

Single Channel, 1024-Position, 1% R-Tol, Digital Potentiometer

Preliminary Technical Data

AD5293

FEATURES

Single-channel, 1024-position resolution 20 k Ω , 50 k Ω and 100 k Ω nominal resistance Calibrated 1% Nominal Resistor Tolerance Rheostat mode temperature coefficient: 35 ppm/°C Voltage divider temperature coefficient: 5 ppm/°C +21V to +30V single-supply operation ± 10.5 V to ± 15 V dual-supply operation SPI $^{\$}$ compatible serial interface Wiper setting readback

APPLICATIONS

Mechanical potentiometer replacement Instrumentation: gain, offset adjustment Programmable voltage to current conversion Programmable filters, delays, time constants Programmable power supply Low resolution DAC replacement Sensor calibration

GENERAL DESCRIPTION

The AD5293 is a single-channel, 1,024-position digital potentiometer with less than 1% end-to-end Resistor Tolerance error. The AD5293 performs the same electronic adjustment function as a mechanical potentiometer with enhanced resolution, solid state reliability, and superior low temperature coefficient performance. This device is capable of operating at high-voltages; supporting both dual supply ± 10.5 to ± 15 V and single supply operation ± 21 V to ± 30 V.

The AD5293 offers guaranteed industry leading low resistor tolerance errors of $\pm 1\%$ with a nominal temperature coefficient of 35 ppm/°C. The low resistor tolerance feature simplifies open-loop applications as well as precision calibration and tolerance matching applications.

FUNCTIONAL BLOCK DIAGRAM

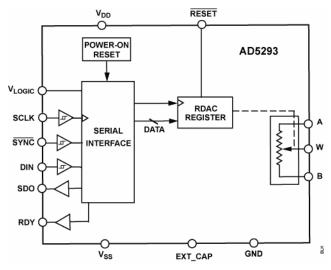


Figure 1. 14ld TSSOP

–The AD5293 is available in a compact 14ld TSSOP package. The part is guaranteed to operate over the extended industrial temperature range of -40° C to $+105^{\circ}$ C.

¹ The terms digital potentiometer and RDAC are used interchangeably.

Preliminary Technical Data

AD5293

TABLE OF CONTENTS

REVISION HISTORY

Revision: Preliminary Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS – $20 \text{K}\Omega$ VERSION

 $V_{DD} = 21V \ to \ 30V, V_{SS} = 0V; V_{DD} = 10.5V \ to \ 16.5V, V_{SS} = -10.5V \ to \ -16.5V; V_{LOGIC} = 2.7V \ to \ 5.5V, V_{A} = V_{DD}, V_{B} = V_{SS} \ , -40^{\circ}C < T_{A} < +105^{\circ}C, \\ unless \ otherwise \ noted.$

Table 1.

