
a

ADSP-2126x SHARC® DSP
Core Manual

 Revision 2.0, February 2004

Part Number
82-001999-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2004 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, SHARC, the SHARC logo and VisualDSP++
are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

ADSP-2126x SHARC DSP Core Manual iii

CONTENTS

PREFACE

Purpose of This Manual .. xvii

Intended Audience .. xvii

Manual Contents ... xviii

Additional Literature .. xix

What’s New in This Manual .. xx

Technical or Customer Support ... xx

Processor Family ... xx

Product Information .. xxi

DSP Product Information ... xxi

Product Related Documents .. xxii

Technical Publications Online or on the Web xxii

Printed Manuals .. xxiii

VisualDSP++ and Tools Manuals xxiii

Hardware Manuals .. xxiii

Data Sheets ... xxiii

Recommendations for Improving our Documents xxiv

Conventions .. xxiv

 iv ADSP-2126x SHARC DSP Core Manual

INTRODUCTION

Overview—Why Floating-Point DSP? ... 1-1

ADSP-2126x DSP Design Advantages ... 1-1

Architectural Overview ... 1-5

Processor Core .. 1-5

Processing Elements .. 1-6

Program Sequence Control ... 1-7

Processor Internal Buses .. 1-9

Processor Peripherals ... 1-10

Dual-Ported Internal Memory (SRAM) 1-11

Timers ... 1-12

JTAG Port .. 1-12

Development Tools ... 1-13

Differences From Previous SHARC DSPs 1-13

Processor Core Enhancements ... 1-13

Processor Internal Bus Enhancements 1-14

Memory Organization Enhancements 1-15

JTAG Port Enhancements ... 1-15

Instruction Set Enhancements ... 1-15

PROCESSING ELEMENTS

Numeric Formats .. 2-2

IEEE Single-Precision Floating-Point Data Format 2-2

Extended-Precision Floating-Point Format 2-5

ADSP-2126x SHARC DSP Core Manual v

Short Word Floating-Point Format ... 2-5

Packing for Floating-Point Data ... 2-6

Fixed-Point Formats .. 2-8

Setting Computational Modes ... 2-11

32-Bit Floating-Point Format (Normal Word) 2-11

40-Bit Floating-Point Format ... 2-13

16-Bit Floating-Point Format (Short Word) 2-13

32-Bit Fixed-Point Format ... 2-14

Rounding Mode .. 2-14

Using Computational Status .. 2-15

Arithmetic Logic Unit (ALU) .. 2-16

ALU Operation ... 2-16

ALU Saturation ... 2-17

ALU Status Flags ... 2-18

ALU Instruction Summary .. 2-19

Multiply Accumulator (Multiplier) .. 2-22

Multiplier Operation ... 2-23

Multiplier Result Register (Fixed-Point) 2-23

Multiplier Status Flags ... 2-26

Multiplier Instruction Summary .. 2-27

Barrel Shifter (Shifter) ... 2-30

Shifter Operation .. 2-30

Shifter Status Flags .. 2-33

Shifter Instruction Summary .. 2-35

 vi ADSP-2126x SHARC DSP Core Manual

Data Register File ... 2-37

Alternate (Secondary) Data Registers ... 2-39

Multifunction Computations .. 2-41

Secondary Processing Element (PEy) ... 2-44

Dual Compute Units Sets .. 2-46

Dual Register Files .. 2-48

Dual Alternate Registers .. 2-49

SIMD (Computational) Operations 2-49

SIMD and Status Flags .. 2-52

PROGRAM SEQUENCER

Instruction Pipeline .. 3-2

Instruction Cache ... 3-5

Bus Conflicts .. 3-5

Block Conflicts ... 3-7

Using the Cache .. 3-8

Optimizing Cache Usage ... 3-9

Branches and Sequencing .. 3-11

Conditional Branches .. 3-12

Delayed Branches .. 3-13

Loop and Status Stacks and Sequencing 3-17

Conditional Sequencing .. 3-18

Core Stalls .. 3-21

Loops and Sequencing .. 3-23

Restrictions on Ending Loops .. 3-26

ADSP-2126x SHARC DSP Core Manual vii

Restrictions on Short Loops ... 3-27

Loop Address Stack ... 3-31

Loop Counter Stack .. 3-32

SIMD Mode and Sequencing .. 3-35

Conditional Compute Operations .. 3-36

Conditional Branches and Loops ... 3-36

Conditional Data Moves .. 3-37

Case #1: Complementary Register Pair Data Move 3-37

Example 1: Register-to-Memory Move – PEx Explicit Register
3-37

Example 2: Register Move – PEy Explicit Register 3-38

Example 3: Register-to-Memory Move – PEx Explicit Register
3-38

Example 4: Register-to-Memory Move – PEy Explicit Register
3-40

Case #2: Uncomplimentary-to-Complementary Register Move 3-40

Example: Register Moves – Uncomplimentary-to-Complementary
3-41

Case #3: Complementary-to-Uncomplimentary Register Move 3-41

Example: Register Moves – Complementary-to-Uncomplimentary
3-41

Case #4: External Memory or IOP Memory Space Data Move 3-43

Example: Register-to-Memory Moves – External or IOP Memory
Space Data Move .. 3-43

Case #5: Uncomplimentary Register Data Move 3-43

Conditional DAG Operations .. 3-43

 viii ADSP-2126x SHARC DSP Core Manual

Timer and Sequencing .. 3-44

Interrupts and Sequencing .. 3-46

Sensing Interrupts ... 3-51

Masking Interrupts ... 3-53

Latching Interrupts ... 3-57

Stacking Status During Interrupts .. 3-58

Nesting Interrupts ... 3-60

Reusing Interrupts .. 3-62

Interrupting IDLE .. 3-63

Summary .. 3-63

DATA ADDRESS GENERATORS

Setting DAG Modes ... 4-2

Circular Buffering Mode ... 4-4

Broadcast Loading Mode ... 4-5

Alternate (Secondary) DAG Registers 4-6

Bit-Reverse Addressing Mode .. 4-7

Using DAG Status .. 4-8

DAG Operations .. 4-9

Addressing With DAGs ... 4-10

DAG Pre-Modify Addressing ... 4-12

Pre-Modify Locking .. 4-13

Data Addressing Stalls ... 4-14

Addressing Circular Buffers ... 4-14

Modifying DAG Registers ... 4-19

ADSP-2126x SHARC DSP Core Manual ix

Addressing in SISD and SIMD Modes 4-20

DAGs, Registers, and Memory .. 4-20

DAG Register-to-Bus Alignment .. 4-21

DAG Register Transfer Restrictions .. 4-23

DAG Instruction Summary ... 4-24

MEMORY

Internal Memory ... 5-2

DSP Architecture .. 5-3

Buses .. 5-4

Internal Address and Data Buses .. 5-4

Internal Data Bus Exchange ... 5-7

ADSP-21262 Processor Memory Map ... 5-13

Memory Organization and Word Size 5-15

Placing 32-Bit Words and 48-Bit Words 5-15

Mixing 32-Bit Words and 48-Bit Words 5-17

Restrictions on Mixing 32-Bit Words and 48-Bit Words 5-19

Example: Calculating a Starting Address for 32-Bit Addresses 5-20

48-Bit Word Allocation ... 5-21

Using Boot Memory .. 5-22

Reading From Boot Memory ... 5-22

Internal Interrupt Vector Table .. 5-23

Internal Memory Data Width .. 5-23

Secondary Processor Element (PEy) .. 5-24

Broadcast Register Loads ... 5-24

 x ADSP-2126x SHARC DSP Core Manual

Illegal I/O Processor Register Access 5-25

Unaligned 64-Bit Memory Access .. 5-26

Using Memory Access Status ... 5-26

Accessing Memory .. 5-27

Access Word Size ... 5-28

Long Word (64-Bit) Accesses .. 5-28

Instruction and Extended-Precision Normal Word Accesses 5-30

Normal Word (32-Bit) Accesses .. 5-31

Short Word (16-Bit) Accesses .. 5-31

Setting Data Access Modes .. 5-31

SYSCTL Register Control Bits .. 5-32

Mode 1 Register Control Bits .. 5-32

Mode 2 Register Control Bits .. 5-33

SISD, SIMD, and Broadcast Load Modes 5-33

Single- and Dual-Data Accesses ... 5-33

Instruction Examples .. 5-34

Data Access Options ... 5-34

Short Word Addressing of Single-Data in SISD Mode 5-36

Short Word Addressing of Single-Data in SIMD Mode 5-38

Short Word Addressing of Dual-Data in SISD Mode 5-40

Short Word Addressing of Dual-Data in SIMD Mode 5-42

32-Bit Normal Word Addressing of Single-Data in SISD Mode 5-44

32-Bit Normal Word Addressing of Single-Data in SIMD Mode
5-46

32-Bit Normal Word Addressing of Dual-Data in SISD Mode 5-48

ADSP-2126x SHARC DSP Core Manual xi

32-Bit Normal Word Addressing of Dual-Data in SIMD Mode 5-50

Extended-Precision Normal Word Addressing of Single-Data 5-50

Extended-Precision Normal Word Addressing of
Dual-Data in SISD Mode ... 5-54

Extended-Precision Normal Word Addressing of
Dual-Data in SIMD Mode ... 5-56

Long Word Addressing of Single-Data 5-58

Long Word Addressing of Dual-Data in SISD Mode 5-60

Long Word Addressing of Dual-Data in SIMD Mode 5-62

Mixed-Word Width Addressing of Dual-Data in SISD Mode 5-64

Mixed-Word Width Addressing of Dual-Data in SIMD Mode 5-64

Broadcast Load Access ... 5-67

Shadow Write FIFO .. 5-67

Shadow Write FIFO Considerations in SIMD Mode 5-67

JTAG TEST EMULATION PORT

JTAG Test Access Port ... 6-1

Boundary Scan .. 6-2

Background Telemetry Channel (BTC) .. 6-4

User-Definable Breakpoint Interrupts .. 6-4

Cycle Count Functionality (EMUCLK) Register 6-5

Silicon Revision ID ... 6-5

JTAG Related Registers ... 6-5

Instruction Register ... 6-6

Enhanced Emulation Status (EEMUSTAT) Register 6-8

 xii ADSP-2126x SHARC DSP Core Manual

Breakpoint Control (BRKCTL) Register 6-8

Breakpoint (PSx, DMx, IOx, and EPx) Registers 6-8

EEMUIN Register .. 6-14

EEMUOUT Register .. 6-16

Emulation Clock Counter Registers 6-17

Boundary Register ... 6-17

Built-In Self-Test Operation (BIST) 6-21

EMUCTL Shift Register ... 6-21

EMUN Register .. 6-23

EMUIDLE Instruction ... 6-24

OSPID Register .. 6-24

Private Instructions ... 6-25

References .. 6-25

TIMER

Timer Architecture ... 7-1

Timer Status and Control ... 7-3

Timer Interrupts ... 7-3

Enabling a Timer .. 7-5

Pulse Width Modulation Mode (PWM_OUT) 7-7

PWM Waveform Generation .. 7-8

Single-Pulse Generation .. 7-9

Using a General-Purpose Timer as a Core Timer 7-10

Pulse Width Count and Capture Mode (WDTH_CAP) 7-10

External Event Watchdog Mode (EXT_CLK) 7-12

ADSP-2126x SHARC DSP Core Manual xiii

Timer Programming Examples .. 7-13

REGISTERS

Control and Status System Registers ... A-2

Mode Control 1 Register (MODE1) A-3

Mode Mask Register (MMASK) .. A-7

Mode Control 2 Register (MODE2) A-11

Arithmetic Status Registers (ASTATx and ASTATy) A-13

Sticky Status Registers (STKYx and STKYy) A-14

User-Defined Status Registers (USTATx) A-22

Processing Element Registers .. A-22

Data File Data Registers (Rx, Fx, Sx) A-23

Multiplier Results Registers (MRFx, MRBx) A-23

Program Memory Bus Exchange Register (PX) A-24

Program Sequencer Registers .. A-25

Interrupt Latch Register (IRPTL) ... A-26

Interrupt Mask Register (IMASK) ... A-31

Interrupt Mask Pointer Register (IMASKP) A-37

Interrupt Register (LIRPTL) ... A-43

Program Counter Register (PC) .. A-48

Program Counter Stack Register (PCSTK) A-49

Program Counter Stack Pointer Register (PCSTKP) A-49

Fetch Address Register (FADDR) .. A-49

Decode Address Register (DADDR) A-49

Loop Address Stack Register (LADDR) A-50

 xiv ADSP-2126x SHARC DSP Core Manual

Current Loop Counter Register (CURLCNTR) A-50

Loop Counter Register (LCNTR) .. A-50

Timer Period Register (TPERIOD) A-51

Timer Count Register (TCOUNT) A-51

Data Address Generator Registers .. A-51

Index Registers (Ix) ... A-52

Modify Registers (Mx) .. A-52

Length and Base Registers (Lx,Bx) ... A-52

I/O Processor Registers ... A-52

Revision ID Register (REVPID) .. A-53

Hardware Breakpoint Control Register (BRKCTL) A-53

Enhanced Emulation Status Register (EEMUSTAT) A-58

Timer Registers .. A-62

Timer Configuration Registers (TMxCTL) A-62

Timer Counter Registers (TMxCNT) A-63

Timer Period Registers (TMxPRD) .. A-63

Timer Width Register (TMxW) .. A-64

Timer Global Status and Control Register (TMSTAT) A-65

Power Management Registers .. A-66

Power Management Control Register (PMCTL) A-67

INTERRUPT VECTOR ADDRESSES

GLOSSARY

INDEX

ADSP-2126x SHARC DSP Core Manual xvii

 PREFACE

Thank you for purchasing and developing systems using the ADSP-2126x
SHARC® DSP from Analog Devices, Inc.

Purpose of This Manual
The ADSP-2126x SHARC DSP Core Manual provides architectural infor-
mation about the ADSP-2126x SHARC processor core. The architectural
descriptions cover functional blocks, and buses, including all features and
processes that they support. For programming information, see the
ADSP-21160 SHARC DSP Instruction Set Reference. For information
about the various peripherals that the ADSP-2126x DSP core can support,
see the ADSP-2126x SHARC DSP Peripherals Manual. For timing, electri-
cal, and package specifications, see the ADSP-21262 and ADSP-21266
data sheets.

Intended Audience
This manual is intended for ADSP-2126x processor system designers and
programmers who are familiar with digital signal processing (DSP) con-
cepts. Users should have a working knowledge of microcomputer
technology and DSP related mathematics.

Manual Contents

xviii ADSP-2126x SHARC DSP Core Manual

Manual Contents
This manual provides detailed information about the ADSP-2126x pro-
cessor in the following chapters:

• “Introduction”

Provides an architectural overview of the ADSP-2126x SHARC
processor.

• “Processing Elements”

Describes the arithmetic/logic units (ALUs), multiplier/accumula-
tor units, and shifter. The chapter also discusses data formats, data
types, and register files.

• “Program Sequencer”

Describes the operation of the program sequencer, which controls
program flow by providing the address of the next instruction to be
executed. The chapter also discusses loops, subroutines, jumps,
interrupts, exceptions, and the IDLE instruction.

• “Data Address Generators”

Describes the Data Address Generators (DAGs), addressing modes,
how to modify DAG and pointer registers, memory address align-
ment, and DAG instructions.

• “Memory”

Describes all aspects of processor memory including internal mem-
ory, address and data bus structure, and memory accesses.

• “JTAG Test Emulation Port”

ADSP-2126x SHARC DSP Core Manual xix

Preface

Discusses the JTAG standard and how to use the ADSP-2126x in a
test environment. Includes boundary-scan architecture, instruction
and boundary registers, and breakpoint control registers.

• “Timer”

Describes the three general purpose timers that can be configured
in any of three modes: pulsewidth modulation, pulsewidth count
and capture, and external event watchdog modes.

Additional Literature
The following publications that describe the ADSP-2126x processor can
be ordered from any Analog Devices sales office:

• ADSP-21262 SHARC High Performance SHARC Floating-Point
Processor Data Sheet

• ADSP-21266 SHARC High Performance SHARC Floating-Point
Processor Data Sheet

• ADSP-21267 SHARC High Performance SHARC Floating-Point
Processor Data Sheet

What’s New in This Manual

xx ADSP-2126x SHARC DSP Core Manual

What’s New in This Manual
This is the second revision of the ADSP-2126x SHARC DSP Core Manual.
The following corrections/additions have been made.

• Added section “Core Stalls” on page 3-21.

• Corrected “Circular Buffering Mode” on page 4-4. Changed to:
The circular buffer enable bit (CBUFEN) in MODE1 is cleared (= 0) at
reset.

• Figure A-21 on page A-67, changed bit 25, SRCPDN to reserved.

Technical or Customer Support
You can reach our ADSP-2126x processor Customer Support in the fol-
lowing ways:

• E-mail development tools questions to
dsptools.support@analog.com

• E-mail processor questions to dsp.support@analog.com

• Phone questions to 1800-ANALOGD

• Visit our World Wide Web site at http://www.analog.com/dsp

• Contact your local Analog Devices sales office or an authorized
Analog Devices distributor

Processor Family
The name ADSP-2126x refers to the family of Analog Devices 32-bit,
floating-point digital signal processors (DSP). This processor family cur-

http://www.analog.com

ADSP-2126x SHARC DSP Core Manual xxi

Preface

rently includes the ADSP-21262, ADSP-21266 and ADSP-21267
SHARC processors.

Product Information
You can obtain product information from Analog Devices Web site, from
the product CD-ROM, or from printed documents/manuals.

Analog Devices is online at http://www.analog.com. Our Web site pro-
vides information about a broad range of products: analog integrated
circuits, amplifiers, converters, and digital signal processors.

DSP Product Information
For information on digital signal processors, visit our Web site at http://
www.analog.com/dsp. It provides access to technical information and doc-
umentation, product overviews, and product announcements.

You may also obtain additional information about Analog Devices and its
products by:

• FAXing questions or requests for information to 1-781-461-3010
(North America) or 089/76 903-557 (Europe Headquarters)

• Accessing the Digital Signal Processing Division FTP site:
ftp ftp.analog.com or ftp 137.71.23.21 or
ftp://ftp.analog.com

http://www.analog.com
http://www.analog.com

Product Information

xxii ADSP-2126x SHARC DSP Core Manual

Product Related Documents
For information on product related development software, see these
publications:

• VisualDSP++ User’s Guide for ADSP-2126x Processors

• VisualDSP++ C/C++ Compiler and Library Manual for
ADSP-2126x Processors

• VisualDSP++ Assembler and Preprocessor Manual for ADSP-2126x
Processors

• VisualDSP++ Linker and Utilities Manual for ADSP-2126x
Processors

• VisualDSP++ Kernel (VDK) User’s Guide

• VisualDSP++ Component Software Engineering User’s Guide

Technical Publications Online or on the Web
You can access ADSP-2126x processor documentation in these ways:

• Online Access using VisualDSP++® Installation CD-ROM

Your VisualDSP++ software distribution CD-ROM includes all of
the listed VisualDSP++ software tool publications.

After you install VisualDSP++ software on your PC, select the
Help Topics command on the VisualDSP++ Help menu, click the
Reference book icon, and select Online Manuals. From this Help
topic, you can open any of the manuals, which are either in HTML
format or in Adobe Acrobat PDF format.

If you are not using VisualDSP++, you can manually access these
PDF files from the CD-ROM using Adobe Acrobat.

ADSP-2126x SHARC DSP Core Manual xxiii

Preface

• Web Access

Use the Analog Devices technical publications Web site http://
www.analog.com/industry/dsp/tech_doc/gen_purpose.html to
access DSP publications, including data sheets, hardware reference
books, instruction set reference books, and VisualDSP++ software
documentation. You can view, download, or print in PDF format.
Some publications are also available in HTML format.

Printed Manuals
For all your general questions regarding literature ordering, call the Litera-
ture Center at 1-800-ANALOGD (1-800-262-5643) and follow the
prompts.

VisualDSP++ and Tools Manuals

The VisualDSP++ and Tools manuals can be purchased through your
local Analog Devices sales office or an authorized Analog Devices distribu-
tor. These manuals can only be purchased as a kit.

Hardware Manuals

Hardware reference and instruction set reference manuals can be ordered
through the Literature Center at 1-800-ANALOGD (1-800-262-5643) or
downloaded from the Analog Devices Web site. The manuals can be
ordered by a title or by product number located on the back cover of each
book.

Data Sheets

All data sheets (preliminary and production) can be downloaded from the
Analog Devices Web site. As a general rule, only production (not prelimi-
nary) data sheets can be obtained from the Literature Center at

http://www.analog.com

Conventions

xxiv ADSP-2126x SHARC DSP Core Manual

1-800-ANALOGD (1-800-262-5643). You can request data sheets using
part numbers.

If you want to have a data sheet faxed to you, use the Analog Devices
Faxback system at 1-800-446-6212. Follow the prompts and you can
either get a particular data sheet or a list of the data sheet code numbers
faxed to you. If the data sheet you want is not listed on Faxback, check for
it on the Web site.

Recommendations for Improving our Documents
Please send us your comments and recommendations on how to improve
our manuals. Contact us at:

• Software/Development Tools manuals
dsptools.support@analog.com

• Data Sheets, Hardware Reference, Programming Reference,
Instruction Set Reference and User’s manuals
dsp.support@analog.com

Conventions
The following table identifies and describes text conventions used in this
manual.

Note that additional conventions, which apply only to specific chapters,
may appear throughout this document.

ADSP-2126x SHARC DSP Core Manual xxv

Preface

Table P-1. Notation Conventions

Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
VisualDSP++ environment’s menu system. For example, the Close com-
mand appears on the File menu.

this|that Alternative items in syntax descriptions are delimited with a vertical bar;
read the example as this or that. One or the other is required.

{this | that} Optional items in syntax descriptions appear within curly braces; read the
example as an optional this or that.

[{({S|SU})}] Optional items for some lists may appear within parenthesis. If an option
is chosen, the parenthesis must be used (for example, (S)). If no option is
chosen, omit the parenthesis.

.SECTION Commands, directives, keywords, and feature names are in text with let-
ter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

0xFBCD CBA9 Hexadecimal numbers use the 0x prefix and are typically shown with a
space between the upper four and lower four digits.

b#1010 0101 Binary numbers use the b# prefix and are typically shown with a space
between each four digit group.

This symbol indicates a note that provides supplementary information on
a related topic. In the online version of this book, the word Note appears
instead of this symbol.

This symbol indicates a warning that advises on an inappropriate usage of
the product that could lead to undesirable results or product damage. In
the online version of this book, the word Warning appears instead of this
symbol.

LSB, MSB
LSW, MSW

Abbreviations for Least Significant Bit and for Most Significant Bit.
Abbreviations for Least Significant Word and for Most Significant Word.

Conventions

xxvi ADSP-2126x SHARC DSP Core Manual

ADSP-2126x SHARC DSP Core Manual 1-1

1 INTRODUCTION

Overview—Why Floating-Point DSP?
A digital signal processor’s data format determines its ability to handle sig-
nals of differing precision, dynamic range, and signal-to-noise ratios.
Because floating-point DSP math reduces the need for scaling and proba-
bility of overflow, using a floating-point DSP can ease algorithm and
software development. The extent to which this is true depends on the
floating-point processor’s architecture. Consistency with IEEE worksta-
tion simulations and the elimination of scaling are clearly two ease-of-use
advantages. High level language programmability, large address spaces,
and wide dynamic range allow system development time to be spent on
algorithms and signal processing concerns, rather than assembly language
coding, code paging, and error handling. The ADSP-2126x processor is a
integrated, lower cost 32-bit floating-point DSP that provides many of
these design advantages.

ADSP-2126x DSP Design Advantages
The ADSP-2126x processor is a high performance 32-bit DSP used for
medical imaging, communications, military, audio, test equipment, 3D
graphics, speech recognition, motor control, imaging, and other applica-
tions. By adding a dual-ported on-chip SRAM, integrated I/O peripherals,
and an additional processing element for Single-Instruction Multi-
ple-Data (SIMD) support, this processor builds on the ADSP-21000
Family DSP core to form a complete system-on-a-chip.

ADSP-2126x DSP Design Advantages

1-2 ADSP-2126x SHARC DSP Core Manual

The SHARC processor architecture balances a high performance processor
core with high performance buses (PM, DM, I/O). In the core, every
instruction can execute in a single cycle. The buses and instruction cache
provide rapid, unimpeded data flow to the core to maintain the execution
rate.

Figure 1-1 shows a detailed block diagram of the processor, illustrating the
following architectural features:

• Two processing elements (PEx and PEy), each containing 32-bit
IEEE floating-point computation units—multiplier, ALU, shifter,
and data register file

• Program sequencer with related instruction cache, interval timer,
and Data Address Generators (DAG1 and DAG2)

• Dual-ported SRAM

• Input/Output (I/O) processor with integrated DMA controller,
SPI-compatible port, and serial ports for point-to-point multipro-
cessor communications

• JTAG Test Access Port for emulation

• Parallel port for interfacing to off-chip memory and peripherals

Figure 1-1 also shows the three on-chip buses of the ADSP-2126x proces-
sor: the Program Memory (PM) bus, Data Memory (DM) bus, and
Input/Output (I/O) bus. The PM bus provides access to either instruc-
tions or data. During a single cycle, these buses let the processor access
two data operands from memory, access an instruction (from the cache),
and perform a DMA transfer.

ADSP-2126x SHARC DSP Core Manual 1-3

Introduction

Further, the ADSP-2126x processor addresses the five central require-
ments for DSPs:

• Fast, flexible arithmetic computation units

• Unconstrained data flow to and from the computation units

• Extended precision and dynamic range in the computation units

• Dual address generators with circular buffering support

• Efficient program sequencing

Figure 1-1. ADSP-2126x SHARC DSP Block Diagram

ADDR DATA

PX REGISTER

6
JTAG TEST & EMULATION

20

3

SERIAL PORTS (6)

INPUT
DATA PORTS (8)
PARALLEL DATA

ACQUISITION PORT

TIMERS (3)

SIGNAL
ROUTING

UNIT

PRECISION CLOCK
GENERATORS (2)

DIGITAL AUDIO INTERFACE

3

16ADDRE SS/
DATA BUS/ GP IO

CONTROL/G PIO

PARALLEL
PORT

IOP
REGISTERS

(MEMORY MAPPED)

CONTROL,
STATUS, &

DATA BUFFERS

4
SPI PORT (1)

DMA CONTROLLER
22 CHANNELS 4

GPIO FLAGS/
IRQ/TIMEXP

I/O PROCESSOR

PROCESSING
ELEMENT

(PEY)

PROCESSING
ELEMENT

(PEX)

TIMER
INSTRUCTION

CACHE
32 X 48-BIT

DAG1
8X4X32

DAG2
8X4X32

32

PM ADDRESS BUS

DM ADDRESS BUS

32

PM DATA BUS

DM DATA BUS

64

64

CORE PROCESSOR

PROGRAM
SEQUENCER

ADDR DATA

SRAM
1 MBIT ROM

2 MBIT

DUAL PORTED MEMORY
BLOCK 0

SRAM
1 MBIT ROM

2 MBIT

DUAL PORTED MEMORY
BLOCK 1

S

IOD
(32)

IOA
(18)

ADSP-2126x DSP Design Advantages

1-4 ADSP-2126x SHARC DSP Core Manual

Fast, Flexible Arithmetic. The ADSP-21000 family processors execute all
instructions in a single cycle. They provide fast cycle times and a complete
set of arithmetic operations. The DSP is IEEE floating-point compatible
and allows either interrupt on arithmetic exception or latched status
exception handling.

Unconstrained Data Flow. The ADSP-2126x processor has a Super Har-
vard Architecture combined with a ten-port data register file. In every
cycle, the DSP can write or read two operands to or from the register file,
supply two operands to the ALU, supply two operands to the multiplier,
and receive three results from the ALU and multiplier. The processor’s

Figure 1-2. ADSP-2126x SHARC DSP Typical Single Processor System

DAI

SPORT5
SPO RT4

SPORT3
SPO RT2

SPORT1
SPORT0

SCLK0

SD0A
SFS0

SD0B

SRU

DAI_P1
DAI_P2
DAI_P3

DAI_P18

DAI_P19
DAI_P20

DAC
(OPTIONAL)

ADC
(OPTIONAL)

FS
CLK

SDAT

FS
CLK

SDAT

3

CLOCK

FLAG 3-1

2

2

CLKIN
XTAL

CLK_CFG 1-0

BOOTCFG1-0

ADDR
PARALLEL

PO RT
RAM ROM

BOOT ROM
I/O DEVICE

OE

DATA

WE

RD

WR

CLKOUT

ALE

AD15-0 LATCH

RESET JTAG

6

ADSP-21262

A
D

D
R

E
S

S

D
A

TA

C
O

N
T

R
O

L

CSFLAG0

PCGB
PCGA

CLK

FS

ADSP-2126x SHARC DSP Core Manual 1-5

Introduction

48-bit orthogonal instruction word supports parallel data transfers and
arithmetic operations in the same instruction.

40-Bit Extended-Precision. The processor handles 32-bit IEEE float-
ing-point format, 32-bit integer and fractional formats (twos-complement
and unsigned), and extended-precision 40-bit floating-point format. The
processors carry extended precision throughout their computation units,
limiting intermediate data truncation errors (up to 80 bits of precision are
maintained during multiply-accumulate operations).

Dual Address Generators. The processor has two Data Address Genera-
tors (DAGs) that provide immediate or indirect (pre- and post-modify)
addressing. Modulus, bit-reverse, and broadcast operations are supported
with no constraints on data buffer placement.

Efficient Program Sequencing. In addition to zero-overhead loops, the
processor supports single-cycle setup and exit for loops. Loops are both
nestable (six levels in hardware) and interruptable. The processors support
both delayed and non-delayed branches.

Architectural Overview
The ADSP-2126x processor forms a complete system-on-a-chip, integrat-
ing a large, high speed SRAM and I/O peripherals supported by a
dedicated I/O bus. The following sections summarize the features of each
functional block in the ADSP-2126x processor architecture, which
appears in Figure 1-1.

Processor Core
The processor core of the ADSP-2126x processor consists of two process-
ing elements (each with three computation units and data register file), a
program sequencer, two DAGs, a timer, and an instruction cache. All dig-
ital signal processing occurs in the processor core.

Architectural Overview

1-6 ADSP-2126x SHARC DSP Core Manual

Processing Elements

The processor core contains two processing elements: PEx and PEy. Each
element contains a data register file and three independent computation
units: an arithmetic logic unit (ALU), a multiplier with an 80-bit
fixed-point accumulator, and a shifter. For meeting a wide variety of pro-
cessing needs, the computation units process data in three formats: 32-bit
fixed-point, 32-bit floating-point, and 40-bit floating-point. The float-
ing-point operations are single-precision IEEE-compatible. The 32-bit
floating-point format is the standard IEEE format, whereas the 40-bit
extended-precision format has eight additional Least Significant Bits
(LSBs) of mantissa for greater accuracy.

The ALU performs a set of arithmetic and logic operations on both
fixed-point and floating-point formats. The multiplier performs float-
ing-point or fixed-point multiplication and fixed-point
multiply/accumulate or multiply/cumulative-subtract operations. The
shifter performs logical and arithmetic shifts, bit manipulation, bit-wise
field deposit and extraction, and exponent derivation operations on 32-bit
operands. These computation units complete all operations in a single
cycle; there is no computation pipeline. The output of any unit may serve
as the input of any unit on the next cycle. All units are connected in paral-
lel, rather than serially. In a multifunction computation, the ALU and
multiplier perform independent, simultaneous operations.

Each processing element has a general-purpose data register file that trans-
fers data between the computation units and the data buses and stores
intermediate results. A register file has two sets (primary and secondary) of
16 general-purpose registers each for fast context switching. All of the reg-
isters are 40 bits wide. The register file, combined with the core
processor’s Super Harvard Architecture, allows unconstrained data flow
between computation units and internal memory.

Primary Processing Element (PEx). PEx processes all computational
instructions whether the DSP is in Single-Instruction, Single-Data (SISD)
or Single-Instruction, Multiple-Data (SIMD) mode. This element corre-

ADSP-2126x SHARC DSP Core Manual 1-7

Introduction

sponds to the computational units and register file in previous
ADSP-21000 family DSPs.

Secondary Processing Element (PEy). PEy processes each computational
instruction in lock-step with PEx, but only processes these instructions
when the DSP is in SIMD mode. Because many operations are influenced
by this mode, more information on SIMD is available in multiple
locations:

• For information on PEy operations, see “Processing Elements” on
page 2-1.

• For information on data addressing in SIMD mode, see “Address-
ing in SISD and SIMD Modes” on page 4-20.

• For information on data accesses in SIMD mode, see “SISD,
SIMD, and Broadcast Load Modes” on page 5-33.

• For information on SIMD programming, see the ADSP-21160
SHARC DSP Instruction Set Reference.

Program Sequence Control

Internal controls for ADSP-2126x processor program execution come
from four functional blocks: program sequencer, data address generators,
core timer, and instruction cache. Two dedicated address generators and a
program sequencer supply addresses for memory accesses. Together the
sequencer and data address generators allow computational operations to
execute with maximum efficiency since the computation units can be
devoted exclusively to processing data. With its instruction cache, the
ADSP-2126x processor can simultaneously fetch an instruction from the
cache and access two data operands from memory. The DAGs also provide
built-in support for zero-overhead circular buffering.

Program Sequencer. The program sequencer supplies instruction
addresses to program memory. It controls loop iterations and evaluates
conditional instructions. With an internal loop counter and loop stack,

Architectural Overview

1-8 ADSP-2126x SHARC DSP Core Manual

the ADSP-2126x processor executes looped code with zero overhead. No
explicit jump instructions are required to loop or to decrement and test
the counter. To achieve a high execution rate while maintaining a simple
programming model, the DSP employs a three stage pipeline to process
instructions—fetch, decode, and execute cycles.

Data Address Generators. The DAGs provide memory addresses when
data is transferred between memory and registers. Dual data address gen-
erators enable the processor to output simultaneous addresses for two
operand reads or writes. DAG1 supplies 32-bit addresses for accesses using
the DM bus. DAG2 supplies 32-bit addresses for memory accesses over
the PM bus.

Each DAG keeps track of up to eight address pointers, eight address mod-
ifiers, and for circular buffering eight base-address registers and eight
buffer-length registers. A pointer used for indirect addressing can be mod-
ified by a value in a specified register, either before (pre-modify) or after
(post-modify) the access. A length value may be associated with each
pointer to perform automatic modulo addressing for circular data buffers.
The circular buffers can be located at arbitrary boundaries in memory.
Each DAG register has a secondary register that can be activated for fast
context switching.

Circular buffers allow efficient implementation of delay lines and other
data structures required in digital signal processing They are also com-
monly used in digital filters and Fourier transforms. The DAGs
automatically handle address pointer wraparound, reducing overhead,
increasing performance, and simplifying implementation.

Interrupts. The ADSP-2126x processor has three external hardware inter-
rupts. The processor also provides three general-purpose interrupts, and a
special interrupt for reset. The processor has internally-generated inter-
rupts for the timer, DMA controller operations, circular buffer overflow,
stack overflows, arithmetic exceptions, and user-defined software
interrupts.

ADSP-2126x SHARC DSP Core Manual 1-9

Introduction

For the general-purpose interrupts and the internal timer interrupt, the
ADSP-2126x processor automatically stacks the arithmetic status (ASTATx)
register and mode (MODE1) registers in parallel with the interrupt servicing,
allowing 15 nesting levels of very fast service for these interrupts.

Context Switch. Many of the processor’s registers have secondary registers
that can be activated during interrupt servicing for a fast context switch.
The data registers in the register file, the DAG registers, and the multiplier
result register all have secondary registers. The primary registers are active
at reset, while the secondary registers are activated by control bits in a
mode control register.

Timer. The core’s programmable interval timer provides periodic inter-
rupt generation. When enabled, the timer decrements a 32-bit count
register every cycle. When this count register reaches zero, the
ADSP-2126x processor generates an interrupt and asserts its timer expired
output. The count register is automatically reloaded from a 32-bit period
register and the countdown resumes immediately.

Instruction Cache. The program sequencer includes a 32-word instruc-
tion cache that effectively provides three-bus operation for fetching an
instruction and two data values. The cache is selective; only instructions
whose fetches conflict with data accesses using the PM bus are cached.
This caching allows full speed execution of core, looped operations such as
digital filter multiply-accumulates, and FFT butterfly processing. For
more information on the cache, refer to “Using the Cache” on page 3-8.

Processor Internal Buses

The processor core has six buses: PM address, PM data, DM address, DM
data, I/O address, and I/O data. The PM bus is used to fetch instructions
from memory, but may also be used to fetch data. The DM bus can only
be used to fetch data from memory. The I/O bus is used solely by the IOP
to facilitate DMA transfers. In conjunction with the cache, this Super
Harvard Architecture allows the core to fetch an instruction and two
pieces of data in the same cycle that a data word is moved between mem-

Architectural Overview

1-10 ADSP-2126x SHARC DSP Core Manual

ory and a peripheral. This architecture allows dual data fetches, when the
instruction is supplied by the cache.

Bus Capacities. The PM and DM address buses are both 32 bits wide,
while the PM and DM data buses are both 64 bits wide.

These two buses provide a path for the contents of any register in the pro-
cessor to be transferred to any other register or to any data memory
location in a single cycle. When fetching data over the PM or DM bus, the
address comes from one of two sources: an absolute value specified in the
instruction (direct addressing) or the output of a data address generator
(indirect addressing). These two buses share the same port of the
dual-ported memory.

The second port of the dual-ported memory is dedicated to the I/O
address bus and the I/O data bus to let the I/O processor access internal
memory for DMA without delaying the processor core. The I/O address
bus is 18 bits wide, and the I/O data bus is 32 bits wide.

Data Transfers. Nearly every register in the processor core is classified as a
universal register (Ureg). Instructions allow the transfer of data between
any two universal registers or between a universal register and memory.
This support includes transfers between control registers, status registers,
and data registers in the register file. The PM bus connect (PX) registers
permit data to be passed between the 64-bit PM data bus and the 64-bit
DM data bus, or between the 40-bit register file and the PM data bus.
These registers contain hardware to handle the data width difference. For
more information, see “Processing Element Registers” on page A-21.

Processor Peripherals
The term processor peripherals refers to the multiple on-chip functional
blocks used to communicate with off-chip devices. The ADSP-2126x pro-
cessor peripherals include the JTAG, Parallel, Serial, SPI ports, DAI
components (PCG, Timers, and IDP), and any external devices that con-

ADSP-2126x SHARC DSP Core Manual 1-11

Introduction

nect to the DSP. For complete information on using peripherals, see the
peripheral user manual for the specific DSP product you are using.

Dual-Ported Internal Memory (SRAM)

The individual ADSP-2126x processor products contain varying amounts
of memory. For example, the ADSP-21262 processor provides 2M bits of
internal SRAM and 2M bits of internal ROM, each of which is organized
as two blocks of 1M bit. Each memory block of SRAM is dual-ported for
single cycle, independent accesses by the core processor and I/O processor.
The dual-ported memory and separate on-chip buses allow two data trans-
fers from the core and one from I/O, all in a single cycle.

All of the memory can be accessed as 16-, 32-, 48-, or 64-bit words. The
amount of memory for each word size changes, based on the part number.
On the ADSP-2126x processor, the memory can be configured as a maxi-
mum of 64K words of 32-bit data, 128K words of 16-bit data, 42.5K
words of 48-bit instructions (and 40-bit data), or combinations of differ-
ent word sizes up to 2M bit.

The DSP also supports a 16-bit floating-point storage format, which effec-
tively doubles the amount of data that may be stored on chip. Conversion
between the 32-bit floating-point and 16-bit floating-point formats com-
pletes in a single instruction.

While each memory block can store combinations of code and data,
accesses are most efficient when one block stores data (using the DM bus
for transfers) and the other block stores instructions and data (using the
PM bus for transfers). Using the DM and PM buses in this way (with one
dedicated to each memory block) assures single-cycle execution with two
data transfers. In this case, the instruction must be available in the cache.
The DSP also maintains single-cycle execution when one of the data oper-
ands is transferred to or from off chip, using the DSP parallel port.

Architectural Overview

1-12 ADSP-2126x SHARC DSP Core Manual

Timers

In addition to the core’s programmable interval timer, the ADSP-2126x
processor has three programmable interval timers that generate periodic
interrupts. Each timer can be independently set to operate in one of three
modes:

• Pulse Waveform Generation mode

• Pulsewidth Count/Capture mode

• External Event Watchdog mode

Each timer has one bidirectional pin and four registers that implement its
mode of operation. These registers are a 7-bit configuration register, a
32-bit count register, a 32-bit period register, and a 32-bit pulsewidth reg-
ister. A single status register supports all three timers. A bit in each timer’s
configuration register enables or disables the corresponding timer inde-
pendently of the others.

JTAG Port

The JTAG port on the ADSP-2126x processor supports the IEEE stan-
dard 1149.1 Joint Test Action Group (JTAG) standard for system test.
This standard defines a method for serially scanning the I/O status of each
component in a system. Emulators use the JTAG port to monitor and
control the DSP during emulation. Emulators using this port provide full
speed emulation with access to inspect and modify memory, registers, and
processor stacks. JTAG-based emulation is non-intrusive and does not
effect target system loading or timing.

ROM Based Security. For those ADSP-2126x processor processors with
application code in the on-chip ROM, an optional ROM security feature
is included. This feature provides hardware support for securing user soft-
ware code by preventing unauthorized reading from the enabled code. The
DSP does not boot-load any external code, executing exclusively from
internal ROM. The DSP also is not be freely accessible via the JTAG port.

ADSP-2126x SHARC DSP Core Manual 1-13

Introduction

Instead a 64-bit key will be assigned to the user. This key must be scanned
in through the JTAG or Test Access Port. The device ignores a wrong key.
Emulation features and external boot modes are only available after the
correct key is scanned.

Development Tools
The ADSP-2126x processor is supported by VisualDSP++, an easy to use
Integrated Development & Debugging Environment (IDDE). Visu-
alDSP++ allows you to manage projects from start to finish from within a
single, integrated interface. Because the project development and debug
environments are integrated, you can move easily between editing, build-
ing, and debugging activities.

Differences From Previous SHARC DSPs
This section identifies differences between the ADSP-2126x processor and
previous SHARC DSPs: ADSP-21161, ADSP-21160, ADSP-21060,
ADSP-21061, ADSP-21062, and ADSP-21065L. Like the ADSP-2116x
family, the ADSP-2126x processor family is based on the original
ADSP-2106x SHARC family. The ADSP-2126x processor preserves much
of the ADSP-2106x architecture and is code compatible to the
ADSP-21160, while extending performance and functionality. For back-
ground information on SHARC and the ADSP-2106x Family DSPs, see
the ADSP-2106x SHARC User’s Manual or the ADSP-21065L SHARC
Technical Reference.

Processor Core Enhancements
Computational bandwidth on the ADSP-2126x processor is significantly
greater than that on the ADSP-2106x DSPs. The increase comes from
raising the operational frequency and adding another processing element:

Differences From Previous SHARC DSPs

1-14 ADSP-2126x SHARC DSP Core Manual

ALU, shifter, multiplier, and register file. The new processing element lets
the DSP process multiple data streams in parallel (SIMD mode). The
ADSP-2126x processor operates at 200 MHz using a three stage pipeline.

Like the ADSP-21160 processor, the program sequencer on the
ADSP-2126x processor differs from the ADSP-2126x processor family,
having several enhancements: new interrupt vector table definitions,
SIMD mode stack and conditional execution model, and instruction
decodes associated with new instructions. Interrupt vectors have been
added that detect illegal memory accesses. Also, mode stack and mode
mask support have been added to improve context switch time.

As with the ADSP-21160 processor, the data address generators on the
ADSP-2126x processor differ from the ADSP-2126x processor in that
DAG2 (for the PM bus) has the same addressing capability as DAG1 (for
the DM bus). The DAG registers move 64 bits per cycle. Additionally, the
DAGs support the new memory map and long word transfer capability.
Circular buffering on the ADSP-2126x processor can be quickly disabled
on interrupts and restored on the return. Data “broadcast”, from one
memory location to both data register files, is determined by appropriate
index register usage.

Processor Internal Bus Enhancements
The PM, DM, and I/O data buses on the ADSP-2126x processor have
increased from 32 bits on the ADSP-2106x DSPs to 64 bits. Additional
multiplexing and control logic on the ADSP-2126x processor enable 16-,
32-, or 64-bit wide moves between both register files and memory. The
ADSP-2126x processor is capable of broadcasting a single memory loca-
tion to each of the register files in parallel. Also, the ADSP-2126x
processor permits register contents to be exchanged between the two pro-
cessing elements’ register files in a single cycle.

ADSP-2126x SHARC DSP Core Manual 1-15

Introduction

Memory Organization Enhancements
The ADSP-2126x processor memory map differs from the memory map
of the ADSP-2106x DSP. The system memory map on the ADSP-2126x
processor supports double-word transfers each cycle, reflects extended
internal memory capacity for derivative designs, and works with an
updated control register for SIMD support. The ADSP-2126x processor
family provides enough on-chip memory for several audio decoders.

JTAG Port Enhancements
The ADSP-2126x processor JTAG port differs from the JTAG port of the
ADSP-2106x DSPs. The ADSP-2126x processor offers ROM-based secu-
rity. These security features prevent piracy of codes and algorithms and
prohibit inspection of on-chip memory via the emulator or buses. The
JTAG port uses program controls to limit access to sensitive code in mem-
ory. An assigned 64-bit key must be used to access protected memory
regions.

The Background Telemetry Channel (BTC) allows the emulator to feed
new data to the DSP. It also gets updates from the DSP in real time. By
using this function (that operates in the background), programmers can
read and write data to a set of memory-mapped buffers that are accessible
by the emulator while the core is running.

Instruction Set Enhancements
The ADSP-2126x processor provides source code compatibility with the
previous SHARC processor family members, to the application assembly
source code level. All instructions, control registers, and system resources
available in the ADSP-2106x core programming model are also available

Differences From Previous SHARC DSPs

1-16 ADSP-2126x SHARC DSP Core Manual

in the ADSP-2126x processor. Instructions, control registers, or other
facilities, required to support the new feature set of the ADSP-2116x core
include:

• Code compatibility with the ADSP-21160 SIMD core

• Supersets of the ADSP-2106x programming model

• Reserved facilities in the ADSP-2106x programming model

• Symbol name changes from the ADSP-2106x and ADSP-2126x
processor programming models

These name changes can be managed through reassembly by using the
ADSP-2126x processor development tools to apply the ADSP-2126x pro-
cessor symbol definitions header file and linker description file. While
these changes have no direct impact on existing core applications, system
and I/O processor initialization code and control code do require
modifications.

Although the porting of source code written for the ADSP-2106x family
to the ADSP-2126x processor has been simplified, code changes will be
required to take full advantage of the new ADSP-2126x processor features.
For more information, see the ADSP-21160 SHARC DSP Instruction Set
Reference.

ADSP-2126x SHARC DSP Core Manual 2-1

2 PROCESSING ELEMENTS

The DSP’s processing elements (PEx and PEy) perform numeric process-
ing for DSP algorithms. Each processing element contains a data register
file and three computation units—an arithmetic/logic unit (ALU), a mul-
tiplier, and a shifter. Computational instructions for these elements
include both fixed-point and floating-point operations, and each compu-
tational instruction executes in a single cycle.

The computational units in a processing element handle different types of
operations. The ALU performs arithmetic and logic operations on
fixed-point and floating-point data. The multiplier performs float-
ing-point and fixed-point multiplication and executes fixed-point
multiply/add and multiply/subtract operations. The shifter completes log-
ical shifts, arithmetic shifts, bit manipulation, field deposit, and field
extraction operations on 32-bit operands. Also, the shifter can derive
exponents.

Data flow paths through the computational units are arranged in parallel,
as shown in Figure 2-1. The output of any computational unit may serve
as the input of any computational unit on the next instruction cycle. Data
moving in and out of the computational units goes through a 10-port reg-
ister file, consisting of 16 primary registers and 16 alternate registers. Two
ports on the register file connect to the PM and DM data buses, allowing
data transfer between the computational units and memory (and anything
else) connected to these buses.

The processor’s assembly language provides access to the data register files
in both processing elements. The syntax allows programs to move data to
and from these registers, specify a computation’s data format and provide

Numeric Formats

2-2 ADSP-2126x SHARC DSP Core Manual

naming conventions for the registers, all at the same time. For information
on the data register names, see “Data Register File” on page 2-37.

Figure 2-1 provides a graphical guide to the other topics in this chapter.
First, a description of the MODE1 register shows how to set rounding, data
format, and other modes for the processing elements. The dashed box
indicates which components can be controlled by the MODE1 register. Next,
an examination of each computational unit provides details on operation
and a summary of computational instructions. Outside the computational
units, details on register files and data buses identify how to flow data for
computations. Finally, details on the DSP’s advanced parallelism reveal
how to take advantage of multifunction instructions and Single-Instruc-
tion Multiple-Data (SIMD) mode.

Numeric Formats
The DSP supports the 32-bit single-precision floating-point data format
defined in the IEEE Standard 754/854. In addition, the DSP supports an
extended-precision version of the same format with eight additional bits in
the mantissa (40 bits total). The DSP also supports 32-bit fixed-point for-
mats—fractional and integer—which can be signed (twos-complement) or
unsigned.

IEEE Single-Precision Floating-Point Data Format
IEEE Standard 754/854 specifies a 32-bit single-precision floating-point
format, shown in Figure 2-2. A number in this format consists of a sign
bit (s), a 24-bit significand, and an 8-bit unsigned-magnitude exponent
(e).

For normalized numbers, the significand consists of a 23-bit fraction f and
a “hidden” bit of 1 that is implicitly presumed to precede f22 in the signif-
icand. The binary point is presumed to lie between this hidden bit and f22.

ADSP-2126x SHARC DSP Core Manual 2-3

Processing Elements

The Least Significant Bit (LSB) of the fraction is f0; the LSB of the expo-
nent is e0.

The hidden bit effectively increases the precision of the floating-point sig-
nificand to 24 bits from the 23 bits actually stored in the data format. It
also insures that the significand of any number in the IEEE normalized
number format is always greater than or equal to one and less than two.

The unsigned exponent, e, can range between 1 ≤ e ≤ 254 for normal
numbers in the single-precision format. This exponent is biased by
+127 (254, 2). To calculate the true unbiased exponent, 127 must be sub-
tracted from e.

Figure 2-1. Computational Block

REGISTER FILE
(16 x 40-BIT)

R0
R1
R2
R3

R4
R5
R6
R7

R12
R13
R14
R15

R8
R9
R10
R11

MULTIPLIER SHIFTER ALU

MRF2 MRF0MRF1

DM DATA BUS

PM DATA BUS

ASTATx STKYx

MODE1

TO PROGRAM SEQUENCER

X Y Z XY XY

Numeric Formats

2-4 ADSP-2126x SHARC DSP Core Manual

The IEEE Standard also provides for several special data types in the sin-
gle-precision floating-point format:

• An exponent value of 255 (all ones) with a nonzero fraction is a
Not-A-Number (NAN). NANs are usually used as flags for data
flow control, for the values of uninitialized variables, and for the
results of invalid operations such as 0 * ∞.

• Infinity is represented as an exponent of 255 and a zero fraction.
Note that because the fraction is signed, both positive and negative
Infinity can be represented.

• Zero is represented by a zero exponent and a zero fraction. As with
Infinity, both positive Zero and negative Zero can be represented.

The IEEE single-precision floating-point data types supported by the DSP
and their interpretations are summarized in Table 2-1.

Figure 2-2. IEEE 32-Bit Single-Precision Floating-Point Format

Table 2-1. IEEE Single-Precision Floating-Point Data Types

Type Exponent Fraction Value

NAN 255 Nonzero Undefined

Infinity 255 0 (–1)σ Infinity

s e0

31 30 23 22 0

1 . f22 f0e7 • • •

HIDDEN BIT BINARY POINT

• • •

ADSP-2126x SHARC DSP Core Manual 2-5

Processing Elements

Extended-Precision Floating-Point Format
The extended-precision floating-point format is 40 bits wide, with the
same 8-bit exponent as in the IEEE Standard format but a 32-bit signifi-
cand. This format is shown in Figure 2-3. In all other respects, the
extended-precision floating-point format is the same as the IEEE Standard
format.

Short Word Floating-Point Format
The DSP supports a 16-bit floating-point data type and provides conver-
sion instructions for it. The short float data format has an 11-bit mantissa
with a 4-bit exponent plus sign bit, as shown in Figure 2-4. The 16-bit
floating-point numbers reside in the lower 16 bits of the 32-bit float-
ing-point field.

Normal 1 ≤ e ≤ 254 Any (–1)σ (1.f22-0) 2 e–127

Zero 0 0 (–1)σ Zero

Figure 2-3. 40-Bit Extended-Precision Floating-Point Format

Table 2-1. IEEE Single-Precision Floating-Point Data Types (Cont’d)

Type Exponent Fraction Value

s e0

39 38 31 30 0

1 . f30 f0e7 • • • • • •

HIDDEN BIT BINARY POINT

Numeric Formats

2-6 ADSP-2126x SHARC DSP Core Manual

Packing for Floating-Point Data
Two shifter instructions, FPACK and FUNPACK, perform the packing and
unpacking conversions between 32-bit floating-point words and 16-bit
floating-point words. The FPACK instruction converts a 32-bit IEEE float-
ing-point number to a 16-bit floating-point number. The FUNPACK
instruction converts the 16-bit floating-point numbers back to 32-bit
IEEE floating-point numbers. Each instruction executes in a single cycle.
The results of the FPACK and FUNPACK operations appear in Table 2-2 and
Table 2-3.

Figure 2-4. 16-Bit Floating-Point Format

Table 2-2. FPACK Operations

Condition Result

135 < exp Largest magnitude representation.

120 < exp ≤ 135 Exponent is Most Significant Bit (MSB) of source exponent concate-
nated with the three Least Significant Bits (LSBs) of source exponent.
The packed fraction is the rounded upper 11 bits of the source fraction.

exp = source exponent
sign bit remains the same in all cases

s e0

15 14 11 10 0

1 . f10 f0e3 • • • • • •

HIDDEN BIT BINARY POINT

ADSP-2126x SHARC DSP Core Manual 2-7

Processing Elements

The short float type supports gradual underflow. This method sacrifices
precision for dynamic range. When packing a number which would have
underflowed, the exponent is set to zero and the mantissa (including “hid-
den” 1) is right-shifted the appropriate amount. The packed result is a
denormal, which can be unpacked into a normal IEEE floating-point
number.

During the FPACK operation, an overflow sets the SV condition and
non-overflow clears it. During the FUNPACK operation, the SV condition is
cleared. The SZ and SS conditions are cleared by both instructions.

109 < exp ≤ 120 Exponent = 0. Packed fraction is the upper bits (source exponent – 110)
of the source fraction prefixed by zeros and the “hidden” one. The
packed fraction is rounded.

exp < 110 Packed word is all zeros.

Table 2-3. FUNPACK Operations

Condition Result

0 < exp ≤ 15 Exponent is the 3 LSBs of the source exponent prefixed by the MSB of
the source exponent and four copies of the complement of the MSB.
The unpacked fraction is the source fraction with 12 zeros appended.

exp = 0 Exponent is (120 – N) where N is the number of leading zeros in the
source fraction. The unpacked fraction is the remainder of the source
fraction with zeros appended to pad it and the “hidden” one stripped
away.

exp = source exponent
sign bit remains the same in all cases

Table 2-2. FPACK Operations (Cont’d)

Condition Result

exp = source exponent
sign bit remains the same in all cases

Numeric Formats

2-8 ADSP-2126x SHARC DSP Core Manual

Fixed-Point Formats
The DSP supports two 32-bit fixed-point formats—fractional and integer.
In both formats, numbers can be signed (twos-complement) or unsigned.
The four possible combinations are shown in Figure 2-5. In the fractional
format, there is an implied binary point to the left of the most significant
magnitude bit. In integer format, the binary point is understood to be to
the right of the LSB. Note that the sign bit is negatively weighted in a
twos-complement format.

ALU outputs always have the same width and data format as the inputs.
The multiplier, however, produces a 64-bit product from two 32-bit
inputs. If both operands are unsigned integers, the result is a 64-bit
unsigned integer. If both operands are unsigned fractions, the result is a
64-bit unsigned fraction. These formats are shown in Figure 2-7.

If one operand is signed and the other unsigned, the result is signed. If
both inputs are signed, the result is signed and automatically shifted left
one bit. The LSB becomes zero and bit 62 moves into the sign bit posi-
tion. Normally bit 63 and bit 62 are identical when both operands are
signed. (The only exception is full-scale negative multiplied by itself.)
Thus, the left-shift normally removes a redundant sign bit, increasing the
precision of the most significant product. Also, if the data format is frac-
tional, a single bit left-shift renormalizes the MSP to a fractional format.
The signed formats with and without left-shifting are shown in
Figure 2-6.

The multiplier has an 80-bit accumulator to allow the accumulation of
64-bit products. For more information on the multiplier and accumula-
tor, see “Multiply Accumulator (Multiplier)” on page 2-22.

ADSP-2126x SHARC DSP Core Manual 2-9

Processing Elements

Figure 2-5. 32-Bit Fixed-Point Formats

31 30 29

• • •

2 1

-2 31
2 30 22 9 22 21 2 0

S IG N
B IT

W E IG H T

B IT

B IN A R Y P O IN T

0

31 30 2 9

• • •

2 1

2 -2 9W E IG H T

B IT

B IN A R Y P O IN T

0

2 -30 2 -3 1-2-0 2 -1 2 -2

S IG N

B IT

S IG N E D FR A C TIO N A L

S IG N E D IN TE G E R

• • • 2 -3 0 2 -31 2 -32
•2 -1 2 -2 2 -3

U N S IG N E D IN TE G E R

U N S IG N ED FR A C TIO N A L

•

•

B IN A R Y PO IN T

3 1 3 0 29

• • •

2 1

2 31 2 30 229 22 21 20
•

W E IG H T

B IT 0

31 30 2 9 2 1

W E IG H T

B IT

B IN A R Y P O IN T

0

Numeric Formats

2-10 ADSP-2126x SHARC DSP Core Manual

Figure 2-6. 64-Bit Signed Fixed-Point Product

Figure 2-7. 64-Bit Unsigned Fixed-Point Product

63 62 61

• • •

2 1

SIGN
BIT

WEIGHT

BIT 0

SIGNED INTEGER, NO LEFT SHIFT

-263 262 261 22 21 20• • •
•

BINARY
POINT

SIGNED FRACTIONAL, WITH LEFT SHIFT

63 62 61

• • •

2 1

2-61

0

2-62 2-63-20 2-1 2-2
•

BINARY
POINT

SIGN
BIT

WEIGHT

BIT

63 62 61

• • •

2 1

WEIGHT

BIT 0

SIGNED INTEGER

263 262 261 22 21 20
•

BINARY
POINT

SIGNED FRACTIONAL

63 62 61

• • •

2 1

2-62

0

2-63 2-642-1 2-2 2-3
•

BINARY
POINT

WEIGHT

BIT

ADSP-2126x SHARC DSP Core Manual 2-11

Processing Elements

Setting Computational Modes
The MODE1 register controls the operating mode of the processing ele-
ments. Table A-2 on page A-5 lists all the bits in MODE1. The following bits
in MODE1 control computational modes:

• Floating-point data format. Bit 16 (RND32) directs the computa-
tional units to round floating-point data to 32 bits (if 1) or round
to 40 bits (if 0).

• Rounding mode. Bit 15 (TRUNC) directs the computational units to
round results with round-to-zero (if 1) or round-to-nearest (if 0).

• ALU saturation. Bit 13 (ALUSAT) directs the computational units to
saturate results on positive or negative fixed-point overflows (if 1)
or return unsaturated results (if 0).

• Short word sign extension. Bit 14 (SSE) directs the computational
units to sign extended short word 16-bit data (if 1) or zero-fill the
upper 16 bits (if 0).

• Secondary processor element (PEy). Bit 21 (PEYEN) enables compu-
tations in PEy (SIMD mode) (if 1) or disables PEy Single
Instruction Single Data (SISD mode) (if 0).

32-Bit Floating-Point Format (Normal Word)
In the default mode of the DSP (RND32 bit=1), the multiplier and ALU
support a single-precision floating-point format, which is specified in the
IEEE 754/854 standard. For more information on this standard, see

Setting Computational Modes

2-12 ADSP-2126x SHARC DSP Core Manual

“Numeric Formats” on page 2-2. This format is IEEE 754/854 compati-
ble for single-precision floating-point operations in all respects except:

• The DSP does not provide inexact flags. An inexact flag is an
exception flag whose bit position is inexact. The inexact exception
occurs if the rounded result of an operation is not identical to the
exact (infinitely precise) result. Thus, an inexact exception always
occurs when an overflow or an underflow occurs.

• NAN (Not-A-Number) inputs generate an invalid exception and
return a quiet NAN (all 1s).

• Denormal operands, using denormalized (or tiny) numbers, flush
to zero when input to a computational unit and do not generate an
underflow exception. A denormal operand is one of the float-
ing-point operands with an absolute value too small to represent
with full precision in the significant. The denormal exception
occurs if one or more of the operands is a denormal number. This
exception is never regarded as an error.

• The processor supports round-to-nearest and round-toward-zero
modes, but does not support round-to-+Infinity and round-to
--Infinity.

IEEE single-precision floating-point data uses a 23-bit mantissa with an
8-bit exponent plus sign bit. In this case, the computation unit sets the
eight LSBs of floating-point inputs to zeros before performing the opera-
tion. The mantissa of a result rounds to 23 bits (not including the hidden
bit), and the 8 LSBs of the 40-bit result clear to zeros to form a 32-bit
number, which is equivalent to the IEEE standard result.

In fixed-point to floating-point conversion, the rounding boundary is
always 40 bits, even if the RND32 bit is set.

ADSP-2126x SHARC DSP Core Manual 2-13

Processing Elements

40-Bit Floating-Point Format
When in extended-precision mode (RND32 bit=0), the DSP supports a
40-bit extended-precision floating-point mode, which has eight additional
LSBs of the mantissa and is compliant with the 754/854 standards. How-
ever, results in this format are more precise than the IEEE single-precision
standard specifies. Extended-precision floating-point data uses a 31-bit
mantissa with a 8-bit exponent plus sign bit.

16-Bit Floating-Point Format (Short Word)
The DSP supports a 16-bit floating-point storage format and provides
instructions that convert the data for 40-bit computations. The 16-bit
floating-point format uses an 11-bit mantissa with a 4-bit exponent plus
sign bit. The 16-bit data goes into bits 23 through 8 of a data register.
Two shifter instructions, Fpack and Funpack, perform the packing and
unpacking conversions between 32-bit floating-point words and 16-bit
floating-point words. The Fpack instruction converts a 32-bit IEEE float-
ing-point number in a data register into a 16-bit floating-point number.
Funpack converts a 16-bit floating-point number in a data register to a
32-bit IEEE floating-point number. Each instruction executes in a single
cycle.

When 16-bit data is written to bits 23 through 8 of a data register, the
DSP automatically extends the data into a 32-bit integer (bits 39 through
8). If the SSE bit in MODE1 is set (1), the DSP sign extends the upper 16
bits. If the SSE bit is cleared (0), the DSP zeros the upper 16 bits.

The 16-bit floating-point format supports gradual underflow. This
method sacrifices precision for dynamic range. When packing a number
that would have underflowed, the exponent clears to zero and the mantissa
(including a “hidden” 1) right-shifts the appropriate amount. The packed
result is a denormal, which can be unpacked into a normal IEEE float-
ing-point number.

Setting Computational Modes

2-14 ADSP-2126x SHARC DSP Core Manual

32-Bit Fixed-Point Format
The DSP always represents fixed-point numbers in 32 bits, occupying the
32 MSBs in 40-bit data registers. Fixed-point data may be fractional or
integer numbers and unsigned or twos-complement. Each computational
unit has its own limitations on how these formats may be mixed for a
given operation. All computational units read the upper 32 bits of data
(inputs, operands) from the 40-bit registers (ignoring the eight LSBs) and
write results to the upper 32 bits (zeroing the eight LSBs).

Rounding Mode
The TRUNC bit in the MODE1 register determines the rounding mode for all
ALU operations, all floating-point multiplies, and fixed-point multiplies
of fractional data. The DSP supports two modes of rounding:
round-toward-zero and round-toward-nearest. The rounding modes com-
ply with the IEEE 754 standard and have the following definitions:

• Round-toward-zero (TRUNC bit=1). If the result before rounding is
not exactly representable in the destination format, the rounded
result is the number that is nearer to zero. This is equivalent to
truncation.

• Round-toward-nearest (TRUNC bit=0). If the result before rounding
is not exactly representable in the destination format, the rounded
result is the number that is nearer to the result before rounding. If
the result before rounding is exactly halfway between two numbers
in the destination format (differing by an LSB), the rounded result
is the number that has an LSB equal to zero.

Statistically, rounding up occurs as often as rounding down, so there is no
large sample bias. Because the maximum floating-point value is one LSB
less than the value that represents infinity, a result that is halfway between
the maximum floating-point value and Infinity rounds to Infinity in this
mode.

ADSP-2126x SHARC DSP Core Manual 2-15

Processing Elements

Though these rounding modes comply with standards set for float-
ing-point data, they also apply for fixed-point multiplier operations on
fractional data. The same two rounding modes are supported, but only the
round-to-nearest operation is actually performed by the multiplier. Using
its local result register for fixed-point operations, the multiplier
rounds-to-zero by reading only the upper bits of the result and discarding
the lower bits.

Using Computational Status
The multiplier and ALU each provide exception information when exe-
cuting floating-point operations. Each unit updates overflow, underflow,
and invalid operation flags in the processing element’s arithmetic status
(ASTATx and ASTATy) registers and sticky status (STKYx and STKYy) registers.
An underflow, overflow, or invalid operation from any unit also generates
a maskable interrupt. There are three ways to use floating-point excep-
tions from computations in program sequencing:

• Interrupts. Enable interrupts and use an interrupt service routine
(ISR) to handle the exception condition immediately. This method
is appropriate if it is important to correct all exceptions as they
occur.

• The ASTATx and ASTATy registers. Use conditional instructions to
test the exception flags in the ASTATx or ASTATy registers after the
instruction executes. This method permits monitoring each
instruction’s outcome.

• The STKYx and STKYy registers. Use the bit test (BTST) instruction
to examine exception flags in the STKY register after a series of oper-
ations. If any flags are set, some of the results are incorrect. This
method is useful when exception handling is not critical.

Arithmetic Logic Unit (ALU)

2-16 ADSP-2126x SHARC DSP Core Manual

More information on ASTAT and STKY status appears in the sections that
describe the computational units. For summaries relating instructions and
status bits, see Table 2-4, Table 2-5, Table 2-6, Table 2-7, and Table 2-8.

Arithmetic Logic Unit (ALU)
The ALU performs arithmetic operations on fixed-point or floating-point
data and logical operations on fixed-point data. ALU fixed-point instruc-
tions operate on 32-bit fixed-point operands and output 32-bit
fixed-point results, while ALU floating-point instructions operate on
32-bit or 40-bit floating-point operands and output 32-bit or 40-bit float-
ing-point results. ALU instructions include:

• Floating-point addition, subtraction, add/subtract, average

• Fixed-point addition, subtraction, add/subtract, average

• Floating-point manipulation: binary log, scale, mantissa

• Fixed-point add with carry, subtract with borrow, increment,
decrement

• Logical And, Or, Xor, Not

• Functions: Abs, pass, min, max, clip, compare

• Format conversion

• Reciprocal and reciprocal square root primitives

ALU Operation
ALU instructions take one or two inputs: X input and Y input. These
inputs (also known as operands) can be any data registers in the register
file. Most ALU operations return one result; in add/subtract operations,
the ALU operation returns two results, and in compare operations, the

ADSP-2126x SHARC DSP Core Manual 2-17

Processing Elements

ALU operation returns no result (only flags are updated). ALU results can
be returned to any location in the register file.

The DSP transfers input operands from the register file during the first
half of the processor cycle and transfers results to the register file during
the second half of the cycle. With this arrangement, the ALU can read and
write the same register file location in a single cycle. If the ALU operation
is fixed-point, the inputs are treated as 32-bit fixed-point operands. The
ALU transfers the upper 32 bits from the source location in the register
file. For fixed-point operations, the result(s) are always 32-bit fixed-point
values. Some floating-point operations (Logb, Mant and Fix) can also yield
fixed-point results.

The DSP transfers fixed-point results to the upper 32 bits of the data reg-
ister and clears the lower eight bits of the register. The format of
fixed-point operands and results depends on the operation. In most arith-
metic operations, there is no need to distinguish between integer and
fractional formats. Fixed-point inputs to operations such as scaling a float-
ing-point value are treated as integers. For purposes of determining status
such as overflow, fixed-point arithmetic operands and results are treated as
twos-complement numbers.

ALU Saturation
When the ALUSAT bit is set (=1) in the MODE1 register, the ALU is in satura-
tion mode. In this mode, all positive fixed-point overflows return the
maximum positive fixed-point number (0x7FFF FFFF), and all negative
overflows return the maximum negative number (0x8000 0000).

When the ALUSAT bit is cleared (=0) in the MODE1 register, fixed-point
results that overflow are not saturated; the upper 32 bits of the result are
returned unaltered.

The ALU overflow flag reflects the ALU result before saturation.

Arithmetic Logic Unit (ALU)

2-18 ADSP-2126x SHARC DSP Core Manual

ALU Status Flags
ALU operations update seven status flags in the processing element’s arith-
metic status (ASTATx and ASTATy) registers. Table A-4 on page A-14 lists
all the bits in these registers. The following bits in ASTATx or ASTATy flag
the ALU status (a 1 indicates the condition) of the most recent ALU
operation:

• ALU result zero or floating-point underflow. Bit 0 (AZ)

• ALU overflow. Bit 1 (AV)

• ALU result negative. Bit 2 (AN)

• ALU fixed-point carry. Bit 3 (AC)

• ALU X input sign for Abs, Mant operations. Bit 4 (AS)

• ALU floating-point invalid operation. Bit 5 (AI)

• Last ALU operation was a floating-point operation. Bit 10 (AF)

• Compare Accumulation register results of last eight compare opera-
tions. Bits 31-24 (CACC)

ALU operations also update four “sticky” status flags in the processing ele-
ment’s sticky status (STKYx and STKYy) registers. Table A-5 on page A-19
lists all the bits in these registers. The following bits in STKYx or STKYy flag
the ALU status (a 1 indicates the condition). Once set, a sticky flag
remains high until explicitly cleared:

• ALU floating-point underflow. Bit 0 (AUS)

• ALU floating-point overflow. Bit 1 (AVS)

• ALU fixed-point overflow. Bit 2 (AOS)

• ALU floating-point invalid operation. Bit 5 (AIS)

ADSP-2126x SHARC DSP Core Manual 2-19

Processing Elements

Flag updates occur at the end of the cycle in which the status is generated
and is available on the next cycle. If a program writes the arithmetic status
register or sticky status register explicitly in the same cycle that the ALU is
performing an operation, the explicit write to the status register supersedes
any flag update from the ALU operation.

