

Quad SPDT Switch

ADG333A

FEATURES

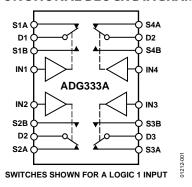
44 V supply maximum ratings V_{SS} to V_{DD} analog signal range Low on resistance (45 Ω max) Low ΔR_{ON} (5 Ω max) Low R_{ON} match (4 Ω max) Low power dissipation Fast switching times

t_{ON} < 175 ns t_{OFF} < 145 ns

Low leakage currents (5 nA max) Low charge injection (10 pC max) Break-before-make switching action

APPLICATIONS

Audio and video switching Battery-powered systems Test equipment Communication systems


GENERAL DESCRIPTION

The ADG333A is a monolithic CMOS device comprising four-independently selectable SPDT switches. It is designed on an LC²MOS process, which provides low power dissipation yet achieves a high switching speed and a low on resistance.

The on resistance profile is very flat over the full analog input range, ensuring good linearity and low distortion when switching audio signals. High switching speed also makes the part suitable for video signal switching. CMOS construction ensures ultralow power dissipation, making the part ideally suited for portable, battery-powered instruments.

When they are on, each switch conducts equally well in both directions and has an input signal range that extends to the power supplies. In the off condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action for use in multiplexer applications. Inherent in the design is low charge inject

FUNCTIONAL BLOCK DIAGRAM

Fiaure 1.

PRODUCT HIGHLIGHTS

- Extended signal range.
 The ADG333A is fabricated on an enhanced LC²MOS process, giving an increased signal range which extends to the supply rails.
 - 2. Low power dissipation.
 - 3. Low R_{ON}.
 - Single-supply operation.

 For applications where the analog signal is unipolar, the ADG333A can be operated from a single rail power supply. The part is fully specified with a single 12 V supply.

ADG333A

TABLE OF CONTENTS

10/95—Revision 0: Initial Version

Specifications	Typical Performance Characteristics8
Dual Supply 3	Test Circuits
Single Supply4	Application Information
Absolute Maximum Ratings 5	ADG333A Supply Voltages11
ESD Caution	Power Supply Sequencing
Terminology 6	Outline Dimensions
Pin Configurations and Function Descriptions7	Ordering Guide
REVISION HISTORY	
3/05—Rev. 0 to Rev. A	
Updated FormatUniversal	
Changes to Specifications Tables	

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = +15 V, V_{SS} = -15 V, GND = 0 V, unless otherwise noted.¹

Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		V_{SS} to V_{DD}	V	
R _{ON}	20		Ωtyp	$V_D = \pm 10 \text{ V, } I_S = -1 \text{ mA}$
	45	45	Ω max	
ΔR_{ON}		5	Ω max	$V_D = \pm 5 \text{ V, } I_S = -10 \text{ mA}$
Ron Match		4	Ω max	$V_D = \pm 10 \text{ V, } I_S = -10 \text{ mA}$
LEAKAGE CURRENTS				$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source OFF Leakage I₅ (OFF)	±0.1		nA typ	$V_D = \pm 15.5 \text{ V}, V_S = +15.5 \text{ V}$
-	±0.25	±3	nA max	Figure 15
Channel ON Leakage ID, IS (ON)	±0.1		nA typ	$V_S = V_D = \pm 15.5 \text{ V}$
3 -, - , ,	±0.4	±5	nA max	Figure 16
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
I _{INL} or I _{INH}		±0.005	μA typ	$V_{IN} = 0 \text{ V or } V_{DD}$
		±0.5	μA max	
DYNAMIC CHARACTERISTICS ²				
t _{on}	90		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		175	ns max	$V_S = \pm 10 \text{ V}$; Figure 17
t _{OFF}	80		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		145	ns max	$V_s = \pm 10 \text{ V}$; Figure 17
Break-Before-Make Delay, t _{OPEN}	10		ns min	$R_L = 300 \Omega$, $C_L = 35 pF$;
2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2				$V_S = +5 \text{ V}$; Figure 18
Charge Injection	2		pC typ	$V_D = 0 \text{ V}, R_D = 0 \Omega, C_L = 10 \text{ nF};$
	10		pC max	$V_{DD} = +15 \text{ V}, V_{SS} = -15 \text{ V}; \text{ Figure 19}$
OFF Isolation	72		dB typ	$R_L = 75 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
			71	$V_S = 2.3 \text{ V rms}$; Figure 20
Channel-to-Channel Crosstalk	85		dB typ	$R_L = 75 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
			71	$V_S = 2.3 \text{ V rms}$; Figure 21
Cs (OFF)	7		pF typ	
C _D , C _s (ON)	26		pF typ	
POWER REQUIREMENTS				
I _{DD}	0.05		mA typ	Digital inputs = 0 V or 5 V
	0.25	0.35	mA max	
lss	0.01		μA typ	
	1	5	μA max	
V_{DD}/V_{SS}		±3/±20	V min/V max	$ V_{DD} = V_{SS} $

