

Instruction Manual

HYBRID ULTRASONIC FLOWMETER <Duosonics>

TYPE: FSH (Flow transmitter) FSW (Detector) FLY (Signal cable)

PREFACE

We thank you very much for purchasing Fuji's ultrasonic flowmeter.

The instruction manual concerns the installation, operation, checkup and maintenance of the Flow transmitter (FSH) and Detector (FSW) of ultrasonic flowmeter. Read it carefully before operation.

- Before using, be sure to read this instruction manual carefully to ensure correct installation, operation and maintenance of the flowmeter. Note that incorrect handling may lead to trouble or personal injury.
- The specifications of this flowmeter are subject to change for improvement without prior notice.
- Do not attempt to modify the flowmeter without permission. Fuji is not responsible for any trouble caused by modification without permission. If it becomes necessary to modify the flowmeter, contact our office in advance.
- This instruction manual should always be kept on hand by the operator.
- After reading, be sure to keep this manual in a place where it can easily be seen by the operator.
- Make sure that this manual is presented to the end user.
- If the instruction manual has been lost, request another one (with charge) to our local business office.

Manufacturer:	Fuji Electric Instrumentation Co., Ltd.
Туре:	Shown on nameplate of Flowmeter
Date of manufacture:	Shown on nameplate of Flowmeter
Product nationality:	Japan

NOTICE

- It is strictly prohibited to reproduce any part or the whole of this instruction manual.
- The contents of this manual may be changed without prior notice.

©Fuji Electric Systems Co., Ltd. 2005

Issued in July 2005 Rev. 1st edition May, 2008

SAFETY PRECAUTION

Before using, read the following safety precaution to ensure correct handling of the flowmeter.

The following items are important for safe operation and must be fully observed. These items are classified into "DANGER" and "CAUTION". •

Warning & Symbol	Meaning	
	Incorrect handling may lead to a risk of death or heavy injury.	
CAUTION Incorrect handling may lead to a risk of medium or light injury, physical damage.		

- The items noted under "A CAUTION" may also result in serious trouble depending on circumstances. All the items are important and must be fully observed. •
- (

Caution on Installation and Piping		
Г	(This product has not an explosion-proof structure. Do not use it in a place with explosive gases, otherwise, it can result in serious accidents such as explosion, fire, etc.
Г	(The unit should be installed in a place conforming with the installation requirements noted in this instruction manual. Installation in an improper location may lead to a risk of electric shocks, fire, malfunction, etc. The unit should be installed as noted in the manual. Improper installation will
 cause falling, trouble or malfunction of the unit. During installation, make sure that the inside of the unit is free from c and other foreign objects to prevent fire, trouble, malfunction, etc. The items under "Caution on Installation" noted in the manual mus observed. Careless installation may result in trouble or malfunction of t 		cause falling, trouble or malfunction of the unit. During installation, make sure that the inside of the unit is free from cable chips and other foreign objects to prevent fire, trouble, malfunction, etc. The items under "Caution on Installation" noted in the manual must be fully observed. Careless installation may result in trouble or malfunction of the unit.

Caution on Wiring		
AUTION	 When performing wiring termination to prevent output trouble caused by moisture, dew condensation or water leak, follow "Section 3.3. Flow transmitter wiring" described in this manual Before performing the wiring work, be sure to turn OFF the main power to prevent electric shocks. Do not perform wiring work outdoors in rainy days to prevent insulation deterioration and dew condensation. Otherwise, it can result in trouble, malfunction, etc. Be sure to connect a power source of correct rating. Connection of a power source of incorrect rating may lead to a risk of fire. The unit must be earthed as specified to prevent electric shocks or malfunction. The analog output signal cable should be wired as far away as possible from high-voltage lines to prevent entry of noise signals as it will cause malfunction of the unit. To prevent malfunction of the unit, the analog output signal cable and power cable should be wired using separate conduits. 	

	Caution on Maintenance/Inspection
AUTION	The unit should be inspected everyday to always obtain good results of measurements. When measuring the insulation resistance between the power/output terminal and the case, follow "Section 5.2.4. Measuring insulation resistance" described in this manual. If the fuse is blown, detect and eliminate the cause, and then replace the fuse with a spare. If there are no spares, replace the fuse with the or specified in this manual (that must be prepared by customer). Use of fuse other than specified or its short-circuit may cause an electric shock of fire. The fuse should be replaced according to "Section 5.3. Replacing fuse" described in this manual.

CAUTION ON INSTALLATION LOCATION

🖳 CAUTION -

- Sufficient space for daily inspection, wiring, etc.
- (1) (2) (3) A place not exposed to direct sunshine or weathering.
- Isolation from vibration, dust and moisture
- (4)A place not subjected to radiated heat from a heating furnace etc.
- (5) A place not subjected to explosive gas and corrosive atmosphere
- (6) A place not submerged
- A place remote from electrical devices (motor, transformer, etc.) which generate (7) electromagnetic induction noise, electrostatic noise, etc.
- (8) A place not subjected to excessive fluid pulsation (pump discharge side)
- (9) A place that provides enough place for the length of the straight pipe.
- (10) A place where ambient temperature and humidity are 10 to +50°C and 90% RH or less for flow transmitter (FSH), and • 20 to +80°C and 100% RH or less for detector (FSW).

Contents

PREFACE	I
SAFETY PRECAUTION	II
CAUTION ON INSTALLATION LOCATION	IV
1 PRODUCT OUTLINE	
1.1. Outline	1
1.1.1. Measurement principle	1
1.2. Checking delivered items	3
1.3. Checking type and specifications	4
1.4. Names of each part and functions	7
2. SELECTING INSTALLATION LOCATION	9
2.1. Flow transmitter	9
2.2. Detector	10
2.2.1. Length of straight section of pipe	
2.2.2. Mounting position	
2.2.3. Mounting the sensor	13
3. INSTALLATION AND BEFORE START OF OPERATION	
3.1. Before operation	
3.2. Installing the flow transmitter	15
3.3. Flow transmitter wiring	10 16
3.3.2 Applicable wires	10
3 3 3 Treatment of wiring port	10
3.3.4. Removing and mounting the cover and the shield plate.	
3.3.5. Wiring to each terminal	
3.4. Setting piping parameters and calculating the sensor spacing	19
3.4.1. Selecting sensor type, mounting the sensor, setting the sensor constant	19
3.4.2. Entering piping specifications	21
3.5. Installing Detector	23
3.5.1. Outline of detector installation procedure	23
3.5.2. I reatment of mounting surface	
3.5.4 Mounting the sensor unit by Z method using a frame (2 measurement lines)	23
3.5.5 Mounting the sensor unit to a large-diameter nine	
3.6. Setting analog output range and total pulse.	
3.6.1. Analog output range setting	
3.6.2. Total pulse output setting	
3.7. Zero adjustment	
4. SETTING PARAMETERS	
4.1. Description of display/setting unit	
4.1.1. Description of display	
4.1.2. Description of keys	
4.2. Setting item list	
4.3. Parameter specification table	
4.4. Setting parameters	45
4.4.1. Measurement memory and sensor	/ 4/ ۵۹
4.4.3 Measurement mode (Measurement mode AO definition)	
4.4.4. Output setting	
4.4.4.1. Range (range unit, range type, full scale, hysteresis) setting	
4.4.4.2. Output limit	55
4.4.4.3. How to set analog output at error (BURNOUT)	56
4.4.4.4. Rate limit	57
4.4.5. Damping	
4.4.6. Zero adjustment.	
4.4.7. Display setting	60
4.4.0. Cut OII	01 67

4.4.9.1. Total unit	
4.4.9.2. Setting total pulse (Total rate, pulse width)	
4.4.9.3. Total preset	
4.4.9.4. Total SW	
4.4.9.5. Determining how to dispose of total at error (BURNOUT)	
4.4.10. Flow switch	
4.4.11. Status output	
4.4.12. Output calibration	
4.4.13. Measurement unit	
4.4.14. System language selection	
4.4.15. Setting serial communication (RS232C/RS485)	
4.4.16. Maintenance	
4.4.16.1. Analog output adjustment and check	
4.4.16.2. Checking status output	
4.4.16.3. Calibrating temperature sensor	
4.4.16.4. Checking temperature sensor	
4.4.16.5. Test mode	
4.4.17. LCD backlight	
4.4.18. Key lock	
4.4.19. Checking system name	
4.4.20. Details of measurement	
4.4.20.1. Transit time	
4.4.20.2. Pulse Doppler	
4.4.20.3. Initializing setting parameters	
4.4.20.4. Confirmation of software version	
5. MAINTENANCE AND INSPECTION	
5.1. Daily inspection	
5.2. Periodic inspection	
5.2.1. Checking zero point	
5.2.2. Calibrating current output circuit	
5.2.3. Calibrating temperature sensor circuit	
5.2.4. Measuring insulation resistance	
5.3. Replacing fuse	
5.4. Replacing relay	
5.5. Replacing LCD	
6. TROUBLESHOOTING	
6.1. How to confirm normal operation	
6.1.1. Checking on LCD	
6.1.2. Checking measurement status information	
6.1.2.1. Checking and setting of RAS information	
6.1.2.2. Status information	
6.1.2.3. Measurement data information	
6.2. Faults and remedies	
6.2.1. Display error	
6.2.2. Key failure	
6.2.3. Measurement value error	
6.2.4. Analog output error	
6.3. Checking received waveform	
6.3.1. Method by oscilloscope	
6.3.2. Checking signal waveform (TRANSIT TIME)	
6.3.3. Checking demodulated waves (Pulse Doppler)	
6.3.4. Measures against hardware failure	
7. PC LOADER SOFTWARE	
7.1. Copyright of this software	
7.2. Outline	
7.3. PC to be used	
7.3.1. Computer	
7.3.2. Memory capacity	
7.3.3. Interface	
7.3.4. OS	
7.4. Installing of Software	
7.5. Startup Method	

7.5.2. Setting 117 7.5.2.1. Save setting 117 7.5.2.2. Read setting 117 7.5.3. Version 118 7.6. Structure of Function 118 7.7. Stabilish Setting 123 7.7. Total Setting 123 7.10. Status Output Setting 125 7.11. Display Setting 126 7.12. System Setting 127 7.13. Measurement 128 7.14.4. Pulse Doppler Measurement 129 7.14.2. Flow velocity profile (optional function) 131 7.15.3. Operation Information 135 7.15.1. Detailed Setting (optional function) 135 7.15.2. Received Signal (optional function) 137 7.15.3. Operation Information 138 7.16.4. Maintenance 140 7.17.5. Appendix 142 8. APPENDIX 143 8.1. 2. Communication specifications. 143 8.1.2. 1. Received Rel 144 8.1.3. Error code table	7.5.1. Communications	
7.5.2.1. Save setting 117 7.5.2.2. Read setting 117 7.5.2.2. Kersion 118 7.6.5.2.4. Version 118 7.6.5.2.7. Version 118 7.6.5.2.7. Version 118 7.6.5.2.7. Version 118 7.7.5.2.7. Version 118 7.6.5.2.7. Version 119 7.8. Range Setting 121 7.9. Total Setting 123 7.10. Status Output Setting 126 7.12. Measurement 128 7.13. Measurement 129 7.14.1. Detailed setting (optional function) 129 7.14.2. Flow velocity profile (optional function) 129 7.14.3. Operation Information 131 7.15.4. Clow velocity profile (optional function) 135 7.15.2. Received Signal (optional function) 135 7.15.2. Received Signal (optional function) 136 7.15.3. Detailed Setting (optional function) 137 7.15.4. Received Signal (optional function) 137 7.15.5. Received Signal (optional function) 138 7.16.5. Apperation Information 138 7.17.5.7. Operation Information	7.5.2. Setting	
7.5.2.2. Read setting 117 7.5.3. Version 118 7.6. Structure of Function 118 7.7. Establish Setting 119 7.8. Range Setting 121 7.9. Total Setting 123 7.10. Status Output Setting 125 7.11. Display Setting 126 7.12. System Setting 127 7.13. Measurement 128 7.14. Pulse Doppler Measurement 129 7.14.1. Detailed setting (optional function) 129 7.14.2. Flow velocity profile (optional function) 131 7.14.3. Operation Information 133 7.15.1. Detailed Setting (optional function) 135 7.15.2. Received Signal (optional function) 135 7.15.3. Operation Information 138 7.16. Maintenance 140 7.17. Find 142 8. APENDIX 143 8.1. External communication specifications 143 8.1.2. Nessage configuration 143 8.1.2. Response 143 8.1.2. Received atble 144 8.1.2. Received atble 144 8.1.2. Received speneficatio	7.5.2.1. Save setting	
7.5.3. Version 118 7.6. Structure of Function 118 7.7. Establish Setting 119 7.8. Range Setting 121 7.9. Total Setting 123 7.10. Status Output Setting 125 7.11. Display Setting 126 7.12. System Setting 126 7.13. Measurement 128 7.14.1. Detailed setting (optional function) 129 7.14.2. Flow velocity profile (optional function) 131 7.15.3. Geasurement 129 7.14.1. Detailed Setting (optional function) 131 7.15.2. Received Signal (optional function) 135 7.15.3. Operation Information 135 7.15.4. Optional function) 135 7.15.3. Operation Information 138 7.16. Maintenance 140 7.17. End 142 7.18. Uninstalling of Software 142 8. APPENDIX 143 8. 1.1. Communication specifications 143 8. 1.2. Message configuration 143 8. 1.2. Response 143 8. 1.2. Response 143 8. 1.2. Response 143	7.5.2.2. Read setting	
7.6. Structure of Function. 118 7.7. Establish Setting. 119 7.8. Range Setting 121 7.9. Total Setting 123 7.10. Status Output Setting. 125 7.11. Display Setting 126 7.12. System Setting 126 7.13. Measurement 128 7.14. I. betailed setting (optional function) 129 7.14.1. Detailed setting (optional function) 129 7.14.2. Flow velocity profile (optional function) 131 7.15. J. Operation Information 133 7.15. Transit Time Difference Measurement. 135 7.15.1. Detailed Setting (optional function) 135 7.15.2. Received Signal (optional function) 137 7.15.3. Operation Information. 138 7.16. Maintenance 140 7.17. End. 142 7.18. Uninstalling of Software 143 8.1. 2. Message configuration 143 8.1. 2. Response 143 8.1. 2. Received Signal (optional functions) 143 8.1. 2. Response 143 8.1. 2. Response 143 8.1. 2. Communication specifications	7.5.3. Version	
7.7. Establish Setting. 119 7.8. Range Setting. 121 7.9. Total Setting 123 7.10. Status Output Setting. 125 7.11. Display Setting. 126 7.12. System Setting 127 7.13. Measurement. 128 7.14. Pulse Doppler Measurement 129 7.14.1. Detailed setting (optional function). 129 7.14.2. Flow velocity profile (optional function). 131 7.14.3. Operation Information 133 7.15.1. Detailed Setting (optional function). 135 7.15.2. Received Signal (optional function). 135 7.15.3. Operation Information 138 7.16.4. Maintenance 140 7.17. Find. 142 7.18. Uninstalling of Software 142 8. APPENDIX 143 8.1.1. Communication specifications. 143 8.1.2.1. Receiving 143 8.1.2.2. Response 143 8.1.3.2. Response 143 8.1.4.3. Error response 143 8.1.4.4.4. Function code table 145 8.1.5. Error code table 145 8.1.6. Ca	7.6. Structure of Function	
7.8. Range Setting 121 7.9. Total Setting 123 7.10. Status Output Setting 125 7.11. Display Setting 126 7.12. System Setting 127 7.13. Measurement 128 7.14. Pulse Doppler Measurement 129 7.14.1. Detailed setting (optional function) 129 7.14.2. Flow velocity profile (optional function) 131 7.15. Transit Time Difference Measurement 135 7.15. Transit Time Difference Measurement 135 7.15. Received Signal (optional function) 135 7.15. Received Signal (optional function) 136 7.17. End. 142 8. APPENDIX 142 8. APPENDIX 143 8.1. External communication specifications 143 8.1.1. Communication specifications 143 8.1.2.1. Receiving 143 8.1.3. Error check 144 8.1.4.4.4.5.4.5.2.2.2.2.2.2.2.2.2.2.2.2.2.2	7.7. Establish Setting	
7.9. Total Setting. 123 7.10. Status Output Setting. 125 7.11. Display Setting. 126 7.12. System Setting. 127 7.13. Measurement 128 7.14. Pulse Doppler Measurement. 129 7.14.2. Flow velocity profile (optional function). 129 7.14.2. Flow velocity profile (optional function). 131 7.15.1. Detailed Setting (optional function). 133 7.15.1. Detailed Setting (optional function). 135 7.15.2. Received Signal (optional function). 135 7.15.3. Operation Information. 136 7.16. Maintenance. 140 7.17. End. 142 8. APPENDIX 143 8.1.1. Communication specifications. 143 8.1.2. Message configuration 143 8.1.2.1. Receiving 143 8.1.2.2. Response 143 8.1.3. Error code table 144 8.1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	7.8. Range Setting	
7.10. Status Output Setting. 125 7.11. Display Setting. 126 7.12. System Setting. 127 7.13. Measurement. 128 7.14. Pulse Doppler Measurement 129 7.14.1. Detailed setting (optional function). 129 7.14.1. Detailed setting (optional function). 131 7.14.2. Flow velocity profile (optional function). 131 7.15.3. Operation Information. 135 7.15.1. Detailed Setting (optional function). 135 7.15.2. Received Signal (optional function). 137 7.15.3. Operation Information. 138 7.16. Maintenance 140 7.18. Uninstalling of Software 142 8. APPENDIX 143 8.1.1. External communication specifications. 143 8.1.2. Received gene 143 8.1.2.1. Receiving 143 8.1.2.1. Receiving 143 8.1.2.3. Error response 143 8.1.2.4. Seponse 144 8.1.5. Error code table 145 8.1.2.3. Error response 144 8.1.4.4. Function code table 145 8.1.2.3. Error response <td< td=""><td>7.9. Total Setting</td><td></td></td<>	7.9. Total Setting	
7.11. Display Setting 126 7.12. System Setting 127 7.13. Measurement 128 7.14. Pulse Doppler Measurement 129 7.14.1. Detailed setting (optional function) 129 7.14.2. Flow velocity profile (optional function) 131 7.14.3. Operation Information 133 7.15.1. Detailed Setting (optional function) 133 7.15.2. Received Signal (optional function) 135 7.15.3. Operation Information 138 7.16. Maintenance 140 7.17. End 142 7.18. Uninstalling of Software 143 8.1. External communication specifications 143 8.1.2.1. Receiving 143 8.1.2.2. Response 143 8.1.2.3. Error response 144 8.1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	7.10. Status Output Setting	
7.12. System Setting. 127 7.13. Measurement 128 7.14. Pulse Doppler Measurement 129 7.14.1. Detailed setting (optional function) 129 7.14.2. Flow velocity profile (optional function) 131 7.14.3. Operation Information 133 7.15. Transit Time Difference Measurement. 135 7.15.1. Detailed Setting (optional function) 135 7.15.2. Received Signal (optional function) 137 7.15.3. Operation Information 138 7.16.4. Maintenance 140 7.17. End. 142 7.18. Uninstalling of Software 143 8.1.1. Communication specifications 143 8.1.2. Receiving 143 8.1.2.1. Receiving 143 8.1.2.3. Error response 143 8.1.2.4. Receiving 144 8.1.5. Error code table 144 8.1.6. Cable connection specifications (RS-232C) 146 8.1.6. Cable connection specifications (RS-232C) 146 8.1.6. Cable connection specifications (RS-232C) 146 8.1.6. Cable connection specifications (RS-232C) 147 8.3. Outline diagram. 147	7.11. Display Setting	
7.13. Measurement. 128 7.14. Pulse Doppler Measurement 129 7.14.1. Detailed setting (optional function). 129 7.14.2. Flow velocity profile (optional function). 131 7.14.3. Operation Information 133 7.15. Transit Time Difference Measurement 135 7.15.1. Detailed Setting (optional function) 135 7.15.2. Received Signal (optional function) 137 7.15.3. Operation Information 138 7.16. Maintenance 140 7.17. End 142 8. APPENDIX 143 8.1. External communication specifications 143 8.1.1. Communication specifications 143 8.1.2.1. Receiving 143 8.1.2.2. Response 143 8.1.2.3. Error response 144 8.1.4.5. Error code table 144 8.1.5. Error code table 144 8.1.6. Cable connection specifications (RS-232C) 146 8.1.6. Cable connection specifi	7.12. System Setting	
7.14. Pulse Doppler Measurement 129 7.14.1. Detailed setting (optional function) 129 7.14.2. Flow velocity profile (optional function) 131 7.14.3. Operation Information 133 7.15.1. Detailed Setting (optional function) 135 7.15.2. Received Signal (optional function) 135 7.15.3. Operation Information 137 7.15.3. Operation Information 138 7.16.4. Maintenance 140 7.17. End 142 7.18. Uninstalling of Software 142 8. APPENDIX 143 8.1. External communication specifications. 143 8.1.2. Message configuration 143 8.1.2.1. Receiving 143 8.1.2.2. Response 144 8.1.3. Error response 144 8.1.4. Function code table 145 8.1.5. Error code table 146 8.1.6. Cable connection specifications (RS-232C) 146 8.1.6. Cable connection specifications (RS-232C) 146 8.1.7 Bacement of an order 157 8.6. Piping data 164 8.7. Making gauge paper 172	7.13. Measurement	
7.14.1. Detailed setting (optional function)1297.14.2. Flow velocity profile (optional function)1317.14.3. Operation Information1337.15. Transit Time Difference Measurement1357.15.1. Detailed Setting (optional function)1357.15.2. Received Signal (optional function)1377.15.3. Operation Information1387.16.4. Maintenance1407.17. End1427.18. Uninstalling of Software1438.1. External communication specifications1438.1.2. Message configuration1438.1.2.1. Receiving1438.1.2.2. Response1438.1.2.3. Error response1448.1.4. Function code table1448.1.5. Error code table1448.1.6. Cable connection specifications (RS-232C)1468.1.6. Cable connection specifications (RS-232C)1468.1.6. Cable connection specifications (RS-232C)1468.1.7. Making gauge paper1478.6. Origing data1478.7. Making gauge paper1478.7. Making gauge paper147	7.14. Pulse Doppler Measurement	
7.14.2. Flow velocity profile (optional function) 131 7.14.3. Operation Information 133 7.15. Transit Time Difference Measurement 135 7.15.1. Detailed Setting (optional function) 135 7.15.2. Received Signal (optional function) 137 7.15.3. Operation Information 138 7.16. Maintenance 140 7.17. End 142 7.18. Uninstalling of Software 142 8. APPENDIX 143 8.1. External communication specifications 143 8.1.2. Message configuration 143 8.1.2.1. Receiving 143 8.1.2.2. Response 143 8.1.2.3. Error response 144 8.1.3. Error code table 144 8.1.4. Function code table 145 8.1.5. Error code table 144 8.1.6. Cable connection specifications (RS-232C) 146 8.1.6. Cable connection specifications (RS-232C) 146 8.5. Composition of key operation 157 8.6. Piping data 164 8.7 Making gauge paper 172	7.14.1. Detailed setting (optional function)	
7.14.3. Operation Information 133 7.15. Transit Time Difference Measurement. 135 7.15.1. Detailed Setting (optional function) 135 7.15.2. Received Signal (optional function) 137 7.15.3. Operation Information 137 7.15.4. Optimized Setting (optional function) 137 7.15.3. Operation Information 137 7.15.4. Optimized Setting (optional function) 137 7.15.3. Operation Information 138 7.16. Maintenance 140 7.17. End 142 7.18. Uninstalling of Software 142 8.1. External communication specifications 143 8.1. External communication specifications 143 8.1.2. Message configuration 143 8.1.2.1. Receiving 143 8.1.2.1. Receiving 143 8.1.2.2. Response 144 8.1.3. Error response 144 8.1.4. Function code table 145 8.1.5. Error code table 146 8.1.6. Cable connection specifications (RS-232C) 146 8.1.6. Cable connection specifications (RS-232C) 146 8.1.6. Cable connection specifications (RS-232C) <td>7.14.2. Flow velocity profile (optional function)</td> <td></td>	7.14.2. Flow velocity profile (optional function)	
7.15. Transit Time Difference Measurement 135 7.15. 1. Detailed Setting (optional function) 135 7.15. 2. Received Signal (optional function) 137 7.15. 3. Operation Information 138 7.16. Maintenance 140 7.17. End 142 7.18. Uninstalling of Software 142 8. APPENDIX 143 8.1. External communication specifications 143 8.1. External communication specifications 143 8.1. 2. Message configuration 143 8.1.2. Receiving 143 8.1.2.1. Receiving 143 8.1.2.2. Response 143 8.1.2.3. Error response 144 8.1.3. Error check 144 8.1.4. Function code table 145 8.1.5. Carble connection specifications (RS-232C) 146 8.2. Specifications 147 8.3. Outline diagram 149 8.4. Items to be specified at placement of an order 154 8.5. Composition of key operation 157 8.6. Piping data 164	7.14.3. Operation Information	
7.15.1. Detailed Setting (optional function) 135 7.15.2. Received Signal (optional function) 137 7.15.3. Operation Information 138 7.16. Maintenance 140 7.17. End 142 7.18. Uninstalling of Software 142 7.18. Uninstalling of Software 142 8. APPENDIX 143 8.1. External communication specifications 143 8.1.1. Communication specifications 143 8.1.2. Message configuration 143 8.1.2.1. Receiving 143 8.1.2.2. Response 143 8.1.2.3. Error response 144 8.1.4.5. Error code table 144 8.1.6. Cable connection specifications (RS-232C) 146 8.1.6. Cable connection specifications (RS-232C) 146 8.1.6. Cable connection specifications (RS-232C) 146 8.2. Specifications 147 8.3. Outline diagram 149 8.4. Items to be specified at placement of an order 154 8.5. Composition of key operation 157 8.6. Piping data 164 8.7. Making gauge paper 172	7.15. Transit Time Difference Measurement	
7.15.2. Received Signal (optional function)1377.15.3. Operation Information1387.16. Maintenance1407.17. End1427.18. Uninstalling of Software1428. APPENDIX1438. 1. External communication specifications1438. 1.1. Communication specifications1438. 1.2. Message configuration1438. 1.2. Receiving1438. 1.2. Receiving1438. 1.2. Receiving1438. 1.2. Receiving1438. 1.2. Seponse1448. 1.2. Seponse1448. 1.2. Response1448. 1.2. Response1448. 1.2. Response1448. 1.2. Response1448. 1.2. Response1448. 1.2. Response1448. 1.3. Error code table1458. 1.5. Error code table1468. 1.6. Cable connection specifications (RS-232C)1468. 2. Specifications1478.3. Outline diagram1498.4. Items to be specified at placement of an order1548.5. Composition of key operation1578.6. Piping data1648.7. Making gauge paper172	7.15.1. Detailed Setting (optional function).	
7.15.3. Operation Information 138 7.16. Maintenance 140 7.17. End 142 7.18. Uninstalling of Software 142 7.18. Uninstalling of Software 143 8.1. External communication specifications 143 8.1. External communication specifications 143 8.1. Communication specifications 143 8.1.2. Message configuration 143 8.1.2.1. Receiving 143 8.1.2.2. Response 143 8.1.2.3. Error response 144 8.1.3. Error check 144 8.1.4.4. Function code table 145 8.1.5. Error code table 146 8.1.6. Cable connection specifications (RS-232C) 146 8.2. Specifications 147 8.3. Outline diagram 149 8.4. Items to be specified at placement of an order 157 8.6. Piping data 164 8.7. Making gauge paper 167	7.15.2. Received Signal (optional function).	
7.16. Maintenance 140 7.17. End 142 7.18. Uninstalling of Software 142 8. APPENDIX 143 8.1. External communication specifications 143 8.1. Communication specifications 143 8.1.2. Message configuration 143 8.1.2.1. Receiving 143 8.1.2.2. Response 143 8.1.2.3. Error response 144 8.1.4.4.3. Error check 144 8.1.5. Error code table 144 8.1.6. Cable connection specifications (RS-232C) 146 8.2.3. Outline diagram 149 8.4. Items to be specified at placement of an order 157 8.6. Piping data 164 8.7. Making gauge paper 172	7.15.3. Operation Information	
7.17. End1427.18. Uninstalling of Software1428. APPENDIX1438.1. External communication specifications1438.1.1. Communication specifications1438.1.2. Message configuration1438.1.2.1. Receiving1438.1.2.2. Response1438.1.2.3. Error response1448.1.3. Error check1448.1.4. Function code table1458.1.5. Error code table1468.1.6. Cable connection specifications (RS-232C)1468.2. Specifications1478.3. Outline diagram1498.4. Items to be specified at placement of an order1548.5. Composition of key operation1578.6. Piping data1648.7. Making gauge paper172	7.16. Maintenance	
7.18. Uninstalling of Software1428. APPENDIX1438.1. External communication specifications1438.1.1. Communication specifications1438.1.2. Message configuration1438.1.2.1. Receiving1438.1.2.2. Response1438.1.2.3. Error response1448.1.3. Error check1448.1.4. Function code table1458.1.5. Error code table1468.1.6. Cable connection specifications (RS-232C)1468.2. Specifications1478.3. Outline diagram1498.4. Items to be specified at placement of an order1548.5. Composition of key operation1578.6. Piping data1648.7. Making gauge paper172	7.17. End	
8. APPENDIX 143 8.1. External communication specifications 143 8.1.1. Communication specifications 143 8.1.2. Message configuration 143 8.1.2. Receiving 143 8.1.2.1. Receiving 143 8.1.2.2. Response 143 8.1.2.3. Error response 143 8.1.3. Error check 144 8.1.4. Function code table 145 8.1.5. Error code table 146 8.1.6. Cable connection specifications (RS-232C) 146 8.2. Specifications 147 8.3. Outline diagram 149 8.4. Items to be specified at placement of an order 154 8.5. Composition of key operation 157 8.6. Piping data 164 8.7. Making gauge paper 172	7.18. Uninstalling of Software	
8. AFF EXDIX1438.1. External communication specifications1438.1.1. Communication specifications1438.1.2. Message configuration1438.1.2.1. Receiving1438.1.2.2. Response1438.1.2.3. Error response1448.1.3. Error check1448.1.4. Function code table1458.1.5. Error code table1468.1.6. Cable connection specifications (RS-232C)1468.2. Specifications1478.3. Outline diagram1498.4. Items to be specified at placement of an order1578.6. Piping data1648.7. Making gauge paper172		1/2
8.1 Extends connumeration specifications1438.1.1. Communication specifications1438.1.2. Message configuration1438.1.2.1. Receiving1438.1.2.2. Response1438.1.2.3. Error response1448.1.3. Error check1448.1.4. Function code table1458.1.5. Error code table1468.1.6. Cable connection specifications (RS-232C)1468.2. Specifications1478.3. Outline diagram1498.4. Items to be specified at placement of an order1548.5. Composition of key operation1578.6. Piping data1648.7. Making gauge paper172	8.1 External communication specifications	143
8.1.2. Communication spectrications1438.1.2.1. Receiving1438.1.2.1. Receiving1438.1.2.2. Response1438.1.2.3. Error response1448.1.3. Error check1448.1.4. Function code table1458.1.5. Error code table1468.1.6. Cable connection specifications (RS-232C)1468.2. Specifications1478.3. Outline diagram1498.4. Items to be specified at placement of an order1548.5. Composition of key operation1578.6. Piping data1648.7. Making gauge paper172	8.1.1. Communication specifications	143
8.1.2.1. Receiving1438.1.2.2. Response1438.1.2.3. Error response1448.1.3. Error check1448.1.4. Function code table1458.1.5. Error code table1468.1.6. Cable connection specifications (RS-232C)1468.2. Specifications1478.3. Outline diagram1498.4. Items to be specified at placement of an order1548.5. Composition of key operation1578.6. Piping data1648.7. Making gauge paper172	8.1.2 Message configuration	143
8.1.2.1. Receiving1438.1.2.2. Response1438.1.2.3. Error response1448.1.3. Error check1448.1.4. Function code table1458.1.5. Error code table1468.1.6. Cable connection specifications (RS-232C)1468.2. Specifications1478.3. Outline diagram1498.4. Items to be specified at placement of an order1548.5. Composition of key operation1578.6. Piping data1648.7. Making gauge paper172	8.1.2.1 Receiving	143
8.1.2.2. Response1448.1.2.3. Error response1448.1.3. Error check1448.1.4. Function code table1458.1.5. Error code table1468.1.6. Cable connection specifications (RS-232C)1468.2. Specifications1478.3. Outline diagram1498.4. Items to be specified at placement of an order1548.5. Composition of key operation1578.6. Piping data1648.7. Making gauge paper172	8122 Response	143
8.1.3. Error check 144 8.1.3. Error check 144 8.1.4. Function code table 145 8.1.5. Error code table 146 8.1.6. Cable connection specifications (RS-232C) 146 8.2. Specifications 147 8.3. Outline diagram 149 8.4. Items to be specified at placement of an order 154 8.5. Composition of key operation 157 8.6. Piping data 164 8.7. Making gauge paper 172	8 1 2 3 Error response	143
8.1.4. Function code table1458.1.4. Function code table1468.1.5. Error code table1468.1.6. Cable connection specifications (RS-232C)1468.2. Specifications1478.3. Outline diagram1498.4. Items to be specified at placement of an order1548.5. Composition of key operation1578.6. Piping data1648.7. Making gauge paper172	8 1 3 Error check	144
8.1.5. Error code table 146 8.1.5. Error code table 146 8.1.6. Cable connection specifications (RS-232C) 146 8.2. Specifications 147 8.3. Outline diagram 149 8.4. Items to be specified at placement of an order 154 8.5. Composition of key operation 157 8.6. Piping data 164 8.7. Making gauge paper 172	8.1.4 Function code table	145
8.1.6. Cable connection specifications (RS-232C) 146 8.2. Specifications 147 8.3. Outline diagram 149 8.4. Items to be specified at placement of an order 154 8.5. Composition of key operation 157 8.6. Piping data 164 8.7. Making gauge paper 172	8 1 5 Frror code table	146
8.2. Specifications 147 8.3. Outline diagram 149 8.4. Items to be specified at placement of an order 154 8.5. Composition of key operation 157 8.6. Piping data 164 8.7. Making gauge paper 172	8.1.6 Cable connection specifications (RS-232C)	146
8.2. Optime diagram. 149 8.3. Outline diagram. 149 8.4. Items to be specified at placement of an order 154 8.5. Composition of key operation 157 8.6. Piping data 164 8.7. Making gauge paper 172	8.2. Specifications	147
8.4. Items to be specified at placement of an order 154 8.5. Composition of key operation 157 8.6. Piping data 164 8.7. Making gauge paper 172	8.3 Outline diagram	149
8.5. Composition of key operation	8.4 Items to be specified at placement of an order	154
8.6. Piping data	8.5 Composition of key operation	157
8.7. Making gauge paper	8.6 Pining data	164
	8.7. Making gauge paper.	

1. PRODUCT OUTLINE

1.1. Outline

This high precision flowmeter is the world's first clamp-on type ultrasonic flowmeter that adopts the pulse Doppler method and the transit time method as its measurement principles. The ultrasonic flowmeter for industrial use employs the pulse Doppler method, which directly measures flow distribution, thus easing straight pipe conditions and allowing measurement of flows that have not grown into eddy or laminar flow. Combined use of the transit time method allows the hybrid ultrasonic flowmeter to be used for measuring a significantly wide range of liquids. The pulse Doppler method, which uses echoes coming from reflectors in a liquid to be measured, is ideal for the measurement of liquids that contain air bubbles and particles. On the other hand, the transit time method, which allows ultrasonic waves to pass through for measurement, is ideal for the measurement of clean liquids.

The new hybrid technique employing both the pulse Doppler and the transit time methods allows the flowmeter to be used for wider range of applications. In addition, our self-developed switching algorithm ensures automatic switching between the two methods depending on the conditions of a liquid to be measured (such as mixing status of air bubbles or particles and flow rate), thus facilitating measurement.

1.1.1. Measurement principle

<Pulse Doppler method>

• The pulse Doppler method measures flow distribution and flow rate based on the fact that Doppler frequency of the echo coming from reflectors such as air bubbles and particles in liquids changes with fluctuation of flow rate.

<Transit time method>

• Under the transit time method, ultrasonic pulses are propagated slanted from both upstream and downstream sides, and time difference of flows are detected to measure the flow rate.

Configuration

(1) 1 measurement line method (Z method)

(2) 2 measurement line method (Z method)

1.2. Checking delivered items

Flow transmitter (FSH)
Flow transmitter main unit1 set
Waterproof gland (Built into the main unit)1 set
Wall mount fittings (Built into the main unit)1 set
Detector (FSWS12, 21, 40)
Detector main unit (FSWS12, 21)1 set
Detector main unit (FSWS40)1 set
Absorber unit
Stainless steel belt1 set
Fittings1 set
Silicon rubber ···································

Detector (FSWS50)
Detector main unit (FSWS50)······1 set
Absorber unit ····································
Wire rope ······1 set
Spring for mounting1 set
Signal cable (FLY6)
Cable for ultrasonic signals1 pair (2 pcs.)
Signal cable (FLY7)

CD-ROM (Instruction manual and Loader software)

1.3. Checking type and specifications

The specification plates attached to the flow transmitter and the detector list the type and specifications of the product. Check that they represent the type you ordered, referring to the following code symbols.

< Flow transmitter (FSH)>

1 2 3 4 5 6 7 8 9 10 11 12	
FSH 1-S	Description
S	Type (4th digit) Standard (Japanese) Standard (English)
Y	Velocity profile output (5th digit) None Available
Y	Use (6th digit) Single path or Changeover two-path (Note) Note: 2 sets of detectors and coaxial cables (FLY6) needed for two-path system
1	Power supply (7th digit) 100 to 240VAC, 50/60Hz 20 to 30VDC
1	Modification No. (8th digit)
s	Case structure (9th digit) Watertight type (IP67)
Y Conduit connection (10th digits) [G1/2 and G3/8 (female screw)] with waterproof gland A	
Y	For use with explosion-proof detector (11th digit) None
Y A B C	Parameter setting, Tag plate (12th digit) None With setting With setting + Tag plate Tag plate

	FC	
Ultrasonic Flow Meter	(€	
Output DC4-20mA		
DC20-30V		
Ser.No	Mfd	
Fuji Electric Systems Co.,Ltd.	Made in Japan	

<Detector (FSW)>

<Sensor unit>

The numeric value marked on the DF field of the nameplate of the sensor unit represents the sensor constant, which is determined by actual current calibration performed as part of the delivery test at the factory.

<Signal cable (FLY)>

1 2 3 4 5 6 7	8	
FLY	1	Description
6		Kind of cable (4th digit) Coaxial cable (for ultrasonic sensors) 1 pair (2 pcs.) Three-core cable (for temperature sonsor)
$\begin{array}{c} 0 & 0 & 5 \\ 0 & 1 & 0 \\ 0 & 1 & 5 \\ 0 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 3 & 0 \\ 0 & 3 & 5 \\ 0 & 4 & 0 \\ 0 & 4 & 5 \\ 0 & 5 & 5 \\ 0 & 6 & 0 \\ 0 & 5 & 5 \\ 0 & 6 & 0 \\ 0 & 5 & 5 \\ 0 & 6 & 0 \\ 0 & 6 & 5 \\ 0 & 7 & 5 \\ 0 & 8 & 0 \\ 0 & 8 & 5 \\ 0 & 9 & 0 \\ 0 & 9 & 5 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 3 & 0 \\ 1 & 4 & 0 \\ 1 & 5 & 0 \end{array}$		Cable length (5th to 7th digit) 5m 10m 15m 20m 25m 30m 35m 40m 45m 50m 55m 60m 65m 70m 75m 80m 85m 90m 95m 100m 110m 120m 130m 140m 150m
	1	Modification No. (8th digit) Mark1

1.4. Names of each part and functions

No.	Name	Description	
(1)	Wiring connection port for power cable	Wiring port for power cable	
(2)	Wiring connection port for ultrasonic signal	Wiring port for ultrasonic signal cable	
	cable		
(3)	Wiring connection port for temperature	Wiring port for temperature sensor cable	
	sensor cable		
(4)	Wiring connection port for DO output	Wiring port for for DO output cable	
	cable		
(5)	Display and setting unit	Displays flow rate, etc. Used for various setting operations.	
(6)	LCD	Displays flow rate and various settings.	
(7)	Setting key	Used for making settings.	
(8)	Power terminal	Connect power cable to this terminal.	
(9)	I/O terminal	Connect power output cable, communication cable, and	
		temperature sensor cable to this terminal.	
(10)	Input terminal	Connect ultrasonic signal cable to this terminal.	
(11)	Output terminal	Connect Do output cable to this teminal.	
(12)	LCD contrast adjusting knob	Used for adjusting the contrast of the LCD.	
(13)	Sensor unit	Used for transmitting/receiving ultrasonic waves.	
(14)	Sensor frame	Used for fastening the sensor unit to the piping.	

No.	Name	Description	
(15)	Retainer plate	Used for fastening the sensor by pressing it against the piping.	
(16)	BNC connector for ultrasonic signal cable	Transmits ultrasonic send/receive signals.	
(17)	Water-tight connector for temperature	Transmits temperature sensor signals.	
(18)	Stainlage steel helt	Used for fostening the senser frame to the nining	
(10)	Stanness steel beit	Used for fastening the sensor frame to the piping.	
(19)	19) Ultrasonic wave transmission surface Transmits ultrasonic waves to the fluid to be measured		
	receives them through the piping.		
(20)	Temperature sensor piping contact surface	Makes the temperature sensor contact the piping.	
(21)	Cover	Protects the unit from contact with high-voltage section.	
(22)	2) Shield plate Shields the input terminal (10).		
(23)	Earth cable Connects the arrestor of the output terminal. (See "5.2.4")		
		Measuring insulation resistance.")	

2. SELECTING INSTALLATION LOCATION

Select an installation location that satisfies the following conditions, with ease of maintenance and inspection, service life of the instrument, and assurance of reliability taken into consideration.