ALU Instruction Summary
Table 2-4 and Table 2-5 list the ALU instructions and show how they
relate to ASTATx,y and STKYx,y flags. For more information on assembly
language syntax, see the ADSP-21160 SHARC DSP Instruction Set Refer-
ence. In these tables, note the meaning of these symbols:

• Rn, Rx, Ry indicate any register file location; treated as fixed-point

• Fn, Fx, Fy indicate any register file location; treated as
floating-point

• * indicates the flag may be set or cleared, depending on the results
of instruction

• ** indicates the flag may be set (but not cleared), depending on the
results of the instruction

• – indicates no effect

Arithmetic Logic Unit (ALU)

2-20 ADSP-2126x SHARC DSP Core Manual

Table 2-4. Fixed-Point ALU Instruction Summary

Instruction ASTATx,y Status Flags STKYx,y Status
Flags

Fixed-point: A
Z

A
V

A
N

A
C

A
S

A
I

A
F

C
A
C
C

A
U
S

A
V
S

A
O
S

A
I
S

Rn = Rx + Ry * * * * 0 0 0 – – – ** –

Rn = Rx – Ry * * * * 0 0 0 – – – ** –

Rn = Rx + Ry + CI * * * * 0 0 0 – – – ** –

Rn = Rx – Ry + CI – 1 * * * * 0 0 0 – – – ** –

Rn = (Rx + Ry)/2 * 0 * * 0 0 0 – – – – –

COMP(Rx, Ry) * 0 * 0 0 0 0 * – – – –

COMPU(Rx,Ry) * 0 * 0 0 0 0 * -- -- -- --

Rn = Rx + CI * * * * 0 0 0 – – – ** –

Rn = Rx + CI – 1 * * * * 0 0 0 – – – ** –

Rn = Rx + 1 * * * * 0 0 0 – – – ** –

Rn = Rx – 1 * * * * 0 0 0 – – – ** –

Rn = –Rx * * * * 0 0 0 – – – ** –

Rn = ABS Rx * * 0 0 * 0 0 – – – ** –

Rn = PASS Rx * 0 * 0 0 0 0 – – – – –

Rn = Rx AND Ry * 0 * 0 0 0 0 – – – – –

Rn = Rx OR Ry * 0 * 0 0 0 0 – – – – –

Rn = Rx XOR Ry * 0 * 0 0 0 0 – – – – –

Rn = NOT Rx * 0 * 0 0 0 0 – – – – –

Rn = MIN(Rx, Ry) * 0 * 0 0 0 0 – – – – –

Rn = MAX(Rx, Ry) * 0 * 0 0 0 0 – – – – –

Rn = CLIP Rx BY Ry * 0 * 0 0 0 0 – – – – –

ADSP-2126x SHARC DSP Core Manual 2-21

Processing Elements

Table 2-5. Floating-Point ALU Instruction Summary

Instruction ASTATx,y Status Flags STKYx,y Status Flags

Floating-point: A
Z

A
V

A
N

A
C

A
S

A
I

A
F

C
A
C
C

A
U
S

A
V
S

A
O
S

A
I
S

Fn = Fx + Fy * * * 0 0 * 1 – ** ** – **

Fn = Fx – Fy * * * 0 0 * 1 – ** ** – **

Fn = ABS (Fx + Fy) * * 0 0 0 * 1 – ** ** – **

Fn = ABS (Fx – Fy) * * 0 0 0 * 1 – ** ** – **

Fn = (Fx + Fy)/2 * 0 * 0 0 * 1 – ** – – **

COMP(Fx, Fy) * 0 * 0 0 * 1 * – – – **

Fn = –Fx * * * 0 0 * 1 – – ** – **

Fn = ABS Fx * * 0 0 * * 1 – – ** – **

Fn = PASS Fx * 0 * 0 0 * 1 – – – – **

Fn = RND Fx * * * 0 0 * 1 – – ** – **

Fn = SCALB Fx BY Ry * * * 0 0 * 1 – ** ** – **

Rn = MANT Fx * * 0 0 * * 1 – – ** – **

Rn = LOGB Fx * * * 0 0 * 1 – – ** – **

Rn = FIX Fx BY Ry * * * 0 0 * 1 – ** ** – **

Rn = FIX Fx * * * 0 0 * 1 – ** ** – **

Fn = FLOAT Rx BY Ry * * * 0 0 0 1 – ** ** – –

Fn = FLOAT Rx * 0 * 0 0 0 1 – – – – –

Fn = RECIPS Fx * * * 0 0 * 1 – ** ** – **

Fn = RSQRTS Fx * * * 0 0 * 1 – – ** – **

Fn = Fx COPYSIGN Fy * 0 * 0 0 * 1 – – – – **

Fn = MIN(Fx, Fy) * 0 * 0 0 * 1 – – – – **

Multiply Accumulator (Multiplier)

2-22 ADSP-2126x SHARC DSP Core Manual

Multiply Accumulator (Multiplier)
The multiplier performs fixed-point or floating-point multiplication and
fixed-point multiply/accumulate operations. Fixed-point multiply/accu-
mulates are available with either cumulative addition or cumulative
subtraction. Multiplier floating-point instructions operate on 32-bit or
40-bit floating-point operands and output 32-bit or 40-bit floating-point
results. Multiplier fixed-point instructions operate on 32-bit fixed-point
data and produce 80-bit results. Inputs are treated as fractional or integer,
unsigned or twos-complement. Multiplier instructions include:

• Floating-point multiplication

• Fixed-point multiplication

• Fixed-point multiply/accumulate with addition, rounding optional

• Fixed-point multiply/accumulate with subtraction, rounding
optional

• Rounding result register

• Saturating result register

• Clearing result register

Fn = MAX(Fx, Fy) * 0 * 0 0 * 1 – – – – **

Fn = CLIP Fx BY Fy * 0 * 0 0 * 1 – – – – **

Table 2-5. Floating-Point ALU Instruction Summary (Cont’d)

Instruction ASTATx,y Status Flags STKYx,y Status Flags

Floating-point: A
Z

A
V

A
N

A
C

A
S

A
I

A
F

C
A
C
C

A
U
S

A
V
S

A
O
S

A
I
S

ADSP-2126x SHARC DSP Core Manual 2-23

Processing Elements

Multiplier Operation
The multiplier takes two inputs: X input and Y input. These inputs (also
known as operands) can be any data registers in the register file. The
multiplier can accumulate fixed-point results in the local Multiplier Result
(MRF) registers or write results back to the register file. The results in MRF
can also be rounded or saturated in separate operations. Floating-point
multiplies yield floating-point results, which the multiplier always writes
directly to the register file.

The multiplier transfers input operands during the first half of the proces-
sor cycle and transfers results during the second half of the cycle. With
this arrangement, the multiplier can read and write the same register file
location in a single cycle.

For fixed-point multiplies, the multiplier reads the inputs from the upper
32 bits of the data registers. Fixed-point operands may be either both in
integer format or both in fractional format. The format of the result
matches the format of the inputs. Each fixed-point operand may be either
an unsigned or a twos-complement number. If both inputs are fractional
and signed, the multiplier automatically shifts the result left one bit to
remove the redundant sign bit. The register name(s) within the multiplier
instruction specify input data type(s)—Fx for floating-point and Rx for
fixed-point.

Multiplier Result Register (Fixed-Point)
Fixed-point operations place 80-bit results in the multiplier’s foreground
MRF register or background MRB register, depending on which is active. For
more information on selecting the result register, see “Alternate (Second-
ary) Data Registers” on page 2-39.

The location of a result in the MRF register’s 80-bit field depends on
whether the result is in fractional or integer format, as shown in
Figure 2-8. If the result is sent directly to a data register, the 32-bit result

Multiply Accumulator (Multiplier)

2-24 ADSP-2126x SHARC DSP Core Manual

with the same format as the input data is transferred, using bits 63-32 for
a fractional result or bits 31-0 for an integer result. The eight LSBs of the
40-bit register file location are zero-filled.

Fractional results can be rounded-to-nearest before being sent to the regis-
ter file. If rounding is not specified, discarding bits 31-0 effectively
truncates a fractional result (rounds to zero). For more information on
rounding, see “Rounding Mode” on page 2-14.

The MRF register is divided into MRF2, MRF1, and MRF0 registers, which can
be individually read from or written to the register file. Each of these reg-
isters has the same format. When data is read from MRF2, it is
sign-extended to 32 bits as shown in Figure 2-9. The DSP zero-fills the
eight LSBs of the 40-bit register file location when data is read from MRF2,
MRF1, or MRF0 to the register file. When the DSP writes data into MRF2,
MRF1, or MRF0 from the 32 MSBs of a register file location, the eight LSBs
are ignored. Data written to MRF1 is sign-extended to MRF2, repeating the
MSB of MRF1 in the 16 bits of MRF2. Data written to MRF0 is not
sign-extended.

In addition to multiplication, fixed-point operations include accumula-
tion, rounding, and saturation of fixed-point data. There are three MRF
register operations: clear (Clr), round (Rnd), and saturate (Sat).

Figure 2-8. Multiplier Fixed-Point Result Placement

MRF2 MRF0

OVERFLOW UNDERFLOWFRACTIONAL RESULT

OVERFLOW INTEGER RESULTOVERFLOW

MRF1

79 63 31 0

ADSP-2126x SHARC DSP Core Manual 2-25

Processing Elements

The Clr operation (MRF=0) resets the specified MRF register to zero. Often,
it is best to perform this operation at the start of a multiply/accumulate
operation to remove results left over from the previous operation.

The Rnd operation (MRF=Rnd MRF) applies only to fractional results, so inte-
ger results are not effected. This operation rounds the 80-bit MRF value to
nearest at bit 32; for example, the MRF1-MRF0 boundary. Rounding of a
fixed-point result occurs either as part of a multiply or multiply/accumu-
late operation or as an explicit operation on the MRF register. The rounded
result in MRF1 can be sent either to the register file or back to the same MRF
register. To round a fractional result to zero (truncation) instead of to
nearest, a program transfers the unrounded result from MRF1, discarding
the lower 32 bits in MRF0.

The Sat operation (MRF=Sat MRF) sets MRF to a maximum value if the MRF
value has overflowed. Overflow occurs when the MRF value is greater than
the maximum value for the data format—unsigned or twos-complement
and integer or fractional—as specified in the saturate instruction. The six
possible maximum values appear in Table 2-6. The result from MRF satura-
tion can be sent either to the register file or back to the same MRF register.

Figure 2-9. MR Transfer Formats

ZEROSSIGN-EXTEND MRF2

MRF0

MRF1

16 BITS 16 BITS

8 BITS32 BITS

ZEROS

ZEROS

8 BITS32 BITS

8 BITS

Multiply Accumulator (Multiplier)

2-26 ADSP-2126x SHARC DSP Core Manual

Multiplier Status Flags
Multiplier operations update four status flags in the processing element’s
arithmetic status registers (ASTATx and ASTATy). “Arithmetic Status Regis-
ters (ASTATx and ASTATy)” on page A-12 lists all the bits in these
registers. The following bits in the ASTATx or ASTATy registers flag the mul-
tiplier status (a 1 indicates the condition) of the most recent multiplier
operation:

• Multiplier result negative. Bit 6 (MN)

• Multiplier overflow. Bit 7 (MV)

• Multiplier underflow. Bit 8 (MU)

• Multiplier floating-point invalid operation. Bit 9 (MI)

Multiplier operations also update four “sticky” status flags in the process-
ing element’s sticky status (STKYx and STKYy) registers. Table A-5 on
page A-19 lists all the bits in these registers. The following bits in the

Table 2-6. Fixed-Point Format Maximum Values (For Saturation)

Maximum Number (Hexadecimal)

MRF2 MRF1 MRF0

Two’s-complement fractional (positive) 0000 7FFF FFFF FFFF FFFF

Two’s-complement fractional (negative) FFFF 8000 0000 0000 0000

Two’s-complement integer (positive) 0000 0000 0000 7FFF FFFF

Two’s-complement integer (negative) FFFF FFFF FFFF 8000 0000

Unsigned fractional number 0000 FFFF FFFF FFFF FFFF

Unsigned integer number 0000 0000 0000 FFFF FFFF

ADSP-2126x SHARC DSP Core Manual 2-27

Processing Elements

STKYx or STKYy flag multiplier status (a 1 indicates the condition). Once
set, a sticky flag remains high until explicitly cleared:

• Multiplier fixed-point overflow. Bit 6 (MOS)

• Multiplier floating-point overflow. Bit 7 (MVS)

• Multiplier underflow. Bit 8 (MUS)

• Multiplier floating-point invalid operation. Bit 9 (MIS)

Flag updates occur at the end of the cycle in which the status is generated
and is available on the next cycle. If a program writes the arithmetic status
register or sticky register explicitly in the same cycle that the multiplier is
performing an operation, the explicit write to ASTAT or STKY supersedes
any flag update from the multiplier operation.

Multiplier Instruction Summary
Table 2-7 and Table 2-9 list the Multiplier instructions and describe how
they relate to ASTATx,y and STKYx,y flags. For more information on
assembly language syntax, see the ADSP-21160 SHARC DSP Instruction
Set Reference. In these tables, note the meaning of the following symbols:

• Rn, Rx, Ry indicate any register file location; treated as fixed-point

• Fn, Fx, Fy indicate any register file location; treated as
floating-point

• * indicates the flag may be set or cleared, depending on results of
instruction

• ** indicates the flag may be set (but not cleared), depending on
results of instruction

Multiply Accumulator (Multiplier)

2-28 ADSP-2126x SHARC DSP Core Manual

• – indicates no effect

• The Input Mods column indicates the types of optional modifiers
that can be applied to the instruction inputs. For a list of modifiers,
see Table 2-8.

Table 2-7. Fixed-Point Multiplier Instruction Summary

Instruction Input
Mods

ASTATx,y Flags STKYx,y Flags

Fixed-Point:
For Input Mods, see
Table 2-8

M
U

M
N

M
V

M
I

M
U
S

M
O
S

M
V
S

M
I
S

Rn = Rx * Ry 1 * * * 0 – ** – –

MRF = Rx * Ry 1 * * * 0 – ** – –

MRB = Rx * Ry 1 * * * 0 – ** – –

Rn = MRF + Rx * Ry 1 * * * 0 – ** – –

Rn = MRB + Rx * Ry 1 * * * 0 – ** – –

MRF = MRF + Rx * Ry 1 * * * 0 – ** – –

MRB = MRB + Rx * Ry 1 * * * 0 – ** – –

Rn = MRF – Rx * Ry 1 * * * 0 – ** – –

Rn = MRB – Rx * Ry 1 * * * 0 – ** – –

MRF = MRF – Rx * Ry 1 * * * 0 – ** – –

MRB = MRB – Rx * Ry 1 * * * 0 – ** – –

Rn = SAT MRF 2 * * * 0 – ** – –

Rn = SAT MRB 2 * * * 0 – ** – –

MRF = SAT MRF 2 * * * 0 – ** – –

MRB = SAT MRB 2 * * * 0 – ** – –

Rn = RND MRF 3 * * * 0 – ** – –

Rn = RND MRB 3 * * * 0 – ** – –

MRF = RND MRF 3 * * * 0 – ** – –

MRB = RND MRB 3 * * * 0 – ** – –

ADSP-2126x SHARC DSP Core Manual 2-29

Processing Elements

MRF = 0 – 0 0 0 0 – – – –

MRB = 0 – 0 0 0 0 – – – –

MRxF = Rn – 0 0 0 0 – – – –

MRxB = Rn – 0 0 0 0 – – – –

Rn = MRxF – 0 0 0 0 – – – –

Rn = MRxB – 0 0 0 0 – – – –

Table 2-8. Input Modifiers For Fixed-Point Multiplier Instruction

Input
Mods
from
Table
2-7

Input Mods—Options For Fixed-Point Multiplier Instructions

Note the meaning of the following symbols in this table:
Signed inputS

Unsigned inputU

Integer inputI

Fractional inputF

Fractional inputs, Rounded outputFR

Note that (SF) is the default format for one-input operations, and (SSF) is
the default format for two-input operations.

1 (SSF), (SSI), (SSFR), (SUF), (SUI), (SUFR), (USF), (USI), (USFR), (UUF),
(UUI), or (UUFR)

2 (SF), (SI), (UF), or (UI)

3 (SF) or (UF)

Table 2-7. Fixed-Point Multiplier Instruction Summary (Cont’d)

Instruction Input
Mods

ASTATx,y Flags STKYx,y Flags

Fixed-Point:
For Input Mods, see
Table 2-8

M
U

M
N

M
V

M
I

M
U
S

M
O
S

M
V
S

M
I
S

Barrel Shifter (Shifter)

2-30 ADSP-2126x SHARC DSP Core Manual

Barrel Shifter (Shifter)
The shifter performs bit-wise operations on 32-bit fixed-point operands.
Shifter operations include:

• Shifts and rotates from off-scale left to off-scale right

• Bit manipulation operations, including bit set, clear, toggle, and
test

• Bit field manipulation operations, including extract and deposit

• Fixed-point/floating-point conversion operations, including expo-
nent extract, number of leading 1s or 0s

Shifter Operation
The shifter takes from one to three inputs: X input, Y input, and Z input.
The inputs (also known as operands) can be any register in the register
file. Within a shifter instruction, the inputs serve as follows.

• The X input provides data that is operated on.

• The Y input specifies shift magnitudes, bit field lengths, or bit
positions.

• The Z input provides data that is operated on and updated.

Table 2-9. Floating-Point Multiplier Instruction Summary

Instruction ASTATx,y Flags STKYx,y Flags

Floating-Point: M
U

M
N

M
V

M
I

M
U
S

M
O
S

M
V
S

M
I
S

Fn = Fx * Fy * * * * ** – ** **

ADSP-2126x SHARC DSP Core Manual 2-31

Processing Elements

In the following example, Rx is the X input, Ry is the Y input, and Rn is the
Z input. The shifter returns one output (Rn) to the register file.

Rn = Rn OR LSHIFT Rx BY Ry;

As shown in Figure 2-9, the shifter fetches input operands from the upper
32 bits of a register file location (bits 39-8) or from an immediate value in
the instruction. The shifter transfers operands during the first half of the
cycle and transfers the result to the upper 32 bits of a register (with the
eight LSBs zero-filled) during the second half of the cycle. With this
arrangement, the shifter can read and write the same register file location
in a single cycle.

The X input and Z input are always 32-bit fixed-point values. The Y input
is a 32-bit fixed-point value or an 8-bit field (shf8), positioned in the reg-
ister file. These inputs appear in Figure 2-9.

Some shifter operations produce 8-bit or 6-bit results. As shown in
Figure 2-10, the shifter places these results in either the shf8 field or the
bit6 field and sign-extends the results to 32 bits. The shifter always returns
a 32-bit result.

The shifter supports bit field deposit and bit field extract instructions for
manipulating groups of bits within an input. The Y input for bit field

Figure 2-10. Register File Fields for Shifter Instructions

39 7 0

32-BIT Y INPUT OR RESULT

39 15 7 0

SHF8

8-BIT Y INPUT OR RESULT

Barrel Shifter (Shifter)

2-32 ADSP-2126x SHARC DSP Core Manual

instructions specifies two 6-bit values: bit6 and len6, which are positioned
in the Ry register as shown in Figure 2-10. The shifter interprets bit6 and
len6 as positive integers. Bit6 is the starting bit position for the deposit or
extract, and len6 is the bit field length, which specifies how many bits are
deposited or extracted.

Field deposit (Fdep) instructions take a group of bits from the input regis-
ter (starting at the LSB of the 32-bit integer field) and deposit the bits as
directed anywhere within the result register. The bit6 value specifies the
starting bit position for the deposit. Figure 2-11 shows how the inputs,
bit6 and len6, work in a field deposit instruction:

Rn = FDEP Rx By Ry

Figure 2-12 shows bit placement for the following field deposit
instruction:

R0 = FDEP R1 BY R2;

Field extract (Fext) instructions extract a group of bits as directed from
anywhere within the input register and place them in the result register,
aligned with the LSB of the 32-bit integer field. The bit6 value specifies
the starting bit position for the extract.

Figure 2-14 shows bit placement for the following field extract
instruction:

R3 = FEXT R4 BY R5;

Figure 2-11. Register File Fields for FDEP, FEXT Instructions

39 19 13 7 0

LEN6 BIT6

12-BIT Y INPUT

ADSP-2126x SHARC DSP Core Manual 2-33

Processing Elements

Shifter Status Flags
Shifter operations update three status flags in the processing element’s
arithmetic status registers (ASTATx and ASTATy). Table A-4 on page A-14
lists all the bits in these registers. The following bits in ASTATx or ASTATy
indicate shifter status (a 1 indicates the condition) for the most recent
ALU operation:

• Shifter overflow of bits to left of MSB. Bit 11 (SV)

• Shifter result zero. Bit 12 (SZ)SS

• Shifter input sign for exponent extract only. Bit 13 ()

A flag update occurs at the end of the cycle in which the status is gener-
ated and is available on the next cycle. If a program writes the arithmetic
status register explicitly in the same cycle that the shifter is performing an

Figure 2-12. Bit Field Deposit Instruction

00000000111111110000000000000000

39 32 24 16

16

8

8

0

0

0X0000 00FF 00R1 00000000

00000000 00000000000100000000001000000000

39 32 24 16 8 0

LEN6 BIT6 LEN6 = 8
BIT6 = 16

0X0000 0210 00R2

00000000 0000000000000000

39 32 24 16 8 0

16 8 0

STARTING BIT POSITION
FOR DEPOSIT

REFERENCE POINT

0X00FF 0000 00R0 11111111 00000000

Barrel Shifter (Shifter)

2-34 ADSP-2126x SHARC DSP Core Manual

Figure 2-13. Bit Field

Figure 2-14. Bit Field Extract Instruction

39 19 13 7 0

LEN6 BIT6RY

RN

RX

39 7 0

39 7 0

DEPOSIT FIELD

BIT6 REFERENCE POINT

LEN6 = NUMBER OF BITS TO TAKE FROM RX, STARTING FROM LSB OF 32-BIT FIELD

RY DETERMINES LENGTH OF BIT FIELD TO TAKE FROM RX AND STARTING POSITION
FOR DEPOSIT IN RN

BIT6 = STARTING BIT POSITION FOR DEPOSIT, REFERENCED FROM LSB OF 32-BIT FIELD

00000000 00000000000101110000001000000000

39 32 24 16 8 0

LEN6 BIT6

39 32 24 16 8 0

16 8 0

39 32 24 16

16

8

8

0

0

STARTING BIT POSITION
FOR DEPOSIT

REFERENCE POINT

LEN6 = 8
BIT6 = 23

00000000 00000000000011110000000000000000

10000111 00000000000000000000000010000000

0X0000 0217 00

0X8710 0000 00

0X0000 000F 00

R5

R3

R4

ADSP-2126x SHARC DSP Core Manual 2-35

Processing Elements

operation, the explicit write to ASTAT supersedes any flag update caused by
the shift operation.

Shifter Instruction Summary
Table 2-10 lists the shifter instructions and shows how they relate to
ASTATx,y flags. For more information on assembly language syntax, see
the ADSP-21160 SHARC DSP Instruction Set Reference. In these tables,
note the meaning of the following symbols:

• Rn, Rx, Ry indicate any register file location; bit fields used depend
on instruction

• Fn, Fx indicate any register file location; floating-point word

• * indicates the flag may be set or cleared, depending on data

Table 2-10. Shifter Instruction Summary

Instruction ASTATx,y Flags

SZ SV SS

Rn = LSHIFT Rx BY Ry * * 0

Rn = LSHIFT Rx BY <data8> * * 0

Rn = Rn OR LSHIFT Rx BY Ry * * 0

Rn = Rn OR LSHIFT Rx BY <data8> * * 0

Rn = ASHIFT Rx BY Ry * * 0

Rn = ASHIFT Rx BY<data8> * * 0

Rn = Rn OR ASHIFT Rx BY Ry * * 0

Rn = Rn OR ASHIFT Rx BY <data8> * * 0

Rn = ROT Rx BY Ry * 0 0

Rn = ROT Rx BY <data8> * 0 0

Rn = BCLR Rx BY Ry * * 0

Rn = BCLR Rx BY <data8> * * 0

Barrel Shifter (Shifter)

2-36 ADSP-2126x SHARC DSP Core Manual

Rn = BSET Rx BY Ry * * 0

Rn = BSET Rx BY <data8> * * 0

Rn = BTGL Rx BY Ry * * 0

Rn = BTGL Rx BY <data8> * * 0

BTST Rx BY Ry * * 0

BTST Rx BY <data8> * * 0

Rn = FDEP Rx BY Ry * * 0

Rn = FDEP Rx BY <bit6>:<len6> * * 0

Rn = Rn OR FDEP Rx BY Ry * * 0

Rn = Rn OR FDEP Rx BY <bit6>:<len6> * * 0

Rn = FDEP Rx BY Ry (SE) * * 0

Rn = FDEP Rx BY <bit6>:<len6> (SE) * * 0

Rn = Rn OR FDEP Rx BY Ry (SE) * * 0

Rn = Rn OR FDEP Rx BY <bit6>:<len6> (SE) * * 0

Rn = FEXT Rx BY Ry * * 0

Rn = FEXT Rx BY <bit6>:<len6> * * 0

Rn = FEXT Rx BY Ry (SE) * * 0

Rn = FEXT Rx BY <bit6>:<len6> (SE) * * 0

Rn = EXP Rx (EX) * 0 *

Rn = EXP Rx * 0 *

Rn = LEFTZ Rx * * 0

Rn = LEFTO Rx * * 0

Rn = FPACK Fx 0 * 0

Fn = FUNPACK Rx 0 0 0

Table 2-10. Shifter Instruction Summary (Cont’d)

Instruction ASTATx,y Flags

SZ SV SS

ADSP-2126x SHARC DSP Core Manual 2-37

Processing Elements

Data Register File
Each of the DSP’s processing elements has a data register file, which is a
set of data registers that transfers data between the data buses and the
computational units. These registers also provide local storage for oper-
ands and results.

The two register files consist of 16 primary registers and 16 alternate (sec-
ondary) registers. All of the data registers are 40 bits wide. Within these
registers, 32-bit data is always left-justified. If an operation specifies a
32-bit data transfer to these 40-bit registers, the eight LSBs are ignored on
register reads, and the LSBs are cleared to zeros on writes.

Program memory data accesses and data memory accesses to/from the reg-
ister file(s) occur on the PM data bus and DM data bus, respectively. One
PM data bus access for each processing element and/or one DM data bus
access for each processing element can occur in one cycle. Transfers
between the register files and the DM or PM data buses can move up to
64 bits of valid data on each bus.

If an operation specifies the same register file location as both an input
and output, the read occurs in the first half of the cycle and the write in
the second half. With this arrangement, the DSP uses the old data as the
operand, before updating the location with the new result data. If writes
to the same location take place in the same cycle, only the write with
higher precedence actually occurs. The DSP determines precedence for
the write operation from the source of the data; from highest to lowest,
the precedence is:

1. Data memory or universal register (Ureg)

2. Program memory

3. PEx ALU

4. PEy ALU

Data Register File

2-38 ADSP-2126x SHARC DSP Core Manual

5. PEx Multiplier

6. PEy Multiplier

7. PEx Shifter

8. PEy Shifter

The data register file in Figure 2-1 on page 2-3 lists register names of R0
through R15 within the PEx’s register file. When a program refers to these
registers as R0 through R15, the computational units treat the contents of
these registers as fixed-point data. To perform floating-point computa-
tions, refer to these registers as F0 through F15. For example, the following
instructions refer to the same registers, but direct the computational units
to perform different operations:

F0 = F1 * F2; /*floating-point multiply*/

R0 = R1 * R2; /*fixed-point multiply*/

The F and R prefixes on register names do not effect the 32-bit or 40-bit
data transfer; the naming convention only determines how the ALU, mul-
tiplier, and shifter treat the data.

To maintain compatibility with code written for previous SHARC DSPs,
the assembly syntax accommodates references to PEx data registers and
PEy data registers.

ADSP-2126x SHARC DSP Core Manual 2-39

Processing Elements

Code may only refer to the PEy data registers (S0 through S15) for data
move instructions. The rules for using register names are:

• R0 through R15 and F0 through F15 always refer to PEx registers for
data move and computational instructions, whether the DSP is in
SISD or SIMD mode.

• R0 through R15 and F0 through F15 refer to both PEx and PEy reg-
ister for computational instructions in SIMD mode.

• S0 through S15 always refer to PEy registers for data move instruc-
tions, whether the DSP is in SISD or SIMD mode.

For more information on SISD and SIMD computational operations, see
“Secondary Processing Element (PEy)” on page 2-44. For more informa-
tion on ADSP-2126x assembly language, see the ADSP-21160 SHARC
DSP Instruction Set Reference.

Alternate (Secondary) Data Registers
Each register file has an alternate register set. To facilitate fast context
switching, the DSP includes alternate register sets for data, results, and
data address generator registers. Bits in the MODE1 register control when
alternate registers become accessible. While inaccessible, the contents of
alternate registers are not effected by DSP operations. Note that there is a
maximum one cycle latency from the time when writes are made to MODE1
and the point when an alternate register set can be accessed. The alternate
register sets for data and results are described in this section. For more
information on alternate data address generator registers, see the DAG
“Alternate (Secondary) DAG Registers” on page 4-6.

Bits in the MODE1 register can activate independent alternate data register
sets: the lower half (R0-R7 and S0-S7) and the upper half (R8-R15 and
S8-S15). To share data between contexts, a program places the data to be
shared in one half of either the current processing element’s register file or

Alternate (Secondary) Data Registers

2-40 ADSP-2126x SHARC DSP Core Manual

the opposite processing element’s register file and activates the alternate
register set of the other half. For information on how to activate alternate
data registers, see the description of the MODE1 register below.

Each multiplier has a primary or foreground (MRF) register and alternate or
background (MRB) results register. A bit in the MODE1 register selects which
result register receives the result from the multiplier operation, swapping
which register is the current MRF or MRB. This swapping facilitates context
switching. Unlike other registers that have alternates, both MRF and MRB are
accessible at the same time. All fixed-point multiplies can accumulate
results in either MRF or MRB, without regard to the state of the MODE1 regis-
ter. With this arrangement, code can use the result registers as primary
and alternate accumulators, or code can use these registers as two parallel
accumulators. This feature facilitates complex math.

The MODE1 register controls the access to alternate registers. Table A-2 on
page A-5 lists all the bits in MODE1. The following bits in MODE1 control
alternate registers (a 1 enables the alternate set):

• Secondary registers for computational unit results. Bit 2 (SRCU)

• Secondary registers for hi register file, R8–R15 and S8–S15.
Bit 7 (SRRFH)

• Secondary registers for lo register file, R0–R7 and S0–S7.
Bit 10 (SRRFL)

The following example demonstrates how code should handle the maxi-
mum one cycle of latency—from the instruction that sets the bit in the
MODE1 register to the point when the alternate registers may be accessed.
Note that it is possible to use any instruction that does not access the
switching register file instead of using a NOP instruction.

BIT SET MODE1 SRRFL; /* activate alternate reg. file */

NOP; /* wait for access to alternates */

R0 = 7;

ADSP-2126x SHARC DSP Core Manual 2-41

Processing Elements

Multifunction Computations
The DSP supports multiple parallel (multifunction) computations by
using the many parallel data paths within its computational units. These
instructions complete in a single cycle, and they combine parallel opera-
tion of the multiplier and the ALU or dual ALU functions. The multiple
operations perform as if they were in corresponding single function com-
putations. Multifunction computations also handle flags in the same way
as the single function computations, except that in the dual add/subtract
computation, the ALU flags from the two operations are ORed together.

To work with the available data paths, the computational units constrain
which data registers hold the four input operands for multifunction com-
putations. These constraints limit which registers may hold the X input
and Y input for the ALU and multiplier.

Figure 2-15 shows a computational unit and indicates which registers may
serve as X inputs and Y inputs for the ALU and multiplier. For example,
the X input to the ALU can only be R8, R9, R10 or R11. Note that the
shifter is gray in Figure 2-15 to indicate no shifter multifunction
operations.

Multifunction Computations

2-42 ADSP-2126x SHARC DSP Core Manual

Table 2-11, Table 2-12, Table 2-13, and Table 2-14 list the multifunc-
tion computations. For more information on assembly language syntax,
see the ADSP-21160 SHARC DSP Instruction Set Reference. In these tables,
note the meaning of the following symbols:

• Rm, Ra, Rs, Rx, Ry indicate any register file location; fixed-point

• Fm, Fa, Fs, Fx, Fy indicate any register file location; floating-point

• R3–0 indicates data file registers R3, R2, R1, or R0, and F3–0 indi-
cates data file registers F3, F2, F1, or F0

Figure 2-15. Input Registers for Multifunction Computations
(ALU and Multiplier)

REGISTER FILE
(16 x 40-BIT)

R0
R1
R2
R3

R4
R5
R6
R7

R12
R13
R14
R15

R8
R9
R10
R11

MULTIPLIER SHIFTER ALU

MRF2 MRF0MRF1

DM DATA BUS

PM DATA BUS

ASTATX STKYX

MODE1

TO PROGRAM SEQUENCER

X Y Z XY XY

NOTE THAT SHIFTER IS
NOT AVAILABLE FOR

MULTIFUNCTION INSTRUCTIONS.

ADSP-2126x SHARC DSP Core Manual 2-43

Processing Elements

• R7–4 indicates data file registers R7, R6, R5, or R4, and F7–4 indi-
cates data file registers F7, F6, F5, or F4

• R11–8 indicates data file registers R11, R10, R9, or R8, and F11–8
indicates data file registers F11, F10, F9, or F8

• R15–12 indicates data file registers R15, R14, R13, or R12, and F15–12
indicates data file registers F15, F14, F13, or F12

• SSFR indicates the X input is signed, the Y input is signed, use
Fractional inputs, and rounded-to-nearest output

• SSF indicates the X input is signed, Y input is signed, use Frac-
tional input

Table 2-11. Dual Add and Subtract

Ra = Rx + Ry, Rs = Rx – Ry

Fa = Fx + Fy, Fs = Fx – Fy

Table 2-12. Fixed-Point Multiply and Add, Subtract, Or Average

(Any combination of left and right column)

Rm = R3-0 * R7-4 (SSFR), Ra = R11-8 + R15-12

MRF = MRF + R3-0 * R7-4 (SSF), Ra = R11-8 – R15-12

Rm = MRF + R3-0 * R7-4 (SSFR), Ra = (R11-8 + R15-12)/2

MRF = MRF – R3-0 * R7-4 (SSF),

Rm = MRF – R3-0 * R7-4 (SSFR),

Table 2-13. Floating-Point Multiply and ALU Operation

Fm = F3-0 * F7-4, Fa = F11-8 + F15-12

Fm = F3-0 * F7-4, Fa = F11-8 – F15-12

Fm = F3-0 * F7-4, Fa = FLOAT R11-8 by R15-12

Fm = F3-0 * F7-4, Ra = FIX F11-8 by R15-12

Secondary Processing Element (PEy)

2-44 ADSP-2126x SHARC DSP Core Manual

Another type of multifunction operation is also available on the DSP,
combining transfers between the results and data registers and transfers
between memory and data registers. As compared to other multifunction
instructions, these parallel operations complete in a single cycle. For
example, the DSP can perform the following multiply and parallel read of
data memory:

MRF = MRF – R5 * R0, R6 = DM(I1,M2);

Or, the DSP can perform the following result register transfer and parallel
read:

R5 = MR1F, R6 = DM(I1,M2);

Secondary Processing Element (PEy)
The ADSP-2126x processor contains two sets of computational units and
associated register files. As shown in Figure 2-16, these two processing ele-
ments (PEx and PEy) support SIMD operation.

The MODE1 register controls the operating mode of the processing ele-
ments. Table A-2 on page A-5 lists all the bits in MODE1. The PEYEN bit (bit
21) in the MODE1 register enables or disables the PEy processing element.

Fm = F3-0 * F7-4, Fa = (F11-8 + F15-12)/2

Fm = F3-0 * F7-4, Fa = ABS F11-8

Fm = F3-0 * F7-4, Fa = MAX (F11-8, F15-12)

Fm = F3-0 * F7-4, Fa = MIN (F11-8, F15-12)

Table 2-14. Multiply with Dual Add and Subtract

Rm = R3-0 * R7-4 (SSFR), Ra = R11-8 + R15-12, Rs = R11-8 – R15-12

Fm = F3-0 * F7-4, Fa = F11-8 + F15-12, Fs = F11-8 – F15-12

Table 2-13. Floating-Point Multiply and ALU Operation (Cont’d)

ADSP-2126x SHARC DSP Core Manual 2-45

Processing Elements

When PEYEN is cleared (0), the ADSP-2126x processor operates in SISD
mode, using only PEx. When the PEYEN bit is set (1), the ADSP-2126x
processor operates in SIMD mode, using the PEx and PEy processing ele-
ments. There is a one cycle delay after PEYEN is set or cleared, before the
change to or from SIMD mode takes effect.

To support SIMD, the DSP performs these parallel operations:

• Dispatches a single instruction to both processing element’s com-
putational units

• Loads two sets of data from memory, one for each processing
element

Figure 2-16. Block Diagram Showing Secondary Execution Complex

MULT

ALU

BARREL
SHIFTER

DATA
REGISTER

FILE
(PEy)

16 x 40-BITMULT

ALU

BARREL
SHIFTER

DATA
REGISTER

FILE
(PEx)

16 x 40-BIT

PM DATA BUS

DM DATA BUS
BUS

CONNECT
(PX)

16/32/40/64

16/32/40/64

PROGRAM
SEQUENCER

SAME INSTRUCTION GOES TO BOTH ELEMENTS

DIFFERENT DATA GOES TO EACH ELEMENT

Secondary Processing Element (PEy)

2-46 ADSP-2126x SHARC DSP Core Manual

• Executes the same instruction simultaneously in both processing
elements

• Stores data results from the dual executions to memory

Using the information here and in the ADSP-21160 SHARC DSP Instruc-
tion Set Reference, it is possible through SIMD mode’s parallelism to
double performance over similar algorithms running in SISD
(ADSP-2106x DSP compatible) mode.

The two processing elements are symmetrical; each contains these func-
tional blocks:

• ALU

• Multiplier primary and alternate result registers

• Shifter

• Data register file and alternate register file

Dual Compute Units Sets
The computational units (ALU, multiplier, and shifter) in PEx and PEy
are identical. The data bus connections for the dual computational units
permit asymmetric data moves to, from, and between the two processing
elements. Identical instructions execute on the PEx and PEy computa-
tional units; the difference is the data. The data registers for PEy
operations are identified (implicitly) from the PEx registers in the instruc-
tion. This implicit relationship between PEx and PEy data registers
corresponds to complementary register pairs in Table 2-15. Any universal
registers (Ureg) that do not appear in Table 2-15 have the same identities
in both PEx and PEy. When a computation in SIMD mode refers to a reg-
ister in the PEx column, the corresponding computation in PEy refers to
the complimentary register in the PEy column.

ADSP-2126x SHARC DSP Core Manual 2-47

Processing Elements

Table 2-15. SIMD Mode Complementary Register Pairs

PEx PEy

R0 S0

R1 S1

R2 S2

R3 S3

R4 S4

R5 S5

R6 S6

R7 S7

R8 S8

R9 S9

R10 S10

R11 S11

R12 S12

R13 S13

R14 S14

ASTATx ASTATy

STKYx STKYy

Table 2-16. Other Complementary Register Pairs

USTAT1 USTAT2

USTAT3 USTAT4

PX1 PX2

MRF MSF1

MRB MSB1

Secondary Processing Element (PEy)

2-48 ADSP-2126x SHARC DSP Core Manual

Dual Register Files
The operand, result busing, and porting are identical in the two 16 entry
data register files (one in each PE). The same is true for each 16 entry
alternate register files. The transfer direction, data bus, source and destina-
tion registers and usage depend on the following conditions:

• Computational mode:
– Is PEy enabled—PEYEN bit=1 in MODE1 register?
– Is the data register file in PEx (R0–R15, F0–F15) or PEy (S0–S15)?
– Is the instruction a data register swap between the processing?
 elements

• Data addressing mode:
– What is the state of the Internal Memory Data Width (IMDW)
 bits in the System Control (SYSCTL) register?
– Is broadcast write enabled— Is BDCST1,9 bits in MODE1
 register =0?
– What is the type of address—long, normal, or short word?
– Is long word override (LW) specified in the instruction?
– What are the states of instruction fields for DAG1 or DAG2?

• Program sequencing (conditional logic):
–What is the outcome of the instruction’s condition comparison
 on each processing element?

For information on SIMD issues that relate to computational modes, see
“SIMD (Computational) Operations” on page 2-49. For information on
SIMD issues relating to data addressing, see “Summary” on page 3-63.

1 These register pairs are not directly accessible by instruc-
tions. However, these registers can be read using the mul-
tiplier operation MRxF/B = Rn/Rn = MRxF/B. For more
information on this instruction, see Chapter 7 in
ADSP-21160 SHARC DSP Instruction Set Reference.

ADSP-2126x SHARC DSP Core Manual 2-49

Processing Elements

For information on SIMD issues relating to program sequencing, see
“Addressing in SISD and SIMD Modes” on page 4-20.

Dual Alternate Registers
Both register files consist of a primary set of 16 by 40-bit registers and an
alternate set of 16 by 40-bit registers. Context switching between the two
sets of registers occurs in parallel between the two processing elements.
For more information, see “Alternate (Secondary) Data Registers” on
page 2-39.

SIMD (Computational) Operations
In SIMD mode, the dual processing elements execute the same instruc-
tion, but operate on different data. To support SIMD operation, the
elements support a variety of dual data move features.

The DSP supports unidirectional and bidirectional register-to-register
transfers with the Conditional Compute and Move instruction. All four
combinations of inter-register file and intra-register file transfers
(PEx ↔ PEx, PEx ↔ PEy, PEy ↔ PEx, and PEy ↔ PEy) are possible in
both SISD (unidirectional) and SIMD (bidirectional) modes.

In SISD mode (PEYEN bit=0), the register-to-register transfers are unidirec-
tional, meaning that an operation performed on one processing element is
not duplicated on the other processing element. The SISD transfer uses a
source register and a destination register. Either register can be in either
element’s data register file. For a summary of unidirectional transfers, see
the upper half of Table 2-17 on page 2-52. Note that in SISD mode a
condition for an instruction only tests in the PEx element but it applies to
the entire instruction.

In SIMD mode (PEYEN bit=1), the register-to-register transfers are bidirec-
tional, meaning that an operation performed on one element is duplicated
in parallel on the other element. The instruction uses two source registers

Secondary Processing Element (PEy)

2-50 ADSP-2126x SHARC DSP Core Manual

(one from each element’s register file) and two destination registers (one
from each element’s register file). For a summary of bidirectional trans-
fers, see the lower half of Table 2-17. Note that in SIMD mode
conditional explicit and implicit transfers are tested and executed sepa-
rately in PEx and PEy, respectively, as detailed in Table 2-17.

Bidirectional register-to-register transfers in SIMD mode are allowed
between a data register and DAG, control, or status registers. When the
DAG, control, or status register is a source of the transfer, the destination
can be a data register. This SIMD transfer duplicates the contents of the
source register in a data register in both processing elements.

Careful programming is required when a DAG, control, or status register
is a destination of a transfer from a data register. If the destination register
has a complement (for example ASTATx and ASTATy), the SIMD transfer
moves the contents of the explicit data register into the explicit destina-
tion and moves the contents of the implicit data register into the implicit
destination (the complement). If the destination register has no comple-
ment (for example, I0), only the explicit transfer occurs.

Even if the code uses a conditional operation to select whether the transfer
occurs, only the explicit transfer can take place if the destination register
has no complement.

In the case where a DAG, control, or status register is both source and des-
tination, the data move operation executes the same as if SIMD mode
were disabled.

In both SISD and SIMD modes, the DSP supports bidirectional regis-
ter-to-register swaps. The swap always occurs between one register in each
processing element’s data register file.

Registers swaps use the special swap operator, <->. A register-to-register
swap occurs when registers in different processing elements exchange val-
ues; for example R0 <-> S1. Only single, 40-bit register-to-register swaps
are supported; double register operations are not supported.

ADSP-2126x SHARC DSP Core Manual 2-51

Processing Elements

When register-to-register swaps are unconditional, they operate the same
in SISD mode and SIMD mode. If a condition is added to the instruction
in SISD mode, the condition tests only in the PEx element and controls
the entire operation. If a condition is added in SIMD mode, the condition
tests in both the PEx and PEy elements separately and the halves of the
operation are controlled, as detailed in Table 2-17.

Secondary Processing Element (PEy)

2-52 ADSP-2126x SHARC DSP Core Manual

SIMD and Status Flags
When the DSP is in SIMD mode (PEYEN bit=1), computations on both
processing elements generate status flags, producing a logical ORing of the
exception status test on each processing element. If one of the four
fixed-point or floating-point exceptions is enabled, an exception condition
on either or both processing elements generates an exception interrupt.
Interrupt service routines (ISRs) must determine which of the processing
elements encountered the exception. Note that returning from a

Table 2-17. Register-to-Register Move Summary (SISD Versus SIMD)

Mode Instruction Explicit
Transfer
Executed
According to
PEx

Implicit
Transfer
Executed
According to
PEx

SISD1 IF condition compute, Rx = Ry; Rx loaded from Ry None

IF condition compute, Rx = Sy; Rx loaded from Sy None

IF condition compute, Sx = Ry; Sx loaded from Ry None

IF condition compute, Sx = Sy; Sx loaded from Sy None

IF condition compute, Rx <-> Sy; Rx loaded from Sy Sy loaded from Rx

SIMD2 IF condition compute, Rx = Ry; Rx loaded from Ry Sx loaded from Sy

IF condition compute, Rx = Sy; Rx loaded from Sy Sx loaded from Ry

IF condition compute, Sx = Ry; Sx loaded from Ry Rx loaded from Sy

IF condition compute, Sx = Sy; Sx loaded from Sy Rx loaded from Ry

IF condition compute, Rx <-> Sy;3 Rx loaded from Sy Sy loaded from Rx

1 In SISD mode, the conditional applies only to the entire operation and is only tested against PEx’s
flags. When the condition tests true, the entire operation occurs.

2 In SIMD mode, the conditional applies separately to the explicit and implicit transfers. Where the
condition tests true (PEx for the explicit and PEy for the implicit), the operation occurs in that pro-
cessing element.

3 Register-to-register transfers (R0=S0) and register swaps (R0<->S0) do not cause a PMD bus conflict.
These operations use only the DMD bus and a hidden 16-bit bus to perform the two register moves.

ADSP-2126x SHARC DSP Core Manual 2-53

Processing Elements

floating-point interrupt does not automatically clear the STKY state. Code
must clear the STKY bits in both processing element’s sticky status (STKYx
and STKYy) registers as part of the exception service routine. “Interrupts
and Sequencing” on page 3-46.

Secondary Processing Element (PEy)

2-54 ADSP-2126x SHARC DSP Core Manual

ADSP-2126x SHARC DSP Core Manual 3-1

3 PROGRAM SEQUENCER

The DSP’s program sequencer controls program flow by constantly pro-
viding the address of the next instruction to be fetched for execution.
Program flow in the DSP is mostly linear, with the processor executing
instructions sequentially. This linear flow varies occasionally when the
program branches due to nonsequential program structures, such as those
shown below. Nonsequential structures direct the DSP to execute an
instruction that is not at the next sequential address following the current
instruction. These structures include:

• Loops. One sequence of instructions executes multiple times with
zero overhead.

• Subroutines. The traditional CALL/RETURN structure where the pro-
cessor temporarily breaks sequential flow to execute instructions
from another part of program memory.

• Jumps. Program flow is permanently transferred to another part of
program memory.

• Interrupts. A runtime event (generally not an instruction) triggers
the program sequencer to branch to interrupt-handling
subroutines.

• Idle. An instruction that causes the core to stop executing further
instructions and hold its current state until an interrupt occurs.
Then, after the processor services the interrupt, the sequencer
resumes normal program execution.

Instruction Pipeline

3-2 ADSP-2126x SHARC DSP Core Manual

The sequencer uses the blocks shown in Figure 3-1 to execute instruc-
tions. The sequencer’s address multiplexer selects the value of the next
fetch address from several possible sources. The fetched address enters the
instruction pipeline, made up of the fetch address register, decode address
register, and program counter (PC) register. These registers contain the
24-bit addresses of the instructions currently being fetched, decoded, and
executed. The PC register, in conjunction with the PC stack register, stores
return addresses and top-of-loop addresses. All addresses generated by the
sequencer are 24-bit program memory instruction addresses.

The sequencer handles a series of operations, described in these sections:

• “Instruction Pipeline” on page 3-2

• “Instruction Cache” on page 3-5

• “Branches and Sequencing” on page 3-11

• “Loop and Status Stacks and Sequencing” on page 3-17

• “Conditional Sequencing” on page 3-18

• “Loops and Sequencing” on page 3-23

• “SIMD Mode and Sequencing” on page 3-35

• “Timer and Sequencing” on page 3-44

• “Interrupts and Sequencing” on page 3-46

Refer to Figure 3-1 for a description of how each of the functional blocks
are related.

Instruction Pipeline
The program sequencer determines the next instruction address by exam-
ining both the current instruction being executed and the current state of

ADSP-2126x SHARC DSP Core Manual 3-3

Program Sequencer

the processor. If no conditions require otherwise, the DSP fetches and exe-
cutes instructions from memory in sequential order.

Figure 3-1. Program Sequencer Block Diagram

INTERRUPT
CONTROLLER

PC STACK

CACHE

LOOP CONTROL
CONDITION

LOGIC

CONDITION
FLAGS

PM ADDRESS BUS PM DATA BUS

32

24

INSTRUCTION PIPELINE

TIMER

OTHER
INTERRUPTS

NEXT ADDRESS MULTIPLEXER

Instruction Pipeline

3-4 ADSP-2126x SHARC DSP Core Manual

To achieve a high execution rate while maintaining a simple programming
mode, the DSP employs a three stage pipeline to process instructions:

1. Fetch cycle. The DSP reads the instruction from either the on-chip
memory or the instruction cache.

2. Decode cycle. The DSP decodes the instruction, generating condi-
tions that control instruction execution and program flow.

3. Execute cycle. The DSP executes the instruction; the operations
specified by the instruction complete in a single cycle.

In a sequential program flow, when one instruction is being executed, the
next instruction is being decoded, and the instruction following that is
being fetched. Sequential program flow usually has a throughput of one
instruction per cycle. In the event of cache misses, instructions may take
more than one cycle.

Figure 3-2 illustrates how the instructions starting at address 0x08 are
processed by the pipeline. While the instruction at address 0x08 is being
executed, the instruction 0x09 is being decoded and the instruction at
address 0xA is being fetched.

Figure 3-2. Pipelined Execution Cycles

CLOCK CYCLES

EXECUTE
INSTRUCTION

DECODE
INSTRUCTION

FETCH
INSTRUCTION

1 2 3 4 5

0x08

0x08

0x08

0x09

0x09

0x09

0x0A

0x0A

0x0A

0x0B

0x0B

0x0C

ADSP-2126x SHARC DSP Core Manual 3-5

Program Sequencer

While sequential execution takes one core clock cycle per instruction,
branching (nonsequential executions) can temporarily reduce this rate.
Nonsequential program operations include:

• Program memory data accesses that conflict with instruction
fetches

• Jumps

• Subroutine calls and returns

• Interrupts and returns

• Loops

Instruction Cache
Usually, the sequencer fetches an instruction from memory on each cycle.
Occasionally, bus constraints prevent some of the data and instructions
from being fetched in a single cycle. To alleviate these data flow conflicts,
the DSP has a large 32-location instruction cache that caches instructions
that cause these conflicts. This solution removes the need to fetch the
offending instruction from memory, which frees both memory blocks and
data buses for data accesses. Except for enabling or disabling, the caches
operation is completely automatic and transparent, requiring no user
intervention. For more information, see “Using the Cache” on page 3-8.

Bus Conflicts
A bus is comprised of two parts: the address bus and the data bus. Because
the bus can be accessed continually by different sources (illustrated in
Figure 3-1 on page 3-3), there is a potential for bus or block conflicts.

A bus conflict occurs when the PM data bus, normally used to fetch an
instruction in each cycle, is used to fetch instruction and to access data.

Instruction Cache

3-6 ADSP-2126x SHARC DSP Core Manual

Because of the three stage instruction pipeline, as the DSP executes an
instruction (at address n) it also uses the PM bus to access data. For
sequential executions, this creates a conflict with the instruction fetch (at
address n+2).

The cache stores the fetched instruction (n+2), not the instruction requir-
ing the program memory data access.

Block conflicts differ from bus conflicts in that block conflicts occur when
there are multiple outstanding writes to the same memory block or to the
same word in a different block. When the DSP first encounters a bus con-
flict, it must stall for one cycle while the data is transferred, and then fetch
the instruction on the following cycle. To prevent the same delay from
happening again, the DSP automatically writes the fetched instruction to
the cache. The sequencer checks the instruction cache on every data access
using the PM bus. If the instruction needed is in the cache, a “cache hit”
occurs—the instruction fetch from the cache happens in parallel with the
program memory data access, without incurring a delay.

If the instruction needed is not in the cache, a “cache miss” occurs, and
the instruction fetch (from memory) takes place in the cycle following the
program memory data access, incurring one cycle of overhead. This
instruction is loaded into the cache (if the cache is enabled and not fro-
zen), so that it is available the next time the same instruction (that requires
program memory data) is executed.

Figure 3-3 shows a block diagram of the instruction cache. The cache
holds 32 instuction-address pairs. These pairs (or cache entries) are
arranged into 16 (15-0) cache sets according to the four least significant
bits (3-0) of their address. The two entries in each set (entry 0 and entry
1) have a valid bit, indicating if the entry contains a valid instruction. The
least recently used (LRU) bit for each set indicates which entry was not
placed in the cache last (0=entry 0 and 1=entry 1).

The cache places instructions in entries according to the four LSBs of the
instruction’s address. When the sequencer checks for an instruction to

ADSP-2126x SHARC DSP Core Manual 3-7

Program Sequencer

fetch from the cache, it uses the four address LSBs as an index to a cache
set. Within that set, the sequencer checks the addresses of the two entries
as it looks for the needed instruction. If the cache contains the instruction,
the sequencer uses the entry and updates the LRU bit (if necessary) to indi-
cate the entry did not contain the needed instruction.

When the cache does not contain a needed instruction, it loads a new
instruction and its address and places them in the least recently used entry
of the appropriate cache set. The cache then toggles the LRU bit, if
necessary.

Block Conflicts
A bus conflict occurs when an instruction fetch and a data access are made
on the same bus. Similarly, a block conflict occurs when multiple accesses
are made to the same block in internal memory. This scenario occurs
when data is accessed from the same block from which the instructions are

Figure 3-3. Instruction Cache Architecture

INSTRUCTIONS

SET
0

SET
1

SET
2

SET
13

SET
14

SET
15

ADDRESSES
BITS (23-4)

LRU
BIT

VALID
BIT

ENTRY 0

ENTRY 0

ENTRY 0

ENTRY 1

ENTRY 1

ENTRY 1

ENTRY 0

ENTRY 0

ENTRY 0

ENTRY 1

ENTRY 1

ENTRY 1

ADDRESSES
BITS (3-0)

0000

0001

0010

1101

1110

1111

Instruction Cache

3-8 ADSP-2126x SHARC DSP Core Manual

executed. This scenario also occurs when an instruction performs both a
DM and PM access to the same block in one instruction. In the first case,
the instruction takes two cycles to complete, with the data being accessed
in the first cycle and the instruction in the second. In the latter case, where
a dual data access is performed, the processor takes three cycles to com-
plete the instruction.

Block conflicts are not cached.

Using the Cache
After a DSP reset, the cache is cleared (it contains no instructions), unfro-
zen, and enabled. From then on, the MODE2 register controls the operating
mode of the instruction cache as shown below.

• Cache Disable. Bit 4 (CADIS) directs the sequencer to disable the
cache (if 1) or enable the cache (if 0).

• Cache Freeze. Bit 19 (CAFRZ) directs the sequencer to freeze the
contents of the cache (if 1) or let new entries displace the entries in
the cache (if 0).

Table A-3 on page A-12 lists all the bits in the MODE2 register.

Freezing the cache prevents any changes to its contents—a cache miss does
not result in a new instruction being stored in the cache. Disabling the
cache stops its operation completely; all instruction fetches conflicting
with program memory data accesses are delayed by the access. These func-
tions are selected by the CADIS (cache enable/disable) and CAFRZ (cache
freeze) bits in the MODE2 register.

ADSP-2126x SHARC DSP Core Manual 3-9

Program Sequencer

If the cache freeze bit of the MODE2 register is set by a program memory
data access instruction n, then the n+2 instruction is cached. This results
from the effect latency of the MODE2 register.

When a program changes the cache mode, an instruction contain-
ing a program memory data access must not be placed directly after
a cache enable or cache disable instruction. This is because the DSP
must wait at least one cycle before executing the PM data access. A
program should have a NOP or other non-conflicting instruction
inserted after the cache enable instruction.

Optimizing Cache Usage
Cache operation is usually efficient and requires no intervention. How-
ever, certain ordering of instructions can work against the cache’s
architecture, reducing its efficiency. When the order of PM data accesses
and instruction fetches continuously displaces cache entries and loads new
entries, the cache does not operate efficiently. Rearranging the order of
these instructions remedies this inefficiency. Optionally, a dummy PM
read can be inserted to trigger the cache.

When a cache miss occurs, the needed instruction is loaded into the cache
so that if the same instruction is needed again, it will be there (that is, a
cache hit will occur). However, if another instruction whose address is
mapped to the same set displaces this instruction, a cache miss occurs. The
LRU bits help to reduce this possibility since at least two other instructions,
mapped to the same set, are needed before an instruction is displaced. If
three instructions mapped to the same set are all needed repeatedly, cache
efficiency (that is, “hit rate”) can go to zero. To solve this problem, move
one or more instructions to a new address that is mapped to a different
cache set.

An example of inefficient cache code appears in Table 3-1. The PM bus
data access at address 0x101 in the loop, Outer, causes a bus conflict and
also causes the cache to load the instruction being fetched at 0x103 (into

Instruction Cache

3-10 ADSP-2126x SHARC DSP Core Manual

set 3). Each time the program calls the subroutine, Inner, the program
memory data accesses at 0x201 and 0x211 displace the instruction at
0x103 by loading the instructions at 0x203 and 0x213 (also into set 3). If
the program rarely calls the Inner subroutine during the Outer loop exe-
cution, the repeated cache loads do not greatly influence performance. If
the program frequently calls the subroutine while in the loop, cache ineffi-
ciency has a noticeable effect on performance. To improve cache efficiency
on this code (if for instance, execution of the Outer loop is time critical),
rearrange the order of some instructions. Moving the subroutine call up
one location (starting at 0x201) also works. By using that order, the two
cached instructions end up in cache set 4, instead of set 3.

Table 3-1. Cache Inefficient Code

Address Instruction

0x0100 lcntr = 1024, do Outer until LCE;

0x0101 r0 = dm(i0,m0), pm(i8,m8) = f3;

0x0102 r1 = r0 – r15;

0x0103 if eq call (Inner);

0x0104 f2 = float r1;

0x0105 f3 = f2 * f2;

0x0106 Outer: f3 = f3 + f4;

0x0107 pm(i8,m8) = f3;

...

0x0200 Inner: r1 = R13;

0x0201 r14 = pm(i9,m9);

...

0x0211 pm(i9,m9) = r12;

...

0x021F rts;

ADSP-2126x SHARC DSP Core Manual 3-11

Program Sequencer

Branches and Sequencing
One type of nonsequential program flow that the sequencer supports is
branching. A branch occurs when a JUMP or CALL/RETURN instruction
moves execution to a location other than the next sequential address. For
descriptions on how to use JUMP and CALL/RETURN instructions, see the
ADSP-21160 SHARC DSP Instruction Set Reference. Briefly, these instruc-
tions operate as follows.

• A JUMP or a CALL instruction transfers program flow to another
memory location. The difference between a JUMP and a CALL is that
a CALL automatically pushes the return address (the next sequential
address after the CALL instruction) onto the PC stack. This push
makes the address available for the CALL instruction’s matching
return from an RTS subroutine instruction.

• A RETURN instruction causes the sequencer to fetch the instruction
at the return address, which is stored at the top of the PC stack.
The two types of return instructions are return from subroutine
(RTS) and return from interrupt (RTI). While the RTS only pops the
return address off the PC stack, the RTI pops the return address
and:

a. Clears the interrupt’s bit in the interrupt latch register
(IRPTL) and allows another interrupt to be latched in the
IRPTL register and the interrupt mask pointer (IMASKP) reg-
ister. See Table A-9 on page A-27.

b. Pops the status stack if the ASTATx/y and MODE1 status regis-
ters that have been pushed for interrupts IRQ2-0 or timers.

Branches and Sequencing

3-12 ADSP-2126x SHARC DSP Core Manual

There are a number of parameters that can be specified for branching
instructions:

• Branches can be direct or indirect. For direct branches, the
sequencer generates the address; for indirect branches, the PM data
address generator (DAG2) produces the address

• Direct branches are JUMP or CALL/RETURN instructions that use an
absolute—not changing at run time—address (such as a program
label) or use a PC-relative address. Some instruction examples that
cause a direct branch are:

CALL fft1024; /* Where fft1024 is an address label */

JUMP (pc,10); /* Where (pc,10) is a PC-relative address */

Indirect branches are JUMP or CALL/RETURN instructions that use a
dynamic address that comes from the PM data address generator
(DAG2). For more information on the data address generator, see
“Data Address Generators” on page 4-1. Some instruction exam-
ples that cause an indirect branch are:

JUMP (i12, m8); /* where (m8,i12) are DAG2 registers */

CALL (i13, m9); /* where (m9,i13) are DAG2 registers */

Conditional Branches
The sequencer supports conditional branches. These conditional branches
are JUMP or CALL/RETURN instructions whose execution is based on testing
an IF condition. For more information on condition types in IF condition
instructions, see “Conditional Sequencing” on page 3-18. Note that the
DSP’s Single-Instruction, Multiple-Data (SIMD) mode influences the
execution of conditional branches. For more information, see “Summary”
on page 3-63.

ADSP-2126x SHARC DSP Core Manual 3-13

Program Sequencer

Delayed Branches
The instruction pipeline influences how the sequencer handles delayed
branches. For immediate branches in which JUMP and CALL/RETURN
instructions are not specified as delayed branches (DB), two instruction
cycles are lost (NOP) as the pipeline empties and refills with instructions
from the new branch.

As shown in Figure 3-4 and Figure 3-5, the DSP aborts the two instruc-
tions after the branch, which are in the fetch and decode stages. For a
CALL, the decode address (the address of the instruction after the CALL) is
the return address. During the two lost NOP cycles, the pipeline fetches and
decodes the first instruction at the branch address.

In the illustrations that follow, shading indicates aborted instructions,
which are followed by NOP instructions.

In delayed branch, JUMP and CALL/RETURN instructions that use the delayed
branches (DB) modifier, no instruction cycles are lost in the pipeline. This
is because the DSP executes the two instructions after the branch while

Figure 3-4. Pipelined Execution Cycles for Immediate Branch
(Jump/Call)

CLOCK CYCLES

EXECUTE
INSTRUCTION

DECODE
INSTRUCTION

FETCH
INSTRUCTION

N NOP NOP J2

N+1->NOP1 N+2->NOP3 J2 J+1

J+2J+1J2N+2

NOTE THAT N IS THE BRANCHING INSTRUCTION, AND J IS THE INSTRUCTION BRANCH ADDRESS.
1. N+1 SUPPRESSED
2. FOR CALL, N+1 PUSHED ON PC STACK
3. N+2 SUPPRESSED

Branches and Sequencing

3-14 ADSP-2126x SHARC DSP Core Manual

the pipeline fills with instructions from the new location. This is shown in
the sample code below.

call fft1024 (DB);

...

...

jump (pc,10) (DB);

As shown in Figure 3-6 and Figure 3-7, the DSP executes the two instruc-
tions after the branch, while the instruction at the branch address is
fetched and decoded. In the case of a CALL, the return address is the third
address after the branch instruction. While delayed branches use the
instruction pipeline more efficiently than immediate branches, delayed
branch code can be harder to understand because of the instructions
between the branch instruction and the actual branch.

Figure 3-5. Pipelined Execution Cycles for Immediate Branch (return)

CLOCK CYCLES

EXECUTE
INSTRUCTION

DECODE
INSTRUCTION

FETCH
INSTRUCTION

N NOP NOP R

N+1->NOP1 N+2->NOP3 R R+1

R+2R+1R2N+2

NOTE THAT N IS THE BRANCHING INSTRUCTION, AND R IS THE INSTRUCTION AT THE RETURN ADDRESS.
1. N+1 SUPPRESSED
2. R (N+1 IN FIGURE 2-14) POPPED FROM PC STACK
3. N+2 SUPPRESSED

ADSP-2126x SHARC DSP Core Manual 3-15

Program Sequencer

Besides being more challenging to code, delayed branches impose some
limitations that stem from the instruction pipeline architecture. Because
the delayed branch instruction and the two instructions that follow it

Figure 3-6. Pipelined Execution Cycles for Delayed Branch
(JUMP or CALL)

Figure 3-7. Pipelined Execution Cycles for Delayed Branch (Return)

CLOCK CYCLES

EXECUTE
INSTRUCTION

DECODE
INSTRUCTION

FETCH
INSTRUCTION

N N+1 N+2 J

N+1 N+2 J J+1

J+2J+1J1N+2

NOTE THAT N IS THE BRANCHING INSTRUCTION, AND J IS THE INSTRUCTION BRANCH ADDRESS.
1. FOR A DELAYED BRANCH CALL, N+3 PUSHED ON PC STACK, NOT N+1

CLOCK CYCLES

EXECUTE
INSTRUCTION

DECODE
INSTRUCTION

FETCH
INSTRUCTION

N1 N+2 R

N+1 N+2 R R+1

R+2R+1RN+2

NOTE THAT N IS THE BRANCHING INSTRUCTION, AND R IS THE INSTRUCTION AT THE RETURN ADDRESS.
1. R (N+3 PUSHED IN FIGURE 3-5) POPPED FROM PC STACK

N+1

Branches and Sequencing

3-16 ADSP-2126x SHARC DSP Core Manual

must execute sequentially, the instructions in the two locations that follow
a delayed branch instruction cannot be:

• Other branches (no JUMP, CALL, or RETURN instructions)

Normally, it is not valid to have two conditional instructions that
use the (DB) option follow each other. However, where the execu-
tion of those instructions is mutually exclusive, it is allowed. For
example:

if gt jump (PC, 7) (db)

if le jump (PC,11) (db)

• Any stack manipulations (no PUSH or POP instructions or writes to
the PC stack or PC stack pointer register)

• Any loops or other breaks in sequential operation (no DO/UNTIL or
IDLE instructions)

Development software for the DSP should always flag these types of
instructions as code errors in the two locations after a delayed branch
instruction.

Delayed branches and the instruction pipeline also influence interrupt
processing. Because the delayed branch instruction and the two instruc-
tions that follow it always execute sequentially, the DSP does not
immediately process an interrupt that occurs in between a delayed branch
instruction and either of the two instructions that follow. Any interrupt
that occurs during these instructions is latched, but is not processed until
the branch is complete.

This may be useful when two instructions must execute atomically (with-
out interruption), such as when working with semaphores. In the
following example, instruction 2 immediately follows instruction 1 in all
occasions:

ADSP-2126x SHARC DSP Core Manual 3-17

Program Sequencer

jump (pc, 3) (db):

instruction 1;
instruction 2;

During a delayed branch, a program can read the PC stack register or PC
stack pointer register. This read shows that the return address on the PC
stack has already been pushed or popped, even though the branch has not
occurred yet.

Loop and Status Stacks and Sequencing
The sequencer includes a Program Counter (PC) stack, which appears in
Figure 3-1 on page 3-3. At the start of a subroutine or loop, the sequencer
pushes return addresses for subroutines (CALL/RETURN instructions) and
top-of-loop addresses for loops (DO/UNTIL instructions) onto the PC stack.
The sequencer pops the PC stack during a return from interrupt (RTI),
return from subroutine (RTS), and a loop termination.

The Program Counter (PC) register is the last stage in the
fetch-decode-execute instruction pipeline. It contains the 24-bit address of
the instruction the DSP will execute on the next cycle. The PC register,
combined with the Program Counter Stack (PCSTK) register, stores return
addresses and top-of-loop addresses.

The PC stack is 30 locations deep. The stack is full when all entries are
occupied, is empty when no entries are occupied, and is overflowed if a
push occurs when the stack is full. The following bits in the STKYx register
indicate the PC stack full and empty states.

• PC stack full. Bit 21 (PCFL) indicates that the PC stack is full (if 1)
or not full (if 0)—not a sticky bit, cleared by a POP.

• PC stack empty. Bit 22 (PCEM) indicates that the PC stack is empty
(if 1) or not empty (if 0)—not sticky, cleared by a PUSH.

Table A-5 on page A-19 lists all the bits in the STYKx register.

Conditional Sequencing

3-18 ADSP-2126x SHARC DSP Core Manual

To prevent a PC stack overflow, the PC stack full condition generates the
(maskable) stack overflow interrupt (SOVFI). This interrupt occurs when
the PC stack has 29 of 30 locations filled (the almost full state). The PC
stack full interrupt occurs when at this point because the PC stack full
interrupt service routine needs that last location for its return address.

The address of the top of the PC stack is available in the PC stack pointer
(PCSTKP) register. The value of PCSTKP is zero when the PC stack is empty,
is 1 through 30 when the stack contains data, and is 31 when the stack
overflows. A write to PCSTKP takes effect after a one cycle delay. If the PC
stack is overflowed, a write to PCSTKP has no effect. This register can be
read from and written to.

The overflow and full flags provide diagnostic aid only. Programs should
not use these flags for runtime recovery from overflow. Note that the sta-
tus stack, loop stack overflow, and PC stack full conditions trigger a
maskable interrupt.

The empty flags can ease stack saves to memory. Programs can monitor
the empty flag when saving a stack to memory to determine when the DSP
has transferred all values.

Conditional Sequencing
The sequencer supports conditional execution with conditional logic, as
illustrated in Figure 3-19 on page 3-65. This logic evaluates conditions for
conditional (IF) instructions and loop (DO/UNTIL) terminations. The con-
ditions are based on information from the arithmetic status registers
(ASTATx and ASTATy), the mode control 1 register (MODE1), the flag inputs,
and the loop counter. For more information on arithmetic status, see
“Using Computational Status” on page 2-15. When in SIMD mode, con-
ditional execution is effected by the arithmetic status of both processing
elements. For information on conditional sequencing in SIMD mode, see
“Summary” on page 3-63.

ADSP-2126x SHARC DSP Core Manual 3-19

Program Sequencer

Each condition that the DSP evaluates has an assembler mnemonic. The
condition mnemonics for conditional instructions appear in Table 3-2.
For most conditions, the sequencer can test both true and false states. For
example, the sequencer can evaluate ALU equal-to-zero (EQ) and ALU
not-equal-to-zero (NZ).

To branch conditionally based on the value of a register, a program can
use the Test Flag (TF) condition generated from a Bit Test Flag (BTF)
instruction. The TF flag is set or cleared as a result of a BIT TST or BIT XOR
instruction, which can test the contents of any of the DSP’s system regis-
ters, including STKYx and STKYy.

Table 3-2. IF Condition and DO/UNTIL Termination
Mnemonics

Condition From Description True if… Mnemonic

ALU ALU = 0 AZ = 1 EQ

ALU ≠ 0 AZ = 0 NE

ALU > 0 footnote1 GT

ALU < zero footnote2 LT

ALU ≥ 0 footnote3 GE

ALU ≤ 0 footnote4 LE

ALU carry AC = 1 AC

ALU not carry AC = 0 NOT AC

ALU overflow AV = 1 AV

ALU not overflow AV = 0 NOT AV

Multiplier Multiplier overflow MV = 1 MV

Multiplier not overflow MV= 0 NOT MV

Multiplier sign MN = 1 MS

Multiplier not sign MN = 0 NOT MS

Conditional Sequencing

3-20 ADSP-2126x SHARC DSP Core Manual

Shifter Shifter overflow SV = 1 SV

Shifter not overflow SV = 0 NOT SV

Shifter zero SZ = 1 SZ

Shifter not zero SZ = 0 NOT SZ

Bit Test Bit test flag true BTF = 1 TF

Bit test flag false BTF = 0 NOT TF

Flag Input Flag0 asserted FI0 = 1 FLG0_IN

Flag0 not asserted FI0 = 0 NOT FLG0_IN

Flag1 asserted FI1 = 1 FLG1_IN

Flag1 not asserted FI1 = 0 NOT FLG1_IN

Flag2 asserted FI2 = 1 FLG2_IN

Flag2 not asserted FI2 = 0 NOT FLG2_IN

Flag3 asserted FI3 = 1 FLG3_IN

Flag3 not asserted FI3 = 0 NOT FLG3_IN

Sequencer Loop counter expired (Do) CURLCNTR = 1 LCE

Loop counter not expired (IF) CURLCNTR ≠ 1 NOT ICE

Always false (Do) Always FOREVER

Always true (IF) Always TRUE

1 ALU greater than (GT) is true if:
AF and (AN xor (AV and ALUSAT), or AF and AN, or AZ = 0

2 ALU less than (LT) is true if:
AF and (AN xor (AV and ALUSAT), or (AF and AN and AZ) = 1

3 ALU greater equal (GE) is true if:
AF and (AN xor (AV and ALUSAT), or (AF and AN and AZ) = 0

4 ALU lesser or equal (LT) is true if:
AF and AN xor (AV and ALUSAT), or AF and AN or AZ = 1

Table 3-2. IF Condition and DO/UNTIL Termination
Mnemonics (Cont’d)

Condition From Description True if… Mnemonic

ADSP-2126x SHARC DSP Core Manual 3-21

Program Sequencer

The two conditions that do not have complements are LCE/NOT LCE (loop
counter expired/not expired) and TRUE/FOREVER. The context of these con-
dition codes determines their interpretation. Programs should use TRUE
and NOT LCE in conditional (IF) instructions. Programs should use FOR-
EVER and LCE to specify loop (DO/UNTIL) termination. A DO FOREVER
instruction executes a loop indefinitely, until an interrupt or reset
intervenes.

There are some restrictions on how programs may use conditions in
DO/UNTIL loops. For more information, see “Restrictions on Ending
Loops” on page 3-26 and “Restrictions on Short Loops” on page 3-27.

Core Stalls
Like all previous SHARC processors, there are a number of conditions
that cause the core to temporarily stop fetching and executing further
instructions. This event, known as a core stall, occurs when an instruction
accesses a peripheral’s data-buffer. Specifically, the core stalls when it
reads an empty receive buffer or writes a full transmit buffer. Execution
resumes once the peripheral moves a valid word of data into the receive
buffer or when the peripheral sends one word out from the transmit
buffer.

