User Manual

DriveSize

DriveSize

User Manual

Code: 3BFE 63980463

EFFECTIVE: 23.12.2011 SUPERSEDES: 12.09.2011

> FIDRI\ENT 00000073.DOC

© 2011 ABB Oy / Drives. All rights reserved.

Table of Contents

Table of Contents	i
Chapter 1 – Overview of DriveSize	1-1
Overview	1-1
Hardware and system requirements	1-1
Installing DriveSize	1-1
Running set-up	1-1
Conventions used in this manual	1-2
Program structure	1-2
DriveSize functions	1-3
DriveSize Help	1-4
Chapter 2 – Dimensioning	2-1
Overview	2-1
Starting a new project	2-1
Selecting a product series	2-2
Changing project data	2-2
Selecting ambient conditions	2-3
Input data	2-3
The main dimensioning window	2-3
Toolbar	2-4
System configuration	2-5
Network and Transformer data	2-6
Motor input data	2-7
Selecting load type and duty cycle	2-7
Entering motor speeds and loads.	2-7
One-time overload at start	
Changing motor specifications	2-10
Additional derating requirements.	2-11
Reinforced insulation	2-11
Terminal boxes	2-12
Inverter input data	2-12
Entering inverter load	2-12
Changing inverter specifications	2-13
Select liquid cooled inverter.	2-14
Line supply unit input data	2-15
Entering line supply unit load	2-15
Changing line supply unit specifications	2-15
Selecting liquid cooled supply unit	2-16
System configuration	2-17
Names of units	2-17
Inserting, copying or deleting components	2-17
Highlighting components	2-17
Dragging and dropping	2-18
Automatic track	2-18
Opening a saved project	2-19
Opening a project file	2-20
Changing the Drive and the Directory path	2-20
	_
Chapter 3 – Special Features	3-1
Overview	3-1

Motor Load	3-1
Custom Duty Cycle	3-1
Line supply unit load	3-2
Customer specific motors	3-3
Existing motors	3-3
User motors	3-4
Creating user motors File	3-4
Importing from file	3-4
Entering loadability curves	3-6
Import motor loads	
Chapter 4 -Results	4-1
Overview	4-1
Dimensioning results	4-1
Result display	4-1
Efficiency report	4-4
Graph display	4-4
User selection display	4-5
List of Selected	4-8
Chapter 5 – Network Check	5-1
	5-1
Network Check display	5-1
IEEE and IEC Standards	5-1
Calculate harmonics	5-3
Chapter 6 Drinting	6 1
Drinting the Deculte	0-1 6 1
Filining the nesulis	0-1 6 4
EIIIGEIGY nepull	0-1 6 1
	0-1

Overview	This chapter tells you how to install and start the DriveSize program. It also provides general information about using DriveSize.			
	This manual instructs you on how to use DriveSize for selecting proper motors and drives. This manual covers the variable speed drives (VSD) based on AC technology. DriveSize installation might include components for direct on line motors (DOL), machinery drives (ACSM1) and DC Drives – they have their own manuals.			
	To us	e this manual you should have basic knowledge:		
	•	Terminology of electrical AC drives		
	•	ABB product names		
	•	Load torque, power and speed requirements.		
Hardware and system	To op minim softwa	perate DriveSize, your computer must meet the following num requirements and have the following hardware and are installed		
requirements	•	IBM compatible PC with Pentium 4 or higher		
	•	512 MB RAM minimum		
	•	Windows 2000 or XP with Internet Explorer 5.0 or later		
	•	Hard Disk space of 250 MB		
	•	Microsoft Excel 97 or later for printing		
	•	Microsoft Data Access Components 2.7 or later		
	•	.NET Framework 3.5 SP1 or equivalent		
Installing DriveSize	The s specif install \ Drive Drive	oftware installation copies all the necessary files to the user fied drive and directory. The set-up program prompts you to the software to a directory called C:\ProgramFiles\DriveWare eSize. You can change the directory. The set-up program also s a working directory called C:\ProgramFiles\DriveWare Size\Data\Projects where all of your projects will be stored.		
Runnina set-up	To sta	art the set-up program:		
nanning oot ap	1.	Start Windows.		
	2.	Insert the DriveSize CD into the appropriate drive or download the setup package to your local hard disk.		
	3.	Run the setup program carefully.		

Conventions used

in this manual

If you have problems installing the DriveSize, close any other programs that are running. Restart Windows and do not open any programs before installation is completed. Before reinstalling, uninstall the old version of DriveSize.

Always disable MCAfee Host Intrusion Prevention System (HIPS) both while installing and uninstalling of DriveSize.

The table below lists the terms and conventions which have special meaning throughout this manual.

Base speed

Mechanical speed where the base power is required. **Base power**

Mechanical power. Also used as the base value for overloads.

Overload

Defines maximum required power for short durations. The power is overload % X base power. Overload % is normally positive, but a negative value means the overload has a different sign than the base power.

One-time at start overload

This overload type is allowed once, for instance, at start. Before the next start it is assumed the frequency converter has cooled down to the ambient temperature.

Motoring bridge

The bridge of the line supply unit which is used when power flow direction is from the network to motors.

Generating bridge

The bridge of the line supply unit which is used when power flow direction is from the motors to the network, and the motors are generating power.

Line-up

Consists of the supply unit and inverters, which have a Common DC-bus.

IC International Cooling.

IP International Protection.

TempRiseClass Temperature Rise Class of motor. TSU/DSU/ISU

Thyristor Supply Unit/Diode Supply Unit//IGBT Supply Unit. **LC** Liquid cooling.

Program structure DriveSize consists of a user interface with dimensioning functions, and product databases which contain catalog motors and frequency converters and the units/modules of frequency converters. The dimensioning of customer specified motors is based on ABB Sophiè, which has been developed by ABB Oy / Machines. ABB Sophiè is included in the DriveSize installation package.

The program follows the common user interface guidelines of Windows.

Select first one of the AC Drive product series and the associated product database opens. The dimensioning cases are called projects. You can save the selection results for the project into their own project file (XML-file). You can then generate technical reports in Excel format which you can attach to the project and drives documentation.

DriveSize functions DriveSize offers several functions for dimensioning the drive. All of the functions are available on the main menu bar or toolbar. This manual also describes other ways to access these functions.

DriveSize contains the following items for dimensioning:

- Ambient conditions (There are separate functions for the conditions of drives and motors)
- Motor temperature rise class
- Motor load types available:
 - Constant power
 - Constant torque
 - Constant torque & power
 - Squared torque (Pump/fan)
- Overload types available:
 - One-time at start
 - Simple cyclic
 - Multiform cyclic
- Supply unit power factor
- Network harmonics calculation
 - Harmonics for any inverter or supply unit
 - Combined harmonics
- Thermal loss calculations for motor, inverter and supply unit
- Supply unit specific total mass flow and dissipated losses for liquid cooled multidrives
- Results in numerical form
- Results in graphical form (load, motor, inverter)
- Selecting an alternative inverter, a motor and a line supply unit
- Selecting metric units or USA units
- Generating reports in Excel format for saving or printing
- Saving and recalling dimensioning cases

Overview of DriveSize

- Saved information is in XML format and can be used with other software
- **DriveSize Help** DriveSize HTML help includes information on how to use the program and make dimensioning for a drive. You can access the DriveSize Help through the **Help** menu or by pressing F1. The DriveSize Help is context sensitive and when F1 is pressed, the help automatically opens a help window associated with the active function of the program.