Parameter	Symbol	Conditions	Min	Typ ¹	Max	Unit
DC CHARACTERISTICS— RHEOSTAT MO	DE					
Resolution	N		10			Bits
Resistor Differential Nonlinearity ²	R-DNL	R _{WB}	-1		+1	LSB
Resistor Integral Nonlinearity ²	R-INL	$R_{AB} = 20K\Omega$, $ V_{DD} - V_{SS} = 26V$ to 30V	-1.5		+1.5	LSB
	R-INL	$R_{AB} = 20K\Omega$, $ V_{DD} - V_{SS} = 21V$ to 26V	-2		+2	LSB
Nominal Resistor Tolerance ³	$\Delta R_{AB}/R_{AB}$		-1	0.5	+1	%
Resistance Temperature Coefficient	$(\Delta R_{AB}/R_{AB})/\Delta T \times 10^6$			35		ppm/°C
Wiper Resistance	R _W			TBD	TBD	Ω
DC CHARACTERISTICS—POTENTIOMETI	R DIVIDER MODE					
Resolution	N		10			Bits
Differential Nonlinearity ⁴	DNL		-1		+1	LSB
Integral Nonlinearity ⁴	INL		-1		+1	LSB
Voltage Divider Temperature Coefficient	$(\Delta V_W/V_W)/\Delta T \times 10^6$	Code = half-scale		5		ppm/°C
Full-Scale Error	V _{WFSE}	Code = full scale	-6		0	LSB
Zero-Scale Error	V _{WZSE}	Code = zero scale	0		TBD	LSB
RESISTOR TERMINALS						
Terminal Voltage Range⁵	V _{A, B, W}		V_{SS}		V_{DD}	V
Capacitance ⁶ A, B	C _{A, B}	f = 1 MHz, measured to GND,		50		рF
·		Code = half-scale				-
Capacitance ⁶ W	Cw	f = 1 MHz, measured to GND,		40		рF
		Code = half-scale				-
Common-Mode Leakage Current ⁶	I _{CM}	$V_A = V_B = V_W$		0.001	50	nA
DIGITAL INPUTS			JEDEC c	ompliant		
Input Logic High	V _{IH}	$V_{LOGIC} = 4.5V \text{ to } 5.5 \text{ V}$	2.0			٧
	V _{IH}	$V_{LOGIC} = 2.7V \text{ to } 3.6 \text{ V}$	1.8			V
Input Logic Low	V _{IL}	$V_{LOGIC} = 2.7V \text{ to } 5.5 \text{ V}$			8.0	V
Input Current	I _{IL}	$V_{IN} = 0 \text{ V or } V_{LOGIC}$			±1	μΑ
Input Capacitance ⁶	C _{IL}			5		pF
DIGITAL OUTPUTS(SDO and RDY)						
Output High Voltage	V _{OH}	$R_{PULL_UP} = 2.2k\Omega$ to V_{LOGIC}	V _{LOGIC} - 0.4			V
Output Low Voltage	VoL	$R_{PULL_UP} = 2.2k\Omega$ to V_{LOGIC}			Gnd +0.4V	V
Three state Leakage Current			-1		1	μΑ
Output Capacitance ⁶	C _{OL}		-1	5	Ţ	pF
POWER SUPPLIES	COL					рі
Single-Supply Power Range	V _{DD}	$V_{SS} = 0 \text{ V}$	21		30	V
Dual-Supply Power Range	V _{DD} /V _{SS}	VSS = 0 V	±10.5		±16.5	V
Positive Supply Current	I _{DD}	$V_{DD} / V_{SS} = \pm 16.5 \text{ V}$	10.3	TBD	±10.5 TBD	μA
Negative Supply Current	Iss	$V_{DD} / V_{SS} = \pm 16.5 \text{ V}$ $V_{DD} / V_{SS} = \pm 16.5 \text{ V}$		TBD	TBD	· -
Logic Supply Range		νυυ / VSS — Σ1 0.5 V	2.7	טסו	5.5	μA V
	V _{LOGIC}	V	2./	TDD		
Logic Supply Current	ILOGIC	$V_{LOGIC} = 5 \text{ V}; V_{IH} = 5 \text{ V or } V_{IL} = \text{GND}$		TBD	TBD	μΑ
Mamary Boad Current67	I _{LOGIC}	$V_{LOGIC} = 3 \text{ V}; V_{IH} = 3 \text{ V or } V_{IL} = \text{GND}$		TBD	TBD	μA
Memory Read Current ^{6,7}	LOGIC_FUSE_READ	$V_{IH} = 5 \text{ V or } V_{IL} = \text{GND}$		TBD		mA

Parameter	Symbol	Conditions	Min	Typ ¹	Max	Unit	
Power Dissipation ⁸	P _{DISS}	$V_{IH} = 5 \text{ V or } V_{IL} = GND$		TBD	TBD	μW	
Power Supply Rejection Ratio ⁶	PSSR	$\Delta V_{DD}/\Delta V_{SS} = \pm 15 \text{ V} \pm 10\%$		0.0006	0.002	%/%	
DYNAMIC CHARACTERISTICS ^{6, 9}							
Bandwidth	BW	-3 dB		TBD		kHz	
Total Harmonic Distortion	THDw	$V_A = 1 \text{ V rms}, V_B = 0 \text{ V}, f = 1 \text{ kHz}$					
		$R_{AB} = 20 \text{ k}\Omega$		-90		dB	
		$R_{AB} = 50 \text{ k}\Omega$		-99			
		$R_{AB} = 100 \text{ k}\Omega$		-99			
V _w Settling Time	ts	$V_A = 10 \text{ V}, V_B = 0 \text{ V},$ ±1 LSB error band,					
		$R_{AB} = 20 \text{ k}\Omega$		1		μs	
		$R_{AB} = 50 \text{ k}\Omega$		2.5			
		$R_{AB} = 100 \text{ k}\Omega$		5			
Resistor Noise Density	e _{N_wB}	$R_{WB} = 5 \text{ k}\Omega$, $T_A = 25^{\circ}\text{C}$,		TBD		nV/√	

 $^{^1}$ Typicals represent average readings at 25°C,V $_{DD}$ = 15 V, V $_{SS}$ = -15 V and V $_{LOGIC}$ = 5 V.

² Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from ideal between successive tap positions.

 $^{^3}$ ±1% resistor tolerance code range; $R_{AB} = 20K\Omega$: 250 to 1,023 for $|V_{DD} - V_{SS}| = 26V$ to 30V and 383 to 1,023 for $|V_{DD} - V_{SS}| = 21V$ to 26V 4 INL and DNL are measured at V_W with the RDAC configured as a potentiometer divider similar to a voltage output DAC. $V_A = V_{DD}$ and $V_B = 0V$. DNL specification limits of ± 1 LSB maximum are guaranteed monotonic operating conditions.

⁵ Resistor Terminals A, B, and W have no limitations on polarity with respect to each other. Dual-supply operation enables ground-referenced bipolar signal adjustment.

⁶ Guaranteed by design and not subject to production test.

⁷ Different from operating current; supply current for fuse read lasts approximately TBDµs..

 $^{^8}$ P_{DISS} is calculated from (I_{DD} \times V_{DD}) + (I_{SS} \times V_{SS}) + (I_{LOGIC} \times V_{LOGIC}).