In addition to standard core stall situations, there are four other condi-
tions that cause the ADSP-2126x processor core to stall. The following
instructions or sequences of instructions will cause the processor core to

Core Stalls

3-22 ADSP-2126x SHARC DSP Core Manual

stall for one or more cycles. These stalls were introduced to facilitate the
doubling of the core clock rate without modifying the 3-deep
instruction-pipeline.

1. Reading or writing any memory mapped register in a conditional
instruction stalls the core for one cycle. This means that a total of
two cycles are needed for that instruction to complete.

2. Reading the following System/Emulator memory-mapped registers
stalls the processor for one cycle. Therefore, a total of two cycles
are needed for that instruction.

Register Address Register Address

EEMUIN 0x30020 PSA4E 0x300a7

EEMUSTAT 0x30021 DMA1S 0x300b2

EEMUOUT 0x30022 DMA1E 0x300b3

OSPID 0x30023 DMA2S 0x300b4

SYSCTL 0x30024 DMA2E 0x300b5

BRKCTL 0x30025 D1IC 0x300b6

REVPID 0x30026 D1ID 0x300b7

PSA1S 0x300a0 PMDAS 0x300b8

PSA1E 0x300a1 PMDAE 0x300b9

PSA2S 0x300a2 D2IC 0x300bc

PSA2E 0x300a3 D2ID 0x300bd

PSA3S 0x300a4 EMUN 0x300ae

PSA3E 0x300a5 IOAS 0x300b0

PSA4S 0x300a6 IOAE 0x300b1

ADSP-2126x SHARC DSP Core Manual 3-23

Program Sequencer

3. Reading from all other memory-mapped registers and data-buffers
(for example RXSPI, PPCTL, or SPISTAT) stalls the processor core for
three cycles. Therefore, a total of four cycles is needed for that
instruction to complete.

4. If the following sequence of three instructions are executed without
any other instruction between them, the processor stalls for one
cycle.

a. Instruction 1: Compute instructions affecting status flags,
such as R2 = R3 - R4;

b. Instruction 2:Conditional instructions involving post-mod-
ify addressing, such as IF EQ DM(I1,M1) = R15;

c. Instruction 3: Instructions involving post-modify address-
ing involving the same I register, such as R0 = DM(I1,M2);

The stall occurs in instruction 2, regardless of whether EQ is true or
false. However, the stall only occurs if the 3rd instruction is in the
exact sequence and there is no other instruction between 1 and 3.

Loops and Sequencing
Another type of nonsequential program flow that the sequencer supports
is looping. A loop occurs when a DO/UNTIL instruction causes the DSP to
repeat a sequence of instructions until a condition tests true. Unlike other
processors, the SHARC automatically evaluates the loop termination con-
dition and modifies the Program Counter (PC) register appropriately. This
allows zero overhead looping.

In addition to the standard status flags available to all conditional instruc-
tions (EQ, GT, LT, and so on), a special condition instruction Loop Counter
Expired (LCE), is specifically used for terminating loops. This instruction
tests whether the loop has completed the required number of iterations in
the LCNTR register. Loops that terminate with conditions other than LCE

Loops and Sequencing

3-24 ADSP-2126x SHARC DSP Core Manual

have some additional restrictions. For more information, see “Restrictions
on Ending Loops” on page 3-26 and “Restrictions on Short Loops” on
page 3-27. For more information on condition types in DO/UNTIL instruc-
tions, see “Interrupts and Sequencing” on page 3-46.

The DSP’s SIMD mode influences the execution of loops.

The DO/UNTIL instruction uses the sequencer’s loop and condition features,
as shown in Figure 3-1 on page 3-3. These features provide efficient hard-
ware loops without the overhead of additional instructions to branch, test
a condition, or decrement a counter. The following code example shows a
DO/UNTIL loop that contains three instructions and iterates 30 times.

LCNTR = 30, DO the_end UNTIL LCE; /*Loop iterates 30 times*/

R0 = DM(I0,M0), F2 = PM(I8,M8);

R1 = R0-R15;

the_end: F4 = F2 + F3; /*Last instruction in loop*/

When executing a DO/UNTIL instruction, the program sequencer pushes the
address of the loop’s last instruction and its termination condition onto
the loop address stack. The sequencer also pushes the top-of-loop
address—the address of the instruction following the DO/UNTIL instruc-
tion—onto the PC stack.

The sequencer’s instruction pipeline architecture influences loop termina-
tion. Because instructions are pipelined, the sequencer must test the
termination condition and, if the loop is counter-based, decrement the
counter before the end of the loop. Based on the test’s outcome, the next
fetch either exits the loop or returns to the top-of-loop.

The termination condition test occurs when the DSP is executing the
instruction that is two locations before the last instruction in the loop (at
location e – 2, where e is the end-of-loop address). If the condition tests
false, the sequencer repeats the loop and fetches the instruction from the
top-of-loop address, which is stored on the top of the PC stack. If the con-

ADSP-2126x SHARC DSP Core Manual 3-25

Program Sequencer

dition tests true, the sequencer terminates the loop and fetches the next
instruction after the end of the loop, popping the loop and PC stacks.

A special case of loop termination is the loop abort instruction, JUMP (LA).
This instruction causes an automatic loop abort when it occurs inside a
loop. When the loop aborts, the sequencer pops the PC and loop address
stacks once. If the aborted loop was nested, the single pop of the stacks
leaves the correct values in place for the outer loop.

Figure 3-8 and Figure 3-9 show the pipeline states for loop iteration and
termination.

Figure 3-8. Pipelined Execution Cycles for Loop Back (Iteration)

CLOCK CYCLES

EXECUTE
INSTRUCTION

DECODE
INSTRUCTION

FETCH
INSTRUCTION

E-21 E-1 E B

E-1 E B B+1

B+2B+1B2E

NOTE THAT E IS THE LOOP END INSTRUCTION, AND B IS THE LOOP START INSTRUCTION.
1. TERMINATION CONDITION TESTS FALSE
2. LOOP START ADDRESS IS TOP OF PC STACK

Loops and Sequencing

3-26 ADSP-2126x SHARC DSP Core Manual

Restrictions on Ending Loops
The sequencer’s loop features (which optimize performance in many ways)
limit the types of instructions that may appear at or near the end of the
loop. These restrictions include:

• Nested loops cannot use the same end-of-loop instruction address.

• Nested loops with a non-counter-based loop as the outer loop must
place the end address of the outer loop at least two addresses after
the end address of the inner loop.

• Nested loops with a non-counter-based loop as the outer loop that
use the loop abort instruction, JUMP (LA), to abort the inner loop,
may not JUMP (LA) to the last instruction of the outer loop.

• An instruction that writes to the loop counter from memory can-
not be used as the third-to-last instruction of a counter-based loop
(at e–2, where e is the end-of-loop address).

Figure 3-9. Pipelined Execution Cycles for Loop Termination

CLOCK CYCLES

EXECUTE
INSTRUCTION

DECODE
INSTRUCTION

FETCH
INSTRUCTION

E-21 E-1 E E+1

E-1 E E+1 E+2

E+3E+2E+12E

NOTE THAT E IS THE LOOP END INSTRUCTION.
1. TERMINATION CONDITION TESTS TRUE
2. LOOP ABORTS AND LOOP STACKS POP

ADSP-2126x SHARC DSP Core Manual 3-27

Program Sequencer

• An IF NOT LCE instruction cannot be used as the instruction that
follows a write to CURLCNTR from memory.

• Branch (JUMP or CALL/RETURN) instructions may not be used as any
of the last three instructions of a loop. This no end-of-loop
branches rule also applies to single instruction and two instruction
loops with only one iteration.

There is one exception to the no end-of-loop branches rule. The last three
instructions of a loop may contain an immediate CALL, a CALL without a DB
modifier, that is paired with a loop re-entry return, a return (RTS) with
loop reentry (LR) modifier. The immediate CALL may be one of the last
three instructions of a loop, but not in a one instruction loop or a two
instruction, single iteration loop.

Restrictions on Short Loops
The sequencer’s pipeline features (which optimize performance in many
ways) restrict how short loops iterate and terminate. Short loops (one or
two instruction loops) terminate in a special way because they are shorter
than the instruction pipeline. Counter-based loops (DO/UNTIL LCE) of one
or two instructions are not long enough for the sequencer to check the ter-
mination condition two instructions from the end of the loop. In these
short loops, the sequencer has already looped back when the termination
condition is tested. The sequencer provides special handling to prevent
overhead (NOP) cycles if the loop is iterated a minimum number of times.

Figure 3-10 and Figure 3-11 show the pipeline execution for
counter-based single instruction loops. Figure 3-12 and Figure 3-13 show
the pipeline execution for counter-based two instruction loops. For no
overhead, a loop of length one must be executed at least three times and a
loop of length two must be executed at least twice. Loops of length one
that iterate only once or twice and loops of length two that iterate only

Loops and Sequencing

3-28 ADSP-2126x SHARC DSP Core Manual

once incur two cycles of overhead, because two aborted instructions after
the last iteration are needed to clear the instruction pipeline.

Figure 3-10. Pipelined Execution Cycles for Single Instruction
Counter-based Loop with Three Iterations

Figure 3-11. Pipelined Execution Cycles for Single Instruction
Counter-based Loop with Two Iterations (Two Overhead Cycles)

CLOCK CYCLES

EXECUTE
INSTRUCTION

DECODE
INSTRUCTION

FETCH
INSTRUCTION

N1
N+1

(PASS 1)
N+1

(PASS 2)
N+1

(PASS 3)

N+1 N+1 N+1 N+2

N+3N+23N+12N+2

N+2

N+3

N+4

NOTE: N IS THE LOOP START INSTRUCTION, AND N+2 IS THE INSTRUCTION AFTER THE LOOP.
1. LOOP COUNT (LCNTR) EQUALS 3
2. NO OPCODE LATCH OR FETCH ADDRESS UPDATE; COUNT EXPIRED TESTS TRUE
3. LOOP ITERATION ABORTS; PC AND LOOP STACKS POP

CLOCK CYCLES

EXECUTE
INSTRUCTION

DECODE
INSTRUCTION

FETCH
INSTRUCTION

N1
N+1

(PASS 1)
N+1

(PASS 2) NOP

N+1 N+1 N+1->NOP4 N+1->NOP5

N+2N+13N+12N+2

NOP

N+2

N+3

N+2

N+3

N+4

NOTE: N IS THE LOOP START INSTRUCTION, AND N+3 IS THE INSTRUCTION AFTER THE LOOP.
1. LOOP COUNT (LCNTR) EQUALS 2
2. PC STACK SUPPLIES LOOP START ADDRESS
3. COUNT EXPIRED TESTS TRUE
4. LOOP ITERATION ABORTS; PC AND LOOP STACKS POP

ADSP-2126x SHARC DSP Core Manual 3-29

Program Sequencer

Figure 3-12. Pipelined Execution Cycles for Two Instruction Counter-
based Loop with Two Iterations

Figure 3-13. Pipelined Execution Cycles for Two Instruction Counter-
based Loop with One Iteration (Two Overhead Cycles)

CLOCK CYCLES

EXECUTE
INSTRUCTION

DECODE
INSTRUCTION

FETCH
INSTRUCTION

N1
N+1

(PASS 1)
N+2

(PASS 1)
N+1

(PASS 2)

N+1 N+2 N+1 N+2

N+34N+23N+12N+2

N+2
(PASS 2)

N+3

N+4

N+3

N+4

N+5

NOTE: N IS THE LOOP START INSTRUCTION, AND N+3 IS THE INSTRUCTION AFTER THE LOOP.
1. LOOP COUNT (LCNTR) EQUALS 2
2. PC STACK SUPPLIES LOOP START ADDRESS
3. COUNT EXPIRED TESTS TRUE
4. LOOP ITERATION ABORTS; PC AND LOOP STACKS POP

CLOCK CYCLES

NOTE: N IS THE LOOP START INSTRUCTION, AND N+3 IS THE INSTRUCTION AFTER THE LOOP.
1. LOOP COUNT (LCNTR) EQUALS 1
2. PC STACK SUPPLIES LOOP START ADDRESS
3. COUNT EXPIRED TESTS TRUE
4. LOOP ITERATION ABORTS; PC AND LOOP STACKS POP; N+1 SUPPRESSED
5. N+2 SUPPRESSED

EXECUTE
INSTRUCTION

DECODE
INSTRUCTION

FETCH
INSTRUCTION

N1
N+1

(PASS 1)
N+1

(PASS 1) NOP

N+1 N+2 N+1->NOP4 N+2->NOP5

N+3N+23N+12N+2

NOP

N+3

N+4

N+3

N+4

N+5

Loops and Sequencing

3-30 ADSP-2126x SHARC DSP Core Manual

Processing of an interrupt that occurs during the last iteration of a one
instruction loop is delayed by one cycle when:

• the loop executes once or twice,

• a two instruction loop executes once, or

• a NOP cycle follows one of these loops.

Similarly, in a one instruction loop that iterates at least three times, pro-
cessing is delayed by one cycle if the interrupt occurs during the
third-to-last iteration. For more information on pipeline execution during
interrupts, see “Interrupts and Sequencing” on page 3-46.

Short noncounter-based loops terminate differently from short
counter-based loops. These differences stem from the architecture of the
pipeline and conditional logic:

• In a three instruction non counter-based loop, the sequencer tests
the termination condition when the DSP executes the top of loop
instruction. When the condition tests true, the sequencer com-
pletes the iteration of the loop and terminates.

• In a two instruction non counter-based loop, the sequencer tests
the termination condition when the DSP executes the last (second)
instruction. If the condition becomes true when the first instruc-
tion is executed, and the condition tests true during the second
instruction, then the sequencer completes one more iteration of the
loop before exiting. If the condition becomes true during the sec-
ond instruction, the sequencer completes two more iterations of
the loop before exiting.

• In a one instruction non counter-based loop, the sequencer tests
the termination condition every cycle. After the cycle when the
condition becomes true, the sequencer completes three more itera-

ADSP-2126x SHARC DSP Core Manual 3-31

Program Sequencer

tions of the loop before exiting. But if the one instruction used in
the loop is a PM instruction, then the loop is executed only two
more times.

Loop Address Stack
The sequencer’s loop support, shown in Figure 3-1 on page 3-3, includes
a loop address stack. The loop address stack is six levels deep by 32 bits
wide.

The LADDR register contains the top entry on the loop address stack. This
register is readable and writable over the DM data bus. Reading from and
writing to LADDR does not move the loop address stack pointer; only a
stack push or pop performed with explicit instructions moves the stack
pointer. LADDR contains the value 0xFFFF FFFF when the loop address
stack is empty. “Loop Address Stack Register (LADDR)” on page A-49
lists all the bits in the LADDR register.

The sequencer pushes an entry onto the loop address stack when executing
a DO/UNTIL or PUSH loop instruction. The stack entry pops off the stack
two instructions before the end of its loop’s last iteration or on a POP loop
instruction. A stack overflow occurs if a seventh entry (one more than full)
is pushed onto the loop stack. The stack is empty when no entries are
occupied.

The loop stacks’ overflow or empty status is available. Because the
sequencer keeps the loop stack and loop counter stack synchronized, the
same overflow and empty flags apply to both stacks. These flags are in the
sticky status register (STKYx). For more information on STKYx, see
Table A-5 on page A-19. For more information on how these flags work
with the loop stacks, see “Loop Counter Stack” on page 3-32. Note that a
loop stack overflow causes a maskable interrupt.

Because the sequencer tests the termination condition two instructions
before the end of the loop, the loop stack pops before the end of the loop’s

Loops and Sequencing

3-32 ADSP-2126x SHARC DSP Core Manual

final iteration. If a program reads LADDR at either of these instructions, the
value is already the termination address for the next loop stack entry.

Loop Counter Stack
The sequencer’s loop support, shown in Figure 3-1 on page 3-3, includes
a loop counter stack. The sequencer keeps the loop counter stack synchro-
nized with the loop address stack. Both stacks always have the same
number of locations occupied. Because these stacks are synchronized, the
same empty and overflow status flags from the STKYx register apply to both
stacks.

The loop counter stack is six locations deep. The stack is full when all
entries are occupied, is empty when no entries are occupied, and is over-
flowed if a push occurs when the stack is already full. The following bits in
the STKYx register indicate the loop counter stack full and empty states.

• Loop stacks overflowed. Bit 25 (LSOV) indicates that the loop
counter stack and loop stack are overflowed (if set to 1) or not
overflowed (if set to 0)— LSOV is a sticky bit.

• Loop stacks empty. Bit 26 (LSEM) indicates that the loop counter
stack and loop stack are empty (if set to 1) or not empty (if set to
0)—not sticky, cleared by a PUSH.

Table A-5 on page A-19 lists all the bits in the STYKx register.

Within the sequencer, the current loop counter (CURLCNTR) and loop
counter (LCNTR) registers allow access to the loop counter stack. The CURL-
CNTR register tracks iterations for a loop being executed, and the LCNTR
register holds the count value before the loop is executed. The two
counters let the DSP maintain the count for an outer loop, while a pro-
gram is setting up the count for an inner loop.

The top entry in the loop counter stack (CURLCNTR) always contains the
current loop count. This register is readable and writable over the DM

ADSP-2126x SHARC DSP Core Manual 3-33

Program Sequencer

data bus. Reading CURLCNTR when the loop counter stack is empty returns
the value 0xFFFF FFFF.

The sequencer decrements the value of CURLCNTR for each loop iteration.
Because the sequencer tests the termination condition two instruction
cycles before the end of the loop, the loop counter also decrements before
the end of the loop. If a program reads CURLCNTR at either of the last two
loop instructions, the value is already the count for the next iteration.

The loop counter stack pops two instructions before the end of the last
loop iteration. When the loop counter stack pops, the new top entry of the
stack becomes the CURLCNTR value—the count in effect for the executing
loop. If there is no executing loop, the value of CURLCNTR is 0xFFFF FFFF
after the pop.

Writing CURLCNTR does not cause a stack push. If a program writes a new
value to CURLCNTR, the program changes the count value of the loop cur-
rently executing. When a DO/UNTIL LCE loop is not executing, writing to
CURLCNTR has no effect. Because the processor must use CURLCNTR to per-
form counter-based loops, some restrictions relating to how a program can
write CURLCNTR apply. See “Restrictions on Ending Loops” on page 3-26
for more information.

The next-to-top entry in the loop counter stack (LCNTR) is the location on
the stack that takes effect on the next loop stack push. To set up a count
value for a nested loop without changing the count for the currently exe-
cuting loop, a program writes the count value to LCNTR.

A value of zero in LCNTR causes a loop to execute 232 times.

A DO/UNTIL LCE instruction pushes the value of LCNTR onto the loop count
stack, making that value the new CURLCNTR value. Figure 3-14 on
page 3-34 demonstrates this process for a set of nested loops. The previous
CURLCNTR value is preserved one location down in the stack. If a program
reads LCNTR when the loop counter stack is full, the stack returns invalid
data. When the loop counter stack is full, the stack discards any data writ-

Loops and Sequencing

3-34 ADSP-2126x SHARC DSP Core Manual

ten to LCNTR. If a program reads LCNTR during the last two instructions of a
terminating loop, the value of LCNTR is the last CURLCNTR value for the
loop.

Figure 3-14. Pushing the Loop Counter Stack for Nested Loops

1

AAAA AAAALCNTR

CURLCNTR

LCNTR

4

AAAA AAAA

DDDD DDDD

CCCC CCCC

BBBB BBBB

AAAA AAAA

0XFFFF FFFF

LCNTR

CURLCNTR

CURLCNTR

LCNTR

3

AAAA AAAA

CCCC CCCC

BBBB BBBB

CURLCNTR

LCNTR

6

BBBB BBBB

AAAA AAAA

DDDD DDDD

CCCC CCCC

FFFF FFFF

EEEE EEEE

CURLCNTR

7

BBBB BBBB

DDDD DDDD

FFFF FFFF

CCCC CCCC

EEEE EEEE

AAAA AAAA

CURLCNTR

LCNTR

2

AAAA AAAA

BBBB BBBB

CURLCNTR

LCNTR

5

AAAA AAAA

BBBB BBBB

CCCC CCCC

DDDD DDDD

EEEE EEEE

ADSP-2126x SHARC DSP Core Manual 3-35

Program Sequencer

SIMD Mode and Sequencing
The DSP supports a SIMD (Single-Instruction, Multiple-Data) mode. In
this mode, both of the DSP’s processing elements (PEx and PEy) execute
instructions and generate status conditions. For more information on
SIMD computations, see “SIMD (Computational) Operations” on
page 2-49.

Because the two processing elements can generate different outcomes, the
sequencers must evaluate conditions from both elements (in SIMD mode)
for conditional (IF) instructions and loop (DO/UNTIL) terminations. The
DSP records status for the PEx element in the ASTATx and STKYx registers.
The DSP records status for the PEy element in the ASTATy and STKYy reg-
isters. Table A-4 on page A-14 lists the bits in ASTATx and ASTATy, and
Table A-5 on page A-19 lists the bits in STKYx and STKYy.

Even though the DSP has dual processing elements, the sequencer does
not have dual sets of stacks. The sequencer has one PC stack, one loop
address stack, and one loop counter stack. The status bits for stacks are in
STKYx and are not duplicated in STKYy. In SIMD mode, the status stack
stores both ASTATx and ASTATy values. A status stack PUSH or POP instruc-
tion in SIMD mode affects both registers in parallel.

While in SIMD mode, the sequencer evaluates conditions from both pro-
cessing elements for conditional (IF) and loop (DO/UNTIL) instructions.
Table 3-3 on page 3-35 summarizes how the sequencer resolves each con-
ditional test when SIMD mode is enabled.

Table 3-3. Conditional Execution Summary

Conditional Operation Conditional Outcome Depends On …

Compute Operations Executes in each PE independently depending on
condition test in each PE

Branches and Loops Executes in sequencer depending on ANDing
condition test on both PEs

SIMD Mode and Sequencing

3-36 ADSP-2126x SHARC DSP Core Manual

Conditional Compute Operations
While in SIMD mode, a conditional compute operation can execute on
both processing elements, either element, or neither element, depending
on the outcome of the status flag test. Flag testing is independently per-
formed on each processing element.

Conditional Branches and Loops
The DSP executes a conditional branch (JUMP or CALL/RETURN) or loop
(DO/UNTIL) based on the result of ANDing the condition tests on both PEx
and PEy. A conditional branch or loop in SIMD mode occurs only when
the condition is true in PEx and PEy.

Using complementary conditions (for example EQ and NE), programs can
produce an ORing of the condition tests for branches and loops in SIMD

Data Moves (from complementary

pair1 to complementary pair)

Executes move in each PE (and/or memory) independently
depending on condition test in each PE

Data Moves (from uncomple-
mented Ureg register to comple-
mentary pair)

Executes move in each PE (and/or memory) independently
depending on condition test in each PE ; Ureg is source for
each move

Data Moves (from complementary

pair to uncomplemented register2)

Executes explicit move to uncomplemented universal
register depending on condition test in PEx only; no
implicit move occurs

DAG Operations Executes modify3 in DAG depending on ORing condition
test on both PE’s

1 Complementary pairs are registers with SIMD complements, include PEx/y data registers and
USTAT1/2, USTAT3/4, ASTATx/y, STKYx/y, and PX1/2 Uregs.

2 Uncomplemented registers are Uregs that do not have SIMD complements.
3 Post-modify operations follow this rule, but pre-modify operations always occur despite the out-

come.

Table 3-3. Conditional Execution Summary (Cont’d)

Conditional Operation Conditional Outcome Depends On …

ADSP-2126x SHARC DSP Core Manual 3-37

Program Sequencer

mode. A conditional branch or loop that uses this technique must consist
of a series of conditional compute operations. These conditional computes
generate NOPs on the processing element where a branch or loop does not
execute. For more information on programming in SIMD mode, see the
ADSP-21160 SHARC DSP Instruction Set Reference.

Conditional Data Moves
The execution of a conditional (IF) data move (register-to-register and
register-to/from-memory) instruction depends on three factors:

• The explicit data move depends on the evaluation of the condi-
tional test in the PEx processing element.

• The implicit data move depends on the evaluation of the condi-
tional test in the PEy processing element.

• Both moves depend on the types of registers used in the move.

There are four cases for SIMD conditional data moves.

Case #1: Complementary Register Pair Data Move

In this case, data moves from a complementary register pair to a comple-
mentary register pair. The DSP executes the explicit move depending on
the evaluation of the conditional test in the PEx processing element and
the implicit move depending on the evaluation of the conditional test in
the PEy processing element. For example:

IF EQ DM(I0,M0) = R2;

Example 1: Register-to-Memory Move – PEx Explicit Register

For this instruction, the DSP is operating in SIMD mode, a register in the
PEx data register file is the explicit register, and I0 is pointing to an even
address in internal memory. Indirect addressing is shown in the instruc-
tions in the example. However, the same results occur using direct

SIMD Mode and Sequencing

3-38 ADSP-2126x SHARC DSP Core Manual

addressing. The data movement resulting from the evaluation of the con-
ditional test in the PEx and PEy processing elements is shown in
Table 3-4.

The moves from the DAG registers to the memory also behave in a similar
manner, as demonstrated in Table 3-4. For example:

If EQ pm(i0,m0) = m15;

Example 2: Register Move – PEy Explicit Register

For this instruction, the DSP is operating in SIMD mode, a register in the
PEy data register file is the explicit register and I0 is pointing to an even
address in internal memory. The data movement resulting from the evalu-
ation of the conditional test in the PEx and PEy processing elements is
shown in Table 3-5.

 IF EQ DM(I0,M0) = S2;

Example 3: Register-to-Memory Move – PEx Explicit Register

For the following instructions, the DSP is operating in SIMD mode and
registers in the PEx data register file are used as the explicit registers. The

Table 3-4. Register-to-Memory Moves—Complementary Pairs

Condition
in PEx

Condition
in PEy

Result

AZx AZy Explicit Implicit

0 0 No data move occurs No data move occurs

0 1 No data move occurs from r2 to
location I0

s2 transfers to location (I0+1)

1 0 r2 transfers to location I0 No data move occurs from s2
to location (I0+1)

1 1 r2 transfers to location I0 s2 transfers to location (I0+1)

ADSP-2126x SHARC DSP Core Manual 3-39

Program Sequencer

data movement resulting from the evaluation of the conditional test in the
PEx and PEy processing elements is shown in Table 3-6.

IF EQ R9 = R2;

IF EQ PX1 = R2;

IF EQ USTAT1 = R2;

Table 3-5. Register-to-Register Moves – Complementary Pairs

Condition
in PEx

Condition
in PEy

Result

AZx AZy Explicit Implicit

0 0 No data move occurs No data move occurs

0 1 No data move occurs from s2 to
location I0

r2 transfers to location I0+1

1 0 s2 transfers to location I0 No data move occurs from r2 to
location I0 + 1

1 1 s2 transfers to location I0 r2 transfers to location I0 + 1

Table 3-6. Register-to-Register Moves – Complementary Pairs

Condition
in PEx

Condition
in PEy

Result

AZx AZy Explicit Implicit

0 0 No data move occurs No data move occurs

0 1 No data move to registers r9,
px1, and ustat1 occurs

s2 transfers to registers s9, px2 and
ustat2

1 0 r2 transfers to registers r9,
px1, and ustat1

No data move to s9, px2, or ustat2
occurs

1 1 r2 transfers to registers r9,
px1, and ustat1

s2 transfers to registers s9, px2,
and ustat2

SIMD Mode and Sequencing

3-40 ADSP-2126x SHARC DSP Core Manual

Example 4: Register-to-Memory Move – PEy Explicit Register

For the following instructions, the DSP is operating in SIMD mode and
registers in the PEy data register file are used as explicit registers. The data
movement resulting from the evaluation of the conditional test in the PEx
and PEy processing elements is shown in Table 3-7.

IF EQ R9 = S2;

IF EQ PX1 = S2;

IF EQ USTAT1 = S2;

Case #2: Uncomplimentary-to-Complementary Register
Move

In this case, data moves from an uncomplemented register (Ureg without a
SIMD complement) to a complementary register pair. The DSP executes
the explicit move depending on the evaluation of the conditional test in
the PEx processing element. The DSP executes the implicit move depend-
ing on the evaluation of the conditional test in the PEy processing
element. In each processing element where the move occurs, the content
of the source register is duplicated in the destination register.

Table 3-7. Register-to-Register Moves – Complementary Register Pairs

Condition
in PEx

Condition
in PEy

Result

AZx AZy Explicit Implicit

0 0 No data move occurs No data move occurs

0 1 No data move to registers s9,
px and ustat1 occurs

r2 transfers to registers s9,
px2, and ustat2

1 0 s2 transfers to registers r9,
px1, and ustat1

NO data move to registers s9,
px2, and ustat2 occurs

1 1 s2 transfers to registers r9,
px1, and ustat1

r2 transfers to registers s9,
px2, and ustat2

ADSP-2126x SHARC DSP Core Manual 3-41

Program Sequencer

Example: Register Moves – Uncomplimentary-to-Complementary

While PX1 and PX2 are complementary registers, the combined PX register
has no complementary register. For more information, see “Internal Data
Bus Exchange” on page 5-7.

For the following instruction the DSP is operating in SIMD mode. The
data movement resulting from the evaluation of the conditional test in the
PEx and PEy processing elements is shown in Table 3-8.

IF EQ R1 = PX;

Case #3: Complementary-to-Uncomplimentary Register
Move

In this case data moves from a complementary register pair to an uncom-
plementary register. The DSP executes the explicit move to the
uncomplemented universal register, depending on the condition test in
the PEx processing element only. The DSP does not perform an implicit
move.

Example: Register Moves – Complementary-to-Uncomplimentary

For all of the following instructions, the DSP is operating in SIMD mode.
The data movement resulting from the evaluation of the conditional test

Table 3-8. Uncomplimentary-to-Complementary Register Move

Condition
in PEx

Condition
in PEy

Result

AZx AZy Explicit Implicit

0 0 r1 remains unchanged s1 remains unchanged

0 1 r1 remains unchanged s1 gets px value

1 0 r1 gets px value s1 remains unchanged

1 1 r1 gets px value s1 gets px value

SIMD Mode and Sequencing

3-42 ADSP-2126x SHARC DSP Core Manual

in the PEx and PEy processing elements for all of the example code sam-
ples are shown in Table 3-9.

IF EQ PX = R1;

Uncomplemented register to DAG move:

if EQ m1=PX;

DAG to uncomplemented register move:

if EQ PX = m1;

Note that PX1 and PX2 have compliments, but PX as a register is
uncomplemented.

DAG to DAG move:

if EQ m1 = i15;

Complimented register to DAG move:

if EQ i6 = r9;

In all the cases described above, the behavior is the same. If the condition
in PEx is true, then only the transfer occurs.

Table 3-9. Complementary-to-Uncomplimentary Move

Condition
in PEx

Condition
in PEy

Result

AZx AZy Explicit Implicit

0 0 px remains unchanged no implicit move

0 1 px remains unchanged no implicit move

1 0 r1 40-bit explicit move to px no implicit move

1 1 r1 40-bit explicit move to px no implicit move

ADSP-2126x SHARC DSP Core Manual 3-43

Program Sequencer

For more details on PX register transfers, refer to “Internal Data Bus
Exchange” on page 5-7.

Case #4: External Memory or IOP Memory Space Data Move

Conditional data moves from a complementary register pair to an uncom-
plemented register with an access to external memory space or IOP
memory space. This results in unexpected behavior and should not be
used.

Example: Register-to-Memory Moves – External or IOP Memory Space
Data Move

For the following instructions the DSP is operating in SIMD mode and
the explicit register is either a PEx register or PEy register. I0 points to
either external memory space or IOP memory space. This example shows
indirect addressing. However, the same results occur using direct
addressing.

IF EQ DM(I0,M0) = R2;

IF EQ DM(I0,M0) = S2;

Case #5: Uncomplimentary Register Data Move

In the case of memory-to-DAG register moves, the transfer does not occur
when both PEx and PEy are false. Other than that, if either PEx or PEy is
true, transfers to the DAG register occurs. For example:

if EQ m13 = dm(i0,m1);

Conditional DAG Operations
Conditional post-modify DAG operations update the DAG register based
on ORing of the condition tests on both processing elements. Actual data
movement involved in a conditional DAG operation is based on indepen-

Timer and Sequencing

3-44 ADSP-2126x SHARC DSP Core Manual

dent evaluation of condition tests in PEx and PEy. Only the post-modify
update is based on the ORing of the these conditional tests.

Conditional pre-modify DAG operations behave differently. The DAGs
always pre-modify an index, independent of the outcome of the condition
tests on each processing element.

Timer and Sequencing
The sequencer includes a programmable interval timer, which appears in
Figure 3-1 on page 3-3. Bits in the MODE2, TCOUNT, and TPERIOD registers
control timer operations as described below.

• Timer enable MODE2 Bit 5 (TIMEN). This bit directs the DSP to
enable (if 1) or disable (if 0) the timer.

• Timer count (TCOUNT). This register contains the decrementing
timer count value, counting down the cycles between timer
interrupts.

• Timer period (TPERIOD). This register contains the timer period,
indicating the number of cycles between timer interrupts.

Table A-3 on page A-12 lists all of the bits in the MODE2 register.

The TCOUNT register contains the timer counter. The timer decrements the
TCOUNT register during each clock cycle. When the TCOUNT value reaches
zero, the timer generates an interrupt and asserts the TIMEXP pin. This sce-
nario applies only when TCOUNT is configured as TIMEXP output high for
four cycles (when the timer is enabled), as shown in Figure 3-15. On the
clock cycle after TCOUNT reaches zero, the timer automatically reloads
TCOUNT from the TPERIOD register.

The TPERIOD value specifies the frequency of timer interrupts. The num-
ber of cycles between interrupts is TPERIOD + 1. The maximum value of

ADSP-2126x SHARC DSP Core Manual 3-45

Program Sequencer

TPERIOD is 232 – 1. This value is loaded into TCOUNT after it decrements to
zero.

To start and stop the timer, programs use the MODE2 register’s TIMEN bit.
With the timer disabled (TIMEN=0), the program loads TCOUNT with an ini-
tial count value and loads TPERIOD with the number of cycles for the
desired interval. Then, the program enables the timer (TIMEN=1) to begin
the count.

When a program enables the timer, the timer starts decrementing the
TCOUNT register at the end of the next clock cycle. If the timer is subse-
quently disabled, the timer stops decrementing TCOUNT after the next clock
cycle as shown in Figure 3-15.

The timer expired event (TCOUNT decrements to zero) generates two inter-
rupts, TMZHI and TMZLI. For information on latching and masking these

Figure 3-15. Timer Enable and Disable

CLKIN

Set TIMEN

Timer ActiveTIMER

TCOUNT=N TCOUNT=N TCOUNT=N-1

CLKIN

Clear TIMEN
Timer Inactive

TIMER

TCOUNT=M–1 TCOUNT=M–2 TCOUNT=M–2

in MODE2
ENABLE

in MODE2
DISABLE

Interrupts and Sequencing

3-46 ADSP-2126x SHARC DSP Core Manual

interrupts to select timer expired priority, see “Latching Interrupts” on
page 3-57.

As with other interrupts, the sequencer needs two cycles to fetch and
decode the first instruction of the timer expired service routine before exe-
cuting the routine. The pipeline execution for the timer interrupt appears
in Figure 3-18 on page 3-50.

Programs can read and write the TPERIOD and TCOUNT registers by using
universal register transfers. Reading the registers does not effect the timer.
Note that an explicit write to TCOUNT takes priority over the sequencer’s
loading TCOUNT from TPERIOD and the timer’s decrementing of TCOUNT.
Also note that TCOUNT and TPERIOD are not initialized at reset. Programs
should initialize these registers before enabling the timer.

Interrupts and Sequencing
Another type of nonsequential program flow that the sequencer supports
is interrupt processing. Interrupts may stem from a variety of conditions,
both internal and external to the processor. In response to an interrupt,
the sequencer processes a subroutine call to a predefined address, called
the interrupt vector. The DSP assigns a unique vector to each type of
interrupt and assigns a priority to each interrupt based on the Interrupt
Vector Table (IVT) addressing scheme. For more information, see “Inter-
rupt Vector Addresses” on page B-1.

The DSP supports three prioritized, individually-maskable external inter-
rupts, each of which can be either level- or edge-sensitive. External
interrupts occur when another device asserts one of the DSP’s interrupt
inputs (IRQ2–0). The DSP also supports internal interrupts. An internal
interrupt can stem from arithmetic exceptions, stack overflows, DMA
completion and/or peripheral data buffer status, or circular data buffer

ADSP-2126x SHARC DSP Core Manual 3-47

Program Sequencer

overflows. Several factors control the DSP’s response to an interrupt. The
DSP responds to an interrupt request if:

• the DSP is executing instructions or is in an idle state.

• the interrupt is not masked.

• interrupts are globally enabled.

• a higher priority request is not pending.

When the DSP responds to an interrupt, the sequencer branches program
execution with a call to the corresponding interrupt vector address.
Within the DSP’s program memory, the interrupt vectors are grouped in
an area called the Interrupt Vector Table (IVT). The interrupt vectors in
this table are spaced at 4-instruction intervals. Each interrupt vector has
associated latch and mask bits. For a list of interrupt vector addresses and
their associated latch and mask bits, see Table B-2 on page B-2.

“Interrupt Latch Register (IRPTL)” on page A-25, “Interrupt Register
(LIRPTL)” on page A-42, and “Interrupt Mask Register (IMASK)” on
page A-30 lists the latch and mask bits.

To process an interrupt, the DSP’s program sequencer:

1. outputs the appropriate interrupt vector address.

2. pushes the current PC value (the return address) onto the PC stack.

3. pushes the current value of the ASTATx/y and MODE1 registers onto
the status stack (if the interrupt is IRQ2–0, or timer).

4. resets the appropriate bit in the interrupt latch register (IRPTL and
LIRPTL registers).

5. alters the interrupt mask pointer bits (IMASKP) to reflect the current
interrupt nesting state, depending on the nesting mode.

Interrupts and Sequencing

3-48 ADSP-2126x SHARC DSP Core Manual

At the end of the interrupt service routine (ISR), the sequencer processes
the return-from-interrupt (RTI) instruction and performs the steps shown
below. Between servicing and returning, the sequencer clears the latch bit
of the in-progress ISR every cycle until the RTI is executed. This prevents
the same interrupt from recurring until the ISR is done. Refer to the JUMP
(CI) code example on page 3-62 to learn how to prevent this clearing.

1. Returns to the address stored at the top of the PC stack.

2. Pops this value off the PC stack.

3. Pops the status stack (if the ASTATx,y and MODE1 status registers
were pushed for the IRQ2–0, or timer interrupt).

4. Clears the appropriate bit in the interrupt mask pointer (IMASKP).

Except for reset, all interrupt service routines should end with a
return-from-interrupt (RTI) instruction. After reset, the PC stack is empty,
so there is no return address. The last instruction of the reset service rou-
tine should be a JUMP to the start of the program.

If programs force an interrupt by writing to a bit in the IRPTL register, the
processor recognizes the interrupt in the following cycle, and two cycles of
branching to the interrupt vector follow the recognition cycle.

The DSP responds to interrupts in three stages: synchronization and
latching (1 cycle), recognition (1 cycle), and branching to the interrupt
vector (2 cycles). Figure 3-16, Figure 3-18, and Figure 3-17 show the
pipelined execution cycles for interrupt processing.

For most interrupts, both internal and external, only one instruction is
executed after the interrupt occurs (and before the two aborted instruc-
tions), while the processor fetches and decodes the first instruction of the
service routine. Interrupt processing starts two cycles after an arithmetic
exception occurs because of the one cycle delay between an arithmetic
exception and the STKYx,y register update. There is also a three cycle
latency associated with the IRQ2–0 interrupts. If an interrupt is latched by

ADSP-2126x SHARC DSP Core Manual 3-49

Program Sequencer

Figure 3-16. Pipelined Execution Cycles for Interrupt During Single Cycle
Instruction

Figure 3-17. Pipelined Execution Cycles for Interrupt During Delayed
Branch Instruction

CLOCK CYCLES

EXECUTE
INSTRUCTION

DECODE
INSTRUCTION

FETCH
INSTRUCTION

N-11 N NOP NOP

N N+1->NOP3 N+2->NOP5 V

V+1V4N+22N+1

V

V+1

V+2

NOTE THAT N IS THE SINGLE CYCLE INSTRUCTION, AND V IS THE INTERRUPT VECTOR INSTRUCTION.
1. INTERRUPT OCCURS
2. INTERRUPT RECOGNIZED
3. N+1 PUSHED ON PC STACK; N+1 SUPPRESSED
4. INTERRUPT VECTOR OUTPUT
5. N+2 SUPPRESSED

CLOCK CYCLES

EXECUTE
INSTRUCTION

DECODE
INSTRUCTION

FETCH
INSTRUCTION

N-11 N N+1 N+2

N N+1 N+2 J->NOP4

J+13JN+22N+1

NOP

J+1->NOP6

V5

V

V+1

V+2

NOP

V

V+1

NOTE THAT N IS THE DELAYED BRANCH INSTRUCTION, J IS THE INSTRUCTION AT THE BRANCH ADDRESS,
AND V IS THE INTERRUPT VECTOR INSTRUCTION.
1. INTERRUPT OCCURS
2. INTERRUPT RECOGNIZED, BUT NOT PROCESSED
3. INTERRUPT PROCESSED
4. FOR A CALL, N+3 (RETURN ADDRESS) IS PUSHED ONTO THE PC STACK; J SUPPRESSED
5. INTERRUPT VECTOR OUTPUT
6. J PUSHED ON PC STACK; J+1 SUPPRESSED

Interrupts and Sequencing

3-50 ADSP-2126x SHARC DSP Core Manual

explicitly writing into the IRPTL register, then two instructions are exe-
cuted after that cycle in which IRPTL is written.

If nesting is enabled and a higher priority interrupt occurs immediately
after a lower priority interrupt, the service routine of the higher priority
interrupt is delayed by one additional cycle. This delay allows the first
instruction of the lower priority interrupt routine to be executed before it
is interrupted. For more information, see “Nesting Interrupts” on
page 3-60.

Certain DSP operations that span more than one cycle hold off interrupt
processing. If an interrupt occurs during one of these operations, the DSP

Figure 3-18. Pipelined Execution Cycles for Interrupt During Instruction
with Conflicting PM Data Access (Instruction not Cached)

CLOCK CYCLES

EXECUTE
INSTRUCTION

DECODE
INSTRUCTION

FETCH
INSTRUCTION

N-11 N NOP NOP

N N+1->NOP3 N+1->NOP5 N+2->NOP7

V6N+24___2N+1

NOP

V

V+1

V

V+1

V+2

NOTE THAT N IS THE CONFLICTING INSTRUCTION, AND V IS THE INTERRUPT VECTOR INSTRUCTION.
1. INTERRUPT OCCURS
2. INTERRUPT RECOGNIZED, BUT NOT PROCESSED; PM DATA ACCESS
3. N+1 SUPPRESSED
4. INTERRUPT PROCESSED
5. N+1 SUPPRESSED
6. INTERRUPT VECTOR OUTPUT
7. N+1 PUSHED ON PC STACK; N+2 SUPPRESSED

ADSP-2126x SHARC DSP Core Manual 3-51

Program Sequencer

latches the interrupt, but delays its processing. The operations that have
delayed interrupt processing are:

• A branch (JUMP or CALL/RETURN) instruction and the following
cycle, whether it is an instruction (in a delayed branch) or a NOP (in
a non-delayed branch)

• The first of the two cycles used to perform a program memory data
access and an instruction fetch (a bus conflict) when the instruc-
tion is not cached

• The third-to-last iteration of a one instruction loop

• The last iteration of either a one instruction loop executed once or
twice or a two instruction loop executed once, and the following
cycle (which is a NOP)

• The first of the two cycles used to fetch and decode the first
instruction of an interrupt service routine

• Any wait states for external memory accesses

Sensing Interrupts
For external interrupt pins IRQ2–0, the DSP supports two types of inter-
rupt sensitivity—edge-sensitive and level-sensitive.

The DSP detects a level-sensitive interrupt if the signal input is low
(active) when sampled on the rising edge of CLKIN. A level-sensitive inter-
rupt must go high (inactive) before the processor returns from the
interrupt service routine. If a level-sensitive interrupt is still active when
the DSP samples it after returning from its service routine, the DSP treats
the signal as a new request. The DSP repeats the same interrupt routine
without returning to the main program, assuming no higher priority inter-
rupts are active.

Interrupts and Sequencing

3-52 ADSP-2126x SHARC DSP Core Manual

The DSP detects an edge-sensitive interrupt if the input signal is high
(inactive) on one cycle and low (active) on the next cycle when sampled on
the rising edge of CLKIN. An edge-sensitive interrupt signal can stay active
indefinitely without triggering additional interrupts. To request another
interrupt, the signal must go high, then low again.

Edge-sensitive interrupts require less external hardware compared to
level-sensitive requests, because negating the request is unnecessary. An
advantage of level-sensitive interrupts is that multiple interrupting devices
may share a single level-sensitive request line on a wired OR basis, allow-
ing easy system expansion.

The MODE2 register controls external interrupt sensitivity as described
below.

• Interrupt 0 Sensitivity. Bit 0 (IRQ0E) directs the DSP to detect
IRQ0 as edge-sensitive (if 1) or level-sensitive (if 0).

• Interrupt 1 Sensitivity. Bit 1 (IRQ1E) directs the DSP to detect
IRQ1 as edge-sensitive (if 1) or level-sensitive (if 0).

• Interrupt 2 Sensitivity. Bit 2 (IRQ2E) directs the DSP to detect
IRQ2 as edge-sensitive (if 1) or level-sensitive (if 0).

Table A-3 on page A-12 lists all of the bits in the MODE2 register.

The DSP accepts external interrupts that are asynchronous to the DSP’s
clock (CLKIN), allowing external interrupt signals to change at any time.
An external interrupt must be held low at least one CLKIN cycle to guaran-
tee that the DSP samples the signal.

External interrupts must meet the setup and hold time requirements rela-
tive to the rising edge of CLKIN. For information on interrupt signal timing
requirements, see the appropriate ADSP-2126x data sheet.

ADSP-2126x SHARC DSP Core Manual 3-53

Program Sequencer

Masking Interrupts
The sequencer supports interrupt masking—latching an interrupt, but not
responding to it. Except for the RESET and EMU interrupts, all interrupts are
maskable. If a masked interrupt is latched, the DSP responds to the
latched interrupt if it is later unmasked.

Interrupts can be masked globally or selectively. Bits in the MODE1, IMASK,
and LIRPTL registers control interrupt masking as shown in Table 3-10.

Table 3-10. ADSP-2126x Interrupts

Latch Register
[Bit]

Mask
Register
[Bit]

Mask Pointer
Register
[Bit]

Vector
Address

Interrupt
Name

Function

IRPTL [0]
EMUIL

N/A N/A 0x00 EMUI Emulator
(read-only,
non-maskable)
HIGHEST
PRIORITY

IRPTL [1]
RSTIL

N/A N/A 0x04 RSTI Reset (read-only,
non-maskable)

IRPTL [2]
IICDIL

IMASK [2]
IICDIMSK

IMASKP [2]
IICDIMSKP

0x08 IICDI Illegal Input
Condition
Detected

IRPTL[3]
SOVFIL

IMASK [3]
SOVFIMSK

IMASKP [3]
SOVFIMSKP

0x0C SOVFI Status loop or
mode stack
overflow; or PC
stack full

IRPTL [4]
TMZHIL

IMASK [4]
TMZHIMSK

IMASKP [4]
TMZHIMSKP

0x10 TMZHI Timer=0 (high
priority option)

IRPTL [5] IMASK [5] IMASKP [5] 0x14 Reserved

IRPTL [6]
BKPIL

IMASK [6]
BKPIMSK

IMASKP [6]
BKPIMSKP

0x18 BKPI Hardware
Breakpoint
Interrupt

IRPTL [7] IMASK [7] IMASKP [7] 0x1C Reserved

Interrupts and Sequencing

3-54 ADSP-2126x SHARC DSP Core Manual

IRPTL [8]
IRQ2IL

IMASK [8]
IRQ2IMSK

IMASKP [8]
IRQ2IMSKP

0x20 IRQ2I Interrupt
associated with
IRQ2 pin

IRPTL [9]
IRQ1IL

IMASK [9]
IRQ1IMSK

IMASKP [9]
IRQ1IMSKP

0x24 IRQ1I Interrupt
associated with
IRQ1 pin

IRPTL [10]
IRQ0IL

IMASK [10]
IRQ0IMSK

IMASKP [10]
IRQ0IMSKP

0x28 IRQ0I Interrupt
associated with
IRQ0 pin

IRPTL [11]
DAIHIL

IMASK [11]
DAIHIMSK

IMASKP [11]
DAIHIMSKP

0x2C DAIHI DAI high
priority
interrupt

IRPTL [12]
SPIHIL

IMASK [12]
SPIHIMSK

IMASKP [12]
SPIHIMSKP

 0x30 SPIHI SPI Transmit or
Receive (higher
priority option)

IRPTL [13]
GPTMR0IL

IMASK [13]
GPTMR0IMSK

IMASKP [13]
GPTMR0IMSKP

 0x34 GPTMR0I General-pur-
pose IOP Timer
0
Interrupt

IRPTL [14]
SP1IL

IMASK [14]
SP1IMSK

IMASKP [14]
SP1IMSKP

 0x38 SP1I SPORT1
Interrupt

IRPTL [15]
SP3IL

IMASK [15]
SP3IMSK

IMASKP [15]
SP3IMSKP

 0x3C SP3I SPORT3
Interrupt

IRPTL [16]
SP5IL

IMASK [16]
SP5IMSK

IMASKP [16]
SP5IMSKP

 0x40 SP5I SPORT5
Interrupt

LIRPTL [0]
SP0IL

LIRPTL [10]
SP0IMSK

LIRPTL [20]
SP0IMSKP

 0x44 SP0I SPORT0
Interrupt

LIRPTL [1]
SP2IL

LIRPTL [11]
SP2IMSK

LIRPTL [21]
SP2IMSKP

 0x48 SP2I SPORT2
Interrupt

LIRPTL [2]
SP4IL

LIRPTL [12]
SP4IMSK

LIRPTL [22]
SP4IMSKP

 0x4C SP4I SPORT4
Interrupt

Table 3-10. ADSP-2126x Interrupts (Cont’d)

Latch Register
[Bit]

Mask
Register
[Bit]

Mask Pointer
Register
[Bit]

Vector
Address

Interrupt
Name

Function

ADSP-2126x SHARC DSP Core Manual 3-55

Program Sequencer

LIRPTL [3]
PPIL

LIRPTL [13]
PPIMSK

LIRPTL [23]
PPIMSKP

 0x50 PPI Parallel Port
Interrupt

LIRPTL [4]
GPTMR1IL

LIRPTL [14]
GPTMR1IMSK

LIRPTL [24]
GPTMR1IMSKP

 0x54 GPTMR1I General-pur-
pose IOP Timer
1
Interrupt

LIRPTL [5] LIRPTL [15] LIRPTL [25] 0x58 -- Reserved

LIRPTL [6]
DAILIL

LIRPTL [16]
DAILIMSK

LIRPTL [26]
DAILIMSKP

0x5C DAILI DAI Low
Priority
Interrupt

LIRPTL [7] LIRPTL [17] LIRPTL [27] 0x60 -- Reserved

IRPTL
[17, 18, 19]

IMASK [19:17] IMASKP [19:17] 0x64-0x6F -- Reserved

LIRPTL [8]
GPTMR2IL

LIRPTL [18]
GPTMR2IMSK

LIRPTL [28]
GPTMR2IMSKP

0x70 GPTMR2I General-pur-
pose IOP Timer
2 Interrupt

LIRPTL [9]
SPILIL

LIRPTL [19]
SPILIMSK

LIRPTL [29]
SPILIMSKP

0X74 SPILI SPI Transmit or
Receive (lower
priority option)

IRPTL [20]
CB7IL

IMASK [20]
CB7IMSK

IMASKP [20]
CB7IMSKP

 0x78 CB7I Circular Buffer 7
Overflow

IRPTL [21]
CB15IL

IMASK [21]
CB15IMSK

IMASKP [21]
CB15IMSKP

 0x7C CB15I Circular Buffer
15 Overflow

IRPTL [22]
TMZLIL

IMASK [4]
TMZLIMSK

IMASKP [22]
TMZLIMSKP

 0x80 TMZLI Timer=0 (Low
Priority Option)

IRPTL [23]
FIXIL

IMASK [23]
FIXILMSK

IMASKP [23]
FIXIMSKP

 0x84 FIXI Fixed-point
Overflow

IRPTL [24]
FLTOIL

IMASK [24]
FLTOIMSK

IMASKP [24]
FLTOIMSKP

 0x88 FLTOI Floating-point
Overflow
Exception

Table 3-10. ADSP-2126x Interrupts (Cont’d)

Latch Register
[Bit]

Mask
Register
[Bit]

Mask Pointer
Register
[Bit]

Vector
Address

Interrupt
Name

Function

Interrupts and Sequencing

3-56 ADSP-2126x SHARC DSP Core Manual

Table A-2 on page A-5 lists all of the bits in MODE1, Table A-10 on
page A-32 lists all of the bits in IMASK, and Table A-12 on page A-44 lists
all of the bits in LIRPTL.

All interrupts are masked at reset except for the non-maskable and boot
interrupts. For booting, the DSP automatically unmasks and uses the par-
allel port interrupt (PPI) or high priority SPI port (SPIHI) interrupt after
reset. Usage depends on whether the ADSP-2126x processor is booting
from EPROM, or an SPI master or slave. See also the product specific
peripherals manual for a description of DAI interrupts.

IRPTL [25]
FLTUIL

IMASK [25]
FLTUIMSK

IMASKP [25]
FLTUIMSKP

 0x8C FLTUI Floating-point
Underflow
Exception

IRPTL [26]
FLTIIL

IMASK [25]
FLTIIMSK

IMASKP [26]
FLTIIMSKP

 0x90 FLTII Floating-point
Invalid Excep-
tion

IRPTL [27]
EMULIL

IMASK [27]
EMULIMSK

IMASKP [27]
EMULIMSKP

 0x94 EMULI Emulator low
priority
interrupt

IRPTL [28]
SFT0IL

IMASK [28]
SFT0IMSK

IMASKP [28]
SFT0IMSKP

 0x98 SFT0I User software
interrupt 0

IRPTL [29]
SFT1IL

IMASK [29]
SFT1IMSK

IMASKP [29]
SFT1IMSKP

 0x9C SFT1I User software
interrupt 1

IRPTL [30]
SFT2IL

IMASK [30]
SFT2IMSK

IMASKP [30]
SFT2IMSKP

 0xA0 SFT2I User software
interrupt 2

IRPTL [31]
SFT3IL

IMASK [31]
SFT3ISMK

IMASKP [31]
SFT3ISMKP

 0xA4 SFT3I User software
interrupt 3:
LOWEST
PRIORITY

Table 3-10. ADSP-2126x Interrupts (Cont’d)

Latch Register
[Bit]

Mask
Register
[Bit]

Mask Pointer
Register
[Bit]

Vector
Address

Interrupt
Name

Function

ADSP-2126x SHARC DSP Core Manual 3-57

Program Sequencer

Latching Interrupts
When the DSP recognizes an interrupt, the DSP’s interrupt latch (IRPTL
and LIRPTL) registers set a bit (latch) to record that the interrupt occurred.
The bits in these registers indicate all interrupts that are currently being
serviced or are pending. Because these registers are readable and writable,
any interrupt except reset (RSTI) and emulator (EMUI) can be set or cleared
in software.

When an interrupt occurs, the sequencer sets the corresponding bit in
IRPTL or LIRPTL once that interrupt is serviced. Throughout the execution
of the interrupt’s service routine, the DSP clears this bit during every
cycle. This prevents the same interrupt from being latched while its service
routine is executing. After the return from interrupt (RTI), the sequencer
stops clearing the latch bit.

If necessary, an interrupt can be reused while it is being serviced. (This is a
matter of disabling this automatic clearing of the latch bit.) For more
information, see “Reusing Interrupts” on page 3-62.

The interrupt latch bits in IRPTL correspond to interrupt mask bits in the
IMASK register. In both registers, the interrupt bits are arranged in order of
priority. The interrupt priority is from 0 (highest) to 31 (lowest). Inter-
rupt priority determines which interrupt is serviced first when more than
one occurs in the same cycle. Priority also determines which interrupts are
nested when the DSP has interrupt nesting enabled. For more informa-
tion, see “Nesting Interrupts” on page 3-60.

While the IRPTL register latches interrupts for a variety of events, the
LIRPTL register contains latch and mask bits for the SP0, SP2, SP4, PP,
GPTMR1, GPTMR2, DAI (low priority), SPI (low priority) interrupts.

Several events can cause arithmetic interrupts. They are fixed-point over-
flow (FIXI) and floating-point overflow (FLTOI), underflow (FLTUI), and
invalid operation (FLTII). To determine which event caused the interrupt,
a program can read the arithmetic status flags in the STKYx or STKYy status

Interrupts and Sequencing

3-58 ADSP-2126x SHARC DSP Core Manual

registers. Table A-5 on page A-19 lists the bits in these registers. Service
routines for arithmetic interrupts must clear the appropriate STKYx or
STKYy bits to clear the interrupt. If the bits are not cleared, the interrupt is
still active after the return from interrupt (RTI).

Status bits in STKYy apply only in SIMD mode. For more information, see
“SIMD (Computational) Operations” on page 2-49.

One event can cause multiple interrupts. The timer decrementing to zero
causes two timer expired interrupts to be latched, TMZHI (high priority)
and TMZLI (low priority). This feature allows selection of the priority for
the timer interrupt. Programs should unmask the timer interrupt with the
desired priority and leave the other one masked. If both interrupts are
unmasked, the DSP services the higher priority interrupt first, then it ser-
vices the lower priority interrupt.

The IRPTL register also supports software interrupts. When a program sets
the latch bit for one of these interrupts (SFT0I, SFT1I, SFT2I, or SFT3I),
the sequencer services the interrupt, and the DSP branches to the corre-
sponding interrupt routine. Software interrupts have the same behavior as
all other maskable interrupts.

Stacking Status During Interrupts
In an interrupt driven system, the DSP must be restored to its pre-inter-
rupt state after an interrupt is serviced. The sequencer’s status stack eases
the return from an interrupt by eliminating some interrupt service over-
head—register saves and restores.

The status stack is fifteen locations deep. The stack is full when all entries
are occupied, is empty when no entries are occupied, and is overflowed if a

ADSP-2126x SHARC DSP Core Manual 3-59

Program Sequencer

push occurs when the stack is already full. Bits in the STKYx register indi-
cate the status stack full and empty states as describe below.

• Status stack overflow. Bit 23 (SSOV) indicates that the status stack
is overflowed (if 1) or not overflowed (if 0)—a sticky bit.

• Status stack empty. Bit 24 (SSEM) indicates that the status stack is
empty (if 1) or not empty (if 0)—not sticky, cleared by a PUSH.

Table A-5 on page A-19 lists all of the bits in the STKYx register.

For some interrupts, (IRQ2–0 and timer expired), the sequencer automati-
cally pushes the ASTATx, ASTATy, and MODE1 registers onto the status stack.
When the sequencer pushes an entry onto the status stack, the DSP uses
the MMASK register to clear the corresponding bits in the MODE1 register. All
other bit settings remain the same. For more information and an example
of how the MMASK and MODE1 registers work together, see “Mode Mask Reg-
ister (MMASK)” on page A-7.

The sequencer automatically pops the ASTATx, ASTATY, and MODE1 registers
from the status stack during the return from interrupt instruction (RTI).
In one other case, JUMP (CI), the sequencer pops the stack. For more infor-
mation, see “Reusing Interrupts” on page 3-62. Only the IRQ2–0 and
timer expired interrupts cause the sequencer to push an entry onto the sta-
tus stack. All other interrupts require either explicit saves and restores of
effected registers or an explicit push or pop of the stack (PUSH/POP STS).

Pushing the ASTATx, ASTATy, and MODE1 registers preserves the status and
control bit settings. This allows a service routine to alter these bits with
the knowledge that the original settings are automatically restored upon
the return from the interrupt.

The top of the status stack contains the current values of ASTATx, ASTATy,
and MODE1. Reading and writing these registers does not move the stack
pointer. Explicit PUSH or POP instructions do move the status stack pointer.

Interrupts and Sequencing

3-60 ADSP-2126x SHARC DSP Core Manual

Nesting Interrupts
The sequencer supports interrupt nesting—responding to another inter-
rupt while a previous interrupt is being serviced. Bits in the MODE1, IMASKP,
and LIRPTL registers control interrupt nesting as described below.

• Interrupt Nesting enable. MODE1 Bit 11 (NESTM). This bit directs
the DSP to enable (if 1) or disable (if 0) interrupt nesting.

• Interrupt Mask Pointer. IMASKP bits. These bits list the interrupts
in priority order and provide a temporary interrupt mask for each
nesting level.

• SPI Port DMA Transmit or Receive Interrupt Mask Pointer.
LIRPTL Bit 29 (SPILIMSKP). This bit is for the SPI port transmit or
receive DMA interrupt. It provides a temporary interrupt mask.

• General-Purpose IOP Timer Interrupt Mask Pointer. LIRPTL Bits
24 and 28 (GPTMR1MSKP and GPTMR2MSKP). These bits are for the
general purpose IOP timer 1 and timer 2 interrupts, respectively.
They provide a temporary interrupt mask.

• Serial Port Interrupt Mask Pointer. LIRPTL Bits 22-20
(SPxMSKP). These bits are for the serial port interrupts (SP0, SP2,
and SP4). They provide a temporary interrupt mask.

• DAI Low Priority Interrupt Mask Pointer. LIRPTL Bit 26
(DAILIMSKP). This bit is for the DAI low priority interrupt. It pro-
vides a temporary interrupt mask.

Table A-2 on page A-5 lists all of the bits in MODE1, Table A-11 on
page A-38 lists all of the bits in IMASKP, and Table A-12 on page A-44 lists
all of the bits in LIRPTL.

When interrupt nesting is enabled, a higher priority interrupt can inter-
rupt a lower priority interrupt’s service routine. Lower priority interrupts

ADSP-2126x SHARC DSP Core Manual 3-61

Program Sequencer

are latched as they occur, but the DSP processes them according to their
priority after the nested routines finish.

Programs should change the interrupt nesting enable (NESTM) bit only
while outside of an interrupt service routine or during the reset service
routine.

If nesting is enabled and a higher priority interrupt occurs immediately
after a lower priority interrupt, the service routine of the higher priority
interrupt is delayed by one cycle. This delay allows the first instruction of
the lower priority interrupt routine to be executed, before it is
interrupted.

When servicing nested interrupts, the DSP uses the interrupt mask
pointer (IMASKP) to create a temporary interrupt mask for each level of
interrupt nesting; the IMASK value is not effected. The DSP changes
IMASKP each time a higher priority interrupt interrupts a lower priority ser-
vice routine.

The bits in IMASKP correspond to the interrupts in order of priority. When
an interrupt occurs, the DSP sets its bit in IMASKP. If nesting is enabled,
the DSP uses IMASKP to generate a new temporary interrupt mask, mask-
ing all interrupts of equal or lower priority to the highest priority bit set in
IMASKP and keeping higher priority interrupts the same as in IMASK. When
a return from an interrupt service routine (RTI) is executed, the DSP clears
the highest priority bit set in IMASKP and generates a new temporary inter-
rupt mask.

The DSP masks all interrupts of equal or lower priority to the highest pri-
ority bit set in IMASKP. The bit set in IMASKP that has the highest priority
always corresponds to the priority of the interrupt being serviced.

The MSKP bits in the LIRPTL register, and the entire IMASKP register are for
interrupt controller use only. Modifying these bits interferes with the
proper operation of the interrupt controller. Furthermore, explicit bit
manipulation of any bit in the LIRPTL register while the IRPTEN bit (bit 12
in the MODE1 register) is set causes an interrupt to be serviced twice.

Interrupts and Sequencing

3-62 ADSP-2126x SHARC DSP Core Manual

Reusing Interrupts
When an interrupt occurs, the sequencer sets the corresponding bit in the
IRPTL register. During execution of the service routine, the sequencer
keeps this bit cleared—the DSP clears the bit during every cycle, prevent-
ing the same interrupt from being latched while its service routine is
already executing. If necessary, programs may reuse an interrupt while it is
being serviced. Using a jump clear interrupt instruction, (JUMP (CI)) in
the interrupt service routine clears the interrupt, allowing its reuse while
the service routine is executing.

The JUMP (CI) instruction reduces an interrupt service routine to a nor-
mal subroutine, clearing the appropriate bit in the interrupt latch and
interrupt mask pointer and popping the status stack. After the JUMP (CI)
instruction, the DSP stops automatically clearing the interrupt’s latch bit,
allowing the interrupt to latch again.

When returning from a subroutine entered with a JUMP (CI) instruction, a
program must use a return loop reentry instruction RTS (LR), instead of an
RTI instruction. For more information, see “Restrictions on Ending
Loops” on page 3-26. The following example shows an interrupt service
routine that is reduced to a subroutine with the (CI) modifier.

instr1; /*Interrupt entry from main program*/

JUMP(PC,3) (DB,CI); /*Clear interrupt status*/

instr3;

instr4;

instr5;

RTS (LR); /*Use LR modifier with return from subroutine*/

ADSP-2126x SHARC DSP Core Manual 3-63

Program Sequencer

The JUMP (PC,3)(DB,CI) instruction only continues linear execution flow
by jumping to the location PC + 3 (instr5). The two intervening instruc-
tions (instr3, instr4) are executed because of the delayed branch (DB).
This JUMP instruction is only an example—a JUMP (CI) can perform a JUMP
to any location.

Interrupting IDLE
The sequencer supports placing the DSP in IDLE—a special instruction
that halts the processor core in a low power state. The halt occurs until
any interrupt is latched, serviced, and then returned from using the RTI
instruction. When executing an IDLE instruction, the sequencer fetches
one more instruction at the current fetch address and then suspends oper-
ation. The DSP’s I/O processor is not affected by the IDLE instruction—
DMA transfers to or from internal memory continue uninterrupted. The
processor’s internal clock and timer (if enabled) continue to run during
IDLE. When an interrupt occurs, the processor responds normally. After
two cycles used to fetch and decode the first instruction of the interrupt
service routine, the processor continues executing instructions normally.

Summary
To manage events, the sequencer’s interrupt controller handles interrupt
processing, determines whether an interrupt is masked, and generates the
appropriate interrupt vector address.

With selective caching, the instruction cache lets the DSP access data in
program memory and fetch an instruction (from the cache) in the same
cycle. The DAG2 data address generator outputs program memory data
addresses.

The sequencer evaluates conditional instructions and loop termination
conditions by using information from the status registers. The loop

Summary

3-64 ADSP-2126x SHARC DSP Core Manual

address stack and loop counter stack support nested loops. The status
stack stores status registers for implementing nested interrupt routines.

Figure 3-19 identifies all the functional blocks and their relationship to
one another in detail.

Table 3-11 and Table 3-12 list the registers within and related to the pro-
gram sequencer. All registers in the program sequencer are universal
registers (Uregs), so they are accessible to other universal registers and to
data memory. All of the sequencer’s registers and the top of stacks are
readable and writable, except for the fetch address, decode address, and
PC. Pushing or popping the PC stack is done with a write to the PC stack
pointer, which is readable and writable. Pushing or popping the loop
address stack requires explicit instructions.

A set of system control registers configures or provides input to the
sequencer. These registers appear across the top and within the interrupt
controller and are shown in Figure 3-1 on page 3-3. A bit manipulation
instruction permits setting, clearing, toggling, or testing specific bits in
the system registers. For information on this instruction (Bit), see the
ADSP-21160 SHARC DSP Instruction Set Reference. Writes to some of
these registers do not take effect on the next cycle. For example, after a
write to the MODE1 register enables ALU saturation mode, the change takes
effect two cycles after the write. Also, some of these registers do not
update on the cycle immediately following a write. An extra cycle is
required before a register read returns the new value.

With the lists of sequencer and system registers, Table 3-11 and
Table 3-12 summarize the number of extra cycles (latency) for a write to
take effect (effect latency) and for a new value to appear in the register
(read latency). A “0” indicates that the write takes effect or appears in the
register on the next cycle after the write instruction is executed, and a “1”
indicates one extra cycle.

ADSP-2126x SHARC DSP Core Manual 3-65

Program Sequencer

Figure 3-19. Program Sequencer Block Diagram

MODE1 MODE2 ASTATX USTAT1 UST AT3

TPERIOD

TCOUNT

DECREMENT

MULTIPLEXER

TCOUNT=0

+

PC-RELATIVE
ADDRESS

DIRECT
BRANCH

INTERRUPT LATCH
(IRPTL)

INTERRUPT MASK
(IMASK)

INTERRUPT MASK
POINTER (IMASKP)

INTERRUPT
CONT ROLLER

PROGRAM
COUNTER STACK

TOP OF PC
STACK (PCSTK)

PC STACK
POINTER (PCSTKP)

FETCH
ADDRESS
(FADDR)

DECODE
ADDRESS
(DADDR)

PROGRAM
COUNTER

(PC)

NEXT ADDRESS MULTIPLEXER

INSTRUCT ION
CACHE

INSTRUCTION
LATCH

OTHER
INTERRUPTS

TIMEXP

YES

NO

INTERRUPT
VECTOR

RETURN ADDRESS
OR TOP OF LOOP

INDIRECT
BRANCH

INSTRUCTION PIPELINE

LOOP ADDRESS
STACK

(LADDR)

LOOP COUNT STACK
(CURLCNTR, LCNTR)

LOOP CONTROL

CONDITION
LOGIC

INPUT
FLAGS

DM DATA BUS PM ADDRESS BUS PM DATA BUS

REPEATED
ADDRESS

(IDLE)

NEXT
ADDRESS
(LINEAR
FLOW)

+1

32 32 32

24

ASTATY USTAT2 USTAT4STKYX STKYY

BRANCH
CONTROL

ADDRESS
FROM DAG2

Summary

3-66 ADSP-2126x SHARC DSP Core Manual

Table 3-11. Sequencer Registers Read and Effect Latencies

Register Contents Bits Read
Latency

Effect
Latency

FADDR Fetch address 24 — —

DADDR Decode address 24 — —

PC Execute address 24 — —

PCSTK Top of PC stack 24 0 0

PCSTKP PC stack pointer 5 1 1

LADDER Top of loop address stack 32 0 0

CURLCNTR Top of loop count stack (current loop
count)

32 0 0

LCNTR Loop count for next DO UNTIL
loop

32 0 0

Table 3-12. System Registers Read and Effect Latencies

Register Contents Bits Read
Latency

Effect
Latency

MODE1 Mode control bits 32 0 1

MODE2 Mode control bits 32 0 1

IRPTL Interrupt latch 32 0 1

IMASK Interrupt mask 32 0 1

IMASKP Interrupt mask pointer (for nest-
ing)

32 1 1

MMASK Mode mask 32 0 1

FLAGS Flag inputs 32 0 1

LIRPTL Interrupt latch/mask 32 0 1

ASTATX Arithmetic status flags 32 0 1

ASTATY Arithmetic status flags 32 0 1

ADSP-2126x SHARC DSP Core Manual 3-67

Program Sequencer

STKYX Sticky status flags 32 0 1

STKYY Sticky status flags 32 0 1

USTAT1 User-defined status flags 32 0 0

USTAT2 User-defined status flags 32 0 0

USTAT3 User-defined status flags 32 0 0

USTAT4 User-defined status flags 32 0 0

Table 3-12. System Registers Read and Effect Latencies (Cont’d)

Register Contents Bits Read
Latency

Effect
Latency

Summary

3-68 ADSP-2126x SHARC DSP Core Manual

ADSP-2126x SHARC DSP Core Manual 4-1

4 DATA ADDRESS
GENERATORS

The DSP’s Data Address Generators (DAGs) generate addresses for data
moves to and from Data Memory (DM) and Program Memory (PM). By
generating addresses, the DAGs let programs refer to addresses indirectly,
using a DAG register instead of an absolute address. The DAGs architec-
ture, which appears in Figure 4-1, supports several functions that
minimize overhead in data access routines. These functions include:

• Supply address and post-modify—provides an address during a
data move and auto-increments the stored address for the next
move.

• Supply pre-modified address—provides a modified address during
a data move without incrementing the stored address.

• Modify address—increments the stored address without perform-
ing a data move.

• Bit-reverse address—provides a bit-reversed address during a data
move without reversing the stored address, as well as an instruction
to explicitly bit-reverse the supplied address.

• Broadcast data moves—performs dual data moves to complemen-
tary registers in each processing element to support
Single-Instruction Multiple-Data (SIMD) mode.

Setting DAG Modes

4-2 ADSP-2126x SHARC DSP Core Manual

As shown in Figure 4-1, each DAG has four types of registers. These regis-
ters hold the values that the DAG uses for generating addresses. The four
types of registers are:

• Index registers (I0–I7 for DAG1 and I8–I15 for DAG2). An
index register holds an address and acts as a pointer to memory.
For example, the DAG interprets DM(I0,0) and PM(I8,0) syntax in
an instruction as addresses.

