8-, 16-, or 32-bit SPI devices.
In all SPI boot mode, the data word size in the shift register is hardwired
to 32 bits. Therefore, for 8 or 16-bit devices, data words are packed into
the Shift register to generate 32-bit words least significant bit (LSB) first,
which are then shifted into internal memory. The relationship between
the 32-bit words received into the RXSPI register and the instructions that
need to be placed in internal memory is shown in Figure 9-7.

For more information about 32- and 48-bit internal memory addressing,
see the “Memory” chapter in the ADSP-2126x SHARC Processor Core
Manual.

For 16-bit SPI devices, two words shift into the 32-bit receive Shift regis-
ter (RXSR) before a DMA transfer to internal memory occurs. For 8-bit SPI
devices, four words shift into the 32-bit receive shift register before a
DMA transfer to internal memory occurs.

When booting, the ADSP-2126x processor expects to receive words into
the RXSPI register seamlessly. This means that bits are received continu-
ously without breaks. For more information, see “Core Transmit and
Receive Operations” on page 5-12. For different SPI host sizes, the pro-
cessor expects to receive instructions and data packed in a least significant
word (LSW) format.

ECPP 0x600 This is the number of bytes in 0x100
48-bit instructions.

EMPP 0x01

Table 9-14. Parameter Initialization Value (Cont’d)

Parameter Register Initialization Value Comment
ADSP-2126x SHARC Processor Peripherals Manual 9-29

Booting

6

D

Figure 9-8 shows how a pair of instructions are packed for SPI booting
using a 32-, 16-, and an 8-bit device. These two instructions are received
as three 32-bit words as illustrated in Figure 9-7.

The following sections examine how data is packed into internal memory
during SPI booting for SPI devices with widths of 32, 16, or 8 bits.

Figure 9-7. SPI Data Packing

Figure 9-8. Instruction Packing for Different Hosts

32-BIT RECEIVE
SHIFT

REGISTER

S

DMA #1: DM[80000]

MSW LSW

4 3 2 1

PM48 [0X800FF]

16

DMA #2: DM[80001]

MSW LSW

DMA #3: DM[40002]

MSW LSW

PM48 [0X80003]

DMA #6: DM[80005]

MSW LSW

MOSI

256 48-BIT
WORDS

0X800FF

0X80000

DMA #4: DM[80003]

MSW LSW

PM48 [0X80002]

DMA

P

I

R

X PM48 [0X80001]

DMA #5: DM[80004]

MSW LSW

PM48 [0X80000]

#384:DM[0X8017F]

MSW LSW

#384:DM[0X8017E]

MSW LSW

[X80001]

[X800FE]

[X80002]

LWUW

16-BIT HOST

CCDD1122

1122

33445566 7788AABB

CCDD AABB 778833445566

66 55 44 33 22 11 DD CC BB AA 88 77

32-BIT HOST

8-BIT HOST

[0x80000] 0x1122 3344556

[0x80001] 0x7788 AABBCCD

WORDS
INSTRUCTIONS IN

INTERNAL MEMORY

t = 0 t = 96 SPICLK
9-30 ADSP-2126x SHARC Processor Peripherals Manual

System Design
32-bit SPI Host Boot

Figure 9-9 shows 32-bit SPI host packing of 48-bit instructions executed
at PM addresses 0x80000 and 0x80001. The 32-bit word is shifted to
internal program memory during the 256-word kernel load.

The following example shows a 48-bit instructions executed:

[0x80000] 0x112233445566

[0x80001] 0x7788AABBCCDD

The 32-bit SPI host packs or prearranges the data as:

SPI word 1= 0x33445566

SPI word 2 = 0xCCDD1122

SPI word 3 = 0x7788AABB

Figure 9-9. 32-Bit SPI Host Packing

RXSPI DMA INTERNAL
MEMORY

0x90000

0x900FF

MOSI

32 3232

32
-B

IT
W

O
R

D
N

ADSP-2126x SHARC Processor Peripherals Manual 9-31

Booting
16-bit SPI Host Boot

Figure 9-10 shows how a 16-bit SPI host packs 48-bit instructions at PM
addresses 0x80000 and 0x80001. For 16-bit hosts, two 16-bit words are
packed into the shift register to generate a 32-bit word. The 32-bit word
shifts to internal program memory during the kernel load.

The following example shows a 48-bit instructions executed.

[0x80000] 0x112233445566

[0x80001] 0x7788AABBCCDD

The 16-bit SPI host packs or prearranges the data as:

SPI word 1 = 0x5566SPI word 2 = 0x3344

SPI word 3 = 0x1122SPI word 4 = 0xCCDD

Figure 9-10. 16-Bit SPI Host Packing

W
O

R
D

N

16
-

B
IT

W
O

R
D

N
+

1

RXSPI DMA
INTERNAL
MEMORY

(LOADER KERNEL)

0X80000

0X800FF

MOSI

32 3232

16
-

B
IT
9-32 ADSP-2126x SHARC Processor Peripherals Manual

System Design
SPI word 5 = 0xAABBSPI word 6 = 0x7788

The initial boot of the 256-word loader kernel requires a 16-bit host to
transmit 768 16-bit words. Two packed 16-bit words comprise the 32-bit
word. The SPI DMA count value of 0x180 is equivalent to 384 words.
Therefore, the total number of 16-bit words loaded is 768.

8-bit SPI Host Boot

Figure 9-11 shows 8-bit SPI host packing of 48-bit instructions executed
at PM addresses 0x80000 and 0x80001. For 8-bit hosts, four 8-bit words
pack into the shift register to generate a 32-bit word. The 32-bit word
shifts to internal program memory during the load of the 256-instruction
word kernel.

The following example shows a 48-bit instructions executed.

[0x80000] 0x112233445566

[0x80001] 0x7788AABBCCDD

The 8-bit SPI host packs or prearranges the data as:

SPI word 1 = 0x66SPI word 2 = 0x55

SPI word 3 = 0x44SPI word 4 = 0x33

SPI word 5 = 0x22SPI word 6 = 0x11

SPI word 7 = 0xDDSPI word 8 = 0xCC

SPI word 9 = 0xBBSPI word 10 = 0xAA

SPI word 11 = 0x88SPI word 12 = 0x77
ADSP-2126x SHARC Processor Peripherals Manual 9-33

Booting
The initial boot of the 256-word loader kernel requires an 8-bit host to
transmit fifteen hundred thirty-six 8-bit words. The SPI DMA count
value of 0x180 is equal to 384 words. Since one 32-bit word is created
from four packed 8-bit words, the total number of 8-bit words transmitted
is 1536.

For all boot modes, the VisualDSP++ loader automatically outputs
the correct word width and count based on the project settings. For
more information, see the VisualDSP++ tools documentation.

Figure 9-11. 8-Bit SPI Host Packing

RXSPI

DMA

MOSI

0X80000

0X800FF

32 3232

8-
B

IT
W

O
R

D
N

+
1

8-
B

IT
W

O
R

D
N

8-
B

IT
W

O
R

D
N

+
2

8-
B

IT
W

O
R

D
N

+
3

INTERNAL
MEMORY

LOADER KERNEL
9-34 ADSP-2126x SHARC Processor Peripherals Manual

System Design
Slave Boot Mode

In Slave boot mode, the host processor initiates the booting operation by
activating the SPICLK signal and asserting the SPIDS signal to the active
low state. The 256-word kernel is loaded 32 bits at a time, via the SPI
Receive Shift register (RXSR). To receive 256 instructions (48-bit words)
properly, the SPI DMA initially loads a DMA count of 0x180 (384)
32-bit words, which is equivalent to 0x100 (256) 48-bit words.

The processor’s SPIDS pin should not be tied low. When in SPI
Slave mode, including booting, the SPIDS signal is required to tran-
sition from high to low. SPI slave booting uses the default bit
settings shown in Table 9-15.

The SPI DMA channel is used when downloading the boot kernel infor-
mation to the processor. At reset, the DMA Parameter registers are
initialized to the values listed in Table 9-16.

Table 9-15. SPI Slave Boot Bit Settings

Bit Setting Comment

SPIEN Set (= 1) SPI enabled

SPIMS Cleared (= 0) Slave device

MSBF Cleared (= 0) LSB first

WL 10, 32-bit SPI Receive Shift register word length

DMISO Set (= 1) MISO MISO disabled

SENDZ Cleared (= 0) Send last word

SPIRCV Set (= 1) Receive DMA enabled

CLKPL Set (= 1) Active low SPI clock

CPHASE Set (= 1) Toggle SPICLK at the beginning of the first bit
ADSP-2126x SHARC Processor Peripherals Manual 9-35

Booting
Master Boot

In Master Boot mode, the ADSP-2126x processor initiates the booting
operation by:

1. Activating the SPICLK signal and asserting the FLG0 signal to the
active low state.

2. Writing the read command 0x03 and address 0x00 to the slave
device as shown in Figure 9-8.

Master Boot mode is used when the processor is booting from an SPI
compatible serial PROM, serial FLASH, or slave host processor. The spe-
cifics of booting from these devices are discussed individually. On reset,
the interface starts up in Master mode performing a three hundred
eighty-four 32-bit word DMA transfer.

SPI master booting uses the default bit settings shown in Table 9-17.

Table 9-16. Parameter Initialization Value for Slave Boot

Parameter Register Initialization Value Comment

SPICTL 0x0000 4D22

SPIDMAC 0x0000 0007 Enabled, RX, initialized on completion

IISPI 0x0008 0000 Start of Block 0 NW memory

IMSPI 0x0000 0001 32-bit data transfers

CSPI 0x0000 0180

Table 9-17. SPI Master Boot Mode Bit Settings

Bit Setting Comment

SPIEN Set (= 1) SPI Enabled

SPIMS Set (= 1) Master device

MSBF Cleared (= 0) LSB first
9-36 ADSP-2126x SHARC Processor Peripherals Manual

System Design
The SPI DMA channel is used when downloading the boot kernel infor-
mation to the processor. At reset, the DMA parameter registers are
initialized to the values listed in Table 9-18.

From the perspective of the ADSP-2126x processor, there is no difference
between booting from the three types of SPI slave devices. Since SPI is a
full-duplex protocol, the processor is receiving the same amount of bits
that it sends as a read command. The read command comprises a full
32-bit word (which is what the processor is initialized to send) comprised
of a 24-bit address with an 8-bit opcode. The 32-bit word that is received

WL 10 32-bit SPI Receive Shift register word length

DMISO Cleared (= 0) MISO enabled

SENDZ Set (= 1) Send zeros

SPIRCV Set (= 1) Receive DMA enabled

CLKPL Set (= 1) Active low SPI clock

CPHASE Set (= 1) Toggle SPICLK at the beginning of the first bit

Table 9-18. Parameter Initialization Value for Master Boot

Parameter Register Initialization Value Comment

SPICTL 0x0000 5D06

SPIBAUD 0x0064 CCLK/400 =500 KHz@ 200 MHz

SPIFLG 0xfe01 FLG0 used as slave-select

SPIDMAC 0x0000 0007 Enable receive interrupt on completion

IISPI 0x0008 0000 Start of block 0 normal word memory

IMSPI 0x0000 0001 32-bit data transfers

CSPI 0x0000 0180 0x100 instructions = 0x180 32-bit words

Table 9-17. SPI Master Boot Mode Bit Settings (Cont’d)

Bit Setting Comment
ADSP-2126x SHARC Processor Peripherals Manual 9-37

Booting
while this read command is transmitted is thrown away in hardware, and
can never be recovered by the user. Because of this, special measures must
be taken to guarantee that the boot stream is identical in all three cases.
The processor boots in Least Significant Bit First (LSBF) format, while
most serial memory devices operate in Most Significant Bit First (MSBF)
format. Therefore, it is necessary to program the device in a fashion that is
compatible with the required LSBF format.

Also, because the processor always transmits 32 bits before it begins read-
ing boot data from the slave device, it is necessary for the VisualDSP++
tools to insert extra data to the boot image (in the loader file) if using
memory devices that do not use the LSBF format. VisualDSP++ has
built-in support for creating a boot stream compatible with both endian
formats, and devices requiring 16-bit and 24-bit addresses, as well as those
requiring no read command at all.

Figure 9-12 shows the initial 32-bit word sent out from the processor. As
shown in the figure, the processor initiates the SPI-Master boot process by
writing an 8-bit opcode (LSB first) to the slave device to specify a read
operation. This read opcode is fixed to 0xC0 (0x03 in MSBF format). Fol-
lowing that, a 24-bit address (all zeros) is always driven by the processor.
On the following SPICLK cycle (cycle 32), the processor expects the first
bit of the first word of the boot stream. This transfer continues until the
kernel has finished loading the user program into the processor.
9-38 ADSP-2126x SHARC Processor Peripherals Manual

System Design
Booting From an SPI Flash

For SPI flash devices, the format of the boot stream will be identical to
that used in SPI Slave mode, with the first byte of the boot stream being
the first byte of the kernel. This is because SPI flash devices do not drive
out data until they receive an 8-bit command and a 24-bit address.

Booting From an SPI PROM (16-bit address)

Figure 9-12 shows the initial 32-bit word sent out from the processor
from the perspective of the serial PROM device.

Figure 9-12. SPI Master Mode Booting Using Various Serial Devices

0X000X 03 0X00 0X00

1ST KERNEL
BY TE

0X00 1ST KERNEL
BYTE

SPI FLAS H DRIV ES DATA AFTER IT
RE CE IVE S THE 8-BIT RE AD CO MMAND

AND A 24-BIT ADDRE SS

S PI EEP ROMS DRIVE DATA AFTER
RECEIVING THE 8-BIT RE AD CO MMAND

AND A 16-BIT ADDRES S

SP I S LAV E
FLAS H

(24-BIT ADDRES S)

SP I S LAV E
EEP RO M

(16-BIT ADDRES S)

SP I S LAV E
HOST

(NO COMMAND)

LOADER P ADS ONE DUMMY BYTE
TO T HE BO OT STREAM OF

HOST S PI DE VICES

SPI HO ST DRIVE S DATA
THROUGHOUT THE 8-BIT READ

CO MMAND AND 24-BIT ADDRESS

0X0 00X 00 0X00 0X00 1ST KE RNEL
BYTE

LOADER P ADS F OUR DUMMY
BYTES TO THE BO OT

STREAM OF HOS T SPI DE VICES

S PICLK
DRIVE N BY MAS TE R

MASTER OUT
S LAV E IN

(MOS I)

MASTER IN
S LAV E OUT

(MISO)

t = 0 t = 32 SPICLK
ADSP-2126x SHARC Processor Peripherals Manual 9-39

Data Delays, Latencies, and Throughput
As shown in Figure 9-12, SPI EEPROMS only require an 8-bit opcode
and a 16-bit address. These devices begin transmitting on clock cycle 24.
However, because the processor is not expecting data until clock cycle 32,
it is necessary to pad an extra byte to the beginning of the boot stream
when programming the PROM. In other words, the first byte of the ker-
nel will be the second byte of the boot stream. The VisualDSP++ tools will
automatically handle this in the loader file generation process for SPI
PROM devices.

Booting From an SPI Host Processor

Typically, host processors in SPI Slave mode transmit data on every
SPICLK cycle. This means that the first four bytes that are sent by the host
processor will be part of the first 32-bit word that is thrown away by the
processor (see Figure 9-12). Therefore, it is necessary to pad an extra four
bytes to the beginning of the boot stream when programming the host, for
example, the first byte of the kernel will be the fifth byte of the boot
stream. VisualDSP++ will automatically handle this in the loader file gen-
eration process.

Data Delays, Latencies, and Throughput
Table 9-19 on page 9-43 specifies latencies and throughput for the
ADSP-2126x processor. Latency is defined as the number cycles after the
first cycle required to complete the operation. A zero wait state memory
has a latency of zero. A single wait state memory has a data delay of one.
Throughput is the maximum rate at which the operation is performed.
Data delay and throughput are the same whether the access is from a host
processor or from another ADSP-2126x processor.
9-40 ADSP-2126x SHARC Processor Peripherals Manual

System Design
Execution Stalls
The following events can cause an execution stall for the ADSP-2126x
processor:

• One cycle on a Program Memory Data Access with instruction
cache miss

• Two cycles on non-delayed branches

• Two cycles on normal interrupts

• One to two cycles on short loops with small iterations

• n cycles on an IDLE instruction

• In a sequence of three instructions of the types shown below, the
processor may stall for one cycle:

Instruction 1: Compute instruction affecting flags such as
R2 = R3 - R4;

Instruction 2: Conditional instruction involving post-modify
addressing such as IF EQ DM(I1,M1) = R15;

Instruction 3: Instruction such as R0 = DM(I1,M2); involving
post-modify addressing involving same I register. This last instruc-
tion stalls the processor for one cycle.

• Any read reference to a memory-mapped register located physically
within core (registers like SYSCTL, which are not situated in the
IOP) requires two cycles; therefore, the processor stalls for one
cycle.

• Any read reference to a memory-mapped register located within a
peripheral such as the SPI, SPORTS, IDP, or parallel port requires
a minimum of four cycles; so the minimum stall is three cycles.
ADSP-2126x SHARC Processor Peripherals Manual 9-41

Data Delays, Latencies, and Throughput
• Any reference to a memory-mapped register in a conditional
instruction stalls the processor for one extra cycle (with respect to
an unconditional instruction).

DAG Stalls
One cycle hold on register conflict.

Memory Stalls
One cycle on PM and DM bus access to the same block of internal
memory.

IOP Register Stalls
Read of the IOP registers takes a minimum of four cycles, therefore the
processor stalls for at least three cycles.

DMA Stalls
The following events can cause a DMA stall for the ADSP-2126x
processor:

• One cycle stall if an access to a DMA Parameter register conflicts
with the DMA address generation. For example, writing to or read-
ing from a DMA Parameter register while a register update is
taking place conflicts with DMA chaining.

• n cycles if writing (or reading) to a DMA buffer when the buffer is
full (or empty).
9-42 ADSP-2126x SHARC Processor Peripherals Manual

System Design
IOP Buffer Stalls
The following event can cause an IOP buffer stall for the ADSP-2126x
processor—n cycles if a program writes to a full buffer or reads from an
empty buffer.

Table 9-19. Latencies and Throughput

Operation Minimum Data
Delay (cycles)

Maximum
Throughput
(cycles/ transfer)

Interrupts (IRQ2-0) 3 -

DMA chain initialization 7–11 -

Serial ports1

1 ADSP-2126x processor to ADSP-2126x processor transfers using 32-bit words.

35 32
ADSP-2126x SHARC Processor Peripherals Manual 9-43

Data Delays, Latencies, and Throughput
9-44 ADSP-2126x SHARC Processor Peripherals Manual

A REGISTERS REFERENCE

The ADSP-2126x processor processor has general-purpose and dedicated

registers in each of its functional blocks. The register reference informa-
tion for each functional block includes bit definitions, initialization
values, and memory-mapped addresses (for IOP registers). Information on
each type of register is available at:

• “I/O Processor Registers” on page A-2

• “Serial Port Registers” on page A-19

• “SPI Registers” on page A-41

• “Parallel Port Registers” on page A-54

• “Signal Routing Unit Registers” on page A-60

• “Precision Clock Generator Registers” on page A-88

• “Input Data Port Registers” on page A-95

When writing programs, it is often necessary to set, clear, or test bits in
the processor’s registers. While these bit operations can all be done by
referring to the bit’s location within a register or (for some operations) the
register’s address with a hexadecimal number, it is much easier to use sym-
bols that correspond to the bit’s or register’s name. For convenience and
consistency, Analog Devices provides a header file that provides these bit
and registers definitions. An #include file is provided with VisualDSP++
tools and can be found in the VisualDSP/2126x/include directory.

Many registers have reserved bits. When writing to a register, pro-
grams may only clear (write zero to) the register’s reserved bits.
ADSP-2126x SHARC Processor Peripherals Manual A-1

I/O Processor Registers
I/O Processor Registers
The I/O Processor (IOP) registers are accessible as part of the processor’s
memory map. Table A-1 on page A-3 lists the IOP memory-mapped regis-
ters and provides a cross-reference to a description of each register. These
registers occupy addresses 0x0000 0000 through 0x0003 FFFF of the
memory map. The IOP registers control the following DMA operations:
Parallel port, Serial port, Serial Peripheral Interface port (SPI), and Input
Data Port (IDP).

IOP registers have a one cycle effect latency (changes take effect on
the second cycle after the change).

Since the IOP registers are part of the processor’s memory map, buses
access these registers as locations in memory. While these registers act as
memory-mapped locations, they are separate from the processor’s internal
memory and have different bus access. One bus can access one IOP regis-
ter from one IOP register group at a time. Table A-1 on page A-3 lists the
IOP register groups.

When there is contention among the buses for access to registers in the
same IOP register group, the processor arbitrates register access as:

• Data Memory (DM) bus accesses

• Program Memory (PM) bus accesses

• IOP (IO) bus (lowest priority) accesses

The bus with highest priority gets access to the IOP register group, and
the other buses are held off from accessing that I/O processor register
group until that access been completed.
A-2 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Table A-1. I/O Processor Register Groups

Register Group IOP Registers In This Group

System Control
(SC)
Registers

SYSCTL, REVPID, EEMUIN, EEMUSTAT, EEMUOUT, OSPID,
BRKCTL, PSA1S, PSA1E, PSA2S, PSA2E, PSA3S, PSA3E, PSA4S,
PSA4E, DMA1S, DMA1E, DMA2S, DMA2E, PMDAS, PMDAE, EMUN,
IOAS, IOAE

Parallel Port (PP)
Registers

PPCTL, RXPP, TXPP, EIPP, EMPP, ECPP, IIPP, IMPP, ICPP

Serial Peripheral
Interface (SPI)
Registers

RXSPI, SPIFLG, TXSPI, SPICTL, SPISTAT, SPIBAUD, SPIDMAC,
IISPI, IMSPI, RXSPI_SHADOW, CPSPI, CSPI

Timer Registers TM0STAT, TM0CTL, TM0CNT, TM0PRD, TM0W, TM1STAT,
TM1CTL, TM1CNT, TM1PRD, TM1W, TM2STAT, TM2CTL,
TM2CNT, TM2PRD, TM2W

Power
Management
Registers

PMCTL
ADSP-2126x SHARC Processor Peripherals Manual A-3

I/O Processor Registers
Serial Port (SP)
Registers

IISP0A, IISP0B, IMSP0A, IMSP0B, CSP0A, CSP0B, CPSP0A, CPSP0B,
IISP1A, IISP1B, IMSP1A, IMSP1B, CSP1A, CSP1B, CPSP1A, CPSP1B,
IISP2A, IISP2B, IMSP2A, IMSP2B, CSP2A, CSP2B, CPSP2A, CPSP2B,
IISP3A, IISP3B, IMSP3A, IMSP3B, CSP3A, CSP3B, CPSP3A, CPSP3B,
IISP4A, IISP4B, IMSP4A, IMSP4B, CSP4A, CSP4B, CPSP4A, CPSP4B,
IISP5A, IISP5B, IMSP5A, IMSP5B, CSP5A, CSP5B, CPSP5A, CPSP5B
RXSP0A, RXSP0B, TXSP0A, TXSP0B, SPCTL0, DIV0, SPCNT0,
MT0CS0, MT0CCS0, MT0CS1, MT0CCS1, MT0CS2, MT0CCS2,
MT0CS3, MT0CCS3
RXSP1A, RXSP1B, TXSP1A, TXSP1B, SPCTL1, DIV1, SPCNT1,
MR1CS0, MR1CCS0, MR1CS1, MR1CCS1, MR1CS2, MR1CCS2,
MR1CS3, MR1CCS3
RXSP2A, RXSP2B, TXSP2A, TXSP2B, SPCTL2, DIV2, SPCNT2,
MT2CS0, MT2CCS0, MT2CS1, MT2CCS1, MT2CS2, MT2CCS2,
MT2CS3, MT2CCS3
RXSP3A, RXSP3B, TXSP3A, TXSP3B, SPCTL3, DIV3, SPCNT3,
MR3CS0, MR3CCS0, MR3CS1, MR3CCS1, MR3CS2, M3CCS2,
MR3CCS2, MR3CS3, MR3CCS3
RXSP4A, RXSP4B, TXSP4A, TXSP4B, SPCTL4, DIV4, SPCNT4,
MT4CS0, MT4CCS0, MT4CS1, MT4CCS1, MT4CS2, MT4CCS2,
MT4CS3, MT4CCS3
RXSP5A, RXSP5B, TXSP5A, TXSP5B, SPCTL5, DIV5, SPCNT5,
MR5CS0, MR5CCS0, MR5CS1, MR5CCS1, MR5CS2, MR5CCS2,
MR5CS3, MR5CCS3
SPMCTL01, SPMCTL23, SPMCTL45

Table A-1. I/O Processor Register Groups (Cont’d)

Register Group IOP Registers In This Group
A-4 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Since the I/O processor registers are memory-mapped, the processor’s
architecture does not allow programs to directly transfer data between
these registers and other memory locations, except as part of a DMA oper-
ation. To read or write IOP registers, programs must use the processor
core registers.

The register names for IOP registers are not part of the processor’s assem-
bly syntax. To ease access to these registers, programs should use the
header file containing the registers’ symbolic names and addresses as
described on page A-2.

DAI Registers SRU_CLK0, SRU_CLK1, SRU_CLK2, SRU_CLK3
SRU_DAT0, SRU_DAT1, SRU_DAT2, SRU_DAT3, SRU_DAT4
SRU_FS0, SRU_FS1, SRU_FS2
SRU_PIN0, SRU_PIN1, SRU_PIN2, SRU_PIN3
SRU_EXT_MISCA, SRU_EXT_MISCB
SRU_PBEN0, SRU_PBEN1, SRU_PBEN2, SRU_PBEN3
PCG_CTLA_0, PCG_CTLA_1, PCG_CTLB_0, PCG_CTLB_1,
PCG_PW
IDP_CTL, DAI_STAT, IDP_FIFO, IDP_DMA_I0, IDP_DMA_I1,
IDP_DMA_I2, IDP_DMA_I3, IDP_DMA_I4, IDP_DMA_I5,
IDP_DMA_I6, IDP_DMA_I7, IDP_DMA_M0, IDP_DMA_M1,
IDP_DMA_M2, IDP_DMA_M3, IDP_DMA_M4, IDP_DMA_M5,
IDP_DMA_M6, IDP_DMA_M7, IDP_DMA_C0, IDP_DMA_C1,
IDP_DMA_C2, IDP_DMA_C3, IDP_DMA_C4, IDP_DMA_C5,
IDP_DMA_C6, IDP_DMA_C7, IDP_PP_CTL
DAI_PIN_PULLUP, DAI_PIN_STAT, DAI_IRPTL_H, DAI_IRPTL_L,
DAI_IRPTL_PRI, DAI_IRPTL_RE, DAI_IRPTL_FE

Table A-1. I/O Processor Register Groups (Cont’d)

Register Group IOP Registers In This Group
ADSP-2126x SHARC Processor Peripherals Manual A-5

I/O Processor Registers
Flag Value Register (FLAGS)
The FLAGS register is a non-memory-mapped, universal, system register
(Ureg and Sreg). At reset:

• FLG0 bit is FLAG0 pin value

• FLG1 bit is FLAG1 pin value

• FLG2 bit is FLAG2 pin value

• FLG3 bit is FLAG3 pin value

• Other FLGx bit values are unknown

• FLGx0 bits are zero

The FLAGS register indicates the state of the FLGx pins. When a FLGx pin is
an output, the processor outputs a high in response to a program setting
the bit in FLAGS. The I/O direction (input or output) selection of each bit
is controlled by its FLGxO bit in the FLAGS register. The FLAGS register bit
definitions are given in Figure A-1.

When the flag pins are changed from inputs to outputs, the value
that is driven is the value that had been sampled while the pins
were inputs.

There are 16 flags in ADSP-2126x processor. All are muxed with other
pins. The FLAG[0:3] pins have four dedicated pins. The FLAG[10:15] pins
are accessible to the Signal Routing Unit (SRU). All 16 flags are routed to
the AD pins when the PPFLGS bit in the SYSCTL register (= 1). While this bit
is set, the parallel port is not operational and the four dedicated FLAG[0:3]
pins switch to their alternate state—IRQ0, IRQ1, IRQ2, and TMREXP.

When the SPIPDN bit (bit 30 in the PMCTL register) is set (= 1 which
shuts down the clock to the SPI), the FLGx pins cannot be used (via
the FLGS7–0 register bits) because the FLGx pins are synchronized
A-6 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
with the clock. For more information, see “Power Management
Control Register (PMCTL)” in the ADSP-2126x SHARC DSP
Core Manual.

Programs cannot change the Output Selects of the FLAGS register
and provide a new value in the same instruction. Instead, programs
must use two write instructions—the first to change the output
select of a particular FLG pin, and the second to provide the new
value.

Figure A-1. FLAGS Register (Upper Bits)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

U0 U 0 U 0 U 0 U 0 U 0 U 0 U 0

FLG15O
FLAG15 Output Select
FLG15
FLAG15 Value

FLG14O
FLAG14 Output Select

FLG14
FLAG14 Value

FLG13O
FLAG13 Output Select

FLG13
FLAG13 Value

FLG12O
FLAG12 Output Select

FLG12
FLAG12 Value

FLG8
FLAG8 Value

FLG8O
FLAG8 Output Select
FLG9
FLAG9 Value

FLG9O
FLAG9 Output Select
FLG10
FLAG10 Value

FLG10O
FLAG10 Output Select

FLG11
FLAG11 Value

FLG11O
FLAG11 Output Select

-For all FLGx bits, FLAGx values are as follows: 0=low, 1=high.
-For all FLGxO bits, FLAGx output selects are as follows: 0=FLAGx Input, 1=FLAGx Output.
-U indicates the bit value is unknown at reset.