- (1) A place where ambient temperature and humidity are as follows: Flow transmitter (FSH): -10 to +50°C, 90%RH or lower
 - Detector (FSW): -20 to +80°C, 100%RH or lower
- (2) A place not subject to direct sunlight or weather
- (3) A place provided with space for daily inspection and wiring work
- (4) A place not subject to radiant heat from a heating furnace, etc.
- (5) A place not in an atmosphere of corrosive or explosive gas
- (6) A place not subject to flooding
- (7) A place not subject to vibration, dust, or moisture

2.1. Flow transmitter

Allow space of 100 mm or more between the flow transmitter and the surrounding walls. Allow sufficient space for opening of the front cover for maintenance.

Allow sufficient space for wiring at the bottom of the case.

2.2. Detector

The mounting position of the detector, in other words, the state of the piping where the flow rate is to be measured, affects the accuracy of measurement to a great extent. Select a place that satisfies the conditions described in 2.2.1. Length of straight section of pipe. Assure sufficient working space for installation and maintenance, referring to the figures shown below.

D: Pipe diameter

Space required for mounting of detector

2.2.1. Length of straight section of pipe

To assure the accuracy of flow rate measurement, allow sufficient length of the straight section of the pipe on the upper/lower stream side, referring to "straight pipe conditions" shown below.

(Note) The source : JEMIS-032

2.2.2. Mounting position

The instrument can be mounted horizontally or in any other position. However, pay attention to the following.

(1) Allow fluid to fill the pipe and keep it flowing at all times.

(2) Mount the flowmeter within $\pm 45^{\circ}$ from the center plane in the case of horizontal pipe run. Mount it at an arbitrary position on the outer periphery in the case of vertical pipe run.

(3) Avoid mounting the flowmeter in a position where the pipe is deformed, or on a flange or welded part.

2.2.3. Mounting the sensor

The detector can be mounted Z method as shown in Fig. 1.

As shown in Fig. 2, the center of the cap screw of the sensor is a reference. The mounting spacing of the two sensors corresponds to the V-shaped portion in Fig. 3.

3. INSTALLATION AND BEFORE START OF OPERATION

3.1. Before operation

- (1) Selection of installation location of flow transmitter and detector
- (2) Installation and wiring of flow transmitter
- (3) Power ON

Check the power supply specifications and wiring before turning on the power.

- (4) Entering of piping parameters and calculation of the sensor spacing (*Check the sensor spacing if parameter setting is provided.)
- (5) Mounting of frame to measurement piping (*When using a frame for mounting)

(6) Mounting of sensor unit Be careful not to mount the unit with wrong dimension.
(7) Setting for the sensor of the sensor

- (7) Setting of measurement range (*Not required if measurement range is specified by parameter setting provided.)
- (8) Zero point adjustment Before performing zero point adjustment, check that the pipe is filled with fluid, the fluid is in still state, and that the measurement status is normal.
- (9) Start of measurement

3.3.	Flow transmitter wiring]		
3.1.	Before operation			
		I		
3.4.2.	Entering piping specifications		▶ 4.4.1.	Measurement method and sensor
			▶ 3.4.2.	Entering piping specifications
35	Installing detector			
5.5.		1		
6.3.	Checking received waveform			
		-		TRAURIESUCOTRUC
			• Chapter 6.	TROUBLESHOUTING
	Letter (1997)			
3.7.	Zero adjustment			
	↓	1		
	Dutput specification setting			
S	System setting			
1	Total specification setting			
1	Total alarm setting			
N	Aeasurement display specification setting			
I	Dumping setting			
I	Low flow rate cut setting			
(Dutput correction setting			
5	Status output setting			
	· · · · · · · · · · · · · · · · · · ·			
8.5.	Composition of key operation			
	L			
	Measurement			
Chapter 5.	MAINTENANCE AND INSPECTION			

3.2. Installing the flow transmitter

The flow transmitter can be mounted on a wall or on a panel.

Use four M8 bolts to mount the flow transmitter on a wall or a panel. Drill holes according to the mounting hole dimensions shown below, and fasten the flow transmitter using the M8 bolts.

3.3. Flow transmitter wiring

3.3.1. Cautions in wiring

- (1) Use a dedicated cable (FLY) as a signal cable between the detector (FSW) and the flow transmitter (FSH). Do not join cable in the middle.
- (2) Be sure to let the signal cables installed between the detector and the flow transmitter run through a metal conduit tube. The signal cables for upper and the lower streams can be made to run through the conduit tube together. However, do not let the power cable run through the conduit tube together with the signal cables to avoid induction problems.
- (3) Use shielded cables for output signals as far as possible.
- (4) To prevent noise from coming in, avoid installing wiring in a duct together with the power cable.
- (5) Directly ground the power cable that includes a ground lead.
- (6) The flowmeter is not equipped with a power switch. Mount one separately.
- (7) Tightly seal the unused wiring ports with supplied sealing caps.

3.3.2. Applicable wires

Use the following cables.

- Power cable:
 - 3-wire or 2-wire cably Nominal sectional area: 0.75 mm² or more Finished outer diameter: φ11 mm
- Output signal cable:
 2-wire or multi-wire cabtyre cable as required Finished outer diameter: \$\$\phi11\$ mm
- Cable between detector and flow transmitter: Cable for ultrasonic wave signals (High-frequency coaxial double shield cable with characteristic impedance of 50 Ω, With waterproof BNC connector provided on one side)

Finished outer diameter: $\phi7.3$ mm

Cable for temperature sensor (3-wire shielded cable, With waterproof connector provided on one side) Finished outer diameter: $\phi 6.9 \text{ mm}$

3.3.3. Treatment of wiring port

The casing of the flow transmitter is of watertight type (IP67). However, to prevent entry of moisture and occurrence of condensation, airtight processing of wiring ports is required. Be sure to take measures against entry of water using the waterproof glands supplied with the instrument. Tightly seal unused glands using the supplied sealing caps.

Do not install the flow transmitter in a place subject to the occurrence of flooding.

3.3.4. Removing and mounting the cover and the shield plate

Before installing wiring, loosen the 2 M4 screws and remove the cover.

Remove the 4 M3 screws and then the shield plate.

On completion of wiring work, be sure to mount the shield plate and the cover.

- Be sure to mount the cover before turning on the power.
- If the shield plate is not mounted, malfunction may result.

3.3.5. Wiring to each terminal

Install wiring according to the layout shown below.

- Note 1: All screws of the terminal block are M3.5. Use solderless terminals with external diameter of \$\$\phi7.2\$ or less that are for M 3.5.
- Note 2: Both the terminal block in the power supply board and the external earth terminal have grounding terminals. Be sure to ground (Class D grounding) one of these.

- 18 -

3.4. Setting piping parameters and calculating the sensor spacing

Make the setting to calculate the sensor spacing as follows.

3.4.1. Selecting sensor type, mounting the sensor, setting the sensor constant

Description -

The data of the sensor required for measurement can be set as follows.

If the sensor mounting method or sensor type is changed, the sensor spacing in piping specifications is also changed. Enter the data for each item according to the display (see the table shown below).

Refer to 4.4.1. for details of the setting.

Item	Input method	Range or menu	
Sensor mounting method	Select	V method, Z method	
Sensor type	Select	FLW11, FLW41, FLW12, FLD12, FLD22, FLW32,	
		FLW50, FLW51, FSW12, FSW21, FSW40, FSW50	
Sensor constant			
Line #-F: METAL PIPE	Numeric value	0.00% to 300.00%	
Line #-R: METAL PIPE	Numeric value	0.00% to 300.00%	
Line #-F: PLASTIC PIPE	Numeric value	0.00% to 300.00%	
Line #-R: PLASTIC PIPE	Numeric value	0.00% to 300.00%	
(#: Line No.)			

*1) Select sensor type by the model of the sensor to be used in combination (5 digits).

*2) In sensor constant, set the sensor constant calculated based on actual current calibration performed as part of the delivery test at the factory. Set the sensor constant for each of the sensor units mounted to the pipe. The sensor constant appears as the DF value marked on the nameplate of the sensor unit. The setting need not be changed normally. (Make the setting when the detector or the flow transmitter is replaced.)

• It appears as the DF-P value on the nameplate of the sensor unit if the sensor is mounted on a plastic pipe.

• It appears as the DF-M value on the nameplate of the sensor unit if the sensor is mounted on a metal pipe.

	Pipe material		
Plastic Pipe	PVC, FRP, PEEK, PVDF, Acrylic, Others		
Metal Pipe	Carbon steal, Stainless steel, Copper, Cast iron, Aluminium, Ductile iron		

Refer to "1.3. Checking type and specifications" for sensor unit.

*3) The sensor constant value is for the sensors in the following figure.

Operation (example) When Z method as sensor mount, FSW12 as sensor type, 102% for sensor constant line 1-F (METAL), 101% for 1-R (METAL)				
Key operation	Description	Display		
[FUNC] SYSTEM	Display System.	UNIT & LANGUAGE SKIP		
▲ or ▼	Select "SENSOR MOUNT"	SENSOR MOUNT V METHOD		
ENTER or ENTER	Enter select/enter mode, select "Z METHOD" and press ENTER.	SENSOR MOUNT Z METHOD		
▲ or ▼	Select "SENSOR TYPE"	SENSOR TYPE FSW21		
ENTER or ENTER	Enter select/enter mode, select "FSW12" and press ENTER.	SENSOR TYPE FSW12		
	Select "SENSOR CONSTANT"	SENSOR CONSTANT SKIP		
ENTER or ENTER	Enter select/enter mode, select "Setting," and press ENTER.	LINE 1-F: METAL 100.00%		
ENTER 102 ENTER	Enter numeric value enter mode, enter "102" using ten keys, and press ENTER.	LINE 1-F: METAL 102.00%		
▲ or ▼	Select "LINE 1-R"	LINE 1-R: METAL 100.00%		
ENTER 101ENTER	Enter numeric value enter mode, enter "101," and press ENTER.	LINE 1-R: METAL 101.00%		
ESC	Return to "SENSOR CONSTANT"	SENSOR CONSTANT SKIP		
ESC	Display measurement, reflecting the setting.	(Measurement display screen)		

3.4.2. Entering piping specifications

Description

By setting the conditions of the piping where measurement is to be taken, the sensor spacing to be mounted can be calculated. The sensor spacing is calculated automatically.

Enter data for each item listed in the following table according to the display.

Item	Input method	Range or menu	
Outer diameter	Numeric value	10.00 mm to 6200.00 mm	
Pipe material	Select	Carbon steel, stainless steel, PVC, copper, cast iron, aluminum,	
		FRP, ductile iron, PEEK, PVDF, acrylic, and others	
Pipe S.V.* ¹	Numeric value	1000 m/s to 3700 m/s	
Wall thickness	Numeric value	0.10 mm to 100.00 mm	
Lining material	Select	No lining, tar epoxy, mortar, rubber, Teflon, pyrex glass, PVC, and	
		others	
Lining S.V.* ²	Numeric value	1000 m/s to 3700 m/s	
Lining thickness* ³	Numeric value	0.01 mm to 100.00 mm	
Kind of fluid	Select	Water, seawater, dist. water, ammonia, alcohol, benzene, bromide,	
		ethanol, glycol, kerosene, milk, methanol, toluol, lube oil, fuel oil,	
		petrol, and others	
Fluid S.V.* ⁴	Numeric value	500 m/s to 2500 m/s	
Viscositv* ⁴	Numeric value	$0.0010E^{-6} m^2/s$ to 999.9999 $E^{-6} m^2/s$	

*1) When "others" is selected as pipe material only.

- *2) When "others" is selected as lining material only.
- *3) In the cases other than "No lining" only
- *4) When "others" is selected for the kind of fluid only.

Operation	When outer diameter of the pipe is 114.3 mm, pipe material is carbon steel, wall thickness is 6.0 mm,			
(example) lining material is tar epoxy, lining thickness is 1.25 mm, kind o			d is heavy water, sound velocity is	
	1388 m/s, and kiner	natic viscosity is $1.129E^{-6} \text{ m}^2/\text{s}$		
	(When the sensor is	mounted by "Z method," sensor type is "FSW1	2."	
Key	operation	Description	Display	
FUNC PIPE		Display sensor spacing.	SENSOR SPACING 9.17 mm	
		Select "OUTER DIAMETER"	OUTER DIAMETER 60.00 mm	
ENTER 114.3 ENTER		Enter numeric value enter mode, enter 114.30 using ten keys, and then press ENTER.	OUTER DIAMETER 114.30 mm	
		Select "PIPE MATERIAL"	PIPE MATERIAL PVC	

ENTER A or V ENTER	STEEL," and then press ENTER.	CARBON STEEL
	Select "WALL THICKNESS"	WALL THICKNESS 4.50 mm
ENTER 6 ENTER	Enter numeric value enter mode, enter "6" using ten keys, and press ENTER.	WALL THICKNESS 6.00 mm
	Select "LINING MATERIAL"	LINING MATERIAL NO LINING
ENTER or ENTER	Enter select/enter mode, select "TAR EPOXY," and press ENTER.	LINING MATERIAL TAR EPOXY
	Select "LINING THICKNESS"	LINING THICKNESS 0.01 mm
ENTER 1.25 ENTER	Enter numeric value enter mode, enter "1.25" using ten keys, and press ENTER.	LINING THICKNESS 1.25 mm
	Select "KIND OF FLUID"	KIND OF FLUID Water
ENTER or ENTER	Enter select/enter mode, select "OTHERS," and press ENTER.	KIND OF FLUID OTHERS
	Select "FLUID S.V."	FLUID S.V. 1440 m/s
ENTER 1388ENTER	Enter numeric value enter mode, enter "1388" using ten keys, and press ENTER.	FLUID S.V. 1388 m/s
	Select "VISCOSITY"	VISCOSITY 1.0038 E ⁻⁶ m ² /s
ENTER 1. 129 ENTER	Enter numeric value enter mode, enter "1.129" using ten keys, and press ENTER.	VISCOSITY 1.1290 E ⁻⁶ m ² /s
ESC	Select "SENSOR SPACING"	SENSOR SPACING 39.16 mm
ESC	Display the measurement, reflecting the setting.	(Measurement display screen)

SENSOR SPACING 39.16 mm

 \leftarrow Set the piping data, and then mount the detector at dimensions displayed.

3.5. Installing Detector

3.5.1. Outline of detector installation procedure

- 1. Treatment of mounting surface of the detector
- 2-1 Mounting small-diameter and small/medium size sensor
- (1) How to mount the frame (using a jig)
- (2) How to mount the frame (not using a jig)
- (2)-1 How to determine the mounting position
- (2)-2 How to mount the frame
- (3) How to mount the sensor unit
- 2-2 Mounting a large sensor
- (1) Mounting position
- (2) How to mount the sensor

3.5.2. Treatment of mounting surface

Using thinner and sand paper, remove rust, pitch, and irregularities, if any, on the surface of the piping to which the detector is to be mounted over the length of the frame to be used.

Note 1: If the pipe is wrapped with jute, remove the jute wrapping over the entire circumference in width of frame length (L) + 200 mm, and then perform surface treatment described above.

3.5.3. Mounting the detector by Z method using the frame

(1) How to mount the frame (using a jig)

(1) Remove the butterfly nut of the retainer plate, and remove it out of the frame.

(2) Temporarily place the mounting jig (option) on the frame.

(3) Fasten the mounting jig to the frame using the butterfly nut and the screw.

(4) Mount the mounting jig on the opposite side of the frame.

- (5) Let the shaft run through the mounting jig.
 - Note: Pay attention when letting the shaft run through the jig so that the scale unit of the frame coincides with that of the shaft.

(6) Let the shaft run through the mounting jig on the opposite side.

(7) Place the frame between the pipes.

(8) Let the shaft run through the holes at the bottom of the mounting jig.

(9) Wrap the stainless belt around the frame end.

- (10)Lift the screw of the stainless belt to let the tip of the belt run through it.
- (11) Fasten the screw, wrapping the stainless belt around the frame end.

(12) Fasten both ends of the frame with the stainless belt.

- (13)Remove the mounting jig.
 - Remove the shaft first, and then remove the mounting jig.

(2) How to mount the frame (not using a jig)

Gage paper is required to mount the frame by this method. (See "8.7. Making gauge paper" for details.)

(2)-1 How to determine the mounting position

(2)-2 Mounting the Frame

(1) Checking the mark-off line

(2) Wrap the stainless belt around the pipe.

(3) Lift the screw of the stainless belt and let the tip of the belt run through it.

(4) Place the frame so that the marking line and the "∇" mark on the frame end are aligned, and then fasten it with a band.

(3) How to mount the sensor unit

Mount the sensor unit comprising of two sensors facing opposite to each other, keeping the spacing displayed after the piping parameter setting is completed. See "2.2.3. Mounting the sensor" for details.

Note: Mount the sensor unit equipped with a temperature sensor on the upstream side.

If plastic piping is used, the absorber unit is not required. Skip the description of the absorber unit. If metal piping is used, the absorber unit is required. Perform the operation in accordance with the description of the absorber unit.

(1) Temporarily mount the sensor unit and absorber unit on the retainer plate.

Mount the sensor unit on the side with the V-shaped portion, and the absorber unit on the side without the V-shaped portion.

In this procedure, fully fasten the screws of the retainer plate so that the sensor unit and absorber unit contact with the retainer plate as tightly as possible.

(2) Before mounting the sensor unit to the frame, apply silicon rubber evenly over the entire ultrasonic transmission surface of the sensor unit and the surface of the temperature sensor that is to contact the pipe, being careful not to let air bubbles mix in. Before mounting the absorber unit, apply silicon rubber evenly over the entire installation surface of the absorber unit.

(3) Loosen the butterfly nuts of the thread part of the frame.

Place the notches of the retainer plate to the thread parts of the frame, and make the retainer plate contact tightly with the frame.

(4) Fix the retainer plate with the butterfly nuts. Subsequently, fasten the cap screws so that the sensor unit and absorber unit contact with the piping tightly.

(5) Fix the absorber unit with the cap screws so that the absorber unit comes in contact with the sensor unit.

- (6) Mount the opposed sensor units, paying attention to the spacing of the sensors.
- (7) Mount the two sensors so that their front faces face each other. Mount only one sensor to one frame.
- (8) Connect the temperature sensor cable to the waterproof connector for the temperature sensor cable.

(9) Connect the ultrasonic signal cable to the BNC connector, being careful not to reverse the upstream and the downstream wiring.

3.5.4. Mounting the sensor unit by Z method using a frame (2 measurement lines)

(1) Mounting the frame

Two pairs of frames are required.

(1) Draw a mark-off line at an angle $\pm 45^{\circ}$ from the horizon. See 3.5.5. (1) how to draw a mark-off line.

- (2) Align the center of the end frame so that it comes over the make-off line, and temporarily fasten it using cloth belt, etc. not on the frame ends but on the frame.
- (3) Then wrap a stainless steel belt around the frame end to fasten it securely. Follow the description in 3.5.3. to fasten the stainless steel belt.

(2) Mounting the sensor unit

Two pairs of sensor units and two pairs of absorbers (in the case of a metal pipe) are required for mounting. Mount the sensor units following the same procedure as "3.5.3. (3) How to mount the sensor unit." Mount each pair of frames to install the sensor unit.

3.5.5. Mounting the sensor unit to a large-diameter pipe

(1) How to determine the mounting position

Do not use a mounting jig to install the sensor unit to a pipe of diameter of 500 A or more. Mount the sensor with wire in such cases. (Do not use a frame.)

Perform the following to determine the mounting position.

Gauge paper is required for the work. (See "8.7. Making gauge paper" for details.)

(2) Mounting the sensor

Use sensor FSW50 for large-diameter pipes.

Note: Mount the sensor unit equipped with a temperature sensor on the upstream side.

(1) Checking the mark-off line

(2) Provide a wire rope for the sensor unit on the upstream and downstream sides and the absorber unit. Allow the length of the wire rope to be the same or longer than the pipe diameter.

(3) Lay the wire rope around the pipe on the upstream side. Then hang the spring for mounting on the wire rope.

(4) Loosen the screws of the guide plates mounted to the front and the rear of the sensor unit, keep the guide plates protruded as far as possible, and make the sensor unit closely contact the piping. In a state where the guide plate contacts the piping, fasten it with the screws.

(5) Apply silicon rubber evenly over the entire ultrasonic transmission surface and the contact surface of the temperature sensor piping, being careful not to let air bubbles mix in.

(6) Clean the surface of the piping, and then mount the sensor unit.

Separate the wire rope apart from each other, place the sensor unit closely contacted to the piping, and engage the wire rope in the grooves at the front and the rear of the sensor.

(7) Align the match mark of the sensor unit and the marking line.

The absorber unit is not required for resin piping. Proceed to (11) in this case. The absorber unit is used for metal piping. Proceed to (8) in this case.

(8) Apply silicon rubber evenly over the entire installation surface of the absorber unit.

(9) Clean the surface of the piping, and then mount the absorber unit.

Separate the wire rope apart from each other, place the absorber unit closely contacted to the piping so that it contacts the front face of the sensor unit, and then lay the wire rope..

(10) Adjust the position by aligning the match mark of the absorber unit and the sensor unit with the marking line.

(11) After mounting the sensor on the upstream side (along with the absorber unit in the case of metal piping), mount the sensor on the downstream side (along with the absorber unit in the case of metal piping) in the same manner.

- (12)Connect the temperature sensor cable to the waterproof connector for the temperature sensor cable.
- (13)Connect the ultrasonic signal cable to the BNC connector of the sensor unit, being careful not to reverse the wiring on upstream and downstream sides.

Note:

Do not pull the cable at this time. Otherwise the sensor unit may move, thus causing problems in measurement.

3.6. Setting analog output range and total pulse

The following table lists the analog output and total pulse settings.

3.6.1. Analog output range setting

- Description

Make the setting as shown below when outputting the measured value (flow rate or flow velocity) in specified range within 4 to 20 mA.

The following is an example of operation. Refer to 4.4.4. for details of the setting.

ENTER 3 0 ENTER	Enter numeric value enter mode, enter "30" using ten keys, and press ENTER.	BURNOUT TIMER 30 sec
	Select "RATE LIMIT"	RATE LIMIT 0.00 m ³ /h
ENTER 5 ENTER	Enter numeric value enter mode, enter "5," and press ENTER.	RATE LIMIT 5.00 m ³ /h
	Select "RATE LIMIT TIMER"	RATE LIMIT TIMER 0 sec
ENTER 1 5 ENTER	Enter numeric value enter mode, enter "15" using ten keys, and press ENTER.	RATE LIMIT TIMER 15 sec
ESC	Display the measurement, reflecting the setting.	(Measurement display screen)

3.6.2. Total pulse output setting

- Description -

Make the setting to perform pulse output of the total measurement value (flow rate). The following is an example of operation. Refer to 4.4.9. and 4.4.11. for details of the setting.

Definition of total pulse to DO (example)	When DO1 is output as total pulse output in forward direction						
Key operation	Description	Display					
[FUNC] STATUS]	Display Status.	SELECT STATUS DO.1					
ENTER or V	Select "DO.1."	SELECT STATUS DO.1					
ENTER	Display "OUTPUT DO.1"	OUTPUT DO.1 NOT USED					
ENTER or ENTER	Enter select/enter mode, select "F: TOTAL PULSE," and press ENTER.	OUTPUT DO.1 F: TOTAL PULSE					
▲ or ▼	Display "MODE DO.1"	MODE DO.1 REVERSE					
ENTER or ENTER	Enter select/enter mode, select "NORMAL," and press ENTER.	MODE DO.1 NORMAL					
ESC ESC	Display the measurement, reflecting the setting.	(Measurement display screen)					

Total setting (example)	I setting (example) When performing integration, holding output burnout with total pulse output set to 100 m ³							
	for 1 pulse, burnout timer set to 15 sec, and pulse width 1 set as 100msec.							
Key operation		Description	Display					
FUNC TOTAL		Display Total mode.	TOTAL MODE TOTAL RUN					
ENTER or EN	TER	Enter select/enter mode, select "TOTAL STOP," and press ENTER. (Setting is allowed.)	TOTAL MODE TOTAL STOP					
▲ or ▼		Select "TOTAL UNIT"	TOTAL UNIT mL					
ENTER I or EN	TER	Enter select/enter mode, select "m ³ ," and press ENTER.	TOTAL UNIT m ³					
▲ or ▼		Select "TOTAL RATE"	TOTAL RATE 10.000 m ³					
ENTER 100ENTER		Enter numeric value enter mode, enter "100" using the ten key, and press ENTER.	TOTAL RATE 100.000 m ³					
▲ or ▼		Select "OUTPUT BURNOUT"	OUTPUT BURNOUT NOT USED					
ENTER or ENTER		Enter select/enter mode, select "HOLD," and press ENTER.	OUTPUT BURNOUT HOLD					
▲ or ▼		Select "BURNOUT TIMER"	BURNOUT TIMER 10 sec					
ENTER 15 ENTER		Enter numeric value enter mode, enter "15" using ten keys, and press ENTER.	BURNOUT TIMER 15 sec					
▲ or ▼		Select "PULSE WIDTH 1"	PULSE WIDTH 1 50 msec					

ENTER or ENTER	Enter select/enter mode, select "100," and press ENTER.	PULSE WIDTH 1 100 msec
▲ or ▼	Select "TOTAL MODE"	TOTAL MODE TOTAL STOP
ENTER or ENTER	Enter select/enter mode, select "TOTAL RESET," and press ENTER.	TOTAL MODE TOTAL RESET
ESC	Display the measurement, reflecting the setting.	(Measurement display screen)

3.7. Zero adjustment

Close the valves on upper and lower streams of the flowmeter to stop the flow completely, and then perform zero adjustment.

Note 1: If no valves are provided or the flow cannot be stopped, select "Clear" when performing "Zero adjustment." Note that zero point may deviate slightly in this case.

Note 2:	ZERO:	Press '	"Zero"	to perform	zero a	adjustment	in a s	state	where	the flow	is stopped	comple	etely.
	CLEAR	Press	"Clear'	' to perform	zero	adjustmen	t in a	state	where	the flow	cannot be	stoppe	d.

Operation (example) When performing zero adjustment in still state						
Key operation	Description	Display				
FUNC ZERO	Display zero adjustment.	ZERO ADJUSTMENT CLEAR				
ENTER or	Enter select/enter mode, and select "ZERO"	ZERO ADJUSTMENT ZERO				
ENTER	While calibration is in progress, elapsed time is displayed in lower stage.	ZERO ADJUSTMENT				
	When calibration is successfully completed, "ZERO" is displayed. When it is unsuccessfully completed, "CLEAR" is displayed in lower stage.	ZERO ADJUSTMENT ZERO				
ESC	Display the measurement, reflecting the setting.	(Measurement display screen)				

• If "Clear" is selected and executed at this time, the zero adjustment value currently stored is cleared to zero.

4. SETTING PARAMETERS

4.1. Description of display/setting unit

4.1.1. Description of display

Turn on the power, and the following display appears. The meaning of displayed numeric values and symbols are as follows.

* For decimal point setting of the measurement display, refer to "4.4.7. Display setting."

4.1.2. Description of keys

Press the key, and the functions displayed above the ten keys can be executed.

Duosonics	
	0
PIPE RANGE DAMP ZERO FUNC ESC 7 8 9 0 0 0 0 FLOW SW TOTAL CUIT OFF DISP 1 0	
4 5 6 • STATUS CAL SYSTEM CHECK DETAIL	
Image: Status Cal. System CHeck Detail 1 2 3 ± / V	

Table 1Description of keys

Name	Key	Description
Ten key	0 to 9, •, ±	Used to enter numeric values for data and piping specifications.
ENTER	ENTER	Press this key to set the numeric data entered using keys or items selected by dialog. In the case of entry by dialog, the next item to be set appears.
Left arrow key, Right arrow key	4 , •	Used to move the cursor when changing numeric values. Press ◀ to move the selection to left, and press ► to move the selection to right.
Up arrow key, Down arrow key	(,)	Press ▲ to go to the next menu, and press ▼ to go back to the previous menu. Used to select the menu item displayed during dialog.
ESCAPE (Cancellation)	ESC	Used to cancel the dialog.
FUNCTION	FUNC	Press this key to execute the function displayed above each key (ten keys).
/π	/π	Enter the outer periphery of the pipe and press this key, and the outer diameter is displayed (valid only when outer pipe diameter is selected).
PIPE (Piping specifications)	FUNC PIPE	Used to enter the dimensions, material, etc. of the pipe to which the sensor is to be mounted.
RANGE (Output setting)	FUNC RANGE	Used to set the analog output conditions (unit, range, limit, burnout, rate limit).
DAMP (Damping)	FUNC DAMP	Used to set damping.
ZERO (Zero adjustment)	FUNC ZERO	Used to set zero adjustment.
DISP (Display setting)	FUNC DISP	Used to set items and units that appear on the measurement screen.
CUT OFF (Low flow rate cutoff)	FUNC CUT OFF	Used to set low flow rate cutout.
TOTAL (Integration)	FUNC TOTAL	Used to set the conditions of flow rate integration (unit, rate, preset value, total switch, pulse width).
FLOW SW (Flow switch)	FUNC FLOW SW	Used to set the upper/lower limit switch of the measurement value.
STATUS (Status output)	FUNC STATUS	Used to set the conditions of status output (total pulse, measurement status).
CAL (Output calibration)	FUNC CAL	Used to calibrate the reading of zero point and 100% point.
SYSTEM	FUNC SYSTEM	Used to switch measurement unit systems and languages, and check or calibrate analog output.
СНЕСК	FUNC CHECK	Displays error contents and measurement status in case an error display appears.
DETAIL (Details of measurement)	FUNC DETAIL	Used to display the version of software or perform detailed measurement setting.

4.2. Setting item list

Refer to Appendix "8.5. Composition of key operation" for details of composition of key operation.

Measurement	Piping specifications		4.4.2.
screen	(FUNC PIPE)		
	— Output setting		4.4.4.1.
	(FUNC RANGE)	— Output limit	4.4.4.2.
	([POINC [KANOL])	BURNOUT	4.4.4.3.
		Rate limit	4.4.4.4.
	— Damping		4.4.5.
	(FUNC DAMP)		
	Zero adjustment		4.4.6.
	(FUNC ZERO)		
	— Display setting		4.4.7.
	(FUNC DISP)		
	-Low flow rate cutout		4.4.8.
	(FUNC CUT OFF)		
	— Integration	——— Total unit	4.4.9.1.
	(FUNC TOTAL)	Total pulse (Total rate, pulse width)	4.4.9.2.
		Total preset	4.4.9.3.
		— Total switch	4.4.9.4.
		BURNOUT	4.4.9.5.
	-Flow switch		4.4.10.
	(FUNC FLOW SW)		
	— Status output		4.4.11.
	(FUNC STATUS)		
	— Output calibration		4.4.12.
	(FUNC CAL)		
	— System	System unit	4.4.13.
	(FUNC SYSTEM)		4.4.14.
	([[]]])	Serial communication	4.4.15.
		-Calibration and check of analog output	4.4.16.1.
		— Check of status output	4.4.16.2.
		-Calibration of wedge temperature	4.4.16.3.
		-Check of wedge temperature	4.4.16.4.
		— Test mode	4.4.16.5.
		— Measurement method	4.4.1.
		Sensor	4.4.1.
		(Mounting method, type, constant, transmission voltage)	4.4.2
		Measurement mode	4.4.3.
		- LCD backlight	4.4.17.
		- Key lock	4.4.18.
	— Details of measurement	I ransit time	4.4.20.1
	(FUNC DETAIL)	Pulse Doppler	4.4.20.2.
		- Initialization	4.4.20.3.

*1) Intended for our service personnel.

4.3. Parameter specification table

The following table lists factory settings (not applicable to the type with parameter settings).

No.		Setting item	Settable range	Initial value	Settable value
1		Outer diameter	10.00 to 6200.00 mm	60.00 mm	[mm, inch]
			(0.393 to 244.100 inch)	(2.362 inch)	
2		Pipe material	12 menus	PVC	Carbon steel, Stainless steel, PVC,
					Copper, Cast iron, Aluminum, FRP,
					Others
3		Wall thickness	0 10 to 100 00 mm	4 00 mm	[mm_inch]
2			(0.003 to 3.940 inch)	(0.157 inch)	[,]
4		Lining material	8 menus	No lining	No lining, Tar epoxy, Mortar,
			Lining S.V.: 1000 to 3700		Rubber, Teflon, Pyrex glass, PVC,
5	on	T :	m/s (3280 to 12140 ft/s)		Others (Sound velocity: [m/s, ft/s])
3	cati	Lining thickness	(0.001 to 100.00 mm)	-	[mm, incn]
6	cifi	Kind of Fluid	17 menus	Water	Water Seawater DIST water
Ŭ	spe	Tenia of Fluid	Fluid S.V.: 500 to 2500m/s	Water	Ammonia, Alcohol, Benzene,
	ng		(1641 to 8203 ft/s)		Bromide, Ethanol, Glycol,
	iPi		Viscosity: 0.001 to		Kerosene, Milk, Methanol, Toluol,
	Ч		$999.9999 \times 10^{-6} \text{m}^2/\text{s}$		Lube oil, Fuel oil, Petrol, Others
			$(0.0107 \text{ to } 10763.9088 \times 10.6 \text{ cm}^{2})$		(Sound velocity: $[m/s, ft/s]$)
7		D :	$10^{-6} \text{ ft}^2/\text{s}$	(0)	$(V1scosity [\times 10^{\circ}m^2/s, tt^2/s])$
/		Range unit	19 menus	m/s (It/s)	m/s, L/s, L/min, L/n, L/d, kL/d , ML/d, m^{3}/s , m^{3}/min , m^{3}/h , m^{3}/d
					km^3/d Mm ³ /d BBL/s BBL/min
					BBL/h. BBL/d. KBBL/d. MBBL/d
					(ft/s, ft ³ /s, ft ³ /min, ft ³ /h, ft ³ /d, kft ³ /d,
					Mft ³ /d, gal/s, gal/min, gal/h, gal/d,
					kgal/d, Mgal/d, BBL/s, BBL/min,
0		D (0.1	BBL/h, BBL/d, kBBL/d, MBBL/d)
8		Kange type	4 menus	Single	Single, Auto 2, Bi-dir, Bi-dir Auto 2
9		scale 1	0.00 + 0.30 to $+32.00$ m/s	2.00 m/s (6.56 ft/s)	
		Source 1	$(0.00, \pm 0.50 \text{ to } \pm 0.2.00 \text{ m/s})$	(0.50 105)	
			(0.00, 2019 0 to 210 119 0 ft/s)		
10		Full scale 2	In terms of flow velocity	4.00 m/s	[(19) Unit]
	50		$0.00, \pm 0.30$ to ± 32.00 m/s	(13.12 ft/s)	
	ttin		$(0.00, \pm 0.98 \text{ to } \pm 104.98)$		
	s se		ft/s)	10.000/	
11	nge	Range HYS.	0.00 to 20.00%	10.00%	%
12	Ra	Output limit LO.	-20 to $0%$	-20%	⁰ ∕0
13		Output limit HI.	100 to 120%	120% Hold	70 Notused Hold Upper Lower Zero
14		Burnout timer	0 to 900sec	10sec	sec
16		Rate limit	0.00 to 5.00m/s (0.00 to	0.00m/s	[(19) Unit]
			16.40 ft/s) in terms of flow	(0.00 ft/s)	
			velocity	× ,	
17		Rate limit timer	0 to 900sec	0 sec	sec
18	18 Damping		0.0 to 100.0sec	5.0 sec	sec
19	19 Zero adjustment		2 menus	Clear (unadiusted)	Zero, Clear (Default: Clear)
20		1: Display kind	7 menus	Flowrate	Velocity, Flowrate, Total forward.
	2	I J		(m3/s)	Total reverse, F: Total pulse, R:
	pla. ting				Total pulse, Flow rate (%)
21	Dis sett	2: Display kind	7 menus	Velocity	Velocity, Flowrate, Total forward,
				(m/s)	Total reverse, F: Total pulse, R:
					Total pulse, Flow rate (%)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	No	Satting itam		tingitam	Sattable ronge	Initial value	Sattable velue
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	INO.	-	300		Settable Tallge		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	22	Low	Low flow cut off		0.00 to 5.00m/s (0.00 to	0.01 m/s	[(19) Unit]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					16.40 ft/s) in terms of flow	(0.03 ft/s)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					velocity		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	23		Total	mode	3 menus	Total stop	Total stop, Total run, Total reset
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	24		Total	unit	8 menus	$mL(ft^3)$	mL, L, m ³ , km ³ , Mm ³ , mBBL, BBL,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							kBBL, (ft ³ , kft ³ , Mft ³ , kgal, gal,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							mBBL, BBL, kBBL, ACRF)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	25		Total	rate	0.000 to 999999.999	0.000	[(8) Unit]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	26		F: To	tal preset	0.000 to 999999999999999	0.000	[(8) Unit]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	27	al	F: To	tal SW	0.000 to 999999999999999	0.000	[(8) Unit]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	28	lot	R· To	otal preset	0 000 to 9999999999999	0.000	[(8) Unit]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20		$\mathbf{R} \cdot \mathbf{T}_{\mathbf{C}}$	tal SW	0.000 to 9999999999999	0.000	[(8) [[nit]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	30	-	Outr	ut hurnout	2 menus	Hold	Not used Hold
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21		Durp	out timor		10 see	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22	-	Dull		0 to 900sec	10 sec	50, 100, 200
33Puise width 29 menus50.0 ms0.0, 10, 2.0, 50.0, 100, 20.0, 100, 20.0, 50.0, 100, 20.0, 100, 20.0, 50.0, 100, 20.0, 100, 20.0, 100, 20.0, 50.0, 100, 20.0, 100, 100, 100, 100, 100, 100, 100,	32		Pulse		3 menus	50 ms	50, 100, 200
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	33		Pulse	e width 2	9 menus	50.0 ms	0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, 100.0, 200.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	34		Flow	sw low	In terms of flow velocity	0.00 m/s	[(19) Unit]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Ч			0.00 to ± 32.00 m/s (0.00 to	(0.00 ft/s)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		itc			+104.98 ft/s)	· · · ·	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	35	SW	Flow	sw high	In terms of flow velocity	4 00 m/s	[(19) []nit]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	55	M	11011	Str ingh	0.00 to +32.00 m/s (0.00 to)	(13.12 ft/s)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		FIC	FIC		$\pm 104.08 \text{ ft/s}$	(15.12 105)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26		Flow		104.981(3)	100/	0 /
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	27		FIOW	<u>sw птэ.</u>	15 manua	1070	70 Natural Signal amon E. Tatal
$\frac{1}{43}$ $\frac{1}{44}$ $\frac{1}{45}$ $\frac{1}{50}$ $\frac{1}{52}$ $\frac{1}{52}$ $\frac{1}{52}$ $\frac{1}{53}$ $\frac{1}{52}$ $\frac{1}{52}$ $\frac{1}{53}$ $\frac{1}{53}$ $\frac{1}{52}$ $\frac{1}{53}$ $\frac{1}{53}$ $\frac{1}{53}$ $\frac{1}{52}$ $\frac{1}{53}$ $\frac{1}{53}$ $\frac{1}{53}$ $\frac{1}{52}$ $\frac{1}{53}$ $\frac{1}{53}$ $\frac{1}{52}$ $\frac{1}{53}$	57		Output DO.1		15 menus	Not used	not used, Signal error, F. Total
$\frac{1}{33}$ $\frac{1}{34}$ $\frac{1}{44}$ $\frac{1}{45}$ $\frac{1}{45}$ $\frac{1}{46}$ $\frac{1}{47}$ $\frac{4}{47}$ $\frac{4}{47}$ $\frac{1}{47}$ $\frac{4}{48}$ $\frac{4}{49}$ $\frac{1}{50}$ $\frac{1}{52}$ $\frac{1}{52}$ $\frac{1}{52}$ $\frac{1}{52}$ $\frac{1}{52}$ $\frac{1}{52}$ $\frac{1}{53}$ $\frac{1}{53}$ $\frac{1}{52}$ $\frac{1}{53}$ $\frac{1}{53}$ $\frac{1}{52}$ $\frac{1}{53}$							P: Total alarm E: Total overflow P:
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							K. Iotal alailii, F. Iotal Overhow, K.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		nt					Flow SW Low Followels 2 AO
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		itp					Flow Sw Low, Full scale2, AO
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		10					range over, Pulse range over, R:
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•	tus		D O 4			Flow direction, Device error
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	38	Sta	Mode	e DO.1	2 menus	Normal	Normal, Reverse
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	39		Outp	ut DO.2	15 menus	Not used	Same as DO1 output type
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	40		Mode	e DO.2	2 menus	Normal	Normal, Reverse
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	41		Outp	ut DO.3	15 menus	Not used	Same as DO1 output type
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	42		Mode	e DO.3	2 menus	Normal	Normal, Reverse
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	43	I	CAL	. zero	0.00 to 5.00 m/s (000 to	0.00 m/s	[(19) Unit]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ior			16.40 ft/s) in terms of flow	(0.00 ft/s)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		nge			velocity		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	44	ra	CAL. span		±200.00%	100.00%	%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Ű		1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4.5		G /		2	Matula	Matria Frankal
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	45		System unit		2 menus	Metric	Metric, English
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	46		Language		5 menus	English	Japanese, English, German, French, Spanish
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	47		خ	COM. speed	3 menus	38400 bps	9600 bps, 19200 bps, 38400 bps
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	48		on	COM. parity	3 menus	None	None, Even, Odd
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	49	ten	al c	COM. stop bit	2 menus	1 bit	1bit, 2 bits
51 $\overline{\mathcal{O}}$ StationNo.31 menus11 to 3152Analog output calibration4 mA, 20 mACalibration value-53Wedge temp.100 Ω , 140 Ω Calibration value-	50	yst	eri (Serial method	2 menus	RS232C	RS232C, RS485
52Analog output calibration4 mA, 20 mACalibration value53Wedge temp. 100Ω , 140Ω Calibration value	51	S	Ň	StationNo	31 menus	1	1 to 31
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52		Anal	og output	4 mA 20 mA	Calibration	-
53Value53Wedge temp.100 Ω, 140 ΩCalibration value	52	Analog output		ration		value	
	53	1	Wedd	ze temn	100 0 140 0	Calibration	-
	55		,,eug	Se temp.	100 22, 110 22	value	

