ETR2801-010

## Inductor Built-in Step-Down "micro DC/DC" Converters

☆GreenOperation Compatible

## **■**GENERAL DESCRIPTION

The XCL205/XCL206/XCL207 series is a synchronous step-down micro DC/DC converter which integrates an inductor and a control IC in one tiny package (2.5mm × 2.0mm, H=1.0mm). A stable power supply with an output current of 600mA is configured using only two capacitors connected externally.

Operating voltage range is from 2.0V to 6.0V(XCL20xG:1.8V~6.0V). Output voltage is internally set in a range from 0.8V to 4.0V in increments of 0.05V. The device is operated by 3.0MHz, and includes 0.42  $\Omega$  P-channel driver transistor and 0.52  $\Omega$  N-channel switching transistor. As for operation mode, the XCL205 series is PWM control, the XCL206 series is automatic PWM/PFM switching control and the XCL207 series can be manually switched between the PWM control mode and the automatic PWM/PFM switching control mode, allowing fast response, low ripple and high efficiency over the full range of loads (from light load to heavy load). During stand-by, the device is shutdown to reduce current consumption to as low as 1.0  $\mu$  A or less. With the built-in UVLO (Under Voltage Lock Out) function, the internal driver transistor is forced OFF when input voltage becomes 1.4V or lower. XCL205B(G)/XCL206B(G)/XCL207B(G) series provide short-time turn-on by the soft start function internally set in 0.25 ms (TYP). XCL205B(C,G) /XCL206 B(C,G) / XCL207B(C,G) integrate C<sub>L</sub> auto discharge function which enables the electric charge stored at the output capacitor C<sub>L</sub> to be discharged via the internal auto-discharge switch located between the L<sub>X</sub> and V<sub>SS</sub> pins. When the devices enter stand-by mode, output voltage quickly returns to the V<sub>SS</sub> level as a result of this function.

## **■**APPLICATIONS

- Mobile phones, Smart phones
- Bluetooth Headsets
- WiMAX PDAs, MIDs, UMPCs
- Portable game consoles
- Digital cameras, Camcorders
- Electronic dictionaries

### **■**FEATURES

Ultra Small : 2.5mm × 2.0mm, H=1.0mm Input Voltage : 2.0V ~ 6.0V(A/B/C Type)

1.8V ~ 6.0V(G Type)

Output Voltage :  $0.8V \sim 4.0V (\pm 2.0\%)$ High Efficiency :  $90\% (V_{IN}=4.2V, V_{OUT}=3.3V)$ 

Output Current : 600mA

Oscillation Frequency : 3.0MHz (±15%)

Maximum Duty Cycle : 100%

Capacitor : Low ESR Ceramic

CE Function : Active High

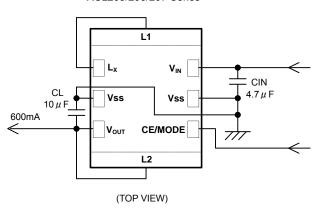
Soft-Start Circuit Built-In

C<sub>L</sub> High Speed Auto Discharge
Protection Circuits :Current Limiter Circuit Built-In

(Constant Current & Latching)

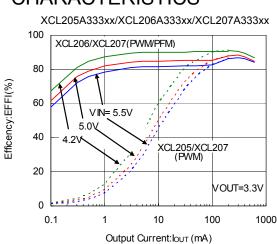
Control Methods : PWM (XCL205)

PWM/PFM Auto (XCL206)

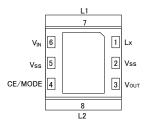

PWM/PFM Manual (XCL207)

Operating Ambient Temperature :  $-40^{\circ}$ C  $\sim +85^{\circ}$ C

Environmentally Friendly : EU RoHS Compliant, Pb Free


## **■TYPICAL APPLICATION CIRCUIT**

XCL205/206/207 Series




\* "L1 and Lx", and "L2 and Vout" is connected by wiring.

# ■TYPICAL PERFORMANCE CHARACTERISTICS



## **■PIN CONFIGURATION**



- \* It should be connected the Vss pin (No. 2 and 5) to the GND pin.
- \* If the dissipation pad needs to be connected to other pins, it should be connected to the GND pin.
- \* Please refer to pattern layout page for the connecting to PCB.

(BOTTOM VIEW)

### ■ PIN ASSIGNMENT

| PIN NUMBER | PIN NAME       | FUNCTION                  |
|------------|----------------|---------------------------|
| 1          | L <sub>x</sub> | Switching Output          |
| 2,5        | $V_{SS}$       | Ground                    |
| 3          | $V_{OUT}$      | Output Voltage            |
| 4          | CE / MODE      | Chip Enable & Mode Switch |
| 6          | $V_{IN}$       | Power Input               |
| 7          | L1             | Inductor Electrodes       |
| 8          | L2             | inductor Electrodes       |

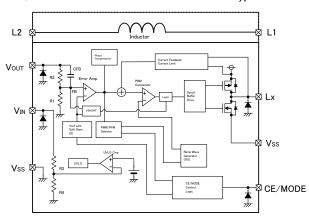
## **■PRODUCT CLASSIFICATION**

### Ordering Information

XCL205(1)(2)(3)(4)(5)(6)-(7)(\*1) Fixed PWM control

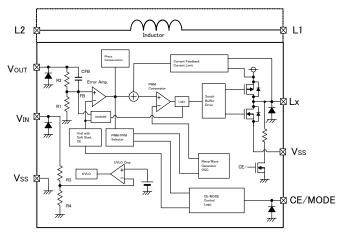
XCL206①②③④⑤⑥-⑦(\*1) PWM / PFM automatic switching control

XCL207①23456-⑦(\*1) Manual Mode Selection Pin (Semi-custom)


| DESIGNATOR                 | ITEM                                       | SYMBOL | DESCRIPTION                                                                  |
|----------------------------|--------------------------------------------|--------|------------------------------------------------------------------------------|
|                            |                                            | Α      | V <sub>IN</sub> ≧2.0V, No C <sub>L</sub> auto discharge, Standard soft-start |
| (1)                        | ① Functions selection (All CE active high) |        | V <sub>IN</sub> ≧2.0V, C <sub>L</sub> auto discharge, High speed soft-start  |
|                            |                                            |        | V <sub>IN</sub> ≧2.0V, C <sub>L</sub> auto discharge, Standard soft-start    |
|                            |                                            | G      | V <sub>IN</sub> ≧1.8V, C <sub>L</sub> auto discharge, High speed soft-start  |
|                            |                                            | 10     | 1.0V                                                                         |
|                            |                                            | 12     | 1.2V                                                                         |
|                            |                                            | 14     | 1.4V                                                                         |
|                            |                                            | 15     | 1.5V                                                                         |
|                            |                                            | 1K     | 1.75V                                                                        |
| 23                         | Output Voltage <sup>(*2)</sup>             | 18     | 1.8V                                                                         |
| 23                         | Output voitage                             | 19     | 1.9V                                                                         |
|                            |                                            | 25     | 2.5V                                                                         |
|                            |                                            | 28     | 2.8V                                                                         |
|                            |                                            | 2L     | 2.85V                                                                        |
|                            |                                            | 30     | 3.0V                                                                         |
|                            |                                            | 33     | 3.3V                                                                         |
| 4                          | Oscillation Frequency                      | 3      | 3.0MHz                                                                       |
| (5)(6)-(7) <sup>(*1)</sup> | Package<br>(Order Unit)                    | AR-G   | CL-2025 (3,000/Reel)                                                         |

<sup>(\*1)</sup> The "-G" suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.

<sup>(\*2)</sup> When other output voltages are needed, please contact your local Torex sales office for more information. Output voltage range is 0.8~4.0V.


## **■BLOCK DIAGRAM**

### ●XCL205 / XCL206 / XCL207 series A Type



NOTE: The XCL205 offers a fixed PWM control, a signal from CE/MODE Control Logic to PWM/PFM Selector is fixed to "L" level inside. The XCL206 control scheme is PWM/PFM automatic switching, a signal from CE/MODE Control Logic to PWM/PFM Selector is fixed to "H" level inside. The diodes placed inside are ESD protection diodes and parasitic diodes.

### ●XCL205 / XCL206 / XCL207 / XCL205 / XCL206 / XCL207 series B/C/G Type



NOTE: The XCL205 offers a fixed PWM control, a signal from CE/MODE Control Logic to PWM/PFM Selector is fixed to "L" level inside. The XCL206 control scheme is PWM/PFM automatic switching, a signal from CE/MODE Control Logic to PWM/PFM Selector is fixed to "H" level inside. The diodes placed inside are ESD protection diodes and parasitic diodes.

## ■ ABSOLUTE MAXIMUM RATINGS

Ta = 25°C

| PARAMETER                     | SYMBOL          | RATINGS                                              | UNITS |
|-------------------------------|-----------------|------------------------------------------------------|-------|
| V <sub>IN</sub> Pin Voltage   | $V_{IN}$        | V <sub>SS</sub> - 0.3 ~V <sub>SS</sub> +6.5          | V     |
| L <sub>X</sub> Pin Voltage    | $VL_X$          | $V_{SS}$ - 0.3 ~ $V_{IN}$ + 0.3 $\leq$ $V_{SS}$ +6.5 | V     |
| V <sub>OUT</sub> Pin Voltage  | $V_{OUT}$       | V <sub>SS</sub> - 0.3 ~V <sub>SS</sub> +6.5          | V     |
| CE/MODE Pin Voltage           | $V_{CE}$        | V <sub>SS</sub> - 0.3 ~V <sub>SS</sub> +6.5          | V     |
| L <sub>X</sub> Pin Current    | IL <sub>X</sub> | ±1500                                                | mA    |
| Power Dissipation             | Pd              | 1000 <sup>*1</sup>                                   | mW    |
| Operating Ambient Temperature | Topr            | - 40 ~ + 85                                          | °C    |
| Storage Temperature           | Tstg            | - 40 ~ + 105                                         | °C    |

<sup>\*1:</sup> The power dissipation figure shown is PCB mounted (40mm × 40mm, t=1.6mm, Glass Epoxy FR-4). Please refer to page 16 for details.

