

SBSC SERIES 2000/3000 SERVO CONTROL FOR BRUSHLESS AC MOTORS

INSTALLATION & INSTRUCTION MANUAL

Made in Germany

CONTENTS

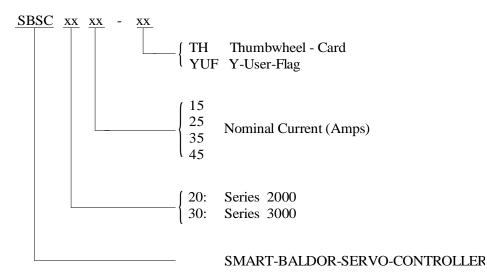
1.0	Specifications	1
1.1	Usage Definitions	1
1.2	Identification	1
1.3	Features	1
1.4		2
1.5	EMC Conformity and CE Marking	2
1.5.1		2
1.5.2	Specifications add components	3
1.5.2		3
1.5.2		4
1.5.2		4
1.5.2		4
1.5.2		5
1.6		5
1.6.1		5
1.6.2		6
1.6.3	8	
		6
1.6.4		6
1.6.5		7
1.6.6		7
1.6.7		7
1.6.8	Environmental Section	7
2.0	Installation Recommendations	8
2.1	Mechanical Installation	8
2.2	Electrical Installation	8
3.0	Interconnection Diagram	10
4.0	anda w.	1 1
4.0 4.1	8	11 11
4.1	8	11 11
4.1.1		11 11
4.1.2	De	
4.1.3	8	11 12
4.2 4.2.1	0 0	12 12
		12 13
4.2.2 4.2.3	1	13 14
4.2.3	Resolver	14

4.2.4 4.2.5 4.2.6 4.3 5.0	Encoder Input	14 14 14 15 17
6.0	System Set Up Procedure	19
6.1	Presets	19
6.1.1		- /
	µSMCC Card	19
6.1.2		20
6.1.2		20
6.1.2		20
6.1.2		21
6.1.2	.4 Single Axis Application	21
6.1.2		
6.2	System Set Up Step by Step	22
6.3	Stepresponse Optimization	24
6.4	Preventing Start-Up Phasing Jump	
6.5	I-Parameter	25
7.0	Status Monitor	26
8.0	Control Card	27
8.1	Component Layout	27
8.2	Component Functions	27
9.0	Testsignal	28
10.0	I/O Hardware Description	28
10.1	Input Signals	28
10.2	Output Signals	29
10.2	Output Hardware Description	30
10.3	Resolver	31
10.4	Encoder-Input	31
10.5	RS232 Interface	32
10.6	Auxiliary Voltage Outputs	33

1.0 Specification

1.1 Usage Definitions

The amplifiers of the series SBSC2000/3000 are electrical equipment for industrial power installations. They are designed for machine applications, which need variable speed controlled three-phase A.C. motors.


1

This product is only for use in industrial applications as described in norms EN 60204 and VDE 0160. This means use

SBSC2000/3000 in stationary groundbased applications only. It is not meant for use in home appliances, medical technics, cars, ships or airplanes.

Before the SBSC is put into operation, please contact your Electric-Supply-Company for special operating conditions.

1.2 Identification

1.3 Features

A SBSC is a 1 axis amplifier with integrated power stage. It provides the following features:

2	HALDOR
 POWER SECTION: ? 3 respectively 4 output current versions (15/25/35/45A) available. ? All SBSC amplifiers are short circuit proof and require no minimum load. ? Output power up to 30kVA 	 ? Ratio peak : nominal current = 2:1. Both values independently adjustable. ? Brushless-servomotors (1 to 8 poles) can be connected. (Feedback: 1-pole pair resolver) ? Power wiring via terminal screws (max. wiring diameter 10mm²/AWG7)
 CONTROL I/O Section: ? 3 opto isolated control inputs for dedicated amplifier functions ? 1 handwheel (encoder) - input ? Serial interface (RS232C) for communication and programming ? Diagnostic display on front panel ? Amplifier configuration adjustable via software 	 ? Possibility of daisy-chain wiring for amplifier configuration of up to 16 axis (SBSC) ? Software amplifier tuning capability with graphic program. ? Wiring of control inputs and outputs via plug type screw connection (max. wiring diameter 1,5mm²/AWG15) or SUB-D connector
GENERAL: ? Protection class IP20 (acc. to DIN40 050 / IEC144) ? Cooling: self-ventilation	? Isolation classification according to DIN 0110 with overvoltage category II? Contamination level 2

1.4 Declaration of Conformity

Herewith we declare, that our products are components only and not ready for immediate or instant use within the meaning of "Safety law of appliance", "EMC Law" or "Machine directive".

The final mode of operation is defined only by the insertion into the user's construction.

It is the responsibility of the user to verify that his construction is in accordance with existing regulations.

It is prohibited by law to put the machine into operation before verifying that the machine is in accordance with EC directive 89/392 and 921/368.

The supplier declares product conformity with the following standards:

DIN VDE 0160 / 05.88	Electronic equipment for use in electrical power installations
DIN VDE 0100	Erection of power installations with nominal voltages up to $1000\mathrm{V}$
DIN IEC 326 Part 1 / 10.90	Design and use of printed boards
DIN VDE 0110 Part 1-2 / 01.89	Dimensioning of clearance and creepage distances
DIN VDE 0110 Part 20 / 08.90	
EN 60529 / 10.91	Degrees of protection provided by enclosures

1.5 EMC - Conformity and CE - Marking

The application of EMC conformal component and partly systems relieves the observance of EMC Guidelines and the guaranty of conformity for the manufacturer of machines. Therefore all standard components and partly systems will be tested according to the requirements of EMC regulation. Those tests will be executed by a competent and independent institution. The conformity of the products will be confirmed by a declaration of conformity from the European Community.

The installation instructions refer to elimination of radio interference as well as to immunity from noise for BALDOR Drive Systems.

Thereby the user is informed about the EMC critical parts. The examples don't show the complete possibilities of cabinet components or constructions.

Guidelines for EMC Conformity

?	?	??	Machine Guideline (89/392/EWG) Application since 01.01.95	- Machine Safety Law
?	?	??	EMV Guideline (89/336/EWG) Applicade 01.01.96 on	- EMC Law
?	?	??	Low Voltage Guideline (73/23/EWG) Applicade 01.01.97 on	- Machine Safety Law

1.5.1 EMC Installation Instructions

To ensure electromagnetical compatibility (EMC) at hostile environment inside the cabinet following instructions are to be observed for construction. Only the implementation of following provisions enables the reduction of interference down to required values.

For the Drives Technology following key points are to be considered:

- Grounding
- Screening
- Filtering

Furthermore the relevant chapters of the Installation manual for the controllers have to be observed. For installation of the drives system the starting point is the installation into a cabinet.