FLAGS (Bits 31-16)
ADSP-2126x SHARC Processor Peripherals Manual A-7

I/O Processor Registers
Figure A-2. FLAGS Register (Lower Bits)

Table A-2. FLAGS Register Bit Descriptions

Bits Name Definition

0 FLG0 FLAG0 Value. Indicates the state of the FLG0 pin—high if set, (= 1) or
low if cleared, (= 0).

1 FLG0O FLAG0 Output Select. Selects the I/O direction for the FLG0 pin, the
flag is programmed as an output if set, (= 1) or input if cleared, (= 0).

2 FLG1 FLAG1 Value. Indicates the state of the FLG1 pin—high if set, (= 1) or
low if cleared, (= 0).

3 FLG1O FLAG1 Output Select. Selects the I/O direction for the FLG1 pin—an
output if set, (= 1) or input if cleared, (= 0).

4 FLG2 FLAG2 Value. Indicates the state of the FLG2 pin—high if set, (= 1) or
low if cleared, (= 0).

5 FLG2O FLAG2 Output Select. Selects the I/O direction for the FLG2 pin—out-
put if set, (= 1) or input if cleared, (= 0).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

U0 U 0 U 0 U 0 U 0 U 0 U 0 U 0

FLG7O
FLAG7 Output Select
FLG7
FLAG7 Value
FLG6O
FLAG6 Output Select
FLG6
FLAG6 Value
FLG5O
FLAG5 Output Select
FLG5
FLAG5 Value
FLG4O
FLAG4 Output Select
FLG4
FLAG4 Value

FLG0
FLAG0 Value

FLG0O
FLAG0 Output Select
FLG1
FLAG1 Value

FLG1O
FLAG1 Output Select

FLG2
FLAG2 Value

FLG2O
FLAG2 Output Select

FLG3
FLAG3 Value

FLG3O
FLAG3 Output Select

-For all FLGx bits, FLAGx values are as follows: 0=low, 1=high.
-For all FLGxO bits, FLAGx output selects are as follows: 0=FLAGx Input, 1=FLAGx Output.
-U indicates the bit value is unknown at reset.

FLAGS (Bits 15-0)
A-8 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
6 FLAG3 FLAG3 Value. Indicates the state of the FLAG3 pin—high (if set, = = 1)
or low if cleared, (= 0).

7 FLG3O FLAG3 Output Select. Selects the I/O direction for the FLAG3 pin—
output if set, (= 1) or input if cleared, (= 0).

8 FLG4 FLAG4 Value. Indicates the state of the FLAG4 pin—high if set, (= 1) or
low if cleared, (= 0).

9 FLG4O FLAG4 Output Select. Selects the I/O direction for the FLAG4 pin—
output if set, (= 1) or input if cleared, (= 0).

10 FLG5 FLAG5 Value. Indicates the state of the FLAG5 pin—high if set, (= 1) or
low if cleared, (= 0).

11 FLG5O FLAG5 Output Select. Selects the I/O direction for the FLAG5 pin—
output if set, (= 1) or input if cleared, (= 0).

12 FLG6 FLAG6 Value. Indicates the state of the FLAG6 pin—high if set, (= 1) or
low if cleared, (= 0).

13 FLG6O FLAG6 Output Select. Selects the I/O direction for the FLAG6 pin—
output if set, (= 1) or input if cleared, (= 0).

14 FLG7 FLAG7 Value. Indicates the state of the FLAG7 pin—high if set, (= 1) or
low if cleared, (= 0).

15 FLG7O FLAG7 Output Select. Selects the I/O direction for the FLAG7 pin—
output if set, (= 1) or input if cleared, (= 0).

16 FLG8 FLAG8 Value. Indicates the state of the FLAG8 pin—high if set, (= 1) or
low if cleared, (= 0).

17 FLG8O FLAG8 Output Select. Selects the I/O direction for FLAG8—output if
set, (= 1) or an input if cleared, (= 0).

18 FLG9 FLAG9 Value. Indicates the state of the FLAG9 pin—high if set, (= 1) or
low if cleared, (= 0).

19 FLG9O FLAG9 Output Select. Selects the I/O direction for FLAG9—output if
set, (= 1) or input if cleared, (= 0).

20 FLG10 FLAG10 Value. Indicates the state of the FLAG10 pin—high if set, (= 1)
or low if cleared, (= 0).

Table A-2. FLAGS Register Bit Descriptions (Cont’d)

Bits Name Definition
ADSP-2126x SHARC Processor Peripherals Manual A-9

I/O Processor Registers
21 FLG10O FLAG10 Output Select. Selects the I/O direction for FLAG10—output
if set, (= 1) or an input if cleared, (= 0).

22 FLG11 FLAG11 Value. Indicates the state of the FLAG11 pin—high if set, (= 1)
or low if cleared, (= 0).

23 FLG11O FLAG11 Output Select. Selects the I/O direction for the FLAG11—out-
put if set, (= 1) or an input if cleared, (= 0).

24 FLG12 FLAG12 Value. Indicates the state of the FLAG12 pin—high if set, (= 1)
or low if cleared, (= 0).

25 FLG12O FLAG12 Output Select. Selects the I/O direction for FLAG12—output
if set, (= 1) or input if cleared, (= 0).

26 FLG13 FLAG13 Value. Indicates the state of the FLAG13 pin—high if set, (= 1)
or low if cleared, (= 0).

27 FLG13O FLAG13 Output Select. Selects the I/O direction for FLAG13—output
if set, (= 1) or an input if cleared, (= 0).

28 FLG14 FLAG14 Value. Indicates the state of the FLAG14 pin—high if set, (= 1)
or low if cleared, (= 0).

29 FLG14O FLAG14 Output Select. Selects the I/O direction for FLAG14—output
if set, (= 1) or input if cleared, (= 0).

30 FLG15 FLAG15 Value. Indicates the state of the FLAG15 pin—high if set, (= 1)
or low if cleared, (= 0).

31 FLG15O FLAG15 Output Select. Selects the I/O direction for FLAG15—output
if set, (= 1) or input if cleared, (= 0).

Table A-2. FLAGS Register Bit Descriptions (Cont’d)

Bits Name Definition
A-10 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
System Control Register (SYSCTL)
The SYSCTL register is used to set up system configuration selections. This
register’s address is 0x30024. The reset value for this register is zero. Bit
descriptions for this register are shown in Figure A-3 and described in
Table A-3. The reset value has all bits initialized to zero.

Figure A-3. SYSCTL Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SRST

IMDW0

IMDW1

Reserved

Internal Memory Block 1 Data Width
1=Data bus width is 48 bits
0=Data bus is 32 bits

Software Reset
1=Disable
0=Enable (permits core writes)

IRQ0EN

TMREXPEN

PPFLGS

Reserved

Parallel Port Mode Enable
1=Enable
0=Disable Parallel Port. ADDR pins are FLAGS
(permits core writes)

Flag3 Mode
1=FLAG3 is in FLAG3 mode
0=FLAG3 is in TIMEXP mode (permits core writes)

Flag0 Mode
1=FLAG0 is in IRQ0 mode
0=FLAG0 is in FLAG0 mode
(permits core writes)

IRQ1EN

Flag1 Mode
1=FLAG1 is in IRQ1 mode
0=FLAG1 is in FLAG1 mode
(permits core writes)

IRQ1EN
Flag1 Mode
1=FLAG1 is in IRQ1 mode
0=FLAG1 is in FLAG1 mode (permits core writes)

Internal Memory Block 0 Data Width
1=Data bus width is 48 bits
0=Data bus is 32 bits

Reserved

Reserved

IIVT

Internal Interrupt Vector Table
1=Interrupt Vector Table is in
internal RAM
0=Interrupt Vector Table is not
in internal RAM
(permits core reads)

Reserved
DCPR

Priority Bit Enable
1=Rotating priority
0=Fixed priority (permits core writes)

SYSCTL (0x30024)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 00
ADSP-2126x SHARC Processor Peripherals Manual A-11

I/O Processor Registers
Table A-3. SYSCTL Register Bit Descriptions

Bits Name Definition

0 SRST Software Reset. Resets (when set, = 1) the processor. When a
program sets (= 1) SRST, the processor responds to the
non-maskable RSTI interrupt and clears (= 0) SRST.

1 Reserved

2 IIVT Internal Interrupt Vector Table. Forces placement of the inter-
rupt vector table at address 0x0008 0000 regardless of booting
mode (if 1) or allows placement of the interrupt vector table as
selected by the booting mode (if 0).

6–3 Reserved

7 DCPR DMA Channel Priority Rotation Enable. Enables (rotates if set,
= 1) or disables (fixed if cleared, = 0) priority rotation among
DMA channels. Permits core writes.

8 Reserved

9 IMDW0 Internal Memory Data Width 0. Selects the data access size for
internal memory as 48-bit data if set, (= 1) or 32-bit data if
cleared, (= 0). Permits core writes.

10 IMDW1 Internal Memory Data Width 1. Selects the data access size for
internal memory as 48-bit data if set, (= 1) or 32-bit data if
cleared, (= 0). Permits core writes.

15–11 Reserved

16 IRQ0EN Flag0 Interrupt Mode.
1 = Flag0 pin is allocated to interrupt request IRQ0.
0 = Flag0 pin is a general purpose I/O pin. Permits core writes.

17 IRQ1EN Flag1 Interrupt Mode.
1 = Flag1 pin is allocated to interrupt request IRQ1.
0 = Flag1 pin is a general purpose I/O pin. Permits core writes.

18 IRQ2EN Flag2 Interrupt Mode.
1 = Flag2 pin is allocated to interrupt request IRQ2.
0 = Flag2 pin is a general purpose I/O pin. Permits core writes.
A-12 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Hardware Breakpoint Control Register (BRKCTL)
The BRKCTL register controls how breakpoints are used (if the UMODE bit is
set). This user-accessible register in the BRKCTL register is located at address
0x30025.

The BRKCTL register is a 32-bit memory-mapped I/O register. The proces-
sor core can write into this register. The bits related to the breakpoint
register are same as in the EMUCTL register.

19 TMREXPEN Flag Timer Expired Mode. Read/Write
1 = Flag3 pin outputs are timer-expired signal (TIMEXP).
0 = Flag3 pin is a general purpose I/O pin.
Permits core writes.

20 PPFLGS Parallel Port Select.
0 = Parallel port is selected.
1 = Parallel port is not selected. ADDR and DATA pins are in
FLAG mode. Permits core writes. Configuring the parallel port
pins to function as FLAG0-15 also causes the FLAG[0:3] pins
to change to their alternate role, IRQ0-2 and TIMEXP.

31–21 Reserved

Table A-3. SYSCTL Register Bit Descriptions (Cont’d)

Bits Name Definition
ADSP-2126x SHARC Processor Peripherals Manual A-13

I/O Processor Registers
Figure A-4. BRKCTL Register (Upper Bits)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NEGIA4

UMODE

IODISABLE
Reserved

Disable I/O Breakpoints
00=Breakpoint Disabled
01=WRITE Access
10=READ Access
11=Any Access

Enable User Mode Breakpoint
Address Breakpoint #3
1=Enable Breakpoint
0=Disable Breakpoint

Negate Instruction Address
Breakpoint #4
1=Enable Breakpoint
0=Disable Breakpoint

ANDBKP
AND Composite Breakpoints
1=AND Breakpoint Types
0=OR Breakpoint Types

ENBEP
Enable External Port Address Breakpoint
(See ENBPA bit description)

Reserved

Enable Instruction Address Breakpoints
(See ENBPA bit description)

ENBIA

NEGIO1
Negate I/O Address
Breakpoint #1
1=Enable Breakpoint
0=Disable Breakpoint

NEGEP1
Negate External Address
Breakpoint #1
1=Enable Breakpoint
0=Disable Breakpoint

ENBPA
Enable Program Memory
Address Breakpoints
1=Enable Breakpoint
0=Disable Breakpoint

ENBDA
Enable Data Memory
Breakpoints
1=Enable Breakpoint
0=Disable Breakpoint

BRKCTL (Bits 31-16)
A-14 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Figure A-5. BRKCTL Register (Lower Bits)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NEGIA3
Negate Instruction Address
Breakpoint #3
1=Enable Breakpoint
0=Disable Breakpoint

PA1MODE
PA1 Triggering Mode
00=Breakpoint Disabled
01=WRITE Access
10=READ Access
11=Any AccessNEGIA2

Negate Instruction Address
Breakpoint #2
1=Enable Breakpoint
0=Disable Breakpoint

NEGIA1
Negate Instruction Address
Breakpoint #1
1=Enable Breakpoint
0=Disable Breakpoint

NEGDA2
Negate DM Address Breakpoint #2
1=Enable Breakpoint
0=Disable Breakpoint

NEGDA1
Negate DM Address Breakpoint #1
1=Enable Breakpoint
0=Disable Breakpoint

DA1MODE
DA1 Triggering Mode
00=Breakpoint Disabled
01=WRITE Access
10=READ Access
11=Any Access

DA2MODE
DA2 Triggering Mode
00=Breakpoint Disabled
01=WRITE Access
10=READ Access
11=Any Access

IO1MODE
IO1 Triggering Mode
00=Breakpoint Disabled
01=WRITE Access
10=READ Access
11=Any Access

EP1MODE
EP1 Triggering Mode
00=Breakpoint Disabled
01=WRITE Access
10=READ Access
11=Any Access

NEGPA1
Negate PM Address Breakpoint #1
1=Enable Breakpoint
0=Disable Breakpoint

BRKCTL (0x30025)
(Bits 15-0)
ADSP-2126x SHARC Processor Peripherals Manual A-15

I/O Processor Registers
Table A-4. BRKCTL Register Bit Descriptions

Bit # Name Function

1–0 PA1MODE PA1Triggering Mode
00 = Breakpoint Disabled
01 = WRITE Access
10 = READ Access
11 = Any access

3–2 DA1MODE DA1 Triggering Mode
00 = Breakpoint Disabled
01 = WRITE Access
10 = READ Access
11 = Any access

5–4 DA2MODE DA2 Triggering Mode
00 = Breakpoint Disabled
01 = WRITE Access
10 = READ Access
11 = Any Access

7–6 IO1MODE IO1 Triggering Mode trigger on the following conditions:
Mode Triggering condition
00 = Breakpoint is disabled
01 = WRITE accesses only
10 = READ accesses only
11 = Any access

9–8 EP1MODE EP1 Triggering Mode
00 = Breakpoint Disabled
01 = WRITE Access
10 = READ Access
11 = Any Access

10 NEGPA1 Negate Program Memory Data Address Breakpoint
Enable breakpoint events if the address is greater than the end
register value OR less than the start register value. This func-
tion is useful to detect index range violations in user code.
0 = Disable Breakpoint
1 = Enable Breakpoint

11 NEGDA1 Negate Data Memory Address Breakpoint #1
For more information, see NEGPA1 bit description.
A-16 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
12 NEGDA2 Negate Data Memory Address Breakpoint #2
For more information, see NEGPA1 bit description.

13 NEGIA1 Negate Instruction Address Breakpoint #1
0 = Disable Breakpoint
1 = Enable Breakpoint

14 NEGIA2 Negate Instruction Address Breakpoint #2
For more information, see NEGPA1 bit description.

15 NEGIA3 Negate Instruction Address Breakpoint #3
For more information, see NEGPA1 bit description.

16 NEGIA4 Negate Instruction Address Breakpoint #4
For more information, see NEGPA1 bit description.

17 NEGIO1 Negate I/O Address Breakpoint
For more information, see NEGPA1 bit description.

18 NEGEP1 Negate EP Address Breakpoint
For more information, see NEGPA1 bit description.

19 ENBPA Enable Program Memory Data Address Breakpoints
The ENB* bits enable each breakpoint group. Note that when
the ANDBKP bit is set, breakpoint types not involved in the
generation of the effective breakpoint must be disabled.
0 = Disable Breakpoints
1 = Enable Breakpoints

20 ENBDA Enable Data Memory Address Breakpoints
For more information, see ENBPA bit description.

21 ENBIA Enable Instruction Address Breakpoints.
For more information, see ENBPA bit description.

22 Reserved

23 ENBEP Enable External Port Address Breakpoint.
For more information, see ENBPA bit description.

Table A-4. BRKCTL Register Bit Descriptions (Cont’d)

Bit # Name Function
ADSP-2126x SHARC Processor Peripherals Manual A-17

I/O Processor Registers
24 ANDBKP AND composite breakpoints Enables ANDing of each break-
point type to generate an effective breakpoint from the com-
posite breakpoint signals.
0 = OR Breakpoint Types
1 = AND Breakpoint Types

25 UMODE User Mode Breakpoint Functionality Enable
Address Breakpoint 3
0 = Disable Breakpoint
1 = Enable Breakpoint

27–26 IODISABLE Enable I/O Breakpoints
00 = Breakpoint Disabled
01 = WRITE Access
10 = READ Access
11 = Any Access

31–28 Reserved

Table A-4. BRKCTL Register Bit Descriptions (Cont’d)

Bit # Name Function
A-18 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Serial Port Registers
The following section describes Serial Port (SPORT) registers.

SPORT Serial Control Registers (SPCTLx)
The SPORT Serial Control registers’ addresses are:

The reset value for these registers is 0x0000 0000. The SPCTLx registers are
Transmit and Receive Control registers for the corresponding serial ports
(SPORT 0 through 5).

• Figure A-6 and Figure A-7 provide bit definitions for the SPCTLx
register in Standard DSP Serial mode.

• Figure A-8 and Figure A-9 provides bit definitions in Left-justified
Sample Pair and I2S mode.

• Figure A-10 and Figure A-11 provides bit definitions for SPORTS
1, 3, and 5 (receive) in Multichannel mode.

• Figure A-12 and Figure A-13 provides bit definitions for SPORTS
0, 2, and 4 (transmit) in Multichannel mode.

SPCTL0 – 0xc00 SPCTL1 – 0xc01

SPCTL2 – 0x400 SPCTL3 – 0x401

SPCTL4 – 0x800 SPCTL5 – 0x801
ADSP-2126x SHARC Processor Peripherals Manual A-19

Serial Port Registers
Figure A-6. SPCTLx Control Bits for Standard DSP Serial Mode (Upper)

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 1 0 0 0 0 0

DXS_A
Data Buffer Channel A Status
11=Full 10=Partially Full 00=Empty

LFS
Active Low Frame Sync
1=Active Low
0=Active HighDERR_A

Channel A Error Status (sticky)
SPTRAN=1, Transmit Under-
flow Status, SPTRAN=0
Receive Overflow Status

SDEN_A
DMA Channel A Enable
1=Enable
0=Disable

DXS_B
Data Buffer Channel B Status
11=Full 10=Partially Full 00=Empty

DERR_B
Channel B Error Status (sticky)
SPTRAN=1 Transmit Underflow Status
SPTRAN=0 Receive Overflow Status

SPTRAN
SPORT Data Direction
1=Transmit
0=Receive

SPEN_B
SPORT Enable B
1=Enable
0=Disable

BHD
Buffer Hang Disable
1=Ignore Core Hang
0=Core Stall when TXSPx full or RXSPx Empty

LAFS
Late Frame Sync
1=Late Frame Sync
0=Early Frame Sync

SCHEN_A
DMA Channel A
Chaining Enable
1=Enable
0=Disable
SDEN_B
DMA Channel B Enable
1=Enable
0=Disable
SCHEN_B

DMA Channel B
Chaining Enable
1=Enable
0=Disable

25

FS_BOTH

Frame Sync Both
1=Issue Word Select if data is
present in both TXSPxy and
RXSPxy
0=Issue Word Select if data is
present in either of TXSPxy or
RXSPxy buffers

SPCTL0 (0xc00)
SPCTL1 (0xc01)
SPCTL2 (0x400)
SPCTL3 (0x401)
SPCTL4 (0x800)
SPCTL5 (0x800)
(Bits 31–16)
A-20 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Figure A-7. SPCTLx Control Bits for Standard DSP Serial Mode (Lower)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPEN_A
DIFS

Data Independent TX FS
(if SPTRAN=1 or RX FS (if
SPTRAN=0)
1=Data Independent
0=Data Dependent

IFS

Internally-generated FS
1=Internal
0=External

FSR

Frame Sync Requirement
1=Frame Sync Required
0=Frame Sync Not Required

CKRE

Clock Edge for Data Frame Sync
Sampling or Driving
1=Rising Edge
0=Falling Edge

OP MODE

SPORT Operation Mode
0=DSP Serial Mode/Multichannel Mode
(This bit must be set to 0)

DTYPE

Data Type
00=Right-justify
01=Right-justify, sign extend
SPIMS
10=Compand mu-law

ICLK

Internally Generated
SPORTx_CLK
1=Internal Clock
0=External Clock

SPORT Enable A
1=Enable
0=Disable

LSBF

Least Significant Bit Format
1=LSB first
0=MSB first

SLEN

Serial Word Length=1
PACK

16/32 Packing
1=Packing
0=No Packing

SPCTL0 (0xc00)
SPCTL1 (0xc01)
SPCTL2 (0x400)
SPCTL3 (0x401)
SPCTL4 (0x800)
SPCTL5 (0x801)
(Bits 15–0)
ADSP-2126x SHARC Processor Peripherals Manual A-21

Serial Port Registers
Figure A-8. SPCTLx Control Bits – for I2S and Related Modes (Upper)

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 1 0 0 0 0 0

DXS_A
Data Buffer Channel A Status
11=Full 10=Partially Full
00=Empty

FRFS
Frame on Rising Frame Sync
1=Left Channel First (default)
0=Right Channel First

DERR_A
Channel A Error Status (sticky)
SPTRAN=1 Transmit Underflow Status
SPTRAN=0 Receive Overflow Status

SDEN_A
DMA Channel A Enable
1=Enable
0=Disable

DXS_B
Data Buffer Channel B Status
11=Full, 10=Partially Full,
00=Empty

DERR_B
Channel B Error Status (sticky)
SPTRAN=1 Transmit Underflow Status,
SPTRAN=0 Receive Overflow Status

SPTRAN
SPORT Transaction
1=Active Transmit Buffers TXSPXA/TXSPXB
0=Enable Receive Buffers RXSPXA/RXSPXB

SPEN_B
SPORT Enable B
1=Enable
0=Disable

BHD
Buffer Hang Disable
1=Ignore Core Hang
0=Core Stall when TXSPx Full or RXSPx Empty

LAFS
Late Frame Sync
This bit must be set to 1.

SCHEN_A
DMA Channel A
Chaining Enable
1=Enable
0=Disable
SDEN_B
DMA Channel B Enable
1=Enable
0=Disable
SCHEN_B

DMA Channel B
Chaining Enable
1=Enable
0=Disable
Reserved

25

SPCTL0 (0xc00)
SPCTL1 (0xc01)
SPCTL2 (0x400)
SPCTL3 (0x401)
SPCTL4 (0x800)
SPCTL5 (0x801)
A-22 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Figure A-9. SPCTLx Control Bits – for I2S and Related Modes (Lower)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPEN_A
DIFS
Data Independent Frame Sync
1=Data Independent
0=Data Dependent
Reserved
OP MODE
SPORT Operation Mode
1=I2S or Left-justified Sample Pair Mode
0=DSP Serial Mode/Multichannel Mode
MSTR
I2S Serial and L/R Clock Master2
1=Internal Clock and Word Select
0=External Clock and Word Select

SPORT Enable A
1=Enable
0=Disable

Reserved
SLEN
Serial Word Length=1

PACK
16/32 Packing
1=Packing
0=No Packing

SPCTL0 (0xc00)
SPCTL1 (0xc01)
SPCTL2 (0x400)
SPCTL3 (0x401)
SPCTL4 (0x800)
SPCTL5 (0x801)
ADSP-2126x SHARC Processor Peripherals Manual A-23

Serial Port Registers
Figure A-10. SPCTLx Receive Control Bits – Multichannel Mode

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RXS_A
Data Buffer Channel A Status
11=Full 10=Partially Full 00=Empty

LMFS
Active Low MC
Transmit Data valid
1=Active low FS
0=Active High FSROVF_A

Channel A Underflow Status (sticky)
SDEN_A
Receive DMA
Channel A Enable
1=Enable
0=Disable

RXS_B
Data Buffer Channel B Status
11=Full 10=Partially Full 00=Empty

ROVF_B

BHD
Buffer Hang Disable
1=Ignore Core Hang
0=Core Stall when TXn full or RXn Empty

SCHEN_A
Receive DMA Channel A
Chaining Enable
1=Enable
0=Disable
SDEN_B
Receive DMA
Channel B Enable
1=Enable
0=Disable

SCHEN_B
Receive DMA Channel B Chaining Enable
1=Enable
0=Disable

Reserved

Channel B Underflow Status (sticky)

Reserved

Reserved

25

SPCTL1 (0xc01)
SPCTL3 (0x401)
SPCTL5 (0x801)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved Reserved

IMFS DTYPE
Data Type
00=Right Justify,
Fill MSB with 0’s
01=Right Justify,
Sign extend MSB
10=Compand υ-law
11=Compand A-law

LSBF
Serial Word Bit Order
1=LSB First
0=MSB First
SLEN
Serial Word Length-1

PACK
16/32 Packing
1=Packing
0=No Packing

Internally Generated Multichannel
Frame Sync
1=Internal Frame Sync
0=External Frame Sync

OPMODE
SPORT Operation Mode
1=I2S or Left-justified Sample pair Mode
0=DSP Serial Mode/Multichannel Mode

CKRE
Active Clock Edge for Data and Frame
Sync Sampling
1=Rising Edge
0=Falling Edge

Reserved

ICLK
Internally Generated Clock
1=Internal Clock
0=External Clock
A-24 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Figure A-11. SPCTLx Transmit Control Bits – Multichannel Mode

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TXS_A
Data Buffer Channel A Status
11=Full 10=Partially Full 00=Empty

LTDV
Active Low MC Transmit
Data valid
1=Active low FS
0=Active High FS

TUVF_A
Channel A Underflow Status (sticky)

SDEN_A
SPORT Transmit DMA
Channel A Enable
1=Enable
0=Disable

TXS_B
Data Buffer Channel B Status
11=Full 10=Partially Full 00=Empty
TUVF_B

BHD
Buffer Hang Disable
1=Ignore Core Hang
0=Core Stall when TXn Full or RXn Empty

SCHEN_A
SPORT Transmit DMA
Channel A Chaining
Enable
1=Enable
0=Disable
SDEN_B
SPORT Transmit DMA
Channel B Enable
1=Enable
0=Disable

SCHEN_B
SPORT Transmit DMA Channel B
Chaining Enable
1=Enable
0=Disable

Reserved

Channel B Underflow Status (sticky)
Reserved

Reserved

25

SPCTL0 (0xc00)
SPCTL2 (0x400)
SPCTL4 (0x800)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved Reserved

CKRE DTYPE
Data Type
00=Right Justify, Fill MSB
with 0’s
01=Right Justify, Sign
extend MSB
10=Compand υ-law
11=Compand A-law
LSBF
Serial Word Bit Order
1=LSB First
0=MSB First
SLEN
Serial Word Length-1

PACK
16/32 Packing
1=Packing
0=No Packing

Active Clock Edge for Data and Frame
Sync Driving
1=Rising Edge
0=Falling Edge

OPMODE
SPORT Operation Mode
1=I2S or Left-justified Sample pair Mode
0=DSP Serial Mode/Multichannel Mode

Reserved
ADSP-2126x SHARC Processor Peripherals Manual A-25

Serial Port Registers
When changing SPORT operating modes, programs should clear a serial
port’s Control register before writing new settings to the Control register.

Table A-5. SPCTLx Register Bit Descriptions

Bits Name Definition

0 SPEN_A Enable Channel A Serial Port. Enables if set, (= 1) or disables if
cleared, (= 0) the corresponding serial port A channel.
This bit is reserved when the SPORT is in Multichannel mode.

2–1 DTYPE Data Type Select. Selects the data type formatting for normal and mul-
tichannel transmissions as follows:
Normal Multi Data Type Formatting
00 x0 Right-justify, zero-fill unused MSBs
01 x1 Right-justify, sign-extend unused MSBs
10 0x Compand using μ-law
11 1x Compand using A-law

3 LSBF Serial Word Endian Select. Selects little-endian words (LSB first, if set,
= 1) or big-endian words (MSB first, if cleared, = 0). This bit is
reserved when the SPORT is in I²S or Left-Justified Sample Pair mode.

8–4 SLEN Serial Word Length Select. Selects the word length in bits. For DSP
serial and multichannel modes, word sizes can be from 3 bits
(SLEN = 2) to 32 bits (SLEN = 31). For I²S and Left-justified modes,
word sizes can be from 8 bits (SLEN = 7) to 32 bits (SLEN = 31).

9 PACK 16-bit to 32-bit Word Packing Enable. Enables if set, (= 1) or disables
if cleared, (= 0) 16- to 32-bit word packing.

10 ICLK Internal Clock Select. Selects the internal transmit clock if set, (= 1) or
external transmit clock if cleared, (= 0). This bit applies to DSP Serial
and multichannel modes.

MSTR (I2S
mode only)

In I2S and Left-justified Sample Pair mode, this bit selects the word
source and internal clock if set, (= 1) or external clock if cleared, (= 0)

11 OPMODE Sport Operation Mode. Selects the I2S/Left-justified Sample Pair
mode if set (= 1) or DSP Serial/Multichannel mode if cleared (= 0).

12 CKRE Clock Rising Edge Select. Selects whether the serial port uses the rising
edge if set, (= 1) or falling edge if cleared, (= 0) of the clock signal to
sample data and the frame sync. CKRE is reserved when the SPORT is
in I2S and Left-justified Sample Pair mode.
A-26 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
13 FSR Frame Sync Required Select. Selects whether the serial port requires if
set, (= 1) or does not require if cleared, (= 0) a transfer frame sync. FSR
is reserved when the SPORT is in I2S mode, Left-Justified Sample Pair
mode and multichannel mode.