### ■ ELECTRICAL CHARACTERISTICS

●XCL205Axx3AR/XCL206Axx3AR/XCL207Axx3AR, f<sub>OSC</sub>=3.0MHz, Ta=25°C

| Output Voltage         Vour         When connected to external components, V <sub>m</sub> =V <sub>m</sub> =25.0V, V <sub>pm</sub> =090mA         <=1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PARAMETER                       | SYMBOL                                       | CONDITIONS                                                                                                                 | MIN.        | TYP.        | MAX.                  | UNITS   | CIRCUIT |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-----------------------|---------|---------|
| Maximum Output Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Output Voltage                  | V <sub>OUT</sub>                             |                                                                                                                            | <e-1></e-1> | <e-2></e-2> | <e-3></e-3>           | V       | 1       |
| ULO Voltage   Volto   Volt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Operating Voltage Range         | V <sub>IN</sub>                              |                                                                                                                            | 2.0         | -           | 6.0                   | V       | 1       |
| Supply Current (XCI2.05)   Supply Current (XCI2.05)   Inc.   V <sub>N</sub> =V <sub>CE</sub> =5.0V, V <sub>Out</sub> =V <sub>Out</sub> (τ) × 1.1V   - 21 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum Output Current          | I <sub>OUTMAX</sub>                          | V <sub>IN</sub> =V <sub>OUT(T)</sub> +2.0V, V <sub>CE</sub> =1.0V<br>When connected to external components <sup>(*9)</sup> | 600         | -           | -                     | mA      | 1       |
| Supply Current (XCL206, XCL207)   Ipp   V <sub>NP</sub> V=E-5.0V, V <sub>Out</sub> =V <sub>OUT(T)</sub> × 1.1V   - 21   35   μA   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UVLO Voltage                    | $V_{\text{UVLO}}$                            | $V_{CE}=V_{IN},V_{OUT}=0V,$<br>Voltage which Lx pin holding "L" level (*1,*11)                                             | 1.00        | 1.40        | 1.78                  | V       | 3       |
| Staph y Current (XCL206, XCL207)   Stand-by Current   IsT8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Supply Current (XCL205)         | 1                                            | \/=\/=5 0\/ \/=\/ × 1 1\/                                                                                                  | ı           | 46          | 65                    | Δ       | 2       |
| Oscillation Frequency   fosc   When connected to external components, \( \nabla_{\text{V}} \) = 0.000   3450   kHz   ①                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Supply Current (XCL206, XCL207) | IDD                                          | VIN-VCE-3.0V, VOUT-VOUT(T) ~ 1.1V                                                                                          | 1           | 21          | 35                    | μΛ      | Ú       |
| PFM Switching Current ("12)   I <sub>FFM</sub>   When connected to external components,   V <sub>m</sub> =V <sub>OUT</sub> (π)+2.0V, V <sub>CE</sub> =V <sub>N</sub> , I <sub>OUT</sub> =1mA   V <sub>E</sub> +δ> < E-δ> < E-δ> < E-δ>   mA   (β)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stand-by Current                | I <sub>STB</sub>                             | $V_{IN}$ =5.0V, $V_{CE}$ =0V, $V_{OUT}$ = $V_{OUT(T)}$ × 1.1V                                                              | -           | 0           | 1.0                   | μΑ      | 2       |
| PFM Switching Current   Impair   V <sub>m</sub> = V <sub>our(T)</sub> +2.0V, V <sub>oE</sub> = V <sub>m</sub> , I <sub>our = 1</sub> mA   V <sub>m</sub> = V <sub>our(T)</sub> +2.0V, V <sub>oE</sub> = V <sub>m</sub> , I <sub>our = 1</sub> mA   V <sub>m</sub> = V <sub>our(T)</sub> +2.0V, V <sub>our(T)</sub> +2.0V, V <sub>our(T)</sub> +2.0V   V <sub>our(T</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Oscillation Frequency           | f <sub>osc</sub>                             |                                                                                                                            | 2550        | 3000        | 3450                  | kHz     | 1       |
| Maximum Duty Cycle   D <sub>MAX</sub>   V <sub>IN</sub> =V <sub>CE</sub> =5.0V, V <sub>Out</sub> =V <sub>Out</sub> (1) × 0.9V   100   -   -   %   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PFM Switching Current (*12)     | $I_{PFM}$                                    |                                                                                                                            | <e-4></e-4> | <e-5></e-5> | <e-6></e-6>           | mA      | 10      |
| Minimum Duty Cycle   D <sub>MIN</sub>   V <sub>N</sub> =V <sub>CE</sub> =5.0V, V <sub>OUT</sub> =V <sub>OUT</sub> (T) × 1.1V   0   %   ③                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PFM Duty Limit (*12)            | $DTY_{LIMIT\_PFM}$                           | $V_{CE}$ = $V_{IN}$ = $V_{OUT(T)}$ +1.0V, $I_{OUT}$ =1mA                                                                   | -           | 200         | 300                   | %       | 1       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Maximum Duty Cycle              | D <sub>MAX</sub>                             | $V_{IN}=V_{CE}=5.0V$ , $V_{OUT}=V_{OUT(T)}\times0.9V$                                                                      | 100         | -           | -                     | %       | 3       |
| Efficiency   Filt   V <sub>CE</sub> V <sub>IN</sub> = V <sub>OUT</sub> (η) + 1.2V, I <sub>OUT</sub> = 1.0 mA   - ⟨E-/⟩   - ⟨P <sub>O</sub> (η)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Minimum Duty Cycle              | D <sub>MIN</sub>                             | $V_{IN}=V_{CE}=5.0V, V_{OUT}=V_{OUT(T)} \times 1.1V$                                                                       | -           | -           | 0                     | %       | 3       |
| Lx SW"H" ON Resistance 1   R <sub>LxH</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Efficiency <sup>(*2)</sup>      | EFFI                                         |                                                                                                                            | -           | <e-7></e-7> | -                     | %       | 1       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lx SW "H" ON Resistance 1       | $R_{L_{x}H}$                                 | $V_{IN}=V_{CE}=5.0V, V_{OUT}=0V, IL_{X}=100mA^{(*3)}$                                                                      | ı           | 0.35        | 0.55                  |         |         |
| Lx SW"L" ON Resistance 2   R <sub>x x</sub>   V <sub>IN</sub> =V <sub>CE</sub> =3.6V, ("4)   V <sub>IN</sub> = | Lx SW "H" ON Resistance 2       | $R_{L_{x}H}$                                 | $V_{IN}=V_{CE}=3.6V, V_{OUT}=0V, IL_{X}=100mA^{(*3)}$                                                                      | -           | 0.42        | 0.67                  |         | 4       |
| Lx SW "H" Leakage Current (*S)         I <sub>LEAKH</sub> V <sub>IN</sub> =V <sub>OUT</sub> =5.0V, V <sub>CE</sub> =0V, L <sub>X</sub> =5.0V         -         0.01         1.0         μ A         ⑤           Lx SW "L" Leakage Current (*S)         I <sub>LEAKL</sub> V <sub>IN</sub> =V <sub>OUT</sub> =5.0V, V <sub>CE</sub> =0V, L <sub>X</sub> =5.0V         -         0.01         1.0         μ A         ⑤           Current Limit (*10)         I <sub>LIM</sub> V <sub>IN</sub> =V <sub>CE</sub> =5.0V, V <sub>OUT</sub> =V <sub>OUT</sub> (I) × 0.9V (*P)         900         1050         1350         mA         ⑥           Output Voltage         Output Voltage         V <sub>OUT</sub> **OV **Output Voltage Voltage to V <sub>CE</sub> *         ±100         -         ppm/ °C         ①           CE "H" Voltage         V <sub>CEH</sub> V <sub>OUT</sub> **OV **Applied voltage to V <sub>CE</sub> *         0.65         -         V <sub>IN</sub> V         ③           CE "L" Voltage         V <sub>CEL</sub> V <sub>OUT</sub> **OV **Applied voltage to V <sub>CE</sub> *         V <sub>OUT</sub> **OV **Applied voltage to V <sub>CE</sub> *         V <sub>SS</sub> -         0.25         V         ③           PWM "H" Level Voltage (*13)         V <sub>PWMH</sub> When connected to external components, I <sub>OUT</sub> **ImA **(*), Voltage which oscillation frequency becomes 2550KHz **(*13)         -         -         -         V <sub>IN</sub> **1.0         V         ①           PWM "L" Level Voltage (*13)         V <sub>PWML</sub> V <sub>PWM</sub> **(*14), V <sub>I</sub> **(*14), V <sub>I</sub> **(*15), V <sub>I</sub> **(*15)         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lx SW "L" ON Resistance 1       | $R_{L_{x}L}$                                 |                                                                                                                            | -           | 0.45        | 0.66                  | Ω       | -       |
| Lx SW "H" Leakage Current (**)         I <sub>LEAKL</sub> V <sub>IN</sub> =V <sub>OUT</sub> =5.0V, V <sub>CE</sub> =0V, L <sub>X</sub> =5.0V         -         0.01         1.0         μ A         ⑤           Lx SW "L" Leakage Current (**)         I <sub>LEAKL</sub> V <sub>IN</sub> =V <sub>OUT</sub> =5.0V, V <sub>CE</sub> =0V, L <sub>X</sub> = 5.0V         -         0.01         1.0         μ A         ⑥           Current Limit (**I0)         J <sub>LIM</sub> V <sub>IN</sub> =V <sub>CE</sub> =5.0V, V <sub>OUT</sub> =V <sub>OUT</sub> (x 0.9V (**I0)         900         1050         1350         mA         ⑥           Output Voltage         Δ <sub>VOUT</sub> (V <sub>OUT</sub> - ΔTopr)         I <sub>OUT</sub> = 30mA         -         ±100         -         ppm/ °C         ①           CE "H" Voltage         V <sub>CEH</sub> V <sub>OUT</sub> =0V, Applied voltage to V <sub>CE</sub> , Voltage changes Lx to "H" level (**I1)         0.65         -         V <sub>IN</sub> V         ③           PWM "H" Level Voltage         V <sub>CEL</sub> V <sub>OUT</sub> =0V, Applied voltage to V <sub>CE</sub> , Voltage which oscillation         V <sub>IN</sub> V <sub>IN</sub> - 1.0         V         ③           PWM "H" Level Voltage (*I3)         V <sub>PWMH</sub> V <sub>PWMH</sub> When connected to external components, I <sub>OUT</sub> =1mA (*6), Voltage which oscillation frequency becomes 2550kHz (*I3)         V <sub>IN</sub> - 1.0         V <sub>IN</sub> - 1.0         V         ①           PWM "L" Level Voltage (*I3)         V <sub>PWML</sub> I <sub>OUT</sub> =1mA (*6), Voltage which oscillation frequency becomes 5 <sub>OSC</sub> <2550kHz (*I3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | $R_{L_{x}L}$                                 | $V_{IN} = V_{CE} = 3.6 V$ , (*4)                                                                                           | -           | 0.52        | 0.77                  | Ω       | -       |
| Current Limit ("10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lx SW "H" Leakage Current (*5)  |                                              | $V_{IN}=V_{OUT}=5.0V$ , $V_{CE}=0V$ , $L_X=0V$                                                                             | -           | 0.01        | 1.0                   | μΑ      |         |
| Output Voltage Temperature Characteristics $\Delta V_{out}^{-1}$ down $\Delta V_{out}^{-1}$ $I_{out}^{-1} = 30 \text{mA}$ $\Delta V_{out}^{-1} = 30 \text{mA}$ $\Delta V_{out}^{-1} = 30 \text{mA}$ $\Delta V_{out}^{-1} = 0 \text{mA}$ $\Delta V_{out}^{-1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 | I <sub>LEAKL</sub>                           |                                                                                                                            | -           | 0.01        | 1.0                   | μΑ      | 5       |
| Temperature Characteristics $(V_{\text{OUT}} \cdot \Delta \bar{\text{Topr}})$ -40°C ≤ Topr≤85°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Current Limit (*10)             | I <sub>LIM</sub>                             | $V_{IN} = V_{CE} = 5.0V$ , $V_{OUT} = V_{OUT(T)} \times 0.9V^{(*8)}$                                                       | 900         | 1050        | 1350                  | mA      | 6       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | $\Delta V_{OUT}/(V_{OUT} \cdot \Delta Topr)$ |                                                                                                                            | -           | ±100        | -                     | ppm/ °C | 1       |
| CE "L" Voltage $V_{\text{CEL}}$ $V_{\text{Out}}$ =0V, Applied voltage to $V_{\text{CE}}$ , Voltage changes Lx to "L" level ("11) $V_{\text{SS}}$ -       0.25       V       ③         PWM "H" Level Voltage ("13) $V_{\text{PWMH}}$ When connected to external components, IouT=1mA ("6), Voltage which oscillation frequency becomes 2550kHz ≤ fosc ≤ 3450kHz ("13)       -       -       - $V_{\text{IN}}$ - 1.0       V       ①         PWM "L" Level Voltage ("13) $V_{\text{PWML}}$ When connected to external components, IouT=1mA ("6), Voltage which oscillation frequency becomes $f_{\text{OSC}}$ < 2550kHz ("13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                              | V <sub>OUT</sub> =0V, Applied voltage to V <sub>CE</sub> ,                                                                 | 0.65        | -           | V <sub>IN</sub>       | V       | 3       |
| When connected to external components,<br>$I_{OUT}=1mA$ (*6). Voltage which oscillation<br>frequency becomes 2550kHz $\leq f_{OSC} \leq 3450kHz$ (*13)V <sub>IN</sub> - 1.0V①PWM "L" Level Voltage (*13)V <sub>PWML</sub> When connected to external components,<br>$I_{OUT}=1mA$ (*6). Voltage which oscillation<br>frequency becomes fosc <2550kHz (*13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CE "L" Voltage                  | V <sub>CEL</sub>                             | V <sub>OUT</sub> =0V, Applied voltage to V <sub>CE</sub> ,                                                                 | $V_{SS}$    | -           | 0.25                  | V       | 3       |
| When connected to external components,<br>$I_{OUT}=1mA^{(16)}$ , Voltage which oscillation<br>frequency becomes $f_{OSC} < 2550kHz^{(13)}$ $V_{IN} - 0.25$ $V_{IN} - 0.25$ $V_{IN} - 0.25$ CE "H" Current $I_{CEH}$ $V_{IN}=V_{CE}=5.0V$ , $V_{OUT}=0V$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $-0.1$ $\mu A$ $-0.1$ CE "L" Current $I_{CEL}$ $V_{IN}=5.0V$ , $V_{CE}=0V$ , $V_{OUT}=0V$ $-0.1$ $-0.1$ $-0.1$ $\mu A$ $-0.1$ Soft Start Time $V_{IN}=V_{CE}=0V$ , $V_{IN}=1mA$ $0.5$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.9$ $0.5$ $0.5$ $0.9$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ <td>PWM "H" Level Voltage (*13)</td> <td><math>V_{\sf PWMH}</math></td> <td>When connected to external components, I<sub>OUT</sub>=1mA <sup>(*6)</sup>. Voltage which oscillation</td> <td>-</td> <td>-</td> <td>V<sub>IN</sub> - 1.0</td> <td>V</td> <td>1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PWM "H" Level Voltage (*13)     | $V_{\sf PWMH}$                               | When connected to external components, I <sub>OUT</sub> =1mA <sup>(*6)</sup> . Voltage which oscillation                   | -           | -           | V <sub>IN</sub> - 1.0 | V       | 1       |
| CE "H" Current $I_{CEH}$ $V_{IN}=V_{CE}=5.0V$ , $V_{OUT}=0V$ $-0.1$ $-0.1$ $-0.1$ $\mu$ A       ⑤         CE "L" Current $I_{CEL}$ $V_{IN}=5.0V$ , $V_{CE}=0V$ , $V_{OUT}=0V$ $-0.1$ $-0.1$ $-0.1$ $\mu$ A       ⑤         Soft Start Time $t_{SS}$ When connected to external components, $V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0V_{CE}=0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PWM "L" Level Voltage (*13)     | $V_{\sf PWML}$                               | When connected to external components, I <sub>OUT</sub> =1mA <sup>(*6)</sup> , Voltage which oscillation                   |             | -           | -                     | V       | 1       |
| Soft Start Time $t_{SS}$ When connected to external components, $V_{CE}=0V \rightarrow V_{IN}$ , $I_{OUT}=1mA$ 0.5 0.9 2.5 ms ① Latch Time $t_{LAT}$ $V_{IN}=V_{CE}=5.0V$ , $V_{OUT}=0.8 \times V_{OUT(I)}$ 1.0 - 20 ms ⑦ Short Protection Threshold Voltage $t_{LAT}$ Sweeping $V_{OUT}$ , $V_{IN}=V_{CE}=5.0V$ , Short Lx at 1 $\Omega$ resistance (*7) 1.0 - 20 ms ⑦ Inductance Value L Test frequency=1MHz - 1.5 - $\mu$ H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CE "H" Current                  | I <sub>CEH</sub>                             |                                                                                                                            | - 0.1       | -           | 0.1                   | μΑ      | 5       |
| Soft Start Time $t_{SS}$ When connected to external components, $V_{CE}=0V \rightarrow V_{IN}$ , $I_{OUT}=1mA$ 0.5 0.9 2.5 ms ①  Latch Time $t_{LAT}$ $V_{IN}=V_{CE}=5.0V$ , $V_{OUT}=0.8 \times V_{OUT(I)}$ 1.0 - 20 ms ⑦  Short Protection Threshold Voltage $t_{IN}=V_{CE}=0$ Sweeping $t_{IN}=V_{CE}=0$ Voltage which Lx becomes "L" $t_{IN}=V_{CE}=0$ V ⑦  Inductance Value $t_{IN}=V_{CE}=0$ V $t_{IN}=V_{CE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CE "L" Current                  | I <sub>CEL</sub>                             |                                                                                                                            | - 0.1       | _           | 0.1                   | μA      | 5       |
| Short Protection Threshold Voltage  Value  Test frequency=1MHz  Short Lx at $1\Omega$ resistance (*7)  Sweeping $V_{OUT}$ , $V_{IN} = V_{CE} = 5.0V$ , Short Lx at $1\Omega$ resistance, $V_{OUT}$ voltage which Lx becomes "L" $V_{SHORT}$ Sweeping $V_{OUT}$ , $V_{IN} = V_{CE} = 5.0V$ , Short Lx at $V_{SHORT}$ Sweeping $V_{OUT}$ , $V_{IN} = V_{CE} = 5.0V$ , Short Lx at $V_{SHORT}$ Sweeping $V_{OUT}$ , $V_{IN} = V_{CE} = 5.0V$ , Short Lx at $V_{SHORT}$ Sweeping $V_{OUT}$ , $V_{IN} = V_{CE} = 5.0V$ , Short Lx at $V_{SHORT}$ Sweeping $V_{OUT}$ , $V_{IN} = V_{CE} = 5.0V$ , Short Lx at $V_{SHORT}$ Sweeping $V_{OUT}$ , $V_{IN} = V_{CE} = 5.0V$ , Short Lx at $V_{SHORT}$ Sweeping $V_{OUT}$ , $V_{IN} = V_{CE} = 5.0V$ , Short Lx at $V_{SHORT}$ Sweeping $V_{OUT}$ , $V_{IN} = V_{CE} = 5.0V$ , Short Lx at $V_{SHORT}$ Sweeping $V_{OUT}$ , $V_{IN} = V_{CE} = 5.0V$ , Short Lx at $V_{SHORT}$ Sweeping $V_{OUT}$ , $V_{IN} = V_{CE} = 5.0V$ , Short Lx at $V_{SHORT}$ Sweeping $V_{OUT}$ , $V_{IN} = V_{CE} = 5.0V$ , Short Lx at $V_{SHORT}$ Sweeping $V_{OUT}$ , $V_{IN} = V_{CE} = 5.0V$ , Short Lx at $V_{IN} = V_{IN} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Soft Start Time                 |                                              | $V_{CE}$ =0 $V$ $\rightarrow V_{IN}$ , $I_{OUT}$ =1 $mA$                                                                   | 0.5         | 0.9         | 2.5                   | ms      | 1       |
| Threshold Voltage V <sub>SHORT</sub> 1Ω resistance, V <sub>OUT</sub> voltage which Lx becomes "L" <e-8> <e-9> <e-10> V ⑦ level within 1ms   Inductance Value L Test frequency=1MHz - 1.5 - μH</e-10></e-9></e-8>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Latch Time                      | t <sub>LAT</sub>                             | Short Lx at 1Ω resistance (*7)                                                                                             | 1.0         | -           | 20                    | ms      | 7       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 | V <sub>SHORT</sub>                           | $1\Omega$ resistance, $V_{\text{OUT}}$ voltage which Lx becomes "L"                                                        | <e-8></e-8> | <e-9></e-9> | <e-10></e-10>         | V       | 7       |
| Allowed Inductor Current I <sub>DC</sub> $\Delta$ T=40°C - 1000 - mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Inductance Value                | L                                            | Test frequency=1MHz                                                                                                        | -           | 1.5         | -                     | μН      |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Allowed Inductor Current        | I <sub>DC</sub>                              |                                                                                                                            | -           | 1000        | -                     | mA      |         |