For construction of a cabinet the following installation instructions have to be considered:

- A) All metal conducting parts of a cabinet are to be connected arealy and conductable. Eventually the connections should be placed with an earthing strap at a central grounding point .¹)
- B) Signal lines and Power Cables are to be connected separately. (Avoid interaction space)
- C) The screen connection of the signal lines and the power cables has to be ensued on a screen linequaranteeing enough space. This screen line also has to be conductable and connected to the remaining housing parts.
- D) The cable to the regeneration resistor has to be screened. The screen connection should be on both sides.
- E) The mounting of the mains filter has to be situated at the input of the cabinet or behind the transformer. The filter is to connect on ground (cabinet housing, mounting plate etc.).
- F) Wiring has to be conducted bundled and close to the cabinet housing or at the mounting line. The unused leads of a cable have to be connected on one side with ground. ¹)
- G) In case of worse potential balance between the screen connections a compensating leak with at least 10mm2 (AWG) has to be provided parallely in addition to reduction of the screen current.
- Grounding in general describes all metal parts which can be connected to a protective conductor, e.g. housing of switch cabinet, motor housing, fundament grounder.

1.5.2 Specifications and Additional Components

1.5.2.1 Mains Filter

Following results are desired through the application of mains filters:

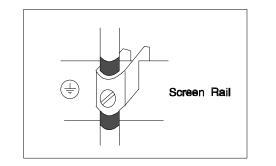
The electronic system should be protected from high frequency interferences which could enter via the mains cable (immunity from noise) and vice versa the mains cable may not transmit interferences from the electronic systems to the adjoining components (elimination of radio interference).

In the main line a mains input filter has to be provided between transformer and controller (In case of direct connecton this has to be in front of the controller).

To choose the fitting mains filter types following points have to be considered:

- 1. The need of power of the connected controller. Thereby the capacity and the ability of peak phase current has to be considered.
- 2. The required or prevailing mains impedance.

This table shows the corresponding mains filter types for 3 phase input:


Туре	Rated Voltage	Rated Current (at 40°C)	Leakage Current	Power Losses	Weight	BALDOR -
	[V]	[A]	[mA]	[W]	[kg]	ID-No
FN 351 - 8 - 29	3x 440	8	16	8.0	1.8	24667
FN 351 - 16	3x 440	16	16	9.0	1.8	24668
FN 351 - 25	3x 440	25	170	9.0	3.0	24669
FN 351 - 36	3x 440	36	170	10.5	3.0	24670
FN 351 - 50 - 29	3x 440	50	190	12.5	3.1	24671
FN 351 - 80 - 29	3x 440	80	210	26.0	9.5	24672
FN 351 - 110 - 29	3x 440	110	210	28.0	9.5	24673

1.5.2.2 Connection Cables

All cables have to be screened.

Motorcable a	BALDOR ID - No.	
Motorcable	4 x 1.0 mm ²	21599
Motorcable	4 x 2.5 mm ²	21364
Motorcable	4 x 6.0 mm ²	21597
Resolvercable	3 x [2 x 0.14 mm ²]	19413
Regen Resistorcable	3 x 2.5 mm ²	11302

1.5.2.3 Screen Connection

Siemens Cla	Siemens -No.		
5mm Rail	Wiring Diameter 1.5 - 16 mm ² 1.5 - 35 mm ² 16 - 70 mm ² 16 - 120 mm ²	8US19 21 -2AA00 -2AB00 -2AD00 -2AC00	
10mm Rail for T- and double T-profile	Wiring Diameter 95 - 300 mm ²	8US19 41 -2AA00	

1.5.2.4 Connectors

Connection	Designation	BALDOR - ID -No.					
for Motorcable							
Plug	CONN SET FEM	2 x 4 pole	24654A				
Socket	CONN SET MALE	2 x 4 pole	24656A				
for Resolvercable							
Plug	CONN SET FEM	12/6 pole	24655A				
Socket	CONN SET MALE	12/6 pole	24657A				
	for SBSC with EMC-Regulation connector X2 with housing						
Connector	25043A						
Housing		25049A					

BALDOR

PG Cable Gland	Cable Dimensions	Designation	BALDOR ID - No.
PG 9	4 - 8 mm Resolvercable BALDOR ID-No.19413	SCREWING	24658
PG 13.5	6 - 12 mm Motorcable BALDOR ID-No. 21599	SCREWING	24659
PG 21	13 - 18 mm Motorcable BALDOR ID-No. 21364	SCREWING	24660

1.5.2.5 PG - Cable Glands

1.6 Technical Data All values at T_{amb} = 40 ?C, if not otherwise specified.

1.6.1 Power Section

General	Unit	SBSC	SBSC	SBSC	SBSC	SBSC	SBSC	SBSC
		2015	2025	2035	2045	3015	3025	3035
Nominal DC-Bus-Voltage U _{in} (BPS) = 230V	V _{DC}		32	20		-		
Nominal DC-Bus-Voltage Uin (BPS) = 400V	V _{DC}		- 560					
Nominal DC-Bus-Voltage Uin (BPS) = 460V	V _{DC}		,	-		650		
DC-Bus-Voltage absolute min./max.	V _{DC}	0 350			0 740			
Output Voltage Line/Line fundamental wave; @VDC-Bus (nom.)	V _{RMS}	0 250		0 500				
Nominal Phase Current (?10%)	A _{RMS}	15	25	35	45	15	25	35
Peak Phase Current (?10%) 3s ?0.5s	ARMS	30	50	70	90	30	50	70
Nominal Output Power	kVA	6.5	10.8	15.1	19.5	13.0	21.6	30.3
Efficiency	%	> 95						
Min. Load Inductance	?H	200						
Output Frequency	Hz	0 500						
Nominal Switching Frequency	kHz				8.5			

1.6.2 24VDC Input

24V-Input	Unit	SBSC2000	SBSC3000	
Input Voltage Range				
absolute min./max.	V _{DC}	20 29		
max. $V_{Ripple} = ?10\%$				
Input Current; @ 28V _{DC}	A _{RMS}	1.6		
Surge Current at Power On	A _{RMS}	2.5		
@ 28V _{DC} ; @ 100ms				

1.6.3 Positioning - and Velocity Control Section

Servo Performance	Unit	Unit SBSC2000 SBSC300	
Normal Position and Velocity Mode	μs	9′	76
Handwheel Mode	μs	500	
Execution Rate		typical 50 Blocks/Sec	

Positioning	Unit	SBSC2000	SBSC3000
Range		± 67 Mio. En	coder Counts
Accuracy		±1 Encod	der Count

Velocity		Unit	SBSC2000	SBSC3000
Range			0.005 to 400000 Encoder Counts/ Sec. (6000 rpm)	
Accuracy 3)	Long Term	%	0.002	
	Short Term	%	0.5 to 1.0	
Repeatability 3)		%	0.001	

3) Current loop, motor and load influences not taken into account !

Position - Feedback	Unit	SBSC2000	SBSC3000
Resolution		4096 Coi	ints / rev.
Accuracy		± 14 arcmin (typical)	
Max. Input Frequency	MHz		1

1.6.4 Encoder - Input

Encoder Input	Unit	SBSC2000	SBSC3000
Signal	-	5V TTL; 1	Differential
Max. Input Frequency	kHz	5(00

1.6.5 Serial Interface (RS232)

RS232 - Interface	Unit	SBSC2000	SBSC3000
Control In- and Outputs		opto isolated	12 29 V _{DC}
Programmable In- and Outputs		opto isolated 12 29 V _{DC}	
Communication		RS 232 C	

1.6.6 Memory Specification

Memory Capacity	Unit	SBSC2000	SBSC3000
ROM	kByte	3	2
RAM	kByte	8	3
EEROM	kByte		3

1.6.7 Mechanical Section

Mechanical	Unit	SBSC2000	SBSC3000
Mounting	-	Bookstyle or	Thru the Wall
Dimensions	mm	105 x 357 x 328	/ 140 x 357 x 328 1)
Weight	kg	8.5 /	9.5 1)

1): SBSC2045/3035

1.6.8 Environmental Section

Environmental	Unit	SBSC2000	SBSC3000
Operating Temperature Range	°C	+0 +40	
Storage Temperature Range	°C	-25	+70
Humidity	%	10 90; not condensating; according to DIN40 040, Cla	
Class of Protection (Enclosure)	-	IP	20
Max. Installation Altitude / M.S.L.	m	1000	
Shock	-	10G; according to DIN IEC 68-2-6/29	
Vibration	-	1G; 10 150 Hz; accord	ing to DIN IEC 68-2-6/29

	This is an <i>INFORMATION</i> sign.
	If this information is read, installation and / or amplifier operating problems can be avoided in advance.
	This sign means ATTENTION.
	In all cases it must be read and taken into account. Non-observance can cause dangerous situations for equipment and personnel.