Overview	This chapter shows how you make dimensioning or recall a previously saved project file.	
<i>Starting a new project</i>	You car many w perform the sam	n make a complete drive system design with DriveSize in ays. The following list is an overview of the tasks you can with DriveSize. Later on you will learn shortcuts to perform be tasks more quickly.
	•	Double click a product family or select one and click Open from New Project Selection (See Figure $2 - 1$).
	•	Select Project Info from File menu. Enter project information, or click OK to skip this section (See Figure 2 – 2).
	•	Select Ambient Conditions from Data menu. Set ambient conditions, or click OK to accept defaults (See Figure $2 - 3$).
	•	Enter the primary voltage and select a suitable frequency (See Figure $2 - 4$). Frequency has linkage to secondary voltages.
	•	Highlight a transformer in System configuration and select a secondary voltage (See Figure 2 - 5).
	•	Highlight the motor in System configuration and enter load definitions (See Figure 2 - 6). DriveSize then selects the motor. If you want to change the motor, use the User selection functions.
	•	DriveSize selects the frequency converter or inverter once the motor/motors are known. Drive systems may contain more than one inverter, and each of these need to be selected. You can also select your own frequency converter or inverter.
	•	For a multidrive product series, the dimensioning of line supply unit is done after all the inverters and motors have been defined.
		Note: The supply unit type also affects the motors.
	In Syste press C make di	em configuration, use a toolbar icon or a menu command or trl-D to control the dimensioning for a selected unit. You can imensioning one by one (Ctrl-D) or all units at same time (Ctrl-

A).

Selecting a product series

When you start DriveSize without a project file a **Welcome** window opens. If you are starting a new project you must select a product series first. Figure 2 - 1 shows the **Welcome** window.

Nev	V Existing F	Recent]			1
	ACSM1	ABB MotSize(DOL)	Industrial SingleDrive	ACS800 MultiDrive	ACS550 SingleDrive
					Cancel

Figure 2 - 1 New Project

Use **Project Info** from **File** menu and **Ambient Conditions** from **Data** menu if you want to change the defaults. You can change this information later with menu commands.

Changing project data Figure 2 - 2 shows the **Project Information** window. Enter new project data to the specified text box. DriveSize saves this information when you save your project and includes it on your reports. Click **OK** to accept the project information. Click **Cancel** to discard the changes.

Project Info	mation			×
Customer i	information			
Customer	[undefined]			
Project	[untitled]			Cancel
Location	none			
ABB Ref	×	Cust Ref	[untitled]	
Case	1	Date	24.11.2010	
Handled by	[undefined]	Rev	A	

Figure 2 - 2 Project Information

Selecting ambient conditions Figure 2 – 3 shows the **Ambient Conditions** window. To change the ambient conditions type new data to the appropriate text box. The practical range for altitude is between 1000m and 4000m.

Note: The dependency of the altitude to the loadability changes with different components. The practical range of ambient temperature is mostly from 30°C to 50°C. This also changes with the component. For example, a temperature up to 55°C is accepted for marine drives but Ex motors are not selected at all if the ambient temperature exceeds 40°C.

Click **OK** to accept the project information. Click **Cancel** to discard the changes.

Ambient	×
Change the ambient condi	tion values
Altitude [m]	1000
Temperatures	
Motor [°C]	40
Inverter and Supply unit [°C]	40
Transformer [°C]	40
<u>0</u> K	<u>C</u> ancel

Figure 2 - 3 Ambient Conditions

Input data

Motors, inverters, line supply units, transformers and the network have different data input displays. When you click on an item in the **System configuration** field, the input data display will change depending on the item you select.

The main dimensioning window

After opening or creating a project the main window opens. Figure 2 - 4 shows its main parts.

Dimensioning

Figure 2 - 4 The main dimensioning window

The main window contains a title bar, a menu bar, a toolbar, the **System configuration** field, an input data field and a field which displays your selected data. Each field has a specific usage and functions, which are explained below.

The main dimensioning window's title bar displays the name of the project.

The menu bar contains the DriveSize menus. Each menu contains a group of selections, each of which performs a specific function. Click on a menu to open it. You can also open a menu with key combinations. Press the **Alt** key plus the letter that is underlined in the menu's title. To choose a menu selection, press the appropriate letter, or use the cursor keys to highlight it and press **ENTER**.

You can also access many of DriveSize's functions from the keyboard by using key combinations. These combinations are called short-cut keys. The short-cut key for a command appears to the right of the command in the menus.

ToolbarThe Toolbar provides quick access to common commands in
DriveSize. Toolbar buttons perform a function just like a menu
selection. To perform the function of a certain button, click the button
on the toolbar.

Tip: When you move the cursor over the button the help text for that button appears below it.

lcon	Action	Menu equivalent
C	Opens a new project.	New command under File menu.
ß	Opens a project.	Open command under File menu.
	Saves the project	Save command under File menu.
¢.	Shows the Print dialog.	Print command under File menu.
2	Shows the Ambient Conditions display.	Ambient Conditions command under the Data menu
	Show the Overload Definitions display	Overload Definitions command under the Data menu
	Shows the Network Check display.	Network Check command under the Tools menu
2	Dimensions the selected item.	Make Dimensioning command under the Tools menu.
	Shows the dimensioning Results display.	Dimensioning Result command under the Result menu.
	Shows the Graph display.	Graphs command under the Result menu.
≣	Shows the Selected Unit display.	List of Selected command under the Result menu.
F	Shows the User Selection display.	User Selection command under the Tools menu.

Table 2 - 1 Toolbar icons

Table 2 - 2 Ambient conditions on the toolbar

Picture	Meaning
Altitude 1000 m	Indicates the installation's altitude. It is common to all components.
₩ 40°C	Indicates the transformer's ambient temperature.
1 40°C	Indicates the motor's ambient temperature.
⊂ 40°C	Indicates the drive's ambient temperature.

System configuration

The **System configuration** field gives you an overview of the drive system as well as the type designation or name of each unit in the Tree structure list. Figure 2 - 4 shows an example of a multidrive tree where no selections have been made yet.

	Motor load, Inver and Transformer on which drive cor	rter load, Line supply unit load, Network data load view appears in the input data field depending mponent you select from the system configuration.	
	After you select du inverter, the line s selected data field the system configu	rive components, the catalog data for the motor, the supply unit or the transformer appears in the d depending on which component you select from uration.	
<i>Network and Transformer data</i>	The primary voltages select a value white transformer. The construction 60Hz if valid. Defection possible secondares The logic of Drives motors are 60Hz restruction	ge does not affect motor and drive choices but if you ich is too high it prevents you from selecting a default system frequency is 50Hz but will change to ault system frequency has a direct effect on ry voltage levels as well as on the motor databases. Size means that in 60Hz countries the standard motors. This limitation is not valid with AC Drives.	
	Short circuit powe calculated. Drives power.	er is essential when network harmonics are Size has a practical upper limit for short circuit	
	Figure 2 - 5 shows	s the Network data and Transformer load dialog.	
	DriveSize calculat powers and efficie to use these value values.	tes the transformer load power from the motor base encies and power factors. You can allow DriveSize es, but in special cases you can use your own	
	The software incluty type of transforme	udes Oil immersed and Vacuum Cast Coil Dry ers.	
	Network data —		
	Frequency [Hz]	50 💌	
	Short-circuit power [M	VA] 200	
	Transformer load -		
	Primary voltage [V]	21000	
	Secondary voltage [V	'] 400	
	Fundamental powe	er [KVA]: Calculated	
	DSU load 1	16 116	
	- C		
	Name	lundefined	
		Auto selection	
	No of windings	2	
	IP class	IP00 with bushings	

Figure 2 - 5 Network data and Transformer load definition

Motor input data

Selectina

cycle

DriveSize supports four load types:

load type and duty A) Pump & Fan

- B) Constant torque
 - C) Constant Power

D) Combination of constant torque and power (This specifies the torque versus speed characteristics of the base load and overloads.)

