
W 3.5
Component Software Engineering

 User’s Guide for 16-Bit Processors

 Revision 1.0, October 2003

Part Number
 82-000035-02

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106 a

Copyright Information
© 2003 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, VisualDSP, the VisualDSP logo,
CROSS-CORE, the CROSSCORE logo, and EZ-KIT Lite are registered
trademarks of Analog Devices, Inc.

VisualDSP++ and the VisualDSP++ logo are trademarks of Analog
Devices, Inc.

Trademarks and registered trademarks are the property of their respective
owners.

VisualDSP++ 3.5 Component Software Engineering User’s Guide iii
for 16-bit Processors

CONTENTS

PREFACE

Purpose of This Manual .. xxv

Intended Audience .. xxv

Manual Contents ... xxvi

What’s New in This Manual ... xxviii

Technical or Customer Support .. xxviii

Supported Processors .. xxix

Product Information .. xxix

MyAnalog.com ... xxix

DSP Product Information .. xxx

Related Documents ... xxx

Online Documentation .. xxxi

From VisualDSP++ ... xxxii

From Windows ... xxxii

From the Web .. xxxiii

Printed Manuals ... xxxiii

VisualDSP++ Documentation Set xxxiii

Hardware Manuals ... xxxiv

Data Sheets .. xxxiv

CONTENTS

iv VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Contacting DSP Publications .. xxxiv

Notation Conventions ... xxxv

INTRODUCTION TO VCSE

Origin of Components ... 1-1

Software Components ... 1-4

Benefits of Components .. 1-6

VCSE Components .. 1-7

Component Software Engineering Concepts 1-8

VCSE Interfaces ... 1-8

Interface Example ... 1-9

VCSE Components .. 1-11

Component Example .. 1-13

Binary Standard Interface ... 1-15

Interface Definition Language and Compiler 1-17

Integration With VisualDSP++ ... 1-18

Component Projects ... 1-19

New Interface and Component Wizards 1-19

Component Packaging Wizard 1-20

Component Manager .. 1-21

Software Architecture ... 1-21

Rules and Guidelines .. 1-23

DEVELOPING AND USING VCSE COMPONENTS

Defining an Interface .. 2-3

VisualDSP++ 3.5 Component Software Engineering User’s Guide v
for 16-bit Processors

CONTENTS

Properties ... 2-11

Interface Properties ... 2-14

Creating Interface Implementation .. 2-17

C Component Instance Structure ... 2-20

C Interface Method Functions ... 2-23

C++ Interface Methods .. 2-25

Assembly Interface Methods .. 2-28

Advanced Component Construction .. 2-30

Method Language Selection ... 2-30

Method Placement .. 2-31

Distinct Components .. 2-32

Documenting Components ... 2-34

Testing Components ... 2-36

Testing Harnesses .. 2-36

Test Shell Components .. 2-40

Description of Generated Test Shell Component Files 2-42

Supporting Tools for Test Shell Components 2-43

Macros and Library Methods for Component Validation 2-43

__VCSE_STACKVARS(E,U) .. 2-44

__VCSE_STACKFILL(E) ... 2-44

__VCSE_STACKUSE(E,ADDR)) 2-45

Macros and Library Methods for Reporting Messages to the User
2-45

The VCSE::CTestReport Component 2-49

Packaging Components ... 2-50

CONTENTS

vi VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Manifest Commands .. 2-51

Adding a File to the Package .. 2-52

Overriding File Actions ... 2-53

Adding Licensing Terms ... 2-55

Using Modifiable Sections .. 2-56

Component Factory Source File ... 2-56

Component Methods Source File ... 2-57

Component Instance Header File for C/Assembly 2-58

Component Instance Header File for C++ 2-58

Component Factory Header File .. 2-59

Component Package Manifest File ... 2-59

Test Shell Component User-Modifiable Sections 2-59

Component Global Settings .. 2-60

Interface Member Function ... 2-60

Using Components ... 2-60

Creating Component Instances .. 2-61

VCSE Memory Allocators ... 2-64

VCSE::CSimpleMemory ... 2-64

VCSE::CInstMemory ... 2-65

Using Interface Pointers in C or Assembly 2-67

Using Interface Pointers in C++ ... 2-69

Destroying Components ... 2-70

Implementation of GetInterface Method 2-71

VCSE Optimizations ... 2-72

VisualDSP++ 3.5 Component Software Engineering User’s Guide vii
for 16-bit Processors

CONTENTS

Method Call Overhead .. 2-72

Preventing Code and Data Elimination 2-73

Standard Method Functions .. 2-73

Improving Program Efficiency ... 2-74

VCSE Algorithms .. 2-77

Aggregating Components .. 2-80

Implementation of Aggregation .. 2-81

Company Namespace Registration ... 2-87

STANDARD INTERFACES

IMemory Interface .. 3-2

IMemory and Component Instance Creation 3-3

IMemory Interface Definition .. 3-6

Type and Enumeration Descriptions .. 3-7

MemRequest ... 3-7

TypeFlags .. 3-9

LifetimeFlags .. 3-10

Context .. 3-11

Method Descriptions ... 3-12

Allocate .. 3-12

Free .. 3-14

IAlgorithm Interface ... 3-14

IAlgorithm Interface Definition ... 3-15

Method Descriptions ... 3-16

Reset .. 3-16

CONTENTS

viii VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Activate .. 3-16

Deactivate .. 3-17

SetAlgorithmErrorInterface ... 3-17

Valid Sequence of Method Calls .. 3-18

IAlgorithm2 Interface ... 3-18

IAlgorithm2 Memory Concept .. 3-21

IAlgorithm2 Interface Definition ... 3-23

Method Descriptions .. 3-24

AssignMemoryResources ... 3-24

ConfigureMemorySwapper ... 3-25

Properties ... 3-26

MemorySwapper ... 3-26

Valid Sequence of Method Calls .. 3-26

IMemorySwapper Interface ... 3-28

IMemorySwapper Interface Definition 3-29

Method Descriptions .. 3-31

Initialize ... 3-31

Swap .. 3-32

Properties ... 3-32

SwapStatus ... 3-32

Intended Use .. 3-33

IInstanceFactory Interface ... 3-33

IInstanceFactory Interface Definition 3-34

Method Descriptions .. 3-35

VisualDSP++ 3.5 Component Software Engineering User’s Guide ix
for 16-bit Processors

CONTENTS

RequestInterface ... 3-36

ReleaseInterface .. 3-36

Example of Use ... 3-36

IError Interface ... 3-37

IError Interface Definition ... 3-38

Method Descriptions ... 3-39

Error .. 3-39

ITestReport Interface .. 3-39

ITestReport Interface Definition .. 3-40

Method Descriptions ... 3-41

AddString ... 3-42

AddStringWithNumber ... 3-42

AddStringWithNumbers ... 3-42

DumpAllMessages ... 3-43

IName Interface .. 3-43

IName Interface Definition .. 3-44

Method Descriptions ... 3-44

SetName ... 3-44

GetName .. 3-45

GetLength .. 3-46

VIDL LANGUAGE REFERENCE

Understanding Syntax Diagrams .. 4-2

Lexical Elements ... 4-4

Character Sequences .. 4-4

CONTENTS

x VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

White Space .. 4-5

Comments .. 4-5

Preprocessing .. 4-6

VIDL Language Tokens ... 4-7

Names .. 4-7

Keywords ... 4-8

Punctuation .. 4-9

Operators ... 4-9

Numeric Literals ... 4-9

Integer Literals ... 4-10

Real Literals .. 4-11

String Literals ... 4-11

Named Elements .. 4-13

Element Attributes ... 4-16

Constant Expressions .. 4-18

Types ... 4-21

Base Types .. 4-22

Enum Types .. 4-22

Structure Types ... 4-24

Interface Types .. 4-26

Type Specifiers and Definitions ... 4-27

Declarators ... 4-28

Interfaces .. 4-29

Methods ... 4-33

VisualDSP++ 3.5 Component Software Engineering User’s Guide xi
for 16-bit Processors

CONTENTS

Method Attributes ... 4-33

local attribute ... 4-33

Method Parameters .. 4-34

Parameter Attributes ... 4-35

in Attribute ... 4-36

out Attribute ... 4-36

size_is Attribute .. 4-37

string Attribute ... 4-39

shared Attribute .. 4-41

alias Attribute ... 4-41

bank Attribute .. 4-42

align Attribute .. 4-43

document Statement ... 4-44

Properties ... 4-45

Property Attributes .. 4-46

get Attribute ... 4-47

set Attribute .. 4-48

align Attribute .. 4-49

Components ... 4-49

Component Attributes ... 4-53

aggregatable Attribute ... 4-54

category Attribute ... 4-54

common Attribute .. 4-55

company Attribute .. 4-56

CONTENTS

xii VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

distinct Attribute .. 4-56

info Attribute ... 4-58

needs Attribute ... 4-58

requires Attribute ... 4-59

singleton Attribute .. 4-61

supplies Attribute ... 4-61

title Attribute ... 4-62

version Attribute ... 4-62

Additional Statements ... 4-63

distinct statement ... 4-64

place statement ... 4-65

language statement ... 4-66

Namespaces .. 4-68

use Attribute ... 4-71

Auto-doc Comments .. 4-72

Specifications ... 4-76

Generated Test Shells .. 4-77

Overview .. 4-78

Syntax Structure .. 4-81

Syntax Rules ... 4-81

specification ... 4-83

method_dcl .. 4-83

test_arg_list .. 4-84

interface_dcl ... 4-84

VisualDSP++ 3.5 Component Software Engineering User’s Guide xiii
for 16-bit Processors

CONTENTS

Syntax and Semantics .. 4-85

stack_usage ... 4-86

Syntax ... 4-86

Description ... 4-86

mem_shell .. 4-87

Syntax ... 4-87

Description ... 4-88

timing .. 4-88

Syntax ... 4-88

Description ... 4-88

in_assert ... 4-89

Syntax ... 4-89

Description ... 4-89

out_assert ... 4-90

Syntax ... 4-90

Description ... 4-90

algorithm_model .. 4-91

Syntax ... 4-91

Description ... 4-91

aliasing_check ... 4-92

Syntax ... 4-92

Description ... 4-92

array_check ... 4-93

Syntax ... 4-93

CONTENTS

xiv VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Description .. 4-93

states_used ... 4-94

Syntax .. 4-94

Description .. 4-94

init_state .. 4-95

Syntax .. 4-95

Description .. 4-95

requires_state ... 4-96

Syntax .. 4-96

Description .. 4-96

sets_state .. 4-97

Syntax .. 4-97

Description .. 4-97

reset_to_state ... 4-98

Syntax .. 4-98

Description .. 4-98

clear_state .. 4-99

Syntax .. 4-99

Description .. 4-99

VIDL COMPILER COMMAND LINE INTERFACE

Running VIDL Compiler ... 5-1

VIDL Compiler Switches .. 5-4

-@ filename .. 5-8

-accept-any-include-file .. 5-8

VisualDSP++ 3.5 Component Software Engineering User’s Guide xv
for 16-bit Processors

CONTENTS

-all-idl .. 5-8

-asm ... 5-9

-c++ .. 5-9

-copyright filename ... 5-9

-cppflags flags ... 5-9

-Dmacro[=definition] .. 5-10

-dryrun ... 5-10

-embedded .. 5-10

-generic .. 5-10

-harness .. 5-11

-hdr .. 5-11

-h[elp] .. 5-11

-Idirectory [{,|;} directory…] ... 5-12

-M .. 5-12

-MM .. 5-12

-lghtwt .. 5-13

-mcd ... 5-13

-no-adoc ... 5-13

-no-shell ... 5-13

-no-vla .. 5-14

-no-xml .. 5-14

-overwrite ... 5-14

-path-[cpp|fe|pr|be] path ... 5-14

-path-def path ... 5-14

CONTENTS

xvi VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

-path-html directory ... 5-15

-path-install directory ... 5-15

-path-output directory .. 5-15

-path-temp directory ... 5-15

-proc processorID ... 5-15

Blackfin Processor Switches ... 5-16

21xx Processor Switches .. 5-16

-save-temps .. 5-18

-shell-only .. 5-19

-si-revision <revision> ... 5-19

-states-verbose-errors .. 5-19

-trace .. 5-19

-Umacro ... 5-20

-umb-verbose ... 5-20

-validate-memory ... 5-20

-v[ersion] ... 5-20

-verbose .. 5-21

Processing VIDL Files ... 5-22

File Organization .. 5-22

File Names ... 5-23

Start-of-File Comments .. 5-23

End-of-File Comments ... 5-23

Header Files Guards ... 5-24

Language Identifications ... 5-24

VisualDSP++ 3.5 Component Software Engineering User’s Guide xvii
for 16-bit Processors

CONTENTS

Standard Files .. 5-24

Contents of vcse.h ... 5-25

Contents of vcse_asm.h ... 5-27

Contents of VCSE_IBase.h ... 5-28

Generated Source Files ... 5-28

Interface Definitions ... 5-29

Component Definitions .. 5-31

C Based Components .. 5-32

C++ Based Components .. 5-33

Assembly Based Components .. 5-34

Component Documentation Files 5-35

Component Manifest File .. 5-36

Test Shell Files .. 5-36

VCSE RULES AND GUIDELINES

Summary .. 6-2

Programming .. 6-6

Resource Allocation ... 6-6

Processor Usage ... 6-9

Registers and Stack .. 6-9

Interrupt System and Re-entrancy 6-10

Processor Modes ... 6-13

Core Peripherals .. 6-14

Packaging ... 6-14

Name Clashes .. 6-14

CONTENTS

xviii VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Address Clashes ... 6-15

Memory and Processing Characteristics 6-16

Memory ... 6-16

Processing .. 6-17

Non-memory Resource Requirements 6-17

Code and Data Elimination ... 6-18

Addressing Models .. 6-18

VCSE ASSEMBLER MACROS

General Overview of Macro Definitions .. A-1

Method Result Macros .. A-2

VCSE_MRESULT .. A-2

MR_ICONSTRUCT(F,I) ... A-2

MR_FAILURE(mr) .. A-2

MR_SUCCESS(mr) ... A-2

__CHECK_VCSE_RESPONSE(handler) A-2

Accessing Factory Functions .. A-3

__CREATOR(C) .. A-3

__DESTROYER(C) ... A-3

__SIZEOF(C) .. A-3

Invoking Interface Methods ... A-3

__INVOKE(P,T,M) .. A-4

__GET_METHOD(P,T,M) .. A-4

Function Writing Macros .. A-4

__STARTFUNC(Name,Visibility) A-4

VisualDSP++ 3.5 Component Software Engineering User’s Guide xix
for 16-bit Processors

__ENDFUNC(Name) ... A-5

__LINK(N) ... A-5

__PUSH(Reg) ... A-5

__POP(Reg) .. A-5

__ALLOCSTACK(N) .. A-6

__FREESTACK(N) ... A-6

__arg0 to __arg9 .. A-6

__STORE_ARG(n,Reg) ... A-6

__EXIT ... A-6

__LEAF_EXIT .. A-7

__RETURN(Value) ... A-7

__LEAF_RETURN(Value) .. A-7

Miscellaneous ... A-7

__LA(R,V) .. A-7

__VCSE_ASM_TRACE(A1,A2) .. A-8

__VCSE_PRINT_VAR(A1,A2,V) A-8

Implementation of Macros on Blackfin Processors A-9

C Run-Time Model .. A-9

Method Result Macros .. A-9

VCSE_MRESULT ... A-9

MR_ICONSTRUCT(F,I) .. A-9

MR_FAILURE(mr) and MR_SUCCESS(mr) A-10

__CHECK_VCSE_RESPONSE(handler) A-10

Accessing Factory Functions ... A-11

xx VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Invoking Interface Methods ... A-11

Function Writing Macros .. A-13

__STARTFUNC(Name,Visibility) and __ENDFUNC(Name) A-13

__LINK(N) .. A-13

__PUSH(Reg) and __POP(Reg) A-14

__ALLOCSTACK(N) and __FREESTACK(N) A-14

__arg0 to __arg9 .. A-14

__EXIT and __LEAF_EXIT ... A-15

__RETURN(Value) and __LEAF_RETURN(Value) A-15

Miscellaneous ... A-15

__LA(R,V) ... A-15

__VCSE_ASM_TRACE(A1,A2) A-15

__VCSE_PRINT_VAR(A1,A2,V) A-16

Implementation of Macros on ADSP-21xx DSPs A-16

C Run-Time Model .. A-16

Method Result Macros .. A-17

VCSE_MRESULT .. A-17

MR_ICONSTRUCT(F,I) ... A-17

MR_FAILURE(mr) and MR_SUCCESS(mr) A-18

__CHECK_VCSE_RESPONSE(handler) A-18

Accessing Factory Functions .. A-19

Invoking Interface Methods ... A-19

Function Writing Macros .. A-22

__STARTFUNC(Name,Visibility) and __ENDFUNC(Name) A-22

VisualDSP++ 3.5 Component Software Engineering User’s Guide xxi
for 16-bit Processors

__LINK(N) ... A-22

__PUSH(Reg) and __POP(Reg) A-22

__ALLOCSTACK(N) and __FREESTACK(N) A-23

__arg0 to __arg9 (ADSP-219x DSPs only) A-23

__STORE_ARG(n,Reg) (ADSP-218x only) A-23

__EXIT and __LEAF_EXIT .. A-24

__RETURN(Value) and __LEAF_RETURN(Value) A-25

Miscellaneous Macros ... A-25

__LA(R,V) .. A-25

__VCSE_ASM_TRACE(A1,A2) A-25

__VCSE_PRINT_VAR(A1,A2,V) A-25

VCSE MRESULT CODES

MRESULT Structure ... B-1

MRESULT Codes .. B-2

VCSE UTILITIES

vcse_enforce ... C-1

-add library.dlb ... C-2

-cname component_name ... C-2

-help .. C-2

-M ... C-3

-MM .. C-3

-names name_control_file ... C-3

-no_update ... C-3

xxii VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

-obfuscate ... C-3

-report .. C-4

-verbose .. C-4

Operation of the Utility .. C-4

Name Control File .. C-5

vcse_sizer ... C-7

-cname component_name ... C-7

-desc desc_filename ... C-7

-help ... C-8

-text .. C-8

Description File .. C-8

vcse_packager ... C-9

-install .. C-9

-package ... C-10

-uninstall .. C-10

PCC — AN EXAMPLE OF VCSE INTERFACE DESIGN

Introduction .. D-2

Motivation ... D-2

Scope ... D-3

The Interfaces—Detailed Descriptions ... D-4

IDataPort .. D-7

ICircDataPort .. D-8

IDma ... D-8

ICallback ... D-9

VisualDSP++ 3.5 Component Software Engineering User’s Guide xxiii
for 16-bit Processors

IInterruptHandler .. D-10

IPeripheral ... D-11

ISysPeripheral ... D-12

ISPI ... D-12

IOE ... D-13

Implementing a PCC Component .. D-13

Setup and Overall Control .. D-13

Data Transfer and Interrupt Handling D-14

Using PCC Components .. D-15

INDEX

xxiv VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

VisualDSP++ 3.5 Component Software Engineering User’s Guide xxv
for 16-bit Processors

PREFACE

Thank you for purchasing Analog Devices (ADI) development software
for Digital Signal Processor (DSP) applications.

Purpose of This Manual
The VisualDSP++ 3.5 Component Software Engineering User’s Guide
describes development tools and programming guidelines for creating
VisualDSP++™ reusable software components and building embedded
DSP applications that exploit such components.

VisualDSP++ Component Software Engineering (VCSE) is designed for
effective operations on Analog Devices processor architectures:
ADSP-218x, ADSP-219x, and ADSP-BF53x Blackfin® processors.

The majority of the information in this manual is generic. Information
applicable to only a particular target processor, or to a particular processor
family, is provided in Appendix A, “VCSE Assembler Macros” on
page A-1.

This manual is designed so that you can quickly learn about the VCSE
internal structure and operation.

Intended Audience
The primary audience for this manual is programmers who are familiar
with Analog Devices DSPs. This manual assumes the audience has a work-
ing knowledge of the appropriate processor architecture and instruction

Manual Contents

xxvi VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

set. Programmers who are unfamiliar with Analog Devices DSPs can use
this manual but should supplement it with other texts, such as Hardware
Reference and Programming Reference manuals, that describe your target
architecture.

Manual Contents
The manual consists of:

• Chapter 1, “Introduction to VCSE”

Concentrates on concepts, evolution, and general architectural
principals of VisualDSP++ Component Software Engineering.

• Chapter 2, “Developing and Using VCSE Components”

Demonstrates how a VCSE component, which provides an imple-
mentation of a typical DSP algorithm, is defined and developed
and how an application incorporates such components.

• Chapter 3, “Standard Interfaces”

Describes VCSE standard interfaces, which provide a set of stan-
dard services for components’ developers and users. Additional
interfaces and their usage are also described.

• Chapter 4, “VIDL Language Reference”

Provides reference information about the syntax and semantics of
the VisualDSP++ Interface Definition Language (VIDL), a
descriptive notation used to specify VCSE components and
interfaces.

VisualDSP++ 3.5 Component Software Engineering User’s Guide xxvii
for 16-bit Processors

Preface

• Chapter 5, “VIDL Compiler Command Line Interface”

Explains the operation of the VIDL compiler as it is invoked from
the command line to process a VIDL specification. The various
types of generated files and switches, which are used to tailor the
compiler operation, are also described in this chapter. This soft-
ware release also provides a description of generated text shells

• Chapter 6, “VCSE Rules and Guidelines”

Documents the rules, guidelines, and best programming practices
associated with the software components’ successful development
and inclusion into DSP applications.

• Appendix A, “VCSE Assembler Macros”

Documents the processor-specific information, such as assembly
macros, for ADSP-BF53x Blackfin and ADSP-21xx DSP
processors.

• Appendix B, “VCSE MRESULT Codes”

Documents the MSRESULT codes.

• Appendix C, “VCSE Utilities”

Describes the VCSE utilities in detail.

• Appendix D, “PCC — An Example of VCSE Interface Design”

Introduces individual interfaces and describes how components
that implement the interfaces are built and used.

What’s New in This Manual

xxviii VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

What’s New in This Manual
This revision of the VisualDSP++ Component Software Engineering User’s
Guide documents the VCSE support for the new ADSP-BF531,
ADSP-BF533, DM102, and AD6532 Blackfin processors, in addition to
the existing processors, ADSP-BF532 and ADSP-BF535. Note that the
older part numbers, “ADSP-21532” and “ADSP-21535”, are deprecated
and replaced with “ADSP-BF532” and “ADSP-BF2155”, respectively.

The Blackfin processors are embedded processors that sport a Media
Instruction Set Computing (MISC) architecture. This architecture is the
natural merging of RISC, media functions, and digital signal processing
(DSP) characteristics towards delivering signal processing performance in
a microprocessor-like environment.

The manual describes the current release of the VCSE software. Future
releases may include support for additional Analog Devices DSP
architectures.

Technical or Customer Support
You can reach DSP Tools Support in the following ways.

• Visit the DSP Development Tools website at

www.analog.com/technology/dsp/developmentTools/index.html

• Email questions to dsptools.support@analog.com

• Phone questions to 1-800-ANALOGD

• Contact your ADI local sales office or authorized distributor

VisualDSP++ 3.5 Component Software Engineering User’s Guide xxix
for 16-bit Processors

Preface

• Send questions by mail to

Analog Devices, Inc.

DSP Division

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA

Supported Processors
VisualDSP++ 3.x Component Software Engineering currently supports
the following Analog Devices processors.

• ADSP-BF531, ADSP-BF532 (formerly ADSP-21532),
ADSP-BF533, ADSP-BF535 (formerly ADSP-21535), DM102,
and AD6532

• ADSP-2191, ADSP-2192-12, ADSP-2195, and ADSP-2196

Product Information
You can obtain product information from the Analog Devices website,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our website provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices website that allows
customization of a webpage to display only the latest information on
products you are interested in. You can also choose to receive weekly email

Product Information

xxx VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

notification containing updates to the webpages that meet your interests.
MyAnalog.com provides access to books, application notes, data sheets,
code examples, and more.

Registration:

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as means for you to select
the information you want to receive.

If you are already a registered user, just log on. Your user name is your
email address.

DSP Product Information
For information on digital signal processors, visit our website at
www.analog.com/dsp, which provides access to technical publications, data
sheets, application notes, product overviews, and product announcements.

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• Email questions or requests for information to
dsp.support@analog.com

• Fax questions or requests for information to 1-781-461-3010
(North America) or +49 (0) 89 76903-157 (Europe)

• Access the Digital Signal Processing Division’s FTP website at
ftp.analog.com or ftp 137.71.23.21 or ftp://ftp.analog.com

Related Documents
For information on product related development software, see the follow-
ing publications for the appropriate processor family.

VisualDSP++ 3.5 Component Software Engineering User’s Guide xxxi
for 16-bit Processors

Preface

For hardware information, refer to your processor’s Hardware Reference,
Programming Reference, and data sheet.

All documentation is available online. Most documentation is available in
printed form.

Online Documentation
Online documentation comprises Microsoft HTML Help (.CHM), Adobe
Portable Documentation Format (.PDF), and HTML (.HTM and .HTML)
files. A description of each file type is as follows.

VisualDSP++ 3.x Getting Started Guide

VisualDSP++ 3.x User’s Guide

VisualDSP++ 3.x C/C++ Compiler and Library Manual

VisualDSP++ 3.x Assembler and Preprocessor Manual

VisualDSP++ 3.x Linker and Utilities Manual

VisualDSP++ 3.x Kernel (VDK) User’s Guide

Quick Installation Reference Card

File Description

.CHM VisualDSP++ online Help system files and VisualDSP++ manuals are provided in
Microsoft HTML Help format. Installing VisualDSP++ automatically copies these
files to the VisualDSP\Help folder. Online Help is ideal for searching the entire
tools manual set. Invoke Help from the VisualDSP++ Help menu or via the
Windows Start button.

Product Information

xxxii VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Access the online documentation from the VisualDSP++ environment,
Windows Explorer, or Analog Devices website.

From VisualDSP++

VisualDSP++ provides access to online Help. It does not provide access to
.PDF files or the supplemental reference documentation (Dinkum
Abridged C++ library and FlexLM network licence). Access Help by:

• Choosing Contents, Search, or Index from the VisualDSP++ Help
menu

• Invoking context-sensitive Help on a user interface item
(toolbar button, menu command, or window)

From Windows

In addition to shortcuts you may construct, Windows provides many ways
to open VisualDSP++ online Help or the supplementary documentation.

Help system files (.CHM) are located in the VisualDSP\Help folder.
Manuals and data sheets in PDF format are located in the Docs folder of
the installation CD. The installation CD also contains the Dinkum
Abridged C++ library and FlexLM network license manager software doc-
umentation in the \Reference folder.

.PDF Manuals and data sheets in Portable Documentation Format are located in the
installation CD’s Docs folder. Viewing and printing VisualDSP++ 3.5 Component
Software Engineering User’s Guide file requires a PDF reader, such as Adobe Acro-
bat Reader (4.0 or higher). Running setup.exe on the installation CD provides
easy access to these documents. You can also copy .PDF files from the installation
CD onto another disk.

.HTM
 or
.HTML

Dinkum Abridged C++ library and FlexLM network license manager software
documentation is located on the installation CD in the Docs\Reference folder.
Viewing or printing these files requires a browser, such as Internet Explorer 4.0 (or
higher). You can copy these files from the installation CD onto another disk.

File Description

VisualDSP++ 3.5 Component Software Engineering User’s Guide xxxiii
for 16-bit Processors

Preface

Using Windows Explorer

• Double-click any file that is part of the VisualDSP++ documenta-
tion set.

• Double-click vdsp-help.chm, the master Help system, to access all
the other .CHM files.

From the Web

To download the tools manuals, point your browser at
www.analog.com/technology/dsp/developmentTools/gen_purpose.html.

Select a DSP family and book title. Download archive (.ZIP) files, one for
each manual. Use any archive management software, such as WinZip, to
decompress downloaded files.

Printed Manuals
For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

VisualDSP++ Documentation Set

Printed copies of VisualDSP++ manuals may be purchased through Ana-
log Devices Customer Service at 1-781-329-4700; ask for a Customer
Service representative. The manuals can be purchased only as a kit. For
additional information, call 1-603-883-2430.

If you do not have an account with Analog Devices, you will be referred to
Analog Devices distributors. To get information on our distributors, log
onto www.analog.com/salesdir/continent.asp.

Product Information

xxxiv VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Hardware Manuals

Printed copies of hardware reference and instruction set reference manuals
can be ordered through the Literature Center or downloaded from the
Analog Devices website. The phone number is 1-800-ANALOGD
(1-800-262-5643). The manuals can be ordered by a title or by product
number located on the back cover of each manual.

Data Sheets

All data sheets can be downloaded from the Analog Devices website. As a
general rule, printed copies of data sheets with a letter suffix (L, M, N, S)
can be obtained from the Literature Center at 1-800-ANALOGD
(1-800-262-5643) or downloaded from the website. Data sheets without
the suffix can be downloaded from the website only—no hard copies are
available. You can ask for the data sheet by part name or by product
number.

If you want to have a data sheet faxed to you, the phone number for that
service is 1-800-446-6212. Follow the prompts and a list of data sheet
code numbers will be faxed to you. Call the Literature Center first to find
out if requested data sheets are available.

Contacting DSP Publications
Please send your comments and recommendations on how to improve our
manuals and online Help. You can contact us by:

• Emailing dsp.techpubs@analog.com

• Filling in and returning the attached Reader’s Comments Card
found in our manuals

VisualDSP++ 3.5 Component Software Engineering User’s Guide xxxv
for 16-bit Processors

Preface

Notation Conventions
The following table identifies and describes text conventions used in this
manual.

Additional conventions, which apply only to specific chapters, may
appear throughout this document.

Example Description

Close command
(File menu) or OK

Text in bold style indicates the location of an item within the
VisualDSP++ environment’s menu system and user interface items.

{this | that} Alternative required items in syntax descriptions appear within curly
brackets separated by vertical bars; read the example as this or that.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipsis; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, code examples, and feature names
are in text with letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

A note providing information of special interest or identifying a
related topic. In the online version of this book, the word Note appears
instead of this symbol.

A caution providing information about critical design or programming
issues that influence operation of a product. In the online version of
this book, the word Caution appears instead of this symbol.

Notation Conventions

xxxvi VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

VisualDSP++ 3.5 Component Software Engineering User’s Guide 1-1
for 16-bit Processors

1 INTRODUCTION TO VCSE

This chapter concentrates on concepts, evolution, and general architec-
tural principals of component software engineering. It also provides an
overview of the benefits of using VisualDSP++ Component Software
Engineering (VCSE) on a DSP.

This chapter contains the following sections.

• “Origin of Components” on page 1-1

• “Software Components” on page 1-4

• “VCSE Components” on page 1-7

Origin of Components
The idea of creating programs from reusable parts is not new and can be
traced back to the earliest days of computing. The original objective was
to provide additions to the user’s program to allow it to execute on a par-
ticular computer. Typically, each program was supplemented with a fixed
set of routines for interfacing to hardware and operating system kernels or
providing support for early programming languages.

Interestingly, most of the programming devices that we associate with
reusable code were invented almost half a century ago. Callable subrou-
tines were present in the Fortran language designed by John Backus in
1954, though the idea had been implemented in assembly language even
earlier. Subroutines had evolved in stack-based procedures by the time
Algol 60 was introduced a few years later.

Origin of Components

1-2 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Most remarkably, a construct called a class and a related mechanism called
inheritance were developed in the mid-sixties and incorporated into the
language Simula 67 by O.-J. Dahl and co-workers at the Norwegian Com-
puter Center. Classes languished in obscurity for twenty years until a
Danish computer scientist Bjarne Stroustrup developed a variant of C
called “C with Classes”, which subsequently evolved into the C++
language.

Two other advances that enabled software to be reused were the emer-
gence of libraries of useful subroutines and the related development of
relocatable linkers, which allowed the precompiled versions to be com-
bined with a user’s program. Many important scientific applications were
created in this way and distributed as library packages for use on main-
frame computers.

Despite these very early innovations, there was little attempt to apply reuse
in the way that we aspire to today. The early days of computing were
dominated by large mainframes shared by many users. Application pro-
grams were small—a few hundred lines—mostly because they were stored
on physical media like cards or tapes. Programs were written in propri-
etary assembly languages or fairly primitive programming languages for
very locale-specific purposes.

Consequently, there was very little need for portability (beyond the
requirement to carry a tray of cards from one building to another!). If
there was any demand for reusability, then it usually arose within a single
company or organization. However, by the mid-sixties, certain groups of
users—particularly, researchers in universities and government agencies—
started to develop requirements for exchanging and moving software from
one computer to another.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 1-3
for 16-bit Processors

Introduction to VCSE

The current interest in reusable software components derives from a num-
ber of important developments in computer hardware and software that
have occurred over the last thirty years. These developments include:

1. The use of digital media for secondary storage, allowing programs
to grow dramatically in size.

2. The development of computer networks and mini-computers,
which led to greater demand for program portability. It also
increased the use of high level languages with “standard” defini-
tions distinguishing implementation-dependent and portable
features.

3. The emergence of platforms, such as PC/Windows and
Unix/WorkStations, which created two distinct markets for appli-
cation developers using the C programming language. The
possibilities for building interoperating applications that straddled
process or platform boundaries began to be explored.

4. Finally, the emergence of the public internet and the world wide
web, which revived the fortunes of Oak, a little-known language
invented by James Gosling at Sun MicroSystems. The language,
now called Java, carries the “write once – run anywhere” marketing
claim.

Embedded systems, by their very nature, have been insulated from many
of the developments described above. But next generation systems are
growing now in size and complexity. For example, they may have multi-
function capability or are required to run on multiple platforms or
processor families. In certain market sectors, requirements are beginning
to emerge for applications to function in networked environments; or to
be downloaded or dynamically modified and reconfigured. In turn, this
has led to the gradual adoption of high level programming languages like
C or C++, where the compiler effectively automates code generation and
where assembly code can be reinserted to match performance
requirements.

Software Components

1-4 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Increases in size and complexity are also leading software developers to
reconsider how embedded systems should be developed in the future. In
particular, how long will the “build from scratch” approach remain viable?
Equally, are newer component-based approaches relevant—and what are
components anyway?

Software Components
Modern software components usually conform to one of two industry
platforms: Microsoft Component Object Model (COM) or the Object
Management Group’s Common Object Request Broker Architecture
(CORBA). Both standards promote an “object-based” approach to reus-
able software that embraces certain key aspects of object-oriented software
development without committing to any particular programming lan-
guage. The same approach has been incorporated into the design of
VCSE.

Now let us look at components in greater detail. First, a software compo-
nent is designed to function as a reusable part of a larger program.
Usually, it is not the whole program, but at the same time, it is larger and
more powerful than a single subroutine. It is also useful to bear in mind
that component developers and component users are usually different
groups of people.

A component provides a service that is specified through a set of function
declarations called an interface; the functions are called the methods of the
interface. The algorithms and implementation details employed by the
methods are hidden from the component user and are said to be encapsu-
lated by the component.

A user interacts with a component by calling the methods of its interface
and passing in parameters. The way in which the call is implemented must
allow the component user and the component developer to use different
programming languages. Because components may be written in C, C++,

VisualDSP++ 3.5 Component Software Engineering User’s Guide 1-5
for 16-bit Processors

Introduction to VCSE

or assembly, their interfaces are specified using a special notation called
Interface Definition Language, or IDL. IDL resembles the declarative parts
of C, but it is not a full programming language.

In addition to its methods, a component contains a set of private variables
that hold its state. For example, a component implementing a time-of-day
clock stores the current time as part of its state. The variables that com-
prise a component’s state normally hold values that must be preserved
across calls to its method functions.

A user can create multiple instances of a component. Each instance shares
the same methods but has a distinct state. This is arranged by storing the
state variables for each instance in a separate region of memory. For exam-
ple, to build an application recognizing international time zones, we
might create several instances of the clock component whose separate
states store different regional times. The memory used to store the state of
a component is sometimes referred to as instance storage.

Component instances are created and destroyed by special factory func-
tions called Create and Destroy. When an instance is created, the factory
function ensures that storage is allocated and returns a handle to the com-
ponent. The user must retain the handler for as long as the component is
required. When a component instance is destroyed, the instance storage is
released by passing the handle to the Destroy function.

In the case of workstations and PCs, components are usually distributed in
a standard format and installed by creating an entry in a component data-
base on the host machine. Systems that support the interaction of
components across networks use the database to activate the component
when a request to create a new instance is received.

Software Components

1-6 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Benefits of Components
Software components offer a number of benefits that derive directly from
the properties described in “Software Components” on page 1-4.

1. Components are easy to maintain because they hide all their imple-
mentation details. Consequently, a developer can make internal
changes to a component provided its external interface stays the
same. Many component based applications on PCs and worksta-
tions access components using dynamic link and call mechanisms.
These mechanisms allow new component versions to be installed
without requiring the application programs to be reinstalled.

2. Components are flexible and reusable because they are language
neutral. Both the component user and component implementor are
free to choose the most appropriate language for development. In
addition, there is no difference, other than in performance,
between using a component locally (on the same machine) and
remotely (on a different machine).

3. Components are extensible because they may provide new methods
that are packaged as an extension of an older interface. When an
extended version of a component is deployed, users access the new
methods by requesting access to the extended interface. Note that
the component still provides the non-extended version of the inter-
face, so that existing applications continue to work with the new
component.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 1-7
for 16-bit Processors

Introduction to VCSE

VCSE Components
Components developed with VisualDSP++ share a common set of
attributes that are determined by the VCSE Component Model. These
include:

1. Interfaces and encapsulation. Components provide encapsulated
implementations of one or more interfaces.

2. Instance creation. Component instances are created and destroyed
dynamically. A component that is created dynamically may be sup-
plied with memory that is allocated statically.

3. Flexibility. Components can be implemented and deployed using
any combination of C, C++, and assembly programming languages.

4. Automation. VisualDSP++ provides support for semiautomatic
generation of component and interface specifications and for the
deployment, installation, and documentation of completed
components.

5. Interoperability. Components from different vendors can interop-
erate without the risk of resource issues, such as name clashes or
memory management conflicts.

The VCSE Component Model also ensures that components are tailored
for embedded DSP applications, in particular:

• The overhead associated with components—particularly code size
and execution time—is minimized. The overhead in learning how
to develop and use components is minimized by the VCSE devel-
opment tools provided with VisualDSP++.

• There is no dependence on any particular run-time environment.
VCSE components may be used in standalone applications or in
conjunction with a variety of multithreaded kernels.

VCSE Components

1-8 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

• Components delegate the allocation of resources, such as memory,
to the application framework in which they are deployed. Applica-
tions can supply statically allocated memory to a component rather
than rely on the less efficient heap-based mechanisms that are
invoked from C or C++.

• The Component Model specifies a hierarchical namespace that
enables all components and their related files to be identified. Each
organization may reserve a portion of the namespace by registering
a unique namespace tag. The management of names within a
tagged namespace is delegated to the organization registering the
tag. See “Company Namespace Registration” on page 2-87 for
more information on registering namespaces.

• VCSE allows the eventual deployment of components on simple
homogeneous multiprocessor systems. Interprocessor communica-
tion is provided in a way that is transparent to both the developer
and user of a component.

Component Software Engineering Concepts
The two key concepts provided by the VCSE Component Model are
interfaces and components. Broadly speaking, an interface specifies what
is to be done, while a component determines how it is to be done. More
formally, we say the component provides an implementation of the
interface.

VCSE Interfaces

An interface is a collection of functionally related operations that provide
a service. The operations are specified by a list of functions called methods
that an application may invoke. The methods by themselves may not pro-
vide a complete definition of the service and may require supplemental

VisualDSP++ 3.5 Component Software Engineering User’s Guide 1-9
for 16-bit Processors

Introduction to VCSE

documentation, which specifies additional operational details, such as the
order in which methods are to be invoked or the range of values a parame-
ter is permitted to take.

An interface is completely abstract—it is not tied to any particular imple-
mentation. For example, you can define a sorting interface that specifies
methods for entering and retrieving data, as well as for triggering the sort,
but which does not contain any elements that oblige the sort to be per-
formed by a particular algorithm.

An interface must not be changed once it has been published (made avail-
able to users). However, it is possible to define a new interface as an
extension of an existing interface by supplying a list of additional meth-
ods. For example, we might extend a “sort” interface into an “ordered
sort” interface by adding a new method that controls the order (ascending
or descending) of the sort. The “sort” interface continues to exist as a part
of the “ordered sort” interface.

In VCSE, an interface name must start with an ‘I’. Thus, a sorting inter-
face is called ISort rather than Sort.

Interface Example

Interfaces are specified using a notation called the VCSE Interface Defini-
tion Language (VIDL). A simplified version of the VIDL definition of an
interface supporting image compression is as follows.

[iid("a988bd82-e306064b-a9938513-3ced0fa8")]

interface IImageCmp extends IBase {

MRESULT SetSNR(

[in] int snr);

MRESULT CompressImage(

[in] int length,

[out] int CompressedLength,

[in, out] int image[256]);

MRESULT DecompressImage(

VCSE Components

1-10 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

[in] int Compressedlength,

[out] int Length,

[in, out] int image[256]);

 };

The IImageCmp interface consists of three methods: SetSNR, CompressIm-
age, and DecompressImage. Collectively, they provide the functional
specification of the image compression service. Each method is described
by a declaration specifying the types of parameters and return result. Vari-
ous attributes, supplied to each parameter, describe how the parameter is
used.

SetSNR takes an “in parameter” snr, which supplies the minimum accept-
able signal to noise ratio. CompressImage takes an “in parameter” length,
which specifies the number of supplied image elements, and returns an
“out parameter” CompressedLength, which holds the corresponding num-
ber of elements in the compressed image. The array image is an “in-out
parameter” that supplies the uncompressed elements and returns the com-
pressed elements to the caller.

The description of an image compression service provided by a particular
implementation of the IImageCmp interface may require extra information
concerning usability, performance, and quality of service. This informa-
tion, which is referred to as the operational specification of the interface, is
provided by inserting special comments at appropriate points in the
VIDL. As described later in this manual, VCSE provides a feature called
auto-doc, which allows the contents of these comments to be extracted and
converted into HTML.

IImageCmp is defined as an extension of a predefined interface IBase,
which provides a single method called GetInterface. This method allows
an application to request an interface by specifying its iid (interface iden-
tifier). If the component implements the interface, the request returns a
pointer that allows the interface’s methods to be called. If the interface is
not implemented, GetInterface returns an error. VCSE requires every
interface to be extended directly or indirectly from IBase, so GetInter-

VisualDSP++ 3.5 Component Software Engineering User’s Guide 1-11
for 16-bit Processors

Introduction to VCSE

face is always available as a method. This means that an application may
use GetInterface to navigate through all the interfaces provided by each
component.

VCSE Components

A component provides the implementation of one or more interfaces by
supplying the code for their method functions. However, the methods are
encapsulated within the component, so their internal working variables
and utility procedures cannot be accessed from outside the component. In
fact, the only way an application can interact with the component is by
calling its interface methods. These constraints help to protect compo-
nents from misuse and improve their ability to be deployed in different
operational contexts.

VCSE allows components the freedom to reuse or leverage other compo-
nent implementations. However, a component must document its
dependencies, so that installation may be managed consistently. The
VIDL notation allows the dependencies between components to be
recorded without revealing the nature of the interactions between them.

Interfaces make it easy to exchange and upgrade the components installed
in an application. If the new version of a component continues to provide
the same interfaces, no changes to the application code are required. If the
new version provides additional methods in an extension to a previous
interface, applications can choose whether to use the extended or original
interface. If the new interface is required, the application must be modi-
fied accordingly, recompiled, and linked with the component. But if the
old interface is still adequate, the application needs only be relinked to the
component. Interface extension is a very useful way of providing new
functionality while preserving existing interfaces.

Components conform to naming conventions to make them easy to
deploy without risk of name clashes with other components already in use.
For more information, see “File Names” on page 5-23.

VCSE Components

1-12 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

An application may create one or more instances of components, each
with a private set of instance variables. The methods of the component
may store and retrieve the values of the instance variables, so that collec-
tively they represent the state of the instance. In the case of the clock
component referred to earlier, the state may be represented by a single
instance variable that contains the current time. Component instances
provide a very convenient way to model real-world objects. For example,
an application that uses multiple data channels may represent each chan-
nel by an instance of a “channel component”. Each instance holds the
state of its channel privately, so there is no possibility of interference
between them.

Applications may create and destroy component instances dynamically
during execution. When an instance is created, an area of memory called
instance storage is allocated for the instance variables and retained until
the instance is destroyed. VCSE allows considerable flexibility in the way
in which instance storage is managed. Components may choose to allocate
memory internally or to acquire it from an external memory manager.
Memory managers may themselves supply memory using static or
dynamic allocation strategies.

It is worth noting that the idea of instances helps distinguish components
from other reusable software entities, such as program libraries. Although
the functions within a library may require state to be preserved, it is the
responsibility of the library user to preserve the state information and to
supply it explicitly on each call. In addition, components allow more than
one implementation of an interface or service within one program,
whereas there can be only one version of a library per program.

It is unusual to find true dynamic linking in embedded DSP applications
because of the run-time overhead involved. In VCSE, components are
statically linked to programs, and the run-time cost of instantiation is
minimized.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 1-13
for 16-bit Processors

Introduction to VCSE

Component Example

The following example shows a slightly simplified VIDL description of
two components offering different implementations of the generic IIm-
ageCmp interface.

[iid("a988bd82-e306064b-a9938513-3ced0fa8")]

interface IImageCmp extends IBase

{

MRESULT SetSNR(

[in] int snr);

MRESULT CompressImage(

[in] int length,

[out] int CompressedLength,

[in, out] int image[256]);

MRESULT DecompressImage(

[in] int Compressedlength,

[out] int Length,

[in, out] int image[256]);

};

component CJpeg implements IImageCmp;

component CGif implements IImageCmp;

The CJpeg component provides support for JPEG compression, which is
most effective for images with smooth color changes, while the second
component CGif uses GIF compression, which is much more effective for
images with sharp edges. The relative effectiveness of the two components,
therefore, depends on the type of image to be compressed, although both
offer the same functional interface. The performance of the two compo-
nents is also quite different since they use distinct algorithms. The user of
either component, therefore, relies on its operational specification to
choose a suitable component implementation of the IImageCmp interface
for a particular task.

VCSE Components

1-14 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Applications using the IImageCmp interface can switch between the two
implementations simply by invoking the Create functions of one or other
of the components. The method calls required to invoke compression or
decompression do not need to change because each component provides
the same interface. Consequently, switching between components only
requires a small change to the name of the function used to create the
component instance. This makes it easy to evaluate and select the compo-
nent that is best suited to the image processing required.

The second example shows the VIDL description of two components
offering different implementations of a generic sorting interface ISort.
The ISort interface consists of three methods: SetData, GetData, and
Sort. Collectively, they provide the functional specification of a sorting
service. Each method is described by a declaration specifying the types of
parameters and the result returned. The description is sufficiently general
to permit several possible implementations. For instance, GetData and
SetData may physically copy the data or may note the address of the data,
so that sorting is performed “in place”.

[iid("dfa1bd82-e306064b-a9938513-de440fa8")]

interface ISort extends IBase {

MRESULT SetData(

[in] long int N,

[in, size_is(N)] float data[]);

MRESULT GetData(

[in] long int N,

[out, size_is(N)] float data[]);

MRESULT Sort(void)

};

component CBubbleSort implements ISort;

component CQuickSort implements ISort;

The CBubbleSort component uses the bubble-sort algorithm and, there-
fore, has the performance characteristics typical for that method of
sorting. The CQuickSort component uses the quick-sort algorithm, which

VisualDSP++ 3.5 Component Software Engineering User’s Guide 1-15
for 16-bit Processors

Introduction to VCSE

is usually faster but may require additional memory to achieve the
increased performance. Naturally, each instance of CBubbleSort and
CQuickSort applies the appropriate sorting method to the instance data
supplied by SetData.

Once again, the provision of a common interface makes it easy for applica-
tions to switch between the two components and to evaluate them with
appropriate test data.

Binary Standard Interface

The VCSE Component Model defines a binary standard that specifies a
mechanism for invoking interface methods. The standard is independent
of the language in which the component or its application environment is
written. The two most important features of the standard are:

• The methods of an interface and the application environment in
which they are invoked must support the C language run-time
model for function calls.

• The methods of an interface are called indirectly through a binary
structure called a method table.

A component provides a method table for each supplied interface; each
entry in the table contains the address of the component function that
implements the method. Figure 1-1 on page 1-16 shows the method table
for the ISort interface as implemented by the CQuickSort component.
The table has an entry for each interface method (including those in its
base interfaces) to reference the corresponding function in the CQuickSort
component implementation.

Each instance of an interface is represented by an interface pointer, which
refers to a structure containing the address of the interface method table.
The method table, in conjunction with the use of the C run-time model,
provides a standard mechanism to ensure VCSE components and applica-
tions work together, irrespective of the language in which they are written.

VCSE Components

1-16 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

It also allows interfaces to be decoupled from specific implementations.
For example, we can provide access to an ISort implemented by a CBub-
bleSort component by creating a method table whose entries reference
the corresponding method functions in CBubbleSort.

Method tables allow different implementations of the same interface to
coexist within the same application. In the previous example, the ISort
interface pointers returned by CQuickSort and CBubbleSort refer to the
separate method tables provided by these components. It follows, calling
the Sort method with an ISort pointer returned by CQuickSort will
invoke the function CQuickSort_Sort, while calling the Sort method with
an ISort pointer provided by CBubbleSort will invoke the function
CBubbleSort_Sort.

Separate instances of the same component return different interface
pointers, which nevertheless refer to the same method table. In
general, all instances of a component share the same method code
and method tables.

Figure 1-1. ISort Interface Method Table

methods

Interface
pointer

ISort *
GetInterface
SetData
GetData
Sort

Method
table

CQuickSort_GetInterface(){
...
}

CQuickSort_SetData(...){
...
}

CQuickSort_GetData(...){
...
}

CQuickSort_Sort(...){
...
}

Component
implementation

VisualDSP++ 3.5 Component Software Engineering User’s Guide 1-17
for 16-bit Processors

Introduction to VCSE

Interface Definition Language and Compiler

The VisualDSP++ Interface Definition Language allows you to specify
interfaces and components that conform to the VCSE Component Model.

VIDL specifications are contained in text files, which are created with an
editor or by invoking the dialog-driven VCSE wizards within the Visu-
alDSP++ Integrated Development and Debugging Environment (IDDE).
The VIDL files are processed by a translator called the VIDL compiler,
which generates a framework or implementation shell for each component
using C, C++, or assembly language. The shell is normally completed by
the component developer before submitting it to the language compiler or
assembler.

VIDL is a language-neutral way to specify components and interfaces. It
favors neither C, C++ or assembly and, therefore, allows developers to
choose between implementation languages. For information on the VIDL
syntax, see “VIDL Language Reference” on page 4-1; for information on
how to create interfaces, see “Developing and Using VCSE Components”
on page 2-1.

Figure 1-2 on page 1-18 illustrates how a VIDL specification is trans-
formed by the VIDL compiler into sets of program source files. Note that
this is a simplified example since the number of generated files and their
names normally depend upon the entities defined in the .IDL file being
processed and not on the name of this file.

If the specification for an interface and a component is held in the file
example.idl, the VIDL compiler generates a header file example.h for the
interface together with corresponding C, C++, or assembly component
implementation files, depending upon the setting of a command line
switch.

The header file contains the declarations of the method functions for the
interfaces defined in the VIDL file, and the .C, .CPP, or .ASM files contain
the shells for the components. Each shell contains a set of method func-

VCSE Components

1-18 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

tion “stubs” that are completed by the component developer. The
operation of the VIDL compiler is described in detail in “VIDL Compiler
Command Line Interface” on page 5-1.

Integration With VisualDSP++

The VisualDSP++ IDDE provides comprehensive support for creating and
using VCSE components, which includes the following elements.

• Wizards to create initial VIDL descriptions for interfaces and com-
ponents using intuitive, dialog-driven interfaces.

• A VisualDSP++ project type to develop VCSE components and to
incorporate the VIDL compiler into the build process.

• A VisualDSP++ Component Manager to maintain a database of
VCSE components. The component manager supports installing
new components, browsing for existing components and importing
them into development projects, and uninstalling obsolete
components.

Figure 1-2. VIDL Compiler Operation

ex am p le .h exam p le .c

v id l -c++ exam ple.id lv id l examp le .id l v idl -a sm examp le .id l

cc e x am ple .c

e xa m ple .h example.cpp ex am p le .h ex am p le .asm

c c+ + ex am p le .cp p ea s ex am p le .asm

e x am ple . id l

VisualDSP++ 3.5 Component Software Engineering User’s Guide 1-19
for 16-bit Processors

Introduction to VCSE

• A wizard to manage the process of packaging component files into
a compressed file for distribution.

The following sections provide summary descriptions of each IDDE facil-
ity. For detailed instructions on how to use them, see the VisualDSP++
online Help.

Component Projects

A component project automatically incorporates the extra steps required
to manage the development of a VCSE component within a VisualDSP++
project.

In the first step of the build process, the VIDL compiler processes the
VIDL file and generates the implementation and header files. If the imple-
mentation files already exist, the VIDL compiler preserves all the code in
user supplied areas, such as the bodies of interface method functions. In
addition, if a method has been removed, the user supplied method body is
still kept and accumulated in a holding area at the end of each file.

The C/C++ compiler or assembler is then invoked on the project’s source
files, and a library is created. Additional source files can be added to the
project to be compiled and included into the library as part of the compo-
nent implementation.

New Interface and Component Wizards

The New Interface Wizard guides you, step by step, through the process
of generating a VIDL interface specification.

In the first step, supply the name of the interface, the namespace in which
it is defined, and the interface it extends. Also provide a short description
of the service that the interface provides. In the following steps, specify
and describe the methods and supply the names and types of their param-
eters. The wizard propagates the interface and method descriptions into
auto-doc comments that are generated in the VIDL file.

VCSE Components

1-20 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

The process of specifying a new component and creating a VisualDSP++
component project is managed by the New Component Project Wizard.
The wizard allows you to specify the name of the project and the location
of its development directory. Then you supply the component’s company
tag, name, title, and category and set its attributes. When all the informa-
tion is gathered, the wizard creates the component’s development project
and generates a VIDL file containing the component definition.

Component Packaging Wizard

Once a component is fully developed, it must be packaged into a com-
pressed VisualDSP++ component package file (.VCP) for distribution. The
packaging is primarily controlled by the component manifest file (.XML),
which is created by the VIDL compiler. The New Component Package
Wizard combines information from the manifest file with information
from the wizard and generates the .VCP file for distribution.

First, the wizard requests the name for the .XML manifest files. If you ini-
tiate the wizard while a component development project is active, the
wizard defaults to suggesting the .XML file for the project. In the next step,
the wizard shows various attributes of the component and allows specifica-
tion of the version number and status. The distributed component can be,
for example, the full version, a demonstration version, or may only con-
tain the documentation.

The package wizard allows the addition or removal of files from the list of
files in the manifest, enabling complete control over the distributed file
contents. You can also specify which files are to be automatically added to
a project when you add the component to that project. Finally, the wizard
enables you to specify the directory in which the packaged file is to be
stored.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 1-21
for 16-bit Processors

Introduction to VCSE

Component Manager

The Component Manager provides a comprehensive set of facilities
enabling you to browse, download, and install components onto your sys-
tem. Once installed, the components can be easily added to VisualDSP++
projects.

View either the list of components installed on your system or those that
are available from the Analog Devices web site. Each component is dis-
played with a brief description of its function and application domain.
The list of components can be sorted by various properties, such as the
component name, supported interface, component category, status, and
the target processor.

Once you have identified a component that meets your needs, the Com-
ponent Manager can download and install it on your system, making the
component available for your development projects.

The Component Manager also can be used to uninstall components from
your system.

Adding a component to a VisualDSP++ project does not copy the
component files into the project’s directory but adds references to
the installed files. Installing a new version of a component, there-
fore, impacts all projects using that component.

Software Architecture

The VCSE software architecture, which controls the interaction between
the application and its components, is based on the client-server model,
where the application is the client and the component is the server provid-
ing the client with certain well-defined services.

The VCSE architecture is platform independent and does not specify any
particular run-time environment. Components can be used in a single
threaded or multithreaded environment, although VCSE itself provides

VCSE Components

1-22 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

no support for the interactions between threads. The architecture assumes
resource synchronization is handled directly by the application client and
its components.

The VCSE architecture has also been designed to cater for multiprocessor
systems, where a component and its client application may execute on dif-
ferent processors. Multiprocessor support will be available in future
versions of VCSE.

On a typical system, a client application may use components from more
than one vendor. The structure of an application, where the client and its
components execute on the same processor, is shown in Figure 1-3.

When the client application and the server components reside on the same
processor, VCSE forms a very thin layer that provides essential services for
creating and destroying component instances and for acquiring compo-
nent interfaces. The application interacts directly with the component
whenever it calls an interface method.

When the application and its components reside on different processors,
the VCSE architecture allows them to remain unaware of their relative
separation. In this case, the VCSE layer is responsible for providing a
remote method invocation mechanism that enables the method calls to be

Figure 1-3. Simple Application Model

Client Application

Component-1 Component-2 Component-3

VCSE Support Layer

VisualDSP++ 3.5 Component Software Engineering User’s Guide 1-23
for 16-bit Processors

Introduction to VCSE

transported from the application to the target component’s processor. The
VIDL attributes attached to the declaration of each method parameter
ensure that their values are passed correctly.

Rules and Guidelines

The VCSE Component Model specifies how re-usable components may
be constructed for applications running on Analog Devices DSP proces-
sors. The VCSE development tools provided within VisualDSP++ help to
create application frameworks in which components operate irrespective
of the implementation language. Although the Component Model ensures
interoperability between applications and components can be met, it can-
not guarantee this will always be the case, particularly when assembly
language is involved. For this reason, the Component Model and the
development tools are supplemented with a set of rules and guidelines,
which are designed to ensure that VCSE components will interoperate
successfully.

The rules and guidelines cover two broad areas—programming and pack-
aging—although these two sometimes overlap. Issues concerning the
correct operation of a component, considered in isolation, come under
programming, while issues concerning a component’s inclusion in an
application that may use other components come under packaging.

The rules and guidelines for VCSE components and interfaces are
described in “VCSE Rules and Guidelines” on page 6-1.

Rules and guidelines are grouped in two sets: a core set applicable to all
components and a set applicable to components that implement VCSE
algorithms. A VCSE algorithm is a component supporting an interface that
is extended from the standard interface VCSE::IAlgorithm.

The rules describe mandatory actions or practices that application and
component developers must follow. Applications may fail to build or run
properly if they, or any component they include, fail to obey a rule.

VCSE Components

1-24 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

The guidelines describe actions or practices that Analog Devices strongly
recommends application and component developers to follow. Applica-
tions may build or run if a guideline is not heeded, but they may be harder
to debug or deploy. In addition to the rules and guidelines, “VCSE Rules
and Guidelines” includes notes and tips regarding the VCSE component
software.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-1
for 16-bit Processors

2 DEVELOPING AND USING
VCSE COMPONENTS

In this chapter, you will learn how a component that provides an imple-
mentation of the µ-law encoding scheme from the ITU recommendation
G.711 is created. The algorithm needed to effect encoding or decoding is
very straightforward and enables to concentrate on the process of defini-
tion and creation of the component that implements the algorithm.

The chapter contains:

• “Defining an Interface” on page 2-3

• “Creating Interface Implementation” on page 2-17

• “Documenting Components” on page 2-34

• “Testing Components” on page 2-36

• “Packaging Components” on page 2-50

• “Using Modifiable Sections” on page 2-56

• “Using Components” on page 2-60

• “Destroying Components” on page 2-70

• “Implementation of GetInterface Method” on page 2-71

• “Aggregating Components” on page 2-80

2-2 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

The first and most important step in developing a component is to decide
on the functionality that the component is to provide; in particular:

• What services the component is to provide

• How the user of the component should request the services pro-
vided by the component

• How the available services are to be implemented and tested

The VCSE Component Model can help to structure and guide these deci-
sions since a key part of developing a component is deciding the interfaces
that it will offer. Each interface specifies a service provided by a set of pro-
gramming language functions called “methods”.

The interface itself does not contain the body or definition of the method
function; it only contains the declaration or description of the methods.
The interfaces provided by a component represent a contract between the
component and the applications in which it is used, and they should not
be changed once an interface has been issued for use.

VCSE interfaces are expressed using the VCSE Interface Definition Lan-
guage (VIDL). The creation of a suitable description of the interface using
VIDL can clarify the specification of the offered services. Structuring the
development into one or more interfaces can also create the appropriate
structure for the implementation even though the details of the imple-
mentation should remain hidden behind the published interfaces.