14 IFS
(IMFS)

Internal Frame Sync Select. Selects whether the serial port uses an
internally generated frame sync if set, (= 1) or uses an external frame
sync if cleared, (= 0). This bit is reserved when the SPORT is in I2S,
Left-justified Sample Pair mode and Multichannel mode.

15 DIFS Data Independent Frame Sync Select. Selects whether the serial port
uses a data-independent frame sync (sync at selected interval,
if set, = 1) or uses a data-dependent frame sync (sync when TX FIFO is
not empty or when RX FIFO is not full). This bit is reserved when the
SPORT is in Multichannel mode.

16 LFS
(LMFS, FRFS)

Active Low Frame Sync Select. Selects an active low FS if set, (= 1) or
active high FS if cleared, (= 0).

17 LAFS Late Transmit Frame Sync Select. Selects a late frame sync (FS during
first bit, if set, = 1) or an early frame sync (FS before first bit, if cleared,
= 0). This bit is reserved when the SPORT is in multichannel mode.

18 SDEN_A Enable Channel A Serial Port DMA. Enables if set, (= 1) or disables if
cleared, (= 0) the serial port’s A channel DMA.

19 SCHEN_A Enable Channel A Serial Port DMA Chaining. Enables if set, (= 1) or
disables if cleared, (= 0) the serial port’s channel A DMA chaining.

20 SDEN_B Enable Channel B Serial Port DMA. Enables if set, (= 1) or disables if
cleared, (= 0) the serial port’s channel B DMA.

21 SCHEN_B Enable Channel B Serial Port DMA Chaining. Enables if set, (= 1) or
disables if cleared, (= 0) the serial port’s channel B DMA chaining.

22 FS_BOTH FS Both Enable. This bit issues WS if data is present in both transmit
buffers, if set (= 1). If cleared (= 0), WS is issued if data is present in
either transmit buffer. This bit is reserved when the SPORT is in mul-
tichannel, I2S and Left-justified Sample Pair mode.

Table A-5. SPCTLx Register Bit Descriptions (Cont’d)

Bits Name Definition
ADSP-2126x SHARC Processor Peripherals Manual A-27

Serial Port Registers
SPORT Multichannel Control Registers (SPMCTLxy)
The SPORT Multichannel Control registers’ addresses are:

23 BHD Buffer Hang Disable. This bit ignores a core hang, when set (= 1).
When cleared (= 0), this bit indicates a core stall. The core stall occurs
when the transmit buffer is full or the receive buffer is empty and the
core tries to write or read from the FIFO respectively. This bit applies
to all modes

24 SPEN_B Enable Channel B Serial Port. Enables if set, (= 1) or disables if
cleared, (= 0) the corresponding serial port B channel.
This bit is reserved when the SPORT is in Multichannel mode.

25 SPTRAN Data Direction Control. Enables receive buffers if cleared (= 0), or
activates transmit buffers if set (= 1). This bit is reserved when the
SPORT is in Multichannel mode.

26 ROVF_B,
TUVF_B

Channel B Error Status (sticky, read-only). Indicates if the serial trans-
mit operation has underflowed or a receive operation has overflowed in
the channel B data buffer. This bit is reserved when the SPORT is in
Multichannel mode.

28–27 DXS_B Channel B Data Buffer Status (read-only). Indicates the status of the
serial port’s channel B data buffer as follows: 11 = full, 00 = empty, 10
= partially full. This bit is reserved when the SPORT is in Multichan-
nel mode.

29 ROVF_A or
TUVF_A

Channel A Error Status (sticky, read-only). Indicates if the serial trans-
mit operation has underflowed or a receive operation has overflowed in
the channel A data buffer.

31–30 RXS_A or
TXS_A

Channel A Data Buffer Status (read-only). Indicates the status of the
serial port’s channel A data buffer as follows: 11 = full, 00 = empty,
10 = partially full.

SPMCTL01 0xc04

SPMCTL23 0x404

SPMCTL45 0x804

Table A-5. SPCTLx Register Bit Descriptions (Cont’d)

Bits Name Definition
A-28 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
The SPMCTL01 register is the Multichannel Control register for SPORTs 0
and 1. The SPMCTL23 register is the Multichannel Control register for
SPORTs 2 and 3. The SPMCTL45 register is the Multichannel Control reg-
ister for SPORTs 4 and 5. The reset value for these registers is undefined.

Figure A-12. SPMCTL01 Register – Multichannel Mode

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMACHS1B

SPORT1 Channel B Status
DMA Chaining Status

CHNL

Current Channel Status
(read-only)

DMAS0A

SPORT0 Channel A Status
DMA Status

MCEB

Multichannel Enable,
B Channels
1=Enable
0=Disable

DMACHS1A

SPORT1 Channel A Status
DMA Chaining Status

DMACHS0B

SPORT0 Channel B Status
DMA Chaining Status

DMACHS0A

SPORT0 Channel A Status
DMA Chaining Status

DMAS1B

SPORT1 Channel B Status/ DMA Status

DMAS1A

SPORT1 Channel A Status/DMA Status

DMAS1A

SPORT1 Channel B Status
DMA Chaining Status

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved
SPL

MCEA
Multichannel Enable,
A Channels
1=Enable
0=Disable

MFDx
Multichannel Frame Delay

SPORT Loopback
SPORT0 A to SPORT1 A Only
SPORT0 B to SPORT1 B Only

NCH
Number of Channels – 1

25

9

SPMCTL01
(0xc04)
ADSP-2126x SHARC Processor Peripherals Manual A-29

Serial Port Registers
Figure A-13. SPMCTL23 Registers – Multichannel Mode

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMACHS3B
SPORT3 Channel B Status
DMA Chaining Status

CHNL
Current Channel Status
(read-only)

DMAS2A
SPORT2 Channel
A Status
DMA Status

MCEB
Multichannel Enable
B Channels
1=Enable
0=Disable

DMACHS3A
SPORT3 Channel A Status
DMA Chaining Status

DMACHS2B
SPORT2 Channel B Status
DMA Chaining Status

DMACHS2A
SPORT2 Channel A Status
DMA Chaining Status

DMAS3B
SPORT3 Channel B Status
DMA Status

DMAS3A
SPORT3 Channel A Status
DMA Status

DMAS2B
SPORT2 Channel
B Status
DMA Chaining Status

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved
SPL

MCEA
Multichannel Enable
A Channels
1=Enable
0=Disable

MFDx
Multichannel Frame
Delay

SPORT Loopback
SPORT0 A to SPORT1 A Only
SPORT0 B to SPORT1 B Only

NCH
Number of Channels – 1

25

9

SPMCTL23
(0x404)
A-30 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
For a detailed description of the bits in the SPMCTLxy register, refer to
Table A-6.

Figure A-14. SPMCTL45 Registers – Multichannel Mode

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMACHS5B
SPORT3 Channel B Status
DMA Chaining Status

CHNL
Current Channel Status
(read-only)

DMAS4A
SPORT2 Channel
A Status
DMA Status

MCEB
Multichannel Enable
B Channels
1=Enable
0=Disable

DMACHS5A
SPORT3 Channel A Status
DMA Chaining Status

DMACHS4B
SPORT2 Channel B Status
DMA Chaining Status

DMACHS4A
SPORT2 Channel A Status
DMA Chaining Status

DMAS5B
SPORT3 Channel B Status
DMA Status

DMAS5A
SPORT3 Channel A Status
DMA Status

DMAS4B
SPORT2 Channel
B Status
DMA Chaining Status

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved
SPL

MCEA
Multichannel Enable
A Channels
1=Enable
0=Disable

MFDx
Multichannel Frame Delay

SPORT Loopback
SPORT3 A to C, B to D Only

NCH
Number of Channels – 1

9

25
SPMCTL45
(0x804)
ADSP-2126x SHARC Processor Peripherals Manual A-31

Serial Port Registers
Table A-6. SPMCTLxy Register Bit Descriptions

Bits Name Definition

0 MCEA Multichannel Mode Enable. Standard and Multichannel modes
only. One of two configuration bits that enable and disable mul-
tichannel mode on serial port channels. See also, OPMODE on
page A-26.
0 = Disable multichannel operation
1 = Enable multichannel operation if OPMODE = 0

4–1 MFD Multichannel Frame Delay. Set the interval, in number of serial
clock cycles, between the multichannel frame sync pulse and the
first data bit. These bits provide support for different types of T1
interface devices. Valid values range from 0 to 15 with bits
SPMCTL01 [4:1] or SPMCTL23[4:1] or SPMCTL45[4:1]. Val-
ues of 1 to15 correspond to the number of intervening serial
clock cycles. A value of 0 corresponds to no delay. The multi-
channel frame sync pulse is concurrent with first data bit.

11–5 NCH Number of Multichannel Slots (minus one). Select the number
of channel slots (maximum of 128) to use for multichannel oper-
ation. Valid values for actual number of channel slots range from
1 to 128. Use this formula to calculate the value for NCH: NCH
= Actual number of channel slots – 1.
A-32 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
12 SPL SPORT Loopback Mode SPORT Loopback Mode. Enables if set
(= 1) or disables if cleared (= 0) the channel loopback mode.
Loopback mode enables developers to run internal tests and to
debug applications. Loopback only works under the following
SPORT configurations:

• SPORT0 (configured as a receiver or transmitter)
together with SPORT1 (configured as a transmitter or
receiver). SPORT0 can only be paired with SPORT1,
controlled via the SPL bit in the SPMCTL01 register.

• SPORT2 (as a receiver or transmitter) together with
SPORT3 (as a transmitter or receiver). SPORT2 can
only be paired with SPORT3, controlled via the SPL bit
in the SPMCTL23 register.

• SPORT4 (configured as a receiver or transmitter)
together with SPORT5 (configured as a transmitter or
receiver). SPORT4 can only be paired with SPORT5,
controlled via the SPL bit in the SPMCTL45 register.
Either of the two paired SPORTs can be set up to trans-
mit or receive, depending on their SPTRAN bit config-
urations.

15–13 Reserved

22–16 CHNL Current Channel Selected (Read-only, Sticky). Identify the cur-
rently selected transmit channel slot (0 to 127).

23 MCEB Multichannel Enable, B Channels.
0 = Disable
1 = Enable

27–24 DMASxy DMA Status. Selects the transfer format.
0 = Inactive
1 = Active
(Read-only)

31–28 DMACHSxy DMA Chaining Status.
0 = Inactive
1 = Active)
(Read-only)

Table A-6. SPMCTLxy Register Bit Descriptions (Cont’d)

Bits Name Definition
ADSP-2126x SHARC Processor Peripherals Manual A-33

Serial Port Registers
SPORT Transmit Buffer Registers (TXSPx)
The addresses of the TXSPx registers are:

The reset value for these registers is undefined. The 32-bit TXSPx registers
hold the output data for serial port transmit operations. For more infor-
mation on how transmit buffers work, see “Transmit and Receive Data
Buffers” on page 4-59.

SPORT Receive Buffer Registers (RXSPx)
The addresses of the RXSPx registers are:

The reset value for these registers is undefined. The 32-bit RXSPx registers
hold the input data from serial port receive operations. For more informa-
tion on how receive buffers work, see “Transmit and Receive Data
Buffers” on page 4-59.

TXSP0A – 0xc60 TXSP0B – 0xc62

TXSP1A – 0xc64 TXSP1B – 0xc66

TXSP2A – 0x460 TXSP2B – 0x462

TXSP3A – 0x464 TXSP3B – 0x466

TXSP4A – 0x860 TXSP4B – 0x862

TXSP5A – 0x864 TXSP5B – 0x866

RXSP0A – 0xc61 RXSP0B – 0xc63

RXSP1A – 0xc65 RXSP1B – 0xc67

RXSP2A – 0x461 RXSP2B – 0x463

RXSP3A – 0x465 RXSP3B – 0x467

RXSP4A – 0x861 RXSP4B – 0x863

RXSP5A – 0x865 RXSP5B – 0x867
A-34 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
SPORT Divisor Registers (DIVx)
The addresses of the DIVx registers are:

The reset value for these registers is undefined. These registers contain two
fields:

• Bits 15–1 are CLKDIV. These bits identify the Serial Clock Divisor
value for internally-generated SCLK as follows:

• Bits 31–16 are FSDIV. These bits select the Frame Sync Divisor for
internally-generated TFS as follows:

DIV0 – 0xc02 DIV1 – 0xc03

DIV2 – 0x402 DIV3 – 0x403

DIV4 – 0x802 DIV5 – 0x803

Figure A-15. DIVx Register

CLKDIV
fCCLK

4 fSCLK()
--------------------- 1–=

FSDIV
fSCLK

fSFS
------------ 1–=

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 1 0 0 0 0 0

FSDIV

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 1 0 0 0 0 0

CLKDIV
Clock Divisor

25

9

Frame Sync Divisor

Reserved
ADSP-2126x SHARC Processor Peripherals Manual A-35

Serial Port Registers
SPORT Count Registers (SPCNTx)
The addresses of the SPCNTx registers are:

The reset value for these registers is undefined. The SPCNTx registers pro-
vides status information for the internal clock and frame sync.

SPORT Transmit Select Registers (MTxCSy)
The addresses of the MTxCSy registers are:

The reset value for these registers is undefined.

Each bit, 31–0, set (= 1) in one of four MTxCSy registers corresponds to an
active transmit channel, 127–0, on a Multichannel mode serial port.
When the MTxCSy registers activate a channel, the serial port transmits the
word in that channel’s position of the data stream. When a channel’s bit
in the MTxCSy register is cleared (= 0), the serial port’s data transmit pin
three-states during the channel’s transmit time slot.

SPCNT0 – 0xC15 SPCNT1 – 0xC16

SPCNT2 – 0x415 SPCNT3 – 0x416

SPCNT4 – 0x815 SPCNT5 – 0x816

MT0CS0 – 0xC05 MT0CS1 – 0xC06

MT0CS2 – 0xC07 MT0CS3 – 0xC08

MT2CS0 – 0x405 MT2CS1 – 0x406

MT2CS2 – 0x407 MT2CS3 – 0x408

MT4CS0 – 0x805 MT4CS1 – 0x806

MT4CS2 – 0x807 MT4CS3 – 0x808
A-36 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
SPORT Transmit Compand Registers (MTxCCSy)
The addresses of the MTxCCSy registers are:

The reset value for these registers is undefined.

Each bit, 31–0, set (= 1) in one of four MTxCCSx registers corresponds to an
companded transmit channel, 127–0, on a Multichannel mode serial port.
When the MTCCSx register activates companding for a channel, the serial
port applies the companding from the serial port’s DTYPE selection to the
transmitted word in that channel’s position of the data stream. When a
channel’s bit in the MTCCSx register is cleared (= 0), the serial port does not
compand the output during the channel’s receive time slot.

SPORT Receive Select Registers (MRxCSx)
The addresses of the MRxCSx registers are:

The reset value for these registers is undefined.

MT0CCS0 – 0xC0D MT0CCS1 – 0xC0E

MT0CCS2 – 0xC0F MT0CCS3 – 0xc10

MT2CCS0 – 0x40D MT2CCS1 – 0x40E

MT2CCS2 – 0x40F MT2CCS3 – 0x410

MT4CCS0 – 0x80D MT4CCS1 – 0x80E

MT4CCS2 – 0x80F MT4CCS3 – 0x810

MR1CS0 – 0xC09 MR1CS1 – 0xC0A

MR1CS2 – 0xC0B MR1CS3 – 0xC0C

MR3CS0 – 0x409 MR3CS1 – 0x40A

MR3CS2 – 0x40B MR3CS3 – 0x40C

MR5CS0 – 0x809 MR5CS1 – 0x80A

MR5CS2 – 0x80B MR5CS3 – 0x80C
ADSP-2126x SHARC Processor Peripherals Manual A-37

Serial Port Registers
Each bit, 31–0, set (= 1) in one of the four MRCSx registers corresponds to
an active receive channel, 127–0, on a Multichannel mode serial port.
When the MRxCSx register activates a channel, the SPORT receives the
word in that channel’s position of the data stream and loads the word into
the RXSPx buffer. When a channel’s bit in the MRxCSx register is cleared (=
0), the serial port ignores any input during the channel’s receive time slot.

SPORT Receive Compand Registers (MRxCCSx)
These addresses for the MRxCCSx registers are:

The reset value for these registers is undefined.

Each bit, 31–0, set (= 1) in the MRxCCSy registers corresponds to an com-
panded receive channel, 127–0, on a Multichannel mode serial port.
When one of the four MRxCCSy registers activate companding for a chan-
nel, the serial port applies the companding from the serial port’s DTYPE
selection to the received word in that channel’s position of the data
stream. When a channel’s bit in the MRxCCSy registers are cleared (= 0), the
serial port does not compand the input during the channel’s receive time
slot.

MR1CCS0 – 0xC11 MR1CCS1 – 0xC12

MR1CCS2 – 0xC13 MR1CCS3 – 0xC14

MR3CCS0 – 0x411 MR3CCS1 – 0x412

MR3CCS2 – 0x413 MR3CCS3 – 0x414

MR5CCS0 – 0x811 MR5CCS1 – 0x812

MR5CCS2 – 0x813 MR5CCS3 – 0x814
A-38 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
SPORT DMA Index Registers (IISPx)
The addresses of the IISPx registers are:

The reset value for these registers is undefined. The IISPx register is 19
bits wide and it holds an address and acts as a pointer to memory for a
DMA transfer. For more information, see Chapter 2, I/O Processor.

SPORT DMA Modifier Registers (IMSPx)
The addresses of the IMSPx registers are:

The reset value for these registers is undefined. The IMSPx register is 16
bits wide and it provides the increment or step size by which an IISPx reg-
ister is post-modified during a DMA operation. For more information, see
Chapter 2, I/O Processor.

IISP0A – 0xC40 IISP0B – 0xC44

IISP1A – 0xC48 IISP1B – 0xC4C

IISP2A – 0x440 IISP2B – 0x444

IISP3A – 0x448 IISP3B – 0x44C

IISP4A – 0x840 IISP4B – 0x844

IISP5A – 0x848 IISP5B – 0x84C

IMSP0A – 0xC41 IMSP0B – 0xC45

IMSP1A – 0xC49 IMSP1B – 0xC4D

IMSP2A – 0x441 IMSP2B – 0x445

IMSP3A – 0x449 IMSP3B – 0x44D

IMSP4A – 0x841 IMSP4B – 0x845

IMSP5A – 0x849 IMSP5B – 0x84D
ADSP-2126x SHARC Processor Peripherals Manual A-39

Serial Port Registers
SPORT DMA Count Registers (CSPx)
The CSPx registers’ addresses are:

The reset value for these registers is undefined. The CSPx registers are 16
bits wide and they hold the word count for a DMA transfer. For more
information, see Chapter 2, I/O Processor.

SPORT Chain Pointer Registers (CPSP)
The addresses of the CPSP registers are:

The reset value for these registers is undefined. The CPSPx registers are 20
bits wide and they hold the address for the next Transfer Control Block in
a chained DMA operation. For more information, see Chapter 2, I/O
Processor.

CSP0A – 0xC42 CSP0B – 0xC46

CSP1A – 0xC4A CSP1B – 0xC4E

CSP2A – 0x442 CSP2B – 0x446

CSP3A – 0x44A CSP3B – 0x44E

CSP4A – 0x842 CSP4B – 0x846

CSP5A – 0x84A CSP5B – 0x84E

CPSP0A – 0xC43 CPSP0B – 0xC47

CPSP1A – 0xC4B CPSP1B – 0xC4F

CPSP2A – 0x443 CPSP2B – 0x447

CPSP3A – 0x44B CPSP3B – 0x44F

CPSP4A – 0x843 CPSP4B – 0x847

CPSP5A – 0x84B CPSP5B – 0x84F
A-40 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
SPI Registers
The following sections describe the registers associated with the Serial
Peripheral Interface (SPI).

SPI Port Status Register (SPISTAT)
The SPI Port Status register’s address is 0x1002. The reset value for this
register is 0x01.The SPISTAT register is a read-only register used to detect
when an SPI transfer is complete, if transmission/reception errors occur,
and the status of the TXSPI and RXSPI FIFOs.

Figure A-16. SPISTAT Register

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved
TXCOL

SPIF
SPI Transmit Transfer
Complete
1=Transfer Complete
0=Transfer Active

MME
Multimaster Error
1=SPIDS Asserted by
Slave
0=No Error

Transmit Collision Error

RXS

Data Buffer Status (read-only)
1=Full
0=Empty

ROVF
Reception Error (Overflow)
1=New Data Received with Full RXSPI Buffer TUNF

Transmission Error (Under-
flow)
1=No New Data in
TXSPI Buffer

TXS

Data Buffer Status (read-only)
1=Full
0=Empty

25

9

SPISTAT (0x1002)
ADSP-2126x SHARC Processor Peripherals Manual A-41

SPI Registers
Table A-7. SPISTAT Register Bit Descriptions

Bits Name Definition

0 SPIF SPI Transmit or Receive Transfer Complete. Set when an SPI single
word transfer is complete.

1 MME Multimaster Error or Mode-fault error. Set in a master device when
some other device tries to become the master.

2 TUNF Transmission Error. Set when transmission occurred with no new data in
the TXSPI register.

3 TXS Transmit Data Buffer Status.
0 = Empty
1 = Full

4 ROVF Reception Error. Set when data is received with the receive buffer full.

5 RXS Receive Data Buffer Status.
0 = Empty
1 = Full

6 TXCOL Transmit Collision Error. When set, it is possible that corrupt data was
transmitted.

31–7 Reserved
A-42 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
SPI Port Flags Register (SPIFLG)
This register’s address is 0x1001. The reset value for this register is
0x0F80.The SPIFLG register is used to enable individual SPI slave select
lines when the SPI is enabled as a master.

Figure A-17. SPIFLG Register

Table A-8. SPIFLG Register Bits

Bit Name Function

3–0 DSxEN
(3–0)

SPI Device Select Bits. This bit enables or disables if set, (= 1 or
if cleared = 0) the corresponding flag output to be used for an SPI
slave-select.

6–4 Reserved

7 ISSS Input Service Select Bit. This read-only bit reflects the status of
the slave select input pin.

11–8 SPIFLGx
(3–0)

SPI Device Select Control. This bit if cleared, (= 0) selects a cor-
responding flag output to be used for SPI slave-select.

31–12 Reserved

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

00 0 0 0 1 1 1 1 0 0 0 0 0 0 0

Reserved
SPIDSx

DSxEN
SPI Device Select Enable
1=Enable
0=Disable
Reserved

SPI Device Select Control
1=Disable
0=Enable
ISSS
Status of Input Slave Select Pin

24

9

SPIFLG (0x1001)
ADSP-2126x SHARC Processor Peripherals Manual A-43

SPI Registers
SPI Control Register (SPICTL)
This register’s address is 0x1000. The reset value for this register is
0x0400. The SPI Control register (SPICTL) is used to configure and enable
the SPI system. This register is used to set up SPI configurations such as
selecting the device as a master or slave or determining the data transfer
rate and word size.

Figure A-18. SPICTL Register (Upper bits)

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved
SGN

Sign-extend Data
1=Sign-extend
0=No Sign-extend

SMLS

Seamless Transfer
1=Enable
0=Disable

TXFLSH

Transmit Buffer Flush
1=SPITX Cleared
0=SPITX Not Cleared

RXFLSH

Receive Buffer Flush
1=SPIRX Cleared
0=SPIRX Not Cleared

25SPICTL (0x1000)
(Bits 31–16)
A-44 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference

SPI Receive Buffer Register (RXSPI)
The SPI Receive Buffer register’s address is 0x1004. The reset value for
this register is undefined. This is a 32-bit read-only register accessible by
the core or DMA controller. At the end of a data transfer, the RXSPI regis-
ter is loaded with the data in the Shift register. During a DMA receive

Figure A-19. SPICTL Register (Lower bits)

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PACKEN
TIMOD
Transfer Initiation Mode
00=Initiate Transfer by
Read of Receive Buffer
01=Initiate Transfer by
Write of Transmit Buffer
10=Enable DMA Transfer
Mode
11=Reserved

Reserved

8-Bit Packing Enable
1=8 to 16-bit Packing
0=No Packing

SPIEN

SPI System Enable
1=Enable
0=Disable

OPD
Open Drain Output Enable for Data Pins
1=Open Drain
0=Normal

SPIMS
Master Slave Mode Bit
1=SPI Master Device
0=SPI Slave Device

CLKPL
Clock Polarity
1=Active-Low SPICLK, High in Idle State
0=Active-High SPICLK, Low in Idle State

CPHASE

Clock Phase
1=SPICLK Toggles at Start of 1st Data Bit
0=SPICLK Toggles at Middle of 1st Data Bit

MSBF

Most Significant Byte First
1=MSB Sent/Received First
0=LSB Sent/Received First

SENDZ

Send Zero/Repeat Byte
when SPITX Empty
1=Repeat Last Data
0=Send Zero

GM

Fetch/Discard Incoming Data
when SPIRX Full
1=Overwrite with New Data
0=Discard Incoming Data

ISSEN

Input Slave Select Enable
1=Enable
0=Disable

DMISO

Disable MISO Pin (Broad-
cast)
1=MISO Disabled
0=MISO Enabled

WL

Word Length
00=8 bits, 01=16 bits,
10=32 bits, 11=Reserved

9SPICTL (0x1000)
(Bits 15–0)
ADSP-2126x SHARC Processor Peripherals Manual A-45

SPI Registers
operation, the data in RXSPI is automatically loaded into the internal
memory. For core- or interrupt-driven transfers, programs can also use the
RXS status bits in the SPISTAT register to determine if the receive buffer is
full.

Table A-9. SPICTL Register Bit Descriptions

Bits Name Definition

1–0 TIMOD Transfer Initiation Mode. Defines the transfer initiation mode
and interrupt generation.
00 = Initiate transfer by read of receive buffer. Interrupt active
when receive buffer is full.
01 = Initiate transfer by write to transmit buffer. Interrupt active
when transmit buffer is empty.
10 = Enable DMA Transfer mode. Interrupt configured by DMA
11 = Reserved

2 SENDZ Send Zero. Send Zero or last word when TXSPI is empty.
0 = Send Last Word
1 = Send Zeros

3 GM Get Data. When RXSPI is full, get data or discard incoming data.
0 = Discard incoming data
1 = Get more data, overwrites the previous data

4 ISSEN Input Slave Select Enable. Enables Slave-Select (SPIDS) input
for the master. When not used, SPIDS can be disabled, freeing up
a chip pin as a general-purpose I/O pin.
0 = Disable
1 = Enable

5 DMISO Disable MISO Pin. Disables MISO as an output in an environ-
ment where the master wishes to transmit to various slaves at one
time (broadcast). Only one slave is allowed to transmit data back
to the master. Except for the slave from whom the master wishes
to receive, all other slaves should have this bit set.
0 = MISO Enabled
1 = MISO Disabled

6 Reserved

8–7 WL Word Length. 00 = 8 bits, 01 = 16 bits, 10 = 32 bits
A-46 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
9 MSBF Most Significant Byte First.
1 = MSB sent/received first
0 = LSB sent/received first

10 CPHASE Clock Phase. Selects the transfer format.
0 = SPICLK starts toggling at the middle of 1st data bit
1 = SPICLK starts toggling at the start of 1st data bit

11 CLKPL Clock Polarity.
0 = Active-high SPICLK (SPICLK low is the idle state)
1 = Active-low SPICLK (SPICLK high is the idle state)

12 SPIMS Master Select. Configures SPI module as master or slave
0 = Device is a slave device
1 = Device is a master device

13 OPD Open Drain Output Enable. Enables open drain data output
enable (for MOSI and MISO)
0 = Normal
1 = Open Drain

14 SPIEN SPI Port Enable.
0 = SPI Module is disabled
1 = SPI Module is enabled

15 PACKEN Packing Enable.
0 = No Packing
1 = 8-16 Packing
Note: This bit may be 1 only when WL = 00 (8-bit transfer).
When in transmit mode, PACKEN bit will unpack data.

16 SGN Sign Extend Bit.
0 = No sign extension
1 = Sign Extension

17 SMLS Seamless Transfer Bit.
0 = Seamless transfer disabled
1 = Seamless transfer enabled not supported in mode
TIMOD[1:0] = 00 and CPHASE = 0 for all modes.

18 TXFLSH Flush Transmit Buffer. Write a 1 to this bit to clear TXSPI
0 = TXSPI not Cleared
1 = TXSPI Cleared

Table A-9. SPICTL Register Bit Descriptions (Cont’d)

Bits Name Definition
ADSP-2126x SHARC Processor Peripherals Manual A-47

SPI Registers
RXSPI Shadow Register (RXSPI_SHADOW)
The RXSPI Shadow register’s address is 0x1006. The reset value for this
register is undefined. This register acts as a shadow register for the Receive
Data Buffer (RXSPI) register, and is used to aid software debugging. The
RXSPI_SHADOW register is at a different address from the RXSPI register, but
its contents are identical. When a software read of the RXSPI register
occurs, the RXS bit is cleared and an SPI transfer may be initiated
(if TIMOD = 00). No such hardware action occurs when the shadow register
is read.

SPI Transmit Buffer Register (TXSPI)
The SPI Transmit Buffer register’s address is 0x1003.The reset value for
this register is undefined. This SPI Transmit Data register is a 32-bit reg-
ister which is part of the IOP register set and can be accessed by the core
or the DMA controller. Data is loaded into this register before being
transmitted. Prior to the beginning of a data transfer, data in the TXSPI
register is automatically loaded into the Transmit Shift register. During a
DMA transmit operation, the data in the TXSPI register is automatically
loaded from internal memory.