Test conditions: Unless otherwise stated, VIN=5.0V, VOUT(T)=Nominal Voltage

NOTE:

- \*1: Including hysteresis operating voltage range.
- \*2: EFFI = { ( output voltage × output current ) / ( input voltage × input current) } × 100
- \*3: ON resistance ( $\Omega$ )= (VIN Lx pin measurement voltage) / 100mA
- \*4: Design value
- \*5: When temperature is high, a current of approximately 10  $\mu$  A (maximum) may leak.
- \*6:The CE/MODE pin of the XCL207 series works also as an external switching pin of PWM control and PWM/PFM control. When the IC is in the operation, control is switched to the automatic PWM/PFM switching mode when the CE/MODE pin voltage is equal to or greater than VIN minus 0.3V, and to the PWM mode when the CE/MODE pin voltage is equal to or lower than VIN minus 1.0V and equal to or greater than VCEH.
- \*7: Time until it short-circuits Vouτ with GND via 1Ω of resistor from an operational state and is set to Lx=0V from current limit pulse generating.
- \*8: When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.
- \*9: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.
- \*10: Current limit denotes the level of detection at peak of coil current.
- \*11: "H"=VIN~VIN-1.2V, "L"=+0.1V~-0.1V
- \*12: IPFM and DTYLIMIT PFM are defined only for the XCL206 and XCL207 series which have PFM control function. (Not for the XCL 205 series)
- \*13: VPWMH and VPWML are defined only for the XCL207 series. (They are not used in the XCL205/and XCL206 series)

## ■ ELECTRICAL CHARACTERISTICS (Continued)

●XCL205Bxx3AR/XCL206Bxx3AR/XCL207Bxx3AR, fosc=3.0MHz, Ta=25°C

| PARAMETER                                     | SYMBOL                                       | CONDITIONS                                                                                                                                                                    | MIN.                      | TYP.          | MAX.                  | UNITS   | CIRCUIT |
|-----------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------|-----------------------|---------|---------|
| Output Voltage                                | V <sub>out</sub>                             | When connected to external components, $V_{IN}=V_{CE}=5.0V$ , $I_{OUT}=30mA$                                                                                                  | <e-1></e-1>               | <e-2></e-2>   | <e-3></e-3>           | ٧       | 1       |
| Operating Voltage Range                       | V <sub>IN</sub>                              |                                                                                                                                                                               | 2.0                       | -             | 6.0                   | V       | 1       |
| Maximum Output Current                        | I <sub>OUTMAX</sub>                          | V <sub>IN</sub> =V <sub>OUT(T)</sub> +2.0V, V <sub>CE</sub> =1.0V<br>When connected to external components <sup>(*9)</sup>                                                    | 600                       | -             | -                     | mA      | 1       |
| UVLO Voltage                                  | V <sub>UVLO</sub>                            | $V_{CE}=V_{IN},V_{OUT}=0V,$ Voltage which Lx pin holding "L" level (*1, *11)                                                                                                  | 1.00                      | 1.40          | 1.78                  | V       | 3       |
| Supply Current (XCL205)                       | I <sub>DD</sub>                              | $V_{IN} = V_{CE} = 5.0 \text{V}, V_{OUT} = V_{OUT(T)} \times 1.1 \text{V}$                                                                                                    | -                         | 46            | 65                    | μΑ      | 2       |
| Supply Current (XCL206, XCL207)               | טטי                                          | VIN-VCE-3.0 V, VOUI-VOUI(I) / 1.1 V                                                                                                                                           | -                         | 21            | 35                    | μΛ      |         |
| Stand-by Current                              | I <sub>STB</sub>                             | $V_{IN}$ =5.0V, $V_{CE}$ =0V, $V_{OUT}$ = $V_{OUT(T)}$ × 1.1V                                                                                                                 | -                         | 0             | 1.0                   | μΑ      | 2       |
| Oscillation Frequency                         | f <sub>osc</sub>                             | When connected to external components, $V_{IN} = V_{OUT(T)} + 2.0V, V_{CE} = 1.0V, I_{OUT} = 100mA$                                                                           | 2550                      | 3000          | 3450                  | kHz     | 1       |
| PFM Switching Current (*12)                   | I <sub>PFM</sub>                             | When connected to external components, $V_{IN} = V_{OUT(T)} + 2.0V$ , $V_{CE} = V_{IN}$ , $I_{OUT} = 1mA$                                                                     | <e-4></e-4>               | <e-5></e-5>   | <e-6></e-6>           | mA      | 10      |
| PFM Duty Limit (*12)                          | DTY <sub>LIMIT_PFM</sub>                     | $V_{CE}=V_{IN}=V_{OUT(T)}+1.0V$ , $I_{OUT}=1mA$                                                                                                                               | -                         | 200           | 300                   | %       | 1       |
| Maximum Duty Cycle                            | D <sub>MAX</sub>                             | $V_{IN}=V_{CE}=5.0V$ , $V_{OUT}=V_{OUT(T)}\times0.9V$                                                                                                                         | 100                       | -             | -                     | %       | 3       |
| Minimum Duty Cycle                            | D <sub>MIN</sub>                             | $V_{IN}=V_{CE}=5.0V$ , $V_{OUT}=V_{OUT(T)}\times 1.1V$                                                                                                                        | -                         | -             | 0                     | %       | 3       |
| Efficiency <sup>(*2)</sup>                    | EFFI                                         | When connected to external components, $V_{CE}=V_{IN}=V_{OUT,(T)}+1.2V$ , $I_{OUT}=100$ mA                                                                                    | -                         | <e-7></e-7>   | -                     | %       | 1       |
| Lx SW "H" ON Resistance 1                     | $R_{L_{x}H}$                                 | $V_{IN}=V_{CE}=5.0V$ , $V_{OUT}=0V$ , $IL_{X}=100$ mA (*3)                                                                                                                    | -                         | 0.35          | 0.55                  | Ω       | 4       |
| Lx SW "H" ON Resistance 2                     | $R_{L_{x}H}$                                 | $V_{IN}=V_{CE}=3.6V, V_{OUT}=0V, IL_{X}=100mA^{(*3)}$                                                                                                                         | -                         | 0.42          | 0.67                  | Ω       | 4       |
| Lx SW "L" ON Resistance 1                     | $R_{L_{x}L}$                                 | $V_{IN} = V_{CE} = 5.0 V^{(*4)}$                                                                                                                                              | -                         | 0.45          | 0.66                  | Ω       | -       |
| Lx SW "L" ON Resistance 2                     | $R_{L_{\times}L}$                            | $V_{IN} = V_{CE} = 3.6V^{(^4)}$                                                                                                                                               | -                         | 0.52          | 0.77                  | Ω       | -       |
| Lx SW "H" Leakage Current (*5)                | I <sub>LEAKH</sub>                           | $V_{IN}=V_{OUT}=5.0V$ , $V_{CE}=0V$ , $L_X=0V$                                                                                                                                | -                         | 0.01          | 1.0                   | μΑ      | 9       |
| Current Limit (*10)                           | I <sub>LIM</sub>                             | $V_{IN}=V_{CE}=5.0V, V_{OUT}=V_{OUT(T)}\times 0.9V^{(*8)}$                                                                                                                    | 900                       | 1050          | 1350                  | mA      | 6       |
| Output Voltage<br>Temperature Characteristics | $\Delta V_{OUT}/(V_{OUT} \cdot \Delta Topr)$ | I <sub>OUT</sub> =30mA<br>-40°C≦Topr≦85°C                                                                                                                                     | -                         | ±100          | -                     | ppm/ °C | 1       |
| CE "H" Voltage                                | $V_{CEH}$                                    | V <sub>OUT</sub> =0V, Applied voltage to V <sub>CE</sub> ,<br>Voltage changes Lx to "H" level (*11)                                                                           | 0.65                      | -             | V <sub>IN</sub>       | V       | 3       |
| CE "L" Voltage                                | $V_{CEL}$                                    | V <sub>OUT</sub> =0V, Applied voltage to V <sub>CE</sub> ,<br>Voltage changes Lx to "L" level <sup>(*11)</sup>                                                                | V <sub>SS</sub>           | -             | 0.25                  | V       | 3       |
| PWM "H" Level Voltage (*13)                   | $V_{PWMH}$                                   | When connected to external components, I <sub>OUT</sub> =1mA <sup>(*6)</sup> . Voltage which oscillation frequency becomes 2550kHz≦f <sub>osc</sub> ≦3450kHz <sup>(*13)</sup> | -                         | -             | V <sub>IN</sub> - 1.0 | V       | 1       |
| PWM "L" Level Voltage (*13)                   | $V_{\sf PWML}$                               | When connected to external components, I <sub>OUT</sub> =1mA <sup>(*6)</sup> , Voltage which oscillation frequency becomes f <sub>OSC</sub> <2550kHz <sup>(*13)</sup>         | V <sub>IN</sub> -<br>0.25 | -             | -                     | V       | 1       |
| CE "H" Current                                | I <sub>CEH</sub>                             | $V_{IN}=V_{CE}=5.0V$ , $V_{OUT}=0V$                                                                                                                                           | - 0.1                     | -             | 0.1                   | μΑ      | 5       |
| CE "L" Current                                | I <sub>CEL</sub>                             | $V_{IN}$ =5.0V, $V_{CE}$ =0V, $V_{OUT}$ =0V                                                                                                                                   | - 0.1                     | -             | 0.1                   | μΑ      | 5       |
| Soft Start Time                               | t <sub>ss</sub>                              | When connected to external components, $V_{CE} = 0V \rightarrow V_{IN}$ , $I_{OUT} = 1mA$                                                                                     | -                         | <e-11></e-11> | <e-12></e-12>         | ms      | 1       |
| Latch Time                                    | t <sub>LAT</sub>                             | $V_{\text{IN}} = V_{\text{CE}} = 5.0 \text{V}, V_{\text{OUT}} = 0.8 \times V_{\text{OUT}(T)}$<br>Short Lx at 1 $\Omega$ resistance (77)                                       | 1.0                       | -             | 20                    | ms      | 7       |
| Short Protection<br>Threshold Voltage         | V <sub>SHORT</sub>                           | Sweeping $V_{OUT}$ , $V_{IN}$ = $V_{CE}$ =5.0V, Short Lx at $1\Omega$ resistance, $V_{OUT}$ voltage which Lx becomes "L" level within 1ms                                     | <e-8></e-8>               | <e-9></e-9>   | <e-10></e-10>         | V       | Ī       |
| CL Discharge                                  | R <sub>DCHG</sub>                            | $V_{IN}$ =5.0V, $L_X$ =5.0V, $V_{CE}$ =0V, $V_{OUT}$ =Open                                                                                                                    | 200                       | 300           | 450                   | Ω       | 8       |
| Inductance Value                              | L                                            | Test frequency =1MHz                                                                                                                                                          | -                         | 1.5           | -                     | μΗ      |         |
| Allowed Inductor Current                      | I <sub>DC</sub>                              | ΔT=40°C                                                                                                                                                                       | -                         | 1000          | -                     | mA      |         |

Test conditions: Unless otherwise stated, VIN=5.0V, VOUT (T) =Nominal Voltage

- NOTE:

  \*1: Including hysteresis operating voltage range.