• Modify registers (M0–M7 for DAG1 and M8–M15 for DAG2).
A modify register provides the increment or step size by which an
index register is pre- or post-modified during a register move. For
example, the DM(I0,M1) instruction directs the DAG to output the
address in register I0 then modify the contents of I0 using the M1
register.

• Length and Base registers (L0–L7 and B0–B7 for DAG1 and
L8–L15 and B8–B15 for DAG2). Length and base registers set the
range of addresses and the starting address for a circular buffer. For
more information on circular buffers, see “Addressing Circular
Buffers” on page 4-14.

Setting DAG Modes
The MODE1 register controls the operating mode of the DAGs as described
below.

• Circular buffering enable. Bit 24 (CBUFEN) enables (if 1) or disables
(if 0) circular buffering.

• Broadcast register loading enable, DAG1-I1. Bit 23 (BDCST1)
enables register broadcast loads to complementary registers from I1
indexed moves (if 1) or disables broadcast loads (if 0).

ADSP-2126x SHARC DSP Core Manual 4-3

Data Address Generators

• Broadcast register loading enable, DAG2–I9. Bit 22 (BDCST9)
enables register broadcast loads to complementary registers from I9
indexed moves (if 1) or disables broadcast loads (if 0).

• SIMD mode enable. Bit 21 (PEYEN) enables computations in
PEy—SIMD mode—(if 1) or disables PEy—SISD mode—(if 0).
For more information on SIMD mode, see “SIMD (Computa-
tional) Operations” on page 2-49.

Figure 4-1. Data Address Generator (DAG) Block Diagram

STKYX

MODE2

MODE1

MUX

MUX

ADD

I
REGISTERS

8 X 32

32

32

32

3232

IMMEDIATE
VALUE FROM
INSTRUCTION

ADDRESS ADJUSTMENT PER WORD SIZE
(SHORT, NORMAL, OR LONG)

OPTIONAL BIT-REVERSE FOR I0-DAG1 & I8-DAG2
OPTIONAL BROADCAST FOR I1-DAG1 & I9-DAG2

M
REGISTERS

8 X 32

DM ADDRESS BUS (DAG1 - I,M,L,B0-7)

PM ADDRESS BUS (DAG2 - I,M,L,B8-15)

32 32

DM OR PM DATA BUS

L
REGISTERS

8 X 32

B
REGISTERS

8 X 32

MODULUS
LOGIC

3232

UPDATE
32

PRE-MODIFY
ADDRESSING

POST-MODIFY
ADDRESSING

BIT REVERSE
(OPTIONAL

Setting DAG Modes

4-4 ADSP-2126x SHARC DSP Core Manual

• Secondary registers for DAG2 lo, I, M, L, B8-11. Bit 6 (SRD2L)
Secondary registers for DAG2 hi, I, M, L, B12–15. Bit 5 (SRD2H)
Secondary registers for DAG1 lo, I, M, L, B0–3. Bit 4 (SRD1L)
Secondary registers for DAG1 hi, I, M, L, B4–7. Bit 3 (SRD1H)
These bits select the corresponding secondary register set (if 1) or
select the corresponding primary register set—the set that is avail-
able at reset—(if 0).

• Bit-reverse addressing enable, DAG1–I0. Bit 1 (BR0) enables
bit-reversed addressing on I0 indexed moves (if 1) or disables
bit-reversed addressing (if 0).

• Bit-reverse addressing enable, DAG2–I8. Bit 0 (BR8) enables
bit-reversed addressing on I8 indexed moves (if 1) or disables
bit-reversed addressing (if 0).

Table A-2 on page A-5 lists all of the bits in MODE1.

Circular Buffering Mode
The CBUFEN bit in the MODE1 register enables circular buffering—a mode
where the DAG supplies addresses that range within a constrained buffer
length (set with an L register). Circular buffers start at a base address (set
with a B register), and increment addresses on each access by a modify
value (set with an M register).

The circular buffer enable bit (CBUFEN) in MODE1 is cleared (= 0) at reset.
This makes the ADSP-2126x processor code compatible with the
ADSP-2106x SHARC family (ADSP-21060/1/2 and ADSP-21065L)
where circular buffering is active upon reset.

Note also that circular buffering is disabled upon reset for the
ADSP-21160 processor when porting code from an ADSP-21160 proces-
sor to an ADSP-2126x processor.

ADSP-2126x SHARC DSP Core Manual 4-5

Data Address Generators

For more information on setting up and using circular buffers, see
“Addressing Circular Buffers” on page 4-14. When using circular buffers,
the DAGs can generate an interrupt on buffer overflow (wraparound). For
more information, see “Using DAG Status” on page 4-8.

Broadcast Loading Mode
The BDCST1 and BDCST9 bits in the MODE1 register enable broadcast loading.
An example of broadcast loading is when a program uses one load com-
mand to load multiple registers. When the BDCST1 bit is set (=1), the DAG
performs a dual data register load on instructions that use the I1 register
for the address. The DAG loads both the named register (explicit register)
in one processing element and loads that register’s complementary register
(implicit register) in the other processing element. The BDCST9 bit in the
MODE1 register enables this feature for the I9 register.

Enabling either DAG register to perform a broadcast load has no effect on
register stores or loads to universal registers (Uregs). The one exception is
the register file data registers. Table 4-1 demonstrates the effects of a regis-
ter load operation on both processing elements with register load
broadcasting enabled. In Table 4-1, note that Rx and Sx are complemen-
tary data registers. Note also that the letters a and b (as in Ma or Mb)
indicate numbers for modify registers in DAG1 and DAG2. The letter a
indicates a DAG1 register and can be replaced with 0 through 7. The let-
ter b indicates a DAG2 register and can be replaced with 8 through 15.

Table 4-1. Dual Processing Element Register Load Broadcasts

Instruction syntax Rx = DM(I1,Ma); {Syntax #1}
Rx = PM(I9,Mb); {Syntax #2}
Rx = DM(I1,Ma), Rx = PM(I9,Mb); {Syntax #3}

Setting DAG Modes

4-6 ADSP-2126x SHARC DSP Core Manual

The PEYEN bit (SISD/SIMD mode select) does not influence broadcast
operations. Broadcast loading is particularly useful in SIMD applications
where the algorithm needs identical data loaded into each processing ele-
ment. For more information on SIMD mode (in particular, a list of
complementary data registers), see “SIMD (Computational) Operations”
on page 2-49.

Alternate (Secondary) DAG Registers
To facilitate fast context switching, the DSP includes alternate register sets
for all DAG registers. Bits in the MODE1 register control when alternate reg-
isters become accessible. While inaccessible, the contents of alternate
registers are not affected by DSP operations. Note that there is a maxi-
mum one cycle latency between writing to MODE1 and being able to access
an alternate register set. The alternate register sets for the DAGs are
described in this section. For more information on alternate data and
results registers, see “Alternate (Secondary) Data Registers” on page 2-39.

Bits in the MODE1 register can activate alternate register sets within the
DAGs: the lower half of DAG1 (I, M, L, B0–3), the upper half of DAG1
(I, M, L, B4–7), the lower half of DAG2 (I, M, L, B8–11), and the upper half
of DAG2 (I, M, L, B12–15). Figure 4-2 shows the DAGs’ primary and alter-
nate register sets.

To share data between contexts, a program places the data to be shared in
one half of either the current DAGs’ registers or the other DAG’s registers
and activates the alternate register set of the other half. The following

PEx explicit operations Rx = DM(I1,Ma); {Explicit #1}
Rx = PM(I9,Mb); {Explicit #2}
Rx = DM(I1,Ma), Rx = PM(I9,Mb); {Explicit #3}

PEy implicit operations Sx = DM(I1,Ma); {Implicit #1}
Sx = PM(I9,Mb); {Implicit #2}
Sx = DM(I1,Ma), Sx = PM(I9,Mb); {Implicit #3}

Table 4-1. Dual Processing Element Register Load Broadcasts (Cont’d)

ADSP-2126x SHARC DSP Core Manual 4-7

Data Address Generators

example demonstrates how code handles the maximum one cycle of
latency from the instruction that sets the bit in MODE1 to when the alter-
nate registers may be accessed. Note that programs should use a NOP
instruction for the wait period.

BIT SET MODE1 SRD1L; /* Activate alternate dag1 lo regs */

NOP; /* Wait for access to alternates */

R0 = DM(i0,m1);

Bit-Reverse Addressing Mode
The BR0 and BR8 bits in the MODE1 register enable the bit-reverse addressing
mode where addresses are output in reverse bit order. When BR0 is set
(=1), DAG1 bit-reverses 32-bit addresses output from I0. When BR8 is set
(=1), DAG2 bit-reverses 32-bit addresses output from I8. The DAGs only
bit-reverse the address output from I0 or I8; the contents of these registers
are not reversed. Bit-reverse addressing mode effects both pre-modify and
post-modify operations. The following example demonstrates how
bit-reverse mode effects address output:

BIT SET Mode1 BR0; /* Enables bit-rev. addressing for DAG1 */

0x83000 /* Loads I0 with the bit reverse of the

 buffer’s base address DM(0xC1000) */

M0 = 0x4000000; /* Loads M0 with value for post-modify, which
 is the bit reverse value of the modifier
 value M0 = 32 */

R1 = DM(I0,M0); /* Loads r1 with contents of DM address

 DM(0xC1000), which is the bit-reverse of
 0x83000, then post–modifies I0 for the next
 access with (0x83000 + 0x4000000) = 0x4083000,
 which is the bit-reverse of DM(0xC1020) */

Using DAG Status

4-8 ADSP-2126x SHARC DSP Core Manual

In addition to bit-reverse addressing, the DSP supports a bit-reverse
instruction (BITREV). This instruction bit-reverses the contents of the
selected register. For more information on the BITREV instruction, see
“Modifying DAG Registers” on page 4-19 or the ADSP-21160 SHARC
DSP Instruction Set Reference.

Using DAG Status
The DAGs can provide addressing for a constrained range of addresses,
repeatedly cycling through this data (or buffer). A buffer overflow (or

Figure 4-2. Data Address Generator Primary and Alternate Registers

I0

I1

I2

I3

M0

M1

M2

M3

L0

L1

L2

L3

B0

B1

B2

B3

SRD1L

I4

I5

I6

I7

M4

M5

M6

M7

L4

L5

L6

L7

B4

B5

B6

B7

SRD1H

I8

I9

I10

I11

M8

M9

M10

M11

L8

L9

L10

L11

B8

B9

B10

B11

SRD2L

I12

I13

I14

I15

M12

M13

M14

M15

L12

L13

L14

L15

B12

B13

B14

B15

SRD2H

MODE1 SELECT BIT DAG1 REGISTERS (DATA MEMORY)

DAG2 REGISTERS (PROGRAM MEMORY)

ADSP-2126x SHARC DSP Core Manual 4-9

Data Address Generators

wraparound) occurs each time the DAG circles past the buffer’s base
address. (See “Addressing Circular Buffers” on page 4-14.)

The DAGs can provide buffer overflow information when executing circu-
lar buffer addressing for the I7 or I15 registers. When a buffer overflow
occurs (a circular buffering operation increments the I register past the
end of the buffer), the appropriate DAG updates a buffer overflow flag in
a sticky status (STKYx) register. A buffer overflow can also generate a
maskable interrupt. Two ways to use buffer overflows from circular buff-
ering are:

• Interrupts. Enable interrupts and use an interrupt service routine
(ISR) to handle the overflow condition immediately. This method
is appropriate if it is important to handle all overflows as they
occur; for example in a “ping-pong” or swap I/O buffer pointers
routine.

• STKYx registers. Use the BIT TST instruction to examine overflow
flags in the STKY register after a series of operations. If an overflow
flag is set, the buffer has overflowed—wrapped around—at least
once. This method is useful when overflow handling is not time
sensitive.

DAG Operations
The DSP’s DAGs perform several types of operations to generate data
addresses. As shown in Figure 4-1, the DAG registers and the MODE1,
MODE2, and STKYx registers all contribute to DAG operations. The follow-
ing sections provide details on DAG operations:

• “Addressing With DAGs” on page 4-10

• “DAG Pre-Modify Addressing” on page 4-12

• “Pre-Modify Locking” on page 4-13

DAG Operations

4-10 ADSP-2126x SHARC DSP Core Manual

• “Addressing Circular Buffers” on page 4-14

• “Modifying DAG Registers” on page 4-19

An important item to note from Figure 4-1 is that the DAG automatically
adjusts the output address per the word size of the address location (short
word, normal word, or long word). This address adjustment lets internal
memory use the address directly.

SISD/SIMD mode, access word size, and data location (internal/external)
all influence data access operations.

Addressing With DAGs
The DAGs support two types of modified addressing which is defined as
generating an address that is incremented by a value or a register. In
pre-modify addressing, the DAG adds an offset (modifier), which is either
an M register or an immediate value, to an I register and outputs the result-
ing address. Pre-modify addressing does not change or update the I
register. The other type of modified addressing is post-modify addressing.
In post-modify addressing, the DAG outputs the I register value
unchanged, then adds an M register or immediate value, updating the I
register value. Figure 4-2 on page 4-8 compares pre- and post-modify
addressing.

The difference between pre-modify and post-modify instructions in the
DSP’s assembly syntax is the position of the index and modifier in the
instruction. If the I register comes before the modifier, the instruction is a
post-modify operation. If the modifier comes before the I register, the
instruction is a pre-modify without update operation. The following
instruction accesses the program memory location indicated by the value
in I15 and writes the value I15 + M12 to the I15 register:

R6 = PM(I15,M12); /* Post-modify addressing with update */

ADSP-2126x SHARC DSP Core Manual 4-11

Data Address Generators

By comparison, the following instruction accesses the program memory
location indicated by the value I15 + M12 and does not change the value in
I15:

R6 = PM(M12,I15); /* Pre-modify addressing without update */

Modify (M) registers can work with any index (I) register in the same DAG
(DAG1 or DAG2). For a list of I and M registers and their related DAGs,
see Figure 4-2 on page 4-8.

Instructions can also use a number (immediate value), instead of an M reg-
ister, as the modifier. The size of an immediate value that can modify an I
register depends on the instruction type. For all single data access opera-
tions, modify immediate values can be up to 32 bits wide. Instructions
that combine DAG addressing with computations limit the size of the
modify immediate value. In these instructions (multifunction computa-
tions), the modify immediate values can be up to 6 bits wide. The
following example instruction accepts up to 32-bit modifiers:

R1 = DM(0x40000000,I1); /* DM address = I1 + 0x4000 0000 */

The following example instruction accepts up to 6-bit modifiers:

Figure 4-3. Pre-Modify and Post-Modify Operations

I

M

+

OUTPUT I+M

PRE-MODIFY
NO I REGISTER UPDATE

SYNTAX: PM(MX, IX)
DM(MX, IX)

1. OUTPUT I

M

I+M

+

2. UPDATE

POST-MODIFY
I REGISTER UPDATE

SYNTAX: PM(IX, MX)
DM(IX, MX)

DAG Operations

4-12 ADSP-2126x SHARC DSP Core Manual

F6 = F1 + F2,PM(I8,0x0B) = ASTAT; /* PM address = I8,

 I8 = I8 + 0x0B */

Note that pre-modify addressing operations must not change the memory
space of the address.

DAG Pre-Modify Addressing
The pre-modify addressing scheme in the ADSP-2126x processor uses an
I register cache to speed up address computation. One 32-bit register is
provided with each DAG. When a DAG pre-modify access is performed
for the first time, the I register value is recorded in the I register cache and
replayed for all subsequent pre-modify accesses using the same I register.
The first access takes two cycles, and the subsequent accesses are com-
pleted in the same cycle. If another pre-modify instruction using a
different I register is executed, the new I register is recorded and the pre-
vious value in the cache is replaced. Again, this access takes two cycles.

For example,

DM(0x1,Ia) <-> Reg; /* Takes two cycles */

... /* Non pre-modify instructions */

DM(0x4,Ia) <-> Reg; /* Takes one cycle */

...

DM(0x4,Ib) <-> Reg; /* Ib loaded … Ia replaced … Two cycles */

The pre-modify cache register loading is not supported by legacy
products.

The M register path does not contain a cache. Therefore, if an instruction
of the following type,

DM(Ma,Ib) <-> Reg; /* Would always take two cycles */

ADSP-2126x SHARC DSP Core Manual 4-13

Data Address Generators

is executed, then the instruction takes two cycles. The Ib instruction is
recorded into the I register cache.

The DSP invalidates the I register cache and replaces the data if any write
to that I register is performed. Writes can be in the form of 32-bit or
64-bit writes or updates in the form of post-modify instructions.

When accessing memory indirectly and using pre-modify addressing, do
not cross memory bank boundaries.

Pre-Modify Locking
In order to avoid frequent replacement of the cached I register, any regis-
ter presently in the I register cache can be locked (in other words, the I
register content is not replaced in favor of any other pre-modify instruc-
tion) using the DAG1 and DAG2 lock bits in the MODE1 register. If an
update or a write happens to the locked I register, then the cache is
invalid. However, the cache will still remember the locked I register and
will subsequently load only that I register when a pre-modify occurs with
that I register. All pre-modify instructions with other I registers consume
two processor cycles.

Type 9 and Type 10 instructions in DAG2 do not use the ICACHE for indi-
rect branches. The previous ICACHE content (if any) is not replaced, and
the instructions take two processor cycles. See the ADSP-21160 SHARC
DSP Instruction Set Reference for more information on these instruction
types.

DAG Operations

4-14 ADSP-2126x SHARC DSP Core Manual

Data Addressing Stalls
As explained in the previous sections, the instruction sequence stalls for
one cycle if a read-after-write hazard is detected on a DAG register. For
example, the following sequence automatically generates a one cycle stall.

I0 = R0;

DM(I0,M0) <-> R1;

Pre-modify addressing causes stalls if there is a miss on the I register
cache. Pre-modify stalls are explained in detail in the section on “DAG
Pre-Modify Addressing” on page 4-12.

DAG conditional addressing can generate stalls if a post-modify instruc-
tion is aborted.

R2 = R3 – R4; /* Compute setting flags */

IF EQ DM(I1,M1) <-> R1; /* Flag is used immediately */

DM(I1,M2) <-> R2; /* Updated I1 is used immediately */

If the second instruction finds its condition true, then no stalls are
inserted. However, if the second instruction is annulled because the condi-
tion was false, then a stall is inserted in the address computation (decode)
stage of the third instruction. Note that a stall is generated only if the
above sequence is executed back-to-back.

Addressing Circular Buffers
The DAGs support addressing circular buffers. This is defined as address-
ing a range of addresses which contain data that the DAG steps through
repeatedly, “wrapping around” to repeat stepping through the range of
addresses in a circular pattern. To address a circular buffer, the DAG steps
the index pointer (I register) through the buffer, post-modifying and
updating the index on each access with a positive or negative modify value

ADSP-2126x SHARC DSP Core Manual 4-15

Data Address Generators

(M register or immediate value). If the index pointer falls outside the
buffer, the DAG subtracts from or adds to the length of the buffer value,
wrapping the index pointer back to the start of the buffer. The DAG’s
support for circular buffer addressing appears in Figure 4-1 on page 4-3,
and an example of circular buffer addressing appears in Figure 4-4.

The starting address that the DAG wraps around is called the buffer’s base
address (B register). There are no restrictions on the value of the base
address for a circular buffer.

Circular buffering may only use post-modify addressing. The DAG’s
architecture, as shown in Figure 4-1 on page 4-3, cannot support
pre-modify addressing for circular buffering because circular buffering
requires that the index be updated on each access.

It is important to note that the DAGs do not detect memory map over-
flow or underflow. If the address post-modify produces I + M > 0xFFFF
FFFF or I – M < 0, circular buffering may not function correctly. Also, the
length of a circular buffer should not let the buffer straddle the top of the
memory map. For more information on the DSP’s memory map, see
Figure 4-1 on page 4-3.

As shown in Figure 4-4, programs use the following steps to set up a circu-
lar buffer:

1. Enable circular buffering (BIT SET Mode1 CBUFEN;). This operation
is only needed once in a program.

2. Load the buffer’s base address into the B register. This operation
automatically loads the corresponding I register.

DAG Operations

4-16 ADSP-2126x SHARC DSP Core Manual

3. Load the buffer’s length into the corresponding L register. For
example, L0 corresponds to B0.

4. Load the modify value (step size) into an M register in the corre-
sponding DAG. For example, M0 through M7 correspond to B0.
Alternatively, the program can use an immediate value for the
modifier.

After circular buffering is set up, the DAGs use the modulus logic in
Figure 4-1 on page 4-3 to process circular buffer addressing.

Figure 4-4. Circular Data Buffers

0

1

2

3

4

5

6

7

8

9

10

1

2

3

0

1

2

3

4

5

6

7

8

9

10

4

5

6

0

1

2

3

4

5

6

7

8

9

10

7

8

9

0

1

2

3

4

5

6

7

8

9

10

10

11

THE COLUMNS ABOVE SHOW THE SEQUENCE IN ORDER OF LOCATIONS ACCESSED IN ONE PASS.
NOTE THAT "0" ABOVE IS ADDRESS DM(0X80500). THE SEQUENCE REPEATS ON SUBSEQUENT PASSES.

THE FOLLOWING SYNTAX SETS UP AND ACCESSES A CIRCULAR BUFFER WITH:
LENGTH = 11
BASE ADDRESS = 0X80500
MODIFIER = 4

BIT SET MODE1 CBUFEN; /* ENABLES CIRCULAR BUFFER ADDRESSING; SET BY DEFAULT */
B0 = 0X80500; /* LOADS B0 AND L0 REGISTERS WITH BASE ADDRESS */
L0 = 11; /* LOADS L0 REGISTER WITH LENGTH OF BUFFER */
M1 = 4; /* LOADS M1 WITH MODIFIER OR STEP SIZE */
LCNTR = 11, DO MY_CIR_BUFFER UNTIL LCE; /* SETS UP A LOOP CONTAINING BUFFER ACCESSES */

ADSP-2126x SHARC DSP Core Manual 4-17

Data Address Generators

On the ADSP-2126x processor, programs enable circular buffering by set-
ting the CBUFEN bit in the MODE1 register. This bit has a corresponding
mask bit in the MMASK register. Setting the corresponding MMASK bit causes
the CBUFEN bit to be cleared following a push status instruction (PUSH STS)
or the execution of an external interrupt, timer interrupt, or vectored
interrupt. This feature allows programs to disable circular buffering while
in an interrupt service routine that does not use circular buffering. By dis-
abling circular buffering, the routine does not need to save and restore the
DAG’s B and L registers.

Clearing the CBUFEN bit disables circular buffering for all data load and
store operations. The DAGs perform normal post-modify load and store
accesses, ignoring the B and L register values. Note that a write to a B regis-
ter modifies the corresponding I register, independent of the state of the
CBUFEN bit. The MODIFY instruction executes independent of the state of
the CBUFEN bit. The MODIFY instruction always performs circular buffer
modify of the index registers if the corresponding B and L registers are
configured, independent of the state of the CBUFEN bit.

On the first post-modify access to the buffer, the DAG outputs the I reg-
ister value on the address bus then modifies the address by adding the
modify value. If the updated index value is within the buffer length, the
DAG writes the value to the I register. If the updated value is outside the
buffer length, the DAG subtracts (positive) or adds (negative) the L regis-
ter value before writing the updated index value to the I register. In
equation form, these post-modify and wraparound operations work as
follows.

• If M is positive:

Inew = Iold + M if Iold + M < buffer base + length (end of buffer)

Inew = Iold + M – L if Iold + M ≥ buffer base + length (end of buffer)

• If M is negative:

DAG Operations

4-18 ADSP-2126x SHARC DSP Core Manual

Inew = Iold + M if Iold + M ≥ buffer base (start of buffer)

Inew = Iold + M + L if Iold + M < buffer base (start of buffer)

The DAGs use all four types of DAG registers for addressing circular buff-
ers. These registers operate as follows for circular buffering.

• The index (I) register contains the value that the DAG outputs on
the address bus.

• The modify (M) register contains the post-modify amount (positive
or negative) that the DAG adds to the I register at the end of each
memory access. The M register can be any M register in the same
DAG as the I register and does not have to have the same number.
The modify value can also be an immediate value instead of an M
register. The size of the modify value, whether from an M register or
immediate, must be less than the length (L register) of the circular
buffer.

• The length (L) register sets the size of the circular buffer and the
address range that the DAG circulates the I register through. The L
register must be positive and cannot have a value greater than
231 – 1. If an L register’s value is zero, its circular buffer operation
is disabled.

• The DAG compares the base (B) register, or the B register plus the L
register, to the modified I value after each access. When the B regis-
ter is loaded, the corresponding I register is simultaneously loaded
with the same value. When I is loaded, B is not changed. Programs
can read the B and I registers independently.

There is one set of registers (I7 and I15) in each DAG that can generate an
interrupt on circular buffer overflow (address wraparound). For more
information, see “Using DAG Status” on page 4-8.

When a program needs to use I7 or I15 without circular buffering and the
DSP has the circular buffer overflow interrupts unmasked, the program

ADSP-2126x SHARC DSP Core Manual 4-19

Data Address Generators

should disable the generation of these interrupts by setting the B7/B15 and
L7/L15 registers to values that prevent the interrupts from occurring. If I7
were accessing the address range 0x1000 – 0x2000, the program could set
B7 = 0x0000 and L7 = 0xFFFF. Because the DSP generates the circular
buffer interrupt based on the wraparound equations on page 4-17, setting
the L register to zero does not necessarily achieve the desired results. If the
program is using either of the circular buffer overflow interrupts, it should
avoid using the corresponding I register(s) (I7 or I15) where interrupt
branching is not needed.

When a long word access, SIMD access, or normal word access (with LW
option) crosses the end of the circular buffer, the DSP completes the
access before responding to the end of buffer condition.

Modifying DAG Registers
The DAGs support two operations that modify an address value in an
index register without outputting an address. These two operations,
address bit-reversal and address modify, are useful for bit-reverse address-
ing and maintaining pointers.

The MODIFY instruction modifies addresses in any DAG index register
(I0-I15) without accessing memory. If the I register’s corresponding B and
L registers are set up for circular buffering, a MODIFY instruction performs
the specified buffer wraparound (if needed). The syntax for MODIFY is sim-
ilar to post-modify addressing (index, then modifier). The MODIFY
instruction accepts either a 32-bit immediate value or an M register as the
modifier. The following example adds 4 to I1 and updates I1 with the
new value:

MODIFY(I1,4);

The BITREV instruction modifies and bit-reverses addresses in any DAG
index register (I0-I15) without accessing memory. This instruction is
independent of the bit-reverse mode. The BITREV instruction adds a 32-bit
immediate value to a DAG index register, bit-reverses the result, and

DAGs, Registers, and Memory

4-20 ADSP-2126x SHARC DSP Core Manual

writes the result back to the same index register. The following example
adds 4 to I1, bit-reverses the result, and updates I1 with the new value:

BITREV(I1,4);

Addressing in SISD and SIMD Modes
Single-Instruction, Multiple-Data (SIMD) mode (PEYEN bit=1) does not
change the addressing operations in the DAGs, but it does change the
amount of data that moves during each access. The DAGs put the same
addresses on the address buses in SIMD and Single-Instruction Sin-
gle-Data (SISD) modes. In SIMD mode, the DSP’s memory and
processing elements get data from the named (explicit) locations in the
instruction syntax as well as complementary (implicit) locations. For more
information on data moves between registers, see “SIMD (Computa-
tional) Operations” on page 2-49.

DAGs, Registers, and Memory
DAG registers are part of the DSP’s universal register (Ureg) set. Programs
may load the DAG registers from memory, from another universal regis-
ter, or with an immediate value. Programs may store DAG registers’
contents to memory or to another universal register.

The DAG’s registers support the bidirectional register-to-register transfers
that are described in “SIMD (Computational) Operations” on page 2-49.
When the DAG register is a source of the transfer, the destination can be a
register file data register. This transfer results in the contents of the single
source register being duplicated in complementary data registers in each
processing element.

Programs should use care in the case where the DAG register is a destina-
tion of a transfer from a register file data register source. Programs should
use a conditional operation to select either one processing element or nei-

ADSP-2126x SHARC DSP Core Manual 4-21

Data Address Generators

ther as the source. Having both processing elements contribute a source
value results in the PEx element’s write having precedence over the PEy
element’s write.

In the case where a DAG register is both source and destination, the data
move operation executes the same as it would if SIMD mode were dis-
abled (PEYEN cleared).

DAG Register-to-Bus Alignment
There are three word alignment types for DAG registers and PM or DM
data buses: normal word, extended-precision normal word, and long
word.

The DAGs align normal word (32-bit) addressed transfers to the low order
bits of the buses. These transfers between memory and 32-bit DAG1 or
DAG2 registers use the 64-bit DM and PM data buses. Figure 4-5 illus-
trates these transfers.

The DAGs align extended-precision normal word (40-bit) addressed
transfers or register-to-register transfers to bits 39-8 of the buses. These
transfers between a 40-bit data register and 32-bit DAG1 or DAG2 regis-
ters use the 64-bit DM and PM data buses. Figure 4-6 illustrates these
transfers.

Figure 4-5. Normal Word (32-bit) DAG Register Memory Transfers

DAG1 OR DAG2 REGISTERS

03163
0X0000 0000

DM OR PM DATA BUS

031

DAGs, Registers, and Memory

4-22 ADSP-2126x SHARC DSP Core Manual

Long word (64-bit) addressed transfers between memory and 32-bit
DAG1 or DAG2 registers target double DAG registers and use the 64-bit
DM and PM data buses. Figure 4-7 illustrates how the bus works in these
transfers.

If the long word transfer specifies an even numbered DAG register (I0 or
I2), then the even numbered register value transfers on the lower half of
the 64-bit bus, and the even numbered register + 1 value transfers on the
upper half (bits 63-32) of the bus.

If the long word transfer specifies an odd numbered DAG register (I1 or
B3), the odd numbered register value transfers on the lower half of the
64-bit bus, and the odd numbered register – 1 value (I0 or B2 in this
example) transfers on the upper half (bits 63-32) of the bus.

In both the even and odd numbered cases, the explicitly specified DAG
register sources or sinks bits 31-0 of the long word addressed memory.

For implicit moves and long word accesses that use the PX registers, as for
example:

I0 = PX; equates to I0 = PX1;

only the contents of the PX1 register are written into I0. However, the fol-
lowing example:

PX = I0; equates to PX1 = PX2 = I0;.

Figure 4-6. DAG Register-to-Data Register Transfers

DAG1 OR DAG2 REGISTERS

031

03163
0X0000 00

DM OR PM DATA BUS

0X00
8

ADSP-2126x SHARC DSP Core Manual 4-23

Data Address Generators

DAG Register Transfer Restrictions
The two types of transfer restrictions are hold-off conditions and illegal
conditions that the DSP does not detect.

For certain instruction sequences involving transfers to and from DAG
registers, an extra (NOP) cycle is automatically inserted by the processor. In
case where an instruction that loads a DAG register is followed by an

instruction that uses any register in the same DAG register pair1 for data
addressing, modify instructions, or indirect jumps, the DSP inserts an
extra (NOP) cycle between the two instructions. This hold-off occurs
because the same bus is needed by both operations in the same cycle.
Therefore, the second operation must be delayed. The following example
causes a delay because it exhibits a write/read dependency in which I0 is
written in one cycle. The results of that register write are not available to a
register read for one cycle. Note that if either instruction had specified I1,
the stall occurs only if the first instruction performs a long word (LW)

Figure 4-7. Long Word DAG Register-to-Data Register Transfers

1 DAG registers are accessible in pair granularity for single cycle access. The pairings are odd-even. For
example I0 and I1 are a pair, and I2 and I3 are a pair.

EXPLICIT (NAMED)
DAG1 OR DAG2 REGISTERS

031

31 063

DM OR PM DATA BUS

IMPLICIT (NAMED + OR - 1)
DAG1 OR DAG2 REGISTERS

031

DAG Instruction Summary

4-24 ADSP-2126x SHARC DSP Core Manual

access. The DAG detects write/read dependencies with a register pair
granularity:

I0 = 8;

DM(I0,M1) = R1;

Certain sequences of instructions cause incorrect results on the DSP and
are flagged as errors by the DSP assembler software. The following types
of instructions can execute on the processor, but cause incorrect results.

• An instruction that stores a DAG register in memory using indirect
addressing from the same DAG, with or without an update of the
index register. The instruction writes the wrong data to memory or
updates the wrong index register.

Do not try these: DM(M2,I1) = I0; or DM(I1,M2) = I0;
These example instructions do not work because I0 and I1 are both
DAG1 registers.

• An instruction that loads a DAG register from memory using indi-
rect addressing from the same DAG, with an update of the index
register. The instruction either loads the DAG register or updates
the index register, but not both.

Do not try this: L2 = DM(I1,M0);
This example instruction does not work because L2 and I1 are both
DAG1 registers.

DAG Instruction Summary
Table 4-2, Table 4-3, Table 4-4, Table 4-5, Table 4-6, Table 4-7,
Table 4-8, and Table 4-9 list the DAG instructions. For more information
on assembly language syntax, see the ADSP-21160 SHARC DSP Instruc-
tion Set Reference.

ADSP-2126x SHARC DSP Core Manual 4-25

Data Address Generators

In these tables, note the meaning of the following symbols:

• I15–8 indicates a DAG2 index register: I15, I14, I13, I12, I11, I10,
I9, or I8, and I7–0 indicates a DAG1 index register I7, I6, I5, I4,
I3, I2, I1, or I0.

• M15–8 indicates a DAG2 modify register: M15, M14, M13, M12, M11,
M10, M9, or M8, and M7–0 indicates a DAG1 modify register M7, M6,
M5, M4, M3, M2, M1, or M0.

• Ureg indicates any universal register; for a list of the DSP’s univer-
sal registers, see Table A-1 on page A-2.

• Dreg indicates any data register; for a list of the DSP’s data regis-
ters, see the Data Register File registers listed in Table A-1 on
page A-2.

• Data32 indicates any 32-bit value, and Data6 indicates any 6-bit
value.

Table 4-2. Post-Modify Addressing, Modified by M Register and
Updating I Register

DM(I7–0,M7–0)=Ureg (LW); {DAG1}

PM(I15–8,M15–8)=Ureg (LW); {DAG2}

Ureg=DM(I7–0,M7–0) (LW); {DAG1}

Ureg=PM(I15–8,M15–8) (LW); {DAG2}

DM(I7–0,M7–0)=Data32; {DAG1}

PM(I15–8,M15–8)=Data32; {DAG2}

DAG Instruction Summary

4-26 ADSP-2126x SHARC DSP Core Manual

Table 4-3. Post-Modify Addressing, Modified by 6-bit Data and
Updating I Register

DM(I7–0,Data6)=Dreg; {DAG1}

PM(I15–8,Data6)=Dreg; {DAG2}

Dreg=DM(I7–0,Data6); {DAG1}

Dreg=PM(I15–8,Data6); {DAG2}

Table 4-4. Pre-Modify Addressing, Modified by M Register
(No I Register Update)

DM(M7–0,I7–0)=Ureg (LW); {DAG1}

PM(M15–8,I15–8)=Ureg (LW); {DAG2}

Ureg=DM(M7–0,I7–0) (LW); {DAG1}

Ureg=PM(M15–8,I15–8) (LW); {DAG2}

Table 4-5. Pre-Modify Addressing, Modified by 6-bit Data
(No I Register Update)

DM(Data6,I7–0)=Dreg; {DAG1}

PM(Data6,I15–8)=Dreg; {DAG2}

Dreg=DM(Data6,I7–0); {DAG1}

Dreg=PM(Data6,I15–8); {DAG2}

Table 4-6. Pre-Modify Addressing, Modified by 32-bit Data
(No I Register Update)

Ureg=DM(Data32,I7–0) (LW); {DAG1}

Ureg=PM(Data32,I15–8) (LW); {DAG2}

DM(Data32,I7–0)=Ureg (LW); {DAG1}

PM(Data32,I15–8)=Ureg (LW); {DAG2}

ADSP-2126x SHARC DSP Core Manual 4-27

Data Address Generators

Table 4-7. Update (Modify) I Register, Modified by M Register

Modify(I7–0,M7–0); {DAG1}

Modify(I15–8,M15–8); {DAG2}

Table 4-8. Update (Modify) I Register, Modified by 32-bit Data

Modify(I7–0,Data32); {DAG1}

Modify(I15–8,Data32); {DAG2}

Table 4-9. Bit-Reverse and Update I Register, Modified By 32-Bit Data

Bitrev(I7–0,Data32); {DAG1}

Bitrev(I15–8,Data32); {DAG2}

DAG Instruction Summary

4-28 ADSP-2126x SHARC DSP Core Manual

ADSP-2126x SHARC DSP Core Manual 5-1

5 MEMORY

The ADSP-21262 processor contains a large, dual-ported internal mem-
ory for single cycle, simultaneous, independent accesses by the core
processor and I/O processor. The dual-ported memory, in combination
with three separate on-chip buses, allow two data transfers from the core
and one transfer from the I/O processor in a single cycle. Using the I/O
bus, the I/O processor provides data transfers between internal memory
and the DSP’s communication ports (serial ports and parallel port) with-
out hindering the DSP core’s access to memory. This chapter describes the
DSP’s memory and how to use it.

The DSP provides access to 8- and 16-bit external memory through the
DSP’s parallel port. External memory is only accessible via DMA (direct
memory access). For information on connecting and timing accesses to
external memory devices, see the product specific peripherals manual.

The DSP contains up to 2M bits of internal RAM and up to 4M bits of

internal ROM depending on the specific part number1. Regardless, each
block can be configured for different combinations of code and data stor-
age. All of the memory can be accessed as 16-bit, 32-bit, 48-bit, or 64-bit
words. The DSP features a 16-bit floating-point storage format that effec-
tively doubles the amount of data that may be stored on-chip. A single
instruction converts the format from 32-bit floating-point to 16-bit
floating-point.

While each memory block can store combinations of code and data,
accesses are most efficient when one block stores data using the DM bus,

1 For specific memory information, see your ADSP-2126x product specific data sheet.

Internal Memory

5-2 ADSP-2126x SHARC DSP Core Manual

(typically block 1) for transfers, and the other block (typically block 0)
stores instructions and data using the PM bus. Using the DM bus and PM
bus with one dedicated to each memory block assures single-cycle execu-
tion with two data transfers. In this case, the instruction must be available
in the cache.

Internal Memory
The ADSP-21262 and ADSP-21266 SHARC DSPs contain 2M bits of
internal RAM and 4M bits of internal ROM. Block 0 has 1M bit RAM
and 2M bits ROM. Block 1 has 1M bit RAM and 2M bits ROM.
Table 5-1 shows the maximum number of data or instruction words that
can fit in each internal memory block.

The ADSP-21262 processor family members are available with varying
amounts of internal ROM and RAM. For a complete list, visit our web
site at www.analog.com\SHARC.

Table 5-1. Words Per Internal Memory Block (ADSP-21262/21266
Models)

Word Type Bits Per
Word

Maximum Number of Words in
Block 0

Maximum Number of Words in
Block 1

1M bit RAM 2M bits ROM 1M bit RAM 2M bits ROM

Instruction 48 bits 21.33K words 42K words 21K words 42K words

Long Word
Data

64 bits 16K words 32K words 16K words 32K words

Extended-
Precision
Normal Word
Data

40 bits 21K words 42K words 21K words 42K words

ADSP-2126x SHARC DSP Core Manual 5-3

Memory

DSP Architecture
Most microprocessors use a single address and a single-data bus for mem-
ory accesses. This type of memory architecture is referred to as the Von
Neumann architecture. Because DSPs require greater data throughput
than the Von Neumann architecture provides, many DSPs use memory
architectures that have separate data and address buses for program and
data storage. These two sets of buses let the DSP retrieve a data word and
an instruction simultaneously. This type of memory architecture is called
Harvard architecture.

SHARC DSPs go a step further by using a Super Harvard architecture.
This four bus architecture has two address buses and two data buses, but
provides a single, unified address space for program and data storage.
While the Data Memory (DM) bus only carries data, the Program Mem-
ory (PM) bus handles instructions and data, allowing dual-data accesses.

DSP core and I/O processor accesses to internal memory are completely
independent and transparent to one another. Each block of memory can
be accessed by the DSP core and I/O processor in every cycle—no extra
cycles are incurred if the DSP core and the I/O processor access the same
block.

Normal Word
Data

32 bits 32K words 64K words 32K words 64K words

Short Word
Data

16 bits 64K words 128K words 64K words 128K words

Table 5-1. Words Per Internal Memory Block (ADSP-21262/21266
Models) (Cont’d)

Word Type Bits Per
Word

Maximum Number of Words in
Block 0

Maximum Number of Words in
Block 1

1M bit RAM 2M bits ROM 1M bit RAM 2M bits ROM

Buses

5-4 ADSP-2126x SHARC DSP Core Manual

A memory access conflict can occur when the processor core attempts two
accesses to the same internal memory block in the same cycle. When this
conflict, known as a block conflict occurs, an extra cycle is incurred. The
DM bus access completes first and the PM bus access completes in the fol-
lowing (extra) cycle.

For more information on how the buses access memory blocks, see “Inter-
nal Memory” on page 5-2.

Buses
As shown in Figure 5-1, the DSP has three sets of internal buses con-
nected to its dual-ported memory, the Program Memory (PM), Data
Memory (DM), and I/O Processor (I/O) buses. The PM and DM buses
share one memory port and the I/O bus connects to the other port. Mem-
ory accesses from the DSP’s core (computational units, data address
generators, or program sequencer) use the PM or DM buses, while the I/O
processor uses the I/O bus for memory accesses. The I/O processor’s par-
allel port (PP) bus can access external memory devices. For more
information about the external memory and I/O capabilities of the proces-
sor, see the processor specific peripherals manual.

Internal Address and Data Buses
Figure 5-1 on page 5-6 shows that the PM and DM buses have access to
internal memory.

The DSP’s DM and PM buses can access internal memory independently.
The I/O processor can perform DMA between external and internal mem-
ory without conflicts with the DM and PM buses.

Addresses for the PM and DM buses come from the DSP’s program
sequencer and Data Address Generators (DAGs). The program sequencer
generates 24-bit program memory addresses while DAGs supply 32-bit

ADSP-2126x SHARC DSP Core Manual 5-5

Memory

addresses for locations throughout the DSP’s memory spaces. The DAGs
supply addresses for data reads and writes on both the PM and DM
address buses, while the program sequencer uses only the PM address bus
for sequencing execution.

Each DAG is associated with a particular data bus. DAG1 supplies
addresses over the DM bus and DAG2 supplies addresses over the PM
bus. For more information on address generation, see “Program
Sequencer” on page 3-1 or “Data Address Generators” on page 4-1.

5-6 ADSP-2126x SHARC DSP Core Manual

Figure 5-1. ADSP-21262 Processor Memory and Internal Buses Block
Diagram

ADDRESS DATAADDRESS DATA

ADDRESS

DATA

ADDRESS

DATA

PX BUS EXCHANGE REGISTER

PM ADDRESS BUS

PM DATA BUS

DM ADDRESS BUS

DM DATA BUS

IO ADDRESS BUS

IO DATA BUS

ANY TWO PATHS
SIMULTANEOUSLY

ADDRESSES AND
DATA FOLLOW

PARALLEL PATHS

IO ADDRESS

IO DATA

ADDRESS DATA

PARALLEL PORT

AD

BLOCK 0

BLOCK 1

INTERNAL
(DSP) MEMORY

EXTERNAL
(SYSTEM) MEMORY

I/O PROCESSOR

24 32 32 64 64 3224/16

64

16

ADSP-2126x SHARC DSP Core Manual 5-7

Memory

Because the DSP’s internal memory is arranged in four 16-bit wide by
96K columns, memory is addressable in widths that are multiples of col-
umns up to 64 bits:

1 column = 16-bit words

2 columns = 32-bit words

3 columns = 48- or 40-bit words

4 columns = 64-bit words

For more information on the how the DSP works with memory words, see
“Memory Organization and Word Size” on page 5-15.

The PM and DM data buses are 64 bits wide. Both data buses can handle
long word (64-bit), normal word (32-bit), Extended-precision normal
word (40-bit), and short word (16-bit) data, but only the PM data bus
carries instruction words (48-bit).

Internal Data Bus Exchange
The data buses allow programs to transfer the contents of any register in
the DSP to any other register or to any internal memory location in a sin-
gle cycle. As shown in Figure 5-2, the PM Bus Exchange (PX) register
permits data to flow between the PM and DM data buses. The PX register
can work as one 64-bit register or as two 32-bit registers (PX1 and PX2).
The alignment of PX1 and PX2 within PX appears in Figure 5-2.

The PX1, PX2, and the combined PX registers are Universal registers (Ureg)
that are accessible for register-to-register or memory-to-register transfers.

The PX register-to-register transfers using data registers are either 40-bit
transfers for the combined PX or 32-bit transfers for PX1 or PX2. Figure 5-2
shows the bit alignment and gives an example of instructions for regis-
ter-to-register transfers.

Buses

5-8 ADSP-2126x SHARC DSP Core Manual

Figure 5-2 shows that during a transfer between PX1 or PX2 and a data reg-
ister (Dreg), the bus transfers the upper 32 bits of the register file and
zero-fills the eight least significant bits (LSBs).

During a transfer between the combined PX register and a register file, the
bus transfers the upper 40 bits of PX and zero-fills the lower 24 bits.

The PX register-to-internal memory transfers over the DM or PM data bus
are either 48-bit transfers for the combined PX or 32-bit transfers (on bits
31-0 of the bus) for PX1 or PX2. Figure 5-5 shows these transfers.

Figure 5-2. PM Bus Exchange (PX, PX1, and PX2) Registers

PX1

03263

PX2

31

0031 31

Combined PX Register

Instruction Examples

PX = DM(0x80000)(LW);
PX = DM(0x40000);

ADSP-2126x SHARC DSP Core Manual 5-9

Memory

Figure 5-3. PX, PX1, and PX2 Register-to-Register Transfers

Register File Transfer

PX1 or PX2

39 7 0

0x0

32 bits

Register File Transfer

39 0

40 bits 0x0

02363

8

32 bits

31 024

40 bits

Combined PX

PX1PX2

Instruction Examples

R3 = PX; R3 = PX1; or R3 = PX2;

Buses

5-10 ADSP-2126x SHARC DSP Core Manual

Figure 5-5 shows that during a transfer between PX1 or PX2 and internal
memory, the bus transfers the lower 32 bits of the register.

During a transfer between the combined PX register and internal memory,
the bus transfers the upper 48 bits of PX and zero-fills the lower 8 bits.

The status of the memory block’s Internal Memory Data Width (IMDWX)
setting does not effect this default transfer size for PX to internal memory.

All transfers between the PX register (or any other internal register or
memory) and any I/O processor register are 32-bit transfers (least signifi-
cant 32 bits of PX).

All transfers between the PX register and data registers (R0–R15 or S0–S15)
are 40-bit transfers. The most significant 40 bits are transferred as shown
in Figure 5-3 on page 5-9.

Figure 5-4. PX, PX1, PX2 Register-to-Memory Transfers on DM (LW) or
PM (LW) Data Bus

Instruction Examples

PX = DM (0xC0000) (LW); PM(I7,M7) = PX1;

31

PX1 or PX2

32 bits

063

0x0 32 bits

DM or PM Data Bus Transfer

31 0

7

 PX2

DM and PM Data Bus Transfer (not LW)

03163

48 bits

8

7 03163 8

48 bits 0x0

0x0

 PX1

Combined PX

ADSP-2126x SHARC DSP Core Manual 5-11

Memory

Figure 5-5 shows the transfer size between PX and internal memory over
the PM or DM data bus when using the long word (LW) option.

The LW notation in Figure 5-5 shows an important feature of PX regis-
ter-to-internal memory transfers over the PM or DM data bus for the
combined PX register. The PX register transfers to memory are 48-bit
(three column) transfers on bits 63-16 of the PM or DM data bus, unless
forced to be 64-bit (four column) transfers with the LW (long word)
mnemonic.

There is no implicit move when the combined PX register is used in SIMD
mode. For example, in SIMD mode, the following moves occur:

PX1 = R0; /* R0 32-bit explicit move to PX1,

 and S0 32-bit implicit move to PX2 */

PX = R0; /* R0 40-bit explicit move to PX,

 but no implicit move for S0 */

Figure 5-5. PX Register-to-Memory Transfers on PM Data Bus

Combined PX

DM (LW) or PM (LW)

03163

64 bits

03163

64 bits

Data Bus Transfer

Instruction Example

PX = PM (0x80000)LW;

Buses

5-12 ADSP-2126x SHARC DSP Core Manual

Figure 5-6. PX Register-to-Internal Memory Transfers Over the PM or
DM DATA Bus

USTAT1

03163

64 bits

03163

64 bits

Instruction Example

PX = USTAT1;

03163

64 bits

03163

64 bits

USTAT2

PX2PX1

ADSP-2126x SHARC DSP Core Manual 5-13

Memory

ADSP-21262 Processor Memory Map
The ADSP-21262 processor family is composed of a variety of models that
have varying amounts of RAM and/or ROM memory. However, in gen-
eral, there are two memory spaces: internal memory space and external
(DMA) memory space. These spaces have these definitions:

• Internal memory space. This space ranges from address 0x00 0000
through 0x1F FFFF. Internal memory space refers to the DSP’s
on-chip RAM, on-chip ROM, and memory-mapped registers.

• External (DMA) memory. For information on external DMA
memory space please refer to the product specific data sheet.

The ADSP-21262 processor has two blocks of RAM that contain up to
1M bit of memory each, and two blocks of ROM that contain up to 2M
bits of memory each. Each block is physically comprised of four 16-bit
columns. “Wrapping”, as shown in Figure 5-8 on page 5-17, allows the
memory to efficiently store 16-bit, 32-bit, 48-bit or 64-bit wide words.
The width of the data word fetched from memory is dependant upon the
address range used. The same physical location in memory can be accessed
using three different addresses.

Accessing a short word memory address accesses one 16-bit word. Consec-
utive 16-bit short-words are accessed from columns #1, #2, #3, #4, #1 and
so on. Accessing a normal word memory address transfers 32 bits (from
columns 1 and 2 or 3 and 4). Consecutive 32-bit words are accessed from
columns 1 and 2, 3 and 4, 1 and 2 etc. Accessing a long word address
transfers 64 bits (from all four columns). For example, the same 16 bits of
Block-0 are overwritten in each of the following four write instructions
(some, but not all of the short word accesses overwrite more than 16 bits).

Listing 5-1. Overwriting Bits (ADSP-21262 Example)

#include <def2126x.h>

ADSP-21262 Processor Memory Map

5-14 ADSP-2126x SHARC DSP Core Manual

DM(0x00040000) = PX; /* long word transfer

 (64 bits/four columns) */

DM(0x00080000) = R0; /* normal word transfer

 (32 bits/two columns) */

DM(0x00100000) = R0; /* short word transfer

 (16 bits/1-column) */

USTAT1 = dm(SYSCTL);

bit set USTAT1 IMDW0; /* set Blk0 access as ext. precision */

dm(SYSCTL) = USTAT1;

DM(0x00080000) = R0; /* normal word transfer

 (40 bits/three columns) */

Normal word address space is also used by the program sequencer to fetch
48-bit instructions. Note that a 48-bit fetch spans three columns that can
lead to a different address range between instruction fetches and data
fetches (Figure 5-7).

Normal word address space can also optionally be used to fetch 40-bit
data (from three columns) if the IMDWx (Internal Memory Data Width) bit
in the SYSCTL register is set. There are two bits in the SYSCTL register,
IMDW0 and IMDW1, which determine whether access to each block is 32 or
40 bits. For more information, see “Accessing Memory” on page 5-27.

The I/O processor’s memory-mapped registers control the system configu-
ration of the DSP and I/O operations. For information about the I/O
Processor, see the product specific peripherals manual. These registers
occupy consecutive 32-bit locations in this region.

If a program uses long word addressing (forced with the LW mnemonic) to
access this region, the access is only to the addressed 32-bit register, rather

ADSP-2126x SHARC DSP Core Manual 5-15

Memory

than the two adjacent I/O processor registers. The register contents are
transferred on bits 31–0 of the data bus.

Memory Organization and Word Size
The DSP’s internal memory is organized as four 16-bit wide by 64K high
columns. These columns of memory are addressable as a variety of word
sizes:

• 64-bit long word data (four columns)

• 48-bit instruction words or 40-bit extended-precision normal word
data (3 columns)

• 32-bit normal word data (2 columns)

• 16-bit short word data (1 column)

Extended-precision normal word data is only accessible if the IMDWx bit is
set in the SYSCTL register. It is left-justified within a three column loca-
tion, using bits 47–8 of the location.

Placing 32-Bit Words and 48-Bit Words

When the processor core or I/O processor addresses memory, the word
width of the access determines which columns within the memory are
accessed. For instruction word (48 bits) or extended-precision normal
word data (40 bits), the word width is 48 bits, and the DSP accesses the
memory’s 16-bit columns in groups of three. Because these sets of three
column accesses are packed into a 4 column matrix, there are four rota-
tions of the columns for storing 40- or 48-bit data. The three column
word rotations within the four column matrix appear in Figure 5-7.

For long word (64 bits), normal word (32 bits), and short word (16 bits)
memory accesses, the DSP selects from fixed columns in memory. No
rotations of words within columns occur for these data types.

ADSP-21262 Processor Memory Map

5-16 ADSP-2126x SHARC DSP Core Manual

Figure 5-8 shows the memory ranges for each data size in the DSP’s inter-
nal memory.

Figure 5-7. 48-Bit Word Rotations

Column 0Column 1Column 2Column 3

150150150150

Rotation 0Rotation 1

Rotation 1Rotation 2

Rotation 2Rotation 3

A
d

d
re

ss
es

ADSP-2126x SHARC DSP Core Manual 5-17

Memory

Mixing 32-Bit Words and 48-Bit Words

The DSP’s memory organization lets programs freely place memory words
of all sizes (see “Memory Organization and Word Size” on page 5-15)
with few restrictions (see “Restrictions on Mixing 32-Bit Words and
48-Bit Words” on page 5-19). This memory organization also lets pro-
grams mix (place in adjacent addresses) words of all sizes. This section
discusses how to mix odd (three column) and even (four column) data
words in the DSP’s memory.

Transition boundaries between 48-bit (three column) data and any other
data size can occur only at any 64-bit address boundary within either
internal memory block. Depending on the ending address of the 48-bit
words, there are zero, one, or two empty locations at the transition
between the 48-bit (three column) words and the 64-bit (four column)

Figure 5-8. Mixed Instructions and Data With No Unused Locations

Column 0Column 1Column 2Column 3

150150150150

48-bit word top-348-bit word top-2

48-bit word top-248-bit word top-1

48-bit word top-148-bit word top

A
d

d
re

ss
es

Transitioning from 48-bit to 32-bit

data with zero empty locations:

(48-bit word top address)

32-bit word 232-bit word 3

32-bit word 032-bit word 1

ADSP-21262 Processor Memory Map

5-18 ADSP-2126x SHARC DSP Core Manual

words. These empty locations result from the column rotation for storing
48-bit words. The three possible transition arrangements appear in
Figure 5-8, Figure 5-9, and Figure 5-10.

Figure 5-9. Mixed Instructions and Data With One Unused Location

Column 0Column 1Column 2Column 3

150150150150

48-bit word topEmpty

48-bit word top-1 48-bit word top-2

48-bit word top-2 48-bit word top-3

A
d

d
re

ss
es

32-bit word 232-bit word 3

32-bit word 032-bit word 1

Transitioning from 48-bit to 32-bit

data with one empty locations:
(48-bit word top address)

ADSP-2126x SHARC DSP Core Manual 5-19

Memory

Restrictions on Mixing 32-Bit Words and 48-Bit Words

There are some restrictions that stem from the memory column rotations
for three column data (48 or 40-bit words) and they relate to the way that
three column data can mix with four column data (32-bit words) in mem-
ory. These restrictions apply to mixing 48 and 32-bit words, because the
DSP uses a normal word address to access both of these types of data even
though 48-bit data maps onto three columns of memory and 32-bit data
maps onto two columns of memory.

When a system has a range of three column (48-bit) words followed by a
range of two column (32-bit) words, there is often a gap of empty 16-bit
locations between the two address ranges. The size of the address gap var-
ies with the ending address of the range of 48-bit words. Because the
addresses within the gap alias to both 48 and 32-bit words, a 48-bit write

Figure 5-10. Mixed Instructions and Data With Two Unused Locations

Column 0Column 1Column 2Column 3

150150150150

48-bit word topEmpty

48-bit word top-148-bit word top

48-bit word top-2

A
d

d
re

ss
es

32-bit word 232-bit word 3

32-bit word 032-bit word 1

Transitioning from 48-bit to 32-bit

data with two empty locations:

(48-bit word top address)

Empty

48-bit word top-3

ADSP-21262 Processor Memory Map

5-20 ADSP-2126x SHARC DSP Core Manual

into the gap corrupts 32-bit locations, and a 32-bit write into the gap cor-
rupts 48-bit locations. The locations within the gap are only accessible
with short word (16-bit) accesses.

Calculating the starting address for four column data that minimizes the
gap after three column data is useful for programs that are mixing three
and four column data. Given the last address of the three column (48-bit)
data, the starting address of the 32-bit range that most efficiently uses
memory can be determined by the equation shown in Listing 5-2.

Listing 5-2. Starting Address

m = B + 2 [(n MOD K) – TRUNC (n MOD K) / 4)]

where:

• K is 21844 for RAM and 43690 for ROM

• n is the number of contiguous 48-bit words allocated in the inter-
nal memory block (n < 43,690 for ROM, n < 21844 for RAM)

• B is the base normal word address of the internal memory block; if
B = 0x80000 (Block 0) else B = 0xC0000 (Block 1)

• m is the first 32-bit normal word address to use after the end of
48-bit words

Example: Calculating a Starting Address for 32-Bit Addresses

The last valid address is 0x82694. The number of 48-bit words (n) is:

n = 0x82694 - 0x80000 + 1 = 0x2695

When you convert 0x2695 to decimal representation, the result is 9877.

The base (B) normal word address of the internal memory block is
0x80000 since the condition 0 < 10922 is TRUE.

ADSP-2126x SHARC DSP Core Manual 5-21

Memory

The first 32-bit normal word address to use after the end of the 48-bit
words is given by:

m = 0x80000 + 2 [(9877 MOD 21844)- TRUNC (9877 MOD 21844)/4]

m = 0x80000 + 14816decimal

Convert to a hexadecimal address:

14816decimal = 0x39E0

m = 0x80000 + 0x39E0 = 0x839E0

The first valid starting 32-bit address is 0x839E0. The starting address
must begin on an even address.

48-Bit Word Allocation

Another useful calculation for programs that are mixing three and four
column data is to calculate the amount of three column data that mini-
mizes the gap before starting four column data. Given the starting address
of the four column (32-bit) data, the number of 48-bit words that most
efficiently uses memory can be determined as shown in Listing 5-3.

ADSP-21262 Processor Memory Map

5-22 ADSP-2126x SHARC DSP Core Manual

Listing 5-3. 48-Bit Word Allocation

n = TRUNC{4[(m - B) / 2] / 3]} + B

where:

• m is the first 32-bit normal word address after the end of 48-bit
words (1m values falls in the valid normal word address space)

• B is the base normal word address of the internal memory block;
B = 0x80000 (block 0) else B = 0xC0000 (block 1) for valid m
values

• n is the number of contiguous 48-bit words the system allocates in
the internal memory block

Using Boot Memory
As shown in Figure 5-10, the DSP supports an external boot EPROM via
the parallel port. The boot EPROM provides one of the methods for auto-
matically loading a program in to the internal memory of the DSP after
power-up or after a software reset. For information about boot options
and the booting process, see the product specific peripherals manual.

Reading From Boot Memory

When the DSP boots from an EPROM, the DSP’s I/O processor is
hard-wired to load 256 instructions automatically from EPROM (via
DMA). Once the initial 256-word DMA is complete, the DSP typically
needs to maintain access to boot memory.

ADSP-2126x SHARC DSP Core Manual 5-23

Memory

Internal Interrupt Vector Table
The default location of the ADSP-21262 processor’s interrupt vector table
(IVT) depends on the DSP’s booting mode. When the processor boots
from an external source (EPROM, SPI port master or slave booting), the
vector table starts at address 0x0008 0000 (normal word). When the pro-
cessor is in “no boot” mode (runs from internal ROM location
0x000A 0000 without loading), the interrupt vector table starts at address
0x000A–0000.

The Internal Interrupt Vector Table (IIVT) bit in the SYSCTL register over-
rides the default placement of the vector table. If IIVT is set (=1), the
interrupt table starts at address 0x0008 0000 (internal memory) regardless
of the booting mode.

Internal Memory Data Width
The DSP’s internal memory blocks use normal word addressing to access
either single-precision 32-bit data or extended-precision 40-bit data. Pro-
grams select the data width independently for each internal memory block
using the Internal Memory Data Width (IMDWx) bits in the SYSCTL regis-
ter. If a block’s IMDWx bit is cleared (=0), normal word accesses to the block
access 32-bit data. If a block’s IMDWx bit is set (=1), normal word accesses
to the block access 48-bit data. If a program tries to write 40-bit data (for
example, a data register-to-memory transfer), the transfer truncates the
lower 8 bits from the register; only writing 32 most significant bits.

If a program tries to read 40-bit data (for example, a memory-to-data reg-
ister transfer), the transfer zero-fills the lower 8 bits of the register, only
reading the 32 most significant bits (MSBs).

The Program Memory Bus Exchange (PX) register is the only exception to
these transfer rules—all loads and or stores of the PX register are performed
as 48-bit accesses unless forced to a 64-bit access with the LW mnemonic. If
any 40-bit data must be stored in a memory block configured for 32-bit

ADSP-21262 Processor Memory Map

5-24 ADSP-2126x SHARC DSP Core Manual

words, the program uses the PX register to access the 40-bit data in 48-bit
words. Programs should take care not to corrupt any 32-bit data with this
type of access. For more information, see “Restrictions on Mixing 32-Bit
Words and 48-Bit Words” on page 5-19.

The Long word (LW) mnemonic only effects normal word address accesses
and overrides all other factors (SIMD, IMDWx).

Secondary Processor Element (PEy)
When the PEYEN bit in the MODE1 register is set (=1), the DSP is in Sin-
gle-Instruction, Multiple-Data (SIMD) mode. In SIMD mode, many data
access operations differ from the DSP’s default Single-Instruction, Sin-
gle-Data (SISD) mode. These differences relate to doubling the amount of
data transferred for each data access.

 Accesses in SIMD mode transfer both an explicit (named) location and an
implicit (unnamed, complementary) location. The explicit transfer is a
data transfer between the explicit register and the explicit address, and the
implicit transfer is between the implicit register and the implicit address.

For information on complementary (implicit) registers in SIMD mode
accesses, see “Secondary Processor Element (PEy)” on page 5-24. For
more information on complementary (implicit) memory locations in
SIMD mode accesses, see “Accessing Memory” on page 5-27.

Broadcast Register Loads
The DSP’s BDCST1 and BDCST9 bits in the MODE1 register control broadcast
register loading. When broadcast loading is enabled, the DSP writes to
complementary registers or complementary register pairs in each process-
ing element on writes that are indexed with DAG1 register I1 (if
BDCST1 =1) or DAG2 register I9 (if BDCST9 =1). Broadcast load accesses are
similar to SIMD mode accesses in that the DSP transfers both an explicit
(named) location and an implicit (unnamed, complementary) location.

ADSP-2126x SHARC DSP Core Manual 5-25

Memory

However, broadcast loading only influences writes to registers and writes
identical data to these registers. Broadcast mode is independent of SIMD
mode.

Table 5-2 shows examples of explicit and implicit effects of broadcast reg-
ister loads to both processing elements. Note that broadcast loading only
effects loads of data registers (register file); broadcast loading does not
effect register stores or loads to other system registers. Furthermore,
broadcast loads only work on register loads; broadcast loading cannot be
used for memory writes. For more information on broadcast loading, see
“Accessing Memory” on page 5-27.

Illegal I/O Processor Register Access
The DSP monitors I/O processor register access when the Illegal I/O pro-
cessor Register Access (IIRAE) bit in the MODE2 register is set (=1). If access
to the IOP registers is detected, an Illegal Input Condition Detected
(IICDI) interrupt occurs. The interrupt is latched in the IRPTL register
when a core access to an IOP register occurs.

The I/O processor’s DMA controller cannot generate the IICDI interrupt.
For more information, see “Mode Control 2 Register (MODE2)” on
page A-11.

Table 5-2. Register Load Dual PE Broadcast Operation

Instruction

(Explicit, PEx Operation)1

1 The post increment in the explicit operation is performed before the implicit instructions are
executed.

(Implicit, PEy operation)

Rx = dm(i1,ma);
Rx = pm(i9,mb);
Rx = dm(i1,ma), Ry = pm(i9,mb);

Sx = dm(i1,ma);
Sx = pm(i9,mb);
Sx = dm(i1,ma), Sy = pm(i9,mb);

Using Memory Access Status

5-26 ADSP-2126x SHARC DSP Core Manual

Unaligned 64-Bit Memory Access
The DSP monitors for unaligned 64-bit memory accesses if the Unaligned
64-bit Memory Accesses (U64MAE) bit in the MODE2 register (bit 21) is set
(=1). An unaligned access is an odd numbered address normal word access
that is forced to 64 bits with the LW mnemonic. When detected, this con-
dition is an input that can cause an Illegal Input Condition Detected
(IICDI) interrupt if the interrupt is enabled in the IMASK register. For more
information, see “Mode Control 2 Register (MODE2)” on page A-11.

The following code example shows the access for even and odd addresses.
When accessing an odd address, the sticky bit is set to indicate the
unaligned access.

bit set mode2 U64MAE; /* set testbit for aligned or
 unaligned 64-bit access*/
r0 = 0x11111111;
r1 = 0x22222222;
pm(0x80200) = r0(lw); /* even address in 32-bit, access
 is aligned */
pm(0x80201) = r0(lw); /* odd address in 32-bit, sticky
 bit is set */

Using Memory Access Status
As described in “Illegal I/O Processor Register Access” on page 5-25 and
“Unaligned 64-Bit Memory Access” on page 5-26, the DSP can provide
illegal access information for long word or I/O register accesses. When
these conditions occur, the DSP updates an illegal condition flag in a
sticky status (STKYx) register. Either of these two conditions can also gen-
erate a maskable interrupt. Two ways to use illegal access information are:

ADSP-2126x SHARC DSP Core Manual 5-27

Memory

• Interrupts. Enable interrupts and use an interrupt service routine
(ISR) to handle the illegal access condition immediately. This
method is appropriate if it is important to handle all illegal accesses
as they occur.

• STKYx registers. Sticky registers hold a value that can be checked
for a specific condition at a later time. Use the Bit Tst instruction
to examine illegal condition flags in the STKYx register after an
interrupt to determine which illegal access condition occurred.

Accessing Memory
The word width of DSP processor core accesses to internal memory
include:

• 48-bit access for instruction words, extended-precision normal
word (40-bit) data, and PX register

• 64-bit access for long word data, normal word (32-bit) data, or PX
register data with the LW mnemonic

• 32-bit access for normal word (32-bit) data

• 16-bit access for short word data

The DSP determines whether a normal word access is 32 or 40 bits from
the internal memory block’s IMDWx setting. For more information, see
“Internal Memory Data Width” on page 5-23. While mixed accesses of
48-bit words and 16-, 32-, or 64-bit words at the same address are not
allowed, mixed read/writes of 16-, 32-, and 64-bit words to the same
address are allowed. For more information, see “Restrictions on Mixing
32-Bit Words and 48-Bit Words” on page 5-19.

Accessing Memory

5-28 ADSP-2126x SHARC DSP Core Manual

The DSP’s DM and PM buses support 24 combinations of regis-
ter-to-memory data access options. The following factors influence the
data access type:

• Size of words—short word, normal word, extended-precision nor-
mal word, or long word

• Number of words—single or dual-data move

• Mode of DSP—SISD, SIMD, or broadcast load

Access Word Size
The DSP’s internal memory accommodates the following word sizes:

• 64-bit word data

• 48-bit instruction words

• 40-bit extended-precision normal word data

• 32-bit normal word data

• 16-bit short word data

Long Word (64-Bit) Accesses

A program makes a long word (64-bit) access to internal memory using an
access to a long word address. Programs can also make a 64-bit access
through normal word addressing with the LW mnemonic or through a PX
register move with the LW mnemonic. The address ranges for internal
memory accesses appear in the processor model data sheet.

When data is accessed using long word addressing, the data is always long
word aligned on 64-bit boundaries in internal memory space. When data
is accessed using normal word addressing and the LW mnemonic, the pro-
gram should maintain this alignment by using an even normal word

ADSP-2126x SHARC DSP Core Manual 5-29

Memory

address (least significant bit of address = 0). This register selection aligns
the normal word address with a 64-bit boundary (long word address).

All long word accesses load or store two consecutive 32-bit data values.
The register file source or destination of a long word access is a set of two
neighboring data registers in a processing element. In a forced long word
access (uses the LW mnemonic), the even (normal word address) location
moves to or from the explicit register in the neighbor-pair, and the odd
(normal word address) location moves to or from the implicit register in
the neighbor-pair. For example, the following long word moves could
occur:

DM(0x80000) = R0 (LW);
/* The data in R0 moves to location DM(0x80000), and the data in
R1 moves to location DM(0x80001) */

R0 = DM(0x80003)(LW);
/* The data at location DM(0x80002) moves to R0, and the data at
location DM(0x80003) moves to R1 */

The example shows that R0 and R1 are neighbor registers in the same pro-
cessing element. Table 5-3 lists the other neighbor register assignments
that apply to long word accesses.

In unforced long word accesses (accesses to LW memory space), the DSP
places the lower 32 bits of the long word in the named (explicit) register
and places the upper 32 bits of the long word in the neighbor (implicit)
register.

Programs can monitor for unaligned 64-bit accesses by enabling the
U64MAE bit. For more information, see “Unaligned 64-Bit Memory Access”
on page 5-26.

The Long word (LW) mnemonic only effects normal word address accesses
and overrides all other factors (PEYEN, IMDWx).

Accessing Memory

5-30 ADSP-2126x SHARC DSP Core Manual

Instruction and Extended-Precision Normal Word Accesses

The sequencer uses 48-bit memory accesses for instruction fetches. Pro-
grams can make 48-bit accesses with PX register moves, which default to
48 bits.

A program makes an extended-precision normal word (40-bit) access to
internal memory using an access to a normal word address when that
internal memory block’s IMDWx bit is set (=1) for 40-bit words. The
address ranges for internal memory accesses appear in Figure 5-8 on
page 5-17. For more information on configuring memory for
extended-precision normal word accesses, see “Internal Memory Data
Width” on page 5-23.

The DSP transfers the 40-bit data to internal memory as a 48-bit value,
zero-filling the least significant 8 bits on stores and truncating these 8 bits
on loads. The register file source or destination of such an access is a single
40-bit data register.

Table 5-3. Neighbor Registers for Long Word Accesses

PEx Neighbor Registers PEy Neighbor Registers

r0 and r1 s0 and s1

r2 and r3 s2 and s3

r4 and r5 s4 and s5

r6 and r7 s6 and s7

r8 and r9 s8 and s9

r10 and r11 s10 and s11

r12 and r13 s12 and s13

r14 and r15 s14 and s15

ADSP-2126x SHARC DSP Core Manual 5-31

Memory

Normal Word (32-Bit) Accesses

A program makes a normal word (32-bit) access to internal memory using
an access to a normal word address when that internal memory block’s
IMDWx bit is cleared (=0) for 32-bit words. Programs use normal word
addressing to access all DSP memory spaces. The address ranges for mem-
ory accesses appear in Figure 5-8 on page 5-17, Figure 5-10 on page 5-19,
and Figure 5-11 on page 5-37.

The register file source or destination of a normal word access is a single
40-bit data register. The DSP zero-fills the least significant 8 bits on loads
and truncates these bits on stores.

Short Word (16-Bit) Accesses

A program makes a short word (16-bit) access to internal memory using
an access to a short word address. The address ranges for internal memory
accesses appear in Figure 5-8 on page 5-17.

The register file source or destination of such an access is a single 40-bit
data register. The DSP zero-fills the least significant 8 bits on loads and
truncates these bits on stores. Depending on the value of the SSE bit in the
MODE1 system register, the DSP loads the register’s upper 16 bits by either:

• Zero-filling these bits if SSE=0

• Sign-extending these bits if SSE=1

Setting Data Access Modes
The SYSCTL, MODE1 and MODE2 registers control the operating mode of the
DSP’s memory. The SYSCTL register is described in the
ADSP-21262/21266 SHARC DSP Peripherals Manual, Table A-2 on
page A-5 lists all the bits in the MODE1 register, and Table A-3 on
page A-12 lists all the bits in the MODE2 register.

Accessing Memory

5-32 ADSP-2126x SHARC DSP Core Manual

SYSCTL Register Control Bits

The SYSCTL register is described in the ADSP-21262/21266 SHARC DSP
Peripherals Manual. The following bits in the SYSCTL register control
memory access modes:

• Internal Interrupt Vector Table. SYSCTL Bit 2 (IIVT) forces place-
ment of the interrupt vector table at address 0x0008 0000
regardless of booting mode (if 1) or allows placement of the inter-
rupt vector table as selected by the booting mode (if 0).