Note: ACS550 only supports type A and ACQ810 supports types A and B.

In most cases DriveSize supports the following overload types:

- A) Simple cyclic
- B) Multiform cyclic
- C) One-time at start

Only overload type C with fixed 10 s overload time or 10s/600s simple cyclic overload are allowed for Ex motors. Simple cyclic assumes overloads which will last for specified overload durations every specified cycle time.

Note: The overload is assumed to happen anywhere between minimum speed and maximum speed.

If you choose **Multiform cyclic**, the **Overload definitions** dialog opens. You can also open it from the toolbar by selecting, for example, **Duty cycle**. The Overload definitions are explained in detail in *Chapter 3- Special Features*.

Electrical braking (negative base power and/or overloads) is possible with TSU or ISU.

g The **Motor speed** and **Motor load** input fields vary with different load types.

Entering motor speeds and loads

DriveSize does not accept gear information. If a gear is involved convert those values to motor speed manually or use Excel.

DriveSize does not consider dynamic torques when it accelerates inertias up and down. When remarkable dynamic torques happens, include them as short term overloads.

Base speed

Base speed is the minimum mechanical speed of a motor where the base power is required.

Note: Use exact values for base speed. Use 1456 (**not** 1500) because the rated speeds of motors are also exact.

Base power

Base power is the mechanical power of a motor. This is used as the base value for all overloads. Use RMS-power or thermally equivalent power when you do not know the base power. You can also use a round number like 10kW, 50kW or 100kW and type in overloads based on the base value you select. In this case check later that the motor can handle the load cycles thermally. Base power is normally positive but negative values are acceptable.

Fill in the required load that is on the shaft – **not** the rated power of the motor. Specify the real required shaft power of the loading machine. In VSD applications the motors are always slightly derated.

Base overload

Base overload defines the maximum required power together with base power for overload time. The power is overload % X base power. Overload % is normally positive but a negative value means the overload has a different sign than the base power.

Min speed

If a min speed is too low, DriveSize will select a size for motors and drives that is larger than necessary. The min speed in DriveSize is not exactly the minimum speed of the motor but a speed which is used without interruptions of, for example, 30 minutes. DriveSize assumes the duty cycle will continue without stopping and DriveSize selects the motor and drive accordingly. If minimum speed was critical, you can see it from results/graphs. The default min speed is 300 RPM or 400 RPM.

Max speed

A max speed that is too high might have a negative impact on motor size. If the max speed is much higher than the base speed and overload% is high, the absolute maximum torque of the motor can be a limiting factor.

Overload at max speed

Due to the reasons stated above, the overload% at max speed can be given a different – normally lower - value than the overload% at base speed. This is valid for constant power load types.

Dimensioning

Motor load	
Load type	Constant torque 📃
Overload type	Simple cyclic 🔽
rr Speed [rpm] 3 Power [kW] 7 Overload [%]	in base max 300 1500 1500 10 50 50 120 120
Overload time [s]	10 Every [s] 600
Specifications Name	[undefined]
No.of motors	1
Motor type	IEC 34 catalog
FrameMaterial	Not specified
Family	M3BP
Polenumber Automatic	
Design Basic (Cenelec)	
Connection	Not specified
IP class	IP55
IC class	IC411 self ventilated
IM class	IM1UU1, B3(foot)
Max. speed rule	Standard
Temp. rise	B (<80 K)
l max margin	43 %

Figure 2 - 6 Motor Load and Specifications Data

One-time overload at start Figure 2-6b shows where you select the values for **One-time** overload at start.

OL%

The starting torque is OL% X base torque. Base torque is calculated from base power and base speed. The valid range for OL% is 1% to 1000%.

OL time is the duration of starting overload in seconds.

OL max speed tells DriveSize at which speed the overload will cease. Use low values. If OL max speed is equal to the base speed and OL% is high, the power limit of the inverter might force DriveSize to select a larger frequency converter.

Motor load				
Load type	Cons	tant torque	,	•
Overload type	One-l	ime at sta	rt	•
	min	base	max	
Speed [rpm]	300	1500	1500	
Power [kW]	10	50	50	
One-time overloa	d at sta	rt	_	
OL [%]		120		
OL time [s]		10		
OL max speed [rpm]		300	_	
Specifications				
Name	[und	efined]		
No.of motors	1			
Motor type	IEC (34 catalog		
FrameMaterial	Not	specified		
Family	M3B	Р		
Polenumber	Auto	matic		
Design	Basi	c (Cenelec)		
Connection	Not	specified		
IP class	IP55			
IC class	IC41	1 self ventila	ited	
IM class	IM10)01, B3(foot)		
Max. speed rule	Stan	dard		
Temp. rise	B (<8	30 K)		
Tmax margin	43%	:		

Figure 2 – 6b Motor Input Data

Changing motor specifications You can adjust the specifications for the motor such as number of motors, the preferred motor type, frame material, IP class, IC class, temperature rise class and so on. Click on the item to change a selection.

The first item on the following list is the name To see **Name** in **System configuration**, go to **Tools**, select **Options**..., then select the **Unit name** radio button. DriveSize shows the type codes of motors.

Table 2 - 3 Options	for Motor Specifications
---------------------	--------------------------

Specification	Options	
Name	Any text or string	
Motors per inverter	1 100 per inverter unit. > 1 = MultiMotor Case, a factor DriveSize considers when it selects an inverter. The load is given for one motor. One inverter feeds several motors connected in parallel.	
Motor type	IEC 34 calatog HXR, AMI Motors NEMA catalog Marine motors Water cooled	

	PM motors Flameproof Non-sparking Dust ignition proof SynRM User defined SynRM reluctance with ACS850 Please notice not all motors are available with all drives
FrameMaterial	Not Specified, Aluminum, Cast iron, Steel. You can limit the motor families.
Family	Limits the search to one family only, such as M3BP.
Pole number	Pole number can be Automatic or one of the following: 2,4,6,8,10 or 12
Design	Read more about Design from motor user manuals.
Connection	Currently ignored.
IP Class	IP55, This does not impact the selection
IC Class	IC411 self ventilated = cooling fan on motor shaft; means lower loadability at partial speeds IC416 forced ventilated = separate cooling fan. Choose this option for constant torque cases where min speed is very low. For large motors there are other choices available.
Max speed rule	Standard = standard max speeds is used, Metal fan = the higher speed limit of metallic fan is used. Separate fan = higher max speed available when force ventilated.
Temperature rise	B , F or not specified . Not specified means that DriveSize will use the class given in motor catalogs.
Motor Tmax margin	43%, 30% or 20% . Motor catalogs give rough Tmax values and some margin has to be provided. The margin from actual overload torque to Tmax must be 43%,30% or 20%.

Additional derating requirements The mounting of terminal box and possible special winding insulation have an effet to the temperature rise of motor. These extra deratings are not taken into account in this software tool. It is assumed that standard insulation and top mounted terminal box are used. If not some extra margin shall be reserved. The necessity of derating could be also a sum of these both items.

Reinforced insulation Reinforced insulation is recommended when motor voltage is higher than 500V. About three per cents (3%) additional derating of continuous loadability curve is required when reinforced windings are used. Please make sure margin shown in DriveSize is at least 3% for this purpose.

Terminal boxes Terminal boxes are mounted either on the top of the motor, or on the left or right side. Availability of terminal box mounting option depends on the type of motor and a motor frame size. Three per cents (3%) additional derating is needed for continuous loadability curve when the terminal box is mounted on side of the motor or on the ND-end of the motor. Terminal boxes are mounted on the top of the motor as standard and then extra margin is unnecessary. Please make sure margin shown by DriveSize is at least 3%.