  \*2: EFFI = { ( output voltage × output current ) / ( input voltage × input current) } × 100

  \*3: ON resistance (Ω) = (VIN Lx pin measurement voltage) / 100mA

  - \*5: When temperature is high, a current of approximately 10 μ A (maximum) may leak.
    \*6: The CE/MODE pin of the XCL207 series works also as an external switching pin of PWM control and PWM/PFM control. When the IC is in the operation, control is switched to the automatic PWM/PFM switching mode when the CE/MODE pin voltage is equal to or greater than VIN minus 0.3V, and to the PWM mode when the CE/MODE pin voltage is equal to or lower than VIN minus 1.0V and equal to or greater than VCEH.
    \*7: Time until it short-circuits VOUT with GND via 1Ω of resistor from an operational state and is set to Lx=0V from current limit pulse generating.
    \*8: When VIN is less than 2.4V, intri current may not be reached because voltage falls caused by ON resistance.

  - \*9: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.
  - \*10: Current limit denotes the level of detection at peak of coil current. \*11: "H"=VIN~VIN-1.2V, "L"=+0.1V~-0.1V

  - \*12: IPFM and DTY<sub>LIMIT\_PFM</sub> are defined only for the XCL206 and XCL207 series which have PFM control function. (Not for the XCL 205 series) \*13: VPWMH and VPWML are defined only for the XCL207 series. (They are not used in the XCL205/and XCL206 series)

## ■ELECTRICAL CHARACTERISTICS (Continued)

●XCL205Cxx3AR/XCL206Cxx3AR/XCL207Cxx3AR, fosc=3.0MHz, Ta=25°C

| PARAMETER                                     | SYMBOL                                               | CONDITIONS                                                                                                                                                                    | MIN.                      | TYP.        | MAX.                  | UNITS   | CIRCUIT |
|-----------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|-----------------------|---------|---------|
| Output Voltage                                | V <sub>out</sub>                                     | When connected to external components,<br>V <sub>IN</sub> = V <sub>CE</sub> =5.0V, I <sub>OUT</sub> =30mA                                                                     | <e-1></e-1>               | <e-2></e-2> | <e-3></e-3>           | V       | 1       |
| Operating Voltage Range                       | V <sub>IN</sub>                                      |                                                                                                                                                                               | 2.0                       | -           | 6.0                   | V       | 1       |
| Maximum Output Current                        | I <sub>OUTMAX</sub>                                  | V <sub>IN</sub> =V <sub>OUT(T)</sub> +2.0V, V <sub>CE</sub> =1.0V<br>When connected to external components <sup>(*9)</sup>                                                    | 600                       | 1           | -                     | mA      | 1       |
| UVLO Voltage                                  | V <sub>UVLO</sub>                                    | $V_{CE}=V_{IN},V_{OUT}=0V,$ Voltage which Lx pin holding "L" level (*1, *11)                                                                                                  | 1.00                      | 1.40        | 1.78                  | >       | 3       |
| Supply Current (XCL205)                       |                                                      | \\ -\\ -5 0\\ \\ -\\ \\ ×1.1\\                                                                                                                                                | -                         | 46          | 65                    |         | 2       |
| Supply Current (XCL206, XCL207)               | I <sub>DD</sub>                                      | $V_{IN} = V_{CE} = 5.0V, V_{OUT} = V_{OUT(T)} \times 1.1V$                                                                                                                    |                           | 21          | 35                    | μΑ      | 2       |
| Stand-by Current                              | I <sub>STB</sub>                                     | $V_{IN}$ =5.0V, $V_{CE}$ =0V, $V_{OUT}$ = $V_{OUT(T)}$ × 1.1V                                                                                                                 | -                         | 0           | 1.0                   | μΑ      | 2       |
| Oscillation Frequency                         | f <sub>osc</sub>                                     | When connected to external components, $V_{IN} = V_{OUT(T)} + 2.0V, V_{CE} = 1.0V, I_{OUT} = 100mA$                                                                           | 2550                      | 3000        | 3450                  | kHz     | 1       |
| PFM Switching Current (*12)                   | I <sub>PFM</sub>                                     | When connected to external components, $V_{IN}$ = $V_{OUT(T)}$ +2.0V, $V_{CE}$ = $V_{IN}$ , $I_{OUT}$ =1mA                                                                    | <e-4></e-4>               | <e-5></e-5> | <e-6></e-6>           | mA      | 10      |
| PFM Duty Limit (*12)                          | DTY <sub>LIMIT_PFM</sub>                             | $V_{CE} = V_{IN} = V_{OUT(T)} + 1.0V$ , $I_{OUT} = 1$ mA                                                                                                                      | -                         | 200         | 300                   | %       | 1       |
| Maximum Duty Cycle                            | MAXDTY                                               | $V_{IN} = V_{CE} = 5.0V$ , $V_{OUT} = V_{OUT(T)} \times 0.9V$                                                                                                                 | 100                       | 1           | -                     | %       | 3       |
| Minimum Duty Cycle                            | MINDTY                                               | $V_{IN} = V_{CE} = 5.0V$ , $V_{OUT} = V_{OUT(T)} \times 1.1V$                                                                                                                 | -                         | -           | 0                     | %       | 3       |
| Efficiency <sup>(*2)</sup>                    | EFFI                                                 | When connected to external components,<br>$V_{CE} = V_{IN} = V_{OUT,(T)}+1.2V$ , $I_{OUT} = 100$ mA                                                                           | -                         | <e-7></e-7> | -                     | %       | 1       |
| Lx SW "H" ON Resistance 1                     | $R_{L_xH}$                                           | $V_{IN} = V_{CE} = 5.0V, V_{OUT} = 0V, IL_X = 100mA^{(*3)}$                                                                                                                   | -                         | 0.35        | 0.55                  | Ω       | 4       |
| Lx SW "H" ON Resistance 2                     | $R_{L_xH}$                                           | $V_{IN} = V_{CE} = 3.6V, V_{OUT} = 0V, IL_X = 100 \text{mA}^{(*3)}$                                                                                                           | -                         | 0.42        | 0.67                  | Ω       | 4       |
| Lx SW "L" ON Resistance 1                     | $R_{L_{x}L}$                                         | $V_{IN} = V_{CE} = 5.0V^{(*4)}$                                                                                                                                               | -                         | 0.45        | 0.66                  | Ω       | -       |
| Lx SW "L" ON Resistance 2                     | R <sub>L x</sub> L                                   | $V_{IN} = V_{CE} = 3.6V^{(*4)}$                                                                                                                                               | -                         | 0.52        | 0.77                  | Ω       | -       |
| Lx SW "H" Leakage Current (*5)                | I <sub>LEAKH</sub>                                   | $V_{IN} = V_{OUT} = 5.0V, V_{CE} = 0V, L_X = 0V$                                                                                                                              | -                         | 0.01        | 1.0                   | μΑ      | 9       |
| Current Limit (*10)                           | I <sub>LIM</sub>                                     | $V_{IN} = V_{CE} = 5.0V$ , $V_{OUT} = V_{OUT(T)} \times 0.9V$ (*8)                                                                                                            | 900                       | 1050        | 1350                  | mA      | 6       |
| Output Voltage<br>Temperature Characteristics | $\Delta V_{OUT}/$<br>( $V_{OUT} \cdot \Delta Topr$ ) | I <sub>OUT</sub> =30mA<br>-40°C≦Topr≦85°C                                                                                                                                     | -                         | ±100        | -                     | ppm/ °C | 1       |
| CE "H" Voltage                                | V <sub>CEH</sub>                                     | V <sub>OUT</sub> =0V, Applied voltage to V <sub>CE</sub> ,<br>Voltage changes Lx to "H" level (*11)                                                                           | 0.65                      | -           | 6.0                   | V       | 3       |
| CE "L" Voltage                                | $V_{CEL}$                                            | V <sub>OUT</sub> =0V, Applied voltage to V <sub>CE</sub> ,<br>Voltage changes Lx to "L" level <sup>(*11)</sup>                                                                | V <sub>SS</sub>           | -           | 0.25                  | V       | 3       |
| PWM "H" Level Voltage (*13)                   | $V_{PWMH}$                                           | When connected to external components, I <sub>OUT</sub> =1mA <sup>(*6)</sup> . Voltage which oscillation frequency becomes 2550kHz≦f <sub>osc</sub> ≦3450kHz <sup>(*13)</sup> | -                         | -           | V <sub>IN</sub> - 1.0 | ٧       | 1       |
| PWM "H" Level Voltage (*13)                   | $V_{PWML}$                                           | When connected to external components, I <sub>OUT</sub> =1mA <sup>(*6)</sup> , Voltage which oscillation frequency becomes f <sub>OSC</sub> <2550kHz <sup>(*13)</sup>         | V <sub>IN</sub> -<br>0.25 | -           | -                     | V       | 1       |
| CE "H" Current                                | I <sub>CEH</sub>                                     | $V_{IN} = V_{CE} = 5.0V, V_{OUT} = 0V$                                                                                                                                        | - 0.1                     | -           | 0.1                   | μΑ      | 5       |
| CE "L" Current                                | I <sub>CEL</sub>                                     | $V_{IN} = 5.0 \text{V}, V_{CE} = 0 \text{V}, V_{OUT} = 0 \text{V}$                                                                                                            | - 0.1                     | -           | 0.1                   | μΑ      | (5)     |
| Soft Start Time                               | t <sub>ss</sub>                                      | When connected to external components, $V_{CE}$ =0 $V$ $\rightarrow$ $V_{IN}$ , $I_{OUT}$ =1mA                                                                                | 0.5                       | 0.9         | 2.5                   | ms      | 1       |
| Latch Time                                    | t <sub>LAT</sub>                                     | $V_{IN}=V_{CE}=5.0V$ , $V_{OUT}=0.8 \times V_{OUT(T)}$<br>Short Lx at 1 $\Omega$ resistance (*7)                                                                              | 1.0                       | -           | 20                    | ms      | 7       |
| Short Protection<br>Threshold Voltage         | V <sub>SHORT</sub>                                   | Sweeping $V_{OUT}$ , $V_{IN}$ = $V_{CE}$ =5.0V, Short Lx at 1 $\Omega$ resistance, $V_{OUT}$ voltage which Lx becomes "L" level within 1ms                                    | <e-8></e-8>               | <e-9></e-9> | <e-10></e-10>         | V       | 7       |
| CL Discharge                                  | R <sub>DCHG</sub>                                    | $V_{IN} = 5.0V$ $L_X = 5.0V$ $V_{CE} = 0V$ $V_{OUT} = open$                                                                                                                   | 200                       | 300         | 450                   | Ω       | 8       |
| Inductance Value                              | L                                                    | Test frequency=1MHz                                                                                                                                                           | -                         | 1.5         | -                     | μΗ      | -       |
| Allowed Inductor Current                      | I <sub>DC</sub>                                      | ΔT=40°C                                                                                                                                                                       | -                         | 1000        | -                     | mA      | -       |

Test conditions: Unless otherwise stated, VIN=5.0V, VOUT (T) = Nominal Voltage

- \*1: Including hysteresis operating voltage range.
  \*2: EFFI = { ( output voltage × output current ) / ( input voltage × input current) } × 100
  \*3: ON resistance (Ω) = (VIN Lx pin measurement voltage) / 100mA

- \*5: When temperature is high, a current of approximately 10  $\mu$  A (maximum) may leak.
- \*6: The CE/MODE pin of the XCL207 series works also as an external switching pin of PWM control and PWM/PFM control. When the IC is in the operation, control is switched to the automatic PWM/PFM switching mode when the CE/MODE pin voltage is equal to or greater than V<sub>IN</sub> minus 0.3V, and to the PWM mode when the CE/MODE pin voltage is equal to or lower than V<sub>IN</sub> minus 1.0V and equal to or greater than V<sub>CEH</sub>.
  \*7: Time until it short-circuits V<sub>OUT</sub> with GND via 1 Ω of resistor from an operational state and is set to Lx=0V from current limit pulse generating.
  \*8: When V<sub>IN</sub> is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.

\*9: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.