54 Measurementh 2 menus Hybrid Hybrid Hybrid Transition 55 Measurementh 2 menus Depends on the detector specification 1 Path, 2 Path 56 Moant 2 menus Depends on the detector specification Average, 1 ine 1, 1 i.ne 2 57 Moant 2 menus 2 Method V Method, 2 Method 60 Moant 2 menus 7 Method V Method, 2 Method 61 Moant 2 menus 80 Vpp 20 Vpp, 40 Vpp, 80 Vpp, 160 Vpp 62 Trans. voltage 4 menus 80 Vpp 20 Vpp, 40 Vpp, 80 Vpp, 160 Vpp 63 Fri Iransission 6 menus 0n On. Off. On. Off. 64 # firansission 6 menus 128 8, 16, 32, 64, 128, 256 128 66 # firansission 6 menus 128 8, 16, 32, 64, 128, 256 128 70 # firansission 7 menus Auto Auto Maual 71 # firansission 7 menus Auto Maual 71 </th <th>No.</th> <th colspan="2">Setting item</th> <th>ting item</th> <th>Settable range</th> <th>Initial value</th> <th>Settable value</th>	No.	Setting item		ting item	Settable range	Initial value	Settable value
55 56 56 56 56 10 Path, 2 Path 1 Path, 2 Path 56 56 A0 definition 3 menus Depends on the detector specification. Average, Line 1, Line 2 57 58 50 A0 definition 3 menus Z Method V Method, Z Method 60 Type 4 menus FSW12 FSW12, FSW21, FSW20, FSW30 % 73 Type 4 menus 80 Vpp 20 Vpp, 40 Vpp, 80 Vpp, 160 Vpp 61 Trans. voltage 4 menus 80 Vpp 20 Vpp, 40 Vpp, 80 Vpp, 160 Vpp 62 Seword Numeral 4 digits 0000 -digit numeral 64 Kr Tassmission 6 nerus 128 8, 16, 32, 64, 128, 256 66 Window 2 menus Auto Auto Auto 67 Window 2 menus Auto Auto Auto 68 No 10 o 256 32 - - 71 #. Signal 0 to 100% 25% % - 767 <	54	Measure method		ure method	2 menus	Hybrid	Hybrid, Transit time
Second Base of the second	55		ıt	Measurement	2 menus	Depends on	1 Path, 2 Path
Sec Provide and the section of the detector specification. AD definition 3 menus Depends on the detector specification. 77 PS PS <td< td=""><td></td><td></td><td>nen</td><td>mode</td><td></td><td>the detector</td><td></td></td<>			nen	mode		the detector	
56 $\sqrt{10}$ AO definition 3 menus Depends on the detector, specification, specificatin, specification, specificatin, specification, specif			ren ode			specification.	
ST ST<	56		asu	AO definition	3 menus	Depends on	Average, Line 1, Line 2
NormalNormalNormalSection9 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 9 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 60 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 60 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 61 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 62 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 63 $\frac{1}{2}$ $\frac{1}{2$			Лe			the detector	
		_	V			specification.	
88 9 9 8 9	57	ten		Mount	2 menus	Z Method	V Method, Z Method
59 9 9 9 9 1 9 Calibration 0.00 to 300.00% Calibrated value % 60 Trans. voltage 4 menus 80 Vpp 20 Vpp, 40 Vpp, 80 Vpp, 80 Vpp, 100 Vpp 61 LCD display 3 menus On On, Off, Auto 62 Sesword Numerall 4 digits 0000 4 digit numeral 63 New Col Numerall 4 digits 0000 4 digit numeral 64 Numerall 4 digits 0000 4 digit numeral 65 Count 28 menus Auto Auto, Manual 66 Numerall 4 menus 32 Nethod 2, Method 3, Method 3, Method 3, Method 3, Method 4, Method 2, Method 3 67 Numeral ** Staturation 0 to 100% 25% % 70 ** Signal Poak 4 menus 3071 2048, 3071, 4096, 5120 % 71 ** AGC gain 2 menus Auto Auto Auto Auto 71 ** AGC gain 2 menus Auto Auto Auto	58	yst	or	Туре	4 menus	FSW12	FSW12, FSW21, FSW40, FSW50
Image: constraint of the second se	59	\mathbf{v}	sus	Calibration	0.00 to 300.00%	Calibrated	%
60Trans. voltage4 menus80 Vpp20 Vpp, 40 Vpp, 80 Vpp, 160 Vpp 61 CallGallSecondOnOn, Off, Auto 62 GallNumeral 4 digits0004.digit numeral 63 PaswordNumeral 4 digits0004.digit numeral 64 Numeral 4 digits0004.digit numeral 66 Numeral 4 digits0004.digit numeral 67 Numeral 5NutoAutoAuto, Manual 68 Nuto2 menusAutoAuto, Manual 67 Nuto3 menusMethod 2Method 1, Method 2, Method 3 67 Nuto0 to 100%25%% 70 Nuto0 to 100%25%% 70 Nuto2 menusAutoAuto, Manual 71 Nuto2 menusAutoAuto 71 Nuto2 menusAutoAuto, Manual 71 Nuto2 menusAutoAuto 71 Nuto2 menusAutoAuto, Manual 71 Nuto2 menusAutoAuto 71 Nuto2 menusAutoAuto 71 Nuto2 menusAutoAuto 71 Nuto2 menusAutoAuto 72 Nuto2 menusAutoAuto <td></td> <td></td> <td>Se</td> <td></td> <td></td> <td>value</td> <td></td>			Se			value	
61CD display3 menusOnOn, Off, Auto62backlight2 menusOffOn, Off63ReswordNumeral 4 digits00004-digit numeral64#. Transmission6 menus1288, 16, 32, 64, 128, 25665#. Transmission2 menusAutoAuto, Manual66#. Transmission0 to 2563267#. Saturation0 to 2563270#. Saturation0 to 100%25%71#. Saturation0 to 100%25%72#. GC gain2 menusAuto74#. Signal peak4 menus307173#. GC gain2 menusAuto74Wedge S.V.2 menusAuto75Method S.2 menusAuto76#. Signal peak4 menus77Wedge S.V.2 menus78Pipe S.V.2 menus77Method S.M.2 menus78Pipe S.V.2 menus77Pipe S.V.2 menus78Pipe S.N.2 menus77Pipe S.V.2 menus78Pipe S.N.2 menus79Pipe S.N.2 menus71Pipe S.N.2 menus72Pipe S.N.2 menus73Pipe S.N.8 menus74Pipe S.N.2 menus75Pipe S.N.2 menus76Pipe S.N.2 menus77Pipe S.N.2 menus78<	60			Trans. voltage	4 menus	80 Vpp	20 Vpp, 40 Vpp, 80 Vpp, 160 Vpp
62 63 backlightnn 62 64 Key lock2 menusOffOn, Off 64 66 Numeral 4 digits00004-digit numeral 66 66 66 66 66 128 8, 16, 32, 64, 128, 256 66 66 66 66 66 128 AutoAuto, Manual 67 60 128 AutoAuto, Manual 67 67 168 168 $10 \cdot 256$ 32 67 168 168 $10 \cdot 256$ 32 67 168 168 $168 \cdot 25\%$ $\%$ 67 $168 \cdot 25\%$ $\%$ $\%$ 67 $168 \cdot 25\%$ $\%$ 71 $168 \cdot 25\%$ $108 \cdot 25\%$ 71 1	61		LCD	display	3 menus	On	On, Off, Auto
62 63Key lock2 menusOffOn, OffOn, Off63PasswordNumeral 4 digits00004-digit numeral64 65#. Transmission6 menus1288, 16, 32, 64, 128, 25666#. Trigger2 menusAutoAuto, Manual66#. Trigger2 menusAutoAuto, Manual67#. Sauration0 to 2563268#. Sauration0 to 100%25%%70#. Signal balance95%9%71#. Signal peak 4 menus30712048, 3071, 4096, 12073#. Signal peak 4 menus30712048, 3071, 4096, 12074#. Signal peak 4 menus30712048, 3071, 4096, 12077#. GC gain2 menusAutoAuto, Manual#. Signal peak 4 menus30712048, 3071, 4096, 12077#. Transmission7 menusAutoAuto, Manual#. Signal peak 4 menus30712048, 3071, 4096, 12077#. Transmission2 menusAutoAuto, Manual78Method 2.2 menusAuto79Method 9.Sampling2 menusAuto78Method 9.Sampling2 menusAuto79Method 9.Sampling2 menusAuto79Method 9.Sampling2 menusAuto71Method 9.Sampling2 menusAuto72Method 9.Sampling2 menusAuto73Me			backl	ight			
63PasswordNumeral 4 digits00004-digit numeral6464 \hat{h} Transmission6 menus1288, 16, 32, 64, 128, 25665 \hat{h} Trigger2 menusAutoAuto, Manual66 \hat{h} Trigger2 menusAutoAuto, Manual67 \hat{h} Staturation0 to 2563268 \hat{h} Signal0 to 100%25%%70 \hat{h} Staturation0 to 100%25%%71 \hat{h} Signal0 to 100%25%%72 \hat{h} Signal0 to 100%25%%73 \hat{h} Signal0 to 100%25%%74 \hat{h} Signal peak4 menus30712048, 3071, 4096, 512075 \hat{h} Signal peak4 menus30712048, 3071, 4096, 512076 \hat{h} Signal peak4 menus30712048, 3071, 4096, 512077 \hat{h} Signal peak4 menusAutoAuto76 \hat{h} Signal peak4 menus30712048, 3071, 4096, 512077 \hat{h} Transmission2 menusAutoAuto78 \hat{h} Signal peak4 menusAutoAuto, Manual78 \hat{h} Signal peak4 menusAuto79 \hat{h} No2 menusAutoAuto70 \hat{h} Exceptivait2 menusAutoAuto, Manual71 \hat{h} Signal2 menusAutoAuto, Manual73 \hat{h} Signal2 menusAutoAuto74	62		Key l	ock	2 menus	Off	On, Off
64 65 66 67#: Transmission count6 menus1288, 16, 32, 64, 128, 256 count66 67 68 69#: Tragger #: Saturation2 menusAutoAuto, Manual67 68 69#: Masurement method0 to 2563268 69#: Measurement #: Saturation0 to 100% balance25%%70 71 72#: Signal #: Signal0 to 100% balance25%%71 72 73#: Signal #: Signal peak4 menus30712048, 3071, 4096, 512074 75 76 77 77 77 76 77 77 77 77 782 menusAutoAutoAuto, Manual74 75 76 77 77 77 77 77 77 78 78 79 79 782 menusAutoAuto, Manual74 78 79 79 79 79 79 79 79 79 79 79 79 79 78 79 79 79 79 79 78 79 70 79 70 70 70 71 71 71 72 73 74 75 75 75 76 76 77 77 77 76 76 76 76 77 77 77 77 77 76 76 76 77 77 77 77 76 78 79 79 79 79 79 79 79 79 70 70 70 70 71 71 72 73 74 74 75 76 77 76 77 77 77 77 77 77 77 77 77 77 77 78 79 79 79 79 79 79 79 70 70 70 70 70 70 70 70 7110 to 30	63		Passv	vord	Numeral 4 digits	0000	4-digit numeral
65 $(1, 2, 4, 8, 16, 32, 64)$ 66 $(2, 3, 40)$ 67 $(3, 2, 4, 8, 16, 32, 64)$ 68 $(3, 2, 4, 8, 16, 32, 64)$ 69 $(3, 2, 4, 8, 16, 32, 64)$ 70 $(3, 2, 4, 8, 16, 32, 64)$ 71 $(3, 2, 4, 8, 16, 32, 64)$ 72 $(3, 3, 2, 4, 8, 16, 32, 64)$ 73 $(3, 2, 4, 8, 16, 32, 64)$ 74 $(3, 2, 4, 8, 16, 32, 64)$ 75 $(3, 2, 4, 8, 16, 32, 64)$ 76 $(3, 2, 4, 8, 16, 32, 64)$ 77 $(3, 2, 4, 8, 16, 32, 64)$ 78 $(3, 2, 4, 8, 16, 32, 64)$ 79 $(3, 2, 4, 8, 16, 32, 64)$ 77 $(3, 2, 4, 8, 16, 32, 64)$ 80 $(3, 2, 4, 8, 16, 32, 64)$ 81 $(3, 2, 4, 8, 16, 32, 64)$ 81 $(3, 2, 5, 6, 8)$ 82 $(3, 2, 4, 8, 16, 32, 64)$ 83 $(3, 2, 5, 6, 8)$ 84 $(3, 10, 0, 0, 10, 0, 10, 0, 10, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0$	64			#: Transmission	6 menus	128	8, 16, 32, 64, 128, 256
65 66 67 67 68 69 70 70 70 71 71 72 73 73 73 74 75 75 76 79 70 70 70 70 70 70 70 70 70 71 71 72 73 74 75 75 76 <td></td> <td></td> <td></td> <td>count</td> <td></td> <td></td> <td></td>				count			
66 67 68 68 69 4.uto Auto Auto Auto, Manual 67 68 69 4.sturation 0 to 256 32 67 68 69 4.sturation 0 to 100% 25% % 70 70 71 7.sturation 7 7 80 80.sturation 7 71 7.sturation 7 7 7 80.sturation 7 80.sturation 7 71 7.sturation 1 1 1 3 1 1 71 7.sturation 1 1 1 3 1 1 71 7.sturation 1 1 1 3 1 2 71 7.sturation 1 1 1 3 1 1 72 7.sturation 1 1 3 1 3 1 73 7.sturation 1 1 3 1 1 1 74 Yeige S.V. 2 2 1 1 1 75 7 1 1 3 1 1 1 76 Yeige S.V. 2 2 1 <td< td=""><td>65</td><td></td><td></td><td>#: Trigger</td><td>2 menus</td><td>Auto</td><td>Auto, Manual</td></td<>	65			#: Trigger	2 menus	Auto	Auto, Manual
66 67 ** Window 2 menus Auto Auto, Manual 67 68 ** Signal 0 to 256 32 69 ** Signal 0 to 100% 25% % 70 ** Signal 0 to 100% 25% % 71 ** Signal 0 to 100% 25% % 71 ** Signal 0 to 100% 25% % 71 ** Signal peak 4 menus 3071 2048, 3071, 406, 5120 ** Trans.vait 1 to 30 msec 5 msec msec 76 ** Trans. wait 1 to 30 msec 5 msec msec 78 ** GC gain 2 menus Auto Auto Auto, Manual 771 Vietge S.V. 2 menus Auto Auto, Manual 78 ** GC gain 2 menus Auto Auto, Manual 79 Vietge S.V. 2 menus Auto Auto, Manual 71 Transmission 2 menus Auto Auto, Manual 78 ** Gege S.V. 2 menus Auto Auto, Manual 79 ** Gege S.V. 2 menus Auto Auto, Manual 71 Transmission 2 menus Auto Auto, Manual <td< td=""><td></td><td></td><td></td><td>control</td><td></td><td></td><td></td></td<>				control			
67 68 6967 #: Saturation 	66			#: Window	2 menus	Auto	Auto, Manual
67 68 11				control			,
Image: second	67			#: Saturation	0 to 256	32	
68 69#: Measurement method3 menusMethod 2Method 1, Method 2, Method 3 69 #: Signal balance0 to 100% $25%$ % 71 #: Transmission pattern7 menusBurst 3Burst 1, Burst 2, Burst 3, Burst 4, Burst 5, Chirp 4, Chirp 8 71 #: Signal peak #: Signal peak4 menus 3071 2048 , 3071 , 4096 , 5120 73 #: Signal peak #: Trans. wait1 to 30 msec5 msecmsec 74 Wedge S.V.2 menusAutoAuto, Manual $Pipe S.V.2 menusAutoAuto, ManualFluid S.V.2 menusAutoAuto, ManualFluid S.V.2 menusAutoAuto, ManualFluid S.V.2 menusAutoAuto, ManualFluid S.V.2 menusAutoAuto, ManualfrequencyTransmission8 menus40, 1, 2, 4, 8, 16, 32, 6481%2 menusAutoAuto, ManualfrequencyReceipt wait2 menusAutoAuto, Manualfrequency12 menusAutoAuto, ManualfrequencyReceipt wait2 menusAutoAuto, ManualRepetition2 menusAutoAuto, ManualfrequencyReference4 to 512256SelectNo. of channels2 menusAutoAuto, ManualMeasurement3 menusF radiusF radius, N radius, Diameterrange9010 to 10.00 to 10.00 to 10.00 to 0.50Measurementmelevel$			me	level			
69methodn70 $\#$: Signal0 to 100%25%%71 $\#$: Transmission7 menusBurst 3Burst 1, Burst 2, Burst 3, Burst 4, Burst 5, Chirp 4, Chirp 871 $\#$: Transmission7 menusAutoAuto, Manual $\#$: Signal peak4 menus30712048, 3071, 4096, 512073 $\#$: Trans. wait1 to 30 msec5 msecmsec76 $Wedge S.V.$ 2 menusAutoAuto, ManualPipe S.V.2 menusAutoAuto, ManualLining S.V.2 menusAutoAuto, ManualTransmission2 menusAutoAuto, ManualReceipt wait2 menusAutoAuto, ManualReceipt wait2 menusAutoAuto, ManualMeasurement2 menusAutoAuto, ManualNo. of channels2 menusAutoAuto, ManualMeasurement3 menusF radiusF radius, N radius, DiameterRaference4 to 512256SelectCountNormal 2Normal 1, Normal 2, Positive, NegativeRaference4 menusAutoAutoMeasurement<	68		t tiı	#: Measurement	3 menus	Method 2	Method 1, Method 2, Method 3
69 I_{i} I			nsi	method			, , ,
1000000000000000000000000000000000000	69		[ra	#: Signal	0 to 100%	25%	%
70 171 72#: Transmission pattern7 menusBurst 3 werst 3 Burst 4, Burst 5, Chirp 4, Chirp 8 Burst 5, Chirp 4, Chirp 871 72 73#: AGC gain #: Signal peak2 menusAutoAutoAuto, Manual73 74 75#: Signal peak4 menus30712048, 3071, 4096, 5120 msec906, 512074 75 76 77 78#: Trans, wait time1 to 30 msec5 msecmsec78 79 79Wedge S.V. Pipe S.V.2 menusAutoAuto, Manual71 78 79 79Iting S.V. Transmission requency2 menusAutoAuto, Manual79 79 79Transmission requency2 menusAutoAuto, Manual71 78 79 79Transmission requency2 menusAutoAuto, Manual79 79 79Transmission requency2 menusAutoAuto, Manual71 78 79 79Transmission requency2 menusAutoAuto, Manual79 79 79 70Transmission 702 menusAutoAuto, Manual79 79 70Transmission requency2 menusAutoAuto, Manual71 71 72 73 73 74 74 752 menusAutoAuto, Manual79 79 70Transmission 702 menusAutoAuto, Manual79 70Transmission 702 menusAutoAuto, Manual71 74 75 76 76 762 menusAutoAuto, Manual76 76 7				balance			
PatternDataBurst 5, Chirp 4, Chirp 871 $\frac{1}{2}$: AGC gain2 menusAutoAuto, Manual72 $\frac{1}{2}$: Signal peak4 menus30712048, 3071, 4096, 512073 $\frac{1}{2}$: Signal peak4 menus30712048, 3071, 4096, 512074 $\frac{1}{2}$: Signal peak4 menus30712048, 3071, 4096, 512075 $\frac{1}{2}$: Signal peak4 menusAutoAuto, ManualPipe S.V.2 menusAutoAuto, ManualPipe S.V.2 menusAutoAuto, ManualFluid S.V.2 menusAutoAuto, ManualTransmission2 menusAutoAuto, ManualTransmission2 menusAutoAuto, ManualTransmission2 menusAutoAuto, Manualfrequency78 $\frac{1}{2}$ $\frac{1}{2}$ menusAuto81 $\frac{1}{2}$ $\frac{1}{2}$ menusAuto82 $\frac{1}{2}$ $\frac{1}{2}$ menusAuto83 $\frac{1}{2}$ $\frac{1}{2}$ menusAuto84 $\frac{1}{2}$ $\frac{1}{2}$ menusAuto84 $\frac{1}{2}$ $\frac{1}{2}$ menusAuto86 $\frac{1}{10}$ $\frac{1}{2}$ menus $\frac{1}{2}$ menus87 $\frac{1}{8}$ $\frac{1}{2}$ menus $\frac{1}{4}$ menus88 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ menus89 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 90 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 89 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	70			#: Transmission	7 menus	Burst 3	Burst 1, Burst 2, Burst 3, Burst 4,
71#: AGC gain2 menusAutoAuto, Manual7273#: Signal peak4 menus 3071 $2048, 3071, 4096, 5120$ 73#: Trans. wait1 to 30 msec5 msecmsec74#: Trans. wait1 to 30 msec5 msecmsec76#: Trans. wait1 to 30 msec5 msecmsec77#: Trans. wait1 to 30 msecAutoAuto, Manual78#: Trans. mission2 menusAutoAuto, Manual79Fluid S.V.2 menusAutoAuto, Manual78#: Transmission2 menusAutoAuto, Manual79Transmission2 menusAutoAuto, Manual79Transmission2 menusAutoAuto, Manual79Transmission2 menusAutoAuto, Manual79Transmission2 menusAutoAuto, Manual79Receipt wait2 menusAutoAuto, Manual70#: Receipt wait2 menusAutoAuto, Manual71#: Receipt wait2 menusAutoAuto, Manual80#: Receipt wait2 menusAutoAuto, Manual81#: Receipt wait2 menusAutoAuto, Manual82#: Receipt wait2 menusAutoAuto, Manual83#: Receipt wait2 menusAutoAuto, Manual84#: Receipt wait3 menusF radiusF radius, N radius, Diameter86#: Receipt wait	, .			pattern			Burst 5, Chirp 4, Chirp 8
$\overline{72}$ $\overline{73}$ <	71			#: AGC gain	2 menus	Auto	Auto, Manual
737475767777777778999	72			#: Signal peak	4 menus	3071	2048, 3071, 4096, 5120
TotalTimeTotalTotal74Time11175Time2menusAutoAuto, Manual76Pipe S. V.2menusAutoAuto, Manual177Lining S. V.2menusAutoAuto, Manual78Transmission2menusAutoAuto, Manual79Transmission2menusAutoAuto, Manual80Sampling2menus40, 1, 2, 4, 8, 16, 32, 6481Sampling2menusAutoAuto, Manual82Receipt wait2menusAuto83Reference4 to 512256Select84SNo. of channels2menusAuto84Measurement3menusF radiusF radius, N radius, Diameter86Gain2menusAutoAuto, Manual#: Power0 to 10.00 $\times 10^4$ 4.00E ⁴ Normal 2, Positive, Negative88999000.000/000070.00%%	73			#: Trans. wait	1 to 30 msec	5 msec	msec
74 75 76 77Wedge S.V.2 menusAutoAuto, Manual75 76 77Pipe S.V.2 menusAutoAuto, Manual78 78 79S.V.2 menusAutoAuto, Manual78 79S.V.2 menusAutoAuto, Manual79 79Transmission requency2 menusAutoAuto, Manual79 80Transmission pulse No.8 menus40, 1, 2, 4, 8, 16, 32, 6481 82 83 84Pipe S.V.2 menusAutoAuto, Manual84 85 86 87 88 89 99AutoAutoAuto, Manual81 82 83 89 99Manual2 menusAutoAuto, Manual84 89 99Manual2 menusAutoAuto, Manual84 85 89 99Manual2 menusAutoAuto, Manual84 89 99Manual2 menusAutoAuto, Manual84 89 99Manual2 menusAutoAuto, Manual84 89 99Manual2 menusAutoAuto, Manual84 89 99Manual2 menusAutoAuto, Manual85 89 90Manual2 menusAutoAuto, Manual86 89 90Manual2 menusAutoAuto, Manual87 88 89Manual2 menusAutoAuto, Manual88 89 90ManualManualManualManual89 90ManualManualManualManual	, -	t		time			
75 76 77Pipe S.V.2 menusAutoAuto, Manual77 78 7810010001000100010007910010001000100010001000801001000100010001000100080100100010001000100010008110010001000100010001000811001000100010001000100082100100010001000100010008310010001000100010001000841001000100010001000100085100100010001000100010008810010001000100010001000891001000100010001000100090100100010001000100010009010010001000100010001000901001000100010001000100090100100010001000100010009010010001000100010001000901001000100010001000100090100100010001000100010009010010001000100010001000 <td>74</td> <td>nen</td> <td></td> <td>Wedge S.V.</td> <td>2 menus</td> <td>Auto</td> <td>Auto, Manual</td>	74	nen		Wedge S.V.	2 menus	Auto	Auto, Manual
76 1000 1000 1000 1000 1000 77 78 1000 1000 1000 1000 1000 1000 78 1000 1000 1000 1000 1000 1000 1000 79 1000 1000 1000 1000 1000 1000 1000 80 1000 1000 1000 1000 1000 1000 1000 80 1000 1000 1000 1000 1000 1000 1000 81 1000 10000 10000 10000 10000 10000 10000 80 1000 10000 10000 10000 10000 10000 10000 80 1000 10000 10000 10000 10000 10000 10000 80 1000 10000 10000 10000 10000 10000 10000 80 1000 10000 10000 10000 10000 10000 10000 80 10000 10000 10000 10000 10000 10000 10000 80 10000 10000 10000 10000 10000 10000 10000 80 10000 10000 10000 10000 10000 10000 10000 80 10000 10000 10000 10000 10000 10000 10000 80 10000 10000 10000 100000 100000 </td <td>75</td> <td>ren</td> <td></td> <td>Pipe S.V.</td> <td>2 menus</td> <td>Auto</td> <td>Auto, Manual</td>	75	ren		Pipe S.V.	2 menus	Auto	Auto, Manual
77 1000 1000 1000 1000 1000 1000 77 1000 1000 1000 1000 1000 1000 1000 78 1000 1000 1000 1000 1000 1000 1000 1000 79 1000 1000 1000 1000 1000 1000 1000 1000 79 1000 1000 1000 1000 1000 1000 1000 1000 79 1000 1000 1000 1000 1000 1000 1000 1000 79 1000 1000 1000 1000 1000 1000 1000 1000 79 1000 1000 1000 1000 1000 1000 1000 1000 79 1000 1000 10000 10000 10000 10000 10000 10000 80 1000 10000 10000 10000 10000 10000 10000 10000 80 1000 10000 10000 10000 10000 10000 10000 100000 80 1000 10000 10000 10000 10000 100000 100000 100000 80 1000 10000 100000 100000 100000 100000 100000 80 1000 100000 100000 100000 100000 100000 100000 80 1000 100000 100000	76	nsı		Lining S.V.	2 menus	Auto	Auto, Manual
78 <td>77</td> <td>nea</td> <td></td> <td>Fluid S.V.</td> <td>2 menus</td> <td>Auto</td> <td>Auto, Manual</td>	77	nea		Fluid S.V.	2 menus	Auto	Auto, Manual
TotalTensorTensorTensor79797777777777778077777788840, 1, 2, 4, 8, 16, 32, 64819977788840, 1, 2, 4, 8, 16, 32, 6482977888440, 1, 2, 4, 8, 16, 32, 6483848588884448485868999988990909099999	78	of r		Transmission	2 menus	Auto	Auto, Manual
79 \overrightarrow{P} </td <td></td> <td>ls (</td> <td></td> <td>frequency</td> <td></td> <td></td> <td>···, ···-</td>		ls (frequency			···, ···-
80 pulse No. Auto Auto, Manual 81 Receipt wait 2 menus Auto Auto, Manual 82 Receipt wait 2 menus Auto Auto, Manual 83 Repetition 2 menus Auto Auto, Manual 84 Reference 4 to 512 256 Select 84 No. of channels 2 menus Auto Auto, Manual Measurement 3 menus F radius F radius, N radius, Diameter range Phase angle 4 menus Normal 2 Normal 1, Normal 2, Positive, Negative 87 Res 2 menus Auto Auto, Manual 88 #: Power 0 to 100.00 × 10 ⁴ 4.00E ⁴ #: Deviation 0 to 100.00% 70.00% %	79	etai		Transmission	8 menus	4	0, 1, 2, 4, 8, 16, 32, 64
80 Sampling 2 menus Auto Auto, Manual 81 Receipt wait 2 menus Auto Auto, Manual 82 Receipt wait 2 menus Auto Auto, Manual 82 Receipt wait 2 menus Auto Auto, Manual 83 Repetition 2 menus Auto Auto, Manual 84 Reference 4 to 512 256 Select No. of channels 2 menus Auto Auto, Manual Measurement 3 menus F radius F radius, N radius, Diameter range Phase angle 4 menus Normal 2 Normal 1, Normal 2, Positive, Negative 86 Shift 2 menus Auto Auto, Manual #: Power 0 to 10.00 × 10 ⁴ 4.00E ⁴ Measurement #: Deviation 0 to 1.00 0.50 #: Success rate 0.00 to 100.00% % #: Success rate 0.00 to 100.00% 70.00% %		Ď		pulse No.			, , , , , , , , , , , , , , , , , , , ,
81 $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ 81 $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ 82 $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ 82 $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ 83 $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ 83 $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ 84 $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ 84 $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ 85 $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ 86 $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ 87 $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ 88 $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ 90 $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ 90 $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$ $rac{1}{100}$	80			Sampling	2 menus	Auto	Auto, Manual
81 1				frequency			·
82ImageImageImage8383Repetition frequency2 menusAutoAuto, Manual84Reference count4 to 512256Select84No. of channels count2 menusAutoAuto, Manual85Measurement range3 menusF radiusF radius, N radius, Diameter86Phase angle shift4 menusNormal 2Normal 1, Normal 2, Positive, Negative8788#: Power0 to 10.00 × 10^44.00E^489#: Deviation0 to 1.000.50#90(#: Lino No.)0.00 to 100.00%70.00%%	81		er	Receipt wait	2 menus	Auto	Auto, Manual
82 82 Repetition 2 menus Auto Auto, Manual 83 Reference 4 to 512 256 Select 84 No. of channels 2 menus Auto Auto, Manual 85 Measurement 3 menus F radius F radius, N radius, Diameter 86 Phase angle 4 menus Normal 2 Normal 1, Normal 2, Positive, Negative 87 Gain 2 menus Auto Auto, Manual 88 #: Power 0 to 10.00 × 10 ⁴ 4.00E ⁴ #: Deviation 0 to 1.00 0.50 #: Success rate 90 #: Success rate 0.00 to 100.00% 70.00% %			ppl	time			,
83 $\frac{9}{2}$ $\frac{1}{\text{frequency}}$ 14000 1400 14000 1	82		Doj	Repetition	2 menus	Auto	Auto, Manual
83 \overrightarrow{E} Reference count4 to 512256Select84No. of channels2 menusAutoAuto, Manual85Measurement3 menusF radiusF radius, N radius, Diameter86Phase angle shift4 menusNormal 2Normal 1, Normal 2, Positive, Negative87Gain2 menusAutoAuto88#: Power0 to 10.00 $\times 10^4$ 4.00E^48990#: Success rate0.00 to 100.00%70.00%			se	frequency			···, ···-
84 $No. of channels2 menusAutoAuto, Manual85Measurement3 menusF radiusF radius, N radius, Diameter86Phase angle4 menusNormal 2Normal 1, Normal 2, Positive,Negative87Gain2 menusAutoAuto, Manual88#: Power0 to 10.00 \times 10^44.00E^489#: Deviation0 to 1.000.5090#: Success rate0.00 to 100.00\%70.00\%$	83		Pul	Reference	4 to 512	256	Select
84 No. of channels 2 menus Auto Auto, Manual 85 Measurement range 3 menus F radius F radius, N radius, Diameter 86 Phase angle shift 4 menus Normal 2 Normal 1, Normal 2, Positive, Negative 87 Gain 2 menus Auto Auto, Manual 88 #: Power 0 to 10.00 × 10 ⁴ 4.00E ⁴ 90 #: Deviation 0 to 1.00 0.50 #: Success rate 0.00 to 100.00% 70.00% %			H	count			
85Measurement range3 menusF radiusF radius, N radius, Diameter86Phase angle shift4 menusNormal 2Normal 1, Normal 2, Positive, Negative87Gain2 menusAutoAuto, Manual88#: Power0 to 10.00×10^4 $4.00E^4$ 90#: Deviation0 to 1.00 0.50 90#: Success rate 0.00 to 100.00% 70.00%	84			No. of channels	2 menus	Auto	Auto, Manual
$range$ $range$ $range$ 86 Phase angle shift4 menusNormal 2Normal 1, Normal 2, Positive, Negative 87 Gain2 menusAutoAuto, Manual 88 #: Power0 to 10.00×10^4 $4.00E^4$ 89 #: Deviation0 to 1.00 0.50 90 #: Success rate 0.00 to 100.00% 70.00%	85			Measurement	3 menus	F radius	F radius, N radius, Diameter
86Phase angle shift4 menusNormal 2Normal 1, Normal 2, Positive, Negative87Gain2 menusAutoAuto, Manual88#: Power0 to 10.00×10^4 $4.00E^4$ 90#: Deviation0 to 1.00 0.50 #: Success rate0.00 to 100.00% 70.00%				range			······································
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	86			Phase angle	4 menus	Normal 2	Normal 1. Normal 2. Positive
87 Gain 2 menus Auto Auto, Manual 88 #: Power 0 to 10.00×10^4 $4.00E^4$ 89 90 #: Deviation 0 to 1.00 0.50 90 #: Success rate 0.00 to 100.00% 70.00% %				shift			Negative
88 #: Power 0 to 10.00×10^4 4.00E ⁴ 89 #: Deviation 0 to 1.00 0.50 90 #: Success rate 0.00 to 100.00% 70.00% (#: Ling Ng.) (#: Ling Ng.)	87			Gain	2 menus	Auto	Auto, Manual
89 #: Deviation 0 to 1000 / 10 0.50 90 #: Success rate 0.00 to 100.00% 70.00% %	88			#: Power	$0 \text{ to } 10.00 \times 10^4$	$4.00E^4$	
90 #: Success rate 0.00 to 100.00% 70.00% % (#: Ling Ng.) (#: Ling Ng.) </td <td>89</td> <td></td> <td></td> <td># Deviation</td> <td>0 to 1 00</td> <td>0.50</td> <td></td>	89			# Deviation	0 to 1 00	0.50	
//////////////////////////////////////	90			#· Success rate	0.00 to 100.00%	70.00%	0/0
	90		1	(#: Line No.)	0.00 10 100.0070	/0.00/0	/0

4.4. Setting parameters

The units are displayed in metric or English system.

- Description -

Parameters can be set by entering numeric values or by selection.

Setting item	Input method	Range or menu
Numeric value input	Direct input	 Outer diameter of pipe specifications, etc. can be entered directly. Values cannot be entered exceeding the number of digits in the input range. If negative values are not included in the input range, a symbol key "±" is ignored. Use symbols that are displayed. If "12" is entered in a state where symbol "–" is displayed, it is interpreted as "–12."
	Change input	Specific numeric values only in outer diameter, etc. of pipe specifications can be changed.
Selection	Item selection	Lining materials, etc. of pipe specifications can be selected.
	Numeric selection	Numeric values such as transmission voltage of the system can be selected.

Direct input (example)	When ente	ring outer diameter 114.3 mm	
Key operation		Description	Display
		Select "OUTER DIAMETER"	OUTER DIAMETER 60.00 mm
ENTER		Enter numeric value enter mode.	OUTER DIAMETER 60.00∎mm
114.3		Enter "114.3" using ten keys.	OUTER DIAMETER 114.3∎mm
ENTER		Press ENTER.	OUTER DIAMETER 114.3 mm

Change input When chan		nging outer diameter 114.3 mm to 115.3 mm	
(example)	ation	Description	Display
		Select "OUTER DIAMETER"	OUTER DIAMETER 114.30 mm
ENTER		Enter numeric value enter mode.	OUTER DIAMETER 114.30∎mm
		Move the cursor to left. The value "0," on which the cursor is placed, can be changed.	OUTER DIAMETER 114.30 mm
		Move the cursor to left. The value "4," on which the cursor is placed, can be changed.	OUTER DIAMETER 11 <mark>4</mark> .30 mm
5		Enter "5" using ten keys.	OUTER DIAMETER 11 <mark>5</mark> .30 mm
ENTER		Press ENTER.	OUTER DIAMETER 115.30 mm

Item selection (example)	When sele	cting carbon steel as pipe material	
Key oper	ation	Description	Display
		Select "PIPE MATERIAL"	PIPE MATERIAL STAINLESS STEEL
ENTER		Enter select/enter mode.	PIPE MATERIAL STAINLESS STEEL
▲ or ▼		Select "CARBON STEEL"	PIPE MATERIAL CARBON STEEL
ENTER		Press ENTER.	PIPE MATERIAL CARBON STEEL

Item selection When ch (example)	anging trans. voltage 80 Vpp to 160 Vpp	
Key operation	Description	Display
	Select "TRANS. VOLTAGE"	TRANS. VOLTAGE 80 Vpp
ENTER	Enter select/enter mode.	TRANS. VOLTAGE 80 \$ Vpp
▲ or ▼	Select "160"	TRANS. VOLTAGE 80 \$ Vpp
ENTER		TRANS. VOLTAGE 160 Vpp

Note: The setting change is reflected on the measurement after the measurement display screen is displayed.

4.4.1. Measurement method and sensor

(Measurement method, sensor mount, sensor type, sensor constant, transmission voltage)

- Description -

Measurement method and sensor data required for measurement can be set as follows. If the sensor mount or the type of sensor is changed, the sensor spacing in "4.4.2. Pipe specifications" is also changed.

- Be sure to make the following parameter setting before mounting the sensors to the pipe. Mount the sensors, observing the specified sensor spacing.
- If sensors are mounted not by strictly observing the sensor spacing, measurement error increases.
- Or receive wave error may result.
- Select the sensor constant of the applicable unit as sensor constant value. Otherwise the measurement error may increase.

Enter data for each item (see the following table) according to the display.

Item	Input method	Range or menu
Measurement method	Selection	HYBRID, TRANSIT TIME
Sensor mount	Selection	V METHOD, Z METHOD
Sensor type	Selection	FLW11, FLW41, FLW12, FLD12, FLD22, FLW32, FLW50,
		FLW51, FSW12, FSW21, FSW40, FSW50
Sensor constant		
Line #-F: METAL PIPE	Numeric value	0.00% to 300.00%
Line #-R: METAL PIPE	Numeric value	0.00% to 300.00%
Line #-F: PLASTIC PIPE	Numeric value	0.00% to 300.00%
Line #-R: PLASTIC PIPE	Numeric value	0.00% to 300.00%
(#: Line No.)		
Transmission voltage	Selection	20 Vpp, 40 Vpp, 80 Vpp, 160 Vpp

*1) If hybrid is selected as measurement method, select sensor type from "FSW12, FSW21, FSW40, and FSW50." If hybrid method is selected, sensor type can be selected only from "FSW12, FSW21, FSW40, and FSW50."

*2) In sensor constant, set the sensor constant calculated based on actual current calibration performed as part of the delivery test at the factory. Set the sensor constant for each of the sensor units mounted to the pipe. The sensor constant appears as the DF value marked on the nameplate of the sensor unit. The setting need not be changed normally. (Make the setting when the detector or the flow transmitter is replaced.)

• It appears as the DF-P value on the nameplate of the sensor unit if the sensor is mounted on a plastic pipe.

	Pipe material						
 It appears as th 	t appears as the DF-M value on the nameplate of the sensor unit if the sensor is mounted on a metal pipe.						

Plastic Pipe	PVC, FRP, PEEK, PVDF, Acrylic, Others		
Metal Pipe	Carbon steal, Stainless steel, Copper, Cast iron, Aluminium, Ductile iron		

Refer to "1.3. Checking type and specifications" for sensor unit.

*3) The following table lists the sensor constant value for each measurement method. Each sensor constant value applies to the sensors in the following figure.

	Measurement method Sensor constant of line 1 Sensor con		Sensor constant of line 2	
	Pulse Doppler	Line 1-F: Forward-direction sensor	Line 2-F: Forward-direction sensor	
		(Sensor 1)	(Sensor 3)	
		Line 1-R: Reverse-direction sensor	Line 2-R: Reverse-direction sensor	
		(Sensor 2) (Sensor 4)		
Time transitLine 1-P: Sensor pairLine 2-P: Sensor pair		Line 2-P: Sensor pair		
тŀ	The sensor constant value for line 2 need not be set in 1 neth measurement mode			

* The sensor constant value for line 2 need not be set in 1-path measurement mode.

2-path system (Z method)

*4) Select sensor constant only when the sensor type is selected from FSW12, FSW21, FSW40, and FSW50.

Operation When hybrid is set (example) 102% for sensor		elected as measurement method, Z method as sens	sor mount, FSW12 as sensor type,
(example)	voltage		TAL), and 100 v pp as transmission
(When "Hybrid" i		is selected as measurement method, and "1 path" is	s selected as measurement mode)
Key o	peration	Description	Display
FUNC SYST	EM	Display SYSTEM.	UNIT & LANGUAGE SKIP
▲ or ▼		Select "MEAS. METHOD"	MEAS. METHOD TRANSIT TIME
ENTER	or V ENTER	Enter select/enter mode, select "HYBRID," and press ENTER.	MEAS. METHOD HYBRID
		Select "SENSOR MOUNT"	SENSOR MOUNT V METHOD
ENTER	or V ENTER	Enter select/enter mode, select "Z METHOD," and press ENTER.	SENSOR MOUNT Z METHOD
		Select "SENSOR TYPE"	SENSOR TYPE FSW21
ENTER	or V ENTER	Enter select/enter mode, select "FSW12," and press ENTER.	SENSOR TYPE FSW12
		Select "SENSOR CONSTANT."	SENSOR CONSTANT. SKIP
ENTER	or V ENTER	Enter select/enter mode, select "SETTING," and press ENTER.	LINE 1-F : METAL 100.00%
ENTER 10	2 ENTER	Enter numeric value enter mode, enter "102" using ten keys, and press ENTER.	LINE 1-F : METAL 102.00%
▲ or ▼		Select "LINE 1-R"	LINE 1-R : METAL 100.00%
ENTER 10	1 ENTER	Enter numeric value enter mode, enter "101" using ten keys, and press ENTER.	LINE 1-R : METAL 101.00%
ESC		Return to "SENSOR CONSTANT."	SENSOR CONSTANT. SKIP
		Select "TRANS. VOLTAGE"	TRANS. VOLTAGE 80 Vpp
ENTER	or V ENTER	Enter select/enter mode, select "160," and press ENTER.	TRANS. VOLTAGE 160 Vpp
ESC		Display the measurement, reflecting the setting.	(Measurement display screen)

4.4.2. Pipe specifications

Description

Pipe data required for measurement can be set as follows. The sensor spacing is automatically calculated.