VCSE defines some standard interfaces, which component developers may
consider providing support for. The standard interfaces, documented in
“Standard Interfaces” on page 3-1, define service interfaces for capabilities
that many components may wish to provide. The two main standard
interfaces are: IAlgorithm, which defines a common subset of methods
supported by algorithms and IMemory, which defines the standard mecha-
nism for allocating memory resources.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-3
for 16-bit Processors

Developing and Using VCSE Components

Defining an Interface
The µ-law compression algorithm converts a 16-bit value in the range
–8192 to 8191 to a more compact 8-bit value in the range 0 to 255; the
decompress function reverses the compression.

To minimize the overhead arising from invoking the interface methods,
the interface is designed to ensure the most commonly used methods have
a reasonable amount of processing on each method call. In the case of
G.711, the interface design guarantees an array of data elements is passed
into and returned from each invocation of both the compress and decom-
press methods.

The prototypes for the compress and decompress functions in C language
are shown in Listing 2-1.

Listing 2-1. G.711 Function Prototypes

int Compress(int N, const short *inData, short *outData);

int Decompress(int N, const short *inData, short *outData);

where the first parameter N specifies the number of values supplied in the
input arrays inData and returned in the output arrays outData. The array
is to be either compressed or decompressed, and the processed values are
returned in the corresponding elements of the output array outData. The
return value indicates whether the whole operation is successful.

To provide this µ-law encoding service as a VCSE component interface,
specify the corresponding interface as follows.

[iid("e42dec41-1936ff4e-9b392d02-7d5f3731")]

interface IG711 extends IBase

{

MRESULT Compress(

[in] unsigned N,

[in] short inData[256],

Defining an Interface

2-4 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

[out] short outData[256]);

 MRESULT Decompress(

[in] unsigned N,

[in] short inData[256],

[out] short outData[256]);

};

The VIDL definition defines the name of the interface to be IG711 and
specifies that this interface extends the IBase interface. Every interface
name must start with an ‘I’ and must extend directly or indirectly from
IBase, the VCSE root interface. Every VCSE interface must also be given
a totally unique identifier, so different interfaces can be distinguished
while executing. The [iid(“e42dec41-1936ff4e-9b392d02-7d5f3731”)]
attribute specifies the unique interface identifier that allows the avoidance
of name clashes with other interfaces. VisualDSP++ provides a tool to gen-
erate a unique identifier in the above format ready for incorporation in the
specification of an interface.

The IG711 interface has two methods, Compress and Decompress, which
correspond to the two C function prototypes in Listing 2-1 on page 2-3.
Every VCSE method must return a value of type MRESULT, a short integer
(16-bit) indicating if the method call is successful or not.

The VIDL method definitions provide more information about each of
the parameters than their prototypes. This additional information is pro-
vided in the form of attributes, which are enclosed in square brackets and
precede the definition of each parameter.

In IG711, the attribute [in] specifies that the value of the parameter N is
being passed into each of the methods. In the case of the inData parame-
ter, the VIDL explicitly specifies the parameter is an array of 256 short
integers whose values are passed into the method. Similarly, the [out]
attribute specifies the outData parameter is an array of 256 short integers
whose values are returned from the method.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-5
for 16-bit Processors

Developing and Using VCSE Components

Although the VIDL specification provides the information about the
number of elements in the array and the direction the data values are
transferred, only a pointer to the start of the array is actually passed when
a method is being invoked.

If the [out] attribute is specified for a scalar parameter, such as an int, a
pointer to an int is actually passed when the method is invoked. A param-
eter can also be qualified with the attribute combination [in, out], which
implies the value is passed into the method and a possibly different value
is returned. A scalar parameter qualified with the [in, out] attribute is
also actually passed as a pointer when the method is invoked.

For more information about the VIDL syntax, see “VIDL Language Refer-
ence” on page 4-1.

The interface specification restricts to 256 elements the maximum num-
ber of elements that can be passed to either method. Any implementation
must obey the restriction that it can only access a maximum of 256 ele-
ments in any of the passed arrays.

When an array parameter is qualified with the attribute [in], the corre-
sponding parameter of a C or C++ method is qualified with the const
keyword since a parameter marked as [in] should not be changed by the
invoked method. In addition, the use of the const qualifier gives the C
and C++ compiler optimizer a better opportunity to optimize access to the
array within the method since the optimizer knows the values of the array
cannot be changed.

Since the number of elements to be processed is passed as the first param-
eter, the interface definition can be rewritten to provide a much greater
degree of flexibility to the users of the interface. The number of elements
of a passed array can be specified dynamically by rewriting the interface as
follows.

[iid(“e42dec41-1936ff4e-9b392d02-7d5f3731”)]

interface IG711 extends IBase

{

Defining an Interface

2-6 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

MRESULT Compress(

[in] unsigned N,

[in, size_is(N)] short inData[],

[out, size_is(N)] short outData[]);

MRESULT Decompress(

[in] unsigned N,

[in, size_is(N)] short inData[],

[out, size_is(N)] short outData[]);

};

The size_is attribute specifies that the number of array elements for the
qualified array is determined by the value of the passed parameter N. The
size_is attribute allows the caller to control the maximum size of the
array that is allocated and to notify the method of the number of elements
of the array that it can access. An interface that handles arrays of different
sizes is generally much more useful than an interface that only handles
arrays with a fixed size.

On ADSP-BF53x DSPs, the C/C++ compiler optimizer cannot vectorize
access to arrays of short integers unless it ensures that such arrays are word
aligned rather than half-word aligned as required by the C or C++ lan-
guage. The VIDL language allows you to specify such a requirement for
the parameters being passed to the interface. When you do so, the VIDL
compiler generates the appropriate C and C++ language structures to
notify the optimizer that the parameters are in fact aligned. Adding the
necessary align attribute for each of the short arrays provides the
improved version of the interface definition for the IG711 interface. For
example,

[iid(“e42dec41-1936ff4e-9b392d02-7d5f3731”)]

interface IG711 extends IBase

{

MRESULT Compress(

[in] unsigned N,

[in, size_is(N), align(4)] short inData[],

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-7
for 16-bit Processors

Developing and Using VCSE Components

[out, size_is(N), align(4)] short outData[]);

MRESULT Decompress(

[in] unsigned N,

[in, size_is(N), align(4)] short inData[],

[out, size_is(N), align(4)] short outData[]);

};

The align(4) attribute attached to each of the array parameters specifies
that the arguments passed to these methods must have at least word align-
ment on ADSP-BF53x processors.

On ADSP-BF53x processors, the data layout generated by the C
and C++ compilers for static data normally satisfies this word align-
ment requirement.

On ADSP-218x and ADSP-219x processors, the align attribute is
not normally required since these processors are word-addressed
architectures. However, on ADSP-218x DSPs, the align attribute
may be used where arrays are to be accessed as circular buffers since
these arrays must be correctly aligned to correspond to the size of
the buffer.

The name of the interface, IG711, is derived from a reference standard for
voice compression and decompression, so it is possible that another devel-
oper might choose the same name but define the interface differently. In
order to avoid name clashes, VCSE provides namespaces that allow identi-
cally named interfaces and components to be distinguished. Namespaces
are themselves assigned names that identify the company or organization
that owns the names that it contains.

For example, Analog Devices, Inc. has reserved the ADI namespace for its
components. The EXAMPLES namespace has been reserved for ADI’s exam-
ple interfaces and components used in the VCSE documentation and
tutorials. The LOCAL namespace has also been reserved for interfaces and
components that will not be distributed outside of creating environment.

Defining an Interface

2-8 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Analog Devices maintains a registry of namespace names to ensure they
are unique. See “Company Namespace Registration” on page 2-87 for
more information on registering namespaces.

To define the above IG711 interface within the EXAMPLES namespace, the
full definition of the interface is re-written as follows.

namespace EXAMPLES {

[iid(“e42dec41-1936ff4e-9b392d02-7d5f3731”)]

interface IG711 extends IBase

{

MRESULT Compress

[in] unsigned N,

[in, size_is(N), align(4)] short inData[],

[out, size_is(N), align(4)] short outData[]);

MRESULT Decompress(

[in] unsigned N,

[in, size_is(N), align(4)] short inData[],

[out, size_is(N), align(4)] short outData[]);

};

};

The VIDL compiler does not accept any definitions that are placed out-
side of a namespace. Since the IG711 interface is defined within the
EXAMPLES namespace, the fully qualified name for the interface is EXAM-
PLES::IG711. The full name of the interface includes the namespace prefix
to ensure its uniqueness. For example, a different interface called IG711
may be defined within the ADI namespace and identified by its full name
ADI::IG711.

Although the previous VIDL definition incorporates significantly more
information than a C or C++ prototype, the interface definition by itself is
not sufficient to use the interface. To use the services offered by an inter-
face, further information, such as the operational specification of the

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-9
for 16-bit Processors

Developing and Using VCSE Components

interface, is needed. The operational specification covers such aspects as
the order in which the methods of the interface are called or ranges of val-
ues that are valid for each parameter.

The VIDL language supports a formalized comment notation, called
auto-doc comments, which allows specification of operational details
along with the formal definition of the interface and its methods.
Auto-doc comments are translated into HTML text and can contain any
HTML constructs necessary to format the translated text. For more infor-
mation, see “Auto-doc Comments” on page 4-72. Listing 2-2 shows the
definition of the interface completed with the auto-doc comments.

Listing 2-2. EXAMPLES::IG.711 VIDL Specification

namespace EXAMPLES {

/**

* G.711 is the international standard for encoding telephone

* audio on a 64 Kbps channel. It is a pulse code modulation

* (PCM) scheme operating at a 8 kHz sample rate, with 8 bits

* per sample. There are two different variants of G.711:

* A-law and mu-law. A-law is the standard for international

* circuits.

* <p>

* The IG711 interface defines a service that allows values to

* be compressed or de-compressed using either variant.

*/

[iid(“e42dec41-1936ff4e-9b392d02-7d5f3731”)]

interface IG711 extends IBase

{

/**

* The Compress function is used to compress a block of

* data. The function compresses each of the values supplied

* in the inData array and stores the 8-bit compressed

* value in the corresponding element of the outData array.

* @param N is the number of values held in the inData

Defining an Interface

2-10 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

* array.

* @param inData is the array of input values each of which

* is to be compressed.

* @param outData is the array which will receive the

* compressed values.

*/

MRESULT Compress(

[in] unsigned N,

[in, size_is(N), align(4)] short inData[],

[out, size_is(N), align(4)] short outData[]);

/**

* The Decompress function is used to de-compress a block of

* data. The function de-compresses each of the 8-bit values

* supplied in the inData array and stores the uncompressed

* 16-bit value in the corresponding element of the

* outData array.

*

* @param N is the number of values held in the inData array.

* @param inData is the array of input values each of which is

* to be de-compressed.

* @param outData is the array which will receive the

* de-compressed values.

*/

MRESULT Decompress(

[in] unsigned N,

[in, size_is(N), align(4)] short inData[],

[out, size_is(N), align(4)] short outData[]);

};

};

An application cannot directly use the VIDL specification for the service
offered by the IG711 interface. The VIDL compiler does, however, process
the VIDL specification and generate a header file EXAMPLES_IG711.h. The
header provides definitions of the interface that can be used in C, C++, or
assembly language source modules to access the interface.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-11
for 16-bit Processors

Developing and Using VCSE Components

Assuming the VIDL specification (Listing 2-2 on page 2-9) is held in a file
ig711.idl, invoke the VIDL compiler that is appropriate for your target
processor:

vidlblkfn ig711.idl

vidl218x ig711.idl

vidl219x ig711.idl

vidlts ig711.idl

vidl21k ig711.idl

The compiler generates the EXAMPLES_IG711.h file. The generated header
file can be included by any application or component that wishes to use
the interface.

Although “::” separates the namespace and simple name parts of a
full interface name, you must use an underscore to separate the
same elements in file names.

The VIDL compiler also produces a set of .HTML files, which document
the interface and combine information from the VIDL statements and any
auto-doc comments. These files are stored in an html subdirectory. If you
open the html\EXAMPLES_IG711.html file, a page similar to that in
Figure 2-1 on page 2-18 appears.

Properties
In some cases, component developers need to enable a component to have
certain publicly visible properties that can be accessed directly via an inter-
face pointer. The VIDL language provides interface data members to be
specified to allow those properties to be defined and to control the access
allowed to such properties. The values of these properties can then be read
or written using automatically-generated access methods inlined by the C
or C++ compiler to minimize any overheads.

Properties

2-12 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Consider the following interface definition:

interface IMultiRateFilter extends IBase

{

// Rate is a read/write property

[get, set] int Rate

// ErrorCode is a read-only property.

[get] MRESULT ErrorCode;

// Statistics is a read-only array

[get] short Statistics[3];

};

The use of the [get] attribute informs the VIDL compiler that an access
method to obtain the value of the property should be generated; and the
use of the [set] attributes informs the VIDL compiler that an access
method to change the value of the property should be generated.

The C/C++ mapping for properties is an inlined method of the interface
with get or set prefixed to the property’s name. In the case of array-type
properties, an index is included as a parameter of the access method. For
assembly language the mapping of properties is a convenience macro that
indexes into the interface to access the specified property.

For example the C++ mapping of the above interface is:

interface IMultiRateFilter : public IBase

{

protected:

int m_Rate;

MRESULT m_ErrorCode;

short m_ Statistics [3];

public:

inline int getRate() { return m_Rate; }

inline void setRate(int _val) { m_Rate = val; }

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-13
for 16-bit Processors

Developing and Using VCSE Components

inline MRESULT getErrorCode() { return m_ErrorCode; }
inline short getStatistics (int _index) { return

m_Statistics[_index]; }

};

Accessing the properties of an interface is syntactically the same as invok-
ing any of the methods of the interface. In C++ the value of the Rate
property can be obtained using an expression such as imrf->getAccess(),
whereas in C or assembler the corresponding expression to obtain value of
the property is ADI_IMultiRateFilter_getRate(imrf);

The significant difference between accessing the value of properties and
invoking the methods of an interface is that the access to the properties
can be inlined automatically by the C/C++ compiler and assembler.
Therefore, the properties of an interface provide an efficient means to
communicate configuration and status type data between a component
and its client.

By allowing protected data members in an interface, client use of the
access methods result in a single memory access in application code rather
than calling a function. Compared to a method call, access to a property is
faster and results in using less lines of code in both the component and the
application.

As a result, using properties can significantly reduce the costs of program-
ming techniques, such as event polling. At the same time, they provide
very low cost access to status information. The setting of the value of a
property can also provides a very inexpensive way of providing configura-
tion information to a component. By definition a property provides only
read and/or write access to an interface data member. If for any reason
accessing a property may need to trigger some action or side effect within
the component, then a standard method should be used rather than a
property.

Interface Properties

2-14 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Since properties are protected data members of an interface they become
protected members of any component that implements the interface,
either directly or indirectly. Unlike interface methods properties are not
declared by an interface but are defined as properties of the interface.

It is possible for a component to have more that one property with the
same name since properties are defined as an element of an interface. For
example, if interfaces IB and IC both extend IA and IA defines the prop-
erty PropA, then a component implementing IB and IC will have two
PropA properties (one for its implementation of IB and one for IC).

Depending on the component under consideration, the use of properties
may or may not be the best way to communicate values to or from the
component. In any case the component developer should ensure that the
intended behavior of the interface properties is fully documented.

Interface Properties
It may useful to enable a component to have certain publicly visible prop-
erties that can be accessed directly via an interface pointer. The VIDL
language provides interface data members which can be specified to allow
those properties to be defined and to control the access allowed to such
properties. These values of these properties can then be read or written
using automatically-generated access methods that are inlined by the C or
C++ compiler to minimize any overhead.

Consider the following interface definition:

interface IMultiRateFilter extends IBase

{

// Rate is a read/write property

[get, set] int Rate;

// Rate is a read/write property

[get, set] int Rate;

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-15
for 16-bit Processors

Developing and Using VCSE Components

// ErrorCode is a read-only property.

[get] MRESULT ErrorCode;

 // Statistics is a read-only array
 [get] short Statistics[3];

};

The use of the [get] attribute informs the VIDL compiler that an access
method to obtain the value of the property should be generated. The use
of the [set] attributes informs the VIDL compiler that an access method
to change the value of the property should be generated.

The C/C++ mapping for properties is simply an inlined method of the
interface with get or set prefixed to the properties name. In the case of
array-type properties, an index is included as a parameter of the access
method. For assembly language the mapping of properties is simply a con-
venience macro that indexes into the interface to access the specified
property.

For example the C++ mapping of the above interface is:

interface IMultiRateFilter : public IBase

{

protected:

int m_Rate;

MRESULT m_ErrorCode;

short m_ Statistics [3];

public:

inline int getRate() { return m_Rate; }

inline void setRate(int _val) { m_Rate = val; }

inline MRESULT getErrorCode() { return m_ErrorCode; }

inline short getStatistics (int _index) { return

m_Statistics[_index]; }

};

Interface Properties

2-16 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Accessing the properties of an interface is syntactically the same as invok-
ing any of the methods of the interface. Hence in C++ the value of the
Rate property can be obtained using an expression such as imrf->getAc-
cess(), whereas in C or assembler the corresponding expression to obtain
value of the property is ADI_IMultiRateFilter_getRate(imrf);

The significant difference between accessing the value of properties and
invoking the methods of an interface is that the access to the properties
can be inlined automatically by the C/C++ compiler and assembler. The
properties of an interface therefore provide a very efficient means to com-
municate configuration and status type data between a component and its
client.

By allowing protected data members in an interface, client use of the
access methods result in a single memory access in application code rather
than calling a function. Compared to a method call, access to a property is
faster and results in less code in both the component and the application.

Properties can therefore significantly reduce the costs of programming
techniques such as event polling and also provide very low cost access to
status information. The setting of the value of a property can also provides
a very inexpensive way of providing configuration information to a com-
ponent. By definition a property provides only read and/or write access to
an interface data member. If there is a possibility that accessing a property
may need to trigger some action or side effect within the component then
a standard method should be used rather than a property.

Since properties are protected data members of an interface they become
protected members of any component that implements the interface,
either directly or indirectly. Unlike interface methods properties are not
declared by an interface but are defined as properties of the interface.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-17
for 16-bit Processors

Developing and Using VCSE Components

It is possible for a component to have more that one property with the
same name since properties are defined as an element of an interface. For
example, if interfaces IB and IC both extend IA and IA defines the prop-
erty PropA, then a component implementing IB and IC has two PropA
properties (one for its implementation of IB and one for IC).

Depending on the component under consideration, the use of properties
may or may not be the most desirable way to communicate values to or
from the component. In any case the component developer should ensure
that the intended behavior of the interface properties is fully documented.

Creating Interface Implementation
Once we have created the VIDL interface definition and generated the
interface header file, VCSE can automatically create the framework for a
component that can be used to implement the interface. The VIDL
needed to create the framework of an implementation of the EXAM-
PLES::IG711 interface is shown in Listing 2-3 on page 2-17.

Listing 2-3. Component Implementing EXAMPLES::IG711 Interface

#include “ig711.idl”

namespace EXAMPLES {

/**

* The CULaw component provides an implementation of the

* EXAMPLES::IG711 interface and implements the mu-law

* encoding as specified in the ITU B.711 specification.

*/

[

category(“Examples\Telephony”),

company(“Analog Devices, Inc”),

title(“Example component for G711 which implements mu-law

encoding”)]

Creating Interface Implementation

2-18 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

component CULaw implements IG711;

};

To generate the framework needed to implement this component in C,
issue a command that corresponds to your target processor family:

vidlblkfn g711.idl

vidl218x g711.idl

vidl219x g711.idl

vidlts g711.idl

vidl21k g711.idl

Figure 2-1. Examples::IG711 Interface Documentation Files

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-19
for 16-bit Processors

Developing and Using VCSE Components

The VIDL compiler processes the supplied VIDL and generates a set of C
files needed to create the component. A C based implementation is the
default. To generate a set of C++ files, add the -c++ switch to the com-
mand line; add the -asm switch to generate the methods of the component
in assembly language. The set of generated C files is outlined in Table 2-1.

Table 2-1. EXAMPLES::IG711 Interface Implementation Files

File Name Description

EXAMPLES_CULaw.c Contains the code needed to create and destroy the component.

EXAMPLES_CULaw.h Contains the definition of the structure that holds the instance
data for the component.

EXAMPLES_CULaw.rbld Deleting this file triggers a complete rebuild within a Visu-
alDSP++ project that creates the component.

EXAMPLES_CULaw.xml Controls the packaging of a component when it is being pre-
pared for distribution.

EXAMPLES_CULaw_factory.h Contains the prototypes for the Create and Destroy functions
for the component.

EXAMPLES_CULaw_methods.c Contains the method functions used to actually implement the
interfaces.

Creating Interface Implementation

2-20 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

A component is built as a library of objects; the name of the library should
be EXAMPLES_CULaw.dlb to avoid clashes with other components. The gen-
erated files are complete and ready to be compiled. The library can be
created by issuing a command that corresponds to your design processor
family, such as:

ccblkfn -build-lib -o EXAMPLES_CULaw.dlb EXAMPLES_CULaw.c

EXAMPLES_CULaw_methods.c

cc219x -build-lib -o EXAMPLES_CULaw.dlb EXAMPLES_CULaw.c

EXAMPLES_CULaw_methods.c

cc218x -2184 -build-lib -o EXAMPLES_CULaw.dlb EXAMPLES_CULaw.c

EXAMPLES_CULaw_methods.c

The command creates a library containing the executable code for the
component. A distributed component is expected to provide header files,
documentation files, and other files along with the actual library. The
packaging of a component is primarily controlled by the contents of the
.XML file and the Component Packaging Wizard used to create the distri-
bution package.

In order to effect the actual implementation of the component, modify
two of the files, EXAMPLES_CULaw.h and EXAMPLES_CULaw_methods.c.

C Component Instance Structure
The VCSE Component Model is designed to enable each component to
have more than one instance simultaneously. The data associated with
each instance of the component is known as the instance data and is held
in a structure that is defined by the VIDL compiler. Each instance of the

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-21
for 16-bit Processors

Developing and Using VCSE Components

component has its own copy of the instance data. When the implementa-
tion language is C, the file EXAMPLES_CULaw.h contains the definition of
the instance structure as follows.

component EXAMPLES_CULaw {

struct EXAMPLES_IG711_methods *EXAMPLES_IG711;

VCSE_IBase_ptr m_penv;

VCSE_HANDLE m_token;

VCSE_ADDRESS m_addr;

//##

//####SCF Start of component private members, EXAMPLES_CULaw

// Any user specific members for instance data of the compo-

// nent, CULaw, should be inserted here

//####ECF End of component private members, EXAMPLES_CULaw

//###

};

Note that component is a macro defined as struct when the VIDL
compiler target language is C. This increases the readability of gen-
erated code by making it as close as possible to the VIDL
component definition.

The name of the structure is generated from the combination of the
namespace and the component name separated by an underscore. This is
the standard way to make C names unique. Normally, a name is also
appended to indicate the function or use of the name, such as the name of
a method function. The VCSE framework controls and uses the fields at
the start of the component structure. Any data needing different values for
each instance is defined by replacing the comment

// Any user specific members for instance data of the compo-

// nent, CULaw, should be inserted here

with the data definitions.

Creating Interface Implementation

2-22 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Any changes made within the

//##

markers are automatically preserved by the VIDL compiler and restored
when it regenerates the implementation shell. For example, if you want to
add an int field to hold the count of the number of times the Compress
method is called, change the above block as follows.

component EXAMPLES_CULaw {

struct EXAMPLES_IG711_methods *EXAMPLES_IG711;

VCSE_IBase_ptr m_penv;
VCSE_HANDLE m_token;
VCSE_ADDRESS m_addr;

//##

//####SCF Start of component private members, EXAMPLES_CULaw

/* count the no. of times Compress is invoked */

int m_CompressCt;

/* count the no. of times Decompress is invoked */

int m_DecompressCt;

//####ECF End of component private members, EXAMPLES_CULaw

//##

};

The factory functions, which are used to create and destroy instances of
the component, are generated in the file EXAMPLES_CULaw.c and are
described in “Component Factory Header File” on page 2-59.

When an instance of a component is created, an instance of the compo-
nent structure has to be allocated and initialized. The component Create
function generated by the VIDL compiler uses the passed IMemory inter-
face to allocate this instance structure, using a request for instance

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-23
for 16-bit Processors

Developing and Using VCSE Components

memory with default alignment and of any type and any lifetime. For
details of the memory allocation requests, see “IMemory Interface” on
page 3-2.

C Interface Method Functions
The file EXAMPLES_CULaw_methods.c contains the definitions of the two
methods defined in the interface IG711 (see Listing 2-2 on page 2-9). The
principal modification is to provide the actual body of these two func-
tions. The code generated by the compiler for the Compress method is as
follows.

static __VCSEMETHOD VCSE_MRESULT EXAMPLES_CULaw_Compress(

VCSE_IBase_ptr base,

unsigned int N,

const short inData[N],

short outData[N])

{

__ASSIGN_THIS_POINTER(__this,EXAMPLES_CULaw);

__builtin_aligned(inData,4);

__builtin_aligned(outData,4);

//###

//####SCF Start of interface member function, EXAMPLES_CULaw_Compress

{

// Any user specific code needed within the interface member

// function, EXAMPLES_CULaw_Compress, should be inserted here.

return (VCSE_MRESULT)MR_OK;

}

//####ECF End of interface member function, EXAMPLES_CULaw_Compress

//###

}

Creating Interface Implementation

2-24 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

The main points to be noticed:

• The first parameter passed to each method is a pointer to the com-
ponent instance data structure. By convention, it is assigned to a
variable called __this, whose type is a pointer to the component
structure (using the macro __ASSIGN_THIS_POINTER).

• When the interface definition marks the array parameters with the
align attribute, this information is supplied to the compiler using
the __builtin_aligned intrinsic.

• The actual body of the method is placed within the user-modifiable
block markers.

• The method function is defined as static and, therefore, cannot
be directly referenced outside this file. Access to the methods of an
interface is always indirect via the interface instance pointer.

A possible implementation of the Compress method is as follows.

static __VCSEMETHOD VCSE_MRESULT EXAMPLES_CULaw_Compress(

VCSE_IBase_ptr base,

unsigned int N,

const short inData[N],

short out Data[N])

{

__ASSIGN_THIS_POINTER(__this,EXAMPLES_CULaw);

__builtin_aligned(inData,4);

__builtin_aligned(outData,4);

//##

//####SCF Start of interface member function, EXAMPLES_CULaw_Compress

{

int calcVal;

int seg;

unsigned i;

short inVal;

/* Increment the count in the inst.data */

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-25
for 16-bit Processors

Developing and Using VCSE Components

__this->m_CompressCt++;

for(i = 0; i < N; ++i)

{

/* Handle negative input with sign bit below */

inVal = inData[i];

calcVal = abs_(inVal);

calcVal += 33;

calcVal = min_(calcVal, 8159); /* bound input */

seg = signbits_(calcVal);

calcVal <<= seg; /* normalize input */

calcVal ^= 0x4000; /* strip off the high bit */

calcVal >>= 10; /* get the position */

if (inVal < 0) /* add the sign bit to the output */

calcVal |= 0x80;

seg = 9 - seg; /* we need to change segment */

calcVal |= (seg << 4); /* add the segment ID */

outData[i] = ~calcVal; /* invert the output */

}

return (VCSE_MRESULT)MR_OK;

}

//####ECF End of interface member function, EXAMPLES_CULaw_Compress

//##

}

A component must always access its instance data via the __this pointer.
It is valid for the component to read global data, but all normal data
updates should be via the instance pointer.

C++ Interface Methods
When a C++ implementation is selected, the component is created as a
C++ class whose members are the instance data, and the interface methods
are the methods of the class. The component class is defined in a C++

Creating Interface Implementation

2-26 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

namespace, which has the same name as the component name. This
namespace is further embedded in C++ namespaces with the same name as
the VIDL namespaces that the component is defined in. Hence, the com-
ponent class for the CULaw component is effectively defined in C++ as:

namespace EXAMPLES {

namespace CULaw {

component CULaw {

}

}

}

Note that component is a macro defined as class when the VIDL
compiler target language is C++. This increases the readability of
generated code by making it as close as possible to the VIDL com-
ponent definition.

The component CULaw is defined within an enclosing EXAMPLES::CULaw
namespace to ensure that any global variables are defined in the EXAM-
PLES::CULaw namespace and, thereby, guarantee uniqueness between
components. The factory functions that Create and Destroy the compo-
nent are declared as friends of the component class in a C++ source file.

If a C++ implementation shell is generated using a command line that cor-
responds to your design processor family1,

vidlblkfn -c++ g711.idl

vidl219x -c++ g711.idl

vidlts -c++ g711.idl

vidl21k -c++ g711.idl

then the interface IG711 is defined as an abstract class derived from the
::VCSE::IBase class as follows.

1 There is no C++ support for ADSP-218x DSPs.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-27
for 16-bit Processors

Developing and Using VCSE Components

interface IG711 :

public ::VCSE::IBase

{

public:

virtual __VCSEMETHOD VCSE::MRESULT GetInterface(

const VCSE::RefIID iid,

VCSE::IBase_ptr *iptr) = 0;

virtual __VCSEMETHOD VCSE::MRESULT Decompress(

unsigned int N,

const short *inData,

short *outData) = 0;

virtual __VCSEMETHOD VCSE::MRESULT Compress(

unsigned int N,

const short *inData,

short *outData) = 0;

};

Note that interface is a macro defined as class when the VIDL
compiler target language is C++. This increases the readability of
generated code by making it as close as possible to the VIDL inter-
face definition.

The component instance data is then defined as a class derived from the
abstract classes, which represent the interfaces supported by the compo-
nent, as follows.

namespace EXAMPLES {

namespace CULaw {

component CULaw:

public::EXAMPLES::IG711

{

...

}

}

}

Creating Interface Implementation

2-28 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

The shell generated for the Compress method is:

namespace EXAMPLES {

namespace CULaw {

__VCSEMETHOD VCSE::MRESULT CULaw::Compress(

unsigned int N,

const short *inData,

short *outData)

{

__builtin_aligned(inData,4);

__builtin_aligned(outData,4);

//##

//####SCF Start of interface member function, EXAMPLES::CULaw::Compress

{

//Any user specific code needed within the interface member

//function, EXAMPLES::CULaw::Compress, should be inserted here.

return (VCSE_MRESULT)MR_OK;

}

//####ECF End of interface member function, EXAMPLES::CULaw::Compress

//##

}

…

The instance data within the method can be accessed directly since C++
uses the this pointer implicitly. For example,

m_CompressCt++; /* increment the count in the instance data */

Assembly Interface Methods
When an assembly implementation is selected, the methods are created as
assembly based shells, while the factory functions that create and destroy
the component are created as C functions that do not use the C run-time

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-29
for 16-bit Processors

Developing and Using VCSE Components

library. The names of the functions for the methods are the same as those
used in the C implementation, but the assembly functions are defined as
global since the method table is created within the C factory function file.

If an assembly implementation shell is generated using one of the follow-
ing command lines,

vidlblkfn -asm -trace g711.idl
vidl219x -asm -trace g711.idl
vidl218x -asm -trace g711.idl
vidlts -asm -trace g711.idl

vidl21k -asm -trace g711.idl

then the shell generated for the Compress method is:

//

// VCSE_MRESULT EXAMPLES_CULaw_Compress(

// VCSE_IBase_ptr base,

// unsigned int N,

// const short inData[N],

// short outData[N])

__STARTFUNC(_EXAMPLES_CULaw_Compress, __GLOBAL)

//##

//####SCF Start of interface member function, EXAMPLES_CULaw_Compress

__LINK(0)

__DEBUG_TRACE_ENTRY(‘EXAMPLES_CULaw_Compress')

//Any user specific code needed within the interface member

//function,EXAMPLES_CULaw_Compress, should be inserted here.

__DEBUG_TRACE_EXIT('EXAMPLES_CULaw_Compress')

__RETURN(MR_OK)

//####SCF End of interface member function, EXAMPLES_CULaw_Compress

Advanced Component Construction

2-30 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

//##

__ENDFUNC(_EXAMPLES_CULaw_Compress)

It should be noted that the function entry trace
__DEBUG_TRACE_ENTRY('EXAMPLES_CULaw_Compress') and corresponding
exit trace are only generated if -trace is used when the assembler source is
generated for the first time because the line is within the user-modifiable
block.

VCSE provides various macros for use within an assembly source file by
#include <vcse.h>, as described in “VCSE Assembler Macros” on
page A-1.

Advanced Component Construction

Method Language Selection
Suppose you have a fast and efficient Assembler routine for an algorithm
which you would like to form the core of a VCSE component. However,
along with the algorithmic core there are a number of configuration tasks
for which, as they amount to a small fraction of the processing time taken
by the algorithmic core itself, it would be more cost efficient to write in C.

The language statement, which can appear within the component declara-
tion block, enables the target language of one or more interface methods
to be different from the default, as dictated by the command line switches.

For example, if the majority of the component CAlg’s methods are to be
implemented in C, and it is required that foo is implemented in Assem-
bler then the VIDL syntax

component CAlg implements IBar {

language foo is asm;

};

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-31
for 16-bit Processors

Developing and Using VCSE Components

could be used to override the default behavior of the compilation.

The only limitation to using this approach is that at present it is confined
to mixing C and Assembler code; the option to mix C or Assembler with
C++ is not currently supported.

For a detailed description of the syntax for the language statements see
“language statement” on page 4-66.

Method Placement
On occasion, developers need to control the placement of methods within
memory in order to obtain the best possible performance for an applica-
tion. To achieve this it is necessary that developers specify non-default
section names for these methods. In line with the C/C++ compilers, the
VIDL compiler provides the place statement to allow a user-defined sec-
tion name to be supplied for any method.

This is achieved through the introduction of the place statement, which
can be added to the component declaration body of the VIDL syntax. For
example, the following syntax

component CAlg implements IBar {

place foo in l2_cache;

};

Advanced Component Construction

2-32 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

instructs the VIDL compiler to add __VCSESECTION_DEF(l2_cache) to the
declaration of the method foo:

VCSE_MRESULT __VCSESECTION_DEF(l2_cache) ACME_Calg_foo(…) { …

}

The __VCSESECTION_DEF(S) macro simply maps to section(s), the syntax
used by the C/C++ compilers. A similar approach is applied to Assembler
methods.

The place statement must be used in conjunction with an LDF file
tailored for your application's needs.

For a detailed description of the syntax for the place statements see “place
statement” on page 4-65.

Distinct Components
When generating the source code for a component that implements multi-
ple interfaces the default behavior of the VIDL compiler is to generate a
single implementation of a method from one interface whose name and
parameter list are identical to those in another interface.

For example, if component C1 implements IA and IB, both of which have
a method foo that takes no parameters, then the same function will be
called irrespective of the interface used.

The VIDL compiler provides the distinct component attribute, which
will override the behavior described above, for example:

[distinct, …] component C1 implements IA, IB;

Applied to component C1 above, it would result in two implementations
of foo one that would be invoked via the IA interface and another via IB.
The distinct implementation of foo is transparent to the user of a compo-
nent C1.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-33
for 16-bit Processors

Developing and Using VCSE Components

In addition to separate implementations of a method, the component
developer can determine whether the separate implementations will have
access to the same or different instance data. The default behavior is that
they have access to separate instance data. This feature can be overridden
by using of the common component attribute,

[distinct,common, …] component C1 implements IA, IB;

and in which case the two different implementations of foo share the same
instance data.

For further details on the use of the distinct and common component
attributes, see pages “common Attribute” on page 4-55 and “distinct
Attribute” on page 4-56.

The use of the distinct attribute results in all methods of all interfaces
being given distinct implementations. However, there may be times when
this is not the desirable behavior: maybe only one or two methods are
required to have distinct implementations. Furthermore, the distinct
implementation may not be required for all interfaces.

For example, extending the above example so that C1 implements a further
interface IC that also supplies an identical method foo, and all interfaces
have an identical bar method, we may choose to have a separate imple-
mentation of foo for interface IC, and yet retain a single implementation
for interfaces IA and IB. Additionally, we may choose a single implemen-
tation of bar for all three interfaces.

The distinct statement enables the arbitrary selection of which interface
methods are to be given a distinct implementation. For example, the
revised behavior in the preceding paragraph can be implemented using the
following VIDL syntax:

component CAlg implements IBar {

distinct IC::foo;

};

Documenting Components

2-34 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

As it applies to data access, all distinct methods operate on distinct data
while all common methods operates on the same common data. To force
all implementations to operate on the same data, the common component
attribute can be used as previously.

Documenting Components
The use of VIDL to define component interfaces that each component
supports allows a lot of information about a component to be specified
formally. However, a component also needs to provide information that
describes how it is to be used and the kind of operating environment that
it expects. This is the “operational specification” for the component, and
it is provided by auto-doc comments embedded in the VIDL.

In the example below, the auto-doc comment provides a description of the
CDSM2150F5V component. Notice that the auto-doc comment body con-
tains HTML items, such as paragraph tags and an HTML link.

namespace EXAMPLES {

/**

* This component is an ADSP-BF535 implementation of the

* EXAMPLES::IFlash interface for the ST DSM2150F5V DSP System

* Memory device. This device is used on the ADSP-BF535 EZ-Kit

* board, but it is suitable for many other ADI processors too.

* Consult the

*

* ST data sheet for full details of this part <p>.
**/

[

title("Flash Programmer for ST DSM2150F5V DSP System Memory"),

info("www.analog.com"),

category("Example\Non-algorithm"),

company("Analog Devices, Inc"),

version(1.0.0),

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-35
for 16-bit Processors

Developing and Using VCSE Components

aggregatable

]

component CDSM2150F5V implements EXAMPLES::IFlash {};

Auto-doc supports tags that allow specific features of an interface (or a
method) to be clearly documented and tabulated in HTML. Each tag is
prefixed with an @ character. The supported tags include @param, @return,
@example, and @keyword. In the following example, the auto-doc comment
provides a summary description of the SetDeviceAddresses method from
the IFlash interface and additional information on each of its parameters.

/**

* Tells the IFlash component how the flash device's sectors

* are mapped into the general address space. It also ensures

* the device is in its default state. This method must be

* invoked before any others and may only be invoked once.

*

* @param NumRanges Specifies the number of address ranges in

* the address range table. Must be a positive value.

*

* @param AddressRanges Array of address range descriptors.

* Each descriptor specifies a starting address in the

* DSP's memory map, the length in bytes of the address

* range andinformation about the substructure (if any)

* of the range.The elements of the array need not be in

* any particular order.

*

* @return MRESULT MR_IFLASH_BAD_RANGES, MR_IFLASH_INCOMPLETE_RANGES,

* MR_IFLASH_RANGES_ALREADY_SET or MR_OK (see IFlash_Results).

**/

MRESULT SetDeviceAddresses(

[in] int NumRanges,

[in,size_is(NumRanges)] AddressRange AddressRanges[]);

Documenting Components

2-36 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

When you compile the VIDL definition for a component, the compiler
generates a set of .HTML files that document the component and all the ref-
erenced interfaces. The generated HTML documentation for the
component and all its supported interfaces includes a table of contents as
well as an automatically generated index.

If you open the file html\EXAMPLES_CDSM2150F5V.html in a browser, click
on the Index button, select the SetDeviceAddresses method entry, and
then the item EXAMPLES::IFlash interface — SetDevicesAdresses, a
screen similar to that in Figure 2-2 appears.

Figure 2-2. Examples::IG711 Interface Documentation Files

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-37
for 16-bit Processors

Developing and Using VCSE Components

Testing Components
The VIDL compiler provides aids for testing a component in two separate
ways. It can generate a test harness program that will invoke every method
of every interface. This test harness can be modified to effect testing, as
needed. In addition the VIDL compiler can generate a test shell compo-
nent that can be used automatically to validate the actions of the
component or of the application that invokes the component.

Testing Harnesses
When generating the implementation shell of a component, you can
request some tracing code be added to the generated methods by specify-
ing the -trace switch to the VIDL compiler. For example, if you specify
one of the following commands,

vidlblkfn -trace g711.idl

vidl219x -trace g711.idl

vidl218x -trace g711.idl

vidlts -trace g711.idl

vidl21k -trace g711.idl

the generated shell for the Compress method contains the code:

static __VCSEMETHOD VCSE_MRESULT EXAMPLES_CULaw_Compress(

VCSE_IBase_ptr base,

unsigned int N,

const short inData[N], short outData[N]

{

__ASSIGN_THIS_POINTER(__this,EXAMPLES_CULaw);

__builtin_aligned(inData,4);

__builtin_aligned(outData,4);

__DEBUG_TRACE_ENTRY("EXAMPLES_CULaw_Compress");

//###

Testing Components

2-38 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

//####SCF Start of interface member function, EXAMPLES_CULaw_Compress

{

// Any user specific code needed within the interface

// member function, EXAMPLES_CULaw_Compress, should be

// inserted here.

__DEBUG_TRACE_EXIT("EXAMPLES_CULaw_Compress");

return (VCSE_MRESULT)MR_OK;

}

//####SCF End of interface member function, EXAMPLES_CULaw_Compress

//###

}

The default __DEBUG_TRACE_ENTRY and __DEBUG_TRACE_EXIT macros use
the VCSE_printf function to display a message on entry to and exit from
the method.

If you generate an initial set of component shell source files with-
out specifying -trace but specify -trace in a subsequent call on
the compiler, the compiler only adds the entry trace macro since
the exit trace is within a user defined block.

The VCSE support library contains a specialized version of printf called
VCSE_printf (and a corresponding VCSE_fprintf), which supports a lim-
ited number of format specifications but can be used independently of the
standard C/C++ run-time library. The only format specifications sup-
ported are %s, %x, %p, %c, %d, and %i. There is no support for field widths
or padding either.

The VIDL compiler also generates a simple test program for a component
if you supply the -harness switch. The generated test program for the
CULaw component would be EXAMPLES_CULaw_test.c. The test program
creates an instance of the component and then invokes each of its methods
before destroying the component instance.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-39
for 16-bit Processors

Developing and Using VCSE Components

A VCSE component is not expected to allocate memory directly itself;
instead, it uses an IMemory interface instance supplied by the application
to allocate memory on request. The generated test program includes the
source for a simple memory allocation component VCSE::CSimpleMemory,
which allocates memory from the system heap.

Once you have created the component library, compile and build the test
program using the appropriate command for your target processor family:

ccblkfn EXAMPLES_CULaw_test.c -L. EXAMPLES_CULaw.dlb -lvcseBF532

cc219x EXAMPLES_CULaw_test.c -L. EXAMPLES_CULaw.dlb -lvcse219x

cc218x -2184 EXAMPLES_CULaw_test.c -L. EXAMPLES_CULaw.dlb -lvcse218x

The -L. switch specifies that the current directory is to be searched for the
specified libraries, such as the component library EXAMPLES_CULaw.dlb.
The -lvcseBF532, -lvcse219x, or -lvcse218x is needed to enable the
linker to find the VCSE support library for the respective processor fam-
ily, as summarized in Table 2-2.

Table 2-2. VCSE Support Libraries

Processor Family Switch VCSE Library

ADSP-218x1

1 If the component must avoid registers reserved for auto-buffering, use -lvcse218xab.dlb.

-lvcse218x libvcse218x.dlb

ADSP-219x2

2 If the component is compiled for the ADSP-2192-12 DSP, use
-lvcse219x_type32aworkaround to avoid ADSP-2192-12 DSP hardware anomalies.

-lvcse219x libvcse219x.dlb

ADSP-BF531 -lvcseBF532 libvcseBF532.dlb

ADSP-BF532 -lvcseBF532 libvcseBF532.dlb

ADSP-BF533 -lvcseBF532 libvcseBF532.dlb

ADSP-BF535 -lvcseBF535 libvcseBF535.dlb

Test Shell Components

2-40 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

When adding components to projects using the VisualDSP++ Component
Manager, the necessary libraries are automatically added to the project by
the Component Manager.

Test Shell Components
The VIDL test shell support provides for the nonintrusive testing of a
component that is either under development, or being used in its targeted
application. To achieve this the VIDL compiler can be instructed to gen-
erate a component that is identical to the component under test except
that the interface methods of the test shell component contain code prior
to and following a call to the actual method of the component under test.
The content of this code is determined by the test attributes specified in
the VIDL test shell syntax. User-modifiable blocks are also provided to
allow additional testing to be performed.

VCSE provides automatically-generated test shell support for validation of
method parameters and for monitoring of resources used, both in terms of
cycles and memory. This can be achieved without adding a single line of
code to the component under test.

The VIDL Compiler generates a test shell component that can be wrapped
around the actual component and supplies identical methods on the same
interfaces. The name of the test shell component is formed by adding the
_VCSETEST suffix to the name of the actual component. The only other dif-
ferences are that the Create function creates an instance of the actual
component as well and the test shell methods simply forward the call to
the required method of the actual component. Validation checks and per-
formance analysis are performed prior to and following the forwarded call
as detailed in the VIDL syntax for test shell components.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-41
for 16-bit Processors

Developing and Using VCSE Components

To use the test shell component simply replace the actual component in
the client code. Macros are defined in the test shell's factory header so that
the test component can act as the component itself with minimal change
to the client code. Consider the following simplified example:

#ifdef __USE_TEST_COMPONENT__

#include "ADI_C1_VCSETEST_factory.h"

#else

#include "ADI_C1_factory.h"

#endif

:

ADI_C1_Create(NULL,ADI_TOOLS_IA_IID,&pIA,…)

:

int n=3;

short data[3], output[3];

pIA->foo(n,m,data, output);

:

ADI_C1_Destroy(pIA)

Compiling the above with default options results in the actual component
only being used, while adding -D__USE_TEST_COMPONENT__ to the C++
compiler command line results in the test shell component being used as a
wrapper around the actual component. This is the approach used in the
test harness code, generated with the -harness command line option.

To ensure that n and m are limited to the range 0-10, for example, and to
check that the bounds for data are not exceeded, as well as perform timing
analysis on the foo method, involves using the following VIDL file:

#include "ADI_C1.idl"

namespace ADI {

testing ADI::TOOLS::C1 {

[timing,in_assert(n>=0 && n<=10)]

foo([array_check] data);

Test Shell Components

2-42 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

};

};

where timing, in_assert and array_check are termed test shell attributes.
For a more detailed description of the VIDL syntax for test shell compo-
nents and the various attributes that can be used see “Generated Test
Shells” on page 4-77.

Test shell components are only generated in C or C++ depending on the
command line options. For components partially or fully implemented in
Assembler, C is used for the test shell.

Since the test shell components use the same interfaces as the actual
components, method call optimizations are inhibited in the execut-
able for the interface methods under test.

Description of Generated Test Shell Component
Files

The files generated by the VIDL Compiler when test shell syntax is
present are similar to those generated for the actual component, except
that no Assembler files are generated. The names of the files are listed in
Table 2-3:

Table 2-3. Generated Test Shell Files Names

Type Actual Component Test Shell Component

Component header ADI_C1.h ADI_C1_VCSETEST.h

Component Management

C ADI_C1.c ADI_C1_VCSETEST.c

C++ ADI_C1.cpp ADI_C1_VCSETEST.cpp

Component Methods

C ADI_C1_methods.c ADI_C1_VCSETEST_methods.c

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-43
for 16-bit Processors

Developing and Using VCSE Components

Supporting Tools for Test Shell Components
VCSE provides built in support within both a test shell component and
the test harness source files to enable the various validation checks to be
carried out, and to communicate diagnostic messages to the component
tester, with little or no user intervention. This support is provided in three
ways:

• Macros and library methods,

• A simple standard report interface, VCSE::ITestReport, and

• A simple lightweight component. VCSE::CTestReport, that imple-
ments ITestReport.

Macros and Library Methods for Component Validation

The generated code in a test shell component makes use of a number of
macros that, for the most part, are mapped directly to function calls
within the VCSE library. The prototypes for these functions are provided
in VCSE.h:

char* VCSE_TestAlgoModel(int* state, int cur_operation);

int* VCSE_GetStackEnd();

VCSE_MRESULT VCSE_FillStack(int* end);

VCSE_MRESULT VCSE_MeasureStack(int* end, int* size);

And the following is declared for 21xx timing calculations only:

C++ ADI_C1_methods.cpp ADI_C1_VCSETEST_methods.c
pp

ASM ADI_C1_methods_asm.asm ADI_C1_VCSETEST_methods.c

Component Factory Header ADI_C1_factory.h ADI_C1_VCSETEST_factory.h

Table 2-3. Generated Test Shell Files Names

Type Actual Component Test Shell Component

Test Shell Components

2-44 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

unsigned long VCSE_emuclk();

All macros are defined within the “Component Global Settings”
user-modifiable block at the top of the test shell component methods file,
so that they can be tailored to the individual needs of the component
tester. Calls to these methods and others are automatically inserted by the
VIDL compiler in response to the test attributes specified in the VIDL file
defining the test shell component.

The definition and intended use of these macros are as follows.

__VCSE_STACKVARS(E,U)

The __VCSE_STACKVARS macro is provided when the stack_usage(custom)
attribute is used. It is always empty. In the body of a test shell method it is
passed two parameters, __vcse_stack_end and __vcse_stack_use, which
must be declared within the macro definition. These variables are declared
without the use of a macro when the stack_usage(default) attribute is
used.

__VCSE_STACKFILL(E)

The __VCSE_STACKFILL macro provides a means of filling the stack with a
pattern prior to the forwarding call to the interface method of the compo-
nent under test. It is passed the __vcse_stack_end variable.

The macro is empty when the stack_usage(custom) attribute is used, oth-
erwise it is defined so as to invoke the VCSE_FillStack function within the
VCSE library:

#define __VCSE_STACKFILL(E) VCSE_FillStack(E)

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-45
for 16-bit Processors

Developing and Using VCSE Components

__VCSE_STACKUSE(E,ADDR))

The __VCSE_STACKUSE macro provides a means of measuring the amount
of stack used during the forwarding call to the interface method of the
component under test. It is passed the __vcse_stack_end variable. It is
also passed the address of the __vcse_stack_use variable to enable a value
for the amount of stack used to be assigned.

The macro is empty when the stack_usage(custom) attribute is used, oth-
erwise it is defined so as to invoke the VCSE_MeasureStack function within
the VCSE library:

#define __VCSE_STACKUSE(E,U) VCSE_MeasureStack(E,U)

Macros and Library Methods for Reporting Messages to the
User

Diagnostic and error messages are reported to the component tester via a
single macro, __VCSE_SHELL_REPORT, which can either be used as generated
by the VIDL Compiler or can be customized to suit the individual
requirements of the component tester. The __VCSE_SHELL_REPORT macro
generated by the VIDL Compiler is placed in the “Component Global
Settings” user-modifiable block and is defined as:

#define __VCSE_SHELL_REPORT(RPTNO,...) \

if (p_VCSE_ITestReport != NULL) { \

char *__VCSE_line; \

if (RPTNO) \

__VCSE_line = VCSE_ShellMessage(RPTNO,__VA_ARGS__); \

else \

__VCSE_line = VCSE_sprintf(__VA_ARGS__); \

VCSE_ITestReport_AddString(p_VCSE_ITestReport,__VCSE_line); \

} else { \

if (RPTNO) \

VCSE_PrintShellMessage(RPTNO,__VA_ARGS__); \

else \

Test Shell Components

2-46 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

VCSE_printf(__VA_ARGS__); \

}

This macro provides for one of four approaches to report the required
information to the user, depending on whether use is made of the RPTNO
parameter and or the VCSE::ITestReport standard interface. For a full
description of the VCSE::ITestReport interface see “ITestReport Inter-
face” on page 3-39.

The RPTNO parameter is an enum VCSE_Shell_MsgNo_e value, which identi-
fies the type of the message to be reported. In addition a variable number
of parameters can be passed to the macro to qualify the messages' content.

At is most complex the macro invokes the VCSE_ShellMessage library
function to generate a predefined message based on the enum
VCSE_Shell_MsgNo_e value and the appropriate number of arguments cor-
responding to the required message. This message is then passed to the
AddString method of the VCSE::ITestReport interface. The following
table describes the predefined message format strings and the arguments
required for the appropriate enum VCSE_Shell_MsgNo_e value:

Figure 2-3. Predefined Shell Messages

enum VCSE_Shell_MsgNo_e value Message

VCSE_Shell_Msg_UNKNOWN “this is an unknown - uninitialized
error message.\n"

VCSE_Shell_Msg_ALIASING_CHECK "%s : error : Parameter \"%s\" is
aliased to parameter \"%s\".\n"

VCSE_Shell_Msg_ARRAY_CHECK "%s : error : Input array parameter
\"%s\" modified.\n"

VCSE_Shell_Msg_INVALID_BOUNDS "%s : error : Array parameter \"%s\"
has invalid bounds.\n"

VCSE_Shell_Msg_BOUNDS_EXCEEDED "%s : error : Array parameter \"%s\"
written beyond bounds.\n"

VCSE_Shell_Msg_IN_ASSERT "%s : error : Assert expression
failed upon entry to \"%s\".\n"

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-47
for 16-bit Processors

Developing and Using VCSE Components

The simplest use of the macro involves using neither a enum
VCSE_Shell_MsgNo_e value or the VCSE::ITestReport interface, and sim-
ply passes the variable list of arguments to the VCSE_printf library
function for immediate output to the console.

The prototypes for the various library methods invoked by the
__VCSE_SHELL_REPORT macro are defined in VCSE.h:

char *VCSE_sprintf(char *fmt,...);

char *VCSE_ShellMessage(enum VCSE_Shell_MsgNo_e msgno, ...);

void VCSE_PrintShellMessage(enum VCSE_Shell_MsgNo_e msgno, ...);

VCSE_Shell_Msg_OUT_ASSERT "%s : error : Assert expression
failed upon exit from \"%s\".\n"

VCSE_Shell_Msg_USE_STATES "%s : error : Component \"%s\" does
not use required set of states.\n"

VCSE_Shell_Msg_INIT_STATE “%s : error : Initial state not set
for component \"%s\".\n"

VCSE_Shell_Msg_REQUIRED_STATE “%s : error : Component \"%s\" not in
required state \"%s\".\n"

VCSE_Shell_Msg_SET_STATE "%s : error : Does not set required
component state.\n"

VCSE_Shell_Msg_RESET_TO_STATE "%s : error : Does not reset to
required component state.\n"

VCSE_Shell_Msg_CLEAR_STATE "%s : error : Does not clear compo-
nent state.\n"

VCSE_Shell_Msg_TIMING "%s : Cycles taken = %d.\n"

VCSE_Shell_Msg_STACK_USAGE “%s : Stack used = %d.\n"

VCSE_Shell_Msg_MEM_USAGE "%s\n"

VCSE_Shell_Msg_MEM_INVALID "%s : error : Memory at 0x%x has cor-
rupted \"%s\"\n"

VCSE_Shell_Msg_USER_DEFINED ""

Figure 2-3. Predefined Shell Messages (Cont’d)

enum VCSE_Shell_MsgNo_e value Message

Test Shell Components

2-48 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

The VCSE_PrintShellMessage function behaves in a similar fashion to
VCSE_ShellMessage except that instead of returning a string it immedi-
ately outputs the message to the console.

An example use of the __VCSE_SHELL_REPORT macro, for the reporting of
the number of cycles used by an interface method, is

__VCSE_SHELL_REPORT(

VCSE_Shell_Msg_TIMING,

"EXAMPLES_CULawc::Compress",

__vcse_timing_result

);

where it can be seen that two arguments are passed to the macro, in addi-
tion to the enum VCSE_Shell_MsgNo_e value, to identify the interface
method and the number of cycles taken. The resulting message for a cycle
count of 7980 is:

EXAMPLES_CULawc::Compress : Cycles taken = 7980.

To make use of the VCSE::ITestReport interface the user can either use
the simple VCSE::CTestReport component, described below, or develop
their own. In either case a VCSE_WEAK pointer to the VCSE::ITestReport
interface is declared immediately prior to the __VCSE_SHELL_REPORT macro
and is set to NULL:

VCSE_WEAK VCSE_ITestReport_ptr p_VCSE_ITestReport = NULL;

To make use of a reporting component, the value of p_VCSE_ITestReport
is required to be set in another module.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-49
for 16-bit Processors

Developing and Using VCSE Components

The VCSE::CTestReport Component

A simple implementation of the VCSE::ITestReport interface is provided
in the VCSE library as the VCSE_CTestReport lightweight component.
This component only implements the AddString and AddStringWithNum-
ber methods to generate a linked list of messages. These messages are then
written to the console by the DumpAllMessages method.

This component can be used in conjunction with the generated test shell
components as a first step to validating a component under development.
The following code listing details its use within a test application as given
in the generated test harness program.

Listing 2-4. Example Use of the VCSE_CTestReport Component

// include test report component factory header:

#include "VCSE_CTestReport_factory.h"

// declare the VCSE::ITestReport interface pointer:

VCSE_WEAK VCSE_ITestReport_ptr p_VCSE_ITestReport;

:

// Assign the VCSE::ITestReport interface pointerl:

VCSE_CTestReport_Create(0,VCSE_ITestReport_IID,(::VCSE::IBase_pt

r *)&p_VCSE_ITestReport,0,0);

:

// perform tests using an unmodified generated test shell

component

:

// Output the results

p_VCSE_ITestReport->DumpAllMessages();

The VCSE::CTestReport interface pointer is a lightweight compo-
nent and as such is only suitable for use with a single test shell
component.

Packaging Components

2-50 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Packaging Components
Once a component has been developed and tested, it needs to be packaged
in a standard format ready for distribution. The component package man-
ifest is generated by the VIDL compiler. The package contains the
essential information needed to describe the component and to specify the
files that are to be incorporated in the packaged component.

The distributed package normally contains at least the following files.

• The library containing the component implementation, in the pre-
vious example, EXAMPLES_CULaw.dlb. This file is added to the
VisualDSP++ project when the component is added to the project.

• The header file containing the declarations of the component Cre-
ate and Destroy functions, in the previous example,
EXAMPLES_CULaw_factory.h. This file is added to the VisualDSP++
project when the component is added to the project.

• The header files for any interface that has been defined or is refer-
enced in the VIDL specification. The C representation for the
IG711 interface is generated in EXAMPLES_IG711.h. These files are
added to the VisualDSP++ project when the component is added
to the project.

• The set of .HTML documentation files for the component, which are
all contained in the html directory. The main component file,
EXAPLES_CULaw.html in the previous example, is the only file added
to the VisualDSP++ project when the component is added to the
project.

The VIDL compiler automatically includes these files in the manifest list.
You can add further files to the manifest, such as data files or images refer-
enced from the updated .HTML documentation files. The manifest .XML file

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-51
for 16-bit Processors

Developing and Using VCSE Components

has a section where additional files can be specified and which are pre-
served when the VIDL compiler is re-run. The user-modifiable section of
the manifest is as follows.

<!--

##

//####SCF Start of package manifest, EXAMPLES_CULaw

-->

<!--

Any User specific manifests should be added here.

-->

<!--

//####ECF End of package manifest, EXAMPLES_CULaw

//##

-->

Start the New Component Package Wizard by clicking the Tools menu
and choosing VCSE, New Component Package. The step by step wizard
guides you through the process of preparing a component for distribution.
See “Component Packaging Wizard” on page 1-20 as well as the online
Help for detailed descriptions of the wizard.

Manifest Commands
For each component specified in the VIDL input file, the VIDL compiler
produces an XML based manifest file. Use this file to control the packag-
ing wizard when the component is being packaged for distribution. The
name of the packaging file is <NS>_<C>.xml. The packaging wizard com-
bines the contents of the .XML file with information derived from the
wizard steps to complete a component package.

The manifest file includes two user-modifiable blocks that can be used to
either add files to the package or to override the part of the manifest that
is generated by the VIDL compiler.

Manifest Commands

2-52 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Within the user-modifiable block that is located within the <manifest>
section the following tokens can be used to

• Add additional files to the package

• Override the file actions automatically generated by the VIDL
compiler

• Add licensing terms that a user must accept before the component
can be installed

Adding a File to the Package
To add an additional file to the package the <file> token is used, which
has the format below

<file [addtoproject="yes"] [target="processor-name"] > filename

</file>

where the addtoproject and target attributes are optional items. filename
is the name of a file included in the package and installed when the com-
ponent is installed. If no path is specified or the supplied path is for a
subdirectory, then installed file is installed in the same relative path when
the component is installed. If the specified path specifies a directory that is
not a subdirectory, then the actual file is installed in the component direc-
tory. In the examples below

<file>header.h</file>

<file>include\hdr.h</file>

<file>..\src\example.c</file>

The file header.h is installed in the component directory, the file header.h
is placed in a subdirectory called include. The file example.c is also
located in the component directory since the source directory is not a
subdirectory.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-53
for 16-bit Processors

Developing and Using VCSE Components

If the addtoproject="yes” is specified then the file in the component
directory is also added to the project when the component is added to a
project. The default value for the addtoproject attribute is “no”, which
means that the file will not be added to a project.

When the target attribute is specified then the component file is only
added to a project if the specified processor (processor-name) matches the
target processor for the project.