Check the availability of force ventilation and accessories from motor manufacturer.

Inverter input data This section describes how to enter frequency converter/inverter data. Figure 2 - 7 shows the inverter input data.

Entering inverter load The load of the inverter is the motor currents and frequencies. The duty is the same as for motors. DriveSize calculates these load currents based on the selected motor characteristics (power factor, efficiency, pole pairs), the shaft loads, shaft speeds and motor voltage. You can change the inverter load value by entering new currents.

Dimensioning

Inverter load		
Load type	Constant torque	
Overload type	Simple cyc	lic 🔽
		Calculated value
I continuous [A]	211	211 A
l maximum [A]	247	247 A
Overload time [s]	10 E	very [s] 550
Specifications		
Name	[undefined]	
Inverter amount	1	
Туре	Auto select	ion

Figure 2 - 7 Inverter input data

Table 2 - 4 Abbreviations used	for	inverter	load.
--------------------------------	-----	----------	-------

Abbreviation	Meaning
I continuous (A)	Continuous (base) current required from
	inverter. If you manually enter this value and if
	the motor is not known, DriveSize assumes the
	frequency range is wide.
I maximum (A)	Maximum current required. If you manually
	enter this value and if the motor is not known,
	DriveSize assumes the frequency range is wide
I max start (A)	Maximum current at start for the inverter.

Changing inverter specifications You can adjust some specifications for the inverter, such as the inverter amount, type, IP class and pulse number towards network.

Table 2 - 5 Options for inverter specifications (ACS800 SD)

Dimensioning

Specification	Options
Name	Any text or number string
Drive amount	Number of parallel connected inverter and motor combinations.
Туре	Auto selection includes ACS800 and ACS800 regenerative drives for all the constructions but modules and marine. You can limit the type with the following options: ACS800, ACS880, ACS800 regenerative, ACS 800 low harmonic, ACS850, ACS810
Construction	Wall-mounted only, Free standing only, Cabinet drives only, Marine drives only, drive modules only
Cooling	Air, Liquid. Notice that Liquid cooling is only available for Cabinet construction.
IP Class	IP00, IP21, IP22, IP42, IP54, IP54R, IP55. Depends on Type and Construction spesifications.
Pulse	6 or 12. With 12-pulse the transformer must be a three winding type.
Glycol concentration	0%, 30%, 50%. For liquid cooled units only.
Liquid temperature	25°C45°C. For liquid cooled units only.

Select liquid cooled inverter

Select liquid cooled drive option from Cooling specification and two new specifications Glycol concentration and Liquid temperature appear. In case of multidrive; select liquid cooling for supply unit first. The cooling method of supply unit determines also cooling for all the inverters connected to that line-up.

This section describes the line supply unit data input (see Figure 2 -

Figure 2 – 8 Line supply unit input data

If you have selected the inverters, DriveSize calculates the supply Entering line unit motoring and regeneration powers. Change power and cycle supply unit time values. There are also fields for regenerative powers when the load supply unit type is TSU or ISU.

Fable 2 - 6 Abbreviations used to d	describe the supply unit load.
-------------------------------------	--------------------------------

Abbreviation	Meaning		
Pcont (kW)	Continuous power for the supply unit.		
Pmax (kW)	Maximum power for the supply unit.		

Changing line supply unit specifications

The default supply unit is six-pulse DSU cabinet type but other types and pulse numbers and IP classes are available. For thyristor supply units two additional parameters are available: the braking voltage and motor voltage. These parameters are mutually exclusive.

Selecting liquid cooled supply unit

Select liquid cooled (LC) supply option from Cooling specification and two new specifications Glycol concentration and Liquid temperature appear. These specifications determine also all the inverters connected to that supply unit. The cooling method of line supply unit is valid also for all the inverters connected to that line supply unit.

Table 2 - 7	7 Options for	Line Supply I	Unit Specifications	Include
-------------	---------------	---------------	---------------------	---------

Specification	Options
Name	Any text or number string
Туре	DSU cabinet, DSU module, TSU cabinet, TSU module, ISU cabinet, ISU module, LC DSU cabinet, LC DSU module, LC ISU cabinet, LC ISU module.
IP Class	IP00, IP21, IP22, IP42, IP54
Cooling	Air, Liquid. This option determines also cooling method for all the inverters connected to that line-up.
Pulse	6-pulse, 12-pulse, 18-pulse, 24-pulse (DSU, TSU). With 12-pulse the transformer must be a three winding type.
Braking Voltage (%)	 85, 90, 100 (TSU) A lower braking voltage means that prior to braking, the DC voltage is reduced. Note: A lower DC voltage means there is less available motor voltage and therefore the maximum torque a motor produces will also be lower. This setting has to be understood in such a way that TSU will make a lower than nominal DC-voltage and motor voltages will also be lower. In this case, TSU can quickly change from motoring to regenerating.
Motor Voltage (V)	380, 400, 415, 500, 525, 660, 690, 830 for 50Hz and 380, 440, 460,480,575, 600, 660, 690 for 60Hz.
Glycol concentration	0%, 30%, 50%. For liquid cooled units only. The supply unit determines also glycol concentration for all the inverters connected to that line-up.
Liquid temperature	25°C45°C. For liquid cooled units only. The supply unit determines also liquid temperature for all the inverters connected to that line-up.

System configuration

The status icon in **System configuration** represents the status of the computing for the unit. Table 2 -9 describes the meanings of the status icons.

Table 2 - 9 Status Icons

Status	lcon	Meaning
SUPPLY UNIT	3	Line supply unit is not selected.
	٦	Line supply unit is selected.
	۵	Line supply unit selection is not valid.
INVERTER UNIT	1	Inverter unit is not selected.
	٦	Inverter unit is selected.
	-1 8	Inverter unit selection is not valid.
	L.	
MOTOR	۲	Motor is not selected.
	Ō	Motor is selected.
	đ	Motor selection is not valid.

Names of units **System configuration** displays the type designation or unit's name depending on what you have selected from **Options**.

Inserting, copying or deleting components components Use **Insert** and **Edit** from the menu bar when you want to insert, copy or delete components to the System configuration tree or when you want to remove any of them. If you want to copy- paste, you must, for example, highlight the frequency converter you want to copy and paste it on top of transformer. The pasted frequency converter will be the last item in the tree.

Highlighting When you click on an item in the **System configuration** tree, it is highlighted as your working item and the input data and possible selected item appear.

Tip: You can highlight several components at one time. When you highlight several components at one time it is easier to copy (copy-paste) or delete the group of components, or move (cut-paste) them from one line to another. To highlight components use Ctrl key, mouse and left mouse button. Press and hold down the Ctrl key when selecting the components. Figure 2 - 9 shows how to highlight components.

Figure 2 – 9 Highlighting several units at a time

Dragging and dropping	You can move an inverter or line supply unit to another location in the System configuration tree. Highlight the component you want to move. Press left mouse button, move the component to new location and release the mouse button. If you want to drag the unit, you must move each component separately.
Automatic track	The program always keeps the dimensioning status valid. If you change some input data, which can affect the dimensioning of other units, then those dimensions will become not valid.