• Internal Memory Block Data Width. SYSCTL Bits 10-9 (IMDWx)
selects the normal word data access size for internal memory Block
0 and Block1. A block’s normal word access size is fixed as 32 bits
(two column, IMDWx=0) or 48 bits (three column, IMDWx = 1).

Mode 1 Register Control Bits

The following bits in the MODE1 register control memory access modes:

• Secondary Processor Element (PEy). MODE1 Bit 21 (PEYEN) enables
computations in PEy in SIMD mode, (if 1) or disables PEy in SISD
mode, (if 0).

• Broadcast Register Loads. MODE1 Bit 22 (BDCST9) and Bit 23
(BDCST1) enable broadcast register loads for memory transfers
indexed with I1 (if BDCST1 = 1) or indexed with I9 (if BDCST9 =1).

ADSP-2126x SHARC DSP Core Manual 5-33

Memory

Mode 2 Register Control Bits

The following bits in the MODE2 register control memory access modes:

• Illegal IOP Register Access Enable. MODE2 Bit 20 (IIRAE) enables
detection of IOP register access (if 1) or disables detection (if 0).

• Unaligned 64-bit Memory Access Enable. MODE2 Bit 21 (U64MAE)
enables detection of uneven address memory access (if 1) or dis-
ables detection (if 0).

SISD, SIMD, and Broadcast Load Modes
These modes influence memory accesses. For a comparison of their effects,
see the examples in “Data Access Options” on page 5-34. and “Secondary
Processing Element (PEy)” on page 2-44.

Broadcast load mode is a hybrid between SISD and SIMD modes that
transfers dual-data under special conditions. For examples of broadcast
transfers, see “Data Access Options” on page 5-34. For more information
on broadcast load mode, see “Broadcast Register Loads” on page 5-24.

Single- and Dual-Data Accesses
The number of transfers that occur in a cycle influences the data access
operation. As described in “DSP Architecture” on page 5-3, the DSP sup-
ports single cycle, dual-data accesses to and from internal memory for
register-to-memory and memory-to-register transfers. Dual-data accesses
occur over the PM and DM bus and act independent of SIMD/SISD.
Though only available for transfers between memory and data registers,
dual-data transfers are extremely useful because they double the data
throughput over single-data transfers.

Accessing Memory

5-34 ADSP-2126x SHARC DSP Core Manual

Instruction Examples

R8 = DM (I4,M3), PM (I12,M13) = R0; /* Dual access */

R0 = DM (I5,M5); / * Single access */

For examples of data flow paths for single and dual-data transfers, see the
following section, “Data Access Options”.

Data Access Options
Table 5-4 lists the DSP’s possible memory transfer modes and provides a
cross-reference to examples of each memory access option that stems from
the DSP’s data access options.

Table 5-4 shows the transfer modes that stem from the following data
access options:

• The mode of the DSP: SISD, SIMD, or Broadcast Load

• The size of access words: long, extended-precision normal word,
normal word, or short word

• The number of transferred words: single or dual-data

To take advantage of the DSP’s data accesses to three and four column
locations, programs must adjust the interleaving of data into memory
locations to accommodate the memory access mode. The following guide-
lines provide overviews of how programs should interleave data in
memory locations. For more information and examples, see the
ADSP-21160 SHARC DSP Instruction Set Reference.

• Programs can use odd or even modify values (1, 2, 3, …) to step
through a buffer in single- or dual-data, SISD or broadcast load
mode regardless of the data word size (long word, extended-preci-
sion normal word, normal word, or short word).

ADSP-2126x SHARC DSP Core Manual 5-35

Memory

• Programs should use a multiple of 4 modify values (4, 8, 12, …) to
step through a buffer of short word data in single- or dual-data,
SIMD mode. Programs must step through a buffer twice, once for
addressing even short word addresses and once for addressing odd
short word addresses.

• Programs should use a multiple of 2 modify values (2, 4, 6, …) to
step through a buffer of normal word data in single- or dual-data
SIMD mode.

• Programs can use odd or even modify values (1, 2, 3, …) to step
through a buffer of long word or extended-precision normal word
data in single- or dual-data SIMD modes.

Table 5-4. Memory Transfer Modes Cross Reference

Access Type DSP
Mode

Address Space

Long Word Extended-Precision Normal Word Short Word

Single- Data
Access

SISD
mode

LW
on page 5-58

EW
on page 5-50

NW
on page 5-44

SW
on page 5-36

SIMD
mode

LW
on page 5-58

EW
on page 5-56

LW
on page 5-46

SWx2
on page 5-38

B-cast
Load

LW
Figure 5-22

EW
Figure 5-31

NW
Figure 5-29

SW
Figure 5-27

Dual-Data
Access

SISD
mode

LW
on page 5-60

EW
on page 5-54

NW
on page 5-48

SW
on page 5-60

SIMD
mode

LW
on page 5-62

EW
on page 5-60

LW
on page 5-62

SWx2
on page 5-42

B-cast
Load

LW
Figure 5-34

EW
Figure 5-22

NW
Figure 5-30

SW
Figure 5-28

Symbols: LW = 64-bit data value (two 32-bit values), EW = 40-bit data value (48-bit value),
NW = 32-bit data value, SW = 16-bit data value, and SWx2 = two 16-bit data values

Accessing Memory

5-36 ADSP-2126x SHARC DSP Core Manual

Short Word Addressing of Single-Data in SISD Mode

Figure 5-11 shows the SISD single-data, short word addressed access
mode. For short word addressing, the DSP treats the data buses as four
16-bit short word lanes. The 16-bit value for the short word access is
transferred using the least significant short word lane of the PM or DM
data bus. The DSP drives the other short word lanes of the data buses with
zeros.

In SISD mode, the instruction accesses the PEx registers to transfer data
from memory. This instruction accesses WORD X0, whose short word
address has “00” for its least significant two bits of address. Other loca-
tions within this row have addresses with least significant two bits of “01”,
“10”, or “11” and select WORD X1, WORD X2, or WORD X3 from memory
respectively. The syntax targets register RX in PEx. The example targets a
PEy register using the syntax SX.

The cross (†) in the PEx registers in Figure 5-11 indicates that the DSP
zero-fills or sign-extends the most significant 16 bits of the data register
while loading the short word value into a 40-bit data register. Zero-filling
or sign-extending depends on the state of the SSE bit in the MODE1 system
register. For short word transfers, the least significant 8 bits of the data
register are always zero.

ADSP-2126x SHARC DSP Core Manual 5-37

Memory

Figure 5-11. Short Word Addressing of Single-Data in SISD Mode

WORD Y11 WORD Y10 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1

NO ACCESS

15-031-1647-3263-48

WORD Y0

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, SHORT WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(SHORT WORD ADDRESS);
UREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = UREG;
DM(SHORT WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

WORD X11 WORD X10 WORD X9 WORD X8

WORD X7 WORD X6 WORD X5 WORD X4

WORD X3 WORD X2 WORD X1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD X0

A
D

D
R

E
S

S

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

A
D

D
R

E
S

S

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS);

WORD X00X0000† 0X00

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

0X0000 0X0000

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL DATA ACCESSES. DUAL DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-38 ADSP-2126x SHARC DSP Core Manual

Short Word Addressing of Single-Data in SIMD Mode

Figure 5-12 shows the SIMD, single-data, short word addressed access
mode. For short word addressing, the DSP treats the data buses as four
16-bit short word lanes. The explicitly addressed (named in the instruc-
tion) 16-bit value is transferred using the least significant short word lane
of the PM or DM data bus. The implicitly addressed (not named in the
instruction, but inferred from the address in SIMD mode) short word
value is transferred using the 47-32 bit short word lane of the PM or DM
data bus. The DSP drives the other short word lanes of the PM or DM
data buses with zeros.

The instruction explicitly accesses the register RX and implicitly accesses
that register’s complementary register, SX. This instruction uses a PEx reg-
ister with an RX mnemonic. If the syntax named the PEy register SX as the
explicit target, the DSP uses that register’s complement RX as the implicit
target. For more information on complementary registers, see “Secondary
Processing Element (PEy)” on page 2-44.

The cross (†) in the PEx and PEy registers in Figure 5-12 indicates that the
DSP zero-fills or sign-extends the most significant 16 bits of the data reg-
ister while loading the short word value into a 40-bit data register.
Zero-filling or sign-extending depends on the state of the SSE bit in the
MODE1 system register. For short word accesses, the least significant 8 bits
of the data register are always zero.

Figure 5-12 shows the data path for one transfer. The DSP accesses short
words sequentially in memory. Table 5-5 shows the pattern of SIMD
mode short word accesses. For more information on arranging data in
memory to take advantage of this access pattern, see Figure 5-33 on
page 5-75.

ADSP-2126x SHARC DSP Core Manual 5-39

Memory

Figure 5-12. Short Word Addressing of Single-Data in SIMD Mode

WORD Y10WORD Y11 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1

NO ACCESS

15-031-1647-3263-48

WORD Y0

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, SHORT WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(SHORT WORD ADDRESS);
UREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = UREG;
DM(SHORT WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

WORD X11 WORD X10 WORD X9 WORD X8

WORD X7 WORD X6 WORD X5 WORD X4

WORD X3 WORD X2 WORD X1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD X0

A
D

D
R

E
S

S

…

…

…

…

…

…

…

…

…

…

…

…

A
D

D
R

E
S

S

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS);

WORD X2 0X00000X0000

WORD X00X0000† 0X00

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X20X0000† 0X00

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL DATA ACCESSES. DUAL DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-40 ADSP-2126x SHARC DSP Core Manual

Short Word Addressing of Dual-Data in SISD Mode

Figure 5-13 shows the SISD, dual-data, short word addressed access
mode. For short word addressing, the DSP treats the data buses as four
16-bit short word lanes. The 16-bit values for short word accesses are
transferred using the least significant short word lanes of the PM and DM
data buses. The DSP drives the other short word lanes of the data buses
with zeros. Note that the accesses on both buses do not have to be the
same word width. SISD mode dual-data accesses can handle any combina-
tion of short word, normal word, extended-precision normal word, or
long word accesses. For more information, see “Mixed-Word Width
Addressing of Dual-Data in SISD Mode” on page 5-64.

In SISD mode, the instruction explicitly accesses PEx registers. This
instruction accesses WORD X0 in block 1 and WORD Y0 in block 0. Each of
these words has a short word address with “00” for its least significant two
bits of address. Other accesses within these four column locations have
addresses with their least significant two bits as “01”, “10”, or “11” and
select WORD X1/Y1, WORD X2/Y2, or WORD X3/Y3 from memory respectively.
The syntax explicitly accesses registers RX and RY in PEx. The example tar-
gets PEy registers when using the syntax SX or SY.

The cross (†) in the PEx registers in Figure 5-13 indicates that the DSP
zero-fills or sign-extends the most significant 16 bits of the data register
while loading a short word value into a 40-bit data register. Zero-filling or
sign-extending depends on the state of the SSE bit in the MODE1 system reg-
ister. For short word accesses, the least significant 8 bits of the data
register are always zero.

ADSP-2126x SHARC DSP Core Manual 5-41

Memory

Figure 5-13. Short Word Addressing of Dual-Data in SISD Mode

WORD Y11 WORD Y10 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD Y0

…

…

…

…

…

…

…

…

…

…

…

…

WORD X00X0000† 0X00

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, SHORT WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(SHORT WORD ADDRESS), DREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = DREG, DM(SHORT WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

WORD X11 WORD X10 WORD X9 WORD X8

WORD X7 WORD X6 WORD X5 WORD X4

WORD X3 WORD X2 WORD X1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD X0

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS), RA = PM(SHORT WORD Y0 ADDRESS);

WORD Y0 0X0000

WORD Y00X0000† 0X00

0X00000X0000 0

A
D

D
R

E
S

S

A
D

D
R

E
S

S

0

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-42 ADSP-2126x SHARC DSP Core Manual

Short Word Addressing of Dual-Data in SIMD Mode

Figure 5-14 shows the SIMD, dual-data, short word addressed access
mode. For short word addressing, the DSP treats the data buses as four
16-bit short word lanes. The explicitly addressed (named in the instruc-
tion) 16-bit values are transferred using the least significant short word
lanes of the PM and DM data bus. The implicitly addressed (not named
in the instruction, but inferred from the address in SIMD mode) short
word values are transferred using the 47-32 bit short word lanes of the PM
and DM data buses. The DSP drives the other short word lanes of the PM
and DM data buses with zeros.

The accesses on both buses do not have to be the same word width. SIMD
mode dual-data accesses can handle combinations of short word and nor-
mal word or extended-precision normal word and long word accesses. For
more information, see “Mixed-Word Width Addressing of Dual-Data in
SIMD Mode” on page 5-64.

The instruction explicitly accesses registers RX and RA, and implicitly
accesses the complementary registers, SX and SA. This instruction uses PEx
registers with the RX and RA mnemonics. If the syntax named PEy registers
SX and SA as the explicit targets, the DSP uses those registers’ comple-
ments, RX and RA, as the implicit targets. For more information on
complementary registers, see “Secondary Processing Element (PEy)” on
page 2-44.

The cross (†) in the PEx and PEy registers in Figure 5-14 indicates that the
DSP zero-fills or sign-extends the most significant 16 bits of the data reg-
isters while loading the short word values into the 40-bit data registers.
For short word accesses, zero-filling or sign-extending depends on the
state of the SSE bit in the MODE1 system register. For the short word
accesses, the least significant 8 bits of the data register are always zero.

Figure 5-14 shows the data path for one transfer. For more information
on arranging data in memory to take advantage of short word addressing
of dual-data in SIMD mode, see Figure 5-34 on page 5-76.

ADSP-2126x SHARC DSP Core Manual 5-43

Memory

Figure 5-14. Short Word Addressing of Dual-Data in SIMD Mode

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, SHORT WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(SHORT WORD ADDRESS), DREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = DREG, DM(SHORT WORD ADDRESS) = DREG;

WORD Y2

WORD Y2

WORD Y11 WORD Y10 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD Y0

…

…

…

…

…

…

…

…

…

…

…

…

WORD X00X0000† 0X00

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

PM DATA
BUS

MEMORY

WORD X0

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

WORD X11 WORD X10 WORD X9 WORD X8

WORD X7 WORD X6 WORD X5 WORD X4

WORD X3 WORD X2 WORD X1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD X0

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM (SHORT WORD X0 ADDRESS), RA = PM (SHORT WORD Y0 ADDRESS);

WORD Y0 0X0000

WORD Y00X0000† 0X00

0X00000X0000 0

A
D

D
R

E
S

S

A
D

D
R

E
S

S

0

WORD Y2

WORD Y1

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-44 ADSP-2126x SHARC DSP Core Manual

32-Bit Normal Word Addressing of Single-Data in SISD Mode

Figure 5-15 shows the SISD, single-data, 32-bit normal word addressed
access mode. For normal word addressing, the DSP treats the data buses as
two 32-bit normal word lanes. The 32-bit value for the normal word
access completes a transfer using the least significant normal word lane of
the PM or DM data bus. The DSP drives the other normal word lanes of
the data buses with zeros.

In SISD mode, the instruction accesses a PEx register. This instruction
accesses WORD X0 whose normal word address has “0” for its least signifi-
cant address bit. The other access within this four column location has an
address with a least significant bit of “1” and selects WORD X1 from mem-
ory. The syntax targets register RX in PEx. The example targets a PEy
register when using the syntax SX.

For normal word accesses, the DSP zero-fills the least significant 8 bits of
the data register on loads and truncates these bits on stores to memory.

ADSP-2126x SHARC DSP Core Manual 5-45

Memory

Figure 5-15. Normal Word Addressing of Single-Data in SISD Mode

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, NORMAL WORD, SINGLE-DATA TRANSFERS ARE:

UREG = PM(NORMAL WORD ADDRESS);
UREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = UREG;
DM(NORMAL WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS);

WORD X0

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

0X0000

0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

Accessing Memory

5-46 ADSP-2126x SHARC DSP Core Manual

32-Bit Normal Word Addressing of Single-Data in SIMD Mode

Figure 5-16 shows the SIMD, single-data, normal word addressed access
mode. For normal word addressing, the DSP treats the data buses as two
32-bit normal word lanes. The explicitly addressed (named in the instruc-
tion) 32-bit value completes a transfer using the least significant normal
word lane of the PM or DM data bus. The implicitly addressed (not
named in the instruction, but inferred from the address in SIMD mode)
normal word value completes a transfer using the most significant normal
word lane of the PM or DM data bus.

In Figure 5-16, the explicit access targets the named register RX, and the
implicit access targets that register’s complementary register, SX. This
instruction uses a PEx register with an RX mnemonic. If the syntax named
the PEy register SX as the explicit target, the DSP would use that register’s
complement, RX, as the implicit target. For more information on comple-
mentary registers, see “Secondary Processing Element (PEy)” on
page 2-44.

For normal word accesses, the DSP zero-fills the least significant 8 bits of
the data register on loads and truncates these bits on stores to memory.

Figure 5-16 shows the data path for one transfer. The DSP accesses nor-
mal words sequentially in memory (see Table 5-5). For more information
on arranging data in memory to take advantage of this access pattern, see
Figure 5-34 on page 5-76.

Table 5-5. Normal Word Addressing in SIMD Mode

Implicit Normal Word Accessed Explicit Normal Word Accessed

Word X0 (address LSB = 0) Word X1 (address LSB = 1)

Word X1 (address LSB = 1) Word X2 (address LSB = 0)

ADSP-2126x SHARC DSP Core Manual 5-47

Memory

Figure 5-16. Normal Word Addressing of Single-Data in SIMD Mode

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PEY
REGISTER S

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, NORMAL WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(NORMAL WORD ADDRESS);
UREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = UREG;
DM(NORMAL WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS);

WORD X1

WORD X0 0X00

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X1 0X00

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

A
D

D
R

E
S

S

A
D

D
R

E
S

S

Accessing Memory

5-48 ADSP-2126x SHARC DSP Core Manual

32-Bit Normal Word Addressing of Dual-Data in SISD Mode

Figure 5-17 shows the SISD dual-data, 32-bit normal word addressed
access mode. For normal word addressing, the DSP treats the data buses as
two 32-bit normal word lanes. The 32-bit values for normal word accesses
transfer using the least significant normal word lanes of the PM and DM
data buses. The DSP drives the other normal word lanes of the data buses
with zeros. Note that the accesses on both buses do not have to be the
same word width. SISD mode dual-data accesses can handle any combina-
tion of short word, normal word, extended-precision normal word, or
long word accesses. For more information, see “Mixed-Word Width
Addressing of Dual-Data in SISD Mode” on page 5-64.

In Figure 5-17, the access targets the PEx registers in a SISD mode opera-
tion. This instruction accesses WORD X0 in block 1 and WORD Y0 in block 0.
Each of these words has a normal word address with 0 for its least signifi-
cant address bit. Other accesses within these four column locations have
addresses with the least significant bit of 1 and select WORD X1/Y1 from
memory. The syntax targets registers RX and RY in PEx. The example tar-
gets PEy registers when using the syntax SX or SY.

For normal word accesses, the DSP zero-fills the least significant 8 bits of
the data register on loads and truncates these bits on stores to memory.

ADSP-2126x SHARC DSP Core Manual 5-49

Memory

Figure 5-17. Normal Word Addressing of Dual-Data in SISD Mode

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, NORMAL WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(NORMAL WORD ADDRESS), DREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = DREG, DM(NORMAL WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS), RY = PM(NORMAL WORD Y0 ADDRESS);

WORD Y00X0000

WORD X0

7-023-839-24

RXRYPEX REGISTERS

WORD Y0

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

0X0000 0X0000

0X00 0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-50 ADSP-2126x SHARC DSP Core Manual

32-Bit Normal Word Addressing of Dual-Data in SIMD Mode

Figure 5-18 shows the SIMD, dual-data, 32-bit normal word addressed
access mode. For normal word addressing, the DSP treats the data buses as
two 32-bit normal word lanes. The explicitly addressed (named in the
instruction) 32-bit values are transferred using the least significant normal
word lane of the PM or DM data bus. The implicitly addressed (not
named in the instruction, but inferred from the address in SIMD mode)
normal word values are transferred using the most significant normal word
lanes of the PM and DM data bus. Note that the accesses on both buses
do not have to be the same word width. SIMD mode dual-data accesses
can handle combinations of short word and normal word or extended-pre-
cision normal word and long word accesses. For more information, see
“Mixed-Word Width Addressing of Dual-Data in SIMD Mode” on
page 5-64.

In Figure 5-18, the explicit access targets the named registers RX and RA,
and the implicit access targets those register’s complementary registers SX
and SA. This instruction uses the PEx registers with the RX and RA mne-
monics. If the syntax named PEy registers SX and SA as the explicit targets,
the DSP would use those registers’ complements, RX and RA, as the
implicit targets. For more information on complementary registers, see
“Secondary Processing Element (PEy)” on page 2-44.

For normal word accesses, the DSP zero-fills the least significant 8 bits of
the data register on loads and truncates these bits on stores to memory.

Figure 5-17 shows the data path for one transfer. The DSP accesses nor-
mal words sequentially in memory as shown in Table 5-5 on page 5-46.
For more information on arranging data in memory to take advantage of
this access pattern, see Figure 5-34 on page 5-76.

Extended-Precision Normal Word Addressing of Single-Data

Figure 5-19 on page 5-53 displays a possible single-data, 40-bit
extended-precision normal word addressed access. For extended-precision
normal word addressing, the DSP treats each data bus as a 40-bit

ADSP-2126x SHARC DSP Core Manual 5-51

Memory

Figure 5-18. Normal Word Addressing of Dual-Data in SIMD Mode

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

WORD X0

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, NORMAL WORD,
DUAL-DATA TRANSFERS ARE:

DREG = PM(NORMAL WORD ADDRESS), DREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = DREG, DM(NORMAL WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS), RY = PM(NORMAL WORD Y0 ADDRESS);

WORD Y0 WORD X1

WORD Y0 0X00

WORD X1WORD Y1

WORD Y1

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

0X00

0X00

0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-52 ADSP-2126x SHARC DSP Core Manual

extended-precision normal word lane. The 40-bit value for the
extended-precision normal word access is transferred using the most sig-
nificant 40 bits of the PM or DM data bus. The DSP drives the lower 24
bits of the data buses with zeros.

In Figure 5-19, the access targets a PEx register in a SISD or SIMD mode
operation; extended-precision normal word single-data access operate the
same in SISD or SIMD mode. This instruction accesses WORD X0 with syn-
tax that targets register RX in PEx. The example targets a PEy register when
using the syntax SX.

ADSP-2126x SHARC DSP Core Manual 5-53

Memory

Figure 5-19. Extended-Precision Normal Word Addressing of Single-Data

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD OR SIMD, EXTENDED-PRECISION
NORMAL WORD, SINGLE-DATA TRANSFERS ARE:

UREG = PM(EXTENDED PRECISION NORMAL WORD ADDRESS);
UREG = DM(EXTENDED PRECISION NORMAL WORD ADDRESS);
PM(EXTENDED PRECISION NORMAL WORD ADDRESS) = UREG;
DM(EXTENDED PRECISION NORMAL WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EXTENDED-PRECISION NORMAL WORD X0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X0

WORD X2 WORD X1

WORD X0WORD X1

WORD X2WORD X3

WORD Y2 WORD Y1

WORD Y0WORD Y1

WORD Y2WORD Y3

EXTENDED PRECISION NORMAL
WORD ACCESS

0X0000

WORD X0

0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-54 ADSP-2126x SHARC DSP Core Manual

Extended-Precision Normal Word Addressing of
Dual-Data in SISD Mode

Figure 5-20 shows the SISD, dual-data, 40-bit extended-precision normal
word addressed access mode. For extended-precision normal word
addressing, the DSP treats each data bus as a 40-bit extended-precision
normal word lane. The 40-bit values for the extended-precision normal
word accesses are transferred using the most significant 40 bits of the PM
and DM data bus. The DSP drives the lower 24 bits of the data buses with
zeros. Note that the accesses on both buses do not have to be the same
word width. SISD mode, dual-data accesses can handle any combination
of short word, normal word, extended-precision normal word, or long
word accesses. For more information, see “Mixed-Word Width Address-
ing of Dual-Data in SISD Mode” on page 5-64.

In Figure 5-20, the access targets the PEx registers in a SISD mode opera-
tion. This instruction accesses WORD X0 in block 1 and WORD Y0 in block 0
with syntax that targets registers RX and RY in PEx. The example targets a
PEy register when using the syntax SX or SY.

ADSP-2126x SHARC DSP Core Manual 5-55

Memory

Figure 5-20. Extended-Precision Normal Word Addressing of Dual-Data
in SISD Mode

EXTENDED PRECISION NORMAL
WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, EXTENDED PRECISION
NORMAL WORD, DUAL-DATA TRANSFERS ARE:

DREG = PM(EXT. PREC. NORMAL WORD ADDRESS), DREG = DM(EXT. PREC. NORMAL WORD ADDRESS);
PM(EXT. PREC. NORMAL WORD ADDRESS) = DREG, DM(EXT. PREC. NORMAL WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EP NORMAL WORD X0 ADDR.), RY = PM(EP NORMAL WORD Y0 ADDR.);

WORD Y0

7-023-839-24

RXRYPEX REGISTERS

WORD Y0

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X0

WORD X2 WORD X1

WORD X0WORD X1

WORD X2WORD X3

WORD Y2 WORD Y1

WORD Y0WORD Y1

WORD Y2WORD Y3

EXTENDED PRECISION NORMAL
WORD ACCESS

0X0000

WORD X0

0X00000X00 0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-56 ADSP-2126x SHARC DSP Core Manual

Extended-Precision Normal Word Addressing of
Dual-Data in SIMD Mode

Figure 5-21 shows the SIMD, dual-data, 40-bit extended-precision nor-
mal word addressed access mode. For extended-precision normal word
addressing, the DSP treats each data bus as a 40-bit extended-precision
normal word lane.

Because this word size approaches the limit of the data buses capacity, this
SIMD mode transfer only moves the explicitly addressed locations and
restricts data bus usage. The explicitly addressed (named in the instruc-
tion) 40-bit values that are transferred over the DM bus must source or
sink a PEx data register, and the explicitly addressed (named in the instruc-
tion) 40-bit values that are transferred over the PM bus must source or
sink a PEy data register; there are no implicit transfers in this mode. The
40-bit values for the extended-precision normal word accesses are trans-
ferred using the most significant 40 bits of the PM and DM data bus. The
DSP drives the lower 24 bits of the data buses with zeros.

The accesses on both buses do not have to be the same word width. This
special case of SIMD mode dual-data accesses can handle any combination
of extended-precision normal word or long word accesses. For more infor-
mation, see “Mixed-Word Width Addressing of Dual-Data in SIMD
Mode” on page 5-64.

In Figure 5-21, the access targets PEx and PEy registers in a SIMD mode
operation. This instruction accesses WORD X0 in block 1 with syntax that
targets register RX in PEx and accesses WORD Y0 in block 0 with syntax that
targets register SX in PEy.

ADSP-2126x SHARC DSP Core Manual 5-57

Memory

Figure 5-21. Extended-Precision Normal Word Addressing of Dual-Data
in SIMD Mode

EXTENDED PRECISION NORMAL
WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, EXTENDED-PRECISION NORMAL WORD,
DUAL-DATA TRANSFERS ARE:

PEY DREG = PM(EP NORMAL WORD ADDRESS), PEX DREG = DM(EP NORMAL WORD ADDRESS);
PM(EP NORMAL WORD ADDRESS) = PEY DREG, DM(EP NORMAL WORD ADDRESS) = PEX DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EP NORMAL WORD X0 ADDR.), SX = PM(EP NORMAL WORD Y0 ADDR.);

WORD Y0

WORD Y0

WORD X0

WORD X2 WORD X1

WORD X0WORD X1

WORD X2WORD X3

WORD Y2 WORD Y1

WORD Y0WORD Y1

WORD Y2WORD Y3

EXTENDED PRECISION NORMAL
WORD ACCESS

0X0000

WORD X0

0X0000 0X000X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-58 ADSP-2126x SHARC DSP Core Manual

Long Word Addressing of Single-Data

Figure 5-22 displays one possible single-data, long word addressed access.
For long word addressing, the DSP treats each data bus as a 64-bit long
word lane. The 64-bit value for the long word access completes a transfer
using the full width of the PM or DM data bus.

In Figure 5-22, the access targets a PEx register in a SISD or SIMD mode
operation. Long word single-data access operate the same in SISD or
SIMD mode. This instruction accesses WORD X0 with syntax that explicitly
targets register RX and implicitly targets its neighbor register, RY, in PEx.
The example targets PEy registers when using the syntax SX. For more
information on how neighbor registers (listed in Table 5-3) work, see
“Long Word (64-Bit) Accesses” on page 5-28.

ADSP-2126x SHARC DSP Core Manual 5-59

Memory

Figure 5-22. Long Word Addressing of Single-Data

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD OR SIMD, LONG WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(LONG WORD ADDRESS);
UREG = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = UREG;
DM(LONG WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0

WORD Y2

WORD Y0

WORD Y1

WORD X0, 63-32

LONG WORD ACCESS

0X000X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-60 ADSP-2126x SHARC DSP Core Manual

Long Word Addressing of Dual-Data in SISD Mode

Figure 5-23 shows the SISD, dual-data, long word addressed access mode.
For long word addressing, the DSP treats each data bus as a 64-bit long
word lane. The 64-bit values for the long word accesses completes a trans-
fer using the full width of the PM or DM data bus.

In Figure 5-23, the access targets PEx registers in SISD mode operation.
This instruction accesses WORD X0 and WORD Y0 with syntax that explicitly
targets registers RX and RA and implicitly targets their neighbor registers RY
and RB in PEx. The example targets PEy registers when using the syntax SX
and SA. For more information on how neighbor registers (listed in
Table 5-3) work, see “Long Word (64-Bit) Accesses” on page 5-28.

Programs must be careful not to explicitly target neighbor registers in this
instruction. While the syntax lets programs target these registers, one of
the explicit accesses targets the implicit target of the other access. The
DSP resolves this conflict by performing only the access with higher prior-
ity. For more information on the priority order of data register file
accesses, see “Data Register File” on page 2-37.

ADSP-2126x SHARC DSP Core Manual 5-61

Memory

Figure 5-23. Long Word Addressing of Dual-Data in SISD Mode

LONG WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, LONG WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(LONG WORD ADDRESS), DREG = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = DREG, DM(LONG WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), RA = PM(LONG WORD Y0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

LONG WORD ACCESS

WORD Y0 WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0

WORD Y2

WORD Y0

WORD Y1

WORD X0, 63-320X00WORD Y0, 31-0WORD Y0, 63-32 0X00 0X0
0

0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-62 ADSP-2126x SHARC DSP Core Manual

Long Word Addressing of Dual-Data in SIMD Mode

Figure 5-24 shows the SIMD, dual-data, long word addressed access mode
that targets internal memory space. For long word addressing, the DSP
treats each data bus as a 64-bit long word lane. The 64-bit values for the
long word accesses completes a transfer using the full width of the PM or
DM data bus.

Because this word size approaches the limit of the data buses’ capacity,
this SIMD mode transfer only moves the explicitly addressed locations
and restricts data bus usage. The explicitly addressed (named in the
instruction) 64-bit values transferred over the DM bus must source or sink
a PEx data register, and the explicitly addressed (named in the instruction)
64-bit values transferred over the PM bus must source or sink a PEy data
register; there are no implicit transfers in this mode.

In Figure 5-24, the access targets PEx and PEy registers in a SIMD mode
operation. This instruction accesses WORD X0 in block 1 with syntax that
targets register RX and its neighbor register RY in PEx and accesses WORD Y0
in block 0 with syntax that targets register SX and its neighbor register SY
in PEy. For more information on how neighbor registers (listed in
Table 5-3) work, see “Long Word (64-Bit) Accesses” on page 5-28.

The accesses on both buses do not have to be the same word width. This
special case of SIMD mode dual-data accesses can handle any combination
of extended-precision normal word or long word accesses. “Mixed-Word
Width Addressing of Dual-Data in SIMD Mode” on page 5-64.

ADSP-2126x SHARC DSP Core Manual 5-63

Memory

Figure 5-24. Long Word Addressing of Dual-Data in SIMD Mode

LONG WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, LONG WORD, DUAL-DATA TRANSFERS ARE:
PEY DREG = PM(LONG WORD ADDRESS), PEX DREG = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = PEY DREG, DM(LONG WORD ADDRESS) = PEX DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), SX = PM(LONG WORD Y0 ADDRESS);

LONG WORD ACCESS

WORD Y0 WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0

WORD Y2

WORD Y0

WORD Y1

WORD X0, 63-32 0X00

WORD Y0, 31-0WORD Y0, 63-32

0X00

0X000X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-64 ADSP-2126x SHARC DSP Core Manual

Mixed-Word Width Addressing of Dual-Data in SISD Mode

Figure 5-25 shows an example of a mixed-word width, dual-data, SISD
mode access. This example shows how the DSP transfers a long word
access on the DM bus and transfers a short word access on the PM bus.
The memory architecture permits mixing all other combinations of
dual-data SISD mode short word, normal word, extended-precision nor-
mal word, and long word accesses.

In case of conflicting dual access to the data register file, the DSP only
performs the access with higher priority. For more information on how
the DSP prioritizes accesses, see “Data Register File” on page 2-37.

Mixed-Word Width Addressing of Dual-Data in SIMD Mode

Figure 5-26 shows an example of a mixed-word width, dual-data, SIMD
mode access. This example shows how the DSP transfers a long word
access on the DM bus and transfers an extended-precision normal word
access on the PM bus.

The memory architecture permits mixing SIMD mode dual-data short
word and normal word accesses or extended-precision normal word and
long word accesses. No other combinations of mixed word dual-data
SIMD mode accesses are permissible.

ADSP-2126x SHARC DSP Core Manual 5-65

Memory

Figure 5-25. Mixed-Word Width Addressing of Dual-Data in SISD Mode

LONG WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, MIXED-WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(SHORT, NORMAL, EP NORMAL, LONG ADD), DREG = DM(SHORT, NORMAL, EP NORMAL, LONG ADD);
PM(SHORT, NORMAL, EP NORMAL, LONG ADD) = DREG, DM(SHORT, NORMAL, EP NORMAL, LONG ADD) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), RA = PM(SHORT WORD Y0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

LONG WORD ACCESS

0X00

WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0WORD X0, 63-32 0X00

WORD Y11 WORD Y10 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1 WORD Y0

WORD Y00X0000

WORD Y00X0000† 0X00

0X0000 0X0000

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-66 ADSP-2126x SHARC DSP Core Manual

Figure 5-26. Mixed-Word Width Addressing of Dual-Data in SIMD
Mode

EXTENDED PRECISION NORMAL
WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, MIXED-WORD,
DUAL-DATA TRANSFERS ARE:

DREG = PM(ADDRESS), DREG = DM(ADDRESS);
PM(ADDRESS) = DREG, DM(ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), SX = PM(EP NORMAL WORD Y0 ADDRESS);

LONG WORD ACCESS

0X00

WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0WORD X0, 63-32 0X00

WORD Y2 WORD Y1

WORD Y0WORD Y1

WORD Y2WORD Y3

WORD Y0 0X00000X00

WORD Y0

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

ADSP-2126x SHARC DSP Core Manual 5-67

Memory

Broadcast Load Access

Figure 5-27 through Figure 5-34 provide examples of broadcast load
accesses for single and dual-data transfers. These examples show that the
broadcast load’s memory and register access is a hybrid of the correspond-
ing non-broadcast SISD and SIMD mode accesses. The exceptions to this
relation are broadcast load dual-data, extended-precision normal word and
long word accesses. These broadcast accesses differ from their correspond-
ing non-broadcast mode accesses.

Shadow Write FIFO
Because the DSP’s internal memory operates at high speeds, writes to the
memory do not go directly into the memory array, but rather to a
two-deep FIFO called the shadow write FIFO. This FIFO uses a non-read
cycle (either a write cycle, or a cycle in which there is no access of internal
memory) to load data from the FIFO into internal memory. When an
internal memory write cycle occurs, the FIFO loads any data from a previ-
ous write into memory and accepts new data.

Shadow Write FIFO Considerations in SIMD Mode
The shadow write FIFO is located between the internal memory array of
the ADSP-2126x processor and the core.

When performing SIMD reads that cross long word address boundaries
and the data read resides in the shadow write FIFO, the read in SIMD
mode causes unpredictable results for explicit accesses of odd normal word
addresses in internal memory. The implicit part of this SIMD mode trans-
fer incorrectly accesses the previous sequential even address when the data
is in the shadow write FIFO.

When the read data resides in internal memory, a SIMD mode explicit
access to normal word address 0x80001 will result in an implicit access to

Shadow Write FIFO

5-68 ADSP-2126x SHARC DSP Core Manual

the next sequential even address value. As shown in Table 5-6, a SIMD
mode explicit access to normal word address 0x80001 results in an
implicit access to normal word address 0x80002.

Table 5-6. Data Resides in Internal Memory

Explicit “R0” R0 = dm(I0,M0) Explicit “S0” S0 = dm(I0,M0);

Explicit Address (I0) R0 S0 R0 S0

0x80001 32-bit word at
0x80001

32-bit word at
0x80002

32-bit word at
0x80002

32-bit word at
0x80001

ADSP-2126x SHARC DSP Core Manual 5-69

Memory

Figure 5-27. Short Word Addressing of Single-Data in Broadcast Load

WORD Y11 WORD Y10 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1

NO ACCESS

15-031-1647-3263-48

WORD Y0

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, SHORT WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(SHORT WORD ADDRESS);
UREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = UREG;
DM(SHORT WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

WORD X11 WORD X10 WORD X9 WORD X8

WORD X7 WORD X6 WORD X5 WORD X4

WORD X3 WORD X2 WORD X1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD X0

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS);

WORD X00X0000† 0X00

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X00X0000† 0X00

0X0000 0X0000

A
D

D
R

E
S

S

A
D

D
R

E
S

S

Shadow Write FIFO

5-70 ADSP-2126x SHARC DSP Core Manual

Figure 5-28. Short Word Addressing of Dual-Data in Broadcast Load

WORD Y11 WORD Y10 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD Y0

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST,
SHORT WORD, DUAL-DATA TRANSFERS ARE:

DREG = PM(SHORT WORD ADDRESS), DREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = DREG, DM(SHORT WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

WORD X11 WORD X10 WORD X9 WORD X8

WORD X7 WORD X6 WORD X5 WORD X4

WORD X3 WORD X2 WORD X1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD X0

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS), RY = PM(SHORT WORD Y0 ADDRESS);

WORD Y00X0000

WORD X00X0000† 0X00

7-023-839-24

RXRYPEX REGISTERS

WORD Y00X0000† 0X00

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X00X0000†WORD Y00X0000†

0X0000 0X0000 0X0000 0X0000

0X00 0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

ADSP-2126x SHARC DSP Core Manual 5-71

Memory

Figure 5-29. Normal Word Addressing of Single-Data in Broadcast Load

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, NORMAL WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(NORMAL WORD ADDRESS);
UREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = UREG;
DM(NORMAL WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THE ABOVE EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS);

WORD X0 0X00

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X0 0X00

0X0000

A
D

D
R

E
S

S

A
D

D
R

E
S

S

Shadow Write FIFO

5-72 ADSP-2126x SHARC DSP Core Manual

Figure 5-30. Normal Word Addressing of Dual-Data in Broadcast Load

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, NORMAL WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(NORMAL WORD ADDRESS), DREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = DREG, DM(NORMAL WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS), RY = PM(NORMAL WORD Y0 ADDRESS);

WORD Y00X0000

WORD X0 0X00

7-023-839-24

RXRYPEX REGISTERS

WORD Y0 0X00

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

WORD X0 0X00WORD Y0 0X00

0X0000 0X0000 0X0000

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

ADSP-2126x SHARC DSP Core Manual 5-73

Memory

Figure 5-31. Extended-Precision Normal Word Addressing of Single-Data
in Broadcast Load

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, EXTENDED-PRECISION
NORMAL WORD, SINGLE-DATA TRANSFERS ARE:

UREG = PM(EP NORMAL WORD ADDRESS);
UREG = DM(EP NORMAL WORD ADDRESS);
PM(EP NORMAL WORD ADDRESS) = UREG;
DM(EP NORMAL WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EXTENDED-PRECISION NORMAL WORD X0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X0

WORD X2 WORD X1

WORD X0WORD X1

WORD X2WORD X3

WORD Y2 WORD Y1

WORD Y0WORD Y1

WORD Y2WORD Y3

EXTENDED PRECISION NORMAL
WORD ACCESS

0X0000

WORD X0

0X00

WORD X0

A
D

D
R

E
S

S

A
D

D
R

E
S

S

Shadow Write FIFO

5-74 ADSP-2126x SHARC DSP Core Manual

Figure 5-32. Extended-Precision Normal Word Addressing of Dual-Data
in Broadcast Load

EXTENDED PRECISION NORMAL
WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, EXTENDED-PRECISION
NORMAL WORD, DUAL-DATA TRANSFERS ARE:

DREG = PM(EP NORMAL WORD ADDRESS), DREG = DM(EP NORMAL WORD ADDRESS);
PM(EP NORMAL WORD ADDRESS) = DREG, DM(EP NORMAL WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EP NORMAL WORD X0 ADDR.), RY = PM(EP NORMAL WORD Y0 ADDR.);

WORD Y0

7-023-839-24

RXRYPEX REGISTERS

WORD Y0

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X0

WORD X2 WORD X1

WORD X0WORD X1

WORD X2WORD X3

WORD Y2 WORD Y1

WORD Y0WORD Y1

WORD Y2WORD Y3

EXTENDED PRECISION NORMAL
WORD ACCESS

0X0000

WORD X0

0X00000X00 0X00

WORD Y0 WORD X0

A
D

D
R

E
S

S

A
D

D
R

E
S

S

WORD

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

ADSP-2126x SHARC DSP Core Manual 5-75

Memory

Figure 5-33. Long Word Addressing of Single-Data in Broadcast Load

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, LONG WORD, SINGLE-DATA TRANSFERS ARE:

UREG = PM(LONG WORD ADDRESS);
UREG = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = UREG;
DM(LONG WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0

WORD Y2

WORD Y0

WORD Y1

WORD X0, 63-32

LONG WORD ACCESS

0X000X00

WORD X0, 31-0WORD X0, 63-32 0X000X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

Shadow Write FIFO

5-76 ADSP-2126x SHARC DSP Core Manual

Figure 5-34. Long Word Addressing of Dual-Data in Broadcast Load

LONG WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, LONG WORD, DUAL-DATA TRANSFERS ARE:

DREG = PM(LONG WORD ADDRESS), DREG = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = DREG, DM(LONG WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), RA = PM(LONG WORD Y0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

LONG WORD ACCESS

WORD Y0 WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0

WORD Y2

WORD Y0

WORD Y1

WORD X0, 63-32WORD Y0, 31-0WORD Y0, 63-32 0X00

WORD X0, 31-0WORD X0, 63-32WORD Y0, 31-0WORD Y0, 63-32 0X00

0X00

0X00 0X00

0X00

0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

0X00

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

ADSP-2126x SHARC DSP Core Manual 6-1

6 JTAG TEST EMULATION PORT

In addition to boundary scan, the JTAG Test Emulation Port supports
other functions including background telemetry channels, cycle counting
with EMUCLK, user-configurable hardware support, breakpoints, and a reg-
ister for viewing the revision ID.

JTAG Test Access Port
The emulator uses JTAG boundary scan logic for ADSP-2126x processor
communications and control. This JTAG logic consists of a state machine,
a five pin Test Access Port (TAP), and Shift registers. The state machine
and pins conform to the IEEE 1149.1 specification. The TAP pins appear
in Table 6-1. A special pin (EMU) is used in the JTAG emulators from Ana-
log Devices. This pin is not defined in the IEEE-1149.1 specification.
This signal notifies the JTAG ICE that the processor has completed an
operation.

Table 6-1. JTAG Test Access Port (TAP) Pins

Pin I/O Function

TCK I Test Clock: pin used to clock the TAP state machine1

1 Asynchronous with CLKIN

TMS I Test Mode Select: pin used to control the TAP state machine sequence

TDI I Test Data In: serial shift data input pin

TDO O Test Data Out: serial shift data output pin

TRST I Test Logic Reset: resets the TAP state machine

Boundary Scan

6-2 ADSP-2126x SHARC DSP Core Manual

A Boundary Scan Description language (BSDL) file for the ADSP-2126x
processor is available on the Analog Devices Web site.

Refer to the IEEE 1149.1 JTAG specification for detailed information on
the JTAG interface. This chapter assumes a working knowledge of the
JTAG specification.

Boundary Scan
A boundary scan allows a system designer to test interconnections on a
printed circuit board with minimal test-specific hardware. The scan is
made possible by the ability to control and monitor each input and output
pin on each chip through a set of serially scannable latches. Each input
and output is connected to a latch, and the latches are connected as a long
Shift register so that data can be read from or written to them through a
serial test access port (TAP). The ADSP-2126x processor contains a test
access port compatible with the industry-standard IEEE 1149.1 (JTAG)
specification. Only the IEEE 1149.1 features specific to the ADSP-2126x
processor are described here. For more information, see the IEEE 1149.1
specification and the other documents listed in “References” on
page 6-25.

The boundary scan allows a variety of functions to be performed on each
input and output signal of the ADSP-2126x processor. Each input has a
latch that monitors the value of the incoming signal and can also drive
data into the chip in place of the incoming value. Similarly, each output
has a latch that monitors the outgoing signal and can also drive the output
in place of the outgoing value. For bidirectional pins, the combination of
input and output functions is available.

Every latch associated with a pin is part of a single serial shift register path.
Each latch is a master/slave type latch with the controlling clock provided
externally. This clock (TCK) is asynchronous to the ADSP-2126x processor
system clock (CLKIN).

ADSP-2126x SHARC DSP Core Manual 6-3

JTAG Test Emulation Port

The ADSP-2126x processor emulation features halt the processor at a pre-
defined point to examine the state of the processor, execute arbitrary code,
restore the original state, and continue execution.

The ADSP-2126x processor emulation features are a superset of the
ADSP-21160 DSP emulation features. All emulation features supported
by previous SHARC DSPs are supported on the ADSP-2126x processor.
The set of features on which JTAG ICE designs rely are supported in an
identical fashion on ADSP-2126x processor. The DSP can be used with
the ADSP-2106x SHARC JTAG ICE hardware.

There are several changes/extensions to the base functionality of the
ADSP-2116x DSP emulation capability, which require changes in the
JTAG ICE software for ADSP-2126x processor support. These extensions
include:

• New registers for added functionality: EEMUCTL, EEMUSTAT, EEMUIN,
EEMUOUT, and SHADOW_SHIFT.

• A new JTAG instruction to support these additional registers:
EEMUINDATA, EEMUOUTDATA, and EEMUCTL.

• New functionality to allow the tools software to support statistical
profiling.

• In addition to the IEEE boundary scan functionality, the DSP
offers support for background telemetry, user-definable breakpoint
interrupts, and cycle counting.

Several on-chip facilities are directly accessed through the JTAG interface.
These facilities are listed in Table 6-2 on page 6-6. Other emulation facil-
ities are only indirectly accessible. To indirectly access the facilities that do
not appear in Table 6-2, scan the instruction which moves data of interest
to/from the PX register, scan the PX data (if the instruction is a PX read), let
the core execute the instruction, and then scan the PX register out (if the
instruction is a PX write).

Background Telemetry Channel (BTC)

6-4 ADSP-2126x SHARC DSP Core Manual

The breakpoint start/end registers are mapped into the IOP register space
of the ADSP-2126x processor. The EMUN, EMUCLK, and EMUCLK2 registers
occupy the same Ureg address space as the ADSP-2106x DSP. These facil-
ities are read-only by the ADSP-2126x processor core in normal
operation.

Background Telemetry Channel (BTC)
Programmers can read and write data to a set of memory-mapped buffers
(EEMUIN and EEMUOUT) that are accessible by the emulator while the core is
running. This function allows the emulator to feed new data to the DSP
or get updates from the DSP in real time. A 32-bit memory-mapped I/O
register called EEMUSTAT can be used to enable this functionality and check
the status of the input and output data buffers. Low priority emulator
interrupts are generated when the EEMUIN buffer is full or the EEMUOUT
FIFO is empty so that the DSP core can handle reading/writing data
from/to the buffers in an interrupt service routine (ISR). These interrupts
are handled in the same way that normal interrupts are handled in the
processor.

User-Definable Breakpoint Interrupts
Breakpoint interrupts enable users to write to the Breakpoint registers
directly so that they can induce an interrupt. Such interrupts may contain
error handling if the DSP accesses any of the addresses in the address
range defined in the Breakpoint registers.

For more information, see “Breakpoint (PSx, DMx, IOx, and EPx) Regis-
ters” on page 6-8.

ADSP-2126x SHARC DSP Core Manual 6-5

JTAG Test Emulation Port

Cycle Count Functionality (EMUCLK) Register
When the emulator is connected to the DSP and the processor is single
stepping, extra cycles are used by the emulator and this can make it seem
as though the instructions are taking more cycles then the should. You can
see the actual cycle time of the processor (without the emulator) by poll-
ing the EMUCLK and EMUCLK2 registers. The processor cycle count can be
seen while the core is in user space.

Silicon Revision ID
The ADSP-2126x processor contains an 8-bit revision ID (REVPID), or the
Device Identification register. This register can be read by using the JTAG
instruction EMUPID. The I/O address of REVPID is 0x30026.

JTAG Related Registers
Information in this section describes public (JTAG) registers. These
include:

• An instruction register, described on page 6-6

• The EEMUSTAT register, described on page 6-8

• Breakpoint registers, described on page 6-8

• EEMUIN register, described on page 6-14

• EEMUOUT register, described on page 6-16

• The EMUCLK and EMUCLK2 registers, described on page 6-17

JTAG Related Registers

6-6 ADSP-2126x SHARC DSP Core Manual

Instruction Register
The Instruction register shifts an instruction into the processor. This
instruction selects the performed test and/or the access of the test data reg-
ister. The instruction register is 5 bits long with no parity bit. A value of
10000 binary is loaded (LSB nearest TDO) into the Instruction register
whenever the TAP reset state is entered.

The new JTAG instruction set, shown in Table 6-2, lists the binary code
for each instruction. Bit 0 is nearest TDO and bit 4 is nearest TDI. No data
registers are placed into test modes by any of the public instructions. The
instructions affect the DSP as defined in the 1149.1 specification. The
optional instructions RUNBIST, IDCODE, and USERCODE are not supported by
the processor.

The entry under “Register” is the serial scan path, either Boundary or
Bypass in this case, enabled by the instruction. Figure 6-1 shows these reg-
ister paths. The 1-bit Bypass register is fully defined in the 1149.1
specification.

Table 6-2. JTAG Instruction Register Codes

43210 Register Instruction Inmode Outmode

11111 Bypass BYPASS 0 0

00000 Boundary EXTEST 0 1

10000 Boundary SAMPLE 0 0

11000 Boundary INTEST 1 1

11100 BRKSTAT EMULATION 0 0

01001 EEMUIN EMULATION 0 0

01011 EEMUOUT EMULATION 0 0

11101 EMUPID REV-id register 0 0

ADSP-2126x SHARC DSP Core Manual 6-7

JTAG Test Emulation Port

No special values need to be written into any register prior to the selection
of any instruction. As Table 6-2 shows, certain instructions are reserved
for emulator use. For more information, see Figure 6-1.

Other registers, reserved for use by Analog Devices, exist. However, this
group of registers should not be accessed as they can cause damage to the
part.

Figure 6-1. Serial Scan Path

0

1

2164

TDO

3 1

04

2

TDI 1

BOUNDARY REGISTER

BYPASS REGISTER

INSTRUCTION REGISTER

165

166

JTAG Related Registers

6-8 ADSP-2126x SHARC DSP Core Manual

Enhanced Emulation Status (EEMUSTAT) Register
The EEMUSTAT register acts as the breakpoint Status register for the
ADSP-2126x processor. This register is a memory-mapped IOP register.
The processor core can access this register. For I/O breakpoints, this regis-
ter has two status bits, one each for the two I/O buses (IOX and IOY).

When a breakpoint is hit, a user interrupt is generated. The breakpoint
status can be checked by looking at the EEMUSTAT register. When the core
returns from interrupt, the breakpoint status bits will be cleared.

Table 6-5 on page 6-15 lists the EEMUSTAT register bits.

Breakpoint Control (BRKCTL) Register
The BRKCTL register controls how breakpoints are used (if the UMODE bit is
set). This user-accessible register in the BRKCTL register is located at address
0x30025.

The BRKCTL register is a 32-bit memory-mapped I/O register. The core can
write into this register and the bit information of this register is shown in
Figure 5-1 on page 5-6 and Table 5-1 on page 5-2. The bits related to the
breakpoint register are the same as in the EMUCTL register.

The EMUCTL Serial Shift register is located in the system unit. The EMUCTL
register is 40 bits wide and is accessed by the emulator through the TAP.
The EMUCTL register controls all of the ADSP-2126x processor emulation
functionality. Table 6-3 lists the EMUCTL register’s bits and describes their
function.

Breakpoint (PSx, DMx, IOx, and EPx) Registers

The PSx, DMx, IOx, and EPx (Breakpoint) registers are located in the I/O
processor register set. The emulation breakpoint registers are user-accessi-
ble if the UMODE bit is set in the BRKCTL register. Otherwise they can be
written only when the DSP is in emulation space or test mode. The Break-

ADSP-2126x SHARC DSP Core Manual 6-9

JTAG Test Emulation Port

Table 6-3. Emulation Control Register (EMUCTL) Definitions

Bit # Name Function

0 EMUENA Emulator Function Enable. Enables processor emulation func-
tions. (0 = ignore breakpoints and emulator interrupts, 1=respond

to breakpoints and emulator interrupts)

1 EIRQENA Emulator Interrupt Enable. Enables the emulation logic to recog-

nize external emulator interrupts. (0 = disable, 1 = enable)

2 BKSTOP Enable Autostop on Breakpoint. Enables the
ADSP-2126x DSP to generate an external emulator interrupt when
any breakpoint event occurs. (0=disable, 1=enable)

3 SS Enable Single Step Mode. Enables single-step operation.

(0=disable, 1=enable)

4 SYSRST Software Reset of the ADSP-2126x processor. Resets the
ADSP-2126x DSP in the same manner as the external RESET pin.
The SYSRST bit must be cleared by the emulator.(0=normal oper-

ation, 1=reset)

5 ENBRKOUT Enable the BRKOUT pin. Enables the BRKOUT pin operation.
(0 = BRKOUT pin at high impedance state, 1 = BRKOUT pin

enabled)

6 IOSTOP Stop IOP DMAs in EMU Space. Disables all DMA requests when
the DSP is in emulation space. Data that is currently in the EP,
LINK, or SPORT DMA buffers is held there unless the internal
DMA request was already granted. IOSTOP causes incoming data
to be held off and outgoing data to cease. Because SPORT receive
data cannot be held off, it is lost and the overrun bit is set. The
direct write buffer (internal memory write) and the EP pad buffer
are allowed to flush any remaining data to internal memory.

(0 = I/O continues, 1 = I/O Stops)

JTAG Related Registers

6-10 ADSP-2126x SHARC DSP Core Manual

7 EPSTOP Stop I/O Processor EP operation in emulation space. Disables all
EP requests when the DSP is in emulation space. After an emula-
tion interrupt is acknowledged, EPSTOP deasserts ACK (deasserts
REDY if host access) to prevent further data from being accepted if
the EP is accessed. The emulator may clear this bit—allowing I/O
to continue and the bus to clear—so that the emulator may use the
EP (through BR and bus lock). Note that the EP bus clears only if
accesses are direct writes or IOP register writes, because all other
IOP functions are halted. The EP bus does not clear if accesses to
any of the DMA buffers are extended due to a buffer full or empty

condition. (0 = EP I/O continues, 1 = EP I/O stops)

8 NEGPA1 Negate program memory data address breakpoint. Enable break-
point events if the address is greater than the end register value OR
less than the start register value. This function is useful to detect
index range violations in user code.
(0 = disable breakpoint, 1 = enable breakpoint)

9 NEGDA1 Negate data memory address breakpoint #1 see NEGPA1 bit

description.

10 NEGDA2 Negate data memory address breakpoint #2 see NEGPA1 bit

description.

11 NEGIA1 Negate instruction address breakpoint #1 see NEGPA1 bit

description.

12 NEGIA2 Negate instruction address breakpoint #2. see NEGPA1 bit

description.

13 NEGIA3 Negate instruction address breakpoint #3 see NEGPA1 bit

description.

14 NEGIA4 Negate instruction address breakpoint #4 see NEGPA1 bit

description.

15 NEGIO1 Negate I/O address breakpoint see NEGPA1 bit description.

Table 6-3. Emulation Control Register (EMUCTL) Definitions (Cont’d)

Bit # Name Function

ADSP-2126x SHARC DSP Core Manual 6-11

JTAG Test Emulation Port

16 NEGEP1 Negate EP address breakpoint see NEGPA1 bit description.

17 ENBPA Enable program memory data address breakpoints. Enable each
breakpoint group. Note that when the ANDBKP bit is set, break-
point types not involved in the generation of the effective break-
point must be disabled. (0 = disable breakpoints, 1 = enable

breakpoints)

18 ENBDA Enable data memory address breakpoints see ENBPA bit descrip-

tion.

19 ENBIA Enable instruction address breakpoints see ENBPA bit descrip-

tion.

20 ENBIO Enable I/O address breakpoint see ENBPA bit description.

21 ENBEP Enable external port address breakpoint see ENBPA bit descrip-

tion.

22-23 PA1MODE PA1 breakpoint triggering mode trigger on the following condi-

tions:
00 = Breakpoint is disabled
01 = WRITE accesses only
10 = READ accesses only
11 = any access

24-25 DA1MODE DA1 breakpoint triggering mode see PA1MODE bit description.

26-27 DA2MODE DA2 breakpoint triggering mode see PA1MODE bit description.

28-29 IO1MODE IO1 breakpoint triggering mode see PA1MODE bit description.

30-31 EP1MODE EP1 breakpoint triggering mode see PA1MODE bit description.

32 ANDBKP AND composite breakpoints. Enables ANDing of each breakpoint
type to generate an effective breakpoint from the composite break-

point signals. (0=OR breakpoint types, 1=AND breakpoint types)

33 Reserved

Table 6-3. Emulation Control Register (EMUCTL) Definitions (Cont’d)

Bit # Name Function

JTAG Related Registers

6-12 ADSP-2126x SHARC DSP Core Manual

point registers vary in size according to the address type: instruction
(24-bit address), data (32-bit address), or I/O data (19-bit address)—
Table 6-7 on page 6-22 shows the sizes.

The ADSP-2126x processor contains nine sets of emulation Breakpoint
registers. Each set consists of a start and end register which describe an
address range, with the start register setting the lower end of the address
range. Each breakpoint set monitors a particular address bus. When a
valid address is in the address range, then a breakpoint signal is generated.
The address range includes the start and end addresses.

The eight breakpoint sets are grouped into four types—instruction (IA),
DM data (DA), PM data (PA), and I/O data (I/O). The individual break-
point signals in each type are ORed together to create five composite
breakpoint signals.

34 NOBOOT No power-up boot on reset. Forces the DSP into the No boot
mode. In this mode, the processor does not boot load, but begins
fetching instructions from 0x0080 0004 in external memory.
(0 = disable, 1 = force No boot mode)

35 TMODE Test mode enable. The TMODE bit is for Analog Devices’ usage

only. Do NOT set this bit. (0 = normal operation)

36 BHO Buffer Hang Override bit. The BHO control bit overrides the
BHD bit in SYSCON, disabling BHD’s control over core access of
data buffer behavior. Note that the default (reset) state of BHD is
now set for the DSP, a change from ADSP-2106x.
(0 = normal BHD operation, 1 = override BHD operation)

37 MTST Memory Test Enable Bit. Enables scanning of data for to the
latches used for memory test. (0 = normal operation, 1 = enable

memory test)

38, 39 Reserved

Table 6-3. Emulation Control Register (EMUCTL) Definitions (Cont’d)

Bit # Name Function

ADSP-2126x SHARC DSP Core Manual 6-13

JTAG Test Emulation Port

These composite signals can be optionally ANDed or ORed together to
create the effective breakpoint event signal used to generate an emulator
interrupt. The ANDBKP bit in the EMUCTL register selects the function used.

Each breakpoint type has an enable bit in the EMUCTL register. When set,
these bits add the specified breakpoint type into the generation of the
effective breakpoint signal. If cleared, the specified breakpoint type is not
used in the generation of the effective breakpoint signal. This allows the
user to trigger the effective breakpoint from a subset of the breakpoint
types.

To provide further flexibility, each individual breakpoint can be pro-
grammed to trigger if the address is in range AND one of these conditions
is met: READ access, WRITE access, ANY access, or NO access. The con-
trol bits for this feature are also located in EMUCTL register. For more
information, see the PA1MODES bit description in Table 6-7.

The address ranges of the emulation Breakpoint registers are negated by
setting the appropriate negation bits in the EMUCTL register. For more
information, see the NEGPA1 bit description on page 6-22. Each breakpoint
can be disabled by setting the start address larger than the end address.

Four of the breakpoints monitor the instruction address. Two monitor the
data memory address. One monitors the program memory data address,
and one monitors the I/O address bus.

The instruction address breakpoints monitor the address of the instruc-
tion being executed, not the address of the instruction being fetched. If
the current execution is aborted, the breakpoint signal does not occur even
if the address is in range. Data address breakpoints (DA and PA only) are
also ignored during aborted instructions. The nine breakpoint sets appear
in Table 6-7 on page 6-22.

JTAG Related Registers

6-14 ADSP-2126x SHARC DSP Core Manual

EEMUIN Register
The EEMUIN register is a one-deep, 32-bit memory-mapped I/O buffer that
is readable by the core. This buffer is used by the background telemetry
channel to allow the emulator to pass data to the DSP without interrupt-

Table 6-4. PSx, DMx, IOx, and EPx (Breakpoint) Registers

Register Function Group1

PSA1S Instruction Address Start #1 IA

PSA1E Instruction Address End #1 IA

PSA2S Instruction Address Start #2 IA

PSA2E Instruction Address End #2 IA

PSA3S Instruction Address Start #3 IA

PSA3E Instruction Address End #3 IA

PSA4S Instruction Address Start #4 IA

PSA4E Instruction Address End #4 IA

DMA1S Data Address Start #1 DA

DMA1E Data Address End #1 DA

DMA2S Data Address Start #2 DA

DMA2E Data Address End #2 DA

PMDAS Program Data Address Start PA

PMDAE Program Data Address End PA

IOAS I/O Address Start I/O

IOAE I/O Address End I/O

EPAS External Port Address Start EP

1 Group IA = 24-bit addresses, Groups DA and PA = 32-bit addresses,
 Group I/O = 19-bit addresses.

ADSP-2126x SHARC DSP Core Manual 6-15

JTAG Test Emulation Port

Table 6-5. EEMUSTAT (Breakpoint Status) Register Definitions

Bits Name Function

0 STATPA Program memory Data Breakpoint Hit1

1 = Program memory breakpoint occurs
0 = No program memory breakpoint occurs

1 STATDA0 Data Memory Breakpoint Hit1

1 = Data memory #0 breakpoint occurs
0 = No data memory #0 breakpoint occurs

2 STATDA1 Data Memory Breakpoint Hit1

1 = Data memory #1 breakpoint occurs
0 = No Data memory #1 breakpoint occurs

3 STATIA0 Instruction Address Breakpoint Hit1

1 = Instruction address #0 breakpoint occurs
0 = no Instruction address #0 breakpoint occurs

4 STATIA1 Instruction Address Breakpoint Hit1

1 = Instruction address #1 breakpoint occurs
0 = no Instruction address #1 breakpoint occurs

5 STATIA2 Instruction Address Breakpoint Hit1

1 = Instruction address #2 breakpoint occurs
0 = no Instruction address #2 breakpoint occurs

6 STATIA3 Instruction Address Breakpoint Hit1

1 = Instruction address #3 breakpoint occurs
0 = no Instruction address #3 breakpoint occurs

7 STATIO I/O Address Breakpoint Hit
1 = I/OX address breakpoint occurs
0 = no I/OX address breakpoint occurs

8 Reserved1

9 EEMU-
OUTIRQEN

Enhanced Emulation EEMUOUT Interrupt Enable2

1 = EEMUOUT interrupt enable
0 = EEMUOUT interrupt disable
Note: Interrupts are of low priority interrupts

JTAG Related Registers

6-16 ADSP-2126x SHARC DSP Core Manual

ing the core. When this buffer is full, a low priority emulator interrupt is
generated. This register’s address is 0x30020.

EEMUOUT Register
The EEMUOUT register is a four-deep memory, 32-bit memory-mapped I/O
buffer that is writable by the core. Its address is 0x30022.

10 EEMUOUTRDY Enhanced Emulation EEMUOUT Ready3

1 = EEMUOUT FIFO contains valid data
0 = EEMUOUT FIFO is empty

11 EEMUOUTFULL Enhanced Emulation EEMUOUT FIFO Status3

1 = EEMUOUT FIFO FULL
0 = EEMUOUT FIFO is not FULL

12 EEMUINFULL Enhanced Emulation EEMUIN Register Status4

1 = EEMUIN register full
0 = EEMUIN register is empty

13 EEMUENS Enhanced Emulation Feature Enable4

1 = Enhanced emulation feature enable
0 = Enhanced emulation feature disable

14 OSPIDENS OSPID Register Enable4

1 = OSPID register enable
0 = OSPID register disable

15 EEMUINENS EEMUIN Interrupt Enable.
1 = EEMUIN interrupt enable
0 = EEMUIN interrupt disable

31:16 Reserved for future use.

1 Internal hardware sets this bit.
2 This bit is set and reset by the core.
3 The FIFO controller sets and resets this bit.
4 Internal hardware sets and resets this bit.

Table 6-5. EEMUSTAT (Breakpoint Status) Register Definitions (Cont’d)

Bits Name Function

ADSP-2126x SHARC DSP Core Manual 6-17

JTAG Test Emulation Port

Emulation Clock Counter Registers
The EMUCLK (clock counter) and EMUCLK2 (clock counter scaling) registers
are located in the Universal (Ureg) register set. EMUCLK and EMUCLK2 regis-
ters are user accessible and can be written only when the DSP is in
emulation space. These registers are read-only from normal-space and can
be written only when the ADSP-2126x processor is in emulation space.
The Emulation Clock Counter consists of a 32-bit Count register (EMU-
CLK) and a 32-bit scaling register (EMUCLK2). The EMUCLK register counts
clock cycles while the user has control of the DSP and stops counting
when the emulator gains control. These registers let you gauge the amount
of time spent executing a particular section of code. The EMUCLK2 register
extends the time EMUCLK can count by incrementing each time the EMUCLK
value rolls over to zero. The combined emulation clock counter can count
accurately for thousands of hours.

Boundary Register
The Boundary register is 163 bits long. This section defines the latch type
and function of each position in the scan path. The positions are num-
bered with 0 being the first bit output (closest to TDO) and 162 being the
last (closest to TDI). When working with boundry scan registers keep the
following points in mind:

Scan position 0 (CLK_CFG0); this end is closest to TDO (scan in first).

Scan position 162 (SPARE); this end is closest to TDI (scan in last).

Output enables:

1 = Drive the associated signals during the EXTEST and INTEST
instructions.

0 = Three-state the associated signals during the EXTEST and INTEST
instructions

JTAG Related Registers

6-18 ADSP-2126x SHARC DSP Core Manual

The CLKIN signal can be sampled but not controlled (read-only). CLKIN
continues to clock the ADSP-2126x processor no matter which instruc-
tion is enabled.

Table 6-6. JTAG Boundary Register

Scan # Signal Name Latch Type Scan # Signal Name Latch Type

 0 NC(I) OUTP
(Closest to
TDO, scan
in first)

84 SDATA0B(I/O) IN

1 CLK_CFG0(I) OUTP 85 SCLK0(I/O) OUTP

2 CLK_CFG0(I) OE 86 SCLK0(I/O) OE

3 CLK_CFG0(I) IN 87 SCLK0(I/O) IN

4 CLK_CFG1(I) OUTP 88 SFS0(I/O) OUTP

5 CLK_CFG1(I) OE 89 SFS0(I/O) OE

6 CLK_CFG1(I) IN 90 SFS0(I/O) IN

7 BOOTCFG[0](I) OUTP 91 SDATA1A(I/O) OUTP

8 BOOTCFG[0](I) OE 92 SDATA1A(I/O) OE

9 BOOTCFG[0](I) IN 93 SDATA1A(I/O) IN

10 BOOTCFG[1](I) OUTP 94 SDATA1B(I/O) OUTP

11 BOOTCFG[1](I) OE 95 SDATA1B(I/O) OE

12 BOOTCFG[1](I) IN 96 SDATA1B(I/O) IN

13 FLG0(I/O) OUTP 97 SCLK1(I/O) OUTP

14 FLG0(I/O) OE 98 SCLK1(I/O) OE

15 FLG0(I/O) IN 99 SCLK1(I/O) IN

16 FLG1(I/O) OUTP 100 SFS1(I/O) OUTP

17 FLG1(I/O) OE 101 SFS1(I/O) OE

18 FLG1(I/O) IN 102 SFS1(I/O) IN

19 DATA[7](I/O) OUTP 103 SDATA2A(I/O) OUTP

ADSP-2126x SHARC DSP Core Manual 6-19

JTAG Test Emulation Port

20 DATA[7](I/O) OE 104 SDATA2A(I/O) OE

21 DATA[7](I/O) IN 105 SDATA2A(I/O) IN

22 DATA[6](I/O) OUTP 106 SDATA2B(I/O) OUTP

23 DATA[6](I/O) OE 107 SDATA2B(I/O) OE

24 DATA[6](I/O) IN 108 SDATA2B(I/O) IN

25 DATA[5](I/O) OUTP 109 SDATA2C(I/O) OUTP

26 DATA[5](I/O) OE 110 SDATA2C(I/O) OE

27 DATA[5](I/O) IN 111 SDATA2C(I/O) IN

28 DATA[4](I/O) OUTP 112 SDATA2D(I/O) OUTP

29 DATA[4](I/O) OE 113 SDATA2D(I/O) OE

30 DATA[4](I/O) IN 114 SDATA2D(I/O) IN

31 DATA[3](I/O) OUTP 115 SCLK2(I/O) OUTP

32 DATA[3](I/O) OE 116 SCLK2(I/O) OE

33 DATA[3](I/O) IN 117 SCLK2(I/O) IN

34 DATA[2](I/O) OUTP 118 SFS2(I/O) OUTP

35 DATA[2](I/O) OE 119 SFS2(I/O) OE

36 DATA[2](I/O) IN 120 SFS2(I/O) IN

37 DATA[1](I/O) OUTP 121 SDATA3A(I/O) OUTP

38 DATA[1](I/O) OE 122 SDATA3A(I/O) OE

39 DATA[1](I/O) IN 123 SDATA3A(I/O) IN

40 DATA[0](I/O) OUTP 124 SDATA3B(I/O) OUTP

41 DATA[0](I/O) OE 125 SDATA3B(I/O) OE

42 DATA[0](I/O) IN 126 SDATA3B(I/O) IN

43 WR_B(I/O) OUTP 127 SDATA3C(I/O) OUTP

Table 6-6. JTAG Boundary Register (Cont’d)

Scan # Signal Name Latch Type Scan # Signal Name Latch Type

JTAG Related Registers

6-20 ADSP-2126x SHARC DSP Core Manual

44 WR_B(I/O) OE 128 SDATA3C(I/O) OE

45 WR_B(I/O) IN 129 SDATA3C(I/O) IN

46 RD_B(I/O) OUTP 130 SDATA3D(I/O) OUTP

47 RD_B(I/O) OE 131 SDATA3D(I/O) OE

48 RD_B(I/O) IN 132 SDATA3D(I/O) IN

49 ALE(I/O) OUTP 133 SCLK3(I/O) OUTP

50 ALE(I/O) OE 134 SCLK3(I/O) OE

51 ALE(I/O) IN 135 SCLK3(I/O) IN

52 ADDR[7](I/O) OUTP 136 SFS3(I/O) OUTP

53 ADDR[7](I/O) OE 137 SFS3(I/O) OE

54 ADDR[7](I/O) IN 138 SFS3(I/O) IN

55 ADDR[7](I/O) OUTP 139 FLG2(I/O) OUTP

56 ADDR[7](I/O) OE 140 FLG2(I/O) OE

57 ADDR[7](I/O) IN 141 FLG2(I/O) IN

58 ADDR[6](I/O) OUTP 142 FLG3(I/O) OUTP

59 ADDR[6](I/O) OE 143 FLG3(I/O) OE

60 ADDR[6](I/O) IN 144 FLG3(I/O) IN

61 ADDR[5](I/O) OUTP 145 RESET_B(I) OUTP

62 ADDR[5](I/O) OE 146 RESET_B(I) OE

63 ADDR[5](I/O) IN 147 RESET_B(I) IN

64 ADDR[4](I/O) OUTP 148 SPIDS(I) OUTP

65 ADDR[4](I/O) OE 149 SPIDS(I) OE

66 ADDR[4](I/O) IN 150 SPIDS(I) IN

67 ADDR[3](I/O) OUTP 151 SPICK(I/O) OUTP

Table 6-6. JTAG Boundary Register (Cont’d)

Scan # Signal Name Latch Type Scan # Signal Name Latch Type

ADSP-2126x SHARC DSP Core Manual 6-21

JTAG Test Emulation Port

Built-In Self-Test Operation (BIST)
No self-test functions are supported by the ADSP-2126x processor.