 $^{^{9}}$ All dynamic characteristics use $V_{DD} = +15$ V, $V_{SS} = -15$ V and $V_{LOGIC} = 5$ V.

ELECTRICAL CHARACTERISTICS – $50K\Omega$ AND $100K\Omega$ VERSIONS

 $V_{DD} = 21V \ to \ 30V, V_{SS} = 0V; V_{DD} = 10.5V \ to \ 16.5V, V_{SS} = -10.5V \ to \ -16.5V; V_{LOGIC} = 2.7V \ to \ 5.5V, V_A = V_{DD}, V_B = V_{SS} \ , -40^{\circ}C < T_A < +105^{\circ}C, \\ unless \ otherwise \ noted.$

Table 2.

Parameter	Symbol	Conditions	Min	Typ ¹	Max	Unit
DC CHARACTERISTICS— RHEOSTAT MO	DE					
Resolution	N		10			Bits
Resistor Differential Nonlinearity ²	R-DNL	R _{WB}	-1		+1	LSB
Resistor Integral Nonlinearity ²	R-INL		-1		+1	LSB
Nominal Resistor Tolerance ³	ΔR _{AB} /R _{AB}		-1	0.5	+1	%
Resistance Temperature Coefficient	$(\Delta R_{AB}/R_{AB})/\Delta T \times 10^6$			35		ppm/°C
Wiper Resistance	Rw			TBD	TBD	Ω
DC CHARACTERISTICS—POTENTIOMET	R DIVIDER MODE					
Resolution	N		10			Bits
Differential Nonlinearity ⁴	DNL		-1		+1	LSB
Integral Nonlinearity ⁴	INL		-1		+1	LSB
Voltage Divider Temperature Coefficient	$(\Delta V_W/V_W)/\Delta T \times 10^6$	Code = half-scale		5		ppm/°C
Full-Scale Error	V _{WFSE}	Code = full scale	-6		0	LSB
Zero-Scale Error	V _{WZSE}	Code = zero scale	0		TBD	LSB
RESISTOR TERMINALS						
Terminal Voltage Range⁵	V _{A, B, W}		V_{SS}		V_{DD}	V
Capacitance ⁶ A, B	C _{A, B}	f = 1 MHz, measured to GND,		50		pF
		Code = half-scale				
Capacitance ⁶ W	Cw	f = 1 MHz, measured to GND,		40		рF
		Code = half-scale				
Common-Mode Leakage Current ⁶	I _{CM}	$V_A = V_B = V_W$		0.001	50	nA
DIGITAL INPUTS			JEDEC c	ompliant		
Input Logic High	V _{IH}	$V_{LOGIC} = 4.5V \text{ to } 5.5 \text{ V}$	2.0			V
	V _{IH}	$V_{LOGIC} = 2.7V \text{ to } 3.6 \text{ V}$	1.8			V
Input Logic Low	V _{IL}	$V_{LOGIC} = 2.7V \text{ to } 5.5 \text{ V}$			8.0	V
Input Current	I _{IL}	$V_{IN} = 0 \text{ V or } V_{LOGIC}$			±1	μΑ
Input Capacitance ⁶	C _{IL}			5		pF
DIGITAL OUTPUTS(SDO and RDY)						
Output High Voltage	V _{OH}	$R_{PULL_UP} = 2.2k\Omega$ to V_{LOGIC}	V _{LOGIC} -			V
			0.4			
Output Low Voltage	V _{OL}	$R_{PULL_UP} = 2.2k\Omega$ to V_{LOGIC}			Gnd	V
					+0.4V	
Three state Leakage Current			-1		1	μΑ
Output Capacitance ⁶	C _{OL}			5		pF
POWER SUPPLIES						
Single-Supply Power Range	V_{DD}	$V_{SS} = 0 V$	21		30	V
Dual-Supply Power Range	V _{DD} /V _{SS}		±10.5		±16.5	V
Positive Supply Current	I _{DD}	$V_{DD}/V_{SS} = \pm 16.5 V$		TBD	TBD	μΑ
Negative Supply Current	Iss	$V_{DD}/V_{SS} = \pm 16.5 \text{ V}$		TBD	TBD	μΑ
Logic Supply Range	V _{LOGIC}		2.7		5.5	V
Logic Supply Current	I _{LOGIC}	$V_{LOGIC} = 5 \text{ V}; V_{IH} = 5 \text{ V or } V_{IL} = GND$		TBD	TBD	μΑ
	I _{LOGIC}	$V_{LOGIC} = 3 \text{ V}; V_{IH} = 3 \text{ V or } V_{IL} = \text{GND}$		TBD	TBD	μΑ
OTP Read Current ^{6,7}	ILOGIC_FUSE_READ	$V_{IH} = 5 \text{ V or } V_{IL} = GND$		TBD		mA
Power Dissipation ⁸	P _{DISS}	$V_{IH} = 5 \text{ V or } V_{IL} = GND$		TBD	TBD	μW
Power Supply Rejection Ratio ⁶	PSSR	$\Delta V_{DD}/\Delta V_{SS} = \pm 15 \text{ V} \pm 10\%$		0.0006	0.002	%/%