Legend:

2.0 Installation Recommendations

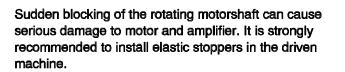
2.1 Mechanical Installation

- For installation of your system use a cabinet with a protection class that suits your environmental conditions.

- As cooling air freely enters the unit, the environment must be free from corrosive chemical substances, oil, vapour, steam, metal particles and dust.
- Make sure that cooling is provided.
- Make sure that the top of the unit is covered during installation to prevent particles from falling into the unit.
- Keep DC-bus links as short as possible. Therefore always mount SBSC2000/3000-combinations side by side.
- Mount all SBSC vertical (Terminal blocks to the top).
- Use SBSC2000/3000 in stationary groundbased applications only.

2.2 Electrical Installation

Qualified or trained personnel only should install the machine. Electrical rotating equipment can result in property damage, serious injury, or death, when improperly installed. Equipment should be installed in accordance with the local codes and safety standards for construction and guide for selection, installation and use of electric motors and generators.

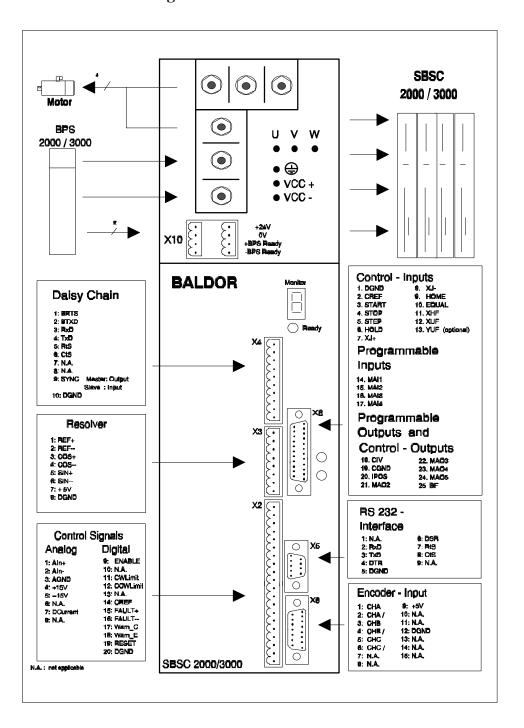

The wiring, fusing, and grounding must be in accordance to the national electrical code and any local codes.

11

Electrical and/or mechanical alterations are permitted

It is recommended to survey the status of this protective device in the position control (i.e. NC/CNC/PMAC). Since the leads can carry high voltage-spikes, isolation

SBSC amplifiers have a 24V input to supply the control circuits. If the 24V supply is off, the power connectors can have dangerous voltage levels without any indication. The Monitor and the LED "READY " illuminate only if 24V is switched on.



Connect the PE of all systems to a central point. The diameter of the cablelead must be AWG7(10qmm) min.

Use of motor Thermo switch:

only when power is removed!

by means of a relais should be installed.

3.0 Interconnection Diagram "SBSC20xx / SBSC30xx"

Content of delivery: mating connector to X2, 3, 4 and X10. Order-no's for mating connectors (spare part or completion): X5: #16215 (9 pole, male) X6: #20739 (15 pole, female)

X8: #21742 (25 pole, female)

4.0 SBSC Wiring

In chapter 4.3 you will find the typical (minimum) wiring of the system . The following pages show some special applications and the typical wiring in more detail. This chapter is valid for all SBSC versions.

ATTENTION: For the system set up (chapter 6) it is nessesary to wire the system step by step. It is recommended to follow the system set up procedure, especially for users who are not very familar with the SBSC amplifier series.

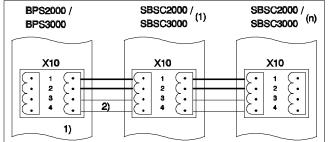
4.1 Power Wiring

4.1.1 Power Supply

The SBSC amplifier will be supplied from a BPS with the DC-bus voltage. The connection between SBSC and BPS must be as short as possible. The wiring can be done with copper bars (#23176).

Wiring Power Supply:

Chapter 4.3 shows the wiring in detail


4.1.2 24VDC - Connection

A SBSC2000/3000 needs an external 24V control supply. This voltage supplies the amplifiers control circuits. The advantage is, if main power is switched off, control circuits are still supplied and position information gets not lost.

This supply must be linked to SBSC connector X10 (Pin 1 and 2). The BPS2000/3000 provide the needed 24V output. This output is for that purpose and has the same denotation on BPS.

If the SBSC is not supplied with the BPS, an external power supply must be connected to connector X10. The external power supply must fullfil certain specifications (see chapter 1.6.2).

Wiring 24V_{DC}-option:

1) The shown BPS, can be replaced by an external 24V-power-supply.

The amount of connected SBSC's (n) which can be connected to one BPS, depends on the BPS version (refer to BPS2000/3000 manual)

2) The wiring of X10 pin 3 and 4 is nessesary for proper SBSC operation. For details please refer to chapter 4.2.1.

4.1.3 Motor Wiring

The motor must be connected to the following terminals:

U	Phase U
\mathbf{V}	Phase V
W	Phase W

A wiring example is shown in chapter 4.3.

The sequence of the motor leads is not arbitrary. Therefore the motor leads must be wired in the right sequence to avoid uncontrolled motor function.

4.2 Control- and Signal Wiring

This chapter is valid for all SBSC versions.

The wiring of the control in- and outputs can be achieved with *one* cable only unlike shown in the pictures below. The outputs *can be* wired. But there is no need for SBSC operation.

4.2.1 Control Inputs

The control inputs below are optoisolated. The ground return for all inputs is "CREF", connector X2.14 or X8.2.

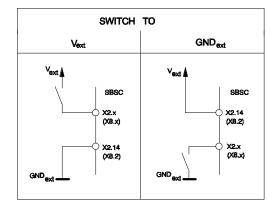
Control Input Function:

Signalname	Connector	Switch Position / Function		
	Pin	closed	open	
ENABLE	X2.9	Amplifier enabled	Amplifier disabled	
CWLimit	X2.11	Clockwise direction of rotation enabled;	Clockwise direction of rotation disabled;	
		active braking and position hold	active braking and position hold	
CCWLimit	X2.12	Counterclockwise direction of rotation	Counterclockwise direction of rotation	
		enabled; active braking and position hold	disabled; active braking and position hold	
Machine Input	X8.14 17	Input active	Input not active	
Start, Stop etc	X8.3 13	The selected function will be executed	The selected function won't be executed	

A wiring proposal for the control inputs above you will find in chapter 4.3. The hardware description of the optoisolated input is show in chapter 10.1.