 $^{^1}$ Temperature range is as follows: B version: -40°C to +85°C. 2 Guaranteed by design; not subject to production test.

ADG333A

SINGLE SUPPLY

 $V_{DD} = +12 \text{ V}$, $V_{SS} = 0 \text{ V} \pm 10\%$, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 V to V _{DD}	V	
RON	35		Ωtyp	$V_D = 1 \text{ V}, 10 \text{ V}, I_S = -1 \text{ mA}$
		75	Ω max	
LEAKAGE CURRENTS				V _{DD} = 13.2 V
Source OFF Leakage Is (OFF)	±0.1		nA typ	$V_D = 12.2 \text{ V/1 V}, V_S = 1 \text{ V/12.2 V}$
	±0.25	±3	nA max	Figure 15
Channel ON Leakage ID, Is (ON)	±0.1		nA typ	$V_S = V_D = 12.2 \text{ V/1 V}$
	±0.4	±5	nA max	Figure 16
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, VINL		0.8	V max	
Input Current				
I _{INL} or I _{INH}		±0.005	μA typ	$V_{IN} = 0 \text{ V or } V_{DD}$
		±0.5	μA max	
DYNAMIC CHARACTERISTICS ²				
ton	110		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		200	ns max	$V_s = 8 V$; Figure 17
toff	100		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		180	ns max	$V_s = 8 V$; Figure 17
Break-Before-Make Delay, topen	10		ns min	$R_L = 300 \Omega$, $C_L = 35 pF$;
			ns min	$V_S = 5 \text{ V}$; Figure 18
Charge Injection	5	+	pC typ	$^{-1}$ $^{-1$
				$V_{DD} = 12 \text{ V}, V_{SS} = 0 \text{ V}; \text{ Figure 19}$
OFF Isolation	72		dB typ	$R_L = 75 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
				$V_S = 1.15 \text{ V rms}$; Figure 20
Channel-to-Channel Crosstalk	85		dB typ	$R_L = 75 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
				$V_S = 1.15 \text{ V rms}$; Figure 21
C _s (OFF)	12		pF typ	
C_D , C_S (ON)	25		pF typ	
POWER REQUIREMENTS				V _{DD} = 13.5 V
lod	0.05		mA typ	Digital inputs = 0 V or 5 V
	0.25	0.35	mA max	
V_{DD}		±3/±30	V min/V max	

 $^{^1}$ Temperature range is as follows: B Version: -40°C to $+85^\circ\text{C}.$ 2 Guaranteed by design; not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C unless otherwise noted.

Table 3.