Parameter	Symbol	Conditions	Min	Typ ¹	Max	Unit
DYNAMIC CHARACTERISTICS ^{6, 9}						
Bandwidth	BW	-3 dB		TBD		kHz
Total Harmonic Distortion	THDw	$V_A = 1 \text{ V rms}, V_B = 0 \text{ V}, f = 1 \text{ kHz}$				
		$R_{AB} = 20 \text{ k}\Omega$		-90		dB
		$R_{AB} = 50 \text{ k}\Omega$		-99		
		$R_{AB} = 100 \text{ k}\Omega$		-99		
V _w Settling Time	ts	$V_A = 10 \text{ V}, V_B = 0 \text{ V},$ ±1 LSB error band,				
		$R_{AB} = 20 \text{ k}\Omega$		1		μs
		$R_{AB} = 50 \text{ k}\Omega$		2.5		
		$R_{AB} = 100 \text{ k}\Omega$		5		
Resistor Noise Density	e _{N_wB}	$R_{WB} = 5 \text{ k}\Omega$, $T_A = 25^{\circ}\text{C}$,		TBD		nV/√H

¹ Typicals represent average readings at 25°C, V_{DD} = 15 V, V_{SS} = -15 V and V_{LOGIC} = 5 V.

² Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from ideal between successive tap positions.

 $^{^3}$ ±1% resistor tolerance code range; $R_{AB} = 50K\Omega$: 128 to 1,023 for $|V_{DD} - V_{SS}| = 26V$ to 30V and 172 to 1,023 for $|V_{DD} - V_{SS}| = 21V$ to 26V; $R_{AB} = 100K\Omega$: 83 to 1,023 for $|V_{DD} - V_{SS}| = 21V$ to 26V; $|V_{DD} - V_{SS}| = 21V$ $V_{DD} - V_{SS} = 26V \text{ to } 30V \text{ and } 105 \text{ to } 1,023 \text{ for } |V_{DD} - V_{SS}| = 21V \text{ to } 26V;$

⁴ INL and DNL are measured at V_W with the RDAC configured as a potentiometer divider similar to a voltage output DAC. V_A = V_{DD} and V_B = 0V. DNL specification limits of ±1 LSB maximum are guaranteed monotonic operating conditions.

5 Resistor Terminals A, B, and W have no limitations on polarity with respect to each other. Dual-supply operation enables ground-referenced bipolar signal adjustment.

⁶ Guaranteed by design and not subject to production test.

⁷ Different from operating current; supply current for fuse read lasts approximately TBDµs..

⁸ P_{DISS} is calculated from $(I_{DD} \times V_{DD}) + (I_{LSS} \times V_{SS}) + (I_{LOGIC} \times V_{LOGIC})$.
⁹ All dynamic characteristics use $V_{DD} = +15 \text{ V}$, $V_{SS} = -15 \text{ V}$ and $V_{LOGIC} = 5 \text{ V}$.

INTERFACE TIMING SPECIFICATIONS

 V_{DD} / V_{SS} = ± 15 V, V_{LOGIC} = 2.7V to 5.5V, and -40° C < T_{A} < + 105°C. All specifications T_{MIN} to T_{MAX} , unless otherwise noted.

Table 3.

Parameter	Unit ¹	Unit	Test Conditions/Comments
t ₁ ²	20	ns min	SCLK cycle time
t_2	10	ns min	SCLK high time
t_3	10	ns min	SCLK low time
t_4	15	ns min	SYNC to SCLK falling edge setup time
t_{5}	5	ns min	Data setup time
t_6	5	ns min	Data hold time
t ₇	0	ns min	SCLK falling edge to SYNC rising edge
t ₈	TBD	μs min	Minimum SYNC high time
t_9	13	ns min	SYNC rising edge to next SCLK fall ignore
t ₁₀ ³	TBD	ns min	RDY rise to SYNC falling edge
t ₁₁ 3	TBD	ns min	SYNC rise to RDY fall time
t ₁₂ ³	TBD	ns min	RDY Low Time – RDAC Register write command execute time
t ₁₃ ³	TBD	ns min	RDY Low Time – RDAC Register read command execute time
t ₁₄ ³	125	ns max	SCLK rising edge to SDO valid
t ₁₅ ³	TBD(40)	ns min	SCLK to SDO Data hold time
t_{OTP}	TBD	μs max	Power-on OTP restore time

 $^{^1}$ All input signals are specified with tr = tf = 1 ns/V (10% to 90% of $V_{DD})$ and timed from a voltage level of ($V_{IL} + V_{IH})/2$. 2 Maximum SCLK frequency is 50 MHz 3 Rpull_UP = $2.2 k \Omega$ to V_{LOGIC}