Functional example of control inputs:

The wiring of the control inputs is also shown in chapter 4.3.

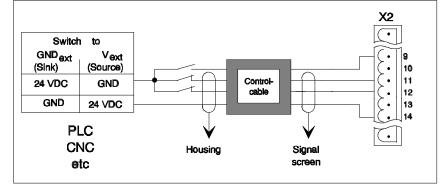

The picture by-stander shows the function and the two wiring principles of the control inputs:

The two wiring versions are:

 Switching to the external control input power supply. The switch will be linked between the control input (X2.x) and the external power supply (V_{ext}). The ground return (GND_{ext}) is permanetly wired with CREF (X2.14 or X8.2).

2) Switch to the ground return of the external power supply. The switch will be linked between the control

input and the external ground return (GND_{ext}). The external power supply (V_{ext}) is permanently wired with CREF (X2.14 or X8.2).


X2.x: "x" for connector pin, e.g. x=2 ? X2.9 = Enable-Input

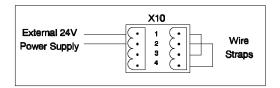
Voltage range of Vext: +12 ... 29VDC

The control inputs only work properly, if they are supplied with an external voltage.

Control Input Wiring:

Control Input "±BPS Ready" a) SBSC with BPS2000/3000:

The SBSC provide as default a control input "BPS Ready". If the BPS2000/3000 has an internal malfunction, the BPS will disable the connected SBSC amplifiers. The input is on connector X10 pin 3 and 4.


Under BPS fault condition, this input will be deactivated and the SBSC will show the following state:

LED Ready	=	RED
Monitor-Indication	=	2 (Undervoltage)
foult indication the SPSC will be disable	od	

With this fault indication the SBSC will be disabled.

b) SBSC with external 24V Power Supply:

If the SBSC is not operated with the BPS, an external power supply must be connected to connector X10 as shown below. In that case, the control input " \pm BPS Ready" has no more function. Nevertheless the input *must* be wired. Without the wiring below, the SBSC will indicate fault condition like above (see a)).

4.2.2 Control Outputs

The SBSC is equipped with a fault relais. The relais contact can be used to observe the amplifier status. The wiring of the fault relais contact is optional and not nessesary for proper amplifier operation.

Control Output Function:

Signalname	Connector	Switch Position / Function		
	Pin	closed	open	
FAULT+	X2.15	SBSC happy	SBSC not happy	
FAULT -	X2.16	no fault indication	fault indication / monitor	

Control Output Wiring:

see chapter 4.3

BALDOR

18

4.2.3 Resolver

The resolver must be connected to connector X3.

Wiring of the resolver in- and outputs:

The wiring is shown in chapter 4.3.

We recommend the use of the special BALDOR resolver cable #19413.

4.2.4 Interface Cable (RS232)

The wiring from PC to SBSC connector X5 for RS232 interface <u>must</u> be as shown below:

PC			SBSC
DB9 5	(DB25) (7) ———	GND	DB9
5 8	• •	CTS	5 8
0	(5)	RTS	
'	(4)	/RXD	/
2	(3)	/TXD	2
3	(2)	DTR *	3
4	(20) ———	DSR *	4
6	(6)	-	6

* These signals are not supported by SBSC

The general rule on communication distance is 1 m for 9600 baud.

If there is a very high noise level it may be nesessary to change the baud rate to 4800 or 2400 baud.

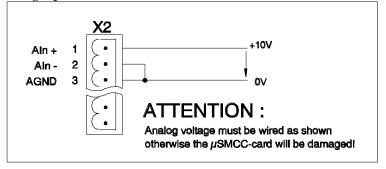
Shielding RS232 cables is highly recommended. It is also advised, not to run the RS232 cable next to high power or AC signals such as the servo amplifier, line voltage etc.

4.2.5 Encoder Input

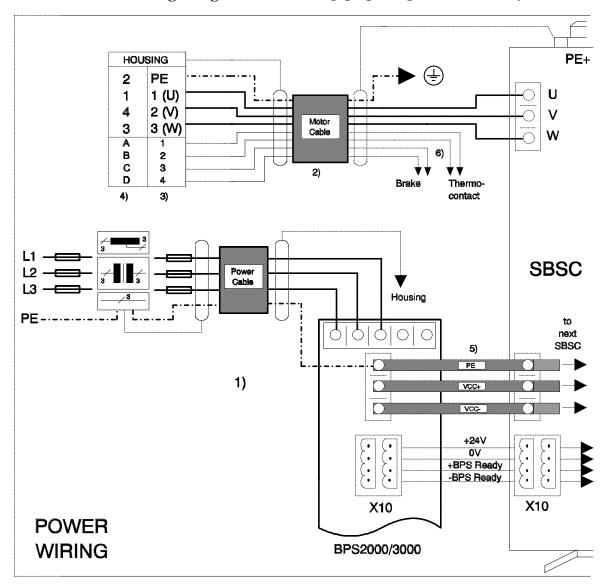
The encoder input (X6) can have the following functions:

Handwheel - Mode

The ratio between incoming encoder signals and the motor speed is configurable via software. For details refer to the SMCC-Software-Manual.


Wiring of the encoder input:

The connector X6 must be wired according to the interconnection diagram (see chapter 3.0). It is strongly recommended to make the wire connection with twisted pairs and screened cable. We recommend the use of the BALDOR encoder cable #13036.


4.2.6 Analog Input

The SBSC has an analog input for general purpose. It is a *polarized* input with an voltage range of +10V. The input has a resolution of 8bit and can be used by software (for details refer to the SMCC-Software-Manual).

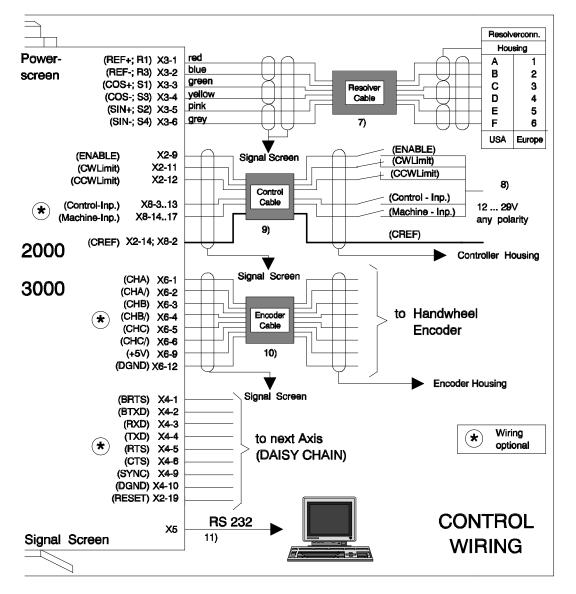
Wiring of the analog input:

(11.6 ±0.4)mm (14.5 ±0.5)mm (18.5 ±0.6)mm (22.8 ±0.4)mm

4.3 Minimum Wiring Diagram "The wiring proposal gives no warranty for

1) The power supply must be wired according to the BPS2000/3000 manual (#22705A)

2) Motorcable:	# 21599:	Wire diameter:	1.0mm ² / AWG17	Cable outer diameter:
	# 21364:	Wire diameter:	2.5mm ² / AWG13	Cable outer diameter:
	# 21597:	Wire diameter:	6.0mm ² / AWG9	Cable outer diameter:
	# 21598:	Wire diameter:	10mm ² / AWG7	Cable outer diameter:


3) Terminal box BSM 6R, BSM90A/90B/100A/100B

4) Connector BSM 63/80 Europe

5) The wiring diameter must fit to nominal BPS output current. The connection between BPS and the SBSC amplifiers must be as short as possible.