EMUCTL Shift Register
The EMUCTL Serial Shift register is located in the system unit. The EMUCTL
register is 40 bits wide and is accessed by the emulator through the TAP.
The EMUCTL register controls all of the DSP’s emulation functionality.

68 ADDR[3](I/O) OE 152 SPICK(I/O) OE

69 ADDR[3](I/O) IN 153 SPICK(I/O) IN

70 ADDR[2](I/O) OUTP 154 MISO(I/O) OUTP

71 ADDR[2](I/O) OE 155 MISO(I/O) OE

72 ADDR[2](I/O) IN 156 MISO(I/O) IN

73 ADDR[1](I/O) OUTP 157 MOSI(I/O) OUTP

74 ADDR[1](I/O) OE 158 MOSI(I/O) OE

75 ADDR[1](I/O) IN 159 MOSI(I/O) IN

76 ADDR[0](I/O) OUTP 160 CLKOUT(O) OUTP

77 ADDR[0](I/O) OE 161 CLKOUT(O) OE

78 ADDR[0](I/O) IN 162 CLKOUT(O) IN

79 SDATA0A(I/O) OUTP 163 EMU_B(O) OUTP

80 SDATA0A(I/O) OE 164 EMU_B(O) OE

81 SDATA0A(I/O) IN 165 EMU_B(O) IN

82 SDATA0B(I/O) OUTP 166 SPARE Closest to
TDI scan in
last83 SDATA0B(I/O) OE

Table 6-6. JTAG Boundary Register (Cont’d)

Scan # Signal Name Latch Type Scan # Signal Name Latch Type

JTAG Related Registers

6-22 ADSP-2126x SHARC DSP Core Manual

Table 6-7 lists the EMUCTL’s register’s bits and describes their functionality.

Table 6-7. Emulation Control Register (EMUCTL) Definitions

Bits Name Function

0 EMUENA Enable auto-stop on breakpoint

1 EIRQENA Enable single-step mode

2 BKSTOP Enable the breakout pin functionality

3 SS Enable the single-step mode

4 SYSRST Software reset of ADSP-2126x

5 ENBRKOUT Enable the breakout pin functionality

6 IOSTOP Stop I/O processor DMAs in emulation space

7 Reserved

8 NEGPA1 Negate program memory data address breakpoint

9 NEGDA1 Negate data memory address breakpoint #1

10 NEGDA2 Negate data memory address breakpoint #2

11 NEGIA1 Negate instruction address breakpoint #1

12 NEGIA2 Negate instruction address breakpoint #2

13 NEGIA3 Negate instruction address breakpoint #3

14 Reserved

15 NEGIO1 Negate I/O address breakpoint

16 Reserved

17 ENBPA Enable program memory data address breakpoint

18 ENBDA Enable data memory address breakpoint

19 ENBIA Enable instruction address breakpoint

20 Reserved1

21 Reserved

23:22 PA1MODE PA1 breakpoint triggering mode

ADSP-2126x SHARC DSP Core Manual 6-23

JTAG Test Emulation Port

EMUN Register
The EMUN (Nth event counter) register is located in the I/O Processor reg-
ister set. The EMUN register can only be written to by the user if the BRKCTL
bit is set. The Nth event counter allows an emulation breakpoint to occur
on the Nth occurrence of the breakpoint event. This is accomplished by
writing the desired Nth value to the EMUN register in UREG space. The
counter decrements on each occurrence of the breakpoint event, asserting
the interrupt when the counter is equal to zero and the hardware break-
point event occurs.

25:24 DA1MODE DA1 breakpoint triggering mode

27:26 DA2MODE DA2 breakpoint triggering mode

29:28 IO1MODE IO1 breakpoint triggering mode

31:30 EP1MODE EP1 breakpoint triggering mode

32 ANDBKP AND the composite breakpoints

33 Reserved

34 NOBOOT NO power-up boot on reset

35 TMODE Test mode bit

36 BHO Buffer hang override

37 MTST Fuse test

39:38 TE_IODISABLE 00 = IOX and IOY breakpoint disabled
01 = IOY breakpoint enabled IOX breakpoint disabled
10 = IOY breakpoint disabled IOX breakpoint enabled
11 = IOY and IOX breakpoint enabled

1 The ENBIO bit, provided in previous SHARC DSP products, is not supported in the
 DSP; it has been replaced with TE_IODISABLE (bits 39:38).

Table 6-7. Emulation Control Register (EMUCTL) Definitions (Cont’d)

Bits Name Function

JTAG Related Registers

6-24 ADSP-2126x SHARC DSP Core Manual

EMUIDLE Instruction
The EMUIDLE instruction places the DSP in the idle state and triggers an
emulator interrupt. This operation uses the EMUIDLE instruction as a soft-
ware breakpoint. When the EMUIDLE instruction is executed, the emulation
clock counter immediately halts.

OSPID Register
The OSPID register is a 32-bit memory-mapped I/O register that is sam-
pled into the Shift register, EMUOSPID, whenever the Program Counter is
sampled into the EMUPC register. The EMUOSPID and EMUPC registers form a
single scan chain.

The OSPID register includes a control bit, (OSPIDEN). This is bit 1 in the
enhanced emulation Control/Status register. To enable this feature, set
this bit=1). If not enabled (=0), the legacy feature is supported.

The operation is explained in the following steps.

1. The new feature is enabled by setting the OSPIDEN bit in the
Enhanced Emulation Control register. The enhanced emulation
enable bit need not be set to enable this feature.

2. Whenever the TAP controller returns to the RUNTEST state, the con-
tents of the Program Counter are sampled into the EMUPC register.
The OSPID register is also loaded into the EMUOSPID register.

3. Both the EMUPC and EMUOSPID registers can be selected by the same
JTAG instruction (instruction for the EMUPC register), since they
form a single scan chain.

ADSP-2126x SHARC DSP Core Manual 6-25

JTAG Test Emulation Port

4. The TAP controller sends the CAPTURE signal to both the register
and status bits of the EMUOSPID and EMUPC registers into shift
registers.

5. The TAP enters to the SHIFT state and shifts out 56-bit data. In
this case, the first 32 bits indicate program-id, and the last 24 bits
provide the address of instruction executed in that program id.

Private Instructions
Table 6-2 lists the private instructions that are reserved for emulation and
memory test. The ADSP-2126x processor JTAG ICE emulator uses the
TAP and boundary scan as a way to access the processor in the target sys-
tem. The JTAG ICE emulator requires a target board connector for access
to the TAP.

References
• IEEE Standard 1149.1-1990. Standard Test Access Port and

Boundary-Scan Architecture.

To order a copy, contact IEEE at 1-800-678-IEEE.

• Maunder, C.M. and R. Tulloss. Test Access Ports and Boundary
Scan Architectures.

IEEE Computer Society Press, 1991.

• Parker, Kenneth. The Boundary Scan Handbook.

Kluwer Academic Press, 1992.

References

6-26 ADSP-2126x SHARC DSP Core Manual

• Bleeker, Harry, P. van den Eijnden, and F. de Jong.
Boundary-Scan Test—A Practical Approach.

Kluwer Academic Press, 1993.

• Hewlett-Packard Co. HP Boundary-Scan Tutorial and BSDL Ref-
erence Guide.

(HP part# E1017-90001) 1992.

ADSP-2126x SHARC DSP Core Manual 7-1

7 TIMER

In addition to the internal core timer, the ADSP-2126x DSP contains
three identical 32-bit timers that can be used to interface with external
devices. Each timer can be individually configured in any of three modes:

• “Pulse Width Modulation Mode (PWM_OUT)” on page 7-7

• “Pulse Width Count and Capture Mode (WDTH_CAP)” on
page 7-10

• “External Event Watchdog Mode (EXT_CLK)” on page 7-12

Timer Architecture
Each timer has one dedicated bidirectional chip signal, TIMERx. The three
timer signals are connected to the 20 Digital Audio Interface (DAI) pins
through the Signal Routing Unit (SRU). The timer signal functions as an
output signal in PWM_OUT mode and as an input signal in WDTH_CAP and
EXT_CLK modes. To provide these functions, each timer has four, 32-bit
registers. The registers for each timer are:

• Timer x Configuration (TMxCTL) register

• Timer x Word Count (TMxCNT) register

• Timer x Word Period (TMxPRD) register

• Timer x Word Pulse Width (TMxW) register

Timer Architecture

7-2 ADSP-2126x SHARC DSP Core Manual

The timers also share one common status and control register, the Timer
Global Status and Control (TMSTAT) register.

For information on the Timer registers, see “Timer Registers” on
page A-61.

When clocked internally, the clock source is the ADSP-2126x DSP’s core
clock (CCLK). The timer produces a waveform with a period equal to
2 x TMxPRD and a width equal to 2 x TMxW. The period and width are set

Figure 7-1. Timer Block Diagram

U

SUB

PERIOD

COUNT

PULSE WIDTH

PERIOD BUFFER PULSE WIDTH BUFFER

32 (READ-ONLY)

3232

–

EXPIRE

I/O MEMORY DATA BUS

+

ADSP-2126x SHARC DSP Core Manual 7-3

Timer

through the TMxPRD[30:0] and the TMxW[30:0] bits. Bit 31 is ignored for
both. Assuming CCLK = 200 MHz:

maximum period = 2 x (231 – 1) x 5 ns = 20 seconds.

Timer Status and Control
The Timer Global Status and Control (TMSTAT) register indicates the sta-
tus of all three timers using a single read. The TMSTAT register also contains
timer enable bits. Within TMSTAT, each timer has a pair of sticky Status
bits, that require a write one-to-set (TIMxEN) or write one-to-clear
(TIMxDIS) to enable and disable the timer respectively.

Writing a one to both bits of a pair disables that timer.

Each timer also has an Overflow Error Detection bit, TIMxOVF. When an
overflow error occurs, this bit is set in the TMSTAT register. A program must
write one-to-clear this bit.

See Table 7-1 for more information about bits in the TMSTAT register.

After the timer has been enabled, its TIMxEN bit is set (= 1). The timer then
starts counting three core clock cycles after the TIMxEN bit is set. Setting
(writing one to) the timer’s TIMxDIS bit stops the timer without waiting
for another event.

Timer Interrupts
Each timer generates a unique interrupt request signal. A common register
latches these interrupts so that a program can determine the interrupt
source without reference to the timer’s interrupt signal. The TMSTAT regis-
ter contains an Interrupt Latch bit (TIMxIRQ) and an Overflow/Error
Indicator bit (TIMxOVF) for each timer.

Timer Status and Control

7-4 ADSP-2126x SHARC DSP Core Manual

The three timer interrupts are connected as follows:

• TIM0IRQ to GPTMR0I, bit 13 in the IRPTL register

• TIM1IRQ to GPTMR1I, bit 4 in the LIRPTL register

• TIM2IRQ to GPTMR2I, bit 8 in the LIRPTL register

Table 7-1. Timer Global Status and Control (TMSTAT) Register Bits

Bit(s) Name Definition

0 TIM0IRQ Timer 0 Interrupt Latch Write one-to-clear (also an output)1

1 TIM1IRQ Timer 1 Interrupt Latch Write one-to-clear (also an output)1

2 TIM2IRQ Timer 2 Interrupt Latch Write one-to-clear (also an output)1

3 Reserved

4 TIM0OVF Timer 0 Overflow/Error Write one-to-clear (also an output)

5 TIM1OVF Timer 1 Overflow/Error Write one-to-clear (also an output)

6 TIM2OVF Timer 2 Overflow/Error Write one-to-clear (also an output)

7 Reserved

8 TIM0EN Timer 0 Enable Write one-to-enable Timer 0

9 TIM0DIS Timer 0 Disable Write one-to-disable Timer 0

10 TIM1EN Timer 1 Enable Write one-to-enable Timer 1

11 TIM1DIS Timer 1 Disable Write one-to-disable Timer 1

12 TIM2EN Timer 2 Enable Write one-to-enable Timer 2

13 TIM2DIS Timer 2 Disable Write one-to-disable Timer 2

31–14 Reserved

1 This bit is set to one when an interrupt generating event occurs. When the program writes a
one to this bit position, it clears the source event which causes this bit to clear. A subsequent
read of this bit will return a zero.

ADSP-2126x SHARC DSP Core Manual 7-5

Timer

These sticky bits are set by the timer hardware and may be watched by
software. They need to be cleared in the TMSTAT register by software explic-
itly. To clear, write a one to the corresponding bit in the TMSTAT register.

Interrupt and overflow bits may be cleared simultaneously with timer
enable or disable.

To enable a timer’s interrupt, set the IRQEN bit in the timer’s Configura-
tion (TMxCTL) register and unmask the timer’s interrupt by setting the
corresponding bit of the IMASK register. With the IRQEN bit cleared, the
timer does not set its Interrupt Latch (TIMxIRQ) bits. To poll the TIMxIRQ
bits without generating a timer interrupt, programs can set the IRQEN bit
while leaving the timer’s interrupt masked.

With interrupts enabled, ensure that the interrupt service routine (ISR)
clears the TIMxIRQ latch before the RTI instruction to assure that the inter-
rupt is not serviced erroneously. In External Clock (EXT_CLK) mode, the
latch should be reset at the very beginning of the interrupt routine so as
not to miss any timer event.

Enabling a Timer
To enable an individual timer, set the timer’s TIMxEN bit in the TMSTAT reg-
ister. To disable an individual timer, set the timer’s TIMxDIS bit in the
TMSTAT register. To enable all three timers in parallel, set all the TIMxEN
bits in the TMSTAT register.

Before enabling a timer, always program the corresponding timer’s Con-
figuration (TMxCTL) register. This register defines the timer’s operating
mode, the polarity of the TIMERx signal, and the timer’s interrupt behav-
ior. Do not alter the operating mode while the timer is running. For more
information on the TMxCTL register, see “Timer Configuration Registers
(TMxCTL)” on page A-61.

The timer enable and disable timing appears in Figure 7-2.

Enabling a Timer

7-6 ADSP-2126x SHARC DSP Core Manual

When the timer is enabled, the Count register is loaded according to the
operation mode specified in the TMxCTL register. When the timer is dis-
abled, the Counter registers retain their state; when the timer is
re-enabled, the counter is reinitialized based on the operating mode. The
software should never write the counter value directly.

Any of the timers can be used to implement a watchdog functionality that
can be controlled by either an internal or an external clock source.

For software to service the watchdog, the program must reset the timer
value by disabling and then re-enabling the timer. Servicing the watchdog
periodically prevents the Count register from reaching the period value
and prevents the timer interrupt from being generated. When the timer
reaches the period value and generates the interrupt, reset the DSP within
the corresponding watchdog’s ISR.

Figure 7-2. Timer PWM Enable and Disable Timing

CCLK

PWMOUT

CCLK
TCOUNT

= M
TC OUNT
= M + 1

TCOUNT
= M + 1

TCOUNT
= M + 1

TIMER ENABLE
SET

TIMEN
TIMER

ENABLED

T MxPRD = 0x2
T MxW = 0x1

TCOUNT
= XX

TCOUNT
= XX

TCOUNT
= 1

TCOUNT
= 2

TCOUNT
= 4

TCOUNT
= 3

TIMER
DISABLED

TIMER DISABLE
SET

TIMDIS

ADSP-2126x SHARC DSP Core Manual 7-7

Timer

Pulse Width Modulation Mode (PWM_OUT)
In PWM_OUT mode, the timer supports on-the-fly updates of period and
width values of the PWM waveform. The period and width values can be
updated once every PWM waveform cycle, either within or across PWM
cycle boundaries.

To enable PWM_OUT mode, set the TIMODE1–0 bits to 01 in the timer’s Con-
figuration (TMxCTL) register. This configures the timer’s TIMERx signal as
an output with its polarity determined by PULSE as follows:

• If PULSE is set (= 1), an active high width pulse waveform is gener-
ated at the TIMERx signal.

• If PULSE is cleared (= 0), an active low width pulse waveform is gen-
erated at the TIMERx signal.

The timer is actively driven as long as the TIMODE field remains 01.

Figure 7-3 shows a flow diagram for PWM_OUT mode. When the timer
becomes enabled, the timer checks the period and width values for plausi-
bility (independent of the value set with the PRDCNT bit) and does not start
to count when any of the following conditions are true:

• Width is equal to zero

• Period value is lower than width value

• Width is equal to period

On invalid conditions, the timer sets both the TMxOVF and the TIMIRQx bits
and the Count register is not altered. Note that after reset, the timer regis-
ters are all zero.

As mentioned earlier, 2 x TMxPRD is the period of the PWM waveform and
2 x TMxW is the width. If the period and width values are valid after the
timer is enabled, the Count register is loaded with the value resulting from
0xFFFF FFFF – width. The timer counts upward to 0xFFFF FFF. Instead

Enabling a Timer

7-8 ADSP-2126x SHARC DSP Core Manual

of incrementing to 0xFFFF FFFF, the timer then reloads the counter with
the value derived from 0xFFFF FFFF – (period – width) and repeats.

PWM Waveform Generation

If the PRDCNT bit is set, the internally-clocked timer generates rectangular
signals with well-defined period and duty cycles. This mode also generates
periodic interrupts for real-time DSP processing.

The 32-bit Period (TMxPRD) and Width (TMxW) registers are programmed
with the values of the timer count period and pulse width modulated out-
put pulse width.

Figure 7-3. Timer Flow Diagram - PWM_OUT Mode

DATA BUS

RESET

TIMER_ENABLE

TMxPRD TMxW

CLOCK

YES

INTERRUPT

HIGH

LOW

TMRX

EQUAL?

TMxCNT

YES

PWMOUT
LOGIC

EQUAL?

SET PWMOUT

ADSP-2126x SHARC DSP Core Manual 7-9

Timer

When the timer is enabled in this mode, the TIMERx signal is pulled to a
deasserted state each time the pulse width expires, and the signal is
asserted again when the period expires (or when the timer is started).

To control the assertion sense of the TIMERx signal, the PULSE bit in the
corresponding TMxCTL register is either cleared (causes a low assertion
level) or set (causes a high assertion level).

When enabled, a timer interrupt is generated at the end of each period. An
ISR must clear the Interrupt Latch bit TIMxIRQ and might alter period
and/or width values. In pulse width modulation applications, the software
needs to update the period and pulse width values while the timer is
running.

When a program updates the timer configuration, the TMxW register must
always be written to last, even if it is necessary to update only one of the
registers. When the TMxW value is not subject to change, the ISR reads the
current value of the TMxW register and rewrite it again. On the next counter
reload, all of the timer Control registers are read by the timer.

To generate the maximum frequency on the TIMERx output signal, set the
period value to two and the pulse width to one. This makes the TIMERx
signal toggle every two CCLK clock cycles.

Single-Pulse Generation

If the PRDCNT bit is cleared, the PWM_OUT mode generates a single pulse on
the TIMERx signal. This mode can also be used to implement a well defined
software delay that is often required by state machines. The pulse width
(= 2 x TMxW) is defined by the width register and the period register is not
used.

At the end of the pulse, the Interrupt Latch bit (TIMxIRQ) is set and the
timer is stopped automatically. If the PULSE bit is set, an active high pulse
is generated on the TIMERx signal. If the PULSE bit is not set, the pulse is
active low.

Enabling a Timer

7-10 ADSP-2126x SHARC DSP Core Manual

Using a General-Purpose Timer as a Core Timer

Programs can use a general-purpose timer as a core timer. When in this
mode, the timer can also generate a periodic interrupt in a fashion similar
to the core timer. In this case there is no need to route the timer signal to
an external pin.

To implement this behavior, it is necessary to set the TIMODEPWM bits, the
PRDCNT bit, and the IRQEN bit in the applicable TMxCTL register. The period
at which the interrupt is latched is the pulse period (2 x value in TMxPRD
register) in core cycles. Even though the TMxW register is not used in this
case, it is necessary to initialize it to a nonzero value less than the value in
the TMxPRD register for correct operation.

Unlike the core timer, programs must manually clear the interrupt in the
TMSTAT register for each interrupt that is serviced.

Pulse Width Count and Capture Mode (WDTH_CAP)
To enable WDTH_CAP mode, set the TIMODE1–0 bits in the TMxCTL register to
10. This configures the TIMERx signal as an input signal with its polarity
determined by PULSE. If PULSE is set (= 1), an active high width pulse
waveform is measured at the TIMERx signal. If PULSE is cleared (= 0), an
active low width pulse waveform is measured at the TIMERx signal. The
internally-clocked timer is used to determine the period and pulse width
of externally-applied rectangular waveforms. The Period and Width regis-
ters are read-only in WDTH_CAP mode. The period and pulse width
measurements are with respect to a clock frequency of CCLK/2.

Figure 7-4 shows a flow diagram for WDTH_CAP mode. In this mode, the
timer resets words of the count in the TMxCNT register value to
0x0000 0001 and does not start counting until it detects the leading edge
on the TIMERx signal.

When the timer detects a first leading edge, it starts incrementing. When
it detects the trailing edge of a waveform, the timer captures the current

ADSP-2126x SHARC DSP Core Manual 7-11

Timer

value of the Count register (= TMxCNT/2) and transfers it into the TMxW
width registers. At the next leading edge, the timer transfers the current
value of the Count register (= TMxCNT/2) into the TMxPRD period register.
The Count registers are reset to 0x0000 0001 again, and the timer contin-
ues counting until it is either disabled or the count value reaches
0xFFFF FFFF.

In this mode, software can measure both the pulse width and the pulse
period of a waveform. To control the definition of the leading edge and
trailing edge of the TIMERx signal, the PULSE bit in the TMxCTL register is set

Figure 7-4. Timer Flow Diagram – WDTH_CAP Mode

DATA BUS

RESET

SET
TMxOVF

BIT

TMxPRD TMxW

CLOCK

INTERRUPT

PRDCNT

TMRx

TMxCNT

1

LEADING
EDGE

DETECT

TMxOVF

TMRx
TRAILING

EDGE
DETECT

INTERRUPT
LOGIC

1

2

2

Enabling a Timer

7-12 ADSP-2126x SHARC DSP Core Manual

or cleared. If the PULSE bit is cleared, the measurement is initiated by a
falling edge, the Count register is captured to the Width register on the
rising edge, and the Period register is captured on the next falling edge.

The PRDCNT bit in the TMxCTL register controls whether an enabled inter-
rupt is generated when the pulse width or pulse period is captured. If the
PRDCNT bit is set, the Interrupt Latch bit (TIMxIRQ) gets set when the pulse
period value is captured. If the PRDCNT bit is cleared, the TIMxIRQ bit gets
set when the pulse width value is captured.

If the PRDCNT bit is cleared, the first period value has not yet been mea-
sured when the first interrupt is generated. Therefore, the period value is
not valid. If the interrupt service routine reads the period value anyway,
the timer returns a period value of zero. When the period expires, the
period value is loaded in the TMxPRD register.

A timer interrupt (if enabled) is also generated if the Count register
reaches a value of 0xFFFF FFFF. At that point, the timer is disabled auto-
matically, and the TIMxOVF Status bit is set, indicating a count overflow.
The TIMxIRQ and TMxOVF bits are sticky bits, and software must explicitly
clear them.

The first width value captured in WDTH_CAP mode is erroneous due to syn-
chronizer latency. To avoid this error, software must issue two NOP
instructions between setting WDTH_CAP mode and setting TIMxEN.

External Event Watchdog Mode (EXT_CLK)
To enable EXT_CLK mode, set the TIMODE1–0 bits in the TMxCTL register to
11 in the TMxCTL register. This configures the TIMERx signal as an input.
The PULSE bit determines the TIMERx signal polarity. The timer works as a
counter clocked by any external source, which can also be asynchronous to
the DSP clock. Therefore, in EXT_CLK mode, the TMxCNT register should
not be read when the counter is running.

ADSP-2126x SHARC DSP Core Manual 7-13

Timer

The operation of the EXT_CLK mode is:

1. Program the TMxPRD Period register with the value of the maximum
timer external count.

2. Set the TIMxEN bits. This loads the period value in the Count regis-
ter and starts the countdown.

3. When the period expires, an interrupt, (TIMxIRQ) occurs.

After the timer is enabled, it waits for the first rising edge on the TIMERx
signal. The PULSE bit defines the rising edge and trailing edge. The rising
edge forces the Count register to be loaded by the value
(0xFFFF FFFF – TMxPRD). Every subsequent rising edge increments the
Count register. After reaching the count value 0xFFFF FFFE, the TIMxIRQ
bit is set and an interrupt is generated. The next rising edge reloads the
Count register with (0xFFFF FFFF – TMxPRD) again.

The Configuration bit, PRDCNT, has no effect in this mode. Also, TIMxOVF
is never set and the width register is unused.

Timer Programming Examples
This section provides two programming examples written for the
ADSP-2126x DSP. The first listing, Listing 7-1, uses both Timer 0 and
Timer 1. Timer 0 is set up in PWMOUT mode, using DAI pin 1 as its
output. Timer 1 is set up in Width Capture mode, using Timer 0 as its
input. The period and pulse width measured by Timer 1 are identical to
the settings of Timer 0.

The second listing, Listing 7-2, sets up Timer 0 in External Watchdog
mode, using DAI pin 1 as its input. The Timer generates an interrupt
when it senses the number of edges are equal to the Timer Period setting.

Timer Programming Examples

7-14 ADSP-2126x SHARC DSP Core Manual

Listing 7-1. PWMOUT and Width Capture Mode Example

/* Register Definitions */

#define TMSTAT (0x1400) /* GP Timer 0 Status register */

#define TM0CTL (0x1401) /* GP Timer 0 Control register */

#define TM0PRD (0x1403) /* GP Timer 0 Period register */

#define TM0W (0x1404) /* GP Timer 0 Width register */

#define SRU_EXT_MISCB (0x2471)

/* SRU definitions */

#define DAI_PB01_O 0x00

/* Bit Positions */

#define TIMER0_I 0

/* Bit Definitions */

#define TIMODEEXT 0x00000003

#define PULSE 0x00000004

#define PRDCNT 0x00000008

#define IRQEN 0x00000010

#define TIM0EN 0x00000100

/* Main code section */

ADSP-2126x SHARC DSP Core Manual 7-15

Timer

.global _main;

.section/pm seg_pmco;

_main:

/* Route Timer 0 Input to DAI Pin 1 via SRU */

r0 = (DAI_PB01_O<<TIMER0_I);

dm(SRU_EXT_MISCB)=r0;

ustat3 = TIMODEEXT| /* External Watchdog Mode */

 PULSE| /* Positive edge is active */

 IRQEN| /* Enable Timer 0 interrupt */

 PRDCNT; /* Count to end of period */

dm(TM0CTL) = ustat3;

R0 = 0xff;

dm(TM0PRD) = R0; /* Timer 0 period = 255 */

/* An interrupt is generated when the Timer senses end of the
selected period, In this example Interrupts are disabled, so pro-
gram flow will not be affected */

R0 = TIM0EN; /* Enable timer 0 */

dm(TMSTAT) = R0;

_main.end: jump (pc,0); /* endless loop */

Timer Programming Examples

7-16 ADSP-2126x SHARC DSP Core Manual

Listing 7-2. External Watchdog Mode Example

/* Register Definitions */

#define TMSTAT (0x1400) /* GP Timer 0 Status register */

#define TM0CTL (0x1401) /* GP Timer 0 Control register */

#define TM0CNT (0x1402) /* GP Timer 0 Count register */

#define TM0PRD (0x1403) /* GP Timer 0 Period register */

#define TM0W (0x1404) /* GP Timer 0 Width register */

#define TM1CTL (0x1409) /* GP Timer 1 Control register */

#define TM1CNT (0x140A) /* GP Timer 1 Count register */

#define TM1PRD (0x140B) /* GP Timer 1 Period register */

#define TM1W (0x140C) /* GP Timer 1 Width register */

#define SRU_PIN0 (0x2460)

#define SRU_PBEN0 (0x2478)

#define SRU_EXT_MISCB (0x2471)

/* Bit Definitions */

#define TIMODEPWM 0x00000001

#define TIMODEW 0x00000002

#define PULSE 0x00000004

#define PRDCNT 0x00000008

#define IRQEN 0x00000010

ADSP-2126x SHARC DSP Core Manual 7-17

Timer

#define TIM0EN 0x00000100

#define TIM1EN 0x00000400

#define GPTMR1I 0x00000010

/* SRU Definitions */

#define TIMER0_Od 0x2C

#define TIMER0_Oe 0x14

#define PBEN_HIGH_Of 0x01

/* Bit positions */

#define TIMER1_I 5

/* Main code section */

.global _main;

.section/pm seg_pmco;

_main:

/* Set up and enable Timer 0 in PWM Out mode*/

/* Route Timer 0 Output to DAI Pin 1 via SRU */

r0 = TIMER0_Od;dm(SRU_PIN0) = r0;

/* Enable DAI pin 1 as an output */

r0 = PBEN_HIGH_Of;

Timer Programming Examples

7-18 ADSP-2126x SHARC DSP Core Manual

dm(SRU_PBEN0) = r0;

ustat3 = TIMODEPWM| /* PWM Out Mode */

 PULSE| /* Positive edge is active */

 PRDCNT; /* Count to end of period */

dm(TM0CTL) = ustat3;

R0 = 0xFF;

dm(TM0PRD) = R0; /* Timer 0 period = 255 */

R1 = 0x3F;

dm(TM0W) = R1; /* Timer 0 Pulse width = 15 */

R0 = TIM0EN; /* enable timer 0 */

dm(TMSTAT) = R0;

/* --------------End of Timer 0 Setup-------------------- */

/* Set up and enable Timer 1 in Width Capture mode */

/* Use the output of Timer 0 as the input to Timer 1 */

/* Route Timer 0 Output to Timer 1 Input via SRU */

r0=(TIMER0_Oe<<TIMER1_I);

ADSP-2126x SHARC DSP Core Manual 7-19

Timer

dm(SRU_EXT_MISCB)=r0;

ustat3 = TIMODEW| /* PWM Out Mode */

 PULSE| /* Positive edge is active */

 IRQEN| /* Enable Timer 1 Interrupt */

 PRDCNT; /* Count to end of period */

dm(TM1CTL) = ustat3;

R0 = TIM1EN; /* enable timer 1 */

dm(TMSTAT) = R0;

/* Poll the Timer 1 interrupt latch, the interrupt will latch

when the measured period and pulse width are ready to read */

bit tst LIRPTL GPTMR1I;

if not tf jump(pc,-1);

/* Read the measured values */

r0 = dm(TM1PRD);

r1 = dm(TM1W);

/* r0 and r1 will match the Timer 0 settings above */

_main.end: jump (pc,0);

Timer Programming Examples

7-20 ADSP-2126x SHARC DSP Core Manual

Listing 7-3. Using a General-Purpose Timer as a Core Timer

/* Register Definitions */#define TMSTAT (0x1400) /* GP Timer

Status Register */

#define TM0CTL (0x1401) /* GP Timer 0 Control Register */

#define TM0PRD (0x1403) /* GP Timer 0 Period Register */

#define TM0W (0x1404) /* GP Timer 0 Width Register */

/* Bit Definitions */#define TIMODEPWM (0x00000001)

#define PRDCNT (0x00000008)

#define IRQEN (0x00000010)

#define TIM0EN (0x00000100)

/* Main code section */

.global _main;

.section/pm seg_pmco;

_main:

/* Using PWM Out mode as a core timer */

ustat3 = TIMODEPWM| /* PWM Out Mode */

 PRDCNT| /* Count to end of period */

 IRQEN;

ADSP-2126x SHARC DSP Core Manual 7-21

Timer

dm(TM0CTL) = ustat3;

R0 = 0x8000;

dm(TM0PRD) = R0; /* Timer 0 period = 0x8000 */

R1 = 1;

dm(TM0W) = R1; /* Timer 0 Pulse width = 1 */

R0 = TIM0EN; /* enable timer 0 */

dm(TMSTAT) = R0;

/* Get start clock count */

R1 = EMUCLK;

// Wait until TIM0IRQ is set

// Alternatively, we could test GPTMR0I in IRPTL

r0=dm(TMSTAT);

btst r0 by 0;

if not sz jump (pc,2);

jump(pc,-3) (db);

/* Get end clock count */

R2=EMUCLK;

Timer Programming Examples

7-22 ADSP-2126x SHARC DSP Core Manual

/* Subtract the start count from the end count

to obtain the number of cycles before the interrupt */

R4=R2-R1;

// R4 will be double the value of TM0PRD

_main.end: jump(pc,0);

ADSP-2126x SHARC DSP Core Manual A-1

A REGISTERS

The DSP has general-purpose and dedicated registers in each of its func-
tional blocks. The register reference information for each functional block
includes bit definitions, initialization values, and memory-mapped
addresses (for I/O processor registers). Information on each type of regis-
ter is available at the following locations:

• “Control and Status System Registers” on page A-2

• “Processing Element Registers” on page A-21

• “Program Sequencer Registers” on page A-24

• “Data Address Generator Registers” on page A-50

• “I/O Processor Registers” on page A-51

When writing DSP programs, it is often necessary to set, clear, or test bits
in the DSP’s registers. While these bit operations can all be done by refer-
ring to the bit’s location within a register or (for some operations) the
register’s address with a hexadecimal number, it is much easier to use sym-
bols that correspond to the bit’s or register’s name. For convenience and
consistency, Analog Devices provides a header file that contains these bit
and registers definitions. An #include file is provided with the VisualDSP
tools and can be found in the VisualDSP/2126x/include directory.

Many registers have reserved bits. When writing to a register, pro-
grams may only clear (write zero to) the register’s reserved bits.

Control and Status System Registers

A-2 ADSP-2126x SHARC DSP Core Manual

Control and Status System Registers
The DSP’s Control And Status System registers determine how the pro-
cessor core operates and indicate the status of many processor core
operations. In the ADSP-21160 SHARC DSP Instruction Set Reference,
these registers are referred to as System registers (Sreg), which are a subset
of the DSP’s Universal registers (Ureg). Not all registers are valid in all
assembly language instructions. In the assembly syntax descriptions, the
register group name (Ureg, Sreg, and others) indicates which type of regis-
ter is valid within the instruction’s context. Table A-1 lists the processor
core’s Control And Status registers with their initialization values.
Descriptions of each register follow. Other system registers (Sreg) are in
the I/O processor. For more information, see “I/O Processor Registers” on
page A-51.

Table A-1. Control and Status Registers for the Processor Core

Register Name and Page Reference Initialization After Reset

“Mode Control 1 Register (MODE1)” on page A-3 0x0000 0000

“Mode Mask Register (MMASK)” on page A-7 0x0020 0000

“Mode Control 2 Register (MODE2)” on page A-11 0x4200 0000

“Arithmetic Status Registers (ASTATx and ASTATy)” on page A-12 0x0000 0000

“Sticky Status Registers (STKYx and STKYy)” on page A-17 0x0540 0000

“User-Defined Status Registers (USTATx)” on page A-21 0x0000 0000

ADSP-2126x SHARC DSP Core Manual A-3

Registers

Mode Control 1 Register (MODE1)
The Mode Control 1 register is a non memory-mapped, universal, System
register (Ureg and Sreg). The reset value for this register is 0x0000 0000.
Figure A-1 and Table A-3 provide bit information for the MODE1 register.

Figure A-1. Mode Control 1 Register (Upper)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CSEL

PEYEN

BDCST9

RND32

BDCST1

CBUFEN

Reserved

Circular Buffer Addressing Enable
1=Enable circular buffering
0=Disable (linear) circular buffering

Broadcast Register Loads Indexed With I1 Enable
1=Broadcast I1
0=No I1 broadcast

Broadcast Register Loads Indexed With I9 Enable.
1=Broadcast I9
0=No I9 broadcast Processor Element Y Enable

1=Enable PEy—SIMD mode
0=Disable PEy—SISD mode

Bus Master Code Selection.
00=DSP is bus master
01, 10, 11=DSP is not bus
master

Reserved

Rounding for 32-bit Float-
ing-point Data Select.
1=Round data to 32 bits
0=Round data to 40 bits

MODE1 (Bits 31-16)

Control and Status System Registers

A-4 ADSP-2126x SHARC DSP Core Manual

Figure A-2. Mode Control 1 Register (Lower)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BR0

SRCU

IRPTEN

BR8

ALUSAT

SSE

TRUNC

Truncation Rounding Mode
Select
1=Round to zero
0=Round to nearest

Fixed-point Sign Extension
Select
1=Disable
0=Enable

ALU Saturation Select
1=Disable
0=Enable

Global Interrupt Enable
1=Disable
0=Enable

Secondary Registers Computa-
tional Units Enable
1=Enable MR Primary
0=Enable MR Alternate

Bit Reverse Addressing for I0
1=Disable I0 (DAG1)
0=Enable I0 (DAG1)

Bit Reverse Addressing for I8
1=Disable I8 (DAG2)
0=Enable I8 (DAG2)

NESTM

Nesting Multiple Interrupts Enable
1=Disable
0=Enable

SRD1H

SRD1L

Secondary Registers DAG1 Low
Enable
1=Enable DAG1 3–0 Primary
0=Enable DAG1 3–0 Alternate

Secondary Registers DAG1 High
Enable
1=Enable DAG1 7–4 Primary
0=Enable DAG1 7–4 Alternate

SRRFL

Secondary Registers Register File High
Enable
1=Enable R7–R0 Primary
0=Enable R7–R0 Secondary

SRD2H

Secondary Registers DAG2 High
Enable
1=Enable DAG2 15–12 Primary
0=Enable DAG2 15–12 Alternate

SRD2L

Secondary Registers DAG2 Low
Enable
1=Enable DAG2 11–8 Primary
0=Enable DAG2 11–8 Alternate

SRRFH

Secondary Registers Register File High Enable
1=Enable R15–R8 Primary
0=Enable R15–R8 Secondary

Reserved

MODE1 (Bits 15–0)

ADSP-2126x SHARC DSP Core Manual A-5

Registers

Table A-2. Mode Control 1 Register (MODE1) Bit Definitions

Bit(s) Name Definition

0 BR8 Bit Reverse Addressing For Index I8 Enable. Enables (bit reversed if
set, = 1) or disables (normal if cleared, = 0) bit reversed addressing for
accesses that are indexed with DAG2 register I8.

1 BR0 Bit Reverse Addressing For Index I0 Enable. Enables (bit reversed if
set, = 1) or disables (normal if cleared, = 0) bit reversed addressing for
accesses that are indexed with DAG1 register I0.

2 SRCU Secondary Registers For Computational Units Enable. Enables (use
secondary if set, = 1) or disables (use primary if cleared, = 0) second-
ary result (MR) registers in the computational units.

3 SRD1H Secondary Registers For DAG1 High Enable. Enables (use secondary
if set, = 1) or disables (use primary if cleared, = 0) secondary DAG1
registers for the upper half (I, M, L, B7–4) of the address generator.

4 SRD1L Secondary Registers For DAG1 Low Enable. Enables (use secondary
if set, = 1) or disables (use primary if cleared, = 0) secondary DAG1
registers for the lower half (I, M, L, B3–0) of the address generator.

5 SRD2H Secondary Registers For DAG2 High Enable. Enables (use secondary
if set, = 1) or disables (use primary if cleared, = 0) secondary DAG2
registers for the upper half (I, M, L, B15–12) of the address generator.

6 SRD2L Secondary Registers For DAG2 Low Enable. Enables (use secondary
if set, = 1) or disables (use primary if cleared, = 0) secondary DAG2
registers for the lower half (I, M, L, B11–8) of the address generator.

7 SRRFH Secondary Registers For Register File High Enable. Enables (use sec-
ondary if set, = 1) or disables (use primary if cleared, = 0) secondary
data registers for the upper half (R15–8) of the computational units.

9–8 Reserved

10 SRRFL Secondary Registers For Register File Low Enable. Enables (use sec-
ondary if set, = 1) or disables (use primary if cleared, = 0) secondary
data registers for the lower half (R7–0) of the computational units.

Control and Status System Registers

A-6 ADSP-2126x SHARC DSP Core Manual

11 NESTM Nesting Multiple Interrupts Enable. Enables (nest if set, = 1) or dis-
ables (no nesting if cleared, = 0) interrupt nesting in the interrupt
controller. When interrupt nesting is disabled, a higher priority inter-
rupt can not interrupt a lower priority interrupt’s service routine.
Other interrupts are latched as they occur, but the DSP processes
them after the active routine finishes. When interrupt nesting is
enabled, a higher priority interrupt can interrupt a lower priority
interrupt’s service routine. Lower interrupts are latched as they occur,
but the DSP processes them after the nested routines finish.

12 IRPTEN Global Interrupt Enable. Enables (if set, = 1) or disables (if cleared, =
0) all maskable interrupts.

13 ALUSAT ALU Saturation Select. Selects whether the computational units satu-
rate results on positive or negative fixed–point overflows (if 1) or
return unsaturated results (if 0).

14 SSE Fixed–point Sign Extension Select. Selects whether the computa-
tional units sign-extend short-word, 16-bit data (if 1) or zero-fill the
upper 32 bits (if 0).

15 TRUNC Truncation Rounding Mode Select. Selects whether the computa-
tional units round results with round-to-zero (if 1) or round-to-near-
est (if 0).

16 RND32 Rounding For 32-bit Floating-point Data Select. Selects whether the
computational units round floating-point data to 32 bits (if 1) or
round to 40 bits (if 0).

18–17 CSEL Bus Master Code Selection. These bits indicate whether the DSP pro-
cessor has control of the external bus as follows: 00 = DSP is bus mas-
ter or 01, 10, 11 = DSP is not bus master.

20–19 Reserved

21 PEYEN Processor Element Y Enable. Enables computations in PEy—SIMD
mode—(if 1) or disables PEy—SISD mode—(if 0).
When set, Processing Element Y (computation units and register files)
accepts instruction dispatches. When cleared, Processing
Element Y goes into a low power mode.

Table A-2. Mode Control 1 Register (MODE1) Bit Definitions (Cont’d)

Bit(s) Name Definition

ADSP-2126x SHARC DSP Core Manual A-7

Registers

Mode Mask Register (MMASK)
This is a non memory-mapped, universal, system register (Ureg and Sreg).
The reset value for this register is 0x0020 0000. Each bit in the MMASK reg-
ister corresponds to a bit in the MODE1 register. Bits that are set in the
MMASK register are used to clear bits in the MODE1 register when the DSP’s
status stack is pushed. This effectively disables different modes upon ser-
vicing an interrupt, or when executing a PUSH STS instruction.

The DSP’s status stack will be pushed in two cases:

1. When executing a PUSH STS instruction explicitly in your code.

2. When an IRQ2–0 or Timer Expired interrupt occurs.

22 BDCST9 Broadcast Register Loads Indexed With I9 Enable. Enables (broad-
cast I9 if set, = 1) or disables (no I9 broadcast if cleared, = 0) broadcast
register loads for loads that use the data address generator I9 index.
When the BDCST9 bit is set, data register loads from the PM data
bus that use the I9 DAG2 Index register are “broadcast” to a register
or register pair in each PE.

23 BDCST1 Broadcast Register Loads Indexed With I1 Enable. Enables (broad-
cast I1 if set, = 1) or disables (no I1 broadcast if cleared, = 0) broadcast
register loads for loads that use the data address generator I1 index.
When the BDCST1 bit is set, data register loads from the DM data
bus that use the I1 DAG1 Index register are “broadcast” to a register
or register pair in each PE.

24 CBUFEN Circular Buffer Addressing Enable. Enables (circular if set, = 1) or
disables (linear if cleared, = 0) circular buffer addressing for buffers
with loaded I, M, B, and L DAG registers.

31–25 Reserved

Table A-2. Mode Control 1 Register (MODE1) Bit Definitions (Cont’d)

Bit(s) Name Definition

Control and Status System Registers

A-8 ADSP-2126x SHARC DSP Core Manual

Example:

Before the PUSH STS instruction, the MODE1 register is set to 0x01202811.
This MODE1 register value corresponds to the following settings being
enabled:

• Bit-reversing for I8

• Secondary registers for DAG2 (high

• Interrupt nesting, ALU saturation

• Processor Element Y Single-Instruction Multiple-Data (SIMD)

• Circular buffering

The MMASK register is set to 0x0020 2001 indicating that you want to dis-
able ALU Saturation, SIMD, and bit reversing for I8 after pushing the
status stack. The value in the MODE1 register after PUSH STS is 0x0100
0810. The other settings that were previously in the MODE1 register remain
the same. The only bits that are affected are those that are set both in the
MMASK and in MODE1 registers. These bits are cleared after the status stack is
pushed.

Note also that the reset value of the MMASK register is 0x0020 0000. If the
program does not make any changes to the MMASK register, the default set-
ting will automatically disable SIMD when servicing any of the hardware
interrupts mentioned above, or during any push of the status stack.

ADSP-2126x SHARC DSP Core Manual A-9

Registers

Figure A-3. MMASK Register (Upper Bits)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 1 0 0 0 0

CSEL

PEYEN
BDCST9

RND32

BDCST1

CBUFEN

Reserved

Circular Buffer Addressing Enable
1=Enables circular buffering
0=Disables (linear) circular buffering

Broadcast Register Loads Indexed With I1 Enable
1=Broadcast I1
0=No I1 broadcast

Broadcast Register Loads Indexed With I9 Enable
1=Broadcast I9
0=No I9 broadcast

Processor Element Y Enable
1=Enable PEy—SIMD mode
0=Disable PEy—SISD mode

Bus Master Code Selection
00=DSP is bus master
01, 10, 11=DSP is not bus master

Reserved

Rounding For 32-bit
Floating-point Data Select
1=Round data to 32 bits
0=Round data to 40 bits

MMASK (Bits 31–16)

Control and Status System Registers

A-10 ADSP-2126x SHARC DSP Core Manual

Figure A-4. MMASK Register (Lower Bits)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BR0

SRCU

IRPTEN

BR8

ALUSAT

SSE

TRUNC

Truncation Rounding Mode
Select
1=Round-to-zero
0=Round-to-nearest

Fixed-point Sign Extension
Select
1=Disable
0=Enable

ALU Saturation Select
1=Disable
0=Enable

Global Interrupt Enable
1=Disable
0=Enable

Secondary Registers
Computational Units Enable
1=Enable MR Primary
0=Enable MR Alternate

Bit Reverse Addressing for I0
1=Disable I0 (DAG1)
0= Enable I0 (DAG1)

Bit-Reverse Addressing for I8
1=Disable I8 (DAG2)
0= Enable I8 (DAG2)

NESTM

Nesting Multiple Interrupts Enable
1=Disable
0=Enable

SRD1H

SRD1L

Secondary Registers DAG1 Low
Enable
1=Enable DAG1 3–0 Primary
0=Enable DAG1 3–0 Alternate

Secondary Registers DAG1 High
Enable
1=Enable DAG1 7–4 Primary
0=Enable DAG1 7–4 Alternate

SRRFL

Secondary Registers Register File High Enable
1=Enable R7–R0 Primary
0=Enable R7–R0 Secondary

SRD2H

Secondary Registers DAG2 High
Enable
1=Enable DAG2 15–12 Primary
0=Enable DAG2 15–12 Alternate

SRD2L

Secondary Registers DAG2 Low
Enable
1=Enable DAG2 11–8 Primary
0=Enable DAG2 11–8 Alternate

SRRFH

Secondary Registers Register File High Enable
1=Enable R15–R8 Primary
0=Enable R15–R8 Secondary

Reserved

MMASK (Bits 15-0)

ADSP-2126x SHARC DSP Core Manual A-11

Registers

Mode Control 2 Register (MODE2)
The MODE2 register is a non-memory-mapped, universal, system register
(Ureg and Sreg). The reset value for this register is 0x4200 0000.
Figure A-1 and Table A-3 provide bit information for the MODE2 register.

Figure A-5. MODE 2 Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IRQ0E

CADIS

TIMEN

Reserved

Timer Enable
1=Enable (start)
0=Disable (stop)

Cache Disable
1=Disable cache
0=Enable cache

Interrupt Request
Sensitivity Select
1=IRQ 0 Edge-sensitive
0=IRQ 0 Level-sensitive

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 1 0 0 0 0 1 0 0 0 0 0 0 0 0

CAFRAZ

Reserved

IIRAE

U64MAE

Reserved

Unaligned 64-bit Memory Access Enable
1=Enable detection
0=Disable detection

Illegal IOP Register Access Enable
1=Enable detection
0=Disable detection

Cache Freeze
1=Freeze (retain contents
0=Thaw (allow new data)

Reserved

MODE2

IRQ1E

Interrupt Request
Sensitivity Select
1=IRQ 1 Edge-sensitive
0=IRQ 1 Level-sensitive

IRQ2E

Interrupt Request
Sensitivity Select
1=IRQ 2 Edge-sensitive
0=IRQ 2 Level-sensitive

Control and Status System Registers

A-12 ADSP-2126x SHARC DSP Core Manual

Arithmetic Status Registers (ASTATx and ASTATy)
The ASTATx and ASTATy registers are non-memory-mapped, universal, sys-
tem registers (Ureg and Sreg). The reset value for these registers is
0x0000 0000. Each processing element has its own ASTAT register. The

Table A-3. Mode Control 2 Register Bit Descriptions

Bits Name Definition

0 IRQ0E IRQ0 Sensitivity Select. Selects sensitivity for the flag configured
as IRQ0 as edge-sensitive (if set, = 1) or level-sensitive (if cleared, =
0).

1 IRQ1E IRQ1 Sensitivity Select. Selects sensitivity for the flag configured
as IRQ1 as edge-sensitive (if set, = 1) or level-sensitive (if cleared, =
0).

2 IRQ2E IRQ2 Sensitivity Select. Selects sensitivity for the flag configured
as IRQ2 as edge-sensitive (if set, = 1) or level-sensitive (if cleared, =
0).

3 Reserved

4 CADIS Cache Disable. This bit disables the instruction cache (if set, = 1)
or enables the cache (if cleared, = 0).

5 TIMEN Timer Enable. Enables the timer (starts, if set, = 1) or disables the
timer (stops, if cleared, = 0).

18–6 Reserved

19 CAFRZ Cache Freeze. Freezes the instruction cache (retain contents if set,
= 1) or thaws the cache (allow new input if cleared, = 0).

20 IIRAE Illegal I/O Processor Register Access Enable. Enables (if set, = 1)
or disables (if cleared, = 0) detection of I/O processor register
accesses. If IIRAE is set, the DSP flags an illegal access by setting
the IIRA bit in the STKYx register.

21 U64MAE Unaligned 64-bit Memory Access Enable. Enables (if set, = 1) or
disables (if cleared, = 0) detection of unaligned long word accesses.
If U64MAE is set, the DSP flags an unaligned long word access by
setting the U64MA bit in the STKYx register.

31–22 Reserved

ADSP-2126x SHARC DSP Core Manual A-13

Registers

ASTATx register indicates status for PEx operations while the ASTATy regis-
ter indicates status for PEy operations. Figure A-1 and Table A-4 provide
bit information for the ASTAT register.

If a program loads the ASTATx register manually, there is a one cycle effect
latency before the new value in the ASTATx register can be used in a condi-
tional instruction.

Figure A-6. ASTAT Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AF

SV

SZ

SS
Shifter Input Sign

Shifter Zero

Shifter Overflow

ALU Floating-point Operation

Reserved

MI
Multiplier Floating-point Invalid Operation

MU
Multiplier Floating-point Underflow

MV
Multiplier Overflow

AC

AN

AV

AZ
ALU Zero/Float-
ing-point Underflow

ALU Overflow

ALU Negative

ALU Fixed-point Carry
AS
ALU X-Input Sign
(for ABS and MANT)
AI
ALU Floating-point
Invalid Operation

MN
Multiplier Negative

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BTF

ReservedCCAC

Compare Accumulation Shift Register

Bit Test Flag for Systems
Registers

Reserved

ASTATX/Y

Control and Status System Registers

A-14 ADSP-2126x SHARC DSP Core Manual

Table A-4. ASTATx and ASTATy Register Bit Descriptions

Bits Name Definition

0 AZ ALU Zero/Floating-Point Underflow. Indicates if the last ALU operation’s
result was zero (if set, = 1) or non-zero (if cleared, = 0). The ALU updates
AZ for all fixed-point and floating-point ALU operations. AZ can also indi-
cate a floating-point underflow. During an ALU underflow (indicated by a
set (= 1) AUS bit in the STKYx/y register), the DSP sets AZ if the float-
ing-point result is smaller than can be represented in the output format.

1 AV ALU Overflow. Indicates if the last ALU operation’s result overflowed (if
set, = 1) or did not overflow (if cleared, = 0). The ALU updates AV for all
fixed-point and floating-point ALU operations. For fixed-point results, the
DSP sets AV and the AOS bit in the STKYx/y register when the XOR of the
two most significant bits (MSBs) is a 1. For floating-point results, the DSP
sets AV and the AVS bit in the STKYx/y register when the rounded result
overflows (unbiased exponent > 127).

2 AN ALU Negative. Indicates if the last ALU operation’s result was negative (if
set, = 1) or positive (if cleared, = 0). The ALU updates AN for all
fixed-point and floating-point ALU operations.

3 AC ALU fixed-point Carry. Indicates if the last ALU operation had a carry out
of the MSB of the result (if set, = 1) or had no carry (if cleared, = 0). The
ALU updates AC for all fixed-point operations. The DSP clears AC during
fixed-point logic operations: PASS, MIN, MAX, COMP, ABS, and CLIP.
The ALU reads the AC flag for fixed-point accumulate operations: Addition
with Carry and Fixed-point Subtraction with Carry.

4 AS ALU X-Input Sign (for ABS and MANT). Indicates if the last ALU ABS or
MANT operation’s input was negative (if set, = 1) or positive (if cleared, =
0). The ALU updates AS only for fixed- and floating-point ABS and
MANT operations. The ALU clears AS for all operations other than ABS
and MANT.

ADSP-2126x SHARC DSP Core Manual A-15

Registers

5 AI ALU Floating-point Invalid Operation. Indicates if the last ALU opera-
tion’s input was invalid (if set, = 1) or valid (if cleared, = 0). The ALU
updates AI for all fixed- and floating-point ALU operations. The DSP sets
AI and AIS in the STKYx/y register if the ALU operation:

• Receives a NAN input operand
• Adds opposite-signed infinities
• Subtracts like-signed infinities
• Overflows during a floating-point to fixed-point conversion when

saturation mode is not set
• Operates on an infinity when the saturation mode is not set

6 MN Multiplier Negative. Indicates if the last multiplier operation’s result was
negative (if set, = 1) or positive (if cleared, = 0). The multiplier updates MN
for all fixed- and floating-point multiplier operations.

7 MV Multiplier Overflow. Indicates if the last multiplier operation’s result over-
flowed (if set, = 1) or did not overflow (if cleared, = 0). The multiplier
updates MV for all fixed-point and floating-point multiplier operations.
For floating-point results, the DSP sets MV and MVS in the STKYx/y reg-
ister if the rounded result overflows (unbiased exponent > 127). For
fixed-point results, the DSP sets MV and the MOS bit in the STKYx/y reg-
ister if the result of the multiplier operation is:

• Twos-complement, fractional with the upper 17 bits of MR not all
zeros or all ones

• Twos-complement, integer with the upper 49 bits of MR not all
zeros or all ones

• Unsigned, fractional with the upper 16 bits of MR not all zeros
• Unsigned, integer with the upper 48 bits of MR not all zeros

If the multiplier operation directs a fixed-point result to an MR register, the
DSP places the overflowed portion of the result in MR1 and MR2 for an
integer result or places it in MR2 only for a fractional result.

Table A-4. ASTATx and ASTATy Register Bit Descriptions (Cont’d)

Bits Name Definition

Control and Status System Registers

A-16 ADSP-2126x SHARC DSP Core Manual

8 MU Multiplier Floating-point Underflow. Indicates if the last multiplier opera-
tion’s result underflowed (if set, = 1) or did not underflow
(if cleared, = 0). The multiplier updates MU for all fixed- and float-
ing-point multiplier operations. For floating-point results, the DSP sets
MU and the MUS bit in the STKYx/y register if the floating-point result
underflows (unbiased exponent < –126). Denormal operands are treated as
zeros, therefore they never cause underflows. For fixed-point results, the
DSP sets MU and the MUS bit in the STKYx/y register if the result of the
multiplier operation is:

• Twos-complement, fractional: with upper 48 bits all zeros or all
ones, lower 32 bits not all zeros

• Unsigned, fractional: with upper 48 bits all zeros, lower 32 bits
not all zeros

If the multiplier operation directs a fixed-point, fractional result to an MR
register, the DSP places the underflowed portion of the result in MR0.

9 MI Multiplier Floating-Point Invalid Operation. Indicates if the last multi-
plier operation’s input was invalid (if set, = 1) or valid (if cleared, = 0).
The multiplier updates MI for floating-point multiplier operations. The
DSP sets MI and the MIS bit in the STKYx/y register if the ALU operation:

• Receives a NAN input operand
• Receives an Infinity and zero as input operands

10 AF ALU Floating-Point Operation. Indicates if the last ALU operation was
floating-point (if set, = 1) or fixed-point (if cleared, = 0). The ALU updates
AF for all fixed-point and floating-point ALU operations.

11 SV Shifter Overflow. Indicates if the last shifter operation’s result overflowed
(if set, = 1) or did not overflow (if cleared, = 0). The shifter updates SV for
all shifter operations. The DSP sets SV if the shifter operation:

• Shifts the significant bits to the left of the 32-bit fixed-point field
• Tests, sets, or clears a bit outside of the 32-bit fixed-point field
• Extracts a field that is past or crosses the left edge of the 32-bit

fixed-point field
• Performs a LEFTZ or LEFTO operation that returns a result of 32

12 SZ Shifter Zero. Indicates if the last shifter operation’s result was zero
(if set, = 1) or non-zero (if cleared, = 0). The shifter updates SZ for all
shifter operations. The DSP also sets SZ if the shifter operation performs a
bit test on a bit outside of the 32-bit fixed-point field.

Table A-4. ASTATx and ASTATy Register Bit Descriptions (Cont’d)

Bits Name Definition

ADSP-2126x SHARC DSP Core Manual A-17

Registers

Sticky Status Registers (STKYx and STKYy)
These are non-memory-mapped, universal, system registers (Ureg and
Sreg). The reset value for these registers is 0x0540 0000. Each processing
element has its own STKY register. The STKYx register indicates status for
PEx operations and some program sequencer stacks. The STKYy register
only indicates status for PEy operations. Table A-6 lists bits for both the
STKYx and STKYy registers.

STKY bits do not clear themselves after the condition they flag is no
longer true. They remain “sticky” until cleared by the program.

The DSP sets a STKY bit in response to a condition. For example, the DSP
sets the AUS bit in the STKY register when an ALU underflow set AZ in the
ASTAT register. The DSP clears AZ if the next ALU operation does not
cause an underflow. The AUS bit remains set until a program clears the

13 SS Shifter Input Sign. Indicates if the last shifter operation’s input was nega-
tive (if set, = 1) or positive (if cleared, = 0). The shifter updates SS for all
shifter operations.

17–14 Reserved

18 BTF Bit Test Flag for System Registers. Indicates if the System register bit is
true (if set, = 1) or false (if cleared, = 0). The DSP sets BTF when the bit(s)
in a System register and value in the Bit Tst instruction match. The DSP
also sets BTF when the bit(s) in a System register and value in the Bit Xor
instruction match.

23–19 Reserved

31–24 CACC Compare Accumulation Shift Register. Bit 31 of CACC indicates which
operand was greater during the last ALU compare operation: X input (if set,
= 1) or Y input (if cleared, = 0). The other seven bits in CACC form a
right-shift register, each storing a previous compare accumulation result.
With each new compare, the DSP right shifts the values of CACC, storing
the newest value in bit 31 and the oldest value in bit 24.

Table A-4. ASTATx and ASTATy Register Bit Descriptions (Cont’d)

Bits Name Definition

Control and Status System Registers

A-18 ADSP-2126x SHARC DSP Core Manual

STKY bit. Interrupt Service Routines (ISRs) must clear their interrupt’s
corresponding STKY bit so the DSP can detect a reoccurrence of the condi-
tion. For example, an ISR for a floating-point underflow exception
interrupt (FLTUI) clears the AUS bit in the STKY register near the beginning
of the routine.

Figure A-7. STKYx Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCEM

SSOV

LSOV
Loop Stack Overflow (Read-only)

Status Stack Overflow (Read-only)

PC Stack Empty (Read-only)
Not Sticky, cleared by push

Multiplier Floating-point Invalid Operation
MIS

Multiplier Floating-point Underflow
MUS

U64MA

IIRA

CB15S

CB7s
DAG1 Circular Buffer 7
Overflow

DAG2 Circular Buffer 15
Overflow

Illegal IOP register Access
1=Illeagle Access Occurred
0=No Illegal Access

Unaligned 64-bit Memory
Access
1=Unaligned Access Occurred
0=No Access Occurred

AOS

ALU Floating-point
Overflow

AUS

AVS

ALU Floating-point
Overflow

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

LSEM
Loop Stack Empty Read-only

Reserved

PCFL
PC Stack Full (Read-only)
Not Sticky, cleared by pop

SSEM
Status Stack Empty (Read-only)

ALU Fixed-point
Overflow

AIS

ALU Floating-point Invalid Operation

Multiplier Floating-point Overflow
MVS

Reserved

ReservedMultiplier Fixed-point Overflow
MOS

STKYx

ADSP-2126x SHARC DSP Core Manual A-19

Registers

Figure A-8. STKYy Register

Table A-5. STKYx and STKYy Registers Bit Descriptions

Bits Name Definition: √ shows bits in both STKYx/y; × shows bits in STKYx only

0 AUS ALU Floating-Point Underflow. A sticky indicator for the ALU
AS bit. For more information, see “AZ” on page A-14.

√

1 AVS ALU Floating-Point Overflow. A sticky indicator for the ALU AV
bit. For more information, see “AV” on page A-14.

√

2 AOS ALU Fixed-Point Overflow. A sticky indicator for the ALU AV
bit. For more information, see “AV” on page A-14.

√

4–3 Reserved

5 AIS ALU Floating-Point Invalid Operation. A sticky indicator for the
ALU AI bit. For more information, see “AI” on page A-15.

√

6 MOS Multiplier Fixed-Point Overflow. A sticky indicator for the multi-
plier MV bit. For more information, see “MV” on page A-15.

√

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Multiplier Floating-point
Invalid Operation

MIS

Multiplier Floating-point Underflow

MUS

AOS

ALU Floating-point
Overflow

AUS

AVS

ALU Fixed-point
Overflow

AIS

ALU Floating-point
Invalid Operation

Multiplier Floating-point Overflow

MVS

Reserved

Reserved

Multiplier Fixed-point Overflow

MOS

ALU Floating-point
Overflow

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

STKYy

Control and Status System Registers

A-20 ADSP-2126x SHARC DSP Core Manual

7 MVS Multiplier Floating-Point Overflow. A sticky indicator for the
multiplier MV bit. For more information, see “MV” on
page A-15.

√

8 MUS Multiplier Floating-Point Underflow. A sticky indicator for the
multiplier MU bit. For more information, see “MU” on
page A-16.

√

9 MIS Multiplier Floating-Point Invalid Operation. A sticky indicator
for the multiplier MI bit. For more information, see “MI” on
page A-16.

√

16–10 Reserved

17 CB7S DAG1 Circular Buffer 7 Overflow. Indicates if a circular buffer
being addressed with DAG1 register I7 has overflowed (if set, = 1)
or has not overflowed (if cleared, = 0). A circular buffer overflow
occurs when DAG circular buffering operation increments the I
register past the end of buffer.

×

18 CB15S DAG2 Circular Buffer 15 Overflow. Indicates if a circular buffer
being addressed with DAG2 register I15 has overflowed (if set, =
1) or has not overflowed (if cleared, = 0). A circular buffer over-
flow occurs when DAG circular buffering operation increments
the I register past the end of buffer.

×

19 IIRA Illegal IOP Register Access. Indicates if set (= 1) if a core, host, or
multiprocessor access to I/O processor registers has occurred or
has not occurred (if 0).

×

20 U64MA Unaligned 64-bit Memory Access. Indicates if set (= 1) if a Nor-
mal word access with the LW mnemonic addressing an uneven
memory address has occurred or has not occurred (if 0).

×

21 PCFL PC Stack Full. Indicates if the PC stack is full (if 1) or not full (if
0)—Not a sticky bit, cleared by a Pop.

×

22 PCEM PC Stack Empty. Indicates if the PC stack is empty (if 1) or not
empty (if 0)—Not sticky, cleared by a Push.

×

23 SSOV Status Stack Overflow. Indicates if the status stack is overflowed
(if 1) or not overflowed (if 0)—sticky bit.

×

Table A-5. STKYx and STKYy Registers Bit Descriptions (Cont’d)

Bits Name Definition: √ shows bits in both STKYx/y; × shows bits in STKYx only

ADSP-2126x SHARC DSP Core Manual A-21

Registers

User-Defined Status Registers (USTATx)
These are non-memory-mapped, universal, system registers (Ureg and
Sreg). The reset value for these registers is 0x0000 0000. The USTATx reg-
isters are user-defined, general-purpose status registers. Programs can use
these 32-bit registers with bit-wise instructions (SET, CLEAR, TEST, and oth-
ers). Often, programs use these registers for low overhead, general-purpose
flags or for temporary 32-bit storage of data.

Processing Element Registers
Except for the PX register, the DSP’s Processing Element registers store
data for each element’s ALU, multiplier, and shifter. The inputs and out-
puts for processing element operations go through these registers. The PX
register lets programs transfer data between the data buses, but cannot be
an input or output in a calculation.

24 SSEM Status Stack Empty. Indicates if the status stack is empty (if 1) or
not empty (if 0)—not sticky, cleared by a Push.

×

25 LSOV Loop Stack Overflow. Indicates if the loop counter stack and loop
stack are overflowed (if 1) or not overflowed (if 0)—sticky bit.

×

26 LSEM Loop Stack Empty. Indicates if the loop counter stack and loop
stack are empty (if 1) or not empty (if 0)—not sticky, cleared by a
Push.

×

31–27 Reserved

Table A-5. STKYx and STKYy Registers Bit Descriptions (Cont’d)

Bits Name Definition: √ shows bits in both STKYx/y; × shows bits in STKYx only

Processing Element Registers

A-22 ADSP-2126x SHARC DSP Core Manual

Data File Data Registers (Rx, Fx, Sx)
The Data File Data registers are non memory-mapped, universal, data reg-
isters (Ureg and Dreg). Each of the DSP’s processing elements has a data
register file—a set of 40-bit data registers that transfer data between the
data buses and the computation units. These registers also provide local
storage for operands and results.

The R, F, and S prefixes on register names do not effect the 32-bit or
40-bit data transfer; the naming convention determines how the ALU,
multiplier, and shifter treat the data and determines which processing ele-
ment’s data registers are being used. For more information on how to use
these registers, see “Data Register File” on page 2-37.

Multiplier Results Registers (MRFx, MRBx)
The MRFx and MRBx registers are non memory-mapped, universal, data reg-
isters (Ureg and Dreg). Each of the DSP’s multipliers has a primary or
foreground (MRF) register and alternate or background (MRB) results regis-
ter. Fixed-point operations place 80-bit results in the multiplier’s
foreground MRF register or background MRB register, depending on which is
active. For more information on selecting the Result register, see “Alter-
nate (Secondary) Data Registers” on page 2-39. For more information on
result register fields, see “Data Register File” on page 2-37.

Table A-6. Processing Element Registers

Register Name and Page Reference Initialization After Reset

“Data File Data Registers (Rx, Fx, Sx)” on page A-22 Undefined

“Multiplier Results Registers (MRFx, MRBx)” on page A-22 Undefined

“Program Memory Bus Exchange Register (PX)” on page A-23 Undefined

ADSP-2126x SHARC DSP Core Manual A-23

Registers

Program Memory Bus Exchange Register (PX)
The PX register is a non-memory-mapped, universal registers (Ureg only).
The PM Bus Exchange (PX) register permits data to flow between the PM
and DM data buses. The PX register can work as one 64-bit register or as
two 32-bit registers (PX1 and PX2). The PX1 register is the lower 32 bits of
the PX register and PX2 is the upper 32 bits of PX. See the section “Internal
Data Bus Exchange” on page 5-7 for more information about the PX
register.

Figure A-9. MRFx and MRBx Registers

MV SET

Integer Multiplier Fixed-point Result Placement

0316379

INTEGER RESULTINTEGER RESULTOVERFLOW

MR2 MR1 MR0

UREG ZEROS

8 BITS32 BITS

REGISTER FILE
PLACEMENT

MRF OR MRB
PLACEMENT

BINARY POINT

INTEGER RESULTOVERFLOW (IS LOST)

UREG ZEROS

T

32 BITS

0316379

FRACTIONAL RESULTOVERFLOW

MR2 MR1 MR0

Fractional Multiplier Fixed-point Result Placement

MRF OR MRB
PLACEMENT

REGISTER FILE
PLACEMENT

FRACTIONAL RESULT UNDERFLOW (IS LOST)

BINARY POINT

FRACTIONAL RESULT

MV SET
8 BITS

Program Sequencer Registers

A-24 ADSP-2126x SHARC DSP Core Manual

Program Sequencer Registers
The DSP’s program sequencer registers direct the execution of instruc-
tions. These registers include support for the:

• Instruction pipeline

• Program and loop stacks

• Timer

• Interrupt mask and latch

Table A-7. Program Sequencer Registers

Register Initialization After Reset

“Interrupt Latch Register (IRPTL)” on page A-25 0x0000 0000 (cleared)

“Interrupt Mask Register (IMASK)” on page A-30 0x0000 0003

“Interrupt Mask Pointer Register (IMASKP)” on page A-35 0x0000 0000 (cleared)

“Interrupt Register (LIRPTL)” on page A-42 0x0000 0000 (cleared)

Table A-8. Program Counter Registers

Register Initialization After Reset

“Program Counter Register (PC)” on page A-47 Undefined

“Program Counter Stack Register (PCSTK)” on page A-48 Undefined

“Program Counter Stack Pointer Register (PCSTKP)” on
page A-48

Undefined

“Fetch Address Register (FADDR)” on page A-48 Undefined

“Decode Address Register (DADDR)” on page A-48 Undefined

“Loop Address Stack Register (LADDR)” on page A-49 Undefined

“Current Loop Counter Register (CURLCNTR)” on page A-49 Undefined

“Loop Counter Register (LCNTR)” on page A-49 Undefined

ADSP-2126x SHARC DSP Core Manual A-25

Registers

Interrupt Latch Register (IRPTL)
The IRPTL register is a non memory-mapped, universal, system register
(Ureg and Sreg). The reset value for this register is 0x0000 0000. The
IRPTL register indicates latch status for interrupts. Figure A-10 and
Table A-9 provide bit definitions for the IRPTL register.

“Timer Period Register (TPERIOD)” on page A-50 Undefined

“Timer Count Register (TCOUNT)” on page A-50 Undefined

Table A-8. Program Counter Registers (Cont’d)

Register Initialization After Reset

Program Sequencer Registers

A-26 ADSP-2126x SHARC DSP Core Manual

Figure A-10. IRPTL Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

SOVFI

EMUI
SP3I
SPORT 3
Interrupt (0x3C)

Stack Full/Overflow (0x80)

Reset (intvector address 0x04)

IICDI

Emulator Interrupt
(intvector address 0x40)SP1I

SPORT 1
Interrupt (0x38)
GPTMR01
General-purpose IOP Timer 0
Interrupt (0x34)
SPIHI
SPI Transmit or Receive Interrupt (0x30

DAIHI
DAI High Priority Interrupt (0x2C)

IRQ0I
IRQ0_I Hardware Interrupt (0x28)

IRQ1_I Hardware Interrupt (0x24)
IRQ1I

RSTI

Illegal Input Condition
Detected (0x08)

TMZHI
Timer Expired
High Priority (0x10)
Reserved

Hardware Breakpoint
Interrupt (0x18)

IRQ2_I Hardware Interrupt (0x20)
IRQ2I

BKPI

IRPTL (Bits 15-0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

TMZLI

SP5I
SFT3I
User Software
Interrupt 3 (0xA4)

Timer Expired (Low Priority)
(0x80)

DAG1 Circular Buffer 7I
Overflow 0x78
CB15I

Sport5 Interrupt (0x40)

SFT2I
User Software Interrupt 2 (0xA0)

SFT1I
User Software Interrupt 1 (0x9C)

SFT0I
User Software Interrupt 0 (0x98)

EMULI
Emulator Interrupt (0x94)

FLTII
Floating-point Invalid Operation (0x90)

Floating-point Underflow (0x8C)
FLTUI

CB7I

DAG1 Circular Buffer 15
Overflow (0x7C)

FIXI
Fixed-point Overflow (0x80)

FLTOI
Floating-point Overflow (0x80)

IRPTL (Bits 31-16)

ADSP-2126x SHARC DSP Core Manual A-27

Registers

Table A-9. IRPTL Register Bit Descriptions

Bits Name Definition

0 EMUI Emulator Interrupt. Indicates if an EMUI is latched and is pending
(if set, = 1) or no EMUI is pending (if cleared, = 0). An EMUI occurs
on reset and when an external device asserts the EMU pin.