Table 3.			
Parameter	Min		
V _{DD} to V _{SS}	+44 V		
V_{DD} to GND	-0.3 V to +30 V		
V _{ss} to GND	+0.3 V to -30 V		
Analog, Digital Inputs ¹	V_{SS} – 2 V to V_{DD} + 2 V or 20 mA, whichever occurs first		
Continuous Current, S or D	20 mA		
Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle Max)	40 mA		
Operating Temperature Range			
Industrial (B Version)	-40°C to +85°C		
Storage Temperature Range	−65°C to +125°C		
Junction Temperature	150°C		
θ_{JA} , Thermal Impedance			
PDIP Package	103°C/W		
SOIC Package	74°C/W		
SSOP Package	130°C/W		
Lead Temperature, Soldering (10 sec)	260°C		
Lead Temperature, Soldering			
Vapor Phase (60 sec)	215°C		
Infrared (15 sec)	220°C		
Lead Temperature, Soldering			
Vapor Phase (60 sec)	-215℃		
Infrared (15 sec)	220°C		

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. Truth Table

Logic	Switch A	Switch B
0	Off	On
1	On	Off

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

 $^{^{\}rm 1}$ Overvoltage at IN, S, or D is clamped by internal diodes. Current should be limited to the maximum ratings given.

ADG333A

TERMINOLOGY

Ron

Ohmic resistance between D and S.

 ΔR_{ON}

 R_{ON} variation due to a change in the analog input voltage with a constant load current.

Ron Match

Difference between the Ron of any two channels.

Is (OFF)

Source leakage current with the switch off.

I_D (OFF)

Drain leakage current with the switch off.

 I_D , I_S (ON)

Channel leakage current with the switch on.

 $V_D(V_S)$

Analog voltage on Terminals D, S.

Cs (OFF)

OFF switch source capacitance.

C_D (OFF)

OFF switch drain capacitance.

 C_D , C_S (ON)

ON switch capacitance.

 t_{ON}

Delay between applying the digital control input and the output switching on.

toff

Delay between applying the digital control input and the output switching off.

tOPEN

Break-before-make delay when switches are configured as a multiplexer.

 V_{INL}

Maximum input voltage for Logic 0.

 V_{INH}

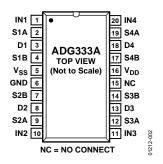
Minimum input voltage for Logic 1.

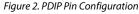
 $I_{INL}(I_{INH})$

Input current of the digital input.

Crosstalk

A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.


Off Isolation


A measure of unwanted signal coupling through an OFF switch.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

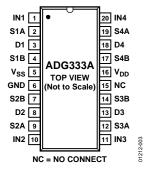


Figure 3. SOIC Pin Configuration

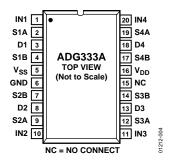


Figure 4. SSOP Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 10, 11, 20	IN1, IN2, IN3, IN4	Logic Control Input.
2, 4, 7, 9, 12, 14, 17, 19	S1A, S1B, S2B, S2A, S3A, S3B, S4B, S4A	Source Terminal. Can be an input or output.
3, 8, 13, 18	D1, D2, D3, D4	Drain Terminal. Can be an input or output.
5	Vss	Most Negative Power Supply Potential in Dual Supplies. In single-supply applications, it can be connected to ground.
6	GND	Ground (0 V) Reference
15	NC	No Connect.
16	V_{DD}	Most Positive Power Supply Potential.

TYPICAL PERFORMANCE CHARACTERISTICS

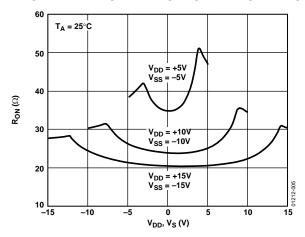


Figure 5. R_{ON} as a Function of V_D (V_S): Dual Supply

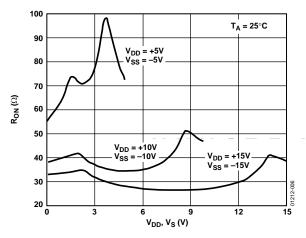


Figure 6. R_{ON} as a Function of V_D (V_S): Single Supply

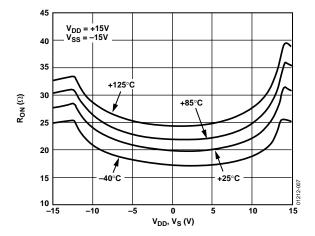


Figure 7. R_{ON} as a Function of V_D (V_s) for Different Temperatures: Dual Supply