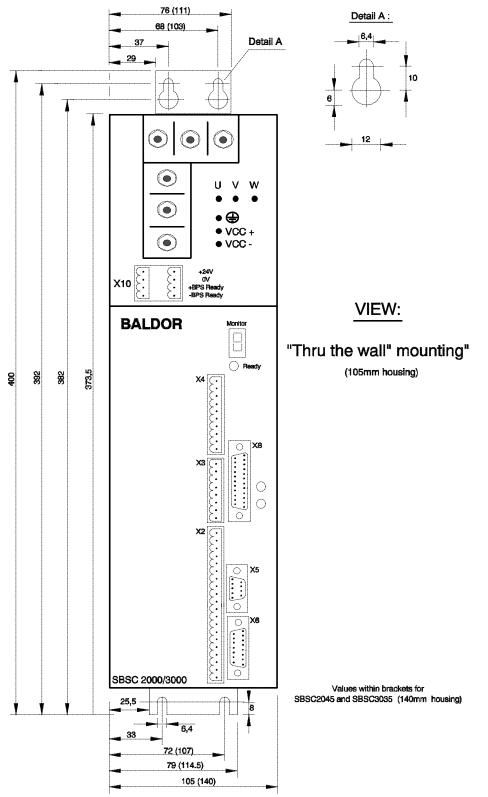
The wiring between BPS and SBSC can be done with copper bars (ID-No.: #23176). Also wiring between SBSC's
can be done with copper bars. ID-No's.:#23177 (105mm housing)#23179 (140mm housing)

6) *Brake output* and *Thermo switch:* The SBSC is not capable to control and supply a motor brake. Furthermore it is not permitted to connect the motor thermo switch to the SBSC.

observance of valid EMI - standards"

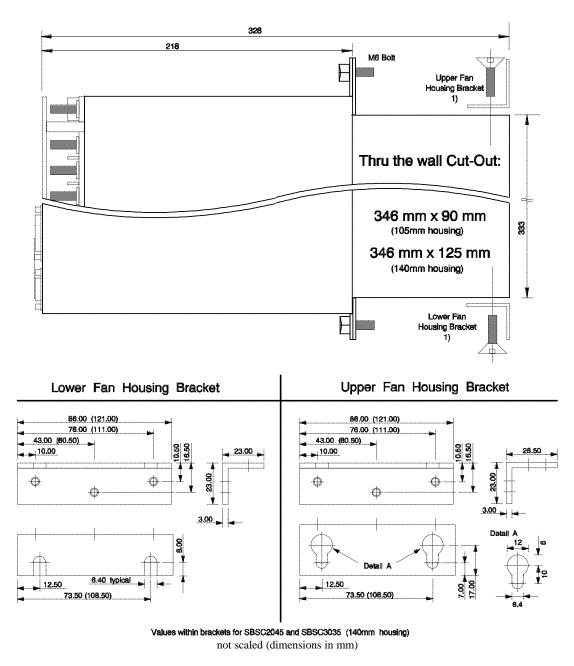
7) Resolvercable: #19413

8) Functional description of the control inputs see chapter 4.2.1. The control inputs must be supplied with an external voltage source.


9) Control cable not available from BALDOR. Drawing shows the wiring principle only. Can be one or more cables 10) Encodercable #13036, twisted and screened

11) Interface cable wiring for one axis refer to chapter 4.2.4.

ATTENTION: Please note also chapters 4.0. to 4.2.


21

5.0 Dimensions

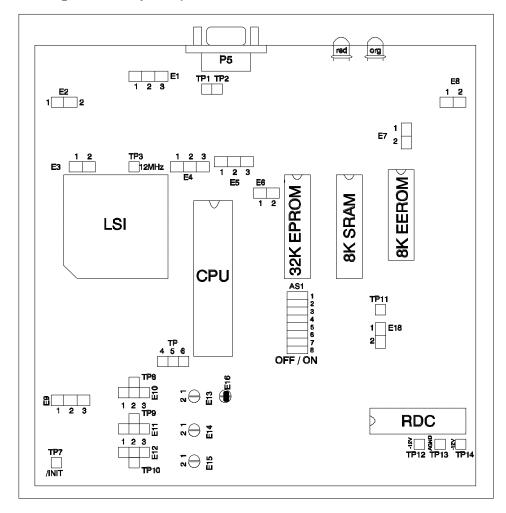
not scaled (dimensions in mm)

BALDOR

1) Upper and lower fan housing brackets are not contents of delivery. They must be ordered seperately according table below. The sets below contain both brackets and the screws.

BALDOR ID - Numbers for Fan Housing Bracket Sets					
SBSC2015 / 2025 / 2035 SBSC2045 SBSC3015 / 3025 SBSC3035					
22570A	23098A				

22


6.0 System Set Up Procedure

6.1 Presets

The following presets must be done at first before starting the system. In order to get access to the SBSC it is necessary to perform some settings on the μ SMCC-board.

To get access to this board you must open the front plate and slide out the control card together with the SMCC-board. The location of the DIP-switches and the jumpers can be found on the component layout below.

6.1.1 Component Layout µSMCC Card

not scaled

6.1.2 DIP Switch Settings

6.1.2.1 Card Addressing Setting

Each card's address can be set-up by setting the DIP switch on the card as follows:

AS1-1	AS1-2	AS1-3	AS1-4	Card-Address
ON	ON	ON	ON	0 *)
OFF	ON	ON	ON	1
ON	OFF	ON	ON	2
OFF	OFF	ON	ON	3
ON	ON	OFF	ON	4
OFF	ON	OFF	ON	5
ON	OFF	OFF	ON	6
OFF	OFF	OFF	ON	7
ON	ON	ON	OFF	8
OFF	ON	ON	OFF	9
ON	OFF	ON	OFF	10 (hex a)
OFF	OFF	ON	OFF	11 (hex b)
ON	ON	OFF	OFF	12 (hex c)
OFF	ON	OFF	OFF	13 (hex d)
ON	OFF	OFF	OFF	14 (hex e)
OFF	OFF	OFF	OFF	15 (hex f)

*) ex factory

6.1.2.2 Baud Rate Setting

The DIP switch is used to select the communication mode and the baud rate as follows:

AS1-6	AS1-7	AS1-8	BAUD-RATE
ON	ON	ON	9600 *)
OFF	ON	ON	4800
ON	OFF	ON	2400
OFF	OFF	ON	1200
ON	ON	OFF	n.a. (disables RS 232)
OFF	ON	OFF	300
ON	OFF	OFF	38400
OFF	OFF	OFF	19200

*) ex factory

- DIP Switch AS1-5

AS1-5 of the DIP switch is used to enable (*OFF*) or disable (*ON*) saving programs and parameters into EAROM memory. Regardless of the switch position, the contents of the EAROM are always uploaded upon power turn on or reset.