\*10: Current limit denotes the level of detection at peak of coil current. \*11: "H"=VIN~VIN-1.2V, "L"=+0.1V~-0.1V

- \*12: IPFM and DTYLIMIT\_PFM are defined only for the XCL206 and XCL207 series which have PFM control function. (Not for the XCL 205 series)

\*13: VPWMH and VPWML are defined only for the XCL207 series. (They are not used in the XCL205/and XCL206 series)

## ■ELECTRICAL CHARACTERISTICS (Continued)

●XCL205Gxx3AR/XCL206Gxx3AR/XCL207Gxx3AR, fosc=3.0MHz, Ta=25°C

| Output Voltage         V <sub>CUT</sub> When connected to external components, V <sub>N</sub> = ⟨c <sub>E</sub> = 5.0V, I <sub>OUT</sub> = 30mA         ⟨c <sub>E</sub> - 1⟩         ⟨c <sub>E</sub> - 1⟩ <t< th=""><th>TYP.</th><th>MIN.</th><th>TYP. MAX.</th><th>LIMITS</th><th>CIRCUIT</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TYP.          | MIN.            | TYP. MAX.                                                | LIMITS  | CIRCUIT |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|----------------------------------------------------------|---------|---------|
| Output Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IIF.          | IVIIIN.         | ITF. WAX.                                                | UNITS   | CIRCUIT |
| Maximum Output Current   IouTIMAX   Viv=Vour(T)+2.0V, VcE=1.0V   Men connected to external components (**)   600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <e-2></e-2>   | <e-1></e-1>     | <e-2> <e-3></e-3></e-2>                                  | V       | 1       |
| When connected to external components (°s)   Supply Current (XCL205)   V <sub>OLT</sub> V <sub>OL</sub> | -             | 1.8             | - 6.0                                                    | V       | 1       |
| Supply Current (XCL205)   Voltage which Lx pin holding "L" level ("I11)   I.00   I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -             | 600             |                                                          | mA      | 1       |
| Supply Current (XCL206, XCL207)   Stand-by Current   I <sub>STB</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.40          | 1.00            | 1.40 1.78                                                | V       | 3       |
| Supply Current (XCL206, XCL207)   Stand-by Current   Stand-by Curren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46            | -               | 46 65                                                    | ^       | <u></u> |
| Stand-by Current   I_STB   V_{IN} = 5.0V, V_{CE} = 0V, V_{OUT} = V_{OUT(T)} × 1.1V   - V_{OSC} = 0.0V, V_{O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21            | -               | 21 35                                                    | μΑ      | 2       |
| Oscillation Frequency   Fosc   When connected to external components, V <sub>IN</sub> = V <sub>OUTCIT</sub> +2.OV, V <sub>CE</sub> =1.OV, I <sub>OUT</sub> =100mA   2550   38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0             | -               | 0 1.0                                                    | μΑ      | 2       |
| PFM Switching Current   PFM   V <sub>IN</sub> = V <sub>OUT(T)</sub> +2.0V, V <sub>CE</sub> = V <sub>IN</sub> , I <sub>OUT</sub> =1mA   <e-4> &lt;   &lt;   &lt;</e-4>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3000          | 2550            |                                                          | kHz     | 1       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <e-5></e-5>   | <e-4></e-4>     | <e-5> <e-6></e-6></e-5>                                  | mA      | 10      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200           | -               | 200 300                                                  | %       | 1       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -             | 100             |                                                          | %       | 3       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -             | -               | - 0                                                      | %       | 3       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <e-7></e-7>   | -               | <e-7> -</e-7>                                            | %       | 1       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.35          | -               | 0.35 0.55                                                | Ω       | 4       |
| $ \begin{array}{ c c c c } \hline LxSW"L""ONResistance2 & R_{LxL} & V_{IN}=V_{CE}=3.6V^{('4)} & - & 0 \\ \hline LxSW"H"LeakageCurrent^{('5)} & I_{LEAKH} & V_{IN}=V_{OUT}=5.0V,V_{CE}=0V,L_{X}\!=0V & - & 0 \\ \hline CurrentLimit^{('10)} & I_{LIM} & V_{IN}=V_{CE}=5.0V,V_{OUT}=V_{OUT(T)}\times0.9V^{('6)} & 900 & 10 \\ \hline OutputVoltage & \Delta V_{OUT} & I_{OUT}=30mA & -40^{\circ}C\leqTopr\leq85^{\circ}C & - & \pm \\ \hline CE"H"Voltage & V_{CEH} & V_{OUT}=0V,AppliedvoltagetoV_{CE,11} & 0.65 \\ \hline CE"L"Voltage & V_{CEL} & V_{OUT}=0V,AppliedvoltagetoV_{CE,111} & 0.65 \\ \hline CE"L"Voltage & V_{CEL} & V_{OUT}=0V,AppliedvoltagetoV_{CE,111} & V_{SS} \\ \hline PWM"H"LevelVoltage^{('13)} & V_{PWMH} & V_{OUT}=0V,AppliedvoltagetoV_{CE,111} & V_{SS} \\ \hline PWM"H"LevelVoltage^{('13)} & V_{PWMH} & V_{OUT}=0V,AppliedvoltagetoV_{CE,111} & V_{SS} \\ \hline PWM"H"LevelVoltage^{('13)} & V_{PWMH} & V_{OUT}=0V,Appliedvoltagetotototillation frequencybecomes2550kHz                  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.42          | -               | 0.42 0.67                                                | Ω       | 4       |
| $ \begin{array}{ c c c c } \hline Lx SW "H" Leakage Current $^{(5)}$ & $I_{LEKH}$ & $V_{IN} = V_{OUT} = 5.0V, $V_{CE} = 0V, $L_{X} = 0V$ & - & 0 \\ \hline \hline Current Limit $^{(*10)}$ & $I_{LIM}$ & $V_{IN} = V_{OEE} = 5.0V, $V_{OUT} = V_{OUT}(T) \times 0.9V$ $^{(*8)}$ & 900 & 10 \\ \hline \hline Output Voltage & $\Delta V_{OUT}/$ & $I_{OUT} = 30 mA & -40 ^{\circ}C \leq Topr \leq 85 ^{\circ}C$ & - & \pm \\ \hline \hline CE "H" Voltage & $V_{CEH}$ & $V_{OUT} = 0V, $Applied voltage to $V_{CE}, $Voltage changes Lx to "H" level $^{(*11)}$ & 0.65 \\ \hline \hline CE "L" Voltage & $V_{CEL}$ & $V_{OUT} = 0V, $Applied voltage to $V_{CE}, $Voltage changes Lx to "L" level $^{(*11)}$ & $V_{SS}$ \\ \hline \hline PWM "H" Level Voltage $^{(*13)}$ & $V_{PWMH}$ & $When connected to external components, $I_{OUT} = 1mA$ $^{(*6)}$, $Voltage which oscillation $frequency becomes $2550 kHz \leq f_{OSC} \leq 3450 kHz$ $^{(*13)}$ & $V_{IN} = 0.25$ \\ \hline \hline CE "H" Current & $I_{CEH}$ & $V_{IN} = V_{CE} = 5.0V, $V_{OUT} = 0V$ & -0.1 \\ \hline CE "L" Current & $I_{CEL}$ & $V_{IN} = V_{CE} = 5.0V, $V_{OUT} = 0V$ & -0.1 \\ \hline Soft Start Time & $t_{SS}$ & $V_{IN} = 0.0000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.45          | -               | 0.45 0.66                                                | Ω       | -       |
| $ \begin{array}{ c c c c c } \hline Current Limit (^{\prime 10}) & I_{LIM} & V_{IN} = V_{CE} = 5.0V, V_{OUT} = V_{OUT(T)} \times 0.9V (^{\prime 8}) & 900 & 10 \\ \hline Output Voltage & \Delta V_{OUT} / & I_{OUT} = 30mA & -40^{\circ}C \leq Topr \leq 85^{\circ}C & - & \pm \\ \hline CE "H" Voltage & V_{CEH} & V_{OUT} = 0V, Applied voltage to V_{CE, Voltage changes Lx to "H" level (^{\prime 11})} & 0.65 \\ \hline CE "L" Voltage & V_{CEL} & V_{OUT} = 0V, Applied voltage to V_{CE, Voltage changes Lx to "L" level (^{\prime 11})} & V_{SS} \\ \hline PWM "H" Level Voltage (^{\prime 13}) & V_{PWMH} & When connected to external components, I_{OUT} = 1mA (^{\prime 6}), Voltage which oscillation frequency becomes 2550kHz \leq I_{OSC} \leq 3450kHz (^{\prime 13}) & When connected to external components, I_{OUT} = 1mA (^{\prime 6}), Voltage which oscillation frequency becomes I_{OSC} \leq 3450kHz (^{\prime 13}) & 0.25 \\ \hline CE "H" Current & I_{CEH} & V_{IN} = V_{CE} = 5.0V, V_{OUT} = 0V & -0.1 \\ \hline CE "L" Current & I_{CEL} & V_{IN} = 5.0V, V_{CE} = 0V, V_{OUT} = 0V & -0.1 \\ \hline Soft Start Time & I_{LAT} & Short Lx at 1\Omega resistance (^{\prime 7}) & 1.0 \\ \hline Short Protection Threshold Voltage & V_{IN} = 0.0T, V_{OUT} = 0.0T, V_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.52          | -               | 0.52 0.77                                                | Ω       | -       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01          | -               | 0.01 1.0                                                 | μΑ      | 9       |
| Temperature Characteristics $(V_{Out} \cdot \Delta Topr)$ $-40^{\circ}C \le Topr \le 85^{\circ}C$ $-\frac{\pi}{2}$ $-\frac{\pi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1050          | 900             | 1050 1350                                                | mA      | 6       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ±100          | -               | ±100 -                                                   | ppm/ °C | 1       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -             | 0.65            | - 6.0                                                    | V       | 3       |
| PWM "H" Level Voltage (*13) $V_{PWMH}$ $I_{OUT}$ =1mA (*6). Voltage which oscillation frequency becomes 2550kHz ≤ f <sub>OSC</sub> ≤ 3450kHz (*13) $V_{PWML}$ $V_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -             | V <sub>SS</sub> | - 0.25                                                   | V       | 3       |
| $\begin{array}{ c c c c c } \hline PWM \text{ "H" Level Voltage } & V_{PWML} & I_{OUT}=1\text{mA}^{(^6)}, \text{ Voltage which oscillation} & V_{IN}^{-1} \\ \hline CE \text{ "H" Current} & I_{CEH} & V_{IN}=V_{CE}=5.0\text{V}, V_{OUT}=0\text{V} & -0.1 \\ \hline CE \text{ "L" Current} & I_{CEL} & V_{IN}=5.0\text{V}, V_{CE}=0\text{V}, V_{OUT}=0\text{V} & -0.1 \\ \hline Soft Start Time & t_{SS} & When connected to external components, & V_{CE}=0V \rightarrow V_{IN}, I_{OUT}=1\text{mA} & - &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  & <$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -             | -               | - V <sub>IN</sub> - 1.                                   | V       | 1       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -             |                 |                                                          | V       | 1       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -             |                 |                                                          | μΑ      | ⑤       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -             | - 0.1           | - 0.1                                                    | μΑ      | ⑤       |
| Short Protection Threshold Voltage  CL Discharge  Short Lx at $1\Omega$ resistance (*7)  Sweeping $V_{OUT}$ , $V_{IN}=V_{CE}=5.0V$ , Short Lx at $1\Omega$ resistance, $V_{OUT}$ voltage which Lx becomes "L" <e-8> <i 1ms="" <math="" at="" cl="" discharge="" level="" lx="" rdchg="" short="" within="">1\Omega resistance (*7)  Sweeping <math>V_{OUT}</math>, <math>V_{IN}=V_{CE}=5.0V</math>, Short Lx at <math>1\Omega</math> resistance, <math>V_{OUT}</math> voltage which Lx becomes "L" <e-8> <i 1ms="" 200="" 3<="" cl="" discharge="" l_x="5.0V" level="" rdchg="" td="" v_in="5.0V" v_{ce}="0V" v_{out}="open" within=""><td><e-11></e-11></td><td>-</td><td><e-11> <e-12< td=""><td>ms</td><td>1</td></e-12<></e-11></td></i></e-8></i></e-8>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <e-11></e-11> | -               | <e-11> <e-12< td=""><td>ms</td><td>1</td></e-12<></e-11> | ms      | 1       |
| Short Protection<br>Threshold Voltage $V_{SHORT}$ 1Ω resistance, $V_{OUT}$ voltage which Lx becomes "L" <e-8> <i< th="">       CL Discharge     <math>R_{DCHG}</math> <math>V_{IN} = 5.0V</math> <math>L_X = 5.0V</math> <math>V_{OUT} = 0</math>     200     3</i<></e-8>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -             | 1.0             | - 20                                                     | ms      | 7       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <e-9></e-9>   | <e-8></e-8>     | <e-9> <e-10< td=""><td>V</td><td>7</td></e-10<></e-9>    | V       | 7       |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300           | 200             | 300 450                                                  | Ω       | 8       |
| Inductance Value L Test frequency=1MHz - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5           | -               | 1.5 -                                                    | μН      | -       |
| Allowed Inductor Current I <sub>DC</sub> $\Delta$ T=40°C - 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1000          | -               | 1000 -                                                   | mA      | -       |

Test conditions: Unless otherwise stated, VIN=5.0V, VOUT (T) = Nominal Voltage

- \*1: Including hysteresis operating voltage range.
  \*2: EFFI = { (output voltage × output current ) / (input voltage × input current) } × 100
  \*3: ON resistance (Ω) = (VIN Lx pin measurement voltage) / 100mA
  \*4: Design value
  \*5: When temperature is high, a current of approximately 10 μ A (maximum) may leak.
  \*6:The CE/MODE pin of the XCL207 series works also as an external switching pin of PWM control and PWM/PFM control. When the IC is in the operation, control is switched to the automatic PWM/PFM switching mode when the CE/MODE pin voltage is equal to or greater than VIN minus 0.3V, and to the PWM mode when the CE/MODE pin voltage is equal to or lower than VIN minus 1.0V and equal to or greater than VCEH.
  \*7:Time until it short-circuits VOUT with GND via 1Ω of resistor from an operational state and is set to Lx=0V from current limit pulse generating.
  \*8: When VIN is less than 2.4V limit current may not be reached because voltage falls caused by ON resistance.
- \*8: When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.
- \*9: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.
  \*10: Current limit denotes the level of detection at peak of coil current.
- \*11: "H"=VIN~VIN-1.2V, "L"=+0.1V~-0.1V
- \*12: IPFM and DTY<sub>LIMIT\_PFM</sub> are defined only for the XCL206 and XCL207 series which have PFM control function. (Not for the XCL 205 series) \*13: VPWMH and VPWML are defined only for the XCL207 series. (They are not used in the XCL205/and XCL206 series) \*14: VIN is applied when Vout (T) x 0.5V becomes more than VIN.