Table 2 -	10 DriveSize	Dimension	Updating.
-----------	--------------	-----------	-----------

Changed Data	Dimensioning not valid for
Motor ambient conditions	All motors, inverters and line supply units
Drive ambient	All inverters and line supply units

conditions	
Network voltage	All motors, inverters and line supply units
Network frequency	All motors, inverters and line supply units
Supply unit load	Only the line supply unit whose load you changed
Line supply unit type, motor voltage or braking voltage	All motors, inverters and line supply units in that line-up
Line supply unit IP class	Only line supply unit whose IP class you changed
Inverter load	Only the inverter and line supply unit where the inverter is connected
Inverter IP class	Only that inverter and line supply unit where the inverter is connected
Motor load	Only that motor and inverter where the motor is connected. Also that line supply unit in that line-up
Motor number, type, IC class or temprise class	Only that motor and inverter where the motor is connected. Also that incoming unit in that line-up
Inserting motor and inverter	Only the line-up's line supply unit
Deleting or pasting motor and inverter	Only the line-up's line supply unit
Dimensioning motor	The inverter where the motor is connected. Also that line supply unit in that line-up
Dimensioning inverter	Only the line-up's line supply unit

Opening a saved project

When you open a previously saved project, a window shows all of the available projects in the selected path. When you highligh a file, you can view project information under Project info before opening the project. Figure 2 - 10 shows the **Open** File window.

Existing Recent File Name Jundefined.ac		Directories C:\ program files driveware drivesize projects	
List of file Types	~	Drive	
	/e(n.ac)	l 🔤 c:	•
Variable Speed Driv			_
Variable Speed Driv Project info	[undefined]		
Variable Speed Driv Project info Customer Project	[undefined] [untitled]		Open
Variable Speed Driv Project info Customer Project Location	[undefined] [untitled] none		Open

Figure 2 - 10 Open Project Screen

Opening a
project fileTo open a project file highlight it or type its name to the File Name
text box and click OK. You can also open a project file by double
clicking its name on the file list. By changing the List of file Types
option you can open projects which are based on different products.Changing the
Drive and the
Directory pathTo change the directory path, double click on the path in the list on
the right hand side of the window. If you are using a keyboard, you
can push the spacebar to highlight the path.

This chapter describes special features of DriveSize, such as making Overview more sophisticated load definitions. This section also describes how to use special motors and how to create your motor database. Enter motor load data in the main dimensioning window. If the project Motor Load is more complicated, start from **Overload definitions**. Overload def Load type: Constant torque Base speed: 1500 rpm Torque C Power Ok Load points Cancel Description Time [s] Min. Speed [rpm] Max. Speed [rpm] Load [%] Torque [Nm] Base load 240 300 1500 100 636.6 Report Overload 1 60 300 1500 120 763.9 Overload 2 Overload 3 104% Overload 4 Rms : Rms10 : 104% Overload 5 Overload 6 Highest load: 120% Overload 7 Overload 8 100 % = 100.0 kW Overload 9 Cont. load: 104.3 kW 115% Overload 10 Overload: Load graph 780 780 760 760 740 740 720 720 700 700 680 680 660 660· 100 200 300 400 500 600 700 800 900 500 1000 1500 0 Time [s] Speed [rpm] Figure 3 - 1 Overload definitions Enter the duty cycle in the Load points table. Define the duty load by **Custom Duty** intervals and loads in percentage on top of base power or with power Cycle or with torque values. To enter these values click a cell in the table, and type the new value. To accept the value, press enter. Use the

Table 3 - 1 Duty cycle display abbreviations.

shows you the defined custom duty cycle.

use as base power later on.

arrow keys on your keyboard to move inside the table. To accept your custom duty cycle click **OK**. If you click **Cancel**, you will lose all your changes. As you are entering the load's cycle parts, the **Load graph**

Rms over the load cycle and worst 10 minutes Rms are always calcutated. When overloads are severe (long lasting) and thermally important DriveSize will compute a higher cont.load value which it will

Abbreviation	Meaning
Rms	Rms – value for the whole duty cycle
Rms10	Rms – value for the duty cycle's worst 10 minutes
Highest load	The highest load for the user's duty cycle
100%	Base power in kW
Cont.load	Calculated continuous load kW
Overload	Calculated overload %

Line supply unit load

You often have to optimize a line supply unit selection and define the power requirements manually. There are fields for regenerative power when the supply unit type is TSU and ISU. The **Pmax** motoring power value is the sum of positive Pmax motoring values including losses. The same logic is used for **Pmax** generating, **Pcont** motoring and **Pcont** generating values as well.

🖡 ABB DriveSize - ACS800 MultiDrive [Untitled*]						
File Edit Insert Data Tools Re	sult Help					
▶ 2 8 🖷 🎽 🛛 🐼 🖻	8 8 8			Altitude 1000 m 📛 40°C	🖸 40°C 🗢 40°C	
System configuration	Line supply unit load			Selected incoming uni	t data	
⊡ 🛱 DTE 1600 A8S	Motor bridge:		calculated power	Selection: Drivesize		
ACS800-307-1370-7	Pcont [kW]	1052	1052 kW	Type code: ACS800-3	07-1370-7	
E- ACS800-107-1740-7	Pmax [kW]	1052	1052 kW			
HXR 500LH4	Overload time [e]	10	Evenu (e) 600	Type	DSU cabinet	
	Overload anic [s]	1.0	E 4019 [3] [000	Pulse	6	
E- 0 ALS800-107-0145-7				Voltage [V]	690	
M3BP 315 SMB 4				Drive power [kVA]	1366	
				Ide motor [A]	1400	
				Idc mot duty [A]	1120	
				Device (L) v (1848	
				Protor (KW)	1260	
	Specifications			Frame type	2/04	
	Name	[undefin	ed]			
	Туре	DSU ca	binet			
	Cooling Air					
	IP Class IP21					
	Pulse	6-pulse				
1						

Figure 3 - 2 Line supply unit load.

DriveSize fills time fields with defaults but you must check and, if necessary, modify the times and power values. DriveSize does not know the mutual timings of different inverters.

Customer specific motors

Some motors are called customer specified because they are not picked from any list but the rated power and frequency are computed from load requirements. When you dimension a customer specified motor like HXR, AMA or AMI, ABB Sophiè automatically selects the number of poles and the field weakening point (**Fwp frequency**). After auto selection you can alter the value of field weakening frequency between given limits. Field weakening min and max limits are shown in selected motor data. Additionally there is also a value for maximum recommended (Rec). Before you change the value of **Fwp frequency**, select the pole number. When the value of the pole number is changed the Fwp frequency returns to **Automatic**. Figure 3 - 3 shows the drop-down list for a customer specific motor.

ABB Sophiè automatically starts when the program cannot find any standard motor and Motor type is Auto selection or if you have selected motor type HXR, AMA & AMI motors.

Specifications =	
Name	[undefined]
No.of motors	1
Motor type	HXR, AMA & AMI motors
Family	HXB
Polenumber	4
Fwp frequency	Automatic 🔹
Connection	Automatic
IP class	44 Hz
IC class	45 Hz 46 Hz
IM class	47 Hz
Max. speed rule	48 Hz
Temp. rise	49 Hz 50 Hz
Tmax margin	30 %

Figure 3 - 3 Drop-down list of field weakening frequency

Existing motors You can define an existing motor in the **Existing Motor** dialog. It automatically opens when you select the **Existing motor type**. Figure 3 - 4 shows the dialog for an existing motor. The loadability curves of ABB standard motors are used for existing motors. DriveSize assumes that the existing motor is already installed and driving the load. The loadability of an existing motor is not checked, but you can see from the graphs if it is undersized according to the rules for standard motors.

xisting Motor						
Type designation	[undefined]	Ok				
Voltage [V]	400	Cancel				
Frequency [Hz]	50					
Power [kW]	0					
Poles	6					
Speed [rpm]	1000					
Efficiency [%]	90					
Power factor	0.8					
Tmax/Tn	3					
Temp. rise class	B (<80 K)					
Tip: To return to this	screen at a later time, double-click	on the motor!				