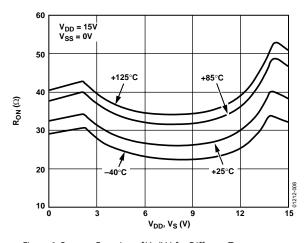


Figure 8. R_{ON} as a Function of V_D (V_S) for Different Temperatures: Single Supply

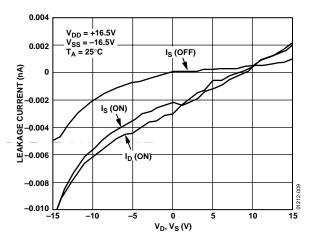


Figure 9. Leakage Currents as a Function of V_D (V_S): Dual Supply

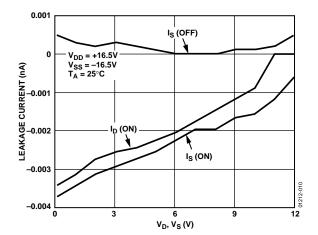


Figure 10. Leakage Currents as a Function of V_D (V_S): Single Supply

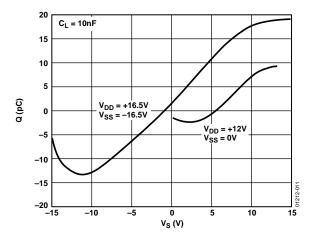


Figure 11. Charge Injection as a Function of V_{S}

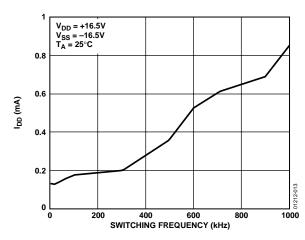


Figure 13. I_{DD} as a Function of Switching Frequency

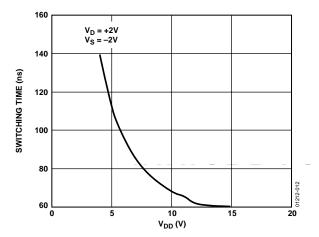
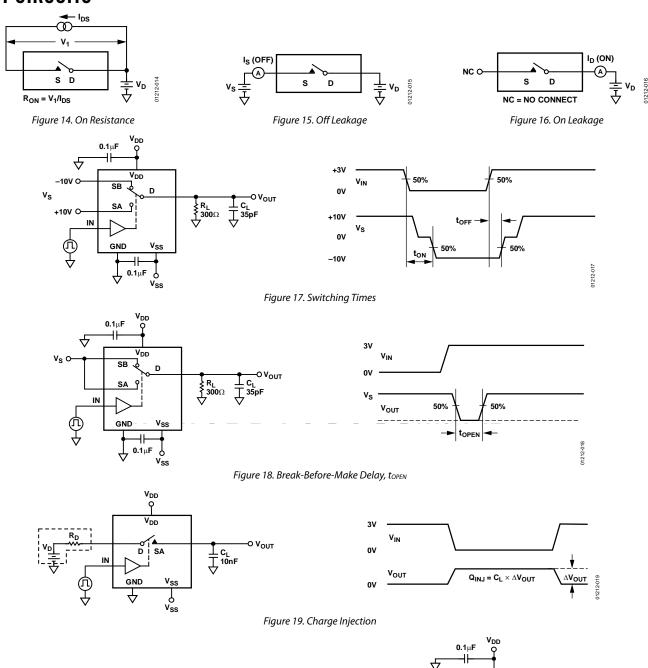