# ■ ELECTRICAL CHARACTERISTICS (Continued)

## Output Voltage

| NOMINAL           |             | V <sub>OUT</sub> (V) |             |  |  |  |
|-------------------|-------------|----------------------|-------------|--|--|--|
| OUTPUT<br>VOLTAGE | <e-1></e-1> | <e-2></e-2>          | <e-3></e-3> |  |  |  |
| $V_{OUT(T)}$      | MIN         | TYP                  | MAX         |  |  |  |
| 1.00              | 0.980       | 1.000                | 1.020       |  |  |  |
| 1.20              | 1.176       | 1.200                | 1.224       |  |  |  |
| 1.40              | 1.372       | 1.400                | 1.428       |  |  |  |
| 1.50              | 1.470       | 1.500                | 1.530       |  |  |  |
| 1.75              | 1.715       | 1.750                | 1.785       |  |  |  |
| 1.80              | 1.764       | 1.800                | 1.836       |  |  |  |
| 1.90              | 1.862       | 1.900                | 1.938       |  |  |  |
| 2.50              | 2.450       | 2.500                | 2.550       |  |  |  |
| 2.80              | 2.744       | 2.800                | 2.856       |  |  |  |
| 2.85              | 2.793       | 2.850                | 2.907       |  |  |  |
| 3.00              | 2.940       | 3.000                | 3.060       |  |  |  |
| 3.30              | 3.234       | 3.300                | 3.366       |  |  |  |

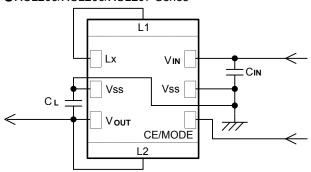
### ●PFM Switching Current

| NOMINAL OUTPUT                    |             | I <sub>PFM</sub> (mA) |             |  |  |  |
|-----------------------------------|-------------|-----------------------|-------------|--|--|--|
| NOMINAL OUTPUT  VOLTAGE           | <e-4></e-4> | <e-5></e-5>           | <e-6></e-6> |  |  |  |
| VOLTAGE                           | MIN         | TYP                   | MAX         |  |  |  |
| V <sub>OUT(T)</sub> ≦1.2V         | 190         | 260                   | 350         |  |  |  |
| 1.2V < V <sub>OUT(T)</sub> ≦1.75V | 180         | 240                   | 300         |  |  |  |
| 1.8V≦V <sub>OUT(T)</sub>          | 170         | 220                   | 270         |  |  |  |

### Efficiency

| NOMINAL      | Efficiency(%) |  |  |  |  |  |
|--------------|---------------|--|--|--|--|--|
| OUTPUT       | XCL205/206/20 |  |  |  |  |  |
| VOLTAGE      | <e-7></e-7>   |  |  |  |  |  |
| $V_{OUT(T)}$ | 3.0MHz        |  |  |  |  |  |
| 1.00         | 79            |  |  |  |  |  |
| 1.20         | 82            |  |  |  |  |  |
| 1.40         | 83            |  |  |  |  |  |
| 1.50         | 84            |  |  |  |  |  |
| 1.75         |               |  |  |  |  |  |
| 1.80         | 85            |  |  |  |  |  |
| 1.90         |               |  |  |  |  |  |
| 2.50         |               |  |  |  |  |  |
| 2.80         |               |  |  |  |  |  |
| 2.85         | 86            |  |  |  |  |  |
| 3.00         |               |  |  |  |  |  |
| 3.30         |               |  |  |  |  |  |

### ● Short Protection Threshold Voltage


| NOMINAL      |             | V <sub>SHORT</sub> (V) |               |                 |             |               |  |  |
|--------------|-------------|------------------------|---------------|-----------------|-------------|---------------|--|--|
| OUTPUT       | XC          | L205/206/207           | A,B,C         | XCL205/206/207G |             |               |  |  |
| VOLTAGE      | <e-8></e-8> | <e-9></e-9>            | <e-10></e-10> | <e-8></e-8>     | <e-9></e-9> | <e-10></e-10> |  |  |
| $V_{OUT(T)}$ | MIN         | TYP                    | MAX           | MIN             | TYP         | MAX           |  |  |
| 1.00         | 0.375       | 0.500                  | 0.625         | 0.188           | 0.250       | 0.313         |  |  |
| 1.20         | 0.450       | 0.600                  | 0.750         | 0.225           | 0.300       | 0.375         |  |  |
| 1.40         | 0.525       | 0.700                  | 0.875         | 0.263           | 0.350       | 0.438         |  |  |
| 1.50         | 0.563       | 0.750                  | 0.938         | 0.282           | 0.375       | 0.469         |  |  |
| 1.75         | 0.656       | 0.875                  | 1.094         | 0.328           | 0.438       | 0.547         |  |  |
| 1.80         | 0.675       | 0.900                  | 1.125         | 0.338           | 0.450       | 0.563         |  |  |
| 1.90         | 0.713       | 0.950                  | 1.188         | 0.357           | 0.475       | 0.594         |  |  |
| 2.50         | 0.938       | 1.250                  | 1.563         | 0.469           | 0.625       | 0.782         |  |  |
| 2.80         | 1.050       | 1.400                  | 1.750         | 0.525           | 0.700       | 0.875         |  |  |
| 2.85         | 1.069       | 1.425                  | 1.781         | 0.535           | 0.713       | 0.891         |  |  |
| 3.00         | 1.125       | 1.500                  | 1.875         | 0.563           | 0.750       | 0.938         |  |  |
| 3.30         | 1.238       | 1.650                  | 2.063         | 0.619           | 0.825       | 1.032         |  |  |

### ● Soft Start Time (XCL20xB, XCL20xG)

| NOMINAL OUTPUT                  | t <sub>ss</sub> (ms) |               |  |  |  |
|---------------------------------|----------------------|---------------|--|--|--|
| VOI TAGE                        | <e-11></e-11>        | <e-12></e-12> |  |  |  |
| VOLTAGE                         | TYP                  | MAX           |  |  |  |
| 0.8V≦V <sub>OUT(T)</sub> ≦1.75V | 0.25                 | 0.4           |  |  |  |
| 1.8V≦V <sub>OUT(T)</sub> ≦4.0V  | 0.32                 | 0.5           |  |  |  |

## **■**TYPICAL APPLICATION CIRCUIT

### ●XCL205/XCL206/XCL207 Series



### External Components

CIN :  $10V/4.7 \mu$  F (Ceramic) C<sub>L</sub> :  $6.3V/10 \mu$  F (Ceramic)

NOTE

The Inductor can be used only for this DC/DC converter.

Please do not use this inductor for the other reasons.

Please use B, X5R, and X7R grades in temperature characteristics for CIN and CL capacitors.

These grade ceramic capacitors minimize capacitance-loss as a function of voltage stress.

### ■OPERATIONAL DESCRIPTION

The XCL205/XCL/206/XCL207 series consists of a reference voltage source, ramp wave circuit, error amplifier, PWM comparator, phase compensation circuit, output voltage adjustment resistors, P-channel MOSFET driver transistor, N-channel MOSFET switching transistor for the synchronous switch, current limiter circuit, UVLO circuit with control IC, and an inductor. (See the block diagram above.) Using the error amplifier, the voltage of the internal voltage reference source is compared with the feedback voltage from the V<sub>OUT</sub> pin through split resistors, R1 and R2. Phase compensation is performed on the resulting error amplifier output, to input a signal to the PWM comparator to determine the turn-on time during PWM operation. The PWM comparator compares, in terms of voltage level, the signal from the error amplifier with the ramp wave from the ramp wave circuit, and delivers the resulting output to the buffer driver circuit to cause the Lx pin to output a switching duty cycle. This process is continuously performed to ensure stable output voltage. The current feedback circuit monitors the P-channel MOS driver transistor current for each switching operation, and modulates the error amplifier output signal to provide multiple feedback signals. This enables a stable feedback loop even when a low ESR capacitor such as a ceramic capacitor is used ensuring stable output voltage.

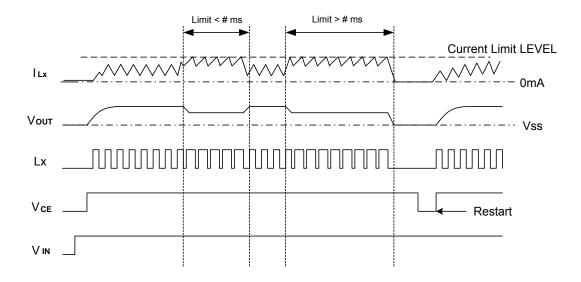
### <Reference Voltage Source>

The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter.

#### <Ramp Wave Circuit>

The ramp wave circuit determines switching frequency. The frequency is fixed internally 3.0MHz. Clock pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation, and to synchronize all the internal circuits.

#### <Error Amplifier>


The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback voltage divided by the internal split resistors, R1 and R2. When a feed back voltage is lower than the reference voltage, the output voltage of the error amplifier is increased. The gain and frequency characteristics of the error amplifier output are fixed internally to deliver an optimized signal to the mixer.

#### <Current Limit>

The current limiter circuit of the XCL205/XCL206/XCL207 series monitors the current flowing through the P-channel MOS driver transistor connected to the Lx pin, and features a combination of the current limit mode and the operation suspension mode.

- ① When the driver current is greater than a specific level, the current limit function operates to turn off the pulses from the Lx pin at any given timing.
- When the driver transistor is turned off, the limiter circuit is then released from the current limit detection state.
- 3 At the next pulse, the driver transistor is turned on. However, the transistor is immediately turned off in the case of an over current state.
- $\ensuremath{\textcircled{4}}$  When the over current state is eliminated, the IC resumes its normal operation.

The IC waits for the over current state to end by repeating the steps ① through ③. If an over current state continues for a few milliseconds and the above three steps are repeatedly performed, the IC performs the function of latching the OFF state of the driver transistor, and goes into operation suspension state. Once the IC is in suspension state, operations can be resumed by either turning the IC off via the CE/MODE pin, or by restoring power to the  $V_{IN}$  pin. The suspension state does not mean a complete shutdown, but a state in which pulse output is suspended; therefore, the internal circuitry remains in operation. The current limit of the XCL205/XCL206/XCL207 series can be set at 1050mA at typical. Depending on the state of the PC Board, latch time may become longer and latch operation may not work. In order to avoid the effect of noise, an input capacitor is placed as close to the IC as possible.



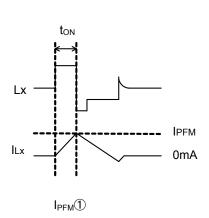
## ■ OPERATIONAL DESCRIPTION (Continued)

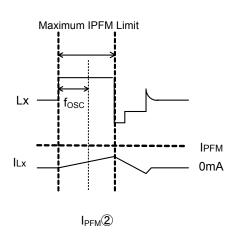
#### <Short-Circuit Protection>

The short-circuit protection circuit monitors the internal R1 and R2 divider voltage from the  $V_{\text{OUT}}$  pin (refer to FB point in the block diagram shown in the previous page). In case where output is accidentally shorted to the Ground and when the FB point voltage decreases less than half of the reference voltage (Vref) and a current more than the  $I_{\text{LIM}}$  flows to the driver transistor, the short-circuit protection quickly operates to turn off and to latch the driver transistor. In the latch state, the operation can be resumed by either turning the IC off and on via the CE/MODE pin, or by restoring power supply to the  $V_{\text{IN}}$  pin.

When sharp load transient happens, a voltage drop at the  $V_{OUT}$  is propagated to the FB point through  $C_{FB}$ , as a result, short circuit protection may operate in the voltage higher than 1/2  $V_{OUT}$  voltage.

#### <UVI O Circuit>


When the VIN pin voltage becomes 1.4V or lower, the P-channel output driver transistor is forced OFF to prevent false pulse output caused by unstable operation of the internal circuitry. When the  $V_{IN}$  pin voltage becomes 1.8V or higher, switching operation takes place. By releasing the UVLO function, the IC performs the soft start function to initiate output startup operation. The soft start function operates even when the VIN pin voltage falls momentarily below the UVLO operating voltage. The UVLO circuit does not cause a complete shutdown of the IC, but causes pulse output to be suspended; therefore, the internal circuitry remains in operation.