19 RXFLSH Clear RXSPI. Write a 1 to this bit to clear RXSPI
0 = RXSPI not Cleared
1 = RXSPI Cleared

31–20 Reserved

Table A-9. SPICTL Register Bit Descriptions (Cont’d)

Bits Name Definition
A-48 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
SPI Baud Rate Register (SPIBAUD)
The SPI Baud Rate register’s address is 0x1005 and its reset value is unde-
fined. This SPI register is a 16-bit read-write register that is used to set the
bit transfer rate for a master device. When configured as a slave, the value
written to this register is ignored. The SPIBAUD register can be read or
written at any time. The serial clock rate is determined by the following
formula:

SPI Baud Rate=(Core clock rate)/(4*SPIBAUD[15:1])

Writing a value of zero or one to the register disables the serial clock.
Therefore, the maximum serial clock rate is one-fourth the core clock rate
(CCLK).

Table A-10. SPIBAUD Register Bit Descriptions

Bits Name Definition

0 Reserved

15–1 BAUDR Enables the SPICLK per the following equation:
SPICLK baud rate = core clock (CCLK)/4 x BAUDR)
Default = 0.

31–16 Reserved

Table A-11. SPI Master Baud Rate Example

BAUDR
(Decimal Value)

SPI Clock Divide Factor Baud Rate for CCLK @ 200 MHz

0 N/A N/A

1 4 50.0 MHz

2 8 25.0 MHz

3 12 16.67 MHz

4 16 12.5 MHz

32,767, (0x7FFF) 131,068 1.53 KHz
ADSP-2126x SHARC Processor Peripherals Manual A-49

SPI DMA Registers
SPI DMA Registers
There are five SPI DMA-specific registers:

• “SPI DMA Configuration Register (SPIDMAC)” on page A-50

• “SPI DMA Start Address Register (IISPI)” on page A-53

• “SPI DMA Address Modify Register (IMSPI)” on page A-53

• “SPI DMA Word Count Register (CSPI)” on page A-54

• “SPI DMA Chain Pointer Register (CPSPI)” on page A-54

SPI DMA Configuration Register (SPIDMAC)
The SPI DMA Configuration register’s address is 0x1084 and its reset
value is undefined. This SPI register is a 17-bit register used to control
DMA transfers.
A-50 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Figure A-20. SPIDMAC Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPICHSReserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPIDENSPIDMAS

DMA Transfer Status
1=DMA Transfer in Progress
0=DMA Idle

DMA Chain Loading Status
1=DMA Chain Pointer Loading
in Progress
0=DMA Chain Idle

SPIERRS
DMA Error Status
1=Error During Transfer
0=Successful DMA Transfer

SPISx
DMA FIFO Status
00=FIFO Empty 11=FIFO Full
10=FIFO Partially Full

DMA Enable
1=DMA Enable
0=DMA Disable

SPIRCV

DMA Write/Read
1=SPI DMA Read
0=SPI DMA Transmit

SPIMME
Multimaster Error
1=Error During Transfer
0=Successful Transfer

SPIUNF
Transmit Underflow Error (DMADIR=0)
1=Transmission Error Occurred with DMA
FIFO Empty
0=Successful Transfer

Receive Overflow Error (DMADIR=1)
1=Error-Data Received with DMA FIFO Full
0=Successful Transfer

SPIOVF

INTEN

Enable DMA Interrupt on
Transfer
1=Enable
0=Disable

Reserved

DMA FIFO Clear
1=Enable
0=Disable

FIFOFLSH

Enable Interrupt on Error
1=Enable
0=Disable

INTERR

SPI DMA Chaining Enable
1=Enable
0=Disable

SPICHEN

Reserved

SPIDMAC (0x1084)
ADSP-2126x SHARC Processor Peripherals Manual A-51

SPI DMA Registers
Table A-12. SPIDMAC Register Bit Descriptions

Bits Name Definition

0 SPIDEN DMA Enable.
1 = Enable
0 = Disable

1 SPIRCV DMA Write/Read.
0 = SPI DMA Transmit
1 = SPI DMA Read

2 INTEN Enable DMA Interrupt on Transfer.
1 = Enable
0 = Disable

3 Reserved

4 SPICHEN SPI DMA Chaining Enable.
0 = Disable
1 = Enable

6–5 Reserved

7 FIFOFLSH DMA FIFO Clear.
0 = Disable
1 = Enable

8 INTERR Enable Interrupt on Error.
1 = Enable
0 = Disable

9 SPIOVF Receive OverFlow Error (SPIRCV = 1).
0 = Successful Transfer
1 = Error - Data Received
with DMA FIFO full

10 SPIUNF Transmit Underflow Error (SPIRCV = 0).
0 = Successful Transfer
1 = Error Occurred in Transmission with
DMA FIFO Empty

11 SPIMME Multimaster Error.
0 = Successful Transfer
1 = Error During Transfer
A-52 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
SPI DMA Start Address Register (IISPI)
The SPI DMA Start Address register’s address is 0x1080. The reset value
for this register is undefined. This SPI register is a 19-bit read/write regis-
ter that contains the start address of the buffer in memory.

SPI DMA Address Modify Register (IMSPI)
The SPI DMA Address Modify register’s address is 0x1081. The reset
value for this register is undefined. This SPI register is a 16-bit read/write
register that contains the address modifier.

13–12 SPISx DMA FIFO Status.
00 = FIFO empty
11 = FIFO full
10 = FIFO partially full
01 = Reserved

14 SPIERRS DMA Error Status.
0 = Successful DMA Transfer
1 = Errors during DMA Transfer

15 SPIDMAS DMA Transfer Status.
0 = DMA Idle
1 = DMA in Progress

16 SPICHS DMA Chain Loading Status.
0 = Chain Idle
1 = Chain Loading in Progress

31–17 Reserved

Table A-12. SPIDMAC Register Bit Descriptions (Cont’d)

Bits Name Definition
ADSP-2126x SHARC Processor Peripherals Manual A-53

Parallel Port Registers
SPI DMA Word Count Register (CSPI)
The SPI DMA Word Count register’s address is 0x1082.The reset value
for this register is undefined. This SPI register is a 16-bit read/write regis-
ter that contains the number of words to be transferred.

SPI DMA Chain Pointer Register (CPSPI)
The SPI DMA Chain Pointer register’s address is 0x1083.The reset value
for this register is undefined. This SPI register is a 20-bit read/write regis-
ter that contains the address of the next TCB when DMA chaining is
enabled.

Parallel Port Registers
The Parallel Port peripheral in the ADSP-2126x processor includes several
user-accessible registers. One register, (PPCTL), contains control and status.
Two registers, (RXPP and TXPP), are used for buffering receive and transmit
operations. Six registers are used for DMA functionality—IIPP, IMPP,
ICPP, EIPP, EMPP, and ECPP.

Table A-13. Parallel Port Registers

Function Registers Description

Control and Status
Register

PPCTL “Parallel Port Control Register (PPCTL)” on
page A-55

Buffering Receive and
Transmit Data

TXPP “Parallel Port DMA Transmit Register (TXPP)” on
page A-56

RXPP “Parallel Port DMA Receive Register (RXPP)” on
page A-58
A-54 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Parallel Port Control Register (PPCTL)
The Parallel Port Control Register (PPCTL) is used to configure and enable
the parallel port system. This register’s address is 0x1800. Figure A-21
describes the bit fields within this register.

DMA functionality IIPP “Parallel Port DMA Start Internal Index Address
Register (IIPP)” on page A-59r

IMPP “Parallel Port DMA Internal Modifier Address Reg-
ister (IMPP)” on page A-59

ICPP “Parallel Port DMA Internal Word Count Register
(ICPP)” on page A-59

EIPP “Parallel Port DMA Start External Index Address
Register (EIPP)” on page A-59

EMPP “Parallel Port DMA External Modifier Address Reg-
ister (EMPP)” on page A-59

ECPP “Parallel Port DMA External Word Count Register
(ECPP)” on page A-60

Table A-13. Parallel Port Registers (Cont’d)

Function Registers Description
ADSP-2126x SHARC Processor Peripherals Manual A-55

Parallel Port Registers

ion

Hz
Parallel Port DMA Transmit Register (TXPP)
This register’s address is 0x1808. This Transmit Data register is a 32-bit
register that is part of the IOP register set and can be accessed by the core
or the DMA controller. Data is loaded into this register before being
transmitted. Prior to the beginning of a data transfer, data in the TXPP reg-
ister is automatically loaded into the Transmit Shift register. During a
DMA transmit operation, the data in TXPP is automatically loaded from
internal memory.

Figure A-21. PPCTL Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPDSReserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 1 1 0 1 1 1

PPEN

PPALEPL
Parallel Port ALE Polarity
1=ALE is Active Low
0=ALE is Active High

Internal DMA Status
1=If Internal Interface is Busy

PPBHD
Bus Hang Disable
1=Disable Bus Hang
0=Enable Bus Hang
PPS
FIFO Status
00=RXPP/TXPP Empty
01=RXPP/TXPP Partially Full
11=RXPP/TXPP Full

Parallel Port System Enable
1=Enabled
0=Disabled

PPDUR
Parallel Port Data Cycle Durat
00000; 00001=Reserved
00010=2 Waitstates – 66 MHz
00011=3 Waitstates – 50 MHz
00100=4 Waitstates – 34 MHz
00101=5 Waitstates – 18 MHz
...
11111=31 Waitstates – 6.25 M

PPTRAN
External Memory Read/Write
1=Write to External Memory
0=Read from External Memory

PPBHC

External Data Width
1=16-bit Width
0=8-bit Width

Bus Hold Cycle
1=Bus Hold Cycle at End
of Every Access
0=No Bus Hold Cycle

PP16

PPBS

Bus Status
1=If External Interface is Busy

Reserved

PPDEN
DMA Enable
1=Enable DMA
0=Disable DMA

PPCTL (0x1800)
A-56 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Table A-14. Parallel Port Register (PPCTL) Bit Definitions

Bit Name Definition Default

0 PPEN Parallel Port Enable. Enables if set, (= 1) or disables if
cleared, (= 0) the parallel port. Clearing this bit clears
FIFO and status. If an RD, WR, or ALE cycle has already
started, it completes normally before the port is disabled.
The parallel port is ready to transmit or receive 2 cycles
after enabling. An ALE cycle always occurs before the first
read or write cycle after PPEN is enabled.

0

5–1 PPDUR Parallel Port Duration. The duration of Parallel Port data
cycles is based on core-clock and controlled by these five
bits as follows:
00000 = Reserved
00001 = Reserved
00010 = 2 Wait States = 3 Core Clock Cycles;
66 MHz throughput
00011 = 3 Wait States = 4 Core Clock Cycles;
50 MHz throughput
00100 = 4 Wait States = 5 Core Clock Cycles;
40 MHz throughput
00101 = 5 Wait States = 6 Core Clock Cycles;
33 MHz throughput
...
11111 = 31 wait states; 6.25MHz throughput

Bit 1 = 1
Bit 2=1
Bit 3=1
Bit 4=0
Bit 5=1

6 PPBHC Bus Hold Cycle. Inserts a bus hold cycle at the end of
every access (read or write cycle) if set, (= 1) or no bus
hold cycle occurs if cleared, (= 0). During a BHC address
and/or data continue to be driven for one cycle.

1

7 PP16 Parallel Port External Data Width. Selects the external
data width to 16 bits if set, (= 1) or 8 bits if cleared, (= 0).

0

8 PPDEN Parallel Port DMA Enable. Enables if set, (= 1) DMA on
the parallel port or disables DMA if cleared, (= 0). When
PPDEN is cleared, any DMA requests already in the pipe-
line complete, and no new DMA requests are made. This
does not affect FIFO status.

0

9 PPTRAN Parallel Port Transmit/Receive Select. Indicates if the
processor is reading from external memory if cleared, (=
0) or writing to external memory if set, (= 1).

0

ADSP-2126x SHARC Processor Peripherals Manual A-57

Parallel Port Registers
Parallel Port DMA Receive Register (RXPP)
This register’s address is 0x1809. This is a 32-bit read-only register acces-
sible by the core or the DMA controller. At the end of a data transfer,
RXPP is loaded with the data in the shift register. During a DMA receive
operation, the data in the RXPP register is automatically loaded into the
internal memory. For core or interrupt driven transfer, you can also use
the RXS status bits in the PPSTAT register to determine if the receive buffer
is full.

11-10 PPS Parallel Port FIFO Status. These read-only bits indicate
the status of the parallel port FIFO as follows: 00 =
RXPP/TXPP is empty
01 = RXPP/TXPP is partially full
11 = RXPP/TXPP is full

0

12 PPBHD Parallel Port Buffer Hang Disable. When cleared (= 0),
core stalls occur normally when the core attempts to write
to a full transmit buffer or read from an empty receive
buffer. Prevents a core hang when set (= 1). The old data
present in the receive buffer is read again if the core tries
to read it. If a write to the transmit buffer is performed,
the core will overwrite the current data in the buffer.

0

13 PPALEPL Parallel Port ALE Polarity Level. Asserts ALE active low
if set, (= 1) or active high if cleared, (= 0).

0

15–14 Reserved 0

16 PPDS DMA Status. Indicates that the internal DMA interface is
active if set, (= 1) or not active if cleared, (= 0).

0

17 PPBS Parallel Port Bus Status. Indicates that the external bus
interface is busy if set, (= 1) or available if cleared, (= 0).
The bus will be “busy” until one ALE cycle, RD cycle or
WR cycle has taken place.

0

31–18 Reserved 0

Table A-14. Parallel Port Register (PPCTL) Bit Definitions (Cont’d)

Bit Name Definition Default
A-58 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Parallel Port DMA Start Internal Index Address
Register (IIPP)

This register’s address is 0x1818. This 19-bit register contains the offset
from the DMA starting address of 32-bit internal memory.

Parallel Port DMA Internal Modifier Address
Register (IMPP)

This register’s address is 0x1819. This 16-bit register contains the internal
memory DMA address modifier.

Parallel Port DMA Internal Word Count Register
(ICPP)

This register’s address is 0x181A. This 16-bit register contains the number
of words in internal memory to be transferred via DMA.

Parallel Port DMA Start External Index Address
Register (EIPP)

This register’s address is 0x1810. This 24-bit register contains the external
memory DMA address index.

Parallel Port DMA External Modifier Address
Register (EMPP)

This register’s address is 0x1811. This 2-bit register contains the external
memory DMA address modifier. It supports only +1, 0, -1.
ADSP-2126x SHARC Processor Peripherals Manual A-59

Signal Routing Unit Registers
Parallel Port DMA External Word Count Register
(ECPP)

This register’s address is 0x1812. This 24-bit register contains the number
of words in external memory to be transferred via DMA.

Signal Routing Unit Registers
The Digital Audio Interface (DAI) is comprised of a group of peripherals
and the signal routing unit (SRU).

The SRU is a matrix routing unit that enables the peripherals provided by
the DAI and serial ports to be interconnected under software control. This
removes the limitations associated with hard-wiring audio or other periph-
erals to each other and to the rest of the processor. The SRU allows the
programs to make optimal use of the peripherals for a wide variety of
applications. This flexibility enables a much larger set of algorithms than
would be possible with non-configurable signal paths.

The SRU provides groups of control registers, described in the sections
that follow. The registers define the interconnections between the func-
tional modules within the DAI as well as to the core and to the pins. The
SRU is a series of multiplexers that connect the:

• serial ports, SPORT[5:0]

• input data port, (IDP) IDP[7:0] including the parallel data acquisi-
tion port pins and their output enable drivers: DAI_PB[20:1]

• precision clock generators, (PCG_CTLA_1 and PCG_CTLB_1)

Each of these modules is separated from each other by the SRU, and their
input and output signals (the “junctions”) may only be connected via the
SRU.
A-60 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Clock Routing Control Registers (Group A)
The Clock Routing Control registers route a serial data clock, a sample
clock, and signals to the SPORTs and the Input Data Port (IDP) chan-
nels. Each of the clock inputs specified are connected to a clock source,
based on the five bit values in the Table A-15. When either of the preci-
sion clock generators is in external source mode, the SRU_CLK3[4:0]
and/or SRU_CLK3[9:5] bits specify the source.

The Clock Routing Control registers correspond to the Group A clock
sources, listed in Table A-15. Thirty-two possible clock sources can be
connected using these read/write registers:

• SRU_CLK0, described in Figure A-22

• SRU_CLK1, described in Figure A-23

• SRU_CLK2, described in Figure A-24 on page A-62

• SRU_CLK3, described in Figure A-25 on page A-63

Figure A-22. SRU_CLK0 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 1 0 0 1 0 1 0 0 1 0 0 1 1

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 1 1 0 0 0 0 1 1 0 0 0 0 1

SPORT5_CLK_I

Serial Port 5 Clock Input

SPORT3_CLK_I

Serial Port 3 Clock Input

SPORT4_CLK_I

Serial Port 4 Clock Input

SPORT2_CLK_I
Serial Port 2 Clock Input

SPORT1_CLK_I
Serial Port 1 Clock Input

SPORT0_CLK_I

Serial Port 0 Clock Input

SRU_CLK0 (0x2430)
ADSP-2126x SHARC Processor Peripherals Manual A-61

Signal Routing Unit Registers
Figure A-23. SRU_CLK1 Register

Figure A-24. SRU_CLK2 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 1 1 1 1 0 1 1 1 1 0 1 1 1

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 1 1 1 0 1 1 1 1 0 1 1 1 1

IDP2_CLK_I
Input Data Port 2 Clock Input

IDP0_CLK_I
Input Data Port 2 Clock Input

IDP1_CLK_I
Input Data Port 2 Clock Input

Reserved

SRU_CLK1 (0x2432)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 1 1 1 1 0 1 1 1 1 0 1 1 1

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 1 1 1 0 1 1 1 1 0 1 1 1 1

IDP7_CLK_I
Input Data Port 7 Clock Input

IDP6_CLK_I
Input Data Port 6
Clock Input

IDP5_CLK_I
Input Data Port 5 Clock Input

IDP3_CLK_I
Input Data Port 3
Clock Input

IDP4_CLK_I
Input Data Port 4
Clock Input

SRU_CLK2 (0x2433)

PCG_FSA_SYNC_EN
Enable synchronization of frame sync
A with external LRCLK (MISCA4_I)
A-62 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Figure A-25. SRU_CLK3 Register

Table A-15. Group A Sources – Serial Clock

Selection Code Source Signal Description

00000 (0x0) DAI_PB01_O Select DAI Pin Buffer 1 as the source

00001 (0x1) DAI_PB02_O Select DAI Pin Buffer 2 as the source

00010 (0x2) DAI_PB03_O Select DAI Pin Buffer 3 as the source

00011 (0x3) DAI_PB04_O Select DAI Pin Buffer 4 as the source

00100 (0x4) DAI_PB05_O Select DAI Pin Buffer 5 as the source

00101 (0x5) DAI_PB06_O Select DAI Pin Buffer 6 as the source

00110 (0x6) DAI_PB07_O Select DAI Pin Buffer 7 as the source

00111 (0x7) DAI_PB08_O Select DAI Pin Buffer 8 as the source

01000 (0x8) DAI_PB09_O Select DAI Pin Buffer 9 as the source

01001 (0x9) DAI_PB10_O Select DAI Pin Buffer 10 as the source

01010 (0xA) DAI_PB11_O Select DAI Pin Buffer 11 as the source

01011 (0xB) DAI_PB12_O Select DAI Pin Buffer 12 as the source

01100 (0xC) DAI_PB13_O Select DAI Pin Buffer 13 as the source

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 1 1 1 0 1 1 1 1 0 1 1 1 1

Reserved PCG_EXTA_I
Precision Clock Generator
External Clock A InputPCG_FSB_SYNC_EN

Enable synchronization of frame sync B with
external LRCLK (MISCA5_I)

SRU_CLK3 (0x2434)

PCG_EXTB_I
Precision Clock Generator
External Clock B Input
ADSP-2126x SHARC Processor Peripherals Manual A-63

Signal Routing Unit Registers
Setting SRU_CLK3[4:0] = 28 connects PCG_EXTA_I to logic low, not to
PCG_CLKA_O.

Setting SRU_CLK3[9:5] = 29 connects PCG_EXTB_I to logic low, not to
PCG_CLKB_0.

01101 (0xD) DAI_PB14_O Select DAI Pin Buffer 14 as the source

01110 (0xE) DAI_PB15_O Select DAI Pin Buffer 15 as the source

01111 (0xF) DAI_PB16_O Select DAI Pin Buffer 16 as the source

10000 (0x10) DAI_PB17_O Select DAI Pin Buffer 17 as the source

10001 (0x11) DAI_PB18_O Select DAI Pin Buffer 18 as the source

10010 (0x12) DAI_PB19_O Select DAI Pin Buffer 19 as the source

10011 (0x13) DAI_PB20_O Select DAI Pin Buffer 20 as the source

10100 (0x14) SPORT0_CLK_O Select SPORT 0 Clock as the source

10101 (0x15) SPORT1_CLK_O Select SPORT 1 Clock as the source

10110 (0x16) SPORT2_CLK_O Select SPORT 2 Clock as the source

10111 (0x17) SPORT3_CLK_O Select SPORT 3 Clock as the source

11000 (0x18) SPORT4_CLK_O Select SPORT 4 Clock as the source

11001 (0x19) SPORT5_CLK_O Select SPORT 5 Clock as the source

11010 (0x1A) Reserved

11011 (0x1B) Reserved

11100 (0x1C) PCG_CLKA_O Select Precision Clock A Output as the source

11101 (0x1D) PCG_CLKB_O Select Precision Clock B Output as the source

11110 (0x1E) LOW Select Logic Level Low (0) as the source

11111 (0x1F) HIGH Select Logic Level High (1) as the source

Table A-15. Group A Sources – Serial Clock (Cont’d)

Selection Code Source Signal Description
A-64 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Serial Data Routing Registers (SRU_DATx, Group B)
The Serial Data Routing Control registers route serial data to the serial
ports (a, b) and the IDP. Each of the data inputs specified are connected
to a data source based on the six bit values shown in Table A-16.
Sixty-four possible data sources can be designated for these registers:

• SRU_DAT0, described in Figure A-26

• SRU_DAT1, described in Figure A-27

• SRU_DAT2, described in Figure A-28

• SRU_DAT3, described in Figure A-29

• SRU_DAT4, described in Figure A-30

Figure A-26. SRU_DAT0 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 1 0 0 0 0 0 0 1 0 1 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 0 0 0 0 0 0 0 1 0 0 0 0 0

Serial Port 2 Data Channel A Input

SPORT2_DA_I
Serial Port 1 Data
Channel A Input

SPORT1_DA_I

Serial Port 1 Data Channel B Input

SPORT1_DB_I

Serial Port 0 Data Channel B Input

SPORT0_DB_I
Serial Port 0 Data
Channel A Input

SPORT0_DA_I

SRU_DAT0 (0x2440)
ADSP-2126x SHARC Processor Peripherals Manual A-65

Signal Routing Unit Registers
Figure A-27. SRU_DAT1 Register

Figure A-28. SRU_DAT2 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 1 1 1 1 0 0 1 1 1 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 0 1 1 0 0 1 0 1 0 0 0 1 0 0

Serial Port 4 Data Channel B Input

SPORT4_DB_I
Serial Port 3 Data
Channel B Input

SPORT3_DB_I

Serial Port 4 Data Channel A Input

SPORT4_DA_I

Serial Port 3 Data Channel A Input

SPORT3_DA_I
Serial Port 2 Data
Channel B Input

SPORT2_DB_I

SRU_DAT1 (0x2441)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 1 0 0 0 1 0 1 0 0 0

Serial Port 5 Data Channel B Input

SPORT5_DB_I
Serial Port 5 Data
Channel A Input

SPORT5_DA_I

SRU_DAT2 (0x2442)
A-66 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Figure A-29. SRU_DAT3 Register

Figure A-30. SRU_DAT4 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Input Data Port 3 Data Input

IDP3_DAT_I

IDP1_DAT_I

Input Data Port 2
Data Input

IDP2_DAT_I

Input Data Port 1 Data Input

IDP0_DAT_I

Input Data Port 0 Data Input

Reserved

SRU_DAT3 (0x2444)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Input Data Port 4
Data Input

IDP4_DAT_I

IDP6_DAT_I
Input Data Port 6
Data Input

IDP7_DAT_I

Input Data Port 7 Data Input

IDP5_DAT_I
Input Data Port 5 Data Input

SRU_DAT4 (0x2445)
ADSP-2126x SHARC Processor Peripherals Manual A-67

Signal Routing Unit Registers
Table A-16. Group B Sources – Serial Data

Selection Code Source Signal Description

000000 (0x0) DAI_PB01_O Select DAI Pin Buffer 1 as the source

000001 (0x1) DAI_PB02_O Select DAI Pin Buffer 2 as the source

000010 (0x2) DAI_PB03_O Select DAI Pin Buffer 3 as the source

000011 (0x3) DAI_PB04_O Select DAI Pin Buffer 4 as the source

000100 (0x4) DAI_PB05_O Select DAI Pin Buffer 5 as the source

000101 (0x5) DAI_PB06_O Select DAI Pin Buffer 6 as the source

000110 (0x6) DAI_PB07_O Select DAI Pin Buffer 7 as the source

000111 (0x7) DAI_PB08_O Select DAI Pin Buffer 8 as the source

001000 (0x8) DAI_PB09_O Select DAI Pin Buffer 9 as the source

001001 (0x9) DAI_PB10_O Select DAI Pin Buffer 10 as the source

001010 (0xA) DAI_PB11_O Select DAI Pin Buffer 11 as the source

001011 (0xB) DAI_PB12_O Select DAI Pin Buffer 12 as the source

001100 (0xC) DAI_PB13_O Select DAI Pin Buffer 13 as the source

001101 (0xD) DAI_PB14_O Select DAI Pin Buffer 14 as the source

001110 (0xE) DAI_PB15_O Select DAI Pin Buffer 15 as the source

001111 (0xF) DAI_PB16_O Select DAI Pin Buffer 16 as the source

010000 (0x10) DAI_PB17_O Select DAI Pin Buffer 17 as the source

010001 (0x11) DAI_PB18_O Select DAI Pin Buffer 18 as the source

010010 (0x12) DAI_PB19_O Select DAI Pin Buffer 19 as the source

010011 (0x13) DAI_PB20_O Select DAI Pin Buffer 20 as the source

010100 (0x14) SPORT0_DA_O Select SPORT 0A data as the source

010101 (0x15) SPORT0_DB_O Select SPORT 0B data as the source

010110 (0x16) SPORT1_DA_O Select SPORT 1A data as the source

010111 (0x17) SPORT1_DB_O Select SPORT 1B data as the source
A-68 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
011000 (0x18) SPORT2_DA_O Select SPORT 2A data as the source

011001 (0x19) SPORT2_DB_O Select SPORT 2B data as the source

011010 (0x1A) SPORT3_DA_O Select SPORT 3A data as the source

011011 (0x1B) SPORT3_DB_O Select SPORT 3B data as the source

011100 (0x1C) SPORT4_DA_O Select SPORT 4A data as the source

011101 (0x1D) SPORT4_DB_O Select SPORT 4B data as the source

011110 (0x1E) SPORT5_DA_O Select SPORT 5A data as the source

011111 (0x1F) SPORT5_DB_O Select SPORT 5B data as the source

100000 (0x20) –
101001 (0x29)

Reserved

101010 (0x2A) LOW Select Logic Level Low (0) as the source

101011 (0x2B) HIGH Select Logic Level High (1) as the source

101100 (0x2C) –
111111 (0x3F)

Reserved

Table A-16. Group B Sources – Serial Data (Cont’d)

Selection Code Source Signal Description
ADSP-2126x SHARC Processor Peripherals Manual A-69

Signal Routing Unit Registers
Frame Sync Routing Control Registers
(SRU_FSx, Group C)

The Frame Sync Routing Control registers route frame sync, or a word
clock, to the serial ports and IDP. Each of the frame sync inputs specified
is connected to a frame sync source based on the values described in the
Group C frame sync sources listed in Table A-17. Thirty-two possible
frame sync sources can be connected using these registers:

• SRU_FS0, described in Figure A-31

• SRU_FS1, described in Figure A-32

• SRU_FS2, described in Figure A-33

Figure A-31. SRU_FS0 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 1 0 0 1 1 1 0 0 1 1 0 1 1

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 0 1 1 0 1 0 0 1 1 1 0 0 0 1

Serial Port 2 Frame Sync Input

SPORT2_FS_I
Serial Port 0 Frame
Sync Input

SPORT0_FS_I

Serial Port 5 Frame Sync Input

SPORT5_FS_I Serial Port 3 Frame
Sync Input

SPORT3_FS_I

Serial Port 4 Frame
Sync Input

SPORT4_FS_I

Serial Port 1 Frame
Sync Input

SPORT1_FS_I

SRU_FS0 (0x2450)
A-70 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Figure A-32. SRU_FS1 Register

Figure A-33. SRU_FS2 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 1 1 1 1 0 1 1 1 1 0 1 1 1

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 1 1 1 0 1 1 1 1 0 1 1 1 1

Input Data Port 2 Frame Sync Input

IDP2_FS_I Input Data Port 0
Frame Sync Input

IDP0_FS_I

Reserved

Input Data Port 1
Frame Sync Input

IDP1_FS_I

SRU_FS1 (0x2452)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 1 1 1 1 0 1 1 1 1 0 1 1 1