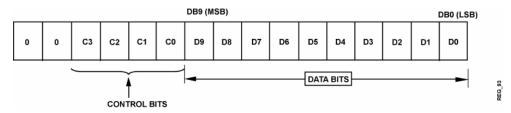


Figure 2. AD5293 Input Register Content

TIMING DIAGRAMS

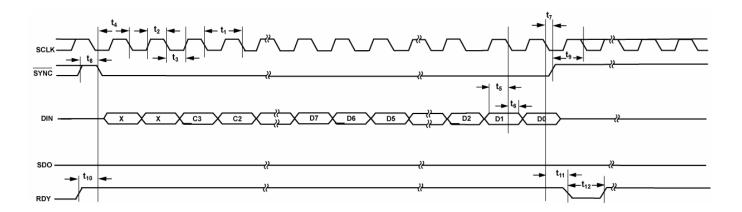


Figure 3. Write Timing Diagram

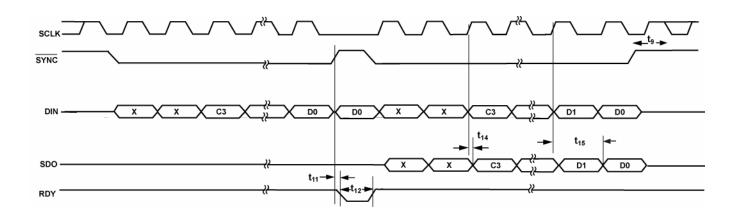


Figure 4. Read Timing Diagram

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 4.

14010 11	
Parameter	Rating
V _{DD} to GND	−0.3 V, +35 V
V _{SS} to GND	+0.3 V, -16.5 V
V _{LOGIC} to GND	-0.3 V to +7 V
V_{DD} to V_{SS}	35 V
V_A , V_B , V_W to GND	V_{SS} -0.3 V, V_{DD} +0.3 V
I _A , I _B , I _W	
Pulsed ¹	±TBD mA
Continuous	
20K Ω End-to-End resistance	±3 mA
50 K Ω and 100 K Ω End-to-End resistance	±2 mA
Digital Input and Output Voltage to GND	-0.3 V to V _{LOGIC} +0.3 V
Operating Temperature Range	-40°C to +105°C
Maximum Junction Temperature (T _J max)	150°C
Storage Temperature	−65°C to +150°C
Reflow Soldering	
Peak Temperature	260°C
Time at peak temperature	20 sec to 40 sec
Thermal Resistance Junction-to-Ambient θ_{JA} , TSSOP-14	93°C/W
Thermal Resistance Junction-to-Case 3 θ_{JC} , TSSOP-14	20°C/W
Package Power Dissipation	(Τ _J max – Τ _A)/ <u>θ</u> JA

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

¹ Maximum terminal current is bounded by the maximum current handling of the switches, maximum power dissipation of the package, and maximum applied voltage across any two of the A, B, and W terminals at a given resistance.

²Thermal Resistance (JEDEC 4 layer(2S2P) board).

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

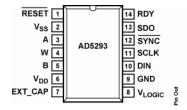


Figure 5. 14-pin TSSOP Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	RESET	Hardware reset pin. Sets the RDAC register to midscale. RESET is activated at the logic high transition. Tie RESET to V _{LOGIC} if not used.
2	Vss	Negative Supply. Connect to 0 V for single-supply applications. This pin should be decoupled with $0.1\mu F$ ceramic capacitors and $10~\mu F$ capacitors.
3	Α	Terminal A of RDAC. $V_{SS} \le V_A \le V_{DD}$
4	W	Wiper terminal of RDAC. $V_{SS} \le V_W \le V_{DD}$
5	В	Terminal B of RDAC. $V_{SS} \le V_B \le V_{DD}$
6	V_{DD}	Positive Power Supply. This pin should be decoupled with 0.1µF ceramic capacitors and 10 µF capacitors.
7	EXT_CAP	Connect a 1µF capacitor to EXT_CAP.
8	V _{LOGIC}	Logic Power Supply; 2.7V to 5.5V. This pin should be decoupled with $0.1\mu F$ ceramic capacitors and $10~\mu F$ capacitors.
9	GND	Ground Pin, Logic Ground Reference.
10	DIN	Serial Data Input. This part has a 16-bit shift register. Data is clocked into the register on the falling edge of the serial clock input.
11	SCLK	Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data can be transferred at rates up to 50 MHz.
12	SYNC	Falling edge Synchronisation signal.
		This is the frame synchronization signal for the input data. When SYNC goes low, it enables the input shift
		register and data is transferred in on the falling edges of the following clocks. The selected DAC register is updated on the rising edge of SYNC following the 16 th clock cycle. If SYNC is taken high before the 16 th clock cycle the rising edge of SYNC acts as an interrupt, and the write sequence is ignored by the DAC.
13	SDO	Serial Data Output. Open Drain Output requires external pull-up resistor. SDO can be used to clock data from the serial register in daisy chain or readback mode.
14	RDY	Ready pin. Active-high open-drain output. Identifies the completion of a write or read operation to/from the RDAC Register or read operation from memory Memory.