When the DIP switch settings are changed, it is necessary to reset the SBSC or cycle power, in order to activate the new set-up.

6.1.2.3. E - Point	ts
--------------------	----

E-Point	Position	Description	Ex-Factory
E1	* * *	1)	1-2
	1 2 3		
E2	* *	1)	no Jumper
	1 2		_
E3	* *	1)	1-2
	1 2		
E4	* * *	1)	2-3
	1 2 3		
E5	* * *	1)	1-2
	1 2 3		
E6	1 *	1)	no Jumper
	2 *		
E7	* *	Jumper pin 1-2 to activate SYNC-Output on Card A0, Make sure if	1-2
	1 2	jumper pin 1-2 is installed, E18 must be removed (see E18 also)	
E8	* *	1)	no Jumper
	1 2		
E9	* * *	Jumper pin 2-3 to obtain non-differential encoder input mode, this	1-2
	1 2 3	will bias encoder negative inputs to $\frac{1}{2}$ Vcc = 2,5 V	
E10;11;12	* * *	With Resolverfeedback, jumper pin 2-3 installed	2-3
	1 2 3	With Encoderfeedback, jumper pin 1-2 installed	
E13;14;15	Solder-Pad	1)	open
E16	Solder-Pad	1)	closed
E18	1 *	Jumper pin 1-2 for input SYNC (use on all cards other then A0).	no Jumper
	2 *	See E7 also.	

1) For test purpose only, no other settings allowed.

6.1.2.4 Single Axis Application

Without any notice all SBSC are delivered for single-axis applications. E7 is installed, E18 is removed.

6.1.2.5 Multi Axis Application

Most multi-axis applications need a synchronized motion control. On the SBSC amplifier this can be achieved by using axis A0 as a master. Up to 15 slaves can be connected.

To synchronize SBSC follow the instructions below:

- On axis A0 install jumper E7 and remove E18
- On all other axis install jumper E18 and remove jumper E7
- Connect the SYNC-line (X4.9) from A0 to all other SYNC-inputs
- Tie all RESET-inputs (X2.19) together
- Connect the RS 232-interface like shown in chapter 4.2.4 and 4.3

Since X5-1 and X5-9 are now used for BRTS and BTXD make sure that these pins are free on the interface cable to your PC or terminal.

6.2 System Set Up Step by Step

With all initial presets completed, the set-up procedure can begin.

Please perform the initial set-up of the system with no load applied to avoid damaging your equipment due to erraneous handling.

1. Before you connect the SBSC amplifier to the BPS, the BPS must be wired and checked according to the manual

After the output voltage of the power supply (BPS2000/ 3000) has been tested, switch off the main supply.

The SBSC has no internal fuse for the DC-bus voltage. Make sure, that the BPS power supply is fused primary. Fuse ratings see BPS2000/3000 manual.

- 2. Now you can wire the system as shown in drawing chapter 4.3, except motor wiring.
- **3.** Install the connection between PC and SBSC with the RS 232 interface cable. Now switch *ON* the main power. The LED's and the "MONITOR" must show the following:

LED "READY"	=	GREEN
LED "REG. LOAD"	=	OFF
LED "IPOS"	=	ON
LED "FERR"	=	OFF
MONITOR	=	Decimal point on the right side illuminating (amplifier enabled)

Now invoke the terminal program SMCC V3.xx from the floppy disc. The program will come up with communication information:

9600 baud, COM1, X1 clock.

Enter "*NO*" and card polling will start. The next response should be the number of the cards found. Now step through all cards and verify the I-parameters using F1-key (see also chapter 6.5). Using F10-key and then F1 you can load the default I-parameters also from floppy disc. The file name is:

ipblparb (parabolic version; stored ex factory on SBSC)

With the F6-key you can download the default parameters and a small test program into the EAROM on the ?SMCCcard. Enter "s" to save these parameters. If you have a multi axis system, check all the parameters from card A0 upto card An. Enter "An" for changing the card address.

Especially check parameter i39, i40 and i50 to be set correctly:

i39 = 3 (4096 Counts / rev.)

a.) i40 = 2048 for 4 pole motor (BSM 63A/80A/80B)
b.) i40 = 1024 for 8 pole motor (BSM 90A/90B, 100A/100B)
c.) i40 = 4096 for 6 pole motor (BSM 6R)

i50 = **0** for a.) and b.) **i50** = **1** for c.)

Furthermore check position control parameter (see chapter 6.3).

If one or more parameters changed, this must be saved. now switch OFF main power.

After turning off the power supply, wait about 5 min. to allow discharging the capacitors inside the main power supply.

4. Now connect the motorcable. Activate the enable input (X2.9); close the switch (see chapter 4).

During initial set-up the motor shaft must be without load to allow proper phasing.

Switch ON the main power again.

After that the monitor will show the following operating state:

MONITOR

= ".; **DP**" decimal point lower right corner must be *ON*.

The motor will do a jump in both directions then comes to rest. When turning the motorshaft, torque will be developped. The standard gain parameters should ensure stable but not perfect operation. Fine tuning of the different gains should be done later. If the motorshaft *oscillates*, the proportional gain "*i20*" (s. chapter 6.3) must be decreased.

Random power on sequence for 24V resp. bus supply.

Do not try to power-up with the ENABLE input deactivated. The motor cannot do it's phasing. After enabling, the motor will speed-up and the amplifier will switch off with fault indication "6".

If the motor has no torque, check the wiring of CW- and CCW-limits (X2-11;X2-12) and the ENABLE input (X2-9).

If the motor shaft accelerates, remove power immediately and check resolver and motor wiring.

A

If the motor shaft accelerates, remove power immediately and check resolver and motor wiring.

5. Now the SBSC is ready to go. For demonstration and test purposes every SBSC has a small program in EAROM. This program can be started by entering "R" on your PC. The motor will move 100000 counts, stop for 1 second and go back to zero again. After 1 second delay this will be repeated for ever. The program can be stopped by entering "Q" (quit).

6.3 Stepresponse Optimization

The stepresponse can be optimized with the following I-parameters. For details please refer to SMCC-Software-Manual.

The **Start-Up Values** below will provide a stable motor behavior. This set-up is not the optimum for the position control loop.

Parameter	Meaning	Start-Up Value	
		BSM63/80	all other
i09	Position Integration Mode	1	1
i20	Proportional-Gain Constant	500	1000
i21	Differential-Gain Constant	10	10
i22	Velocity Feedforward Gain	10	10
i23	Integral-Gain Constant	0	0
i30	Acceleration Feedforward Gain	0	0

In order to achieve proper adjustment it is necessary to observe the current waveform on X2-7 (DCurrent) with an oscilloscope. The SBSC is adjusted when the current waveform shows a single overshoot on applying a step command. At constant velocity the AC-component on X2-7 should be kept as low as possible but should not exceed 2Vpp to avoid excessive motor heating, additional servo performance analysis can be done by using the tuning feature. Please refer to SMCC manual.

6.4 Preventing Start - Up Phasing Jump

The SBSC is designed to function with resolvers or encoders and to perform automatic phase finding. The phase finding procedure requires that the motor shaft moves a maximum of one half electrical motor revolution (90° for a 4 pole motor) in order to precisely locate correct motor phasing. Even though the phase finding time and the torque level are both definable, it is sometimes undesirable to have a "phase finding" cycle on a machine, especially since full torque cannot be guaranteed during phasing and motion occurs bidirectionally. The start-up phasing jump can be eliminated if you set I-parameters as follow.