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 1 1 1 0 1 1 1 1 0 1 1 1 1

Input Data Port 7 Frame Sync Input

IDP7_FS_I

IDP5_FS_I

Input Data Port 6
Frame Sync Input

IDP6_FS_I

Input Data Port 5 Frame Sync Input

IDP4_FS_I

Input Data Port 4 Frame Sync Input

Input Data Port 3
Frame Sync Input

IDP3_FS_I

SRU_FS2 (0x2453)
ADSP-2126x SHARC Processor Peripherals Manual A-71

Signal Routing Unit Registers
Table A-17. Group C Sources – Frame Sync

Selection Code Source Signal Description

00000 (0x0) DAI_PB01_O Select DAI Pin Buffer 1 as the source

00001 (0x1) DAI_PB02_O Select DAI Pin Buffer 2 as the source

00010 (0x2) DAI_PB03_O Select DAI Pin Buffer 3 as the source

00011 (0x3) DAI_PB04_O Select DAI Pin Buffer 4 as the source

00100 (0x4) DAI_PB05_O Select DAI Pin Buffer 5 as the source

00101 (0x5) DAI_PB06_O Select DAI Pin Buffer 6 as the source

00110 (0x6) DAI_PB07_O Select DAI Pin Buffer 7 as the source

00111 (0x7) DAI_PB08_O Select DAI Pin Buffer 8 as the source

01000 (0x8) DAI_PB09_O Select DAI Pin Buffer 9 as the source

01001 (0x9) DAI_PB10_O Select DAI Pin Buffer 10 as the source

01010 (0xA) DAI_PB11_O Select DAI Pin Buffer 11 as the source

01011 (0xB) DAI_PB12_O Select DAI Pin Buffer 12 as the source

01100 (0xC) DAI_PB13_O Select DAI Pin Buffer 13 as the source

01101 (0xD) DAI_PB14_O Select DAI Pin Buffer 14 as the source

01110 (0xE) DAI_PB15_O Select DAI Pin Buffer 15 as the source

01111 (0xF) DAI_PB16_O Select DAI Pin Buffer 16 as the source

10000 (0x10) DAI_PB17_O Select DAI Pin Buffer 17 as the source

10001 (0x11) DAI_PB18_O Select DAI Pin Buffer 18 as the source

10010 (0x12) DAI_PB19_O Select DAI Pin Buffer 19 as the source

10011 (0x13) DAI_PB20_O Select DAI Pin Buffer 20 as the source

10100 (0x14) SPORT0_FS_O Select SPORT 0 Frame Sync as the source

10101 (0x15) SPORT1_FS_O Select SPORT 1 Frame Sync as the source

10110 (0x16) SPORT2_FS_O Select SPORT 2 Frame Sync as the source

10111 (0x17) SPORT3_FS_O Select SPORT 3 Frame Sync as the source
A-72 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Pin Signal Assignment Registers
(SRU_PINx, Group D)

Each physical pin (connected to a bonded pad) can be routed via the SRU
to any of the inputs or outputs of the DAI peripherals, based on the 6-bit
values listed in Table A-18. The SRU can also be used to route signals that
control the pins in other ways. The pin signal assignments are shown in
the following figures:

• SRU_PIN0, described in Figure A-34

• SRU_PIN1, described in Figure A-35

• SRU_PIN2, described in Figure A-36

• SRU_PIN3, described in Figure A-37

11000 (0x18) SPORT4_FS_O Select SPORT 4 Frame Sync as the source

11001 (0x19) SPORT5_FS_O Select SPORT 5 Frame Sync as the source

11010 (0x1A) Reserved

11011 (0x1B) Reserved

11100 (0x1C) PCG_FSA_O Select Precision Frame Sync A Output as
the source

11101 (0x1D) PCG_FSB_O Select Precision Frame Sync B Output as
the source

11110 (0x1E) LOW Select Logic Level Low (0) as the source

11111 (0x1F) HIGH Select Logic Level High (1) as the source

Table A-17. Group C Sources – Frame Sync (Cont’d)

Selection Code Source Signal Description
ADSP-2126x SHARC Processor Peripherals Manual A-73

Signal Routing Unit Registers
Figure A-34. SRU_PIN0 Register

Figure A-35. SRU_PIN1 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 1 0 1 1 0 1 0 0 1 1 0 1

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 1 0 1 0 1 0 1 0 1 0

Digital Audio Interface
Pin Buffer 5 Input

DAI_PB05_I

DAI_PB03_I

Digital Audio Interface Pin
Buffer 4 Input

DAI_PB04_I

Digital Audio Interface
Pin Buffer 3 Input

DAI_PB02_I
Digital Audio Interface
Pin Buffer 2 Input

Digital Audio Interface
Pin Buffer 1 Input

DAI_PB01_I

SRU_PIN0 (0x2460)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 1 1 0 0 1 0 1 1 0 0 0 1

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 1 1 1 1 0 0 0 0 1 0 1 0 1 1

Digital Audio Interface
Pin Buffer 10 Input

DAI_PB10_I

DAI_PB08_I

Digital Audio Interface Pin
Buffer 9 Input

DAI_PB09_I

Digital Audio Interface
Pin Buffer 8 Input

DAI_PB07_I

Digital Audio Interface
Pin Buffer 7 Input

Digital Audio Interface Pin
Buffer 6 Input

DAI_PB06_I

SRU_PIN1 (0x2461)
A-74 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Figure A-36. SRU_PIN2 Register

Figure A-37. SRU_PIN3 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 1 1 1 0 0 1 0 1 0 0 1 1

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 1 1 0 1 1 0 1 1 0 1 1 0 1

Digital Audio Interface
Pin Buffer 15 Input

DAI_PB15_I

DAI_PB13_I

Digital Audio Interface Pin
Buffer 14 Input

DAI_PB14_I

Digital Audio Interface
Pin Buffer 13 Input
DAI_PB12_I
Digital Audio Interface
Pin Buffer 12 Input

Digital Audio Interface Pin
Buffer 11 Input

DAI_PB11_I

SRU_PIN2 (0x2462)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 1 0 1 0 1 1 1 0 0 1 0 1 0

DAI_PB20_INVERT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 0 1 1 1 1 0 0 1 1 1 0

Digital Audio Interface
Pin Buffer 20 Input

DAI_PB20_I**

DAI_PB18_I

Digital Audio Interface
Pin Buffer 19 Input*

DAI_PB19_I

Digital Audio Interface
Pin Buffer 18 Input

DAI_PB17_I

Digital Audio Interface
Pin Buffer 17 Input

Digital Audio Interface
Pin Buffer 16 Input

DAI_PB16_I

DAI_PB19_INVERT

*SEE BIT 30
**SEE BIT 31

SRU_PIN3 (0x2463)
ADSP-2126x SHARC Processor Peripherals Manual A-75

Signal Routing Unit Registers
Setting the SRU_PIN3 bit 30 to HIGH inverts the level of the DAI_PB18_I
pin. Setting the SRU_PIN3[31] bit to HIGH inverts the level of DAI_PB19_I.

If the SRU_PIN3[23:18] bits = 18, then setting SRU_PIN3[30] to HIGH does
not invert the output. If the SRU_PIN3[29:24] bits = 19, then setting
SRU_PIN3[31] to HIGH does not invert the output.

Table A-18. Group D Sources – Pin Signal Assignments

Selection Code Source Signal Description

000000 (0x0) DAI_PB01_O Select DAI Pin Buffer 1 as the source

000001 (0x1) DAI_PB02_O Select DAI Pin Buffer 2 as the source

000010 (0x2) DAI_PB03_O Select DAI Pin Buffer 3 as the source

000011 (0x3) DAI_PB04_O Select DAI Pin Buffer 4 as the source

000100 (0x4) DAI_PB05_O Select DAI Pin Buffer 5 as the source

000101 (0x5) DAI_PB06_O Select DAI Pin Buffer 6 as the source

000110 (0x6) DAI_PB07_O Select DAI Pin Buffer 7 as the source

000111 (0x7) DAI_PB08_O Select DAI Pin Buffer 8 as the source

001000 (0x8) DAI_PB09_O Select DAI Pin Buffer 9 as the source

001001 (0x9) DAI_PB10_O Select DAI Pin Buffer 10 as the source

001010 (0xA) DAI_PB11_O Select DAI Pin Buffer 11 as the source

001011 (0xB) DAI_PB12_O Select DAI Pin Buffer 12 as the source

001100 (0xC) DAI_PB13_O Select DAI Pin Buffer 13 as the source

001101 (0xD) DAI_PB14_O Select DAI Pin Buffer 14 as the source

001110 (0xE) DAI_PB15_O Select DAI Pin Buffer 15 as the source

001111 (0xF) DAI_PB16_O Select DAI Pin Buffer 16 as the source

010000 (0x10) DAI_PB17_O Select DAI Pin Buffer 17 as the source

010001 (0x11) DAI_PB18_O Select DAI Pin Buffer 18 as the source

010010 (0x12) DAI_PB19_O Select DAI Pin Buffer 19 as the source
A-76 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
010011 (0x13) DAI_PB20_O Select DAI Pin Buffer 20 as the source

010100 (0x14) SPORT0_DA_O Select SPORT 0A Data as the source

010101 (0x15) SPORT0_DB_O Select SPORT 0B Data as the source

010110 (0x16) SPORT1_DA_O Select SPORT 1A Data as the source

010111 (0x17) SPORT1_DB_O Select SPORT 1B Data as the source

011000 (0x18) SPORT2_DA_O Select SPORT 2A Data as the source

011001 (0x19) SPORT2_DB_O Select SPORT 2B Data as the source

011010 (0x1A) SPORT3_DA_O Select SPORT 3A Data as the source

011011 (0x1B) SPORT3_DB_O Select SPORT 3B Data as the source

011100 (0x1C) SPORT4_DA_O Select SPORT 4A Data as the source

011101 (0x1D) SPORT4_DB_O Select SPORT 4B Data as the source

011110 (0x1E) SPORT5_DA_O Select SPORT 5A Data as the source

011111 (0x1F) SPORT5_DB_O Select SPORT 5B Data as the source

100000 (0x20) SPORT0_CLK_O Select SPORT 0 Clock as the source

100001 (0x21) SPORT1_CLK_O Select SPORT 1 Clock as the source

100010 (0x22) SPORT2_CLK_O Select SPORT 2 Clock as the source

100011 (0x23) SPORT3_CLK_O Select SPORT 3 Clock as the source

100100 (0x24) SPORT4_CLK_O Select SPORT 4 Clock as the source

100101 (0x25) SPORT5_CLK_O Select SPORT 5 Clock as the source

100110 (0x26) SPORT0_FS_O Select SPORT 0 Frame Sync as the source

100111 (0x27) SPORT1_FS_O Select SPORT 1 Frame Sync as the source

101000 (0x28) SPORT2_FS_O Select SPORT 2 Frame Sync as the source

101001 (0x29) SPORT3_FS_O Select SPORT 3 Frame Sync as the source

101010 (0x2A) SPORT4_FS_O Select SPORT 4 Frame Sync as the source

Table A-18. Group D Sources – Pin Signal Assignments (Cont’d)

Selection Code Source Signal Description
ADSP-2126x SHARC Processor Peripherals Manual A-77

Signal Routing Unit Registers
101011 (0x2B) SPORT5_FS_O Select SPORT 5 Frame Sync as the source

101100 (0x2C) TIMER0_O Select Timer 0 as the source

101101 (0x2D) TIMER1_O Select Timer 1 as the source

101110 (0x2E) TIMER2_O Select Timer 2 as the source

101111 (0x2F) FLAG10_O Select Flag 10 as the source1

110000 (0x30) MISCB_2_O Select Miscellaneous Control B-2 as the
source

110001 (0x31) MISCB_3_O Select Miscellaneous Control B-3 as the
source

110010 (0x32) MISCB_4_O Select Miscellaneous Control B-4 as the
source

110011 (0x33) MISCB_5_O Select Miscellaneous Control B-5 as the
source

110100 (0x34) FLAG11_O Select Flag 11 as the source

110101 (0x35) FLAG12_O Select Flag 12 as the source

110110 (0x36) FLAG13_O Select Flag 13 as the source

110111 (0x37) FLAG14_O Select Flag 14 as the source

111000 (0x38) PCG_CLKA_O Select Precision Clock A as the source

111001 (0x39) PCG_CLKB_O Select Precision Clock B as the source

111010 (0x3A) PCG_FSA_O Select Precision Frame Sync A as the
source

111011 (0x3B) PCG_FSB_O Select Precision Frame Sync B as the
source

111100 (0x3C) FLAG15_O Select Flag 15 as the source

111101 (0x3D) Reserved

111110 (0x3E) LOW Select Logic Level Low (0) as the source

111111 (0x3F) HIGH Select Logic Level High (1) as the source

Table A-18. Group D Sources – Pin Signal Assignments (Cont’d)

Selection Code Source Signal Description
A-78 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Miscellaneous SRU Registers (SRU_EXT_MISCx,
Group E)

The Miscellaneous Signal Routing registers are a very powerful and versa-
tile feature of the DAI. These registers allow external pins, timers, and
clocks to serve as interrupt sources or timer inputs and outputs. They also
allow pins to connect to other pins, or to invert the logic of other pins.
Note that MISCB2_I, MISCB3_I, MISCB4_I, and MISCB5_I may be mapped
directly to the DAI pin buffers using Group D registers (see Table A-18).

The Miscellaneous Signal Routing registers correspond to the Group E
miscellaneous signals listed in Table A-19. Thirty-two possible signal
sources can be connected using these read/write registers:

• SRU_EXT_MISCA, described in Figure A-38 on page A-80

• SRU_EXT_MISCB, described in Figure A-39 on page A-81

1 The ADSP-2126x SHARC processor supports 16 flags including:
-Four pins in the IRQ,
-6 (FLAG10-15) in the Digital Application Interface (DAI), and
-16 address pins in the Parallel Port can act as flags.
Parallel ports function as flags when the PPFLGS bit (bit 20) of the SYSCTL register
is set (= 1). This bit causes the 16 address pins to function as FLAG0–FLAG15.
The IRQ acts as a flag that also generates an interrupt.
ADSP-2126x SHARC Processor Peripherals Manual A-79

Signal Routing Unit Registers
Figure A-38. SRU_EXT_MISCA Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 1 1 1 1 0 1 1 1 1 0 1 1 1

INV_MISCA5_I

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 1 1 1 0 1 1 1 1 0 1 1 1 1

Invert Miscellaneous
Channel A 4

INV_MISCA4_I

External Miscellaneous
Channel A 3

MISCA3_I
Invert Miscellaneous
Channel A 5

External Miscellaneous
Channel A 5

MISCA5_I**
External Miscellaneous
Channel A 4

MISCA4_I*

External Miscellaneous
Channel A 2

MISCA2_I
External Miscellaneous
Channel A 0

MISCA0_I

External Miscellaneous
Channel A 1

MISCA1_I

*SEE BIT 30
**SEE BIT 31

DAI Interrupt 31
DAI_INT_31

DAI Interrupt 30
DAI_INT_30

Flag 15 Interrupt
FLAG15_I

DAI Interrupt 28
DAI_INT_28

Flag 13 Interrupt
FLAG13_I

DAI Interrupt 29
DAI_INT_29

Flag 14 Interrupt
FLAG14_I

SRU_EXT_MISCA
(0x2470)

MISCA3_I
A-80 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Setting the SRU_EXT_MISCA[30] bit to HIGH inverts the level of MISCA4_I,
and setting the SRU_EXT_MISCA[31] bit to HIGH inverts the level of
MISCA5_I.

Figure A-39. SRU_EXT_MISCB Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 1 1 1 1 0 1 1 1 1 0 1 1 1

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 1 1 1 0 1 1 1 1 0 1 1 1 1

Invert Miscellaneous
Channel B 5

INV_MISCB5_I

External Miscellaneous
Channel B 2

MISCB2_I External Miscellaneous
Channel B 0

MISCB0_I

External Miscellaneous
Channel B 1

MISCB1_I

DAI Interrupt 27
DAI_INT_27

Flag 12 Interrupt
FLAG12_I

External Miscellaneous
Channel B 3

MISCB3_I

External Miscellaneous
Channel B 4

MISCB4_I

DAI Interrupt 25
DAI_INT_25

Flag 10 Interrupt
FLAG10_I

DAI Interrupt 26
DAI_INT_26

Flag 11 Interrupt
FLAG11_I

DAI Interrupt 22
DAI_INT_22

TIMER0_I

DAI Interrupt 23
DAI_INT_23

TIMER1_I

DAI Interrupt 24
DAI_INT_24

TIMER2_I

SRU_EXT_MISCB
(0x2471)

MISCB3_I

Timer 2 Input

Timer 1 Input

Timer 2 Input
ADSP-2126x SHARC Processor Peripherals Manual A-81

Signal Routing Unit Registers
Table A-19. Group E Sources – Miscellaneous Signals

Selection Code Source Signal Description

00000 (0x0) DAI_PB01_O Select DAI Pin Buffer 1 Output as the source

00001 (0x1) DAI_P02_O Select DAI Pin Buffer 2 Output as the source

00010 (0x2) DAI_P03_O Select DAI Pin Buffer 3 Output as the source

00011 (0x3) DAI_P04_O Select DAI Pin Buffer 4 Output as the source

00100 (0x4) DAI_P05_O Select DAI Pin Buffer 5 Output as the source

00101 (0x5) DAI_P06_O Select DAI Pin Buffer 6 Output as the source

00110 (0x6) DAI_P07_O Select DAI Pin Buffer 7 Output as the source

00111 (0x7) DAI_P08_O Select DAI Pin Buffer 8 Output as the source

01000 (0x8) DAI_P09_O Select DAI Pin Buffer 9 Output as the source

01001 (0x9) DAI_P10_O Select DAI Pin Buffer 10 Output as the source

01010 (0xA) DAI_P11_O Select DAI Pin Buffer 11 Output as the source

01011 (0xB) DAI_P12_O Select DAI Pin Buffer 12 Output as the source

01100 (0xC) DAI_P13_O Select DAI Pin Buffer 13 Output as the source

01101 (0xD) DAI_P14_O Select DAI Pin Buffer 14 Output as the source

01110 (0xE) DAI_P15_O Select DAI Pin Buffer 15 Output as the source

01111 (0xF) DAI_P16_O Select DAI Pin Buffer 16 Output as the source

10000 (0x10) DAI_P17_O Select DAI Pin Buffer 17 Output as the source

10001 (0x11) DAI_P18_O Select DAI Pin Buffer 18 Output as the source

10010 (0x12) DAI_P19_O Select DAI Pin Buffer 19 Output as the source

10011 (0x13) DAI_P20_O Select DAI Pin Buffer 20 Output as the source

10100 (0x14) TIMER0_O Select Timer 0 Output as the source

10101 (0x15) TIMER1_O Select Timer 1 Output as the source

10110 (0x16) TIMER2_O Select Timer 2 Output as the source

10111 (0x17);
11000 (0x18)

Reserved
A-82 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Setting the SRU_EXT_MISCA[30] bit to HIGH inverts the level of the
EXT_MSCA_4 bit. Setting the SRU_EXT_MISCA[31] bit to HIGH inverts the
level of the EXT_MISCA_5 bit.

DAI Pin Buffer Enable Registers (Group F)
The Pin Enable Control registers activate the drive buffer for each of the
20 DAI pins. When the pins are not enabled (driven), they can be used as
inputs. Each of the pin enables are connected, based on the 6-bit values in
Table A-20. Sixty-four possible signal sources can be designated for these
read/write registers:

• SRU_PBEN0, described in Figure A-40

• SRU_PBEN1, described in Figure A-41

• SRU_PBEN2, described in Figure A-42

• SRU_PBEN3, described in Figure A-43

11001 (0x19) PDAP_STRB_O Select PDAP Strobe Output as the source

11010 (0x1A) PCG_CLKA_O Select Precision Clock A Output as the source

11011 (0x1B) PCG_FSA_O Select Precision Frame Sync A Output as the
source

11100 (0x1C) PCG_CLKB_O Select Precision Clock B Output as the source

11101 (0x1D) PCG_FSB_O Select Precision Frame Sync B Output as the
source

11110 (0x1E) MISC_LOW_MISC_O Select Logic Level Low (0) as the source

11111 (0x1F) MISC_HIGH_MISC_O Select Logic Level High (1) as the source

Table A-19. Group E Sources – Miscellaneous Signals (Cont’d)

Selection Code Source Signal Description
ADSP-2126x SHARC Processor Peripherals Manual A-83

Signal Routing Unit Registers
Figure A-40. SRU_PBEN0

Figure A-41. SRU_PBEN1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 1 1 1 0 0 0 1 0 0 1 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 0 0 0 0 0 1 0 1 1 0 0 1 0 1

DAI Port 5
Pin Buffer Enable Input

PBEN05

DAI Port 3
Pin Buffer Enable Input

PBEN03 DAI Port 1
Pin Buffer Enable Input

PBEN01

DAI Port 4
Pin Buffer Enable Input

PBEN04

DAI Port 2
Pin Buffer Enable Input

PBEN02

SRU_PBEN0 (0x2478)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 1 0 0 1 1 0 0 1 0 1 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 0 1 0 0 1 1 0 0 0 0 1 1 1

DAI Port 10
Pin Buffer Enable Input

PBEN10

DAI Port 8
Pin Buffer Enable Input

PBEN08 DAI Port 6
Pin Buffer Enable Input

PBEN06

DAI Port 8
Pin Buffer Enable Input

PBEN08

DAI Port 7
Pin Buffer Enable Input

PBEN07

SRU_PBEN1 (0x2479)

DAI Port 9
Pin Buffer Enable Input

PBEN09
A-84 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Figure A-42. SRU_PBEN2

Figure A-43. SRU_PBEN3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 0 1 1 0 1 0 0 1 0 1 0 1 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 0 0 0 1 0 1 1 1 0 1 0 1 1

DAI Port 15
Pin Buffer Enable Input

PBEN15

DAI Port 13
Pin Buffer Enable Input

PBEN13 DAI Port 11
Pin Buffer Enable Input

PBEN11

DAI Port 14
Pin Buffer Enable Input

PBEN14

DAI Port 12
Pin Buffer Enable Input

PBEN12

SRU_PBEN2 (0x247A)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 0 1 1 1 0 1 0 1 1 1 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 0 1 1 1 1 0 0 1 1 0 1

DAI Port 20
Pin Buffer Enable Input

PBEN20

DAI Port 18
Pin Buffer Enable Input

PBEN18 DAI Port 16
Pin Buffer Enable Input

PBEN16

DAI Port 19
Pin Buffer Enable Input

PBEN19

DAI Port 17
Pin Buffer Enable Input

PBEN17

SRU_PBEN3 (0x247B)
ADSP-2126x SHARC Processor Peripherals Manual A-85

Signal Routing Unit Registers
Table A-20. Group F Sources – Pin Output Enable

Selection Code Source Signal Description

000000 (0x0) LOW Select Logic Level Low (0) as the source

000001 (0x1) HIGH Select Logic Level High (1) as the source

000010 (0x2) MISCA0_O Assign Miscellaneous Control A0 Output to a pin

000011 (0x3) MISCA1_O Assign Miscellaneous Control A1 Output to a pin

000100 (0x4) MISCA2_O Assign Miscellaneous Control A2 Output to a pin

000101 (0x5) MISCA3_O Assign Miscellaneous Control A3 Output to a pin

000110 (0x6) MISCA4_O Assign Miscellaneous Control A4 Output to a pin

000111 (0x7) MISCA5_O Assign Miscellaneous Control A5 Output to a pin

001000 (0x8) SPORT0_CLK_PBEN_O Select Serial Port 0 Clock Output Enable as the
source

001001 (0x9) SPORT0_FS_PBEN_O Select Serial Port 0 Frame Sync Output Enable as
the source

001010 (0xA) SPORT0_DA_PBEN_O Select Serial Port 0 Data Channel A Output
Enable as the source

001011 (0xB) SPORT0_DB_PBEN_O Select Serial Port 0 Data Channel B Output
Enable as the source

001100 (0xC) SPORT1_CLK_PBEN_O Select Serial Port 1 Clock Output Enable as the
source

001101 (0xD) SPORT1_FS_PBEN_O Select Serial Port 1 Frame Sync Output Enable as
the source

001110 (0xE) SPORT1_DA_PBEN_O Select Serial Port 1 Data Channel A Output
Enable as the source

001111 (0xF) SPORT1_DB_PBEN_O Select Serial Port 1 Data Channel B Output
Enable as the source

010000 (0x10) SPORT2_CLK_PBEN_O Select Serial Port 2 Clock Output Enable as the
source

010001 (0x11) SPORT2_FS_PBEN_O Select Serial Port 2 Frame Sync Output Enable as
the source
A-86 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
010010 (0x12) SPORT2_DA_PBEN_O Select Serial Port 2 Data Channel A Output
Enable as the source

010011 (0x13) SPORT2_DB_PBEN_O Select Serial Port 2 Data Channel B Output
Enable as the source

010100 (0x14) SPORT3_CLK_PBEN_O Select Serial Port 3 Clock Output Enable as the
source

010101 (0x15) SPORT3_FS_PBEN_O Select Serial Port 3 Frame Sync Output Enable as
the source

010110 (0x16) SPORT3_DA_PBEN_O Select Serial Port 3 Data Channel A Output
Enable as the source

010111 (0x17) SPORT3_DB_PBEN_O Select Serial Port 3 Data Channel B Output
Enable as the source

011000 (0x18) SPORT4_CLK_PBEN_O Select Serial Port 4 Clock Output Enable as the
source

011001 (0x19) SPORT4_FS_PBEN_O Select Serial Port 4 Frame Sync Output Enable as
the source

011010 (0x1A) SPORT4_DA_PBEN_O Select Serial Port 4 Data Channel A Output
Enable as the source

011011 (0x1B) SPORT4_DB_PBEN_O Select Serial Port 4 Data Channel B Output
Enable as the source

011100 (0x1C) SPORT5_CLK_PBEN_O Select Serial Port 5 Clock as the Output Enable
source

011101 (0x1D) SPORT5_FS_PBEN_O Select Serial Port 5 Frame Sync Output Enable as
the source

011110 (0x1E) SPORT5_DA_PBEN_O Select Serial Port 5 Data Channel A Output
Enable as the source

011111 (0x1F) SPORT5_DB_PBEN_O Select Serial Port 5 Data Channel B Output
Enable as the source

100000 (0x20) TIMER0_PBEN_O Select Timer 0 Output Enable as the source

100001 (0x21) TIMER1_PBEN_O Select Timer 1 Output Enable as the source

Table A-20. Group F Sources – Pin Output Enable (Cont’d)

Selection Code Source Signal Description
ADSP-2126x SHARC Processor Peripherals Manual A-87

Precision Clock Generator Registers
Precision Clock Generator Registers
The Precision Clock Generator (PCG) consists of two identical units.
Each of these two units (A and B) generates one clock signal (CLKA_O or
CLKB_O) and one frame sync (FSA_O or FSB_O) output. The PCGs are con-
trolled by the following five memory-mapped registers in the DAI:

• PCG_CTLA_0, described in Figure A-44

• PCG_CTLA_1, described in Figure A-45

• PCG_CTLB_0, described in Figure A-46

• PCG_CTLB_1, described in Figure A-47

• PCG_PW, described in Figure A-48

100010 (0x22) TIMER2_PBEN_O Select Timer 2 Output Enable as the source

100011 (0x23) FLAG10_PBEN_O Select Flag 10 Output Enable as the source

100100 (0x24) FLAG11_PBEN_O Select Flag 11 Output Enable as the source

100101 (0x25) FLAG12_PBEN_O Select Flag 12 Output Enable as the source

100110 (0x26) FLAG13_PBEN_O Select Flag 13 Output Enable as the source

100111 (0x27) FLAG14_PBEN_O Select Flag 14 Output Enable as the source

101000 (0x28) FLAG15_PBEN_O Select Flag 15 Output Enable as the source

101001 (0x29) Reserved

Table A-20. Group F Sources – Pin Output Enable (Cont’d)

Selection Code Source Signal Description
A-88 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Figure A-44. PCG_CTLA_0 Register

Table A-21. PCG_CTLA_0 Register Bit Descriptions

Bits Name Description

19–0 FSADIV Divisor for Frame Sync A.

29–20 FSAPHASE_HI Phase for Frame Sync A. Represents the upper half of the
20-bit value for the channel A frame sync phase. The phase
represents the number of input clocks remaining in the first
frame after the signal is enabled.
See FSAPHASE_LO (Bits 29-20) in PCG_CTLA_1 described
on on page A-90.

30 ENFSA Enable Frame Sync A.
0 = Frame Sync A generation disabled
1 = Frame Sync A generation enabled

31 ENCLKA Enable Clock A.
0 = Clock A generation disabled
1 = Clock A generation enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ENCLKA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Enable Clock A

Frame Sync A Divisor

FSADIV

Frame Sync A Phase
19:10

FSAPHASE_HI

ENFSA
Enable Frame Sync A

PCG_CTLA_0 (0x24C0)
ADSP-2126x SHARC Processor Peripherals Manual A-89

Precision Clock Generator Registers
Figure A-45. PCG_CTLA_1 Register

Table A-22. PCG_CTLA_1 Register Bit Descriptions

Bits Name Description

19–0 CLKADIV Divisor for Clock A.

29–20 FSAPHASE_LO Phase for Frame Sync A. Note: This field represents the
lower half of the 20-bit value for the channel A frame sync
phase. The phase represents the number of input clocks
remaining in the first frame after the signal is enabled.
See also FSAPHASE_HI (Bits 29-20) in PCG_CTLA_0
shown in on page A-89.

30 FSASOURCE Frame Sync A Source Master Clock Source for Frame
Sync A.
0 = XTAL buffer output selected for Frame Sync A
1 = PCG_EXTA_I selected for Frame Sync A

31 CLKASOURCE Clock A Source Master Clock Source for Clock A.
0 = XTAL buffer output selected for Clock A
1 = PCG_EXTA_I selected for Clock A

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CLKASOURCE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Clock A Source

CLK A Divisor
CLKADIV

Frame Sync A
Phase 9:0

FSAPHASE_LO

FSASOURCE
Frame Sync A Source

PCG_CTLA_1 (0x24C1)
A-90 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Figure A-46. PCG_CTLB_0 Register

Table A-23. PCG_CTLB_0 Register Bit Descriptions

Bits Name Description

19–0 FSBDIV Divisor for Frame Sync B.