THEORY OF OPERATION

The AD5293 digital potentiometer is designed to operate as a true variable resistor for analog signals that remain within the terminal voltage range of $V_{SS} < V_{TERM} < V_{DD}$. The digital potentiometer wiper position is determined by the RDAC register contents. The RDAC register acts as a scratchpad register, allowing as many value changes as necessary to place the potentiometer wiper in the correct position. The RDAC register can be programmed with any position setting using the standard SPI serial interface by loading the 16-bit data-word.

The AD5293 also features a patented 1% end-to-end resistor tolerance. This simplifies precision, rheostat mode, and open-loop applications where knowledge of absolute resistance is critical.

RDAC REGISTER

The RDAC register directly controls the position of the digital potentiometer wiper. For example, when the RDAC register is loaded with all zeros, the wiper is connected to Terminal B of the variable resistor. The RDAC register is a standard logic register; there is no restriction on the number of changes allowed. The RDY pin can be used to monitor the completion of a write to or read from the RDAC register. Prior to 20-TP activation, the AD5293 presets to mid-scale on power-up.

WRITE PROTECTION

On power-up, the serial data input register write command for the RDAC register is disabled. The RDAC write protect bit, C1 of the control register (Table 8), is set to 0 by default. This disables any change of the RDAC register content regardless of the software commands, except that the RDAC register can be refreshed to midscale using the software reset command (command #3) or through hardware by the RESET pin. To enable programming of the variable resistor wiper position (programming the RDAC register) the write protect bit C1 of the control register must first be programmed. This is accomplished by loading the serial data input register with Command #4 (Table 7).

BASIC OPERATION

The basic mode of setting the variable resistor wiper position (programming the RDAC register) is accomplished by loading the serial data input register with Command #1 (Table 7) and the desired wiper position data. The $\overline{\text{RDY}}$ pin can be used to monitor the completion of this RDAC register write command. (Command #2, Table 7) can be used to readback the contents of the RDAC register. After issuing the readback command the $\overline{\text{RDY}}$ pin can be monitored to indicate when the data is available to be read out on $\overline{\text{SDO}}$ in the next SPI operation. Instead of monitoring the $\overline{\text{RDY}}$ pin, a minimum delay(Table 3) can be implemented when executing a write or read command. Table 6, provides an example listing of a sequence of serial data

input (DIN) words with the serial data output appearing at the SDO pin in hexadecimal format for an RDAC write and read.

Table 6. RDAC Register Write and Read

DIN	SDO	Action
0x1802	0xXXXX	Enable update of wiper position
0x0600	0x1803	Write 0x100 to the RDAC register, Wiper moves to ¼ fullscale position.
0x0800	0x0600	Prepare data read from RDAC Register
0x0000	0x0100	NOP instruction 0 sends 16-bit word out of SDO, where last 10-bits contain the contents of the RDACl Register.

POWER-DOWN MODE

The AD5293 can be powered down by executing the software powerdown command, command 6 (Table 7), and setting the LSB to 1. This feature reduces the power supply current to (TBD) μ A and places the RDAC in a zero-power-consumption state where Terminal Ax is open-circuited and the Wiper Wx is connected to Terminal Bx.

RESET

A low to high transition of the hardware RESET pin loads the RDAC Register with midscale. The AD5293 can also be reset through software by executing command 3(Table 7).

SERIAL DATA INTERFACE

The AD5293 contains a serial interface (SYNC, SCLK, DIN and SDO), which is compatible with SPI interface standards, as well as most DSPs. This device allows writing of data via the serial interface to every register.

INPUT SHIFT REGISTER

For the AD5293 the input shift register is 16 bits wide (see Figure 2). The 16-bit word consists of two unused bits (should be set to zero), followed by four control bits, and ten RDAC data bits. Data is loaded MSB first (Bit 15). The four control bits determine the function of the software command (Table 7). Figure 3 shows a timing diagram of a typical AD5293 write sequence.

The write sequence begins by bringing the SYNC line low. The SYNC pin must be held low until the complete data-word is loaded from the DIN pin. When SYNC returns high, the serial data-word is decoded according to the instructions in Table 7. The command bits (Cx) control the operation of the digital

AD5293

potentiometer. The data bits (Dx) are the values that are loaded into the decoded register. The AD5293 has an internal counter that counts a multiple of 16 bits (a frame) for proper operation. For example, the AD5293 works with a 32-bit word, but it cannot work properly with a 31-bit or 33-bit word. The AD5293 does not require a continuous SCLK and dynamic power can be saved by only transmitting clock pulses during a serial write. All interface pins should be operated at close to the supply rails to minimize power consumption in the digital input buffers.

DAISY-CHAIN OPERATION

The serial data output pin (SDO) serves two purposes. It can be used to read the contents of the wiper setting using Command 2 (Table 7) or it can be used for daisy chaining multiple devices. The remaining instructions are valid for daisy-chaining multiple devices in simultaneous operations. Daisy-chaining minimizes the number of port pins required from the controlling IC. The SDO pin contains an open-drain N-Ch FET that requires a pull-up resistor, if this function is used. As shown in Figure 6, users need to tie the SDO pin of one package

to the DIN pin of the next package. Users might need to increase the clock period, because the pull-up resistor and the capacitive loading at the SDO–DIN interface might require additional time delay between subsequent devices.