Motortype	Number of	i41	i54	i72
	Polpairs			
BSM 63A / 80A / 80B	2	12	180	3
BSM 6R	3	8	780	3
BSM 90A / 90B / 100A / 100B	4	5	80	3

to i41: This parameter is for torque optimization. With the parameter value above, motor current will be reduced to a minimum.

BALDOR

6.5 I - Parameter

30

BALDOR

i00 Following Error Limit	0	
i01 In-Position Band		
i02 Manual Data Input		
i03 Hand Shake	1	
Enable	100	
i04 Home Feed	487	*3)
Rate	100000	
i05 Servo	65498	
Fime	100	
i06 Reference Feed	1	
Rate i07 Time	1000 1	
Scale	40	*1)
i08 Accel/Decel	1	*3)
Гіте	0	3)
i09 Pos Integration Mode	0	*3)
i10 Following Error Limit	0	5)
i11 Feed Hold Slew	14648	
Control	3	
i12 Move Delay	0	
Гіте	1000	
i13 Brushless Motor	10	
Enable	10	
i14 Processor A/D Converter	0	
Mode	0	
i15 Select Lookup	0	
Table	5	
i16 Handwheel Mode 1	4096	
Control	3	
i17 Velocity Display Time	3	
Base	0	
i18 Display	128	
Formats	255	
i19 Address of Last	128	*2) *3)
Card	0	
i20 Proportional Gain Constant	-1	
i21 Differential Gain Constant	-1	
i22 Velocity Feedforward	0	
Gain	1:1.0	
i23 Integral Gain Constant	3	*3)
i24 Home	2048 (4 Pole)	*4)
Direction	12	*4)
i25 Home	0	*3)
Offset	130	*2)
i26 Home Flag	1	*3)
Control	0	*3)
i27 Handwheel Scale	0	*3)
Factor i28 Handwheel Mode Control	4096	*3)
	0 3	*3) *3)
2 i29 Handwheel Encoder	5 0 or	
Control	1 (6 Pole)	*4)
i30 Feedforward	200	*3)
Gain	200 40	• 3)
i31 Jog Feed	10	
Rate	0	*4)
i32 PWM	-1	*3)
Limit	-1	*3)
i33 Protective PWM	1	5)
Limit		
i34 Set		
Backlash		
Backlash i35 Software Positive Pos.		
Backlash i35 Software Positive Pos. Limit		
i35 Software Positive Pos. Limit		
i35 Software Positive Pos. Limit i36 Software Negative Pos.		
i35 Software Positive Pos. Limit		

BALDOR

i57	0	*3)	
n/a	1:1.0	*3)	
		- /	
i58	3	*3)	
n/a	0	*2)	
i59	0	*2)	
n/a	0		
i60 Deadband	0		
X	65464	*3)	
i61 Deadband	0	*2)	
Y	0		
i62 PLC	0	*2)	
Enable	0		
i63 Parabolic Mode	0	*2)	
Control	0		
i64 X Encoder/Resolver Base	0	*2)	
Add	0	*4)	
i65 Y Encoder/Resolver Base	0	*2)	
Add	0		
i66 Speed of Second X	0	*2)	
Resolver	1	*3)	
i67 Speed of Second Y	0	*2)	
Resolver	0	,	
i68 Second X Resolver Base	Ő	*2)	
Address	0	_)	
i69 Second Y Resolver Base			
Address			
i70 X Encoder/Resolver			
Bias			
i71 Y Encoder/Resolver			
Bias			
i72 X Encoder/Resolver			
Size i73 Y Encoder/Resolver			
Size			
i74 Second X Resolver			
Size			
i75 Second Y Resolver			
Size			
i76 X Enc. Data/Strobe Logic Level			
i77 Y Enc. Data/Strobe Logic Level			
i78 X Range Mode Control			
i79 Y Range Mode Control			

NOTE:

*1) i12 ? 100 for BSM 6R or 6-pole motors

*2) not applicable

*3) no other values allowed

*4) Parameter value depends on motor type (refer to chapter 6.2 and 6.4)

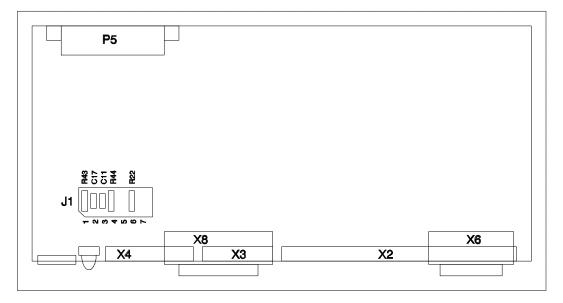
7.0 Status Monitor

To make it easy to monitor the performance of the SBSC, there is a status monitor available. The indicated numbers 1 to 7, as well as the LED Ready have the following meaning:

LED	Monitor	Status	Cause
Ready			
Green	OFF	Amplifier disabled	no fault
Green		Amplifier enabled	no fault
Red	1	Overvoltage	Missing, damaged or wrong designed
			regeneration resistor.

33

BALDOR


		34	HALDOR
Red	2	Undervoltage	Missing wiring of X10 or problems with
			BPS2000/3000; see also chapter 4.2.1
Red	3	Overcurrent	Power stage fault or motor leads short circiut
Red	4	Overtemperature	Amplifier oversized; active motor torque to
			high. Ambient temperature to high
Red	5	Resolver Fault	Parting of the cable or resolver leads short
			circuit or missing plug-in connection
Red	6	Electronic Fusing (see also Fault 7)	Amplifier or motor active current overload.
Green	7	If It-limit is reached, amplifier will reduce	Cycle time between motor acceleration and
		output current to it's nominal value. After	deceleration is too short.
		1,5s ? 0,5s SBSC switches off (amplifier	
		disable) with fault "6; electronic fusing".	

With main power OFF and 24V-supply ON (X10), status monitor works for fault diagnostic.

8.0 Control Card

8.1 Component Layout

8.2 Component Functions

Components	Function	Value ^{*)}		
R22	It-switching threshold (nom.current)	-		
R43	P-gain for current loop phase U	150k?		
C17	I-gain for current loop phase U	4.7nF		
R44	P-gain for current loop phase V	150k?		
C11	I-gain for current loop phase V 4.7n			

*) Standard values

- Maximum Motor Speed:

The maximum speed with the SBSC is 6000 rpm. Higher speeds are available on request.

- It-Switching Threshold Adjustment:

The function of resistor R22 (location see control card layout) is for nominal current threshold (It-Limit) adjustment. The threshold can be changed from 0% upto 100%. The table below shows the ratio between nominal and peak current for different values of R22:

R22	SBSC x015	SBSC x025	SBSC x035	SBSC 2045
	$I_{peak} = 30A$	$I_{peak} = 50A$	$I_{peak} = 70A$	$I_{peak} = 90A$
-	$I_{nominal} = 15,0A$	$I_{nominal} = 25,0A$	$I_{nominal} = 35,0A$	$I_{nominal} = 45,0A$
20k?	$I_{nominal} = 12,0A$	$I_{nominal} = 20,0A$	$I_{nominal} = 28,0A$	$I_{nominal} = 36,0A$
10k?	$I_{nominal} = 10,0A$	$I_{nominal} = 16,7A$	$I_{nominal} = 23,3A$	$I_{nominal} = 30,0A$
5k?	$I_{nominal} = 7,5A$	$I_{nominal} = 12,5A$	$I_{nominal} = 17,5A$	$I_{nominal} = 22,5A$

x: 2 or 3; e.g. SBSCx015 stands for SBSC2015 and SBSC3015

9.0 Testsignals For current monitoring purpose a testsignal is available on terminal X2-7. The signal level indicates the magnitude of the actual output current and can be directly refered to motor torque by multipling with the torque constant.