Figure 3 - 4 Existing Motor dialog box

User motors	You can make dimensioning with motors from your own motor list. This section describes how you import your own motor database into DriveSize.
	The format of the motor list is an Excel worksheet with specified column headers and one row for the information of one motor. The motor list is expected to start on the first Worksheet in the book and the upper right corner is cell A1. Before you can use the motor list, import it to a UserMotor database in DriveSize. The import is always a full import and all previously existing User Motors will be removed when you import the new list.
	User motors are used independently from supply frequency but motor voltage must match supply voltage. The rating value conversion from one voltage to another is not done for user motors (user may do this by himself in Excel.) Different voltages must have separate rows in the database.
Creating user motors File	Enter motor data and loadability curves to UserMotors.xls . You can find this file from your working directory located in C:\\ProgramFiles\DriveWare\DriveSize\VsdSize20\system by default. You can change the file name but not the extension.
Importing from file	To import new data to the database, go to File, select User motors and then select Import from file . This action overwrites the existing UserMotor database.

Special Features

at no	Type designation	Family	HtdLonnection	RtdVolt	Freq	RtdPower	Poles	RtdSpeed	Rtdin	Rtdin	RIDEIT	HtdLos
2110	HXR 400SB6	HXR	D	380	50	220	6	991	460	2121	94.9	0.76
2110	HXR 400SB6	HXR	Y	660	50	220	6	991	265	2121	94.9	0.76
2120	HXR 400SC6	HXR	D	380	50	235	6	991	493	2265	95	0.76
2120	HXR 400SC6	HXB	Y	660	50	235	6	991	284	2265	95	0.76
2130	HXR 400SD6	HXB	D	380	50	270	6	992	566	2600	95.3	0.76
2130	HXR 400SD6	HXB	Y	660	50	270	6	992	326	2600	95.3	0.76
2140	HXR 400SE6	HXR	D	380	50	290	6	992	608	2791	95.3	0.76
2140	HXB 400SE6	HXB	Y	660	50	290	6	992	350	2791	95.3	0.76
otally 93 motors were found												

Figure 3 - 5 Import Database window

The import function validates the information in the Excel sheet before updating the database. Validating rules are:

- Correct column headers
- Correct data types (text, numeric)
- All numeric values must be > 0
- Text values must fit into a max length
- The frequency column must be between 8...400 (Hz) so that also values other than 50 Hz or 60 Hz are accepted.
- The voltage must be one that DriveSize knows

In case of import errors, the program will tell you which values were not accepted and the import will be cancelled.

The date of imports is stored in the **General** table and they are visible in the **About** box.

If there is at least one motor imported to the database, a new item is added to the Motor type list: **User defined** in the motor specification grid.

When you select **User defined**, DriveSize updates the **Family** list with all families from the Database. The other specification items are:

- **Family**: "Not specified", +rest of list is from database
- **Polenumber**: "Automatic", 2, 4, 6, 8, 10, 12
- **Design**: Not specified, Basic, High-Output
- **Connection**: Not specified, Y, D
- **IC class**: IC411, IC416
- **IM class**: IM10001, ...
- **Max speed rule**: Standard
- Temp rise: Not specified, B, F

• Motor Tmax Margin: 20%, 30%, 43%

Entering loadability curves	In the E curve ir is used found t	Excel list you can specify a reference to an existing loadability in the standard databases (for example IEC, Existing etc.) that when dimensioning. If an empty loadability curve name is he existing motor type is assumed.		
	You ca same E loadabi (relative	n also import the loadability curves for your motors. Use the Excel file (UserMotors.xls) to import loadability curves. The lity curve must start from zero frequency and extend to 1 e). The amount of loadability curves is unlimited.		
Import motor loads	You can import number of pre-collected loads at once. Enter motor loads to MotorLoadData.xIsx . You can find this file from your working directory located in C:\\ProgramFiles\DriveWare\DriveSize \ VsdSize20\system by default. You can change the file name but not the extension.			
	•	Load type: Pump/fan load or Constant torque		
	•	Speed, base: number in rpm		
	•	Power, base: number in kW		
	•	Overload, base: percentual value, relative to base power		
	•	Overload, time: overload duration in seconds		
	•	Overload repeating: total cycle duration in seconds		
	After in can ma as usua	port motor loads appear to System configuration tree. You ke dimensioning, change specifications and save the results al.		

OverviewThis chapter describes DriveSize's Results function. DriveSize
usually selects the most suitable drive component. However,
sometimes you may have to select another component. In these
cases you can choose an optional component from the User selection
list.Dimensioning
resultsA general feature of DriveSize is that it will select some unit. The
selection is not always optimal but it provides result quickly. When
you change the input data you get another result. DriveSize
computes the choices quickly but you make the final selection. Figure
4 - 1 shows an example of the motor results.

Figure 4 - 1 Main dimensioning window

You can read the dimensioning results in the main dimensioning window, but you will find more detailed information from the dimensioning **Result** display, where results appear numerically or from the **Graph** display, where results appear graphically. If you are not satisfied with the software dimensioning result, make your own selection. This is possible in the **User Selection** display. All the individual sections dimensioned for the project can be viewed in the **List of Selected** display.

Result display

The **Result** display shows results in numeric form for the item you have highlighted. The display is similar for motors, inverters and incoming units. The **Specification data** is about the user

requirements. The catalogue data displays the unit and selection calculations in different points and shows how the unit meets the requirements. In the selection data there are columns for required, result and margin values. The required data are calculated from user load demands. The result data is calculated from the unit value of your process. The margin indicates the percentage of capacity still available (difference between the input requirements and the resulting data of the component).

sult													
Motor data —													
Tune desian	ation	M3RF	2315 S	MR 4									Return
Product cod	•	REP	312 220	(EI)									Graph
	6	Jubi	512 220	0.0									lleer eelectic
Load type		Consta	ant torque	9									
													Report
election dat	a:					Specifications :					atalogue	e data :	
Torque [Nm]	Requir	ed Ri	esult	Margin		Name		[undefined]		Voltage (V	1	400
1 min	637	68	30	7%		No.of motors		1			Frequency	[Hz]	50
n base	637	75	56	19 %		Motor type		Process pe	erforman	e i	Power [kV	/]	132
Power [kW]				_		FrameMaterial		Not specifi	ed		Poles		4
n min	20	21	.4	7%		Family		Not specifi	ied		Speed [rpr	n]	1487
n base	100	11	9	19 %		Polenumber		Automatic			Max mech	.speed [rpm]	2300
Overload [Nm]						Design		Basic (Cer	ielec)		Current (A		232
n min	764	16	501	110 %		Connection		Not specifi	ied		Torque [N	m]	847
n base	764	13	332	74 %		IP class		IP55			Tmax/Tn 2.7		2.7
						IC class		IC411 self	ventilate	d	Power fac	tor	0.86
						IM class		IM1001, B	3(foot)		Efficiency	[%]	95.4
						Max. speed rule		Standard			Temperatu	are rise class	В
						Temp. rise		B (<80 K)			Insulation	class	F
	15	0.0 11				Tmax margin		43 %			Inertia [kgi	m2]	2.6
min = 300, n b	ase = 10	oo (ipm)											
osses [₩]:						Total losses	[₩] :						
			Load [%]						Load [%]				Efficiency repo
Crossed (repeal	25%	50%	75%	100%	125%	Speed [rpm]	25%	50%	75%	100%	125%		Enciency repo
Sheed [ibiii]	740	1010	1470	2100	2900	300	1480	1930	2650	3580	4740		
300 300			2440	3200	4200	900	2360	2980	3920	5180	6800		
300 900	1560	1890	2440	5200	4200								

Figure 4 - 2 Result display for motors

Table 4 - 1 Selection data for motors

Point	Meaning
Torque (Nm)	Calculated torque at user-given speed: Minimum,
min, base, max	base, maximum speed.
Power (kW)	Calculated power at user-given speed: Minimum,
min, base, max	base, maximum speed.
Overload (Nm)	Calculated overload torque at user-given speed:
min, base, max	Minimum, base, maximum speed for user defined
	time.

