

Qualification Criteria for ABB Power Management

Critical Loads

Limited In-plant Generation

Insufficient Reliability of Public Grid

Several Generators

Contracted Power Importation

Different Electrical Operational

Configurations possible

Complex Distribution Networks "Local only" Control facilities

Load Shedding

Power Control

Mode Control

SCADA

BB SRU EMS 2003

Why ABB Power Management?

- Thorough understanding of the electrical process
- +15 years experience in implementing Power Management Systems in many projects (green- and brown-field plants)
- Standard software, well documented, tested, proven technology
- Fast Response Time for Load Shedding, Mode Control, Power Control, Re-acceleration
- High Resolution and Accuracy of Sequence of Event recording
- Solution complies with class 3 EMC immunity
- Single responsibility: One supplier for Power Management System integrated with Protection, Governor, Excitation, Tap Changer, Motor Control Centre, Variable Speed Drive, etc.

ABB SRU EMS - 4

- Load Shedding
- Active and Reactive Power Control
- Mode Control
- Supervision, Control and Data Acquisition (SCADA)
- Re-Acceleration / Re-Starting
- Synchronisation

ABB SRU EMS -

Load Shedding: the Types

- Fast Load Shedding on Loss of Power Resources
- Load Shedding on Frequency Drop
- Slow Load Shedding on Overload
- Slow Load Shedding for Peak Shaving
- Manual Load Shedding

ABB SRU EMS © 2003

Load Shedding: Keywords

- Fast
- Exact
- Flexible
- Coordinated
- Deterministic
- Security and Reliability
- Accurate Event Logging
- Operator Guidance
- Independent Back-up System

ABB SRU EMS - 10 © 2003

Load Shedding Example Displays

- Load Shedding Control
- 2. Load Shedding Islands
- 3. Load Shedding Overview

ABB SRU EMS - 11 © 2003

- Load Shedding
- Active and Reactive Power Control
- Mode Control
- Supervision, Control and Data Acquisition (SCADA)
- Re-Acceleration / Re-Starting
- Synchronisation

ABB SRU EMS -© 2003

Active and Reactive Power Control

- Active Power Sharing:
 - Efficient Power Generation
 - Power Exchange Optimization (Power Demand Control)
 - Avoid Component Overloading
 - Spinning Reserve Optimization
 - Standby Optimization
- Reactive Power Sharing:
 - Achieve Stable Operation
 - Power Factor Optimization

ABB SRU EMS -© 2003

Power Control Example Displays

- 1. Calculated Control Margins
- 2. Generator Capability Diagram
- 3. Grid Capability Diagram
- 4. Maximum Demand Monitoring
- 5. Tie-line Monitoring
- 6. Mark V Vibration
- 7. Mark V Gas Turbine Generator Overview

ABB SRU EMS - 18 © 2003

- Load Shedding
- Active and Reactive Power Control
- Mode Control
- Supervision, Control and Data Acquisition (SCADA)
- Re-Acceleration / Re-Starting
- Synchronisation

3B SRU EMS - 26

Mode Control

- for Generators
- for Turbines
- for Transformers
- for Switchboards

ABB SRUEMS -

Mode Control Example Display

ABB SRU EMS - 28 © 2003

- Load Shedding
- Active and Reactive Power Control
- Mode Control
- Supervision, Control and Data Acquisition (SCADA)
- Re-Acceleration / Re-Starting
- Synchronisation

BB SRU EMS - 30

Supervision, Control and Data Acquisition

- Clearly Structured Presentation
- Controls Select Before Execute
- Status Indications
- Consistency Analysis
- Time Tagged Events (1 ms resolution)
- Alarm Handling, Reports, Trends
- Supervision and Self Diagnostics
- Single Window concept

ABB SRU EMS -© 2003

Integration with Supervisory Systems

- Plant Information Systems MIS
- Regional Dispatch Centres
- Power Generation Coordination Centres
- Energy Trading
- Utility Management Systems
- Process DCS

ABB SRU EMS - 32 © 2003

Integration with Subordinated systems

- Satellite Time Receiver (GPS)
- Alarm Annunciators
- SF-6 Density Monitoring Units
- Motor Control Centres
- Battery Chargers
- Meteorological Stations
- Diesel Generators
- Generator- and Turbine controller
- Protection and Control Units

ABB SRU EMS -© 2003

Integrated Protection & Control Units

- Protection
- Measuring of U,I,E, calculation of P & Q
- Monitoring & Control
- Interlockings
- Alarm Annunciation
- Event Time Tagging
- Disturbance Recording
- Local Storage of trip-events

Serial Communication to Power Management System

B SRU EMS

- Load Shedding
- Active and Reactive Power Control
- Mode Control
- Supervision, Control and Data Acquisition (SCADA)
- Re-Acceleration / Re-Starting
- Synchronisation

NBB SRU EMS - (2) 2003

Re-Starting

- Triggered by Load Shedding or Undervoltage
- Individual Motors
- Priority per Motor
- Max. allowed Time Delay per Motor
- Network Configuration Check
- Network Restoration

ABB SRU EMS - 36 © 2003

- Load Shedding
- Active and Reactive Power Control
- Mode Control
- Supervision, Control and Data Acquisition (SCADA)
- Re-Acceleration / Re-Starting
- Synchronisation

ABB SRU EMS -© 2003

Synchronisation

- Automatic Synchronisation after Boiler Trip
- Automatic Synchronisation initiated by Operator
- Semi Automatic Synchronisation
- Manual Synchronisation

ABB SRU EMS - 3 © 2003

Synchronisation Example Displays

- 1. Synchronisation Overview
- 2. Synchronisation Display

BB SRU EMS - 3

Power Management Functionality: Summary

- Load Shedding
- Active and Reactive Power Control
- Mode Control
- Supervision, Control and Data Acquisition (SCADA)
- Re-Starting
- Synchronisation
- Circuit breaker Control
- Transformer Control
- Motor Control
- Generator Control
- Network Configuration Determination

BB SRU EMS - 42

References

HAR, refinery in Greece

Shell Pernis refinery in the Netherlands

Shell BLNG in Brunei

Shell PDO in Oman

Hoogovens, steel-industry in the Netherlands

ThaiOil, ThaiLube, RRC refineries in Thailand

La Roche, CHP in UK

Petrobras: REPAR, REDUC, RLAM refineries in Brazil

Reliance: Hazira, Jamnagar & Haldia refineries in India

AFPC, Omar refinery in Syria

MLNG Satu, Dua & Tiga in Malaysia

StatOil Gullfaks & BP Amoco Valhall in Norway

ABB Power Management allows you to:

- Avoid black-outs (up to 500 kUSD / hour)
 - Power control including voltage control, frequency control, sharing power among generators and tie-line(s).
 - High Speed Consistency Load Shedding (< 100 ms.)
- Reduce electricity costs
 - Peak-shaving
 - Re-active Power Control & Sharing
- Minimize operational costs
 - Decreased number of operators
 - Event driven maintenance
 - Single Window concept
 - Reduce investment costs

 Minimized cabling and engineering
 - Optimized network design

ABB SRU EMS - 44