When two AD5293s are daisy-chained, 32 bits of data are required. The first 16 bits go to U2, and the second 16 bits go to U1. The SYNC pin should be kept low until all 32 bits are clocked into their respective serial registers. The SYNC pin is then pulled high to complete the operation.

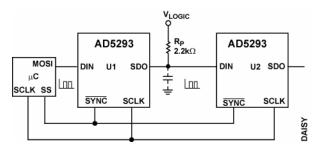


Figure 6. Daisy-Chain Configuration Using SD

Table 7. Command Operation Truth Table

	(Data									Operation			
Command	B13				В9			B8	B7					B0	
Number	С3	C2	C 1	C0	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	NOP: Do nothing.
1	0	0	0	1	D9	D8	D7	D6	D5	_D4	D3	D2	D1	D0	Write contents of Serial Register Data to RDAC.
2	0	0	1	0	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Read RDAC wiper setting from SDO output in the next frame.
3	0	1	0	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Reset: Refresh RDAC with midscale code
4	0	1	1	0	Х	Χ	Χ	Χ	Χ	Χ	Χ	D2	D1	D0	Write Contents of Serial Register Data to Control Register
5	0	1	1	1	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Read Control Register from SDO output in the next frame.
6	1	0	0	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	D0	Software Powerdown
															D0 = 0; Normal Mode
															D0 = 1; Device placed in powerdown mode

Table 8. Control Register and special function codes

Register Name	Data Byte	Operation
	D9 D8 D7 D6 D5 D4 D3 D2 D1 D0	
Control	X X X X X X X C2 C1 X	C1 = RDAC Register Write Protect.
		0 = Wiper position frozen to Midscale(Default)
		1 = Allow update of wiper position through Digital Interface
		C2 = Calibration Enable.
		0 = RDAC Resistor Tolerance Calibration enabled(Default)
		1 = RDAC Resistor Tolerance Calibration enabled

RDAC ARCHITECTURE

In order to achieve optimum cost performance, Analog Devices has patented the RDAC segmentation architecture for all the digital potentiometers. In particular, the AD5293 employs a 3-stage segmentation approach as shown in Figure 7. The AD5293 wiper switch is designed with the transmission gate CMOS topology and with the gate voltage derived from $V_{\rm DD}$.

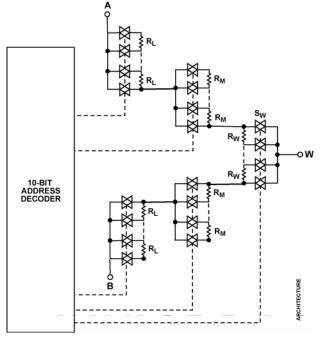


Figure 7. AD5293 Simplified RDAC Circuit.

PROGRAMMING THE VARIABLE RESISTOR Rheostat Operation - 1% Resistor Tolerance

The AD5293 operates in rheostat mode when only two terminals are used as a variable resistor. The unused terminal can be floating or tied to the W terminal as shown in Figure 8.

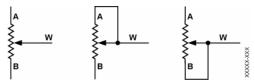


Figure 8. Rheostat Mode Configuration

The nominal resistance between Terminal A and Terminal B, R_{AB} , is available in $20~k\Omega$, $50~k\Omega$, and $100~k\Omega$ and has 1,024 tap points accessed by the wiper terminal. The 10-bit data in the RDAC latch is decoded to select one of the 1,024 possible wiper settings. The AD5293 contains an internal $\pm 1\%$ resistor tolerance calibration feature which can be disabled or enabled, enabled by default, by programming bit C2 of the control register (Table 8). The digitally programmed output resistance between the W terminal and the A terminal, R_{WA} and the W terminal and B terminal, R_{WB} , is calibrated to give a maximum

of $\pm 1\%$ absolute resistance error over both the full supply and temperature ranges. As a result, the general equation for determining the digitally programmed output resistance between the W terminal and B terminal is

$$R_{WB}(D) = \frac{D}{1,024} \times R_{AB} \tag{1}$$

where:

D is the decimal equivalent of the binary code loaded in the 10-bit RDAC register.

 R_{AB} is the end-to-end resistance.

Similar to the mechanical potentiometer, the resistance of the RDAC between the W terminal and the A terminal also produces a digitally controlled complementary resistance, R_{WA} . R_{WA} is also calibrated to give a maximum of 1% absolute resistance error. R_{WA} starts at the maximum resistance value and decreases as the data loaded into the latch increases. The general equation for this operation is

$$R_{WA}(D) = \frac{1,024 - D}{1,024} \times R_{AB} \tag{2}$$

where:

D is the decimal equivalent of the binary code loaded in the 10-bit RDAC register.

 R_{AB} is the end-to-end resistance.