1 RSTI Reset Interrupt. Indicates if an RSTI is latched and is pending (if set,
= 1) or no RSTI is pending (if cleared, = 0). An RSTI occurs on reset
as an external device asserts the RESET pin.

2 IICDI Illegal Input Condition Detected Interrupt. Indicates if an IICDI is
latched and is pending (if set, = 1) or no IICDI is pending (if cleared,
= 0). An IICDI occurs when a TRUE results from the logical Or’ing
of the Illegal I/O Processor Register Access (IIRA) and Unaligned
64-bit Memory Access bits in the STKYx registers.

3 SOVFI Stack Overflow/Full Interrupt. Indicates if a SOVFI is latched and is
pending (if set, = 1) or no SOVFI is pending (if cleared, = 0). An
SOVFI occurs when a stack in the program sequencer overflows or is
full. For more information, see “PCFL” on page A-20, SSOV bit
“SSOV” on page A-20, and “LSOV” on page A-21.

4 TMZHI Timer Expired High Priority. Indicates if a TMZHI is latched and is
pending (if set, = 1) or TMZHI is not pending (if cleared, = 0). A
TMZHI occurs when the timer decrements to zero. Note that this
event also triggers a TMZLI. The timer operations are controlled as
follows:

• The TCOUNT register contains the timer counter. The
timer decrements the TCOUNT register each clock cycle.

• The TPERIOD value specifies the frequency of timer inter-
rupts. The number of cycles between interrupts is TPE-

RIOD + 1. The maximum value of TPERIOD is 232 – 1.
• The TIMEN bit in the MODE2 register starts and stops the

timer.
Since the timer expired event (TCOUNT decrements to zero) gener-
ates two interrupts, TMZHI and TMZLI, programs should unmask
the timer interrupt with the desired priority and leave the other one
masked.

5 Reserved

6 BKPI Hardware Breakpoint Interrupt. Indicates if an BKPI is latched and
is pending (if set, = 1) or no BKPI is pending (if cleared, = 0).

Program Sequencer Registers

A-28 ADSP-2126x SHARC DSP Core Manual

7 Reserved

8 IRQ2I IRQ2 Hardware Interrupt. Indicates if an IRQ2I is latched and is
pending (if set, = 1) or no IRQ2I is pending (if cleared, = 0). An
IRQ2I occurs when an external device asserts the FLG2 pin config-
ured as IRQ2.

9 IRQ1I IRQ1 Hardware Interrupt. Indicates if an IRQ1I is latched and is
pending (if set, = 1) or no IRQ1I is pending (if cleared, = 0). An
IRQ1I occurs when an external device asserts the FLG1 pin config-
ured as IRQ1.

10 IRQ0I IRQ0 Hardware Interrupt. Indicates if an IRQ0I is latched and is
pending (if set, = 1) or no IRQ0I is pending (if cleared, = 0). An
IRQ0I occurs when an external device asserts the FLG0 pin config-
ured as IRQ0.

11 DAIHI DAI High Priority Interrupt. Indicates if a DAI interrupt is latched
and is pending (if set, = 1) or no DAI interrupt is pending (if cleared,
= 0). This is the higher priority option.

12 SPIHI SPI Transmit or Receive Interrupt. Indicates if a SPIHI is latched
and is pending (if set, = 1) or no SPIHI is pending (if cleared, = 0).
This is the higher priority option.

13 GPTMR0I General-Purpose IOP Timer 0 Interrupt. Indicates if a GPTMR0I is
latched and is pending (if set, = 1) or no GPTMR0I is pending (if
cleared, = 0).

14 SP1I SPORT 1 Interrupt. Indicates if an SP1I interrupt is latched and is
pending (if set, = 1), or no SP1I is pending (if cleared, = 0). An SP1I
interrupt occurs two cycles after the last bit of an input/output serial
word is latched into/from RXSP1A/TXSP1A, RXSP1B/TXSP1B.

15 SP3I SPORT 3 Interrupt. Indicates if an SP3I interrupt is latched and is
pending (if set, = 1), or no SP3I is pending (if cleared, = 0). An SP3I
interrupt occurs two cycles after the last bit of an input/output serial
word is latched into/from RXSP3A/TXSP3A, RXSP3B/TXSP3B.

16 SP5I SPORT 5 Interrupt. Indicates if an SP5I interrupt is latched and is
pending (if set, = 1), or no SP5I is pending (if cleared, = 0). An SP5I
interrupt occurs two cycles after the last bit of an input/output serial
word is latched into/from RXSP5A/TXSP5A, RXSP5B/TXSP5B.

Table A-9. IRPTL Register Bit Descriptions (Cont’d)

Bits Name Definition

ADSP-2126x SHARC DSP Core Manual A-29

Registers

19–17 Reserved

20 CB7I DAG1 Circular Buffer 7 Overflow Interrupt. Indicates if a CB7I is
latched and is pending (if set, = 1) or no CB7I interrupt is pending (if
cleared, = 0). A circular buffer overflow occurs when the DAG circu-
lar buffering operation increments the I register past the end of the
buffer. For more information, see “CB7S” on page A-20.

21 CB15I DAG2 Circular Buffer 15 Overflow Interrupt. Indicates if a CB15I
is latched and is pending (if set, = 1) or no CB15I is pending (if
cleared, = 0). A circular buffer overflow occurs when the DAG circu-
lar buffering operation increments the I register past the end of the
buffer. For more information, see “CB15S” on page A-20.

22 TMZLI Timer Expired (Low Priority) Interrupt. Indicates if a TMZLI is
latched and is pending (if set, = 1) or no TMZLI is pending (if
cleared, = 0). For more information, see “TMZHI” on page A-27.

23 FIXI Fixed-Point Overflow Interrupt. Indicates if a FIXI is latched and is
pending (if set, = 1) or no FIXI is pending (if cleared, = 0). For more
information, see “AOS” on page A-19.

24 FLTOI Floating-Point Overflow Interrupt. Indicates if a FLTOI is latched
and is pending (if set, = 1) or no FLTOI is pending (if cleared, = 0).

25 FLTUI Floating-Point Underflow Interrupt. Indicates if a FLTUI is latched
and is pending (if set, = 1) or no FLTUI is pending (if cleared, = 0).

26 FLTII Floating-Point Invalid Operation Interrupt. This bit
indicates if a FLTII is latched and is pending (if set, = 1) or no FLTII
is pending (if cleared, = 0). For more information, see “AIS” on
page A-19.

27 EMULI Emulator (Lower Priority) Interrupt. Indicates if an EMUI is latched
and is pending (if set, = 1) or no EMULI is pending (if cleared, = 0).
An EMULI occurs on reset and when an external device asserts the
EMU pin. This interrupt has a lower priority than EMUI, but higher
priority than software interrupts.

28 SFT0I User Software Interrupt 0. Indicates if a SFT0I is latched and is
pending (if set, = 1) or no SFT0I is pending (if cleared, = 0). An
SFT0I occurs when a program sets (= 1) this bit.

Table A-9. IRPTL Register Bit Descriptions (Cont’d)

Bits Name Definition

Program Sequencer Registers

A-30 ADSP-2126x SHARC DSP Core Manual

Interrupt Mask Register (IMASK)
The IMASK register is a non-memory-mapped, universal, system register
(Ureg and Sreg). The reset value for this register is 0x0000 0003. Each bit
in the IMASK register corresponds to a bit with the same name in the IRPTL
registers. The bits in IMASK unmask (enable if set, = 1) or mask (disable if
cleared, = 0) the interrupts that are latched in the IRPTL register. Except
for RSTI and EMUI, all interrupts are maskable.

When IMASK masks an interrupt, the masking disables the DSP’s response
to the interrupt. The IRPTL register still latches an interrupt even when
masked, and the DSP responds to that latched interrupt if it is later
unmasked. Table A-10 and Figure A-11 provide bit definitions for the
IMASK register.

29 SFT1I User Software Interrupt 1. Indicates if a SFT1I is latched and is
pending (if set, = 1) or no SFT1I is pending (if cleared, = 0). For
details, see SFT0I bit description.

30 SFT2I User Software Interrupt 2. Indicates if a SFT2I is latched and is
pending (if set, = 1) or no SFT2I is pending (if cleared, = 0). For
details, see SFT0I bit description.

31 SFT3I User Software Interrupt 3. Indicates if a SFT3I is latched and is
pending (if set, = 1) or no SFT3I is pending (if cleared, = 0). For
details, see SFT0I bit description.

Table A-9. IRPTL Register Bit Descriptions (Cont’d)

Bits Name Definition

ADSP-2126x SHARC DSP Core Manual A-31

Registers

Figure A-11. IMASK Register (Upper Bits)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

TMZLI

SP5i
SFT3I

User Software
Interrupt 3 (0xA4

Timer Expired (Low Priority)
(0x80)

DAG1 Circular Buffer 15
Overflow 0x78

CB15I

Sport5 Interrupt (0x40)

SFT2I

User Software
Interrupt 2 (0xA0

SFT1I

User Software
Interrupt 1 (0x9C

SFT0I

User Software Interrupt 0 (0x98

EMULI

Emulator Interrupt (0x94)

FLTII

Floating-point Invalid Operation (0x90)

Floating-point Underflow (0x8C)

FLTUI

CB7I

DAG1 Circular Buffer 15
Overflow 0x7C

FIXI

Fixed-point Overflow (0x84)

FLTOI

Floating-point Overflow
(0x88)

IMASK (Bits 31-16)

Program Sequencer Registers

A-32 ADSP-2126x SHARC DSP Core Manual

Figure A-12. IMASK Register (Lower Bits)

Table A-10. IMASK Register Bit Descriptions

Bits Name Definition

0 EMUI Emulator Interrupt. This bit is set to 1 (unmasked). An EMUI occurs
on reset and when an external device asserts the EMU pin.

1 RSTI Reset Interrupt. This bit is set to 1 (unmasked). An RSTI occurs on
reset as an external device asserts the RESET pin.

2 IICDI Illegal Input Condition Detected Interrupt. Unmasks the IICDI inter-
rupt (if set, = 1) or masks (if cleared, = 0). An IICDI occurs when a
TRUE results from the logical ORing of the Illegal I/O Processor Regis-
ter Access (IIRA) and Unaligned 64-bit Memory Access bits in the
STKYx registers.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Reserved

SOVFI

EMUISP3I

SPORT 3
Interrupt (0x3C)

Stack Full/Overflow
(0x0C)

Reset
(Int vector address 0x04)

IICDI

Emulator Interrupt
(Int vector address 0x00)

SP1I

SPORT 1 Interrupt (0x38)

GPTMR01

General-purpose IOP Timer 0
Interrupt (0x34)

SPIHI

SPI Transmit or Receive Interrupt (0x30)

DAIHI

DAI High Priority Interrupt (0x2C)

IRQ0I

IRQ0_I Hardware Interrupt (0x28)

IRQ1_I Hardware Interrupt (0x24)

IRQ1I

RSTI

Illegal Input Condition
Detected (0x08)

TMZHI

Timer Expired
High Priority (0x10)
Reserved

Hardware Breakpoint
Interrupt (0x18)

IRQ2_I Hardware Interrupt (0x20)

IRQ2I

BKPI

IMASK (Bits 15-0)

ADSP-2126x SHARC DSP Core Manual A-33

Registers

3 SOVFI Stack Overflow/Full Interrupt. Unmasks the SOVFI interrupt
(if set, = 1) or masks the SOVFI interrupt (if cleared, = 0). An SOVFI
occurs when a stack in the program sequencer overflows or is full. For
more information, see “PCFL” on page A-20, SSOV bit “SSOV” on
page A-20, and “LSOV” on page A-21.

4 TMZHI Timer Expired High Priority. Unmasks the TMZHI interrupt (if set, =
1) or masks the TMZHI interrupt (if cleared, = 0). A TMZHI occurs
when the timer decrements to zero. Note that this event also triggers a
TMZLI. The timer operations are controlled as follows:

• The TCOUNT register contains the timer counter. The timer
decrements the TCOUNT register each clock cycle.

• The TPERIOD value specifies the frequency of timer inter-
rupts. The number of cycles between interrupts is

TPERIOD + 1. The maximum value of TPERIOD is 232 – 1.
• The TIMEN bit in the MODE2 register starts and stops the

timer.
Since the timer expired event (TCOUNT decrements to zero) generates
two interrupts, TMZHI and TMZLI, programs should unmask the
timer interrupt with the desired priority and leave the other one
masked.

5 Reserved

6 BKPI Hardware Breakpoint Interrupt. Unmasks the BKPI interrupt
(if set, = 1) or masks the BKPI interrupt (if cleared, = 0).

7 Reserved

8 IRQ2I IRQ2 Hardware Interrupt. Unmasks the IRQ2I interrupt (if set, = 1)
or masks the interrupt (if cleared, = 0). An IRQ2I occurs when an
external device asserts the FLG2 pin configured as IRQ2.

9 IRQ1I IRQ1 Hardware Interrupt. Unmasks the IRQ1I interrupt (if set, = 1)
or masks the IRQ1I interrupt (if cleared, = 0). An IRQ1I occurs when
an external device asserts the FLG1 pin configured as IRQ1.

10 IRQ0I IRQ0 Hardware Interrupt. Unmasks the IRQ0I interrupt (if set, = 1)
or masks the IRQ0I interrupt (if cleared, = 0). An IRQ0I occurs when
an external device asserts the FLG0 pin configured as IRQ0.

Table A-10. IMASK Register Bit Descriptions (Cont’d)

Bits Name Definition

Program Sequencer Registers

A-34 ADSP-2126x SHARC DSP Core Manual

11 DAIHI DAI High Priority Interrupt. Unmasks the DAIHI interrupt
(if set, = 1) or masks the DAIHI interrupt (if cleared, = 0). This is the
higher priority option.

12 SPIHI SPI Transmit or Receive Interrupt. Unmasks the SPIHI interrupt (if
set, = 1) or masks the SPIHI interrupt (if cleared, = 0). This is the
higher priority option.

13 GPTMR0I General-Purpose IOP Timer 0 Interrupt. Unmasks the GPTMR0I
interrupt (if set, = 1) or masks the GPTMR0I interrupt (if cleared, = 0).

14 SP1I SPORT 1 Interrupt. Unmasks the SP1I interrupt (if set, = 1) or masks
the SP1I interrupt (if cleared, = 0). An SP1I interrupt occurs two cycles
after the last bit of an input/output serial word is latched into/from
RXSP1A/TXSP1A, or RXSP1B/TXSP1B.

15 SP3I SPORT 3 Interrupt. Unmasks the SP3I interrupt (if set, = 1) or masks
the SP3I interrupt (if cleared, = 0). An SP3I interrupt occurs two cycles
after the last bit of an input/output serial word is latched into/from
RXSP3A/TXSP3A, or RXSP3B/TXSP3B.

16 SP5I SPORT 5 Interrupt. Unmasks the SP5I interrupt (if set, = 1) or masks
the SP5I interrupt (if cleared, = 0). An SP5I interrupt occurs two cycles
after the last bit of an input/output serial word is latched into/from
RXSP5A/TXSP5A, or RXSP5B/TXSP5B.

19–17 Reserved

20 CB7I DAG1 Circular Buffer 7 Overflow Interrupt. Unmasks the CB7I inter-
rupt (if set, = 1) or masks the CB7I interrupt (if cleared, = 0). A circular
buffer overflow occurs when the DAG circular buffering operation
increments the I register past the end of the buffer. For more informa-
tion, see “CB7S” on page A-20.

21 CB15I DAG2 Circular Buffer 15 Overflow Interrupt. Unmasks the CB15I
interrupt (if set, = 1) or masks the CB15I interrupt (if cleared, = 0). A
circular buffer overflow occurs when the DAG circular buffering opera-
tion increments the I register past the end of the buffer. For more infor-
mation, see “CB15S” on page A-20.

22 TMZLI Timer Expired (Low Priority) Interrupt. Unmasks the TMZLI inter-
rupt (if set, = 1) or masks the TMZLI interrupt (if cleared, = 0). For
more information, see “TMZHI” on page A-27.

Table A-10. IMASK Register Bit Descriptions (Cont’d)

Bits Name Definition

ADSP-2126x SHARC DSP Core Manual A-35

Registers

Interrupt Mask Pointer Register (IMASKP)
The IMASKP register is a non-memory-mapped, universal, system register
(Ureg and Sreg). The reset value for this register is 0x0000 0000. Each bit
in the IMASKP register corresponds to a bit with the same name in the
IRPTL registers. The IMASKP register field descriptions are described in
Figure A-11, Figure A-12, and Table A-10.

23 FIXI Fixed-Point Overflow Interrupt. Unmasks the FIXI interrupt (if set, =
1) or masks the FIXI interrupt (if cleared, = 0). For more information,
see “AOS” on page A-19.

24 FLTOI Floating-Point Overflow Interrupt. Unmasks the FLTOI interrupt (if
set, = 1) or masks the FLTOI interrupt (if cleared, = 0).

25 FLTUI Floating-Point Underflow Interrupt. Unmasks the FLTUI interrupt (if
set, = 1) or masks the FLTUI interrupt (if cleared, = 0).

26 FLTII Floating-Point Invalid Operation Interrupt. Unmasks the FLTII inter-
rupt (if set, = 1) or masks the FLTII interrupt (if cleared, = 0). For
more information, see “AIS” on page A-19.

27 EMULI Emulator (Lower Priority) Interrupt. Unmasks the EMULI interrupt
(if set, = 1) or masks the EMULI interrupt (if cleared, = 0). An EMULI
occurs on reset and when an external device asserts the EMU pin.
This interrupt has a lower priority than EMUI, but higher
priority than software interrupts.

28 SFT0I User Software Interrupt 0. Unmasks the SFT0I interrupt (if set, = 1) or
masks the SFT0I interrupt (if cleared, = 0). An SFT0I occurs when a
program sets (= 1) this bit.

29 SFT1I User Software Interrupt 1. Unmasks the SFT1I interrupt (if set, = 1) or
masks the SFT1I interrupt (if cleared, = 0).

30 SFT2I User Software Interrupt 2. Unmasks the SFT2I interrupt (if set, = 1) or
masks the SFT2I interrupt (if cleared, = 0).

31 SFT3I User Software Interrupt 3. Unmasks the SFT3I interrupt (if set, = 1) or
masks the SFT3I interrupt (if cleared, = 0).

Table A-10. IMASK Register Bit Descriptions (Cont’d)

Bits Name Definition

Program Sequencer Registers

A-36 ADSP-2126x SHARC DSP Core Manual

This register supports an interrupt nesting scheme that lets higher priority
events interrupt an ISR and keeps lower priority events from interrupting.

When interrupt nesting is enabled, the bits in the IMASKP register mask
interrupts having lower priority than the interrupt that is currently being
serviced. Other bits in this register unmask interrupts having higher prior-
ity than the interrupt that is currently being serviced. Interrupt nesting is
enabled using NESTM in the MODE1 register. The IRPTL register latches a
lower priority interrupt even when masked, and the DSP responds to that
latched interrupt if it is later unmasked.

When interrupt nesting is disabled (NESTM = 0 in the MODE1 register), the
bits in the IMASKP register mask all interrupts while an interrupt is cur-
rently being serviced. The IRPTL register still latches these interrupts even
when masked, and the DSP responds to the highest priority latched inter-
rupt after servicing the current interrupt. For more information, see
“NESTM” on page A-6.

ADSP-2126x SHARC DSP Core Manual A-37

Registers

Figure A-13. IMASKP Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

SOVFI

EMUISP3I
SPORT 3 Interrupt (0x3C)

Stack Full/Overflow (0x80)

Reset
(Int vector address 0x04)
IICDI

Emulator Interrupt
(int vector address 0x40)SP1I

SPORT 1 Interrupt (0x38)
GPTMR01
General-purpose IOP Timer 0
Interrupt (0x34)
SPIHI
SPI Transmit or Receive Interrupt (0x30)

DAIHI
DAI High Priority Interrupt (0x2C)
IRQ0I
IRQ0_I Hardware Interrupt (0x28)

IRQ1_I Hardware Interrupt(0x24)
IRQ1I

RSTI

Illegal Input Condition
Detected (0x08)

TMZHI
Timer Expired
High Priority (0x10)
Reserved

Hardware Breakpoint
Interrupt (0x18)IRQ2_I Hardware Interrupt (0x20)

IRQ2I
BKPI

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

TMZLI

SP5i
SFT3I
User Software
Interrupt 3 (0xA4)

Timer Expired (Low
Priority)(0x80)

DAG1 Circular Buffer
15 Overflow (0x7B)

CB15I

Sport5 Interrupt
(0x40)

SFT2I
User Software
Interrupt 2 (0xA0)

SFT1I
User Software
Interrupt 1 (0x9C)

SFT0I
User Software
Interrupt 0 (0x98)

EMULI
Emulator Interrupt (0x94)

FLTII
Floating-point Invalid Operation (0x90)

Floating-point Underflow (0x8C)
FLTUI

CB7I

DAG1 Circular Buffer 15
Overflow (0x7C)

FIXI
Fixed-point Overflow
(0x80)
FLTOI
Floating-point Overflow
(0x80)

IMASKP (Bits 31-16)

Program Sequencer Registers

A-38 ADSP-2126x SHARC DSP Core Manual

Table A-11. IMASKP Register Bit Descriptions

Bits Name Definition

0 EMUI Emulator Interrupt. When the DSP is servicing another interrupt, this
bit indicates if the EMUI interrupt is unmasked (if set, = 1) or masked
(if cleared, = 0). An EMUI occurs on reset and when an external device
asserts the EMU pin.

1 RSTI Reset Interrupt. When the DSP is servicing another interrupt, this bit
indicates if the RSTI interrupt is unmasked (if set, = 1) or masked (if
cleared, = 0). An RSTI occurs on reset as an external device asserts the
RESET pin.

2 IICDI Illegal Input Condition Detected Interrupt. When the DSP is servicing
another interrupt, this bit indicates if the IICDI interrupt is unmasked
(if set, = 1) or masked (if cleared, = 0). An IICDI occurs when a TRUE
results from the logical ORing of the Illegal I/O Processor Register
Access (IIRA) and Unaligned 64-bit Memory Access bits in the STKYx
registers.

3 SOVFI Stack Overflow/Full Interrupt. When the DSP is servicing another
interrupt, this bit indicates if the SOVFI interrupt is unmasked (if set, =
1) or masked (if cleared, = 0). A SOVFI occurs when a stack in the pro-
gram sequencer overflows or is full. For more information, see “PCFL”
on page A-20, SSOV bit “SSOV” on page A-20, and “LSOV” on
page A-21.

4 TMZHI Timer Expired High Priority. When the DSP is servicing another inter-
rupt, this bit indicates if the TMZHI interrupt is unmasked (if set, = 1)
or masked (if cleared, = 0). A TMZHI occurs when the timer decre-
ments to zero. Note that this event also triggers a TMZLI. Timer opera-
tions are controlled as follows:

• The TCOUNT register contains the timer counter. The timer
decrements the TCOUNT register each clock cycle.

• The TPERIOD value specifies the frequency of timer inter-
rupts. The number of cycles between interrupts is

TPERIOD + 1. The maximum value of TPERIOD is 232 – 1.
• The TIMEN bit in the MODE2 register starts and stops the

timer.
Since the timer expired event (TCOUNT decrements to zero) generates
two interrupts, TMZHI and TMZLI, programs should unmask the
timer interrupt with the desired priority and leave the other one
masked.

ADSP-2126x SHARC DSP Core Manual A-39

Registers

5 Reserved

6 BKPI Hardware Breakpoint Interrupt. When the DSP is servicing another
interrupt, this bit indicates if the BKPI interrupt is unmasked (if set, =
1) or masked (if cleared, = 0).

7 Reserved

8 IRQ2I IRQ2 Hardware Interrupt. When the DSP is servicing another inter-
rupt, this bit indicates if the IRQ2I interrupt is unmasked (if set, = 1) or
masked (if cleared, = 0). An IRQ2I occurs when an external device
asserts the FLG2 pin configured as IRQ2.

9 IRQ1I IRQ1 Hardware Interrupt. When the DSP is servicing another inter-
rupt, this bit indicates if the IRQ1I interrupt is unmasked (if set, = 1) or
masked (if cleared, = 0). An IRQ1I occurs when an external device
asserts the FLG1 pin configured as IRQ1.

10 IRQ0I IRQ0 Hardware Interrupt. When the DSP is servicing another inter-
rupt, this bit indicates if the IRQ0I interrupt is unmasked (if set, = 1) or
masked (if cleared, = 0). An IRQ0I occurs when an external device
asserts the FLG0 pin configured as IRQ0.

11 DAIHI DAI High Priority Interrupt. When the DSP is servicing another inter-
rupt, this bit indicates if the DAIHI interrupt is unmasked (if set, = 1)
or masked (if cleared, = 0). This is the higher priority option.

12 SPIHI SPI Transmit or Receive Interrupt. When the DSP is servicing another
interrupt, this bit indicates if the SPIHI interrupt is unmasked (if set, =
1) or the SPIHI interrupt is masked (if cleared, = 0). This is the higher
priority option.

13 GPTMR0I General-Purpose IOP Timer 0 Interrupt. When the DSP is servicing
another interrupt, this bit indicates if the GPTMR0I interrupt is
unmasked (if set, = 1) or masked (if cleared, = 0).

14 SP1I SPORT 1 Interrupt. When the DSP is servicing another interrupt, this
bit indicates if the SP1I interrupt is unmasked (if set, = 1) or masked (if
cleared, = 0). An SP1I interrupt occurs two cycles after the last bit of an
input/output serial word is latched into/from RXSP1A/TXSP1A, or
RXSP1B/TXSP1B.

Table A-11. IMASKP Register Bit Descriptions (Cont’d)

Bits Name Definition

Program Sequencer Registers

A-40 ADSP-2126x SHARC DSP Core Manual

15 SP3I SPORT 3 Interrupt. When the DSP is servicing another interrupt, this
bit indicates if the SP3I interrupt is unmasked (if set, = 1) or masked (if
cleared, = 0). An SP3I interrupt occurs two cycles after the last bit of an
input/output serial word is latched into/from RXSP3A/TXSP3A, or
RXSP3B/TXSP3B.

16 SP5I SPORT 5 Interrupt. When the DSP is servicing another interrupt, this
bit indicates if the SP5I interrupt is unmasked (if set, = 1) or masked (if
cleared, = 0). An SP5I interrupt occurs two cycles after the last bit of an
input/output serial word is latched into/from RXSP5A/TXSP5A,
RXSP5B/TXSP5B.

19–17 Reserved

20 CB7I DAG1 Circular Buffer 7 Overflow Interrupt. When the DSP is servic-
ing another interrupt, this bit indicates if the CB7I interrupt is
unmasked (if set, = 1) or masked (if cleared, = 0). A circular buffer over-
flow occurs when the DAG circular buffering operation increments the
I register past the end of the buffer. For more information, see “CB7S”
on page A-20.

21 CB15I DAG2 Circular Buffer 15 Overflow Interrupt. When the DSP is servic-
ing another interrupt, this bit indicates if the CB15I interrupt is
unmasked (if set, = 1) or masked (if cleared, = 0). A circular buffer over-
flow occurs when the DAG circular buffering operation increments the
I register past the end of the buffer. For more information, see “CB15S”
on page A-20.

22 TMZLI Timer Expired (Low Priority) Interrupt. When the DSP is servicing
another interrupt, this bit indicates if the TMZLI interrupt is unmasked
(if set, = 1) or masked (if cleared, = 0). For more information, see
“TMZHI” on page A-27.

23 FIXI Fixed-Point Overflow Interrupt. When the DSP is servicing another
interrupt, this bit indicates if the FIXI interrupt is unmasked (if set, = 1)
or the FIXI interrupt is masked (if cleared, = 0). For more information,
see “AOS” on page A-19.

24 FLTOI Floating-Point Overflow Interrupt. When the DSP is servicing another
interrupt, this bit indicates if the FLTOI interrupt is unmasked (if set, =
1) or masked (if cleared, = 0).

Table A-11. IMASKP Register Bit Descriptions (Cont’d)

Bits Name Definition

ADSP-2126x SHARC DSP Core Manual A-41

Registers

25 FLTUI Floating-Point Underflow Interrupt. When the DSP is servicing
another interrupt, this bit indicates if the FLTUI interrupt is unmasked
(if set, = 1) or masked (if cleared, = 0).

26 FLTII Floating-Point Invalid Operation Interrupt. When the DSP is servicing
another interrupt, this bit indicates if the FLTII interrupt is unmasked
(if set, = 1) or masked (if cleared, = 0). For more information, see “AIS”
on page A-19.

27 EMULI Emulator (Lower Priority) Interrupt. When the DSP is servicing
another interrupt, this bit indicates if the EMULI interrupt is unmasked
(if set, = 1) or masked (if cleared, = 0). An EMULI occurs on reset and
when an external device asserts the EMU pin. This interrupt has a lower
priority than EMUI, but higher priority than software interrupts.

28 SFT0I User Software Interrupt 0. When the DSP is servicing another inter-
rupt, this bit indicates if the SFT0I interrupt is unmasked (if set, = 1) or
masked (if cleared, = 0). An SFT0I occurs when a program sets (= 1)
this bit.

29 SFT1I User Software Interrupt 1. When the DSP is servicing another inter-
rupt, this bit indicates if the SFT1I interrupt is unmasked (if set, = 1) or
masked (if cleared, = 0).

30 SFT2I User Software Interrupt 2. When the DSP is servicing another inter-
rupt, this bit indicates if the SFT2I interrupt is unmasked (if set, = 1) or
masked (if cleared, = 0).

31 SFT3I User Software Interrupt 3. When the DSP is servicing another inter-
rupt, this bit indicates if the SFT3I interrupt is unmasked (if set, = 1) or
masked (if cleared, = 0).

Table A-11. IMASKP Register Bit Descriptions (Cont’d)

Bits Name Definition

Program Sequencer Registers

A-42 ADSP-2126x SHARC DSP Core Manual

Interrupt Register (LIRPTL)
The LIRPTL register is a non-memory-mapped, universal, system register
(Ureg and Sreg). The reset value for these registers is 0x0000 0000. The
LIRPTL register indicates latch status, select masking, and displays mask
pointers for interrupts. Figure A-14 and Table A-12 provide bit defini-
tions for the LIRPTL register.

The MSKP bits in the LIRPTL register, and the entire IMASKP register
are for interrupt controller use only. Modifying these bits interferes
with the proper operation of the interrupt controller.

ADSP-2126x SHARC DSP Core Manual A-43

Registers

Figure A-14. LIRPTL Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

DAILMSK
Reserved

DAI Low Priority
Interrupt MaskSPILIMSKP

SPI Low Priority Interrupt
Mask Pointer

GPTMR2MSKP

General-purpose IOP Timer2
Interrupt Mask Pointer

Reserved

DAI Low Priority Interrupt Mask Pointer

DAILIMSKP

Reserved

Parallel Port Interrupt Mask Pointer

GPTMR1MSKP

General-purpose IOP Timer1
Interrupt Mask Pointer

PPIMSKP

GPTMR2MSK
General-purpose IOP
Timer2 Interrupt Mask

SPILIMSKP
SPI Low Priority Interrupt
Mask Pointer

SP0IMSKP
SPORT0 Interrupt
Mask Pointer

SP2IMSKP
SPORT2 Interrupt
Mask Pointer

SP4IMSKP
SPORT4 Interrupt
Mask Pointer

LIRPTL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

Reserved

PPIMSK

GPTMR1I
General-purpose IOP
Timer1 Interrupt
Reserved

DAI Low Priority
Interrupt

DAILI

GPTMR1MSK
General-purpose IOP Timer1
Interrupt Mask

SP4IMSK
SPORT4 Interrupt Mask

Parallel Port Interrupt Mask

SP2IMSK
SPORT2 Interrupt Mask

SP0IMSK
SPORT0 Interrupt Mask
SPILI
SPI Low Priority Interrupt

SP0I
SPORT0 Interrupt

SP2I
SPORT2 Interrupt

SP4I
SPORT4 Interrupt

PPI
Parallel Port Interrupt

GPTMR2I
General-purpose IOP Timer2 Interrupt

Program Sequencer Registers

A-44 ADSP-2126x SHARC DSP Core Manual

Table A-12. LIRPTL Register Bit Descriptions

Bits Name Definition

0 SP0I SPORT 0 Interrupt. Indicates if an SP0I interrupt is latched
and is pending (if set, = 1), or no SP0I is pending (if cleared,
= 0). An SP0I interrupt occurs two cycles after the last bit of
an input/output serial word is latched into/from
RXSP0A/TXSP0A, RXSP0B/TXSP0B.

1 SP2I SPORT 2 Interrupt. Indicates if an SP2I interrupt is latched
and is pending (if set, = 1), or no SP2I is pending (if cleared,
= 0). An SP2I interrupt occurs two cycles after the last bit of
an input/output serial word is latched into/from
RXSP2A/TXSP2A, RXSP2B/TXSP2B.

2 SP4I SPORT 4 Interrupt. Indicates if an SP4I interrupt is latched
and is pending (if set, = 1), or no SP4I is pending (if cleared,
= 0). An SP4I interrupt occurs two cycles after the last bit of
an input/output serial word is latched into/from
RXSP4A/TXSP4A, RXSP4B/TXSP4B.

3 PPI Parallel Port Interrupt. Indicates if a PP interrupt is latched
and pending (if set, = 1) or that no PP interrupt is pending
(if cleared, = 0). A PP interrupt occurs when the DMA block
transfer has completed.

4 GPTMR1I General-Purpose IOP Timer 1 Interrupt. Indicates if a
GPTMR1 is latched and is pending (if set, = 1). If no
GPTMR1I is pending (if cleared, = 0).

5 Reserved

6 DAILI DAI Low Priority Interrupt. Indicates if a DAI interrupt is
latched and is pending (if set, = 1) or no DAI interrupt is
pending (if cleared, = 0). This is the lower priority option.

7 Reserved

8 GPTMR2I General-Purpose IOP Timer 2 Interrupt. Indicates if a
GPTMR2I is latched and is pending (if set, = 1) or no
GPTMR2I is pending (if cleared, = 0).

9 SPILI SPI Interrupt (low priority). Indicates if an SPIL interrupt is
latched and pending (if set, = 1) or no SPIL interrupt is
pending (if cleared, = 0).

ADSP-2126x SHARC DSP Core Manual A-45

Registers

10 SP0IMSK SPORT0 Interrupt Mask. Unmasks the SP0 interrupt (if set,
= 1) or masks the SP0 interrupt (if cleared, = 0).

11 SP2IMSK SPORT2 Interrupt Mask. Unmasks the SP2 interrupt (if set,
= 1) or masks the SP2 interrupt (if cleared, = 0).

12 SP4IMSK SPORT4 Interrupt Mask. Unmasks the SP4 interrupt (if set,
= 1) or masks the SP4 interrupt (if cleared, = 0).

13 PPIMSK Parallel Port Interrupt Mask. Unmasks the PP interrupt (if
set, = 1) or masks the PP interrupt (if cleared, = 0).

14 GPTMR1IMSK General-Purpose IOP Timer 1 Interrupt Mask. Unmasks
the GPTMR1 interrupt (if set, = 1) or masks the GPTMR1
interrupt (if cleared, = 0).

15 Reserved

16 DAILIMSK DAI Low Priority Interrupt Mask. Unmasks the DAILI (if
set, = 1) or masks DAILI (if cleared, = 0).

17 Reserved

18 GPTMR2IMSK General-Purpose IOP Timer 2 Interrupt Mask. Unmasks
the GPTMR2 interrupt (if set, = 1) or masks the GPTMR2
interrupt (if cleared, = 0).

19 SPILIMSK SPI Interrupt Mask (Low Priority). Unmasks the SPIL inter-
rupt (if set, = 1) or masks the SPIL interrupt (if cleared, = 0).
For more information on how interrupt masking works, see
“Interrupt Mask Register (IMASK)” on page A-30.

20 SP0IMSKP SPORT0 Interrupt Mask Pointer. When the DSP is servic-
ing another interrupt, this bit indicates if the SP0 interrupt is
unmasked (if set, = 1) or the SP0 interrupt is masked (if
cleared, = 0).

21 SP2IMSKP SPORT2 Interrupt Mask Pointer. When the DSP is servic-
ing another interrupt, this bit indicates if the SP2 interrupt is
unmasked (if set, = 1) or the SP2 interrupt is masked (if
cleared, = 0).

Table A-12. LIRPTL Register Bit Descriptions (Cont’d)

Bits Name Definition

Program Sequencer Registers

A-46 ADSP-2126x SHARC DSP Core Manual

22 SP4IMSKP SPORT4 Interrupt Mask Pointer. When the DSP is servic-
ing another interrupt, this bit indicates if the SP4 interrupt is
unmasked (if set, = 1) or the SP4 interrupt is masked (if
cleared, = 0).

23 PPIMSKP Parallel Port Interrupt Mask Pointer. When the DSP is ser-
vicing another interrupt, this bit indicates if the PP interrupt
is unmasked (if set, = 1) or the PP interrupt is masked (if
cleared, = 0).

24 GPTMR1MSKP General-Purpose IOP Timer 1 Interrupt Mask Pointer.
When the DSP is servicing another interrupt, this bit indi-
cates if the GPTMR1 interrupt is unmasked (if set, = 1) or
the GPTMR1 interrupt is masked (if cleared, = 0).

25 Reserved

26 DAILIMSKP DAI Low Priority Interrupt Mask Pointer.
When the DSP is servicing another interrupt, this bit
indicates if the DAILI is unmasked (if set, = 1) or masked (if
cleared, = 0).

27 Reserved

28 GPTMR2MSKP General-Purpose IOP Timer 2 Interrupt Mask Pointer.
When the DSP is servicing another interrupt, this bit
indicates if the GPTMR2 interrupt is unmasked (if set, = 1)
or the GPTMR2 interrupt is masked (if cleared, = 0). For
more information on how interrupt mask pointers works, see
“Interrupt Mask Register (IMASK)” on page A-30.

29 SPILIMSKP SPI Interrupt Mask (Low Priority) Pointer. When the DSP
is servicing another interrupt, this bit indicates if the SPIL
interrupt is unmasked (if set, = 1) or the SPIL interrupt is
masked (if cleared, = 0).For more information on how inter-
rupt mask pointers works, see “Interrupt Mask Pointer Reg-
ister (IMASKP)” on page A-35.

31–30 Reserved

Table A-12. LIRPTL Register Bit Descriptions (Cont’d)

Bits Name Definition

ADSP-2126x SHARC DSP Core Manual A-47

Registers

Program Counter Register (PC)
The PC register is a non-memory-mapped, universal register (Ureg only).
The Program Counter register is the last stage in the fetch-decode-execute
instruction pipeline and contains the 24-bit address of the instruction that
the DSP executes on the next cycle. The PC couples with the Program
Counter Stack, PCSTK, which stores return addresses and top-of-loop
addresses. All addresses generated by the sequencer are 24-bit program
memory instruction addresses.

As shown in Figure A-15, the address buses can handle 32-bit addresses,
but the program sequencer only generates 24-bit addresses over the PM
bus.

Figure A-15. PM and DM Bus Addresses Versus Sequencing Addresses

PM and DM Address Buses and DAGs Can Handle 32-Bit Addresses

Program Sequencer Handles

S Field

Bits 20-18, System (Internal) Memory

Bits 31-21, All zeros

31 23 21 20 18 17 0

System Values in this field have
the following meaning:

000- Address of an IOP register
001- Address in Long Word space
01x- Address in Normal Word space
1xx- Address in Short Word space

24-Bit Addresses

Program Sequencer Registers

A-48 ADSP-2126x SHARC DSP Core Manual

Program Counter Stack Register (PCSTK)
This is a non-memory-mapped, universal register (Ureg only). The Pro-
gram Counter Stack register contains the address of the top of the PC
stack. This register is a readable and writable register.

Program Counter Stack Pointer Register (PCSTKP)
The PCSTKP register is a non-memory-mapped, universal register (Ureg
only). The Program Counter Stack Pointer register contains the value of
PCSTKP. This value is given as follows: 0 when the PC stack is empty, 1...30
when the stack contains data, and 31 when the stack overflows. This regis-
ter is readable and writable. A write to PCSTKP takes effect after a one-cycle
delay. If the PC stack is overflowed, a write to PCSTKP has no effect.

Fetch Address Register (FADDR)
The FADDR register is a non-memory-mapped, universal register (Ureg
only). The Fetch Address register is the first stage in the fetch-decode-exe-
cute instruction pipeline and contains the 24-bit address of the instruction
that the DSP fetches from memory on the next cycle.

Decode Address Register (DADDR)
The DADDR register is a non-memory-mapped, universal register (Ureg
only). The Decode Address register is the second stage in the
fetch-decode-execute instruction pipeline and contains the 24-bit address
of the instruction that the DSP decodes on the next cycle.

ADSP-2126x SHARC DSP Core Manual A-49

Registers

Loop Address Stack Register (LADDR)
The LADDR register is a non-memory-mapped, universal register (Ureg
only). The Loop Address Stack is six levels deep by 32 bits wide. The
32-bit word of each level consists of a 24-bit loop termination address, a
5-bit termination code, and a 2-bit loop type code.

Current Loop Counter Register (CURLCNTR)
The CURLCNTR register is a non-memory-mapped, universal register (Ureg
only). The Current Loop Counter register provides access to the loop
counter stack and tracks iterations for the DO UNTIL LCE loop being exe-
cuted. For more information on how to use the CURLCNTR register, see
“Loop Counter Stack” on page 3-32.

Loop Counter Register (LCNTR)
The LCNTR register is a non-memory-mapped, universal register (Ureg
only). The Loop Counter register provides access to the loop counter stack
and holds the count value before the DO UNTIL LCE loop is executed. For
more information on how to use the LCNTR register, see “Loop Counter
Stack” on page 3-32.

Table A-13. LADDR Register Bit Descriptions

Bits Value

23–0 Loop Termination Address

28–24 Termination Code

29 Reserved (always reads zero)

31–30 Loop Type Code
00 = arithmetic condition-based (not LCE)
01 = counter-based, length 1
10 = counter-based, length 2
11 = counter-based, length > 2

Data Address Generator Registers

A-50 ADSP-2126x SHARC DSP Core Manual

Timer Period Register (TPERIOD)
The TPERIOD register is a non memory-mapped, universal register (Ureg
only). The Timer Period register contains the decrementing timer count
value, counting down the cycles between timer interrupts. For more infor-
mation on how to use the TPERIOD register, see “Timer and Sequencing”
on page 3-44.

Timer Count Register (TCOUNT)
The TCOUNT register is a non memory-mapped, universal register (Ureg
only). The Timer Count register contains the timer period, indicating the
number of cycles between timer interrupts. For more information on how
to use the TCOUNT register, see “Timer and Sequencing” on page 3-44.

Data Address Generator Registers
The DSP’s Data Address Generator (DAG) registers hold data addresses,
modify values, and circular buffer configurations. Using these registers,
the DAGs can automatically increment addressing for ranges of data loca-
tions (a buffer).

Table A-14. DAG Registers

Register Initialization After Reset

“Index Registers (Ix)” on page A-51 Undefined

“Modify Registers (Mx)” on page A-51 Undefined

“Length and Base Registers (Lx,Bx)” on page A-51 Undefined

ADSP-2126x SHARC DSP Core Manual A-51

Registers

Index Registers (Ix)
The Ix registers are non-memory-mapped, universal registers (Ureg only).
The DAGs store addresses in Index registers (I0–I7 for DAG1 and I8–I15
for DAG2). An index register holds an address and acts as a pointer to a
memory location. For more information, see “Data Address Generators”
on page 4-1.

Modify Registers (Mx)
The Mx register are non-memory-mapped, universal registers (Ureg only).
The DAGs update stored addresses using Modify registers (M0–M7 for
DAG1 and M8–M15 for DAG2). A Modify register provides the increment
or step size by which an Index register is pre- or post-modified during a
register move. For more information, see “Data Address Generators” on
page 4-1.

Length and Base Registers (Lx,Bx)
The Lx and Bx registers are non-memory-mapped, universal registers (Ureg
only). The DAGs control circular buffering operations with Length and
Base registers (L0–L7 and B0–B7 for DAG1 and L8–L15 and B8–B15 for
DAG2). Length and Base registers set up the range of addresses and the
starting address for a circular buffer. For more information, see “Data
Address Generators” on page 4-1.

I/O Processor Registers
The I/O processor’s registers are accessible as part of the DSP’s memory
map. These registers occupy addresses 0x0000 0000 through 0x0003 F
FFF of the memory map. The I/O registers control the following DMA
operations: Parallel port, Serial port, Serial Peripheral Interface port (SPI),
and Input Data Port (IDP). The register information for the IOP and all

I/O Processor Registers

A-52 ADSP-2126x SHARC DSP Core Manual

of the peripherals associated with a specific ADSP-2126x SHARC DSP is
located in that model’s peripherals manual. The I/O processor’s mem-
ory-mapped registers are described in the ADSP-21262/21266 SHARC
DSP Peripherals Manual.

Revision ID Register (REVPID)
The REVPID register is top layer metal programmable 8-bit register.
Because REVPID register bits 7-0 are the DSP ID and silicon revision, the
reset value varies with the system setting and silicon revision, that is, if
value in top-level metal layer changes. External devices can poll this regis-
ter for the DSP’s processor ID and silicon revision numbers.

As shown in Table A-15, the bit position from 0–3 signifies the Proces-
sor-id. For ADSP-21262 processor, the process-id is 0000. The bit
position 4–7 signifies the silicon revision-id. For the ADSP-21262 proces-
sor the present silicon revision -id is 0000.

Hardware Breakpoint Control Register (BRKCTL)
The BRKCTL register controls how breakpoints are used (if the UMODE bit is
set). This user accessible register in the BRKCTL register is located at address
0x30025.

The BRKCTL register is a 32-bit memory-mapped I/O register. The core can
write into this register. The bits related to breakpoint register are same as
in EMUCTL register.

Table A-15. REVPID Register Bit Descriptions

Bits Name Definition

3–0 PID Processor Identification (Read-only) PID

7–4 Silicon
Revision

Silicon Revision

ADSP-2126x SHARC DSP Core Manual A-53

Registers

Figure A-16. BRKCTL Register (Upper Bits)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NEGIA4

UMODE

IODISABLE
Reserved

Disable I/O Breakpoints
00= Breakpoint Disabled
01= WRITE Access
10= READ Access
11= Any Access

Enable User Mode Breakpoint
Address Breakpoint #3
1= Enable Breakpoint
0=Disable Breakpoint

Negate Instruction Address
Breakpoint #4
1=Enable Breakpoint
0=Disable Breakpoint

ANDBKP
AND composite breakpoints
1=AND Breakpoint Types
0=OR Breakpoint Types

ENBEP
Enable External Port Address Break-
point (See ENBPA bit description)

Reserved

Enable Instruction Address Break-
points (See ENBPA bit description)

ENBIA

NEGIO1
Negate I/O Address
Breakpoint #1
1=Enable Breakpoint
0=Disable Breakpoint

NEGEP1
Negate External Address
Breakpoint #1
1=Enable Breakpoint
0=Disable Breakpoint

ENBPA
Enable Program Memory
Address Breakpoints
1=Enable Breakpoint
0=Disable Breakpoint

ENBDA
Enable Data Memory
Breakpoints
1=Enable Breakpoint
0=Disable Breakpoint

BRKCTL (Bits 31-16)

I/O Processor Registers

A-54 ADSP-2126x SHARC DSP Core Manual

Figure A-17. BRKCTL Register (Lower Bits)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NEGIA3
Negate Instruction Address
Breakpoint #3
1=Enable Breakpoint
0=Disable Breakpoint

PA1MODE
PA1 Triggering Mode
00=Breakpoint Disabled
01=WRITE Access
10=READ Access
11=Any AccessNEGIA2

Negate Instruction Address
Breakpoint #2
1=Enable Breakpoint
0=Disable Breakpoint

NEGIA1
Negate Instruction Address
Breakpoint #1
1=Enable Breakpoint
0=Disable Breakpoint

NEGDA2
Negate DM Address Breakpoint #2
1=Enable Breakpoint
0=Disable Breakpoint

NEGDA1
Negate DM Address Breakpoint #1
1=Enable Breakpoint
0=Disable Breakpoint

DA1MODE
DA1 Triggering Mode
00=Breakpoint Disabled
01=WRITE Access
10=READ Access
11=Any Access

DA2MODE
DA2 Triggering Mode
00=Breakpoint Disabled
01=WRITE Access
10=READ Access
11=Any Access

IO1MODE
IO1 Triggering Mode
00=Breakpoint Disabled
01=WRITE Access
10=READ Access
11=Any Access

EP1MODE
EP1 Triggering Mode
00=Breakpoint Disabled
01=WRITE Access
10=READ Access
11=Any Access

NEGPA1
Negate PM Address Breakpoint #1
1=Enable Breakpoint
0=Disable Breakpoint

BRKCTL (0x30025)
(Bits 15-0)

ADSP-2126x SHARC DSP Core Manual A-55

Registers

Table A-16. BRKCTL Register Bit Descriptions

Bit # Name Function

1–0 PA1MODE PA1Triggering Mode
00 = Breakpoint Disabled
01 = WRITE Access
10 = READ Access
11 = Any access

3–2 DA1MODE DA1 Triggering Mode
00 = Breakpoint Disabled
01 = WRITE Access
10 = READ Access
11 = Any access

5–4 DA2MODE DA2 Triggering Mode
00 = Breakpoint Disabled
01 = WRITE Access
10 = READ Access
11 = Any Access

7–6 IO1MODE IO1 Triggering Mode trigger on the following conditions:
Mode Triggering condition
00 = Breakpoint is disabled
01 = WRITE accesses only
10 = READ accesses only
11 = Any access

9–8 EP1MODE EP1 Triggering Mode
00 = Breakpoint Disabled
01 = WRITE Access
10 = READ Access
11 = Any Access

10 NEGPA1 Negate Program Memory Data Address Breakpoint
Enable breakpoint events if the address is greater than the end
register value OR less than the start register value. This func-
tion is useful to detect index range violations in user code.
0 = Disable Breakpoint
1 = Enable Breakpoint

11 NEGDA1 Negate Data Memory Address Breakpoint #1
For more information, see NEGPA1 bit description.

I/O Processor Registers

A-56 ADSP-2126x SHARC DSP Core Manual

12 NEGDA2 Negate Data Memory Address Breakpoint #2
For more information, see NEGPA1 bit description.

13 NEGIA1 Negate Instruction Address Breakpoint #1
0 = Disable Breakpoint
1 = Enable Breakpoint

14 NEGIA2 Negate Instruction Address Breakpoint #2
For more information, see NEGPA1 bit description.

15 NEGIA3 Negate Instruction Address Breakpoint #3
For more information, see NEGPA1 bit description.

16 NEGIA4 Negate Instruction Address Breakpoint #4
For more information, see NEGPA1 bit description.

17 NEGIO1 Negate I/O Address Breakpoint
For more information, see NEGPA1 bit description.

18 NEGEP1 Negate EP Address Breakpoint
For more information, see NEGPA1 bit description.

19 ENBPA Enable Program Memory Data Address Breakpoints
The ENB* bits enable each breakpoint group. Note that when
the ANDBKP bit is set, breakpoint types not involved in the
generation of the effective breakpoint must be disabled.
0 = Disable Breakpoints
1 = Enable Breakpoints

20 ENBDA Enable Data Memory Address Breakpoints
For more information, see ENBPA bit description.

21 ENBIA Enable Instruction Address Breakpoints.
For more information, see ENBPA bit description.

22 Reserved

23 ENBEP Enable External Port Address Breakpoint.
For more information, see ENBPA bit description.

Table A-16. BRKCTL Register Bit Descriptions (Cont’d)

Bit # Name Function

ADSP-2126x SHARC DSP Core Manual A-57

Registers

Enhanced Emulation Status Register (EEMUSTAT)
The EEMUSTAT register reports the breakpoint status of the programs that
run on the ADSP-21262 processor. This register is a memory-mapped
IOP register that can be accessed by the core. This register contains two
status bits that report I/O breakpoints, one each for the two I/O buses
(IOX and IOY).

When a breakpoint is reached, an interrupt occurs and the breakpoint’s
status bits are set. When the core returns from an interrupt, the break-
point’s status bits are cleared. Figure A-18 lists this register’s bits.

24 ANDBKP AND composite breakpoints Enables ANDing of each break-
point type to generate an effective breakpoint from the com-
posite breakpoint signals.
0 = OR Breakpoint Types
1 = AND Breakpoint Types

25 UMODE User Mode Breakpoint Functionality Enable
Address Breakpoint 3
0 = Disable Breakpoint
1 = Enable Breakpoint

27–26 IODISABLE Enable I/O Breakpoints
00 = Breakpoint Disabled
01 = WRITE Access
10 = READ Access
11 = Any Access

31–28 Reserved

Table A-16. BRKCTL Register Bit Descriptions (Cont’d)

Bit # Name Function

I/O Processor Registers

A-58 ADSP-2126x SHARC DSP Core Manual

Figure A-18. EEMUSTAT Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OSPIDENS

EEMUIN Interrupt Enable
1=EEMUIN interrupt enable
0=EEMUIN interrupt disable

EEMUINENS

Operating System Processor ID
Enable
1=OSPID Register enable
0=OSPID Register disable

EEMUENS

Enhanced Emulation Feature Enable
Status
1=Feature is Enabled
0=Feature is Disabled

EEMUINFULL

EEMUOUTFULL

EEMUIN FIFO Full Status
1=EEMUIN FIFO FULL
0=EEMUIN FIFO is not FULL

EEMUOUTRDY

EEMUOUT FIFO Full Status
1=EEMUOUT FIFO FULL
0=EEMUOUT FIFO is not FULL

EEMUOUT Valid Data Status
1=EEMUOUT FIFO contains valid data
0=EEMUOUT FIFO is empty

EEMUOUTIRQEN

EEMUOUT Interrupt Enable
1=EEMUOUT Interrupt Enabled
0=EEMUOUT Interrupt Disabled

STATPA

Program Memory Break-
point Status
1=Break Occurs
0=No Break Occurs

STATDA0

DM Breakpoint #0 Status
1=Break Occurs
0=No Break Occurs

STATDA1

DM Breakpoint #1 Status
1=Break Occurs
0=No Break Occurs

STATIA0

Instruction Breakpoint #0 Status
1=Break Occurs
0=No Break Occurs

STATIA1

Instruction Breakpoint #1 Status
1=Break Occurs
0=No Break Occurs

STATIA2

Instruction Breakpoint #2 Status
1=Break Occurs
0=No Break Occurs

STATIA3

Instruction Breakpoint #3 Status
1=Break Occurs
0=No Break Occurs

STATIO0

I/O Breakpoint #0 Status
1=Break Occurs
0=No Break Occurs

STATEP

External Memory Breakpoint Status
1=Break Occurs
0=No Break Occurs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

STATIO1
Reserved

I/O Memory Breakpoint #1 Status
0=No Breakpoint Occurs
1=Breakpoint Occurs

EEMUSTAT
(0x30021)

ADSP-2126x SHARC DSP Core Manual A-59

Registers

Table A-17. EEMUSTAT Register Definitions

Bits Name Function

0 STATPA Program memory Data Breakpoint Hit.1

1= Program memory breakpoint occurs
0= No program memory breakpoint occurs

1 STATDA0 Data Memory Breakpoint Hit.1

1= Data memory #0 breakpoint occurs
0= No Data memory #0 breakpoint occurs

2 STATDA1 Data Memory Breakpoint Hit.1

1= Data memory #1 breakpoint occurs
0= No Data memory #1 breakpoint occurs

3 STATIA0 Instruction Address Breakpoint Hit.1

1= Instruction address #0 breakpoint occurs
0= no Instruction address #0 breakpoint occurs

4 STATIA1 Instruction Address Breakpoint Hit.1

1= Instruction address #1 breakpoint occurs
0= no Instruction address #1 breakpoint occurs

5 STATIA2 Instruction Address Breakpoint Hit.1

1= Instruction address #2 breakpoint occurs
0= no Instruction address #2 breakpoint occurs

6 STATIA3 Instruction Address Breakpoint Hit.1

1 = Instruction address #3 breakpoint occurs
0= no Instruction address #3 breakpoint occurs

7 STATIO I/O Address Breakpoint Hit.1

1= I/OX address breakpoint occurs
0= no I/OX address breakpoint occurs

8 Reserved1

9 EEMUOUTIRQEN Enhanced Emulation EEMUOUT Interrupt Enable.2

1 = EEMUOUT interrupt enable
0 = EEMUOUT interrupt disable
Note: Interrupts are of low priority interrupts

I/O Processor Registers

A-60 ADSP-2126x SHARC DSP Core Manual

10 EEMUOUTRDY Enhanced Emulation EEMUOUT Ready.3

1= EEMUOUT FIFO contains valid data
0= EEMUOUT FIFO is empty

11 EEMUOUTFULL Enhanced Emulation EEMUOUT FIFO Status.3

1= EEMUOUT FIFO FULL
0= EEMUOUT FIFO is not FULL

12 EEMUINFULL Enhanced Emulation EEMUIN Register Status.4

1= EEMUIN register full
0= EEMUIN register is empty

13 EEMUENS Enhanced Emulation Feature Enable.4

1= Enhanced emulation feature enable
0= Enhanced emulation feature disable

14 OSPIDENS OSPID Register Enable.4

1= OSPID register enable
0= OSPID register disable

15 EEMUINENS EEMUIN Interrupt Enable.4

1= EEMUIN interrupt enable
0= EEMUIN interrupt disable

16 STATIO1 I/O Memory Breakpoint 1 Status
0= No Breakpoint Occurs
1= Breakpoint Occurs

31:17 Reserved for future use.

1 Internal hardware sets this bit.
2 This bit is set and reset by the core.
3 The FIFO controller sets and resets this bit.
4 Internal hardware sets and resets this bit.

Table A-17. EEMUSTAT Register Definitions (Cont’d)

Bits Name Function

ADSP-2126x SHARC DSP Core Manual A-61

Registers

Timer Registers
The ADSP-21262 processor Timer peripheral module provides gen-
eral-purpose timer functionality. It consists of three identical Timer units.

To provide the required functionality, each Timer has four 32-bit mem-
ory-mapped registers. The registers for each timer are:

• Timer x Configuration (TMxCTL) registers, described on page A-61

• Timer x Word Count (TMxCNT) registers, described on page A-62

• Timer x Word Period (TMxPRD) registers, described on page A-63

• Timer x Word Pulsewidth (TMxW) registers, described on page A-63

The timers also share one common status and control register:

• Timer Global Status and Control (TMSTAT) register, described
on page A-64

Timer Configuration Registers (TMxCTL)
The three TMxCTL registers’ addresses are: TM0CTL 0x1401, TM1CTL 0x1409,
TM2CTL 0x1411. All Timer clocks are gated OFF when the specific Timer’s
configuration register is set to zero at system reset or subsequently reset by
the user.

Timer Registers

A-62 ADSP-2126x SHARC DSP Core Manual

Timer Counter Registers (TMxCNT)
The TMxCNT registers addresses are: TM0CNT 0x1402, TM1CNT 0x140A, TM2CNT
0x1412. When disabled, the Timer counter retains its state. When enabled
again, the Timer counter is re-initialized from the period/width registers
based on configuration and mode. The Timer counter value should not be
set directly by the software. It can be set indirectly by initializing the
period or width values in the appropriate mode. The counter should only
be read when the respective Timer is disabled. This prevents erroneous
data from being returned.

Figure A-19. Timer Configuration Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIMODE

AUX

Interrupt Enable
1=Enable
0=Disable

Timer Input Select
1=Sample AUX_IN
0=Sample TMRx

PRDCNT

Pulse Edge Select
1=Positive Active Pulse
0=Negative Active Pulse

Timer Mode
00=Reset
01=PWM_OUT Mode
10=WDTH_CAP Mode
11=EXT_CLK Mode

PULSE

Period Count
1=Count to End of Period
0=Count to End of Width

Reserved

IRQEN

TM0CTL (0x1401)
TM1CTL (0x1409)
TM2CTL (0x1411)

ADSP-2126x SHARC DSP Core Manual A-63

Registers

Timer Period Registers (TMxPRD)
The TMxPRD registers’ addresses are: TM0PRD 0x1403, TM1PRD 0x140B,
TM2PRD 0x1413. Once a timer is enabled and running, when the DSP
writes new values to the Timer period and pulse width registers, the writes
are buffered and do not update the registers until the end of the current
period (when the Timer counter register equals the Timer period register).

During the Pulse Width Modulation (PWM_OUT), the period value is written
into the Timer period registers. Both period and width register values
must be updated “on the fly” since the period and width (duty cycle)
change simultaneously. To insure the period and width value concurrency,
a 32-bit period buffer and a 32-bit width buffer are used.

During the Pulse Width and Period Capture (WDTH_CAP) mode, the period
values are captured at the appropriate time. Since both the period and
width registers are read-only in this mode, the existing 32-bit period and
width buffers are used.

During the External Event Watchdog (EXT_CLK) mode, the period register is
write-only. Therefore, the period buffer is used in this mode to insure
high/low period value coherency.

Timer Width Register (TMxW)
The TMxW registers’ addresses are: TM0W 0x1404, TM1W 0x140C,
TM2W 0x1414. During the Pulse Width Modulation (PWM_OUT), the width
value is written into the Timer width registers. Both width and period reg-
ister values must be updated “on the fly” since the period and width (duty
cycle) change simultaneously. To insure Period and width value concur-
rency, a 32-bit period buffer and a 32-bit width buffer are used.

During the Pulse Width and Period Capture (WDTH_CAP) mode, both the
period and width values are captured at the appropriate time. Since both
the width and period registers are read-only in this mode, the existing
32-bit period and width buffers are used.

Timer Registers

A-64 ADSP-2126x SHARC DSP Core Manual

During the EXT_CLK mode, the Width register is unused.

Timer Global Status and Control Register (TMSTAT)
The global status register TMSTAT is addressable at this address: 0x1400.
Status bits are sticky and require a write-one to clear operation. During a
status register read access, all reserved or unused bits will return a zero.
The reset state is 0x0000. Each Timer generates a unique DSP interrupt
request signal, TIMxIRQ.

A common status register latches these interrupts. Interrupt bits are sticky
and must be cleared to assure that the interrupt is not re-issued.

Each timer is provided with its own sticky status register TIMxEN bit. To
enable or disable an individual timer, the TIMxEN bit is set or cleared. For
example, writing a one to bit 8 sets the TIM0EN bit; writing a one to bit 9
clears it. Writing a one to both bit 8 and bit 9 clears TIM0EN. Reading the
status register returns the TIM0EN state on both bit 8 and bit 9. The
remaining TIMxEN bits operate similarly using bit 10 and bit 11 for
Timer1, and bit 12 and bit 13 for TIMER2.

ADSP-2126x SHARC DSP Core Manual A-65

Registers

Power Management Registers
The following sections describe the registers associated with the DSPs
power management functions.

Figure A-20. TMSTAT Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIM2DIS
Reserved

TIM2EN

Timer 2 Disable
Write 1 to Disable

Timer 2 Enable
Write 1 to Enable

TIM1DIS

TIM1EN

Timer 1 Disable
Write 1 to Disable

Timer 1 Enable
Write 1 to Enable

TIM0DIS

TIM0EN

Timer 0 Disable
Write 1 to Disable

Timer 0 Enable
Write 1 to Enable

Reserved

TIM0IRQ

Timer 0 Interrupt
Write 1 to Clear

TIM1IRQ

Timer 1 Interrupt
Write 1 to Clear

TIM2IRQ

Timer 2 Interrupt
Write 1 to Clear

TM0OVF

Timer 0 Counter
Overflow Error

TM1OVF

Timer 1 Counter
Overflow Error

TM2OVF

Timer 2 Counter
Overflow Error

Reserved

TMSTAT(0x1400)

Power Management Registers

A-66 ADSP-2126x SHARC DSP Core Manual

Power Management Control Register (PMCTL)
The Power Management Control register is a 32-bit memory-mapped reg-
ister. The PMCTL register’s addresses is 0x2000. This register contains bits
to control phase lock loop (PLL) multiplier and Divider (both input and
output) values, PLL bypass mode, and clock enabling control for peripher-
als (see Table A-19). This register also contains status bits, which keep
track of the status of the CLK_CFG pins (read-only).

Table A-18. Timer Global Status and Control (TMSTAT) Register Bits

Bit(s) Name Definition

0 TIM0IRQ Timer 0 Interrupt Latch Write one-to-clear (also an output)1

1 TIM1IRQ Timer 1 Interrupt Latch Write one-to-clear (also an output)1

2 TIM2IRQ Timer 2 Interrupt Latch Write one-to-clear (also an output)1

3 Reserved

4 TIM0OVF Timer 0 Overflow/Error Write one-to-clear (also an output)

5 TIM1OVF Timer 1 Overflow/Error Write one-to-clear (also an output)

6 TIM2OVF Timer 2 Overflow/Error Write one-to-clear (also an output)

7 Reserved

8 TIM0EN Timer 0 Enable Write one-to-enable Timer 0

9 TIM0DIS Timer 0 Disable Write one-to-disable Timer 0

10 TIM1EN Timer 1 Enable Write one-to-enable Timer 1

11 TIM1DIS Timer 1 Disable Write one-to-disable Timer 1

12 TIM2EN Timer 2 Enable Write one-to-enable Timer 2

13 TIM2DIS Timer 2 Disable Write one-to-disable Timer 2

31–14 Reserved

1 This bit is set to one when an interrupt generating event occurs. When the program writes a
one to this bit position, it clears the source event which causes this bit to clear. A subsequent
read of this bit will return a zero.

ADSP-2126x SHARC DSP Core Manual A-67

Registers

The core can write to all bits except the read-only status bits. The DIVEN
bit is a logical bit, that is, it can be set, but on reads it always responds
with zero.

Figure A-21. PMCTL Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TMRPDN

PLLBP

Timer Enable/Disable

CLKOUTEN

RESERVED

Clockout Enable

DIVEN

CRAT
PL Clock Ratio

PLLM

PLL Multiplier

SPIPDN
SPI Enable/Disable

SP3PDN
SP4–5 Enable/Disable

SP2PDN
SP2–3 Enable/Disable

PPPDN
PP Enable/Disable

SP1PDN
SP0–1 Enable/Disable

Reserved

PLL Divider Enable

PLLD

Divide by 2, 4, 8, or 16

INDIV

Input Divider

PMCTL (0x2000)

Power Management Registers

A-68 ADSP-2126x SHARC DSP Core Manual

Table A-19. PMCTL Register Bit Descriptions

Bits Name Definition

5:0 PLLM PLL Multiplier. Read/Write
PLLM = 0 PLL Multiplier = 64
0<PLLM<63 PLL Multiplier = PLLM
CLK_CFG[1:0] Reset Value
00 = 0000110
01 = 100000
10 = 010000
11 = 000110

7:6 PLLDx PLL Divider. Read/Write
00 = CK divider = 2
01 = CK divider = 4
10 = CK divider = 8
11 = CK divider = 16
CLK_CFG[1:0] Reset Value x x 00

8 INDIV Input Divisor. Read/Write
0 = divide by 1
1 = divide by 2
Reset Value = 0

9 DIVEN Enable PLL Divider Value Loading. Read/Write
0 = Do not load PLLDx
1 = Load PLLDx
Reset Value = 0

11–10 Reserved

12 CLKOUTEN Clockout Enable. Read/Write
Mux select for CLKOUT and RESETOUT
0 Mux output = RESETOUT
1 Mux output = CLKOUT
Reset Value = 0

14 – 13 Reserved

15 PLLBP PLL Bypass Mode Indication. Read/Write
0 = PLL is in normal mode
1 = Put PLL in bypass mode
Reset Value = 0

ADSP-2126x SHARC DSP Core Manual A-69

Registers

17:16 CRAT PLL clock ratio (CLKIN to CK). Read only. For more
detail look for refer to the ADSP-21262 processor clock
configuration pin description.
Reset Value = CLK_CFG[1:0]

25–18 Reserved

26 PPPDN PP Enable/Disable. Read/Write
0 = PP is in normal mode
1 = Shutdown clock to PP
Reset Value = 0

27 SP1PDN SP1 Enable/Disable. Read/Write
0 = SP0–1 are in normal mode
1 = Shutdown clock to SP0–1
Reset Value = 0

28 SP2PDN SP2 Enable/Disable. Read/Write
0 = SP2–3 are in normal mode
1 = Shutdown clock to SP2–3
Reset Value = 0

29 SP3PDN SP3 Enable/Disable. Read/Write
0 = SP4–5 are in normal mode
1 = Shutdown clock to SP4–5
Reset Value = 0

30 SPIPDN SPI Enable/Disable. Read/Write
0 = SPI is in normal mode
1 = Shutdown clock to SPI
NOTE: When this bit is set (= 1), the FLGx pins cannot be
used (via the FLGS7–0 register bits) because the FLGx pins
are synchronized with the clock. Reset Value = 0

31 TMRPDN Timer Enable/Disable. Read/Write
0 = Timer is in normal mode
1 = Shutdown clock to Timer
Reset Value = 0

Table A-19. PMCTL Register Bit Descriptions (Cont’d)

Bits Name Definition

Power Management Registers

A-70 ADSP-2126x SHARC DSP Core Manual

ADSP-2126x SHARC DSP Core Manual B-1

B INTERRUPT VECTOR
ADDRESSES

Table B-2 shows all the ADSP-2126x DSP interrupts, listed according to
their bit position in the IRPTL, LIRPTL, and IMASK registers. For more
information, see “Interrupt Latch Register (IRPTL)” on page A-25,
“Interrupt Register (LIRPTL)” on page A-42, and “Interrupt Mask Regis-
ter (IMASK)” on page A-30. Also shown is the address of the interrupt
vector. Each vector is separated by four memory locations. The addresses
in the vector table represent offsets from a base address. For an Interrupt
Vector Table in internal RAM, the base address is 0x8 0000 and for inter-
nal ROM, the base address is 0xA 0000. These are 48-bit addresses.

The interrupt name column in Table B-2 lists a mnemonic name for each
interrupt as they are defined by the definitions file (def2126x.h) that
comes with the software development tools.

SPI has only one interrupt for both transmit and receive.

Each serial port (SPORT) has only one interrupt for both transmit and
receive.

Table B-1. Interrupt Vector Table Base Address

Address1

1 These are 48-bit addresses.

Description

0x0008 0000 Internal RAM

0x000A 0000 Internal ROM

B-2 ADSP-2126x SHARC DSP Core Manual

Table B-2. ADSP-2126x Interrupt Vector Addresses

Register IRPTL/
IMASK,
LIRPTL Bit#

Vector
Address

Interrupt
Name

Function

IRPTL 0 0x00 EMUI Emulator (read-only,
non-maskable); HIGHEST PRI-
ORITY

IRPTL 1 0x04 RSTI Reset (read-only, non-maskable)

IRPTL 2 0x08 IICDI Illegal Input Condition Detected

IRPTL 3 0x0C SOVFI Status loop or mode stack over-
flow; or PC stack full

IRPTL 4 0x10 TMZHI Timer = 0 (high priority option)

IRPTL 5 0x14 Reserved

IRPTL 6 0x18 BKPI Hardware Breakpoint Interrupt

IRPTL 7 0x1C Reserved

IRPTL 8 0x20 IRQ2I IRQ2I_ is asserted

IRPTL 9 0x24 IRQ1I IRQ1I_ is asserted

IRPTL 10 0x28 IRQ0I IRQ0I_ is asserted

IRPTL 11 0x2C DAIHI DAI High Priority Interrupt

IRPTL 12 0x30 SPIHI SPI Transmit or Receive (higher
priority option)

IRPTL 13 0x34 GPTMR0I General-purpose IOP Timer 0
Interrupt

IRPTL 14 0x38 SP1I SPORT1 Interrupt

IRPTL 15 0x3C SP3I SPORT3 Interrupt

IRPTL 16 0x40 SP5I SPORT5 Interrupt

LIRPTL 0 0x44 SP0I SPORT0 Interrupt

LIRPTL 1 0x48 SP2I SPORT2 Interrupt

LIRPTL 2 0x4C SP4I SPORT4 Interrupt

ADSP-2126x SHARC DSP Core Manual B-3

Interrupt Vector Addresses

LIRPTL 3 0x50 PPI Parallel Port Interrupt

LIRPTL 4 0x54 GPTMR1I General-purpose IOP Timer 1
Interrupt

LIRPTL 5 0x58 -- Reserved

LIRPTL 6 0x5C DAILI DAI Low Priority Interrupt

LIRPTL 7 0x60 -- Reserved

IRPTL 17, 18, 19 0x64-0x6F -- Reserved

LIRPTL 8 0x70 GPTMR2I General-purpose IOP Timer 2
Interrupt

LIRPTL 9 0X74 SPILI SPI Transmit or Receive (lower
priority option)

IRPTL 20 0x78 CB7I Circular Buffer 7 Overflow

IRPTL 21 0x7C CB15I Circular Buffer 15 Overflow

IRPTL 22 0x80 TMZLI Timer=0(Low Priority Option)

IRPTL 23 0x84 FIXI Fixed-point Overflow

IRPTL 24 0x88 FLTOI Floating-point Overflow Excep-
tion

IRPTL 25 0x8C FLTUI Floating-point Underflow Excep-
tion

IRPTL 26 0x90 FLTII Floating-point invalid exception

IRPTL 27 0x94 EMULI Emulator Low Priority Interrupt

IRPTL 28 0x98 SFT0I User Software Interrupt 0

IRPTL 29 0x9C SFT1I User Software Interrupt 1

IRPTL 30 0xA0 SFT2I User Software Interrupt 2

IRPTL 31 0xA4 SFT3I User Software Interrupt 3; LOW-
EST PRIORITY

Table B-2. ADSP-2126x Interrupt Vector Addresses (Cont’d)

Register IRPTL/
IMASK,
LIRPTL Bit#

Vector
Address

Interrupt
Name

Function

B-4 ADSP-2126x SHARC DSP Core Manual

ADSP-2126x SHARC DSP Core Manual G-1

G GLOSSARY

Autobuffering Unit (ABU). See I/O processor on page G-5 and DMA on
page G-3.