Overriding File Actions
The manifest-command token is used to override the file actions that are
generated by the VIDL compiler. The general format of this token is as
shown below

<manifest-command

type="command-name"

source="source-element"

destination="destination-element"/>

where command-name is the name of the command, and source-ele-
ment/destination-element are defined based on the type of command.

The file-ignore command specifies that the file named in the command
should be ignored when packaging a component. The following example

<manifest-command type="file-ignore"

source="ADI_CMyComponent.idl"/>

specifies that any <file> token referencing the file ADI_CMyComponent.idl
should be ignored when packaging the component.

Manifest Commands

2-54 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

The file-rename command can be used to control the placement of a file
within the component directory and sub-directories. In the case of a <file>
token such as

<file>..\src\example.c</file>

then the default location of the file example.c will be in the component
directory. However if you wish to locate the file in a source subdirectory
then you would supply a file-rename command such as

<manifest-command type="file-rename" source="..\src\example.c"

destination="source\example.c" />

The destination specified by a file-rename command must be the compo-
nent directory or a subdirectory of the component directory.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-55
for 16-bit Processors

Developing and Using VCSE Components

The file -addtoproject command can be used to change the default VIDL
compiler generated action on whether a file should be added to a project
when the component is added to a project. The format of the file-addto-
project command is as shown below

<manifest-command type="file-addtoproject" source="filename"

value="yesorno"/>

where filename is the name of the file as it appears in the corresponding
<file> token and yesorno can have the values "yes" or "no". For example
if you want the file testing.h to be added to a project when the compo-
nent is added to a project then you can override the default action using
the command

<manifest-command type="file-addtoproject" source="testing.h"

value="yes" />

Adding Licensing Terms

If a <license-text> token appears in the manifest section then the pack-
aged component can only be installed if the user accepts the terms of the
license specified in the license-text token. The text in the license-text
field is rendered as HTML and any text that is legal input to a web
browser (plain-text, html, xml, and so on) can be used. When the user
attempts to install the component, the license text is displayed in a dialog
and by default the I disagree radio button is selected and the OK button is
disabled. The user is only able to select OK if the I agree radio button is
selected. Canceling the dialog results in no action being taken.

An example of the use of the subdirectory field is shown below

<license-text><![CDATA[The license terms should be
included here. The field can consist of anything that is
acceptable to a web browser and can consist of multiple
lines of input.]]></description>

Using Modifiable Sections

2-56 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Using Modifiable Sections
The VIDL compiler automatically inserts several user-modifiable sections
in each component it generates. All the changes that you make to the gen-
erated files must be confined to these sections. If you add material outside
a section, it will be lost next time the VIDL compiler regenerates the
source file.

Component Factory Source File
Table 2-4 summarizes user-modifiable sections that may be used in the
component factory source file.

Table 2-4. Component Factory Source File

Modifiable Section Description

Component Global Settings Provide global definitions required for component imple-
mentation or any definitions required by the factory func-
tions. For example, you may redefine macros, such as
__VCSE_malloc, to provide private memory allocation
procedures that the component may use if no IMemory
implementation is passed to the Create function. If the
component factory functions require access to any library
functions, this is the appropriate place to include the nec-
essary header files.

Component Class Factory-Create Provides an opportunity in the component Create func-
tion to either modify or replace the standard generated
code used to allocate the component instance data using
the VCSE::IMemory interface.

Component Class Factory-Create.1 Provides an opportunity in the component Create func-
tion to initialize any private instance data fields irrespec-
tive of how the instance data itself is allocated. If the
component also requires any working storage to be avail-
able throughout its lifetime, this is a suitable point to
arrange for its allocation.

Component Class Sizeof Provides the opportunity to override the size of the compo-
nent returned by the component SizeOf function.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-57
for 16-bit Processors

Developing and Using VCSE Components

Component Methods Source File
Table 2-5 summarizes user-modifiable sections that may be used in the
component methods source file.

Component Class Factory-Destroy Provides the opportunity in the component Destroy func-
tion to either modify or replace the standard generated
code used to free the component instance data using the
VCSE::IMemory interface. If changes were made in the
Create function, the appropriate changes to effect the
freeing of the allocated memory should be made here.

Component Class Factory-Cleanup Provides the opportunity in the component Destroy func-
tion to release any resources that the instances owns or to
carry out any other tidy up action before the instance
memory is freed.

Table 2-5. Method Source File

Modifiable Section Description

Component Global Settings Provide any specific global definitions required for the
component implementation or any definitions required by
the method functions. If the method functions require
access to any library functions, then this is the appropriate
place to include the necessary header files.

Component Global Settings.1 Provides an opportunity to redefine the automatically gen-
erated macros that can be used to trace function entry and
exit and so on. For example, the component may wish to
use a VCSE::IError interface that has been provided for
error reporting

Interface Member Function Provides an opportunity to supply the actual body of each
member function. Each member function of every inter-
face supported by the component will have such a section.

Table 2-4. Component Factory Source File

Using Modifiable Sections

2-58 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Component Instance Header File for C/Assembly
Table 2-6 summarizes user-modifiable sections that may be used in the
component instance header file.

Component Instance Header File for C++
Table 2-7 summarizes user-modifiable sections that may be used in the
component instance header file.

Table 2-6. C Component Instance Header

Modifiable Section Description

Component Global Settings Provide any specific global declarations or preprocessor def-
initions required for component implementation.

Component Private Members Specify any component specific private members for the
instance data structure of the component.

Table 2-7. C++ Component Instance Header

Modifiable Section Description

Component Global Settings-Include Provides an opportunity to include any standard header
files that may be required by the component implemen-
tation

Component Global Settings Provide any specific global declarations or preprocessor
definitions required for component implementation.
This section occurs within a nested namespace that
ensures uniqueness across all component definitions.

Component Private Members Specify any component specific private members for the
instance data class of the component.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-59
for 16-bit Processors

Developing and Using VCSE Components

Component Factory Header File
Table 2-8 summarizes user-modifiable sections that may be used the com-
ponent factory header file.

Component Package Manifest File
Table 2-9 summarizes user-modifiable sections that may be used in the
component package manifest file (.XML).

Test Shell Component User-Modifiable Sections
The user-modifiable sections for a test shell component are exactly the
same as for an actual component. The VIDL compiler inserts macro defi-
nitions, validation and reporting code inside the user-modifiable sections
in the test shell component methods source file to provide the user with
complete control over how the validation is to be performed. The contents
of this code is summarize below.

Table 2-8. Component Factory Header

Modifiable Section Description

Component Size Definition Allows you to specify a preprocessor macro that defines
the maximum amount of memory that the component
instance data may require.

Table 2-9. Component Manifest File

Modifiable Section Description

Package Manifest Provides the opportunity to specify which additional
files should be packaged with the component by the
packaging wizard.

Package Component Details Provides the opportunity to override the subsequent
automatically generated definitions.

Using Components

2-60 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Component Global Settings
The supporting macros and the VCSE::ITestReport interface pointer dec-
laration are placed in this section, allowing the user to redefine them as
required. For more information, see “Supporting Tools for Test Shell
Components” on page 2-43.

Interface Member Function
Both the call to an actual interface method of the component under test
and the supporting validation and reporting code, generated by the VIDL
Compiler, prior to and following this method call are enclosed within the
“Interface Member Function” user-modifiable section of each interface
method within the test shell component methods source file.

Important note: Since the method call to the actual interface
method is enclosed within a UMB, any changes to the signature of
this method are not be reflected in subsequent passes of the VIDL
compiler to update the test shell component.

Using Components
Once a component is installed on a system, the VCSE Component Man-
ager is used to add the component to a VisualDSP++ project. After a
component is added to the project, you can access the component’s header
file and HTML documentation. The libraries needed for the component
to use at link time are also automatically added to the project. Once the
component is added to the project, you are ready to create an instance of
the component and use the services offered by its supported interfaces.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-61
for 16-bit Processors

Developing and Using VCSE Components

Creating Component Instances
To create an instance of the component, use the component’s Create
function. The function prototype of the Create function for each compo-
nent expects the same parameters. The Create function for the
EXAMPLES_CULaw component (Listing 2-3 on page 2-17) has the following
prototype.

VCSE_MRESULT EXAMPLES_CULaw_Create(

const VCSE_IBase_ptr outer,

const VCSE_RefIID iid,

VCSE_IBase_ptr *iptr,

const VCSE_IBase_ptr ienvp,

const VCSE_HANDLE token);

The main points to be noticed:

• The name of the Create function is obtained by prefixing _Create
with the concatenation of the defining namespace, an underscore,
and the component name.

• The first parameter (outer) is normally a NULL pointer. If the com-
ponent instance is being aggregated into an existing component,
this parameter is an IBase interface pointer for the aggregating
component.

Aggregation and its effects are described in “Aggregating Compo-
nents” on page 2-80.

• The second parameter (iid) specifies the unique interface identifier
for an interface supported by the new component. The correspond-
ing interface pointer is returned via the third parameter (*iptr) if
the component instance is created successfully.

Using Components

2-62 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

• Components do not allocate memory and other resources; instead,
they request resources from the application. The fourth parameter
(ienvp) is used to pass an interface pointer to the component. The
pointer allows the component to request needed resources, includ-
ing memory from a resource allocator component.

The standard interface for allocating memory for use by a compo-
nent is called VCSE::IMemory and is described in “IMemory
Interface” on page 3-2. Examples of memory allocator components
that implement this interface are provided; one example offers sim-
ple allocation from the standard heap, another provides some
additional debugging and statistical support.

If the fourth parameter is NULL, the instance creation fails unless the
component has been designed to employ its own memory alloca-
tion in such a situation.

• The final parameter that can be passed into the Create function is a
token, which the component simply passes back to any resource
allocation interface it invokes. The component is not expected to
directly use or understand the significance of the token but simply
pass it back when it is allocating or freeing a resource.

The Create function prototype of a component is defined in the factory
header file distributed with this component. The name of the factory
header file for the EXAMPLES_CULaw component is
EXAMPLES_CULaw_factory.h.

Assuming there is a pointer p_VCSE_IMemory to the VCSE::IMemory inter-
face (described in “IMemory Interface” on page 3-2), an instance of the
EXAMPLES_CULaw component (defined in Listing 2-3 on page 2-17) can be
created as follows.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-63
for 16-bit Processors

Developing and Using VCSE Components

Listing 2-5. Instantiating EXAMPLES_CULaw Component

mr = EXAMPLES_CULaw_Create(NULL, VCSE_IBase_IID, &p_VCSE_IBase,

p_VCSE_IMemory, NULL);

if (MR_FAILURE(mr)) {

... /* if the instantiation fails */

}

Access to the simple memory allocator VCSE::CSimpleMemory is obtained
by including the header file VCSE_CSimpleMemory.h. Internally, the
VCSE::CsimpleMemory component always uses the heap for memory alloca-
tion. An instance of the VCSE::IMemory interface can be obtained as
follows.

Listing 2-6. Examples_CULaw_Create Function

VCSE_IBase_ptr p_VCSE_IMemory;

mr = VCSE_CSimpleMemory_Create(NULL, VCSE_IMemory_IID,

&p_VCSE_IMemory, NULL, NULL);

if (MR_FAILURE(mr)) {

... /* if the instantiation fails */

}

A component instance is accessed by invoking a method function on one
of the interfaces that the component supports. The Create function of a
component returns one specified interface pointer for the created instance.
Each interface provides the GetInterface method to obtain an interface
pointer for any other interface that the component supports.

In the EXAMPLES_CULaw_Create function, the initial interface pointer
obtained is the VCSE::IBase pointer. A VCSE::IBase pointer is available
for any component or interface since the interface of the same name is
provided by all components. The interface pointer returned in the third
parameter is specific to the component instance that has been created.

Using Components

2-64 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

If you create two instances of CSimpleMemory and specify
VCSE_IMemory_IID in each, then the interface pointers returned by each
call will be different. Each interface provides a method called GetInter-
face that can be used to obtain an interface pointer for any other interface
that the component supports.

The allocator VCSE::CSimpleMemory uses the system heap to allocate mem-
ory. That may be acceptable during the early stages of development, but a
more application-specific approach is likely to be required for production
purposes. The IMemory allocation interface is capable of supporting a wide
variety of memory allocation strategies.

VCSE Memory Allocators
Components do not allocate memory and other resources; instead, they
request resources from the application. The fourth parameter (ienvp) of a
component's Create function is used to pass an interface pointer to the
component. The pointer allows the component to request needed
resources, including memory from a resource allocator component.

The standard interface for allocating memory for use by a component is
called VCSE::IMemory and is described in “IMemory Interface” on
page 3-2. VCSE provides two memory allocator components that imple-
ment this interface; one component offers simple allocation from the
standard heap, another a pre-allocation (most likely static) scheme.

VCSE::CSimpleMemory

The VCSE::CSimpleMemory component is a lightweight component for the
management of component memory on the heap, using the malloc and
free functions in the C library.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-65
for 16-bit Processors

Developing and Using VCSE Components

Access to the simple memory allocator VCSE::CSimpleMemory is obtained
by including the header file VCSE_CSimpleMemory.h. Internally, the
VCSE::CSimpleMemory component always uses the heap for memory man-
agement. An instance of the component VCSE::CSimpleMemory can be
created as follows.

Listing 2-7. Creating VCSE::CSimpleMemory

VCSE_IBase_ptr p_Allocator;

mr = VCSE_CSimpleMemory_Create(NULL, VCSE_IBase_IID,

&p_Allocator, NULL);

if(MR_FAILURE(mr)) {

… /* if the instantiation fails*/

}

Once the application has an instance of CSimpleMemory, an interface
pointer from CSimpleMemory can be passed as the ienvp parameter of a
component's Create function. Below is an example of creating an instance
of the CULaw component with the above p_Allocator interface pointer.

Listing 2-8. Using VCSE::CSimpleMemory

/*p_Allocator set in above listing.*/

mr = Examples_CULaw_Create(NULL, VCSE_IBase_IID, &p_VCSE_IBase,

p_Allocator, NULL);

if(MR_FAILURE(mr)) {

… /* if the instantiation fails*/

}

VCSE::CInstMemory

The VCSE::CInstMemory component is a lightweight component for the
management of component instance memory that makes use of a portion
of previously (most likely, statically) allocated memory.

Using Components

2-66 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Access to the instance memory allocator VCSE:: CInstMemory is obtained
by including the header file VCSE_CInstMemory_factory.h. An instance of
the VCSE::CInstMemory component can be created as follows.

Listing 2-9. Creating VCSE::CInstMemory

VCSE_IBase_ptr p_Allocator;

mr = VCSE_CInstMemory_Create(NULL, VCSE_IBase_IID,

&p_Allocator, NULL);

if(MR_FAILURE(mr)) {

… /* if the instantiation fails*/

}

Once the application has an instance of CInstMemory, an interface pointer
from CInstMemory can be passed as the ienvp parameter of a component's
Create function and a CInstMemory_Allocation pointer as the token
parameter.

Listing 2-10. CInstMemory_Allocation structure

struct CInstMemory_Allocation {

unsigned int Length;

void* Memory;

};

Below is an example of creating an instance of the CULaw component
with the above p_Allocator interface pointer.

Listing 2-11. Using VCSE::CInstMemory

static int data[INSTANCE_SIZE];

VCSE_IBase_ptr pIBase;

static VCSE_CInstMemory_Allocation alloc = {

sizeof(data),

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-67
for 16-bit Processors

Developing and Using VCSE Components

(void*)data};

Examples_CULaw_Create(0, VCSE_IBase_IID, &pIBase,

p_Allocator_IBase, (VCSE_HANDLE)&alloc);

CInstMemory requires a CInstMemory_Allocation pointer to be passed as
the Token parameter of the VCSE::IMemory::Allocate method. As seen in
Listing 2-11, the application indirectly sets the Token parameter by pass-
ing the CInstMemory_Allocation pointer as the token parameter of the
component's Create function.

Inside VCSE::IMemory::Allocate, CInstMemory checks that the length of
the allocation request is less than or equal to the length of the data in the
VCSE_CInstMemory_Allocation structure. If the request is for more data
than available MR_NO_MEMORY is returned. On a successful request, the
Allocation parameter of VCSE::IMemory::Allocate is set to the Memory
field of the CInstMemory_Allocation structure.

VCSE::IMemory::Free provides no implementation and simply returns
MR_OK.

VCSE_CInstMemory is suitable for components that require an allocation
for their instance memory only. Components that require allocations
other than instance memory will require a more sophisticated memory
allocator.

Using Interface Pointers in C or Assembly
In C or assembly, an interface pointer is in effect a pointer to a structure
that represents an instance of the component. The methods of the inter-
face are invoked through macros that allow the method calling mechanism
to be hidden. There is a macro for each interface method whose name is
formed by concatenating the namespace, the interface name, and the
method name with an underscore character as the separator. The interface
pointer that identifies the instance of the invoked component is always
passed explicitly as the first parameter to the macro.

Using Components

2-68 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

The following code example can be used to obtain an EXAMPLES::IG711
(Listing 2-2 on page 2-9) interface pointer from the VCSE::IBase interface
pointer returned by the Create function in Listing 2-5 on page 2-63.

Listing 2-12. C Interface Pointer

EXAMPLES_IG711_ptr p_IG711;

mr = VCSE_IBase_GetInterface(p_VCSE_Ibase, EXAMPLES_IG711_IID,

(VCSE_IBase_ptr*)&p_IG711);

if (MR_FAILURE(mr)) {

... /* if the instantiation fails */

}

Once an interface pointer to the desired interface is obtained, you can call
the methods of the interface to obtain the services it offers. Given the
interface pointer is obtained successfully (see Listing 2-12), the following
C code example shows how to use the macro that calls the Compress
method. The Compress method converts 128 values to their equivalent
µ-law encoding values:

mr = EXAMPLES_IG711_Compress(p_IG711, 128, rawData, muData);

Each interface method returns an MRESULT value, which indicates the suc-
cess or failure of the invocation. MRESULT values can be tested with the
MSUCCESS and MFAILURE macros. The macro MSUCCESS is passed an MRESULT
value and returns a nonzero value if the call was successful or a zero value
if the call failed. Similarly, the macro MFAILURE is passed an MRESULT value
and returns a nonzero value if the method invocation failed or a zero value
if the invocation was successful. The value returned by a method should
always be tested to ensure the invocation is successful.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-69
for 16-bit Processors

Developing and Using VCSE Components

Using Interface Pointers in C++
In C++, an interface pointer is in fact a pointer to a C++ class whose mem-
ber functions are the methods of the interface. It follows that a method
can be invoked directly by a call to the C++ member function. The C++
calling mechanism passes the ‘this’ pointer for the component instance
automatically.

The code example in Listing 2-13 can be used to obtain an EXAM-
PLES::IG711 interface pointer from the VCSE::IBase interface pointer
returned by the Create function in Listing 2-5 on page 2-63.

Listing 2-13. C++ Interface Pointer

EXAMPLES_IG711_ptr p_IG711;

mr = p_VCSE_IBase->GetInterface (EXAMPLES_IG711_IID,

(VCSE_IBase_ptr*)&p_IG711);

 if (MR_FAILURE(mr)) {

 ... /* if the instantiation fails */

 }

Once an interface pointer to the desired interface is obtained, you can
invoke the methods of the interface to obtain the services it offers directly
in C++. Given the interface pointer is obtained successfully (Listing 2-13),
the following code example shows how to invoke the Compress method in
C++. The Compress method converts 128 values to their equivalent µ-law
encoding values:

mr = p_IG711->Compress(128,rawData,muData);

In C++, the interface pointer type implicitly specifies the invoked inter-
face, and the invoked method implicitly receives the appropriate ‘this’
pointer, which identifies the instance of the component.

Destroying Components

2-70 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Each interface method returns an MRESULT value to indicate the success or
failure of the method invocation. MRESULT values can be tested with the
MSUCCESS and MFAILURE macros. The macro MSUCCESS is passed an MRESULT
value and returns a nonzero value if the method was successful or a zero
value if the invocation failed. Similarly, the macro MFAILURE is passed an
MRESULT value and returns a nonzero value if the method invocation failed
or a zero value if the invocation was successful. The value returned by a
method should always be tested to ensure that the invocation is successful.

Destroying Components
The Create function for a component creates an instance of the compo-
nent; each interface pointer obtained from an instance refers to the same
instance of this component. When an instance of a component is no
longer required, you can destroy it by invoking the Destroy function for
the component. The name of the Destroy function is obtained by prefix-
ing _Destroy with the concatenation of the defining namespace, an
underscore, and the component name. The Destroy function for the
EXAMPLES_CULaw component has the following prototype.

Listing 2-14. Examples_CULaw_Destroy Function

VCSE_MRESULT EXAMPLES_CULaw_Destroy(const VCSE_IBase_ptr iptr);

The main points to be noticed:

• Any interface pointer obtained from an instance of a component
can be passed as the first parameter to the Destroy function to
specify the component instance to be destroyed.

• When a component instance is destroyed, all the interface pointers
for the instance become obsolete, and no method functions should
be invoked via any of these interface pointers.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-71
for 16-bit Processors

Developing and Using VCSE Components

Implementation of GetInterface Method
All the interfaces supported by a component share a single implementa-
tion of the GetInterface method, which is used to provide on request
interface pointers for all supported interfaces. The GetInterface method
is always automatically generated by the VIDL compiler. The following
example illustrates the implementation of GetInterface, automatically
generated by the VIDL compiler for the C version of EXAMPLES_CULaw
component (defined in Listing 2-3 on page 2-17).

Listing 2-15. Implementing GetInterface Methods

VCSE_MRESULT EXAMPLES_CULaw_GetInterface(

VCSE_IBase_ptr base,

const VCSE_RefIID iid,

VCSE_IBase_ptr *iptr)

{

/*

* GetInterface method for supplying the requested interface

*/

__ASSIGN_THIS_POINTER(__this,EXAMPLES_CULaw);

if (!iidcmp(iid, VCSE_IBase_IID))

*iptr = REINTERPRET_CAST(VCSE_IBase_ptr,

STATIC_CAST(EXAMPLES_IG711,__this));

else if (!iidcmp(iid,EXAMPLES_IG711_IID))

*iptr = (VCSE_IBase_ptr)STATIC_CAST(EXAMPLES_IG711,__this);

else if (!iidcmp(iid,VCSE_IAlgorithm_IID))

*iptr = (VCSE_IBase_ptr)STATIC_CAST(EXAMPLES_IG711,__this);

else

return (VCSE_MRESULT)MR_NOT_SUPPORTED;

Implementation of GetInterface Method

2-72 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

return (VCSE_MRESULT)MR_OK;

}

Essentially, GetInterface checks the identifier of the requested interface
against the interfaces that are supported and performs the necessary cast-
ing to convert the interface pointer to the appropriate structure.

VCSE Optimizations

Method Call Overhead

Invoking a VCSE method is different from invoking a standard library
function. Invoking a VCSE method in general involves two additional
actions

• Adjusting the interface pointer by adding a value which depends on
the internal structure of the component that implements an
interface

• Using an indirect rather than a direct function call

In many cases both these overheads are avoidable. In comparison to cases
where multiple inheritance is involved, the value of the adjustment to the
interface pointer is normally zero. Under normal circumstances, only one
implementation of each interface in a particular application is used. As a
result, every invocation of each method of an interface causes the same
code to be executed.

In general these two overheads cannot be avoided in code generated
directly by the C/C++ compiler or by the assembler compiler, since the
only information available is the interface structure itself. The require-
ment to encapsulate or hide the internal structure of a component
specifies that the required information cannot be made available in the
interface definition. An interface definition describes a service that can be
provided by many different components and can, therefore, not contain

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-73
for 16-bit Processors

Developing and Using VCSE Components

any information on an individual component. When code is compiled it is
not possible to know which implementation of an interface is invoked or
if only there is only one implementation of an interface.

Preventing Code and Data Elimination

When the linker is creating an application from its constituent objects and
libraries, it builds a static call tree to enable it to identify functions that
cannot be called or static data that is not accessed in the application. The
linker uses the call tree to eliminate such unused functions and data and
thereby it can significantly reduce the size of the resulting application.
Unfortunately, the function pointers in a VCSE method-table force the
linker to mark all the corresponding function as potentially callable. As a
result, the linker is unable to remove unused methods from applications
containing no explicit method calls.

 If the linker was able to identify exactly which methods were actually used
in a particular application then it would be able to eliminate both the
unused methods and any functions that are only invoked from these
methods.

Standard Method Functions

VCSE component model defines some standard interfaces that act as base
interfaces for different classes of interface. For example all VCSE algo-
rithms are expected to extend the IAlgorithm interface. The use of these
standard base interfaces provides a common structure for each class of
interface. For example the IAlgorithm interface defines methods that all
algorithms must provide to simplify (or standardize) the use of algorithms.
IAlgorithm specifies that each algorithm must provide an Activate and a
Deactivate method; these methods are invoked before and after an
instance of the algorithm is invoked to process any data. The Activate
method enables each algorithm for example to prepare for the optimized
execution of the instance by possibly moving data to internal memory or
execute any other necessary action.

Implementation of GetInterface Method

2-74 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

In some cases however there may not in fact be any action that an algo-
rithm wishes to make prior to executing. In this case the component
model imposes the overhead of invoking both the Activate and Deacti-
vate empty methods that will have no useful effect and may simply return
a success indication. An application cannot simply avoid invoking such
methods since that assumes that the application understands the internal
structure of the components being used. Even if the application could
avoid invoking these methods for one particular implementation of an
interface, the replacement of the algorithm by another implementation
may well require the use of the Active and Deactivate methods for cor-
rect execution.

The elimination of such unnecessary method calls must be based on infor-
mation internal to the component implementation and cannot be
associated with the interface definition.

Improving Program Efficiency

None of the above overheads can be eliminated when compiling or assem-
bling either the component or the code that invokes a component because
the encapsulation of the internal structure of each component means that
the compiler cannot be aware of which component provides the imple-
mentation of the interface. However when the linker is building the static
executable for the application it becomes possible to associate the invoca-
tion of a method on an interface with the component that is providing the
implementation of the interface.

To enable the linker to provide these optimizations, it has to have access
to various pieces of information such as

• The location of each method table and the identity and number of
methods supported by the interfaces associated with the method
table.

• The contents of each method table entry (for fine tuning of optimi-
zation possibilities.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-75
for 16-bit Processors

Developing and Using VCSE Components

• The location of every VCSE method call and the interface identity
and individual method associated with that call.

• The set of constant VCSE methods, that is, methods that have no
effect other than returning a constant value on each invocation of
the method.

Given access to all of the above information then the linker is capable of
eliminating very many of these overheads.

The information needed by the linker is automatically provided by deco-
rating the assembler, the C or C++ code that the VIDL compiler
generates. Neither the developer of a component or the user of a compo-
nent needs to take any special action to provide the information needed to
enable the linker to provide all the optimizations. The one exception to
this is that only the component developer can mark methods which have
no action but to return a constant value.

The developer can identify such constant return methods by the use of a
#pragma VCSE_RETURNS in C and C++ and the .vcse_returns directive in
Assembler.

The example below shoes how you would mark a C or C++ method to
notify the system that the methods only action is to return the constant
value MR_OK.

Listing 2-16. Example of a Constant VCSE Method in C

static __VCSEMETHOD VCSE_MRESULT LOCAL_CAgg_AggB(

VCSE_IBase_ptr base,

int one,

int *funcid)

{

component LOCAL_CAgg *__this = (component LOCAL_CAgg *)base;

//####SCF Start of interface member function, LOCAL::CAgg::AggB

{

Implementation of GetInterface Method

2-76 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

#pragma VCSE_RETURNS

return (VCSE_MRESULT)MR_OK;

}

//####ECF End of interface member function, LOCAL::CAgg::AggB

}

In the case of C and C++, the compiler will check that the value being
returned is a constant expression that can be evaluated at compile time.

If the method had been define in assembler then the code would be similar
to that shown in Listing 2-17

Listing 2-17. Example of a Constant VCSE Method in Assembler

align 2;

_LOCAL_CAgg_AggB:

link 4;

R0 = 0;

P0=[FP+ 4];

unlink;

JUMP (P0);

._LOCAL_CAgg_AggB.end:

type _LOCAL_CAgg_AggB,STT_FUNC;

.vcse_returns _LOCAL_CAgg_AggB,0;

The assembler code for the function include carries out all the normal
actions including setting the return value. The .vcse_returns directive
specifies the name of a standard function and the value that the function
always returns.

When a function is marked as returning a constant value then the linker
can remove the code from the executable and replaces all calls on the
method by sampling setting the appropriate return value register.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-77
for 16-bit Processors

Developing and Using VCSE Components

Because there is normally only one implementation of most interfaces in
an application the above optimizations can be deployed frequently. Apart
from marking any constant return functions the only action that the
developer or user of a component needs to take to trigger the optimiza-
tions is to request the linker to effect the VCSE optimizations on the
linker property page for a project.

VCSE Algorithms
The VCSE IAlgorithm interface has been defined to provide a framework
that various algorithms can support. It is much easier for an applications
developer if all algorithms provide a common set of methods and style of
use. The VCSE IAlgortithm interface essentially defines three methods.

• Activate, which is invoked when the instance of an algorithm is
about to be used.

• Deactivate, which is invoked when an instance of an algorithm
will not be used for some period of time.

• Reset, which can be invoked at any time and which brings the
instance of the algorithm to a defined state.

In addition to the above methods, an algorithm would provide one or
more methods that are invoked to carry out the actual processing of the
algorithm.

The primary use for the Activate method is to allow the algorithm to pre-
pare itself for efficient execution of the processing methods. The Activate
method may therefore be responsible for copying data from external to
internal memory to allow the data to be processed most efficiently. The
Deactivate method similarly provides an opportunity for the instance of
an algorithm to preserve any state that will be needed the next time it is
called on to process data, and it may do this by copying some data from
internal to external memory for example.

Implementation of GetInterface Method

2-78 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

In general algorithms should not be directly involved in memory alloca-
tion or management since only the application using the algorithm has
sufficient knowledge of the whole system memory requirements to make
optimal decision over memory use. It is for this reason that an algorithm is
expected to allocate the memory it needs by using the IMemory interface
supplied to it when an instance is created. In this way the algorithm can
delegate memory allocation to the controlling application. Similarly the
Activate and Deactivate methods should (ideally) delegate the necessary
memory management to the application and this can be done by supply-
ing an interface pointer to the algorithm which is used within the
Activate and Deactivate methods.

The IAlgorithm2 interface extends the IAlgorithm interface and provides
a much simpler and more flexible memory management approach while
leaving the allocation and management of memory to be handled directly
by the application. The IAlgoritm2 approach allows an algorithm to have
quite detailed control over the type of memory it requires to perform very
efficiently. In addition the IAlgoritm2 approach enables an application to
have one instance of an algorithm processing some data while the transfer
of data between external and internal for another instance can be carried
on in parallel using DMA.

An IAlgortihm2 component specifies the types of memory it requires in its
documentation and provides a method AssignMemoryResources that the
application uses to tell the component the location of the memory areas
that have been allocated to the instance of the algorithm. The algorithm
has a property that the application sets to inform the algorithm of an
interface pointer for a memory swapper interface that would be responsi-
ble for actually effecting any data movement needed on activation or
deactivation of the algorithm instance. After the property has been set the
application would invoke the ConfigureMemorySwapper method so that

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-79
for 16-bit Processors

Developing and Using VCSE Components

the component can set up the memory swapper as it wishes. After this ini-
tialization phase the application would use the following sequence of calls
when invoking the algorithm.

• It would invoke the Swap method on the memory swapper interface
to ensure all memory is ready for processing

• It next invokes the Activate method on the algorithm instance to
let it prepare for processing

• It next invokes the processing methods of the algorithm as
required.

• After the current set of processing is complete it would invoke the
Deactivate method of the algorithm

• Finally it would invoke the Swap method on the memory swapper
interface to save any information that is needed on subsequent
calls.

Two additional advantages of using the IAlgorithm2 approach are that

• Scarce internal memory resources can be shared between different
instances of the one or multiple algorithms as any such content can
be preserved by the swapper

• Since the application is responsible for invoking the swapper and
the application, the application can use an asynchronous swapper
so that one instance can be processing while a second instance of
any algorithm is being swapped.

A VCSE component that provides an implementation of the memory
swapper that uses DMA to effect swapping and supports asynchronous
operation is available on the ADI web site and can be downloaded and
installed using VisualDSP.

The IAlgorithm and IAlgorithm2 interfaces are described in detail “Stan-
dard Interfaces” in Chapter 3, Standard Interfaces.

Aggregating Components

2-80 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Aggregating Components
Although components are primarily intended for application develop-
ment, they can also be used in component implementation. For example,
the developer of a component that requires the use of µ-law encoding and
decoding could simply use the CULaw component discussed earlier rather
than re-implement the algorithm from scratch. Since component imple-
mentations are encapsulated, internal use of the CULaw component remains
hidden from the application.

There are two techniques for component reuse that are normally referred
to as delegation and aggregation. When delegation is used, the outer com-
ponent acts as a wrapper around the inner component. Calls to any of the
methods of the inner component are made via corresponding methods in
the outer component. Normally, the inner component needs to provide
significant functionality to make the overhead of the extra method call
insignificant by comparison.

Aggregation is a different technique that allows an interface from an exist-
ing or inner component to be combined with the interfaces in the outer
component. It has the advantage that when the aggregated interface meth-
ods are called, the original methods in the existing component are
executed directly without any overhead.

Aggregation can be difficult to implement correctly since the combined
components must appear to the user of the outer component as a single
entity that obeys all the rules of the Component Model seamlessly. The
VIDL compiler automatically generates the support necessary, so compo-
nents can be aggregated automatically without the developer being aware
of how aggregation operates in detail.

The usefulness of aggregation can be seen by examining a real world exam-
ple. Suppose we have an MP3 component with an IMp3 interface, which
allows MP3 encoded music to be played. Suppose you wish to create a
component for use in MP3 players that responds to voice commands
through an IVoice interface. You can either implement support for both

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-81
for 16-bit Processors

Developing and Using VCSE Components

the voice interface and the MP3 support from scratch, or you can decide
to use the existing MP3 component and concentrate on the new software
needed to support voice commands.

Aggregation allows you to incorporate the existing MP3 component into
your new component, so that it offers both the IMp3 and the IVoice inter-
faces. By doing this, you are giving the user of the component full access
to the IMp3 interface with no additional overhead involved in its use. You
do not require the source for the MP3 component in order to exploit it
within your component by use of aggregation.

Implementation of Aggregation
To explain how aggregation operates, we have two components CRed and
CBlue that implement interfaces IRed and IBlue, respectively. We wish to
make a new component CRedGreenBlue that provides the three interfaces
IBlue, IRed, and IGreen by implementing IGreen directly and aggregating
the implementations of IBlue and IRed from CBlue and CRed.

The three components and their interfaces can be represented as shown in
Figure 2-4.

A simplified version of the VIDL definition for these components is in
Listing 2-18.

Listing 2-18. Aggregation Example

namespace EXAMPLES {

[iid(“24e7d634-d6c8444c-b66c91fa-92fc4cf1”)]

interface IRed extends IBase {};

[iid(“5bf3a04f-a541fe42-a9741ad9-43d85370”)]

interface IBlue extends IBase {};

[iid("72c53695-c7d4d843-a21f074b-bdba49fb")]

Aggregating Components

2-82 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

interface IGreen extends IBase {};

[aggregatable,

company(“ADI”),

title(“RED”),

category(“EXAMPLES”)]

component CRed implements IRed;

[aggregatable,

company(“ADI”),

title(“BLUE”),

category(“EXAMPLES”)]

component CBlue implements IBlue;

company(“ADI”),

title(“REDGREENBLUE”),

category(“EXAMPLES”)]

component CRedGreenBlue implements IRed,IGreen,IBlue {

aggregates IRed from CRed;

aggregates IBlue from CBlue;

Figure 2-4. Aggregation Example

IRedIRed

IGreen

CRed

CBlue

CRedGreenBlue

IBlue IBlue

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-83
for 16-bit Processors

Developing and Using VCSE Components

};

};

When a component provides an interface, the Component Model requires
that a call to its GetInterface method must be capable of returning every
other interface provided by the component. When the IRed and IBlue are
aggregated into CRedGreenBlue, their GetInterface methods, which are
provided by CRed and CBlue components, must somehow be able to return
the IGreen interface.

The problem of handling requests for IBlue and IGreen within CRed, and
requests for IRed and IGreen within CBlue, is solved by having each aggre-
gated component handle interface requests with an additional variant of
IBase, called INonDelegatingBase, that has a method called NonDelegat-
ingGetInterface. All components that support aggregation, such as the
CRed and CBlue components, must implement this interface in addition to
IBase. The NonDelegatingGetInterface method of INonDelegatingBase
handles all requests for interfaces implemented directly by the aggregated
component. Consequently, it is referred to as the non-delegating version
of GetInterface. By contrast, the GetInterface method of IBase in the
aggregated components CRed and CBlue handles all interface requests by
re-calling the GetInterface method in the aggregating component
CRedGreenBlue. Consequently, it is referred to as the delegating version of
GetInterface.

The methods CRed_GetInterface and CBlue_GetInterface both delegate
their requests back to CRedGreenBlue_GetInterface. In turn,
CRedGreenBlue_GetInterface handles any request for IGreen directly, but
hands requests for IRed and IBlue back to
CRed_NonDelegatingGetInterface and
CBlue_NonDelegatingGetInterface, where they can be handled correctly.

To see how the interaction between the GetInterface and the NonDele-
gatingGetInterface methods operates, the following examples show
simplified versions of the CRedGreenBlue_GetInterface,
CRed_GetInterface, and CRed_NonDelegatingGetInterface functions.

Aggregating Components

2-84 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

In Listing 2-19 on page 2-84, the CRedGreenBlue_GetInterface handles
requests for IGreen directly but forwards requests for IRed to
CRed_NonDelegatingGetInterface and requests for IBlue to
CBlue_NonDelegatingGetInterface. The two NonDelegatingGetInter-
face methods are called via two INonDelegatingBase interface pointers,
_this->m_CRed and _this->m_CBlue.

Listing 2-19. GetInterface Method Example

VCSE_MRESULT EXAMPLES_CRedGreenBlue_GetInterface(

VCSE_IBase_ptr base,

const VCSE_RefIID iid,

VCSE_IBase_ptr *iptr)

{

/*

* GetInterface method for supplying the requested interface

*/

EXAMPLES_CredGreenBlue *_this = (EXAMPLES_CredGreenBlue *)base;

if (!iidcmp(iid, VCSE_IBase_IID))

*iptr = REINTERPRET_CAST(VCSE_IBase_ptr,

STATIC_CAST(EXAMPLES_IGreen,_this));

else if (!iidcmp(iid,EXAMPLES_IGreen_IID))

*iptr = VCSE_IBase_ptr)STATIC_CAST(EXAMPLES_IGreen,_this);

else if (!iidcmp(iid,EXAMPLES_IRed_IID))

VCSE_INonDelegatingBase_NonDelegatingGetInterface

(_this->m_CRed,iid,iptr);

else if (!iidcmp(iid,EXAMPLES_IBlue_IID))

VCSE_INonDelegatingBase_NonDelegatingGetInterface

(_this->m_CBlue,iid,iptr);

else

return (VCSE_MRESULT)MR_NOT_SUPPORTED;

return (VCSE_MRESULT)MR_OK;

}

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-85
for 16-bit Processors

Developing and Using VCSE Components

The non-delegating CRed_NonDelegatingGetInterface shown in
Listing 2-20 on page 2-85 handles requests for IBase and IRed directly
since these are both implemented by CRed. Note that the request for IBase
is satisfied by returning the INonDelegatingBase interface pointer.

Listing 2-20. Non-Delegating GetInterface Example

VCSE_MRESULT EXAMPLES_CRed_NonDelegatingGetInterface(

VCSE_IBase_ptr base,

const VCSE_RefIID iid,

VCSE_IBase_ptr *iptr)

{

/*

* GetInterface method for supplying the requested interface

*/

EXAMPLES_CRed *_this = (EXAMPLES_CRed *)base;

if (!iidcmp(iid, VCSE_IBase_IID))

*iptr = REINTERPRET_CAST(VCSE_IBase_ptr,

STATIC_CAST(VCSE_INonDelegatingBase,_this));

else if (!iidcmp(iid,EXAMPLES_IRed_IID))

*iptr = (VCSE_IBase_ptr, STATIC_CAST(EXAMPLES_IRed,_this);

else

return (VCSE_MRESULT)MR_NOT_SUPPORTED;

return (VCSE_MRESULT)MR_OK;

}

The delegating CRed_GetInterface, shown in Listing 2-21, simply hands
all requests back to CRedGreenBlue_GetInterface using the cached inter-
face pointer for the outer component held in this->m_pIBase_outer. If
the request is for IRed, it will subsequently get handled by
CRed_NonDelegatingGetInterface. Otherwise, it will be handled by
CBlue_NonDelegatingGetInterface or directly by
CRedGreenBlue_GetInterface.

Aggregating Components

2-86 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Listing 2-21. Delegating GetInterface Example

VCSE_MRESULT EXAMPLES_CRed_GetInterface(

VCSE_IBase_ptr base,

const VCSE_RefIID iid,

VCSE_IBase_ptr *iptr)

{

/*

* GetInterface method for supplying the requested interface.

* Aggregated component delegates the responsibility to

* the outermost aggregating component

*/

EXAMPLES_CRed *_this = (EXAMPLES_CRed *)base;

return

VCSE_IBase_GetInterface(_this->m_pIBase_outer,iid,iptr);

}

To enable the three components to call each other’s GetInterface
method, they have to maintain interface pointers to each other. In the
examples above, these are represented by m_CRed and m_pIBase_outer.
These pointers are established as the aggregating component creates the
aggregated components as part of its own creation process.

The VIDL compiler automatically generates the correct versions of the
delegating and non-delegating implementations of GetInterface for com-
ponents that support aggregation, and the entire mechanism outlined
above is effected by the automatically generated code. The actual code
generated by the VIDL compiler differs in detail from the code in the pre-
vious example since it, for example, caches interface pointers to optimize
the execution of the component.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 2-87
for 16-bit Processors

Developing and Using VCSE Components

Company Namespace Registration
The registration and use of a company namespace or tag is a key element
of the approach taken to ensure the names of global entities, such as inter-
faces and components that are developed by various companies, remain
unique. Each organization involved in developing and distributing VCSE
components must register a unique namespace and ensure that all their
components and interfaces are named within that namespace.

Each global name must be defined within the originating company
namespace to ensure that no name clashes can occur. The organization
that registers a company namespace is responsible for ensuring that all
names defined within the company namespace are unique. An organiza-
tion is at liberty to define subsidiary namespaces if that simplifies the task
of ensuring that all names defined within the company namespace are
unique.

An organization that wishes to register the use of a company namespace
should send a request to vcse.register@analog.com, specifying the
desired namespace tag and providing information, such as the full name of
the organization and contact information for the person making the
request. In general, namespace tags will be registered on a first come first
served basis. Analog Devices, Inc. has already registered the ADI namespace
for its components. The EXAMPLES namespace has been reserved for ADI’s
example interfaces and components used in the VCSE documentation and
tutorials.

The LOCAL namespace has also been reserved for interfaces and compo-
nents that will not be distributed outside of creating environment.

Aggregating Components

2-88 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

VisualDSP++ 3.5 Component Software Engineering User’s Guide 3-1
for 16-bit Processors

3 STANDARD INTERFACES

VisualDSP++ Component Software Engineering (VCSE) defines some
standard interfaces offering an essential set of services that any component
can exploit as well as a consistent environment for component developers
and users.

The standard interfaces are defined within the VCSE namespace. The cur-
rent set of defined interfaces consists of:

• The IMemory interface, which allocates and frees memory as
required by a component. An application implements IMemory and
supplies it to a component. The component exploits this interface
to allocate and free memory. For more information, see “IMemory
Interface” on page 3-2.

• The IAlgorithm interface, which defines a consistent set of services
that all VCSE compliant algorithms must provide. All VCSE algo-
rithms are expected to extend the IAlgorithm interfaces; therefore,
the methods of IAlgorithm are available in each VCSE algorithm.
For more information, see “IAlgorithm Interface” on page 3-14.

• The IAlgorithm2 interface, which defines an additional set of ser-
vices that VCSE compliant algorithms may provide. The
IAlgorithm2 interface extends the IAlgorithm interface by defining
an efficient memory handling mode for memory-constrained algo-
rithms. For more information, see “IAlgorithm2 Interface” on
page 3-18.

IMemory Interface

3-2 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

• The IMemorySwapper interface, which is a standard interface that
provides support for swapping data between different memory
locations. For more information, see “IMemorySwapper Interface”
on page 3-28.

• The IInstanceFactory interface, which provides a mechanism that
allows a component implementing this interface to supply one or
more instances of a requested interface to its users. For more infor-
mation, see “IInstanceFactory Interface” on page 3-33.

• The IError interface, which provides a set of services that enable
an application to have centralized error handling across multiple
components. The IError interface is normally implemented by the
application and passed to components, allowing them to report
errors in a unified way. For more information, see “IError Inter-
face” on page 3-37.

• The IName interface, which can be supported by a component to
provide user-friendly names to be obtained for the instances of a
component. For more information, see “IName Interface” on
page 3-43.

IMemory Interface
The allocation of resources to the various sections of a DSP program often
is one of the most difficult aspects of application building. While VCSE
supplies a means of formalizing the structure of an application into com-
ponents performing specific algorithmic or device handling tasks, it does
not seek to impose any particular policy regarding resource allocation.

There is one area, however, in which the needs of the application and the
needs of the VCSE model are likely to interact — memory allocation. The
application will probably need to allocate, either statically or dynamically,

VisualDSP++ 3.5 Component Software Engineering User’s Guide 3-3
for 16-bit Processors

Standard Interfaces

working buffers for various purposes, while the VCSE model requires the
allocation of memory areas to hold the management and user data associ-
ated with each created component instance.

In order to meet these needs, VCSE provides a standard memory alloca-
tion interface, VCSE::IMemory, to support the VCSE model and to provide
application builders considerable freedom in meeting their applications’
memory allocation requirements. In addition, VCSE::IMemory allows the
allocation paradigm to be extended to other resources or to more sophisti-
cated memory allocators.

IMemory and Component Instance Creation
There are two aspects of memory allocation associated with a VCSE com-
ponent: the storage required to hold the fixed-sized per-instance
component data, including VCSE management data; and the dynamic
storage requirements of the instance’s processing. The component’s client
can provide an IMemory interface to satisfy both needs when a new
instance of the component is being created.

A VCSE component is not usually expected to allocate and free memory
directly, but instead, to invoke an allocation mechanism provided by its
client to carry out such services on its behalf. The VCSE::IMemory interface
provides such a mechanism allowing a component to request the alloca-
tion of specified amounts of various types of memory and their subsequent
freeing. The IMemory interface is:

• used to obtain memory for the component’s instance data as well as
the instance data for any aggregated component

• stored in each component’s instance as well as in any aggregated
component’s

IMemory Interface

3-4 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

• used by the component’s methods to obtain and free working
memory

• used during instance destruction to free the component instance as
well as the instance data for any aggregated component

If desired, an application is free to provide different IMemory interfaces,
which may implement different allocation strategies, to different compo-
nents or to different instances of the same component.

To see how a client supplies an IMemory instance when creating a compo-
nent instance, consider the signature of the creation function that VCSE
generates for a component C1 defined within namespace NS1:

VCSE_MRESULT NS1_C1_Create(const VCSE_IBase_ptr outer,

VCSE_RefIID iid,

VCSE_IBase_ptr* iptr,

VCSE_IBase_ptr ienvp,
VCSE_HANDLE token);

Parameters ienvp and token are associated with resource allocation. The
ienvp argument is an interface pointer obtained from a component that
implements VCSE::IMemory and possibly other resource allocation inter-
faces. If an application wishes to control the allocation of memory for a
particular component instance, then it should supply a non-NULL ienvp
argument. The allocation component may also implement interfaces that
support the allocation of other resources or may implement a more sophis-
ticated memory allocation interface. However, if the client wishes to have
control over placement of the component instance’s data, then the ienvp
pointer must provide support for the VCSE::IMemory interface.

The second allocation parameter, token, provides a means of passing an
arbitrary value into the methods defined in VCSE::IMemory or other
resource allocation interfaces. The token value is stored in the newly cre-
ated component instance’s data and is provided to each Allocate or Free
call made by the instance. The component providing the IMemory interface
may not require specific token values, but if it does, then it must describe

VisualDSP++ 3.5 Component Software Engineering User’s Guide 3-5
for 16-bit Processors

Standard Interfaces

in its documentation what these values are or how to obtain them. For
example, an allocator can use token values to implement a strategy of allo-
cating predefined resources to specific component instances.

When an IMemory is not supplied at the instance creation time because
ienvp is NULL, memory for the instance’s data is obtained and freed
entirely under control of the component. If ienvp is not NULL and calling
GetInterface on it does not find a VCSE::IMemory interface, then the
_Create function returns an error and the component is not created. The
VIDL generated shell uses the macros __VCSE_malloc and __VCSE_free to
allocate and free the instance data, and the component’s methods may use
these mechanisms for working memory as well.

The default implementations of these macros cause a NULL to be returned
from Allocate and take no action when Free is invoked. By default, com-
ponent creation fails if an IMemory interface is not supplied and
__VCSE_malloc is invoked instead. If component developers want to use
the macros as a fallback method, they should be given appropriate defini-
tions in a user-modifiable section of the component header file.

The signature of the first macro is:

#define __VCSE_malloc(S)

where S is the size of the required storage area in the same units as the ones
used in C library function malloc. The macro returns a valid
VCSE::ADDRESS value or the NULL error indicator.

The second macro’s signature is:

#define __VCSE_free(ADDR)

where ADDR is a VCSE::ADDRESS value previously obtained from
__VCSE_malloc. The macro does not return a value.

IMemory Interface

3-6 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

IMemory Interface Definition
The interface contains only two methods: one for requesting the alloca-
tion of a block of memory that meets specified requirements for
placement, lifetime, length, and alignment; and one for freeing up a previ-
ously obtained block.

The VisualDSP++ Interface Definition Language (VIDL) file that defines
IMemory also contains the definition of a struct type whose members
quantify a request for a block of memory in terms of its context, place-
ment, lifetime, length, and alignment. The context member of the
structure provides an indication of the use of the requested memory rather
than a requirement it must meet. A suitably initialized variable of this type
is passed as an argument to the allocation method. Constants denoting
valid values for some of the memory request structure’s members are spec-
ified in enumeration definitions.

The IMemory interface definition is shown in Listing 3-1. The interface’s
methods are described later in this section.

Listing 3-1. IMemory Interface Definition

namespace VCSE {

enum MemType {

MemAnyType = 0,

MemPrimary = 1,

MemSecondary = 2,

MemExternal = 4,

MemBank = 8

};

enum MemLifetime {

MemAnyLifetime = 0,

MemScratch = 1,

MemPersistent = 2

VisualDSP++ 3.5 Component Software Engineering User’s Guide 3-7
for 16-bit Processors

Standard Interfaces

};

enum MemContext {

MemInstance = 1,

MemWorking = 2

};

struct _MemRequest {

unsigned int Length;

unsigned short Alignment;

unsigned short TypeFlags;

unsigned short LifetimeFlags;

unsigned short Context;

char BankName[32];

};

typedef struct _MemRequest MemRequest;

interface IMemory extends IBase {

MRESULT Allocate([in] MemRequest Request,

[in] HANDLE Token,

[out] ADDRESS Allocation);

MRESULT Free ([in] ADDRESS Allocation,

[in] HANDLE Token);

};

}

Type and Enumeration Descriptions

MemRequest

A client of IMemory uses a MemRequest structure to describe the attributes
of a region of memory that it needs. All the attributes are mandatory: a cli-
ent must provide valid values for each of them, and a conforming
implementation of IMemory must satisfy each of them. Some of the

IMemory Interface

3-8 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

attributes can be multivalued.1 For example the value passed for the Type-
Flags field can be the result of ORing together MemPrimary and
MemSecondary. The combined value being passed requests that the
required memory be of either type. An implementation that does not sat-
isfy each attribute does not conform to the interface, but may be useful
during application or component development for testing, sizing, or trac-
ing purposes.

The following table lists the members of the MemRequest structure and
describes their use.

1 A multivalued attribute has a single integer value consisting of the combination of several bit values.

Table 3-1. MemRequest Structure Members

Member Description

Length The length of the region of memory being requested. The length is mea-
sured in addressable units:
• on a byte-addressable architecture, a value of 1 means one byte
• on a word-addressable architecture, a value of 1 means one word

Alignment The minimum alignment the allocated region must have. Alignment val-
ues are measured in addressable units.
For example, on a byte-addressable architecture, a value of 4 means the
allocated memory must begin at an address that is a whole multiple of 4
bytes. A value of 0 signifies the same alignment that Standard C library
function malloc supplies—the maximum alignment requirement of the
standard C scalar types on the target architecture.
There are architectures on which certain algorithms are considerably more
efficient if their data is aligned more strictly than their basic type requires.
A conforming IMemory implementation must document the maximum
alignment that it can guarantee.

TypeFlags A bit mask specifying the types of memory which can be used to satisfy
the allocation request. The meaning of each bit position is defined in the
description of the MemType enumeration. The bits are examined in the
same order that the nonzero members of MemType are defined. The first
requested type from which memory can be allocated that also satisfies the
other request attributes is used. If no bits are set, then an implementation
can supply any type of memory.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 3-9
for 16-bit Processors

Standard Interfaces

TypeFlags

The TypeFlags member of the struct is a bit significant enumeration of
the types of memory from which a client of IMemory can request an alloca-
tion. The MemType enumeration defines the different types of memory that
can be requested along with the corresponding bit pattern. The names and
general descriptions of the memory types are presented in Table 3-2 on
page 3-10. The following supplementary tables give a more precise defini-
tion on a per-architecture basis.

A component using IMemory to allocate and free memory must document
which memory types it requires. If a component requires an allocation
from named banks (MemBank), it must document what steps the user must
take during the building or linking of his/her application in order to com-
ply with memory bank requests.

LifetimeFlags A bit mask specifying the expected duration of the allocation. The mean-
ing of each bit position is defined in the description of the MemLifetime
enumeration. The bits are examined in the same order that the nonzero
members of MemLifetime are defined. The first requested lifetime from
which memory can be allocated that also satisfies the other request
attributes is used. If no bits are set, then an implementation can assume
any duration is acceptable. In allocation requests that specify multiple val-
ues for both type and lifetime, the type takes priority.

Context One of the two values defined by the MemContext enumeration. The
Context is not a requirement, which the allocation must meet, but pro-
vides additional information to the memory allocator on the use of the
allocated memory.

BankName A C string of up to 31 characters plus a terminating zero byte specifying a
named memory bank from which the allocation must be made. The string
must be empty (BankName[0]==0) unless TypeFlags includes the Memo-
ryBank flag. In the latter case, BankName must contain the name of a
memory bank from which the requested memory can be allocated.

Table 3-1. MemRequest Structure Members (Cont’d)

Member Description

IMemory Interface

3-10 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

LifetimeFlags

The LifetimeFlags member of the structure is a bit-significant enumera-
tion, which lists the expected lifetimes associated with a memory
allocation. The MemLifetime enumeration defines the different life times

Table 3-2. MemType Enumeration Members

Memory Type Description

MemPrimary The fastest (non-register) memory, internal to the processor core, suit-
able for data placement

MemSecondary An alternative internal memory for data placement

MemExternal A memory region, external to the processor core data memory

MemBank A named memory region

Table 3-3. ADSP-BF53x Blackfin Processor Memory Types

Memory Type ADSP-BF53x Memory

MemPrimary L1 data memory

MemSecondary L2 SRAM

MemExternal External memory

MemBank Named memory bank

Table 3-4. ADSP-21xx DSP Memory Types

Memory Type ADSP-21xx Memory

MemPrimary dm memory

MemSecondary pm memory

MemExternal External memory

MemBank Named memory bank

VisualDSP++ 3.5 Component Software Engineering User’s Guide 3-11
for 16-bit Processors

Standard Interfaces

of memory that can be requested along with the corresponding bit pat-
tern. An allocator may use the value of this attribute to select between
different allocation strategies.

Table 3-5 describes the members of the enumeration.

Context

The Context member specifies the context in which the allocated memory
will be used. Its value must be one of the members of the MemContext enu-
meration, which defines two constants to describe the context in which a
memory allocation request is made, as described in Table 3-6.

Table 3-5. MemLifetime Enumeration Members

Memory Lifetime Description

MemScratch The allocation will have a relatively short lifetime and may, for exam-
ple, be freed when the Deactivate method of an algorithm is
invoked.

MemPersist The allocation will have a long lifetime and may, for example, only be
freed when the associated component is destroyed.

Table 3-6. MemContext Enumeration Members

Allocation Context Description

MemInstance The allocation request is for memory in which to place a component
instance record.

MemWorking The allocation request is for other purposes; for example, a workspace
buffer for an algorithm or device handler.

IMemory Interface

3-12 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Method Descriptions
Supported methods for the IMemory interface include:

• Allocate

• Free

Allocate

The Allocate method is invoked to supply memory as specified in the
MemRequest structure passed as its first argument. If a non-NULL IMemory
interface is available to a component’s Create function, then its Allocate
method is used by the VCSE generated factory code to obtain memory to
hold the new instance of the component. The IMemory interface is stored
in the component instance’s data; therefore, the component methods may
also invoke Allocate to obtain working memory.

A component’s Create function has a value of type VCSE::HANDLE passed
to it. This value must be passed as the Token argument to all Allocate and
Free calls made by the component instance, so it is stored in the compo-
nent’s instance data as well. The Token argument is a general-purpose
mechanism for passing an arbitrary value to the memory allocation meth-
ods. Its use is optional. The documentation for a component
implementing IMemory must state whether or not it uses the Token value
and, if it does, what the valid values are. In the generated C/C++ code,
VCSE::HANDLE is represented as void* on ADSP-BF53x and long int on
ADSP-21xx processor architectures.

The method’s parameters and possible return values are described in
Table 3-7 on page 3-13.

The standard VCSE type VCSE::ADDRESS is used to convey the start
address of the allocated memory area back to the Allocate’s caller. In the
generated C/C++ code, VCSE::ADDRESS is represented as void* on

VisualDSP++ 3.5 Component Software Engineering User’s Guide 3-13
for 16-bit Processors

Standard Interfaces

ADSP-BF53x and long int on ADSP-21xx processor architectures, so the
returned value must be cast to an appropriate pointer type before the allo-
cated memory can be accessed.

Table 3-7. Allocate Method Parameters and Return Values

Parameter Type Description

Request MemoryRequest Contains the values of the attributes that the allocated
region of memory must satisfy.

Token HANDLE If called from a component, must contain the HANDLE
value passed to the instance’s Create function; otherwise,
must contain a suitable value as described in the memory
allocation component’s documentation.

Allocation ADDRESS Returns the start address of the allocation if the allocation
has been successful.

Returned value MRESULT Indicates the success or failure of the request.
A value of MR_OK indicates the complete success, while the
following values denote various failure conditions.
• MR_NO_MEMORY

All the memory requirements are met except the
length.

• MR_BAD_ALIGNMENT
The alignment requirement is out of range.

• MR_BAD_MEMTYPE
The requested memory type is not valid or is not sup-
ported.

• MR_BAD_MEMLIFE
The requested memory lifetime is not valid or is not
supported.

• MR_BAD_CONTEXT
The supplied context is not a valid value.

• MR_BAD_MEMBANK
The requested memory bank name is not valid or is
not supported.

• MR_BAD_HANDLE
The value supplied in Token is not valid.

IAlgorithm Interface

3-14 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Free

All memory obtained by calling Allocate must be released by a corre-
sponding call to Free when the memory is no longer required. The request
to Free an allocation obtained by a call to Allocate must be made on the
same instance of the IMemory interface as the allocation was made. The
Token parameter must have the same value as the corresponding argument
to Allocate had when requesting the memory.

The result code values that Free may return are: MR_OK if the action is
completed without an error; MR_NOT_ALLOCATED_MEM if the implementation
can detect that it is asked to free memory that this instance of the IMemory
implementation has not allocated; and MR_NOT_COMPLETED if any other
error condition has occurred.

Under no circumstances should the client attempt to access the
freed memory again—no matter what result code Free returns.

IAlgorithm Interface
The VCSE::IAlgorithm interface represents a set of methods, which must
be supported by all VCSE based algorithms. Although each algorithm
component must have an implementation of each method, the actual
implementation can be very simple; for example, it can return MR_OK as its
only action.

Since an algorithm is not expected to allocate but rather to use memory
allocated by its user, there is a standard memory interface defined that it
can use to obtain the memory to meet its needs. The user of an algorith-
mic interface supplies the memory interface to the algorithm at a
component’s creation time. See the VCSE::IMemory description
on page 3-2 for details of this interface.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 3-15
for 16-bit Processors

Standard Interfaces

The algorithm interface also enables the user to supply an error handling
interface, which the algorithm instance can use to report errors. See the
VCSE::IError description on page 3-37 for details of this interface.