#### <PFM Switch Current>

In PFM control operation, until coil current reaches to a specified level (IPFM), the IC keeps the P-ch MOSFET on. In this case, on-time ( $t_{ON}$ ) that the P-ch MOSFET is kept on can be given by the following formula.  $t_{ON} = L \times IPFM / (VIN - VOUT) \longrightarrow IPFM$ 

#### <PFM Duty Limit>

In the PFM control operation, the PFM Duty Limit (DTY<sub>LIMIT\_PFM</sub>) is set to 200% (TYP.). Therefore, under the condition that the duty increases (e.g. the condition that the step-down ratio is small), it's possible for P-ch MOSFET to be turned off even when coil current doesn't reach to IPFM. →IPFM②





# ■OPERATIONAL DESCRIPTION (Continued)

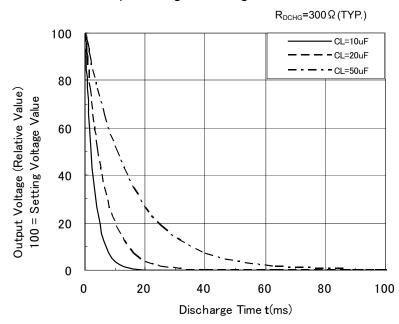
<CL High Speed Discharge>

The XCL205B(C,G)/ XCL206B(C,G)/ XCL207B(C,G) series can quickly discharge the electric charge at the output capacitor ( $C_L$ ) when a low signal to the CE pin which enables a whole IC circuit put into OFF state, is inputted via the N-channel transistor located between the  $L_X$  pin and the  $V_{SS}$  pin. When the IC is disabled, electric charge at the output capacitor ( $C_L$ ) is quickly discharged so that it may avoid application malfunction. Discharge time of the output capacitor ( $C_L$ ) is set by the  $C_L$  auto-discharge resistance (R) and the output capacitor ( $C_L$ ). By setting time constant of a  $C_L$  auto-discharge resistance value [R] and an output capacitor value ( $C_L$ ) as  $\tau$  ( $\tau$  =C x R), discharge time of the output voltage after discharge via the N channel transistor is calculated by the following formula.

 $V = V_{OUT(T)} x e^{-t/\tau}$  or  $t = \tau \ln (V_{OUT(T)} / V)$ 

V : Output voltage after discharge

 $V_{\text{OUT}(T)}$ : Output voltage

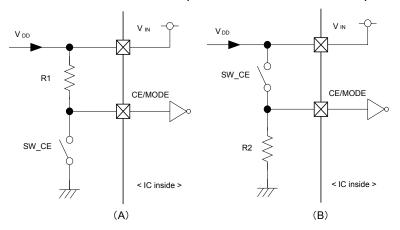

t: Discharge time,

 $\tau$  : C x R

C= Capacitance of Output capacitor (CL)

R= C<sub>L</sub> auto-discharge resistance

### **Output Voltage Discharge Characteristics**



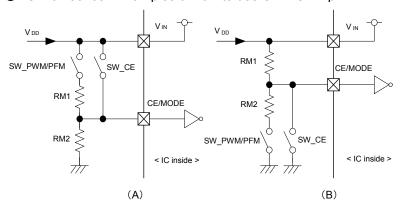

# ■ OPERATIONAL DESCRIPTION (Continued)

### <CE/MODE Pin Function>

The operation of the XCL205/XCL206/ XCL207 series will enter into the shut down mode when a low level signal is input to the CE/MODE pin. During the shutdown mode, the current consumption of the IC becomes  $0\,\mu$  A (TYP.), with a state of high impedance at the Lx pin and Vout pin. The IC starts its operation by inputting a high level signal to the CE/MODE pin. The input to the CE/MODE pin is a CMOS input and the sink current is  $0\,\mu$  A (TYP.).

#### ●XCL205/XCL206 series - Examples of how to use CE/MODE pin




|    | (A)   |           |  |
|----|-------|-----------|--|
| SI | CW CE | SELECTED  |  |
|    | SW_CE | STATUS    |  |
|    | ON    | Stand-by  |  |
|    | OFF   | Operation |  |

 SW\_CE
 SELECTED STATUS

 ON
 Operation

 OFF
 Stand-by

### ●XCL207 series - Examples of how to use CE/MODE pin



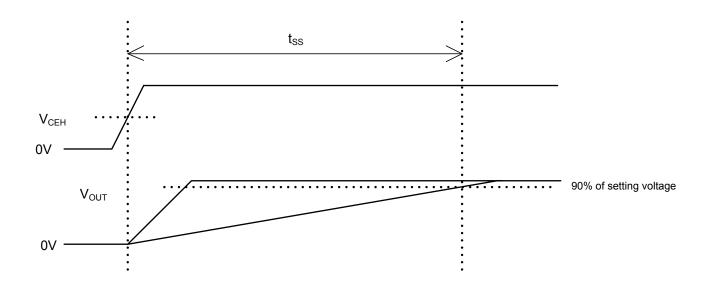
Intermediate voltage can be generated by RM1 and RM2. Please set the value of each R1, R2, RM1, RM2 from

few hundreds k  $\Omega$  to few hundreds M  $\Omega$  . For switches, CPU open-drain I/O port and transistor can be used.

| (A)   |            |                   |  |  |
|-------|------------|-------------------|--|--|
| SW CE | SW PWM/PFM | SELECTED          |  |  |
| SW_CL | SW_PWW/PFW | STATUS            |  |  |
|       |            | PWM/PFM           |  |  |
| ON    | *          | Automatic         |  |  |
|       |            | Switching Control |  |  |
| OFF   | ON         | PWM Control       |  |  |
| OFF   | OFF        | Stand-by          |  |  |

 SW\_CE
 SW\_PWM/PFM
 SELECTED STATUS

 ON
 \* Stand-by


 OFF
 ON
 PWM Control

 OFF
 OFF
 Automatic Switching Control

# ■ OPERATIONAL DESCRIPTION (Continued)

<Soft Start>

The XCL205/XCL206/XCL207 series (A, C type) provide 0.9ms (TYP). The XCL205/XCL206/XCL207 series (B, G type) provide 0.32ms (TYP) however, when V<sub>OUT</sub> is less than 1.8V, provide 0.25ms (TYP.). Soft start time is defined as the time to reach 90% of the output nominal voltage when the CE pin is turned on.



## **■**FUNCTION CHART

| CE/MODE          | OPERATIONAL STATES |                     |                     |  |
|------------------|--------------------|---------------------|---------------------|--|
| VOLTAGE<br>LEVEL | XCL205             | XCL206              | XCL207              |  |
|                  | Synchronous        | Synchronous         | Synchronous         |  |
| H Level (*1)     | PWM Fixed          | PWM/PFM             | PWM/PFM             |  |
|                  | Control            | Automatic Switching | Automatic Switching |  |
| M Level (*2)     | _                  | _                   | Synchronous         |  |
| IVI Level        |                    |                     | PWM Fixed Control   |  |
| L Level (*2)     | Stand-by           | Stand-by            | Stand-by            |  |

Note on CE/MODE pin voltage level range

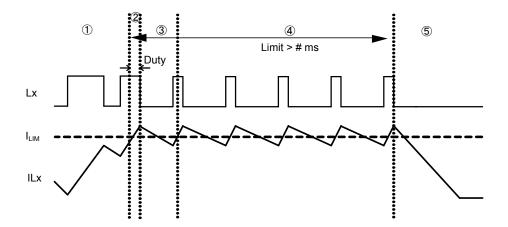
(\*1) H level:  $0.65V \le H$  level  $\le 6V$  (for XCL205/XCL206)

H level:  $V_{IN} - 0.25V \le H$  level  $\le V_{IN}$  (for XCL207)

(\*2) M level:  $0.65V \le M$  level  $\le V_{IN}$  - 1.0V (for XCL207)

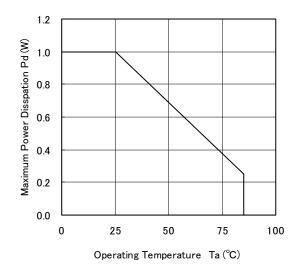
(\*3) L level:  $0V \le L$  level  $\le 0.25V$ 

### ■NOTE ON USE


- 1. The XCL205/XCL206/XCL207 series is designed for use with ceramic output capacitors. If, however, the potential difference is too large between the input voltage and the output voltage, a ceramic capacitor may fail to absorb the resulting high switching energy and oscillation could occur on the output. If the input-output potential difference is large, connect an electrolytic capacitor in parallel to compensate for insufficient capacitance.
- 2. Spike noise and ripple voltage arise in a switching regulator as with a DC/DC converter. These are greatly influenced by external component selection, such as the coil inductance, capacitance values, and board layout of external components. Once the design has been completed, verification with actual components should be done.
- 3. Depending on the input-output voltage differential, or load current, some pulses may be skipped, and the ripple voltage may increase.
- 4. When the difference between VIN and VOUT is large in PWM control, very narrow pulses will be outputted, and there is the possibility that some cycles may be skipped completely.
- 5. When the difference between VIN and VOUT is small, and the load current is heavy, very wide pulses will be outputted and there is the possibility that some cycles may be skipped completely.
- 6. With the IC, the peak current of the coil is controlled by the current limit circuit. Since the peak current increases when dropout voltage or load current is high, current limit starts operation, and this can lead to instability. When peak current becomes high, please adjust the coil inductance value and fully check the circuit operation. In addition, please calculate the peak current according to the following formula:

Ipk = (VIN - VOUT) x OnDuty / (2 x L x f<sub>OSC</sub>) + IOUT

L: Coil Inductance Value


fosc: Oscillation Frequency

- 7. When the peak current which exceeds limit current flows within the specified time, the built-in P-ch driver transistor turns off. During the time until it detects limit current and before the built-in transistor can be turned off, the current for limit current flows; therefore, care must be taken when selecting the rating for the external components such as a coil.
- 8. When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.
- 9. Depending on the state of the PC Board, latch time may become longer and latch operation may not work. In order to avoid the effect of noise, the board should be laid out so that input capacitors are placed as close to the IC as possible.
- 10. Use of the IC at voltages below the recommended voltage range may lead to instability.
- 11. This IC should be used within the stated absolute maximum ratings in order to prevent damage to the device.
- 12. When the IC is used in high temperature, output voltage may increase up to input voltage level at no load because of the leak current of the driver transistor.
- 13. The current limit is set to 1350mA (MAX.) at typical. However, the current of 1350mA or more may flow. In case that the current limit functions while the Vout pin is shorted to the GND pin, when P-ch MOSFET is ON, the potential difference for input voltage will occur at both ends of a coil. For this, the time rate of coil current becomes large. By contrast, when N-ch MOSFET is ON, there is almost no potential difference at both ends of the coil since the Vout pin is shorted to the GND pin. Consequently, the time rate of coil current becomes quite small. According to the repetition of this operation, and the delay time of the circuit, coil current will be converged on a certain current value, exceeding the amount of current, which is supposed to be limited originally. Even in this case, however, after the over current state continues for several ms, the circuit will be latched. A coil should be used within the stated absolute maximum rating in order to prevent damage to the device.
  - ①Current flows into P-ch MOSFET to reach the current limit (ILIM).
  - ②The current of ILIM or more flows since the delay time of the circuit occurs during from the detection of the current limit to OFF of P-ch MOSFET.
  - 3 Because of no potential difference at both ends of the coil, the time rate of coil current becomes quite small.
  - (4) Lx oscillates very narrow pulses by the current limit for several ms.
  - The circuit is latched, stopping its operation.



## ■NOTE ON USE (Continued)

- 14. In order to stabilize  $V_{IN}$  voltage level and oscillation frequency, we recommend that a by-pass capacitor (CIN) be connected as close as possible to the VIN & VSS pins.
- 15. High step-down ratio and very light load may lead an intermittent oscillation when PWM mode.
- 16. Please use within the power dissipation range below. Please also note that the power dissipation may changed by test conditions, the power dissipation figure shown is PCB mounted.



the power loss of micro DC/DC according to the following formula:

power loss = 
$$V_{OUT} \times I_{OUT} \times ((100/EFFI) - 1)$$
 (W)

 $V_{OUT}$ : Output Voltage (V)  $I_{OUT}$ : Output Current (A)

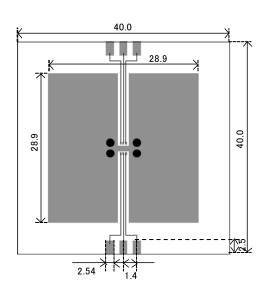
EFFI: Conversion Efficiency (%)

Measurement Condition (Reference data)

Condition: Mount on a board Ambient: Natural convection Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm<sup>2</sup> in one side)

Copper (Cu) traces occupy 50% of the board area

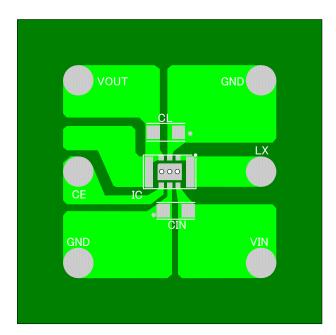

In top and back faces

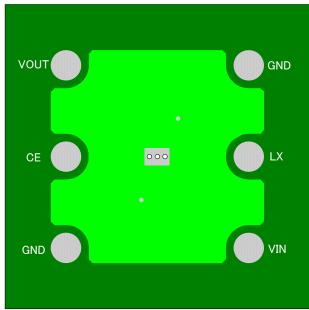
Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

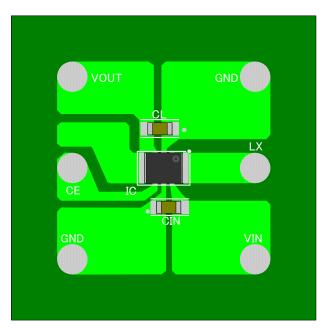
Thickness: 1.6mm

Through-hole: 4 x 0.8 Diameter



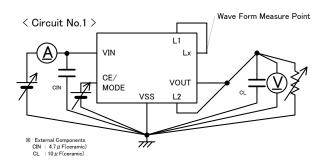


Evaluation Board (Unit: mm)

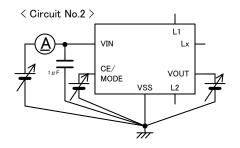
## ■ NOTE ON USE (Continued)

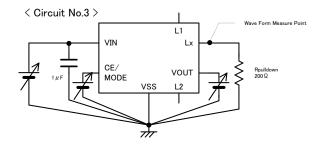

### Instructions of pattern layouts

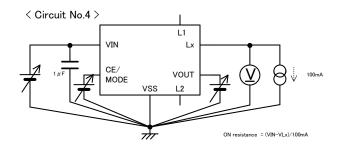
- 1. In order to stabilize Vin voltage level, we recommend that a by-pass capacitor (Cin) be connected as close as possible to the Vin (No.6) & VSS (No.5) pins.
- 2. Please mount each external component as close to the IC as possible.
- 3. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance.
- 4. Make sure that the PCB GND traces are as thick as possible, as variations in ground potential caused by high ground currents at the time of switching may result in instability of the IC.
- 5. This series' internal driver transistors bring on heat because of the output current and ON resistance of driver transistors.
- 6. Please connect Lx (No.1) pin and L1 (No.7) pin by wiring on the PCB.
- 7. Please connect V<sub>OUT</sub> (No.3) pin and L2 (No.8) pin by wiring on the PCB.