29–20 FSBPHASE_HI Phase for Frame Sync B. This field represents the upper half
of the 20-bit value for the channel B frame sync phase. The
phase represents the number of input clocks remaining in the
first frame after the signal is enabled.
See also FSBPHASE_LO (Bits 29-20) in PCG_CTLB_1
shown in Figure A-47 on page A-92.

30 ENFSB Enable Frame Sync B.
0 = Frame Sync B generation disabled
1 = Frame Sync B generation enabled

31 ENCLKB Enable Clock B.
0 = Clock B generation disabled
1 = Clock B generation enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ENCLKB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Enable Clock B

Frame Sync B Divisor

FSBDIV

Frame Sync B Phase
19:10

FSBPHASE_HI

ENFSB
Enable Frame Sync B

PCG_CTLB_0 (0x24C2)
ADSP-2126x SHARC Processor Peripherals Manual A-91

Precision Clock Generator Registers
Figure A-47. PCG_CTLB_1 Register

Table A-24. PCG_CTLB_1 Register Bit Descriptions

Bits Name Description

19–0 CLKBDIV Divisor for Clock B.

29–20 FSBPHASE_LO Phase for Frame Sync B. Note: This field represents the
lower half of the 20-bit value for the channel B frame
sync phase. The phase represents the number of input
clocks remaining in the first frame after the signal is
enabled.
See also FSBPHASE_HI (Bits 29-20) in PCG_CTLB_0
shown in Figure A-46 on page A-91.

30 FSBSOURCE Frame Sync B Source. Master Clock Source for Frame
Sync B.
0 = XTAL buffer output selected for Frame Sync B
1 = PCG_EXTB_I selected for Frame Sync B

31 CLKBSOURCE Clock B Source. Master Clock Source for Clock B.
0 = XTAL buffer output selected for Clock B
1 = PCG_EXTB_I selected for Clock B

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CLKBSOURCE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Clock B Source

CLK B Divisor
CLKBDIV

Frame Sync B
Phase 9:0

FSBPHASE_LO

FSBSOURCE
Frame Sync B Source

PCG_CTLB_1 (0x24C3)
A-92 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Figure A-48. PCG_PW Register (Bypass Mode)

Table A-25. PCG_PW Register (Bypass Mode)

Bits Name Description

0 STROBEA One Shot Frame Sync A. Frame sync is a pulse with duration
equal to one period of MISCA2_I signal repeating at the
beginning of every frame.
Note: This is valid in bypass mode only.

1 INVFSA Active Low Frame Sync Select for Frame Sync A. Selects an
active low FS if set, (= 1) or active high FS if cleared, (= 0).

15–2 Reserved1

16 STROBEB One Shot Frame Sync B. Frame Sync is a pulse with dura-
tion equal to one period of MISCA3_I signal repeating at the
beginning of every frame.
Note: This is valid in bypass mode only.

17 INVFSB Active Low Frame Sync Select. Selects an active low FS if
set, (= 1) or active high FS if cleared, (= 0).

31–18 Reserved1

1 In bypass mode, Bits 15-2 and Bits 31-18 are ignored.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

One Shot Frame Sync B

STROBEB

INVFSB
Active Low Frame Sync B

Reserved One Shot Frame Sync A

STROBEA

INVFSA
Active Low Frame Sync A

PCG_PW (0x24C4)
ADSP-2126x SHARC Processor Peripherals Manual A-93

Precision Clock Generator Registers
Figure A-49. PCG_PW Register (Normal Mode)

Table A-26. PCG_PW Register (Normal Mode)

Number of Bits Name Description

15–0 PWFSA Pulse Width for Frame Sync A. These bits are valid when
not in Bypass mode.

31–16 PWFSB Pulse Width for Frame Sync B. These bits are valid when
not in Bypass mode.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWFSB

Pulse Width Frame
Sync A

PWFSA

Pulse Width Frame Sync B

PCG_PW (0x24C4)
A-94 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Input Data Port Registers
The Input Data Port (IDP) provides an additional input path to the pro-
cessor core, configurable as 8 channels of serial data or 7 channels of serial
data, and a single channel of up to a 20-bit wide parallel data. Seven regis-
ters are used to specify modes, track status of inputs and outputs, permit
the IDP FIFO buffer to be read, and so on.

• IDP_CTL, described in Figure A-50

• DAI_STAT, described in Figure A-56

• IDP_FIFO, described on Figure A-51

• IDP_DMA_Ix (including IDP_DMA_I0, IDP_DMA_I1, IDP_DMA_I2,
IDP_DMA_I3, IDP_DMA_I4, IDP_DMA_I5, IDP_DMA_I6, and
IDP_DMA_I7) described beginning with Figure A-52

• IDP_DMA_Mx (including IDP_DMA_M0, IDP_DMA_M1, IDP_DMA_M2,
IDP_DMA_M3, IDP_DMA_M4, IDP_DMA_M5, IDP_DMA_M6, and
IDP_DMA_M7), described beginning with Figure A-53

• IDP_DMA_Cx (including IDP_DMA_C0, IDP_DMA_C1, IDP_DMA_C2,
IDP_DMA_C3, IDP_DMA_C4, IDP_DMA_C5, IDP_DMA_C6, and
IDP_DMA_C7), described beginning with Figure A-54

• IDP_PDAP_CTL, described in Figure A-55

Input Data Port Control Registers (IDP_CTL)
The IDP_CTL[31:8] bits control the input format modes for each of the
eight channels.
ADSP-2126x SHARC Processor Peripherals Manual A-95

Input Data Port Registers
Figure A-50. IDP_CTL Register

Table A-27. IDP_CTL Register

Bits Name Description

3–0 IDP_NSET Monitored number of FIFO entries where N > samples
raises Interrupt Controller bit 8.

4 IDP_BHD IDP Buffer Hang Disable. Reads of an empty FIFO or
writes to a full FIFO make the core hang. This condi-
tion continues until the FIFO has valid data (in the case
of reads) or the FIFO has at least one empty location (in
the case of writes).
1 = Core hang is disabled
0 = Core hang is enabled

5 IDP_DMA_EN DMA Enable. Enables DMA on all IDP channels.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IDP_SMODE7

Buffer Hang Disable

IDP_SMODE6

IDP_SMODE3

IDP_SMODE4

IDP_SMODE5

IDP_SMODE2

IDP_SMODE1

IDP_SMODE0

IDP_ENABLE

IDP_NSET

IDP_BHD

IDP_DMA_EN

IDP_CLROVER

IDP_CTL (0x24B0)

Serial Mode Input Select 7

Serial Mode Input Select 6

Serial Mode Input Select 2

Serial Mode Input Select 1

Serial Mode Input Select 0

Input data port Enable
1=DP Enabled
0=IDP Disabled

Serial Mode Input Select 3

Serial Mode Input Select 4

Serial Mode Input Select 5

Monitor FIFO Entries

IDP DMA Enable
1=DMA Enabled on All
IDP Channels
0=DMA Disabled

Clear FIFO Overflow
A-96 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Input Data Port FIFO Register (IDP_FIFO)
The IDP_FIFO register provides information about the output of the IDP
FIFO. Normally, the IDP_FIFO register is used only to read and remove
the top sample from the FIFO. However, the core may also write to this
register. When it does so, the audio data word is pushed into the input
side of the FIFO, as if it had come from the SRU on the channel encoded
in the three LSBs. This can be useful for verifying the operation of the
FIFO, the DMA channels, and the status portions of the IDP. The IDP
FIFO is an eight-deep FIFO.

6 IDP_CLROVR FIFO Overflow Clear Bit. Writes of 1 to this bit will
clear the overflow condition in the DAI_STAT register.
Because this is a write-only bit; it always returns LOW
when read.

7 IDP_ENABLE Enable IDP. 1 to 0 transition on this bit clears the
IDP_FIFO.
1 = IDP is enabled
0 = IDP is disabled and data does not come to
IDP_FIFO from IDP channels

10–8 IDP_SMODE0 Serial Input Mode Select. These eight inputs (0-7), each
of which is 3-bits, indicate the mode of the serial input
for each of the eight IDP channels.
Input format:
000 = Left-justified Sample Pair mode
001 = I2S mode
010 = RESERVED
011 = RESERVED
100 = Right-justified 24-bits
101 = Right-justified 20-bits
110 = Right-justified 18-bits
111 = Right-justified 16-bits

13–11 IDP_SMODE1

16–14 IDP_SMODE2

19–17 IDP_SMODE3

22–20 IDP_SMODE4

25–23 IDP_SMODE5

28–26 IDP_SMODE6

31–29 IDP_SMODE7

Table A-27. IDP_CTL Register (Cont’d)

Bits Name Description
ADSP-2126x SHARC Processor Peripherals Manual A-97

Input Data Port Registers
Channel encoding provides for eight combinations, corresponding
to the eight inputs. When using Channels 1–7, this register format
applies, as well as when using Channel 0 in Serial mode. When
using Channel 0 in Parallel mode, refer to the descriptions of the
four possible packing modes. For more information, see “Packing
Unit” on page 6-8.

Figure A-51. IDP_FIFO Register

Table A-28. IDP_FIFO Register Bit Descriptions

Bits Name Description

2–0 IDP Channel Encoding Bits. Indicate serial input port
channel number that gave this serial input data.
Note: This information is not valid when data comes from
PDAP channel.

3 LR_STAT Left/Right Channel Status. Indicate whether the data in
bits 31–4 is the left or the right audio channel as dictated
by the frame sync signal. The polarity of the encoding
depends on the serial mode selected in IDP_SMODE for
that channel. See IDP_CTL description in Table A-27 on
page A-96.

31–4 Input Data (Serial). Some LSBs can be zero, depending on
the mode.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SERIAL INPUT DATA

Indicates Serial Input
Port Channel Number

IDP Channel Encoding
Bits

Left/Right Channel as Specified
by Frame Sync

LR_STAT

IDP_FIFO (0x24D0)
A-98 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
The information in this table is not valid for the case where data
comes from the PDAP channel.

Input Data Port DMA Control Registers
Each of the eight DMA channels have an I register with an Index pointer
(19 bits), an M register with an M modifier/stride (6 bits), and a C regis-
ter with a count (16 bits). For example, IDP_DMA_I0, IDP_DMA_M0 and
IDP_DMA_C0 control the DMA for Channel 0. These registers are:

• IDP_DMA_Ix (Index) registers

• IDP_DMA_Mx (Modifier) registers

• IDP_DMA_Cx (Count) registers

Figure A-52. IDP_DMA_Ix Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

Input Data Port DMA
Channel Index

INDEX

IDP_DMA_Ix (0x2400–
0x2407)
ADSP-2126x SHARC Processor Peripherals Manual A-99

Input Data Port Registers
Parallel Data Acquisition Port Control Register
(IDP_PDAP_CTL)

Setting the IDP_PDAP_CTL[31] bit enables either the 20 DAI pins or the 16
parallel port address/data pins to be used as a parallel input channel. These
parallel words may be packed into 32-bit words for efficiency. The data
then flows through the FIFO and is transferred by a dedicated DMA
channel into the core’s memory as with any IDP channel.

Figure A-53. IDP_DMA_Mx Register

Figure A-54. IDP_DMA_Cx Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

Input Data Port DMA
Channel Modifier

MODIFIER

IDP_DMA_Mx
(0x2410–0x2417)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

Input Data Port DMA
Channel Counter

COUNTER

IDP_DMA_Cx
(0x2420–0x2427)
A-100 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
The IDP_PDAP_CTL register provides 20 mask bits that allow the input
from any of the 20 pins to be ignored. When the mask bit is cleared, the
corresponding bit is cleared in the acquired data word. This register also
provides a reset bit that zeros any data waiting in the packing unit to be
latched into the FIFO. The RESET bit (bit 30) causes the reset circuit to
strobe when asserted, and then automatically clears. Therefore, this bit
always returns a value of zero when read. Bit 26 of the IDP_PDAP_CTL regis-
ter selects between the two sets of pins that may be used as the parallel
input port. When the IDP_PDAP_CTL[26] bit is set, the upper 16 bits are
read from the AD[15:Ø] pins. When the IDP_PDAP_CTL[26] bit is cleared,
the upper 16 bits are read from the DAI_P[20:5] pins. Note that the four
LSB’s of the parallel data acquisition port input are not multiplexed, and
this input value is always read from the DAI pins, DAI_P[4:1].

Figure A-55. IDP_PDAP_CTL Register

IDP_P12_PDAPMASK

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

IDP_P16_PDAPMASK

IDP_PDAP_EN

IDP_P19_PDAPMASK

IDP_P18_PDAPMASK

IDP_P17_PDAPMASK

IDP_P15_PDAPMASK

IDP_P14_PDAPMASK

IDP_P13_PDAPMASK

IDP_P01_PDAPMASK

IDP_P02_PDAPMASK

IDP_P03_PDAPMASK

IDP_P04_PDAPMASK

IDP_P05_PDAPMASK

IDP_P06_PDAPMASKIDP_P11_PDAPMASK

IDP_P10_PDAPMASK

IDP_P09_PDAPMASK

IDP_P07_PDAPMASK

IDP_P08_PDAPMASK

IDP_PDAP_RESET

IDP_PDAP_CLKEDGE

IDP_PDAP_PACKINGX

IDP_PORT_SELECT

IDP_P20_PDAPMASK
ADSP-2126x SHARC Processor Peripherals Manual A-101

Input Data Port Registers
Table A-29. IDP_PDAP_CTL Register

Bits Name Description

0 IDP_P01_PDAPMASK Parallel Data Acquisition Port Mask
0 = Input data from DAI_01 is masked
1 = Input data from DAI_01 is un-masked

1 IDP_P02_PDAPMASK Parallel Data Acquisition Port Mask
0 = Input data from DAI_02 is masked
1 = Input data from DAI_02 is un-masked

2 IDP_P03_PDAPMASK Parallel Data Acquisition Port Mask
0 = Input data from DAI_03 is masked
1 = Input data from DAI_03 is un-masked

3 IDP_P04_PDAPMASK Parallel Data Acquisition Port Mask
0 = Input data from DAI_04 is masked
1 = Input data from DAI_04 is un-masked

4 IDP_P05_PDAPMASK Parallel Data Acquisition Port Mask
0 = Input data from DAI_05/DATA0 is masked
1 = Input data from DAI_05/DATA0 is un-masked

5 IDP_P06_PDAPMASK Parallel Data Acquisition Port Mask
0 = Input data from DAI_06/DATA1 is masked
1 = Input data from DAI_06/DATA1 is un-masked

6 IDP_P07_PDAPMASK Parallel Data Acquisition Port Mask
0 = Input data from DAI_07/DATA2 is masked
1 = Input data from DAI_07/DATA2 is un-masked

7 IDP_P08_PDAPMASK Parallel Data Acquisition Port Mask
0 = Input data from DAI_08/DATA3 is masked
1 = Input data from DAI_08/DATA3 is un-masked

8 IDP_P09_PDAPMASK Parallel Data Acquisition Port Mask
0 = Input data from DAI_09/DATA4 is masked
1 = Input data from DAI_09/DATA4 is un-masked

9 IDP_P10_PDAPMASK Parallel Data Acquisition Port Mask
0 = Input data from DAI_10/DATA5 is masked
1 = Input data from DAI_10/DATA5 is un-masked

10 IDP_P11_PDAPMASK Parallel Data Acquisition Port Mask
0 = Input data from DAI_11/DATA6 is masked
1 = Input data from DAI_11/DATA6 is un-masked
A-102 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
11 IDP_P12_PDAPMASK Parallel Data Acquisition Port Mask
0 = Input data from DAI_12/DATA7 is masked
1 = Input data from DAI_12/DATA7 is un-masked

12 IDP_P13_PDAPMASK Parallel Data Acquisition Port Mask
0 = Input data from DAI_13/ADDR0 is masked
1 = Input data from DAI_13/ADDR0 is un-masked

13 IDP_P14_PDAPMASK Parallel Data Acquisition Port Mask
0 = Input data from DAI_14/ADDR1 is masked
1 = Input data from DAI_14/ADDR1 is un-masked

14 IDP_P15_PDAPMASK Parallel Data Acquisition Port Mask
0 = Input data from DAI_15/ADDR2 is masked
1 = Input data from DAI_15/ADDR2 is un-masked

15 IDP_P16_PDAPMASK Parallel Data Acquisition Port Mask
0 = Input data from DAI_16/ADDR3 is masked
1 = Input data from DAI_16/ADDR3 is un-masked

16 IDP_P17_PDAPMASK Parallel Data Acquisition Port Mask
0 = Input data from DAI_17/ADDR4 is masked
1 = Input data from DAI_17/ADDR4 is un-masked

17 IDP_P18_PDAPMASK Parallel Data Acquisition Port Mask
0 = Input data from DAI_18/ADDR5 is masked
1 = Input data from DAI_18/ADDR5 is un-masked

18 IDP_P19_PDAPMASK Parallel Data Acquisition Port Mask
0 = Input data from DAI_19/ADDR6 is masked
1 = Input data from DAI_19/ADDR6 is un-masked

19 IDP_P20_PDAPMASK Parallel Data Acquisition Port Mask
0 = Input data from DAI_20/ADDR7 is masked
1 = Input data from DAI_20/ADDR7 is un-masked

25–20 Reserved

26 IDP_PORT_SELECT Port Select: Input Pins Select
1 = Selects upper 16 inputs from AD[15:0]
(ADDR7–ADDR0, DATA7–DATA0)
0 = Selects upper 16 inputs from DAI_P[20:5]

Table A-29. IDP_PDAP_CTL Register (Cont’d)

Bits Name Description
ADSP-2126x SHARC Processor Peripherals Manual A-103

Input Data Port Registers
Digital Audio Interface Status Register (DAI_STAT)
The DAI_STAT register is a read-only register located at address 0x24B8.
The state of all eight DMA channels is reflected in the IDP_DMAx_STAT bits
(bits 24–17) of the DAI_STAT register. These bits are set once the
IDP_DMA_EN bit is set and they remain set until the last data in that channel
is transferred. Even if the IDP_DMA_EN bit is set, it goes low once the
required number of data transfers occurs. Even if the DMA through some
channel is not intended, its IDP_DMAx_STAT goes high.

28–27 IDP_PDAP_PACKING PACKING
Selects PDAP packing mode
00 = 8 to 32 packing
01 = {11,11,10} to 32 packing
10 = 16 to 32 packing
11 = 20 to 32 packing

29 IDP_PDAP_CLKEDGE PDAP (Rising or Falling) Clock Edge
Setting this bit (= 1) causes the data to be latched on
the falling edge. Clearing this bit causes data to be
latched on the rising edge of the clock
(IDP0_CLK_I).

30 IDP_PDAP_RESET PDAP Reset Setting this bit (= 1) causes the PDAP
reset circuit to strobe; then this bit is cleared auto-
matically. This bit will always return a value of zero
when read.

31 IDP_PDAP_EN PDAP Enable Setting this bit (= 1) enables either the
20 DAI pins or the 16 parallel port address/data pins
to be used as a parallel input channel. Clearing this
bit (= 0) disables those pins from use as parallel input
channels.
Note: When this bit is set to 1, then IDP Channel 0
cannot be used as a serial input port.

Table A-29. IDP_PDAP_CTL Register (Cont’d)

Bits Name Description
A-104 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Figure A-56. DAI_STAT Register

Table A-30. DAI_STAT Register Bit Descriptions

Bits Name Description

11–0 SRU_EXTMISCyx Miscellaneous Input A/B Signals. Indicate the status
of the MISCxy_I signals.

16–12 Reserved

24–17 IDP_DMAx_STAT Input Data Port DMA Status.
1 = DMA is active
0 = DMA is not active

25 IDP_FIFO_OVER IDP_FIFO Overflow Status. This (sticky) bit pro-
vides IDP FIFO overflow status information.
1 = Overflow has occurred
0 = No overflow

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IDP_FIFOSZ

Miscellaneous Input A0

Reserved

SRU_EXTMISCB5

Number of Valid Data in IDP FIFO

IDP_FIFO_OVER

Overflow (Sticky) Bit

IDP_DMA7_STAT

IDP_DMA6_STAT

IDP_DMA3_STAT

IDP_DMA4_STAT

IDP_DMA1_STAT

IDP_DMA2_STAT

IDP_DMA0_STAT

DMA Active Status for
IDP Channel 0

IDP_DMA5_STAT

Reserved

SRU_EXTMISCB4

SRU_EXTMISCB3

SRU_EXTMISCB2

SRU_EXTMISCB1

SRU_EXTMISCB0

SRU_EXTMISCA1

SRU_EXTMISCA2

SRU_EXTMISCA3

SRU_EXTMISCA4

SRU_EXTMISCA5
SRU_EXTMISCB0

DAI_STA
ADSP-2126x SHARC Processor Peripherals Manual A-105

Input Data Port Registers
DAI Resistor Pull-up Enable Register
(DAI_PIN_PULLUP)

This 20-bit read/write register is located at address 0x247D. Bits 19–0 of
this register control the enabling/disabling 22.5 KΩ pull-up resistor on
the DAI_P0[19:0] bits. Setting a bit to one enables a pull-up resistor on
the corresponding pin. After RESET, the value of this register is 0xFFFFF,
which means pull-up is enabled on all 20 DAI pins.

27–26 Reserved

31–28 IDP_FIFOSZ Number of samples in FIFO

Figure A-57. DAI_PIN_PULLUP Register

Table A-30. DAI_STAT Register Bit Descriptions (Cont’d)

Bits Name Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 0 0 0 0 0 0 0 0 0 0 1 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Reserved

DAI_P16_PULLUP

DAI_P20_PULLUP DAI_P19_PULLUP

DAI_P18_PULLUP

DAI_P17_PULLUP

DAI_P15_PULLUP

DAI_P14_PULLUP

DAI_P13_PULLUP

DAI_P12_PULLUP

DAI_P01_PULLUP

DAI_P02_PULLUP

DAI_P03_PULLUP

DAI_P04_PULLUP

DAI_P05_PULLUP

DAI_P06_PULLUPDAI_P11_PULLUP

DAI_P10_PULLUP

DAI_P09_PULLUP

DAI_P07_PULLUP

DAI_P08_PULLUP

DAI_PIN_PULLUP
(0x247D)
A-106 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Table A-31. DAI_PIN_PULLUP Register

Bits Name Description

0 DAI_P01_PULLUP Enable/Disable 22.5 KΩ Pull-up Resistor for DAI_P01
1 = enables pull-up on DAI_P01
0 = disables pull-up on DAI_P01

1 DAI_P02_PULLUP Enable/Disable 22.5 KΩ Pull-up Resistor for DAI_P02
1 = enables pull-up on DAI_P02
0 = disables pull-up on DAI_P02

2 DAI_P03_PULLUP Enable/Disable 22.5 KΩ Pull-up Resistor for DAI_P03
1 = enables pull-up on DAI_P03
0 = disables pull-up on DAI_P03

3 DAI_P04_PULLUP Enable/Disable 22.5 KΩ Pull-up Resistor for DAI_P04
1 = enables pull-up on DAI_P04
0 = disables pull-up on DAI_P04

4 DAI_P05_PULLUP Enable/Disable 22.5 KΩ Pull-up Resistor for DAI_P05
1 = enables pull-up on DAI_P05
0 = disables pull-up on DAI_P05

5 DAI_P06_PULLUP Enable/Disable 22.5 KΩ Pull-up Resistor for DAI_P06
1 = enables pull-up on DAI_P06
0 = disables pull-up on DAI_P06

6 DAI_P07_PULLUP Enable/Disable 22.5 KΩ Pull-up Resistor for DAI_P07
1 = enables pull-up on DAI_P07
0 = disables pull-up on DAI_P07

7 DAI_P08_PULLUP Enable/Disable 22.5 KΩ Pull-up Resistor for DAI_P08
1 = enables pull-up on DAI_P08
0 = disables pull-up on DAI_P08

8 DAI_P09_PULLUP Enable/Disable 22.5 KΩ Pull-up Resistor for DAI_P09
1 = enables pull-up on DAI_P09
0 = disables pull-up on DAI_P09

9 DAI_P10_PULLUP Enable/Disable 22.5 KΩ Pull-up Resistor for DAI_P10
1 = enables pull-up on DAI_P10
0 = disables pull-up on DAI_P10

10 DAI_P11_PULLUP Enable/Disable 22.5 KΩ Pull-up Resistor for DAI_P11
1 = enables pull-up on DAI_P11
0 = disables pull-up on DAI_P11
ADSP-2126x SHARC Processor Peripherals Manual A-107

Input Data Port Registers
11 DAI_P12_PULLUP Enable/Disable 22.5 KΩ Pull-up Resistor for DAI_P12
1 = enables pull-up on DAI_P12
0 = disables pull-up on DAI_P12

12 DAI_P13_PULLUP Enable/Disable 22.5 KΩ Pull-up Resistor for DAI_P13
1 = enables pull-up on DAI_P13
0 = disables pull-up on DAI_P13

13 DAI_P14_PULLUP Enable/Disable 22.5 KΩ Pull-up Resistor for DAI_P14
1 = enables pull-up on DAI_P14
0 = disables pull-up on DAI_P14

14 DAI_P15_PULLUP Enable/Disable 22.5 KΩ Pull-up Resistor for DAI_P15
1 = enables pull-up on DAI_P15
0 = disables pull-up on DAI_P15

15 DAI_P16_PULLUP Enable/Disable 22.5 KΩ Pull-up Resistor for DAI_P16
1 = enables pull-up on DAI_P16
0 = disables pull-up on DAI_P16

16 DAI_P17
_PULLUP

Enable/Disable 22.5 KΩ Pull-up Resistor for DAI_P17
1 = enables pull-up on DAI_P17
0 = disables pull-up on DAI_P17

17 DAI_P18_PULLUP Enable/Disable 22.5 KΩ Pull-up Resistor for DAI_P18
1 = enables pull-up on DAI_P18
0 = disables pull-up on DAI_P18

18 DAI_P19_PULLUP Enable/Disable 22.5 KΩ Pull-up Resistor for DAI_P19
1 = enables pull-up on DAI_P19
0 = disables pull-up on DAI_P19

19 DAI_P20_PULLUP Enable/Disable 22.5 KΩ Pull-up Resistor for DAI_P20
1 = enables pull-up on DAI_P20
0 = disables pull-up on DAI_P20

31–20 Reserved

Table A-31. DAI_PIN_PULLUP Register (Cont’d)

Bits Name Description
A-108 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
DAI Pin Status Register (DAI_PIN_STAT)
This 20-bit read-only register is located at address 0x24B9. Bits 19–0 of
this register indicate the status of DAI_P[20:1]. Reads from bits 31–20
always return 0. This register is updated at ½ core clock rate.

Figure A-58. DAI_PIN_STAT Register

Table A-32. DAI_PIN_STAT Register

Bits Name Description

0 DAI_P01 Provides status of DAI_P01 pin

1 DAI_P02 Provides status of DAI_P01 pin

2 DAI_P03 Provides status of DAI_P03 pin

3 DAI_P04 Provides status of DAI_P04 pin

4 DAI_P05 Provides status of DAI_P05 pin

5 DAI_P06 Provides status of DAI_P06 pin

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 0 0 0 0 0 0 0 0 0 0 1 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Reserved

DAI_P16

DAI_P20 DAI_P19

DAI_P18

DAI_P17

DAI_P15

DAI_P14

DAI_P13

DAI_P12

DAI_P01

DAI_P02

DAI_P03

DAI_P04

DAI_P05

DAI_P06DAI_P11

DAI_P10

DAI_P09

DAI_P07

DAI_P08

DAI_PIN_STAT (0x24B9)
ADSP-2126x SHARC Processor Peripherals Manual A-109

Input Data Port Registers
DAI Interrupt Controller Registers
The DAI contains its own Interrupt Controller that indicates to the core
when DAI audio peripheral related events occur. Since audio events gener-
ally occur infrequently relative to the SHARC processor core, the DAI
Interrupt Controller reduces all of its interrupts onto two interrupt signals
within the core’s primary interrupt systems—one mapped with low prior-
ity and one mapped with high priority. This architecture allows the user
to indicate priority broadly. In this way, the DAI interrupt controller reg-
isters provide 32 independently configurable interrupts labeled
DAI_INT[31:0], respectively.

6 DAI_P07 Provides status of DAI_P07 pin

7 DAI_P08 Provides status of DAI_P08 pin

8 DAI_P09 Provides status of DAI_P09 pin

9 DAI_P10 Provides status of DAI_P10 pin

10 DAI_P11 Provides status of DAI_P11 pin

11 DAI_P12 Provides status of DAI_P12 pin

12 DAI_P13 Provides status of DAI_P13 pin

13 DAI_P14 Provides status of DAI_P14 pin

14 DAI_P15 Provides status of DAI_P15 pin

15 DAI_P16 Provides status of DAI_P16 pin

16 DAI_P17 Provides status of DAI_P17 pin

17 DAI_P18 Provides status of DAI_P18 pin

18 DAI_P19 Provides status of DAI_P19 pin

19 DAI_P20 Provides status of DAI_P20 pin

31–20 Reserved

Table A-32. DAI_PIN_STAT Register (Cont’d)

Bits Name Description
A-110 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
The DAI Interrupt Controller is configured using three registers. Each of
the 32 interrupt lines can be independently configured to trigger based on
the incoming signal’s rising edge, falling edge, both or neither. Setting a
bit in the DAI_IRPTL_RE or DAI_IRPTL_FE registers enables the interrupt
level on the rising and falling edges, respectively.

The 32 interrupt signals within the DAI are mapped to two interrupt sig-
nals in the primary Interrupt Controller of the SHARC processor core.
The DAI_IRPTL_PRI register selects if the DAI interrupt is mapped to the
high priority or low priority core interrupt (1 = high priority, 0 = low
priority).