IAlgorithm Interface Definition
The IAlgorithm interface defines a common set of basic control methods
that all VCSE based algorithms are required to provide. Since algorithms
vary considerably in their requirements for the specification of coefficient
values, data sources and destinations, and the like, IAlgorithm makes no
requirements in this area. Algorithm providers are expected to extend IAl-
gorithm with methods allowing the user to specify the particulars of an
algorithm instance in a natural way. This can be achieved by providing
one or more setup methods that accept fixed sets of arguments and corre-
sponding processing methods without parameters, or by providing one or
more processing methods that take suitable arguments.

The methods in this interface must return the result code MR_OK if they
execute entirely without problems. The general result code,
MR_NOT_COMPLETED, is available for other cases, but algorithm developers
are encouraged to define and document specific result codes. The struc-
ture of MRESULT codes is described in “VCSE Assembler Macros” on
page A-1.

The IAlgorithm interface definition is shown in Listing 3-2. The inter-
face’s methods are described on page 3-16.

Listing 3-2. IAlgorithm Interface Definition

#include <VCSE_IError.idl>

namespace VCSE {

interface IAlgorithm extends IBase {

MRESULT Reset();

MRESULT Activate();

IAlgorithm Interface

3-16 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

MRESULT Deactivate();

MRESULT SetAlgorithmErrorInterface(

[in] IError ErrorReporter,

[in] int Level);

};

};

Method Descriptions
Supported methods for the IAlgorithm interface include:

• Reset

• Activate

• Deactivate

• SetAlgorithmErrorInterface

Reset

An algorithm instance can be set to a default operational state by calling
the Reset method. The documentation for the algorithm must describe
the default state and the effects of executing the algorithm in the default
state.

Calls to the Reset method can be made at any time after the algorithm
interface has been instantiated.

Activate

An algorithm component must be notified when a particular instance of
the interface is about to be used by invoking the Activate method to
allow the algorithm to prepare itself for optimized execution. The Acti-
vate method allows the algorithm to execute any necessary initialization
or setup code prior to repeated use of the instance of the algorithm.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 3-17
for 16-bit Processors

Standard Interfaces

The Activate method must be invoked before using any core computa-
tion methods supplied by an interface, which directly or indirectly extends
IAlgorithm. When multiple instances of an algorithm are created, Deacti-
vate and Activate are expected to be invoked between calls on different
instances.

Deactivate

When an algorithm instance will not be invoked for a period, it must be
notified of this by a call to its Deactivate method. The Deactivate
method call enables the algorithm to take any actions to reduce resources
the algorithm is consuming; for example, to move some data from the
internal to external memory.

A Deactivate call must be subsequent to an Activate call. Conversely,
after a Deactivate call, a call to Activate must be made before invoking
an algorithm interface with a call to any method that triggers the algo-
rithm computations. When multiple instances of an algorithm are created,
Deactivate and Activate are expected to be invoked between calls on dif-
ferent instances.

SetAlgorithmErrorInterface

The SetAlgorithmErrorInterface method allows the user of an algorithm
to supply an error handler interface to be used by the algorithm instance
to report any errors the algorithm detects. If no SetAlgorithmErrorInter-
face call is made, or if the passed interface pointer is NULL, then the
algorithm will not report errors.

The Level parameter is a bit mask whose non-zero bits specify which of
the various levels of error reports are required by the caller. See the
VCSE::IError interface description on page 3-37 for the correspondence
of bit positions to error levels.

IAlgorithm2 Interface

3-18 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

One error handler interface may be passed into multiple instances of the
same algorithm component and into instances of different algorithms.
However, if a client application holds more than one interface pointer
from the same instance of an algorithm component, then calling SetAlgo-
rithmErrorInterface affects all interface pointers. (After an algorithm
component is instantiated by calling its Create function, the client can
obtain further interface pointers by calling the GetInterface method,
assuming the algorithm implements more than one interface.)

Calls to the SetAlgorithmErrorInterface method can be made at any
time after the algorithm interface is instantiated. For instance, it can be
called once immediately after the instantiation, requesting only notifica-
tion of catastrophic errors; and again at some particular point in the user’s
code to change the level of information being returned.

Valid Sequence of Method Calls
Figure 3-1 shows the valid sequences of the IAlgorithm method calls. In
general, the methods Reset and SetAlgorithmErrorInterface can be
invoked at any time between an algorithm instance creation and
destruction.

IAlgorithm2 Interface
The VCSE::IAlgorithm2 interface extends VCSE::IAlgorithm by defining
an efficient memory handling model for memory constrained algorithms.
The memory model separates memory areas used for processing and stor-
age. After creating an IAlgorithm2 component, memory resources must be
assigned to enable the instance to perform its functions. The client assigns
the memory resources to meet algorithm and application requirements.
The VCSE::IAlgorithm2 interface extends VCSE::IAlgorithm to facilitate
the assignment and management of the required memory resources.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 3-19
for 16-bit Processors

Standard Interfaces

Since an algorithm is not expected to allocate memory but rather to use
the memory allocated by its user, a standard memory interface can be used
to obtain the required amount memory it needs. The user of an algorith-
mic interface supplies the memory interface to the algorithm at a
component's creation time. See the VCSE::IMemory description
on page 3-2 for details of this interface.

Figure 3-1. Typical Method Calls Sequence

A lg o r ithm in s ta n ce -sp e c if ic
m e th od ca lls

D e a ct i v a t e(
)

D e a ct i v a t e()

C re a te in s ta n ce

Ac t i v a te ()

D es tro y in s ta n c e

IAlgorithm2 Interface

3-20 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

In general, an IAlgorithm2 component will use the supplied VCSE::IMem-
ory interface only to allocate its instance data and will require additional
memory buffers that must be assigned after creation. The additional mem-
ory buffers represent time-critical data, typically for algorithmic
processing.

The IAlgorithm2 interface enables an algorithm to operate efficiently in
memory constrained situations by supporting the swapping of critical data
between fast but limited internal memory and slower but more available
external memory. The IAlgorithm2 interface enables the user to supply a
memory swapping interface, which the algorithm instance can use to ini-
tialize a component used to swap the algorithm's memory resources. The
concepts of memory resources and memory swapping are discussed in
“IAlgorithm2 Memory Concept” on page 3-21. See the VCSE::IMemo-
rySwapper description on page 3-29 for details on the memory swapping
interface.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 3-21
for 16-bit Processors

Standard Interfaces

IAlgorithm2 Memory Concept
An implementation of the IAlgorithm2 interface may require the use of
several categories of memory. A required memory object from one of these
categories is called a memory resource. Definitions and short descriptions
of these memory resources are provided below to allow a complete descrip-
tion of the IAlgorithm2 interface.

1. VCSE Instance Memory — Memory needed to support the VCSE
component structure. Each instance of a component uses a separate
instance memory. A component's instance memory contains point-
ers to working memory and possibly to storage memory.

2. Working Memory — Memory used by algorithms to perform algo-
rithm-specific work. Working memory should be located within
low latency memory, such as internal memory, for optimum per-
formance. Each instance contains its own set of working memory
buffers.

• Persistent Working Memory — Working memory whose
content needs to be preserved throughout the lifetime of
component.

• Scratch Working Memory — Working memory whose con-
tent only needs to be preserved between the activation and
deactivation of a component instance.

3. Storage Memory — If memory swapping is used, the persistent
working memory content for a component instance is saved in
Storage Memory after deactivation and loaded from that location
before activation. This memory should be located in high capacity
memory in order to have the lowest strain on memory
requirements.

4. Stack Memory — Memory used for local variables during method
calls.

IAlgorithm2 Interface

3-22 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

5. Algorithm Look Up Tables — Memory shared by all instances of a
particular IAlgorithm2 component. The IAlgorithm2 component
only reads this memory and does not write to it.

An IAlgorithm2 component must document the requirements for all
memory categories, including alignment and memory placement.

Ideally users should place all working memory in internal memory, but
internal memory is typically characterized as having a low capacity. When
IAlgorithm2 components are integrated in a system, the developer can
adopt any one, or any combination, of the following strategies to deal with
limited availability of internal memory.

• The first is the trivial case, when the system integrator determines
that there is sufficient internal memory to satisfy all the needs of
each component instance during its entire life. The internal mem-
ory resource or resources should accommodate both the persistent
and scratch memory requirements of the component instance. Each
component instance would have exclusive access to at least the per-
sistent part of its internal memory resources. Another trivial case
occurs if the application determines that the component instance
can meet the real-time constraints even while working in the exter-
nal memory.

• The second strategy involves using data caching, if it is available. In
this case, the application allocates memory in the external memory
and caching is enabled. Each component instance has exclusive
access to at least the persistent part of its external memory
resources.

• The third strategy involves using memory swapping techniques.
Memory resources that conform to the memory swapping model
have two locations, or images. These two locations are its working
and storage locations. The working location is low latency internal
memory that is well suited for processing. The storage memory
should be large capacity external memory, but may be relatively

VisualDSP++ 3.5 Component Software Engineering User’s Guide 3-23
for 16-bit Processors

Standard Interfaces

slow. When an algorithm processes data, its memory resources
should reside in internal memory. While the algorithm is inactive,
its memory resources should reside in external memory to allow
other objects to make use of the limited internal memory. Concep-
tually, an instance should have persistent working memory
resources swapped into the internal memory and scratch working
memory resources assigned in the internal memory when it is acti-
vated. These internal memory resources can be assigned to other
instances when this instance is deactivated. Before assigning it to
other instances, the persistent working memory resources of this
instance must be swapped out to the storage memory.

IAlgorithm2 Interface Definition
The IAlgorithm2 interface extends the definition of an IAlgorithm algo-
rithm to enable flexible memory use in a standard way. Since algorithms
and application requirements vary considerably, IAlgorithm2 memory use
is configured through its interface to assist meeting a wide range of
requirements. The developer must determine the best methods for meet-
ing the algorithm and application requirements.

The methods in this interface must return the result code MR_OK if they
execute entirely without problems. The general result code
MR_NOT_COMPLETED is available for other cases, but algorithm developers are
encouraged to define and document their own specific result codes. The
structure of MRESULT codes is described in “VCSE Assembler Macros” on
page A-1.

The IAlgorithm2 interface definition is shown in Listing 3-3. The inter-
face's methods are described later in this section.

Listing 3-3. IAlgorithm2 Interface Definition

#include <VCSE_IAlgorithm.idl>

#include <VCSE_IMemorySwapper.idl>

IAlgorithm2 Interface

3-24 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

namespace VCSE {

interface IAlgorithm2 extends IAlgorithm {

// methods

MRESULT AssignMemoryResources(

[in] size_t NumOfWorkingMemResources,

[in, size_is(NumOfWorkingMemResources)]

VCSE::ADDRESS WorkingMemLocations[],

[in] size_t NumOfStorageMemResources,

[[in, size_is(NumOfStorageMemResources)]

VCSE::ADDRESS StorageMemLocations[]);

MRESULT ConfigureMemorySwapper();

// properties

[set, get] ::VCSE::IMemorySwapper MemorySwapper;

};

};

Method Descriptions
Supported methods for the IAlgorithm2 interface include:

• AssignMemoryResources

• ConfigureMemorySwapper

AssignMemoryResources

An algorithm instance normally requires that certain memory resources be
assigned to it after creation. Use the AssignMemoryResources method to
assign memory resources. The number of working memory resources is

VisualDSP++ 3.5 Component Software Engineering User’s Guide 3-25
for 16-bit Processors

Standard Interfaces

contained in the NumOfWorkingResources argument. The number of
resources must include all persistent and scratch working buffers. The
WorkingMemLocations argument is an array of starting addresses of each of
the working memory resources. The order of the starting addresses in
WorkingMemLocations is specified in the documentation for the
IAlgorithm2 component. The number and locations of the storage areas
are passed in through the NumOfStorageResources and StorageMemLoca-
tions, respectively. The order of StorageMemLocations is also specified in
the documentation for the IAlgorithm2 component.

A one-to-one correspondence should exist between the persistent working
memory regions in the WorkingMemLocations parameters and the storage
memory regions in the StorageMemLocations parameter. Each of the cor-
responding entries marks the starting address of the region specified to
hold the data when the component instance is activated and the starting
address of the region specified to hold the corresponding data when the
component instance is deactivated. The number of entries in the Storage-
MemLocations should be equal to the number of persistent working
memory locations. The lengths of each region should also be equal. If the
application does not require that a persistent working memory region be
swapped, it should make the corresponding entry in the StorageMemLoca-
tions point to the same memory area as the corresponding entry in
WorkingMemLocations.

ConfigureMemorySwapper

The ConfigureMemorySwapper method is invoked by the client of an
IAlgorithm2-based component to notify it that it should now supply its
configuration parameters to the IMemorySwapper interface which was
already supplied to the algorithm. The client invokes ConfigureMemo-
rySwapper once it has ensured that the associated memory swapper is
ready to be used. The IAlgorithm2 type component is expected to supply
these parameters by invoking the InitMemorySwapper method of the
VCSE::IMemorySwapper interface. The client must set the MemorySwapper

IAlgorithm2 Interface

3-26 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

property of this interface before invoking the ConfigureMemorySwapper
method. The AssignMemoryResources method must also be called prior to
calling ConfigureMemorySwapper.

Properties

MemorySwapper

The MemorySwapper property is used to notify the algorithm of the inter-
face pointer for an IMemorySwapper-based component. The
IMemorySwapper interface is used by the application to perform swapping
between persistent working memory and associated storage memory if the
programmer chooses to use the facilities provided by an IMemorySwapper
based component. The property allows the associated interface pointer to
be both set and read.

Valid Sequence of Method Calls
The IAlgorithm2 components follow essentially the same sequence of
method calls as any other IAlgorithm interface. There are a few additional
restrictions imposed, due to the extension of the IAlgorithm interface.

The typical order of method calls during the creation of the component
instance is modeled in Listing 3-4.

Listing 3-4. IAlgorithm2: Creation Phase Call Sequence Pseudo Code

IAlgorithm2->Create

IMemorySwapper->Create

IAlgorithm2->setMemorySwapper

IAlgorithm2->AssignMemoryResources

IAlgorithm2->ConfigureMemorySwapper

IMemorySwapper->Swap (Storage to Working Persistent)

IAlgorithm2->Activate

VisualDSP++ 3.5 Component Software Engineering User’s Guide 3-27
for 16-bit Processors

Standard Interfaces

IAlgorithm2->Reset

IAlgorithm2->Deactivate

IMemorySwapper->Swap (Working Persistent to Storage)

As indicated in Listing 3-4, AssignMemoryResources must be called
before Reset. Reset will typically work on the assigned memory
resources. Also, setMemorySwapper and AssignMemoryResources
must be called prior to calling ConfigureMemorySwapper.

An IAlgorithm2 implementation can be used in two different modes. In
synchronous mode each call on the Swap method will only return when the
swap action is completed. In asynchronous mode the call of a Swap
method may return before the swap operation is completed, and the appli-
cation must use the getSwapStatus method to determine when the swap
operation is complete. The asynchronous mode allows one instance of an
algorithm to process data while a separate instance is actually being
swapped.

The run-time steps of the algorithm for synchronous swapping are mod-
eled in Listing 3-5.

Listing 3-5. IAlgorithm2: Run-time with Synchronous Swapping Pseudo
Code

IMemorySwapper->Swap (Storage to Working Persistent)

IAlgorithm2->Activate

IAlgorithm2->Process

IAlgorithm2->Deactivate

IMemorySwapper->Swap (Working Persistent to Storage)

Listing 3-5 shows that the working memory buffers are valid at the com-
pletion of the Swap call. Algorithm specific processing can be called
immediately after Activate.

In order to support asynchronous swapping, the order of method calls
during run-time is modified in Listing 3-6.

IMemorySwapper Interface

3-28 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Listing 3-6. IAlgorithm2: Run-time with Asynchronous Swapping Pseudo
Code

IMemorySwapper->Swap (Storage to Working Persistent)

Do something else (or not)

while(IMemorySwapper->getSwapStatus != MR_SWAP_COMPLETE)

IAlgorithm2->Activate

IAlgorithm2->Process

IAlgorithm2->Deactivate

IMemorySwapper->Swap (Working Persistent to Storage)

Do something else (or not)

while(IMemorySwapper->getSwapStatus != MR_SWAP_COMPLETE)

Some IAlgorithm2 components may decide to allow certain methods to be
called while deactivated for performance reasons. Low cost method calls
do not need to be bracketed by Activate-Deactivate method calls and
memory swapping may be avoided. In this case, the component would
work off the storage memory when deactivated and the working memory
when activated. In this scenario it becomes the application’s responsibility
to determine when it is beneficial to swap and when not to swap memory.

It is the application’s responsibility to ensure that it maintains the
consistency of the contents of the working and storage memory
during swapping.

IMemorySwapper Interface
The VCSE::IMemorySwapper interface is a standard interface that provides
support for swapping data between different memory locations. The IMem-
orySwapper interface defines a standard mechanism that enables an
instance of a component to move data buffers from one location to
another, that is to swap memory locations. The definition provides a flexi-

VisualDSP++ 3.5 Component Software Engineering User’s Guide 3-29
for 16-bit Processors

Standard Interfaces

ble interface that support synchronous and asynchronous swapping. The
IMemorySwapper interface is expected to be closely associated with
VCSE::IAlgorithm2 based components.

A component requiring memory swapping services must configure its own
instance of an IMemorySwapper component.

IMemorySwapper Interface Definition
The IMemorySwapper interface consists of the two methods: Initialize,
Swap and a property: SwapStatus. The Initialize and Swap methods in
this interface must return the result code MR_OK if they execute entirely
without problems. The general result code MR_NOT_COMPLETED is available
for other cases, but algorithm developers are encouraged to define and
document their own specific result codes. The structure of MRESULT codes
is described in “VCSE Assembler Macros” on page A-1. The SwapStatus
property is a read only. Whether a memory swapping is currently in
progress or not for a interface can be checked by executing a getSwapSta-
tus inlined function call. The getSwapStatus inlined function call returns
MR_SWAP_INPROGRESS if a memory swapping is in progress or
MR_SWAP_COMPLETE if it is not.

The IMemorySwapper interface definition is shown in Listing 3-7. The
interface's methods are described later in this section.

Listing 3-7. IMemorySwapper Interface Definition

namespace VCSE

{

interface IMemorySwapper extends IBase {

enum Results_e {

MR_SWAP_COMPLETE = MR_ICONSTRUCT(WARN,1),

MR_SWAP_INPROGRESS = MR_ICONSTRUCT(WARN,2)

};

enum SwapDir_e {

IMemorySwapper Interface

3-30 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

SWAP_IN = 1,

SWAP_OUT = 2};

enum BlockingPolicy_e {

NON_BLOCKING = 0,

BLOCKING = 1};

[local]

MRESULT Initialize(

[in] size_t NumberOfRegions,

[in,size_is(NumberOfRegions)] ADDRESS AddrActivated[],

[in,size_is(NumberOfRegions)] ADDRESS AddrDeactivated[],

[in,size_is(NumberOfRegions)] size_t Length[]

);

MRESULT Swap(

[in] SwapDir_e dir,

[in] BlockingPolicy_e block

);

[get] MRESULT SwapStatus;

}

The component that implements IMemorySwapper documents, which of
the following two models it supports.

• Memory Set Sharing. In this model, both the IMemorySwapper and
the IAlgorithm2 implementations use the same table of swap loca-
tions. This is possible because the validity of the assignment of an
IMemorySwapper interface pointer is a subset of the lifetime of the
algorithm component. The advantage of using this method is that
it saves space when IMemorySwapper / IAlgorithm2 pairs are used.
On the other hand, the swapper must verify that AddrActivated is
equal to AddrDeactivated before swapping. This check is required
because the table of swap locations is owned and constructed by the

VisualDSP++ 3.5 Component Software Engineering User’s Guide 3-31
for 16-bit Processors

Standard Interfaces

IAlgorithm2 instance. If AddrActivated is equal to AddrDeacti-
vated, then swapping is not required. These are the problems
characteristically associated with memory sharing.

• Memory Set Ownership. In this model, the memory swapper
stores its own copy of the set of addresses of working and storage
memory in a privately held buffer. The memory swapper controls
this buffer. Since swap tables are constructed during initialization
and only contain valid swaps pairs — no checking is needed before
swapping a memory location. The disadvantage of using this
method is the fact that the table between algorithm and its swapper
is duplicated. A memory swapper using DMA may have to imple-
ment this method in any case.

Method Descriptions
Supported methods for the IMemorySwapper interface include:

• Initialize

• Swap

Initialize

Initialization of a memory swapper is performed via the Initialize
method. The number of memory regions to be swapped is passed in
through the NumberOfRegions argument. The AddrActivated argument is
an array of starting addresses for each memory region used by an
IAlgorithm2 instance when it is activated. The locations of the corre-
sponding regions used by an IAlgorithm2 instance when it is deactivated
are passed in through the AddrDeactivated argument. There should be a
one to one correspondence between the activated and deactivated memory
regions. The length of each region is passed in through the array Length.

IMemorySwapper Interface

3-32 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Swap

The Swap method initiates the swapping procedure. The argument dir is a
member of enumeration SwapDir_e. The enumeration SwapDir_e has two
members SWAP_IN and SWAP_OUT. The SWAP_IN value signals to the memory
swapper to move the data from the deactivated regions to the active
regions. The SWAP_OUT value moves the data in the opposite direction,
from active regions to the deactivated regions. The second parameter,
block, is a member of enumeration BlockingPolicy_e. The enumeration
BlockingPolicy_e describes the mode of transfer, either synchronously or
asynchronously.

When the value of block is BLOCKING then all memory swapping is effected
before the Swap method returns.

In general, when the value of block is NON_BLOCKING, then not all memory
swapping is effected before the Swap method returns. The memory swap-
per processes the transfers as the application continues. In this case the
property SwapStatus can be used to determine when the swap is
completed.

Properties
The only property supported by the IMemorySwapper interface is
SwapStatus.

SwapStatus

The SwapStatus property enables the application to determine when swap
operation completes. The SwapStatus property is a read only property of
IMemorySwapper interface. Executing the inlined call getSwapStatus on
IMemorySwapper interface returns MR_SWAP_COMPLETE when swapping has
completed, and MR_SWAP_INPROGRESS when swapping is in progress. The
SwapStatus property enables the user to check for the completion of an
asynchronous memory swap.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 3-33
for 16-bit Processors

Standard Interfaces

Intended Use
Normally an instance of a component implementing the IMemorySwapper
interface is assigned to an instance of an IAlgorithm2 based component.
Either the application or the instance of the IAlgorithm2 based compo-
nent is expected to initialize the IMemorySwapper instance properly using
IMemorySwapper->Initialize() method call. Before the application acti-
vates the instance of IAlgorithm2 component (by invoking its Activate
method), the application invokes IMemorySwapper->Swap() with the dir
parameter set to SWAP_IN. After the application deactivates the instance of
IAlgorithm2 component (by invoking its Deactivate method), the appli-
cation invokes IMemorySwapper->Swap() with the dir parameter set to
SWAP_OUT.

If the swapping is to be performed asynchronously, the block parameter
must be set to NON_BLOCKING. The application can then use the IMemo-
rySwapper->getSwapStatus() inlined call method to determine if the
requested swapping is in progress, or has completed. The application can
continue to process other data while the memory swap proceeds.

If the swapping is to be performed synchronously, the block parameter
must be set to BLOCKING. The IMemorySwapper->Swap() method returns
only after the swapping operation completes.

IInstanceFactory Interface
The IInstanceFactory interface represents a set of creation operations in
an abstract and localized manner. It is abstract in the sense that the client
of the IInstanceFactory component does not care or know what compo-
nent may be created to support any returned interfaces, only that it is a
component implementing the requested interface. Creation is localized in
that all requests for a given interface are performed using the IInstance-
Factory interface. The IInstanceFactory interface represents the set of
methods that allows a component implementing this interface to supply

IInstanceFactory Interface

3-34 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

one or more instances of a requested interface. The use of the term supply
means that the component implementing this interface internally creates
an embedded instance of a component implementing the requested inter-
face and returns a interface pointer to the new instance.

IInstanceFactory Interface Definition
The IInstanceFactory interface allows components that implement this
interface to manufacture instances of another interface and provide them
to the client. A single instance of a component can only provide one inter-
face pointer to any of the interfaces that it implements. In order to have
more than one interface pointer, users can create multiple instances of the
component. Creating multiple instances of a component may not always
be appropriate. If developers have a device that supports multiple channels
each of which uses some shared control logic, then they need only one
instance of the controller and separate interfaces to each of the channels.
Also, using the standard component factory methods exposes the compo-
nent to the application. For software design issues it is recommended that
users minimize the number of direct references of specific components.
References to the specific components should be localized to reduce the
cost of modifications.

The IInterfaceFactory interface provides services intended to solve the
problems with instantiation, as previously described. Instances can be cre-
ated through instance factories, when the client requests an object
implementing a specific interface. The implementor of the interface sup-
porting IInstanceFactory is solely responsible for creating instances of
the requested interfaces and can create these instances in whatever manner
is suitable. The instances created via IInstanceFactory are normally inti-
mately related to the instance that supports IInstanceFactory. The
internal relationships between these interfaces should not be visible to the
user of the interfaces. The provider of the instance factory decides what
and how an object is created, as long as the user can expect the returned
interface pointer to act as if it is a new instance. Also, creations are local-
ized to the factory implementation.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 3-35
for 16-bit Processors

Standard Interfaces

The methods in this interface must return the result code MR_OK if they
execute entirely without problems. The general result code
MR_NOT_COMPLETED is available for other cases, but algorithm developers are
encouraged to define and document their own specific result codes. The
structure of MRESULT codes is described in “VCSE Assembler Macros” on
page A-1.

The IInterfaceFactory interface definition is shown in Listing 3-5 on
page 3-27. The interface's methods are described on page 3-35.

Listing 3-8. IInterfaceFactory Interface Definition

namespace VCSE {

interface IInterfaceFactory extends VCSE::IBase {

MRESULT RequestInterface(

[in] VCSE::RefIID id,

[in] int selector,

[out] VCSE::IBase iface);

MRESULT ReleaseInterface([in] VCSE::IBase iface);

};

};

Method Descriptions
Supported methods for the IInstanceFactory interface include:

• RequestInterface

• ReleaseInterface

IInstanceFactory Interface

3-36 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

RequestInterface

The RequestInterface method is the means by which a client obtains an
interface pointer for an instance of a desired interface from a component
that implements IInstanceFactory. The IInstanceFactory implementa-
tion’s documentation must specify the interfaces for which instances are
generated. The parameter id specifies the unique interface identifier for
the desired interface. The corresponding interface pointer is returned via
the iface parameter, if it can be manufactured successfully.

It is possible that a component implementing this interface has several
choices of how to supply a particular interface. The parameter selector is
meant to identify the choice of how the interface is to be supplied. As an
example, the interface for the audio codec could enumerate the different
data paths (ADCs and DACs). The audio codec control component would
also implement IInstanceFactory interface and use it to supply data han-
dling interfaces. Its user can specify a member of the data path
enumeration as the selector parameter in requesting a data handling inter-
face. If used, values for selector parameter should be enumerated in the
supplied interfaces.

ReleaseInterface

The ReleaseInterface interface is the means by which a client releases an
interface, returned by RequestInterfaces, it no longer needs. The iface
parameter is the interface that is requested to be released. The iface
parameter must have been obtained through the same factory object via
the RequestInstance method.

Example of Use
Consider an audio codec control component for BF-533 EZ-Kit, which
includes a single physical audio codec. The audio codec has multiple ADC
(analog-to-digital convertors) and multiple DAC (digital-to-analog con-
vertors). Each ADC and DAC can be regarded as a data path. Thus

VisualDSP++ 3.5 Component Software Engineering User’s Guide 3-37
for 16-bit Processors

Standard Interfaces

multiple data paths exist in the audio codec and its users might need to
access a specific ADC or DAC. The audio codec control component can
either choose to implement the data handling interface or supply the data
handling interface.

If the component chooses to implement the data handling interface, “a”
component instance can only provide “an” interface pointer to the data
handling interface. The component can no longer be a singleton, and mul-
tiple instances of the components will have to be created. Having multiple
instances controlling a single physical codec can lead to design complica-
tions and might not be desirable in many cases.

The IInstanceFactory interface offers an elegant solution to this prob-
lem. It allows the audio codec component to be a singleton, meaning that
only one instance of the component can exist. This component supplies
the data handling interfaces to its users using the RequestInterface()
method of IInstanceFactory interface. The audio codec control compo-
nent embeds the data handling interface implementation within itself. In
this way, the requester is not exposed to the exact type of object that is cre-
ated but only to the interface that is needed.

The audio codec interface should enumerate its data paths. A member of
this enumeration is used as the selector parameter of RequestInterface()
method call in requesting access to a specific ADC or DAC.

IError Interface
The VCSE::IError interface defines a standard mechanism that enables an
instance of a component to report errors or to pass other information
regarding its operation to the component’s client. A standard interface,
whose implementation is provided (directly or indirectly) by the control-
ling application, allows a standard error handling procedure to be used by
the application. An application can use the interface to provide as simple
or as complex an error handling process as it requires.

IError Interface

3-38 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

A component requiring error handling services must include a method (in
one of the implemented interfaces) that allows the user to pass in an IEr-
ror instance to be used for that purpose.

IError Interface Definition
The single method in this interface, Error, reports an error or records
other information about the interface operations. The Error arguments
enable its implementation to discover the severity of the event being
reported and to receive arbitrary information about the event.

IError also contains a bit-significant enumeration of the various severity
levels that can be reported to the method. Although a method call can
supply only one specific level, the values are presented as bit-significant.
Therefore, components handed an IError instance for error reporting
may also be handed a bit mask specifying the severities the client is inter-
ested to receive. See the VCSE::IAlgorithm interface documentation
on page 3-15 for an example.

The IError interface definition is shown in Listing 3-9 on page 3-38. The
interface’s only method is described later in this section.

Listing 3-9. IError Interface Definition

namespace VCSE {

enum ErrorLevel {

ErrorSyslog = 1,

ErrorDebug = 2,

ErrorWarning = 4,

ErrorFatal = 8

};

interface IError extends IBase {

MRESULT Error([in] IBase RepInterface,

VisualDSP++ 3.5 Component Software Engineering User’s Guide 3-39
for 16-bit Processors

Standard Interfaces

[in] ErrorLevel Level,

[in] int Code,

[in] unsigned int Length,

[in, size_is(Length)] unsigned char ErrInfo[]);

};

};

Method Descriptions
The supported method for the IError interface is Error.

Error

If a non-NULL IError interface is supplied to an instance of a component
that accepts one, then it must use the Error method of the interface to
report any detected errors or other events falling into the categories
requested by the user of the instance. If there is no mechanism for the user
to specify the categories of interest, then the component must report at
least fatal errors. The parameters to Error are described in Table 3-8 on
page 3-40.

ITestReport Interface
The VCSE::ITestReport interface is provided as a standard way to com-
municate diagnostic and documentary messages between the test shell
component and the user. Exactly how this is achieved depends entirely on
the component implementing the ITestReport interface.

For example, generated test shell components make use of this interface in
the __VCSE_SHELL_REPORT macro defined in the GLOBALDEF user-modifiable
block of the test shell's method file. For more information, see “Generated
Test Shells” on page 4-77.

ITestReport Interface

3-40 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

ITestReport Interface Definition
There are four methods defined for this interface, three for collecting the
messages and the other to return the messages in bulk to the user.

The ITestReport interface definition is shown in Listing 3-10. The inter-
face's methods are described later in this section.

Table 3-8. Error Method Parameters

Parameter Type Description

RepInterface IBase Provides the IBase interface of the component instance
reporting the error. May be NULL if no interface is available,
or if the calling code is not a component instance.

Level ErrorLevel Specifies the seriousness of the error being reported. The
available levels are:
• ErrorSyslog

Miscellaneous messages the component wishes to record.
• ErrorDebug

Debug information helping to diagnose problems.
• ErrorWarning

Non-fatal error condition that may impact the perfor-
mance of the component.

• ErrorFatal
A fatal error implying that the component instance may
be compromised.

Code int Specifies the error encountered with an integer value. Error
codes are specific to each component.

Length unsigned int Specifies the length of data provided with the ErrInfo
parameter. A value of 0 implies that no additional informa-
tion is available.

ErrInfo unsigned
char[]

Supplies additional information associated with the error
being reported. One common use of this parameter is to sup-
ply a string describing the error.

Returned value MRESULT Returns MR_NOT_COMPLETED if Error does not successfully
process the request, otherwise returns MR_OK.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 3-41
for 16-bit Processors

Standard Interfaces

Listing 3-10. ITestReport Interface Definition

namespace VCSE {

interface ITestReport extends IBase {

MRESULT AddString([in, string] char msg[]);

MRESULT AddStringWithNumber(

[in,string] char fmt[],

[in] int Value

};

MRESULT AddStringWithNumbers(

[in,string] char fmt[],

[in] unsigned short numVals,

[in,size_is(numVals)] int Values[]

};

MRESULT DumpAllMessages();

};

};

Method Descriptions
Supported methods for the ITestReport interface include:

• AddString

• AddStringWithNumber

• AddStringWithNumbers

• DumpAllMessages

ITestReport Interface

3-42 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

AddString

A simple char array is passed to the diagnostics collection component via
the AddString method. If the string is to contain explanatory text as well
as the numerical values of code variables then it will require formatting,
for example by the library method, VCSE_sprintf, prior to invoking
AddString:

Listing 3-11. Example C++ Use of AddString Method

char *__VCSE_line = VCSE_sprintf(

"%s : Input Data array size (%d) less than required

(%d)\n",

"EXAMPLES_CULawc::Compress", N, 256);

p_VCSE_ItestReport->AddString(__VCSE_line);

AddStringWithNumber

The AddStringWithNumber method provides the means to pass a string and
a single integer value to the interface. For example the string could con-
tain a format string and the value could be a result value corresponding to
the single %d format-specifier contained in the format string:

Listing 3-12. Example C++ Use of AddStringWithNumber Method

p_VCSE_ItestReport->AddStringWithNumber(

"Test completed in %d cycles\n",

numCycles);

AddStringWithNumbers

For more comprehensive reporting of a set of values, the AddStringWith-
Numbers method provides the means to pass an array of values to the
Report interface. For example, to record the cycles taken and stack usage
the following code could be used:

VisualDSP++ 3.5 Component Software Engineering User’s Guide 3-43
for 16-bit Processors

Standard Interfaces

Listing 3-13. Example C++ Use of AddStringWithNumbers Method

integer stats[2];

stats[0] = __builtin_sysreg_read(reg_CYCLES)

- __vcse_timing_start

- __this->m_timing_calibration;

__VCSE_STACKUSE(__vcse_stack_end, &stats[1]);

p_VCSE_ItestReport->AddStringWithNumbers(

"EXAMPLES_CULawc::Compress",

2,

stats);

DumpAllMessages

To transmit the collection of messages to the user, the DumpAllMessages
method is provided. This method takes no parameters.

Listing 3-14. Example C++ Use of DumpAllMessages Method

p_VCSE_ITestReport->DumpAllMessages();

IName Interface
The VCSE::IName interface is a standard interface that any component may
choose to implement. It provides a means for code holding only an inter-
face pointer to obtain a meaningful name for the component that provides
the interface. It also provides the means by which a client can set a mean-
ingful name, so the client can, for instance, distinguish between multiple
instances of a component.

An example of code holding an interface that may wish to identify its
defining component is an implementation of the Error method of the
VCSE::IError standard interface.

IName Interface

3-44 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

IName Interface Definition
The three methods defined in this interface allow a client to associate a
name (or other descriptive text) with a component instance and to retrieve
the current size and contents of the name.

The IName interface definition is shown in Listing 3-15. The interface’s
methods are described later in this section.

Listing 3-15. IName Interface Definition

namespace VCSE {

interface IName extends IBase {

MRESULT SetName([in, string] char Name[]);

MRESULT GetName([in] int Length,

[out, string, size_is(Length)] char Name[]);

MRESULT GetLength([out] int Length);

};

};

Method Descriptions
Supported methods for the IName interface include:

• SetName

• GetName

• GetLength

SetName

A component implementing the IName interface is required to have a suit-
able default name associated with it. This default name, set when the
factory method is executed, is defined by the component designer and

VisualDSP++ 3.5 Component Software Engineering User’s Guide 3-45
for 16-bit Processors

Standard Interfaces

does not have to be distinct for each component instance. The name
might be generic, such as the fully qualified component name. If the com-
ponent implements IName by aggregation from another component, then
it must call SetName on the aggregated component during its own creation
in order to set a suitable default name.

A client can also use SetName to set the name or other descriptive text to
be associated with the component that implements the IName interface.
For instance, it may do this in order to obtain more meaningful tracing
output or to distinguish between multiple instances of the same
component.

The name is supplied as a VIDL string whose null-terminated contents
SetName uses to replace the currently stored name. The SetName method
must return an error result if it is unable to store the complete name, but
it is undefined whether it stores a part of the new name, retains the old
name, or follows some other course of action.

The result values that SetName returns are:

• MR_OK when the complete name is stored successfully.

• MR_NO_MEMORY when sufficient memory is not obtained to store the
complete name.

• MR_NOT_COMPLETED when the complete name is not stored for any
other reason, including a fixed-size buffer being too small.

GetName

The GetName method copies the current name and terminating null char-
acter into the sized string provided by the client. If the string is not long
enough, then GetName must return an error result and place a null-termi-
nated character sequence in the string, assuming it is not of zero length.
The character sequence may be empty but otherwise is undefined.

IName Interface

3-46 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

The result values that GetName returns are:

• MR_NO_ERROR when the complete name is returned successfully.

• MR_NOT_COMPLETED when it fails for any other reason, including the
supplied array being too short.

GetLength

The GetLength method supplies the length, including the terminating null
character, of the current name. The method allows its clients to ensure
that a sufficiently large string is supplied to a subsequent GetName call. It
must return a result of MR_OK.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-1
for 16-bit Processors

4 VIDL LANGUAGE
REFERENCE

The VCSE Interface Definition Language (VIDL) is a descriptive notation
for specifying VCSE interfaces and components. The VIDL compiler pro-
cesses and transforms VIDL specifications into source code fragments.
The source code provides skeleton component implementations and inter-
face representations in an appropriate programming language. In practice,
a single VIDL specification can be converted by the VIDL compiler into
an equivalent representation in C, C++, or a platform assembly language.

This chapter provides a reference description of the syntax and semantics
of VIDL. Syntax is described informally using syntax diagrams rather than
grammar rules, and the description of semantics is deliberately as brief and
simple as possible. The text includes a number of examples whose purpose
is illustrative rather than tutorial. The interpretation of the syntax dia-
grams is described in “Understanding Syntax Diagrams” on page 4-2.
Material relating the principles and practice of VCSE programming is
found elsewhere in this manual.

The information about the VIDL syntax and semantics is organized as
follows.

• “Lexical Elements” on page 4-4

• “Named Elements” on page 4-13

• “Element Attributes” on page 4-16

• “Constant Expressions” on page 4-18

• “Types” on page 4-21

Understanding Syntax Diagrams

4-2 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

• “Type Specifiers and Definitions” on page 4-27

• “Declarators” on page 4-28

• “Interfaces” on page 4-29

• “Methods” on page 4-33

• “Components” on page 4-49

• “Properties” on page 4-45

• “Namespaces” on page 4-68

• “Auto-doc Comments” on page 4-72

• “Specifications” on page 4-76

• “Generated Test Shells” on page 4-77

Understanding Syntax Diagrams
In this chapter, the syntax of VIDL statements and elements is illustrated
by diagrams, which use notation often referred to as “railroad tracks”. The
syntax diagrams should be read from left to right and from top to bottom,
following the path of the line and the arrows.

Literal character sequences are shown within rounded rectangles, whereas
un-rounded rectangles are used to identify named syntax elements, as
shown below:

[attribute

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-3
for 16-bit Processors

VIDL Language Reference

Any required items appear on their own, on the main path:

Optional items are shown above or below the main path:

If you can choose from two or more items, they appear vertically, in a
stack. If you must choose one of the items, one item of the stack appears
on the main path:

An arrow returning to the left above or below the main line indicates an
item that can be repeated, along with the separator character if that char-
acter is necessary:

name

name

name

attribute

a t t r ib u t e

,

Lexical Elements

4-4 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Lexical Elements
VIDL specifications are constructed from character sequences that iden-
tify white space, comments, preprocessing tokens, and language tokens.
The VIDL compiler does not see the preprocessing tokens as the C pre-
processor removes them prior to compilation.

Character Sequences
A VIDL specification is contained in a text file prepared with a conven-
tional text editor. The file may contain any of the following characters.

• The uppercase and lowercase letters:

• The decimal digits: 0 1 2 3 4 5 6 7 8 9

• The special characters:

• The formatting characters: space, newline, and tab

These characters may be grouped into larger sequences called white space,
comments, preprocessing tokens, and language tokens. A token is always
formed from the longest possible sequence of characters. For example, the
VIDL compiler interprets the character sequence << as a single token
denoting a left-shift operator rather than two tokens denoting two
less-than operators.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

_ : ; , . ’ ” \ { } [] () = | ^ & + – * / ~ % > < #

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-5
for 16-bit Processors

VIDL Language Reference

White Space
White space consists of any sequence of formatting characters. White
space occurring outside a character literal or string literal may be used to
control the layout of a VIDL text file but adds no meaning to the specifi-
cation it contains. For example, the newline character may be used to split
the text within a VIDL file into physical lines. There is no limit either to
the length of a line or to the number of lines in the file. The VIDL com-
piler skips all white space characters when checking the syntax of a VIDL
specification.

Comments
Comments may be inserted at any point in a VIDL specification and pro-
vide a means to add supplementary documentation. VIDL allows three
notations for normal comments, post-comments, and auto-doc com-
ments, as shown in Figure 4-1.

The body of a normal comment and of an auto-doc comment contains all
the characters between the introductory sequence /* or /** and the termi-
nation sequence */. The body of a post-comment contains all the
characters up to but not including the newline character that terminates
the line. The VIDL compiler discards normal and post-comments, but

Figure 4-1. Comment Syntax Diagram

/* Normal comment body */

// Post comment body-

Auto-doc comment body *//**

Lexical Elements

4-6 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

retains auto-doc comments for further analysis. Auto-doc comments are
distinguished by the starting sequence /** and are used to provide format-
ted external documentation. For more information, see “Auto-doc
Comments” on page 4-72.

Preprocessing
Every VIDL specification is analyzed by the C/C++ language preprocessor
prior to syntax analysis. The preprocessor performs source file substitu-
tion, macro expansion, and conditional removal of source text using
preprocessing directives that begin with the character #. For a description
of the C/C++ preprocessor, see the VisualDSP++ 3.5 C/C++ Compiler and
Library Manual for the appropriate processor platform.

The C++ preprocessor is invoked for all DSP platforms except
ADSP-218x DSPs.

The #include directive is used to control the inclusion of additional
VIDL source text from a secondary input file that is named in the direc-
tive. Two available forms of #include are shown in Figure 4-2.

The file, identified by the file name, is located by searching a list of direc-
tories. When the name is delimited by quote characters, the search begins
in the directory containing the primary input file, then proceeds with the
list of directories specified by the -I command line switch. When the

Figure 4-2. #include Syntax Diagram

“ “VIDL file name

< VIDL file name

#include

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-7
for 16-bit Processors

VIDL Language Reference

name is delimited by angle bracket characters, the search proceeds directly
with the directories specified by -I. If the file is not located within any
directory on the search list, the search may be continued in one or more
platform-dependent system directories.

VIDL Language Tokens
The characters in a preprocessed VIDL text file are grouped into
sequences called language tokens. Language tokens identify the names,
keywords, operators, punctuation, numerical and string literals that form
the elements of a VIDL specification.

Names

A name is a sequence of alphanumeric characters and underscores that
contains at least one alphanumeric character, as shown in Figure 4-3.
Names are used to identify constants, types, attributes, methods, method
parameters, interfaces, components, and namespaces. Namespace names
are restricted to names with no underscores. Names are also used to iden-
tify tags within the auto-doc comments. Names may be combined with a
:: separator to form a fully qualified name.

Figure 4-3. Name Syntax Diagram

_

letter

letter

digit

_

Lexical Elements

4-8 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Keywords

A keyword is a name that is reserved by the VIDL language and may not be
used as an identifier. The set of keywords is as follows.

Table 4-1. Reserved Keywords

aggregatable enum MRESULT size_is

aggregates extends namespace size_t

algorithm_model extern needs sizeof

alias first_is no_algorithm_model stack_usage

aliasing_check float no_aliasing_check states_used

align fract no_array_check static

array_check from no_stack_usage string

auto get no_timing struct

category iid out struct_pack

char iid_is out_assert struct_pad

clear_state implements place supplies

common in pm testing

company in_assert register timing

complex_double info remotable title

complex_float init_state requires typedef

complex_fract int requires_state typename

complex_long_double interface reset_to_state union

complex_long_fract is reuse unique

component language set unsigned

const last_i sets_state use

distinct local signed version

double mem_shell singleton void

dm length_is shared

document long short

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-9
for 16-bit Processors

VIDL Language Reference

The set of auto-doc tags is as follows. For additional information about
auto-docs, see “Auto-doc Comments” on page 4-72.

Punctuation

The following tokens are used for punctuation.

: :: ; , . { } [] ()

Operators

The following tokens are used as arithmetic operators.

+ - * / % ^ & | ~ << >> == != < <= > >=

Numeric Literals

Numbers and strings are represented by integer, real, and string literals.
They may be combined with appropriate arithmetic operators to form
expressions.

Table 4-2. Auto-doc Tags

@author @param

@create @postcondition

@destroy @precondition

@example @return

@keyword @sizeof

Lexical Elements

4-10 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Integer Literals

Integer literals are used to denote integer values using sequences of octal,
decimal, and hexadecimal digits (see Figure 4-4).

• The octal digits: 0 1 2 3 4 5 6 7

• The decimal digits: 0 1 2 3 4 5 6 7 8 9

• The hexadecimal digits:

0 1 2 3 4 5 6 7 8 9 a A b B c C d D e E f F

An integer literal defines a value with the VIDL type int. Decimal values
are distinguished by their first digit, which must not be zero and may be
prefixed with the — (minus) unary operator to form negative values.
Example of each are: O2274 (octal); 1212, 34 (decimal); 0x4BC, 0X4BC
(hexadecimal).

Figure 4-4. Integer Literal Syntax Diagram

0

octal digit

0X

0x

hex digit

decimal digit

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-11
for 16-bit Processors

VIDL Language Reference

Real Literals

A real literal defines a value with the VIDL type double. The literal’s form
is shown in Figure 4-5. Examples are: 2.340, 2.34e+3, 2.34E–3.

String Literals

A character literal specifies a value of the VIDL type char. The character
denoted is either a single graphic character or one identified by an escape
sequence, as shown in Figure 4-6. Examples are ‘0’ and ‘A’.

Figure 4-5. Real Literal Syntax Diagram

Figure 4-6. Character Literal Syntax Diagram

decimal digit .

decimal digit

e

E

+

-

decimal digit

‘

‘‘

graphic character

\\

escape-sequence

‘

Lexical Elements

4-12 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

An escape sequence consists of octal digits, hexadecimal digits, or one of
the special escape characters n t b r f v “ \ (see Figure 4-7). The escape
letters represent the non-printing formatting characters for newline, hori-
zontal tab, backspace, carriage return, form feed, and vertical tab. The
escape sequences '' and \\ respectively denote the single quote and for-
ward slash characters. There can be at most three octal and two
hexadecimal digits in any escape sequence. Examples are: \xA, \t, \012.

A string literal specifies a sequence of zero or more characters, each of
which is represented by a graphic or an escape sequence. A double quote
character occurring within the string is represented by the escape sequence
\”. The VIDL compiler maps a string literal to an equivalent representa-
tion and type in the implementation language. Examples are:
“www.analog.com\n”, “the MRESULT value \”MR_OK\” ...\012”.

Figure 4-7. Escape Sequence Syntax Diagram

Figure 4-8. String Literal Syntax Diagram

\ esc char

x hex digit

octal digit

" "

graphic character

escape-sequence

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-13
for 16-bit Processors

VIDL Language Reference

Named Elements
A VIDL specification is composed of named elements that describe
namespaces, components, interfaces, interface methods, method parame-
ters, types, and constants. Namespaces, components, interfaces, methods
and method parameters may be annotated with attributes to provide addi-
tional information for the VIDL compiler.

Every named element within a VIDL specification must have a single
defining definition. The portion of the specification over which a defini-
tion applies is called its scope. There are three kinds of scope that may
occur in a VIDL specification:

• The area of text that is not enclosed by the outermost namespace
declaration forms an unnamed scope called the global scope. The
only named element that can be declared in global scope is a
namespace.

• The area of text enclosed by an interface, namespace, component
or structure definition forms a named scope whose name is the
namespace, interface, or structure name.

• The VIDL compiler maintains a named scope that is associated
with a predefined namespace called VCSE.

Every use of a name must be preceded by its definition. Because of circular
dependencies, it may not be possible to fully define a name prior to its use.
In these cases, it is permissible to introduce the name into its scope with a
forward declaration. A name may have more than one declaration within
its scope, but there must be exactly one defining definition. A name with a
declaration in an enclosing scope cannot be used and then redefined in the
current scope.

Named Elements

4-14 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

When a named element is used in a VIDL specification, it may be refer-
enced using its qualified or unqualified name. The unqualified form—
shown in Figure 4-9—is merely the name introduced by the definition.
The qualified form is the unqualified name prefixed with the name of each
scope that contains its definition (see Figure 4-10).

A qualified name of the form ADI::EDSP::IFilter references an element
IFilter that is defined in a scope named EDSP that is, in turn, defined
within an enclosing scope called ADI.

In VIDL, scopes are determined by namespace and interface definitions;
although in practice, only namespace scopes can be nested. By convention,
the global scope is partitioned into distinct company-specific namespaces
that allow every named element to be uniquely identified by its fully qual-
ified name.

The order in which scopes are searched for the declaration of an unquali-
fied name may be altered by the use attribute. For more information, see
“use Attribute” on page 4-71.

Figure 4-9. Unqualified Name Syntax Diagram

Figure 4-10. Qualified Name Syntax Diagram

name

::

name

::

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-15
for 16-bit Processors

VIDL Language Reference

Therefore, when an element is referenced with an unqualified name N, the
element is identified by searching the available scopes for its declaration,
using the following rules.

1. Search for the declaration of N in the current scope. If it is not
found, proceed to rule 2.

2. Search the scopes defined by the namespaces in any use attribute
attached to the current scope. If the declaration is not found, pro-
ceed to rule 3.

3. Reapply rules 1 and 2 to all scopes that enclose the current scope. If
the declaration is not found, proceed to rule 4.

4. Search the predefined VCSE scope.

If the declaration of N is not found by rule 4, then the VIDL compiler
reports an error. For example, if N occurs in scope B that is contained by
scope A that is contained in the global scope, then the VIDL compiler
looks for the declaration of N by searching scopes B, A, the global scope,
and finally the VCSE scope.

When an element is referenced by a qualified name ::S::N or S::N, the
element is identified by searching the scopes named by the scope prefixes
as follows.

5. If the prefix is ::S, then S must identify a scope S declared within
the global scope. If the prefix is S, then S must identify a scope S
found by application of rules 1 to 4.

6. If S is the scope identified by the scope prefix, then the name N
must be declared in S.

7. If the declaration of N found by rule 6 identifies another scope N
and N is followed by the token sequence ::M, then rule 6 is reap-
plied by substituting N for S and M for N.

Element Attributes

4-16 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

For example, when the VIDL compiler encounters the qualified name
A::B::N, rules 1 through 4 must identify the scope prefix A:: with the
scope A. Rule 6 must locate the declaration of B within scope A. Then by
rule 7, the declaration of B must identify a scope B; and by rule 6, N must
be declared within B. If the qualified name has the form ::A::B::N, the
scope prefix A must be declared within the global scope.

The VIDL compiler uses the case of each letter to distinguish names that
are otherwise identical. Thus, Region and region are regarded as different
names.

Element Attributes
Element attributes supply additional information about namespaces, com-
ponents, interfaces, methods, method parameters, properties, and
structure members to the VIDL compiler. They are specified by attribute
lists that precede the definition of the element to which they apply. The
attribute form and all of the element attribute forms are shown in
Figure 4-11 and Figure 4-12 on page 4-17.

Figure 4-11. Attribute Syntax Diagram

[element attribute]

,

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-17
for 16-bit Processors

VIDL Language Reference

The VIDL compiler verifies the attributes supplied are appropriate for the
element to which they are applied. In practice, every interface or method
parameter definition must be preceded by at least one interface attribute
or parameter attribute.

The definitions of the attributes appropriate to each element are covered
in the respective sections describing the elements.

Figure 4-12. Element Attribute Syntax Diagram

namespace attribute

component attribute

interface attribute

parameter attribute

member attribute

struct attribute

property attribute

method attribute

Constant Expressions

4-18 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Constant Expressions
An expression is composed of binary or unary operators and their oper-
ands (see Figure 4-13 through Figure 4-16). An expression whose
operands are integer, character literals, or enumeration constants is called
a constant expression. Only constant expressions are allowed in VIDL. The
expression must evaluate to a valid value of integer type.

Figure 4-13. Primary Expression Syntax Diagram

Figure 4-14. Unary Expression Syntax Diagram

Figure 4-15. Expression Syntax Diagram

qualified name

integer literal

character literal

()expression

unary operator

primary expression

binary operator

unary expression

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-19
for 16-bit Processors

VIDL Language Reference

Table 4-3 and Table 4-4 on page 4-19 list the unary and binary operators
in order of decreasing precedence.

Figure 4-16. Constant Expression Syntax Diagram

Table 4-3. Unary Operators Precedence Chart

Operator Name Precedence

+ plus 7

– minus 7

~ bit negation 7

Table 4-4. Binary Operators Precedence Chart

Operator Name Precedence

* multiplication 6

/ integer division 6

% remainder 6

+ addition 5

– subtraction 5

<< left shift 4

>> right shift 4

& bitwise and 3

^ bitwise xor 2

| bitwise or 1

expression

Constant Expressions

4-20 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Unary operators have the highest precedence and are evaluated before any
binary operator. Binary operators range from integer-multiplication with
the highest precedence through to bitwise-or with the lowest precedence.
Operators are applied to operands according to the following precedence
rules.

1. If o is any binary operator, u is any unary operator, and X and Y are
operands, then the expression u X o Y is evaluated as (u X) o (Y).

2. If o1 and o2 are binary operators and X, Y and Z are operands, then
the expression X o1 Y o2 Z is evaluated as (X o1 Y) o2 (Z) if the
precedence level of o1 is greater than or equal to the precedence
level of o2. If the precedence level of o1 is less than the precedence
level of o2, then the expression is evaluated as (X) o1 (Y o2 Z).

These rules may be overridden by inserting brackets. For example, in
i*j|k, evaluation of | before * can be forced by writing the expression as
i*(j|k).

Constant expressions may be used to specify the value of an enumeration
constant, an array bound, or an element attribute. For more information
about the operands, see “Numeric Literals” on page 4-9 and “Enum
Types” on page 4-22. Array bounds are described in “Declarators” on
page 4-28 and element attributes in “Element Attributes” on page 4-16.
Constant expressions are evaluated by the VIDL compiler and only the
resultant numeric value is recreated in the generated files.

Listing 4-1. Example Constant Expressions

1000

i – '0'

bits & 0xF0

n*m + 12

(u – v)*(x + y)

(m >> s)&0xF

~(0xF << s)

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-21
for 16-bit Processors

VIDL Language Reference

Types
VIDL provides a set of types for describing scalar and aggregate values. A
type is either an arithmetic base type or a user defined type. Both sets of
types are specified by names or constructs that are similar to those found
in Analog Devices dialects of the C and C++ programming languages. The
set of VIDL types is shown in Figure 4-17 on page 4-21.

The VIDL compiler maps each VIDL type into an equivalent host type in
the implementation language. If there is no equivalent host type, it reports
an error.

Figure 4-17. VIDL Types

Scalar
Types

Aggregate
Types

Enum
Type

Struct
Types

Interface
Types

Array
Types

Integral
Types

Fractional
Types

Floating
Types

complex_float
complex_double
complex_fract
complex_long_fract
complex_long_double

float
double
long double

fract
long fract

char
short
int
long
MRESULT

Base Types

VIDL Type

User-defined Types

Complex
Types

Types

4-22 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Base Types
The base types allow integer, fixed-point (fractional), floating-point, and
complex arithmetic data to be specified. They are represented by a type
keyword, which in some cases may be prefixed with a signed or unsigned
qualifier (see Figure 4-18).

Enum Types
An enumeration type specifies the values of one or more enumeration con-
stants. The value of each constant is determined by a constant expression,
or by adding one to the value of the preceding constant if no expression is

Figure 4-18. Base Type Syntax Diagram

complex_fract

signed

unsigned

long

int

short

char

int

long int

float

long double

fract

complex_float

complex_double

complex_long_double

complex_long_fract

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-23
for 16-bit Processors

VIDL Language Reference

supplied. The value of the first constant is either zero or the value of its
constant expression. Figure 4-19 and Figure 4-20 on page 4-23 show the
enumeration type formats.

An enumerator specifies a name that denotes its value in the scope in
which it is declared. The enumerator may be referenced outside its scope
using its qualified name. An enumeration definition specifies a name that
denotes the enumeration type and may be used within its scope as a type
specifier. The enumeration may be referenced outside its scope by its qual-
ified name. For more information, see “Named Elements” on page 4-13.

Listing 4-2. Enum Example

enum Colors { red = 1, green, blue }

enum MemoryType {

MemoryPrimary = 1,

MemorySecondary = 2,

MemoryExternal = 4,

MemoryBank = 8,

MemoryAny = (MemoryPrimary | MemorySecondary |

Figure 4-19. Enumerator Syntax Diagram

Figure 4-20. enum Definition Syntax Diagram

const expression=

name

enum name { enumerator }

,

Types

4-24 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

MemoryExternal | MemoryBank) }

enum Boundary { top = +10, bottom = -10, left = -20, right = +20 }

Structure Types
A structure type is an aggregate containing a list of components called
members. Each member is defined by a declarator that specifies its name
and type. A structure defines a scope in which no two members may have
the same name. The member declarator form, member list form, and
structure definition form are shown in Figure 4-21 through Figure 4-25.

In Figure 4-22, the alignment_value is an integer with the same con-
straint as the parameter used in #pragma align, which means the value
must be zero (default alignment) or a power of two. Refer to the Visu-
alDSP++ 3.x C/C++ Compiler and Library Manual for your target
processor family or the online Help for more information about pragmas.

Figure 4-21. Member Declarator Syntax Diagram

Figure 4-22. Member Attribute Syntax Diagram

Figure 4-23. Member List Syntax Diagram

type spec ifie r decla ra to r list ;

attribu tes

align (alignment_value)

member declarator

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-25
for 16-bit Processors

VIDL Language Reference

In Figure 4-25, the alignment_value is an integer with the same con-
straint as the parameter used in #pragma pack and #pragma pad, which
means the value must be zero (default alignment) or a power of two. Refer
to the VisualDSP++ 3.5 C/C++ Compiler and Library Manual for your tar-
get DSP family or the online Help for more information about #pragmas.

A structure definition specifies a name that denotes the structure type and
may be used within its scope as a type specifier. The structure may be ref-
erenced outside its scope by using its qualified name. A structure name
cannot be used as a type specifier within its own list of members.

Structure definitions cannot be nested. However, a member may be
declared with a type specifier that references a previously defined struc-
ture. A structure may be defined with an empty list of members.

Figure 4-24. struct Definition Syntax Diagram

Figure 4-25. struct Attributes Syntax Diagram

struct attributes

auto-doc comment

struct name { }

member list

struct_pack (a lignm ent_va lue)

struct_pad (a lignm ent_va lue)

Types

4-26 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Listing 4-3. Struct Example

struct Point{ int x; int y; };

[struct_pad(4)] struct Box {

Point center;

[align(2)] int width, height;

};

[struct_pack(1)] struct MemType {

int m_type;

int m_life;

char m_bank[256];

};

Interface Types
An interface defines a name that denotes an interface type, which may be
used within its scope as a type specifier. In particular, an interface may be
used to specify the type of a method parameter. An interface may be refer-
enced outside its scope using its qualified name:

MRESULT SetErrorReporter([in] VCSE::IError ErrorReporter);

Interfaces are described in “Standard Interfaces” on page 3-1 and “Inter-
faces” on page 4-29.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-27
for 16-bit Processors

VIDL Language Reference

Type Specifiers and Definitions
A type is specified in a parameter or member declaration by a type specifier.
A type specifier is either the name of the type or a sequence of keywords
that identifies a base type, as shown in Figure 4-26. The VIDL base types
are described in “Base Types” on page 4-22.