Be sure to make the following parameter setting before mounting the sensors to the pipe. Mount the sensors, observing the specified sensor spacing.

- If sensors are mounted not by strictly observing the sensor spacing, measurement error increases.
- Or receive wave error may result.

Enter data for each item (see the following table) according to the display.

Item	Input method	Range or menu
Outer diameter	Numeric value	10.00 mm to 6200.00 mm
Pipe material	Selection	Carbon steel, stainless steel, PVC, copper, cast iron, aluminum, FRP, ductile iron, PEEK, PVDF, acrylic, and others
Pipe S.V ^{*1}	Numeric value	1000 m/s to 3700 m/s
Wall thickness	Numeric value	0.10 mm to 100.00 mm
Lining material	Selection	No lining, tar epoxy, mortar, rubber, Teflon, pyrex glass, PVC, and others
Lining S.V ^{*2}	Numeric value	1000 m/s to 3700 m/s
Lining thickness *3	Numeric value	0.01 mm to 100.00 mm
Kind of fluid	Selection	Water, seawater, dist. water, ammonia, alcohol, benzene, bromide,
		ethanol, glycol, kerosene, milk, methanol, toluol, lube oil, fuel oil, petrol,
		and others
Fluid S.V.*4	Numeric value	500 m/s to 2500 m/s
Viscosity ^{*4}	Numeric value	$0.0010E^{-6} \text{ m}^2/\text{s}$ to 999.9999 $E^{-6} \text{ m}^2/\text{s}$

*1) Set the sound velocity when pipe material is "others" only.

*2) Set the sound velocity when lining material is "others" only.

*3) Set the lining thickness when lining material is "No lining" only.

*4) Set the sound velocity when the kind of fluid is "others" only.

Operation (example)	When outer diameter is 114.3 mm, pipe material is carbon steel, wall thickness is 6.0 mm, lining material is tar epoxy, lining thickness is 1.25 mm, kind of fluid is heavy water, sound velocity is					
	1388m/s, and viscos (When sensor moun	ity is 1.129 E [~] m ² /s t is "Z method." sensor type is "FSW12.")				
Key	operation	Description	Display			
FUNC PIPE		Display SENSOR SPACING.	SENSOR SPACING 9.17 mm			
		Select "OUTER DIAMETER"	OUTER DIAMETER 60.00 mm			
ENTER 11	4.3 ENTER	Enter numeric value enter mode, enter "114.3" using ten keys, and press ENTER.	OUTER DIAMETER 114.30 mm			
		Select "PIPE MATERIAL"	PIPE MATERIAL PVC			
ENTER	or V ENTER	Enter select/enter mode, select "CARBON STEEL," and press ENTER.	PIPE MATERIAL CARBON STEEL			
		Select "WALL THICKNESS"	WALL THICKNESS 4.50 mm			
ENTER 6 E	NTER	Enter numeric value enter mode, enter "6" using ten keys, and press ENTER.	WALL THICKNESS 6.00 mm			

	Select "LINING MATERIAL"	LINING MATERIAL NO LINING
ENTER or ENTER	Enter select/enter mode, select "TAR EPOXY," and press ENTER.	LINING MATERIAL TAR EPOXY
	Select "LINING THICKNESS"	LINING THICKNESS 0.01 mm
ENTER 1.25 ENTER	Enter numeric value enter mode, enter "1.25" using ten keys, and press ENTER.	LINING THICKNESS 1.25 mm
	Select "KIND OF FLUID"	KIND OF FLUID WATER
ENTER or ENTER	Enter select/enter mode, select "OTHERS," and press ENTER.	KIND OF FLUID OTHERS
	Select "FLUID S.V."	FLUID S.V. 1440 m/s
ENTER 1388ENTER	Enter numeric value enter mode, enter "1388" using ten keys, and press ENTER.	FLUID S.V. 1388 m/s
	Select "VISCOSITY"	VISCOSITY 1.0038 E ⁻⁶ m ² /s
ENTER 1.129 ENTER	Enter numeric value enter mode, enter "1.129" using ten keys, and press ENTER.	VISCOSITY 1.1290 E ⁻⁶ m ² /s
ESC	Display SENSOR SPACING.	SENSOR SPACING 39.16 mm
ESC	Display the measurement, reflecting the setting.	(Measurement display screen)

4.4.3. Measurement mode (Measurement mode, AO definition)

Description

Measurement can be taken using either 1 sensor (1 path) or a pair of sensors (2 path). When a pair of sensors is used, one from average, line 1, and line 2 can be selected for measurement calculation such as flow rate.

Item	Input method	Range or menu
Measurement mode	Selection	1 path, 2 path
AO definition	Selection	Average, line 1, line 2

*1) If "1 path" is selected, AO definition is for "line 1" only.

Function block diagram

*2) For "2 path" mode only.

Operation (example)	When selecting 2-path mode and setting AO definition to average						
Key	operation	Description	Display				
FUNC SYST	EM	Display SYSTEM.	UNIT & LANGUAGE SKIP				
▲ or ▼		Select "MEAS. MODE"	MEAS. MODE 1 PATH				
ENTER or ENTER		Enter select/enter mode, select "2 PATH," and press ENTER.	MEAS. MODE 2 PATH				
		Select "AO DEFINITION"	AO DEFINITION LINE 1				
ENTER	or V ENTER	Enter select/enter mode, select "AVERAGE," and press ENTER.	AO DEFINITION AVERAGE				
ESC		Display the measurement, reflecting the setting.	(Measurement display screen)				

4.4.4. Output setting

4.4.4.1. Range (range unit, range type, full scale, hysteresis) setting

*3) Maximum measurement range in hybrid mode

In the case of pulse Doppler method, the measurable range varies depending on the piping specifications and the type of sensors used. If the measurement is to be made by hybrid method, set the full scale within the range that does not exceed the measurement range. If the full scale exceeds the measurement range, select the time difference method for measurement. After selecting the piping specifications and the sensor type, check the measurement range within the maximum measurement data information range. See "6.1.2.3." for details of checking.

The following table lists the maximum range in the case where stainless steel is selected as piping material, Schedule 20S as nominal wall thickness, and water as fluid to be measured.

(Example)

<Maximum measurable flow velocity>

<Maximum measurable flow rate>

				Unit: m/s				Unit: m ³ /h
Diameter	FSW12	FSW21	FSW40	FSW50	FSW12	FSW21	FSW40	FSW50
40A	6.56				33.6			
50A	6.52				52.7			
65A	5.31				72.1			
80A	4.65				86.5			
90A	4.12				102			
100A	3.69	7.25			118	231		
125A	3.08	6.08			147	289		
150A	2.63	5.20			179	354		
200A	2.04	4.05	7.77		239	474	908	
250A		3.30	6.38			604	1168	
300A		2.78	5.41			735	1428	
350A		2.51	4.90			820	1598	
400A		2.20	4.31			951	1858	
450A			3.84				2118	
500A			3.48	3.48			2358	2358
550A				3.17				2618
600A				2.91				2879
650A				2.71				3096
700A				2.52				3357
750A				2.35				3618
800A				2.21				3879
850A				2.08				4140
900A				1.97				4400
1000A				1.77				4902

Operation (example)	When selecting bi-directional for range, 100 m ³ /h for full scale 1, -100 m ³ /h for full scale 2, and 5% for hysteresis					
Key	operation	Description	Display			
FUNC RANG	Έ	Display RANGE UNIT.	RANGE UNIT m/s			
ENTER	or V ENTER	Enter select/enter mode, select "m ³ /h," and press ENTER.	RANGE UNIT m ³ /h			
		Select "RANGE TYPE"	RANGE TYPE SINGLE			
ENTER	or V ENTER	Enter select/enter mode, select "BI-DIR," and press ENTER.	RANGE TYPE BI-DIR			
		Select "FULL SCALE 1"	FULL SCALE 1 56.32 m ³ /h			
ENTER 10	0 ENTER	Enter numeric value enter mode, enter "100" using ten keys, and press ENTER.	FULL SCALE 1 100.00 m ³ /h			

	Select "FULL SCALE 2"	FULL SCALE 2 112.64 m ³ /h
ENTER ± 100 ENTER	Enter numeric value enter mode, enter "100" using ten keys, and press ENTER.	FULL SCALE 2 100.00 m ³ /h
	Select "HYSTERESIS"	HYSTERESIS 10.00%
ENTER 5 ENTER	Enter numeric value enter mode, enter "5" using ten keys, and press ENTER.	HYSTERESIS 5.00%
ESC	Display the measurement, reflecting the setting.	(Measurement display screen)

4.4.4.2. Output limit

Description –

The upper limit and the lower limit of analog output can be set within the range from 0.8 mA to 23.2 mA (-20% to 120%).

Operation (example)	Lower limit: -10% (2.4 mA), upper limit: 110% (21.6 mA)					
Key	operation	Description	Display			
FUNC RANC	ĴΈ	Display RANGE UNIT.	RANGE UNIT m ³ /h			
▲ or ▼		Select "OUTPUT LIMIT Lo."	OUTPUT LIMIT Lo. 20%			
ENTER 10	ENTER	Enter numeric value enter mode, enter "10" using ten keys, and press ENTER.	OUTPUT LIMIT Lo. 10%			
		Select "OUTPUT LIMIT Hi."	OUTPUT LIMIT Hi. 120%			
ENTER 11	0 ENTER	Enter numeric value enter mode, enter "110" using ten keys, and press ENTER.	OUTPUT LIMIT Hi. 110%			
ESC		Display the measurement, reflecting the setting.	(Measurement display screen)			

4.4.4.3. How to set analog output at error (BURNOUT)

- Description -

Output burnout is a function of setting the analog output to specific values shown below when the measurement status becomes abnormal. Set the duration until burnout processing is performed with the burnout timer. (Setting contents) Holds measurement value.

- Hold:
- Upper: Sets the analog output to the upper limit of the output limit.
- Sets the analog output to the lower limit of the output limit. • Lower:
- Sets the analog output to 0% (4 mA) • Zero:
- Not used: Burnout is not used.

Setting range of burnout timer: 0 to 900 sec.

The burnout processing is performed as follows.

1. LCD The measurement on the LCD changes with the analog output.

Operation (example)	When output burnout is set to the lower limit value and the burnout timer is set to 30 sec.						
Key	operation	Description	Display				
FUNC RANC	ĴΈ	Display RANGE UNIT.	RANGE UNIT m ³ /h				
▲ or ▼		Select "OUTPUT BURNOUT"	OUTPUT BURNOUT HOLD				
ENTER or ENTER		Enter select/enter mode, select "LOWER," and press ENTER.	OUTPUT BURNOUT LOWER				
		Select "BURNOUT TIMER"	BURNOUT TIMER 10 sec				
ENTER 30	ENTER	Enter numeric value enter mode, enter "30" using ten keys, and press ENTER.	BURNOUT TIMER 30 sec				
ESC		Display the measurement, reflecting the setting.	(Measurement display screen)				

4.4.4.4. Rate limit

Note 1: If the input exceeding the limit value continues for more than the limit time, it is regarded as valid signals and output.

Note 2: If the limit time is set to 0, this function does not work.

Operation (example)	When rate limit is set to 5 m^3/h and rate limit timer is set to 15 sec.					
Key	operation	Description	Display			
FUNC RANG	Έ	Display RANGE UNIT.	RANGE UNIT m ³ /h			
▲ or ▼		Select "RATE LIMIT"	RATE LIMIT 0.00 m ³ /h			
ENTER 5 ENTER		Enter numeric value input mode, enter "5" using ten keys, and press ENTER.	RATE LIMIT 5.00 m ³ /h			
		Select "RATE LIMIT TIMER"	RATE LIMIT TIMER 0 sec			
ENTER 15	ENTER	Enter numeric value enter mode, enter "15" using ten keys, and press ENTER.	RATE LIMIT TIMER 15 sec			
ESC		Display the measurement, reflecting the setting.	(Measurement display screen)			

4.4.5. Damping

Operation (avampla)	When set value is 20) sec.	
(example) Kev	operation	Description	Display
FUNC DAME		Display DAMPING.	DAMPING 5.0 sec
ENTER 2 0 ENTER		Enter numeric value enter mode, enter "20" using ten keys, and press ENTER.	DAMPING 20.0 sec
ESC		Display the measurement, reflecting the setting.	(Measurement display screen)

4.4.6. Zero adjustment

- Description

The zero point of the measured value by time difference measurement can be adjusted as follows. (Setting contents)

- Zero: Perform zero adjustment in a state where the flow is stopped. The measurement status at the specified time is set as 0. Note: Perform adjustment in a state where the flow is stopped. Note: Perform adjustment in normal measurement status.Clear: Use Clear when the flow cannot be stopped.
 - Clears the value "adjusted."

Operation (example)	When zero adjustment is performed in a state where the flow is stopped.					
Key opera	tion	Description	Display			
FUNC ZERO]	Display ZERO ADJUSTMENT.	ZERO ADJUSTMENT CLEAR			
ENTER or		Enter select/enter mode, and select "ZERO"	ZERO ADJUSTMENT ZERO\$			
ENTER		Adjustment is performed. Elapsed time is displayed in the lower row while adjustment is in progress.	ZERO ADJUSTMENT			
		When adjustment is completed successfully, "ZERO" is displayed, and when it is completed unsuccessfully, "CLEAR" is displayed on the lower row.	ZERO ADJUSTMENT ZERO			
ESC		Display the measurement, reflecting the setting.	(Measurement display screen)			

• If "CLEAR" is selected and executed, currently stored zero adjustment value is cleared.

4.4.7. Display setting

- Description -

Measurement value to be displayed in display unit and display kind can be selected from the following.

(1) Selection

Measurement value to be displayed can be selected from the following.

Velocity: Instantaneous velocity [m/s]

Total forward *¹: Total value in forward direction

Total reverse *¹: Total value in reverse direction

F: Total pulse: Total pulse in forward direction

R: Total pulse: Total pulse in reverse direction

Flow rate (%): Percentage of analog output to the range

Flow rate: Instantaneous flow rate

If flow rate is selected, select the unit of flow rate from the following.

L/s, L/min, L/h, L/d, kL/d, ML/d

m³/s, m³/min, m³/h, m³/d, km³/d, Mm³/d

BBL/s, BBL/min, BBL/h, BBL/d, kBBL/d, MBBL/d

- *1) The unit of Total forward/Reverse forward is the unit of Total. (See "4.4.9.1. Total unit.")
- (2) Setting of decimal point position of numeric value display Measurement data is displayed in the range of 10 (including decimal point). The number of decimal places can be set arbitrarily within the display range.

Operation (example)	When displaying instantaneous flow rate of display 1 in unit of m^3/h , and display 2 in unit of flow rate (%)		
Key operation		Description	Display
FUNC DISP		Display "1: DISPLAY KIND"	1: DISPLAY KIND FLOW RATE
		Select "1: DISPLAY UNIT"	1: DISPLAY UNIT m ³ /h
ENTER	or V ENTER	Enter select/enter mode, select "m ³ /h," and press ENTER.	2: DISPLAY KIND m ³ /h
		Select "2: DISPLAY KIND"	2: DISPLAY KIND VELOCITY
ENTER	or V ENTER	Enter select/enter mode, select "FLOW RATE (%)," and press ENTER.	2: DISPLAY KIND FLOW RATE (%)
ESC		Display the measurement, reflecting the setting.	(Measurement display screen)

Operation	When displaying display 1 up to the third decimal places, and not displaying the digits to the right of			
(example)	the decimal point of display 2			
Key	operation	Description	Display	
		Display "DISPLAY SETTING"	100.00% 112.63 m ³ /h	
✓ or ►		Display " \blacktriangleleft , \blacktriangleright " on both sides of the value of display 1.	100.00% ◀ 112.63 ► m ³ /h	
		The value of display 1 shifts to left.	100.00% ◀ 112.639 m³/h	
		Display " \blacktriangleleft , \blacktriangleright " on both sides of the value of display 2.	 ■ 100.00 ▶% 112.639 m³/h 	
		The value of display 2 shifts to right.	100 ►% 112.639 m ³ /h	
ENTER		Reflect the setting.	100% 112.639 m ³ /h	

4.4.8. Cut off

— Description —			
The output can be cut when the flow rate is low. This flowmeter may display flow rate even when the f	luid within the pipe is moving due to convection, etc. even if the		
(Setting range: 0 to 5 m/s in velocity Enter absolute value)			
(Setting range. 0 to 5 m/s in velocity. Enter absolute v	ande.)		
Output			
	Flow rate Cut off setting		

Operation (example)	When the cut off point is set to 10 m ³ /h		
Key operation		Description	Display
FUNC CUT		Display "CUT OFF"	CUT OFF 0.28 m ³ /h
ENTER 10	ENTER	Enter numeric value enter mode, enter "10" using ten keys, and press ENTER.	CUT OFF 10:00 m ³ /h
ESC		Display the measurement, reflecting the setting.	(Measurement display screen)

4.4.9. Integration

4.4.9.1. Total unit

---- Description -----

The measurement value (flow rate) can be integrated as follows.
(1) Total unit
Select one from the following total units: mL, L, m³, km³, Mm³, mBBL, BBL, kBBL
Note: Set the total mode ^{*1} to total stop state to make the setting.

Operation (example)	When starting integration using m ³ as total unit		
Key	operation	Description	Display
FUNC TOTA	L	Display "TOTAL MODE"	TOTAL MODE TOTAL STOP
		Select "TOTAL UNIT"	TOTAL UNIT mL
ENTER	or V ENTER	Enter select/enter mode, select "m ³ ," and press ENTER.	TOTAL UNIT m ³
ESC		Return to "TOTAL MODE"	TOTAL MODE TOTAL STOP
ENTER	or V ENTER	Enter select/enter mode, select "TOTAL RESET," and press ENTER.	TOTAL MODE TOTAL RESET
ESC		Display the measurement, reflecting the setting.	(Measurement display screen)

*1) The following total modes are available.

TOTAL STOP:Stops integration.If integration is not stopped, setting cannot be changed.TOTAL RUN:Starts integration.Used to start integration from stopped state.TOTAL RESET:Starts integration, making the total value to total preset value.If power is restored after power failure, etc., operation is started from the total mode state before the power failure.

4.4.9.2. Setting total pulse (Total rate, pulse width)

4.4.3.2. Detting total pulse (Total rate, pulse width)			
Descriptio	n ————		
The measurement as follows.	value (flow rate) can be integrated in response to the total pulse output from an integrating meter, etc.		
(1) Total rate:	When the total volume reaches the value specified by the total rate, the total pulse value on the measurement screen is added, and 1 pulse is output for total pulse (volume). (Setting range) 0 to 999999.999)		
(2) Pulse width:	The pulse width can be selected with the connected counters DO1/DO2 and DO3. Set the pulse width when "F: TOTAL PULSE" or "R: TOTAL PULSE" is used in status output		
	setting.		
• Pulse width 1: Pulse width of DO3 (relay contact). Select one from the following. 50 msec, 100 msec, 200 msec			
• Pulse width	 Pulse width of DO1/ DO2 (transistor open collector). Select one from the following. 0.5 msec, 1.0 msec, 2.0 msec, 5.0 msec, 10.0 msec, 20.0 msec, 50.0 msec, 100.0 msec, 200.0 msec 		
Note: If the total rate is set to "0," the total pulse is not output. Note: Set the total pulse in a state where the total mode is in total stop state.			

The following limitations are imposed on the total pulse output.

Limitation in setting —

DO output port	Frequency range of pulse output (at full-scale flow rate)	Pulse width
DO1/DO2: Transistor open collector	1000 pulses/sec or lower	0.5 msec, 1.0 msec, 2.0 msec, 5.0 msec, 10.0 msec, 20.0 msec, 50.0 msec, 100.0 msec, 200.0 msec
DO3: Relay contact	1 pulse/sec or lower	50msec, 100 msec, 200 msec

The maximum output frequency is limited depending on the pulse width setting. Set the total rate and the pulse width so that the following conditions 1 and 2 are satisfied. Otherwise, proper operation may not be assured.

Condition 1:
$$\frac{\text{Flow rate span}^{*1} [\text{m}^3/\text{s}]}{\text{Total rate } [\text{m}^3]} \leq \frac{1000 [\text{Hz}] [\text{DO1 and DO2}]}{1 [\text{Hz}] [\text{DO3}]}$$

Condition 2:
$$\frac{\text{Flow rate span}^{*1} [\text{m}^3/\text{s}]}{\text{Total rate } [\text{m}^3]} \leq \frac{1000}{2 \times \text{Total pulse width } [\text{ms}]}$$

*1) Full scale 1 or full scale 2, whichever is larger, in the case of auto 2 range, bi-directional range, and bi-directional auto 2 range setting

The limitation of the maximum output frequency of each DO output port is applicable when the flow rate exceeds the set range. Consequently, if the setting is made so that the maximum frequency is obtained at 100% flow rate, the flow rate exceeding 100% does not allow the total pulse output to follow. If the over range continues for a long time, accurate total value may not be obtained. If there is a possibility that the flow rate may exceed 100%, review the range and the total rate, and make the setting so that the maximum frequency is kept below the limit.

Example of calculation

 From condition 2

Total rate \geq Full scale $[m^3/s] \times \frac{2 \times \text{Total pulse width } [ms]}{1000} = 0.01 \ [m^3/s] \times \frac{2 \times 50 \ [ms]}{1000}$ = 0.001 $[m^3] = 1 \ [L]$B The settable range of the total rate that satisfies both condition 1 and condition 2 is found to be as follows based on the result of calculations A and B.

<u>1 [L] ≤ Total rate</u>

ii) In the case of DO3

From condition 1 Total rate $\geq \frac{\text{Full scale } [\text{m}^{3}/\text{s}]}{1 [\text{Hz}]} = \frac{0.01 [\text{m}^{3}/\text{s}]}{1 [\text{Hz}]} = \underline{0.01 [\text{m}^{3}]} = \underline{10 [\text{L}]}....C$

Condition 2 is the same as the case of DO1 output in i) above.

Consequently, the settable range of the total rate is found to be as follows based on the result of calculations B and C.

 $10 [L] \le Total rate$

Operation (example)	When starting integration with total rate set to 100 m ³ and pulse width 1 set to 100 msec.		
Key operation		Description	Display
FUNC TOTAL		Display "TOTAL MODE"	TOTAL MODE TOTAL STOP
		Select "TOTAL RATE"	TOTAL RATE 0.000 m3
ENTER 10	0 ENTER	Enter numeric value enter mode, enter "100" using ten keys, and press ENTER.	TOTAL RATE 100.000 m3
▲ or ▼		Select "PULSE WIDTH 1"	PULSE WIDTH 1 50 msec
ENTER (or V ENTER	Enter select/enter mode, select "100," and press ENTER.	PULSE WIDTH 1 100 msec
ESC		Return to "TOTAL MODE"	TOTAL MODE TOTAL STOP
ENTER	or V ENTER	Enter select/enter mode, select "RESET," and press ENTER.	TOTAL MODE TOTAL RESET
ESC		Display the measurement, reflecting the setting.	(Measurement display screen)
4.4.9.3. Total preset

Operation	When setting forward direction to 1000m ³ and reverse direction to 2000m ³		
(example)			1
Key	operation	Description	Display
FUNC TOTA	L	Display "TOTAL MODE"	TOTAL MODE TOTAL STOP
▲ or ▼		Select "F: TOTAL PRESET"	F: TOTAL PRESET 0.000 m ³
ENTER 10	00ENTER	Enter numeric value enter mode, enter "1000" using ten keys, and press ENTER.	F: TOTAL PRESET 1000.000 m ³
		Select "R: TOTAL PRESET"	R: TOTAL PRESET 0.000 m ³
ENTER 20	00ENTER	Enter numeric value enter mode, enter "2000" using ten keys, and press ENTER.	R: TOTAL PRESET 2000.000 m ³
ESC		Return to "TOTAL MODE"	TOTAL MODE TOTAL STOP
ENTER	or V ENTER	Enter select/enter mode, select "TOTAL RESET," and press ENTER.	TOTAL MODE TOTAL RESET
ESC		Display the measurement, reflecting the setting.	(Measurement display screen)

4.4.9.4. Total SW

Operation (example)	When setting total sy	witch setting in forward direction to 5000 m ³	
Кеу	operation	Description	Display
FUNC TOTA	L	Display "TOTAL MODE"	TOTAL MODE TOTAL STOP
▲ or ▼		Select "F: TOTAL SW"	F: TOTAL SW 0.000 m ³
ENTER 50	00ENTER	Enter numeric value enter mode, enter "5000" using ten keys, and press ENTER.	F: TOTAL SW 5000.000 m ³
ESC		Return to "TOTAL MODE"	TOTAL MODE TOTAL STOP
ENTER	or V ENTER	Enter select/enter mode, select "TOTAL RESET," and press ENTER.	TOTAL MODE TOTAL RESET
ESC		Display the measurement, reflecting the setting.	(Measurement display screen)

4.4.9.5. Determining how to dispose of total at error (BURNOUT)

Description

Output burnout is a function of setting the total output to hold when measurement state becomes abnormal. Set the duration until burnout processing is performed with the burnout timer.

- (Setting contents)
- Hold: Holds the total value
- Not used: Burnout is not used.

Output burnout processing is performed as follows.

Note: Set output burnout in a state where total mode is set to total stop.

*1) Integration is continued until output burnout processing is started.

Operation When setting output burnout to hold and burnout timer to 30 sec. (example) Key operation Description Display Display "TOTAL MODE" TOTAL MODE FUNC TOTAL TOTAL STOP Select "OUTPUT BURNOUT" OUTPUT BURNOUT ▲ or ▼ NOT USED OUTPUT BURNOUT Enter select/enter mode, select "HOLD," ENTER **A** or **V** ENTER HOLD and press ENTER. Select "BURNOUT TIMER" **BURNOUT TIMER** ▼ 10 sec BURNOUT TIMER Enter numeric value enter mode, enter "30" ENTER 3 0 ENTER 30 sec using ten keys, and press ENTER. Return to "TOTAL MODE" TOTAL MODE ESC TOTAL STOP TOTAL MODE Enter select/enter mode, select "TOTAL ENTER **A** or **V** ENTER TOTAL RESET RESET," and press ENTER. Display the measurement, reflecting the ESC (Measurement display screen) setting.

4.4.10. Flow switch

▼

▼

ESC

ENTER 1 8 0 ENTER

ENTER 5 ENTER

using ten keys, and press ENTER.

Enter numeric value enter mode, enter

"180" using ten keys, and press ENTER.

Enter numeric value enter mode, enter "5"

Display the measurement, reflecting the

using ten keys, and press ENTER.

Select "FLOW SW HIGH"

Select "FLOW SW HYS."

setting.

INF-TN1FSH-E

<u>20</u>.00 m³/h

112.64 m³/h

180.00 m³/h

10%

5%

(Measurement display screen)

FLOW SW HIGH

FLOW SW HIGH

FLOW SW HYS.

FLOW SW HYS.

4.4.11. Status output

Description (1) Output Total pulse and status (measurement error or flow rate switch) output can be set as follows (common for DO1/DO2/DO3) 1. NOT USED: Contact output is not used. SIGNAL ERROR: Outputs when measurement error occurs. 2. 3. F: TOTAL PULSE: Outputs flow rate total pulse in forward direction. Outputs flow rate total pulse in reverse direction. 4. R: TOTAL PULSE: 5. F: TOTAL ALARM: Outputs when flow rate total alarm in forward direction is exceeded. 6. R: TOTAL ALARM: Outputs when flow rate total alarm in reverse direction is exceeded. 7. F: TOTAL OVERFLOW: Outputs when flow rata total value in forward direction overflows. 8 **R: TOTAL OVERFLOW:** Outputs when flow rate total value in reverse direction overflows. 9 FLOW SW HIGH: Outputs when the upper limit setting of the flow switch is exceeded. 10. FLOW SW LOW: Outputs when the flow rate becomes lower than the lower limit setting of the flow switch. 11. FULL SCALE 2: Outputs when analog output operation range is full scale 2. 12. AO RANGE OVER: Outputs when the value exceeds the upper limit setting or becomes lower than the lower limit setting of the range. 13. PULSE RANGE OVER: Outputs when the total pulse output exceeds the maximum output frequency value. Outputs when the flow is in reverse direction. 14. R: FLOW DIRECTION: 15. DEVICE ERROR: Outputs when devices become abnormal. (2) Mode The mode of status output pulse can be set as follows. Normal off (DO1/DO2) or normal open (DO3) 1. NORMAL: 2. REVERSE Normal on (DO1/DO2) or normal close (DO3) If the mode is set to REVERSE, DO output is provided when the power is turned on. Check if DO output can be modified before setting. Note: DO output specifications DO1/DO2: Transistor open collector, Contact capacity: 30V DC, 0.1A When total pulse output is selected (Note: See 4.4.9.2.) 1000 pulse/s or lower (at full scale flow rate) Pulse width: 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, 100.0 or 200.0 ms DO3: Relay contact, contact capacity: 220V AC/30V DC, 1A Service life: 200,000 times (under rated load), Can be replaced if provided with a socket When total pulse output is selected (Note: See 4.4.9.2.) 1 pulse/s or lower (at full scale flow rate) Pulse width: 50, 100 or 200ms

Operation (example)	When setting DO2 of	output to total pulse in forward direction and mo	de to reverse
Key	operation	Description	Display
FUNC STATE	JS	Display "SELECT STATUS"	SELECT STATUS DO.1
ENTER	or V ENTER	Select "DO.2" and press ENTER.	SELECT STATUS DO.2
ENTER		Display "OUTPUT DO.2"	OUTPUT DO.2 NOT USED
ENTER	or V ENTER	Enter select/enter mode, select "F: TOTAL PULSE," and press ENTER.	OUTPUT DO.2 F: TOTAL PULSE
▲ or ▼		Display "MODE DO.2"	MODE DO.2 NORMAL
ENTER	or V ENTER	Enter select/enter mode, select "REVERSE," and press ENTER.	MODE DO.2 REVERSE
ESC ESC		Display the measurement, reflecting the setting.	(Measurement display screen)

4.4.12. Output calibration

(example)		
Key operation	Description	Display
[FUNC] CAL	Display "CAL. ZERO"	CAL. ZERO 0.00 m ³ /h
ENTER ± 0.5 ENTER	Enter numeric value enter mode, enter " ± 0.5 " using ten keys, and press ENTER.	CAL. ZERO – 0.50 m ³ /h
▲ or ▼	Select "CAL. SPAN"	CAL. SPAN 100.00%
ENTER 1 0 5 ENTER	Enter numeric value enter mode, enter "105" using ten keys, and press ENTER.	CAL. SPAN 105.00%
ESC	Display the measurement, reflecting the setting.	(Measurement display screen)

4.4.13. Measurement unit

— Description —	
Description	
Measurement unit can be selected fr	om metric system and English system.
(Setting contents)	
• Meter: Metric system	
Unit of length:	mm
Unit of velocity (S.V.):	m/s
Unit of flow rate:	L/s, L/min, L/h, L/d, kL/d, ML/d, m ³ /s, m ³ /min, m ³ /h, m ³ /d, km ³ /d, Mm ³ /d, BBL/s,
	BBL/min, BBL/h, BBL/d, kBBL/d, MBBL/d
Total unit:	mL, L, m ³ , km ³ , Mm ³ , mBBL, BBL, kBBL
Unit of viscosity:	$E^{-6}m^2/s$
Unit of temperature:	°C
Note: Set units in a state where the t	otal mode is set to stop.

Operation (example)	When changing the unit system to metric system		
Key	operation	Description	Display
FUNC SYST	EM	Display SYSTEM.	UNIT & LANGUAGE SKIP
ENTER or		Select "SETTING"	UNIT & LANGUAGE SETTING \$
ENTER		Display system unit.	SYSTEM UNIT ENGLISH
ENTER	or V ENTER	Enter select/enter mode, select "METRIC," and press ENTER.	SYSTEM UNIT METRIC
ESC ESC		Display the measurement, reflecting the setting.	(Measurement display screen)

4.4.14. System language selection

- Description -

The system language to be displayed at the time of setting can be selected from the following 5: English, Japanese, German, French, and Spanish.

Operation (example)	When selecting Eng	lish	
Key	operation	Description	Display
FUNC SYST	EM	Display SYSTEM.	UNIT & LANGUAGE SKIP
ENTER	or 💌	Select "SETTING"	UNIT & LANGUAGE SETTING \$
ENTER		Display SYSTEM UNIT.	SYSTEM UNIT METRIC
▲ or ▼		Display SYSTEM LANGUAGE.	SYSTEM LANGUAGE JAPANESE
ENTER	or V ENTER	Enter select/enter mode, select "ENGLISH," and press ENTER.	SYSTEM LANGUAGE ENGLISH
ESC ESC		Display the measurement, reflecting the setting.	(Measurement display screen)

4.4.15. Setting serial communication (RS232C/RS485)

Description Communication setting can be made as follows when using transmission function. Setting contents COM. SPEED, COM. PARITY, COM. STOP BIT, SERIAL METHOD, STATION NO. Setting range COM. SPEED: 9600bps, 19200bps, 38400bps NONE, ODD, EVEN COM. PARITY: 1 BIT, 2 BITS COM. STOP BIT: RS232C or RS485 SERIAL METHOD: STATION NO.: 1 to 31 Note: See "8.1. External communication specifications" for details of communication specifications.

Operation (example)	When setting communication speed to 9600 bps, parity to even, stop bit to 2 bits, serial method to R\$485, and station No. to "5"		
Key	operation	Description	Display
FUNC SYSTI	EM	Display SYSTEM.	UNIT & LANGUAGE SKIP
▲ or ▼		Select "SERIAL COM."	SERIAL COM. SKIP
ENTER	or 🔽	Enter select/enter mode and select "SETTING."	SERIAL COM. SETTING
ENTER		Display "COM. SPEED"	COM. SPEED 38400 bps
ENTER	or V ENTER	Enter select/enter mode, select "9600 bps," and press ENTER.	COM. SPEED 9600 bps
		Select "COM. PARITY"	COM. PARITY NONE
ENTER (or V ENTER	Enter select/enter mode, select "EVEN," and press ENTER.	COM. PARITY EVEN
		Select "COM. STOP BIT"	COM. STOP BIT 1 BIT
ENTER	or V ENTER	Enter select/enter mode, select "2 BITS," and press ENTER.	COM. STOP BIT 2 BITS
		Select "SERIAL METHOD"	SERIAL METHOD RS232C
ENTER (or V ENTER	Enter select/enter mode, select "RS485," and press ENTER.	SERIAL METHOD RS485
		Select "STATION NO"	STATION No. No. 1
ENTER	or V ENTER	Enter select/enter mode, select "5," and press ENTER.	STATION No. No. 5
ESC		Display the measurement, reflecting the setting.	(Measurement display screen)

4.4.16. Maintenance

4.4.16.1. Analog output adjustment and check

Description

Adjust the analog output so that the output becomes 4 mA when the flow rate is 0 and 20 mA when it is in full scale. Check that each output value in the range from -20% to 120% becomes 0.8 mA to 23.2 mA. Connect an ammeter to the IOUT terminal to perform the adjustment.

Operation (example)	Adjusting 4 mA and 20 mA outputs and checking 75% output (16 mA)		
Key	operation	Description	Display
FUNC SYST	EM	Display SYSTEM.	UNIT & LANGUAGE SKIP
▲ or ▼		Select "MAINTENANCE"	MAINTENANCE SKIP
ENTER (or V ENTER	Enter select/enter mode, select "AO.1," and press ENTER.	AO. 1 ADJUST 4 mA
		Display 4 mA adjustment.	
(Increase) o	r V (Decrease)	Perform fine adjustment.	AO. 1 ADJUST 4 mA
(Increase) or	r (Decrease)	Perform coarse adjustment.	
		Adjust so that the ammeter indicates 4 mA.	
ENTER		Exit 4 mA adjustment and go to 20 mA adjustment.	AO. 1 ADJUST 20 mA
(Increase) o	r V (Decrease)	Perform fine adjustment.	AO. 1 ADJUST 20 mA
► (Increase) of	r (Decrease)	Perform coarse adjustment.	
		Adjust so that the ammeter indicates 20 mA.	
ENTER		Exit 20 mA adjustment and go to "AO.1 CHECK"	AO. 1 CHECK 0%
ENTER 75	ENTER	Enter numeric value enter mode, enter "75" using ten keys, and press ENTER. [Check 75% (16 mA) output.]	AO. 1 CHECK 75%
ESC ESC		Display the measurement, reflecting the setting.	(Measurement display screen)

4.4.16.2. Checking status output

- Description -

Check the ON-OFF operation of the status output as follows. Setting contents: ON: Closes the contact, OFF: Opens the contact.

• Check if DO output can be changed before operation.

Connect voltmeters to DO1, DO2, and DO3 terminals.

Note: Refer to "4.4.11. Status output" of DO output specifications.

Note: Relay may be disconnected and ON/OFF can be checked with a tester.

Operation (example)	When checking digi	tal output DO.1	
Key	operation	Description	Display
FUNC SYSTI	EM	Display SYSTEM.	UNIT & LANGUAGE SKIP
▲ or ▼		Select "MAINTENANCE"	MAINTENANCE SKIP
ENTER (or V ENTER	Enter select/enter mode, select "DO.1," and press ENTER.	DO.1 CHECK OFF
ENTER	or V ENTER	Enter select/enter mode, select "ON," and press ENTER.	DO.1 CHECK ON
		[Check of status output DO. 1 ON *1]	
ENTER	or V ENTER	Enter select/enter mode, select "OFF," and press ENTER.	DO.1 CHECK OFF
		[Check of status output DO.1 OFF *1]	
ESC ESC		Display the measurement, reflecting the setting.	(Measurement display screen)

*1) The status output is affected by "(2) Mode (Normal/Reverse)" of "4.4.11. Status output."

4.4.16.3. Calibrating temperature sensor

Description				
Description —				
The resistance of the we	dge temperature measurement can be calibrated as follows.			
(Setting contents)				
Calibrate: Calibrates	s resistance value 100 Ω (wedge temperature: 0°C) and resistance value 140 Ω			
(wedge te	mperature: 100°C)			
Clear: Displayed	l under uncalibrated state or when calibration error has occurred.			
(The unca	alibrated state cannot be restored after calibration.)			
Note: Temperature sense	or specifications			
Measurement range:	-40 to 100°C			
Sensor:	Built into resistance bulb for wedge temperature measurement			
Built-in resistor:	JIS C1604, Class B or equivalent			
Transformer:	Transformer: Built into resistance-temperature conversion circuit			
Connection:	3-wire			
Connect a resistor to tem	nperature sensor terminals as shown below.			
	Temperature sensor			
	B B A N			
	Resistor			
Note: Use a resistor havi	ing the accuracy of $\pm 0.1\%$.			

Operation (example)	When performing ca	en performing calibration of resistance of wedge temperature measurement		
Key	operation	Description	Display	
FUNC SYST	EM	Display SYSTEM.	UNIT & LANGUAGE SKIP	
▲ or ▼		Select "MAINTENANCE"	MAINTENANCE SKIP	
ENTER	or V ENTER	Enter select/enter mode, select "WEDGE TEMP," and press ENTER.	ADJUST TEMP. ADJUST	
ENTER		Select "ADJUST" and press ENTER.	SET 100Ω	
Set the resistor t	o 100Ω. ENTER	Set the resistor to 100Ω and press ENTER Elapsed time is displayed on the lower row while adjustment is in progress.	ADJUSTING 100Ω	
		On completion of 100 Ω adjustment, a screen prompting you to perform 140 Ω adjustment appears.	ADJUSTING 100Ω	
Set the resistor to 140Ω . ENTER		Set the resistor to 140 Ω and press ENTER. Elapsed time is displayed on the lower row while adjustment is in progress.	ADJUSTING 140Ω	
		"ADJUST" is displayed if the adjustment is successfully completed, and "CLEAR" is displayed when the adjustment is unsuccessfully completed.	ADJUST TEMP. ADJUST	
ESC ESC		Display the measurement, reflecting the setting.	(Measurement display screen)	

4.4.16.4. Checking temperature sensor

- Description -

Check the wedge temperature measurement as follows.

Connect a resistor to temperature sensor terminals as shown by the figure in 4.4.16.3.

Operation (example)	When connecting 100 Ω resistor and checking that the wedge temperature becomes 0°C			
Key	operation	Description	Display	
FUNC SYST	EM	Display SYSTEM.	UNIT & LANGUAGE SKIP	
▲ or ▼		Select "MAINTENANCE"	MAINTENANCE SKIP	
ENTER or ENTER		Enter select/enter mode, select "WEDGE TEMP." and press ENTER.	ADJUST TEMP. ADJUST	
▲ or ▼		Select "CHECK TEMP."	CHECK TEMP. 0.0°C	
ENTER		Update the temperature display.	CHECK TEMP. 0.0°C	
ESC		Display the measurement.	(Measurement display screen)	

*1) About 4 seconds after the resistance value of the wedge temperature is changed, the temperature of the changed resistance value is displayed. The temperature display during that period is not constant.