Table 4 - 2 Selection data for Inverters

Point	Meaning
Icont (A), Imax (A) or Imax start (A)	Calculated current load for an inverter in two situations: Continuous load and maximum load for user defined time. Maximum load at start is shown in case the load type is One time at start overload.
Temperature	Percent temperature margin of igbt module. There is also an additional temperature margin for other components like a choke when liquid cooled.

Table 4 - 3 Selection data for diode or thyristor supply units	Table 4	- 3 Selection	data for o	diode or the	vristor sup	oply units
--	---------	---------------	------------	--------------	-------------	------------

Point	Meaning
Power (kW)	Calculated power load for an incoming unit for
mot cont,	motoring and generating bridges in two situations:
mot max,	Continuous load and maximum load for user
gen cont,	defined time.
gen max	
DC-current (A)	Calculated DC bus current with minimum voltage
cont motoring,	and power for motoring and generating bridges in
max motoring,	two situations: Continuous load and maximum
cont generating	load for user defined time.
max generating	
Temperature	Percent temperature margin for motoring and
mot temp,	generating bridges. There is also an additional
gen temp	temperature margin for other components like a choke when liquid cooled.

Table 4 - 4 S	Selection dat	a for IGBT	supply	unit
---------------	---------------	------------	--------	------

Point	Meaning
Power (kW)	Calculated power load for an incoming unit in two
mot cont,	situations: Continuous load and maximum load for
mot max	user defined time.
AC-current (A)	Calculated current with minimum voltage and
cont motoring,	power: Continuous load and maximum load for
max motoring	user defined time.
Temperature	Percent temperature margin for supply unit. There
mot temp	is also an additional temperature margin for other
	components like an LCL filter when liquid cooled.

Table 4 - 5 Liquid fl	w sums of line-up	(ACS800 LC multidrives)
-----------------------	-------------------	-------------------------

Point	Meaning
Total flow	Calculated total massflow for this line-up. The
(l/min)	liquid flow of line supply unit is shown in the
	catalogue data table of LSU result sheet.
Heat loss (kW)	Calculated loss power for that line-up.

You can see from the selection data the required load margin for the selected unit. When the margins are positive the unit meets the requirements.

Note A large margin causes over-dimensioning. If the margin is negative, the unit cannot meet the requirements. When the motor type is ACS800, where a thermal model is used, the margin of continuous current can be negative when ambient temperature is below 40 °C.

Efficiency report Click **Efficiency Report** push button in motor data sheet to see efficiencies and losses in printable form (see Figure 4 - 2). This sheet is available only for single drives.

Graph display

This display helps you check how well the unit fits the requirements. The graphs display load and motor torques, load and motor powers and load and inverter currents. Figure 4 - 3 shows the graph for load and motor torques as a function of speed.

Figure 4 - 3 Graphs for motor

On the display, a legend explains the curves. Each curve has its own color.

Table 4 - 5 Curves in the Load & Motor Torque graph

Curve	Meaning
max. loadability	Motor maximum capability as a function of speed
max. load	User defined maximum load (overload)
cont. loadability	Motor continuous loadability- thermal limit
cont. load	User defined continuous load

Table 4 - 6 Curves in the Inverter graph

Curve	Meaning
max. loadability	Inverter maximum capability
max. load	User defined maximum

cont. loadability	Inverter continuous loadability
cont. load	User defined continuous load

User selection display

In the **User Selection** display you can select a smaller or larger unit instead of your current selection (made by the software or by your previous other choice selection). The selected unit has number 0 and its row is highlighted. Smaller units have a negative mark. Larger units have a positive mark. In this table there are some catalogue values and calculated margins to help with the new selection process. In some cases where the overloads are decisive there are no smaller units in the list.

Figure 4 - 4 shows the view for other choice. This display is available for ABB standard motors, inverters and supply units.

User	Jser selection												
	Catalogue data												
#	Type designation	PU	Power [k₩]	Poles	Speed [rpm]	In [A]	Tn [Nm]	Tmax/Tn	Tcont margin	Tmax margin	lm [A]	lmmax [A]	Inverter family
-7	M3BP 315 MLA 8	FI	110	8	740	203	1419	2.7	-2 🗙	-23 🗙			AC\$800 SingleDrive
-6	M3BP 355 SMA 10	FI	110	10	595	221	1765	2.5	-5 X	-43 X			AC \$800 Single Drive
-5	M3BP 355 SMB 12	FI	110	12	495	238	2122	2.5	-8 X	-53 🕱			AC \$800 Single Drive
-4	M4BP 315 SMC 2	FI	132	2	2984	225	422	3	-67 %	-45 X			ACS800 SingleDrive
-3	M3BP 315 SMB 2	FI	132	2	2982	227	422	3	-67 %	-45 X			ACS800 SingleDrive
-2	M4BP 315 SMD 4	FI	132	4	1490	232	845	3.2	-29 🗙	17 X	259	437	AC \$800 Single Drive
-1	M3BP 315 SMB 4	FI	132	4	1487	232	847	2.7	-29 X	-1X			ACS800 SingleDrive
0	M4BP 315 LKA 6	FI	132	6	993	239	1269	2.7	12%	23 🕱	200	327	ACS800 SingleDrive
1	M3BP 315 MLA 6	FI	132	6	991	240	1271	3	12 X	37 X	201	326	ACS800 SingleDrive
2	M3BP 355 SMA 8	FI	132	8	744	251	1694	2.6	17 X	-11%			AC \$800 Single Drive
3	M3BP 355 SMB 10	FI	132	10	594	254	2122	2.4	14X	-34X			ACS800 SingleDrive
4	M3BP 355 SMC 12	FI	132	12	495	285	2546	2.5	11X	-43 X			AC \$800 Single Drive
5	M4BP 315 MLA 2	FI	160	2	2982	267	512	2.7	-59%	-40 X			ACS800 SingleDrive
6	M3BP 315 SMC 2	FI	160	2	2981	271	512	3	-59%	-34X			ACS800 SingleDrive
7	M48P 315 MIR 4	FI	160	4	1489	278	1026	3	-14¥	33 X	261	432	AC S800 Single Drive
E	Report Cancel Dk												

Figure 4 - 4	User	selection	display	for motor.

Table 4 - 7 Iter	ns in User sel	ection display,	motor table
------------------	----------------	-----------------	-------------

ltem	Meaning
#	Identity number
PU	Production unit
Type designation	The motor's type designation
Power (kW)	Rated power
Poles	Pole number
Speed (rpm)	Nominal speed
In (A)	Nominal current
Tn (Nm)	Nominal torque
Tmax/Tn	Maximum torque / Nominal torque
Tcont margin	Calculated cont. load margin. The smallest
	margin over the complete speed range.
Tmax margin	Calculated maximum load margin. The smallest
	margin over the complete speed range.
lm (A)	Calculated continuous load current
Immax (A)	Calculated maximum load current

Results

Item	Meaning
#	Identity number
Type designation	Inverter's type designation.
Apparent power (kVA)	Inverter's apparent power.
Power (kW)	Inverter's nominal motor power.
Icont (A)	Nominal continuous loadability current.
Margin	Calculated margin for your continuous load.
Imax (A)	Nominal maximum loadability current.
Margin	Calculated margin for maximum load.
Selection method	Selection criterion.
Temp. margin	Calculated temperature margin.