A type definition supplies a name for the type, which may be used in its
scope as a type specifier. The type may be referenced outside its scope by
using its qualified name.

Listing 4-4. Typedef Example

typedef unsigned int u_int;

typedef ::adi::adsp::IFilter adi_ifilter;

enum primary { red, green, blue };

Figure 4-26. Type Specifier Syntax Diagram

Figure 4-27. typedef Syntax Diagram

base type

qualified name

struct definition

enum definition

typedef type specifier declarator list

;

Declarators

4-28 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Declarators
A declarator specifies the name for a method parameter or a structure
member. When used in a type definition, a declarator provides a name for
the type referenced by the type specifier. It is an error if the name has a
previous definition in the scope of the declarator. The declarator and
declarator list formats are illustrated in Figure 4-28 and Figure 4-29.

When the declarator name is followed by one or more pairs of brackets,
the name is assigned an array type. The element type of the array is pro-
vided by the preceding type specifier, and the number of dimensions is
specified by the number of bracket pairs.

The number of elements in an array dimension may be specified by a con-
stant expression. If the size of every dimension is specified, the array is
called a fixed array. If the size of any dimension remains unspecified, the
array is called a conformant array, and the dimension is said to be unsized.

Figure 4-28. Declarator Syntax Diagram

Figure 4-29. Declarator List Syntax Diagram

name

[const expression]

declarator

,

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-29
for 16-bit Processors

VIDL Language Reference

When a declarator is declared with a conformant array type, the corre-
sponding member or parameter declarator must be preceded with a
size_is or string parameter attribute that specifies the number of ele-
ments in the dimension at run-time. These attributes are defined in
“size_is Attribute” on page 4-37 and “string Attribute” on page 4-39.

Example:

/* Declarators: */

xref[10]

cval

coord[10,20]

/* Declarator lists: */

xcord, ycord

ncoef, coef_a[10], coef_b[10]

Interfaces
An interface definition specifies the name, the base interface from which it
is extended, and the body. The name of the interface may be used as a type
specifier, described in “Type Specifiers and Definitions” on page 4-27, or
as an interface name within its scope. The interface may be referenced
outside its scope using its qualified name. An interface may also be
declared and its name used as a type specifier, prior to the interface defini-
tion. However, a warning occurs if the interface is not defined in the same
scope as the declaration.

Figure 4-30 through Figure 4-32 on page 4-30 provide syntax diagrams
for interface declarations and interface definitions.

Figure 4-30. Interface Name Syntax Diagram

qualified name

Interfaces

4-30 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

An interface definition must be preceded by an attribute list that contains
an iid attribute (see Figure 4-33). The list may also contain a use
Attribute, which is described in “use Attribute” on page 4-71, a needs
Attribute, which is described in “needs Attribute” on page 4-58, or a sup-
plies Attribute, which is described in “supplies Attribute” on page 4-61.

Figure 4-31. interface Declaration Syntax Diagram

Figure 4-32. Interface Definition Syntax Diagram

Figure 4-33. iid Attribute Syntax Diagram

interface name ;

attributes interface name extends interface name

{ }

document

Auto-doc comment
;

type definition

method declaration

property

iid (interface identifier)

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-31
for 16-bit Processors

VIDL Language Reference

An iid attribute supplies an interface identifier, which provides a unique
binary identification code for the interface. The code is a sequence of 32
hexadecimal digits generated by support utilities within the VisualDSP++
environment.

By convention, an interface name must start with the capital letter I. The
name IBase is reserved for the predefined root interface VCSE::IBase.

The base interface specified in an interface definition must either be a pre-
viously defined interface or the root interface VCSE::IBase. Every interface
is a direct or indirect extension of IBase.

The methods provided by an interface are specified by the method decla-
rations within its body in addition to the methods provided by its base
interface. The root interface IBase contains a single method called Get-
Interface, which is provided on all other interfaces. For example, there
are interfaces I1, I2, and I3, where I3 extends I2, which extends I1, which
extends IBase. Suppose that the bodies of I1, I2, and I3 respectively con-
tain declarations for the methods M1, M2, and M3. Then the methods of I1
are {GetInterface, M1}, the methods of I2 are {GetInterface, M1, M2},
and the methods of I3 are {GetInterface, M1, M2, M3}. If the list of
method declarations in an interface body is empty, then the interface pro-
vides only the methods in its base interface.

Figure 4-34. Interface Attributes Syntax Diagram

iid attribute

use attribute

needs attribute

supplies attribute

Interfaces

4-32 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

The body of an interface defines a scope in which its methods are
declared.

Listing 4-5. Interface Identifier Example

namespace Example {

enum tagRefNotes { A, B, C, D, E, F, G };

[iid("51c45584-0a17d611-a5580010-4b7cac83")

use(::ADI::Dolby)]

interface IInstrument extends IBase {

MRESULT Select([in, string] char tune[256]);

MRESULT Plug([in] IChannel chOut);

MRESULT Play([in] long ticks);

};

[iid("d15d56b8-0a17d611-a5580010-4b7cac83")]

interface ITuner extends IInstrument {

MRESULT GetRefNote([in, string] char name[],

[out] RefNotes note);

};

[iid("108f48d3-0a17d611-a5580010-4b7cac83")]

interface ITunable extends IInstrument {

MRESULT Retune(void);

};

}

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-33
for 16-bit Processors

VIDL Language Reference

Methods
A method declaration—shown in Figure 4-35—specifies the name of the
method, the return type, and the type of each method parameter. An error
occurs if the name has already been assigned to another method in the
same interface or in a direct or indirect base interface.

The type specifier for the result type must be the predefined type
VCSE::MRESULT. The implementation of the method provided by a compo-
nent is expected to return a value of this type.

Method Attributes
The only attribute that can be supplied for a method is the local
attribute, described below.

local attribute

Figure 4-35. Method Declaration Syntax Diagram

Figure 4-36. local Attributes Syntax Diagram

type specifier name (method-parameters) ;attributes

local

Methods

4-34 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

The local attribute specifies that the associated method cannot be
invoked remotely but it must always be executed on the local processor
since at least one of the passed parameters cannot be serialized for trans-
mission to or from another processor.

Method Parameters
Method parameters are specified by a list of parameter declarators, as
shown in Figure 4-37 and Figure 4-38 on page 4-34. A method with no
parameters is indicated by omitting the parameter list or supplying the
keyword void. A parameter declarator must include one or more parame-
ter attributes (see Figure 4-39 on page 4-35). The type of the parameter is
supplied by the type specifier. If the const, volatile, or memory type (pm
or dm) qualifiers are supplied, they are included in the C or C++ represen-
tation of the method declaration generated by the VIDL compiler.

Figure 4-37. Parameter List Syntax Diagram

Figure 4-38. Method Parameters Syntax Diagram

parameter declarator

,

parameter list

void

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-35
for 16-bit Processors

VIDL Language Reference

Parameter Attributes

A parameter must be preceded by a list of parameter attributes.
Figure 4-40 lists valid parameter attributes; a syntax diagram for each
attribute appears in Figure 4-41 through Figure 4-48. For a description of
each attribute, refer to the appropriate sections.

A parameter’s list of attributes must contain at least one of the direction
attributes ([in] and [out]) to indicate how the parameter’s value is trans-
mitted between the method and its calling environment. Both attributes

Figure 4-39. Parameter Declarator Syntax Diagram

Figure 4-40. Parameter Attribute Syntax Diagram

attributes
const

type specifier
pm

declarator
volatile dm

bank attribute

alias attribute

size_is attribute

out attribute

in attribute

string attribute

shared attribute

align attribute

unique attribute

Methods

4-36 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

[in] and [out] can be specified in a parameter’s list of attributes. The
VIDL compiler uses the direction attributes to construct appropriate
parameter declarations in C or C++. The other attributes are optional, and
their use depends, in part, on the type of the method parameter.

in Attribute

The in attribute specifies an input parameter value that is transmitted from
the calling environment to the method when the method is called.

If the parameter type is a base type or an enumerated type, the parameter
is passed by value. The const qualifier may also be used to indicate that
the method should not modify the value. If the parameter type is an array,
string, or structure type, the parameter is passed by reference. The VIDL
compiler adds the const qualifier to ensure the parameter value, which is
visible in the calling environment, cannot be changed by the method.

out Attribute

The out attribute specifies an output parameter value that is transmitted
from the method to the calling environment when the method returns.
The VIDL compiler arranges for the parameter to be passed by reference
to make the final value available in the calling environment. An output
parameter should not be prefixed with a const qualifier: an error occurs if
a parameter qualified with the [out] attribute is also prefixed with a const
qualifier.

Figure 4-41. in Attribute Syntax Diagram

Figure 4-42. out Attribute Syntax Diagram

in

out

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-37
for 16-bit Processors

VIDL Language Reference

If the attribute list contains both in and out attributes, then the parameter
is both an input and output parameter. The parameter value is transmitted
from the calling environment to the method when the method is called,
and then transmitted back from the method to the calling environment
when the method returns. The VIDL compiler arranges for an input-out-
put parameter to be passed by reference.

Any access to the input value of an input-output parameter is per-
formed indirectly because the parameter is passed by reference. If
the parameter has a scalar type, then it may be more efficient to
supply an input parameter, which can be accessed directly, and a
separate output parameter to return the value.

size_is Attribute

The size_is attribute specifies the number of elements in each unsized
dimension of a conformant array. The number of expressions supplied in
the attribute must match the number of unsized dimensions in the array,
and each expression must have an integer type. If the attribute occurs
within a parameter declarator, then the operands of the expression may
include any of the preceding parameters in the method parameter list.

Figure 4-43. size_is Attribute Syntax Diagram

(expression)

,

size_is

Methods

4-38 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

If the attribute occurs within the last member declarator of a structure
type, then the expression may include any of the preceding members in
the structure. In each case, the run-time value of the expression deter-
mines the number of elements in the corresponding unsized dimension.

The current VIDL compilers for ADSP-21xx and Blackfin proces-
sors support the size_is attribute in parameter declarator only.
Support for member declarator will be implemented in future
releases.

Example 1:

MRESULT M([in] int n, [in] int m, [in, size_is(n, m)] int x[][])

When method M is called with first and second parameters 10 and 100, the
parameter x may be accessed as if it had been declared as x[10][100].

Example 2:

MRESULT N([in] int n, [in] int m, [out, size_is(n)] int y[])

When method N is called with first and second parameters 10 and 100, the
parameter y may be accessed as if it had been declared as int y[10].

The information supplied by a size_is attribute is only used when
the array parameter must be physically copied between memory or
address spaces. When a method and its calling environment use the
same memory, the run-time overhead is restricted to passing the

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-39
for 16-bit Processors

VIDL Language Reference

extra parameters, giving the size of each array dimension. In exam-
ple 1, if M was only called with actual parameter d[10][100], then M
could be declared as:

MRESULT M([in] int x[10][100])

and there would be no need to pass the array dimensions as param-
eters n and m.

A size_is attribute is still required when a method returns an array
as an output parameter. In example 2, n must supply the size of the
actual array to store the values of the formal parameter y. If method
N finds that the array is not large enough, then it has the option of
simply discarding the excess values or returning an error code as the
case may be.

The parameter supplied as the argument to size_is can never be
qualified with the direction attribute [out], even when an array is
returned as an output parameter. So in example 2, the VIDL com-
piler reports an error if n is previously declared with the attributes
[out] or [in,out].

string Attribute

The string attribute indicates that a method parameter or structure mem-
ber, which is a character array, is to be treated as a null-terminated string.

The current VIDL compilers for ADSP-21xx and Blackfin proces-
sors support the string attribute in a parameter declarator only.
Support for the attribute in a member declarator will be imple-
mented in future releases.

Figure 4-44. string Attribute Syntax Diagram

string

Methods

4-40 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

When the array must be copied between memory or address spaces, all
characters up to and including the null are copied.

Example 1:

MRESULT M([in, string] char x[])

All characters including the terminating null character are supplied to the
parameter x. A parameter declared in this way is called a conformant string.

Example 2:

MRESULT N([in] int n, [in, size_is(n), string] char y[])

The number of characters (excluding the terminating null character) in
the string y transmitted to callee is the minimum of the value of (n-1) and
the length of the argument string computed by strlen. The transmitted
string is always terminated with a null character. The total number of
characters (including the terminating null character) written to y must not
exceed the value of n.

Example 3:

MRESULT O([in] int n, [out, size_is(n), string] char z[])

The number of characters (excluding the terminating null character) in
the string z returned to the caller is the minimum of the value of (n-1)
and the length of the argument string computed by strlen. The returned
string is always terminated with a null character.

Examples 2 and 3 imply a conformant string parameter is always
null-terminated.

A conformant string parameter declared with an out attribute must
always include a size_is attribute.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-41
for 16-bit Processors

VIDL Language Reference

shared Attribute

The shared attribute indicates an array or structure passed as a method
parameter is located in a memory region accessible to both the method
and its calling environment.

When the method and its caller run on different processors, the operations
that copy the parameter from one processor memory to the other can be
avoided. When the method and its calling environment are located on the
same processor, or the parameter has a simple arithmetic base type, the
shared attribute has no effect.

Example:

MRESULT M([in] int n, [in, size_is(n), shared] int x[])

Within M, any access to x is an access to the memory region occupied by
the actual parameter.

alias Attribute

The alias attribute indicates an array or structure passed as an input
parameter is to be treated as an alias of another input parameter with the
same type, size, and shape.

Figure 4-45. shared Attribute Syntax Diagram

Figure 4-46. alias Attribute Syntax Diagram

shared

alias

Methods

4-42 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Example 1:

MRESULT M([in] int x[64], [in, alias] int y[64])

When the method M is called with M(a, b), where a and b are different
arrays, a copy of each array is made and the alias directive has no effect.
When M is called with M(a, a), the alias directive causes a single copy of
a to x and ensures that all accesses to y are accesses to x. When the method
and its calling environment are located on the same processor, the
attribute has no effect.

Example 2:

MRESULT N([in] int x[64], [in, out, alias] int y[64])

When the method N is called with N(a, a), a single copy of a is made to
the parameter x, and all accesses to y become accesses to x. Moreover,
when any values of x are modified within N, these modified values are
returned as elements of the out parameter y.

bank Attribute

The bank attribute allows a method parameter to be associated with a
named memory bank.

Figure 4-47. bank Attribute Syntax Diagram

bank)(string literal

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-43
for 16-bit Processors

VIDL Language Reference

When two parameters are associated with different banks, their elements
may be accessed without possibility of memory conflicts.

MRESULT M([in, bank(“B1”)] int x[64], [in, bank(“B2”)] int y[64])

The parameters x and y of the method M are associated with different
memory banks called “B1” and “B2”, and the C or C++ compiler will
assume no conflicts occur when their elements are accessed. It is the call-
ing environment’s responsibility to ensure this is, in fact, the case for the
actual arrays supplied to the parameters x and y.

The bank attribute is not supported on ADSP-21xx DSPs.

align Attribute

The align attribute allows the actual alignment for an array to be speci-
fied in architectural addressing units.

On many processors, an array is word or double word aligned even when
the natural alignment associated with the element type of an array is
smaller. Use of the align attribute allows the true array alignment to be
communicated to the C or C++ compiler. This information is often criti-
cal in enabling vector loop optimizations. By default, parameters are
assumed to have natural alignment unless qualified by the align attribute.

Figure 4-48. align Attribute Syntax Diagram

align (const expression)

Methods

4-44 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

The value of the constant expression must be zero (default alignment) or a
power of two. A value of zero means the alignment of the corresponding
argument is unknown.

MRESULT M([in, align(4)] short x[200])

In the example (which is for a byte addressable architecture, such as the
ADSP-BF53x processor), the align(4) attribute indicates the array x is
word aligned, although the short data type is half-word aligned.

While the align attribute is supported on the ADSP-21xx family
of processors, it only has relevance as a means of documenting that
an in array needs to be declared as aligned in the called program
unit for optimal or correct performance within the method.

document Statement

The document statement can be used within an interface definition or a
component definition block to allow additional documentation be sup-
plied for a method. In the case of an interface the method is expected to be
a method of an interface that is being extended. In the case of a compo-
nent the method can be supplied by any of the interfaces that the
component implements. The document statement must be preceded by an
auto-doc comment, which provides the additional information related to
the method.

The syntax for document statement is

Figure 4-49. document Statement Syntax Diagram

document

interface-name

;auto-doc comment method name

::

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-45
for 16-bit Processors

VIDL Language Reference

In the example below the method Reset is described in the base interface
IFace. The Reset method is then also supported by the extended interface
IExtFace and the document statement is used to allow the additional infor-
mation related to the impact of invoking Reset to be defined.

interface IFace extends IBase

{

/**

* Reset is used to bring the interface to a known state.

**/

MRESULT Reset();

};

interface IExtFace extends IFace

{

/**

* When reset is invoked all of the extended attributes are

* automatically set to their default values.

/**

document Reset;

};

Properties
A property defines a protected field within an interface and the VIDL
compiler generates accessor methods depending on the attributes of the
property. Accessor methods that are generated give either read or write
privileges to the calling environment.

Properties

4-46 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

As shown in Figure 4-50, a property declaration specifies the attributes of
the properties, the type of the properties, and a list of property names. A
property declaration must be declared inside of an interface definition. An
error occurs if a property name has already been assigned to another prop-
erty in the same interface or in a direct or indirect base interface.

The type specifier for properties can be any scalar or single-dimensioned
array type accepted by the idl compiler, excluding multidimensional
arrays. Single dimensional arrays are allowed and results in special
processing.

Property Attributes
A property list must be preceded by a list of property attributes.
Figure 4-50 lists valid property attributes; a syntax diagram for each
attribute appears in Figure 4-53 through Figure 4-55.

Figure 4-50. Property Syntax Diagram

Figure 4-51. Property Name List Syntax Diagram

attributes ;type specifier property name list

,auto-doc comment

name

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-47
for 16-bit Processors

VIDL Language Reference

Valid property values include:

• get Attribute, described on page 4-47

• set Attribute, described on page 4-48

• align Attribute, described on page 4-47

The attributes supplied for a property must contain at least one of the
accessibility attributes ([get] and [set]) to indicate which accessor meth-
ods will be defined by the interface. Both attributes, [get] and [set], can
be specified in a property list's attributes list. The VIDL compiler uses the
accessibility attributes to define the inlined accessor methods used to
access the property.

get Attribute

The get attribute specifies that read accesses are allowed from the calling
environment to the property.

Figure 4-52. Property Attribute Syntax Diagram

Figure 4-53. get Attribute Syntax Diagram

get attribute

set attribute

align attribute

get

Properties

4-48 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

The VIDL compiler generates a method to allow the calling environment
to read the value of the property. The name of the VIDL-generated
method is the name of the property prefixed with get. For non-array type
properties this method returns the value of the property's type and does
not accept parameters. If the property is an array type, the return value is
the type of elements of the array with one parameter that indexes into the
array of values for the property.

Example 1:

[get] int BitRate, StatusFields[2];

Since an interface defines the two properties, BitRate and StatusFields,
the VIDL compiler generates two accessor methods of prototypes:

inlined int getBitRate();

inlined int getStatusFields (int _index);

set Attribute

The set attribute specifies that write accesses are allowed from the calling
environment to the property.

The VIDL compiler generates a method to allow the calling environment
to write a value to the interface property. The name of the VIDL-gener-
ated method is the name of the property prefixed with set. The return
value of this method is void. For non-array type properties this method
takes in one parameter of the property's type. If the property is an array
type, the method includes an additional parameter that indexes into the
property.

Figure 4-54. set Attribute Syntax Diagram

set

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-49
for 16-bit Processors

VIDL Language Reference

Example 1:

[set] int BitRate, StatusFields[2];

Since an interface defines the two properties, BitRate and StatusFields,
the VIDL compiler generates two accessor methods with prototypes:

inlined void setBitRate(int _newval);

inlined void setStatusFields(int _newval, int _index);

align Attribute

The align attribute allows the actual alignment of properties within the
interface to be specified in architectural addressing units.

In Figure 4-55, the alignment_value is an integer with the same con-
straint as the parameter used in #pragma align, which means the value
must be zero (default alignment) or a power of two. Refer to the Visu-
alDSP++ 3.5 C/C++ Compiler and Library Manual for your target
processor family, or the online Help for more information about pragmas.

Components
A component definition specifies a component in terms of its name,
attributes, and the interfaces it provides. A component may provide inter-
faces by direct implementation, or it may elect to aggregate interfaces
provided by other components. The internal details of the implementa-
tion are not part of the component’s specification, but dependencies on
other components are normally recorded by the component’s attributes.

Figure 4-55. align Attribute Syntax Diagram

)align const expression(

Components

4-50 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Figure 4-56 through Listing 4-59 provide syntax diagrams for a compo-
nent’s declaration and definition.

A component may be declared prior to its full definition. This is a nota-
tional convenience that allows a component’s name to be introduced prior
to its use in an aggregates clause or a requires attribute, which are defined
later in this section. A component definition or declaration introduces a
name for the component into the current scope. The component may be
referenced outside its scope by using its qualified name.

A component definition contains an implements clause, which lists the
component’s external interfaces. The interface list must contain every
interface provided by the component—either by direct implementation or
aggregation from another component. Each aggregated interface must be
identified in a separate aggregates clause (see Figure 4-58), which identi-
fies the aggregatable component providing the interface. Where an

Figure 4-56. Component Name Syntax Diagram

Figure 4-57. Component Declaration Syntax Diagram

Figure 4-58. Component Aggregation Syntax Diagram

qualified name

component ;name

aggregates interface name from component name ;

,

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-51
for 16-bit Processors

VIDL Language Reference

interface extends another interface, the implements and aggregates
clauses need only contain the name of the derived interface. The extended
interfaces are automatically supported by the component.

Example:

namespace ADI {

component CFiddlePlayer;

component CGuitarPlayer;

component CKeyBoardPlayer;

component CBand implements

IBand, IFiddle, IGuitar, IKeyBoard {

aggregates IFiddle from CFiddlePlayer;

aggregates IGuitar from CGuitarPlayer;

aggregates IKeyBoard from CKeyBoardPlayer;

};

};

Figure 4-59. Component Definition Syntax Diagram

c o m p o n e n t n a m e

i m p l e m e n t s i n t e r f a c e n a m e

{ } ;

,

a t t r ib u t e s

d is t in c t s t a t e m e n t

p l a c e s ta t e m e n t

la n g u a g e s ta t e m e n t

a g g r e g a t io n

d o c u m e n t s t a te m e n t

Components

4-52 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

In the previous example, the components CFiddlePlayer, CGuitarPlayer,
and CKeyBoardPlayer are declared, and the component CBand is defined.
The CBand component provides four interfaces: IBand, IFiddle, IGuitar,
and IKeyBoard. The first interface is provided directly by CBand itself; the
remaining three are aggregated from the previously declared components.

The interfaces listed in the implements clause and each of their base
interfaces may be requested in calls to the component’s Create fac-
tory function and to the GetInterface method of the IBase root
interface.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-53
for 16-bit Processors

VIDL Language Reference

Component Attributes
A component definition must supply category, component, and title
attributes. The set of component attributes is listed in Figure 4-60. Each
attribute is briefly described in the following sections.

Figure 4-60. Component Attribute Syntax Diagram

aggregatable attribute

category attribute

common attribute

company attribute

distinct attribute

info attribute

requires attribute

version attribute

title attribute

singleton attribute

use attribute

supplies attribute

needs attribute

Components

4-54 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

aggregatable Attribute

The aggregatable attribute identifies a component whose interfaces may
be aggregated by another component.

A component referenced in an aggregates clause must be defined to be
aggregatable (see Figure 4-61). For more information about the aggre-
gates clause, refer to “Components” on page 4-49.

namespace ADI {

[aggregatable,…] component CFiddlePlayer implements IFiddle;

[aggregatable,…] component CGuitarPlayer implements IGuitar;

[aggregatable,…] component CKeyBoardPlayer implements IKeyBoard;

};

category Attribute

The category attribute allows a component to be assigned to one or more
component categories.

Figure 4-61. aggregatable Attribute Syntax Diagram

Figure 4-62. category Attribute Syntax Diagram

aggregatable

category (string-literal

,

)

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-55
for 16-bit Processors

VIDL Language Reference

Categories provide hierarchical classification schemes for components
based on their functionality. Categories have multipart names that resem-
ble file store path names. The following component categories are
predefined.

AUDIO

AUDIO\MONO

AUDIO\STEREO

VIDEO

The category name is propagated into the component’s documentation
and packaging information generated by the VIDL compiler. A compo-
nent definition must provide a category attribute.

[category("AUDIO"), …] component CDolby implements IDolby;

common Attribute

The common attribute enables components, which also have the distinct
attribute, to have a common area for instance storage. The distinct inter-
face methods share the same this/__this pointer for C/C++
implementations.

Figure 4-63. common Attribute Syntax Diagram

common

Components

4-56 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

company Attribute

The company attribute identifies the company that developed the compo-
nent or that acts as the component vendor.

The company name is propagated into the component’s documentation
and packaging information generated by the VIDL compiler. A compo-
nent definition must provide a company attribute.

[category("AUDIO"), company("Analog Devices, Inc"), …]

component CDolby implements IDolby;

distinct Attribute

The distinct attribute instructs the VIDL compiler to generate separate
method shells for interface methods where two or more interfaces, imple-
mented by a component, supply methods that are identical in name and
parameter lists.

Suppose we have the following (partial) specification.

interface I1 extends IBase {

MRESULT f([in] int I);

MRESULT g([in] int J);

};

interface I2 extends IBase {

Figure 4-64. company Attribute Syntax Diagram

Figure 4-65. distinct Attribute Syntax Diagram

company (string-literal)

distinct

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-57
for 16-bit Processors

VIDL Language Reference

MRESULT f([in] int I);

MRESULT h([in] int K);

};

component C implements I1, I2;

The interfaces I1 and I2 each contain a method called f, which have iden-
tical parameter list signatures (when reproduced in C or C++), and a
method called GetInterface, which is provided by IBase. When a compo-
nent C implements both I1 and I2, the VIDL compiler generates a single
shell that contains four methods: f, g, h, and GetInterface. Within this
shell, the functions f and GetInterface are shared by both interfaces.
When the component C is labeled distinct, the VIDL compiler generates
separate implementation shells for C in which every method of the inter-
faces I1 and I2, except GetInterface, has a distinct method function. In
the previous example, if C is labeled distinct, then the shell for C’s imple-
mentation of I1 contains method functions I1_f and I2_g, and the shell
for C’s implementation of I2 contains method functions I2_f and I2_h.
There is a single implementation for GetInterface that is shared by each
shell. The distinct implementation of such methods is transparent to the
user of a component: I1_f will be invoked if accessed via an I1 interface
pointer and I2_f will be invoked via an I2 pointer.

If method f, in the above example, had a different signature in interface I1
to that in interface I2, then separate methods are generated regardless of
whether the distinct attribute is used. For a C++ component, this is han-
dled implicitly by the C++ compiler, while for a C component, the VIDL
compiler generates separate methods as above.

Components

4-58 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

info Attribute

The info attribute allows supplementary information about a component
to be supplied as a text string.

The string may enclose a URL used to link to a webpage provided by the
component vendor. The URL is propagated into the component’s docu-
mentation and packaging information generated by the VIDL compiler.

[category("AUDIO"),

company("Analog Devices, Inc",

info("http://www.adi.com/dsp/components/audio"), …]

component CDolby implements IDolby;

needs Attribute

The needs attribute allows a component or an interface to specify inter-
faces that need to be provided to ensure successful operation. If an
interface pointer appears as a parameter within a method of the interface,
the VIDL compiler automatically recognizes that the interface or compo-
nent needs such an interface. Any other interface that the component or
interface needs must be explicitly specified using the needs attribute. For
example the majority of components must be provided with a
VCSE::IMemory interface; other components require other interfaces.

Figure 4-66. info Attribute Syntax Diagram

info (string-literal)

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-59
for 16-bit Processors

VIDL Language Reference

The syntax of the needs attribute is shown in Figure 4-67

The auto-doc generated for the component or interface identifies all
needed interfaces, whether they were implicitly or explicitly identified.

requires Attribute

The requires attribute allows a component to specify other components
on which it depends. This information is reproduced in the component
packaging manifest to ensure that all dependencies on other components
are met when installing a component package.

Typically, this attribute is used when a component relies on other compo-
nents for some aspect of its implementation. For example, it may
aggregate interfaces from other components or delegate method calls to
other components. The required components are specified by name,
optionally followed by a version check, which constrains the acceptable
versions of the required component. In the case of aggregated compo-
nents, a requires attribute is only necessary if compatibility with a

Figure 4-67. needs Attribute Syntax Diagram

Figure 4-68. requires Attribute Syntax Diagram

needs (interface-name)

,

requires (component version)

,

Components

4-60 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

particular version number is required. Otherwise, the requirement for any
version of the aggregated component is automatically included in the
component packaging manifest.

[requires(ADI::CQuickSort), …] CSort implements ISort;

[requires(CQuickSort=2.0.0), …] CSort implements ISort;

[requires(::ADI::CQuickSort >=2.0.2), …] CSort implements ISort;

The first decimal digit must be greater or equal to 1.

Figure 4-69. Component Version Syntax Diagram

Figure 4-70. Version Number Syntax Diagram

component name

<= version number

>= version number

= version number

decimal digit . decimal digit . decimal digit

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-61
for 16-bit Processors

VIDL Language Reference

singleton Attribute

The singleton attribute specifies that only a single instance of the compo-
nent can exist at any one time and allows the component implementation
to be tailored accordingly. The component’s Create factory function
returns an error code if it has been called while an instance already exists.

[singleton, …] component CMemAlloc implements IMemory;

supplies Attribute

The supplies attribute specifies that the associated component can supply
instances of the nominated interfaces from one or more of its supported
interfaces. The auto-doc generated for the component records this infor-
mation as part of the automatically generated documentation.

Figure 4-71. singleton Attribute Syntax Diagram

Figure 4-72. supplies Attribute Syntax Diagram

singleton

supplies (interface-name)

,

Components

4-62 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

title Attribute

The title attribute provides a descriptive title for the component being
used by the VCSE Component Manager.

The attribute is propagated into the component’s documentation and
packaging manifest generated by the VIDL compiler. A component defi-
nition must provide a title attribute.

[title("Dolby 5.1 Decoder"),…] component CDolby implements IDolby;

version Attribute

The version attribute allows a component version to be specified. The
version number is copied into the component’s documentation and pack-
aging information generated by the VIDL compiler.

If a component does not have an explicit version attribute, then its ver-
sion number is set to 0.0.0. The component’s version number is described
on page 4-58.

[version(2.0.2)

category("AUDIO"),

company("Analog Devices, Inc",

title("Dolby 5.1 Decoder"),

Figure 4-73. title Attribute Syntax Diagram

Figure 4-74. version Attribute Syntax Diagram

title (string-literal)

version (version number)

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-63
for 16-bit Processors

VIDL Language Reference

info("http://www.adi.com/dsp/components/audio")]

component CDolby implements IDolby;

Additional Statements
In most cases the VIDL compiler’s default settings are used. When com-
ponent developers need more control over how a component is
implemented, they can use three additional statements within the VIDL
compiler’s component definition block:

• The distinct statement, described on page 4-64

• The place statement, described on page 4-65

• The language statement, described on page 4-64

Use the distinct statement when only a few methods specify distinct
implementations. The remaining methods share implementations. In
these cases the use of the distinct component attribute is both inappro-
priate and inefficient.

Where component developers want to locate certain methods in memory
segments other than the default code segment, they can use the place
statement to specify which methods on what interfaces are placed and
where they are to be placed.

Finally, if component developers use efficient handcrafted Assembler code
for their algorithm(s), they must use the language statement to generate
an Assembler shell for the appropriate method — all other methods can be
written in C.

For more detailed descriptions of each of the additional statements as well
as their associated syntax diagrams, refer to the sections that follow.

Components

4-64 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

distinct statement

When the distinct attribute is specified for a component, any methods
with the same name and signature are given separate and distinct imple-
mentations. In some situations component developers need to create
shared and distinct methods. This level of support, which enables users to
specify the names of individual methods provided for distinct implemen-
tations, is supplied within the component definition block.

The syntax for the distinct statement is

The VIDL compiler ensures that the specified methods (on the specified
interfaces) are given an implementation separate from all other methods
with the same signature defined on any other interface. Where the quali-
fied interface name is omitted, distinct implementations are generated for
all implemented interfaces that supply the specified method name.

If for example a method called DetermineDiff appears in three interfaces
(IG723, IG728 and IGSM) with the same prototype, then by default it
would only have a single implementation referenced by each of the three
interfaces. If the distinct statement below is used

distinct IG723::DetermineDiff;

then the IG723 interface uses one implementation, while the IG728 and
the IGSM interfaces share a separate implementation.

Figure 4-75. distinct Method Statement Syntax Diagram

;distinct method name

,

interface name ::

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-65
for 16-bit Processors

VIDL Language Reference

If the distinct statement below is used

distinct DetermineDiff;

then each of the interfaces has a separate implementation.

place statement

Normally each method is placed in the default code section. The place
statement allows the user to explicitly specify the name of the section in
which a method is to be placed. The syntax for the place statement is

The compiler ensures that definitions of specified methods (on the speci-
fied interfaces) are assigned a section qualifier, which specifies the name of
the section where the method is to be placed. When the qualified interface
name is omitted all implementations of the specified method name are
placed in the specified section.

Figure 4-76. Method Placement Statement Syntax Diagram

in ;place method name

interface name ::

section name

,

Components

4-66 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

If for example a method called DetermineDiff and a method called Off-
setData appears in the IG723 interface, then the functions that
implement the methods can be placed in a section called G723_L1code by
using the place statement

place IG723::DetermineDiff, IG723::OffsetData in G732_L1code;

If the determineDiff method also appears in the IG728 interface (with a
different prototype so that it has a separate implementation for each inter-
face), the function that implements the method for each interface can be
placed in the section called Common_L1code by using the place statement

place DetermineDiff in Common_L1code;

When no interface name is specified then all methods of that name irre-
spective of the interface in which they appear are placed in the specified
section.

language statement

Normally the VIDL compiler generates shells for every method in the
same implementation language. The language used for the shells is speci-
fied in the property pages for the VIDL compiler or on the VIDL
compiler command line. The language statement allows the user to over-
ride this default behavior by explicitly specifying the implementation
language to be used for a particular method. The language statement only
allows the implementation language to be either C or assembly. Where the
qualified interface name is omitted all implementations of the specified
method name are in the specified language.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-67
for 16-bit Processors

VIDL Language Reference

The syntax for the language statement is

The language statement does not currently support components
generated in C++.

If for example a method called DetermineDiff and a method called Off-
setData appears in the IG723 interface, the implementation language of
the functions that implement the methods can be specified as assembler
(asm) by using the language statement below

language IG723::DetermineDiff, IG723::OffsetData is asm;

If the DetermineDiff method also appears in the IG728 interface (with a
different prototype so that it has a separate implementation for each inter-
face), the implementation language of the functions that implement both
methods can be specified as “assembler” by using the language statement

language DetermineDiff is asm;

When no interface name is specified then all methods of that name, irre-
spective of the interface in which they appear, are implemented in the
specified language.

Figure 4-77. Method Language Statement Syntax Diagram

method name ;

interface name ::

language is

ASM

C

,

Namespaces

4-68 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Namespaces
A namespace defines a scope containing the definitions of VIDL types,
interfaces, components, and nested namespaces. The name of the
namespace may be used as a scope prefix in a qualified name (see
Figure 4-78) or in a use attribute. For information about qualified names,
see “Named Elements” on page 4-13.

Namespaces provide a convenient way to partition the global scope in
order to avoid name clashes. All named VIDL elements must be enclosed
(directly or indirectly) by a namespace.

Namespaces may have multiple cumulative declarations, provided they
occur within the same enclosing scope. The namespace declaration and
definition forms are shown in Figure 4-79 and Figure 4-80 on page 4-69.

Figure 4-78. Namespace Name Syntax Diagram

Figure 4-79. Element Definition Syntax Diagram

qualified name

auto -doc comment

namespace declaration

type defin ition

interface declaration

interface defin ition

component declaration

component defin ition

test shell defin ition

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-69
for 16-bit Processors

VIDL Language Reference

Listing 4-6. Use of Separate Namespace Blocks

/* ACME's types */

namespace ACME {

typedef unsigned int NType;

typedef int SType;

};

…

…

/* ACME's interfaces */
namespace ACME {

[iid("10768745-271ad611-a55c0010-4b7cac83")]

interface ISort extends IBase {

MRESULT SetData([in] NType N,

[in,size_is(N)] SType data[]);

MRESULT GetData([in] Ntype N,

[out,size_is(N)] Stype data[]);

MRESULT Sort(void);

};

};

...

/* ACME's components */

namespace ACME {

Figure 4-80. Namespace Declaration Syntax Diagram

attributes

namespace name

{ } ;

element definition

Namespaces

4-70 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

[version(1.5.0), company(‘ACME Software Inc’), …]

component CQuickSort implements ISort;

[version(1.5.0), company(‘ACME Software Inc’), …]

component CBubbleSort implements ISort;

};

The VIDL shown in the Listing 4-6 may, in practice, have each declara-
tion of the ACME namespace located within a separate VIDL file, which
may be incorporated into other specifications via the #include preproces-
sor directive. The names defined in the ACME namespace can be accessed
from any other namespaces using a qualified name. For example, company
Analog Devices, Inc. may extend the ACME::ISort interface but delegate
the implementation of the ISort methods to ACME::CQuickSort. The
dependency is recorded as follows.

namespace ADI {

interface IProcess extends ::ACME::ISort {

MRESULT ProcessData(void);

}

[version (2.0.0), requires(CQuickSort>=1.5.0),

company("Analog Devices, Inc"), …]

component CProcess implements IProcess;

};

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-71
for 16-bit Processors

VIDL Language Reference

use Attribute
A namespace definition can include a use attribute employed to control
the order in which namespace scopes are searched when locating the defi-
nition of a name. The attribute’s form is shown in Figure 4-81.

When a name n is used in a namespace X, the VIDL compiler searches for
the definition of n in X. If the name is not defined in X, the VIDL compiler
continues the search for n in the namespaces listed in any use attribute
attached to X. If the use attribute takes the form [use(Y, Z)], Y is
searched before Z. If the name is not found in either Y or Z, the search con-
tinues in the scope that encloses namespace X. If there is no enclosing
scope, the VIDL compiler searches the predefined namespace VCSE.

A use attribute can be applied in the previous example to allow
::ACME::CQuickSort and ::ACME::ISort to be referred to by their unqual-
ified names:

[use(::ACME)] namespace ADI {

interface IProcess extends ISort {

MRESULT ProcessData(void);

}

[version (2.0.0), requires(::ACME::CQuickSort>=1.5.0),

company("Analog Devices, Inc")]

component CProcess implements IProcess;

};

When a company tag is used to qualify a name or as a parameter in the use
attribute, the fully qualified name is preferable to the unqualified one.

Figure 4-81. use Attribute Syntax Diagram

use (namespace name)

,

Auto-doc Comments

4-72 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

The use attributes may also be used to override the normal order in which
nested scopes are searched.

namespace A {

typedef unsigned int T;

namespace B {

typedef int T;

namespace C {

/* Search scopes C, B, A, VCSE */

typedef T TC; /* finds B::T */ };

[use(A,B)] namespace D {

/* Search scopes D, A, B, C, VCSE */
typedef T TD; /* finds A::T */

};

};

};

In the definition of type TC in namespace C, the definition of T is located
by searching the scopes C, B, A, and then VCSE. The definition is located in
the enclosing namespace B; therefore, TC has type int. In the definition of
type TD in namespace D, the definition of T is located by searching the
scopes D, A, B, C, and then VCSE. The definition is located in the outer
namespace A; hence, TD has type unsigned int.

Auto-doc Comments
Auto-doc comments are stylized VIDL remarks used by the VIDL com-
piler to generate HTML documentation for components, interfaces, types,
properties, and methods. An auto-doc comment is distinguished by its
opening /** marker followed by blanks and end of line. There must be a
corresponding closing marker */ that occurs on a following line. Each
intermediate line must start with an *, optionally preceded with white
space.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-73
for 16-bit Processors

VIDL Language Reference

Auto-doc comments contain an overview description of the component,
interface, type, property or method to which they apply, followed by one
or more tagged paragraphs. The descriptive text within the comment may
contain embedded HTML directives. Auto-doc tags are prefixed with an @
character and allow attributes of the component, interface, or method to
be clearly documented and tabulated in HTML. In the following example,
the first auto-doc comment provides a summary of the ISort interface,
and the remaining comments provide documentation for each of the
methods.

namespace ADI {

/**

* The ISort Interface provides a generic sorting capability for

* floating-point data. The data to be sorted must be supplied by

* calling SetData before attempting to invoke the Sort method.

* Once Sort has been invoked, the sorted data can be retrieved

* by the invoking GetData.

*/

[iid("20aa3d29-4c1ad611-a55c0010-4b7cac83")]

interface ISort extends IBase {

/**

* The SetData method supplies an array of float data values

* to be sorted.

* @param N An input parameter specifying the number of

* elements in array parameter data.

* @param data An input parameter supplying the data array

* be sorted. The corresponding actual array

* argument must have at least N elements.

* @return MR_OK if the method is successful. An error

* @postcondition It is valid for the interface to sort data.

* See SortData().

* code if the method fails.

*/

MRESULT SetData([in] int N, [in, size_is(N)] float data[]);

Auto-doc Comments

4-74 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

/**

* The GetData method retrieves an array of float data

* values that have been sorted. Must be preceded by a call

* to Sort.

* @param N An input parameter specifying the number of

* elements in array parameter data.

* @param data An output parameter to hold the data array
* that has been sorted. The corresponding actual

* array argument must have at least N elements.

* @return MR_OK if the method is successful. An

* error code if the method fails.

@precondition The data has been sorted. See SortData().

*/

MRESULT GetData([in] int N, [out, size_is(N)] int data[]);

*@precondition The data has been sorted. See SortData().

/**

* The Sort method applies a sorting algorithm to the data

* supplied by a previous call to SetData. The sorting

* algorithm is provided by the interface implementation.

* @return MR_OK if the method successful. An error

* code if the method fails.

* @precondition Interface must be set with data.

* See SetData().

*/

MRESULT Sort(void);

};

};

The VIDL compiler accepts the following auto-doc tags.

@param Applies to methods and provides a description of a
method parameter that includes the name and the
nature of the values that are transmitted. incorpo-
rated into other specifications via the #include
preprocessor directive.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-75
for 16-bit Processors

VIDL Language Reference

@return Applies to methods and provides a description of
the values of the type MRESULT returned by the
method.

@example Applies to interfaces and provides a fragment of
example code showing how the methods are called.

@author Applies to components allowing authorship to be
attributed to a named individual or organization.

@keyword Supplies a keyword to the index, which is compiled
into the HTML based help information. The tag
may be included into any auto-doc comment. The
keyword is supplied after the tag.

@create Applies to components and allows the components
Create factory function include some documenta-
tion supplied which is specific to this component.

@sizeof Applies to components and allows the components
SizeOf factory function to include documentation
specific to this component.

@destroy Applies to components and allows the components
Destroy factory function to include documentation
specific to this component.

@precondition Applies to methods and allows any conditions that
should be met before invoking the method to be
specified.

@postcondition Applies to methods and allows any actions that
should be taken or any conditions that are valid
after invoking the method to be specified.

Specifications

4-76 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Specifications
A VIDL specification is a sequence of namespace declarations and
auto-doc comments. Each namespace defines a scope that may contain the
definitions of nested namespaces, components, interfaces, constants, and
types, as well as their related auto-doc comments. The specification for-
mat is presented in Figure 4-82.

Every component, interface, constant, and type must be declared within a
namespace scope.

/**

* ::ADI is the company namespace for Analog Devices, Inc.

*/

namespace ADI {

/**

* The CQuickSort component provides an aggregatable

* implementation of the ADI::ISort interface using a

* quick-sort algorithm.

*/

[title("QuickSort"),

category("SORT"),

company("Analog Devices, Inc"),

aggregatable,

version(1.1.0)]

component CQuickSort implements ISort;

};

Figure 4-82. VIDL Specification Syntax Diagram

auto-doc comment

namespace declaration

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-77
for 16-bit Processors

VIDL Language Reference

Generated Test Shells
The VIDL test shell syntax provides a nonintrusive means of testing a com-
ponent that is either under development, or being used in its targeted
application. The VIDL compiler enables users to generate a component
identical to the component under test, except that the interface methods
of the test shell component contain code prior to and following a call to
the actual method of the component under test. The content of this code
is determined by the test attributes specified in the VIDL test shell syntax.
Placing this code within user-modifiable blocks allows for the amendment
and insertion of code for additional testing to be performed.

In most cases, the Create factory function of the test shell component
contains code used to create an instance of the actual component and
stores the associated interface pointers as instance data within the test shell
component. When an VCSE::IMemory-based component is under test,
however, the test shell component functions differently. For that reason,
users may choose to reuse the memory management component passed in
to the Create function via the ienvp parameter. For more information, see
“Creating Component Instances” on page 2-61.

By using the test shell syntax the developer can express many common test
constructs in a simple manner separate from the syntax of the actual com-
ponent or its implemented interfaces. This unique feature allows both the
test shell and its .idl file to be added and removed from a project easily.

Generated Test Shells

4-78 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Overview
In its simplest form the test shell syntax can be expressed as:

testing component-name {};

This statement generates a simple shell, which allows users to add code in
the user-modifiable blocks provided. The statement above also defines the
component scope of the test shell syntax for which test attributes can be
declared, for example:

[array_check] testing component-name {};

Within the component scope additional scopes can be nested. The hierar-
chy of scopes is:

• Component scope (highest)

• Interface scope

• Method scope

• Argument scope

Each test attribute has a target entity, such as a parameter of an interface
method. Attributes declared on a scope apply to all appropriate targets
within that scope. For example, the test shell attribute array_check can be
declared on any of the four levels of scope, but it only tests array-type
parameters of an interface method. In the case of test shell syntax that
declares array_check for the component scope, array checking is selected
for all array-type parameters on all methods of all interfaces implemented
by the component under test.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-79
for 16-bit Processors

VIDL Language Reference

At each scope level, additional test attributes can be applied or removed.
Only certain attributes can be removed by prefixing the attribute name
with no_. For example:

[array_check] testing component-name {

foo([no_array_check] array1, [alias_check]array2);

};

In this example a request is made for array checking for array-type
parameters of all methods except foo, where array checking is deselected
for parameter array1 but remains for parameter array2. Alias checking is
only selected for array2 of method foo.

With the exception of the component scope, the declaration of all remain-
ing scopes within the VIDL syntax is optional. If the declaration is
omitted its use is implied. In the example,

[timing] testing component-name {};

the timing attribute is applied to all methods for all interfaces imple-
mented by the component.

Table 4-5 details the test attributes and their targets and on which
scope(s) they can be declared.

Table 4-5. Test Shell Attributes

Scopes

KeyWord Component Interface Method Argument Target of
Test

stack_usage yes yes yes no Method

mem_shell yes no no no Component

timing yes yes yes no Method

Generated Test Shells

4-80 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

algorithm_model yes yes no no Component

aliasing_check yes yes yes yes Argument

array_check yes yes yes yes Argument

states_used yes no no no Component

init_state yes no no no Component

requires_state no no yes no Method

sets_state no no yes no Method

reset_to_state no no yes no Method

clear_state no no yes no Method

in_assert no no no yes Method

out_assert no no no yes Method

no_stack_usage no yes yes no Method

no_timing no yes yes no Method

no_aliasing_check no yes yes yes Argument

no_array_check no yes yes yes Argument

Table 4-5. Test Shell Attributes (Cont’d)

Scopes

KeyWord Component Interface Method Argument Target of
Test

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-81
for 16-bit Processors

VIDL Language Reference

Syntax Structure
The general form of the test shell syntax is:

Where specification can be either a test shell interface or a test shell
method.

Syntax Rules

There are several general comments that apply to the test shell statements

• Only one definition per test component/interface/method/argu-
ment can be included.

• Namespaces are, as usual, allowed to be opened and closed.

• Interfaces and methods can be declared by their fully qualified
scope or within a valid namespace.

• Test constraints declared at the upper levels are inherited to the
lower level, unless turned off by the no_attribute attribute.

Figure 4-83. Test Shell Syntax Diagram

testing

{

[]

component_name } ;

test_attributes

specification

Generated Test Shells

4-82 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

• Any ambiguous names within a component will be resolved using
the standard name resolution rules as described in “Named Ele-
ments” on page 4-13.

• Arguments for the test method may be supplied in any order. This
means that the order in which they are declared in the test shell
does not need to be the same order in which they were declared by
the actual interface and not all the arguments need to be
referenced.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-83
for 16-bit Processors

VIDL Language Reference

specification

Each test shell specification can be for either a declaration for a method or
an interface as shown in Figure 4-84.

method_dcl

The declaration for a method supplies a set of attributes that applies to
each specified method and each attribute applies (by default) to each
parameter of each method. Figure 4-85 shows the syntax for a method
declaration.

Figure 4-84. specification Syntax Diagram

Figure 4-85. method-dcl Syntax Diagram

method_dcl

interface_dcl

[]

) ;

method_name

(

test_attributes

test_arg_list

Generated Test Shells

4-84 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

test_arg_list

Figure 4-86 shows the syntax for specifying a set of attributes that apply to
a list of argument names. The attributes for the name can either add
attributes to the specified argument or be used to override the attribute
settings inherited from its method or interface.

interface_dcl

The declaration for an interface supplies a set of attributes that applies to
the specified interface and each of its supported methods. Each attribute
also applies (by default) to each parameter of each method. Figure 4-87
shows the syntax for a method declaration.

Figure 4-86. test_arg_list Syntax Diagram

Figure 4-87. interface_dcl Syntax Diagram

[]

,

arg_name

test_attributes

[]

;

{

interface_name

,

test_attributes

method_dcl }

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-85
for 16-bit Processors

VIDL Language Reference

Syntax and Semantics
This section describes the semantics and formats for each of the available
test attributes.

• stack_usage, described on page 4-86

• mem_shell, described on page 4-87

• timing, described on page 4-88

• in_assert, described on page 4-89t

• out_assert, described on page 4-90

• algorithm_model, described on page 4-91

• aliasing_check, described on page 4-92

• array_check, described on page 4-93

• states_used, described on page 4-94

• init_state, described on page 4-95

• requires_state, described on page 4-96

• sets_state, described on page 4-97

• reset_to_state, described on page 4-98

• clear_state, described on page 4-99

Generated Test Shells

4-86 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

stack_usage

Syntax

Description

The stack_usage attribute instructs the VIDL compiler to insert code in
the test shell component to measure how much the stack grows during the
call to each of the required interface methods of the actual component.
Stack-use measurements can be performed in one of several ways, as dic-
tated by the optional default or custom parameters.

stack_usage

default

custom

()

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-87
for 16-bit Processors

VIDL Language Reference

The parameters to stack_usage are:

• default input. Instructs the VIDL compiler to generate code that
utilizes the functions provided in the VCSE library to measure the
usage of the MEM_STACK section of memory, defined in the default
linker description file (.ldf) for the target processor.

• custom input. Instructs the VIDL Compile to generate empty mac-
ros for the user to add their own implementation of stack usage
measurement.

mem_shell

Syntax

Named Elements Scope

Component Valid

Interface Valid

Method Valid

Argument Invalid

mem_shell

reuse

()

Generated Test Shells

4-88 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Description

The mem_shell attribute instructs the VIDL compiler to generate a test
shell for a component that implements VCSE::IMemory. Such a test shell
component can be used in a client application, in place of an actual mem-
ory management implementation, or to report statistics about the memory
usage of components used by the application. Additionally, in conjunc-
tion with the –validate-memory switch passed to the VIDL compiler,
code is generated to validate allocated memory before it is freed.

timing

Syntax

Description

The timing attribute instructs the VIDL compiler to insert code in the
test shell to collect information about the number of cycles used by a
method.

Named Elements Scope

Component Valid

Interface Invalid

Method Invalid

Argument Invalid

timing

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-89
for 16-bit Processors

VIDL Language Reference

in_assert

Syntax

Description

The in_assert attribute instructs the VIDL compiler to insert code in the
test shell, prior to a forwarding call to an interface method of the compo-
nent under test, to validate the entry conditions of the method in question
according to the given expr.

Named Elements Scope

Component Valid

Interface Valid

Method Valid

Argument Invalid

Named Elements Scope

Component Invalid

Interface Invalid

Method Valid

Argument Invalid

(in_assert)expr

Generated Test Shells

4-90 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

out_assert

Syntax

Description

The out_assert attribute instructs the VIDL compiler to insert code in
the test shell, subsequent to a forwarding call to an interface method of
the component under test, to validate the exit conditions of the method in
question according to the given expr.

Named Elements Scope

Component Invalid

Interface Invalid

Method Valid

Argument Invalid

(out_assert)expr

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-91
for 16-bit Processors

VIDL Language Reference

algorithm_model

Syntax

Description

The algorithm_model attribute instructs the VIDL Compiler to generate
code in the test shell to validate the conformance of an IAlgorithm-based
component to the rules described by the documentation of IAlgorithm.
Basic rules are as follows:

1. Ensure that Reset is invoked at least once before the first call to a
processing method.

2. The Deactivate method is never invoked when it is already
deactivated.

3. The Activate method is never invoked when it is already activated.

4. Any methods marked as process methods are only invoked when
activated.

Processing methods are marked by passing in their names to
algorithm_model or by passing in ‘*’, which marks all methods, excluding
the methods of the IAlgorithm interface.

(algorithm_model)method_name

,

Generated Test Shells

4-92 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

aliasing_check

Syntax

Description

The aliasing_check attribute instructs the VIDL Compiler to generate
code in the test shell to check that the marked parameter is not aliased to
other parameters marked with aliasing_check in the same

method. Aliasing occurs when two or more names refer to the same object;
that is, when they share the same memory address.

Alias checks are only valid for reference type parameters.

Because a parameter marked with an aliasing_check is validated against
other parameters marked with aliasing_check, more than one parameter
must be marked with an aliasing_check in order for it to be valid.

Named Elements Scope

Component Valid

Interface Valid

Method Invalid

Argument Invalid

aliasing_check

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-93
for 16-bit Processors

VIDL Language Reference

array_check

Syntax

Description

The array_check attribute instructs the VIDL Compiler to insert code ion
the test shell to perform basic array checks on an array-type parameter.

Basic array checks include:

1. If an array is an out parameter, then the test shell checks to see if
memory areas just beyond the array’s boundaries are written to.

2. If an array is an in-only parameter, then the program checks to see
that the data within the array has not been changed by the invoked
method.

Parameters marked with array_check must be an array-type.

Named Elements Scope

Component Valid

Interface Valid

Method Valid

Argument Valid

array_check

Generated Test Shells

4-94 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

states_used

Syntax

Description

The states_used keyword declares the states of a test shell component.
These defined states can then be used in test attributes:

• init_state

• sets_state

• clears_state

• resets_to state

State names must be unique and are case sensitive. They are used in con-
junction with the attributes (listed above) to check that the order of
invocation of the components methods conform to the desired behavior as

Named Elements Scope

Component Valid

Interface Valid

Method Valid

Argument Valid

(states_used)name

,

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-95
for 16-bit Processors

VIDL Language Reference

detailed in the component's documentation. At one level the use of the
state test attributes provides a user-definable approach to checking algo-
rithmic components.

init_state

Syntax

Description

The init_state keyword declares which states are initially set to ON after
the creation of the test shell.

State names must be defined previously in the states_used test attribute.

Named Elements Scope

Component Valid

Interface Invalid

Method Invalid

Argument Invalid

Named Elements Scope

Component Valid

Interface Invalid

(init_state)name

,

Generated Test Shells

4-96 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

requires_state

Syntax

Description

The requires_state keyword specifies that the system must be in the
declared state prior to the invocation of the marked method. That is, the
component should be in the specified state when the method is invoked.

The parameter to requires_state is a state expression. State expressions
are expression composed of state names, state operations and parenthesis.
Valid state operations are negation (~, logical OR (|) and logical AND (
&).

State names must be defined previously in the states_used test attribute.

Method Invalid

Argument Invalid

Named Elements Scope

Component Invalid

Interface Invalid

Method Valid

Argument Invalid

Named Elements Scope

(requires_state)state_expression

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-97
for 16-bit Processors

VIDL Language Reference

sets_state

Syntax

Description

The sets_state keyword declares a list of states to be turned on as result
of the marked method being executed.

State names used in the input must be defined previously using the
states_used test attribute.

State names used in the input must not be used in a clears_state
attribute of the same method.

Named Elements Scope

Component Invalid

Interface Invalid

Method Valid

Argument Invalid

(sets_state)name

,

Generated Test Shells

4-98 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

reset_to_state

Syntax

Description

When the marked method is invoked, all states defined in states_used are
turned OFF, except for the states listed as input to the reset_to_state
attribute.

State names used in the input must be defined previously using the
states_used test attribute.

If a method uses reset_to_state, then the method cannot have the test
attributes sets_state or clears_state.

Named Elements Scope

Component Invalid

Interface Invalid

Method Valid

Argument Invalid

(reset_to_state)name

,

VisualDSP++ 3.5 Component Software Engineering User’s Guide 4-99
for 16-bit Processors

VIDL Language Reference

clear_state

Syntax

Description

The clear_state keyword declares a list of states to be turned off when
the marked method is executed.

State names used in the input must be defined previously using the
states_used test attribute.

State names used in the input must not be used in a clear_state attribute
of the same method.

Named Elements Scope

Component Invalid

Interface Invalid

Method Valid

Argument Invalid

(clear_state)name

,

Generated Test Shells

4-100 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

VisualDSP++ 3.5 Component Software Engineering User’s Guide 5-1
for 16-bit Processors

5 VIDL COMPILER COMMAND
LINE INTERFACE

This chapter describes how the VIDL compiler is invoked from the com-
mand line, the various types of files processed and generated by the
compiler, and the option (switch) set used to tailor its operation.

The chapter contains:

• “Running VIDL Compiler” on page 5-1

• “Processing VIDL Files” on page 5-22

• “Generated Source Files” on page 5-28

The VIDL compiler processes the supplied VIDL source file and generates
header files for each specified interface and an implementation shell for
each specified component. Each generated header file can be processed by
the assembler and C or C++ compiler.

The VIDL compiler lets you specify the language in which the implemen-
tation shells are generated. The default implementation language is C;
shells in C++ or assembly can also be generated for the platforms that sup-
port these languages.

Note that ADSP-218x DSP compilers do not support C++.

Running VIDL Compiler
Use the following syntax for the VIDL compiler command line.

 vidl_family [-switch [-switch …]] sourcefile]

Running VIDL Compiler

5-2 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

where:

• vidl_family is the name of the VIDL compiler (.DXE). Select the
name that corresponds to your target processor family:

• source_file is the name of the VIDL file to be preprocessed and
compiled.

The file name can include the drive, directory, file name, and file
name extension. The compiler supports both Win32- and
POSIX-style paths, using either forward or back slashes as the direc-
tory delimiter. The compiler also supports UNC path names
starting with two slashes and a network name.

If the file name contains spaces, enclose it in double quotes: “long
file name.idl”. The VIDL compiler expects the file extension to
be .IDL, ignoring any files that do not have this extension. The
compiler only processes the first.IDL file it encounters, ignoring all
subsequent files with the same extension.

• -switch is the name of the switch to be processed. The compiler
has many switches that control the generated code and the opera-
tion of the compiler. Command line switches are case sensitive,
meaning that -v is not the same as -V.

Double quotes can be used to embed spaces in switches, and a \
(backslash) may be used to pass a double quote to the compiler as
part of a switch.

Table 5-1. Target Processor Families

VIDL Compiler Processor Family

vidlblkfn ADSP-BF53x Blackfin

vidl218x ADSP-218x

vidl219x ADSP-219x

VisualDSP++ 3.5 Component Software Engineering User’s Guide 5-3
for 16-bit Processors

VIDL Compiler Command Line Interface

Each of the following command lines,

vidlblkfn -c++ -trace source.idl

vidl219x -c++ -trace source.idl

vidl218x -c++ -trace source.idl

vidlts -c++ -trace source.idl

vidl21xxx -c++ -trace source.idl

runs the VIDL compiler for the appropriate DSP family with:

Each of the following command lines,

vidlblkfn -hdr -Ic:\interfaces interface.idl

vidl219x -hdr -Ic:\interfaces interface.idl

vidl218x -hdr -Ic:\interfaces interface.idl

runs the VIDL compiler for the appropriate DSP family with:

-c++ Elects the generation of C++ component shell files and any associated
header file(s). The vidl218x option treats the -c++ option as an error
because there is no C++ compiler for ADSP-218x DSPs.

-trace Selects the inclusion of debug code in the component’s source files.

source.idl Names the file containing the VIDL specification to process.

-hdr Selects the generation of only the header files for any interfaces specified
in the VIDL file.

-Ic:\interfaces Specifies the directory c:\interfaces is to be searched when the pre-
processor is including files.

interface.idl Names the file containing the VIDL specification to process.