*2) The accuracy of the wedge temperature is $\pm 1.5^{\circ}$ C. The accuracy depends also on the accuracy of the resistor.

4.4.16.5. Test mode

- Description -

In the test mode, flow rate is artificially input to check the state of integration and the operation of the flow rate switch, etc.

Set the target value as full scale, and the period until the target value is reached (tracking time) can be arbitrarily set. Input data setting range: 0 to $\pm 120\%$

Tracking time setting range: 0 to 900 sec.

If "START/RESET" is selected as TOTAL MODE, the total value also changes. Select "STOP" not to make the total value change.

Operation	When setting target	value to 100% and making it to be reached in 15	5 seconds
(example) Kev	operation	Description	Display
FUNC SYST	EM	Display SYSTEM.	UNIT & LANGUAGE SKIP
▲ or ▼		Select "MAINTENANCE"	MAINTENANCE SKIP
ENTER (or V ENTER	Enter select/enter mode, select "TEST MODE," and press ENTER.	TEST MODE NOT USE
ENTER (or 🔻	Enter select/enter mode, select "SETTING," and press ENTER.	TEST MODE SETTING
ENTER		Display INPUT DATA.	INPUT DATA 0%
ENTER 10	0 ENTER	Enter numeric value enter mode, enter "100" using ten keys, and press ENTER.	INPUT DATA 100%
▲ or ▼		Select "TRACKING TIME"	TRACKING TIME 0 sec
ENTER 15	ENTER	Enter numeric value enter mode, enter "15" using ten keys, and press ENTER.	TRACKING TIME 15 sec
ESC		Artificially enter the flow rate to be measured in "SETTING" of the test mode.	TEST MODE SETTING
ESC		Display the measurement by artificial input.	(Measurement display screen)

4.4.17. LCD backlight

- Description -

The LCD backlight of the displayed screen can be selected from ON, OFF, and AUTO. If AUTO is selected, the backlight is set to ON when values are entered from the keyboard, and it is set to OFF on the measurement display screen.

If the setting is changed from OFF to ON/AUTO, the backlight is set to ON when the change is made. If the setting is changed from ON/AUTO to OFF, the backlight is set to OFF when the change is made.

Operation (example)	When setting the backlight to AUTO		
Key	operation	Description	Display
FUNC SYST	EM	Display SYSTEM.	UNIT & LANGUAGE SKIP
▲ or ▼		Select "DISPLAY BACKLIGHT"	DISPLAY BACKLIGHT ON
ENTER	or V ENTER	Enter select/enter mode, select "AUTO," and press ENTER.	DISPLAY BACKLIGHT AUTO
ESC		Set the backlight to OFF when the measurement display screen appears.	(Measurement display screen)

4.4.18. Key lock

- Description

A password can be set for the input on the setting screen.

Select a 4-digit numeric value as a password. "." entered 4 times as a password is regarded as a valid password. Note: If you forget the password, enter "." 4 times to reset the key lock.

Operation	When resetting the key lock set as shown above			
(example)	(To go back to FUNC SYSTEM)			
Key	operation	Description	Display	
FUNC		Display password input screen.	(Measurement display screen)	
1		Enter "1"	* [*] ⁸ (Measurement display screen)	
2		Enter "2"	(Measurement display screen)	
3		Enter "3"	* * * _ 🔒 (Measurement display screen)	
4 *1		Enter "4"	(Measurement display screen)	
SYSTEM		Enter "SYSTEM" to display SYSTEM.	UNIT & LANGUAGE SKIP	

*1) If a wrong password is entered, the initial screen appears.

4.4.19. Checking system name

- Description -

The system name can be displayed.

Operation (example)	Check the system name as follows.		
Key	operation	Description	Display
FUNC SYSTEM		Display SYSTEM.	UNIT & LANGUAGE SKIP
▲ or ▼		Select "SYSTEM NAME" Check the system name.	SYSTEM NAME FSH****
ESCESC		Display the measurement	(Measurement display screen)

4.4.20. Details of measurement

4.4.20.1. Transit time

- Description

The data required for time difference measurement can be set as follows.

[Signal processing outline drawing]

Note: Make the setting, following the description in "6.3. Checking received waveform."

- 🕂 CAUTION
- This parameter is intended for our service personnel.
- Do not change the setting, since the parameter affects the flow rate measurement. If the setting is changed, measurement may be disabled.
- Make the setting when the factory-set value poses problems in flow rate measurement. If no problem arises with the factory-set value, the setting is not necessary.

Enter data for each item (see the following table) according to the display.

Item	Input method	Function and range or menu	
Transmission count	Salaatian	The number of transmission of ultrasonic signals per flow rate signal output ^{*1} (Factory-set value: 128)	
	Selection	• 8, 10, 32, 64, 128, 256	
Trigger control		Control method setting of the trigger level (detection point) of ultrasonic signals (Factory-set value: AUTO)	
	Selection	 AUTO MANUAL Select the detection point according to the rate against the peak of receiving 	
	Numeric value	 Trigger level: 10% to 90% 	

Item	Input method	Function and range or menu	
Window		Setting of control method of measurement window that takes in signals	
control		(Factory-set value: AUTO)	
	Selection	• AUTO	
		• MANUAL	
		Set the time of starting taking in signals (period from the start of transmission until the startup of window signals)	
	Numeric value	• Open time (F): 1 μs to 16383 μs	
	Numeric value	• Open time (R): 1 µs to 16383 µs	
		Note: (F): Forward direction, (R): Reverse direction	
		Select (F) and (R) in manual mode.	
Saturation		The number of times that the amplitude of received signals fluctuates and	
		exceeds $\pm 1.6V$ (saturation) per 1 flow rate signal output ^{*1} . Used as a	
		threshold value for judgment of signal error. A signal error occurs if the	
		specified number of times are exceeded. (Factory-set value: 32 times)	
	Numeric value	• 0 to 256	
Measurement		Setting of measurement method for measuring transit time (Factory-set value:	
method	G 1 4	Method 2)	
	Selection	• Method 1: method strong against interference	
		• Method 2: Controls triggers on the plus side of the direction of voltage of	
		received signals.	
		• Method 3: Controls triggers on the minus side of the direction of voltage of	
0:		received signals.	
Signal balance		setting of threshold value used for judging the existence of transit time. A signal error occurs if the specified value is exceeded. (Factory-set value:	
	Numeric value	2570)	
		Note: Set to 50% or higher for Method 1	
Transmission		Setting of transmission pattern of ultrasonic signals (Factory-set value: Burst	
pattern		3)	
I	Selection	• Burst 1, Burst 2, Burst 3, Burst 4, Burst 5, Chirp 4, Chirp 8	
AGC gain		Setting of control method of signal AGC gain (Factory-set value: Auto)	
		Signal peak is controlled to be kept at 2.4Vpp.	
	Selection	• AUTO	
		• MANUAL	
		Make the setting so that the signal peak in both forward and reverse	
		directions is kept at 2.4 Vpp.	
	Numeric value	• Gain in forward direction: 1.00% to 99.00%	
		• Gain in reverse direction: 1.00% to 99.00%	
Signal peak		Setting of signal peak threshold value per 1 flow rate signal output ^{*1} . Used as the threshold value for judging the error status of signals. A signal error	
		occurs if the value becomes lower than the specified value. (Factory-set	
		value: 3071)	
		• 5120: $1.0V_{0P}$ or equivalent	
		• 4096: $0.8V_{0P}$ or equivalent	
		• $3071: 0.6V_{0P}$ or equivalent	
		• 2048: $0.4V_{0P}$ or equivalent	
TRANS.	Numeric value	Setting of transmission interval of ultrasonic signals	
WAIT TIME		• 1 to 30 msec	

*1) Forward-direction signals are taken in with forward total time measurement, while reverse-direction signals are taken in with reverse total time measurement. They are conducted alternately for the transmission count. Forward and reverse signal data is added for the transmission count and averaged. The result is 1 output of signal in forward/reverse direction.

Operation (avample)	When setting window control of line 2 to manual, open time (F/R) to 150µs, and measurement method			
(example) Key	operation	Description	Display	
FUNC DETA	IL	Display VERSION INF.	VERSION INF. SKIP	
▲ or ▼		Select "TRANSIT TIME"	TRANSIT TIME SKIP	
ENTER (or V ENTER	Enter select/enter mode, select "SETTING," and press ENTER.	LINE SELECT NO. LINE 1	
ENTER (or V ENTER	Enter select/enter mode, select "LINE 2," and press ENTER.	2: TRANS. COUNT 128	
▲ or ▼		Select "2: WINDOW CONTROL"	2: WINDOW CONTROL AUTO	
ENTER (or V ENTER	Enter select/enter mode, select "MANUAL," and press ENTER.	2: WINDOW CONTROL MANUAL	
		Select "2: OPEN TIME (F)"	2: OPEN TIME (F) 0 us	
ENTER 15	0 ENTER	Enter numeric value enter mode, enter "150" using ten keys, and press ENTER.	2: OPEN TIME (F) 150 us	
		Select "2: OPEN TIME (R)"	2: OPEN TIME (R) 0 us	
ENTER 15	0 ENTER	Enter numeric value enter mode, enter "150" using ten keys, and press ENTER.	2: OPEN TIME (R) 150 us	
▲ or ▼		Select "2: MEAS. METHOD"	2: MEAS. METHOD METHOD 2	
ENTER	or V ENTER	Enter select/enter mode, select "METHOD 1," and press ENTER.	2: MEAS. METHOD METHOD 1	
ESC ESC ES	SC	Display the measurement, reflecting the setting.	(Measurement display screen)	

4.4.20.2. Pulse Doppler

Note: Make the setting, following the description in "6.3. Checking received waveform."

- This parameter is intended for our service personnel.
- Do not change the setting, since the parameter affects the flow rate measurement. If the setting is changed, measurement may be disabled.
- Make the setting when the factory-set value poses problems in flow rate measurement. If no problem arises with the factory-set value, the setting is not necessary.

Enter data for each item (see the following table) according to the display.

Item	Input method	Function and range or menu	
Wedge sound		Setting of wedge sound velocity of the sensor (Factory-set value: AUTO)	
velocity	Selection	• AUTO	
		• MANUAL	
	Numeric value	• WEDGE S.V.: 1000m/s to 3700m/s	
Pipe sound		Setting of pipe sound velocity (Factory-set value: AUTO)	
velocity	Selection	• AUTO	
		• MANUAL	
	Numeric value	• PIPE S.V.: 1000m/s to 3700m/s	

Item	Input method	Function and range or menu	
Lining sound		Setting of pipe sound velocity (Factory-set value: AUTO)	
velocity	Selection	• AUTO	
		• MANUAL	
	Numeric value	• PIPE S.V.: 1000m/s to 3700m/s	
Transmission	~ 1	Setting of transmission frequency of the sensor (Factory-set value: AUTO)	
frequency	Selection	• AUTO	
	NT	• MANUAL	
	Numeric value	• Transmission frequency: 0.100/MHZ to 5.000/MHZ	
		sensor	
		FSW12: 1.59 MHz to 2.25 MHz (Fundamental frequency: 2.0 MHz)	
		FSW21: 0.81 MHz to 1.23 MHz (Fundamental frequency: 1.0 MHz)	
		FSW40/FSW50: 0.45 MHz to 0.55 MHz (Fundamental frequency: 0.5	
		MHz)	
Transmission		Setting of transmission pulse of the sensor (Factory-set value: 4)	
pulse No.	Selection	• 0, 1, 2, 4, 8, 16, 32, 64	
Sampling		Setting of control method of sampling frequency for taking in demodulated	
nequency	Selection	• AUTO	
	Selection	• MANUAL	
		Set sampling frequency.	
	Numeric value	• Sampling frequency: 31.3 kHz to 8000 kHz	
Receipt wait time		Setting of control method of measurement window for taking in modulated	
		waves (Factory-set value: AUTO)	
	Selection	• AUTO	
		• MANUAL	
		Set the time to start taking in demodulated waves (time from the start of	
	Numerio value	transmission to the startup of window signals).	
Repetition	Numerie value	Setting of frequency control method in intervals of send/receive of	
frequency		reference count (Factory-set value: AUTO)	
1.1.1.1.1.5	Selection	• AUTO	
		• MANUAL	
		Set repetitive frequency.	
	Numeric value	Repetitive frequency: 100 Hz to 8000 Hz	
Reference count		Setting of number of times of taking in per 1 flow rate signal output *1	
	Solation	(Factory-set value: 256)	
No. of channels	Selection	• 4 to 512 Setting of number of division (number of channels) of transmission nath	
		(Factory-set value: AUTO)	
	Selection	• AUTO	
		• MANUAL	
		Set the number of channels.	
	Numeric value	• Number of channels: 16, 32, 48, 64, 80, 96, 112, 128	
Measurement		Setting of measurement range within pipe (Factory-set value: F radius)	
range	Selection	• F radius: Radius farther viewed from the sensor that has made	
		transmissions	
		• IN Taulus, Kaulus licater viewed from the sensor that has made transmissions	
		Diameter: Total area on diameter of transmission path	
Phase angle shift		Setting of measurement range of Doppler shift (phase angle) (Factory-set	
		value: NORMAL 2)	
	Selection	• NORMAL 1: Flow in positive/negative direction $(-\pi \text{ to } 0 \text{ to } \pi)$	
		• NORMAL 2: Flow in positive/negative direction $(-3\pi \text{ to } 0 \text{ to } 3\pi)$	
		• POSITIVE: Flow in positive direction (0 to 2π)	
		• NEGATIVE: Flow in negative direction $(-2\pi \text{ to } 0)$	

Item	Input method	Function and range or menu	
Gain		Setting of control method of demodulated wave gain (Factory-set value: AUTO)	
		The peak of demodulated waves within measurement window is controlled	
		not to exceed 3.2 Vpp.	
	Selection	• AUTO	
		• MANUAL	
		Make the setting so that the peak of demodulated waves within	
		measurement window does not exceed 3.2 Vpp.	
		START GIN \leq END GAIN	
	Numeric value	• START GAIN: 0 to 18	
		• END GAIN: 0 to 18	
Fluid sound velocity		Setting of fluid sound velocity (Factory-set value: AUTO)	
	Selection	• AUTO	
		• MANUAL	
	Numeric value	• PIPE S.V.: 500 m/s to 2500 m/s	
Power		Setting of threshold value of echo wave power (Factory-set value: 4.0 E^4) A measurement error occurs if the value becomes lower than the threshold.	
		The power measured in "6.1.2.3. Measurement data information" can be abarled	
	Numeric value	$h = 0.00 \text{ to } 00.90 \text{ F}^4$	
Deviation		• 0.00 to 99.99 E Setting of threshold value of standard deviation of Doppler shift (Factory-	
Deviation		set value: 0.5)	
		A success rate error occurs if the threshold is exceeded. (The deviation	
		measured in "6.1.2.3. Measurement data information" can be checked.)	
	Numeric value	• 0.00 to 1.00	
Success rate		Setting of success rate of power and standard deviation per 1 flow rate	
		signal output (Factory-set value: 70%)	
		A success rate error occurs if the value becomes lower than the threshold.	
		The success rate can be checked, following the description in "6.1.2.3.	
		Measurement data information."	
	Numeric value	• 0% to 100%	

*1) A sensor transmits ultrasonic waves, and the same sensor receives the echo waves coming from the reflector. The transmission path is divided, Doppler shift (fluctuation of frequency) of the reflector that runs through each area (channel) is measured by performing send/receive for two or more times (reference count), and the flow velocity distribution is found based on the transmission speed of each part.

Operation When setting repetition frequency to 3500 Hz manually and the success rate of line 1-F and line 1-R to $(3500$ Hz manually and the success rate of line 1-F and line 1-R to (550)			
Key operation	Description	Display	
[FUNC] DETAIL]	Display VERSION INF.	VERSION INF. SKIP	
▲ or ▼	Select "PULSE DOPPLER"	PULSE DOPPLER SKIP	
ENTER or FIENTER	Enter select/enter mode, select "SETTING," and press ENTER.	WEDGE S.V. AUTO	
▲ or ▼	Select "REPETITION FREQ."	REPETITION FREQ. AUTO	
ENTER or ENTER	Enter select/enter mode, select "SETTING," and press ENTER.	REPETITION FREQ. MANUAL	
	Select "REPETITION FREQ."	REPETITION FREQ. 2000 Hz	
ENTER 3 5 0 0 ENTER	Enter numeric value enter mode, enter "3500" using ten keys, and press ENTER.	REPETITION FREQ. 3500 Hz	
▲ or ▼	Select "LINE SELECT"	LINE SELECT LINE 1-F	
ENTER or FIENTER	Enter select/enter mode, select "LINE 1- F," and press ENTER.	1-F: POWER 4.00 E ⁴	
▲ or ▼	Select "1-F: SUCCESS RATE"	1-F: SUCCESS RATE 70.00%	
ENTER 6 5 ENTER	Enter numeric value enter mode, enter "65" using ten keys, and press ENTER.	1-F: SUCCESS RATE 65.00%	
ESC ENTER or ENTER	Press "ESC," enter select/enter mode, select "LINE 1-R," and press ENTER.	1-R: POWER 4.00 E ⁴	
▲ or ▼	Select "1-R: SUCCESS RATE"	1-R: SUCCESS RATE 70.00%	
ENTER 6 5 ENTER	Enter numeric value enter mode, enter "65" using ten keys, and press ENTER.	1-R: SUCCESS RATE 65.00%	
ESC ESC ESC	Display the measurement, reflecting the setting.	(Measurement display screen)	

4.4.20.3. Initializing setting parameters

– Description –

Setting parameters stored in a memory can be initialized as follows.

(Setting contents)

- NOT INITIALIZE: Does not initialize the parameter.
- FACTORY SETTING: Initializes those other than the adjusted values (such as current output, sensor constant, etc.)
- PARAMETER SAVE: Overwrite the initial data with the current setting parameter.

- This parameter is intended for our service personnel.
- Do not attempt to initialize the setting parameters. Otherwise measurement is disabled.

Operation (example)	When setting parameters to factory-set values		
Key operation		Description	Display
FUNC DETA	IL	Display "VERSION INF."	VERSION INF. SKIP
▲ or ▼		Select "SETTING DATA"	SETTING DATA NOT INITIALIZE
ENTER	or V ENTER	Enter select/enter mode and then select "FACTORY SETTING," and the converter is reset.	SETTING DATA FACTORY SETTING
		Display the measurement.	(Measurement display screen)

4.4.20.4. Confirmation of software version

- Description -

The software version of the measurement board and control board can be displayed.

Operation (example)	The software version can be checked as follows.		
Key operation		Description	Display
FUNC DETA	IL	Display "VERSION INF."	VERSION INF. SKIP
ENTER	or V ENTER	Enter select/enter mode, select "CHECK," and press ENTER.	VERSION INF. CHECK
		Check the version of "MEASUREMENT BOARD"	MEASUREMENT BOARD FSH1MES*******
▲ or ▼		Select "." Check the version of "CONTROL BOARD"	CONTROL BOARD FSH1MMI***
ESC ESC		Display the measurement.	(Measurement display screen)

5. MAINTENANCE AND INSPECTION

5.1. Daily inspection

Visually check the following.

- Check the screw of the flow transmitter cover for looseness.
 - \Rightarrow Fasten.
- Check the cable gland for looseness.
 - \Rightarrow Fasten.
- Check the stainless belt of the detector for sag.

 \Rightarrow Stretch.

- Check the LCD for error display (measurement error).
 - \Rightarrow Check that the state of detector mounting or wiring is normal. Check that the pipe is filled with fluid. Decrease air bubbles or foreign substances, if contained in the fluid too much.

5.2. Periodic inspection

5.2.1. Checking zero point

Stop the flow of the fluid, fill the pipe with fluid, and check zero point.

 \Rightarrow Refer to 4.4.6. Zero adjustment

5.2.2. Calibrating current output circuit

Adjust the 4 mA and 20 mA analog outputs.

 \Rightarrow Refer to 4.4.16.1. Analog output adjustment and check

5.2.3. Calibrating temperature sensor circuit

Adjust the resistances (100 Ω and 140 Ω) of wedge temperature measurement.

 \Rightarrow Refer to 4.4.16.3. Calibrating temperature sensor

5.2.4. Measuring insulation resistance

[Measurement method]

- (1) Between power terminal and grounding terminal In the case of AC power: Between L, N (batch) and outer earth terminal In the case of DC power: Between +, – (batch) and outer earth terminal
- (2) Between output terminal and grounding terminal Between Iout (+, -) (batch) and outer earth terminal Between SERIAL (batch) and outer earth terminal Between DO1 (+, -) (batch) and outer earth terminal Between DO2 (+, -) (batch) and outer earth terminal Between DO3 (+, -) (batch) and outer earth terminal Refer to 3.3.5. for the outer earth terminal.

5.3. Replacing fuse

CAUTION

- Be sure to turn off the power before replacing the fuse. The specifications of the fuse is as follows:
 - AC power supply (100 V and 200 V): 5.2 mm (diameter) × 20 mm (length), 250 V 2A (Example: 0218 002 XP by Littelfuse)
 - (2) DC power supply: 5.2 mm (diameter) × 20 mm (length), 250 V 3A (such as UL CSA FGMT 250 V 3 A by Fuji Tanshi Kougyo)
- (1) Turn off the power and open the cover.
- Loosen the 4 screws on the front face of the flow transmitter, and open the cover.
- (2) Replacement of fuse Remove the fuse holder on the left side of the terminal block of the power supply board using a flat-blade screwdriver, and replace the fuse. Then return the fuse holder back in position.
- (3) Close the cover. Close the cover and fasten the 4 screws.

• Be sure to close the cover before turning on the power.

5.4. Replacing relay

DO3 is a relay contact, whose service life is 200,000 times (under rated load).

Replace the relay before its service life expires, paying attention to the number of times of contact operation. Card relay type: RB104-DY (Fuji Electric)

[Replacement procedure]

- (1) Turn off the power and open the cover.
- (2) As shown by the following photo, pull out the card relay on the measurement board located under the power supply board from the socket.
- (3) Set a new card relay into the socket. Push the card relay securely until the nail of the relay engages in position.
- (4) Close the cover and turn on the power.
- (5) Check the ON/OFF operation in status output check in maintenance. (Refer to "4.4.16.2. Checking status output.")

• The unit has high-voltage section. Be sure to turn off the cover before opening the cover.

5.5. Replacing LCD

The nominal service life of the LCD is 10 years. The contrast gradually deteriorates with time. Replace the LCD when 5 to 6 years have passed since the start of use.

[Replacement procedure]

- (1) Turn off the power and open the cover.
- (2) Open the setting section of the display unit.
- (3) Remove the flat cable connector.
- (4) Remove the screws fastening the LCD unit (4 positions).
- (5) Mount a new LCD unit (see parts list). Insert the operation key into the hole of the cover properly, paying attention not to let the operation key to be pressed against or caught by the cover.
- (6) Insert the flat cable connector. (Insert it securely.)
- (7) Close the cover and turn on the power.
- (8) Check that the LCD display and key operation are normal.

• The unit has high-voltage section. Be sure to turn off the power before opening the cover.

6.1. How to confirm normal operation

6.1.1. Checking on LCD

If the following display does not appear, press the [ESC] key.

6.1.2. Checking measurement status information

6.1.2.1. Checking and setting of RAS information

- Description -

(1) Checking of RAS information

Check the details of error status.

The following table lists the RAS information displayed on the upper-left corner of the measurement screen. If an error is detected, take measures according to "6.2. Faults and remedies."

Displayed symbol	RAS information	Displayed contents	Major cause
E1	E1: Device error	Backup memory errorMeasurement circuit error	• Hardware error
	E1: Temperature sensor error	Check cable connection.Temperature circuit error	Break of cableHardware error
E2	E2: Data collection error	 Check sensor type. Turn on the power again. OFF → OFF 	• Hardware error
	E2: Window scan	• Signals are being detected.	• Signals are being detected.
	E2: No signal	• Check receive sensitivity.	• Ultrasound waves cannot
		 Check pipe input data. Check sensor mounting dimensions. 	be propagated into pipe.
		Check sensor type.Check cable connection.	
		• Check that the pipe is filled with fluid.	
	E2: Signal error	Check receive sensitivity.	• Receive sensitivity is low.
		Check mixing in of air bubbles. Check mixing in of	• Receive signal waveform is improper.
		 Check mixing in of foreign substances. Check zero point status. 	
	E2: Signal range over	 Check pipe input data. Check sensor mounting dimensions. 	• Receive signals do not fall within measurement window.
	E2: Calculation error	 Check pipe input data. Check receive sensitivity. Turn on the power again. OFF → ON 	Improper pipe specifications
E3	E3: Data collection error	 Check sensor type. Turn on the power again. OFF → ON 	Parameter setting errorHardware error
	E3: Signal error	Check cable connection.Check receive sensitivity.	• No echo waves from reflector.
	E3: Frequency calculation error	Check pipe input data.Check sensor type.	• The difference in flow rate measured with the reverse-direction sensor and the forward-direction sensor is large.
	E3: Success rate	• Check receive sensitivity.	• Sensitivity of echo wave from reflector is low.
E4	E4: Range over	Check range setting.Check integration setting.	• Flow rate range over
	E4: Temperature specification range over	Sensor temperature error	• Fluid temperature range over

(2) Setting of RAS information

Set the RAS information E1 to E4, which display abnormal condition, to "Valid" or "Invalid."

When set to "Valid": If an abnormal condition occurs, it is displayed as RAS information at the upper left of the measurement screen.

When set to "Invalid": Even if an abnormal condition occurs, it is not displayed as RAS information at the upper left of the measurement screen.

Operation (example)	(1) E2: In case of checking no signals		
Key operation		Description	Display
FUNC CHEC	ΥK.	Display RAS information in CHECK.	RAS INFORMATION* ¹ 000000 <mark>1</mark> 000000000000000 E2: NO SIGNAL
(◄ or ▶)		(Select multiple error items, if any, by pressing	
ENTER		Check the contents of the error selected. If multiple error items are selected, ♦ is displayed.	RAS INFORMATION E2: NO SIGNAL PIPE IN-DATA CHECK
▲ or ▼		Check contents.	RAS INFORMATION E2: NO SIGNAL SENSOR MOUNT CHECK\$
ESC ESC		Display the measurement.	(Measurement display screen)

*1) Composition of RAS information

Operation (example)	(2) E1: When "Te	mperature sensor anomaly" is invalid	
Key o	peration	Description	Display
FUNC DETA	IL		VERSION INF. SKIP
▲ or ▼		Select "RAS".	RAS SKIP
ENTER	or V ENTER	Set to "Select input mode," select "RAS SETTING," and press "ENTER."	RAS SETTING 1111111111 E1: DEVICE ERROR
► ENTER		Set the selected anomaly to "0." Valid: 1, Invalid: 0 (switched with "ENT.")	RAS SETTING 101111111111 E1: TMP-SENSOR ERR.
ESC ESC		Display the measurement.	(Measurement display screen)

6.1.2.2. Status information

Operation In case of ran (example)	ge over	
Key operation	Description	Display
[FUNC] CHECK]	Display RAS information in CHECK.	RAS INFORMATION 000000000000000000000000000000000000
	Display status information in CHECK.	STATUS INFORMATION O00000000000000000000000000000000000
(◀ or ▶)	(Select multiple error items, if any, by pressing	
ESC	Display the measurement.	(Measurement display screen)
6.1.2.3. Measurement data information

– Description –

The information of data measured by time difference and pulse Doppler methods can be checked. The following table lists the data information.

	Time difference	Pulse Doppler			
Wedge S.V. [m/s]	(Theoretical value)	Wedge S.V. [m/s]	(Theoretical value)		
Wedge angle [°]	(Theoretical value)	Wedge angle [°]	(Theoretical value)		
Pipe S.V. [m/s]	(Theoretical value)	Pipe S.V. [m/s]	(Theoretical value)		
Angle in pipe [°]	(Theoretical value)	Angle in pipe [°]	(Theoretical value)		
Lining S.V. [m/s]	(Theoretical value)	Lining S.V. [m/s]	(Theoretical value)		
Angle in lining [°]	(Theoretical value)	Angle in lining [°]	(Theoretical value)		
Fluid S.V. [m/s]	(Theoretical value)	Fluid S.V. [m/s]	(Theoretical value)		
Wedge temperature	e [°C]	Wedge temperature [°C]			
Angle in fluid [°]	(Theoretical value)	Angle in fluid [°]	(Theoretical value)		
Total time [µs]	(Theoretical value)	Transmission frequency [MHz]			
Window open [µs]	(Theoretical value)	Sampling frequency [kHz]			
Line 1	1: Total time [µs]	Receive wait time [µs]			
	1: Forward time [µs]	Repetition frequency [Hz]			
	1: Reverse time [µs]	Transmission pulse No.			
	1: Time difference [ns]	Reference count			
1: Delay time [µs]		No. of channels	No. of channels		
1: Fluid S.V. [m/s]		Measurement range			
	1: Angle in fluid [°]	Phase angle shift			
	1: Raynolds No.	Start gain			
	1: K	End gain			
	1: Velocity [m/s]	Start distance [mm]			
	1: Signal power (F) [%]	Channel width [mm]			
	1: Signal power (R) [%]	Start channel No.			
	1: Trigger level (F) [%]	End channel No.			
	1: Trigger level (R) [%]	Velocity coefficient			
	1: Signal peak (F)	Line 1-F Power $[E^4]$			
1. 2.0 I.	1: Signal peak (R)	Deviation			
Line 2: Same as Li	ne I	Success rate [%]			
		Line I-R: Same as Line I-F			
		Line 2-F: Same as Line 1-F			
		Line 2-K: Same as Line 1-F			
		MAA KANGE [Kange unit]			

Operation	Operation When checking the signal power of line 2 in Transit time method				
(example)	(example) When checking the success rate of line 1-R in pulse Doppler method				
Key operation		Description	Display		
FUNC CHEC	CK	Display RAS information in CHECK.	RAS INFORMATION 000000000000000000000000000000000000		
▲ or ▼		Select "TRANSIT TIME"	TRANSIT TIME SKIP		
ENTER	or V ENTER	Enter select/enter mode, select "CHECK," and press ENTER.	WEDGE S.V. 2500 m/s		
▲ or ▼		Select "LINE SELECT NO."	LINE SELECT NO. LINE 1		
ENTER	or V ENTER	Enter select/enter mode, select "LINE 2," and press ENTER.	2: TOTAL TIME 89.256 us		
▲ or ▼		Select "SIGNAL POWER (R)" and check the data.	2: SIGNAL POWER (R) 56.23%		
ESC ESC		Go back to "TIME DIFFERENCE"	TIME DIFFERENCE SKIP		
▲ or ▼		Select "PULSE DOPPLER"	PULSE DOPPLER SKIP		
ENTER	or V ENTER	Enter select/enter mode, select "CHECK," and press ENTER.	WEDGE S.V. 2500 m/s		
▲ or ▼		Select "LINE SELECT NO."	LINE SELECT NO. LINE 1-F		
ENTER	or V ENTER	Enter select/enter mode, select "LINE 1-R," and press ENTER.	1-R: POWER 5.24 E ⁴		
▲ or ▼		Select "SUCCESS RATE" and check the data.	1-R: SUCCESS RATE 95.77%		
ESC ESC E	SC	Display the measurement.	(Measurement display screen)		

6.2. Faults and remedies

6.2.1. Display error

State		Cause
Nothing is displayed.	 Power is not turned on. Power supply voltage is low. Blown fuse LCD failure Reverse polarity of DC power supply 	\Rightarrow To "6.3.4. Measures against hardware failure"
Left or right side appears black.	 Power supply voltage is low. Reverse polarity of DC power supply LCD failure 	\Rightarrow To "6.3.4. Measures against hardware failure"
Random display	Effect of noise from outsideHardware failure	 ⇒ Ground the grounding terminal on the flow transmitter case. ⇒ To "6.3.4. Measures against hardware failure"
Pale display	 Ambient temperature is low (less than -20°C) When temperature cannot be increased The LCD has come to the end of its service life. 	$\Rightarrow \text{ Increase temperature}$ $\Rightarrow \text{ Adjust the contrast of the LCD.}$ $\Rightarrow \text{ Replace the LCD.}$
The entire display appears black.	 Ambient temperature is high (50°C or higher) When temperature cannot be decreased. 	\Rightarrow Decrease temperature. \Rightarrow Adjust the contrast of the LCD.

6.2.2. Key failure

State	Cause		
Nothing happens if key entry is made. Specific keys do not respond. Keys do not operate according to definition.	• Hardware failure	\Rightarrow To "6.3.4. Measures against hardware failure"	

6.2.3. Measurement value error

State	Cause	Remedy		
The reading appears with "–" (minus).	• Connection between main unit and sensor (Upstream sensor and downstream sensor are reversed.)	→ Connect properly		
	• The fluid is flowing as shown by the reading.			
The reading fluctuates abnormally even if the flow rate is kept constant.	• The length of linear pipe section is insufficient.	Move the sensor to the place where the length of 10D can be assured on upstream side and 5D on downstream side.		
	• There is an object nearby that interferes with the flow such as a pump or valve.	→ Mount the sensor keeping the distance of at least 30D.		
	• The flow is actually pulsing.	> Increase the response time by damping setting.		
The reading does not change even if the flow rate changes. (Error display on LCD)	 Ultrasound waves cannot be transmitted, wh 1. Improper installation Improper piping specifications Sensor is mounted on welded section. Improper sensor spacing Insufficient filling of silicon at the time of sensor mounting Improper connection of sensor cable Improper sensor mounting Spacing The sensor is coming off the pipe. Problem of piping and fluid Pipe is not filled with fluid. 	 Check and remove the sensor, apply silicon filling material again, and mount the sensor in a position slightly deviated from the original position. Mount the sensor, allowing sufficient sensor spacing, in parallel with the pipe. Attach the sensor firmly on the pipe. Find a place in the same piping line where the pipe is filled with fluid, and attach the sensor there. Mount the sensor at the place lowest in the piping line. 		
	 Air bubbles are mixed in. If the reading becomes normal when the fluid is stopped, the cause is mixing in of air bubbles. If the sensor is mounted immediately after the valve, cavitation induces the same phenomenon as mixing in of air bubbles. 	 Prevent air bubbles from mixing in. Increase the level of the pump well. Check the sealing of pump shaft. Fasten the negative piping flange. Take measures to prevent the fluid from falling down into the pump well. Move the sensor to a place where the fluid does not contain air bubbles. Inlet side of the pump Upstream side of the valve 		

State	Cause	Remedy		
	O Turbidity is high			
	Inflow of wastewater or turbidity higher than that of return sludge	\rightarrow		
	• Pipe is old and scale is attached on inner side.	• Move the sensor to a place in the same		
	O Thick lining	line where pipe diameter is shorter.		
	Mortar lining of thickness of several 10 mm	 Move the sensor to other places or to different piping. 		
	O Peeling of lining			
	There is a gap between the lining and the pipe.	→		
	• Sensor is attached to flow elbow or taper tube.	Mount it to a straight pipe.		
	3. Effect of noise from outside -	• Keep the cable between the main unit and the sensor as short as possible		
	There is a radio broadcast station nearby. Magazine to the poor the	• Ground the main unit and the piping.		
	place where traffic is heavy (cars and trains).			
	4. Hardware failure –	Refer to "6.3.4. Measures against hardware failure"		
The reading does not appear as "0" even if the flow is	Convection of fluid within pipe	Normal		
stopped.	• Zero adjustment is performed. –	• Perform zero adjustment in a state the flow is completely stopped.		
	• If the flow is stopped, the fluid does not fill the pipe or the pipe becomes empty.	Normal		
The reading error is observed.	• Entered piping specifications differ - from actual specifications	→ Difference of internal diameter of 1% causes 3% error.		
	• The pipe is old and scale is attached	 Enter properly. Enter scale as lining. 		
	• Insufficient linear pipe length (10D or more for upstream and 50D or more for downstream)	Find another mounting place. (Mount it upstream of an object causing interference.)		
		Make sure that there is no object that interferes with the flow within 30D upstream of the sensor. Make sure that no pumps, valves, or junction pipes nearby.		
		 Mount the sensor in various angle against the cross-sectional area of the pipe, and find a place where average value is obtained. 		
	• The pipe is not filled with fluid or sediment has accumulated within the pipe.	 The smaller the cross-sectional area, the larger the sedimentation. Move the sensor to a straight piping section. 		

6.2.4. Analog output error

State	Cause	Remedy
Specified current output cannot be obtained.	Improper range setting	 Set the range properly.
Even if the reading is 0, the output does not become 4 mA.	Analog output calibration deviation	 Perform analog output calibration.
The output is 0 mA.	Break of the cable	
The output exceeds 20 mA	"OVER FLOW" appears on the LCD.	 Range over Set the analog output range data once again.
The output becomes lower than 4 mA.	"UNDER FLOW" appears on the LCD.	 Reverse flow Set upper/lower stream properly.
The reading changes but the analog output stays the same.	The output load is 1 k Ω or more.	 • Set it to lower than 1 k Ω .
The reading and the analog output do not coincide.	Analog output calibration deviation	 Perform analog output calibration.
The output dies not change even if analog output adjustment is performed.	Hardware failure	 ◆ Contact us.

6.3. Checking received waveform

The unit has high-voltage part. Be sure to ask our service personnel for the work described below.

6.3.1. Method by oscilloscope

Open the cover, and connect an oscilloscope to the check pin on the printed board according to the following figure. The unit has high-voltage part. Be careful not to touch the parts other than those specified below.

Oscilloscope

6.3.2. Checking signal waveform (TRANSIT TIME)

Monitor signals and check the state of signals.

Window and signals

Point

- 1. Check that signals exist within the HIGH zone (window) of RWIN of CH2. If it is found to deviate, check piping parameters.
- 2. The amplitude of signals is about 2.4 Vpp.
 - (1) When it is smaller than 2.4 Vpp: Receive sensitivity is low. Take measures, referring to the section that "The reading does not change even if the flow rate changes" (error display on LCD) of "6.2.3. Measurement value error.
 - (2) When it is larger than 2.4 Vpp: The flow transmitter may be defective. Inform us of the details of the error.
- 3. Check that overall noise level is kept at 0.48 Vpp or lower. If the noise level is higher than that value, possible causes are as follows.

<cause></cause>	<check></check>
Failure of dedicated cable	Check continuity and insulation resistance.
Reverse polarity of terminals connected	Check connection.
Detector mounting failure (degradation of	Take measures by referring to the section that "The reading
S/N)	does not change even if the flow rate changes" (error display
Effect of noise from outside	on LCD) of "6.2.3. Measurement value error."
Mounting surface of the detector is insecure.	Remove the detector and remount it securely.
Imperfect wiring work	Check that the dedicated signal cable runs through metal
	conduit tube, and that it does not run through the tube together
	with power cables and power lines.
Contact failure	

Point

- 1. Startup is kept within 3 to 5 waves. If startup of signals is not good, piping parameters may not be entered properly, or the mounting status of the detector may not be good. Check piping parameters and the mounting status of the detector by referring to the section that "The reading does not change even if the flow rate changes" (error display on LCD) of 6.2.3. Measurement value error.
- 2. The peak (amplitude) does not fluctuate. If the peak fluctuates vertically, air bubbles may be mixed in. Take measures by referring to the part of "mixing in of air bubbles" in the section that "The reading does not change even if the flow rate changes" (error display on LCD).
- 3. The time base does not fluctuate. If the time base fluctuates, the signals may be affected by turbulent flow or drift current. Take measures by referring to the section that "The reading fluctuates abnormally even if the flow rate is kept constant" of 6.2.3. Measurement value error.

6.3.3. Checking demodulated waves (Pulse Doppler)

Monitor the waveforms and check the state of demodulated waves.

Window and demodulated wave

Point

- 1. The amplitude of demodulated wave (amplitude due to Doppler signals) within the HIGH zone (window) of RWN of CH2 is kept within 3.2 Vpp.
 - (1) When amplitude is small: Echo sensitivity is low. See the following figure.
 - (2) When amplitude is larger than 3.2 Vpp: The flow transmitter may be defective. Inform us of the details of the error.

If there are no reflectors such as air bubbles and particles within the measured fluid, sufficient amount of Doppler signals cannot be obtained, resulting in measurement error.

6.3.4. Measures against hardware failure

If hardware failure is detected by performing maintenance and inspection and troubleshooting in Chapters 5 and 6, inform us of the details of the failure and the messages in RAS information.

7. PC LOADER SOFTWARE

7.1. Copyright of this software

The copyright of this software belongs to Fuji Electric Systems Co., Ltd. No part of this software may be reproduced or transmitted in any form.

7.2. Outline

Using this software, you can set, read and display relevant graphs of the hybrid ultrasonic flow meter on your PC with ease. Your data can be easily edited with Microsoft Excel because you can save your data in CSV file format. Note: Microsoft Excel is the registered Trademark of the Microsoft Corporation in the United States.

7.3. PC to be used

7.3.1. Computer

AT compatible-type with CPU Pentium IV 1 GHz/Celeron 1 GHz or more installed, display resolution of 1024×768 , and use of small font recommended.

7.3.2. Memory capacity

128 MB or more (256 MB or more recommended) [52 MB memory or more for free space required]

7.3.3. Interface

RS232C port or RS485 port

7.3.4. OS

Windows 2000/XP

7.4. Installing of Software

(1) Insert the setup disk into the drive, and double-click "Duosonics_ENG.msi".

Fig. 4 <File Installation>

(2) Setting wizard will start up. Click the [Next] button. Click the [Cancel] button to cancel the installation.

Fig. 5 <Setup wizard screen>

(3) There is a query about selection of installation folder. Click the [Next] button to install the software in that folder. To specify a folder click the [Browse] button and select, or enter directly. To return to the previous screen, click the [Previous] button. Click the [Cancel] button to cancel the installation.