Arithmetic Logic Unit (ALU). This part of a processing element performs
arithmetic and logic operations on fixed-point and floating-point data.

Auxiliary registers. See Index Registers on page G-5.

Base address. The starting address of a circular buffer to which the DAG
wraps around. This address is stored in a DAG Bx register.

Base registers. A base (Bx) register is a Data Address Generator (DAG)
register that sets up the starting address for a circular buffer.

Bit-reverse addressing. The Data Address Generator (DAG) provides a
bit-reversed address during a data move without reversing the stored
address.

Block repeat. See Do/Until instructions in the ADSP-21160 DSP Instruc-
tion Set Reference.

Block size register. See Length Registers on page G-6.

Broadcast data moves. The Data Address Generator (DAG) performs dual
data moves to complementary registers in each processing element to sup-
port SIMD mode.

Buffered serial port. See Serial ports on page G-9.

G-2 ADSP-2126x SHARC DSP Core Manual

Bus slave or slave mode. A DSP can be a bus slave to another DSP or to a
host processor. The DSP becomes a host bus slave when the HBG signal is
returned.

Circular buffer addressing. The DAG uses the Ix, Mx and Lx register set-
tings to constrain addressing to a range of addresses. This range contains
data that the DAG steps through repeatedly, “wrapping around” to repeat
stepping through the range of addresses in a circular pattern.

Companding (compressing/expanding). This is the process of logarithmi-
cally encoding and decoding data to minimize the number of bits that
must be sent.

Conditional branches. These are JUMP or CALL/return instructions whose
execution is based on testing an IF condition.

DAGEN, Data address generator. See Data Address Generator (DAG).

Data Address Generator (DAG). The data address generators (DAGs)
provide memory addresses when data is transferred between memory and
registers.

Data register file. This is the set of data registers that transfer data
between the data buses and the computation units. These registers also
provide local storage for operands and results.

Data registers (Dreg). These are registers in the PEx and PEy processing
elements. These registers are hold operands for multiplier, ALU, or shifter
operations and are denoted as Rx when used for fixed point operations or
Fx when used for floating-point operations.

Deadlock Resolution. When both the DSP subsystem and the system try
to access each other’s bus in the same cycle, a deadlock may occur in
which neither access can complete. Techniques for resolving deadlock vary
with the interface: DRAM, host, or multiprocessor DSP.

Delayed branches. These are JUMPS and CALL/return instructions with the
delayed branches (DB) modifier. In delayed branches, no instruction cycles

ADSP-2126x SHARC DSP Core Manual G-3

Glossary

are lost in the pipeline, because the DSP executes the two instructions
after the branch while the pipeline fills with instructions from the new
branch.

Denormal operands. When the biased exponent is zero, smaller numbers
can only be represented by making the integer bit (and perhaps other lead-
ing bits) of the significant zero. The numbers in this range are called
denormalized (or tiny) numbers. The use of leading zeros with denormal-
ized numbers allows smaller numbers to be represented.

Direct branches. These are JUMP or CALL/return instructions that use an
absolute—not changing at runtime—address (such as a program label) or
use a PC-relative address.

Direct reads & writes. A direct access of the DSP's internal memory or
I/O processor registers by another DSP or by a host processor.

DMA (Direct Memory Accessing). The DSP’s I/O processor supports
DMA of data between DSP memory and external memory, host, or
peripherals through the external, link, and serial ports. Each DMA opera-
tion transfers an entire block of data.

DMA chaining. The DSP supports chaining together multiple DMA
sequences. In chained DMA, the I/O processor loads the next Transfer
Control Block (DMA parameters) into the DMA parameter registers when
the current DMA finishes and auto-initializes the next DMA sequence.

DMA Parameter Registers. These registers function similarly to data
address generator registers, setting up a memory access process. These reg-
isters include Internal Index registers (IISPX, IISPI), Internal Modify
registers (IMSPI), Count registers (CSPx, CSPI), Chain Pointer registers
(CPSPI), External Index registers (EIPP), External Modify registers (EMPP),
and External Count registers (ECPP).

DMA TCB chain loading. This is the process that the I/O processor uses
for loading the TCB of the next DMA sequence into the parameter regis-
ters during chained DMA.

G-4 ADSP-2126x SHARC DSP Core Manual

Edge-sensitive interrupt. The DSP detects this type of interrupt if the
input signal is high (inactive) on one cycle and low (active) on the next
cycle when sampled on the rising edge of CLKIN.

Endian Format, Little Versus Big. The DSP uses big-endian format—
moves data starting with most-significant-bit and finishing with least-sig-
nificant-bit—in almost all instances. The two exceptions are bit order for
data transfer through the serial port and word order for packing through
the parallel port. For compatibility with little-endian (least-signifi-
cant-first) peripherals, the DSP supports both big- and little-endian bit
order data transfers. Also for compatibility little endian hosts, the DSP
supports both big and little endian word order data transfers.

Explicit Versus Implicit operations. In SIMD mode, identical instruc-
tions execute on the PEx and PEy computational units; the difference is
the data. The data registers for PEy operations are identified (implicitly)
from the PEx registers in the instruction. This implicit relation between
PEx and PEy data registers corresponds to complementary register pairs.

Field deposit (Fdep) instructions. These shifter instructions take a group
of bits from the input register (starting at the LSB of the 32-bit integer
field) and deposit the bits as directed anywhere within the result register.

Field extract (Fext) instructions. These shifter extract a group of bits as
directed from anywhere within the input register and place them in the
result register (aligned with the LSB of the 32-bit integer field).

Programmable Flag pins. These pins (FLGx) can be programmed as input
or output pins using bit settings in the MODE2 register. The status of the
flag pins is given in the FLAGS or IOFLAG register.

General purpose input/output pins. See Programmable Flag pins.

Flag update. The DSP’s update to status flags occurs at the end of the
cycle in which the status is generated and is available on the next cycle.

ADSP-2126x SHARC DSP Core Manual G-5

Glossary

Harvard architecture. DSPs use memory architectures that have separate
buses for program and data storage. The two buses let the DSP get a data
word and an instruction simultaneously.

Hold time cycle. This is an inactive bus cycle that the DSP automatically
generates at the end of a read or write (depending on the parallel port
access mode) to allow a longer hold time for address and data. The
address—and data, if a write—remains unchanged and is driven for one
cycle after the read or write strobes are deasserted.

I/O processor register. One of the control, status, or data buffer registers
of the DSP's on-chip I/O processor.

Idle cycle. This is an inactive bus cycle that the DSP automatically gener-
ates (depending on the parallel port access mode) to avoid data bus driver
conflicts. Such a conflict can occur when a device with a long output dis-
able time continues to drive after RD is deasserted while another device
begins driving on the following cycle.

IDLE. An instruction that causes the processor to cease operations, hold-
ing its current state until an interrupt occurs. Then, the processor services
the interrupt and continues normal execution.

Index registers. An index register is a Data Address Generator (DAG) reg-
ister that holds an address and acts as a pointer to memory.

Indirect branches. These are JUMP or CALL/return instructions that use a
dynamic—changes at runtime—address that comes from the PM data
address generator.

Inexact flags. An inexact flag is an exception flag whose bit position is
inexact.

Interleaved data. To take advantage of the DSP’s data accesses to 4- and
3-column locations, programs must adjust the interleaving of data into
(not necessarily sequential) memory locations to accommodate the mem-
ory access mode.

G-6 ADSP-2126x SHARC DSP Core Manual

Internal memory space. This space ranges from address 0x0000 0000
through 0x0005 3FFF (Normal word). Internal memory space refers to
the DSP’s on-chip SRAM and memory mapped registers.

Interrupts. Subroutines in which a runtime event (not an instruction)
triggers the execution of the routine.

JTAG port. This port supports the IEEE standard 1149.1 Joint Test
Action Group (JTAG) standard for system test. This standard defines a
method for serially scanning the I/O status of each component in a
system.

Jumps. Program flow transfers permanently to another part of program
memory.

Length registers. A length registers is a Data Address Generator (DAG)
register that sets up the range of addresses a circular buffer.

Level-sensitive interrupts. The DSP detects this type of interrupt if the
signal input is low (active) when sampled on the rising edge of CLKIN.

Loops. One sequence of instructions executes several times with zero
overhead.

McBSP, Multichannel buffered serial port. See Serial port.

MCM, Multichannel mode. See Multichannel mode on page G-9.

Memory Access Modes. The DSP supports Asynchronous external mem-
ory space. In asynchronous access mode, the DSP’s RD and WR strobes
change before CLKIN edge. In synchronous access mode, the DSP’s RD and
WR strobes change on CLKIN edge.

Memory blocks and banks. The DSP’s internal memory is divided into
blocks that are each associated with different data address generators. The
DSP’s external memory spaces is divided into banks, which may be
addressed by either data address generator.

ADSP-2126x SHARC DSP Core Manual G-7

Glossary

Modified addressing. The DAG generates an address that is incremented
by a value or a register.

Modify address. The Data Address Generator (DAG) increments the
stored address without performing a data move.

Modify registers. A modify register is a Data Address Generator (DAG)
register that provides the increment or step size by which an index register
is pre- or post-modified during a register move.

Multichannel Mode. In this mode, each data word of the serial bit stream
occupies a separate channel.

Multifunction computations. Using the many parallel data paths within
its computational units, the DSP supports parallel execution of multiple
computational instructions. These instructions complete in a single cycle,
and they combine parallel operation of the multiplier and the ALU or dual
ALU functions. The multiple operations perform the same as if they were
in corresponding single-function computations.

Multiplier. This part of a processing element does floating-point and
fixed-point multiplication and executes fixed-point multiply/add and
multiply/subtract operations.

Nonzero numbers. Nonzero, finite numbers are divided into two classes:
normalized and denormalized

Neighbor Registers. In Long word addressed accesses, the DSP moves
data to or from two neighboring data registers. The least-significant-32
bits moves to or from the explicit (named) register in the neighbor register
pair. In forced Long word accesses (Normal word address with LW mne-
monic), the DSP converts the Normal word address to Long word, placing
the even Normal word location in the explicit register and the odd Nor-
mal word location in the other register in the neighbor pair.

Parallel port. This port extends the DSPs internal address and data buses
off-chip, providing the processor’s interface to off-chip memory devices.

G-8 ADSP-2126x SHARC DSP Core Manual

PAGEN, Program address generation logic. For more information, see
“Program Sequencer” on page 3-1.

Peripherals. This refers to everything outside the processor core. The
ADSP-21535’s peripherals include internal memory, parallel port, I/O
processor, JTAG port, and any external devices that connect to the DSP.

Precision. The precision of a floating-point number depends on the num-
ber of bits after the binary point in the storage format for the number.
The DSP supports two high precision floating-point formats: 32-bit IEEE
single-precision floating-point (which uses 8 bits for the exponent and 24
bits for the mantissa) and a 40-bit extended precision version of the IEEE
format.

Post-modify addressing. The Data Address Generator (DAG) provides an
address during a data move and auto-increments the stored address for the
next move.

Pre-modify addressing. The Data Address Generator (DAG) provides a
modified address during a data move without incrementing the stored
address.

Registers swaps. This special type of register-to-register move instruction
uses the special swap operator, <->. A register-to-register swap occurs
when registers in different processing elements exchange values.

Saturation (ALU saturation mode). In this mode, all positive fixed-point
overflows return the maximum positive fixed-point number
(0x7FFF FFFF), and all negative overflows return the maximum negative
number (0x8000 0000).

Semaphore. This is a flag that can be read and written by any of the pro-
cessors sharing the resource. Semaphores can be used in multiprocessor
systems to allow the processors to share resources such as memory or I/O.
The value of the semaphore tells the processor when it can access the
resource. Semaphores are also useful for synchronizing the tasks being per-
formed by different processors in a multiprocessing system.

ADSP-2126x SHARC DSP Core Manual G-9

Glossary

Serial ports. The DSP has six synchronous serial ports that provide an
inexpensive interface to a wide variety of digital and mixed-signal periph-
eral devices.

SHARC. This is an acronym for Super Harvard Architecture. This DSP
architecture balances a high performance processor core with high perfor-
mance buses (PM, DM, I/O).

Shifter. This part of a processing element completes logical shifts, arith-
metic shifts, bit manipulation, field deposit, and field extraction
operations on 32-bit operands. Also, the Shifter can derive exponents.

SMUL, Saturation on multiplication. See Multiplier on page G-7.

S/PDIF. (Sony/Philips Digital InterFace) A serial interface for transfer-
ring digital audio between devices such as CD and DVD players and
amplifiers. S/PDIF is the consumer version of the AES/EBU interface and
uses unbalanced 75 ohm coaxial cable with RCA or BNC connectors.

SST, Saturation on store. See Multiplier on page G-7.

Subroutines. The processor temporarily interrupts sequential flow to exe-
cute instructions from another part of program memory.

TADD, TDM address. See Multichannel Mode on page G-7.

TCB chain loading. The process in which the DSP's DMA controller
downloads a Transfer Control Block from memory and autoinitializes the
DMA parameter registers.

Time Division Multiplexed (TDM) mode. The serial ports support
TDM or multichannel operations. In multichannel mode, each data word
of the serial bit stream occupies a separate channel— each word belongs to
the next consecutive channel so that, for example, a 24-word block of data
contains one word for each of 24 channels.

G-10 ADSP-2126x SHARC DSP Core Manual

Transfer control block (TCB). A set of DMA parameter register values
stored in memory that are downloaded by the DSP's DMA controller for
chained DMA operations.

Tristate Versus Three-state. Analog Devices documentation uses the term
“three-state” instead of “tristate” because Tristate™ is a trademarked
term, which is owned by National Semiconductor.

Universal registers (Ureg). These are any processing element registers
(data registers), any Data Address Generator (DAG) registers, any pro-
gram sequencer registers, and any I/O processor registers.

Von Neumann architecture. This is the architecture used by most
(non-DSP) microprocessors. This architecture uses a single address and
data bus for memory access.

Wait states. The time spent waiting for an operation to take place. It may
refer to a variable length of time a program has to wait before it can be
processed, or to a fixed duration of time, such as a machine cycle.

When memory is too slow to respond to the CPU’s request for it, wait
states are introduced until the memory can catch up.

ADSP-2126x SHARC DSP Core Manual I-1

I INDEX

Symbols
(BHD) bit, 6-12
.D unit See DAGs or ALU
.L unit See ALU
.M unit See multiplier
.S unit See shifter

Numerics
16-bit floating-point format, 2-5
32-bit data See normal word
32-bit single-precision floating-point

format, 2-4
40-bit extended-precision

floating-point format, 2-5
64-bit signed fixed-point product, 2-8

A
About This Document, xviii
ABS function, 2-16
absolute address, 3-12, G-3
AC bit, 2-18, 3-19, A-15
ADD instruction, 2-16, 2-43
Additional Literature, xix
address bus, 1-2
address fields, A-48
addressing

See post-modify, pre-modify, modify,

bit-reverse, or circular buffer
storing top-of-loop addresses, 3-17,

A-48
with DAGs, 4-10

AF bit, 2-18, A-17
AI bit, 2-18, A-16
AIS bit, 2-18, A-20
aligning data, 5-15
alternate DAG registers, 4-6
alternate registers See secondary registers
ALU

(AOS) bit, 2-18
carry See AC bit
fixed-point overflow See AOS bit
floating-point operation See AF bit
Saturation (ALUSAT) bit, A-6
x-input sign See AS bit
zero See AZ bit

ALU carry See AC bit
ALU See arithmetic logic unit, 2-1
ALUSAT bit, 2-11, 2-17
AN bit, 2-18, A-15
Analog Devices products, xxi
And breakpoints (ANDBKP) bit, 6-11,

A-58
AND, logical, 2-16
ANDBKP bit, 6-23

I-2 ADSP-2126x SHARC DSP Core Manual

AOS bit, 2-18, A-20
arithmetic

operations, 1-4
Arithmetic Logic Unit (ALU), 1-6, 2-16

instructions, 2-16, 2-19
interrupts, 3-57
operations, 2-17
saturation, 2-17
status, 2-11, 2-15, 2-17, 2-18, 2-27,

3-57
arithmetic operations, 2-16, 2-17
arithmetic shifts, G-9
arithmetic status See ASTATx/y

registers
AS bit, 2-18, A-15
ASTATx/y registers, 2-15
asymmetric data moves, 2-46
asynchronous

access mode, G-6
AUS bit, 2-18, A-20
AV bit, 2-18, 3-19, A-15
average instructions, 2-16, 2-43
AVS bit, 2-18, A-20
AZ bit, 2-18, A-15

B
background registers See secondary

registers
background telemetry, 6-3
background telemetry channel See BTC
barrel shifter See shifter
base See Bx registers
BDCSTx bits, 4-2, 4-5, 5-24
BDCSTx register, 5-32

BHO bit, 6-12, 6-23
binary log (floating-point operation),

2-16
bit (bit manipulation) instruction, 3-64
bit manipulation, 2-30, G-9
bit reverse address enable See BRx bits
bit test flag See BTF bit
bit test See BTST instruction
bit Tst instruction, 5-27
bit XOR instruction, 3-19
BITREV, 4-8, 4-19, 4-27
bit-reverse addressing, 4-4, 4-7, A-5,

G-1
(BRx) bits, A-5

bit-reverse addressing See BRx bits
bit-reverse See BITREV instruction
Bits

NESTM, A-6
BKSTOP bit, 6-22
block conflicts, 3-8
boot memory

reading from, 5-22
booting, 5-22
boundary scan, 6-1, 6-2, 6-25
branch

conditional, 3-12
delayed, 3-13, 3-17
direct, 3-12, G-3
indirect, 3-12

branching execution, 3-11
direct and indirect branches, 3-12

breakpoint
output (BRKOUT) pin, 6-9
status See STATx bit

ADSP-2126x SHARC DSP Core Manual I-3

stop (BKSTOP) bit, 6-9
triggering mode (xMODE) bit, 6-11

breakpoint status See STATx bit
BRKCTL register, 6-8, A-53
broadcast load, 4-1, 4-2, 4-3, 4-5, 5-25,

5-33, A-7, G-1
enable (BDCSTx) bits, A-7

broadcast load mode, 5-33
broadcast register loads See BDCSTx

register
BRx bits, 4-4, 4-7
BSDL file, 6-2
BSDL Reference Guide, 6-26
BTC, 6-4
BTF bit, 3-19, A-18
BTST instruction, 2-15
buffer hang override See BHO bit
buffer overflow, circular, 4-9, 4-14,

4-17
built-in self-test operation (BIST), 6-21
bus conflicts, 3-5, 3-51
bus master, A-6
bus master select See CSEL bit
buses, 1-2, 1-9, 1-10

addressing operations, 5-4
bus slave defined, G-2
data access types, 5-28

Bx registers, 4-2, 4-18, A-52, G-1
BYPASS instruction, 6-6

C
CACCx bits, 2-18, A-18
cache

disable See CADIS bit

freeze See CAFRZ bit
hit, 3-6
miss, 3-6

cache disable See CADIS bit
cache freeze See CAFRZ bit
CADIS bit, 3-8, A-12
CAFRZ bit, 3-8, A-12
calculating starting address (32-bit

addresses), 5-20
CALL instructions, 3-11
CBUFEN bit, 4-2, 4-4, 4-17
CBxI bit, A-30, A-35, A-41
CBxS bit, A-21
CFL bit, 3-17, A-21
circular buffer addressing, 1-8, 4-2, 4-4,

4-14, A-7, A-9, G-2
registers, 4-18
setup, 4-15
SIMD and long word accesses, 4-19
wrap around, 4-17

circular buffer addressing enable
(CBUFEN) bit, A-7

circular buffer addressing enable See
CBUFEN bit, 4-17

circular buffer wrap, 4-17
circular buffering, length and base

registers, A-52
clear, bit, 2-30
clip function, 2-16
clock input See CLKIN pin
Clocks and system clocking

CLKIN pin, 6-2
clock cycles and program flow, 3-4

I-4 ADSP-2126x SHARC DSP Core Manual

companding (compressing/expanding),
G-2

compare function, 2-16
complementary conditions, 3-36
complementary registers, 2-46, G-4
computational mode, 2-48

status, using, 2-15
units See processing elements

computational mode, setting, 2-11
condition code select (CSEL) bits, A-6
condition codes, 3-19
conditional

branches, 3-12, 3-36, G-2
complementary conditions, 3-36
compute operations, 3-36
conditions list, 3-19
execution summary, 3-35
instructions, 3-18, 3-63
SIMD mode and conditionals, 3-35

context switch, 1-9, 2-39
conventions, -xxiv
core stalls, 3-21
counter-based loops, 3-28

See also non-counter-based loops
CSEL bit, A-9
CURLCNTR register, 3-32, A-50
current loop counter See also

CURLCNTR register
customer support, -xx
cycle count functionality register See

EMUCLK
cycle counting, 6-3

D
D unit See DAGs or ALU
DADDR register, 3-2, 3-66, A-49
DAG

addressing, 4-10
DAG register, A-51
DAGs register, 1-8, 4-1, 5-4, 5-24, G-2
data

addressing mode, 2-48
alignment, 5-15
alignment in busses, 5-7
alignment in memory, 5-15
alignment, normal word, 5-28
formats, rounding, 2-2
fractional, 2-14
numeric formats, 2-2
unconstrained flow, 1-4

data (Dreg) registers, G-2
data access

options, 5-34
settings, 5-31

Data Address Generators (DAGs)
data alignment, 4-21
data move restrictions, 4-23
data moves, 4-20
enhancements, 1-14
features, 1-5
instructions, 4-24, 4-25
operations, 4-9
setting modes, 4-2
SIMD mode, 4-20
status, 4-8, 4-9

data file registers, listed, A-23
data format

ADSP-2126x SHARC DSP Core Manual I-5

extended precision normal word,
40-bit floating-point, 2-13

normal word, 32-bit fixed-point, 2-14
normal word, 32-bit floating-point,

2-12
short word, 16-bit floating-point,

2-13
data memory

(DM) bus, 1-2
data memory breakpoint hit See

STATDx bit
data moves, 1-10

conditional, 3-37
moves to/from PX, 5-10

data registers, 1-6, 2-37, 2-48, G-2
data registers, secondary hi/lo See

SRRFH/L bits
data sheets, -xxiii
data type, 5-28
data, fixed- and floating-point, G-1
deadlock resolution, G-2
decode address See DADDR register
decode cycle, 3-4
delayed branch

(DB) instruction, 3-13, 3-16, 3-17
(DB) Jump or Call instruction, 3-14,

G-2
denormal operands, 2-12, G-3
deposit bit field, 2-30
development tools, 1-13
device identification register, 6-5
DIVEN bit, A-68
DMA

controller, 1-2

defined, G-3
parameter registers, defined, G-3
sequences

TCB loading, G-3
DMx register, 6-14, 6-23
DO UNTIL instruction, 3-25

See also loops
double register operations

unsupported, 2-50
DSP

architectural overview, 1-5
design advantages, 1-1

DSP product information, -xxi
dual add and subtract, 2-43
dual processing element moves See

broadcast load mode
dual-data accesses, 5-33

E
E field, address, A-48
edge-sensitive interrupts, 3-52, A-12,

G-4
EEMUENS bit, 6-16, A-61
EEMUIN buffer, 6-4
EEMUINENS bit, 6-16, A-61
EEMUINFULLS bit, 6-16, A-61
EEMUOUIRQENS bit, A-60
EEMUOUT FIFO buffer, 6-4
EEMUOUTFULLS bit, A-61
EEMUOUTRDY bit, A-61
EEMUSTAT register, 6-4, 6-8, A-58
effect latency See latency
EMU64PX register, 6-21
EMUCLKx register, 6-4, 6-24

I-6 ADSP-2126x SHARC DSP Core Manual

EMUCTL register, 6-21, 6-22
EMUI bit, A-28, A-30, A-33, A-36,

A-39, A-42
emulation (JTAG), 1-2
emulator

clock See EMUCLKx register
control shift (EMUCTL) register, 6-9
enable (EMUENA) bit, 6-9
interrupt EMUI bit, A-28
interrupt enable (EIRQENA) bit, 6-9

emulator clock See EMUCLKx register
emulator control shift (EMUCTL)

register, 6-9
emulator control shift See EMUCTL

register
emulator idle (EMUIDLE) instruction,

6-24
emulator interrupt See EMUI bit
emulator Nth event counter See EMUN

register
EMUN register, 6-4, 6-23
EMUPID, 6-5
EMUPX register, 6-21
enable

(BRKOUT) pin, 6-9, 6-22
breakpoint (ENBx) bit, 6-11, A-57

ENBx bit, 6-22
endian format, G-4
end-of-loop instruction address, 3-26
enhanced emulation

feature enable See EEMUENS bit
features and bits See EEMUENS
INDATA FIFO status See

EEMUINFULLS bit

OUTDATA FIFO status See
EEMUOUTFULLS bit

OUTDATA interrupt enable See
EEMUOUIRQENS bit

OUTDATA ready See
EEMUOUTRDY bit

EPAx register, 6-14
Equals (EQ) condition, 3-19
examples

bit reverse addressing, 4-7
cache inefficient code, 3-9
direct branch, 3-12
DO UNTIL loop, 3-24
interrupt service routine, 3-62
long word moves, 5-29
PX register transfers, 5-7 to 5-11
single and dual data access, 5-34

execute address See PC register
execute cycle, 3-4
explicit versus implicit operations, G-4
exponent derivation, G-9
EXT_CLK mode, A-64
extended precision normal word, 5-15,

5-30
data access, 5-50, 5-53
data storage, 5-2
mixed data access, 5-30
SIMD mode access, 5-56
SISD mode access, 5-55

external event watchdog (EXT_CLK)
mode, 7-1, 7-12

external memory, 1-15
access modes, G-6

external port stop (EPSTOP) bit, 6-10

ADSP-2126x SHARC DSP Core Manual I-7

EXTEST instruction, 6-6
extract bit field, 2-30
extract exponent, 2-30

F
FADDR register, 3-2, 3-66, A-49
false always (FOREVER) Do/Until

condition, 3-20
fetch address See FADDR register
fetch cycle, 3-4
fetched address, 3-2
field deposition/extraction, G-9
fixed-point

ALU instructions, 2-20
data, G-1
multiplier instructions, 2-28, 2-43
operands, 2-17, A-15
operations, 2-38
saturation values, 2-26

fixed-point overflow interrupt See FIXI
bit

FIXI bit, 3-57, A-30, A-36, A-41
flag

input (FLGx_IN) conditions, 3-20
input/output value See FLAGS

register
update, 2-19, 2-27, 2-33, 2-52, 3-57,

4-9, 5-27, G-4
flag input (FLGx_IN) conditions, 3-20
FLAGS register, 3-66
floating-point

ALU instructions, 2-21
data, 2-15, G-1
data format (RND32) bit, 2-11

invalid interrupt See FLTII bit
invalid operation (FLTII) interrupt,

3-57
multiplier instructions, 2-30
operations, 2-38, 2-43
overflow interrupt See FLTOI bit
underflow interrupt See FLTUI bit

floating-point underflow interrupt See
FLTUI bit

FLTII bit, A-30, A-36, A-42
FLTOI bit, 3-57, A-30, A-36, A-41
FLTUI bit, 3-57, A-15, A-30, A-36,

A-42
format

conversion, 2-16
packing (Fpack/Funpack)

instructions, 2-13
formats

16-bit floating-point, 2-5
40-bit floating-point, 2-5
64-bit fixed-point, 2-8

formats See also data format
fractional

data, 2-14, 2-15
input(s), 2-29
results, 2-8, 2-24

functions
Abs, 2-16

G
general-purpose IOP Timer 2 interrupt

mask See GPTMR2IMSK bit
global interrupt enable, A-6
GPTMR2IMSK bit, A-46

I-8 ADSP-2126x SHARC DSP Core Manual

greater or equals (GE) condition, 3-19
greater than (GT) condition, 3-19

H
hardware manuals, -xxiii
Harvard architecture, 5-3, G-5
hold time cycle, G-5

I
I/O

address breakpoint hit See STATI0 bit
stop (IOSTOP) bit, 6-9
stop See IOSTOP bit

I/O address breakpoint hit See STATI0
bit

I/O processor, 1-2
registers, G-5

IDCODE instruction
unsupported, 6-6

identification, processor See PIDx bit
IDLE cycle, G-5
IDLE instruction, 3-1, 3-63
IDLE instruction, defined, G-5
IEEE 1149.1 JTAG standard, 1-12, G-6
IEEE 754/854 floating-point data

format, 2-2, 2-11
IEEE floating-point number

conversion, 2-13
IICD bit, 5-25, 5-26, A-28, A-33, A-39
IIMDWx bits, 5-10
IIRA bit, A-21
IIRAE bit, 5-25, 5-33, A-12
IIVT bit, 5-32

illegal I/O processor register access
enable See IIRAE bit

illegal input condition detected See
IICD bit

illegal IOP register access See IIRA bit
IMASK control register, 3-66, A-31
IMASKP control register pointer, A-37
IMDWx bits, 5-14, 5-23, 5-27, 5-32
implicit operations, 5-25

broadcast load, 4-6
complementary registers, 2-47
long word (LW) accesses, 5-28
neighbor registers, 5-29
SIMD mode, 2-46

increment instruction, 2-16
INDATA interrupt enable See

EEMUINENS bit
index See Ix registers
indirect addressing, 1-8
indirect branch, 3-12, G-5
inexact flags, G-5
infinity, round-to, 2-12
input/output (I/O) bus, 1-2
instruction

(bit), 3-64
ADD, 2-16, 2-43
BIT CLR, 2-30

instruction address breakpoint hit See
STATIx bit

instruction cache, 1-9, 3-5
instruction dispatch/decode See

program sequencer
instruction pipeline, 3-2
instruction register, 6-6

ADSP-2126x SHARC DSP Core Manual I-9

instruction set
changes, 1-16
enhancements, 1-16

instruction word
data access, 5-30
storage, 5-2

instructions
AVE, 2-16, 2-43
conditional, 2-15, 2-48, 2-50
decrement, 2-16
FDEP, 2-32
multiplier, 2-22, 2-27

integer
data, 2-14
input(s), 2-29
results, 2-8, 2-24

intended audience, -xvii
interleaved data, G-5
interleaving data, 5-34
internal buses, 1-10
internal interrupt vector table See IIVT

bit
internal memory, 5-2, 5-13, 5-67, G-6

data width See IMDWx bits
interrupt controller, 3-63
interrupt enable, global (IRPTEN) bit,

A-6
interrupt input x interrupt See IRQxI

bit
interrupt latch See IRPTL register
interrupt latch/mask See LIRPTL

registers
interrupt latency, 3-48

delayed branch, 3-50

single-cycle instruction, 3-48
writes to IRPTL, 3-48

interrupt mask
 See IMASK control register
 See IMASKP control register
control register pointer, See IMASKP

control register
control register See IMASK control

register
interrupt mask See IMASK control

register
interrupt nesting enable See NESTM bit
interrupt vector table

by register and interrupt name, 3-53,
B-2

interrupt vector table (IVT), 3-46
interrupt x edge/level sensitivity See

IRQxE bits
interrupting IDLE, 3-63
interrupts, 1-8, 2-15, 3-1, 3-46, 4-9,

5-25, 5-26, 5-27, A-29, A-34, A-40,
G-6

arithmetic, 3-57
Data Address Generators (DAGs),

4-17
hold off, 3-50
IDLE instructions, 3-63
inputs (IRQ2-0), 3-46
interrupt sensitivity, 3-51, A-12, G-6
interrupt vector table, 3-53, 5-23, B-2
IRPTL write timing, 3-48
latch status for, A-26
latching, 3-57
latency See interrupt latency

I-10 ADSP-2126x SHARC DSP Core Manual

listed in registers, B-1
masking and latching, 3-53, 3-57
nested interrupts, 3-59
nesting, A-6
PC stack full, 3-18
response, 3-47
re-using, 3-62
sensitivity, interrupts, A-12
software, 1-8, 3-48
timer, 3-45, 7-5

interrupts and sequencing, 3-46
interval timer, 3-44
INTEST instruction, 6-6
IOSTOP bit, 6-22
IRPTL register, 3-11, A-26
IRQxE bits, 3-52, A-12
IRQxI bit, A-29, A-34, A-40
IVT bit, 5-23
Ix registers, 4-2, 4-18, A-52, G-5

J
JTAG

instruction register codes, 6-6
interface, access to features, 6-3
logic, 6-1
port, 1-2, 1-12, 6-1, G-6
specification, IEEE 1149.1, 6-1, 6-2,

6-25
test access port (TAP), 6-1
test-emulation port, 6-1 to 6-26

JTAG boundary register, 6-18
JTAG ICE, 6-1
JTAG instruction

EMUPID, 6-5

JUMP instructions, 3-1, 3-11, G-6
loop abort (LA) register, 3-25
pops status stack with (CI), 3-59

L
L unit See ALU
LA register, 3-25
LADDR register, 3-66, A-50
latch

characteristics, 6-2
latch status for interrupts, A-26
latching interrupts, 3-57
latency, 3-9, 3-48, 3-64

system registers, 3-64
LCNTR register, 3-23, 3-32, 3-33,

3-66, A-50
Least Significant Bits (LSB), 3-6
LEFTO operation, A-17
LEFTZ operation, A-17
less or equals (LE) condition, 3-19
less than (LT) condition, 3-19
level sensitive interrupts, 3-51, A-12,

G-6
link port, 1-16

enhancements, 1-16
LIRPTL registers, 3-53, 3-57, 3-66,

A-43
logical operations, 2-16
logical shifts, G-9
long word, 5-15, 5-28, 5-30

data access, 5-28, G-7
data moves, 5-29
data storage, 5-2
SIMD mode, 5-62

ADSP-2126x SHARC DSP Core Manual I-11

single data, 5-58
SISD mode, 5-60

loop, 3-1, 3-23, G-6
address stack, 3-31, 3-64
conditional loops, 3-24
counter stack, 3-32
end restrictions, 3-26
last iteration, 3-33
status, 3-31
termination, 3-19, 3-25, 3-31, 3-33,

3-63, A-50
loop abort See LA jump register
loop address stack, 3-31
loop address stack See LADDR register
loop count See LCNTR register
loop counter expired (LCE) condition,

3-20, 3-23
loop counter stack

access, A-50
loop stack empty See LSEM bit
loop stack overflow See LSOV bit
LSEM bit, 3-32, A-22
LSOV bit, 3-32, A-22
Lx registers, 4-2, 4-18, A-52, G-6

M
M field, address, A-48
M unit See multiplier
mantissa (floating-point operation),

2-16
manual

audience, -xvii
contents, -xviii
conventions, -xxiv

new in this edition, -xx
related documents, -xxii

masking interrupts, 3-53
max/min function, 2-16
memory, 1-2, 5-1, 5-13, 5-67, G-6

access priority, 5-4, 5-64
access types, 5-24, 5-27, G-6
access word size, 5-28
asynchronous interface, G-6
banks of memory, G-6
blocks, 5-23, G-6
booting, 5-22
columns of memory, 5-7
data types, 5-28
enhancements, 1-15
mixing 32-bit & 48-bit words, 5-17
mixing 32-bit and 48-bit words, 5-17
mixing 40/48-bit and 16/32/64-bit

data, 5-21
mixing instructions and data

two unused locations, 5-20
mixing word width

SIMD mode, 5-64
SISD mode, 5-64

SRAM, 1-11
transition from 32-bit/48-bit data,

5-20
memory test (MTST) bit, 6-12
memory test See MTST bit
memory transfers, 5-35

16-bit (short word), 5-36
32-bit (normal word), 5-44
40-bit (extended precision normal

word), 5-50

I-12 ADSP-2126x SHARC DSP Core Manual

64-bit (long word), 5-58
memory-mapped registers, A-53
MI bit, 2-26, A-17
MIS bit, 2-27, A-21
MMASK register, 3-59, 3-66, 4-17, A-7
MN bit, 2-26, A-16
mnemonics See instructions
mode control 2 shadow See

MODE2_SHDW register
mode control See MODEx registers
mode mask See MMASK register
MODE2 register, 3-8
MODE2_SHDW register, A-53
modes

timer, A-62
MODEx registers, 3-66, A-3
modified addressing, 4-10, G-7
modify address, 4-1, G-7
modify instruction, 4-17, 4-19, 4-27
modify See Mx registers
modulo addressing, 1-8
MOS bit, 2-27, A-21
MRF/MRB registers, 2-40
MS bit, 3-19
MTST bit, 6-23
MU bit, 2-26, A-17
multichannel mode, G-9
multifunction computations, 2-41, G-7
multiplier, 1-6, G-7

clear operation, 2-25
input modifiers, 2-29
instructions, 2-22, 2-27
MRF/B registers, 2-23
operations, 2-23, 2-26

rounding, 2-25
saturation, 2-25
status, 2-15, 2-26, 2-27

multiplier fixed-point overflow status
See MOS bit

multiplier floating-point invalid See MI
bit

multiplier floating-point invalid status
See MIS bit

multiplier floating-point overflow status
See MVS bit

multiplier floating-point underflow See
MU bit

multiplier floating-point underflow
status See MUS bit

multiplier overflow See MV bit
multiplier results (MRFx and MRBx)

registers, listed, A-23
multiplier results registers See MRF/

MRB registers
multiplier signed See MS bit
multiply accumulator See multiplier
multiprocessing

memory, 5-13
MUS bit, 2-27, A-21
MV bit, 2-26, 3-19, A-16
MVS bit, 2-27, A-21
Mx registers, 4-2, 4-18, A-52, G-7

N
nearest, round-to, 2-12
negate breakpoint (NEGx) bit, 6-10,

A-56
negate breakpoint See NEGx bit

ADSP-2126x SHARC DSP Core Manual I-13

NEGx bit, 6-22
nested interrupt routines, 3-64
nested loops, 3-26
Nesting Multiple interrupts (NESTM)

bit, A-6
NESTM bit, 3-60
no boot mode (NOBOOT) bit, 6-12
no boot mode See NOBOOT bit
NOBOOT bit, 6-23
normal word, 5-15, 5-31

accesses with LW, G-7
data access, 5-31
data storage, 5-3
mixing 32-bit data and 48-bit

instructions, 5-15
SIMD mode, 5-46, 5-50
SISD mode, 5-44, 5-48

not equal (NE), 3-19
not, logical, 2-16
not-a-number (NAN), 2-12
notation conventions, -xxv

O
operands, 2-12, 2-16, 2-23, 2-30, 2-37,

G-2
operands and results

storage for, A-23
or, logical, 2-16
OSPID register, 6-24
OSPID register enable See OSPIDENS

bit
OSPIDENS bit, 6-16, A-61
overflow See ALU, multiplier, or shifter

P
packing (16-to-32 data), 2-6
parallel assembly code See multifunction

computation or SIMD operations
parallel operations, 2-41, G-7
parallel port interrupt mask pointer See

PPIMSKP bit
pass function, 2-16
PC register, 3-12, 3-17, 3-66, A-48, G-3

program counter See PC register
PC stack pointer, 3-16
PC stack pointer See PCSTKP register
PCEM bit, 3-17, A-22
PCFL bit, 3-17
PC-relative, 3-12
PCSTK register, 3-64, 3-66, A-49
PCSTKP register, 3-18, 3-64, 3-66,

A-49
peripherals, 1-10, 1-11, G-8
PEYEN bit, SIMD mode, 2-11, 2-45,

4-3, 4-6, 4-20, 5-24, 5-32
PIDx bit, A-53
PLL divider See PLLDx bits
PLLDx bits, A-69
PMCTL register, A-67
PMDAx register, 6-14
pop

loop counter stack, 3-33
program counter (PC) stack, 3-11
status stack, 3-59

porting from previous SHARCs
assembly syntax, 2-38
performance, 2-46
symbol changes, 1-16

I-14 ADSP-2126x SHARC DSP Core Manual

post-modify addressing, 1-8, 4-1, 4-10,
4-25, 4-26, G-8

power management control See
PMCTL register

PPIMSKP bit, A-47
precision, 1-5, 2-11, 2-13, G-8
pre-modify addressing, 1-8, 4-1, 4-10,

4-26, G-8
pre-modify instructions, 4-13
primary registers, 1-9, 2-37
printed manuals, -xxiii
processing element Y enable See PEYEN

bit, SIMD mode
processing elements, 1-2, 1-6, 2-1, 2-39
processor core, 1-5

buses, 1-10
enhancements, 1-14

processor core stalls, 3-21
processor family, -xx
product information, -xxi
product related documents, -xxii
program counter See PC register
program counter stack empty See

PCEM bit
program counter stack full See PCFL bit
program counter stack pointer See

PCSTKP register
program counter stack See PCSTK

register
program counter, relative address See

PC register
program counter, stack See PC register
program fetch See program sequencer
program flow, 3-4

program memory (PM) bus, 1-2
program memory address See PMDAx

register
program memory bus exchange See PX

register
program sequence address See PSAx

register
program sequencer

control, 1-7
latency, 3-64

PSAx register, 6-14
PSx, DMx, IOx, & EPx registers, 6-14,

6-23
pulse width count and capture See

WDTH_CAP mode
pulse width modulation See PWMOUT

mode
purpose of this manual, -xvii
push

loop counter stack, 3-33
program counter (PC) stack, 3-11
status stack, 3-59

pushing loop counter stack (nested
loops), 3-34

PWMOUT mode, 7-1, 7-7
PX register, 1-10, 5-7, 5-23, A-24

R
reciprocal

square root primitives, 2-16
reciprocal function, 2-16
Recommendations for Improving Our

Documents, -xxiv
register codes

ADSP-2126x SHARC DSP Core Manual I-15

JTAG instruction, 6-6
register files, 2-37, G-2

See data register files, 2-37
write precedence, 2-37

register latency See latency
register load broadcasting See broadcast

load
registers

boundary, 6-17
complementary See complementary

registers
DAG, A-51
data (R0-R15, S0-S15) registers, A-23
data file registers listed, A-23
decode address, 3-2
JTAG boundary, 6-18
loads, and memory transfers, 5-32
memory mapped, A-53
neighbor, 5-29, 5-58, 5-60, 5-62
neighbor See neighbor registers
system, A-2
timer, A-62
uncomplemented, 3-36
universal, A-2
universal (Ureg) registers, 2-46

register-to-register
moves, 2-52, 5-7
swaps, 2-50, G-8
transfers, 2-49

related documents, -xxii
reset interrupt See RSTI bit
restrictions on ending loops, 3-26
restrictions on short loops, 3-27
return See RTI/RTS instructions

revision ID See REVPID register
REVPID register, A-53
rotate bits, 2-30
rotate See swap operator
rounded output, 2-29
Rounding 32-bit data (RND32) bit,

A-6
rounding mode, 2-11, 2-14, A-6
RSTI bit, A-28, A-33, A-39
RTI/RTS instructions, 3-11, 3-48
RUNBIST instruction, 6-6

S
S field, address, A-48
S unit See shifter
S/PDIF, G-9
SAMPLE instruction, 6-6
saturation (ALU saturation mode), G-8
saturation maximum values, 2-26
saturation on store, G-9
scale (floating-point operation), 2-16
secondary processing element, 2-44
secondary registers, 1-9, 2-39, 4-4, 4-6,

A-5
for computational units (SRCU) bit,

2-40, A-5
for DAGs (SRDxH/L) bits, A-5
for Register File (SRRFH/L) bit, A-5

semaphores, G-8
sensing interrupts, 3-51
serial port (SPORT), G-9

multichannel operation, G-9
serial scan path, 6-6
serial test access port (TAP), 6-2

I-16 ADSP-2126x SHARC DSP Core Manual

set, bit, 2-30
SFT0x bit, A-36, A-42
SFTxI bit, A-31, A-36, A-42
shadow write FIFO, 5-15
SHARC, G-9

background information, 1-13
See also porting from previous

SHARCs
shift bits, 2-30
shifter, 1-6, 2-30, G-9

instructions, 2-13, 2-35
operations, 2-30, 2-33
status flags, 2-33

shifter input sign See SS bit
shifter operations, A-17
short (16-bit data) sign extend (SSE) bit,

A-6
short (16-bit data) sign extend See SSE

bit
short word, 5-15, 5-31

data access, 5-31
data storage, 5-3
SIMD mode, 5-38, 5-42, 5-46
SISD mode, 5-36, 5-40

sign extension, A-6
signal routing unit (SRU), 7-1
signed data, 2-14
signed input, 2-29
SIMD mode, 1-6, 3-18, 5-33, A-6, A-9

complementary registers, 2-47
computational operations, 2-49
defined, 2-44
implicit operations, 2-46
status flags, 2-53

single serial shift register path, 6-2
single-step (SS) bit, 6-9
SISD mode, 5-33

defined, 1-6
unidirectional register transfer, 2-52

software interrupt See SFT0x bit
software interrupt See SFT0x bit
software interrupt x, user See SFTxI bit
software reset (SYSRST) bit, 6-9
SOVFI bit, 3-18, A-28, A-34, A-39
SP0I bit, A-45
SP2I bit, A-45
SP4I bit, A-45
SPI receive DMA interrupt mask See

SPILIMSK bit
SPI receive DMA interrupt mask See

SPILIMSKP bit
SPILIMSK bit, A-46
SPILIMSKP bit, A-47
SPORT transmit 4 See SP4I bit
SRAM (memory), 1-2
SRDxH/L bits, 4-4
SREG, A-2
SRRFH/L bits, 2-40
SRU, 7-1
SS bit, 6-22, A-18
SSE bit, 5-31
SSEM bit, 3-59, A-22
SSOV bit, 3-59, A-22
stack overflow/full interrupt See SOVFI

bit
stacking status during interrupts, 3-58
stacks and sequencing, 3-17
stalls, core, 3-21

ADSP-2126x SHARC DSP Core Manual I-17

STATDx bit, 6-15, A-60
STATI0 bit, 6-15, A-60
STATIx bit, 6-15, A-60
status, 5-27
status registers, 3-63
status stack, 3-58

pop, 3-59
push, 3-59

status stack empty See SSEM bit
status stack overflow See SSOV bit
STATx bit, 6-15, A-60
sticky status See STKYx/y register
STKYx/y register, 2-15, 2-27, 3-31,

3-32, 3-57, 3-67, A-14, A-17
subroutines, 3-1, G-9
subtract instructions, 2-43
subtract with borrow, 2-16
subtract/add, 2-16
subtract/multiply, 2-1, G-7
SV bit, 3-20, A-17
swap register operator, 2-50, G-8
SYSCTL register, 5-14
system registers (SREG), A-2
SZ bit, 3-20, A-18

T
T_CNTHx registers, A-63
T_PRDHx registers, 7-1, A-63
T_WHRx registers, 7-1
T_WLRx registers, A-64
TAP pin, 6-1
TCB chain loading, G-9
TCK pin, 6-1
TCOUNT register, 3-44, A-51

TDI pin, 6-1
technical or customer support, -xx
technical publications online or on the

web, -xxii
termination codes

See condition codes and loop
termination

test access port (TAP) See JTAG port
test clock See TCK pin
test data input See TDI pin
test flag (TF) condition, 3-19, 3-20
test mode (TMODE) bit, 6-12, 6-23
test, bit, 2-30
three-state vs. three-state, G-10
Time-Division-Multiplexed (TDM)

mode, G-9
TIMEN bit, 3-44, A-12
timer, 1-9, 3-44

external event watchdog (EXT_CLK)
mode, 7-12

interrupts, 7-5
modes, 7-1, A-62
pulsewidth count and capture

(WDTH_CAP) mode, 7-10
pulsewidth modulation (PWMOUT)

mode, 7-7
registers, 7-1

timer count See TCOUNT register
timer enable See TIMEN bit
timer expired high priority See TMZHI

bit
timer expired low priority See TMZLI

bit

I-18 ADSP-2126x SHARC DSP Core Manual

timer global status and control See
TMx_STAT register

timer input/output See TMRx pin
timer period See TPERIOD register
timer registers, A-62
timer word count See TMxCNT

registers
timer x high word count See TMxCNT

registers
timer x high word period See T_PRDHx

registers
timer x high word period See TMx PRD

registers
timer x high word pulse width See

T_WHRx registers
timer x high word pulse width See

TMxW registers
timer x low word count See TMxCNT

registers
timer x low word period See TMxPRD

registers
timer x low word pulse width See

T_WLRx registers
TMRx pin, 7-1
TMS pin, 6-1
TMSTAT register, 7-3
TMx PRD registers, A-62
TMx_STAT register, A-62, A-65
TMxCNT register, A-63
TMxCNT registers, 7-1, A-62
TMxCTL registers, 7-1, A-62
TMxPRD registers, A-63
TMxW register, A-64
TMxW registers, A-62

TMZHI bit, 3-45, A-28, A-34, A-39
TMZLI bit, 3-45, A-30, A-36, A-41
toggle, bit, 2-30
top-of-loop address, 3-24
top-of-PC stack, 3-18
TPERIOD register, 3-44, A-51
transfer control block (TCB), G-10
TRST pin, 6-1
True always (TRUE) if condition, 3-20
TRUNC bit, 2-11
Truncate, rounding (TRUNC) bit, A-6
truncate, rounding See TRUNC bit
twos-complement data, 2-14, 2-17

U
U64MA bit, 5-26, 5-33, A-12, A-21
UMODE bit, 6-8, A-53
unaligned 64-bit memory access See

U64MA bit
uncomplemented register, 3-36
underflow exception, 2-12
underflow See multiplier
universal registers (UREG), A-2
universal registers See Ureg registers
unpacking (32-to-16-bit data), 2-6
unsigned data, 2-14
unsigned input, 2-29
unsupported instructions

IPCODE, 6-6
Uregs, A-2
USERCODE instruction

unsupported, 6-6
user-definable breakpoint interrupts,

6-3

ADSP-2126x SHARC DSP Core Manual I-19

user-defined status flag registers See
USTATx registers

user-defined status registers See
USTATx registers

using the cache, 3-8
USTATx, 3-67
USTATx registers, A-22

V
values, saturation maximum, 2-26
VisualDSP, 1-13
VisualDSP++ and tools manuals, -xxiii
Von Neumann architecture, 5-3, G-10

W
wait states

defined, G-10
watchdog timer, 7-6
WDTH_CAP mode, 7-1, 7-10
What’s New in This Manual, -xx
word rotations, 5-15
wrap around, buffer, 4-9, 4-14, 4-17

X
Xor, logical, 2-16

Z
zero, round-to, 2-12

INDEX

I-20 ADSP-2126x SHARC DSP Core Manual

	Preface
	Purpose of This Manual xvii
	Intended Audience xvii
	Manual Contents xviii
	Additional Literature xix
	What’s New in This Manual xx
	Technical or Customer Support xx
	Processor Family xx
	Product Information xxi
	DSP Product Information xxi
	Product Related Documents xxii
	Technical Publications Online or on the Web xxii
	Printed Manuals xxiii
	VisualDSP++ and Tools Manuals xxiii
	Hardware Manuals xxiii
	Data Sheets xxiii

	Recommendations for Improving our Documents xxiv

	Conventions xxiv

	Introduction
	Overview—Why Floating-Point DSP? 1�1
	ADSP-2126x DSP Design Advantages 1�1
	Architectural Overview 1�5
	Processor Core 1�5
	Processing Elements 1�6
	Program Sequence Control 1�7
	Processor Internal Buses 1�9

	Processor Peripherals 1�10
	Dual-Ported Internal Memory (SRAM) 1�11
	Timers 1�12
	JTAG Port 1�12

	Development Tools 1�13
	Differences From Previous SHARC DSPs 1�13
	Processor Core Enhancements 1�13
	Processor Internal Bus Enhancements 1�14
	Memory Organization Enhancements 1�15
	JTAG Port Enhancements 1�15
	Instruction Set Enhancements 1�15

	Processing Elements
	Numeric Formats 2�2
	IEEE Single-Precision Floating-Point Data Format 2�2
	Extended-Precision Floating-Point Format 2�5
	Short Word Floating-Point Format 2�5
	Packing for Floating-Point Data 2�6
	Fixed-Point Formats 2�8

	Setting Computational Modes 2�11
	32-Bit Floating-Point Format (Normal Word) 2�11
	40-Bit Floating-Point Format 2�13
	16-Bit Floating-Point Format (Short Word) 2�13
	32-Bit Fixed-Point Format 2�14
	Rounding Mode 2�14

	Using Computational Status 2�15
	Arithmetic Logic Unit (ALU) 2�16
	ALU Operation 2�16
	ALU Saturation 2�17
	ALU Status Flags 2�18
	ALU Instruction Summary 2�19

	Multiply Accumulator (Multiplier) 2�22
	Multiplier Operation 2�23
	Multiplier Result Register (Fixed-Point) 2�23
	Multiplier Status Flags 2�26
	Multiplier Instruction Summary 2�27

	Barrel Shifter (Shifter) 2�30
	Shifter Operation 2�30
	Shifter Status Flags 2�33
	Shifter Instruction Summary 2�35

	Data Register File 2�37
	Alternate (Secondary) Data Registers 2�39
	Multifunction Computations 2�41
	Secondary Processing Element (PEy) 2�44
	Dual Compute Units Sets 2�46
	Dual Register Files 2�48
	Dual Alternate Registers 2�49
	SIMD (Computational) Operations 2�49
	SIMD and Status Flags 2�52

	Program Sequencer
	Instruction Pipeline 3�2
	Instruction Cache 3�5
	Bus Conflicts 3�5
	Block Conflicts 3�7
	Using the Cache 3�8
	Optimizing Cache Usage 3�9

	Branches and Sequencing 3�11
	Conditional Branches 3�12
	Delayed Branches 3�13

	Loop and Status Stacks and Sequencing 3�17
	Conditional Sequencing 3�18
	Core Stalls 3�21
	Loops and Sequencing 3�23
	Restrictions on Ending Loops 3�26
	Restrictions on Short Loops 3�27
	Loop Address Stack 3�31
	Loop Counter Stack 3�32

	SIMD Mode and Sequencing 3�35
	Conditional Compute Operations 3�36
	Conditional Branches and Loops 3�36
	Conditional Data Moves 3�37
	Case #1: Complementary Register Pair Data Move 3�37
	Case #2: Uncomplimentary-to-Complementary Register Move 3�40
	Case #3: Complementary-to-Uncomplimentary Register Move 3�41
	Case #4: External Memory or IOP Memory Space Data Move 3�43
	Case #5: Uncomplimentary Register Data Move 3�43

	Conditional DAG Operations 3�43

	Timer and Sequencing 3�44
	Interrupts and Sequencing 3�46
	Sensing Interrupts 3�51
	Masking Interrupts 3�53
	Latching Interrupts 3�57
	Stacking Status During Interrupts 3�58
	Nesting Interrupts 3�60
	Reusing Interrupts 3�62
	Interrupting IDLE 3�63

	Summary 3�63

	Data Address Generators
	Setting DAG Modes 4�2
	Circular Buffering Mode 4�4
	Broadcast Loading Mode 4�5
	Alternate (Secondary) DAG Registers 4�6
	Bit-Reverse Addressing Mode 4�7

	Using DAG Status 4�8
	DAG Operations 4�9
	Addressing With DAGs 4�10
	DAG Pre-Modify Addressing 4�12
	Pre-Modify Locking 4�13
	Data Addressing Stalls 4�14
	Addressing Circular Buffers 4�14
	Modifying DAG Registers 4�19
	Addressing in SISD and SIMD Modes 4�20

	DAGs, Registers, and Memory 4�20
	DAG Register-to-Bus Alignment 4�21
	DAG Register Transfer Restrictions 4�23

	DAG Instruction Summary 4�24

	Memory
	Internal Memory 5�2
	DSP Architecture 5�3

	Buses 5�4
	Internal Address and Data Buses 5�4
	Internal Data Bus Exchange 5�7

	ADSP-21262 Processor Memory Map 5�13
	Memory Organization and Word Size 5�15
	Placing 32-Bit Words and 48-Bit Words 5�15
	Mixing 32-Bit Words and 48-Bit Words 5�17
	Restrictions on Mixing 32-Bit Words and 48-Bit Words 5�19
	Example: Calculating a Starting Address for 32-Bit Addresses 5�20
	48-Bit Word Allocation 5�21

	Using Boot Memory 5�22
	Reading From Boot Memory 5�22

	Internal Interrupt Vector Table 5�23
	Internal Memory Data Width 5�23
	Secondary Processor Element (PEy) 5�24
	Broadcast Register Loads 5�24
	Illegal I/O Processor Register Access 5�25
	Unaligned 64-Bit Memory Access 5�26

	Using Memory Access Status 5�26
	Accessing Memory 5�27
	Access Word Size 5�28
	Long Word (64-Bit) Accesses 5�28
	Instruction and Extended-Precision Normal Word Accesses 5�30
	Normal Word (32-Bit) Accesses 5�31
	Short Word (16-Bit) Accesses 5�31

	Setting Data Access Modes 5�31
	SYSCTL Register Control Bits 5�32
	Mode 1 Register Control Bits 5�32
	Mode 2 Register Control Bits 5�33

	SISD, SIMD, and Broadcast Load Modes 5�33
	Single- and Dual-Data Accesses 5�33
	Instruction Examples 5�34

	Data Access Options 5�34
	Short Word Addressing of Single-Data in SISD Mode 5�36
	Short Word Addressing of Single-Data in SIMD Mode 5�38
	Short Word Addressing of Dual-Data in SISD Mode 5�40
	Short Word Addressing of Dual-Data in SIMD Mode 5�42
	32-Bit Normal Word Addressing of Single-Data in SISD Mode 5�44
	32-Bit Normal Word Addressing of Single-Data in SIMD Mode 5�46
	32-Bit Normal Word Addressing of Dual-Data in SISD Mode 5�48
	32-Bit Normal Word Addressing of Dual-Data in SIMD Mode 5�50
	Extended-Precision Normal Word Addressing of Single-Data 5�50
	Extended-Precision Normal Word Addressing of Dual-Data in SISD Mode 5�54
	Extended-Precision Normal Word Addressing of Dual-Data in SIMD Mode 5�56
	Long Word Addressing of Single-Data 5�58
	Long Word Addressing of Dual-Data in SISD Mode 5�60
	Long Word Addressing of Dual-Data in SIMD Mode 5�62
	Mixed-Word Width Addressing of Dual-Data in SISD Mode 5�64
	Mixed-Word Width Addressing of Dual-Data in SIMD Mode 5�64
	Broadcast Load Access 5�67

	Shadow Write FIFO 5�67
	Shadow Write FIFO Considerations in SIMD Mode 5�67

	JTAG Test Emulation Port
	JTAG Test Access Port 6�1
	Boundary Scan 6�2
	Background Telemetry Channel (BTC) 6�4
	User-Definable Breakpoint Interrupts 6�4
	Cycle Count Functionality (EMUCLK) Register 6�5
	Silicon Revision ID 6�5

	JTAG Related Registers 6�5
	Instruction Register 6�6
	Enhanced Emulation Status (EEMUSTAT) Register 6�8
	Breakpoint Control (BRKCTL) Register 6�8
	Breakpoint (PSx, DMx, IOx, and EPx) Registers 6�8

	EEMUIN Register 6�14
	EEMUOUT Register 6�16
	Emulation Clock Counter Registers 6�17
	Boundary Register 6�17
	Built-In Self-Test Operation (BIST) 6�21
	EMUCTL Shift Register 6�21
	EMUN Register 6�23
	EMUIDLE Instruction 6�24
	OSPID Register 6�24

	Private Instructions 6�25
	References 6�25

	Timer
	Timer Architecture 7�1
	Timer Status and Control 7�3
	Timer Interrupts 7�3

	Enabling a Timer 7�5
	Pulse Width Modulation Mode (PWM_OUT) 7�7
	PWM Waveform Generation 7�8
	Single-Pulse Generation 7�9
	Using a General-Purpose Timer as a Core Timer 7�10

	Pulse Width Count and Capture Mode (WDTH_CAP) 7�10
	External Event Watchdog Mode (EXT_CLK) 7�12

	Timer Programming Examples 7�13

	Registers
	Control and Status System Registers A�2
	Mode Control 1 Register (MODE1) A�3
	Mode Mask Register (MMASK) A�7
	Mode Control 2 Register (MODE2) A�11
	Arithmetic Status Registers (ASTATx and ASTATy) A�13
	Sticky Status Registers (STKYx and STKYy) A�14
	User-Defined Status Registers (USTATx) A�22

	Processing Element Registers A�22
	Data File Data Registers (Rx, Fx, Sx) A�23
	Multiplier Results Registers (MRFx, MRBx) A�23
	Program Memory Bus Exchange Register (PX) A�24

	Program Sequencer Registers A�25
	Interrupt Latch Register (IRPTL) A�26
	Interrupt Mask Register (IMASK) A�31
	Interrupt Mask Pointer Register (IMASKP) A�37
	Interrupt Register (LIRPTL) A�43
	Program Counter Register (PC) A�48
	Program Counter Stack Register (PCSTK) A�49
	Program Counter Stack Pointer Register (PCSTKP) A�49
	Fetch Address Register (FADDR) A�49
	Decode Address Register (DADDR) A�49
	Loop Address Stack Register (LADDR) A�50
	Current Loop Counter Register (CURLCNTR) A�50
	Loop Counter Register (LCNTR) A�50
	Timer Period Register (TPERIOD) A�51
	Timer Count Register (TCOUNT) A�51

	Data Address Generator Registers A�51
	Index Registers (Ix) A�52
	Modify Registers (Mx) A�52
	Length and Base Registers (Lx,Bx) A�52

	I/O Processor Registers A�52
	Revision ID Register (REVPID) A�53
	Hardware Breakpoint Control Register (BRKCTL) A�53
	Enhanced Emulation Status Register (EEMUSTAT) A�58

	Timer Registers A�62
	Timer Configuration Registers (TMxCTL) A�62
	Timer Counter Registers (TMxCNT) A�63
	Timer Period Registers (TMxPRD) A�63
	Timer Width Register (TMxW) A�64
	Timer Global Status and Control Register (TMSTAT) A�65

	Power Management Registers A�66
	Power Management Control Register (PMCTL) A�67

	Interrupt Vector Addresses
	Glossary
	Index
	1 Introduction
	Overview—Why Floating-Point DSP?
	ADSP-2126x DSP Design Advantages
	Architectural Overview
	Processor Core
	Processing Elements
	Program Sequence Control
	Processor Internal Buses

	Processor Peripherals
	Dual-Ported Internal Memory (SRAM)
	Timers
	JTAG Port

	Development Tools
	Differences From Previous SHARC DSPs
	Processor Core Enhancements
	Processor Internal Bus Enhancements
	Memory Organization Enhancements
	JTAG Port Enhancements
	Instruction Set Enhancements

	2 Processing Elements
	Numeric Formats
	IEEE Single-Precision Floating-Point Data Format
	Extended-Precision Floating-Point Format
	Short Word Floating-Point Format
	Packing for Floating-Point Data
	Fixed-Point Formats

	Setting Computational Modes
	32-Bit Floating-Point Format (Normal Word)
	40-Bit Floating-Point Format
	16-Bit Floating-Point Format (Short Word)
	32-Bit Fixed-Point Format
	Rounding Mode

	Using Computational Status
	Arithmetic Logic Unit (ALU)
	ALU Operation
	ALU Saturation
	ALU Status Flags
	ALU Instruction Summary

	Multiply Accumulator (Multiplier)
	Multiplier Operation
	Multiplier Result Register (Fixed-Point)
	Multiplier Status Flags
	Multiplier Instruction Summary

	Barrel Shifter (Shifter)
	Shifter Operation
	Shifter Status Flags
	Shifter Instruction Summary

	Data Register File
	Alternate (Secondary) Data Registers
	Multifunction Computations
	Secondary Processing Element (PEy)
	Dual Compute Units Sets
	Dual Register Files
	Dual Alternate Registers
	SIMD (Computational) Operations
	SIMD and Status Flags

	3 Program Sequencer
	Instruction Pipeline
	Instruction Cache
	Bus Conflicts
	Block Conflicts
	Using the Cache
	Optimizing Cache Usage

	Branches and Sequencing
	Conditional Branches
	Delayed Branches

	Loop and Status Stacks and Sequencing
	Conditional Sequencing
	Core Stalls
	Loops and Sequencing
	Restrictions on Ending Loops
	Restrictions on Short Loops
	Loop Address Stack
	Loop Counter Stack

	SIMD Mode and Sequencing
	Conditional Compute Operations
	Conditional Branches and Loops
	Conditional Data Moves
	Case #1: Complementary Register Pair Data Move
	Example 1: Register-to-Memory Move – PEx Explicit Register
	Example 2: Register Move – PEy Explicit Register
	Example 3: Register-to-Memory Move – PEx Explicit Register
	Example 4: Register-to-Memory Move – PEy Explicit Register

	Case #2: Uncomplimentary-to-Complementary Register Move
	Example: Register Moves – Uncomplimentary-to-Complementary

	Case #3: Complementary-to-Uncomplimentary Register Move
	Example: Register Moves – Complementary-to-Uncomplimentary

	Case #4: External Memory or IOP Memory Space Data Move
	Example: Register-to-Memory Moves – External or IOP Memory Space Data Move

	Case #5: Uncomplimentary Register Data Move

	Conditional DAG Operations

	Timer and Sequencing
	Interrupts and Sequencing
	Sensing Interrupts
	Masking Interrupts
	Latching Interrupts
	Stacking Status During Interrupts
	Nesting Interrupts
	Reusing Interrupts
	Interrupting IDLE

	Summary

	4 Data Address Generators
	Setting DAG Modes
	Circular Buffering Mode
	Broadcast Loading Mode
	Alternate (Secondary) DAG Registers
	Bit-Reverse Addressing Mode

	Using DAG Status
	DAG Operations
	Addressing With DAGs
	DAG Pre-Modify Addressing
	Pre-Modify Locking
	Data Addressing Stalls
	Addressing Circular Buffers
	Modifying DAG Registers
	Addressing in SISD and SIMD Modes

	DAGs, Registers, and Memory
	DAG Register-to-Bus Alignment
	DAG Register Transfer Restrictions

	DAG Instruction Summary

	5 Memory
	Internal Memory
	DSP Architecture

	Buses
	Internal Address and Data Buses
	Internal Data Bus Exchange

	ADSP-21262 Processor Memory Map
	Listing 5-1. Overwriting Bits (ADSP-21262 Example)
	Memory Organization and Word Size
	Placing 32-Bit Words and 48-Bit Words
	Mixing 32-Bit Words and 48-Bit Words
	Restrictions on Mixing 32-Bit Words and 48-Bit Words
	Listing 5-2. Starting Address

	Example: Calculating a Starting Address for 32-Bit Addresses
	48-Bit Word Allocation
	Listing 5-3. 48-Bit Word Allocation

	Using Boot Memory
	Reading From Boot Memory

	Internal Interrupt Vector Table
	Internal Memory Data Width
	Secondary Processor Element (PEy)
	Broadcast Register Loads
	Illegal I/O Processor Register Access
	Unaligned 64-Bit Memory Access

	Using Memory Access Status
	Accessing Memory
	Access Word Size
	Long Word (64-Bit) Accesses
	Instruction and Extended-Precision Normal Word Accesses
	Normal Word (32-Bit) Accesses
	Short Word (16-Bit) Accesses

	Setting Data Access Modes
	SYSCTL Register Control Bits
	Mode 1 Register Control Bits
	Mode 2 Register Control Bits

	SISD, SIMD, and Broadcast Load Modes
	Single- and Dual-Data Accesses
	Instruction Examples

	Data Access Options
	Short Word Addressing of Single-Data in SISD Mode
	Short Word Addressing of Single-Data in SIMD Mode
	Short Word Addressing of Dual-Data in SISD Mode
	Short Word Addressing of Dual-Data in SIMD Mode
	32-Bit Normal Word Addressing of Single-Data in SISD Mode
	32-Bit Normal Word Addressing of Single-Data in SIMD Mode
	32-Bit Normal Word Addressing of Dual-Data in SISD Mode
	32-Bit Normal Word Addressing of Dual-Data in SIMD Mode
	Extended-Precision Normal Word Addressing of Single-Data
	Extended-Precision Normal Word Addressing of Dual-Data in SISD Mode
	Extended-Precision Normal Word Addressing of Dual-Data in SIMD Mode
	Long Word Addressing of Single-Data
	Long Word Addressing of Dual-Data in SISD Mode
	Long Word Addressing of Dual-Data in SIMD Mode
	Mixed-Word Width Addressing of Dual-Data in SISD Mode
	Mixed-Word Width Addressing of Dual-Data in SIMD Mode
	Broadcast Load Access

	Shadow Write FIFO
	Shadow Write FIFO Considerations in SIMD Mode

	6 JTAG Test Emulation Port
	JTAG Test Access Port
	Boundary Scan
	Background Telemetry Channel (BTC)
	User-Definable Breakpoint Interrupts
	Cycle Count Functionality (EMUCLK) Register
	Silicon Revision ID

	JTAG Related Registers
	Instruction Register
	Enhanced Emulation Status (EEMUSTAT) Register
	Breakpoint Control (BRKCTL) Register
	Breakpoint (PSx, DMx, IOx, and EPx) Registers

	EEMUIN Register
	EEMUOUT Register
	Emulation Clock Counter Registers
	Boundary Register
	Built-In Self-Test Operation (BIST)
	EMUCTL Shift Register
	EMUN Register
	EMUIDLE Instruction
	OSPID Register

	Private Instructions
	References

	7 Timer
	Timer Architecture
	Timer Status and Control
	Timer Interrupts

	Enabling a Timer
	Pulse Width Modulation Mode (PWM_OUT)
	PWM Waveform Generation
	Single-Pulse Generation
	Using a General-Purpose Timer as a Core Timer

	Pulse Width Count and Capture Mode (WDTH_CAP)
	External Event Watchdog Mode (EXT_CLK)

	Timer Programming Examples
	Listing 7-1. PWMOUT and Width Capture Mode Example
	Listing 7-2. External Watchdog Mode Example
	Listing 7-3. Using a General-Purpose Timer as a Core Timer

	A Registers
	Control and Status System Registers
	Mode Control 1 Register (MODE1)
	Mode Mask Register (MMASK)
	Mode Control 2 Register (MODE2)
	Arithmetic Status Registers (ASTATx and ASTATy)
	Sticky Status Registers (STKYx and STKYy)
	User-Defined Status Registers (USTATx)

	Processing Element Registers
	Data File Data Registers (Rx, Fx, Sx)
	Multiplier Results Registers (MRFx, MRBx)
	Program Memory Bus Exchange Register (PX)

	Program Sequencer Registers
	Interrupt Latch Register (IRPTL)
	Interrupt Mask Register (IMASK)
	Interrupt Mask Pointer Register (IMASKP)
	Interrupt Register (LIRPTL)
	Program Counter Register (PC)
	Program Counter Stack Register (PCSTK)
	Program Counter Stack Pointer Register (PCSTKP)
	Fetch Address Register (FADDR)
	Decode Address Register (DADDR)
	Loop Address Stack Register (LADDR)
	Current Loop Counter Register (CURLCNTR)
	Loop Counter Register (LCNTR)
	Timer Period Register (TPERIOD)
	Timer Count Register (TCOUNT)

	Data Address Generator Registers
	Index Registers (Ix)
	Modify Registers (Mx)
	Length and Base Registers (Lx,Bx)

	I/O Processor Registers
	Revision ID Register (REVPID)
	Hardware Breakpoint Control Register (BRKCTL)
	Enhanced Emulation Status Register (EEMUSTAT)

	Timer Registers
	Timer Configuration Registers (TMxCTL)
	Timer Counter Registers (TMxCNT)
	Timer Period Registers (TMxPRD)
	Timer Width Register (TMxW)
	Timer Global Status and Control Register (TMSTAT)

	Power Management Registers
	Power Management Control Register (PMCTL)

	B Interrupt Vector Addresses
	G Glossary
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