Running VIDL Compiler

5-4 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

When providing an input or output file name as an optional parameter,
use the following guidelines.

• Use a file name, including the extension, with either an unambigu-
ous relative path or an absolute path. A file name with an absolute
path includes the drive, directory, file name, and extension.
Enclose long file names within double quotes: “long file
name.idl”.

• Verify the compiler is using the correct file. If you do not provide
the complete file path as part of the parameter or add additional
search directories, the VIDL compiler looks for input in the cur-
rent project directory.

The VIDL compiler defines the preprocessor macros listed in Table 5-2 to
have the value 1.

VIDL Compiler Switches
This section describes the command-line switches used when compiling
VIDL source files. A summary of the switch set, organized by type, is in
Table 5-3 and Table 5-3 on page 5-5. A more in-depth description of each
switch, listed in alphabetical order, follows the tables.

Table 5-2. Preprocessor Macros

Compiler Preprocess Macros

vidlblkfn __ADSPBLACKFIN__

vidl218x __ADSP218X__

vidl219x __ADSP219x__

VisualDSP++ 3.5 Component Software Engineering User’s Guide 5-5
for 16-bit Processors

VIDL Compiler Command Line Interface

Table 5-3. VIDL Compiler Common Switches

Switch Reference Description

-@ filename on page 5-8 Reads command line input from the specified
file.

-accept-any-include-file on page 5-8 Accepts #include statements that specify any
file type and not just .idl.

-all-idl on page 5-8 Generates headers and implementation shells for
interfaces and components in all nested
included files.

-asm on page 5-9 Generates assembly based implementation
shells, overrides the default (C based shells).

-c++ on page 5-9 Generates C++ based implementation shells,
overrides the default (C based shells).

-copyright filename on page 5-9 Specifies copyright text to be inserted in gener-
ated source files.

-cppflags flags on page 5-9 Passes additional information to the C prepro-
cessor.

-Dmacro[=def] on page 5-10 Defines the named macro(s).

-dryrun on page 5-10 Displays, but does not perform, the main driver
actions.

-embedded on page 5-10 Suppresses generation of factory methods and
headers to facilitate use of components embed-
ded within components.

-generic on page 5-10 Generates code suitable for compilation with
C/C++ compilers other than those supplied with
VisualDSP++.

-harness on page 5-11 Generates a test program for the component.

-hdr on page 5-11 Generates interface headers; does not generate
component shells.

-h[elp] on page 5-11 Outputs a list of command line switches with
brief descriptions.

-Idirectory on page 5-12 Appends the specified directory to the standard
search path.

Running VIDL Compiler

5-6 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

-lghtwt on page 5-13 Directs the VIDL compiler to generate light-
weight components — components with no
instance data and minimal overhead.

-mcd on page 5-13 Generates implementation shells for multiple
components.

-M on page 5-12 Generates make rules only; does not compile.

-MM on page 5-12 Generates make rules and compiles.

-no-adoc on page 5-13 Does not generate HTML documentation files.

-no-shell on page 5-13 Suppresses generation of the test shell compo-
nent defined in the specified VIDL file.

-no-vla on page 5-14 Does not generate variable-length arrays in C
implementation shells.

-no-xml on page 5-14 Does not generate the XML component mani-
fest.

-overwrite on page 5-14 Allows already existing test harness program to
be overwritten.

-path-def path on page 5-14 Specifies an alternative driver configuration file.

-path-html directory on page 5-15 Specifies the location of HTML documentation
template files.

-path-install directory on page 5-15 Directs the VIDL compiler to use the specified
directory as the base directory for all VIDL
tools, include directories, and configuration
files.

-path-output directory on page 5-15 Specifies the location of non-temporary files.

-path-temp directory on page 5-15 Specifies the location of temporary files gener-
ated by the driver.

-path-tool path on page 5-14 Specifies the location of the named compilation
tool.

Table 5-3. VIDL Compiler Common Switches (Cont’d)

Switch Reference Description

VisualDSP++ 3.5 Component Software Engineering User’s Guide 5-7
for 16-bit Processors

VIDL Compiler Command Line Interface

-proc processorID on page 5-15 Generates code for the specified Blackfin proces-
sors.
Only one -proc is permitted on a command
line.

-save-temps on page 5-18 Saves intermediate compilation files.

-shell-only on page 5-19 Directs the VIDL compiler to generate only the
test shell component and suppresses generation
of the actual component defined in the specified
VIDL file.

-si-revision <revision> on page 5-19 Directs the VIDL compiler to produce code
(where applicable) that conforms to the given
revision number. Format of <revision> is
<major>.<minor> with minor <=255.

-states-verbose-errors on page 5-19 Directs the VIDL compiler to insert more ver-
bose messages into the component test shell
when reporting non-conformance of the compo-
nent to the states strategy defined in the speci-
fied VIDL file.

-trace on page 5-19 Generates debug code.

-Umacro on page 5-20 Undefines the named macro(s).

-umb-verbose on page 5-20 Directs the VIDL compiler to generate User
Modifiable Blocks, which are more prominent
in the generated code and containing explana-
tory comments.

-validate-memory on page 5-20 Directs the VIDL compiler to generate code
within an IMemory-based test shell component
to validate the allocated memory before
attempting to free it.

-v[ersion] on page 5-20 Displays version information of the driver.

-verbose on page 5-21 Displays command line information for all
invoked compilation tools.

Table 5-3. VIDL Compiler Common Switches (Cont’d)

Switch Reference Description

Running VIDL Compiler

5-8 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

-@ filename

The g-@ filename switch specifies that the contents of the named file,
which holds driver options, are to be read and placed directly after the -@
switch on the command line.

The specified filename argument normally contains only valid options
but may also contain source file names. Spaces, tabs, or newline characters
can separate the driver options. Any line containing a # indicates the
remainder of the line is a comment.

When the argument to this switch is a directory, any VIDL source files
within the given directory are to be placed on the command line.

-accept-any-include-file

The -accept-any-include-file switch overrides the default behavior of
the VIDL compiler by including (#include) other file types, such as .H, in
addition to .IDL files.

By default, the VIDL compiler only #include .IDL files. The
-accept-any-include-file requests the VIDL compiler to relax this
restriction and include other file types, such as .H files.

-all-idl

The -all-idl (generate sources for all VIDLs) switch directs the compiler
to generate interface header files and component shells for interfaces and
components defined in any included files, as well as the main VIDL
source file. By default, the VIDL compiler generates only interface header
files and component shells for interfaces and components defined directly
in the main VIDL source file.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 5-9
for 16-bit Processors

VIDL Compiler Command Line Interface

-asm

The -asm (generate assembly shells) switch specifies assembly language
shells are to be generated for any component defined directly in the VIDL
file. Interface header files are also to be generated for each interface
defined directly in the main VIDL file.

When neither -asm or -c++ is specified, the compiler generates C language
shells.

The -asm switch cannot be used in conjunction with -c++ or -hdr.

-c++

The -c++ (generate C++ shells) switch specifies C++ language shells are to
be generated for any component defined directly in the VIDL file. Inter-
face header files are also to be generated for each interface defined directly
in the main VIDL file.

When neither -asm or -c++ is specified, the compiler generates C language
shells.

The -c++ switch cannot be used in conjunction with -asm or -hdr.

The -c++ switch is not supported for the ADSP-218x DSPs.

-copyright filename

The -copyright (specify copyright file) switch specifies the name of a file,
which contains a copyright statement that is to be copied to the start of
each generated source file.

-cppflags flags

The -cppflags (pass to C preprocessor) switch directs the VIDL compiler
to pass flags, an option or a list of options, to the C preprocessor invoked
via the VIDL front-end.

Running VIDL Compiler

5-10 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

-Dmacro[=definition]

The -D (define macro) switch directs the compiler to define a macro.
When the optional definition string is not included, the compiler defines
the macro as the string ‘1’. If a definition is required to be a character
string constant, then it must be surrounded by escaped double quotes.
Note that the compiler processes all -D switches before any -U (undefine
macro) switches on the command line.

Only simple macros can be defined this way—macros accepting argu-
ments must be defined in the source files. A warning is generated when a
predefined macro is redefined.

This switch can be invoked with the Global definitions field
located in the VisualDSP++ IDDE’s Project Options dialog box,
VIDL page selection.

-dryrun

The -dryrun switch direct the compiler to display the command lines of
each of the processes the driver invokes without processing them.

-embedded

The -embedded switch suppresses the generation of factory methods (<com-
ponent>_Create, <component>_SizeOf, <component>_Destroy) and the
factory header file, <component>_factory.h, to streamline the use of com-
ponents embedded within other components.

-generic

The -generic switch directs the compiler to generate C/C++ code that can
be compiled using alternative compilers to those supplied with
VisualDSP++.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 5-11
for 16-bit Processors

VIDL Compiler Command Line Interface

Applications that only use one component will compile with Microsoft
Visual C++ 6.0 or gcc 3.2 with no warnings by adding __GENERIC__ to
the list of preprocessor definitions. For multi-component applications, the
additional /FORCE:MULTIPLE switch is required to be passed to the
Microsoft Visual C++ linker to demote LNK2005 errors to LNK4006 warn-
ings, informing you that an interface IID has already been defined and
that the second definition will be ignored. This is normal. For gcc 3.2, no
additional linker options are required and no warnings are generated.

-harness

The -harness switch directs the compiler to generate a test program for
the components defined directly in the main VIDL source file.

By default, the VIDL compiler does not overwrite an already existing test
harness source file. If you wish the compiler to overwrite an existing test
harness source file, you must also supply the -overwrite option.

-hdr

The -hdr switch specifies that only the interface header files are to be gen-
erated for each defined interface. Any component definitions are
validated, but the component shells are not generated.

The -hdr switch cannot be used in conjunction with -c++ or -asm.

-h[elp]

The -h or -help switch directs the compiler to display a list of switches,
including a brief description of each switch, that the driver recognizes.
This is the default if no other switches are given.

Running VIDL Compiler

5-12 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

-Idirectory [{,|;} directory…]

The -I (include directory) switch directs the compiler to add the specified
directories to the #include file search path. Multiple include directories
can be given as a semicolon- or comma-separated list of directories
searched in the order specified.

When multiple occurrences of this switch appear on the command line,
they are searched in the order specified on the command line.

All directories specified with this switch are searched before the standard
include directory is searched.

-M

The -M (generate make rules only) switch directs the compiler not to com-
pile the source file but to send to standard output the rules suitable for the
make utility, describing the dependencies of the generated files. The for-
mat of the make rules output by the compiler is:

object_file:include_file …

The -M switch cannot be used in conjunction with -MM.

-MM

The -MM (generate make rules and compile) switch is similar to -M. The
difference is that the VIDL compiler does not halt compilation after pre-
processing and proceeds to generate the interface header and component
shell files.

The -MM switch cannot be used in conjunction with -M.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 5-13
for 16-bit Processors

VIDL Compiler Command Line Interface

-lghtwt

The -lghtwt switch directs the VIDL compiler to generate components
that have no instance data and minimal overhead. Memory for such com-
ponents is allocated statically at compile time.

-mcd

The -mcd (generate multiple component shells) switch directs the compiler
to accept more than one component definition in the main VIDL source
file and to generate shells for each such component. The VIDL compiler
only accepts one component definition in the main .IDL source file by
default.

-no-adoc

The -no-adoc (no documentation) switch instructs the compiler not to
generate the HTML documentation files from the auto-doc description
blocks in the VIDL files. The auto-doc comments are still processed and
validated.

-no-shell

The -no-shell switch directs the VIDL compiler to ignore the IDL defin-
ing the test shell components in the specified VIDL file.

The switch is only applicable when the VIDL contains statements defining
a test shell component. By default, the VIDL Compiler generates code for
both the actual and test shell components defined directly in the main
VIDL source file.

Running VIDL Compiler

5-14 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

-no-vla

The -no-vla (no variable length arrays) switch instructs the compiler not
to generate the variable length arrays for conformant array parameters
when a C component shell is being generated.

Variable length arrays are never generated for a C++ component
shell.

-no-xml

The -no-xml (no XML output) switch instructs the compiler not to gener-
ate the .XML component manifest when a component shell is being
generated.

-overwrite

The -overwrite switch directs the VIDL compiler to overwrite any exist-
ing test harness source file when the -harness option is specified. When
this option is omitted, the compiler issues a warning that the existing test
harness file will not be overwritten.

-path-[cpp|fe|pr|be] path

The -path-tool path (tool location) switch directs the compiler to use
path as the location for the specified compilation tool. Respectively, the
tools are the preprocessor, front-end, presentation, and back-end. Use this
switch to override the default version of the tool, or that implied by the
-path-install switch.

-path-def path

The -path-def switch directs the VIDL compiler to use the specified path
instead of the default vidl_driver.def file, or that implied by the
-path-install switch.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 5-15
for 16-bit Processors

VIDL Compiler Command Line Interface

-path-html directory

The -path-html directory (.HTML files location) switch directs the com-
piler to use the specified directory as the location of the .HTML template
files. The compiler uses the specified templates when generating the
HTML documentation instead of those found in the default directory.
This is useful when working with multiple versions of the tool set.

-path-install directory

The -path-install switch directs the compiler to use the specified direc-
tory as the base directory for all VIDL tools, include directories, and
configuration files. For example, if -path-install c:\myVIDL is specified,
then vidlblkfn (for example) looks for all VIDL compiler tools in the
C:\myVIDL\Blackfin\etc directory.

-path-output directory

The -path-output directory (output location) switch directs the com-
piler to place all the generated files in the specified directory. This is useful
when the directory containing source files is read-only, or there is insuffi-
cient space available to copy the generated files.

-path-temp directory

The -path-temp switch directs the VIDL compiler to use the specified
directory instead of the default location for temporary files.

-proc processorID

The -proc processorID (compile for a specific processor) switch directs
the VIDL compiler to generate component shells for the specified
processor.

Running VIDL Compiler

5-16 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Blackfin Processor Switches

On Blackfin processors, the compiler accepted values for processorID are:
AD6532, ADSP-BF531, ADSP-BF532, ADSP-BF533, ADSP-BF535, and
ADSP-BF561. Compiling with any of these switches has the effect of modi-
fying the VIDL to be compiled by passing the switch to the preprocessor.
The generated C/C++/Assembler source files are not affected, and only
include macro guards to test that macro __ADSPBLACKFIN__ is defined as 1.
The processor identity is, however, passed on to the XML component
manifest.

By default, vidlblkfn assumes that the ADSP-BF532 Blackfin processor is
the target processor.

21xx Processor Switches

On 218x processors, the compiler accepted values of processorID are:
ADSP-2181, ADSP-2183, ADSP-2184, ADSP-2185, ADSP-2186, ADSP-2187,
ADSP-2188, and ADSP-2189. Compiling with any of these switches has the
effect of modifying the VIDL to be compiled by passing the switch to the
preprocessor. The generated C/C++/Assembler source files are not

-proc AD6532 Directs the compiler to generate code suitable for the AD6532 pro-
cessor.

-proc ADSP-BF531 Directs the compiler to generate code suitable for the ADSP-BF531
processor.

-proc ADSP-BF532 Directs the compiler to generate code suitable for the ADSP-BF532
(formerly ADSP-21532) processor.

-proc ADSP-BF533 Directs the compiler to generate code suitable for the ADSP-BF533
processor.

-proc ADSP-BF535 Directs the compiler to generate code suitable for the ADSP-BF535
(formerly ADSP-21535) processor.

-proc ADSP-BF561 Directs the compiler to generate code suitable for the ADSP-BF561
processor.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 5-17
for 16-bit Processors

VIDL Compiler Command Line Interface

affected, and only include macro guards to test that macro __ADSP218X__
is defined. The processor identity is, however, passed on to the XML com-
ponent manifest.

On 219x processors, the compiler accepted values of processorID are:
ADSP-2191, ADSP-2192-12, ADSP-2195, ADSP-2196, ADSP-21990,
ADSP-21991, ADSP-21992, and AD90747. Compiling with any of these
switches has the effect of modifying the VIDL to be compiled by passing
the switch to the preprocessor. The generated C/C++/Assembler source

-proc ADSP-2181 Directs the VIDL compiler to generate code suitable for the
ADSP-2181 processor.

-proc ADSP-2183 Directs the VIDL compiler to generate code suitable for the
ADSP-2183 processor.

-proc ADSP-2184 Directs the VIDL compiler to generate code suitable for the
ADSP-2184 processor.

-proc ADSP-2185 Directs the VIDL compiler to generate code suitable for the
ADSP-2185 processor.

-proc ADSP-2186 Directs the VIDL compiler to generate code suitable for the
ADSP-2186 processor.

-proc ADSP-2187 Directs the VIDL compiler to generate code suitable for the
ADSP-2187 processor.

-proc ADSP-2188 Directs the VIDL compiler to generate code suitable for the
ADSP-2188 processor.

-proc ADSP-2189 Directs the VIDL compiler to generate code suitable for the
ADSP-2189 processor.

Running VIDL Compiler

5-18 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

files are not affected, and only include macro guards to test that macro
__ADSP219X__ is defined. The processor identity is, however, passed on to
the XML component manifest.

-save-temps

The -save-temps (save intermediate files) switch prevents any temporary
files created by the driver or compiler from being deleted. When used in
conjunction with -M or -MM, the dependency lists are redirected to the file
basename(<idl-file>|<infile>).dep.

-proc ADSP-2191 Directs the VIDL compiler to generate code suitable for the
ADSP-2191 processor.

-proc ADSP-2192 Directs the VIDL compiler to generate code suitable for the
ADSP-2192 processor.

-proc ADSP-2192-12 Directs the VIDL compiler to generate code suitable for the
ADSP-2192-12 processor.

-proc ADSP-2195 Directs the VIDL compiler to generate code suitable for the
ADSP-2195 processor.

-proc ADSP-2196 Directs the VIDL compiler to generate code suitable for the
ADSP-2196 processor.

-proc ADSP-21990 Directs the VIDL compiler to generate code suitable for the
ADSP-21990 processor.

-proc ADSP-21991 Directs the VIDL compiler to generate code suitable for the
ADSP-21991 processor.

-proc ADSP-21992 Directs the VIDL compiler to generate code suitable for the
ADSP-21992 processor.

-proc AD90747 Directs the VIDL compiler to generate code suitable for the
AD90747 processor.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 5-19
for 16-bit Processors

VIDL Compiler Command Line Interface

-shell-only

The -shell-only switch directs the VIDL compiler to generate only the
test shell component and suppresses generation of the actual component
defined in the specified VIDL file.

The switch is only applicable when the VIDL contains statements defining
a test shell component. By default, the VIDL Compiler generates code for
both the actual and test shell components defined directly in the main
VIDL source file.

-si-revision <revision>

The -si-revision <revision> switch directs the VIDL compiler to pro-
duce code (where applicable) that conforms to the given revision number.
Format of <revision> is <major>.<minor> with minor <=255.

This switch is passed to the preprocessor; it has no further effect on the
generated code.

-states-verbose-errors

The -states-verbose-errors switch directs the VIDL compiler to insert
code to generate more verbose messages into the test shell component
when reporting non-conformance of the component to the states strategy
defined in the specified VIDL file.

By default, the VIDL Compiler inserts code to generate a minimal
non-conformance message.

-trace

The -trace switch directs the compiler to generate debug code in compo-
nent source files to record the entry and exit of each method.

Running VIDL Compiler

5-20 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

-Umacro

The -U (undefine macro) switch undefines the specified macro. The com-
piler processes all -D (define macro) switches on the command line before
any -U switches.

The -Umacro_name switch on a command line is equivalent to #undef
macro_name in a source file.

A warning is generated when a predefined macro is undefined.

-umb-verbose

The -umb-verbose switch directs the VIDL compiler to generate User
Modifiable Blocks which are more prominent in the generated code and
containing explanatory comments.

By default, the VIDL Compiler generates minimal User Modifiable
Blocks with no explanatory comments.

-validate-memory

The -validate-memory switch directs the VIDL compiler to generate
code, within an VCSE::IMemory-based test shell component, to validate the
allocated memory before attempting to free it.

By default, such generated test shell component code does not validate
memory before attempting to free it.

-v[ersion]

The -v or -version directs the compiler to display the version number of
the compiler driver.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 5-21
for 16-bit Processors

VIDL Compiler Command Line Interface

-verbose

The -verbose switch directs the compiler to display the command lines of
each of the compilation processes that the driver invokes.

Processing VIDL Files

5-22 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Processing VIDL Files
Three categories of source files are associated with VCSE:

• Interface Definition Language files (.IDL) name and describe
VCSE-conformant components and interfaces, as well as specify
which of the available interfaces are supported by the components.
The VIDL language is described in “VIDL Language Reference” on
page 4-1.

• Standard header files (.H) give access to the VCSE system features,
such as response values returned from component functions and
interface methods, or macros facilitating interface member calls
from C and assembly code.

Use these headers in component implementations or in compo-
nent-based applications. The VCSE standard headers are described
in “Standard Files” on page 5-24.

• C++, C, and assembly source and header files (.CPP, .C, .ASM, .H)
are generated by the VIDL compiler in response to a VIDL specifi-
cation supplied as its input.

These files contain specific details of the interfaces and compo-
nents described in the VIDL file. These generated files also contain
standard sections of code that either assist the component devel-
oper to create and debug a component or to enable the component
to interoperate with applications and other components.

The VIDL generated files are described in “Generated Source
Files” on page 5-28.

File Organization
The general organization of the standard header files and the generated
files follows the same principles.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 5-23
for 16-bit Processors

VIDL Compiler Command Line Interface

File Names

Apart from the basic VCSE support headers, vcse.h, each standard and
generated file is named according to the namespaces and the interface or
component name with which it is associated.

• From left to right, the file name prefix consists of the name of each
namespace (underscore separated, from outer to inner) in which
the interface or component definition is located.

• The prefix is followed by the interface or component name, all sep-
arated from the prefix by a single underscore.

• For some files, such as method definitions, the name is followed by
a suffix of a single underscore and a single word, which indicates its
content.

• The file name preserves the letter case of the VIDL base file name.
The file name extensions are: .CPP for C++ source files, .C for C
source files, .ASM for assembly source files, .H for header files, and
.HTML, .HHC, .HHK for HTML files.

Start-of-File Comments

Each standard file begins with a corporate Analog Devices copyright com-
ment statement, the name of the file, and an indication of the processor
family for which it is intended.

Each generated file begins with a comment providing the file name, a brief
purpose description, the date and time of creation, and the version num-
ber of the VIDL compiler used to produce the file. Files containing no
user-alterable sections have a short warning comment to this effect.

End-of-File Comments

All generated non-header files have a terminating comment that includes
the file name.

Processing VIDL Files

5-24 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Header Files Guards

Standard and generated header files have a conditional compilation con-
struct to prevent multiple inclusion of the file contents.

The name of the preprocessor symbol acting as the guard is constructed as
follows: two leading underscores; the complete file name (not converted to
uppercase) up to the .H extension; and a tail of an underscore, capital H,
followed by two underscores.

Language Identifications

Standard and generated header files can be included into C, C++, and
assembler compilations. This means sections of the files must be excluded
from preprocessing when their contents are not appropriate for the lan-
guage being used. The preprocessor symbols used to control section
inclusion and exclusion are __cplusplus, _LANGUAGE_C, and
_LANGUAGE_ASM. The first two symbols are defined automatically by the
C/C++ compiler driver when the user chooses C++ or C mode, and the
other is defined by the assembler driver.

Standard Files
Three files give access to the fixed features of the VCSE system: vcse.h,
vcse_asm.h, and VCSE_IBase.h. The first and second files are intended for
inclusion into components and component clients written in C++, C, and
assembly, either directly or at the end of an inclusion chain starting with a
generated interface or component header. The second file also defines a set
of assembler macros used by components implemented in assembly lan-
guage. The third file, VCSE_IBase.h, is the interface header for the root
interface VCSE::IBase.

The vcse_asm.h file is always target processor-specific. In general, vcse.h
and VCSE_IBase.h may be target-specific in terms of the C/C++ basic
types they use since these can be mapped to different hardware entities for

VisualDSP++ 3.5 Component Software Engineering User’s Guide 5-25
for 16-bit Processors

VIDL Compiler Command Line Interface

the various targets. This convention is catered for by VisualDSP++’s orga-
nization of include directories, which does not expect header files to be
shared across architectures.

Contents of vcse.h

The vcse.h file is the main standard header file used by VCSE interface
header files and the generated component source files. The content of the
standard VCSE header file is outlined as follows.

1. As described in “Language Identifications” on page 5-24, three pre-
processor variables are used to distinguish between the different
possible implementation languages. One and only one should be
defined in each VCSE compilation. The vcse.h header verifies the
inclusion of the appropriate preprocessor variable.

2. Some of the code generated by VCSE may use functions or macros
from the ANSI C run-time library when it is generated in trace
mode. When compiling C and C++ files, vcse.h ensures the appro-
priate standard header files are included.

3. Interfaces are represented as method tables. The vcse.h file defines
a type and macros to enable these method tables to be defined. The
type VCSE_DELTA assists with method table creation, and the macros
__INVOKE_VARARGS, __INVOKE_NOARGS, and __UPCAST assist with
invocation of the methods defined in an interface.

The __INVOKE_* macros are not intended for direct use by a client
or component developers. The header files generated for each
interface definition include a macro for each method, specifically
for use with interface pointers. Each such macro calls the appropri-
ate __INVOKE_* support macro.

Processing VIDL Files

5-26 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Even for assembly written components, the method tables are con-
structed in C, so there are no corresponding assembler structure
declarations; although, equivalent assembler macros for accessing
the method tables and method calls are provided.

Each method table entry consists of an instance of a VCSE_DELTA
struct followed by a function pointer. The delta member is the off-
set to be added to an interface pointer to point to the component
implementing the interface. Its value is either zero (for the first or
only interface implemented by a component) or a small negative
multiple of the size of a pointer. For example, on a byte-address-
able architecture, the offset for the third interface implemented by
a component is –12.

4. All interface functions are defined to return a value of a particular
type, MRESULT. The vcse.h file defines this type for C and C++. For
the assembler, the result type is assumed to be a short integer to fit
in the standard function result register, as defined by the platform’s
run-time model.

For C++ applications, MRESULT is defined inside the standard VCSE
namespace. For C applications, it is given a prefix VCSE_,
VCSE_MRESULT.

The vcse.h header also defines the set of standard VCSE MRESULT
codes. The codes are defined in “MRESULT Codes” on page B-2.

5. VCSE generates two main types of data structures from the VIDL
specifications supplied by the user—interfaces and components.
To reinforce the difference between the two data structures, vcse.h
defines interface and component as synonyms for struct, allowing
the generated code to use the synonyms appropriately.

6. Finally, vcse.h includes the header file vcse_asm.h to provide
access to the macros and definitions used by the assembly language
programmer.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 5-27
for 16-bit Processors

VIDL Compiler Command Line Interface

Contents of vcse_asm.h

The vcse_asm.h file is the standard assembly language header file. It
defines macros used by the generated assembly component source files.
Where possible, the VIDL compiler generates the same assembly text for
all the target processors. Processor-specific content is wrapped in macros
defined in vcse_asm.h. The contents of the standard vcse_asm.h file are
outlined as follows.

1. The header file first defines a set of helper macros used when con-
structing names for items, such as for the interface iid. The helper
macros are not meant to be used directly by the assembler pro-
grammer but by other macros.

2. The header file then includes macro definitions for the code sec-
tion in the generated code, function start and end, and function
entry and exit.

3. To support the method-calling macros defined in the generated
interface headers, the macros __GET_METHOD and __INVOKE are
defined. Users are not expected to call __INVOKE directly; instead,
to call it via the method invocation macros generated in the inter-
face header files. In addition, the macro __CHECK_VCSE_RESPONSE is
likely to be used by a client to verify the results returned by the
methods.

4. In addition to the common macros, the header defines some plat-
form-specific convenience macros. The VIDL compiler generated
code does not use these macros, but the various method implemen-
tations provided by the component might. These macros are
provided to facilitate the tasks of setting up stack frames and mak-
ing function calls conforming to the C run-time model.

Processing VIDL Files

5-28 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Contents of VCSE_IBase.h

The VCSE_IBase.h file is the interface header file for the VCSE base inter-
face VCSE::IBase. It is suitable for inclusion into C++, C, or assembly
files. VCSE_IBase.h contains:

1. The external declaration of the interface identifier variable that
holds IBase’s unique identifier.

2. A typedef for a pointer to the struct type that implements the
IBase interface as well as the definition of the struct type.

3. The definition of a macro VCSE_IBase_GetInterface, which is
used for calling the IBase interface’s sole member function from C
and assembly source files. C++ clients use a normal method call to
invoke the interface functions.

4. A typedef for VCSE_IBase_methods, which is the C equivalent of
the C++ method table associated with the VCSE::IBase class.

No structure definitions for the interface appear in the assembly portion
of the file since the assembly implementation of interfaces relies on the
Analog Devices assemblers ‘importing’ the typedef names and struct lay-
outs from the C portion of interface header files.

Generated Source Files
The VIDL compiler produces several header, source, and HTML and
source files in response to the interface and component definitions found
in the VIDL input presented by the user.

Table 5-4 through Table 5-6 on page 5-32 summarize and describe the
compiler generated files. In addition to the notations in “File Names” on
page 5-23, the following applies to all of the generated file names.

<NS> Represents the namespace components. <I> Represents the interface name.

<C> Represents the component name. All other characters are literals.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 5-29
for 16-bit Processors

VIDL Compiler Command Line Interface

Interface Definitions

The VIDL compiler generates the interface files for all interfaces that the
specified interface directly or indirectly extends. The main file generated
for an interface specification is the interface header file. Both the creator
of a component implementing the interface and the client using the inter-
face require this header file.

In addition to the interface header, the VIDL compiler normally produces
a set of .HTML files, which combines information from the auto-doc com-
ments and the VIDL specification, to document the interface and its use.
The generated .HTML files are held in the html subdirectory. All the gener-
ated interface files, along with the corresponding .IDL file, are normally
distributed to all users of the interface. A summary of files generated for
each interface definition is found in Table 5-4.

Table 5-4. Interface Source Files

File Name Description

<NS>_<I>.h Contains definitions of: types that represent the interface as well
as a pointer to the interface; macros that facilitate calling the
methods of the interface; and types that represent the method
table layout. Also contains the definition of the unique interface
identifier.
Any C++, C, or assembly client module calling methods of the
interface includes this file.
Any C++, C, or assembly component module implementing the
interface or constructing a method table for the interface
includes this file.

html\<NS>_<I>.html Main .HTML file; displays the generated documentation for the
interface. Also creates a frame to display a table of contents or an
index.

html\<NS>_<I>_BASE.html Provides comprehensive information on the interface.
Displays on the right-hand side of the frame created by
html\<NS>_<I>.html.

Processing VIDL Files

5-30 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

In addition to the specific files generated for each interface, a common set
of files is also generated (shown in Table 5-5).

html\<NS>_<I>_TOC.html Triggers the creation of the table of contents, which is displayed
on the left-hand side of the frame created by
html\<NS>_<I>.html.

html\<NS>_<I>_INDEX.html Triggers the creation of the automatically generated index, which
is displayed on the left-hand side of the frame created by the file
html\<NS>_<I>.html.

html\<NS>_<I>_hhc.html Defines the table of contents.
Displays on the left-hand side of the frame created by
html\<NS>_<I>.html.

html\<NS>_<I>_hhk.html Defines the automatically generated index.
Displays on the left-hand side of the frame created by the file
html\<NS>_<I>.html.

Table 5-5. Common Generated Documentation Files

File Name Description

html\vcsehtml.css Defines a Common Style Sheet, which is referenced by all of the
generated .HTML files. Allows the appearance of the HTML text
to be controlled.

html\vcsehtml.js Specifies a common Java Script element. The file is referenced in
each of the generated .HTML file.

Table 5-4. Interface Source Files (Cont’d)

File Name Description

VisualDSP++ 3.5 Component Software Engineering User’s Guide 5-31
for 16-bit Processors

VIDL Compiler Command Line Interface

Component Definitions

The VIDL compiler produces a set of C, C++, or assembly source files for
each processed component specification. The generated file set provides a
framework for the component implementation and is referred to as an
implementation shell. It provides all the necessary generic code needed to
conform to the VCSE component object model. The generated files pro-
vide the definitions of each method, leaving the developer to complete the
generated shell by providing the implementation of each method. Nor-
mally, the component distribution includes all the generated interface
files.

In addition to the implementation shell source files, the VIDL compiler
produces a set of .HTML files, which combines information from the
auto-doc comments and the VIDL input, to document the component
and each interface supported by the component. The generated .HTML files
are held in the html subdirectory. For more information about these files,
see “Component Documentation Files” on page 5-35.

Only the factory header file, <NS>_<C>_factory.h, should be dis-
tributed with the compiled component; the other source files are
implementation-only files and, normally, are not distributed.

Processing VIDL Files

5-32 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

C Based Components

The set of files that the VIDL compiler generates for each C-based compo-
nent definition is summarized in Table 5-6. This table represents the full
set of files that can be generated. Certain command line switches will
reduce the number of files generated.

Table 5-6. C Component Source Files

File Name Description

<NS>_<C>_factory.h Contains the external declarations of the non-interface method
functions of the component.
Any C++, C, or assembly module that creates, destroys, or queries
the size of an instance of the component includes this file.

<NS>_<C>.h Contains the layout (in C++ and C) of the struct that implements
the component, including sections for the implementor to add pri-
vate members and other component-related declarations.
Used by all C++ and C component modules or imported into all
assembly component modules that require to access the members of
the component instance struct.

<NS>_<C>.c Contains C definitions of the component’s factory functions and
the GetInterface and NonDelegatingGetInterface methods.
The component developer can add custom code to the Create and
Destroy function definitions to control the allocation and initial-
ization of the component’s instance data.

<NS>_<C>_test.c Contains a C-based test harness program, which creates the compo-
nent and calls each of the defined interfaces and then destroys the
component. This file is only generated when the -harness switch
is supplied.

<NS>_<C>_methods.c Contains C function definitions for the remaining interface meth-
ods implemented by this component. Also contains the definition
and static initialization of the component’s method tables.
The component developer adds custom code to the function defini-
tions in order to implement the required functionality.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 5-33
for 16-bit Processors

VIDL Compiler Command Line Interface

C++ Based Components

The set of files that the VIDL compiler generates for each C++ based com-
ponent definition is summarized in Table 5-7. This table represents the
full set of files that can be generated. Certain command line switches will
reduce the number of files generated.

Table 5-7. C++ Component Source Files

File Name Description

<NS>_<C>_factory.h Contains the external declarations of the non-interface method
functions of the component.
Any C++, C, or assembly module that creates, destroys, or queries
the size of an instance of the component includes this file.

<NS>_<C>.h Contains the layout in C++ and C of the struct that implements
the component, including sections for the implementor to add pri-
vate members and other component-related declarations.
Used by all C++ and C component modules or imported into all
assembly component modules that require to access the members
of the component instance struct

<NS>_<C>.cpp Contains C++ definitions of the class management functions asso-
ciated with the component, such as a class constructor, the factory
functions, operators new and xdelete, the GetInterface and
NonDelegatingGetInterface methods.
Component developer adds custom code to the Create and
Destroy function definitions to control the allocation and initial-
ization of the component’s instance data.

<NS>_<C>_test.cpp Contains a C++ based test harness program, which creates the
component and calls each of the defined interfaces and then
destroys the component. This file is only generated when the
-harness switch is supplied.

Processing VIDL Files

5-34 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Assembly Based Components

The set of files that the VIDL compiler generates for each assembly based
component definition is shown in Table 5-8. This table represents the full
set of files that can be generated. Certain command line switches will
reduce the number of files generated.

Table 5-8. Assembly Component Source Files

File Name Description

<NS>_<C>_factory.h Contains the external declarations of the non-interface method
functions of the component.
Any C++, C, or assembly module that creates, destroys, or que-
ries the size of an instance of the component includes this file.

<NS>_<C>.h Contains the layout in C++ and C of the struct that implements
the component, including sections for the implementor to add
private members and other component-related declarations.
Used by all assembly component modules or included into all
C++ and C component modules that require to access the mem-
bers of the component instance struct.

<NS>_<C>.c Contains C definitions of the component’s factory functions
and the GetInterface and NonDelegatingGetInterface
methods. Also contains the definition and static initialization of
the component’s method tables.
For an assembly component, the factory functions and the Get-
Interface method are generated in C. Hence, this file must be
compiled with C and included in the set of component object
files.

<NS>_<C>_methods_asm.asm Contains assembly function definitions for the remaining inter-
face methods implemented by this component.
The component developer adds custom code to the function
definitions in order to implement the required functionality. A
standard set of assembly macros is provided for accessing
parameters and elements of the component’s instance data.

<NS>_<C>_test.c Contains a C based test harness program, which creates the
component and calls each of the defined interfaces and then
destroys the component. This file is only generated when the
-harness switch is supplied.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 5-35
for 16-bit Processors

VIDL Compiler Command Line Interface

Component Documentation Files

For each component processed in the VIDL input file, the VIDL compiler
produces a set of .HTML files to combine information from the auto-doc
comments and the VIDL input. The generated .HTML files are held in the
html subdirectory. In addition to the documentation files for the compo-
nent, all the documentation files for each supported interface are
integrated with the component’s documentation.

The .HTML files generated for each component are shown Table 5-9.

In addition to the specific files generated for the component, a common
set of files is also generated, as shown in Table 5-5 on page 5-30.

Table 5-9. Component Specific Documentation Files

File Name Description

html\<NS>_<C>.html The main .HTML file; displays the generated documentation
for the component. In addition, the file creates a frame to dis-
play a table of contents or an index.

html\<NS>_<C>_BASE.html Describes the component in detail.
Displays on the right-hand side of the frame created by the file
html\<NS>_<C>.html.

html\<NS>_<C>_TOC.html Triggers the creation of the table of contents, which is dis-
played on the left-hand side of the frame created by the file
html\<NS>_<C>.html.

html\<NS>_<C>_INDEX.html The .HTML file, which triggers the creation of the automati-
cally generated index, which is displayed on the left-hand side
of the frame created by the file html\<NS>_<C>.html.

html\<NS>_<C>_hhc.html Defines the table of contents.
Displays on the left-hand side of the frame created by the file
html\<NS>_<C>.html.

html\<NS>_<C>_hhk.html Defines the automatically generated index.
Displays on the left-hand side of the frame created by the file
html\<NS>_<C>.html.

Processing VIDL Files

5-36 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Component Manifest File

For each component specified in the VIDL input file, the VIDL compiler
produces an XML based manifest file. Use this file to control the packag-
ing wizard when the component is being packaged for distribution. The
name of the packaging file is <NS>_<C>.xml. The packaging wizard com-
bines the contents of the .XML file with information derived from the
wizard steps to complete a component package.

Test Shell Files

The files generated by the VIDL compiler when the test shell syntax is
present are very similar to those generated for the actual component,
except that no Assembler files are generated. The names of the files are
listed in Table 5-10.

Table 5-10. Test Shell Files

Type Actual Component Test Shell Component

Component header ADI_C1.h ADI_C1_VCSETEST.h

Component Management

C ADI_C1.c ADI_C1_VCSETEST.c

C++ ADI_C1.cpp ADI_C1_VCSETEST.cpp

Component Methods

C ADI_C1_methods.c ADI_C1_VCSETEST_methods.c

C++ ADI_C1_methods.cpp ADI_C1_VCSETEST_methods.c
pp

ASM ADI_C1_methods_asm.asm ADI_C1_VCSETEST_methods.c

Component Factory Header ADI_C1_factory.h ADI_C1_VCSETEST_factory.h

VisualDSP++ 3.5 Component Software Engineering User’s Guide 6-1
for 16-bit Processors

6 VCSE RULES AND
GUIDELINES

Read this chapter if you develop, deploy, or use VCSE components. The
chapter documents the rules and best programming practices associated
with the software components’ successful development and successful
inclusion into DSP applications.

VCSE provides a model or framework to aid the development and use of
software components in DSP applications running on Analog Devices
DSP processors. Two major aims of VCSE are the promotion of software
interoperability and reuse, in a language-neutral way. Although the VCSE
model ensures these aims can be met, it cannot guarantee that they always
are met for any particular component or application, especially since
assembly is one of the supported languages. For this reason, the model and
tools support must be supplemented with rules and guidelines to obtain
the maximum benefit when using components.

The rules and guidelines cover two broad areas, although the two areas
sometimes overlap:

• Programming, see “Programming” on page 6-6

• Packaging, see “Packaging” on page 6-14

Issues concerning the correct operation of a component, considered in iso-
lation, come under programming; while issues concerning a component’s
inclusion in an application that may use other components come under
packaging.

Summary

6-2 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Paragraphs labeled ‘Rule’ describe actions or practices that are mandatory;
applications may fail to build or run properly if they, or some components
they include, fail to obey a rule.

Paragraphs labeled ‘Guideline’ describe actions or practices that we
strongly recommend you to follow. Applications may not fail to build or
run if guidelines are not heeded, but they may be harder to debug or to
deploy.

Components described as algorithms are those that implement the stan-
dard interface VCSE::IAlgorithm or an interface derived from it. Some
rules and guidelines differ according to whether or not a component they
apply to is an algorithm.

The rules and guidelines are described as being specific to algorithm or
non-algorithm components. Where a component implements multiple
interfaces that define a mixture of algorithms and non-algorithms, the
rules and guidelines apply to the parts of the component that implement
the algorithm or non-algorithm interfaces, respectively. Thus, a client
using only the algorithm interfaces offered by the component can consider
the component (as a whole) to be an algorithm component even though it
contains (unused) code that may break some of the ‘algorithm’ rules.

Summary
The following tables summarize the presented rules and guidelines. Those
that are common to the development and use of all components are listed
first, followed by those rules and guidelines that apply only to algorithms,
and finally those that apply only to non-algorithms.

• Table 6-1, “Common Component Rules” on page 6-3

• Table 6-2, “Common Component Guidelines” on page 6-4

• Table 6-3, “Algorithm Component Rules” on page 6-5

VisualDSP++ 3.5 Component Software Engineering User’s Guide 6-3
for 16-bit Processors

VCSE Rules and Guidelines

• Table 6-4, “Algorithm Component Guidelines” on page 6-5

• Table 6-5, “Non-algorithm Component Rules” on page 6-5

There are no guidelines for non-algorithm components.

Following the tables are sections providing a detailed description of each
rule or guideline.

Table 6-1. Common Component Rules

Rule Description

Programming For a component, use the interface pointer supplied to its Create factory func-
tion (parameter ienvp) to obtain an interface pointer to a memory allocator;
use this interface for all memory allocations. For more information, see
“Resource Allocation” on page 6-6.

Programming For a client, supply an interface pointer obtained from a component imple-
menting an appropriate memory allocator to the Create function when instan-
tiating a component. For more information, see “Resource Allocation” on
page 6-6.

Programming Client-component interactions must follow C run-time model specifications
for the target processor. For more information, see “Registers and Stack” on
page 6-9.

Programming The documentation for every component that requires a memory allocation
interface other than VCSE::IMemory must include or refer to a detailed
description of the interface. For more information, see “Resource Allocation”
on page 6-6.

Programming Document self-modifying components as only sequentially reusable. For more
information, see “Interrupt System and Re-entrancy” on page 6-10.

Programming Document components saving data in fixed memory locations as only sequen-
tially reusable. For more information, see “Interrupt System and Re-entrancy”
on page 6-10.

Packaging Use your company tag when naming files, globally visible labels, and LDF’s sec-
tions and variables to avoid name clashes. For more information, see “Name
Clashes” on page 6-14.

Packaging Document your component’s memory characteristics. For more information,
see “Memory” on page 6-16.

Summary

6-4 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Packaging Document your component’s processing cycle characteristics. For more infor-
mation, see “Processing” on page 6-17.

Packaging Document all the required non-memory resources for your component. For
more information, see “Non-memory Resource Requirements” on page 6-17.

Table 6-2. Common Component Guidelines

Guideline Description

Programming For a component, define an interface (VIDL) for a non-memory resource allo-
cation. For a client, implement that interface in conjunction with the appro-
priate memory allocator. For more information, see “Non-memory Resource
Requirements” on page 6-17.

Programming Clients and components should follow C run-time model specifications for
the target processor. For more information, see “Registers and Stack” on
page 6-9.

Programming Components should use the standard memory allocation interface
VCSE::IMemory where possible. For more information, see “Resource Alloca-
tion” on page 6-6.

Programming For assembly written components, use the #include VCSE.h macros to set up
stack frames and refer to outgoing function call arguments. For more informa-
tion, see “Registers and Stack” on page 6-9.

Programming Avoid self-modifying code in component specifications. For more informa-
tion, see “Interrupt System and Re-entrancy” on page 6-10.

Programming Avoid fixed location data variables in component code. For more information,
see “Interrupt System and Re-entrancy” on page 6-10.

Packaging Use the linker’s data elimination features for applications that employ assem-
bly written components. For more information, see “Code and Data Elimina-
tion” on page 6-18.

Packaging Ensure that your component objects are usable in various addressing models.
For more information, see “Addressing Models” on page 6-18.

Table 6-1. Common Component Rules (Cont’d)

Rule Description

VisualDSP++ 3.5 Component Software Engineering User’s Guide 6-5
for 16-bit Processors

VCSE Rules and Guidelines

Table 6-3. Algorithm Component Rules

Rule Description

Programming Do not modify the interrupt controls and structures. For more information,
see “Interrupt System and Re-entrancy” on page 6-10.

Programming Document any algorithm components whose methods rely on specific config-
urations or performance characteristics of the interrupt system. For more
information, see “Interrupt System and Re-entrancy” on page 6-10.

Programming Document your algorithm component’s re-entrancy capabilities. For more
information, see “Interrupt System and Re-entrancy” on page 6-10.

Programming Do not switch processor modes. For more information, see “Processor Modes”
on page 6-13.

Programming Document the algorithm component’s requirement to be in a specific proces-
sor mode. For more information, see “Processor Modes” on page 6-13.

Programming Do not access any core peripherals. For more information, see “Core Peripher-
als” on page 6-14.

Programming Do not access code or data at absolute memory addresses. For more informa-
tion, see “Address Clashes” on page 6-15.

Table 6-4. Algorithm Component Guidelines

Guideline Description

Programming Design your algorithm components to provide the most re-entrancy capabili-
ties. For more information, see “Interrupt System and Re-entrancy” on
page 6-10.

Table 6-5. Non-algorithm Component Rules

Rule Description

Programming Document all the processor’s interrupt system operations and alterations. For
more information, see “Interrupt System and Re-entrancy” on page 6-10.

Programming Restore the processor’s original mode once a method’s execution is com-
pleted. For more information, see “Processor Modes” on page 6-13.

Programming

6-6 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Programming
The rules and guidelines defined in this section cover two major aspects of
embedded applications design—resource usage, including memory alloca-
tion; and processor usage, including the interrupt system. The objective is
to describe how a component and its client should conduct themselves in
order for the component to obtain the resources and environment it needs
to function, and the client to obtain the results and services envisaged
when the application is planned.

Resource Allocation
All VCSE components require the allocation of at least one resource—an
area of memory to hold the data associated with each instance of the com-
ponent created by a client. Each instance may also require additional
memory (working storage) and access to other resources, such as an I/O
peripheral or a hardware timer.

The Create function called by a client to create a new component instance
has two parameters associated with resource allocation: an interface
pointer and a token. The interface pointer is obtained from some other
component implementing the memory allocation interface appropriate to
the component being instantiated. This may be the VCSE::IMemory stan-
dard interface, or it may be some other interface, as described in the
component’s documentation. The code initially generated by the VIDL
compiler assumes that it is the VCSE::IMemory interface, but the compo-

Programming Document how the core peripherals are accessed by your component. For
more information, see “Core Peripherals” on page 6-14.

Programming Do not access code or data at absolute addresses, except memory-mapped
registers. For more information, see “Address Clashes” on page 6-15.

Table 6-5. Non-algorithm Component Rules (Cont’d)

Rule Description

VisualDSP++ 3.5 Component Software Engineering User’s Guide 6-7
for 16-bit Processors

VCSE Rules and Guidelines

nent developer may alter that code to use a different allocator. An
arbitrary token value will be passed as an argument to the Allocate and
Free methods of the IMemory instance in code generated by the VIDL
compiler. User specified allocators may utilize or ignore the token as
desired.

See “Standard Interfaces” on page 3-1 for more information about the
VCSE::IMemory interface and component instantiation. It is possible to
pass NULL for the interface pointer and use a different mechanism for allo-
cating memory when instantiating a component, but this is intended only
as an aid during initial component development and as a method of boot-
strapping memory allocator components.

Rule: Every component, with the exception of any that implements a
memory allocator interface, must use the interface pointer passed to its
Create function to obtain the allocator interface and to use that interface
to satisfy all its memory requirements.

Rule: Every client must supply an interface pointer obtained from a com-
ponent implementing a suitable memory allocation interface to the Create
function of every component that the client instantiates, with the excep-
tion of components that themselves implement memory allocators. Details
of the allocator interface that a component requires are referenced in the
component’s documentation.

The component that supplies the interface pointer used as an argument to
a Create call can implement other interfaces besides its memory allocator.
One way to organize resource allocation for a particular application is to
develop a composite component. The interface pointer passed to the Cre-
ate functions of all instantiated components acts as a gateway to all of the
allocators.

Rule: If a component requires its clients to provide an instance of a mem-
ory allocator other than VCSE::IMemory, then its documentation must
contain or refer to a full description of that alternative memory allocation
interface.

Programming

6-8 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Guideline: Component developers should use VCSE::IMemory as their
memory allocation interface whenever possible since clients are likely to
already have a component that implements the memory allocator. If this is
impossible, then consider using some other already-published interface or
providing a component that implements your custom interface.

Guideline: If your component requires the allocation of a resource other
than memory, either use a published interface or, if necessary, publish a
new interface definition. The interface is to be used by the component for
allocation and freeing of the resource. The implementation of such addi-
tional resource interfaces should be accessed via the same component that
provides the memory allocator interface to the component.

Applications may centralize the management of resources with a
monitor component aggregating the interfaces provided by separate
resource allocation components. Clients of the monitor may access
its resource interfaces by calling the GetInterface method of its
IBase interface.

See “Packaging” on page 6-14 for rules concerning documentation of a
component’s resource usage.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 6-9
for 16-bit Processors

VCSE Rules and Guidelines

Processor Usage

Registers and Stack

A VCSE component can be implemented in C++, C, or assembly and
must be usable by a client application written in any of these languages.
To achieve this, the points of interaction between a client and component,
the Create and Destroy functions, and the interface methods must adhere
to the C run-time model for the targeted processor. The major points cov-
ered by a run-time model are:

The C run-time model is described in the VisualDSP++ 3.x C/C++ Com-
piler and Library Manual supplied with VisualDSP++ for each target
architecture family.

Rule: All interactions between a client and a component must obey the
target processor’s C run-time model.

Processing that is strictly internal to an application or component code
does not need to conform to the run-time model. For example, the imple-
mentation of an interface method can invoke support functions that
accept more register based arguments than the model specifies or that
return multiple results in multiple registers. As long as no effects of this
are discernible once control returns to the code that invokes the interface
method, this is acceptable. However, we recommend that all code follow

Register usage Specifies which registers are available as scratch registers, which must
be preserved across a function call, and which have special usage.

Function call Specifies how arguments and control are passed to a function and how
results and control are returned.

Stack maintenance Specifies the alignment that stack pointer registers must maintain and
the details of any areas that must be created for parameter passing and
other purposes.

Data size/alignment Specifies the memory sizes and alignment requirements of the funda-
mental data types.

Programming

6-10 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

the platform’s run-time model since non-standard code is a common
source of hard-to-find bugs and also reduces flexibility (in terms of code
replacement or reuse).

Guideline: All client and component code should adhere to the C
run-time model of the target platform.

On some platforms, a common problem found in assembly code written
to follow the C run-time model is failure to provide the proper on-stack
storage area for outgoing arguments. For instance, on Blackfin processors,
even if the function being called takes no arguments, the caller must pro-
vide a three-word area at the top of the stack. The called function is at
liberty to use this area as temporary storage. Failure to provide the area
may result in the caller’s own temporary storage (perhaps containing a
return address or saved registers) being overwritten.

Guideline: In assembly code, use the macros made available via #include
VCSE.h. The macros can help to set up proper stack frames and correctly
refer to outgoing function call arguments.

Assembly programmers need to understand the C run-time model.

Interrupt System and Re-entrancy

An ‘ideal’ VCSE component has the following characteristics.

• Multiple instances of the component can coexist

• The instance structure can address or contain all the modifiable
data of one component instance

• The component’s methods require no exclusive access to any sys-
tem resource, apart from the memory for each instance structure

VisualDSP++ 3.5 Component Software Engineering User’s Guide 6-11
for 16-bit Processors

VCSE Rules and Guidelines

• The component’s methods do not require to run in any particular
execution mode (supervisor or system mode)

• The component’s methods do not require to be non-interruptible,
or fail if interrupt processing overhead exceeds some limit

Such a component is likely to be usable in all situations, from a simple sin-
gle thread of control in a standalone application through various flavors of
cooperative and preemptive multitasking systems. Not many components
can achieve such ubiquity; therefore, adhering to programming and docu-
mentation rules for the components can help a potential user to judge
whether a particular component fits into their system.

The general principle is components that are algorithms must not alter the
execution environment to suit their needs, but must document the envi-
ronment they require. Components implementing peripheral or resource
managers may change the execution environment, but must document the
changes and the circumstances in which they occur.

Rule: No algorithm component may modify the interrupt controls and
structures in any way.

Rule: Any algorithm component with methods relying on specific config-
urations or performance characteristics of the interrupt system must
document their requirements. Examples include methods that must exe-
cute with interrupts disabled, or that fail to work to specification if
interrupt processing overhead exceeds a certain threshold.

The reentrancy capabilities, from least restrictive to most restrictive, that a
component might posses are:

1. Interleaved execution of methods of the same component instance
is possible

2. Interleaved execution of methods of different instances of the same
component is possible

Programming

6-12 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

3. Execution of a component instance is preemptable, but not in favor
of another instance of the component, meaning the component as a
whole is only serially reusable

4. Execution of a component instance is not preemptable

5. Only one instance of the component is allowed to be created and
executed

Rule: The documentation for each algorithm component must state its
reentrancy capability, either for the component as a whole or for each
method.

Guideline: When developing an algorithm component, try to achieve at
least point 2 (found on the previous page in the list of reentrancy capabil-
ities) to allow the most flexibility in the application design.

Non-algorithm components, particularly peripheral handlers, may need to
install interrupt handlers and modify interrupt control registers in order to
function. The component’s documentation must state what changes the
component makes to the target processor’s interrupt system, when, and
under what circumstances.

Rule: Any use or modification of the processor’s interrupt system must be
fully stated in the component documentation.

In a VCSE component, only a single copy of the code—the Create and
Destroy functions and the methods—exists. In fact, this code works on
different sets of data (the instance data), allowing a component to be
timesliced or interleaved between different incarnations of itself. Obvi-
ously, if a method modifies its code to suit the instance that is executing at
that point, it loses the ability to execute other instances of itself at the
same time.

Rule: Components that employ self-modifying code must classify them-
selves in their documentation as only serially reusable.

VisualDSP++ 3.5 Component Software Engineering User’s Guide 6-13
for 16-bit Processors

VCSE Rules and Guidelines

Guideline: If at all possible, components should not use self-modifying
code since it restricts the application designer’s options in deploying the
component.

In a similar manner, components saving data in fixed memory locations,
where ‘fixed’ means not allocated by a memory allocator, are not generally
preemptable and must be documented as such.

Rule: Components saving data in fixed memory locations must classify
themselves in their documentation as only serially reusable.

Guideline: If at all possible, components should not use fixed location
data variables since it restricts the application designer’s options in deploy-
ing the component.

Processor Modes

Some of Analog Devices DSPs feature processor modes in which different
subsets of the total processor capabilities are available. Usually there is a
user mode in which all of the computational and most of the control capa-
bilities are available, and a system or supervisor mode in which the
remaining control aspects are operative. The overall decision as to which
processor modes should be in effect at each point is left to the application
designer. Non-algorithm components may need to switch modes at cer-
tain points in their processing but are required to restore the original
mode before returning to the application.

Rule: Algorithm components must not switch processor modes.

Rule: Algorithm components with methods that require a specific proces-
sor mode must document this requirement.

Rule: Non-algorithm components may alter the processor mode during
execution of a method, but must restore the original mode before return-
ing to the caller.

Packaging

6-14 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Core Peripherals

Algorithm components are presumed to be structured as ‘pure’ algo-
rithms—they perform some computation upon data supplied as
arguments and return results in specified memory locations, as described
in “IAlgorithm Interface” on page 3-14. Thus, algorithms should have no
reason to use the processor’s I/O peripherals to obtain data or to output
results. For producing debugging or tracing output, components should
use the IError mechanism described in “IError Interface” on page 3-37.

Rule: Algorithm components must not access the core peripherals.

Non-algorithm components may need to use the core peripherals; indeed
their function may be to manage access to one or more of the peripherals.
The only requirement in this circumstance is that the component docu-
mentation must list, on a method-by-method basis, which peripherals are
used and summarize how or why they are used.

Rule: The documentation for a component that accesses core peripherals
must describe how the peripherals are used.

Packaging

Name Clashes
There is no requirement that the code and data comprising a VCSE com-
ponent should be contained entirely within the source files generated by
the VIDL compiler—you, the component developer, are free to call func-
tions and reference data defined in other files. (Of course, the
corresponding object (.DOJ) files must be added to the component library
(.DLB) file that gets distributed for inclusion into client applications.)

To avoid the possibility of name clashes with other developers’ compo-
nents or with clients’ code, there is a simple naming rule: all externally
visible names created by a component developer must use the developer’s

VisualDSP++ 3.5 Component Software Engineering User’s Guide 6-15
for 16-bit Processors

VCSE Rules and Guidelines

company tag. The VIDL compiler takes care of the names of methods,
types, enumerations, and structures defined in properly specified .IDL
files:

• Developer defined filenames, C function and data variable names,
and names in Linker Definition Files (.LDF) must have a prefix
consisting of the company tag followed by an underscore.

• Externally visible C++ function, class, and data variable names
must be defined within an outer namespace whose identifier is the
company tag; further inner namespaces are acceptable.

• Assembler global names must use a prefix consisting of an under-
score, the company tag, and another underscore.

It is your responsibility to ensure inclusion of any two components into
the same application will not result in name result in name clashes. The
possibility of name clashes within the company namespace can be reduced
by ensuring that all names incorporate any embedded namespace and the
name of the component using the style of names generated by the VIDL
compiler.

Rule: You must use your company tag when naming the files, globally vis-
ible code and data names, and LDF names (sections and variables) to
ensure there are no clashes of global names between their separate
components.

Address Clashes
As a developer of a VCSE component, you have no control over the allo-
cation of memory addresses to any of the component’s code or data. The
designers of the applications into which the component is included, along
with the system linker, control the layout of code and data. Accordingly,
every VCSE component must be link-time relocatable; that is, apart from
references to memory-mapped registers, the code and initialized data must
not refer to absolute (literal) addresses, but must refer to relocatable labels.

Packaging

6-16 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Rule: No algorithm component may access code or data at absolute mem-
ory addresses.

Rule: No non-algorithm component may access code or data at absolute
memory addresses, apart from accesses to memory-mapped registers.

Memory and Processing Characteristics
If you are considering using a third party component in your application
to obtain some part of the application’s functionality, you need to know
what effect that component may have on your system’s memory and MIPS
budgets. Does it fit? Is it fast enough? In the case of multichannel data
streams, how many channels is the application able to support using this
component? To aid these calculations, a VCSE component must have its
memory and processing characteristics documented and available for
evaluation.

Memory

The minimum documentation for a component’s memory characteristics
consists of:

1. The total size of code and initialized data that gets linked into an
application using the component. Supply separate totals for archi-
tectures that differentiate between program and data memory.

2. Typical and maximum figures for the additional data memory asso-
ciated with one instance of the component, including the size of
the instance structure itself and any other working storage. If the
memory requirement is dependent on the values of parameters that
the client supplies, use the names that the parameters have in the
interface definition (VIDL file).

VisualDSP++ 3.5 Component Software Engineering User’s Guide 6-17
for 16-bit Processors

VCSE Rules and Guidelines

3. A breakdown of the totals from 1 and 2, in terms of the different
memory attributes that the component’s allocator interface defines.
For example, if the standard allocator VCSE::IMemory is used, then
a breakdown by MemoryType and MemoryLifetime is appropriate.

Rule: A component’s documentation must include at least the minimum
memory usage characteristics.

Processing

The minimum documentation for a component’s processing characteris-
tics is a list of typical and maximum cycle counts for the execution of the
Create and Destroy functions and each of the component’s methods. The
counts must be obtained from hardware or a cycle-accurate simulator, and
the source of the counts must be stated.