Figure 12. Switching Time as a Function of V_{D}

TEST CIRCUITS

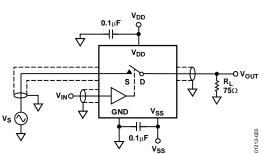


Figure 20. Off Isolation

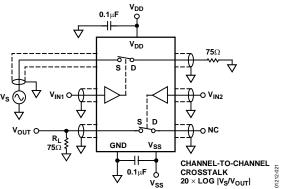
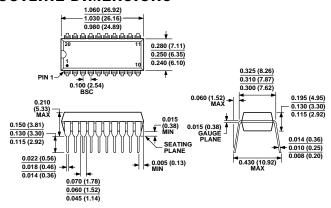


Figure 21. Channel-to-Channel Crosstalk

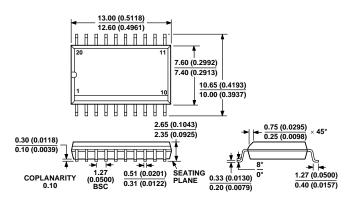
APPLICATION INFORMATION


ADG333A SUPPLY VOLTAGES

The ADG333A can operate from a dual or signal supply. V_{SS} should be connected to GND when operating with a single supply. When using a dual supply, the ADG333A can also operate with unbalanced supplies; for example $V_{DD}=20~V$ and $V_{SS}=-5~V$. The only restrictions are that V_{DD} to GND must not exceed 30 V, V_{SS} to GND must not drop below -30~V, and V_{DD} to V_{SS} must not exceed +44 V. It is important to remember that the ADG333A supply voltage directly affects the input signal range, the switch on resistance and the switching times of the part. The effects of the power supplies on these characteristics can be clearly seen from the Typical Performance Characteristics curves.

POWER SUPPLY SEQUENCING

When using CMOS devices, care must be taken to ensure correct power-supply sequencing. Incorrect power-supply sequencing can result in the device being subjected to stresses beyond those listed in the Absolute Maximum Ratings. This is also true for the ADG333A. Always turn on $V_{\rm DD}$ first, followed by $V_{\rm SS}$ and the logic signals. An external signal within the maximum specified ratings can then be safely presented to the source or drain of the switch


OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-001-AD

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.

Figure 22. 20-Lead Plastic Dual In-Line Package [PDIP] Narrow Body (N-20) Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MS-013AC
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Figure 23. 20-Lead Standard Small Outline Package [SOIC] Wide Body (R-20) Dimensions shown in millimeters and (inches)

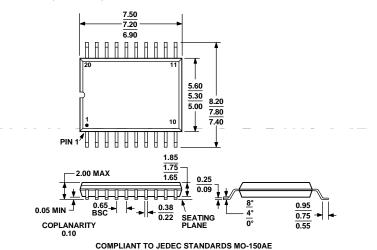


Figure 24. 20-Lead Shrink Small Outline Package [SSOP] (RS-20) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG333ABN	-40°C to +85°C	20-Lead Plastic Dual In-Line Package (PDIP)	N-20
ADG333ABR	-40°C to +85°C	20-Lead Standard Small Outline Package (SOIC)	R-20
ADG333ABR-REEL	-40°C to +85°C	20-Lead Standard Small Outline Package (SOIC)	R-20
ADG333ABRZ ¹	-40°C to +85°C	20-Lead Standard Small Outline Package (SOIC)	R-20
ADG333ABRZ-REEL ¹	-40°C to +85°C	20-Lead Standard Small Outline Package (SOIC)	R-20
ADG333ABRS	-40°C to +85°C	20-Lead Shrink Small Outline Package (SSOP)	RS-20
ADG333ABRS-REEL	-40°C to +85°C	20-Lead Shrink Small Outline Package (SSOP)	RS-20
ADG333ABRSZ ¹	-40°C to +85°C	20-Lead Shrink Small Outline Package (SSOP)	RS-20
ADG333ABRSZ-REEL ¹	-40°C to +85°C	20-Lead Shrink Small Outline Package (SSOP)	RS-20

¹ Z = Pb-free part.