🔂 Duosonics_ENG	
Select Installation Folder	
The installer will install Duosonics_ENG in the following folder.	
To install in this folder, click "Next". To install to a different new or existing f below or click "Browse".	older, enter one
Eolder: C*Program Files*Duosonics_ENG*	<u>B</u> rowse
You can install the software on the following drives:	
Volume	Disk Siz
	12GE
D:	6487ME
•	▶
	<u>D</u> isk Cost
<u>C</u> ancel <u>Previous</u>	Next

Fig. 6 <Select installation folder screen>

(4) Screen is displayed to confirm installation. Click the [Next] button to execute the installation. Click the [Previous] button to return to the previous screen. Click the [Cancel] button to cancel the installation.

🛃 Duosonics_ENG			
Confirm Installation			
The installer is ready to install Duosoni	cs_ENG on your co	omputer.	
Click "Next" to start the installation.			
	Connect	Destina	
	Lancel		Next

Fig. 7 <Installation confirmation screen>

(5) Execution of Installation

🙀 Duosonics_ENG			
Installing Duosonics_E	NG		
Duosonics_ENG is being installed.			
Publishing product information			
		<u>P</u> revious	Next

Fig. 8 <Installing screen>

(6) The Installation Complete screen is displayed. Click the [Close] button to exit the installation screen.

Fig. 9 <Installation complete screen>

(7) After installation, the start menu and the application ("Duosonics_ENG") that has been installed in the disktop are created.

7.5. Startup Method

Start "Duosonics_ENG" from the start menu to start up the loader.

Fig. 10 <Start screen>

Information related to system name, measuring method, language and unit can be obtained by communicating with the flow transmitter.

If error occurs during communications, an error message is displayed to continue communication, select [Continue]. To stop communication, select [Cancel] on the menu screen that appears, check the setting for "Communication."

Communication Setting Version					_ 🗆 🗙
MEASURE	PULSE DOPPLER	TRANSIT TIME	MAINTENANCE	SYSTEM	
ESTABLISH	RANGE	TOTAL	STATUS	DISPLAY	End
		FSH06T	A TRANSIT TIME	ENGLISH METRIC	16:21

Fig. 11 <Menu screen>

Click the menu bar and each function button to execute a desired function.

7.5.1. Communications

Click "Communication" on the menu bar on the Menu screen, and the following setup screen appears.

💀 Set up for Serial Commu	inication
Port No.	COM1
Serial Method	RS232C -
Station No.	00
Speed	38400BPS -
Parity	NONE
Stop bit	1
Wait time	5000 [ms]
Retry	5 💌
Setting	Cancel

Fig. 12 <Serial communication setup screen>

Click the [Setting] button, and setting content is reflected; communications are executed with the flow transmitter and information related to system name, measurement method, language and unit is obtained. Click the [Cancel] button to invalidate the setting.

Item	Content
Port No.	Select either from COM1, COM2, COM3, COM4 and COM5.
Serial Method	Select either RS232C or RS485.
Station No.	Select one from 01 to 31. If communication method is RS232C, no selection is
	allowed (fixed with 00).
Speed	Select one from 9600BPS, 19200BPS and 38400BPS.
Parity	Select one from NONE, EVEN and ODD.
Stop Bit	Select either 1-bit or 2-bit.
Wait time	Specify in the range from 1 to 65535. (Unit: msec)
Retry	Specify in the range from 0 to 5.

7.5.2. Setting

Click "Setting" on the menu bar on the Menu screen, and either "Save setting" or "Read setting" can be selected.

7.5.2.1. Save setting

Click "Save setting", and the following screen appears. Specify saving location and file name, and setting content is saved by clicking [Save] button. Click the [Cancel] button not to save the setting. File format is ini file.

名前を付けて保存		<u>? ×</u>
保存する場所(1):	🗀 Loader_20041212 🔽 🖛 🖻 📸 🎫	
最近使ったファイル び デスクトップ マイドキュメント マイドキュメント マイニンビュータ	HybUFS.ini HybUFS.COpy.ini HybUFSxini Testni Testxini	
र्ग २७४७-७	774/11/25(0):	呆存(S)
	ファイルの種類①: Initial value(*.ini) ギ	ャンセル

Fig. 13 <Save setting: select save file screen>

* Note: Please be careful not to rewrite the setting file for loader (Hybrid USF.ini).

7.5.2.2. Read setting

Click "Read setting", and the following screen appears. Specify the location and the name of the file saved previously. Click the [Open] button to read the setting. Click the [Cancel] button not to read the setting. File format is ini file.

Fig. 14 <Read setting: select read file screen>

7.5.3. Version

Click "Version" on the menu bar on the Menu screen, and the following screen appears.

Fig. 15 <Version screen>

Click the [OK] button to close the screen.

7.6. Structure of Function

Functions with loader are as follows:

Function	Outline
ESTABLISH	Sets piping specifications, sensor type, etc.
RANGE	Sets range-related matters.
TOTAL	Sets total-related matters.
STATUS	Sets status output-related matters.
DISPLAY	Sets LCD display-related matters.
SYSTEM	Sets system related to language, etc.
MEASURE	Displays trend of flow rate, etc.
PULSE DOPPLER	Displays graphs on Pulse Doppler detailed setting and operation information and
	flow rate distribution, etc.
TRANSIT TIME	Displays graphs on detailed setting of transit time difference, operation
	information and received waveform, etc.
MAINTENANCE	Executes AO adjustment, AO and DO tests, etc.

7.7. Establish Setting

MEA	SURE	PULSE DOPPLE	R TRANSIT TIME	MAINTENANCE	SYSTEM	
ESTA	BLISH	RANGE	TOTAL	STATUS	DISPLAY	End
	PIPE					
Sotting	SENSOR	SPACING	51.90 [mm]	LINING MATERIAL	NO LINING	·
Setting			114.59 (mm)	LINING THICKNESS	0.0	1 (mm)
	PIPE MA		C -	Ining sound veloc	DITY 100	0 [m/s]
	WALL TH		5.50 [mm]	KIND OF FLUID	WATER	J
READ	PIPE SO		1000 [m/s]	FLUID SOUND VELOC	ITY 100	0 [m/s]
				VISCOSITY	1.003	8 (E-6m2
	SYSTEM			SENSOR		
Save	MEASUR			SENSOR CALIBRATIO	N	1
	SENSOR	MOUNT ZME		LINE1F(METAL)	100.00	[%]
Check			H V	✓ LINE2F(METAL)	100.00	[%]
ON/OFF				LINE2R(METAL)	100.00	[%]
	TO AU DEFI		•	LINE1R(PLASTIC)	99.77	[%]
	IM TRANSM	IT VULTAGE 100	[Abb]	LINE2F(PLASTIC)	100.02	[%]
	SENSOR			LINE2R(PLASTIC)	100.00	[%]
	SENSOR		ESW12	LINE1P	100.00	[%]

Click the "ESTABLISH" button on the Menu screen, and the following screen appears.

Fig. 16 <Establish setting screen>

To select an item to be set or read, set the relevant check box to ON (\square). Not to select (or to reset the selection), set the relevant check box to OFF (\square). If "Other" is selected as pipe material, pipe sound velocity becomes valid. If "Other" is selected as fluid type, fluid sound velocity and dynamic viscous coefficient become valid.

[Setting]	Sends the setting of the selected item (check box set to ON (☑)), reflecting the
	response value on the setting.
[READ]	Reads the setting of the selected item (check box set to ON (☑)), reflecting the
	response value on the setting.
[Save]	Reflects the setting sent by pressing the [Setting] button on the flow transmitter.
[Check ON/OFF]	Set the check box to ON to select all the items (to set all the check boxes to ON
	(\square)). Set the check box to OFF (\square) to release the selection of all the items (to set all the check boxes to OFF. (\square))

Table 3 < Piping Specifications>

Item	Content
OUTER DIAMETER	Enter in the range from 10.00 to 6200.00 mm.
PIPE MATERIAL	Select from carbon steel, stainless steel, PVC, Copper, Cast iron, aluminum,
	FRP, ductile iron, peek, PVDF, acrylic and others.
PIPE SOUND VELOCITY	Enter in the range from 1000 to 3700 m/s (if piping material is "Others".).
WALL THICKNESS	Enter in the range from 0.10 to 100.00 mm.
LINING MATERIAL	Select from no lining, tar epoxy, mortar, rubber, Teflon, pyrex, glass, PVC and
	others.
LINING SOUND	Enter in the range from 1000 to 3700 m/s (if lining material is "Others".).
VELOCITY	
LINING THICKNESS	Enter in the range from 0.01 to 100.00 mm (if lining material is other than "No
	Lining".).
KIND OF FLUID	Select for water, seawater, dist. water, ammonia, alcohol, benzene, bromide,
	ethanol, glycol, kerosene, milk, methanol, toluol, lube oil, fuel oil, petrol and
	others.
FLUID S.V.	Enter in the range from 500 to 2500 m/s (if fluid type is "Others").
VISCOSITY	Enter in the range from 0.0010 to 999.9999 $\times 10^{-6}$ m ² /s (if fluid type is
	"Others").
SENSOR SPACING	[Read] only is valid.

Table 4 <System>

Item	Content
MEASURE METHOD	Select from hybrid and transit time.
SENSOR MOUNT	Select from Z method and V method.
MEASURE MODE	Select from 1 path and 2 paths.
AO DEFINITION	Select from average, line 1 and line 2. Line 1 only when 1 path is selected as
	measurement mode.
TRANSMIT VOLTAGE	Select from 20, 40, 80 and 160Vpp.

Table 5 <Sensor>

Item		Content
SENSOR TYPE	Select from FLW11, FL	W41, FLW12, FLD12, FLD22, FLW32, FLW51,
	FSW12, FSW21, FSW4	0 and FSW50.
SENSOR CALIB.	LINE 1F (METAL)	Enter in the range from 0.00 to 300.00.
(SENSOR CONSTANT)	LINE 1R (METAL)	Enter in the range from 0.00 to 300.00.
	LINE 2F (METAL)	Enter in the range from 0.00 to 300.00.
	LINE 2R (METAL)	Enter in the range from 0.00 to 300.00.
	LINE 1F (PLASTIC)	Enter in the range from 0.00 to 300.00.
	LINE 1R (PLASTIC)	Enter in the range from 0.00 to 300.00.
	LINE 2F (PLASTIC)	Enter in the range from 0.00 to 300.00.
	LINE 2F (PLASTIC)	Enter in the range from 0.00 to 300.00.
	LINE 1P	Enter in the range from 0.00 to 300.00.
	LINE 2P	Enter in the range from 0.00 to 300.00.

7.8. Range Setting

ESTABLISH RANGE TOTAL STATUS DISPLAY End Setting RANGE UNIT m/s I OUTPUT LIMIT HIGH 120 (%) RANGE TYPE SINGLE I OUTPUT LIMIT LOW -10 (%) FULL SCALE 6.56 (m/s) I OUTPUT BURNOUT NOT USED READ FULL SCALE 1 0.42 (m/s) I RATE LIMIT 0.00 (m/s) I FULL SCALE 2 0.42 (m/s) I RATE LIMIT 0.00 (m/s) I FULL SCALE 2 0.42 (m/s) I RATE LIMIT 0.00 (m/s) I FULL SCALE 2 0.42 (m/s) I RATE LIMIT 0.00 (m/s) I FULL SCALE 2 0.42 (m/s) I RATE LIMIT 0.00 (m/s) I FULL SCALE 2 0.42 (m/s) I RATE LIMIT 0.00 (m/s) I FLOW SWITCH CUT OFF 0.00 (m/s) I I I FLOW SW HIGH 0.00 (m/s) I SPAN 100.00 (m/s) I FLOW SW LOW 0.00 (m/s) I SPAN 100.00 (m/s)	MEA	SURE PULS	E DOPPLER	TRANSIT TIM		MAINTENANCE	SYSTEM	
RANGE Current limit 120 [%] RANGE UNIT m/s I OUTPUT LIMIT HIGH 120 [%] RANGE TYPE SINGLE I OUTPUT LIMIT LOW -10 [%] FULL SCALE 6.56 [m/s] I OUTPUT BURNOUT NOT USED READ FULL SCALE 1 0.42 [m/s] I RATE LIMIT 0.00 [m/s] I FULL SCALE 2 0.42 [m/s] I RATE LIMIT 0.00 [m/s] I FULL SCALE 2 0.42 [m/s] I RATE LIMIT 0.00 [m/s] I FULL SCALE 2 0.42 [m/s] I RATE LIMIT 0.00 [m/s] I FULL SCALE 2 0.42 [m/s] I RATE LIMIT 0.00 [m/s] I HYSTERISIS 0.00 [m/s] I RATE LIMIT TIMER 0 [sec] Save DAMPING 0.00 [m/s] I CUT OFF 0.00 [m/s] FLOW SWITCH FLOW SW HIGH 0.00 [m/s] I ZERO 0.00 [m/s] FLOW SW LOW 0.00 [m/s] I SPAN 100.00 [ESTA	ESTABLISH RANGE TOTAL STATUS DISPLAY End						
Setting F RANGE UNIT m/s OUTPUT LIMIT HIGH RANGE TYPE SINGLE OUTPUT LIMIT HIGH 120 [%] F FULL SCALE 6.56 [m/s] OUTPUT BURNOUT NOT USED READ F FULL SCALE 0.42 [m/s] BURNOUT TIMER 0 [sec] F FULL SCALE 0.42 [m/s] RATE LIMIT 0.00 [m/s] F FULL SCALE 0.42 [m/s] RATE LIMIT 0.00 [m/s] F FULL SCALE 0.00 [m/s] RATE LIMIT 0.00 [m/s] F HYSTERISS 0.00 [m/s] CUT OFF 0.00 [m/s] FLOW SW HIGH 0.00 [m/s] SPAN <th></th> <th>RANGE</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		RANGE						
Image: Range type SINGLE Image: OUTPUT LIMIT LOW -10 [%] Image: Read bit is a constrained of the constrated of the constrained of the constrained of the constrained of t	Sotting	RANGE UNIT	m/s	Y		PUT LIMIT HIGH	120	[%]
Point Fould Scale 6.56 m/s Four Burnout Not used READ Four Scale 0.42 m/s Burnout Timer 0 (sec) Function Four Scale 0.42 m/s RATE LIMIT 0.00 m/s Save DAMPING 0.0 (sec) CUT OFF 0.00 (m/s) FLOW SWITCH Calibration Calibration Calibration FLOW SW HIGH 0.00 (m/s) Save Flow SW LOW 0.00 (m/s) If FLOW SW LOW 0.00 (m/s) Save Save Flow SW LOW 0.00 (m/s)	Setting	RANGE TYPE	SINGLE	*	D OUT	PUT LIMIT LOW	-10	[%]
READ I FULL SCALE 1 0.42 (m/s) I BURNOUT TIMER 0 (sec) I FULL SCALE 2 0.42 (m/s) I RATE LIMIT 0.00 (m/s) I HYSTERISIS 0.00 (%) I RATE LIMIT TIMER 0 (sec) Save DAMPING 0.00 (sec) I CUT OFF 0.00 (m/s) FLOW SWITCH FLOW SW HIGH 0.00 (m/s) I ZERO 0.00 (m/s) FLOW SW LOW 0.00 (m/s) I SPAN 100.00 (%) I HYSTERISIS 0 (%) I O (m/s) I SPAN		FULL SCALE	6.56) [m/s]		PUT BURNOUT	NOT USED	-
READ FULL SCALE 2 0.42 [m/s] RATE LIMIT 0.00 [m/s] HYSTERISIS 0.00 [%] RATE LIMIT TIMER 0 [sec] DAMPING 0.0 [sec] CUT OFF 0.00 [m/s] DAMPING 0.0 [sec] CUT OFF 0.00 [m/s] FLOW SWITCH CALIBRATION ZERO 0.00 [m/s] FLOW SW LOW 0.00 [m/s] SPAN 100.00 [m/s] HYSTERISIS 0 [%] SPAN 100.00 [m/s]		FULL SCALE 1	0.42	2 [m/s]	E BUR	NOUT TIMER	0	[sec]
Image: Hysterisis 0.00 (%) Image: Rate Limit Timer 0 (sec) DAMPING CUT OFF CUT OFF 0.00 (m/s) FLOW SWITCH CALIBRATION Image: Calibration of the second of the secon	READ	FULL SCALE 2	0.42	[m/s]	RAT	'E LIMIT	0.00	[m/s]
Save DAMPING CUT OFF □ DAMPING □.0.0 [sec] □ CUT OFF □ CUT		HYSTERISIS	0.00	[%]	E RAT	E LIMIT TIMER	0	[sec]
Save F DAMPING O.0 [sec] CUT OFF O.00 [m/s] FLOW SWITCH FLOW SWITCH CALIBRATION ZERO 0.00 [m/s] FLOW SW HIGH 0.00 [m/s] ZERO 0.00 [m/s] SPAN 100.00 [m/s] HYSTERISIS 0 [%] 0 [%] 100.00 [%] 100.00 [%] 100.00 [%]		DAMPING				FF		
FLOW SWITCH CALIBRATION Check □ FLOW SW HIGH 0.00 [m/s] ZERO 0.00 [m/s] FLOW SW LOW 0.00 [m/s] SPAN 100.00 [%] HYSTERISIS 0 [%] 100.00 [%]	Save		0.0	[sec]	CUT	OFF	0.00	[m/s]
Check INVOFF F FLOW SW HIGH 0.00 [m/s] I ZERO 0.00 [m/s] IF FLOW SW LOW 0.00 [m/s] I SPAN 100.00 [%] IF HYSTERISIS 0 [%] 100.00 [%] 100.00 [%]		FLOW SWITCH			CALIB	RATION		
ONOFF F FLOW SW LOW 0.00 [m/s] F SPAN 100.00 [%] F HYSTERISIS 0 [%] 100.00 [%] <	Check	FLOW SW HIGH	0.00	[m/s]	□ ZER	0	0.00	[m/s]
	ON/OFF		0.00	[m/s]	E SPA	٨N	100.00	[%]
		HYSTERISIS		[%]				

Click the "RANGE" button on the Menu screen, and the following screen appears.

Fig. 17 <Range setting screen>

To select an item to be set or read, set the relevant check box to ON (\square). Not to select (or to reset the selection), set the relevant check box to OFF (\square).

• Type: in case of single range;	
Display Valid	Full scale
Display Invalid	Full scale 1, full scale 2 and histeresis
• Type: in case of automatic 2-ra	ange, forward and reverse range, forward and reverse automatic 2-range
Display Valid	Full scale 1, full scale 2 and histeresis
Display Invalid	Full scale
[Setting]	Sends the setting of the selected item (check box set to ON (\square)), reflecting the response value on the setting.
[READ]	Reads the setting of the selected item (check box set to ON (\square)), reflecting the response value on the setting.
[Save]	Reflects the setting sent by pressing the [Setting] button on the flowmeter flow transmitter.
[Check ON/OFF]	Set the check box to ON to select all the items (to set all the check boxes to ON (\square)). Set the check box to OFF (\square) to release the selection of all the items (to set all the check boxes to OFF. (\square))

Table 6 <Range Setting>

Item	Content
RANGE UNIT	Select from m/s, L/s, L/min, L/h, L/d, kL/d, ML/d, m ³ /s, m ³ /min, m ³ /h, m ³ /d,
	km ³ /d, Mm ³ /d, BBL/s, BBL/min, BBL/h, BBL/d, kBBL/d, MBBL/d
	[ft/s, ft ³ /s, ft ³ /h, ft ³ /d, kft/d, Mft ³ /d, gal/s, gal/min, gal/h, gal/d, kgal/d, Mgal/d,
	BBL/s, BBL/min, BBL/h, BBL/d, kBBL/d, MBBL/d]
	* Of which []: unit is in case of inch system.
RANGE TYPE	Select from SINGLE, AUTO 2, BI-DIR, BI-DIR AUTO 2.
FULL SCALE	Enter 0, ± 0.3 to 32 m/s fitting value (comply with range unit).
FULL SCALE 1	Enter 0, ± 0.3 to 32 m/s fitting value (comply with range unit).
FULL SCALE 2	Enter 0, ± 0.3 to 32 m/s fitting value (comply with range unit).
HYSTERISIS	Enter in the range of 0 to 20%.
OUTPUT LIMIT LOW	Enter in the range of -20 to 0%.
OUTPUT LIMIT HIGH	Enter in the range of 100 to 120%.
OUTPUT BURNOUT	Select from NOT USED, HOLD, UPPER, LOWER, ZERO.
BURNOUT TIMER	Enter in the range of 0 to 900sec.
RATE LIMIT	Enter 0 to 5 m/s fitting value (comply with range unit).
RATE LIMIT TIMER	Enter in the range of 0 to 900 sec.

Table 7 < Damping>

Item	Content
DAMPING	Enter in the range of 0.0 to 100.0 sec.

Table 8 <Low Flow Rate Cut>

Item	Content
CUT OFF	Enter 0 to 5 m/s fitting value (comply with range unit).

Table 9 < High and Low Limit Switch>

Item	Content
FLOW SW LOW	Enter 0 to 32 m/s fitting value (comply with range unit).
FLOW SW HIGH	Enter 0 to 32 m/s fitting value (comply with range unit).
HYSTERESIS	Enter in the range of 0 to 20%.

Table 10 <Output Correction>

Item	Content
ZERO	Enter 0 to 5 m/s fitting value (comply with range unit).
SPAN	Enter in the range of 0 to 200%.

7.9. Total Setting

Communication	Setting Version	PULSE DOPPLER	TRANSIT TIME	MAINTENANCE	SYSTEM	5
ESTA	BLISH	RANGE	TOTAL	STATUS	DISPLAY	End
Setting			Y			
READ	TOTAL R F:TOTAL F:TOTAL R:TOTAL R:TOTAL	ATE	(mL) (mL) (mL)	BURNOUT BURNOUT TIM PULSE WIDTH PULSE WIDTH		c] [msec] [msec]
Save	E R:TOTAL	. sw	[mL]			
Check ON/OFF						
			- Follop			17.00

Click the "TOTAL" button on the Menu screen, and the following screen appears.

Fig. 18 <Total setting screen>

To select an item to be set or read, set the relevant check box to ON (\square). Not to select (or to reset the selection), set the relevant check box to OFF (\square).

[Setting]	.Sends the setting of the selected item (check box set to ON (☑)), reflecting the
	response value on the setting. Note that only when "STOP" mode is selected, the
	setting of other items is reflected.
[READ]	.Reads the setting of the selected item (check box set to ON (☑)), reflecting the
	response value together with the unit on the setting.
[Save]	Reflects the setting sent by pressing the [Setting] button on the flowmeter flow
	transmitter.
[Check ON/OFF]	. Set the check box to ON (\square) to select all the items (to set all the check boxes to
	ON (\square)). Set the check box to OFF (\square) to release the selection of all the items
	(to set all the check boxes to OFF (\Box)).

Table 11 < Total Setting>

Item	Content
TOTAL MODE	Select from TOTAL STOP, TOTAL RUN, TOTAL RESET.
TOTAL UNIT	Select from mL, L, m ³ , km ³ , Mm ³ , mBBL, BBL and kBBL,
	[ft ³ , kft ³ , Mft ³ , kgal, gal, mBBL, BBL, kBBL and ACRf]
	* Of which []: unit is in case of inch system.
TOTAL RATE	Enter in the range of 0 to 999999.999.
F: TOTAL PRESET	Enter in the range of 0 to 9999999999999.
F: TOTAL SW	Enter in the range of 0 to 9999999999999.
R: TOTAL PRESET	Enter in the range of 0 to 9999999999999.
R: TOTAL SW	Enter in the range of 0 to 9999999999999.
OUTPUT BURNOUT	Select from NOT USED and HOLD.
BURNOUT TIMER	Enter in the range of 0 to 900 sec.
PULSE WIDTH 1	Select from 50 msec, 100 msec and 200msec.
PULSE WIDTH 2	Select from 0.5 msec, 1 msec, 2 msec, 5 msec, 10 msec, 20 msec, 50 msec,
	100 msec, 200 msec.

Note) When unit is changed, each unit indication of constant, F: total preset, F: total switch, R: total preset, R: total switch are changed if [Read] is executed.
Note) When setting is changed, it should be executed with the mode stop.

7.10. Status Output Setting

	SURE	PULS	E DOPPLER	TRANSIT TIME	MAINTEN	ANCE	SYSTEM	
ESTA	BLISH	F	RANGE	TOTAL	STATU	s	DISPLAY	End
	STATUS							
Setting		T DO.1	NOTUSED		MODE DO.1			
	C OUTPU	T D0.2	NOT USED	<u> </u>	MODE DO.2	NORMAL		
	C OUTPU	TDO.3	NOT USED	_	MODE DO.3	NORMAL	*	
READ								
Save								
Save								
Save								
Save								
Save								
Save								

Click the "STATUS" button on the Menu screen, and the following screen appears.

Fig. 19 <Status output setting screen>

To select an item to be set or read, set the relevant check box to ON (\square). Not to select (or to reset the selection), set the relevant check box to OFF (\square).

[Setting]	. Sends the setting of the selected item (check box set to ON $(\boldsymbol{\boxtimes})$), reflecting the
	response value on the setting.
[READ]	. Reads the setting of the selected item (check box set to ON (☑)), reflecting the
	response value on the setting.
[Save]	.Reflects the setting sent by pressing the [Setting] button on the flowmeter flow
	transmitter.
[Check ON/OFF]	. Set the check box to ON to select all the items (to set all the check boxes to ON
	(\square)). Set the check box to OFF (\square) to release the selection of all the items (to
	set all the check boxes to OFF. (\Box))

Item	Content
OUTPUT DO 1	Select from NOT USED, SIGNAL ERROR, F: TOTAL PULSE, R: TOTAL PULSE, F: TOTAL SW, R: TOTAL SW, F: TOTAL OVERFLOW, R: TOTAL OVERFLOW, FLOW SW HIGH, FLOW SW LOW, FULL SCALE 2, AO RANGE OVER, PULSE RANGE OVER, R: FLOW DIRECTION and DEVICE ERROR.
OUTPUT DO 2	Same as above
OUTPUT DO 3	Same as above
MODE DO 1	Select either NORMAL or REVERSE.
MODE DO 2	Same as above
MODE DO 3	Same as above

7.11. Display Setting

	ASURE	PULSE	DOPPLER	TRANSIT TIME		MAINTEN	ANCE	SYS	ТЕМ	
EST	ABLISH	R	ANGE	TOTAL		STAT	s	DISF	PLAY	En
Setting		1 AY KIND	FLOW RATE	*	□ F	Flow Unit	L/min	Y		
		2 AY KIND	VELOCITY	Y		Flow Unit	m3/s	7		
READ										
Save										
Save										
Save										

Click the "DISPLAY" button on the Menu screen, and the following screen appears.

Fig. 20 <Display setting screen>

To select an item to be set or read, set the relevant check box to ON (\square). Not to select (or to reset the selection), set the relevant check box to OFF (\square). If "Flow rate" is select in the selection items, flow rate unit becomes valid.

[Setting]	Sends the setting of the selected item (check box set to ON (☑)), reflecting the
	response value on the setting.
[READ]	Reads the setting of the selected item (check box set to ON (Z)), reflecting the
	response value on the setting.
[Save]	
	transmitter.
[Check ON/OFF]	Set the check box to ON to select all the items (to set all the check boxes to ON
	(\square)). Set the check box to OFF (\square) to release the selection of all the items (to
	set all the check boxes to OFF. (\Box)

Item		Content
DISPLAY 1	DISPLAY KIND	Select from VELOCITY, FLOW RATE, TOTAL FORWARD, TOTAL
		REVERSE, F: TOTAL PULSE, R: TOTAL PULSE, FLOW RATE (%).
	Flow Unit	Select from L/s, L/min, L/h, L/d, kL/d, ML/d, m ³ /s, m ³ /min, m ³ /h, m ³ /d,
		km ³ /d, Mm ³ /d, BBL/min, BBL/h, BBL/d, kBBL/d, MBBL/d
		[ft/s, ft ³ /s, ft ³ /min, ft ³ /h, ft ³ /d, kft ³ /d Mft ³ /d, gal/s, gal/min, gal/h, gal/d,
		kgal/d, Mgal/d, BBL/s, BBL/h, BBL/d, kBBL/d, MBBL/d]
		* Of which []: unit is in case of inch system.
DISPLAY 2	DISPLAY KIND	Same as the selection of DISPLAY 1
	Flow Unit	Same as the unit of DISPLAY 1

7.12. System Setting

MEASURE	PULSE DOPPLER	TRANSIT TIME	MAINTENANCE	SYSTEM	
ESTABLISH	RANGE	TOTAL	STATUS	DISPLAY	End
Setting	ISH	METRIC	FSH10PA		
	ON INFO.		MENT BOARD		
READ	FSH1MMI10P	FSH1ME	S08T8005		
Save					
Save					
Save Check ON/OFF					
Save					
Save					

Click the "SYSTEM" button on the Menu screen, and the following screen appears.

Fig. 21 <System setting screen>

To select an item to be set or read, set the relevant check box to ON (\square). Not to select (or to reset the selection), set the relevant check box to OFF (\square). However, system name and version information can only be read. * When changing unit, restart the loader to reflect the unit change.

[Setting]	
	response value on the setting.
[READ]	Reads the setting of the selected item (check box set to ON (2)), reflecting the
	response value on the setting.
[Save]	
	transmitter.
[Check ON/OFF]	
	(\square)). Set the check box to OFF (\square) to release the selection of all the items (to
	set all the check boxes to OFF. (\Box))

Item		Content	
LANGUAGE		Language is available in JAPANESE, ENGLISH, GERMAN,	
		FRENCH and SPANISH.	
UNIT SYSTEM		Select from METRIC and ENGLISH.	
SYSTEM NAME		Read only	
VERSION	CONTROL BOARD	Read only	
INFO.	MEASUREMENT BOARD	Read only	

Table 14 <System Setting>

7.13. Measurement

Click the "MEASURE" button on the Menu screen, and the following screen appears.

Fig. 22 <Measure screen>

Select one from instantaneous value, total pulse, total value, or flow rate % first. Next, in case of moment value, select either flow rate or flow velocity. In case of total pulse, select either normal direction or reverse direction. In case of total value, select either normal direction or reverse direction.

In case of trend, the read measurement value and RAS columns are updated in specified cycles. Also, it is displayed in trend (X axial displays collection time. The oldest is deleted and time is shifted to make the latest value to be seen when specified points are reached. The vertical axial it displays with Y scale specified. The grid line represents Pulse Doppler in blue and transit time difference in green.

[Start]	Starts measuring.
[Stop]	Stops measuring.
[Save as CSV]	Saves the measurement result in a file in CSV format. Click the button, and you are
	prompted to enter the name of a file to which the data is to be saved. Specify the
	destination to save and enter the file name, and a CSV file is created.

Item		Content
Moment Value		Select either FLOW RATE or VELOCITY.
TOTAL PULSE		Select either FORWARD or REVERSE.
TOTAL		Select either FORWARD or REVERSE.
FLOW RATE %		-
SCALE	Y: Scale	Enter Max and Min.
	X: Scale	Enter Cycle and Point.

Table 15 < Measurement and Detailed Setting>

7.14. Pulse Doppler Measurement

Click the "PULSE DOPPLER" button on the Menu screen, and the following screen appears. Click detailed setting tab, flow speed distribution tab and/or operation information tab when necessary.

* The detailed setting tab and flow speed distribution tab are optional functions.

7.14.1. Detailed setting (optional function)

- Do not change the setting by yourself. Otherwise measurement may be disabled.
- Make the detailed setting only when a problem should arise in flow rate measurement with factory default settings. The setting need not be made in other cases.

Click "Detailed setting", and the following screen appears.

PULSE DOPPLER	×			
[Velocity Profile		
	WEDGE SOUND VELOC	CITY	LINING SOUND VELOCITY	
Setting	© AUTO O MANUAL	²⁴⁸³ [m/s]	© AUTO C MANUAL 10	⁰⁰ [m/s]
		(
	© AUTO O MANUAL [²³⁰⁷ [m/s]	© AUTO C MANUAL 14	⁸⁵ [m/s]
READ	TRANSMIT FREQUENC	Υ	TRANSMIT PULSE No.	
	© AUTO O MANUAL	0.500 [MHz]	4 [PULSE]	
	SAMPLING FREQUENC	Υ		
Save	© AUTO O MANUAL [147 <u>54</u> [kHz]	F RADIUS	
	© AUTO O MANUAL	10 - 1.25 [us]	POSITIVE	
		ICY	GAIN	
	💿 AUTO 🗢 MANUAL 📗	³²⁸⁹ [Hz]	O AUTO O MANUAL	
			START GAIN 4	
	© AUTO O MANUAL □	128	END GAIN 6	
		256		
	Judge			
	LINE 1-F LINE 1-	R 🗆 LINE2-F 🛛	LINE2-R	
	SUCCESS RATE	70 [%] 🗆 POWER		1
2005/05/31 16	:34:54 Reading of a detailed setup	was comple FSH10PA	PULSE DOPPLER ENGLISH METRIC	16:35

Fig. 23 <Detail setting screen>

To select an item to be set or read, set the relevant check box to ON (\square) . Not to select (or to reset the selection), set the relevant check box to OFF (\square) . As to judgment, it can obtain with setting success ratio set, power and deviation while setting ON with check box of setting lateral-line. However, when read it, disregard selection of multiple lateral-lines.

[Setting]	. Sends the setting of the selected item (check box set to ON (☑)), reflecting the
	response value on the setting.
[READ]	. Reads the setting of the selected item (check box set to ON (\square)), reflecting the
	response value on the setting.
[Save]	.Reflects the setting sent by pressing the [Setting] button on the flowmeter flow
	transmitter.
[Check ON/OFF]	. Set the check box to ON to select all the items (to set all the check boxes to ON
	(\square)). Set the check box to OFF (\square) to release the selection of all the items (to
	set all the check boxes to OFF. (\Box))

Table 16 <Pulse and Doppler Measurement Detailed Setting>

Item	Content
WEDGE SOUND	With selection of AUTO/MANUAL, in case of MANUAL, input right side
VELOCITY	column in the range of numeric 1000 to 3700 m/s.
PIPE SOUND VELOCITY	With selection of AUTO/MANUAL, in case of MANUAL, input right side
	column in the range of numeric 1000 to 3700 m/s.
LINING SOUND	With selection of AUTO/MANUAL, in case of MANUAL, input right side
VELOCITY	column in the range of numeric 1000 to 3700 m/s.
FLUID SOUND	With selection of AUTO/MANUAL, in case of MANUAL, input right side
VELOCITY	column in the range of numeric 500 to 2500 m/s.
TRANSMIT	With selection of AUTO/MANUAL, in case of MANUAL, input right side
FREQUENCY	column in the range of numeric 0.1 to 5 MHz.
SAMPLING	With selection of AUTO/MANUAL, in case of MANUAL, select numeric at right
FREQUENCY	side column.
RECEPTIVE WAIT TIME	With selection of AUTO/MANUAL, in case of MANUAL, select numeric at right
	side column.
REPETITION	With selection of AUTO/MANUAL, in case of MANUAL, input right side
FREQUENCY	column in the range of numeric 100 to 8000 Hz.
CHANNEL	With selection of AUTO/MANUAL, in case of MANUAL, select from numeric
	16, 32, 48, 64, 80, 96, 112 and 128 at right side column.
REFRENCE COUNT	Select numeric.
TRANSMIT PULSE NO.	Select from 0, 1, 2, 4, 8, 16, 32 and 64.
MEASUREMENT	Select from F RADIUS, N RADIUS and DIAMETER.
RANGE	
PHASE ANGLE SHIFT	Select from NORMAL 1, NORMAL 2, POSITIVE and NEGATIVE.
GAIN	With selection of AUTO/MANUAL, in case of MANUAL, select numeric 0 to 18
	in each column of START GAIN/END GAIN.

Table 17 <Pulse and Doppler Measurement Judgment Setting>

Item	Content
SUCCESS RATIO	Enter in the range of 0 to 100%.
POWER	Enter in the range of 0.00 to 100.00.
DEVIATION	Enter in the range of 0.00 to 1.00.

7.14.2. Flow velocity profile (optional function)

Click "Flow Rate Distribution", and the following screen appears.

Fig. 24 <Flow Rate Distribution screen>

Select either Moment or Moving Average first and then enter the range for reading from 1 to 60 sec. If Movingaverage is selected, set the number of times. Then, select either Line 1 or Line 2. The line displays flow velocity distribution measured by upper flow side sensor in green, and flow speed distribution measured by down flow side sensor in red.

Collection	
Moment	Displays data by each read
Moving Average	Displays data in moving average with the number of times set by channel in each read
	data.
Moment	
Flow velocity/flow rate.	Displays flow velocity or flow rate with each read
RAS	Displaying RAS with each read
Demonstration function	Displays read flow velocity distribution with [Save As CSV] file
	Displays repeatedly by setting check box to $ON(\square)$
[Start]	Starts reading in indicated cycle.
[Stop]	Stops reading.
[Save As CSV]	Saves measurement results in file with CSV format. Click the button, and you are

prompted to enter the file name to which the data is to be saved.

Fig. 25 < Flow Velocity Distribution screen >

7.14.3. Operation Information

Click "Operation Information", and the following screen appears.

* Execute this operation with Pulse doppler setting in the measurement method.

PULSE DOPPLE	R			
	SETTING	Velocity Profil	e CON	DITION
	C LINE1		O LINE2	
	Item of Collection	_	Item of Collection	▲
	WEDGE SOUND VELOCITY[m/s]	2520 —	WEDGE SOUND VELOCITY[m/s]	2520
	WEDGE ANGLE[deg]	42	WEDGE ANGLE[deg]	42
	PIPE SOUND VELOCITY[m/s]	3085	PIPE SOUND VELOCITY[m/s]	3085
	ANGLE IN PIPE [deg]	55	ANGLE IN PIPE [deg]	55
READ	LINING SOUND VELOCITY[m/s]	0	LINING SOUND VELOCITY[m/s]	0
	ANGLE IN LINING [deg]	0	ANGLE IN LINING [deg]	0
	FLUID SOUND VELOCITY[m/s]	1416	FLUID SOUND VELOCITY[m/s]	1416
	WEDGE TEMPERATURE[degC]	2.8	WEDGE TEMPERATURE[degC]	2.8
	ANGLE IN FLUID[deg]	22	ANGLE IN FLUID[deg]	22
Save As	TRANSMIT FREQUENCY[MHz]	1.59	TRANSMIT FREQUENCY[MHz]	1.59
csv	SAMPLING FREQUENCY[KHz]	2666.6	SAMPLING FREQUENCY[KHz]	2666.6
	RECEPTIVE WAIT TIME[us]	55.37	RECEPTIVE WAIT TIME[us]	55.37
	REPETITION FREQUENCY[Hz]	1656	REPETITION FREQUENCY[Hz]	1656
	TRANSMIT PULSE No.	4	TRANSMIT PULSE No.	4
	REFERENCE COUNT	256	REFERENCE COUNT	256
	No. OF CHANNELS	128	No. OF CHANNELS	128
	MEASURE RANGE	F RADIUS	MEASURE RANGE	F RADIUS
	PHASE ANGLE SHIFT	FORWARD	PHASE ANGLE SHIFT	FORWARD
	START GAIN	8	START GAIN	8
	END GAIN	8	END GAIN	8
	START DIST.[mm]	22.517	START DIST.[mm]	22.517
	CHANNEL WIDTH[mm]	0.246	CHANNEL WIDTH[mm]	0.246
	START CHANNEL	6	START CHANNEL	6
	END CHANNEL	104	END CHANNEL	104
	VELOCITY COEFF.	0.31	VELOCITY COEFF.	0.31
	MEASURE MODE1-F:POWER	3.41	MEASURE MODE2-F:POWER	0
	MEASURE MODEL FORVIATION	n a 🗾	MEASURE MODE? E'DEVIATION	
2005/05/31 1	6:36:07 CONDITION(MEASURE MODE2)Re	adind FSH10PA	PULSE DOPPLER ENGLISH M	ETRIC 16:36

Fig. 26 < Operation Information screen>

Select either Line 1 or Line 2 first.

[READ] Reads operation information in batch.
[Save As CSV]...... Saves the measurement result in a CSV format file. Click the button, and you are prompted to enter the name of a file to which the data is to be saved. Specify the destination to save and enter the file name, and a CSV file is created.

Table 18 < Operation Information>

	Y becomes 1 with Line 1 and 2 with Line 2.
Item	Content
WEDGE SOUND	m/s [ft/s]
VELOCITY	
WEDGE ANGLE	0
PIPE SOUND VELOCITY	m/s [ft/s]
ANGLE IN PIPE	0
LINING SOUND	m/s [ft/s]
VELOCITY	
ANGLE IN LINING	0
FLUID SOUND VELOCITY	m/s [ft/s]
WEDGE TEMPERATURE	°C [°F] displaying with "-" in case of measurement abnormal
ANGLE IN FLUID	0
TRANSMIT FREQUENCY	MHz
SAMPLING FREQUENCY	kHz
RECEPTIVE WAIT TIME	μs
REPETITION FREQUENCY	Hz
TRANSMIT PULSE No.	
REFERENCE COUNT	
No. OF CHANNELS	
MEASURE RANGE	F RADIUS, N RADIUS, DIAMETER
PHASE ANGLE SHIFT	NORMAL1, POSITIVE, NEGATIVE
START GAIN	
END GAIN	
START DIST.	mm [inch]
CAHNNEL WIDTH	mm [inch]
START CHANNEL	0 to 128
END CHANNEL	0 to 128
VEROCITY COEFF.	
MEASURE	$[10^4]$
MODE1-F: POWER	
MEASURE	
MODE1-F: DEVIATION	
MEASURE	[%]
MODE1-F: SUCCESS RATE	
MEASURE	$[10^4]$
MODEI-R: POWER	
MEASURE	
MODEL-R: DEVIATION	ro/1
MEASUKE	[٧]
MODET-R: SUCCESS RATE	

"Y" becomes "1" with Line 1 and "2" with Line 2.

7.15. Transit Time Difference Measurement

Click the [TRANSIT TIME] button on the Menu screen, and the following screen appears. Click detailed setting tab, receiving waveform tab and operation information tab when necessary.

* Detailed Setting tab and Receiving Waveform tab are optional functions.