If a cycle count is dependent on the values of parameters which the client
supplies, the documentation must quote the names the parameters have in
the interface definition (.IDL file). If the cycle counts depend on the type
of memory allocated to any of the component’s code, static data, or
instance data, the documentation must specify which type is required for
each critical element in order to achieve the best performance.

Rule: A component’s documentation must include at least the minimum
processing cycle characteristics.

Non-memory Resource Requirements
If a component uses, or requires, some system resource other than mem-
ory, you must document these requirements. If a specific peripheral is
required (for example, a particular DMA channel), document this require-
ment as well.

Rule: A component’s documentation must list the non-memory resources
it needs.

Packaging

6-18 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Code and Data Elimination
The VisualDSP++ linker performs exclusion of functions and data areas
from builds when it can detect the code or data in question is unused.
This feature is available automatically for C/C++ programmers. Assembler
programmers should define a label consisting of a period (.), the name of
the function or variable, another period, and the letters “end” (.function-
name.end) immediately at the end of each function or data item that may
be omitted if never referred to. The macros __STARTFUNC and __ENDFUNC
available via #include VCSE.h generate the appropriate labels for the start
and end of a function.

Guideline: For assembly written components, use the VisualDSP++
linker’s features to enable exclusion of potentially not-needed code and
data, such as debugging code, from applications that include the assembly
components.

Addressing Models
The compilation systems of some DSP platforms allow a choice of
addressing model—applications with limited memory requirements can
be built in a way that minimizes code size by assuming all addresses are in
some way ‘short’ or ‘near’. Other systems support various types of memory
and allow some variability in the allocation of code and data to each mem-
ory type.

You should attempt to develop your components, which are delivered as
object code (not user-modifiable source code) as universal as possible. If
universality is not possible or imposes too great a performance or size
overhead for some class of applications, consider providing alternative ver-
sions of your components, compiled to use the different addressing
models.

Guideline: Ensure your components, as supplied in object file format, are
usable in as wide a class of addressing models as possible.

VisualDSP++ 3.5 Component Software Engineering User’s Guide A-1
for 16-bit Processors

A VCSE ASSEMBLER MACROS

This appendix lists and describes the VCSE assembly macros available to
to developers of assembler components and applications by the #include
<vcse.h> statement.

The information is presented as follows.

• “General Overview of Macro Definitions” on page A-1

• “Implementation of Macros on Blackfin Processors” on page A-9

• “Implementation of Macros on ADSP-21xx DSPs” on page A-16

General Overview of Macro Definitions
This section presents a functional summary of each of the macros avail-
able. Processor-specific information is reserved for the following sections,
where a more detailed description is given.

In some cases, the processor-specific implementation of a macro may dif-
fer from that described in this section. Please refer to the section that is
relevant to your target DSP family for further information.

General Overview of Macro Definitions

A-2 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Method Result Macros
Macros provided for constructing method result values and testing the
result values returned from method calls are listed as follows.

VCSE_MRESULT

Expands into the appropriate data definition directive when defining a
memory location to hold a method result.

MR_ICONSTRUCT(F,I)

Constructs a method result value literal.

MR_FAILURE(mr)

Checks the returned method result for failure status.

MR_SUCCESS(mr)

Checks the returned method result for success status.

__CHECK_VCSE_RESPONSE(handler)

Checks the status of the returned method result against MR_OK and calls the
handler function if different, passing the result code as the first parameter.

F Determines whether result code denotes a failure code (F=1) or otherwise (F=0).

I Specific failure or warning value.

mr Register containing method result value.

mr Register containing method result value.

handler Symbol of handler function.

VisualDSP++ 3.5 Component Software Engineering User’s Guide A-3
for 16-bit Processors

VCSE Assembler Macros

Accessing Factory Functions
Every VCSE component has three factory functions, which client applica-
tions use to create and destroy instances of the component and to obtain
an indication of the size of a component’s per-instance data structure.

__CREATOR(C)

Forms the symbol name for component C’s Create factory function.

__DESTROYER(C)

Forms the symbol name for component C’s Destroy factory function.

__SIZEOF(C)

Forms the symbol name for component C’s SizeOf factory function.

Invoking Interface Methods
The usual approach for invoking an interface method is to use the macro
the VIDL compiler generates for it in the interface header file. For exam-
ple, method Filter in an interface ADI::FILTERS::IFir would have a
macro called ADI_FILTERS_IFir_Filter(P) defined in the interface header
file. Alternatively, the following constituent elements of the above macro
call can be used separately.

C Fully qualified component name.

C Fully qualified component name.

C Fully qualified component name.

P Register holding pointer to interface.

General Overview of Macro Definitions

A-4 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

__INVOKE(P,T,M)

Invokes an interface method M for the interface of type T. Assumes that the
method’s user arguments are already set up. Uses __GET_METHOD(P,T,M)
defined in the next section.

__GET_METHOD(P,T,M)

Calculates the pointer to the method’s code and its first argument.

Function Writing Macros
The definition of a function in assembly, especially one that follows the C
run-time model, requires the use of certain directives and instruction
sequences. The directives are concerned with making the function’s name,
size, and visibility available in the generated object file; the instruction
sequences are required for setting up stack frames, saving and restoring
preserved registers, and returning function results. The following macros
are available to help with these tasks.

__STARTFUNC(Name,Visibility)

Generates the assembler directives to mark the start of an assembly written
function.

P Register holding pointer to interface.

T Fully qualified interface name.

M Method name.

P Register holding pointer to interface.

T Fully qualified interface name.

M Method name.

VisualDSP++ 3.5 Component Software Engineering User’s Guide A-5
for 16-bit Processors

VCSE Assembler Macros

__ENDFUNC(Name)

Generates the assembler directives to mark the end of an assembly written
function.

__LINK(N)

Generates a new stack frame by pushing the relevant registers on to the
stack and reserving enough space for local variables. This macro is
required if the function is a non-leaf function. It should be used in con-
junction with __EXIT or __RETURN(Value).

__PUSH(Reg)

Pushes the named register on to the run-time stack.

__POP(Reg)

Pops the run-time stack, placing the top value in to the named register.

Name Symbol name of the function. Remember to include a leading underscore
if the function is called from C or C++ code.

Visibility Determines whether the function has global (Visibility=__GLOBAL) or
local scope (Visibility=__LOCAL).

Name Symbol name of the function.

N Stack space (words) required for local variables.

Reg Valid register name.

Reg Valid register name.

General Overview of Macro Definitions

A-6 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

__ALLOCSTACK(N)

Allocates space on the run-time stack.

__FREESTACK(N)

Frees space on the run-time stack.

__arg0 to __arg9

Where the DSP architecture and instruction set allow, the stack locations
for outgoing arguments can be directly referenced using these macros.

__STORE_ARG(n,Reg)

Where the DSP architecture and instruction set disallow the implementa-
tion of the __argN macros, an alternative macro is provided. Note that use
of __STORE_ARG(n,Reg) may be less efficient than direct methods.

__EXIT

Generates code required to exit from a non-leaf function. The macro
restores the registers pushed on the stack by __LINK(N). No value is
returned.

N Stack space required.

N Stack space required.

N Argument index.

Reg Valid register name containing value to be stored.

VisualDSP++ 3.5 Component Software Engineering User’s Guide A-7
for 16-bit Processors

VCSE Assembler Macros

__LEAF_EXIT

Generates code required to exit from a leaf function.

__RETURN(Value)

Generates code required to exit from a non-leaf function and returns
Value. The prime use of the macro is to return method result values.

__LEAF_RETURN(Value)

Generates code required to exit from a leaf function and returns Value.
The prime use of the macro is to return method result values.

Miscellaneous

__LA(R,V)

Loads the register R with the address of variable V.

Value Valid value that can be used by the mechanism by which values are
returned from a function.

Value Valid value that can be used in the mechanism by which values are
returned from a function.

R Valid register that can be assigned the address of a variable.

V Variable name.

General Overview of Macro Definitions

A-8 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

__VCSE_ASM_TRACE(A1,A2)

Calls to this macro are generated by the VIDL compiler when you request
tracing code to be placed at the start and end of method bodies, but it may
be of more general use. It concatenates two string literal arguments, A1
and A2, and calls a small function in the C run-time library to write the
result to stdout.

__VCSE_PRINT_VAR(A1,A2,V)

This is another macro used by VCSE generated tracing code. It concate-
nates two string literal arguments, A1 and A2, appends a carriage control
and a line feed, and passes the result and the value V into a call of a simpli-
fied printf-like function.

A1 First string literal.

A2 Second string literal.

A1 First string literal.

A2 Second string literal.

V Value to be output.

VisualDSP++ 3.5 Component Software Engineering User’s Guide A-9
for 16-bit Processors

VCSE Assembler Macros

Implementation of Macros on Blackfin
Processors

C Run-Time Model
The macros provided within vcse_asm.h assume that the C run-time
model is implemented, which is always the case for the assembly imple-
mentation of interface methods. The macros, therefore, make use of
certain reserved registers, as described in the VisualDSP++ 3.x C/C++
Compiler and Library Manual for Blackfin Processors.

You need to take this into consideration and insert additional code if the
macros are used outside of the context of the C run-time model.

Method Result Macros
Macros provided for constructing method result values and testing the
result values returned from method calls are listed as follows.

VCSE_MRESULT

This macro expands into the appropriate data definition directive when
defining a memory location to hold a method result. On Blackfin proces-
sors, the directive is .BYTE2.

MR_ICONSTRUCT(F,I)

Use this macro to construct a method result (MRESULT) value literal, com-
bining the failure indicator F (which should be 1 if the specified result
code, I, denotes a method failure and 0 otherwise) and a specific failure or
warning code value, I (which should be a decimal number in the range 0–
255). See “MRESULT Codes” on page B-2 for further details on the con-
struction of MRESULT values.

Implementation of Macros on Blackfin Processors

A-10 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

The following code fragment is an example of how the MR_ICONSTRUCT
macro can be used.

#define warn 0

#define fail 1

#define NOT_FOUND MR_ICONSTRUCT(fail,3)

#define CREATED_NEW MR_ICONSTRUCT(warn,4)

.

.

CC = ...

R0 = NOT_FOUND;

IF CC R0 = CREATED_NEW;

RETS;

MR_FAILURE(mr) and MR_SUCCESS(mr)

These macros can be used to determine whether or not a returned method
result value represents a failure or otherwise. MR_FAILURE sets CC to 1 if mr
represents a failure code; otherwise, the macro sets CC to zero. MR_SUCCESS
does the opposite.

The following is an example of how to use the macros immediately after
every method call.

MR_FAILURE(R0)

IF CC JUMP .my_error_label;

__CHECK_VCSE_RESPONSE(handler)

This macro provides an alternative way to check whether a method call is
successful. Assuming the result code is still in R0, the macro compares the
result with the predefined value MR_OK. If the values are not equal (the
method reported either a failure or a warning), then the user supplied
function handler is called with the result code in R0.

VisualDSP++ 3.5 Component Software Engineering User’s Guide A-11
for 16-bit Processors

VCSE Assembler Macros

Accessing Factory Functions
Every VCSE component has three factory functions, which client applica-
tions use to create and destroy instances of the component and to obtain
an indication of the size of a component’s per-instance data structure.
Each of the macros __CREATOR(C), __DESTROYER(C), and __SIZEOF(C)
takes the fully qualified name of a VCSE component and expands it into
the name of the component’s Create, Destroy, and Sizeof functions,
respectively.

Taking __CREATOR as an example:

#define FIR ADI_FILTERS_CFir /* fully qualified component name */

.

.

/* load up Create's arguments */

...

call __CREATOR(FIR)

MR_FAILURE(R0)

IF CC JUMP .no_fir;

If at a later time a different FIR component is to be used in the applica-
tion, all that needs to be changed is the #define of FIR.

Invoking Interface Methods
The usual approach for invoking an interface method is to use the macro
the VIDL compiler generates for it in the interface header file. For exam-
ple, method Filter in an interface ADI::FILTERS::IFir would have a
macro called ADI_FILTERS_IFir_Filter(P) defined in the interface header
file <ADI_FILTERS_IFilter.h>. To invoke the method, use the following
code.

/* load up Filter's arguments into R1, R2 and stack slots */
/* ... */

/* and then invoke Filter */

Implementation of Macros on Blackfin Processors

A-12 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

ADI_FILTERS_IFir_Filter(P)

MR_FAILURE(R0)

IF CC JUMP .error_3;

In the macro call, P is either the name of the register containing the inter-
face pointer or an addressing expression, such as [FP–24] or [P3+4]), for the
location where it is stored.

Each of the generated method call macros ultimately uses a macro called
__GET_METHOD(P,T,M) to obtain a pointer to the method’s code and to cal-
culate its first argument. In situations where the same method of the same
interface pointer is being called repeatedly, it may be appropriate for users
to call __GET_METHOD directly, save the code pointer and argument value,
and use these values to call the method subsequently.

The P parameter to __GET_METHOD is either the name of the register hold-
ing the interface pointer whose method is required, or an addressing
expression from which it can be loaded. The T parameter is the name of
the interface, and M is the name of the required method. The macro puts
the method’s code pointer into register P0 and its required first argument
into R0. The macro also overwrites R3 and P1.

Instead of using the ADI_FILTERS_IFir_Filter macro to call the Filter
method, as shown in the previous example, an application could use
__GET_METHOD:

/* outside main loop */

__GET_METHOD(P,ADI_FILTERS_IFir,Filter)

P3 = P0; /* save method code address */

R7 = R0; /* save method's first argument */

.

.

/* ... inside main loop */

/* load up Filter's arguments into R1, R2, and stack slots

/* ...

/* then load up saved first argument */

VisualDSP++ 3.5 Component Software Engineering User’s Guide A-13
for 16-bit Processors

VCSE Assembler Macros

R0 = R7;

/* and call the method */
call (P3);

MR_FAILURE(R0)

IF CC JUMP .error_8;

Function Writing Macros
The definition of a function in assembly, especially one that follows the C
run-time model, requires the use of certain directives and instruction
sequences. The directives are concerned with making the function’s name,
size, and visibility available in the generated object file. The instruction
sequences are required for setting up stack frames, saving and restoring
preserved registers, and returning function results. The following macros
are available to help with these tasks.

__STARTFUNC(Name,Visibility) and __ENDFUNC(Name)

These two macros generate the assembler directives, which mark the start
and the end of an assembly written function. Because the Name argument is
used ‘as is’, it is important to include a leading underscore if the function
is to be called from C or C++ code.

The Visibility argument to __STARTFUNC should be one of the symbols
__GLOBAL or __LOCAL, depending on whether you want the function name
to be visible from outside this file.

__LINK(N)

This macro is an alternative name for the Blackfin processor link instruc-
tion, which creates a new stack frame by pushing the return address and
old FP on the stack and decrementing SP by the requested number of bytes
to allocate space for the function’s on-stack variables.

Implementation of Macros on Blackfin Processors

A-14 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

__PUSH(Reg) and __POP(Reg)

The __PUSH macro generates an instruction to push Reg onto the run-time
stack. The actual argument supplied for Reg can be anything that is valid
for a Blackfin processor PUSH or PUSH_MULTIPLE instruction, such as a reg-
ister name, a register range in parentheses (__PUSH((R7:5))), or a comma
separated pair of ranges (__PUSH((R7:5,P5:4))).

The __POP macro accepts a similar argument to __PUSH and generates the
appropriate Blackfin processor pop or pop_multiple instruction.

__ALLOCSTACK(N) and __FREESTACK(N)

The first macro generates an instruction to adjust SP downwards by N
bytes to create new space on the run-time stack. N must be a multiple of
four with a maximum value of 60. Use __ALLOCSTACK to create the stack
slots needed for holding the outgoing arguments of calls made from a
function. The __FREESTACK macro adjusts SP in the opposite direction in
order to free up temporarily allocated stack space.

__arg0 to __arg9

The C run-time model includes rules defining where a function must
place the arguments for a function it calls. Often, these passing places are
split between registers and slots on the stack; on Blackfin processors, for
instance, the first three arguments are passed in R0–R2 and the remainder
on the stack.

The __argN macros expand to addressing expressions, which give the cor-
rect location for the first ten arguments. The __arg0, __arg1, and __arg2
macros give R0, R1, and R2 (respectively), while __arg3 gives [SP+12],
__arg4 gives [SP+16], and so on.

VisualDSP++ 3.5 Component Software Engineering User’s Guide A-15
for 16-bit Processors

VCSE Assembler Macros

__EXIT and __LEAF_EXIT

These macros generate the appropriate instructions for exiting non-leaf
and leaf functions, respectively. A leaf function is one that calls no other
functions and does not issue a link instruction in its prolog. Both macros
require the effects of any __PUSH and __ALLOCSTACK calls to be undone first
by calling corresponding __POP and __FREESTACK macros.

__RETURN(Value) and __LEAF_RETURN(Value)

These macros generate instructions to assign Value to the result register R0
and exit the function (using __EXIT or __LEAF_EXIT as appropriate). The
actual argument used for Value can be anything that can be directly
assigned to R0, such as another register, an immediate value, or the con-
tents of a location (for example, [P1 + 4] or B[P3 + 5](X)).

Miscellaneous

__LA(R,V)

This macro is a shorthand for the two instructions, R.H = V; R.L = V;. Its
main use is to load the address of a variable into a register.

__VCSE_ASM_TRACE(A1,A2)

The VIDL compiler calls this macro when you request tracing code to be
inserted at the start and end of method bodies, but it may be of more gen-
eral use. It concatenates two string literal arguments, A1 and A2, and calls a
small function in the C run-time library, _Write, to write the result to
stdout. The macro preserves RETS, R7–R0, and P5–P0.

Implementation of Macros on ADSP-21xx DSPs

A-16 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

__VCSE_PRINT_VAR(A1,A2,V)

This is another macro used by the VCSE generated tracing code. It con-
catenates two string literal arguments, A1 and A2, appends a carriage
control and a line feed, and passes the result and the value V into a call of a
simplified printf-like function.

The V argument must be assignable to register R1 (another register, an
integer literal, or an addressing expression, such as W[P3 + 12](Z}), while
the concatenation of A1 and A2 makes up a format specification for print-
ing V. The macro preserves the same registers as __VCSE_ASM_TRACE does.

Implementation of Macros on
ADSP-21xx DSPs

C Run-Time Model
The macros provided within vcse_asm.h assume that the C run-time
model is implemented, which is always the case for the assembly imple-
mentation of interface methods. The macros, therefore, make use of
certain reserved registers, as given in Table A-1.

Table A-1. Reserved Registers for ADSP-21xx DSP C Run-time Model

 ADSP-218x DSPs ADSP-219x DSPs

Register Use Register Use

I4 Stack pointer (SP) I4 Stack pointer (SP)

M4 Frame pointer (FP) I5 Frame pointer (FP)

M7 –1 M5 –1

M1 +1

VisualDSP++ 3.5 Component Software Engineering User’s Guide A-17
for 16-bit Processors

VCSE Assembler Macros

You need to take this into consideration and insert additional code if the
macros are used outside of the context of the C run-time model.

Method Result Macros
Macros provided for constructing method result values and testing the
result values returned from method calls are listed as follows.

VCSE_MRESULT

This macro expands into the appropriate data definition directive when
defining a memory location to hold a method result. On ADSP-21xx
DSPs, this is simply .VAR.

MR_ICONSTRUCT(F,I)

Use this macro to construct a method result value literal (MRESULT), com-
bining the failure indicator F (which should be 1 if the specified result
code, I, denotes a method failure and 0 otherwise) and a specific failure or
warning code value, I (which should be a decimal number in the range 0–
255). See “MRESULT Codes” on page B-2 for further details on the con-
struction of MRESULT values.

The following code fragment shows one way to use the MR_ICONSTRUCT
macro.

#define warn 0

#define fail 1

#define NOT_FOUND MR_ICONSTRUCT(fail,3)

M2 0

M6 0

Table A-1. Reserved Registers for ADSP-21xx DSP C Run-time Model

 ADSP-218x DSPs ADSP-219x DSPs

Implementation of Macros on ADSP-21xx DSPs

A-18 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

#define CREATED_NEW MR_ICONSTRUCT(warn,4)

.

.

AR = ...

AX1 = NOT_FOUND;

IF NE JUMP .end_func;

AX1 = CREATED_NEW;

.END_FUNC:

RTS;

MR_FAILURE(mr) and MR_SUCCESS(mr)

These macros can be used to determine whether or not a returned method
result value represents a failure or otherwise. MR_FAILURE sets the upper-
most bit (15) of AF to 1 if mr represents a failure code, otherwise it sets it to
zero. Similarly, MR_SUCCESS sets the uppermost bit of AF to 1 if mr repre-
sents a success code, and zero otherwise. The MR_SUCCESS(mr) macro also
modifies AR and SR0.

The following is an example of how to use the macros immediately after
every method call.

MR_FAILURE(AX1)

IF NE JUMP .my_error_label;

__CHECK_VCSE_RESPONSE(handler)

This macro provides an alternative way to check whether a method call is
successful. Assuming the result code is still in AX1, the macro compares the
result with the predefined value MR_OK. If the values are not equal (the
method reports either a failure or a warning), then the user supplied func-
tion handler is called with the result code in AX1 pushed on to the
outgoing argument stack. The macro modifies AR.

VisualDSP++ 3.5 Component Software Engineering User’s Guide A-19
for 16-bit Processors

VCSE Assembler Macros

Accessing Factory Functions
Every VCSE component has three factory functions, which client applica-
tions use to create and destroy instances of the component and to obtain
an indication of the size of a component’s per-instance data structure.
Each of the macros __CREATOR(C), __DESTROYER(C), and __SIZEOF(C)
takes the fully qualified name of a VCSE component and expands it into
the name of the component’s Create, Destroy, and Sizeof functions,
respectively.

Taking __CREATOR as an example:

#define FIR ADI_FILTERS_CFir /*fully qualified component name */

.

.

/* load up Create's arguments */

...

call __CREATOR(FIR)

MR_FAILURE(AX1)

IF NE JUMP .no_fir;

If at a later time a different FIR component is to be used in the applica-
tion, all that needs to be changed is the #define of FIR.

Invoking Interface Methods
The usual approach for invoking an interface method is to use the macro
the VIDL compiler generates for it in the interface header file. For exam-
ple, method Filter in an interface ADI::FILTERS::IFir has a macro
ADI_FILTERS_IFir_Filter(P) defined in the interface header file
<ADI_FILTERS_IFilter.h>. To invoke the method, use the following code.

/* load up Filter's arguments into the stack slots */

/* ... */

/* and then invoke Filter */

ADI_FILTERS_IFir_Filter(P)

Implementation of Macros on ADSP-21xx DSPs

A-20 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

MR_FAILURE(AX1)

IF NE JUMP .error_3;

In the macro call, P is the name of the register containing the interface
pointer.

Each of the generated method call macros ultimately uses a macro called
__GET_METHOD(P,T,M) to obtain a pointer to the method’s code and to cal-
culate its first argument. In situations where the same method of the same
interface pointer is being called repeatedly, it may be appropriate for users
to call __GET_METHOD directly, save the code pointer and argument value,
and use these values to call the method subsequently.

The P parameter to __GET_METHOD is the name of the register holding the
interface pointer whose method is required. The T parameter is the name
of the interface, and M is the name of the required method.

On ADSP-218x DSPs, the macro puts the method’s code pointer into reg-
ister I6 and its required first argument into AR. The macro also overwrites
AX0, AY1, and I0.

VisualDSP++ 3.5 Component Software Engineering User’s Guide A-21
for 16-bit Processors

VCSE Assembler Macros

On ADSP-219x DSPs, the address bus is 24 bits wide, so two registers are
required to hold the method’s code pointer. The macro puts the lower 16
bits of the pointer into register I1, the upper 8 bits of the pointer into reg-
ister IJPG, and the method’s required first argument into AR. The macro
also overwrites AX0, AY1, and I0.

Instead of using the ADI_FILTERS_IFir_Filter macro to call the Filter
method, as shown in the code example, an application can use the
__GET_METHOD macro (see Table A-2 on page A-21).

Table A-2. __Get_Method Macros

ADSP-218x DSPs ADSP-219x DSPs

/* outside main loop */
__GET_METHOD(

P,ADI_FILTERS_IFir, Filter)
SE = I6; /* save method code address */
SI = AR; /* save method's first argu-
ment */
/* ... inside main loop */
/* load up Filter's arguments into
stack slots */
/* then load up saved first argument
*/
__PUSH(AR)
/* load up the method’s address */
I6 = SE;
/* and call the method */
call (I6);
MR_FAILURE(AX1)
IF NE JUMP .error_8;

/* outside main loop */
__GET_METHOD(

P,ADI_FILTERS_IFir, Filter)
SE = I1; /* save method code address */
MX0=IJPG;
SI = AR; /* save method's first argument
*/
/* ... inside main loop */
/* load up Filter's arguments into stack
slots */
/* load up saved first argument */
__PUSH(AR)
/* load up the method’s address and the
saved first argument, call the method */
I1 = SE;
IJPG=MX0;
call (I1) (DB);
__PUSH(AR)
NOP;
MR_FAILURE(AX1)
IF NE JUMP .error_8;

Implementation of Macros on ADSP-21xx DSPs

A-22 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Function Writing Macros
The definition of a function in assembly, especially one that follows the C
run-time model, requires the use of certain directives and instruction
sequences. The directives are concerned with making the function’s name,
size, and visibility available in the generated object file. The instruction
sequences are required for setting up stack frames, saving and restoring
preserved registers, and returning function results. The following macros
are available to help with these tasks.

__STARTFUNC(Name,Visibility) and __ENDFUNC(Name)

These two macros generate the assembler directives, which mark the start
and the end of an assembly written function. The Name argument is used
‘as is’; it is important to include a leading underscore if the function is to
be called from C or C++ code.

The Visibility argument to __STARTFUNC should be __GLOBAL or
__LOCAL, depending on whether you want the function name to be visible
from outside the file.

__LINK(N)

This macro creates a new stack frame by pushing the old frame pointer FP
and the return address on the stack and decrementing the stack pointer SP
by the requested number of bytes to allocate space for the function’s
on-stack variables. SI and M5 are modified by the __LINK(N) macro (on
ADSP-218x DSPs only).

__PUSH(Reg) and __POP(Reg)

The __PUSH macro generates an instruction to push Reg onto the run-time
stack. The actual argument supplied for Reg must be a Dreg.

VisualDSP++ 3.5 Component Software Engineering User’s Guide A-23
for 16-bit Processors

VCSE Assembler Macros

The __POP macro accepts a similar argument to __PUSH and generates the
appropriate code to pop the run-time stack. I1 is modified by the __POP
macro (on ADSP-218x DSPs only).

__ALLOCSTACK(N) and __FREESTACK(N)

The first macro generates an instruction to adjust SP downwards by N
words to create new space on the run-time stack. Use __ALLOCSTACK to cre-
ate the stack slots needed for holding the outgoing arguments of calls
made from a function. __FREESTACK adjusts SP in the opposite direction in
order to free up temporarily allocated stack space. On ADSP-218x DSPs,
M5 is modified by both macros (on ADSP-218x DSPs only).

__arg0 to __arg9 (ADSP-219x DSPs only)

The C run-time model includes rules defining where a function must
place the arguments for a function it calls. For ADSP-219x DSPs, these
passing places are slots on the run-time stack.

The __argN macros expand to addressing expressions, which give the cor-
rect location for the first ten arguments. The __arg0 macro gives
DM(SP+1), __arg1 gives DM(SP+2), and so on.

__STORE_ARG(n,Reg) (ADSP-218x only)

The pre-modify-offset mode of DAG addressing, used in the above __argN
macros on ADSP-219x DSP architectures, is not available on the
ADSP-218x DSPs. It is, therefore, not possible to construct these macros
using ADSP-218x DSP assembler. The alternative macro,
__STORE_ARG(n,Reg), which results in a complete DAG move instruction, is
thus provided for consistency. However, use of __STORE_ARG(n,Reg) for

Implementation of Macros on ADSP-21xx DSPs

A-24 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

multiple arguments is not recommended. A better way is either to use the
__PUSH macro for each argument in reverse order or, if the arguments must
be added in ascending order, apply the following code example.

__ALLOCSTACK(2)

I0 = I4;

MODIFY(I0,M1); /* I4 now points to the first argument slot */
AX0 = ...;

DM(I0+=M1) = AX0; /* Store first argument */

AX0 = ...;

DM(I0+=M1) = AX0; /* Store second argument */

call _my_func;

__FREESTACK(2)

If, in the above example, I0 is not available, then the run-time stack can
be used to store its value, but it must be pushed prior to __ALLOCSTACK(2)
and popped after __FREESTACK(2).

The __STORE_ARG(n,Reg) macro modifies I1 and M3.

__EXIT and __LEAF_EXIT

These macros generate the appropriate instructions for exiting non-leaf
and leaf functions, respectively. A leaf function is one that calls no other
functions and does not store the linkage information in its prolog. Both
macros require the effects of any __PUSH and __ALLOCSTACK calls to be
undone first by calling the corresponding __POP and __FREESTACK macros.

Additionally, if __LINK(N) with N>0 has been used in the prolog, then
__FREESTACK(N) must be used prior to the use of __EXIT or
__RETURN(Value).

The __EXIT macro modifies I6 and SI (on ADSP-218x DSPs only).

VisualDSP++ 3.5 Component Software Engineering User’s Guide A-25
for 16-bit Processors

VCSE Assembler Macros

__RETURN(Value) and __LEAF_RETURN(Value)

These macros generate instructions to assign Value to the result register
AX1 and exit the function (using __EXIT or __LEAF_EXIT as appropriate).
The actual argument used for Value can be anything that can be directly
assigned to AX1, such as another register, an immediate value, or the con-
tents of a location (for example, DM(I0,M0)).

Miscellaneous Macros

__LA(R,V)

This macro is provided for consistency with the macros provided for other
DSP architectures. For ADSP-21xx DSPs, it simply translates to R=V;. Use
the macro to load the address of a variable into a register (for example,
__LA(AX0,_my_var)).

__VCSE_ASM_TRACE(A1,A2)

Calls to this macro are generated by the VIDL compiler when you request
tracing code to be placed at the start and end of method bodies, but it may
be of more general use. It concatenates its two string literal arguments, A1
and A2, and calls a simplified printf-like function to write the result to
stdout. Please note that AX1 is used in the macro, and other registers may
be clobbered within the printf-like function.

__VCSE_PRINT_VAR(A1,A2,V)

This is another macro used by the VCSE generated tracing code. It con-
catenates two string literal arguments, A1 and A2, appends a carriage
control and a line feed, and passes the result and the value V to a simplified
printf-like function.

Implementation of Macros on ADSP-21xx DSPs

A-26 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

The V argument must be assignable to register AX1, while the concatena-
tion of A1 and A2 must make up the format specification by which V is
output, for example:

__VCSE_PRINT_VAR(‘ADI::FILTERS::Ifir::Filter’,’ method result is

%x’,AR)

Please refer to __VCSE_ASM_TRACE(A1,A2) for comments concerning
registers usage.

VisualDSP++ 3.5 Component Software Engineering User’s Guide B-1
for 16-bit Processors

B VCSE MRESULT CODES

This appendix lists and describes the defined MSRESULT codes.

The information is presented as follows.

• “MRESULT Structure” on page B-1

• “MRESULT Codes” on page B-2

MRESULT Structure
An MRESULT is defined as a signed short integer on each DSP platform and,
therefore, is a 16-bit signed quantity.

The high order bit (bit 15) of an MRESULT indicates whether the return
value represents success or failure. If set to zero, the value indicates suc-
cess. If set to one, it indicates failure. The macros MR_SUCCESS and
MR_FAILURE can be also used to test for success or failure.

The next seven bits (bit 14 to bit 8) are reserved for VCSE defined result
codes. The low order eight bits (bit 7 to bit 0) are used for interface spe-
cific result codes.

Bit 15 14–8 7–0

Value F vcode icode

MRESULT Codes

B-2 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

The interface specific field icode is set to zero for all VCSE defined result
codes. Similarly, the VCSE defined result field vcode should be zero for all
interface specific results.

The macro MR_VCODE can be used to access the VCSE defined field.

The macro MR_ICODE can be used to access the interface specific field.

MRESULT Codes
Table B-1 lists and briefly describes the MRESULT codes.

Table B-1. VCSE MRESULT Codes

Code Description

MR_OK (0x0000) Indicates the VCSE function or method executed
without failure.

MR_FAILED (0x8000) Indicates the VCSE function or method detects a
failure, which does not have a specific result code
value.

MR_NOT_SUPPORTED (0x8100) Indicates the underlying component does not
implement the requested interface. The code is
returned by a GetInterface method.

MR_NO_MEMORY (0x8200) Indicates the Allocate method of the IMemory
interface does not have sufficient available memory
to satisfy a memory allocation request.

MR_NO_AGGREGATION (0x8300) Indicates an attempt is made to aggregate a compo-
nent that does not support aggregation.

MR_BAD_AGGREGATION (0x8400) Indicates the requested interface is not
VCSE::IBase. The code is returned by a compo-
nent’s Create function when it is called to create
an instance for aggregation into another compo-
nent.

VisualDSP++ 3.5 Component Software Engineering User’s Guide B-3
for 16-bit Processors

VCSE MRESULT Codes

MR_BAD_ALIGNMENT (0x8500) Indicates the MemRequest struct passed to the
Allocate method of the IMemory interface has a
bad value for the Alignment member.

MR_BAD_MEMTYPE (0x8600) Indicates the MemRequest struct passed to the
Allocate method of the IMemory interface has a
bad value for the TypeFlags member.

MR_BAD_MEMLIFE (0x8700) Indicates the MemRequest struct passed to the
Allocate method of the IMemory interface has a
bad value for the LifetimeFlags member.

MR_BAD_CONTEXT (0x8800) Indicates the MemRequest struct passed to the
Allocate method of the IMemory interface has a
bad value for the Context member.

MR_BAD_MEMBANK (0x8900) Indicates the MemRequest struct passed to the
Allocate method of the IMemory interface has a
bad value for the BankName member.

MR_BAD_HANDLE (0x8A00) Indicates an invalid Token value is passed to the
Allocate and Free methods of a component that
implements IMemory.

MR_NOT_COMPLETED (0x8B00) Indicates the called function or method did not
complete its processing. It may have reported a spe-
cific error by other means, such as an IError inter-
face. This is a general result code.

MR_NOT_ALLOCATED_MEM (0x8C00) Indicates the Free method of an IMemory instance
is asked to free memory it did not allocate.

MR_INV_PARAM (0x8D00) Indicates an invalid value for a method argument is
not covered by some interface specific result code.
This is a general result code.

MR_BAD_IFCE_PTR (0x8E00) Indicates a NULL interface pointer is passed to a
component’s Destroy function.

MR_SINGLETON_EXISTS (0x8F00) Indicates an attempt made to create more than one
instance of a [singleton] component. The code
is returned by the Create function.

Table B-1. VCSE MRESULT Codes (Cont’d)

Code Description

MRESULT Codes

B-4 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

MR_BAD_STACK_PTR (0x9000) Indicates that the stack pointer was invalid when a
method was invoked.

MR_DSR_REQUIRED (0x9100) Indicates that the AnalyseInterrupt method
requires that the ProcessInterrupt method be
invoked subsequently to process an interrupt com-
pletely.

MR_NO_RESOURCES (0x9200) Indicates that a method or a component failed to
allocate sufficient resources (such as memory) to
enable it to function correctly.

Table B-1. VCSE MRESULT Codes (Cont’d)

Code Description

VisualDSP++ 3.5 Component Software Engineering User’s Guide C-1
for 16-bit Processors

C VCSE UTILITIES

This appendix describes the VCSE utilities in detail.

vcse_enforce
The vcse_enforce utility can be used to enforce the VCSE naming rules
for both globally defined variables and section names within a component
library. The vcse_enforce utility scans all the object modules in the
library to determine all the globally defined names in the library and to
collect all the sections names that are defined in the modules. The utility
checks to see if each of the names is prefixed with the component name. If
any name is not properly prefixed, each occurrence of the name in each of
the object modules is consistently modified with the correct prefix to
ensure that the name is unique within the library. For example if the name
of the component is ADI::TOOLS::CMemory, each globally defined name is
checked to ensure that it is prefixed with _ADI_TOOLS_CMemory_ and each
nonstandard section name is prefixed with ADI_TOOLS_CMemory_. If neces-
sary the corresponding prefix is added to each name.

If any changes to an object within the library are required, the library is
updated “in place”.

The general format for invoking the vcse_enforce utility is as shown
below.

vcse_enforce [-M] [-MM] [-verbose] [-no_update] [-report] [-help]
[-obfuscate] [-names name_control_file] [-cname component_name]

[-add library_dlb] component_lib.dlb

vcse_enforce

C-2 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

The significance of each of the options is described in the sections that
follow.

-add library.dlb
The contents of a library file (library_dlb) specified by the -add options
will be merged the contents of the specified component library. The util-
ity processes the contents of the library as if it were included in the
supplied component library. The –add option can appear more than once
if more than one library file’s contents are to be merged in. If the name of
an object file in one of the additional libraries matches the name of an
object file in the component library, the object file in the component is
overwritten with the contents from the additional library.

No changes are made to any of the library files specified by the –add
option. Only the object files in the merged component library have name
changes applied.

Attempts to rerun the vcse_enforce utility on an already-processed
component library, when –add has been used to merge the contents
of one or more libraries, may be unsuccessful. Regenerate the con-
tents of the base component library before processing a second time
when using vcse_enforce and –add together.

-cname component_name
By default the vcse_enforce utility determines the name of the compo-
nent from the name of the supplied component library. The –cname
option can be used to specify the actual name for the component. The ele-
ments of the component name must be separated by ::.

-help
The -help option produces a brief usage summary of the options sup-
ported by the utility.

VisualDSP++ 3.5 Component Software Engineering User’s Guide C-3
for 16-bit Processors

VCSE Utilities

-M
The -M option generates a dependency list showing the input files upon
which the updated component library is dependent. It does not check or
update the component library.

-MM
The -MM option generates a dependency list showing the input files upon
which the updated component library is dependent. It then checks and
updates the component library appropriately.

-names name_control_file
The name control file can be used to modify the processing of each of the
names in the library encountered by the utility. The format and use of the
name control files is described in “Name Control File” on page C-5.

-no_update
The –no_update option instructs the utility to scan the library to deter-
mine and report on the changes it would make. Using this option
suppresses the actual update of the library function.

-obfuscate
The -obfuscate option should obfuscate any symbol names to which it
adds a prefix. It also prefixes any symbol names. When this option is not
used, the original names of all global symbols are simply prefixed but not
hidden.

vcse_enforce

C-4 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

-report
The –report option instructs the utility to produce a summary listing
showing the names of each object module that needs to be updated. The
–report option causes the utility to generate a summary showing the sym-
bol and section names changes that will be made within the library.

-verbose
The –verbose option causes the utility to generate a report detailing each
name change that is made to each file.

Operation of the Utility
The vcse_enforce utility scans each of the object files in the library look-
ing for any globally-defined symbol names that are not prefixed with the
prefix corresponding to the component name. If any such names are
found, then the utility updates the object files in the library. As a result,
the definition and any external references to the name are changed to the
appropriately prefixed name.

No changes are made if the global definition of the name is marked
as being WEAK, since all GUID definitions are weak symbols that are
globally defined.

Any section names that are marked as to be loaded with the program are
also checked to ensure that any nonstandard section names are properly
prefixed. The standard section names that the utility recognizes are shown
in Table C-1.

By default the utility determines the name of the component from the
name of the supplied library file. The utility examines the filename and
replaces each _ with :: to form the full component name. For example, if
the name of the supplied library is ADI_TOOLS_CSample.dlb then the
default name for the component is ADI::TOOLS::CSample.

VisualDSP++ 3.5 Component Software Engineering User’s Guide C-5
for 16-bit Processors

VCSE Utilities

Name Control File
The name control file enables developers to control how names are to be
processed. The control file can specify that a name not be changed, or that
a name should be changed to a specified name, or that a normally pro-
tected name be prefixed with the component name prefix.

Each line of the name control file contains a single name and a definition
of how the name is to be processed. The names in the control file can be
specified as either symbol or section names. A line containing [symbol]
indicates that the following lines contain the names of global symbols. A
line containing [section] indicates that the following lines contain the
names of sections. A line containing [symbol] or [section] must be present
before any names are encountered.

 A line containing a name can be in one of three formats.

Table C-1. Standard Section Names

Architecture Section Names

Blackfin program
data1
constdata
voldata
cplb
ctor

218x program
data1
data2

219x program
data1
data2
ctor
ctor_end

vcse_enforce

C-6 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

name

A name by itself implies that the specified name should not be modified
even if the name is not properly prefixed.

name=newname

In this case any occurrence of the specified name should be changed to the
supplied newname whenever it occurs.

name=

In this case, the supplied name is a name that is normally protected from
being prefixed (a standard section name for example). This line specifies
that each occurrence of the name must be prefixed with the appropriate
component prefix.

Blanks before or after any of the names are ignored but embedded blanks
are preserved. The occurrence of a ; or a / on a line indicates that the sep-
arator and any following text are comments and can be ignored.

The names used by in the objects are ELF symbol names. Any C generated
names need to be prefixed with an _ character when used within the name
control file.

In the example of a name control file below, the comments indicate how
each of the names is to be dealt with.

[symbol]

sendto
_closesocket = _SocketClose

; name is not to be changed
 ; the name _closesocket is always to be
 ; changed to _SocketClose

[section]

data1= / the standard section name data1 is to
/ be prefixed with the component prefix

VisualDSP++ 3.5 Component Software Engineering User’s Guide C-7
for 16-bit Processors

VCSE Utilities

vcse_sizer
The vcse_sizer utility can be used to determine the total size of each of
the sections that are defined in the modules in a library. When this utility
is used, it can also determine the size of the instance data for a component.
The utility accumulates the size of each section from all the object files in
the supplied library. By default the size information is generated as an
HTML table to simplify including it in the component documentation. A
description file can also be supplied to allow a description for each section
to be automatically included in the generated HTML. The size for each
section is reported in bytes.

vcse_sizer [-text] [-help][-desc desc_filename
[-cname component_name] component_lib.dlb]

The significance of each of the options is described in the sections that
follow.

-cname component_name
By default the utility determines the name of the component from the
name of the supplied component library. The –cname option can be used
to specify the actual name for the component. The elements of the com-
ponent name must be separated by ::.

-desc desc_filename
The description file can be used to supply a description for each section.
The format and use of the description file is described in “Description
File” on page C-8.

vcse_sizer

C-8 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

-help
The -help option produces a brief usage summary of the options sup-
ported by the utility.

-text
The -text option requests that the generated size information is output as
plain text rather than as HTML text. The information in this case is gen-
erated as comma-separated variable information with a separate record for
each section.

By default the utility determines the name of the component from the
name of the supplied library file. The utility examines the filename and
replaces each _ with :: to form the full component name. For example, if
the name of the supplied library is ADI_TOOLS_CSample.dlb then the
default name for the component would be ADI::TOOLS::CSample.

Description File
The description file consists of a series of entries each of which starts with
a section name enclosed in square brackets immediately followed by the
description for the section. The description can be HTML text and can be
written over multiple lines, if necessary.

Any text encountered before the first section name is ignored.

A sample description file is shown below

[[program]] This section holds all the code generated by the com-
piler.

VisualDSP++ 3.5 Component Software Engineering User’s Guide C-9
for 16-bit Processors

VCSE Utilities

vcse_packager
The vcse_packager utility can be used to automatically package a compo-
nent using the specified component manifest file. Optionally, the
packaged component can be installed on the system. The packager can
also be used to uninstall a component.

vcse_packager [-install]
[-package package_filename] manifest.xml

OR

vcse_packager [-uninstall] component_uuid

When the vcse_package utility is used, any existing package file is auto-
matically overwritten. The default name of the package file is derived from
the name of the manifest file with its file extension replaced by the .vcp
file extension. When a component is packaged its unique user identifier
(UUID) is displayed.

The significance of each of the options are described in the sections that
follow.

-install
The -install option requests that the generated package should be auto-
matically installed on the current system. Any previous installation will be
overwritten with the contents of the newly generated package.

[[data1]] The data section, data1, is where the compiler puts glo-
bal and static data in memory.

[[[constdata]]] The const data section holds all the data that was marked
as “const”.

vcse_packager

C-10 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

-package
If present, the -package option requests that the generated package file
should be given package_filename as its name.

-uninstall
The -uninstall option requests that the component identified by the
supplied UUID be uninstalled from the current system.

VisualDSP++ 3.5 Component Software Engineering User’s Guide D-1
for 16-bit Processors

D PCC — AN EXAMPLE OF
VCSE INTERFACE DESIGN

VCSE can be used to various degrees to aid the design and implementa-
tion of application programs, from single interface/single component
arrangements covering very specific DSP algorithms to large interface
hierarchies controlling much of an application’s processing. This appendix
aims in between these extremes, since it describes some aspects of the
design of a set of interfaces intended to ease the use of the system periph-
eral set on one of Analog Devices processor families.

The description briefly introduces the interface set, describes the motiva-
tion for its creation, and defines its scope. Additional detail about the set
as a whole and some of the individual interfaces is then supplied, followed
by a description of how components that implement the interfaces are
built and used. The material is contained in the following sections.

• “Introduction” on page D-2

• “The Interfaces—Detailed Descriptions” on page D-4

• “Implementing a PCC Component” on page D-13

• “Using PCC Components” on page D-15

VIDL files containing the VCSE interfaces mentioned here are available
from the VCSE web site, and can be downloaded using the VCSE Com-
ponent Manager, which is integrated with VisualDSP. The interface files
are extensively documented using VCSE’s auto-doc feature and contain
more detailed information than is included in this appendix. Also avail-
able are several example VCSE components that implement some of the
interfaces for various members of the Blackfin processor family.

Introduction

D-2 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Introduction
This appendix describes some design aspects for a set of VCSE interfaces,
referred to as the Peripheral Control Components (PCC) interfaces. The
PCC components provide application designers and programmers with
control code for Blackfin peripherals. The components are simple to use
(and to re-use) in demonstration programs and algorithm test beds. The
interfaces are designed to be extensible so that control components for
external peripherals can be developed quickly and compliment those inter-
faces that control the system peripherals. No specific application
organization (stand-alone, VDK tasks, Linux processes, and so on) is
implied or required.

Motivation
For marketing or educational purposes developers often need to produce
programs that are not fully developed products, but which nevertheless
perform some useful function. Such a program can, for example, be
designed to accept a stream of encoded audio, decode it in real time, and
play the results through a codec chip. The middle step, decoding the
stream correctly in a timely manner, should be the focus of the project and
take most of the development effort. Often, however, considerable time
must be spent on developing code to control the on-chip and off-chip
peripherals involved in data acquisition and disposal, or in modifying such
code designed for a different, and differently-organized, program.

Similarly, design engineers may want to develop simple test bed programs
into which they can drop their core algorithms. Afterwards, they need to
run these algorithms using representative data in order to characterize
their performance and memory requirements. The focus at this point is on
how the algorithms perform and whether the signal processing features of
the processor are being used to maximum effect – data throughput consid-

VisualDSP++ 3.5 Component Software Engineering User’s Guide D-3
for 16-bit Processors

PCC — An Example of VCSE Interface Design

erations come later, but in the meantime a simple-to-use way of getting
the data into and out of the processor reasonably efficiently and without
much development effort is all that is required.

This appendix describes some aspects of a design for a set of VCSE inter-
faces that encapsulates into a small number of methods and structures the
common modes of use of most of the system peripherals found in Analog
Devices Blackfin processors, such as SPORT, SPI, UART, and so on.
These interfaces, coupled with a set of components that implement them,
offer a common framework for building a variety of programs.

Scope
Because of the nature of the topic this appendix deals exclusively with one
family of processors – Blackfin – and occasionally with individual mem-
bers of that family. PCC interfaces and components developed for the
other processor families on which VCSE is implemented are for the most
part the same as those described here, but would differ both in features
used and details. The processing model remains the same across all
families.

The interfaces that are described here capture common modes of operat-
ing the Blackfin system peripherals and also imply a certain data
processing model. The operating modes and processing model are
expected to be sufficient for the class of program being targeted but may
not fulfill the needs of a complete product-class application.

The Interfaces—Detailed Descriptions

D-4 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

The Interfaces—Detailed Descriptions
The PCC interfaces fall into several categories:

1. Setup and control

A hierarchy of interfaces concerned with the setup and overall con-
trol of the Blackfin’s on-chip peripherals and devices attached to
them is established. The base interface defines the most basic enu-
meration values and methods common to all peripherals. Other
interfaces extend the base with general information and methods
suitable for on-chip (“system”) and external peripherals, respec-
tively. These in turn are extended to describe specific peripherals.
The control methods in these interfaces deal with functions such as
enabling, disabling and resetting a peripheral rather than its data
handling capabilities.

2. Data transfer

Two main freestanding interfaces describe a common model of
transferring data between an application and a peripheral, each in a
distinct manner. Once a peripheral has been initialized and
enabled, the methods in these interfaces are used by the application
repeatedly to obtain raw data and dispose of the results.

3. DMA and interrupts

Two additional freestanding interfaces are designed to capture fun-
damental hardware features common to most of the peripherals –
DMA and interrupt handling.

4. Services and callbacks

Several other interfaces define common services or actions that the
application may need to provide for PCC components. For exam-
ple, one of these interfaces defines a small set of methods covering
synchronization and timing.

VisualDSP++ 3.5 Component Software Engineering User’s Guide D-5
for 16-bit Processors

PCC — An Example of VCSE Interface Design

A Description for each major interface in the PCC set, along with exam-
ples of specific device interfaces are described in Table D-1. Table D-1
lists the interface’s name, immediate ancestor, a summary of its contents,
and a description of its purpose. Subsequent sections provide a more
detailed description of selected interfaces.

Table D-1. Summary of PCC and Device Interfaces

Interface Extends Contents and Purpose

IPeripheral IBase Defines the root of entire peripheral hierarchy. Enumer-
ates all system peripherals (SPORT0/1, UART0/1, SPI,
and so on) and all interrupt sources. This interface also
defines methods for basic control (enable, disable, and so
on) and for obtaining data transfer interfaces.

ISysPeripheral IPeripheral Defines the root of system (on-chip) peripheral hierar-
chy. Adds methods for obtaining interrupt handler inter-
face (for application’s ISR to call) and registering ‘logical’
interrupt interfaces.

ISPI ISysPeripheral Provides the specific interface for control of serial periph-
eral interface (SPI) system peripherals. Adds SPI-specific
enums, structs and methods to allow static setup of SPI
peripherals and dynamic switching between master and
slave modes.

ISPORT ISysPeripheral Provides the specific interface for control of serial port
(SPORT) system peripherals. Adds structs and a configu-
ration method to allow static setup of SPORT clocks and
transfer modes on RX and TX channels.

IPciHost ISysPeripheral Provides the specific interface for control of PCI system
peripheral acting in host mode (ADSP-BF535 only).
Adds enums, structs and methods for setting up the PCI
controller in host mode. This interface also includes
methods for discovering what devices are installed on the
PCI bus and for obtaining IPciAgent interfaces to
access them.

The Interfaces—Detailed Descriptions

D-6 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

IProgrammable-
Flag

ISysPeripheral Provides the specific interface for control of the program-
mable flags. Adds enums and functions to allow interrupt
attributes to be set and flag state to be queried and set.

IExtPeripheral IPeripheral Provides the root of off-chip (external) device hierarchy.
Adds method to allow registering of peripherals (proba-
bly IProgrammableFlag) that in some way control or
select the external device.

IEBIUPeripheral IExtPeripheral Enables additional functionality for devices connected to
the external bus interface unit by adding a means to spec-
ify the address range(s) to which the device responds.

IAD1836 IExtPeripheral Provides an example of an interface for a specific external
device, in this case an Analog Devices 1836 audio codec.

ILan91C111 IEBIUPeripheral Provides an example of an interface for a device con-
nected via the external bus interface unit. In this case it is
an SMsC LAN91C111 Ethernet controller.

IDataPort IBase Defines a general scheme of data transfer, based on the
exchange of lists of receive and/or transmit buffers. Man-
ufactured on demand by a PCC component for client’s
use.

ICircDataPort IBase Defines a general scheme of data transfer, based on the
circular reuse of one transmit and/or one receive buffer.
Manufactured on demand by a PCC component for cli-
ent’s use.

ICallback IBase Defines a general scheme for allowing a VCSE compo-
nent to invoke a client-supplied method at some point in
its processing. The data port interfaces support the
ICallback interface’s use.

IPciAgent IBase Defines methods for accessing a PCI device’s configura-
tion and data spaces. Manufactured on demand by IPci-
Host for client’s use.

IDma IBase Defines enums and methods by which a PCC component
for a data-transfer peripheral may be set up to use one of
the forms of direct memory access available on the plat-
form.

Table D-1. Summary of PCC and Device Interfaces (Cont’d)

Interface Extends Contents and Purpose

VisualDSP++ 3.5 Component Software Engineering User’s Guide D-7
for 16-bit Processors

PCC — An Example of VCSE Interface Design

IDataPort
The IDataPort interface provides a general interface for the exchange of
data between a component and its client. The interface is manufactured
by the component but the data buffers and associated structures are allo-
cated and owned by the client. The client “lends” the component lists of
buffers that are to be filled with data or whose contents are to be con-
sumed. Once a buffer has been filled or emptied a callback method may be
invoked by the component, which prompts the client to “reclaim” the
buffer for processing and/or re-use. As an alternative to supplying a call-
back method, a client may poll the component to reclaim filled receive
buffers and emptied transmit buffers.

All of the data transfer peripheral control components manufacture one or
more IDataPort (and/or ICircDataPort) interfaces as appropriate and use
those interfaces' methods as the means of exchanging data with their cli-
ents. For example, a component implementing the ISPI interface on
ADSP-BF535 may be prepared to manufacture up to two IDataPort inter-
faces, one each for SPI0 and SPI1. Once a client has requested one of
these interfaces, and after it sets up the SPI’s operating characteristics
using the ISPI::ConfigureSPI() method and enabling it for use by invok-
ing ISPI::Enable(), it invokes the UseReceiveBuffers() /

IInter-
ruptHandler

IBase Defines methods supporting the two-level interrupt han-
dling protocol used by PCC. IInterruptHandler inter-
faces are offered by components implementing system
peripherals and may be used in the implementation of
components for external devices.

IOE IBase Abstracts PCC components’ timer and synchronization
requirements into a form that each application can
implement in keeping with its operating environment.

IThreadedOE IOE Extends IOE with services that PCC components operat-
ing in a threaded environment might require.

Table D-1. Summary of PCC and Device Interfaces (Cont’d)

Interface Extends Contents and Purpose

The Interfaces—Detailed Descriptions

D-8 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

ReturnTransmitBuffers() and UseTransmitBuffers() / ReturnTrans-
mitBuffers() method pairs of the IDataPort interface repeatedly to
receive and send data via that SPI.

Components that implement interfaces for non-data-handling peripherals
such as timers and real time clocks do not manufacture any data exchange
interfaces.

ICircDataPort
The ICircDataPort interface defines the second of the two data processing
models supported by PCC. Similar to IDataPort, components implement-
ing interfaces for the data transfer peripherals may manufacture
ICircDataPort interfaces on request. Again the client allocates and con-
trols buffers for the transmission and reception of data, but in this case
only one of each can be supplied to each ICircDataPort interface. The
transfer model is that once enabled, the component uses a pair of volatile
read and write pointers associated with each buffer to determine (a) where
to place new data received from the peripheral (for receive buffers), and
(b) when new data is available for transfer to the peripheral (for transmit
buffers). The component invokes a client-supplied callback when specific
points are reached such as a buffer’s midpoint or end. However, it will
continue using the buffer, wrapping around to the start once the end is
reached. The client must consume or produce the data fast enough other-
wise the component reports an overflow or underflow event via the
callback.

IDma
The data exchange models presented by the two data port interfaces are
relatively general purpose and can be used to transfer data between any
two software entities. However, they imply or at least do not rule out an
item-by-item approach to their implementation that might result in unac-
ceptably low performance if used in PCC components. The IDma interface

VisualDSP++ 3.5 Component Software Engineering User’s Guide D-9
for 16-bit Processors

PCC — An Example of VCSE Interface Design

is an interface that a PCC component may optionally implement along
with an appropriate system peripheral interface such as ISPORT, ISPI, and
so on. The IDma interface provides the component’s client with the means
to request the use of direct memory access for transfers to and from the
peripheral, thus relieving the processing burden of item-by-item transfers.

The Blackfin family supports two main types of DMA, descriptor-based
and autobuffering. Normally a direct correlation exists between the type
of data port that a client is offered and the type of DMA the component
performs. If a client obtains an IDataPort interface and uses the
IDma::EnableDMA() method, then the PCC component normally performs
descriptor-based DMA. If an ICircDataPort interface is obtained, then
the component normally uses autobuffering DMA.

The client uses methods in IDma to provide static aspects of the DMA
setup to be used for a particular peripheral. For example, when a memory
area must be made available for DMA descriptors, or when DMA must be
enabled and disabled. All the dynamic information that a component
needs for performing each DMA transfer is contained in the client-sup-
plied structure associated with each receive and transmit buffer. This
information includes the address and size of the whole buffer, the word
size of the data items and any data striding or skipping to be performed.

ICallback
The ICallback interface is a simple, but general means of allowing a
peripheral control component to signal the occurrence of specific events
asynchronously. Its client provides an ICallback interface during initial-
ization or during normal processing. The component calls its single
method, ICallback::SignalEvent(), to signal the occurrence of events
specified in the appropriate interface. For example, both IDataPort and
ICircDataPort define a method UseCallback() and an enumeration of a
set of buffer processing conditions. The client may invoke UseCallback()
passing in an ICallback interface (usually implemented within the client

The Interfaces—Detailed Descriptions

D-10 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

as a lightweight component). After that point, the PCC component calls
that interface’s SignalEvent() whenever one or more of the buffer condi-
tions is true.

The SignalEvent() method’s parameters include a bitmap of the buffer
conditions that caused it to be called, a general IBase interface which by
convention receives the instance of the interface to which this ICallback
interface was given, and a VIDL HANDLE type that allows arbitrary further
information to be passed back to the client.

IInterruptHandler
Hardware interrupts and their service routines are at the heart of all
embedded programs, and applications written using the PCC components
are no different.

While the application code is responsible for setting up the interrupt sys-
tem by assigning each interrupt source an appropriate priority, populating
the interrupt vector table, setting the interrupt masks, and so on, the
knowledge of how to handle the interrupts resides in the PCC
components.

The IInterruptHandler interface forms the bridge between these two are-
nas, defining two methods which, with the help of a small amount of
VCSE library code, make up a two-stage interrupt handling protocol.

In the same way that a PCC component will manufacture a data port
interface for each input and output channel it controls it will also manu-
facture an IInterruptHandler interface for each interrupt source to which
it responds. While initializing, an application requests one or more inter-
rupt interfaces from each PCC component it is using. It also installs an
interrupt service routine (ISR) for each appropriate hardware interrupt.
The format of each ISR is identical: it accesses the appropriate IInter-
ruptHandler interface and invokes its AnalyzeInterrupt() method. If the
method returns the MR_DSR_REQUIRED result code then the ISR calls a small
VCSE library function to put the IInterruptHandler interface on a queue

VisualDSP++ 3.5 Component Software Engineering User’s Guide D-11
for 16-bit Processors

PCC — An Example of VCSE Interface Design

for further action. Once all current interrupts are analyzed the VCSE sys-
tem takes each queued interface and invokes its ProcessInterrupt()
method as a deferred service routine (DSR).

Generally, AnalyzeInterrupt() saves information about the interrupt
cause in its internal state and clears the interrupt, while ProcessInter-
rupt() performs updating buffer list pointers, invoking data port
callbacks, and so on. If there is very little processing to do, or if a device is
in a critical state, then AnalyzeInterrupt() performs all the processing
instead and does not request that its DSR be run.

When a system peripheral such as a SPORT is being used to transfer data
to or from an external device (such as an audio codec), then it is possible
that two separate components are involved. This is also the case when one
component is responsible for the Blackfin PCI controller in host mode
and other components control specific devices attached to the PCI bus. In
these scenarios, once the interrupt handler for the system peripheral veri-
fies that an interrupt relates to normal data transfer and not some
controller operation, it passes responsibility to a device-specific compo-
nent. The IInterruptHandler interface also acts as the bridge between
these two domains.

The ISysPeripheral base interface contains a method that lets dependent
components register IInterruptHandler interfaces of their own. During
its interrupt analysis the system peripheral’s interrupt handler selects the
appropriate registered interfaces, invokes their AnalyzeInterrupt()
method, and queues their ProcessInterrupt() method for later execution
if requested.