The DAI_IRPTL_H register is a read-only register that has bits set for every
DAI interrupt latched for the high priority core interrupt. The
DAI_IRPTL_L register is a read-only register that has bits set for every DAI
interrupt latched for the low priority core interrupt. When a DAI inter-
rupt occurs, the low or high priority core ISR should query its
corresponding register to determine which of the 32 interrupt sources
requires service. When the DAI_IRPTL_H register is read, the high priority
latched interrupts are cleared. When the DAI_IRPTL_L register is read, the
low priority latched interrupts are cleared.

DMA, overflow, and greater than N interrupts can be sensed only
at rising edges. Falling edges are not used for these ten interrupts
(eight DMA, one overflow, and one FIFO valid data greater than
N).

The IDP_FIFO_GTN_INT interrupt is not cleared when the
DAI_IRPTL_H/L registers are read. This interrupt is cleared automat-
ically when the situation that caused of the interrupt goes away.
ADSP-2126x SHARC Processor Peripherals Manual A-111

Input Data Port Registers
The following registers are used primarily to provide status of the Resident
Interrupt Controller:

• High Priority Interrupt Latch (DAI_IRPTL_H) register, described
on page A-112

• Low Priority Interrupt Latch (DAI_IRPTL_L) register, described
on page A-113

• Core Interrupt Priority Assignment (DAI_IRPTL_PRI) register,
described on page A-114

• Rising Edge Interrupt Mask (DAI_IRPTL_RE) register, described
on page A-115

• Falling Edge Interrupt Mask (DAI_IRPTL_FE) register, described
on page A-116

Figure A-59. DAI_IRPTL_H Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

IDP_DMA5_INT

SRU_EXTMISCA3_INT

ISRU_EXTMISCB1_INT

IDP_DMA7_INT

IDP_DMA6_INT

IDP_DMA4_INT

IDP_DMA3_INT

IDP_DMA2_INT

IDP_DMA1_INT

Reserved

IDP_FIFO_OVR_INT

ISRU_EXTMISCB0_INT

SRU_EXTMISCA2_INT

SRU_EXTMISCA1_INT

SRU_EXTMISCA0_INT

SRU_EXTMISCB5_INT

SRU_EXTMISCB4_INT

SRU_EXTMISCB3_INT

ISRU_EXTMISCB2_INT

IDP_DMA0_INT

IDP_FIFO_GTN_INT
IDP FIFO Samples
Exceeded Interrupt

IDP FIFO Overflow
Interrupt

DAI_IRPTL_H (0x2488)
A-112 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
An explicit read resets these register values to zero, except for the
IDP_FIFO_GTN_INT (IDP FIFO samples exceeded interrupt) bit. The inter-
rupt on the IDP_FIFO_GTN_INT bit clears automatically when the condition
that caused the interrupt goes away.

A read resets the value to zero, except under the following condition—the
IDP_FIFO_GTN_INT bit is not cleared when DAI_IRPTL_H/L registers are
read. This bit is cleared when the cause of this interrupt is zero.

Figure A-60. DAI_IRPTL_L Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

IDP_DMA5_INT

SRU_EXTMISCA3_INT

ISRU_EXTMISCB1_INT

IDP_DMA7_INT

IDP_DMA6_INT

IDP_DMA4_INT

IDP_DMA3_INT

IDP_DMA2_INT

IDP_DMA1_INT

Reserved

IDP_FIFO_OVR_INT

ISRU_EXTMISCB0_INT

SRU_EXTMISCA2_INT

SRU_EXTMISCA1_INT

SRU_EXTMISCA0_INT

SRU_EXTMISCB5_INT

SRU_EXTMISCB4_INT

SRU_EXTMISCB3_INT

ISRU_EXTMISCB2_INT

IDP_DMA0_INT

IDP_FIFO_GTN_INT
IDP FIFO Samples
Exceeded Interrupt

IDP FIFO Overflow
Interrupt

DAI_IRPTL_L (0x2489)
ADSP-2126x SHARC Processor Peripherals Manual A-113

Input Data Port Registers
Figure A-61. DAI_IRPTL_PRI Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

IDP_DMA5_INT

SRU_EXTMISCA3_INT

ISRU_EXTMISCB1_INT

IDP_DMA7_INT

IDP_DMA6_INT

IDP_DMA4_INT

IDP_DMA3_INT

IDP_DMA2_INT

IDP_DMA1_INT

Reserved

IDP_FIFO_OVR_INT

ISRU_EXTMISCB0_INT

SRU_EXTMISCA2_INT

SRU_EXTMISCA1_INT

SRU_EXTMISCA0_INT

SRU_EXTMISCB5_INT

SRU_EXTMISCB4_INT

SRU_EXTMISCB3_INT

ISRU_EXTMISCB2_INT

IDP_DMA0_INT

IDP_FIFO_GTN_INT

IDP FIFO Samples
Exceeded Interrupt

IDP FIFO Overflow
Interrupt

DAI_IRPTL_PRI (0x2484)
A-114 ADSP-2126x SHARC Processor Peripherals Manual

Registers Reference
Figure A-62. DAI_IRPTL_RE Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

IDP_DMA5_INT

SRU_EXTMISCA3_INT

ISRU_EXTMISCB1_INT

IDP_DMA7_INT

IDP_DMA6_INT

IDP_DMA4_INT

IDP_DMA3_INT

IDP_DMA2_INT

IDP_DMA1_INT

Reserved

IDP_FIFO_OVR_INT

ISRU_EXTMISCB0_INT

SRU_EXTMISCA2_INT

SRU_EXTMISCA1_INT

SRU_EXTMISCA0_INT

SRU_EXTMISCB5_INT

SRU_EXTMISCB4_INT

SRU_EXTMISCB3_INT

ISRU_EXTMISCB2_INT

IDP_DMA0_INT

IDP_FIFO_GTN_INT
IDP FIFO Samples
Exceeded Interrupt

IDP FIFO Overflow
Interrupt

DAI_IRPTL_RE (0x2481)
ADSP-2126x SHARC Processor Peripherals Manual A-115

Input Data Port Registers
Figure A-63. DAI_IRPTL_FE Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

IDP_DMA5_INT

SRU_EXTMISCA3_INT

ISRU_EXTMISCB1_INT

IDP_DMA7_INT

IDP_DMA6_INT

IDP_DMA4_INT

IDP_DMA3_INT

IDP_DMA2_INT

IDP_DMA1_INT

Reserved

IDP_FIFO_OVR_INT

ISRU_EXTMISCB0_INT

SRU_EXTMISCA2_INT

SRU_EXTMISCA1_INT

SRU_EXTMISCA0_INT

SRU_EXTMISCB5_INT

SRU_EXTMISCB4_INT

SRU_EXTMISCB3_INT

ISRU_EXTMISCB2_INT

Reserved

IDP_FIFO_GTN_INT
IDP FIFO Samples
Exceeded Interrupt

IDP FIFO Overflow
Interrupt

DAI_IRPTL_FE (0x2480)
A-116 ADSP-2126x SHARC Processor Peripherals Manual

I INDEX

Numerics B

16-bit to 32-bit word packing enable

(PACK), 4-54
DSxEN, 5-41, A-43
flag slave device select See DSxEN
DAI_INT, A-110

A
access to SPI registers, 5-34
A channel See TXSP5A register
active edge

defined, 5-5
active low versus active high frame syncs,

4-35
active state multichannel receive frame sync

select See LMFS bit
AD1855 stereo DAC

power down, 5-7
additional literature, xxiii
address bus, 1-2
address latch enable See also ALE pin
ADSP-2126x SHARC DSP

configured as slave device, 5-5
A-law companding See companding

(compressing/expanding)
ALE cycle, 3-6
ALE pin, 3-3
And breakpoints (ANDBKP) bit, A-18
arithmetic operations, 1-4
asynchronous access mode, 9-4
audience, intended, -xxi

baud rate
 See BAUDR bit
 See SPIBAUD register

BAUDR bit, 5-36
B channel data See RXSPxB register
B channel See TXSPxB register
BHD bit, 4-56, 4-62
bidirectional connections through the

SRU, 7-11
bidirectional functions, 4-1
bits, 5-41, A-43
booting

EPROM, 9-27
multiprocessor link port booting, 9-40
parallel port, 9-27

booting from the parallel port, 9-27
boot kernel, 9-27
BRKCTL register, A-13
broadcast mode, 5-3, 5-8
buffer hang disable See BHD bit
buses, 1-2

bus contention, A-2
bus hold cycle, 3-8
bypass as a one-shot, 8-10
bypass mode, 8-9

C
capacitors

bypass, 9-23
decoupling capacitors, 9-23
ADSP-2126x SHARC Processor Peripherals Manual I-1

INDEX
chained DMA enable
 See SCHEN_A and SCHEN_B bit,

serial port
 See SPICHEN_A and SPICHEN_B bit,

serial port
chained DMA enable See SPICHEN_A

and SPICHEN_B bit, serial port
chained DMA sequences, 2-10
chaining

DMA, 5-25
chain insertion mode, 2-16
change clock polarity, 5-20
changing SPI configuration, 5-20
channel number

encoded, 6-17
channel selection registers, 4-30
CKRE bit, 4-54
CLKPL bit, 5-39
clock input See CLKIN pin
Clocks and system clocking

CKRE bit, A-26
CLKDIV bit, A-35
CLKIN pin, 9-4, 9-8, 9-13
CLKOUT and CCLK clock generation,

9-12
CLKPL bit, A-47
clock and frame sync frequencies

(DIV), 4-62
 See DIVx registers

clock distribution, 9-22
clock divisor See CLKDIV bit
clocking edge

selection, 6-10
clock input See CLKIN pin
clock phase See CPHASE bit
clock polarity See CLKPL bit
clock ratio, 9-13
clock relationships, 9-12

clock rising edge select, 4-54
 See CKRE bit

clock signal options, 4-65
core clock ratio, 9-13
determining switching frequencies, 9-11
determining the period, 9-13
jitter, 9-22
SPI clock rate, 5-4

compand data in place, 4-43
companding (compressing/expanding),

1-8, 4-2
conditioning input signals, 9-21
configurable channels, A-110
configure for master mode operation, 5-9
configure for slave mode operation, 5-11
configuring frame sync signals, 4-6
connecting peripherals, 7-3
control

FIFO, 6-13
control and status

registers, 5-35
 See alsoSPIBAUD, SPICTL, SPIFLG,

and SPISTAT registers
conventions, xxxi
converters

A/D and D/A, 3-10
core clock cycle, 5-29
core PLL, 8-1
count

 See CSPx registers
 See IDP_DMA_Cx registers

CPHASE, 5-39
CPSPI registers, 2-11, 5-51, A-40, A-54
CPSPx registers, 2-25
crosstalk, 9-23
CSPI register, 5-51, A-54
CSPx registers, 2-24, 2-28, A-40
customer support, xxiii
I-2 ADSP-2126x SHARC Processor Peripherals Manual

INDEX
D
DAI

configuration macro, 7-31
control registers—clock routing control

registers (Group A), 7-16, A-61
DAI_IRPTL_FE register, 6-17, A-111

as replacement to IMASK, 7-28
DAI_IRPTL_H/L registers, 6-22
DAI_IRPTL_H register, 6-16, 6-22,

A-111
DAI_IRPTL_L register, 6-16, A-111
DAI_IRPTL_L register as replacement

to IRPTL, 7-28
DAI_IRPTL_PRI register, 6-17, 7-28
DAI_IRPTL_x registers, 6-19
DAI_PIN_PULLUP register, A-106
DAI_PIN_STAT register, A-109
DAI_STAT register, 6-17, 6-20, A-104
general-purpose (GPIO) and flags, 7-25
interrupt, 6-19
interrupt controller, 7-25
interrupt controller registers, A-110
interrupts, 7-27
pin buffers, 7-2
pin status See DAI_PIN_STAT register
resistor pull-up enable See

DAI_PIN_PULLUP register
rising and falling edge masks, 7-29
system configuration

sample, 7-30
system design, 7-2

DAI_IRPTL_H register
as replacement to IRPTL, 7-28

DAI_IRPTL_RE register, A-111
as replacement to IMASK, 7-28

DAI selection groups
group B, 7-18
group C, 7-19

DAI_STAT register, A-104
data

buffers in DMA registers, 2-28
direction control See SPTRAN bit
packing and unpacking, 4-40
packing modes, 3-1
unconstrained flow, 1-4

Data Address Generators (DAGs)
enhancements, 1-11
features, 1-5

data cycle duration, 3-8
data direction control See SPTRAN bit
data-independent frame sync, 4-37

(DIFS) mode, 4-37
data memory

(DM) bus, 1-2
data moves

SPI port data, 5-34
data shift See SFDR register
data type, 4-41

and formatting (multichannel), 4-41
and formatting (non-multichannel),

4-41
select See DTYPE bit

data type select See DTYPE bit
DCPH functionality, 5-42
DEN bit, 2-31
development tools, 1-10
digital audio interface, 7-1
digital audio interface (DAI) registers listed,

A-5
digital audio interface pins, 7-3
digital audio interface registers, A-1
digital audio interface status register See

DAI_STAT register
DITFS bit, A-27
divisor See DIVx registers, serial port
DIVx registers, 4-6, 4-45, 4-46, 4-47, 4-48,

4-62, A-35
ADSP-2126x SHARC Processor Peripherals Manual I-3

INDEX
DMA
chaining, 5-25
channel

buffer registers, listed, 2-28
controller, 1-2
controller enhancements, 1-13
enable

see also SPIDEN bit, 6-18
engine transmit or receive operations,

5-15
interrupt-driven DMA, 2-4
operation, master mode, 5-14
operation, slave mode, 5-18
parameter registers, 2-25, 6-18
sequences

chain insertion, 2-15
sequence complete interrupt, 2-4
sequence end, 2-9
TCB loading, 2-12

SPI slave mode, 5-11
status See PPDS bit
switching from receive to transmit mode,

5-23
switching from transmit to receive mode,

5-21
transfers, 6-18

DMA channel
latency, 2-8
parameter registers, listed, 2-28
priority, 2-17

DMA status See PPDS bit
DSP

architectural overview, 1-6
design advantages, 1-2

DSP serial mode, 4-67
DSxEN bits, 5-14, 5-42
DTYPE and data formatting

(DSP serial mode), 4-41
(multichannel), 4-41

DTYPE bit, 4-53, A-26

.D unit See DAGs or ALU
D unit See DAGs or ALU
DXS_B bit, A-28
DXS data status See DXS_x bit
DXS_x bit, 4-59

E
early vs. late frame syncs, 4-36
ECEPx registers, 2-25
ECPP register, 3-19, 9-29, A-60
edge-related interrupts

four conditions, 7-29
EIPPs registers, 3-19
EIPPx registers, 2-25, 9-28, A-59
EMEPx registers, 2-25
EMISO bit, 5-38, 5-43
EMPP register, 3-19, 9-29, A-59
emulation (JTAG), 1-2
enable

breakpoint (ENBx) bit, A-17
DMA interrupt on transfer See INTEN

bit
master input slave output See EMISO bit
SPIDS See ISSEN bit

enable DMA interrupt See INTEN bit
enable interrupt on error See INTERR bit
enable master input slave output See

EMISO bit
enable SPIDS See ISSEN bit
enabling

DMA, 6-18
SPORT DMA (SDEN), 4-17, 4-22

enabling SPORT master mode (MSTR),
4-16, 4-21

endian format, 4-40
SPI data, 5-38

errors/flags See DMA, external port, host
port, serial port, SPI port, and UART
port
I-4 ADSP-2126x SHARC Processor Peripherals Manual

INDEX
examples, timing
framed vs. unframed data, 4-37
left-justified sample pair mode, 4-17
normal vs. alternate framing, 4-37
serial port word select, 4-23

external device or memory
reading from, 3-6
writing to, 3-7

external memory, 1-12
DMA count See ECEPx registers
DMA index See EIPPx registers
DMA modifier See EMEPx registers

external port, 1-9, 3-1
enhancements, 1-12
modes, 3-5
termination values, 9-5

F
FIFO

control and status, 6-13
FIFOFLSH bit, 5-49
overflow clear bit, 6-13
to memory data transfer, 6-14

flag
errors See DMA, external port, host port,

serial port, SPI port, and UART port
input/output See FLAGx pins
slave See DSxEN bits

flag input/output See FLAGx pins
flag input/output value See FLAGS register
flags

DAI, 7-25
FLAGS register, A-6
FLAGx pins, 4-8, 5-3, 9-18, 9-19, A-8
framed versus unframed data, 4-34
frame sync

active low vs. active high, 4-35
both enable See FS_BOTH bit
early vs. late, 4-36

frequencies, 4-62
frame sync (continued)

in multichannel mode, 4-26
internal vs. external, 4-35
required See FSR bit
routing control See SRU_FS0 registers

(Group C)
signals

configuration, 4-6
frame sync rates

setting, 4-15, 4-20
setting the internal serial clock and, 4-20

frame sync required See FSR bit
frame syncs

early vs. late, 4-36
internal vs. external, 4-35

FRFS bit, 4-15
FSASOURCE, 8-10
FS_BOTH bit, 4-56, A-27
FSBSOURCE, 8-10
FSR bit, 4-55, A-27
full-duplex operation

specifications, 4-6

G
general-purpose (GPIO) and flags for DAI,

7-25
generators, reset, 9-17
get more data See GM bit
GM bit, 5-10, 5-38, 5-55
GPIO and flags, 7-25
ground plane, 9-23

H
high and low priority latches, 7-28
hold cycle, 3-8
hold input, 6-10
hold time, inputs, 9-8
ADSP-2126x SHARC Processor Peripherals Manual I-5

INDEX
host interface
enhancements, 1-13

hysteresis on reset See RESET pin

I
I2S

control bits, 4-20
mode, 4-67, 7-2
SPCTLx control bits, 4-20
support, 1-8
(Tx/Rx on left channel first), 4-10
(Tx/Rx on right channel first), 4-10

ICLK bit, 4-54, A-26
ICPP register, 3-19, 9-28, A-59
IDP

(DAI) interrupt service routine
steps, 6-22

DMA control registers, A-99
illustrated, 6-1
reset See IDP_PDAP_RESET bit

IDP_BHD bit, 6-13, 6-14, 6-17
IDP_CLROVR bit, 6-13, 6-14, 6-20
IDP_CTL registers, 6-17, A-95
IDP_DMA_C0 register, 6-21
IDP_DMA_Cx registers, 6-18, 6-21
IDP_DMA_EN bit, 6-18, 6-19

do not set, 6-17
IDP_DMA_I0 register, 6-21
IDP_DMA_Ix registers, 6-18, 6-21
IDP_DMA_M0 register, 6-21
IDP_DMA_Mx registers, 6-18, 6-21
IDP_DMAx_STAT bits, 6-20, 6-21
IDP_ENABLE bit, 6-13, 6-14, 6-16, 6-18,

6-19
IDP_FIFO_GTN_INT bit, 6-16, 6-17
IDP_FIFO_OVER bit, 6-13, 6-14, 6-20
IDP_FIFO register, 6-15
IDP_FIFOSZ bits, 6-13, 6-14, 6-17
IDP_NSET bits, 6-15, 6-16, 6-17

IDP_PDAP_CLKEDGE bit, 6-10, 6-16,
6-19, A-104

IDP_PDAP_CTL register, 6-6, 6-7, 6-8,
6-10, A-101

IDP_PDAP_EN bit, 6-10, 6-19, A-104
IDP_PDAP_PACKING bits, 6-8, A-104
IDP_PDAP_RESET bit, 6-6, A-104
IDP_PORT_SELECT bit, 6-6, 6-16, 6-19,

A-103
IDP_Px_PPMASK bits, 6-16, 6-18
IDP_Pxx_PPMASK bits, 6-7
IDP_SMODEx bits, 6-4, 6-16, 6-18
IFS bit, 4-55
IFS or IRFS bit, A-27
IISPI register, 5-50, A-53
IISPx registers, 2-24, 2-26, A-39
IMPP register, 3-18, 9-28, A-59
IMSPI register, 5-50, A-53
IMSPx registers, 2-24, 2-26, A-39
INCLUDE directory, 4-44
input data port control registers, A-95

 See also IDP_CTL registers
input data port FIFO register See

IDP_FIFO register
input data port (IDP), 6-1, 7-2
input/output (IO) bus, 1-2
input setup and hold time, 9-8
input signal conditioning, 9-21
input slave select enable See ISSEN bit
input synchronization delay, 9-17
instruction dispatch/decode See program

sequencer
instruction set

changes, 1-13
enhancements, 1-13

INTEN bit, 5-33, 5-49
interconnections

master-slave, 5-3
interface to core or internal DMA via RXPP

register, 3-7
I-6 ADSP-2126x SHARC Processor Peripherals Manual

INDEX
internal clock select (ICLK), 4-54
internal frame sync select See IFS bit
internal interrupt vector table See IIVT bit
internal I/O bus arbitration (request &

grant), 2-17
internal memory

DMA count See CSPx registers
DMA index See IDP_DMA_Ix registers
DMA index See IISPx registers
DMA modifier See IDP_DMA_Mx

registers
DMA modifier See IMSPx registers

internal memory DMA index See IISPx
registers

internal serial clock
 See ICLK bit
setting, 4-15

internal transmit frame sync See IFS bit
internal vs. external frame syncs, 4-35
INTERR bit, 5-33, 5-49
interrupt and timer pins, 9-17
interrupt controller

DAI, 7-25
interrupt driven transfers, 6-15

starting, 6-16, 6-18
interrupt input See IRQ2-0 pins
interrupt latch/mask See LIRPTL registers
interrupt latch See IRPTL register
interrupts

conditions for generating interrupts,
4-68

DAI, 6-19, 7-27
DMA interrupts, 2-4
non-maskable RSTI, A-12
parallel port, 3-12

interrupt vector
sharing, 4-65

I/O
interface to peripheral devices, 4-1

IO architecture, 1-13

IOP register set, 4-44
I/O processor, 1-2, 1-8, 2-26

status, 2-7
I/O processor registers, listed, A-2
IRPTL register, 5-33
IRQ2-0 pins, 9-17
ISSEN bit, 5-38, 5-43, 5-54
ISSS bit, 5-41, A-43
IVT bit, A-12

J
JTAG

interface pins, 9-19
port, 1-2

L
LAFS bit, 4-55, A-27
latches

high and low priority, 7-28
latchup, 9-21
latency, 2-8

input synchronization, 9-17
latency, I/O processor registers, A-2
left-justified sample pair mode, 4-9, 4-14,

4-15, 4-16, 4-17, 4-18, 4-20, 7-2
control bits, 4-15
SPCTLx control bits, 4-11
Tx/Rx on FS falling edge, 4-10
Tx/Rx on FS rising edge, 4-10

left-justify sample pair mode
control bits, 4-15

LFS, LTFS and LTDV bit, 4-55, A-27,
A-93

link buffer DMA enable See LxDEN bit
link port, 1-13

enhancements, 1-13
LIRPTL registers, 5-33
LMFS bit, 4-27
loader kernel, 9-27
ADSP-2126x SHARC Processor Peripherals Manual I-7

INDEX
low active transmit frame sync See LFS,
LTFS and LTDV bit

low jitter clock generator
frame sync output, A-88

LRFS bit, 4-27
LSBF bit, 4-54, A-26
.L unit See ALU
L unit See ALU
LxDEN bit, 2-31

M
making connections via the SRU, 7-14
manual

audience, xxi
contents, xxii
conventions, xxxi
new in this edition, xxiii
related documents, xxvi

maskable interrupt, 3-12
masking, 6-8
master input slave output (MISOx) pins,

5-2
configuration, 5-6
slave output, 5-26

master input slave output See MISOx pins
master mode enable, 4-11, 4-19, 4-27
master mode operation

configuring for, 5-9
master output slave input See MOSIx pins
master out slave in See MOSIx pins
master select See SPIMS bit
master-slave interconnections, 5-3
memory, 1-2

enhancements, 1-12
SRAM, 1-7

memory data transfer
FIFO, 6-14

memory-mapped IOP registers, 3-12, A-2
(RXSPI and TXSPI) buffer, 5-33
(RXSPI) buffer, A-45

MISCA_x_I, 8-10
miscellaneous signal routing See

SRU_EXT_MISCx registers (Group
E)

miscellaneous signals, 7-25
MISOx pins, 5-2, 5-6, 5-8, 5-26
μ-law companding
MME bit, 5-8, 5-45, 5-53, 5-54
mnemonics See instructions
mode fault (multimaster error) SPI DMA

status
 See MME bit
 See MODF bit

mode fault (multimaster error) SPI DMA
status See MME bit

modes
multichannel, 4-2
SPI port master mode, 5-9

MODF bit, 5-53, 5-54
MOSIx pins, 5-2, 5-6, 5-8, 5-26
most significant bit first See MSBF bit
most significant byte first See MSBF bit
MRxCCSx register, 4-45, 4-46, 4-47, 4-48,

4-49, A-38
MRxCSx registers, 4-45, 4-46, 4-48, 4-49,

A-37, A-38
MSBF bit, 5-38
MTxCCSx registers, 4-45, 4-47, A-37
MTxCCSy and MRxCCSy registers, 4-42
MTxCSx registers, 4-46, 4-47, A-36
multichannel- A and B channels, 4-10
multichannel buffered serial port, McBSP

See serial ports
multichannel compand select See

MTxCCSy and MRxCCSy registers
multichannel mode, 4-2
multichannel operation, 4-24
multichannel receive channel select See

MRxCSx registers
multichannel selection registers, 4-30
I-8 ADSP-2126x SHARC Processor Peripherals Manual

INDEX
multichannel transmit compand select See
MTxCCSx registers

multi-device SPI configuration, 5-12
multimaster conditions, 5-12
multimaster environment, 5-8
multimaster error or mode-fault error See

MME bit
multimaster mode, 5-6
.M unit See multiplier
M unit See multiplier

N
negate breakpoint (NEGx) bit, A-16
next descriptor (chain) pointer address bits,

5-51

O
one shot option, 8-10
OPD

bit, 5-39
pin, 5-9

open drain data output enable See OPD bit
open drain drivers

support, 1-9
operation mode See OPMODE bit
OPMODE bit, 4-11, 4-15, 4-19, 4-27,

A-26
output pulse width

defined, 8-11

P
PACK bit, 4-54, A-26
PACKEN bit, 5-39, 5-46
packing enable

 See also PACKEN bit
(SPI port) See PACKEN bit

packing modes
mode 00, 6-10
mode 01, 6-9
mode 10, 6-9
mode 11, 6-8

packing modes in IDP_PP_CTL,
illustrated, 6-8

packing sequence
for 32-bit data, 3-7

packing unit, 6-8
parallel assembly code See multifunction

computation or SIMD operations
parallel data acquisition port control

register See IDP_PDAP_CTL register
parallel data acquisition port (PDAP), 6-6,

6-8, A-102
parallel input mode, 6-6
parallel port

ALE polarity level See PPALEPL bit
booting, 9-27
buffer hang disable See PPBHD bit
bus status (PPBS) bit See PPBS bit
clock cycles value See PPDUR bit
control See PPCTL register
enable See PPEN bit
external data width See PP16 bit
FIFO status See PPS bit
interrupts, 3-12
interrupt See PPI signal
operation, 9-27
registers, 3-15, A-54
signals, 3-3
system configure and enable, 3-16, A-55
transmit/receive select See PPTRAN bit
used as flags, 3-4
using for DMA, 3-20

parallel port control See PPCTL register
bit definitions
ADSP-2126x SHARC Processor Peripherals Manual I-9

INDEX
parallel port DMA
address See IMPP register
enable See PPDEN bit
external address See EIPPx registers
external address See EMPP register
external word count See ECPP register
internal word count See ICPP register
start internal index address, 9-28
start internal index address (IIPP)

register, 3-16, A-59
transmit/receive (TXPP/RXPP) registers,

A-56, A-58
parallel port transmit/receive select See

PPTRAN bit
PCG_CTLx_x and PCG_PW registers,

A-88
PCG_PW register, 8-10
PCI bit, 2-5, 2-11, 5-51
PDAP control See IDP_PDAP_CTL

register
PDAP enable See IDP_PDAP_EN bit
PDAP (rising or falling) clock edge See

IDP_PDAP_CLKEDGE bit
peripheral devices

I/O interface to, 4-1
peripherals, 1-7
PFx pins, 5-42
pin descriptions, 9-2
plane, ground, 9-23
PLL-based clocking, 9-8
porting from previous SHARCs

symbol changes, 1-13
power supply, monitor and reset generator,

9-17
PP16 bit, 3-17, A-57
PPALEPL bit, 3-18, A-58
PPBHC bit, 3-8, 3-17, A-57
PPBHD bit, 3-18, A-58
PPBS bit, 3-18, A-58

PPCTL register, 3-4, 3-16, 3-17, 9-28,
A-55, A-57

PPDEN bit, 3-17, A-57
PPDS bit, 3-18, A-58
PPDUR bit, 3-8, 3-17, A-57
PPEN bit, 3-4, 3-17, A-57
PPI signal, 3-12
PP registers, listed, A-3
PPS bit, 3-18, A-58
PPTRAN bit, 3-17, A-57
precision, 1-5
precision clock generator (PCG), 7-2, 8-1
precision clock generator registers See

PCG_CTLx_x and PCG_PW
priority of the serial port interrupts, 4-65
processing elements, 1-2
processor clock frequency, 4-1
processor core, 1-6

enhancements, 1-11
program control interrupt See PCI bit
program fetch See program sequencer
programmable clock cycles, 3-8
programmable flag See PFx pins
program memory (PM) bus, 1-2