7.15.1. Detailed Setting (optional function)

- Do not change the setting by yourself. Otherwise measurement may be disabled.
 Make the detailed setting only when a problem should arise in flow rate measurement with factory default settings. The setting need not be made in other cases.
- Click "SETTING", and the following screen appears.

TRANSIT TIME	SETTING	RECEIVED SIGNAL	
Setting	MEASURE MODE • LINE1 O LIN	IE2	
READ	TRANSMIT PATTERN TRANSMIT COUNT MEASURE METHOD	BURST 3 • 128 • METHOD 2 •	WINDOW CONTROL OPEN TIME(F) OPEN TIME(R) Image Image
Save	SATURATION	32 × 25 × (%)	AGC GAIN AUTO C MANUAL FORWARD 70.00 [X]
Check ON/OFF		UAL [%]	REVERSE 70.00 [X]
2005/08/20 10	:32:31 CONDITION(MEASURE MO	DDE1)Readind was (FSH03AA	HYBRID ENGLISH METRIC 10:32

Fig. 27 <Detailed information screen>

Select either Line 1 or Line 2 first. As to selected Lateral-line, select the items to be set and read. Set the check box items to be set to (\square) . Set the check box of the items not to be selected to reset the selection to OFF. (\square) .

[Setting]	. Sends the setting of the selected item (check box set to ON (☑)), reflecting the
	response value on the setting.
[READ]	. Reads the setting of the selected item (check box set to ON (☑)), reflecting the
	response value on the setting.
[Save]	Reflects the setting sent by pressing the [Setting] button on the flowmeter flow
	transmitter.
[Check ON/OFF]	. Set the check box to ON to select all the items (to set all the check boxes to ON
	(\square)). Set the check box to OFF (\square) to release the selection of all the items (to
	set all the check boxes to OFF. (\Box)

Table 19 < Detailed Setting>

Item	Content
TRANSMIT PATTERN	Select from BURST 1, BURST 2, BURST 3, BURST 4, BURST 5, CHIRP 4 and
	CHIRP 8.
TRANSMIT COUNT	Select from 8, 16, 32, 64, 128 and 256.
MEASURE METHOD	Select from METHOD 1, METHOD 2 and METHOD 3.
SATURATION	Enter in the range of numeric 0 to 256.
SIGNAL BALANCE	Enter in the range of numeric 0 to 100%.
SIGNAL PEEK	Select from 2048, 3071, 4096 and 5120.
TRIGGER LEVEL	With selection of AUTO/MANUAL, in case of MANUAL, input range of numeric
	10.00 to 90.00% at right column.
WINDOW CONTROL	With selection of AUTO/MANUAL, in case of MANUAL, input range of numeric
	1 to 16383 in each column of OPEN TIME (F)/OPEN TIME (R).
AGC GAIN	With selection of AUTO/MANUAL, in case of MANUAL, input range of numeric
	0.00 to 100.00% in each column of FORWARD/REVERSE.
TRANS. WAIT TIME	Enter in the range of numeric 1 to 30 msec.
7.15.2. Received Signal (optional function)

Click "RECEIVED SIGNAL", and the following screen appears.

Fig. 28 <Received signal screen>

Select either Line 1 or Line 2 first. Then, select one from forward direction received wave, reverse direction received wave, forward direction filter, reverse direction filter and correlation waveform. Depending on measurement method (method 1, method 2 and method 3), items which can be selected vary as shown below. Trigger level is also displayed.

Left-click the mouse while pressing the shift key to specify the screen range, and the selected range is magnified. Press the R key to return to original status.

- Method 1: One from forward direction, reverse direction and correlation waveform can be selected.
- Method 2: One from forward direction, reverse direction, forward direction filter and reverse direction filter can be selected.
- Method 3: One from forward direction, reverse direction, forward direction filter and reverse direction filter can be selected.

[Start]	Starts reading in idicated cycle.			
[Stop]	Stops reading			
[Save As CSV]	Saves the measurement result in a file in CSV format. Click the button, and you are			
	prompted to enter the name of a file to which the data is to be saved. Specify the			
destination to save and enter the file name, and a CSV file is created.				

7.15.3. Operation Information

Click "CONDITION", and the following screen appears.

TRANSIT TIME									
	SETTING	Ύ	RECEIVED SIG	SNA	LĬ		CONDI	TION	
	• LINE1		С	LINE2					
	Item of Collection			lt	em of Collectio	on			
	WEDGE S.V. [m/s]	(CAL .)	2500	V	VEDGE S.V. [r	n/s]	(CAL .)		2500
	WEDGE ANGLE [deg]	(CAL .)	42	V	VEDGE ANGL	E [deg]	(CAL .)		42
	PIPE S.V. [m/s]	(CAL .)	3141	F	PIPE S.V. [m/s]		(CAL .)		3141
	ANGLE IN PIPE [deg]	(CAL .)	57.2	A	NGLE IN PIPE	[deg]	(CAL .)		57.2
BEAD	LINING S.V [m/s]	(CAL .)	0	L	INING S.V [m/s	s]	(CAL .)		0
READ	ANGLE IN LINING [deg]	(CAL .)	0	A	NGLE IN LININ	IG [deg]	(CAL .)		0
	FLUID S.V. [m/s]	(CAL .)	1447	F	LUID S.V. [m/s	s]	(CAL .))	1447
	WEDGE TEMP. [degF]		2.8	V	VEDGE TEMP	. [degF]			2.8
	ANGLE IN FLUID [deg]	(CAL .)	22.7	A	NGLE IN FLUI	D [deg]	(CAL .)		22.7
Save As	TOTAL TIME [us]	(CAL .)	83	T	OTAL TIME [u	s]	(CAL .)	1	83
CSV	WINDOW OPEN [us]	(CAL .)	67	V	VINDOW OPE	N [us]	(CAL .)	1	67
	TOTAL TIME [us]		0	Т	OTAL TIME [u	s]			0
	FORWARD TIME [us]		0	F	ORWARD TIM	/IE [us]			0
	REVERSE TIME [us]		0	F	REVERSE TIM	E [us]			0
	TRANSIT TIME [ns]		0	Т	RANSIT TIME	[ns]			0
	DELAY TIME [us]		0		ELAY TIME [u	s]			0
	FLUID S.V. [us]		0	F	LUID S.V. [us]				0
	ANGLE IN FLUID [deg]		0	A	NGLE IN FLUI	D [deg]			0
	REYNOLDS No. [us]		0	F	REYNOLDS No). [us]			0
	К		0	K	Ś				0
	VELOCITY [m/s]		0		'ELOCITY [m/s	5]			0
	SIGNAL POWER(F)		45	S	IGNAL POWE	R(F)			0
	SIGNAL POWER(R)		45	S	IGNAL POWE	R(R)			0
	TRIG. LEVEL(F)		0	T	RIG. LEVEL(F)			0
	TRIG. LEVEL(R)		0	T	RIG. LEVEL(F	2)			0
	SIGNAL PEEK(F)		0	S	IGNAL PEEK(F)			0
	SIGNAL PEEK(R)		0	S	IGNAL PEEK(R)			0
00F (0F (01 1)		MODE2)Pood	ind was a FS H1	0.0.4	TDANST	TIME	ENGLISH	METRIC	16.47

Fig. 29 < Operation Information screen>

Select either Line 1 or Lline 2 first.

[Read]..... Reads operation information in a batch.

Table 20 < Operation Information>

Item	Content
WEDGE SOUND	m/s [ft/s]
VELOCITY	
WEDGE ANGLE	°
PIPE SOUND VELOCITY	m/s [ft/s]
ANGLE IN PIPE	°
LINING SOUND	m/s [ft/s]
VELOCITY	
ANGLE IN LINING	0
FLUID SOUND VELOCITY	m/s [ft/s]
WEDGE TEMPERATURE	°C [°F] displaying with "–" in case of measurement abnormal
ANGLE IN FLUID	0
TOTAL TIME	μs
WINDOW OPEN	μs
TOTAL TIME	μs
FORWARD TIME	μs
RESERVE TIME	μs
TRANSIT TIME	ns
DELAY TIME	μs
FLUID SOUND VELOCITY	μs
ANGLE IN FLUID	0
REINOLDS No.	μs
К	
VELOCITY	m/s [ft/s]
SIGNAL POWER (F)	
SIGNAL POWER (R)	
TRIG. LEVEL (F)	
TRIG. LEVEL (R)	
SIGNAL PEEK (F)	
SIGNAL PEEK (R)	

7.16. Maintenance

Click the "MAINTENANCE" button on the Menu screen, and the following screen appears.

Note) If [Setting] and [Read] are executed on this screen, the instrument is in the Maintenance mode for flow rate measurement. Be sure to reset the Maintenance mode of flow meter by clicking the [Release] button.

Duosonics Loader - [MAI!	ITENANCE]				_ 🗆 ×
MEASURE	PULSE DOPPLER T	RANSIT TIME	MAINTENANCE	SYSTEM	
ESTABLISH	RANGE	TOTAL	STATUS	DISPLAY	End
Setting	DEFINITION ADJUSTMENT 4 [mA]	1500 ×	HECK		
	IECK DO.1 CHECK DO.2 C ST MODE	HECK C D	0.3 CHECK	Y	
Save TRA	JT DATA 100 CKING TIME	[%] [sec]			
TEST Cancell					
2005/05/31 16:48:40 Read	ing of a detailed setup was completed	FSH10PA	TRANSIT TIME	ENGLISH METRIC	16:48

Fig. 30 <Maintenance screen>

(1) Analog output

There are two options: 4 to 20 mA adjustment and confirmation. Select one by pressing the option button.

- Adjustment
 - (1) Select either "4 mA" or ""20 mA", read current setting at right column by clicking the [READ] button once. Then, set value (1 to 65535) at right column and click the [Setting] button, and then click the [Save] button. When setting is completed, setting value is redisplayed at right column. Click the [READ] button, and selected setting values of "4 mA" and "20 mA" appear on the right column.
- Confirmation
 - (2) Selecting a value in the range from -20 to 120, and click the [Setting] button, when setting is completed, and setting value is redisplayed: Click the [READ] button, and the setting value appears.

(2) DO output

Select one from the following option buttons: DO1 output confirmation, DO2 output confirmation and DO3 output confirmation.

- DO1 output confirmation
 - (1) Set [DO1 Output Confirmation] check box to ON. Then select either ON or OFF from setting combo box, and click the [Setting] button to change the selected value of DO1 output. Click the [READ] button, and the setting value appears.

- DO2 output confirmation
 - (2) Set [DO2 Output Confirmation] check box to ON. Then select either ON or OFF from setting combo box, and click the [Setting] button to change to the selected value of DO2 output. Click the [READ] button, and the setting value appears.
- DO3 output confirmation
 - (3) Set [DO3 Output Confirmation] check box to ON. Then select either ON or OFF from setting combo box, and click the [Setting] button to change the selected value of DO3 output. Click the [READ] button, and setting value is displayed.

(3) Test mode

Set input data and tracking time and click the [Setting] button, and you can enter the test mode. Click the [Read] button to read the values in each column of the test mode.

[Release] button......Resets analog output, each DO output and Test mode. * Note: Make sure to press the [Release] button when maintenance is completed.

7.17. End

Duosonics Loader Communication Setting Version					_ _ ×
MEASURE	PULSE DOPPLER	TRANSIT TIME	MAINTENANCE	SYSTEM	
ESTABLISH	RANGE	TOTAL	STATUS	DISPLAY	End
		oader	×		
		VES	Value of the loader?		
	-				
		FSH10P	A TRANSIT TIME	ENGLISH METRIC	17:03

Click the [End] button on the Menu screen, and the following screen appears.

Fig. 31 <Menu screen

Click either the [End] button or the (\blacksquare) button, and a message asking you whether you want to save the loader setting appears. To save setting value, select "Yes". On the file designation window that appears, select a file, and the setting is saved in the file. Then the loader is terminated. Not to save setting value, select "No", and the loader is terminated without saving the setting.

7.18. Uninstalling of Software

Select "Addition and Deletion of Application" from "Control Panel" of Windows, and click [Change and Deletion] to uninstall the software.

8.1. External communication specifications

8.1.1. Communication specifications

It	em	Specifications		
Communication interfa	ice	RS-232C	RS-485	
Communication distan	ce	15 m	1 km	
Communication metho	d	Half-duplex start-stop s	synchronization system	
Communication proceed	lure	Message	e system	
Communication speed		9600, 19200), 38400bps	
Communication mode		ASCII mode		
	Start bit	1 bit		
Data format	Data	Hexadecimal ASCII representation (8 bits)		
Data Ioffilat	Parity	None, Odd, Even		
	Stop bit	1, 2 bits		
BCC		Even horizontal parity		
Station		01 to 31		
Number of connected u	units	31 max./system (including other devices)		

8.1.2. Message configuration

8.1.2.1. Receiving

Configuration	Byte count	Note
Start mark	1	STX (02h)
Station No. (SLV)	2	01 to 31
Mode/type	2	Measurement "U"/Polling system "P"
Function code (F_CD)	4	Refer to the function code table.
Error check	2	BCC
Endmort	1	CR (0Dh)
End mark	1	LF (0Ah)

8.1.2.2. Response

Configuration	Byte count	Note
Start mark	1	STX (02h)
Station No. (SLV)	2	01 to 31
Mode/type	2	Measurement "U"/Polling system "P"
Function code (F_CD)	4	Refer to the function code table.
Data	#	Refer to the function code table.
Error check	2	BCC
Endmort	1	CR (0Dh)
	1	LF (0Ah)

8.1.2.3. Error response

Configuration		Byte count	Note			
Start mark		1	STX (02h)			
Station No. (SLV)		2	01 to 31			
Mode/type		2	Measurement "U"/Polling system "P"			
Function code (F_CD)		4	Refer to the function code table.			
Error Data (ERR)		#	Refer to the error data table			
Error check		2	LRC			
Endmort		1	CR (0Dh)			
		1	LF (0Ah)			
Receive format STX	(S	LV UP	F_CD BCC CR LF			

Receive format	STX	SLV	UP	F_CD	BCC	CR	LF	
Response format	STX	SLV	UP	F_CD	Data	BCC	CR	LF
Error response format	STX	SLV	UP	F_CD	ERR	BCC	CR	LF

8.1.3. Error check

EX-OR (even horizontal parity) from STX side of each byte excluding STX, BCC, CR, and LF. Operation is performed by bytes, and the result of operation is transmitted/received as 2-digit ASCII code BCC data.

[BCC creation procedure]

- (1) EX-OR operation is performed with the data after the start mark (STX).
- (2) The result of the operation is converted to ASCII representation (=BCC).
 Example: When the result of operation if 05h: → ASCII representation: 30h, 35h

8.1.4. Function code table

						Response data part			
No.	Name	e	F code		Item	Data type (No. of bytes)	Note		
1	Instantaneous value	Velocity	0000	1	Instantaneous velocity	MDV (11)	Number of decimal places: 3. m/s		
				2	Measurement method	H (2)	Time difference (1), Pulse Doppler (2)		
				3	Error information	H (20)			
				4	Status information	H (20)			
2		Flow rate	0001	1	Instantaneous velocity	MDV (11)	Number of decimal places: 3. When range unit is flow rate: Range unit Other cases: m/s		
					Measurement method	H (2)	Time difference (1), Pulse Doppler (2)		
				3	Error information	H (20)			
				4	Status information	H (20)			
3	Total pulse	Forward direction	0002	1	Number of forward-direction total pulse	MDV (11)	No decimal point		
				2	Measurement method	H (2)	Time difference (1), Pulse Doppler (2)		
				3	Error information	H (20)			
				4	Status information	H (20)			
4	Reverse 000 direction		0003	1	Number of reverse direction total pulse	MDV (11)	No decimal point		
				2	Measurement method	H (2)	Time difference (1), Pulse Doppler (2)		
				3	Error information	H (20)			
				4	Status information	H (20)			
5	Total value	Forward direction	0004	1	Forward flow rate integration	MDV (15)	Number of decimal places: 3. Total unit		
					Measurement method	H (2)	Time difference (1), Pulse Doppler (2)		
				3	Error information	H (20)			
				4	Status information	H (20)			
6		Reverse 0005 direction		1	Reverse flow rate integration	MDV (15)	Number of decimal places: 3. Total unit		
				2	Measurement method	H (2)	Time difference (1), Pulse Doppler (2)		
				3	Error information	H (20)			
				4	Status information	H (20)			
7	Flow rate %		0006	1	Flow rate %	MDV (11)	Number of decimal places: 3.		
				2	Measurement method	H (2)	Time difference (1), Pulse Doppler (2)		
				3	Operation range	H (2)	Single range (0), Auto 2 range (1), Bi-directional range (2), Bi- directional auto 2 range (3)		
				4	Error information	H (20)			
				5	Status information	H (20)			
8	Status information		0007	1	Status information	H (20)			
9	Error information		0008	008 1 Error infor		H (20)			

*1) Data type

MDV: Data type that represents positive/negative numeric values with decimal point.

"+" or "-" is used as a leading character, which is followed by a numeral (ASCII), with decimal point included in between in some cases.

H: Hexadecimal (0 to 9, A to F) (ASCII) data. Decimal data in the case of numerals.

8.1.5. Error code table

Error data	Number of bytes	Note
BCC ERROR	9	BCC error: [BCC ERROR] (9 characters)
FORMAT ERROR	12	Format error: [FORMAT ERROR] (12 characters)
MANAGE ERROR	12	Management error: [MANAGE ERROR] (12 characters)
REQUEST ERROR	13	Request error: [REQUEST ERROR] (13 characters)

8.1.6. Cable connection specifications (RS-232C)

8.2. Specifications

Operational specifications	Transit time method:			
System configuration:	Pipe size (inside diameter)	Velocity		
The system is composed of one/two detectors (Model: FSW) and	φ40mm to φ50mm or less	2 m/s to 32 m/s		
one Flow transmitter (Model: FSH), realizing single-path/two-path		0 m/s to 2 m/s		
measurement.		2 m/s to 32 m/s		
Hybrid mode or transit time mode is selectable.		0 m/s to 2 m/s		
In case of hybrid mode, either Pulse Doppler method or transit time	4300mm to 41000mm	1 m/s to 32 m/s		
method is automatically selected depending on conditions of	φ 	0 m/s to 1 m/s		
measured liquid and magnitude of velocity.		011/010111/0		
Application: Uniform liquid in which ultrasonic waves can propagate.	Response time:			
Air bubble quantity:	Pulse Doppler method: 0.2 se	ic.		
Pulse Doppler method: 0.02 to 15% of volume at 1 m/s	(depending on pipe diar	neter and measurin		
Transit time method: 0 to 12% of volume at 1 m/s	Transit time method: 0.5 sec			
Fluid temperature:	Power consumption: 20 W or less	5		
-40 to +100°C (FSW12), -40 to 80°C (FSW21, FSW40,	Short-term thermal stability:	-		
FSW50)	140°C 30 min (FSWS12)			
Type of flow:	100°C, 30 min (FSWS21, FS)	NS40, FSWS50)		
Pulse Doppler method: axisymmetric flow in a filled pipe.		,		
Transit time method: well-developed turbulent or laminar	Eurotional	chaoifications		
flow in a filled pipe.		specifications		
Applicable flow pipe:	Analog output:			
Material: Plastics (PVC, FRP, etc.) or Metals (carbon steel, SS,	4 to 20 mAdc (1 point)			
copper, aluminum, etc.)	Max. load resistance: 1 k onm			
Pipe size: 40 to 1000 mm (inside diameter)	Digital output.			
Liner: Tar epoxy, mortar, etc.	+lolal, -lolal, alarri, acting range, now switch of			
Straight pipe length:	arbitrarily selectable			
Typically 10D for upstream and 5D for downstream. Refer to	Mechanical relay contact.			
JEMIS-032 in detail.	Normally closed/open selectable			
(Note) JEMIS: Japan Electric Measuring Instruments	Normally closed/open selectable			
Manufactures' Associations Standard	Capacity: 240 Vac/30 Vdc, 1 A			
Velocity:	Dulas width)/5 ; E0 100 or 200 m		
Hybrid mode: 0 to ±0.3 ±Maximum Velocity (depending on pipe	(Fulse width	. 50, 100 01 200 11 pinte		
diameter)	Capacity: 30 V/dc 0.1 A			
(Note) For maximum measurement range in Hybrid mode, refer	Normally off/on selectable			
to the next page.	Total pulse: less than 1000 p/s (Pulse wid			
Transit time mode: 0 to ±0.3 ±32 m/s	50 100 or 200 ms selectable)			
Power supply:	Communication interface:			
100 to 240 Vac+10%/–15%, 50/60Hz or 20 to 30 Vdc	RS-232C equivalent / RS-485	(salactable)		
Signal cable:	Number of connectable units:	one (RS-232C)/ur		
Single-path system :	Baud rate: 9600/19200/38400) hos selectable		
A pair of RF co-axial cables for ultrasound signals and a	Parity: none/odd/even selecta	hle		
three-core shield cable for temperature sensor,	Stop bit: 1 or 2 bits selectable	510		
Two-path system:	Distance: up to 15 m (RS-232	C)/up to 1k m (RS		
Two pairs of RF co-axial cables for ultrasound signals and a	Data: velocity flow rate +tota	l –total status (st		
three-core shield cable for temperature sensor,	profile (option)			
Maximum cable length: 150m	Display device:			
Temperature range: 80°C	Graphic I CD (number of pixe	ls [.] 240 v 64) with I		
Environment:	Display language:			
Non-explosive environment without direct sunlight, corrosive gas and	Jananese English French G	orman or Spanish		
heat radiation	Velocity/Flow rate display.			
Ambient temperature:	Display of velocity and/or flow	rate with flow dire		
-10 to +50°C for flow transmitter, -20 to +80°C for detector	Data: up to 10 digits (decimal	noint to be counte		
Ambient humidity:	Unit: Metric/English system se			

95%RH or less for flow transmitter, 100%RH or less for detector Grounding: Class D (less than 100 ohm)

Arrester:

> Surge absorbers for outputs and power supply incorporated as standard

Performance specifications Accuracy: Pulse Doppler method: Pipe size (inside diameter) Velocity Accuracy and detector 1.5 m/s to Max. ±1.0% of rate $_{\varphi}40mm$ to $_{\varphi}50mm$ or less (Detector: FSWS12) Velocity (Note) ±0.015m/s 0 m/s to 1.5 m/s φ50mm to φ200mm (Detector: FSWS12) 1.5 m/s to Max. ±0.5% of rate Velocity (Note) 0 m/s to 1.5 m/s ±0.0075m/s ¢100mm to φ1000mm (Detector: FSWS21, 40, 50) 1 m/s to Max. ±1.0% of rate Velocity (Note) ±0.01m/s 0 m/s to 1 m/s

(Note) Maximum velocity is depend on a pipe diameter. For maximum measurement range in Hybrid mode, refer to the next page.

Pipe size (inside diameter)	Velocity	Accuracy	
_φ 40mm to _φ 50mm or less	2 m/s to 32 m/s	±1.5% of rate	
	0 m/s to 2 m/s	±0.03m/s	
φ50mm to φ300mm or less	2 m/s to 32 m/s	±1.0% of rate	
	0 m/s to 2 m/s	±0.02m/s	
6300mm to 61000mm	1 m/s to 32 m/s	±1.0% of rate	
	0 m/s to 1 m/s	±0.01m/s	

.2 sec diameter and measuring condition)

+total, -total, alarm, acting range, flow switch or total switch								
arbitrarily selectable								
Mechanical relay contact:								
1 point	with socket (replaceable)							
Norma	lly closed/open selectable							
Capac	ty: 240 Vac/30 Vdc, 1 A							
Total p	ulse: less than 1 p/s							
	(Pulse width: 50, 100 or	200 ms selectable)						
Transistor o	pen collector: 2 points							
Capac	ty: 30 Vdc, 0.1 A							
	Normally off/on selectab	le						
Total p	ulse: less than 1000 p/s (Puls	e width: 0.5, 1, 2, 5, 10, 20,						
	50, 100 or 200 ms selec	table)						
mmunication	interface:							
RS-232C ec	uivalent / RS-485 (selectable)						
Number of c	connectable units: one (RS-23	2C)/up to 31 (RS-485)						
Baud rate: 9	600/19200/38400 bps selecta	ble						
Parity: none	/odd/even selectable							
Stop bit: 1 o	r 2 bits selectable	(= =						
Distance: up	to 15 m (RS-232C)/up to 1k	m (RS-485)						
Data: veloci	ty, flow rate, +total, -total, stat	us (standard), velocity						
profile	(option)							
play device:								
Graphic LCI	D (number of pixels: 240×64)	with back light						
play languag	e:							
Japanese, E	nglish, French, German or Sp	anish selectable						
ocity/Flow ra	te display:							
Display of v	elocity and/or flow rate with flo	ow direction						
Data: up to 10 digits (decimal point to be counted as 1 digit)								
Unit: Metric/English system selectable								
Metric system English system								
Velocity	m/s	ft/s						
Flow rate	L/s, L/min, L/h, L/d, kL/h,	ft ³ /s, ft ³ /min, ft ³ /h, Mft ³ /d,						
	ML/d, m ³ /s, m ³ /min, m ³ /h,	gal/s, gal/min, gal/h,						
	m ³ /d, km ³ /d, Mm ³ /d, BBL/s,	Mgal/d, BBL/s, BBL/min,						
	BBL/min, BBL/h, kBBL/d,	BBL/h, BBL/d, kBBL/d,						
	MBBL/d	MBBL/d						

Note: "gal" means US gal.

Total display:

Display of forward or reverse total
Data: up to 10 digits (decimal point to be counted as 1 digit)
Unit: Metric/English system selectable

	Metric system	English system
Total	mL, L, m ³ , km ³ . Mm ³ ,	ft ³ , kft ³ , Mft ³ , gal, kgal,
	mBBL, BBL, kBBL	mBBL, BBL, kBBL, ACRf

Configuration:

Fully configurable on keyboard by menu-driven software Zero adjustment: Set zero/Clear available. (transit time method) Damping:

0 to 100 s (every 0.1 s) configurable for analog output and display Low flow cut off: 0 to 5 m/s configurable

Alarm: Hardware fault/process fault can be tied to digital output Burnout:

Analog output: Hold/Upper limit/Lower liinit/Zero/Not-used selectable Total: Hold/Count selectable

Timer: 0 to 900 s (every 1 s) configurable

Bi-directional range	Mass
Forward and reverse ranges configurable independently	Flow
Hysteresis: 0 to 20% of working range configurable	Dete
Working range applicable to digital output	2010
Auto-2 ranges:	
Forward 2 ranges configurable independently	r
Hysteresis: 0 to 20% of working range configurable	
Working range applicable to digital output	Equipped
Flow switch:	• Wo
Lower and upper switching points configurable independently	• Op
Acting point applicable to digital output	• Op
Total switch:	gu
+total switching point configurable	• Ma
Acting point applicable to digital output	
Physical specifications	
Enclosure protection:	
Flow Transmitter: IP67,	
Detector: IP67	
Mounting:	• O/
Flow Transmitter: wall mount	• Me
Detector: Clamped on pipe surface	• Di
Acoustic coupler: Silicon compound (RTV) Material:	• Ha
Flow Transmitter: aluminum alloy	Note
Detector: PBT for housing, aluminum alloy for frame and SS for	Note
fastening belt	
Sensor cable (FLY6):	
RF coaxial cable (double shielded)	
External sheath: Black flame-resistant vinyl	Inotallatia
External diameter: About 7.3 mm	the piping
Terminal treatment: Water-resistant BNC connector (detector side),	Select a
M3.5 amplifier terminal (Flow Transmitter side)	used
Mass: About 90 g/m	<u>useu.</u>
Temperature sensor cable (FLY7):	Туре
3-core shield cable	ZZP'
External sheath: Gray flame-resistant vinyl	ZZP*
External diameter: About 6.9 mm	ZZP'
Terminal treatment: Round waterproof connector (detector side),	Note: The
M3.5 amplifier terminal (Flow Transmitter side)	wh
Mass: About 56 g/m	
Dimensions:	

r Transmitter: 5 kg ector: 1.7 kg (FSWSl2), 1.9 kg (FSWS2l), 5 kg (FSWS40), 1.5 kg (FSWS50)

Loader software for PCs

as standard:

orks on PC/AT compatible machines.

- eration on PC98-series machines (NEC) cannot be guaranteed.
- eration on self-made PCs or shop-brand PCs cannot be
- aranteed. jor functions: Setting/changing of various parameters for the

main unit If no flow velocity profile output is selected, the following functions are not available. "Detailed setting" and "flow velocity profile display" in pulse Doppler measurement "Detailed setting" and "receved signal display" in Transit time measurement

- S: Windows 2000/XP
- emory requirement: 128MB or more sk unit: Windows 2000/XP-compatible CD-ROM drive
- rd disk drive capacity: Free space of 52MB or more
- : PC loader communication cable (type ZZP*TK4H6253, Specifications: D-sub 9 pin receptacle, cable length 3m) is separately required.

	D	et	ector fra	ım	e instal	latio	on fixture				
tion	fixture	is	provided	to	facilitate	the	positioning	of	the	frame	to

desired type from the following according to the detector to be

Туре	Applicable detector
ZZP*TK7M7071C1	FSWS12
ZZP*TK7M7071C2	FSWS21
ZZP*TK7M7071C3	FSWS40

installation fixture cannot be used for detector type FSWS50, ch is not provided with a frame.

Maximum measurement range in hybrid mode

Flow Transmitter: H240 \times W247 \times D134 mm

 $H70 \times W57 \times L360 \text{ mm}$ (FSWS12) H72 × W57 × L540 mm (FSWS21) $H90 \times W85 \times L640$ mm (FSWS40) H82 × W71 × L258 mm (FSWS50)

Detector:

When stainless steel is selected as pipe material, nominal wall thickness is Sch20s, and the fluid is water

<maximum m<="" th=""><th>easurable flow</th><th>velocity></th><th></th><th>Unit: m/s</th><th><maximum m<="" th=""><th>easurable flow</th><th>rate></th><th>Unit: m³/h</th></maximum></th></maximum>	easurable flow	velocity>		Unit: m/s	<maximum m<="" th=""><th>easurable flow</th><th>rate></th><th>Unit: m³/h</th></maximum>	easurable flow	rate>	Unit: m ³ /h
Diameter	FSWS12	FSWS21	FSWS40	FSWS50	FSWS12	FSWS21	FSWS40	FSWS50
40A	6.56				33.6			
50A	6.52				52.7			
65A	5.31				72.1			
80A	4.65				86.5			
90A	4.12				102			
100A	3.69	7.25			118	231		
125A	3.08	6.08			147	289		
150A	2.63	5.20			179	354		
200A	2.04	4.05	7.77		239	474	908	
250A		3.30	6.38			604	1168	
300A		2.78	5.41			735	1428	
350A		2.51	4.90			820	1598	
400A		2.20	4.31			951	1858	
450A			3.84				2118	
500A			3.48	3.48			2358	2358
550A				3.17				2618
600A				2.91				2879
650A				2.71				3096
700A				2.52				3357
750A				2.35				3618
800A				2.21				3879
850A				2.08				4140
900A				1.97				4400
1000A				1.77				4902

8.3. Outline diagram

Flow transmitter (Type: FSH) <With waterproof gland>

<With union gland>

Detecter (Type: FSWS12, 21)

TYPE	PIPE SIZE	L	Н	W	MASS APPROX
FSWS12	ø40 to ø200	360	70	57	1.7
FSWS21	ø100 to ø400	540	72	57	1.9

Detecter (Type: FSWS40)

Detecter (Type: FSWS50)

Signal cable (Type: FLY6)

Signal cable (Type: FLY7)

L: According to the designation of the 5th, 6th, and the 7th digits of the Code Symbols.

Loader cable: ZZP*TK4H6253

8.4. Items to be specified at placement of an order

- Type of detector
 Type of flow transmitter
 Type of signal cable
 Tag No. (When tag plate is specified only)
- 5. Parameter setting table (When parameter setting is specified only)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	No.	Setting item		Settable range	Initial value	Settable value
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1		Outer diameter	10.00 to 6200.00 mm	60.00 mm	[mm, inch]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				(0.393 to 244.100 inch)	(2.362 inch)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2		Pipe material	12 menus	PVC	Carbon steel, Stainless steel, PVC,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Pipe S.V.: 1000 to 3700		Copper, Cast iron, Aluminum, FRP,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				m/s		Ductile iron, PEEK, PVDF, Acrylic
3 Wall thickness 0.10 to 100.00 mm (0.03 to 3.940 inch) 4.00 mm (0.157 inch) [mm, inch] 4 Lining material 8 menus Lining S.V: 1000 to 3700 m/s (3280 to 12140 ft/s) No lining, No lining, Couters (Sound velocity: [m/s, ft/s]) No lining, Rubber, Tellon, Pyrex glass, PVC, Others (Sound velocity: [m/s, ft/s]) 6 Ining thickness 0.01 to 100.00 mm (0.000 to 3.940 inch) - [mm, inch] 6 Kind of Fluid 17 menus Fluid S.V: 500 to 2500m/s (1641 to 8203 ft/s) Water Water, Seawater, DIST. water, Ammonia, Alcohol, Benzene, Bromide, Ethanol, Glycol, Kerosene, Milk, Methanol, Toluol, Lube oil, Fuel oil, Petrol, Others (Sound velocity: [m/s, ft/s]) 7 Range unit 19 menus m/s (ft/s) m/s (ft/s) Mt/d, m ³ /d, BBL/s, BBL/min, BBL/h, BBL/d, MBBL/d, MBBL/d, MD/d, RJ/s, Rd ³ /d, Mt ³ /d, Mt ³ /d, Mt ³ /d, BBL/s, BBL/min, BBL/h, BBL/d, BBL/d, BBL/d, BBL/d, BBL/d) 8 Full scale or Full In terms of flow velocity 0.00, ±0.98 to ±104.98 4.00 m/s (13.12 ft/s) [(19) Unit] 10 Full scale 2 In terms of flow velocity 0.000, ±0.98 to ±104.98 4.00 m/s (13.12 ft/s) [(19) Unit] 11 Same HYS. 0.00 to 20.00% 10.00% % 13 Range HYS. 0.0				(3280 to 12140 ft/s)		Others (Sound velocity: [m/s, ft/s])
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3		Wall thickness	0.10 to 100.00 mm	4.00 mm	[mm, inch]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				(0.003 to 3.940 inch)	(0.157 inch)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4		Lining material	8 menus	No lining	No lining, Tar epoxy, Mortar,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Lining S.V.: 1000 to 3700		Rubber, Teflon, Pyrex glass, PVC,
5 100 Lining thickness 0.01 to 100.00 mm (0.000 to 3.940 inch) - [mm, inch] 6 5<		u		m/s (3280 to 12140 ft/s)		Others (Sound velocity: [m/s, ft/s])
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5	atic	Lining thickness	0.01 to 100.00 mm	-	[mm, inch]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		fic:		(0.000 to 3.940 inch)		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6	eci	Kind of Fluid	17 menus	Water	Water, Seawater, DIST. water,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ds		Fluid S.V.: 500 to 2500m/s		Ammonia, Alcohol, Benzene,
$ \frac{2}{2} \\ 2$		ng		(1641 to 8203 ft/s)		Bromide, Ethanol, Glycol,
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		[H]		Viscosity: 0.001 to		Kerosene, Milk, Methanol, Toluol,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Н		$999.9999 \times 10^{-6} \text{m}^2/\text{s}$		Lube oil, Fuel oil, Petrol, Others
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				$(0.0107 \text{ to } 10763.9088 \times$		(Sound velocity: [m/s, ft/s])
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				$10^{-6} \text{ ft}^2/\text{s}$)		(Viscosity [× 10^{-6} m ² /s, ft ² /s])
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7		Range unit	19 menus	m/s (ft/s)	m/s, L/s, L/min, L/h, L/d, kL/d,
Image: Section of the sectio						ML/d, m ³ /s, m ³ /min, m ³ /h, m ³ /d,
Image: Second state of the second state of						km ³ /d, Mm ³ /d, BBL/s, BBL/min,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						BBL/h, BBL/d, KBBL/d, MBBL/d
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						$(ft/s, ft^3/s, ft^3/min, ft^3/h, ft^3/d, kft^3/d,$
Range type4 menusSingleSingle, Auto 2, Bi-dir, BBL/a, MBBL/d, MBBL/d)9Full scale or Full scale 1In terms of flow velocity 0.00, ±0.30 to ±32.00m/s (0.00, ±0.98 to ±104.98 ft/s)2.00 m/s (6.56 ft/s)[(19) Unit]10Full scale 2In terms of flow velocity 0.00, ±0.30 to ±32.00m/s (0.00, ±0.98 to ±104.98 ft/s)4.00 m/s (13.12 ft/s)[(19) Unit]11Full scale 2In terms of flow velocity 0.00, ±0.30 to ±32.00m/s (0.00, ±0.98 to ±104.98 ft/s)4.00 m/s (13.12 ft/s)[(19) Unit]11Name HYS.0.00 to 20.00% 0.00 to 20.00%10.00% %%13Name HYS.0.00 to 20.00% 0.00 to 120%120% 0.00 to 20.00%%14100 to 120% 0.00 to 5.00m/s (0.00 to 16.40 ft/s) in terms of flow velocity10.00m/s (0.00 ft/s)[(19) Unit]17Rate limit timer0 to 900sec0 sec secsec18Damping0.0 to 100.0sec5.0 secsec						Mft ³ /d, gal/s, gal/min, gal/h, gal/d,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						kgal/d, Mgal/d, BBL/s, BBL/min,
8Range type4 menusSingleSingle, Auto 2, Bi-dir, Bi-dir, Auto 29Full scale or Full scale 1In terms of flow velocity $0.00, \pm 0.30$ to ± 32.00 m/s $(0.00, \pm 0.98$ to ± 104.98 $ft/s)[(19) Unit]10Full scale 2In terms of flow velocity0.00, \pm 0.30 to \pm 32.00 m/s(0.00, \pm 0.98 to \pm 104.98ft/s)[(19) Unit]10Full scale 2In terms of flow velocity0.00, \pm 0.30 to \pm 32.00 m/s(0.00, \pm 0.98 to \pm 104.98ft/s)[(19) Unit]11Range HYS.0.00, \pm 0.30 to \pm 32.00 m/s(0.00, \pm 0.98 to \pm 104.98ft/s)10.00\%-20\%11Range HYS.0.00 to 20.00\%10.00\%-20\%11Output limit Lo.-20 to 0\%-20 to 0\%20\%-20\%13Output limit Hi.100 to 120\%120\%\%140 duput timer0 to 900 secsec15Burnout timer0 to 900 secsec16Rate limit timer0 to 900 sec10.00 ft/s)17Rate limit timer0 to 900 sec5.0 sec18Damping0.0 to 100.0 sec5.0 sec$						BBL/h, BBL/d, kBBL/d, MBBL/d)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8		Range type	4 menus	Single	Single, Auto 2, Bi-dir, Bi-dir Auto 2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9		Full scale or Full	In terms of flow velocity	2.00 m/s	[(19) Unit]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			scale 1	$0.00, \pm 0.30$ to ± 32.00 m/s	(6.56 ft/s)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				$(0.00, \pm 0.98 \text{ to } \pm 104.98)$		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				ft/s)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10		Full scale 2	In terms of flow velocity	4.00 m/s	[(19) Unit]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		00		$0.00, \pm 0.30$ to ± 32.00 m/s	(13.12 ft/s)	
11 12 13 Range HYS. 0.00 to 20.00% 10.00% % 12 12 12 0utput limit Lo. -20 to 0% -20% % 13 0utput limit Lo. -20 to 0% -20% % 14 0utput limit Hi. 100 to 120% 120% % 0utput limit Hi. 100 to 120% 120% % 14 0utput burnout 5 menus Hold Not used, Hold, Upper, Lower, Zero 15 Burnout timer 0 to 900sec 10sec sec 16 Rate limit 0.00 to 5.00m/s (0.00 to 0.00m/s [(19) Unit] 17 Rate limit timer 0 to 900sec 0 sec sec 18 Damping 0.0 to 100.0sec 5.0 sec sec		tin		$(0.00, \pm 0.98 \text{ to } \pm 104.98)$		
11 Solution Range HYS. 0.00 to 20.00% 10.00% % 12 Output limit Lo. -20 to 0% -20% % 13 Output limit Lo. -20 to 0% 120% % 14 Output limit Hi. 100 to 120% 120% % 14 Output burnout 5 menus Hold Not used, Hold, Upper, Lower, Zero 15 Burnout timer 0 to 900sec 10 sec sec 16 Rate limit 0.00 to 5.00m/s (0.00 to 0.00m/s [(19) Unit] 17 Rate limit timer 0 to 900sec 0 sec sec 18 Damping 0.0 to 100.0sec 5.0 sec sec		set		ft/s)		
12 Image: Constraint of the sector of th	11	ıge	Range HYS.	0.00 to 20.00%	10.00%	%
13Output limit Hi.100 to 120%120%%14Output burnout5 menusHoldNot used, Hold, Upper, Lower, Zero15Burnout timer0 to 900sec10secsec16Rate limit0.00 to 5.00m/s (0.00 to 16.40 ft/s) in terms of flow velocity0.00 m/s[(19) Unit]17Rate limit timer0 to 900sec0 secsec18Damping0.0 to 100.0sec5.0 secsec	12	Rar	Output limit Lo.	-20 to 0%	-20%	%
14Output burnout5 menusHoldNot used, Hold, Upper, Lower, Zero15Burnout timer0 to 900sec10secsec16Rate limit0.00 to 5.00m/s (0.00 to 16.40 ft/s) in terms of flow velocity0.00 m/s (0.00 ft/s)[(19) Unit]17Rate limit timer0 to 900sec0 secsec18Damping0.0 to 100.0sec5.0 secsec	13	_	Output limit Hi.	100 to 120%	120%	%
15 Burnout timer 0 to 900sec 10sec sec 16 Rate limit 0.00 to 5.00m/s (0.00 to 16.40 ft/s) in terms of flow velocity 0.00m/s (0.00 ft/s) [(19) Unit] 17 Rate limit timer 0 to 900sec 0 sec sec 18 Damping 0.0 to 100.0sec 5.0 sec sec	14		Output burnout	5 menus	Hold	Not used, Hold, Upper, Lower, Zero
16 Rate limit 0.00 to 5.00m/s (0.00 to 16.40 ft/s) in terms of flow velocity 0.00m/s (0.00 ft/s) [(19) Unit] 17 Rate limit timer 0 to 900sec 0 sec sec 18 Damping 0.0 to 100.0sec 5.0 sec sec	15		Burnout timer	0 to 900sec	10sec	sec
16.40 ft/s) in terms of flow velocity(0.00 ft/s)17Rate limit timer0 to 900sec0 sec18Damping0.0 to 100.0sec5.0 secsec	16		Rate limit	0.00 to 5.00m/s (0.00 to	0.00m/s	[(19) Unit]
velocityvelocity17Rate limit timer0 to 900sec0 sec18Damping0.0 to 100.0sec5.0 secsec				16.40 ft/s) in terms of flow	(0.00 ft/s)	
17Rate limit timer0 to 900sec0 secsec18Damping0.0 to 100.0sec5.0 secsec				velocity		
18 Damping 0.0 to 100.0sec 5.0 sec sec	17		Rate limit timer	0 to 900sec	0 sec	sec
	18	Dam	ping	0.0 to 100.0sec	5.0 sec	sec

No.		Setting item	Settable range	Initial value	Settable value
19		1: Display kind	7 menus	Flowrate	Velocity, Flowrate, Total forward,
	2 20			(m3/s)	Total reverse, F: Total pulse, R:
	pla ting				Total pulse, Flow rate (%)
20	Dis	2: Display kind	7 menus	Velocity	Velocity, Flowrate, Total forward,
				(m/s)	Total reverse, F: Total pulse, R:
	-	a		0.01	Total pulse, Flow rate (%)
21	Low	flow cut	0.00 to 5.00m/s (0.00 to	0.01 m/s	[(19) Unit]
			16.40 ft/s) in terms of flow	(0.03 ft/s)	
22		Total mada	2 monus	Tatal stan	Total stap Total mup Total resot
22		Total unit	3 menus	$mL(ft^3)$	mL L m ³ km ³ Mm ³ mBBL BBL
23		Total ullit	omenus	IIIL (It)	$h_{\rm L}$, L, III, KIII, MIII, HIDDL, DDL, kBBL ft ³ kft ³ Mft ³ kgal gal
					mBBL BBL kBBL ACRF
24		Total rate	0.000 to 999999.999	0.000	[(8) Unit]
25		F: Total preset	0.000 to 99999999999999	0.000	[(8) Unit]
26	al	F: Total SW	0.000 to 999999999999999	0.000	[(8) Unit]
27	Tot	R: Total preset	0.000 to 99999999999999	0.000	[(8) Unit]
28		R: Total SW	0.000 to 99999999999999	0.000	[(8) Unit]
29		Output burnout	2 menus	Hold	Not used, Hold
30		Burnout timer	0 to 900sec	10 sec	sec
31		Pulse width 1	3 menus	50 ms	50, 100, 200
32		Pulse width 2	9 menus	50.0 ms	0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0,
52					100.0, 200.0
33		Flow sw low	In terms of flow velocity	0.00 m/s	[(19) Unit]
	ch		$0.00 \text{ to } \pm 32.00 \text{ m/s} (0.00 \text{ to})$	(0.00 ft/s)	
	wit		±104.98 ft/s)		
34	N S	Flow sw high	In terms of flow velocity	4.00 m/s	[(19) Unit]
	lov		$0.00 \text{ to } \pm 32.00 \text{ m/s} (0.00 \text{ to})$	(13.12 ft/s)	
25		El INZO	± 104.98 ft/s)	100/	0/
35		Flow sw HYS.	0 to 20%	10%	
		Output DO.1	15 menus	Not used	Not use, Signal error, F: Total pulse, B: Total pulse, E: Total alarm, B:
					Total alarm E: Total overflow R:
36					Total overflow Flow SW high
50					Flow SW Low, Full scale2, AO
					range over, Pulse range over, R:
					Flow direction, Device error
37		Mode DO.1	2 menus	Normal	Normal, Reverse
		Output DO.2	15 menus	Not used	Not use, Signal error, F: Total pulse,
	ıt				R: Total pulse, F: Total alarm, R:
	itpu				Total alarm, F: Total overflow, R:
38	00				Total overflow, Flow SW high,
	atus				Flow SW Low, Full scale2, AO
	Sta				range over, Pulse range over, R:
20		Mode DO 2	2 menus	Normal	Normal Reverse
37		Output DO 3	15 menus	Notused	Not used Signal error F. Total
		Sulpui DO.5	10 menus		pulse. R: Total pulse F. Total alarm
					R: Total alarm. F: Total overflow R.
40					Total overflow, Flow SW high,
					Flow SW Low, Full scale2, AO
					range over, Pulse range over, R:
					Flow direction, Device error
41		Mode DO.3	2 menus	Normal	Normal, Reverse

No.	Io. Setting item		ting item	Settable range	Initial value	Settable value
42		System unit		2 menus	Metric	Metric, English
43		Language		5 menus	English	Japanese, English, German, French, Spanish
44		Ŀ.	COM. speed	3 menus	38400 bps	9600 bps, 19200 bps, 38400 bps
45		on	COM. parity	3 menus	None	None, Even, Odd
46		al c	COM. stop bit	2 menus	1 bit	1bit, 2 bits
47	eri	eri	Serial method	2 menus	RS232C	RS232C, RS485
48	ш	S	StationNo.	31 menus	1	1 to 31
49	yste	nt	Measurement	2 menus	Depends on	1 Path, 2 Path
	Š.	ebom de en Sy			the detector specification.	
50		Measui mo	AO definition	3 menus	Depends on the detector specification.	Average, Line 1, Line 2
51		Sensor	Туре	4 menus	FSW12	FSW12, FSW21, FSW40, FSW50

Note 1: When total pulse output is selected for DO1, DO2, DO3, specify the total rate and the total pulse width that satisfy conditions 1 and 2 shown below.