	Testpoint	Function and Normalization
X2 - 7	DCurrent	Actual Output Current; 0 +10V; +10V equal peak current

10 I/O Hardware Description

- Legend

	Input signals
	Output signals
\frown	In- or output signals
	Connector with wiring variations

10.1 Input Signals

Analog Input Sig	nal Connector	X2	
Function	Signal	PIN	Hardware
Analog-Input	AIn+ AIn- AGND	1 2 3	$U_{in}(max) = +10V$

Digital Input Cor	nnector X9 / X8		
Function	Signal	PIN	Hardware
	X2		
Amplifier Enable	ENABLE	9	- High Active:
CW-Limit	CWLimit	11	+12+29V X2-8, 11, 12, 19
(pos. rotation) CCW-Limit	CCWLimit	12	X8-317
(neg. rotation) RESET-Input (INIT)	RESET	20	580 580 - 100 nF
Ground Return	CREF	14	X8-2; CPEF
	X8		
Program - Start	START	3	
Program - Stop	STOP	4	Low Activo
Progr Step	STEP	5 - Low Active:	
Program - Hold	HOLD	6	X2-9, 11, 12, 19 CGND X8-3 17 2.2 k
JOG+	XJ+	7	580 - 100 nF
JOG-	XJ-	8	+12+29V X2-14; CREF
Activate Home	HOME	9	X8-2; CREF
Pre - JOG	EQUAL	10	
X-Home-Flag	XHF	11	min. Input resistor $R_{IN} = 2,2k$?; opto isolated;
X-User-Flag	XUF	12	$U_{IN}=12 \dots 29V_{DC}$; max. current at 24V; I = 10mA
Y-User-Flag 1)	YUF	13	
Machine Input 1	MAI1	14	
Machine Input 2	MAI2	15	
Machine Input 3	MAI3	16	
Machine Input 4	MAI4	17	
Ground Return	CREF	2	

RESET-Input can restore the following faults:

Overvoltage Undervoltage Resolver Fault Electronic Fusing µSMCC-Card ? Hard Reset

1) optional

37

10.2 Output Signals

Digital Output Co	onnector X2		
Function	Signal	PIN	Hardware
It-Warning	Warn_C Warn_E	17 18	Warning before amplifier switches off with It- Limit or Overtemperature.

Digital Machine -	Digital Machine - Output Connector X8				
Function	Signal	PIN	Hardware		
Reference-Voltage	CIV	18			
Machine-Output 2	MAO2	21	TDE 1747 X8-18; CIV = 12.29V		
Machine-Output 3	MAO3	22	X8-21,22,23,24; MAOx		
Machine-Output 4	MAO4	23	D 209 4.7nF X8-18; CGND		
Machine-Output 5	MAO5	24			
Ground Return	CGND	19	Current limiting to 0.3A opto isolated; $U_{IN}=12 \dots 29V_{DC}$; max. Current at 24V; I = 200mA		

Digital Control-Output Connector X8				
Function	Signal	PIN	Hardware	
In_Position Buffer Full Ground Return	IPOS BF CGND	20 25 19	I = 40mA max. XB-20,25 CIV +12+29V Yest = 1.2V 39V XB-19 GND	

Digital Output Co	onnector X2		
Function	Signal	PIN	Hardware
Fault Relay	Fault+ Fault-	15 16	$\begin{array}{c c} & & & & \\ & & & \\ & & & \\ \hline & & & \\ \hline \\ \hline$

Analog Output Signal Connector X2					
Function	Signal	PIN	Hardware		
Testsignal see			The Testsignal is terminated with $R = 4.7k$? and normalized to		
Chapter 9	DCurrent	7	10V. Load resistor R? 100k?		

10.3 Resolver

Resolver - Signals	Connector X	3	
Function	Signal	PIN	Hardware
Reference-Signal	REF+ REF-	1 2	Signal waveform sinusoidal; $f = 7.2 \dots 8.0$ kHz; UOUT = 21Vpp ?10%; short circuit proof
COSINUS - Input	Cos+ Cos-	3	X3-4; SIN-
SINUS - Input	Sin+ Sin-	5 6	X3-3; C03+ X3-5; SIN+
			Input impedance about 17k? ; Signal waveform sinusoidal; U _{IN} = 10V _{pp} ?10%; 7.2 8.0kHz

10.4 Encoder Input

Encoder - Signals	Connector X	K6	
Function	Signal	PIN	Hardware
Encoder Channel_A	CHA CHA/	1 2	E0 +5V RDC 3 2 1 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Encoder Channel_B	CHB CHB/	3 4	
Encoder- Channel_C	CHC CHC/	5 6	X8-1,3,5 *Opt. R29/30/31 X8-9;+5V
+5V-Output	+5V	9	X8-12; DQND
Ground Return	DGND	12	5V-Output; I _{max} = 250mA

10.5 RS232 - Interface

RS232 Signal Connector X5				
Function	Signal	PIN	Hardware	
TXD	TXD	3	10 K · X5-3,7 HC14	
RTS	RTS	7	1220pF ↓ 47 K	
RXD	RXD	2	+12V ↓ 12V ↓ 12V	
CTS	CTS	8	75150 · X5-8 -12V	
DTR	DTR	4	· · · · · · ×5-4	
DSR	DSR	6		
DGND	DGND	5	X5-5 DQND	
Data Format: - 1 Start Bit - 8 Data Bits - 1 Stop Bit - no Parity				

Daisy Chain Sign	Daisy Chain Signal Connector X4				
Function	Signal	PIN	Hardware		
BRTS	BRTS	1	+5∨		
BTXD	BTXD	2			
TXD	TXD	4	10 K X4-4,5 HC14 - 220pF 47 K		
RTS	RTS	5			
RXD	RXD	3	+12V · X4-3		
CTS	CTS	6	75150 · · · · · · · · · · · · · · · · · · ·		
SYNC	SYNC	9	X4-0 SYNC		
DGND	DGND	10	X4-10 DGND		

10.6 Auxiliary Voltage Outputs

Auxiliary Voltage	Outputs Conr	nector X2	/ X6
Function	Signal	PIN	Hardware
		X2	
	. 1617		+15V X2-4; +15VDC output
?15 V _{DC}	+15V _{DC}	4	
Auxiliary- voltage-	AGND	3	X2-3; AGND
output	-15V _{DC}	5	-15V Multifuse 0.2A X2-8; -15VDC output
			Attention: A short circuit will generate a "RESET"
			Short circuit proof; $I_{max} = 100 \text{mA}$
		X6	
+ 5V			
	+ 5V	9	+5V
Auxiliary-			
voltage-	DGND	12	DGND X8-12; DGND
output			
			not short circuit proof; $I_{max} = 250 \text{mA}$