R
RDBRx register, 5-48, A-48
read cycle, 3-6
receive busy

(overflow error) SPI DMA status See
ROVF bit

(overflow error) SPI DMA status See
SPIROVF bit

receive busy (overflow error) SPI DMA
status See ROVF bit

receive data
 See RXSPI buffer
 See RXSPx registers
SPI See RDBRx register
SPI See RXSPI register
I-10 ADSP-2126x SHARC Processor Peripherals Manual

INDEX
receive data, SPI See RDBRx register
receive data buffer

shadow See RXSPI_SHADOW register
SPI See RXSPI register
status See RXS bit

receive overflow error See SPIOVF bit
receive shift See RXSR register
registers

channel selection, 4-30
control and status, 5-35
DAI interrupt controller, A-110
DAI pin buffer enable (Group F), A-83
frame sync routing control, A-70
input data port control, A-95
I/O processor registers, listed, A-2
memory-mapped, A-2
parallel port, A-54
serial data routing, A-65
SPI, A-41

register writes and effect latency, 4-59
related documents, xxvi
RESET pin, 9-14, 9-21

input hysteresis, 9-21
rising and falling edge masks

DAI, 7-29
ROVF_A or TUVF_A bit, A-28
ROVF bit, 5-45, 5-55
ROVF_B or TUVF_B bit, A-28
RS-232 device

restrictions, 4-8
RXFLSH bit, 5-22, 5-23, 5-25, 5-40
RXPP register, A-56, A-58
RXS bit, 5-28, 5-45
RXSP0A register, 4-49
RXSP1A register, 4-50
RXSP2A register, 4-46
RXSP3A register, 4-46
RXSP4A register, 4-48
RXSP5A register, 4-48
RXSPI and TXSPI buffer registers, 5-33

RXSPI buffer, 5-3
RXSPI buffer receive data See RXSPI buffer
RXSPI register, 2-23, 5-12, 5-48, 5-55,

A-45
RXSPI_SHADOW register, 5-53, A-48
RXSPxB register, 4-46, 4-48, 4-50
RXSPx registers, 2-23, A-34
RXSR register, 5-2, 5-52

S
sampling edge

defined, 5-5
SCHEN_A and SCHEN_B bit, A-27
SCKx pins, 5-4, 5-8, 5-26
SCLKx pins, 4-6
SC registers, A-3
SDEN bit, 2-31, 4-55, A-27
seamless transfer See SMLS bit
selecting frame sync options (FS_BOTH

and DIFS), 4-16
selecting I2S transmit and receive channel

order (FRFS), 4-16, 4-21
selecting transmit and receive channel order

(FRFS), 4-16, 4-21
SENDZ bit, 5-10, 5-55
serial clock (SPORTx_CLK) pins, 4-6
serial inputs, 6-3
serial modes

specifying, 6-4
serial peripheral interface clock See SPICLK

signal
serial peripheral interface See SPI port
serial port

chained DMA enable See SCHEN,
SPICHEN bits

clock, internal clock See ICLK, MSTR
(I2S mode only) bits

connections, 4-5
control registers See SPCTLx registers
control See SPCTLx registers
ADSP-2126x SHARC Processor Peripherals Manual I-11

INDEX
serial port (continued)
count See SPCNTx registers
data independent transmit/receive frame

sync See DITFS bit
data types, 4-41
disabling the serial port(s), 4-65
DMA chaining, 4-73
DMA channels, 4-67
DMA enable See SDEN, SPIEN bits
DMA parameter registers, 4-69
DXA error status See ROVF_A or

TUVF_A bit
DXB data buffer status See DXS_B bit
DXB error status See ROVF_B or

TUVF_B bit
enable bit See SPEN_x bits
enabling I2S mode (OPMODE), 4-15,

4-20
enabling master mode (MSTR), 4-16,

4-21
frame sync See IFS or IRFS bit, internal
FS both enable See FS_BOTH bit
general information, 1-8
interrupts, 4-65, 4-68

priority of, 4-65
interrupt See SPxI bit
late frame sync See LAFS bit
timing example

word select timing in I2S mode, 4-17,
4-23

serial port control See SPCTLx registers
serial port modes

I2S (Tx/Rx on left channel first), 4-10
I2S (Tx/Rx on right channel first), 4-10
left-justified sample pair mode

Tx/Rx on FS falling edge, 4-10
Tx/Rx on FS rising edge, 4-10

multichannel- A and B channels, 4-10
standard DSP, 4-10

serial port operation modes, 4-9, 4-50

serial port receive buffer See RXSPx
registers

serial port receive compand See MRxCCSx
registers

serial port receive select See MRxCSx
registers

serial port receive underflow status See
ROVF_A or TUVF_A bit

serial port reset, 4-65
serial ports

features, 4-1
named, 4-1

serial port See SP registers, listed
serial port signals, 4-5
serial port transmit buffer See TXx registers
serial port transmit compand See MTxCSx,

MTxCCSx registers
serial port transmit underflow status See

TUVF_A bit
serial port word length, 4-39
serial word endian select bit See LSBF bit
serial word length See SLEN bits
serial word length select bits See SLENx bits
setting the internal serial clock and frame

sync rates, 4-20
setting up DMA on SPORT channels, 4-68
setting word length bit See SLENx bits
setup time, inputs, 9-8
SFDR register, 5-47, A-48
SGN bit, 5-39
SHARC

background information, 1-11
See also porting from previous SHARCs

shift data See SFDR register
signal naming convention, 7-6
signal routing unit, 7-3
signal routing unit (SRU), 4-6, 6-1, 7-1,

7-3, 8-1, A-60
communication with the core, 7-1
overview, A-60
I-12 ADSP-2126x SHARC Processor Peripherals Manual

INDEX
sign extend See SGN bit
slave device, 5-5
slave mode DMA operations, 5-18
slave mode operation

configure for, 5-11
slave-select See SPI0SEL1 pin
SLEN bits, 4-15, 4-20, 4-54, A-26
SLENx bits, 4-54
SMLS bit, 5-40
software reset See SRST bit
SPCNTx registers, A-36
SPCTL2 register, 4-45
SPCTL3 register, 4-45
SPCTL4 register, 4-46
SPCTL5 register, 4-46
SPCTLx control bit comparison in four

SPORT operation modes, 4-51
SPCTLx control bits for left-justify sample

pair mode, 4-11, 4-20
SPCTLx registers, 2-24, 4-3, 4-6, 4-7,

4-48, 4-50, 4-51, 4-65, A-19
specifications

timing, 9-11
SPEN_A bit, 4-15
SPEN_B bit, 4-15
SPEN bit, 4-53, A-26
SPEN_x bits, 4-53
SPI

block diagram, 5-2
features, 5-1
functional description, 5-2

SPI0SEL1 pin, 5-40
SPIBAUD, SPICTL, SPIFLG, and

SPISTAT registers, 5-34
SPI baud rate See SPIBAUDx registers
SPIBAUD register, 5-4, 5-36
SPI baud setup See SPIBAUD register
SPIBAUDx registers, 5-36, A-49
SPI bits, A-43

SPICHEN_A and SPICHEN_B bit, 5-15,
5-18

SPICHEN bit, 4-55, 5-49, A-27
SPICHS bit, 5-50
SPICLK signal, 5-2, 5-4
SPI clock rate, 5-4
SPI clock See SCKx pins
SPI clock See SCKx pins, SPICLK signal
SPI configuration

changing, 5-20
SPICTL registers, 2-24, A-44
SPICTLs registers, 5-46
SPICTLx registers, 5-37
SPI data fetch See GM bit
SPI device select control See SPIFLGx3-0,

SPIDSx bits
SPI device select enable See DSxEN bits
SPI device select enable slave See DSxEN

bits
SPI DMA address modifier See IMSPI

register
SPI DMA chain enable See SPICHEN bit
SPI DMA chain pointer See CPSPI registers
SPI DMA configuration See SPIDMAC

register
SPIDMAC register, 5-13, 5-34, 5-48, A-50
SPIDMAS bit, 5-50
SPI DMA start address See IISPI register
SPI DMA word count See CSPI register
SPIDS pin, 5-5, 5-26, 5-42
SPIDS status See ISSS bit
SPIDSx bits, 5-5, 5-9
SPIEN bit, 2-31, 5-39
SPIERRS bit, 5-50
SPIF bit, 5-29, 5-45, 5-47
SPI FIFO buffer status bit See SPIS0 bit
SPI finished See SPIF bit
SPI flag See SPIFLG register
SPIFLG register, 5-5, 5-40, 5-41, 5-42,

5-43, A-43
ADSP-2126x SHARC Processor Peripherals Manual I-13

INDEX
SPIFLGx3-0 bits, 5-41, A-43
SPI interconnection, 5-6
SPI interface signals, 5-3
SPI interrupt, 5-32
SPIISTAT register, A-41
SPILI bit, 5-33
SPIMME bit, 5-50, 5-53
SPI mode-fault error See MME bit
SPIMS (SPI master select) bit, 5-39
SPI multimaster error See SPIMME bit
SPI open drain output enable See OPD pin
SPIOVF bit, 5-24, 5-25, 5-33, 5-49
SPI port

clock, 5-5
clock phase, 5-27
configuring/enabling system, 5-37
control See SPICTLx registers
error signals and flags, 5-53
flags See SPIFLGx register
formats, 5-53
master mode, 5-9
operations, 5-8, 5-9
registers, 5-34
slave mode, 5-11
status See SPIISTAT, SPISTx registers
transfers, 5-29

SPI port control See SPICTLx registers
SPI port status See SPISTx registers
SPIRCV bit/DMA direction See SPIRCV

bit
SPI receive buffer See RXSPI register
SPI receive control See SPICTL registers
SPI receive data buffer shadow See

RXSPI_SHADOW register
SPI registers, A-3, A-41
SPIROVF bit, 5-53
SPIS0 bit, 5-50
SPI send zero See SENDZ bit
SPISTAT register, 5-53, A-41, A-46
SPI status See SPISTAT register

SPISTx register, 5-44, 5-48
bit descriptions, 5-48

SPI system
configuring and enabling, A-44

SPI transfer
beginning and ending, 5-27
formats, 5-26

SPI transmit buffer See TXSPI register
SPI (transmit/receive) finished See SPIF bit
SPI transmit underrun error See SPIUNF,

SPIUNFE bits
SPIUNF bit, 5-24, 5-25, 5-33, 5-49, 5-53
SPMCTL01 register, 4-48
SPMCTL23 register, 4-45
SPMCTL45 register, 4-47
SPORT

DMA chaining, 4-73
DMA parameter registers addresses, 4-70
interrupts, 4-65
operation modes (I2S), 4-9
registers, 4-45
reset, 4-65

SPORT 0/1 multichannel control See
SPMCTL01 register

SPORT0 multichannel transmit compand
select x See MT0CCSx register

SPORT0 multichannel transmit select x See
MRxCSx registers

SPORT0 receive data buffer, 4-49, 4-50
SPORT0 transmit data buffer, 4-49
SPORT1 receive data buffer, 4-50
SPORT1 transmit data buffer, 4-50
SPORT 2/3 multichannel control See

SPMCTL23 register
SPORT2 divisor for transmit/receive

SCLK2 and SFS2 See DIV2 register
SPORT2 multichannel transmit compand

select See MRxCSx register
SPORT2 receive data buffer, 4-46

A channel data See RXSP2A register
I-14 ADSP-2126x SHARC Processor Peripherals Manual

INDEX
SPORT2 serial control See SPCTL2
register

SPORT2 transmit data buffer, 4-46
SPORT3 divisor for transmit/receive

SCLK3 and SFS3 See DIV3 register
SPORT3 receive data buffer, 4-46
SPORT3 serial control See SPCTL3

register
SPORT3 transmit data buffer, 4-46
SPORT 4/5 multichannel control See

SPMCTL45 register
SPORT4 divisor for transmit/receive See

DIV4 register
SPORT4 receive data buffer, 4-48
SPORT4 serial control See SPCTL4

register
SPORT4 transmit data buffer, 4-48
SPORT5 divisor for transmit/receive See

DIV5 register
SPORT5 receive data buffer, 4-48
SPORT5 serial control See SPCTL5

register
SPORT5 transmit data buffer, 4-48
SPORT operation modes, 4-51

I2S, 4-18
left-justified sample pair, 4-14
multichannel, 4-24
standard DSP serial, 4-11

SPORT operation mode See OPMODE bit
SPORT pairing, 4-25
SPORT transmit buffer See TXSPx

registers
SPORTx divisor for transmit/receive See

DIVx registers
SPORTx_FS pins, 4-6
SPORTx multichannel receive compand

select x See MR1CCSx register
SP registers, A-4

SPTRAN bit, 4-56, A-28
SPxI bit, 4-66
SRAM (memory), 1-2
SRST bit, A-12
SRU, 4-6, 7-1, A-60

connecting through, 7-14
register groups, 7-14

SRU_CLKx registers, 6-16, 6-18
SRU_DATx registers, 6-16, 6-19, A-65
SRU_EXT_MISCx registers, A-79
SRU_FS0 register, A-70
SRU_PBENx registers, A-83
SRU pin assignment See SRU_PINx

registers (group D pin signal
assignments)

SRU pin enable See SRU_PBENx registers
SRU_PINx pins, A-73
SSPISTAT register, A-41
standard DSP serial mode, 4-10, 4-11
starting an interrupt driven transfer, 6-16,

6-18
status

FIFO, 6-13
status of the DAI_Px pins, A-109
sticky bit, 6-14
STROBEA bit, 8-10
STROBEB bit, 8-10
strobe period, 8-10
strobe pulse, 8-10
.S unit See shifter
S unit See shifter
support, technical or customer, xxiii
switching frequencies

determining, 9-11
synchronous access mode, 9-4
SYSCTL register, A-11
system control See SC registers

listed
ADSP-2126x SHARC Processor Peripherals Manual I-15

INDEX
system design
designing for high frequency operation,

9-22
determining clock period, 9-13
recommendations and suggestions, 9-23

SZ bit, 5-37

T
TCB chain loading, 2-10, 2-12
TCK pin, 9-19
TDBRx register, 5-47
TDI pin, 9-19
TDM method, 4-25
TDO pin, 9-19
technical support, xxiii
test data output See TDO pin
TFSDIV bit, A-35
Time-Division-Multiplexed (TDM)

mode, 1-8, 4-1
serial system, 4-24

timer expired See TIMEXP pin
TIMEXP pin, 9-18
timing

specifications, system design, 9-11
timing definitions, 9-11
TIMOD bit, 5-10, 5-33, 5-37
TMS pin, 9-19
transfer control block (TCB), 2-12
transfer data buffer status See TXS bit
transfer initiation and interrupt See

TIMOD mode
transfer protocol, 3-8
transmission collision error See TXCOL bit
transmission error See TUNF bit
transmit and receive data buffers

(TXSPxA/B, RXSPxA/B), 4-59
transmit collision error See TXCOL bit
transmit data buffer

 See TDBRx register
 See TXSPI register

transmit data See TXSPx registers
transmit FIFO

status, 3-16
transmit frame sync divisor See TFSDIV bit
transmit shift See TXSR register
TRST pin, 9-19
TUNF bit, 5-45, 5-55
TUVF_A bit, 4-29, 4-57, A-28
TX2A register, 4-46
TXCOL bit, 5-46, 5-55
TXFLSH bit, 5-22, 5-40, A-47
TXPP register, A-56, A-58
TXS bit, 4-59, 5-45
TXSP0A register, 4-49
TXSP1A register, 4-50
TXSP3A register, 4-46
TXSP4A register, 4-48
TXSP5A register, 4-48
TXSPI register, 5-10, 5-12, 5-45, 5-47,

5-55, A-48, A-49
TXSPxB register, 4-46, 4-48, 4-49, 4-50
TXSPx registers, 2-23, A-34
TXSR register, 5-2
TXx registers, A-34

U
UMODE bit, A-13
unpacking sequence for 32-bit data, 3-8
using the SRU to make a connection, 7-14

V
VisualDSP, 1-10

W
WL bit, 5-38
WOM bit, 5-9
word length, 4-39

(SLEN, WL) bits, 4-15
I-16 ADSP-2126x SHARC Processor Peripherals Manual

INDEX
(SLEN) bits, 4-27
word packing enable (packing 16-bit to

32-bit words) See PACK bit
word select timing

I2S mode, 4-23
left-justified sample pair mode, 4-17

write cycle, 3-6
write-one-to-clear (W1C) operation, 5-44,

5-45
write open drain master See WOM bit
WR pin, 3-3
ADSP-2126x SHARC Processor Peripherals Manual I-17

INDEX
I-18 ADSP-2126x SHARC Processor Peripherals Manual

	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	Processor Product Information
	Related Documents
	Online Technical Documentation
	Accessing Documentation From VisualDSP++
	Accessing Documentation From Windows
	Accessing Documentation From the Web

	Printed Manuals
	VisualDSP++ Documentation Set
	Hardware Tools Manuals
	Processor Manuals
	Data Sheets

	Conventions

	1 Introduction
	ADSP-2126x Processor Design Advantages
	Architectural Overview
	Processor Core
	Processor Peripherals
	Dual-Ported Internal Memory (SRAM)
	I/O Processor
	Digital Audio Interface (DAI)

	Development Tools
	Differences From Previous SHARCs
	Processor Core Enhancements
	Processor Internal Bus Enhancements
	Memory Organization Enhancements
	Parallel Port Enhancements
	I/O Architecture Enhancements
	Instruction Set Enhancements

	2 I/O Processor
	General Procedure for Configuring DMA
	IOP/Core Interaction Options
	Interrupt Driven I/O
	Polling/Status Driven I/O
	DMA Controller Operation
	Chaining DMA Processes
	Transfer Control Block Chain Loading (TCB)
	Setting Up and Starting the Chain
	Setting Up and Starting Chained DMA over the SPI
	Inserting a TCB in an Active Chain

	Setting Up DMA Channel Allocation and Priorities
	Managing DMA Channel Priority
	DMA Bus Arbitration

	Setting Up DMA Parameter Registers
	DMA Transfer Direction
	Data Buffer Registers
	Port, Buffer, and DMA Control Registers
	Addressing

	Setting Up DMA

	3 Parallel Port
	Parallel Port Pins
	Alternate Pin Functions
	Parallel Ports as FLAG Pins
	Parallel Data Acquisition Port as Address Pins

	Parallel Port Operation
	Basic Parallel Port External Transaction
	Reading From an External Device or Memory
	Writing to an External Device or Memory
	Transfer Protocol
	8-Bit Mode
	16-Bit Mode

	Comparison of 16-Bit and 8-Bit SRAM Modes

	Parallel Port Interrupt
	Parallel Port Throughput
	8-Bit Access
	16-Bit Access
	Conclusion

	Parallel Port Registers
	Parallel Port Control Register (PPCTL)
	Parallel Port DMA Registers
	Parallel Port External Setup Registers

	Using the Parallel Port
	DMA Transfers
	Core Driven Transfers
	Known Duration Accesses
	Status Driven Transfers (Polling)
	Core-Stall Driven Transfers
	Interrupt Driven Accesses

	Parallel Port Programming Examples

	4 Serial Ports
	Serial Port Signals
	SPORT Operation Modes
	Standard DSP Serial Mode
	Standard DSP Serial Mode Control Bits
	Clocking Options
	Frame Sync Options
	Data Formatting
	Data Transfers
	Status Information

	Left-Justified Sample Pair Mode
	Setting the Internal Serial Clock and Frame Sync Rates
	Left-Justified Sample Pair Mode Control Bits
	Setting Word Length (SLEN)
	Enabling SPORT Master Mode (MSTR)
	Selecting Transmit and Receive Channel Order (FRFS)
	Selecting Frame Sync Options (DIFS)
	Enabling SPORT DMA (SDEN)
	Interrupt-Driven Data Transfer Mode
	DMA-Driven Data Transfer Mode

	I2S Mode
	I2S Mode Control Bits
	Setting the Internal Serial Clock and Frame Sync Rates
	I2S Control Bits
	Setting Word Length (SLEN)
	Enabling SPORT Master Mode (MSTR)
	Selecting Transmit and Receive Channel Order (FRFS)
	Selecting Frame Sync Options (DIFS)
	Enabling SPORT DMA (SDEN)
	Interrupt-Driven Data Transfer Mode
	DMA-Driven Data Transfer Mode

	Multichannel Operation
	Frame Syncs in Multichannel Mode
	Active State Multichannel Receive Frame Sync Select

	Multichannel Mode Control Bits
	Receive Multichannel Frame Sync Source
	Active State Transmit Data Valid
	Multichannel Status Bits
	Channel Selection Registers

	SPORT Loopback

	Clock Signal Options
	Frame Sync Options
	Framed Versus Unframed Frame Syncs
	Internal Versus External Frame Syncs
	Active Low Versus Active High Frame Syncs
	Sampling Edge for Data and Frame Syncs
	Early Versus Late Frame Syncs
	Data-Independent Frame Sync

	Data Word Formats
	Word Length
	Endian Format
	Data Packing and Unpacking
	Data Type
	Companding

	SPORT Control Registers and Data Buffers
	Register Writes and Effect Latency
	Serial Port Control Registers (SPCTLx)
	Transmit and Receive Data Buffers
	Clock and Frame Sync Frequencies (DIV)
	SPORT Reset
	SPORT Interrupts

	Moving Data Between SPORTS and Internal Memory
	DMA Block Transfers
	Setting Up DMA on SPORT Channels

	SPORT DMA Parameter Registers
	SPORT DMA Chaining

	Single Word Transfers

	SPORT Programming Examples

	5 Serial Peripheral Interface Port
	Functional Description
	SPI Interface Signals
	SPI Clock Signal (SPICLK)
	SPICLK Timing
	SPI Slave Select Outputs (SPIDS0-3)

	SPI Device Select Signal
	Master Out Slave In (MOSI)
	Master In Slave Out (MISO)

	SPI General Operations
	SPI Enable
	Open Drain Mode (OPD)
	Master Mode Operation
	Slave Mode Operation
	Multimaster Conditions

	SPI Data Transfer Operations
	Core Transmit and Receive Operations
	SPI DMA
	Master Mode DMA Operation
	Master Transfer Preparation

	Slave Mode DMA Operation
	Slave Transfer Preparation

	Changing SPI Configuration
	Switching From Transmit To Receive DMA
	Switching From Receive to Transmit DMA
	DMA Error Interrupts
	DMA Chaining

	SPI Transfer Formats
	Beginning and Ending an SPI Transfer

	SPI Word Lengths
	8-Bit Word Lengths
	16-Bit Word Lengths
	32-Bit Word Lengths
	Packing

	SPI Interrupts
	SPI Registers
	Control and Status Registers
	SPI Baud Setup Register (SPIBAUD)
	SPI Control Register (SPICTL)
	SPI Flag Register (SPIFLG)
	Use of DSxEN Bits in SPIFLG for Multiple Slave SPI Systems
	SPI Device Select Input Pin
	SPI Status Register (SPISTAT)

	Buffering and Transmit/Receive Registers
	SPI Transmit Data Buffer Register (TXSPI)
	SPI Receive Data Buffer Register (RXSPI)

	DMA Registers
	SPI DMA Configuration (SPIDMAC) Register
	SPI DMA Internal Index Register (IISPI)
	SPI DMA Address Modifier Register (IMSPI)
	SPI DMA Word Count Register (CSPI)
	SPI DMA Chain Pointer Register (CPSPI)

	Shift Registers
	Receive Shift Register (RXSR)
	Transmit Shift Register (TXSR)
	SPI Receive Data Buffer Shadow Register (RXSPI_SHADOW)

	Error Signals and Flags
	Mode Fault Error (MME)
	Transmission Error Bit (TUNF)
	Reception Error Bit (ROVF)
	Transmit Collision Error Bit (TXCOL)

	SPI Programming Examples

	6 Input Data Port
	Serial Inputs
	Parallel Data Acquisition Port (PDAP)
	Masking
	Packing Unit
	Packing Mode 11
	Packing Mode 10
	Packing Mode 01
	Packing Mode 00

	Clocking Edge Selection
	Hold Input
	PDAP Strobe

	FIFO Control and Status
	FIFO to Memory Data Transfer
	Interrupt-Driven Transfers
	Starting an Interrupt-Driven Transfer

	Interrupt-Driven Transfer Notes
	DMA Transfers
	Starting DMA Transfers
	DMA Transfer Notes

	DMA Channel Parameter Registers
	IDP (DAI) Interrupt Service Routines for DMAs

	Input Data Port Programming Example

	7 Digital Audio Interface
	Structure of the DAI
	DAI System Design
	Signal Routing Unit
	Connecting Peripherals
	Pins Interface
	Pin Buffers as Signal Output Pins
	Pin Buffers as Signal Input Pins
	Bidirectional Pin Buffers

	Making Connections in the SRU
	SRU Connection Groups
	Group A Connections - Clock Signals
	Group B Connections - Data Signals
	Group C Connections - Frame Sync Signals
	Group D Connections - Pin Signal Assignments
	Group E Connections - Miscellaneous Signals
	Group F - Pin Enable Signals

	General-Purpose (GPIO) and Flags
	Miscellaneous Signals
	DAI Interrupt Controller
	Relationship to the Core
	DAI Interrupts
	High and Low Priority Latches
	Rising and Falling Edge Masks

	Using the SRU() Macro

	8 Precision Clock Generator
	Clock Outputs
	Frame Sync Outputs
	Frame Sync
	Frame Sync Output Synchronization with External Clock

	Phase Shift
	Phase Shift Settings
	Pulse Width
	Bypass Mode
	Bypass as a Pass Through
	Bypass as a One Shot

	PCG Programming Examples

	9 System Design
	Pin Descriptions
	Pin Multiplexing
	Address/Data Pins as FLAGs

	Input Synchronization Delay
	Clock Derivation
	Power Management Control Register
	Timing Specifications

	RESET and CLKIN
	Reset Generators
	Interrupt and Timer Pins
	Core-Based Flag Pins
	JTAG Interface Pins
	Phase-Locked Loop Startup

	Conditioning Input Signals
	RESET Input Hysteresis

	Designing for High Frequency Operation
	Clock Specifications and Jitter
	Other Recommendations and Suggestions
	Decoupling Capacitors and Ground Planes
	Oscilloscope Probes
	Recommended Reading

	Booting
	Parallel Port Booting
	SPI Port Booting
	32-bit SPI Host Boot
	16-bit SPI Host Boot
	8-bit SPI Host Boot
	Slave Boot Mode
	Master Boot
	Booting From an SPI Flash
	Booting From an SPI PROM (16-bit address)
	Booting From an SPI Host Processor

	Data Delays, Latencies, and Throughput
	Execution Stalls
	DAG Stalls
	Memory Stalls
	IOP Register Stalls
	DMA Stalls
	IOP Buffer Stalls

	A Registers Reference
	I/O Processor Registers
	Flag Value Register (FLAGS)
	System Control Register (SYSCTL)
	Hardware Breakpoint Control Register (BRKCTL)

	Serial Port Registers
	SPORT Serial Control Registers (SPCTLx)
	SPORT Multichannel Control Registers (SPMCTLxy)
	SPORT Transmit Buffer Registers (TXSPx)
	SPORT Receive Buffer Registers (RXSPx)
	SPORT Divisor Registers (DIVx)
	SPORT Count Registers (SPCNTx)
	SPORT Transmit Select Registers (MTxCSy)
	SPORT Transmit Compand Registers (MTxCCSy)
	SPORT Receive Select Registers (MRxCSx)
	SPORT Receive Compand Registers (MRxCCSx)
	SPORT DMA Index Registers (IISPx)
	SPORT DMA Modifier Registers (IMSPx)
	SPORT DMA Count Registers (CSPx)
	SPORT Chain Pointer Registers (CPSP)

	SPI Registers
	SPI Port Status Register (SPISTAT)
	SPI Port Flags Register (SPIFLG)
	SPI Control Register (SPICTL)
	SPI Receive Buffer Register (RXSPI)
	RXSPI Shadow Register (RXSPI_SHADOW)
	SPI Transmit Buffer Register (TXSPI)
	SPI Baud Rate Register (SPIBAUD)

	SPI DMA Registers
	SPI DMA Configuration Register (SPIDMAC)
	SPI DMA Start Address Register (IISPI)
	SPI DMA Address Modify Register (IMSPI)
	SPI DMA Word Count Register (CSPI)
	SPI DMA Chain Pointer Register (CPSPI)

	Parallel Port Registers
	Parallel Port Control Register (PPCTL)
	Parallel Port DMA Transmit Register (TXPP)
	Parallel Port DMA Receive Register (RXPP)
	Parallel Port DMA Start Internal Index Address Register (IIPP)
	Parallel Port DMA Internal Modifier Address Register (IMPP)
	Parallel Port DMA Internal Word Count Register (ICPP)
	Parallel Port DMA Start External Index Address Register (EIPP)
	Parallel Port DMA External Modifier Address Register (EMPP)
	Parallel Port DMA External Word Count Register (ECPP)

	Signal Routing Unit Registers
	Clock Routing Control Registers (Group A)
	Serial Data Routing Registers (SRU_DATx, Group B)
	Frame Sync Routing Control Registers (SRU_FSx, Group C)
	Pin Signal Assignment Registers (SRU_PINx, Group D)
	Miscellaneous SRU Registers (SRU_EXT_MISCx, Group E)
	DAI Pin Buffer Enable Registers (Group F)

	Precision Clock Generator Registers
	Input Data Port Registers
	Input Data Port Control Registers (IDP_CTL)
	Input Data Port FIFO Register (IDP_FIFO)
	Input Data Port DMA Control Registers
	Parallel Data Acquisition Port Control Register (IDP_PDAP_CTL)
	Digital Audio Interface Status Register (DAI_STAT)
	DAI Resistor Pull-up Enable Register (DAI_PIN_PULLUP)
	DAI Pin Status Register (DAI_PIN_STAT)
	DAI Interrupt Controller Registers

	I Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