In the-zero-scale condition, a finite total wiper resistance of TBD Ω is present. Regardless of which setting the part is operating in, care should be taken to limit the current between the A terminal to B terminal, W terminal to A terminal, and W terminal to B terminal, to the maximum continuous current of ± 3 mA(20K Ω) or ± 2 mA(50K Ω and 100 K Ω) or pulse current of TBD mA. Otherwise, degradation, or possible destruction of the internal switch contact, can occur.

PROGRAMMING THE POTENTIOMETER DIVIDER Voltage Output Operation

The digital potentiometer easily generates a voltage divider at wiper to B and wiper to A proportional to the input voltage at A to B as shown in Figure 9. Unlike the polarity of $V_{\rm DD}$ to GND, which must be positive, voltage across A to B, W to A, and W to B can be at either polarity.

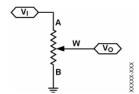


Figure 9. Potentiometer Mode Configuration

If ignoring the effect of the wiper resistance for simplicity, connecting the A terminal to 30 V and the B terminal to ground produces an output voltage at the Wiper W to Terminal B

ranging from 0 V to 1 LSB less than 30 V. Each LSB of voltage is equal to the voltage applied across Terminal A and Terminal B, divided by the 1,024 positions of the potentiometer divider. The general equation defining the output voltage at $V_{\rm W}$ with respect to ground for any valid input voltage applied to Terminal A and Terminal B is

$$V_W(D) = \frac{D}{1,024} \times V_A + \frac{1,024 - D}{1,024} \times V_B \tag{3}$$

In voltage divider mode, to optimize wiper position update rate, it is recommended to disable the internal ±1% resistor tolerance calibration feature by programming bit C2 of the control register (able 9).

Operation of the digital potentiometer in the divider mode results in a more accurate operation over temperature. Unlike the rheostat mode, the output voltage is dependent mainly on the ratio of the internal resistors R_{WA} and R_{WB} and not the absolute values. Therefore, the temperature drift reduces to 5 ppm/°C.

EXT CAP CAPACITOR

A $1\mu F$ capacitor to GND must be connected to the EXT_CAP pin (Figure 10) on power-up and throughout the operation of the AD5293.

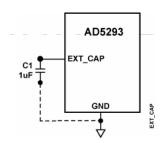


Figure 10. Hardware setup for EXT_CAP pin

TERMINAL VOLTAGE OPERATING RANGE

The AD5293's positive $V_{\rm DD}$ and negative $V_{\rm SS}$ power supplies define the boundary conditions for proper 3-terminal digital potentiometer operation. Supply signals present on Terminals A, B, and W that exceed $V_{\rm DD}$ or $V_{\rm SS}$ are clamped by the internal forward-biased diodes (see Figure 11).

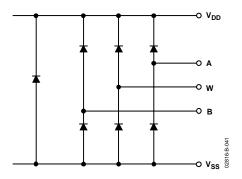


Figure 11. Maximum Terminal Voltages Set by V_{DD} and V_{SS}

The ground pin of the AD5293 device is primarily used as a digital ground reference. To minimize the digital ground bounce, the AD5293 ground terminal should be joined remotely to the common ground. The digital input control signals to the AD5293 must be referenced to the device ground pin (GND), and satisfy the logic level defined in the Specifications section.

Power-Up Sequence

Because there are diodes to limit the voltage compliance at Terminals A, B, and W (Figure 11), it is important to power V_{DD}/V_{SS} first before applying any voltage to Terminals A, B, and W. Otherwise, the diode is forward-biased such that V_{DD}/V_{SS} are powered unintentionally. The ideal power-up sequence is GND, V_{DD}/V_{SS} , V_{LOGIC} , digital inputs, and V_{A} , V_{B} , and V_{W} . The order of powering V_{A} , V_{B} , V_{W} , and digital inputs is not important as long as they are powered after V_{DD}/V_{SS} and V_{LOGIC} .

Regardless of the power-up sequence and the ramp rates of the power supplies, once $V_{\rm LOGIC}$ is powered, the power-on preset activates, which restores midscale to the RDAC register.

OUTLINE DIMENSIONS

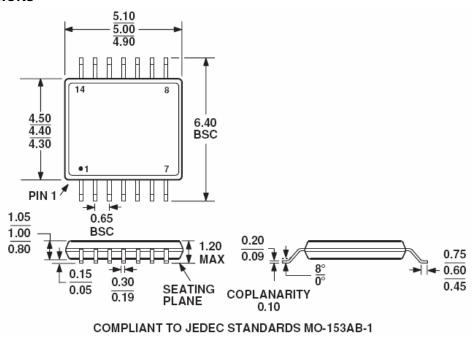


Figure 12. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14)

Dimensions shown in millimeters

ORDERING GUIDE

Model	R_{AB} ($k\Omega$)	Resolution	Temperature Range	Package Description	Package Option
AD5293ABRUZ20	20	1,024	−40°C to +105°C	14-Lead TSSOP	RU-14
AD5293ABRUZ50	50	1,024	−40°C to +105°C	14-Lead TSSOP	RU-14
AD5293ABRUZ100	100	1,024	−40°C to +105°C	14-Lead TSSOP	RU-14