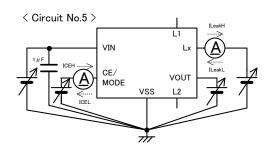


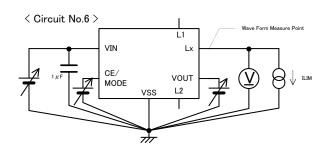


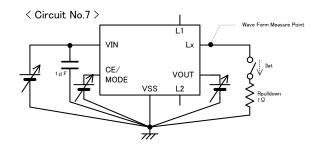


FRONT BACK (Flip Horizontal)

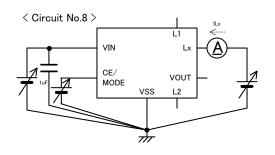


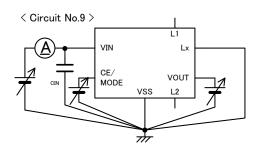


FRONT (PCB mounted)

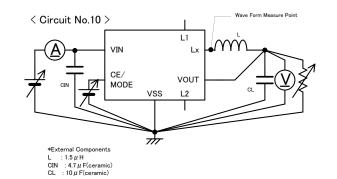

## **TEST CIRCUITS**














## **■**TYPICAL PERFORMANCE CHARACTERISTICS

### (1) Efficiency vs. Output Current

XCL205A183AR/XCL206A183AR/XCL207A183AR

100

XCL206/XCL207(PWMPFM)

80

2.4V

3.6V

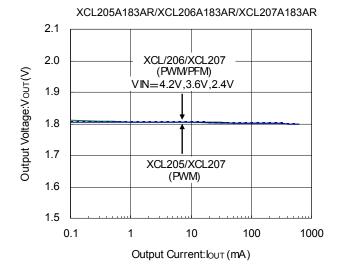
VIN= 4.2V

XCL205/XCL207

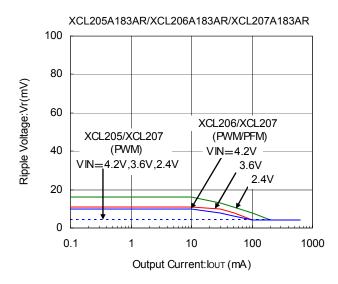
(PWM)

0.1

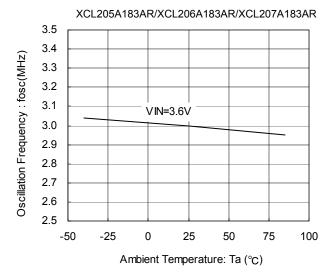
1


10

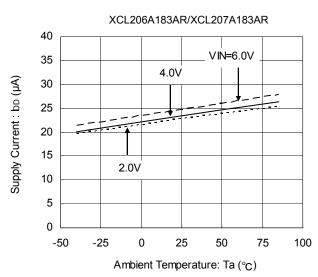
100


1000

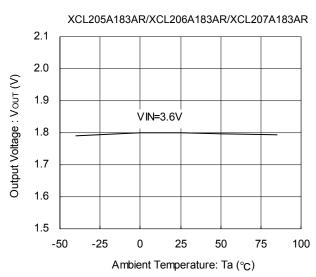
Output Current:lout (mA)


### (2) Output Voltage vs. Output Current



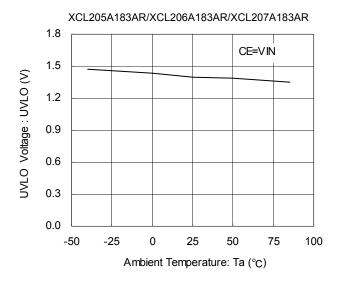

### (3) Ripple Voltage vs. Output Current



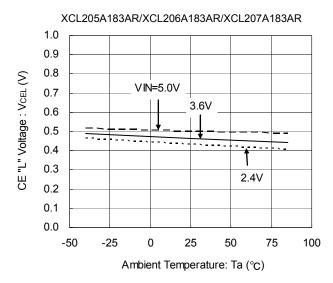

(4) Oscillation Frequency vs. Ambient Temperature



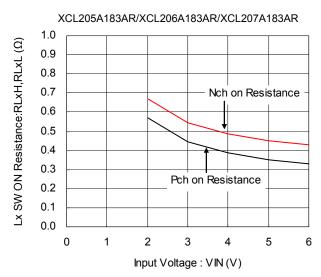
### (5) Supply Current vs. Ambient Temperature



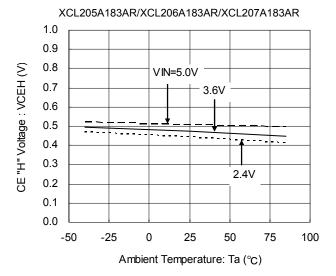

(6) Output Voltage vs. Ambient Temperature



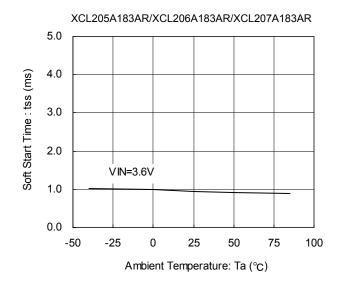

# ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)


(7) UVLO Voltage vs. Ambient Temperature



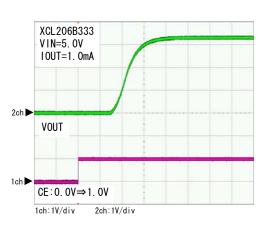

(9) CE "L" Voltage vs. Ambient Temperature




(11) "Pch / Nch" Driver on Resistance vs. Input Voltage



(8) CE "H" Voltage vs. Ambient Temperature



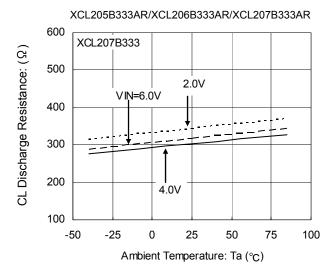

(10) Soft Start Time vs. Ambient Temperature



(12) Rise Wave Form

XCL205B333AR/XCL206B333AR/XCL207B333AR

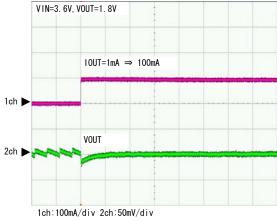



Time:  $100 \mu \text{ s/div}$ 

# ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

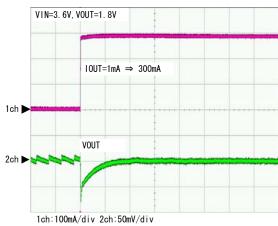
### (13) Soft-Start Time vs. Ambient Temperature

XCL205B333AR/XCL206B333AR/XCL207B333AR 500 400 Soft Start Time : tss (µs) VIN=5.0V IOUT=1.0mA 300 200 100 0 -50 -25 0 25 50 75 100 Ambient Temperature: Ta (°C)


(14) CL Discharge Resistance vs. Ambient Temperature



### (15) Load Transient Response


MODE: PWM/PFM Automatic Switching Control

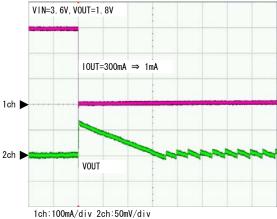
# XCL206A183AR/XCL207A183AR



Time:  $100 \mu \text{ s /div}$ 

XCL206A183AR/XCL207A183AR




Time:  $100 \mu$  s /div

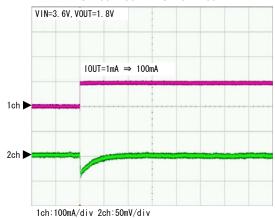
#### XCL206A183AR/XCL207A183AR



Time:  $100 \,\mu$  s /div

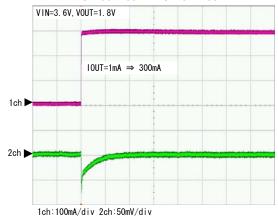
#### XCL206A183AR/XCL207A183AR




Time:  $100 \mu$  s /div

# ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(15) Load Transient Response (Continued)


MODE : PWM Control

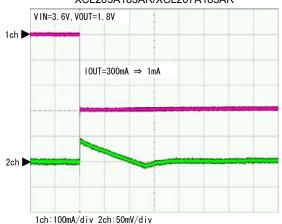
#### XCL205A183AR/XCL207A183AR



Time:  $100 \mu \text{ s/div}$ 

#### XCL205A183AR/XCL207A183AR

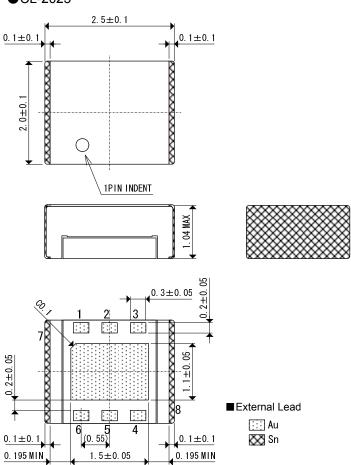



Time:  $100 \mu \text{ s/div}$ 

#### XCL205A183AR/XCL207A183AR



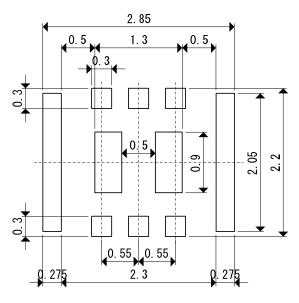
Time:  $100 \,\mu$  s /div


#### XCL205A183AR/XCL207A183AR



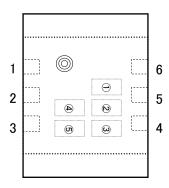
Time:  $100 \mu$  s /div

## **■**PACKAGING INFORMATION


### ●CL-2025



### ●Reference Pattern Layout


# 2. 9 0. 35 0. 35 0. 35 0. 55 0. 55 0. 35 0. 35 0. 35

## ■Reference Metal Mask Design



# ■MARKING RULE

### ●CL-2025



#### ① represents products series

| MARK | PRODUCT SERIES |
|------|----------------|
| 4    | XCL205A****-G  |
| С    | XCL205B****-G  |
| C    | XCL205G****-G  |
| K    | XCL205C****-G  |
| 5    | XCL206A****-G  |
| D    | XCL205B****-G  |
| D    | XCL206G****-G  |
| L    | XCL206C****-G  |
| 6    | XCL207A****-G  |
| F    | XCL205B****-G  |
|      | XCL207G****-G  |
| M    | XCL207C****-G  |

### ② represents type of DC/DC converters

| OUTPUT VOLTAGE | MARK            |              |
|----------------|-----------------|--------------|
| (V)            | XCL20*A/B/C**** | XCL20*G***** |
| 0.x            | F               | U            |
| 1.x            | Н               | V            |
| 2.x            | K               | X            |
| 3.x            | L               | Υ            |
| 4.x            | M               | Z            |

### 3 represents the decimal part of output voltage

| OUTPUT VOLTAGE (V) | MARK | PRODUCT SERIES |
|--------------------|------|----------------|
| X.0                | 0    | XCL20***0***-G |
| X.05               | Α    | XCL20***A***-G |
| X.1                | 1    | XCL20***1***-G |
| X.15               | В    | XCL20***B***-G |
| X.2                | 2    | XCL20***2***-G |
| X.25               | С    | XCL20***C***-G |
| X.3                | 3    | XCL20***3***-G |
| X.35               | D    | XCL20***D***-G |
| X.4                | 4    | XCL20***4***-G |
| X.45               | Е    | XCL20***E***-G |
| X.5                | 5    | XCL20***5***-G |
| X.55               | F    | XCL20***F***-G |
| X.6                | 6    | XCL20***6***-G |
| X.65               | Н    | XCL20***H***-G |
| X.7                | 7    | XCL20***7***-G |
| X.75               | K    | XCL20***K***-G |
| X.8                | 8    | XCL20***8***-G |
| X.85               | L    | XCL20***L***-G |
| X.9                | 9    | XCL20***9***-G |
| X.95               | М    | XCL20***M***-G |

④,⑤ represents production lot number

01~09、0A~0Z、11~9Z、A1~A9、AA~Z9、ZA~ZZ in order.

(G, I, J, O, Q, W excluded)

Note: No character inversion used.

- 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
  - (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
- Please use the products listed in this datasheet within the specified ranges.
   Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

### TOREX SEMICONDUCTOR LTD.