Table 4 - 8 Items in the User selection display, inverter table

Table 4 - 9 Items in the User selection display, line supply un	it
table	

Item	Meaning
#	Identity number
Type designation	Line supply unit's type designation.
Apparent power (kVA)	Line supply unit's apparent power.
Power fwd margin	Calculated power margin for motoring load. Minimum of continuous and maximum load.
Current fwd margin	Calculated current margin for motoring load with required power and minimum voltage. Minimum of continuous and maximum load.
Power rev margin	Calculated power margin for generating load. Minimum of continuous and maximum load.
Current rev margin	Calculated current margin for generating load with required power and minimum voltage. Minimum of continuous and maximum load.

To select a different unit, click the row on which you want the unit to be listed. To verify your selection click **OK**. Your selection is highlighted. If you click **Cancel**, the selection is discarded.

List of Selected

List of Selected displays the selected units. The list contains: **Type designation, Unit name and Dimensioning status**. **Dimensioning status** shows if you or the software has made the dimensioning. Figure 4 - 5 shows an example of this display.

Overview	This chapter describes how to compute the effects of drives on a network. Harmonics calculation is based on discrete Fourier transformation and tabulation.
Network Check	With Network Check you can calculate:
display	 the network harmonics and power factor for an individual frequency converter
	the network harmonics and power factor for a line supply unit
	combined harmonics for several units.
	Both the voltage and the current harmonics are calculated. DC voltage calculations provide DC-link voltage. Figure 5 - 1 shows an example
	Tip: Compute the combined harmonics, not harmonics for individual drives, because the parallel drives will smoothen and, in some cases, compensate each other. Combine ISU and DSU drives.
	Network Check - [AC5800-02-0400-3]
	Network and Transformer data Supply unit data Primary writane M1 21000 Secondary writane M1 400
	Frequency [Hz] 50
	Network Sk [MVA] 200 Unknown Cdc [mF] 12.3
	Transformer Sn [kVA] 400
	Transformer Pk kW 5.5 Transformer Zk [½] 6
	Supply cable type Cable C Busbar
	Cable quantity 1 Cable impedance [u0hm/m] 70 Tot. power factor 0.94
	Cable length [m] 3 Udc [V] 503.5
	THD

Figure 5 - 1	Network	Check	window.
--------------	---------	-------	---------

Current

30 %

IEEE Calc 25.9 %/

IEEE Limit 15 %

C Secondary side

Data © Primary side

Show Mode

Table

C Graph

IEC Result

Voltage

0.3 %

0.3 %/

5 %

50

150

10 500 11 550

12 600

3

4

8 450 9.5

0.0 0.0 100

0.0

2.6

0.0

0.8

0.0

0.0

0.0

0.5

0.0

0.3

0.0

IEEE and IEC Standards

DriveSize calculates total harmonics distortion according to IEEE519 and IEC61800-3 standards. IEEE standard values indicate how much the drive load affects the network at the point of common coupling. The rated current of transformer is used as load current.

100.0 %

0.1 %

0.1 %

0.0 %

27.8%

0.0 %

8.9 %

00%

0.0 %

0.0 %

5.6 %

0.0 %

3.4 %

0.0 %

0.0 %

20 990.0

0.0

0.3

0.0

50.1

0.0

22.5

nn

0.4

0.0

22.3

0.0

15.9

0.0

0.4

100.0 % Calc/Limit

0.1 %/3.0 %

0.0 %/3.0 %

0.0 %/3.0 %

00%/30%

7.7 %/12.0 %

0.0 %/12.0 %

0.0 %/3.0 %

4.8 %/5.5 %

0.0 %/1.4 %

2.9 %/5.5 %

0.0 %/1.4 %

0.0 %/5.5 %

0.0 %/12.0 %

23.9 %/12.0 %

0.0 %

0.0 %

0.0 %

02%

0.0 %

0.1 %

00%

0.0 %

0.0 %

0.1 %

0.0 %

0.1 %

0.0 %

Calc/Limit

00%/30%

0.0 %/3.0 %

0.0 %/3.0 %

0.2 %/3.0 %

0.0 %/3.0 %

0.1 %/3.0 %

00%/30%

0.0 %/3.0 %

0.0 %/3.0 %

0.1 %/3.0 %

0.0 %/3.0 %

0.1 %/3.0 %

0.0 %/3.0 % 0.0 %/3.0 %

Note: In the IEEE standard, harmonics are calculated up to the 50th and in the IEC standard up to the 40^{th} .

Table 5 - 1 Network and Transformer Data Items

Items	Meaning
Primary voltage	Network voltage on primary side
Secondary voltage	Network voltage on secondary side
Frequency	Network frequency
Network Sk	Network short-circuit power MVA –currently the
	max value is 900 MVA
Transformer Sn	Transformer nominal power
Transformer Pk	Transformer load loss power kW
Transformer Zk	Transformer short-circuit impedance %
Supply cable type	Cable / Busbar
Cable quantity	Parallel connected cable quantity
Cable length	Length of the cable

Table 5 - 2 Supply Unit Items

Items	Meaning
Lac (µH)	AC choke inductance
Ldc (µH)	DC link inductance
Cdc (mF)	DC link capacitance
Pdc (kW)	DC power, the default value is base power plus

Table 5 - 3 Result Items

Items	Meaning
cos φ1	Fundamental power factor, main wave power
	factor
Tot power factor	Calculated total power factor harmonics
	included.
Udc (V)	Calculated DC voltage

Table 5 - 4 Harmonic Items

Items	Meaning
Voltage THD (%)	Voltage Total Harmonic Distortion
Current THD (%)	Current Total Harmonic Distortion
Ν	Harmonic order number
f (Hz)	Harmonic frequency
Current (A)	Harmonic current
In/I1	Harmonic proportional current to base current
Voltage (V)	Harmonic voltage
Un/U1	Harmonic proportional voltage to base voltage

Calculate harmonics

To calculate the harmonics, highlight the transformer and move to **Network Check.** If necessary, adjust the Pdc and other settings. Click **Calculate**. If you have not entered the network data in the main dimensioning window, enter the network voltage and frequency with deviations.

Note: The network data you enter in **Network Check** does not affect the network data in the main dimensioning window. ,

To view the harmonics output as either a table or a graph, select the **Table** or **Graph** radio button in **Show Mode**. When you select the graph view, you can choose between voltage and current harmonics.

Printing the Results

You can use the printing functions for two purposes:

- exporting the project information to Excel, which can be used as shopping lists for motors and drives
- printing on paper

In the **Print** dialog define what information you want to move to Excel.

DriveSize uses Microsoft Office[®] Excel 97 English version or later for printing. Figure 6 - 1 shows the **Print** dialog.

PrintWin	×
Information	Print
Project data sheet	Preview
O Project technical data sheet	
C All data sheet	<u>H</u> eturn
	<u>S</u> etup

Figure 6 - 1 Print dialog

Many DriveSize screens have a **Report** button. Click **Report** to print the screen data with Excel.

Efficiency Report Click **Efficiency Report** push button in motor data sheet to see efficiencies and losses in printable form. Notice that print **All Data Sheets** does not contain Efficiency Report sheet. This sheet is available only for single drives.

Network check
ReportClick Report push button in Network check view to see the printable
result sheet of harmonics. Print All Data Sheets does not contain
Network check Report sheet.

ABB Oy Drives P.O.Box 184 FIN-00381 HELSINKI FINLAND Telephone Internet

+ 358 10 22 2000 http://www.abb.com/