Contidion 1:
$$\frac{\text{Flow rate span}^{*1}[\text{m}^3/\text{s}]}{\text{Total rate }[\text{m}^3]} \le \frac{1000 \text{ [Hz] [DO1 and DO2]}}{1 \text{ [Hz] [DO3]}}$$

Condition 2: $\frac{\text{Flow rate span}^{*1} [\text{m}^3/\text{s}]}{\text{Total rate } [\text{m}^3]} \leq \frac{1000}{2 \times \text{Total pulse width [ms]}}$

*) In the case of 2-range setting, calculate the total rate and the total pulse width, using the value of full scale 1 or full scale 2, whichever is larger.

8.5. Composition of key operation

PIPING SPECIFICATIONS	
$[FUNC] \Rightarrow [PIPE]$	
OUTER DIAMETER	
\vdash PIPE MATERIAL \neg	CARBON STEEL
	STAINLESS STEEL
	PVC
	COPPER
	CAST IRON
	PEEK
	PVDF
l F	ACRYLIC
	OTHERS
⊢ PIPE S.V.	Note: Displayed when "OTHERS" is selected from the pipe materials.
⊢ WALL THICKNESS	
	NO LINING
	TAR EPOXY
	MORIAR
	PTREX GLASS
	OTHERS
LINING S.V.	Note: Displayed when "OTHERS" is selected from the lining materials.
LINING T.	Note: Displayed when those other than "NO LINING" are selected
\vdash KIND OF FLUID \neg	WATER
	SEAWATER
	DISTILLED WATER
	AMMONIA
	ALCOHOL
	BENZENE
	GLYCOL
	KEROSENE
i F	MILK
	METHANOL
	TOLUENE
ļ ŀ	LUB. OIL
	FUEL OIL
	UTHERS
	Note. Displayed when OTHERS is selected as kind of IIUIO.

OUTPUT SETTING	
$[FUNC] \Rightarrow [RANGE]$ $\vdash RANGE UNIT$	⊤ m/s
	⊢ L/s ⊢ L/min
	⊢ kL/d
	⊢ ML/d ⊢ m³/s
	⊢ m³/min ⊢ m³/h
	$\vdash m^{3}/d$
	⊢ Mm³/d
	⊢ BBL/s ├ BBL/min
	⊢ BBL/h ⊢ BBL/d
	⊢ kBBL/d └─ MBBI/d
- RANGE TYPE	→ SINGLE RANGE → FULL SCALE
	$\begin{array}{c} \vdash \text{ AUTO 2 RANGE} & \neg \text{FULL SCALE 1} \\ \mid & \qquad \qquad$
	│
│ ├──OUTPUT LIMIT LOW	L BI-DIR AUTO 2 RANGE — Same as "AUTO 2 RANGE"
	+ HOLD
	F UPPER
│ ├ BURNOUT TIMER	ZERO Note: Displayed when those other than "NOT USED" are selected.
⊢ RATE LIMIT └─ RATE LIMIT TIMER	
DAMPING	
$[FUNC] \Longrightarrow [DAMP]$ $ L DAMPING$	
$\frac{\text{ZERO ADJUSTMENT}}{\text{[FLINC]} \rightarrow \text{[ZERO]}}$	
\Box ZERO ADJUSTMENT	
	- CLEAR
DISPLAY SETTING	
$[FUNC] \Rightarrow [DISP]$	
	TOTAL REVERSE
	F: TOTAL PULSE R: TOTAL PULSE
	FLOW RATE (%) VELOCITY
j L	FLOW RATE — 1: DISPLAY UNIT — L/s
	- L/h
	⊢ L/d
	⊢ ML/d ├ m³/s
	⊢ m³/min ⊢ m³/h
	⊢ m³/d ⊢ km³/d
	⊢ Mm ³ /d
	⊢ BBL/S ⊢ BBL/min
	⊢ BBL/h ├ BBL/d
	⊢ kBBL/d └ MBBL/d
2: DISPLAY KIND —	Same as "1: DISPLAY KIND."

SYSTEM [FUNC]

NC]	\Rightarrow [SYSTEM]			
+	- UNIT & LANGUAGE			METED
		- SETTING		⊥ INCH
į				- JAPANESE
				⊢ ENGLISH ⊢ GERMAN
				FRENCH
				└ SPANISH
i	COMMONICATION		T COM. SPEED	op 9600 bps
				 − 19200 bps − 38400 bps
İ				→ NONE
			- STOP BIT	⊤ 1 BIT
			 ⊢ SERIAI METHOD	└ 2 BITS ─ RS232C
				└ RS485
	- MAINTENANCE	- SKIP	└ STATION NO.	
		⊢ AO.1	- AO.1 ADJUST	<u>−</u> 4 mA
			│ └──AO.1 CHECK	└ 20 mA
į		⊢ DO.1	- DO.1 CHECK	⊤ OFF
		 ⊢ DO.2	— DO.2 CHECK	└ ON
İ				
		- DO.3	— DO.3 CHECK	
į		H WEDGE TEMP.	- ADJUST TEMP.	
				$_$ ADJUST $_$ SET 100Ω. $_$ SET 140Ω.
İ				
				┬ INPUT DATA
Г 	- MEASURE METHOD			
+	- SENSOR SPACING			
	MEASUREMENT MODE	T 1 PATH		
	- AO DEFINITION	└── 2 PATH ─── LINE 1		
İ		LINE 2	Note: Displayed when "2 PATH	I" is selected for MEASUREMENT MODE.
	- SENSOR TYPE	└── AVERAGE ── FLW11	Note: Displayed when "2 PATH Note: In the case of types "FLV	" is selected for MEASUREMENT MODE. V11" to "FLW51," displayed when
į		FLW41	"TIME DIFFERENCE" is	selected for MEASURE METHOD.
		⊢ FLW12 ⊢ FLD12		
į		FLD22		
		⊢ FLW32 ├ FLW50		
į		FLW51		
		⊢ FSW12 ⊢ FSW21		
į		FSW40		
	- SENSOR CONSTANT.	⊢ FSW50 ⊤ SKIP		
			⊢ LINE 1-R: METAL PIPE ⊢ LINE 1-F: PLASTIC PIPE	
Ì			LINE 1-R: PLASTIC PIPE	
			⊢ LINE 1-P ⊢ LINE 2-F: METAL PIPE	7
			LINE 2-R: METAL PIPE	Note: Displayed when "2 PATH" is selected.
			⊢ LINE 2-P: PLASTIC PIPE⊢ LINE 2-R: PLASTIC PIPE	
	TRANS VOLTAGE	20.1/22	LINE 2-P	
Г 	- TRANS. VOLTAGE	+ 20 vpp ├ 40 Vpp		
		⊢ 80 Vpp		
	- BACKLIGHT	T AUTO		
	- KEY LOCK			
		└ ON	- PASSWORD	- SKIP
L	- SYSTEM NAME			

DETAIL	Note	Int	tended for our se	∋rv	vice personnel onl	ly.			
[FUNC]	\Rightarrow [DETAIL]	т	SKIP						
ĺ		Ĺ	CHECK	T	MEASUREMENT BOARD	C			
ŀ	SETTING DATA	T L	NOT INITIALIZE						
	DAS	L	PARAMETER SAVE						
	RA3	+	RAS DETAIL						
+	TRANSIT TIME		SKIP						
				T	LINE 1	T	#: TRANS. COUNT	T	8
				ļ					16 32
								F	64 128
						 -	#: TRIGGER CONTROL	T	256 AUTO
								L	MANUAL └─ #: TRIGGER LEVEL
						+	#: WINDOW CONTROL	T	AUTO MANUAL
									├ #: OPEN TIME (F) └ #: OPEN TIME (R)
						+	#: SATURATION #: MEAS. METHOD	T	METHOD 1
Ì				Ì		Ì		F	METHOD 2 METHOD 3
Ì				į		+	#: SIGNAL BALANCE #: TRANS_PATTERN	_	BURST 1
				ļ				ŀ	BURST 3
				ļ				F	BURST 4
				ļ				ŀ	CHIRP 4
				ļ				L	RESERVE
				ļ			#: AGC GAIN	Ţ	MANUAL
				ļ					⊢ #: AGC LEVEL (F) └ #: AGC LEVEL (R)
				ļ		F	#: SIGNAL PEAK #: TRANS. WAIT TIME	Ť	2048 3071
								ŀ	4096 5120
L	PULSE DOPPLER	T	SKIP	L	LINE 2	_	Same as "LINE 1"		
		L	SETTING	T	WEDGE S.V.	T	AUTO MANUAL		
				- 	PIPE S.V.	T	AUTO MANUAL		
				+	LINING S.V.	T	AUTO MANUAL		
				+	FLUID S.V.	TL	AUTO MANUAL		
				+	TRANS. FREQUENCY	TL	AUTO MANUAL		
				+	TRANS. PULSE NO.	Ť	0 1		
						+	2 4		
						+	8 16		
				į		ŀ	32 64		
				ŀ	SAMPLING FREQ.	T			
				+	RECEPT. WAIT TIME	TL	AUTO		
				+	REPETITION FREQ.	T	AUTO		
				+	REFERENCE COUNT	T	4		
						Ĺ	 512		
					NO. OF CHANNELS	Ļ	MANUAL	Т 	16
								+	52 48
								+	64 80
								+	96 112
									128

⊢ MEAS. RANGE	T F RADIUS	
	⊢ N RADIUS	
⊢ PHASE ANGLE SHIFT	— NORMAL 1	
	⊢ NORMAL 2	
	- POSITIVE	
	NEGATIVE	
⊢ GAIN	op AUTO	
		\pm START GAIN
		└ END GAIN
└ LINE SELECTION	→ LINE 1-F	
	ĺ	SUCCESS RATE
	⊢ LINE 1-R	 — Same as "LINE 1-F"
	LINE 2-F	 — Same as "LINE 1-F"
	LINE 2-R	 Same as "LINE 1-F"

8.6. Piping data

Nominal			Nominal thickness								
diam	nitar	Outer	Schedule	Schedule	Schedule	Schedule	Schedule	Schedule	Schedule		
ulali	ietei	diameter	5S	10S	20S	40	80	120	160		
	D	mm	Thickness	Thickness	Thickness	Thickness	Thickness	Thickness	Thickness		
A	Б		mm	mm	mm	mm	mm	mm	mm		
15	1/2	21.7	1.65	2.1	2.5	2.9	3.9	-	5.5		
20	3/4	27.2	1.65	2.1	2.5	2.9	3.9	-	5.5		
25	1	34.0	1.65	2.8	3.0	3.4	4.5	-	6.4		
32	1 1/4	42.7	1.65	2.8	3.0	3.6	4.9	-	6.4		
40	1 1/2	48.6	1.65	2.8	3.0	3.7	5.1	-	7.1		
50	2	60.5	1.65	2.8	3.5	3.9	5.5	-	8.7		
65	2 1/2	76.3	2.1	3.0	3.5	5.2	7.0	-	9.5		
80	3	89.1	2.1	3.0	4.0	5.5	7.6	-	11.1		
90	3 1/2	101.6	2.1	3.0	4.0	5.7	8.1	-	12.7		
100	4	114.3	2.1	3.0	4.0	6.0	8.6	11.1	13.5		
125	5	139.8	2.8	3.4	5.0	6.6	9.5	12.7	15.9		
150	6	165.2	2.8	3.4	5.0	7.1	11.0	14.3	18.2		
200	8	216.3	2.8	4.0	6.5	8.2	12.7	18.2	23.0		
250	10	267.4	3.4	4.0	6.5	9.3	15.1	21.4	28.6		
300	12	318.5	4.0	4.5	6.5	10.3	17.4	25.4	33.3		
350	14	355.6	-	-	-	11.1	19.0	27.8	35.7		
400	16	406.4	-	-	-	12.7	21.4	30.9	40.5		
450	18	457.2	-	-	-	14.3	23.8	34.9	45.2		
500	20	508.0	-	-	-	15.1	26.2	38.1	50.0		
550	22	558.8	-	-	-	15.9	28.6	41.3	54.0		
600	24	609.6	-	-	-	17.5	34.0	46.0	59.5		
650	26	660.4	-	-	-	18.9	34.0	49.1	64.2		

Stainless steel pipe for pipe arrangement (JIS G3459-1988)

Polyethylene pipe for city water (JIS K6762-1982)

Nominal	Outer	1st t (Soft j	ype pipe)	2nd type (Hard pipe)		
(mm)	(mm)	Thickness	Weight	Thickness	Weight	
(mm)		(mm)	(kg/m)	(mm)	(kg/m)	
13	21.5	3.5	0.184	2.5	0.143	
20	27.0	4.0	0.269	3.0	0.217	
25	34.0	5.0	0.423	3.5	0.322	
30	42.0	5.5	0.586	4.0	0.458	
40	48.0	6.5	0.788	4.5	0.590	
50	60.0	8.0	1.210	5.0	0.829	

Galvanized steel pipe for city water SGPW (JIS G3442-1988)

Nominal	diameter	Outer	Thickness
(A)	(B)	diameter	(mm)
		(mm)	
15	1/2	21.7	2.8
20	3/4	27.2	2.8
25	1	34.0	3.2
32	1 1/4	42.7	3.5
40	1 1/2	48.6	3.5
50	2	60.5	3.8
65	2 1/2	76.3	4.2
80	3	89.1	4.2
90	3 1/2	101.6	4.2
100	4	114.3	4.5
125	5	139.8	4.5
150	6	165.2	5.0
200	8	216.3	5.8
250	10	267.4	6.6
300	12	318.5	6.9

Asbestos cement pipe for city water (JIS A5301-1971)

	1st	type	2nd	type	3rd	type	4th	type
Nominal	Thickness	Outer	Thickness	Outer	Thickness	Outer	Thickness	Outer
diamatar	of	diameter of	of	diameter of	of	diameter of	of	diameter of
(mm)	connected	connected	connected	connected	connected	connected	connected	connected
(IIIII)	part	part	part	part	part	part	part	part
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
50	10	70	-	-	-	-	-	-
75	10	95	-	-	-	-	-	-
100	12	124	10	120	9	118	-	-
125	14	153	11	147	9.5	144	-	-
150	16	182	12	174	10	170	-	-
200	21	242	15	230	13	226	11	222
250	23	296	19	288	15.5	281	12	274
300	26	352	22	344	18	336	14	328
350	30	410	25	400	20.5	391	16	382
400	35	470	29	458	23	446	18	436
450	39	528	32	514	26	502	20	490
500	43	586	35	570	28.5	557	22	544
600	52	704	42	684	34	668	26	652
700	-	-	49	798	39	778	30	760
800	-	-	56	912	44	888	34	868
900	-	-	-	-	49	998	38	976
1000	-	-	-	-	54	1108	42	1084
1100	-	-	-	-	59	1218	46	1192
1200	-	-	-	-	65	1330	50	1300
1300	-	-	-	-	73	1496	57	1464
1500	-	-	-	-	81	1662	63	1626

Polyethylene pipe for general use (JIS K6761-1979)

		1st type	2nd type
N 1	Outer	(Soft pipe)	(Hard pipe)
Nominal	diameter	Thickness of	Thickness of
ulainetei	(mm)	pipe	pipe
		(mm)	(mm)
13	21.5	2.7	2.4
20	27.0	3.0	2.4
25	34.0	3.0	2.6
30	42.0	3.5	2.8
40	48.0	3.5	3.0
50	60.0	4.0	3.5
65	76.0	5.0	4.0
75	89.0	5.5	5.0
100	114	6.0	5.5
125	140	6.5	6.5
150	165	7.0	7.0
200	216	8.0	8.0
250	267	9.0	9.0
300	318	10.0	10.0

Hi vinyl chloride pipe (city water pipe size)

Nominal	Outer	Thickness
diameter	diameter	of pipe
13	18.0	2.5
20	26.0	3.0
25	32.0	3.5
30	38.0	3.5
40	48.0	4.0
50	60.0	4.5
75	89.0	5.8
100	114.0	7.0
125	140.0	7.5
150	165.0	8.5

Hi vinyl chloride pipe (conduit size)

Nominal	Outer	Thickness
diameter	diameter	of pipe
28	34.0	3.0
35	42.0	3.5
41	48.0	3.5
52	60.0	4.0
65	76.0	4.5
78	89.0	5.5

Vertical cast iron pipe (JIS G5521)

Carbon steel pipe for pipe arrangement		
(JIS G3452-1988)		

	Thic		
Nominal	(1	Г)	Actual outer
diameter	Normal	Low	diameter
(D)	pressure	pressure	(D1)
	pipe	pipe	
75	9.0	-	93.0
100	9.0	-	118.0
150	9.5	9.0	169.0
200	10.0	9.4	220.0
250	10.8	9.8	271.6
300	11.4	10.2	322.8
350	12.0	10.6	374.0
400	12.8	11.0	425.6
450	13.4	11.5	476.8
500	14.0	12.0	528.0
600	15.4	13.0	630.8
700	16.5	13.8	733.0
800	18.0	14.8	836.0
900	19.5	15.5	939.0
1000	22.0	-	1041.0
1100	23.5	-	1144.0
1200	25.0	-	1246.0
1350	27.5	-	1400.0
1500	30.0	-	1554.0

(JIS (G3452-1988)				
Nominal	Nominal diameter		Thickness	
(A)	(B)	(mm)	(mm)	
15	1/2	21.7	2.8	
20	3/4	27.2	2.8	
25	1	34.0	3.2	
32	1 1/4	42.7	3.5	
40	1 1/2	48.6	3.5	
50	2	60.5	3.8	
65	2 1/2	76.3	4.2	
80	3	89.1	4.2	
90	3 1/2	101.6	4.2	
100	4	114.3	4.5	
125	5	139.8	4.5	
150	6	165.2	5.0	
175	7	190.7	5.3	
200	8	216.3	5.8	
225	9	241.8	6.2	
250	10	267.4	6.6	
300	12	318.5	6.9	
350	14	355.6	7.9	
400	16	406.4	7.9	
450	18	457.2	7.9	
500	20	508.0	7.9	

Hard vinyl chloride pipe (JIS K6741-1984)

Туре	V	VР	VU	
	Actual		Actual	
Nominal	outer	Thickness	outer	Thickness
diameter 🔪	diameter		diameter	
13	18	2.2	-	-
16	22	2.7	-	-
20	26	2.7	-	-
25	32	3.1	-	-
30	38	3.1	-	-
40	48	3.6	48	1.8
50	60	4.1	60	1.8
65	76	4.1	76	2.2
75	89	5.5	89	2.7
100	114	6.6	114	3.1
125	140	7.0	140	4.1
150	165	8.9	165	5.1
200	216	10.3	216	6.5
250	267	12.7	267	7.8
300	318	15.1	318	9.2
350	-	-	370	10.5
400	-	-	420	11.8
450	-	-	470	13.2
500	-	-	520	14.6
600	-	-	630	17.8
700	-	-	732	21.0
800	-	-	835	23.9

Coated steel pipe for city water PTPW (JIS G3443-1968)

r		1
Nominal diameter	Actual outer diameter	Thickness
(A)	(mm)	(mm)
80	89.1	4.2
100	114.3	4.5
125	139.8	4.5
150	165.2	5.0
200	216.3	5.8
250	267.4	6.6
300	318.5	6.9
350	355.6	6.0
400	406.4	6.0
450	457.2	6.0
500	508.0	6.0
600	609.6	6.0
700	711.2	6.0
800	812.8	7.1
900	914.4	7.9
1000	1016.0	8.7
1100	1117.6	10.3
1200	1219.2	11.1
1350	1371.6	11.9
1500	1524.0	12.7

	Coated steel	pipe for	city water	STW (JI	S G3443-1987)
--	--------------	----------	------------	---------	---------------

		Symbol for type				Symbol for type			
			4	STV	V 41		STW 400		/ 400
		STW 30	STW 38	Nominal	thickness	STW 290	STW 370	Nominal	thickness
Nominal	Outer			А	В			А	В
diameter	diameter	Thickness	Thickness	Thickness	Thickness	Thickness	Thickness	Thickness	Thickness
А	mm	mm	mm	mm	mm	mm	mm	mm	mm
80	89.1	4.2	4.5	-	-	4.2	4.5	-	-
100	114.3	4.5	4.9	-	-	4.5	4.9	-	-
125	139.8	4.5	5.1	-	-	4.5	5.1	-	-
150	165.2	5.0	5.5	-	-	5.0	5.5	-	-
200	216.3	5.8	6.4	-	-	5.8	6.4	-	-
250	267.4	6.6	6.4	-	-	6.6	6.4	-	-
300	318.5	6.9	6.4	-	-	6.9	6.4	-	-
350	355.6	-	-	6.0	-	-	-	6.0	-
400	406.4	-	-	6.0	-	-	-	6.0	-
450	457.2	-	-	6.0	-	-	-	6.0	-
500	508.0	-	-	6.0	-	-	-	6.0	-
600	609.6	-	-	6.0	-	-	-	6.0	-
700	711.2	-	-	7.0	6.0	-	-	7.0	6.0
800	812.8	-	-	8.0	7.0	-	-	8.0	7.0
900	914.4	-	-	8.0	7.0	-	-	8.0	7.0
1000	1016.0	-	-	9.0	8.0	-	-	9.0	8.0
1100	1117.6	-	-	10.0	8.0	-	-	10.0	8.0
1200	1219.2	-	-	11.0	9.0	-	-	11.0	9.0
1350	1371.6	-	-	12.0	10.0	-	-	12.0	10.0
1500	1524.0	-	-	14.0	11.0	-	-	14.0	11.0
1600	1625.6	-	-	15.0	12.0	-	-	15.0	12.0
1650	1676.4	-	-	15.0	12.0	-	-	15.0	12.0
1800	1828.8	-	-	16.0	13.0	-	-	16.0	13.0
1900	1930.4	-	-	17.0	14.0	-	-	17.0	14.0
2000	2032.0	-	-	18.0	15.0	-	-	18.0	15.0
2100	2133.6	-	-	19.0	16.0	-	-	19.0	16.0
2200	2235.2	-	-	20.0	16.0	-	-	20.0	16.0
2300	2336.8	-	-	21.0	17.0	-	-	21.0	17.0
2400	2438.4	-	-	22.0	18.0	-	-	22.0	18.0
2500	2540.0	-	-	23.0	18.0	-	-	23.0	18.0
2600	2641.6	-	-	24.0	19.0	-	-	24.0	19.0
2700	2743.2	-	-	25.0	20.0	-	-	25.0	20.0
2800	2844.8	-	-	26.0	21.0	-	-	26.0	21.0
2900	2946.4	-	-	27.0	21.0	-	-	27.0	21.0
3000	3048.0	-	-	29.0	22.0	-	-	29.0	22.0

Centrifugal nodular graphite cast iron pipe for city water (A type) (JWWA G-105-1971) Centrifugal nodular graphite cast iron pipe for city water (K type) (JWWA G-105-1971)

	Tl	Actual		
Nominal		Т		outer
diameter				diameter
D	1st type	2nd type	3rd type	D1
75	7.5	-	6.0	93.0
100	7.5	-	6.0	118.0
150	9.5	-	6.0	169.0
200	7.5	-	6.0	220.0
250	7.5	-	6.0	271.6
300	7.5	-	6.5	332.8
350	7.5	-	6.5	374.0
400	8.5	7.5	7.0	425.6
450	9.0	8.0	7.5	476.8
500	9.5	8.5	7.0	528.0

	T	Actual		
Nominal		Т	-	outer
diameter				diameter
D	1st type	2nd type	3rd type	D1
400	8.5	7.5	7.0	425.6
450	9.0	8.0	7.5	476.8
500	9.5	8.5	8.0	528.0
600	11.0	10.0	9.0	630.8
700	12.0	11.0	10.0	733.0
800	13.5	12.0	11.0	836.0
900	15.0	13.0	12.0	939.0
1000	16.5	14.5	13.0	1041.0
1100	18.0	15.5	14.0	1144.0
1200	19.5	17.0	15.0	1246.0
1350	21.5	18.5	16.5	1400.0
1500	23.5	20.5	18.0	1554.0

				Nominal	thickness	
		Outer	Schedule	Schedule	Schedule	Schedule
Nominal	diameter	diameter	5S	10S	20S	40S
			Thickness	Thickness	Thickness	Thickness
А	В	mm	mm	mm	mm	mm
150	6	165.2	2.8	3.4	5.0	7.1
200	8	216.3	3.4	4.0	6.5	9.3
250	10	267.4	4.0	4.5	6.5	10.3
350	14	355.6	4.0	5.0	8.0	11.1
400	16	406.4	4.5	5.0	8.0	12.7
450	18	457.2	4.5	5.0	8.0	14.3
500	20	508.0	5.0	5.5	9.5	15.1
550	22	558.8	5.0	5.5	9.5	15.1
600	24	609.6	5.5	6.5	9.5	17.5
650	26	660.4	5.5	8.0	12.7	17.5
700	28	711.2	5.5	8.0	12.7	17.5
750	30	762.0	6.5	8.0	12.7	17.5
800	32	812.8	-	8.0	12.7	17.5
850	34	863.6	-	8.0	12.7	17.5
900	36	914.1	-	8.0	12.7	19.1
1000	40	1016.0	-	9.5	14.3	26.2

Arc welded large-diameter stainless steel pipe for pipe arrangement (JIS G3468-1988)

Ductile iron specials

Nominal diameter	Thickness
(mm)	(mm)
75	8.5
100	8.5
150	9.0
200	11.0
250	12.0
300	12.5
350	13.0
400	14.0
450	14.5
500	15.0
600	16.0
700	17.0
800	18.0
900	19.0
1000	20.0
1100	21.0
1200	22.0
1350	24.0
1500	26.0
1600	27.5
1650	28.0
1800	30.0
2000	32.0
2100	33.0
2200	34.0
2400	36.0

Dimensions of centrifugal sand mold cast iron pipe (JIS G5522)

(JIS (JS22)								
	Th							
	High	Normal	Low	Actual				
Nominal	pressure	pressure	pressure	outer				
diameter	pipe	pipe	pipe	diameter				
75	9.0	7.5	-	93.0				
100	9.0	7.5	-	118.0				
125	9.0	7.8	-	143.0				
150	9.5	8.0	7.5	169.0				
200	10.0	8.8	8.0	220.0				
250	10.8	9.5	8.4	271.6				
300	11.4	10.0	9.0	322.8				
350	12.0	10.8	9.4	374.0				
400	12.8	11.5	10.0	425.6				
450	13.4	12.0	10.4	476.8				
500	14.0	12.8	11.0	528.0				
600	-	14.2	11.8	630.8				
700	-	15.5	12.8	733.0				
800	-	16.8	13.8	836.0				
900	-	18.2	14.8	939.0				

Dimensions of centrifugal mold cast iron pipe (JIS G5523 1977)

(315 (35525 1) + +)							
	Thicknes	ss of pipe					
	High	Normal					
Nominal	pressure	pressure	Actual outer				
diameter	pipe	pipe	diameter				
75	9.0	7.5	93.0				
100	9.0	7.5	118.0				
125	9.0	7.8	143.0				
150	9.5	8.0	169.0				
200	10.0	8.8	220.0				
250	10.8	9.5	271.6				
300	11.4	10.0	322.8				

Cast iron pipe for waste water (JIS G5525)

		Actual	Actual
	Thickness	inner	outer
Nominal	of pipe	diameter	diameter
diameter	Т	D_1	D_2
50	6.0	50	62
65	6.0	65	77
75	6.0	74	87
100	6.0	100	112
125	6.0	125	137
150	6.0	150	162
200	7.0	200	214

Arc welded carbon steel pipe (JIS G3457-1976)

	Unit: kg/									: kg/m					
Nor	ninal	Thickness of													
diam	neter	pipe (mm)	()	<i>C</i> A	7 1	7.0	07	0.5	10.2	11.1	11.0	10.7	12.1	1.5.1	15.0
		Outer	6.0	6.4	/.1	7.9	8.7	9.5	10.3	11.1	11.9	12.7	13.1	15.1	15.9
(A)	(B)	diamatar (mm)													
250	1.4		C1 7	CC 1	(1.0	(77									
350	14	355.6	51.7	55.1	61.0	67.7									
400	16	406.4	59.2	63.1	66.9	77.6									
450	18	457.2	66.8	71.1	78.8	87.5									
500	20	508.0	74.3	79.2	87.7	97.4	107	117							
550	22	558.8	81.8	87.2	96.6	107	118	129	139	150	160	171			
600	24	609.6	89.0	95.2	105	117	127	141	152	164	175	187			
650	26	660.4	96.8	103	114	127	140	152	165	178	190	203			
700	28	711.2	104	111	123	137	151	164	178	192	205	219			
750	30	762.0		119	132	147	162	176	191	206	220	235			
800	32	812.8		127	141	157	173	188	204	219	235	251	258	297	312
850	34	863.6		135		167	183	200	219	233	250	266	275	315	332
900	36	914.4		143		177	194	212	230	247	265	282	291	335	352
1000	40	1016.0				196	216	236	255	275	295	314	324	373	392
1100	44	1117.6						260	281	303	324	346	357	411	432
1200	48	1219.2						283	307	331	354	378	390	448	472
1350	54	1371.6									399	426	439	505	532
1500	60	1524.0									444	473	488	562	591
1600	64	1625.6											521	600	631
1800	72	1828.8											587	675	711
2000	80	2032.0												751	799

Hard vinyl chloride pipe for city water (JIS K6742-1975)

Nominal	Outer	Thickness
diameter	diameter	of pipe
13	18	2.5
20	26	3.0
25	32	3.5
30	38	3.5
40	48	4.0
50	60	4.5
75	89	5.9
100	114	7.1
150	165	9.6

PVDF-HP							
	SE	SDR33 SDR21 SI		SDR21		DR17	
	S16	PN10	S10	PN16	S 8	PN20	
Outer diameter	Thic	kness	Thic	kness	Thickness		
(mm)	(n	nm)	(n	nm)	(1	nm)	
20			1	1.9		1.9	
25			1	1.9		1.9	
32			2	2.4		2.4	
40			2	2.4	-	2.4	
50			2	3.0		3.0	
63	2	2.5	3.0				
75	2	2.5	3.6				
90	2	2.8	4.3				
110	-	3.4	5.3				
125	-	3.9	6.0				
140	4	4.3	6.7				
160	4	1.9	7.7				
180	4	5.5	8	8.6			
200	6.2		9	9.6			
225	6.9		1	10.8			
250	7.7		11.9				
280	8	3.6	13.4				
315	Ģ	9.7	1	5.0			

T°C	V m/s	T°C	V m/s	T°C	V m/s	T∘C	V m/s
0	1402.74						
1	1407.71	26	1499.64	51	1543.93	76	1555.40
2	1412.57	27	1502.20	52	1544.95	77	1555.31
3	1417.32	28	1504.68	53	1545.92	78	1555.18
4	1421.98	29	1507.10	54	1546.83	79	1555.02
5	1426.50	30	1509.44	55	1547.70	80	1554.81
6	1430.92	31	1511.71	56	1548.51	81	1554.57
7	1435.24	32	1513.91	57	1549.28	82	1554.30
8	1439.46	33	1516.05	58	1550.00	83	1553.98
9	1443.58	34	1518.12	59	1550.68	84	1553.63
10	1447.59	35	1520.12	60	1551.30	85	1553.25
11	1451.51	36	1522.06	61	1551.88	86	1552.82
12	1455.34	37	1523.93	62	1552.42	87	1552.37
13	1459.07	38	1525.74	63	1552.91	88	1551.88
14	1462.70	39	1527.49	64	1553.35	89	1551.35
15	1466.25	40	1529.18	65	1553.76	90	1550.79
16	1469.70	41	1530.80	66	1554.11	91	1550.20
17	1473.07	42	1532.37	67	1554.43	92	1549.58
18	1476.35	43	1533.88	68	1554.70	93	1548.92
19	1479.55	44	1535.33	69	1554.93	94	1548.23
20	1482.66	45	1536.72	70	1555.12	95	1547.50
21	1485.69	46	1538.06	71	1555.27	96	1546.75
22	1488.63	47	1539.34	72	1555.37	97	1545.96
23	1491.50	48	1540.57	73	1555.44	98	1545.14
24	1494.29	49	1541.74	74	1555.47	99	1544.29
25	1497.00	50	1542.87	75	1555.45	100	1543.41

(a) Velocity of sound subject to change f temperature of water (0 to 100°C)

Note) T: Temperature, V: Velocity of sound

(b)	Sound	velocity	and o	density	of vari	ous liqu	ids
٦	\boldsymbol{v}_{j}	Dound	verocity	una v	actioncy	or vuri	ous nqu	ius

	T°C	$\rho g/cm^3$	V m/s
Acetone	20	0.7905	1190
Aniline	20	1.0216	1659
Alcohol	20	0.7893	1168
Ether	20	0.7135	1006
Ethylene glycol	20	1.1131	1666
n-Octane	20	0.7021	1192
o-Xylol	20	0.871	1360
Chloroform	20	1.4870	1001
Chlorobenzene	20	1.1042	1289
Glycerin	20	1.2613	1923
Acetic acid	20	1.0495	1159
Methyl acetate	20	0.928	1181
Ethyl acetate	20	0.900	1164
Cyclohexane	20	0.779	1284
Dioxane	20	1.033	1389
Heavy water	20	1.1053	1388
Carbon tetrachloride	20	1.5942	938
Mercury	20	13.5955	1451
Nitrobenzene	20	1.207	1473
Carbon bisulfide	20	1.2634	1158
Bromoform	20	2.8904	931
n-propyl alcohol	20	0.8045	1225
n-pentane	20	0.6260	1032
n-hexane	20	0.654	1083
Diesel oil	25	0.81	1324
Transformer oil	32.5	0.859	1425
Spindle oil	32	0.905	1342
Petroleum	34	0.825	1295
Gasoline	34	0.803	1250
Water	13.5	1.	1460
Seawater	16	1.	1510
(Salt content 3.5%)			
37			

(c) Sound velocity by piping material

Material	V m/s
Iron	3230
Steel	3206
Ductile cast iron	3000
Cast iron	2460
Stainless steel	3206
Copper	2260
Lead	2170
Aluminum	3080
Brass	2050
Polyvinyl chloride	2640
Acrylic	2644
FRP	2505
Mortar	2500
Tar epoxy	2505
Polyethylene	1900
Teflon	1240

Note) V: sound velocity

Note)

T: temperature, ρ : density V: sound velocity

(d) Dynamic viscosity coefficient of various liquids

Fluid	Т∘С	$\rho g/cm^3$	V m/s	$v (\times 10^{-6} \text{m}^2/\text{s})$
Acetone	20	0.7905	1190	0.407
Aniline	20	1.0216	1659	1.762
Ether	20	0.7135	1006	0.336
Ethylene glycol	20	1.1131	1666	21.112
Chloroform	20	1.4870	1001	0.383
Glycerin	20	1.2613	1923	11.885
Acetic acid	20	1.0495	1159	1.162
Methyl acetate	20	0.928	1181	0.411
Ethyl acetate	20	0.900	1164	0.499
Heavy water	20	1.1053	1388	1.129
Carbon tetrachloride	20	1.5942	938	0.608
Mercury	20	13.5955	1451	0.114
Nitrobenzene	20	1.207	1473	1.665
Carbon bisulfide	20	1.2634	1158	0.290
n-pentane	20	0.6260	1032	0.366
n-hexane	20	0.654	1083	0.489
Spindle oil	32	0.905	1324	15.7
Gasoline	34	0.803	1250	0.4 to 0.5
Water	13.5	1.	1460	1.004 (20°C)

Note) T: Temperature, p: density, V: sound velocity, v: viscosity

8.7. Making gauge paper

(1) Provide a sheet of paper (or vinyl) having the length of 4D and width of 200 mm (D if possible) or longer, with long sides parallel to each other.

(2) Draw a line that intersects with the long sides at right angles at a place about 100 mm from one end.

Fuji Electric Systems Co., Ltd.

Sales Div. III, International Sales Group Global Business Group

Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome, Shinagawa-ku, Tokyo 141-0032, Japan http://www.fesys.co.jp/eng http://www.fic-net.jp/eng Phone: 81-42-585-6201, 6202 Fax: 81-42-585-6187