IPeripheral
The IPeripheral device interface is the base interface, or template, for all
configuration-and-control aspects of the interfaces offered by system
peripheral and external device control components on Blackfin. It con-
tains enumerations of a processor's system peripherals and interrupt

The Interfaces—Detailed Descriptions

D-12 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

sources, and definitions of some general configuration and control meth-
ods. The configuration methods include one that allows a client to tell a
newly-created component instance which specific peripheral it is to con-
trol (for example: SPORT0 or SPORT1, UART0 or UART1, and so on),
and another that allows the client to pass in one or more interfaces for ser-
vices that the component may require. The control methods include
general reset, enable/disable, and powerup/powerdown operations.

The interface does not directly define methods for data transfer but it does
define the method by which clients can obtain data port interfaces for a
peripheral or device.

ISysPeripheral
The ISysPeripheral interface extends IPeripheral with methods related
to interrupt handling:

• The RequestSystemInterruptHandlers() method allows clients to
obtain the IInterruptHandler interfaces that their ISRs should call
for first-level processing of hardware interrupts.

• The RegisterLogicalInterruptHandlers() method allows the
writers of components for external devices to register their inter-
rupt handlers with the PCC components for the system peripherals
that control those devices.

ISPI
The ISPI peripheral interface is an example of a PCC interface for a spe-
cific system peripheral type. The ISPI interface extends ISysPeripheral
with peripheral-specific enumerations and structures and specifies a con-
figuration method that allows a client to define all common aspects of an
SPI port’s operation. In addition a method to switch an SPI port between
master and slave modes is provided.

VisualDSP++ 3.5 Component Software Engineering User’s Guide D-13
for 16-bit Processors

PCC — An Example of VCSE Interface Design

IOE
Software controlling hardware devices often needs a means of measuring
the passage of time, to implement timeouts or allow 'settling time' after
reconfiguring a device for example. Similarly, components often need
some means of guaranteeing themselves exclusive access to a specific
resource for a short period. To avoid duplication of effort and to ensure
that the implementation of such functions does not interfere with their
clients’ own control code, PCC components do not implement the func-
tions themselves. Instead, a minimal set of service functions has been
defined in the IOE interface. Clients are required to provide a suitable
implementation and pass an IOE interface to PCC components as needed
and defined in documentation.

The mechanism for passing an IOE interface to a component (IPeriph-
eral's UseServices() method) can be used to pass other 'service'
interfaces from client to component if needed.

Implementing a PCC Component
The implementation of a typical PCC component for a Blackfin system
peripheral is concerned with two main areas: (a) setup and overall control
and (b) data transfer and interrupt handling.

Setup and Overall Control
The component definition in the component’s VIDL file specifies which of
the peripheral interfaces (ISPORT, ISPI, IUART, and so on) it implements
and whether it also implements IDma. The methods file generated by the
VIDL compiler contains empty function definitions for all the methods
defined in the selected peripheral interface, in addition those that the
interface inherits from ISysPeripheral and IPeripheral. It also contains
empty definitions of IDma’s methods if the component implements it. The
component developer populates these empty function definitions with

Implementing a PCC Component

D-14 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

setup and control code that is specific to the type of system peripheral
specified. Clients create instances of the component in the normal way by
using the VIDL-generated Create() factory function and obtain the
peripheral and DMA interfaces via the VCSE::GetInterface() standard
method.

Data Transfer and Interrupt Handling
Rather than have a PCC component explicitly implement the data transfer
and interrupt handler interfaces as it does for the control and DMA ones,
it is required to be able to manufacture multiple instances of these inter-
faces on demand. The reason for the different approach is that a data port
or interrupt source often deals only with one part of a peripheral's func-
tionality (SPORT1 TX channel, for example) whereas setup and control
of the peripheral covers all its functionality. The several data port inter-
faces that interact with one specific peripheral must all be owned by the
same instance of the component that is controlling the peripheral.

There are different strategies that can be followed to implement this inter-
face manufacturing requirement. For example, the developer of a single
PCC component could decide to define a suitable number of instances of
internal 'lightweight' data port and interrupt handler interfaces and hand
them out, suitably customized, upon request. Alternatively, the developer
of a suite of PCC components could decide to develop private implemen-
tations of the data port interfaces, for example, and create instances of
them on demand. Since buffer list and circular pointer handling will be
common for all the peripherals, this approach avoids duplication of code.

VisualDSP++ 3.5 Component Software Engineering User’s Guide D-15
for 16-bit Processors

PCC — An Example of VCSE Interface Design

Using PCC Components
An application that makes use of PCC components performs four main
tasks in order to set up the proper operating conditions for them:

1. The application calls the Create() factory function of each system
peripheral component once for each peripheral to be used. That is,
if both SPORTs but only one UART are to be used, then the appli-
cation must obtain two ISPORT interfaces by calling the SPORT
component’s Create() function twice, and one IUART interface by
calling the UART component’s Create() function once. The pro-
gram then tells each interface which peripheral (SPORT0 or 1,
UART0 or 1) it is controlling by invoking its UsePeripheral()
method. If the peripheral’s DMA capabilities are to be used then
the application uses the standard VCSE::GetInterface() method to
obtain an associated IDma interface and configures the peripheral’s
DMA characteristics using that interface’s methods.

2. The application then calls the Create() factory function of each
external peripheral component to be used. External peripherals are
usually connected to one or more of the system peripherals – for
example, an audio codec might be connected to a SPORT for data
transfer and a SPI for initial setup. The application then custom-
izes each external peripheral interface by passing it the appropriate
system peripheral interfaces it obtained and customized in step 1.

3. The application calls the OpenDataPath() method of the peripheral
component instances to obtain an IDataPort or ICircDataPort
interface for each data transfer stream it uses.

If the application is driving a system peripheral directly, as it might
for a UART, then it obtains the data port interfaces from the sys-
tem peripheral component and uses them to transmit and receive
data in a format acceptable to whatever is connected to ‘the other
end’ of the peripheral. If the application is driving an external
peripheral, such a codec, then it obtains the data port interfaces

Using PCC Components

D-16 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

from that device’s component and uses them in accordance with
the component’s documentation. The component for a codec, for
example, may offer the application separate left and right channel
data streams but operate its data port interfaces with the underlying
SPORT in an interleaved manner.

4. The application calls the RequestSystemInterruptHandlers()
method of each system peripheral interface to obtain IInter-
ruptHandler interfaces for each interrupt source on which its use of
the peripheral relies. The application’s ISRs are responsible for
invoking the AnalyzeInterrupt() method of the appropriate inter-
faces and for using VCSE library facilities to schedule an
invocation of their ProcessInterrupt() methods, if requested.

To complete the set up stage and initiate processing the application pro-
grams the Blackfin’s interrupt priority system, enables interrupts, and
invokes the Reset() and Enable() methods of each peripheral.

If the application has chosen to supply ICallback interfaces to its data
port providers then its processing is driven by calls of its SignalEvent()
method(s) made by the data port components as a result of their Process-
Interrupt() execution. Alternatively an application can be designed to
poll for data using the appropriate methods in IDataPort or by checking
the volatile read and write pointers associated with each ICircDataPort
interface.

VisualDSP++ 3.5 Component Software Engineering User’s Guide I-1
for 16-bit Processors

I INDEX

Symbols
#include, 4-74

preprocessor directive, 4-70
#pragma, 4-24
#pragma align, 4-49
.H files, 1-17, 2-10, 2-30, 5-8, 5-22,

5-23, 5-24
.IDL files, 1-17, 2-11, 2-17, 2-19, 2-26,

2-36, 5-2, 5-5, 5-8
.vcp files, 1-20, C-9
.XML files, 1-20, 2-19, 2-20, 2-50,

2-59, 5-6, 5-14, 5-36
-@ filename switch, 5-5, 5-8
-@ switch, 5-8
@author auto-doc tag, 4-9, 4-75
@create auto-doc tag, 4-9, 4-75
@destroy auto-doc tag, 4-9, 4-75
@example auto-doc tag, 2-35, 4-9, 4-75
@keyword, 2-35
@keyword auto-doc tag, 2-35, 4-9, 4-75
@param auto-doc tag, 2-35, 4-9, 4-74
@postcondition auto-doc tag, 4-9, 4-75
@precondition auto-doc tag, 4-9, 4-75
@return auto-doc tag, 2-35, 4-9, 4-75
@sizeof auto-doc tag, 4-9, 4-75
__ADSP218X__ macro, 5-4
__ADSP219x__ macro, 5-4

__ADSPBLACKFIN__ macro, 5-4
__ALLOCSTACK macro, A-6, A-14,

A-23
__arg macro, A-6, A-14, A-23
__ASSIGN_THIS_POINTER macro,

2-24
__builtin_aligned macro, 2-24
__CHECK_VCSE_RESPONSE

macro, 5-27, A-2, A-10, A-18
__CREATOR macro, A-3, A-19
__DEBUG_TRACE_ENTRY macro,

2-38
__DEBUG_TRACE_EXIT macro,

2-38
__DESTROYER macro, A-3, A-11,

A-19
__ENDFUNC macro, A-5, A-13, A-22
__EXIT macro, A-5, A-6, A-15, A-24
__FREESTACK macro, A-6, A-14,

A-23
__GENERIC__ macro, 5-11
__GET_METHOD macro, 5-27, A-4,

A-12, A-20
__GLOBAL macro, A-22
__INVOKE macro, 5-27, A-4
__INVOKE_* macros, 5-25
__INVOKE_NOARGS macro, 5-25

INDEX

I-2 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

__INVOKE_VARARGS macro, 5-25
__LA macro, A-7, A-15, A-25
__LEAF_EXIT macro, A-7, A-15, A-24
__LEAF_RETURN macro, A-7, A-15,

A-25
__LINK macro, A-5, A-6, A-13, A-22
__LOCAL macro, A-22
__POP macro, A-5, A-14, A-22
__PUSH macro, A-5, A-14, A-22
__RETURN macro, A-5, A-7, A-15,

A-25
__SIZEOF macro, A-3, A-11, A-19
__STARTFUNC macro, A-4, A-13,

A-22
__STORE_ARG macro, A-6, A-23
__this, pointer, 2-25
__UPCAST macro, 5-25
__VCSE_ASM_TRACE macro, A-8,

A-15, A-25
__VCSE_free macro, 3-5
__VCSE_malloc macro, 3-5
__VCSE_PRINT_VAR macro, A-8,

A-16, A-25

Numerics
21xx processor switches, 5-16

A
abstract classes, 2-27
abstraction, 1-9
-accept-any-include-file switch, 5-5, 5-8
accessor methods, 4-45
Activate method, 3-16
additional interface

definition of, 3-29
additional statements, 4-63

distinct, 4-64
language, 4-66
place, 4-65

address clashes, 6-15
ADDRESS, type, 3-12, 3-13
addressing models, 6-18
AddString method, 3-42
AddStringWithNumber method, 3-42
AddStringWithNumbers method, 3-42
ADI namespace, 2-7
ADSP-21xx DSPs

macros, A-16
ADSP-21xx DSPs memory types

MemBank, 3-10
MemExternal, 3-10
MemPrimary, 3-10
MemSecondary, 3-10

ADSP-BF53x processors
macros, A-9

ADSP-BF53x processors memory types
MemBank, 3-10
MemExternal, 3-10
MemPrimary, 3-10
MemSecondary, 3-10

aggregatable
attribute, 4-50, 4-54
command, 4-8

aggregate type, 4-24
aggregation, 2-61, 2-80, 2-81
algorithm components

guidelines, 6-5
rules, 6-5

VisualDSP++ 3.5 Component Software Engineering User’s Guide I-3
for 16-bit Processors

INDEX

algorithm_model command, 4-8, 4-80,
4-91

alias, 4-8
alias command, 4-8, 4-41
aliasing_check command, 4-8, 4-80,

4-92
align command, 4-8, 4-43, 4-49

 see also attributes
alignment_value, 4-24, 4-25, 4-49
-all-idl switch, 5-5, 5-8
Allocate, 3-4

method, 3-12
method parameters, 3-13
return values, 3-13

allocation strategies, 3-4, 3-11
allocator, 3-5
alternative compilers

gcc 3.2, 5-11
Microsoft Visual C++ 6.0, 5-11

arithmetic operators, 4-9, 4-19
array type, 4-28

conformant, 4-29
scalar, 4-46
single-dimensioned, 4-46

array_check command, 4-8, 4-80, 4-93
arrays

bounds of, 4-20
unsized, 4-28

-asm switch, 5-5, 5-9
assembly macros, overview of, A-1
assembly, component header files, 2-58
AssignMemoryResources method, 3-24
attributes, 2-4

common, 1-7

list of, 4-30
properties, 4-46

auto command, 4-8
autobuffering, D-9
auto-doc comments, 2-9, 2-11, 2-34,

4-72, 5-35
auto-doc tags, 4-9, 4-73, D-1

@author, 4-9, 4-75
@create, 4-9, 4-75
@destroy, 4-9, 4-75
@example, 4-9, 4-75
@keyword, 4-9, 4-75
@param, 4-9, 4-74
@postcondition, 4-9, 4-75
@precondition, 4-9, 4-75
@return, 4-9, 4-75
@sizeof, 4-9, 4-75

automation, 1-7

B
backspaces, 4-12
bank attribute, 4-42
BF-533 EZ-Kit, 3-36
binary operators, 4-18, 4-20
binary standard interface, 1-15
BitRate property, 4-49
Blackfin processor switches, 5-16

C
C

component header files, 2-56
function prototypes, 2-4
functions, 2-28
run-time library, 2-28

INDEX

I-4 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

C run-time model, 5-27, 6-9
ADSP-21xx DSPs, A-16
ADSP-BF53x processors, A-9

C++ component header files, 2-58
-c++ switch, 5-5, 5-9
C/C++ compiler, 2-5
callback method, D-7
carriage returns, 4-12
category command, 4-8, 4-54
char command, 4-8
character literals, 4-5, 4-11
character sequences, 4-4

decimal digits, 4-4
letters, 4-4
special characters, 4-4

class constructs, 1-2
clear_state command, 4-8, 4-80, 4-99
client-server model, 1-21
-cname component_name switch, C-7
-cname switch, C-2
COM platform, 1-4
commands

algorithm_model, 4-80, 4-91
aliasing_check, 4-92
align, 2-6
array_check, 4-80, 4-93
clear_state, 4-8, 4-80, 4-99
in_assert, 4-80, 4-89
init_state, 4-80, 4-95
mem_shell, 4-79, 4-87
no_aliasing_check, 4-80
no_array_check, 4-80
no_stack_usage, 4-80
no_timing, 4-80

out_assert, 4-80, 4-90
requires_state, 4-80, 4-96
reset_to_state, 4-80, 4-98
sets_state, 4-80, 4-97
stack_usage, 4-79, 4-86
states_used, 4-80, 4-94
timing, 4-79, 4-88

comments, 4-5
auto-doc, 4-5
normal, 4-5
post, 4-5

common command, 4-8, 4-55
common components

guidelines, 6-4
rules, 6-3

company command, 4-8, 4-56
complex_double command, 4-8
complex_float command, 4-8
complex_fract command, 4-8
complex_long_double command, 4-8
complex_long_fract command, 4-8
component command, 4-8, 4-53
component definitions, 4-49
component instances

header file for C++, 2-58
Component Manager, 1-21
Component Model, 1-7, 1-15, 1-23,

2-20
components

aggregation, 2-80
assembly implemented, 5-34
C implemented, 5-32
C++ implemented, 5-33
classes, 2-56

VisualDSP++ 3.5 Component Software Engineering User’s Guide I-5
for 16-bit Processors

INDEX

components (continued)
creating instances of, 2-61
definitions of, 5-31
destroying, 2-70
documenting, 2-34
factory header files, 2-59
factory source files, 2-56
functions, see factory functions
instance storage, 1-5
instances of, 1-5, 2-20
instantiation, 2-61, 3-3, 3-5
manifest files, 5-36
method source files, 2-57
modifiable sections, 2-56
packaging, 2-50
state of, 1-5, 1-12
testing, 2-36

ConfigureMemorySwapper method,
3-25

conformant array type, 4-29
conformant arrays, 4-28
const command, 4-8
constant expressions, 4-18, 4-22

arithmetic operators, 4-18
context, 3-11
conventions, manual, -xxxv
-copyright filename switch, 5-5
-copyright switch, 5-9
CORBA platform, 1-4
core peripherals, 6-14
-cppflags switch, 5-5, 5-9
create function, 1-5, 2-26, 2-28, 2-61,

3-12, 4-61
customer support, -xxviii

D
data

placements, 3-4
size and alignment, 6-9

data transfer, D-14
Deactivate method, 3-17
decimal digits, 4-10
declarations, 4-68
declarators, 4-28

lists, 4-28
deferred service routine (DSR), D-11
definitions

named elements, 4-13
scope of, 4-13

dependencies, component, 1-11
-desc desc_filename switch, C-7
Destroy, 1-5, 2-28
destroy function, 2-26
destroying

components, 2-70
developing

components, 2-1
dimensions, arrays, 4-28
direction command, 4-35
distinct command, 4-8, 4-56
distinct components, 2-32
distinct statement, 4-63, 4-64
distributed components, 1-5, 2-20
dm command, 4-8
-Dmacro switch, 5-10
-Dmacro(=def) switch, 5-5
document command, 4-8, 4-44
documentation

comments in, 4-5

INDEX

I-6 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

documentation (continued)
generated files, 5-35
HTML files, 2-11
memory characteristics, 6-16
processing characteristics, 6-17
resource requirements, 6-17

double command, 4-8
-dryrun switch, 5-5, 5-10
DSR, D-11
DumpAllMessages method, 3-43

E
element attributes, 4-16, 4-20
ELF symbol names, C-6
eliminating code, data, 6-18
-embedded switch, 5-5, 5-10
embedded systems, 1-3
encapsulation, 1-4, 1-7
end-of-file comments, 5-23
enum command, 4-8
enumeration

constants, 4-20
type, 4-23

Error method, 3-39
ErrorLevel type, 3-40
escape

characters, 4-12
sequences, 4-12

evaluation, components, 1-15
EXAMPLES namespace, 2-7
extending interfaces, 1-9, 1-11
extends command, 4-8
extensibility, 1-6
extern command, 4-8

F
f method, 4-57
factory functions, 1-5, 2-29, A-3, A-11,

A-19
factory source files, 2-56
file searching, 4-6

<filename>, 4-7
filename, 4-6

files
naming guidelines, 5-4, 5-23
organization, 5-22

first_is command, 4-8
fixed array, 4-28
flexibility, 1-6, 1-7, 1-11
float command, 4-8
forward declaration, 4-13
fract command, 4-8
Free method, 3-4, 3-14
from command, 4-8
fully qualified names, 4-7
function calls, 6-9
functional specifications, 1-10, 1-14

G
generated test shells, 4-77
-generic switch, 5-5, 5-10

 see also alternative compilers
get command, 4-8, 4-47
GetInterface, 2-71, 2-84, 4-57

delegation of, 2-86
non-delegating, 2-85

GetLength method, 3-46
GetName method, 3-45
global scope, 4-13, 4-14

VisualDSP++ 3.5 Component Software Engineering User’s Guide I-7
for 16-bit Processors

INDEX

global symbols, C-5
guidelines, 6-2

addressing models, 6-18
code, data elimination, 6-18
Component Model, 1-23
interrupt system, re-entrancy, 6-12
registers and stacks, 6-10
resource allocation, 6-8
stacks, 6-10

H
-h(elp) switch, 5-5
HANDLE, type, 3-12, 3-13
-harness switch, 5-5, 5-11
-hdr switch, 5-5, 5-11
header files, 2-17

guards of, 5-24
-help switch, 5-11, C-2, C-8
hexadecimal digits, 4-10, 4-12
highest precedence, operators, 4-20
horizontal tabs, 4-12
host mode, D-5, D-11
HTML

component documentation, 5-35
constructs, 2-9
documentation, 2-36
tags, 2-35

I
-I switch, 5-12
IAD1836 interface, D-6
IAlgorithm

method descriptions, 3-16
standard interface, 3-1, 3-14

definition of, 3-15
standard interface, methods of, 3-15

IAlgorithm2
additional interface

definition of, 3-23
extended interface, 3-1, 3-18
Initial Creation Call Sequence Pseudo

Code, additional interface
definition of, 3-26

method descriptions, 3-24
Run-time with Asynchronous

Swapping Pseudo Code, additional
interface
definition of, 3-28

Run-time with Synchronous
Swapping Pseudo Code, additional
interface
definition of, 3-27

IBase
 see also interfaces
identifier of, 5-28
interface, 2-4
type, 3-40

IBase.h, interface header, 5-28
IBase_GetInterface, 5-28
IBase_methods, 5-28
ICallback interface, D-6, D-9
ICircDataPort interface, D-6, D-8
IDataPort interface, D-6, D-7
-Idirectory switch, 5-5, 5-12
idl compiler, 4-46
IDL, see VIDL
IDma interface, D-6, D-8
IEBIUPeripheral interface, D-6

INDEX

I-8 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

IError
method descriptions, 3-39
standard interface, 3-2, 3-37
standard interface, definition of, 3-38

IExtPeripheral interface, D-6
iid command, 4-8
iid, interface identifier, 1-10, 2-4, 2-61,

4-30
iid_is command, 4-8
IInstanceFactory

extended interface, 3-2
method descriptions, 3-35
standard interface, 3-33

IInterfaceFactory
additional interface, definition of,

3-35
IInterruptHandler interface, D-7, D-10
ILan91C111 interface, D-6
IMemory

method descriptions, 3-12
standard interface, 3-1

definition, 3-6
methods, 3-12

structures, MemRequest, 3-7
IMemory enumerations

MemContext, 3-7
MemLifetime, 3-6
MemType, 3-6

IMemory standard interface, 3-2
IMemorySwapper, 3-29

additional interface, 3-2
method descriptions, 3-31
standard interface, 3-28

implementation

files, 1-19, 2-19
shells, 2-36

implementing
a PCC Component, D-13
aggregation, 2-81
interfaces, 2-17

implementing a PCC Component
data transfer and interrupt handling,

D-14
setup and overall control, D-13

implements command, 4-8
in command, 4-8, 4-35, 4-36
in_assert command, 4-8, 4-80, 4-89
IName

interface, standard interface, 3-43
method descriptions, 3-44
standard interface, 3-2, 3-43

definition of, 3-44
include directives, 4-6
industry developments, VCSE related,

1-3
info command, 4-8, 4-58
inheritance, 1-2
init_state command, 4-8, 4-80, 4-95
Initialize method, 3-31
inlined accessor methods, 4-47
instances

creation, 1-7
data, 2-25, 3-3
storage, 1-12
variables, 1-12

int command, 4-8
integer literals, 4-10

VisualDSP++ 3.5 Component Software Engineering User’s Guide I-9
for 16-bit Processors

INDEX

interaction, application-component,
1-21

interface command, 4-8
Interface Definition Language (.IDL)

files, 5-22
interface pointers

C and assembly, 2-67
C++, 2-69

interfaces, 1-4, 1-8, 2-8, 4-29
assembly methods, 2-28
C methods, 2-23
C++ methods, 2-25
declaring, 4-29
defining, 2-3
definitions of (.IDL), 4-29, 5-29
extending, 4-31
generating source files, 5-30
IBase, base, 1-10, 4-31
identifiers, 4-31
iid, 5-27, 5-28
implementing, 2-17
methods, 4-31
methods of, see method tables
naming conventions, 1-9, 4-31
pointers, 1-15
scopes, 4-32

interleaving, D-16
interoperability, 1-7
interrupt handling, D-14
interrupt system, re-entrancy, 6-10
invoking a VCSE method, 2-72
IOE interface, D-7, D-13
IPciAgent interface, D-6
IPciHost interface, D-5

IPeripheral interface, D-5, D-11
IProgrammableFlag interface, D-6
is command, 4-8
ISort interface, 4-70
ISPI interface, D-5, D-12
ISPORT interface, D-5
ISysPeripheral interface, D-5, D-12
ITestReport

standard interface, 3-39
IThreadedOE interface, D-7

K
keywords, 4-8

aggregatable, 4-8
algorithm_model, 4-8
aliasing_check, 4-8
align, 4-8
array_check, 4-8
auto, 4-8
category, 4-8
char, 4-8
common, 4-8
company, 4-8
complex_double, 4-8
complex_float, 4-8
complex_fract, 4-8
complex_long_double, 4-8
complex_long_fract, 4-8
component, 4-8
const, 4-8
distinct, 4-8
dm, 4-8
document, 4-8
double, 4-8

INDEX

I-10 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

keywords (continued)
enum, 4-8
extends, 4-8
extern, 4-8
first_is, 4-8
float, 4-8
fract, 4-8
from, 4-8
get, 4-8
iid, 4-8
iid_is, 4-8
implements, 4-8
in, 4-8
in_assert, 4-8
info, 4-8
init_state, 4-8
int, 4-8
interface, 4-8
is, 4-8
language, 4-8
last_is, 4-8
length_is, 4-8
local, 4-8
long, 4-8
mem_shell, 4-8
MRESULT, 4-8
namespace, 4-8
needs, 4-8
no_algorithm_model, 4-8
no_aliasing_check, 4-8
no_array_check, 4-8
no_stack_usage, 4-8
no_timing, 4-8
out, 4-8

out_assert, 4-8
place, 4-8
pm, 4-8
register, 4-8
remotable, 4-8
requires, 4-8
requires_state, 4-8
reserved, 4-8
reset_to_state, 4-8
reuse, 4-8
set, 4-8
sets_state, 4-8
shared, 4-8
short, 4-8
signed, 4-8
singleton, 4-8
size_is, 4-8
size_t, 4-8
sizeof, 4-8
stack_usage, 4-8
states_used, 4-8
static, 4-8
string, 4-8
struct, 4-8
struct_pack, 4-8
struct_pad, 4-8
supplies, 4-8
testing, 4-8
timing, 4-8
title, 4-8
typedef, 4-8
typename, 4-8
union, 4-8
unique, 4-8

VisualDSP++ 3.5 Component Software Engineering User’s Guide I-11
for 16-bit Processors

INDEX

keywords (continued)
unsigned, 4-8
use, 4-8
version, 4-8
void, 4-8

L
-L. switch, 2-39
language command, 4-8, 4-66
language identifications, 5-24
language tokens, 4-4, 4-7

character literals, 4-11
keywords, 4-8
names, 4-7
numeric literals, 4-9
operators, 4-9
punctuation, 4-9
string literals, 4-12

last_is command, 4-8
length_is command, 4-8
lexical elements, 4-4

character sequences, 4-4
comments, 4-4
language tokens, 4-7
preprocessing tokens, 4-4
white space tokens, 4-4

-lghtwt switch, 5-6, 5-13
library files, 1-19
LifetimeFlags, 3-10
list of property names, 4-46
local command, 4-8
LOCAL namespace, 2-7
long command, 4-8
lowest precedence, operators, 4-20

M
-M switch, 5-6, 5-12, C-3
macros

ADSP-21xx DSP specific, A-16
ADSP-BF53x processor-specific, A-9
function writing, A-4, A-13, A-22
MR_BAD_ALIGNMENT, 3-13
MR_BAD_CONTEXT, 3-13
MR_BAD_HANDLE, 3-13
MR_BAD_MEMBANK, 3-13
MR_BAD_MEMLIFE, 3-13
MR_BAD_MEMTYPE, 3-13
MR_NO_MEMORY, 3-13
MR_NOT_COMPLETED, 3-15

manifest files (.XML), 2-59, 5-36
-mcd switch, 5-6, 5-13
Media Instruction Set Computing

(MISC) architecture, -xxviii
mem_shell command, 4-8, 4-79, 4-87
MemBank, 3-10

ADSP-21xx DSPs, 3-10
ADSP-BF53x processors, 3-10

MemBankMemExternal, 3-10
MemContext enumeration members

MemInstance, 3-11
MemWorking, 3-11

MemExternal, 3-10
ADSP-21xx DSPs, 3-10

MemInstance enumeration, 3-11
MemLifetime enumeration members

MemPersist, 3-11
MemScratch, 3-11

memory
allocation, 3-2, 3-4

INDEX

I-12 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

memory (continued)
attributes, see MemRequest
characteristics, 6-16

memory managers, 1-12
memory set

ownership, 3-31
sharing, 3-30

memory types
ADSP-21xx DSPs, 3-10
ADSP-BF53x processors, 3-10

MemoryRequest type, 3-13
MemorySwapper interface, 3-25, 3-26
MemPersist enumeration, 3-11
MemPrimary, 3-8, 3-10
MemRequest structure

Alignment member, 3-8
BankName member, 3-9
Context member, 3-9
Length member, 3-8
LifetimeFlags member, 3-9
TypeFlags member, 3-8

MemScratch, 3-11
MemSecondary, 3-10

ADSP-21xx DSPs, 3-10
ADSP-BF53x processors, 3-10

MemType enumeration members
MemBank, 3-10
MemExternal, 3-10
MemPrimary, 3-10
MemSecondary, 3-10

MemWorking enumeration, 3-11
method calls, 2-3

sequence of, 3-18
method declaration, 4-33

method descriptions, 3-41
IAlgorithm interface, 3-16
IAlgorithm2 interface, 3-24
IError interface, 3-39
IInstanceFactory interface, 3-35
IMemory interface, 3-12
IMemorySwapper interface, 3-31
IName interface, 3-44

method language selection, 2-30
method parameters, 4-34
method placement, 2-31
method result macros, A-2, A-9, A-17
methods

 see also interfaces
invoking, A-3, A-11, A-19
source files, 2-57
tables, 1-15, 1-16

-MM switch, 5-6, 5-12, C-3
modifiable sections, 2-56
MR_BAD_AGGREGATION result

code, B-2
MR_BAD_ALIGNMENT macro,

3-13
MR_BAD_ALIGNMENT result code,

B-3
MR_BAD_CONTEXT macro, 3-13
MR_BAD_CONTEXT result code,

B-3
MR_BAD_HANDLE macro, 3-13
MR_BAD_HANDLE result code, B-3
MR_BAD_IFCE_PTR result code, B-3
MR_BAD_MEMBANK macro, 3-13
MR_BAD_MEMBANK result code,

B-3

VisualDSP++ 3.5 Component Software Engineering User’s Guide I-13
for 16-bit Processors

MR_BAD_MEMLIFE macro, 3-13
MR_BAD_MEMLIFE result code, B-3
MR_BAD_MEMTYPE macro, 3-13
MR_BAD_MEMTYPE result code,

B-3
MR_BAD_STACK_PTR result code,

B-4
MR_DSR_REQUIRED result code,

B-4
MR_FAILED result code, B-2
MR_FAILURE, B-1
MR_FAILURE macro, A-2, A-10, A-18
MR_ICONSTRUCT macro, A-2,

A-17
MR_INV_PARAM result code, B-3
MR_NO_AGGREGATION result

code, B-2
MR_NO_ERROR, 3-46
MR_NO_MEMORY, 3-45
MR_NO_MEMORY macro, 3-13
MR_NO_MEMORY result code, B-2
MR_NO_RESOURCES result code,

B-4
MR_NOT_ALLOCATED_MEM

result code, B-3
MR_NOT_COMPLETED, 3-45,

3-46
MR_NOT_COMPLETED macro,

3-15
MR_NOT_COMPLETED result

code, B-3
MR_NOT_SUPPORTED result code,

B-2

MR_OK macro, 3-45, A-2, A-10, A-18,
B-2

MR_OK result code, B-2
MR_SINGLETON_EXISTS result

code, B-3
MR_SUCCESS macro, A-2, A-10,

A-18, B-1
MRESULT, 2-4, 4-75

codes, 3-13, 5-26, B-2
structure, B-1
type, 3-13, 5-26

MRESULT command, 4-8
MRESULT macro, A-9, A-17

N
name clashes, 2-20, 6-14
name control file, C-5
name formats, C-5
named elements, 4-13

case-sensitivity, 4-16
qualified names, 4-14
unqualified names, 4-14

-names switch, C-3
names, in specifications, 4-7
namespace command, 4-8
namespaces, 2-7, 4-68

ADI, 2-87
EXAMPLES, 2-87
LOCAL, 2-87
registration of, 2-87

needs command, 4-8, 4-58
New Component Package Wizard, 1-20
New Component Project Wizard, 1-20
New Interface Wizard, 1-19

I-14 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

newline tokens, 4-5, 4-12
no_algorithm_model command, 4-8
no_aliasing_check command, 4-8, 4-80
no_array_check command, 4-8, 4-80
no_stack_usage command, 4-8, 4-80
no_timing command, 4-8, 4-80
-no_update switch, C-3
-no-adoc switch, 5-6, 5-13
non-algorithm component rules, 6-5
non-printing characters, 4-12
-no-shell switch, 5-6, 5-13
-no-vla switch, 5-6, 5-14
-no-xml switch, 5-6, 5-14
numeric literals, 4-9

O
-obfuscate switch, C-3
octal digits, 4-10, 4-12
operational specifications, 1-10
operators, see arithmetic operators
optional items, syntax diagrams, 4-3
origin of components, 1-1
out

direction command, 4-35
out command, 4-8, 4-36
out_assert command, 4-8, 4-80, 4-90
-overwrite switch, 5-6, 5-14

P
package files, C-9
package files (.VCP), 1-20, 2-59
package manifest files (.XML), 2-59
-package switch, C-10
package_filename switch, C-10

packaging, components, 2-50, 6-14
parameter attributes, 4-35
parameters, 2-5
-path switch, 5-14
-path-def path switch, 5-6
-path-def switch, 5-14
-path-html directory switch, 5-6
-path-html switch, 5-15
-path-install directory switch, 5-6
-path-install switch, 5-15
-path-output switch, 5-6, 5-15
-path-temp directory switch, 5-6
-path-temp switch, 5-15
-path-tool path switch, 5-6
PCC and device interfaces

IAD1836, D-6
ICallback, D-6
ICircDataPort, D-6
IDataPort, D-6
IDma, D-6
IEBIUPeripheral, D-6
IExtPeripheral, D-6
IInterruptHandler, D-7
ILan91C111, D-6
IOE, D-7
IPciAgent, D-6
IPciHost, D-5
IPeripheral, D-5
IProgrammableFlag, D-6
ISPI, D-5
ISPORT, D-5
ISysPeripheral, D-5
IThreadedOE, D-7

PCC components

VisualDSP++ 3.5 Component Software Engineering User’s Guide I-15
for 16-bit Processors

PCC components (continued)
implementing, D-13
using, D-15

PCC interfaces, D-4
PCI bus, D-11
Peripheral Control Components

(PCC), D-2
place command, 4-8, 4-65
pm command, 4-8
pop

instruction, A-14
pop_multiple, instruction, A-14
pragmas, 4-24, 4-49

pack, 4-25
pad, 4-25

precedence
chart, arithmetic operators, 4-19
overriding, 4-20
rules, 4-20

preprocessing, 4-6
directives, 4-6
tokens, 4-4
variables, 5-25
VIDL specifications, 4-6

preprocessor macros, 5-4
__cplusplus, 5-24
_LANGUAGE_ASM, 5-24
_LANGUAGE_C, 5-24

-proc processorID switch, 5-7
-proc switch, 5-15

-proc AD6532, 5-16
-proc AD90747, 5-18
-proc ADSP-2181, 5-17, 5-18

-proc ADSP-2183, 5-17
-proc ADSP-2184, 5-17
-proc ADSP-2185, 5-17
-proc ADSP-2186, 5-17
-proc ADSP-2187, 5-17
-proc ADSP-2188, 5-17
-proc ADSP-2189, 5-17
-proc ADSP-2192, 5-18
-proc ADSP-2192-12, 5-18
-proc ADSP-2195, 5-18
-proc ADSP-2196, 5-18
-proc ADSP-21990, 5-18
-proc ADSP-21991, 5-18
-proc ADSP-21992, 5-18
-proc ADSP-BF531, 5-16
-proc ADSP-BF532, 5-16
-proc ADSP-BF533, 5-16
-proc ADSP-BF535, 5-16
-proc ADSP-BF561, 5-16

processing characteristics, 6-16
processor

modes, 6-13
usage, 6-9

properties, 4-45
types of, 4-46

property attributes, 4-46
property declaration

property attributes, 4-46
property name list, 4-46
property, excluded, 4-46
type specifier, 4-46

prototypes, 2-3, 2-8
punctuation tokens, 4-9

I-16 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

Q
qualified names, 4-14, 4-25, 4-29

R
real literals, 4-11
re-entrancy, 6-10
register command, 4-8
registering namespaces, 2-8
registers, 6-9
ReleaseInterface method, 3-36
remotable command, 4-8
remote method invocations, 1-22
repeated items, syntax diagrams, 4-3
-report switch, C-4
RequestInterface method, 3-36
required items, syntax diagrams, 4-3
requires command, 4-8, 4-59
requires_state command, 4-8, 4-80,

4-96
reserved keywords, 4-8

table, 4-8
reserved names, see keywords
reserved registers

ADSP-21xx DSPs, A-16
ADSP-BF53x processors, A-9

Reset method, 3-16
reset_to_state command, 4-8, 4-80,

4-98
result codes

MR_BAD_AGGREGATION, B-2
MR_BAD_ALIGNMENT, B-3
MR_BAD_CONTEXT, B-3
MR_BAD_HANDLE, B-3
MR_BAD_IFCE_PTR, B-3

MR_BAD_MEMBANK, B-3
MR_BAD_MEMLIFE, B-3
MR_BAD_MEMTYPE, B-3
MR_BAD_STACK_PTR, B-4
MR_DSR_REQUIRED, B-4
MR_FAILED, B-2
MR_INV_PARAM, B-3
MR_NO_AGGREGATION, B-2
MR_NO_MEMORY, B-2
MR_NO_RESOURCES, B-4
MR_NOT_ALLOCATED_MEM,

B-3
MR_NOT_COMPLETED, B-3
MR_NOT_SUPPORTED, B-2
MR_OK, B-2
MR_SINGLETON_EXISTS, B-3

reusable software, 1-2, 1-3, 1-6
reuse command, 4-8
rules

address clashes, 6-16
documenting memory, 6-17
name clashes, 6-15
packaging, 6-1
processing characteristics, 6-17
processor modes, 6-13
programming area, 6-1
registers and stacks, 6-9
resource allocation, 6-6
resource requirements, 6-17
summary of, 6-2

running VIDL compiler, 1-17
run-time model, 1-15

ADSP-21xx DSPs, A-16
ADSP-BF53x processors, A-9

VisualDSP++ 3.5 Component Software Engineering User’s Guide I-17
for 16-bit Processors

S
-save-temps switch, 5-7, 5-18
scopes, 4-13, 4-25, 4-26, 4-29
searching

#include files, 4-6
elements with qualified names, 4-15
elements with unqualified names,

4-15
section names, C-5
sequences, method calls, 3-18
services and callbacks, D-4
set command, 4-8, 4-48
SetAlgorithmErrorInterface method,

3-17
SetName method, 3-44
sets_state command, 4-8, 4-80, 4-97
shared command, 4-8
-shell-only switch, 5-7, 5-19
short command, 4-8
signed command, 4-8
singleton command, 4-8, 4-61
-si-revision <revision> switch, 5-7, 5-19
size_is command, 2-6, 4-8, 4-37, 4-38
size_t command, 4-8
sizeof command, 4-8
software architecture, 1-21

multiprocessor, 1-22
single-processor, 1-22
support layer, 1-22

source files, 5-28
specifications, 4-4, 4-5, 4-13

VIDL general description, 4-76
stack_usage command, 4-8, 4-79, 4-86
stacks, 6-9

maintenance, 6-9
standard header files, 5-22, 5-24
standard interfaces, 3-1

IAlgorithm, 3-1, 3-14
IAlgorithm2, 3-1
IError, 3-2, 3-37
IInstanceFactory, 3-2, 3-33
IMemory, 3-1, 3-2
IMemorySwapper, 3-2, 3-28
IName, 3-2, 3-43
ITestReport interface, 3-39

standard section names, C-4
start-of-file comments, 5-23
states_used command, 4-8, 4-80, 4-94
-states-verbose-errors switch, 5-7, 5-19
static command, 4-8
StatusFields property, 4-49
string command, 4-8, 4-39
string literals, 4-5
strlen, 4-40
struct command, 4-8
struct_pack command, 4-8
struct_pad command, 4-8
structure type, 4-24

declaration form, 4-24
definition form, 4-24
members of, 4-24

structure, C component instance, 2-20
supplies command, 4-8, 4-61
Swap method, 3-32
SwapStatus property, 3-32
switches

-@, 5-8
-@ filename, 5-5

I-18 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

switches (continued)
-accept-any-include-file, 5-5, 5-8
-all-idl, 5-5, 5-8
-asm, 5-5, 5-9
-c++, 5-5, 5-9
-cname, C-2
-cname component_name, C-7
-copyright, 5-9
-copyright filename, 5-5
-cppflags, 5-9
-cppflags flags, 5-5
-D, 5-10
-desc desc_filename, C-7
-Dmacro(=def), 5-5
-dryrun, 5-5, 5-10
-embedded, 5-5, 5-10
-generic, 5-5, 5-10
-h(elp), 5-5
-harness, 5-5, 5-11
-hdr, 5-5, 5-11
-help, 5-11, C-2, C-8
-I, 5-12
-Idirectory, 5-5
-L., 2-39
-lghtwt, 5-6, 5-13
-M, 5-6, C-3
-mcd, 5-6, 5-13
-MM, 5-6, 5-12, C-3
-names, C-3
-no_update, C-3
-no-adoc, 5-6, 5-13
-no-shell, 5-6, 5-13
-no-vla, 5-6, 5-14
-no-xml, 5-6, 5-14

-obfuscate, C-3
-overwrite, 5-6, 5-14
-package, C-10
package_filename, C-10
-path, 5-14
-path-def, 5-14
-path-def path, 5-6
-path-html, 5-15
-path-html directory, 5-6
-path-install, 5-15
-path-install directory, 5-6
-path-output, 5-15
-path-output <directory>, 5-6
-path-temp, 5-15
-path-temp directory, 5-6
-path-tool path, 5-6
-proc, 5-15, 5-16
-proc AD6532, 5-16
-proc processorID, 5-7
-report, C-4
-save-temps, 5-7, 5-18
-shell-only, 5-7, 5-19
-si-revision <revision>, 5-7, 5-19
-states-verbose-errors, 5-7, 5-19
-text, C-8
-text switch, C-9
-trace, 2-36, 5-7, 5-19
-U, 5-20
-Umacro, 5-7
-umb-verbose, 5-7, 5-20
-uninstall, C-10
-validate-memory, 4-88, 5-7, 5-20
vcse_enforce, C-1
vcse_packager, C-9

VisualDSP++ 3.5 Component Software Engineering User’s Guide I-19
for 16-bit Processors

switches (continued)
vcse_sizer, C-7
-verbose, 5-7, 5-21, C-4
-version, 4-62, 5-7, 5-20

symbol names, C-5
syntax and semantics

for commands, 4-85
syntax diagrams, 4-2

understanding, 4-2
syntax rules, 4-81
syntax structure, 4-81

interface_dcl, 4-84
method_dcl, 4-83
specification, 4-83
test_arg_list, 4-84

T
target processor families

listed, 5-2
test shell attributes, 4-79

algorithm_model, 4-80
aliasing_check, 4-80
array_check, 4-80
clear_state, 4-80
in_assert, 4-80
init_state, 4-80
mem_shell, 4-79
no_aliasing_check, 4-80
no_array_check, 4-80
no_stack_usage, 4-80
no_timing, 4-80
out_assert, 4-80
requires_state, 4-80
reset_to_state, 4-80

sets_state, 4-80
stack_usage, 4-79
states_used, 4-80
timing, 4-79

test shell files, 5-36
test shells, 4-77
testing

components, 2-36
harnesses, 2-36

testing command, 4-8
-text switch, C-8, C-9
timing command, 4-8, 4-79, 4-88
title command, 4-8, 4-62
tokens, see language tokens
trace mode, 2-36, 5-25
-trace switch, 2-36, 5-7, 5-19
type of the properties, 4-46
type specifiers and definitions, 4-27
typedef command, 4-8
TypeFlags, 3-9
typename command, 4-8
types

array, 4-28
base, 4-22
char, 4-11
definition, 4-27
double, 4-11
enumeration, 4-23
int, 4-10
interface, 4-26
specifiers, 4-27
structure, 4-24
user-defined, 4-21

I-20 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

U
-U switch, 5-20
-Umacro switch, 5-7
-umb-verbose switch, 5-7, 5-20
unary operators, 4-18
-uninstall switch, C-10
union command, 4-8
unique command, 4-8
unique user identifier (UUID), C-9
unqualified names, 4-14
unsigned command, 4-8
use command, 4-8, 4-68, 4-71, 4-72
use, interface attribute, 4-14
using components, 2-1, 2-60
using PCC components, D-15
utility

operation of, C-4

V
-validate-memory switch, 4-88, 5-7,

5-20
variables, see names
VCSE

architecture, see software architecture
benefits of, 1-6
model, see component model
MRESULT codes, B-2
MRESULT structure, B-1
namespace, 3-1, 4-13
rules and guidelines, 1-23, 6-1
standard binary interface, 1-15
standard interfaces, 3-1

VCSE Interface Definition Language
see VIDL

VCSE methods
invoking, 2-72

VCSE optimizations, 2-72
vcse.h, standard header, 5-24, 5-25, A-1
vcse_asm.h, standard header, 5-24, 5-27
VCSE_DELTA macro, 5-25
vcse_enforce switches, C-1
VCSE_IBase.h, 5-24
VCSE_MRESULT macro, A-2, A-9,

A-17
vcse_packager switch, C-9
vcse_sizer switch, C-7
-verbose switch, 5-7, 5-21, C-4
version command, 4-8
-version switch, 4-62, 5-7, 5-20
vertical tabs, 4-12
VIDL, 1-9, 1-17

base types, 4-22
commands, list of, 4-8
element attributes, 4-16
enum types, 4-22
int types, 4-10
interface types, 4-26
interfaces, 4-29
keywords, list of, 4-8
lexical elements, 4-4
named elements, 4-13
scopes, 4-14
source file types, 5-22
specifications, 2-10, 2-17
specifications, see operational

specifications
struct type, 4-24
type specifiers, 4-27

VisualDSP++ 3.5 Component Software Engineering User’s Guide I-21
for 16-bit Processors

VIDL compiler
auto-doc comments, 5-35
command line, 2-19
file processing, 1-17, 5-22
generated files, 5-22
generated source files, 5-28
running, 5-1
switches, 5-4

virtual functions, 2-27
VisualDSP++

VCSE projects, 1-19

VisualDSP++ Interface Definition
Language (VIDL) file, 3-6

void command, 4-8

W
white space tokens, 4-5
wizards

New Component Package, 1-20
New Component Project, 1-20
New Interface, 1-19

I-22 VisualDSP++ 3.5 Component Software Engineering User’s Guide
for 16-bit Processors

	VisualDSP++ Component Software Engineering User’s Guide for 16-bit Processors (10/27/03)
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	DSP Product Information
	Related Documents
	Online Documentation
	From VisualDSP++
	From Windows
	From the Web

	Printed Manuals
	VisualDSP++ Documentation Set
	Hardware Manuals
	Data Sheets

	Contacting DSP Publications

	Notation Conventions

	1 Introduction to VCSE
	Origin of Components
	Software Components
	Benefits of Components

	VCSE Components
	Component Software Engineering Concepts
	VCSE Interfaces
	Interface Example

	VCSE Components
	Component Example

	Binary Standard Interface
	Figure 1-1. ISort Interface Method Table

	Interface Definition Language and Compiler
	Figure 1-2. VIDL Compiler Operation

	Integration With VisualDSP++
	Component Projects
	New Interface and Component Wizards
	Component Packaging Wizard
	Component Manager

	Software Architecture
	Figure 1-3. Simple Application Model

	Rules and Guidelines

	2 Developing and Using VCSE Components
	Defining an Interface
	Listing 2-1. G.711 Function Prototypes
	Listing 2-2. EXAMPLES::IG.711 VIDL Specification

	Properties
	Interface Properties
	Creating Interface Implementation
	Figure 2-1. Examples::IG711 Interface Documentation Files
	Listing 2-3. Component Implementing EXAMPLES::IG711 Interface
	Table 2-1. EXAMPLES::IG711 Interface Implementation Files�
	C Component Instance Structure
	C Interface Method Functions
	C++ Interface Methods
	Assembly Interface Methods

	Advanced Component Construction
	Method Language Selection
	Method Placement
	Distinct Components

	Documenting Components
	Figure 2-2. Examples::IG711 Interface Documentation Files

	Testing Components
	Testing Harnesses
	Table 2-2. VCSE Support Libraries�

	Test Shell Components
	Description of Generated Test Shell Component Files
	Table 2-3. Generated Test Shell Files Names

	Supporting Tools for Test Shell Components
	Macros and Library Methods for Component Validation
	__VCSE_STACKVARS(E,U)
	__VCSE_STACKFILL(E)
	__VCSE_STACKUSE(E,ADDR))
	Macros and Library Methods for Reporting Messages to the User
	Figure 2-3. Predefined Shell Messages (Cont’d)

	The VCSE::CTestReport Component
	Listing 2-4. Example Use of the VCSE_CTestReport Component

	Packaging Components
	Manifest Commands
	Adding a File to the Package
	Overriding File Actions
	Adding Licensing Terms

	Using Modifiable Sections
	Component Factory Source File
	Table 2-4. Component Factory Source File

	Component Methods Source File
	Table 2-5. Method Source File

	Component Instance Header File for C/Assembly
	Table 2-6. C Component Instance Header�

	Component Instance Header File for C++
	Table 2-7. C++ Component Instance Header�

	Component Factory Header File
	Table 2-8. Component Factory Header�

	Component Package Manifest File
	Table 2-9. Component Manifest File

	Test Shell Component User-Modifiable Sections
	Component Global Settings
	Interface Member Function

	Using Components
	Creating Component Instances
	Listing 2-5. Instantiating EXAMPLES_CULaw Component
	Listing 2-6. Examples_CULaw_Create Function

	VCSE Memory Allocators
	VCSE::CSimpleMemory
	Listing 2-7. Creating VCSE::CSimpleMemory
	Listing 2-8. Using VCSE::CSimpleMemory

	VCSE::CInstMemory
	Listing 2-9. Creating VCSE::CInstMemory
	Listing 2-10. CInstMemory_Allocation structure
	Listing 2-11. Using VCSE::CInstMemory

	Using Interface Pointers in C or Assembly
	Listing 2-12. C Interface Pointer

	Using Interface Pointers in C++
	Listing 2-13. C++ Interface Pointer

	Destroying Components
	Listing 2-14. Examples_CULaw_Destroy Function

	Implementation of GetInterface Method
	Listing 2-15. Implementing GetInterface Methods
	VCSE Optimizations
	Method Call Overhead
	Preventing Code and Data Elimination
	Standard Method Functions
	Improving Program Efficiency
	Listing 2-16. Example of a Constant VCSE Method in C
	Listing 2-17. Example of a Constant VCSE Method in Assembler

	VCSE Algorithms

	Aggregating Components
	Implementation of Aggregation
	Figure 2-4. Aggregation Example
	Listing 2-18. Aggregation Example
	Listing 2-19. GetInterface Method Example
	Listing 2-20. Non-Delegating GetInterface Example
	Listing 2-21. Delegating GetInterface Example

	Company Namespace Registration

	3 Standard Interfaces
	IMemory Interface
	IMemory and Component Instance Creation
	IMemory Interface Definition
	Listing 3-1. IMemory Interface Definition

	Type and Enumeration Descriptions
	MemRequest
	Table 3-1. MemRequest Structure Members (Cont’d)

	TypeFlags
	Table 3-2. MemType Enumeration Members�
	Table 3-3. ADSP-BF53x Blackfin Processor Memory Types�
	Table 3-4. ADSP-21xx DSP Memory Types�

	LifetimeFlags
	Table 3-5. MemLifetime Enumeration Members�

	Context
	Table 3-6. MemContext Enumeration Members�

	Method Descriptions
	Allocate
	Table 3-7. Allocate Method Parameters and Return Values�

	Free

	IAlgorithm Interface
	IAlgorithm Interface Definition
	Listing 3-2. IAlgorithm Interface Definition

	Method Descriptions
	Reset
	Activate
	Deactivate
	SetAlgorithmErrorInterface

	Valid Sequence of Method Calls
	Figure 3-1. Typical Method Calls Sequence

	IAlgorithm2 Interface
	IAlgorithm2 Memory Concept
	IAlgorithm2 Interface Definition
	Listing 3-3. IAlgorithm2 Interface Definition

	Method Descriptions
	AssignMemoryResources
	ConfigureMemorySwapper

	Properties
	MemorySwapper

	Valid Sequence of Method Calls
	Listing 3-4. IAlgorithm2: Creation Phase Call Sequence Pseudo Code
	Listing 3-5. IAlgorithm2: Run-time with Synchronous Swapping Pseudo Code
	Listing 3-6. IAlgorithm2: Run-time with Asynchronous Swapping Pseudo Code

	IMemorySwapper Interface
	IMemorySwapper Interface Definition
	Listing 3-7. IMemorySwapper Interface Definition

	Method Descriptions
	Initialize
	Swap

	Properties
	SwapStatus

	Intended Use

	IInstanceFactory Interface
	IInstanceFactory Interface Definition
	Listing 3-8. IInterfaceFactory Interface Definition

	Method Descriptions
	RequestInterface
	ReleaseInterface

	Example of Use

	IError Interface
	IError Interface Definition
	Listing 3-9. IError Interface Definition

	Method Descriptions
	Error
	Table 3-8. Error Method Parameters�

	ITestReport Interface
	ITestReport Interface Definition
	Listing 3-10. ITestReport Interface Definition

	Method Descriptions
	AddString
	Listing 3-11. Example C++ Use of AddString Method

	AddStringWithNumber
	Listing 3-12. Example C++ Use of AddStringWithNumber Method

	AddStringWithNumbers
	Listing 3-13. Example C++ Use of AddStringWithNumbers Method

	DumpAllMessages
	Listing 3-14. Example C++ Use of DumpAllMessages Method

	IName Interface
	IName Interface Definition
	Listing 3-15. IName Interface Definition

	Method Descriptions
	SetName
	GetName
	GetLength

	4 VIDL Language Reference
	Understanding Syntax Diagrams
	Lexical Elements
	Character Sequences
	White Space
	Comments
	Figure 4-1. Comment Syntax Diagram

	Preprocessing
	Figure 4-2. #include Syntax Diagram

	VIDL Language Tokens
	Names
	Figure 4-3. Name Syntax Diagram

	Keywords
	Table 4-1. Reserved Keywords�
	Table 4-2. Auto-doc Tags

	Punctuation
	Operators
	Numeric Literals
	Integer Literals
	Figure 4-4. Integer Literal Syntax Diagram

	Real Literals
	Figure 4-5. Real Literal Syntax Diagram

	String Literals
	Figure 4-6. Character Literal Syntax Diagram
	Figure 4-7. Escape Sequence Syntax Diagram
	Figure 4-8. String Literal Syntax Diagram

	Named Elements
	Figure 4-9. Unqualified Name Syntax Diagram
	Figure 4-10. Qualified Name Syntax Diagram

	Element Attributes
	Figure 4-11. Attribute Syntax Diagram
	Figure 4-12. Element Attribute Syntax Diagram

	Constant Expressions
	Figure 4-13. Primary Expression Syntax Diagram
	Figure 4-14. Unary Expression Syntax Diagram
	Figure 4-15. Expression Syntax Diagram
	Figure 4-16. Constant Expression Syntax Diagram
	Table 4-3. Unary Operators Precedence Chart�
	Table 4-4. Binary Operators Precedence Chart�
	Listing 4-1. Example Constant Expressions

	Types
	Figure 4-17. VIDL Types
	Base Types
	Figure 4-18. Base Type Syntax Diagram

	Enum Types
	Figure 4-19. Enumerator Syntax Diagram
	Figure 4-20. enum Definition Syntax Diagram
	Listing 4-2. Enum Example

	Structure Types
	Figure 4-21. Member Declarator Syntax Diagram
	Figure 4-22. Member Attribute Syntax Diagram
	Figure 4-23. Member List Syntax Diagram
	Figure 4-24. struct Definition Syntax Diagram
	Figure 4-25. struct Attributes Syntax Diagram
	Listing 4-3. Struct Example

	Interface Types

	Type Specifiers and Definitions
	Figure 4-26. Type Specifier Syntax Diagram
	Figure 4-27. typedef Syntax Diagram
	Listing 4-4. Typedef Example

	Declarators
	Figure 4-28. Declarator Syntax Diagram
	Figure 4-29. Declarator List Syntax Diagram

	Interfaces
	Figure 4-30. Interface Name Syntax Diagram
	Figure 4-31. interface Declaration Syntax Diagram
	Figure 4-32. Interface Definition Syntax Diagram
	Figure 4-33. iid Attribute Syntax Diagram
	Figure 4-34. Interface Attributes Syntax Diagram
	Listing 4-5. Interface Identifier Example

	Methods
	Figure 4-35. Method Declaration Syntax Diagram
	Method Attributes
	local attribute
	Figure 4-36. local Attributes Syntax Diagram

	Method Parameters
	Figure 4-37. Parameter List Syntax Diagram
	Figure 4-38. Method Parameters Syntax Diagram
	Figure 4-39. Parameter Declarator Syntax Diagram
	Parameter Attributes
	Figure 4-40. Parameter Attribute Syntax Diagram
	in Attribute
	Figure 4-41. in Attribute Syntax Diagram

	out Attribute
	Figure 4-42. out Attribute Syntax Diagram

	size_is Attribute
	Figure 4-43. size_is Attribute Syntax Diagram

	string Attribute
	Figure 4-44. string Attribute Syntax Diagram

	shared Attribute
	Figure 4-45. shared Attribute Syntax Diagram

	alias Attribute
	Figure 4-46. alias Attribute Syntax Diagram

	bank Attribute
	Figure 4-47. bank Attribute Syntax Diagram

	align Attribute
	Figure 4-48. align Attribute Syntax Diagram

	document Statement
	Figure 4-49. document Statement Syntax Diagram

	Properties
	Figure 4-50. Property Syntax Diagram
	Figure 4-51. Property Name List Syntax Diagram
	Property Attributes
	Figure 4-52. Property Attribute Syntax Diagram
	get Attribute
	Figure 4-53. get Attribute Syntax Diagram

	set Attribute
	Figure 4-54. set Attribute Syntax Diagram

	align Attribute
	Figure 4-55. align Attribute Syntax Diagram

	Components
	Figure 4-56. Component Name Syntax Diagram
	Figure 4-57. Component Declaration Syntax Diagram
	Figure 4-58. Component Aggregation Syntax Diagram
	Figure 4-59. Component Definition Syntax Diagram
	Component Attributes
	Figure 4-60. Component Attribute Syntax Diagram
	aggregatable Attribute
	Figure 4-61. aggregatable Attribute Syntax Diagram

	category Attribute
	Figure 4-62. category Attribute Syntax Diagram

	common Attribute
	Figure 4-63. common Attribute Syntax Diagram

	company Attribute
	Figure 4-64. company Attribute Syntax Diagram

	distinct Attribute
	Figure 4-65. distinct Attribute Syntax Diagram

	info Attribute
	Figure 4-66. info Attribute Syntax Diagram

	needs Attribute
	Figure 4-67. needs Attribute Syntax Diagram

	requires Attribute
	Figure 4-68. requires Attribute Syntax Diagram
	Figure 4-69. Component Version Syntax Diagram
	Figure 4-70. Version Number Syntax Diagram

	singleton Attribute
	Figure 4-71. singleton Attribute Syntax Diagram

	supplies Attribute
	Figure 4-72. supplies Attribute Syntax Diagram

	title Attribute
	Figure 4-73. title Attribute Syntax Diagram

	version Attribute
	Figure 4-74. version Attribute Syntax Diagram

	Additional Statements
	distinct statement
	Figure 4-75. distinct Method Statement Syntax Diagram

	place statement
	Figure 4-76. Method Placement Statement Syntax Diagram

	language statement
	Figure 4-77. Method Language Statement Syntax Diagram

	Namespaces
	Figure 4-78. Namespace Name Syntax Diagram
	Figure 4-79. Element Definition Syntax Diagram
	Figure 4-80. Namespace Declaration Syntax Diagram
	Listing 4-6. Use of Separate Namespace Blocks
	use Attribute
	Figure 4-81. use Attribute Syntax Diagram

	Auto-doc Comments
	Specifications
	Figure 4-82. VIDL Specification Syntax Diagram

	Generated Test Shells
	Overview
	Table 4-5. Test Shell Attributes (Cont’d)

	Syntax Structure
	Figure 4-83. Test Shell Syntax Diagram
	Syntax Rules
	specification
	Figure 4-84. specification Syntax Diagram

	method_dcl
	Figure 4-85. method-dcl Syntax Diagram

	test_arg_list
	Figure 4-86. test_arg_list Syntax Diagram

	interface_dcl
	Figure 4-87. interface_dcl Syntax Diagram

	Syntax and Semantics
	stack_usage
	Syntax
	Description

	mem_shell
	Syntax
	Description

	timing
	Syntax
	Description

	in_assert
	Syntax
	Description

	out_assert
	Syntax
	Description

	algorithm_model
	Syntax
	Description

	aliasing_check
	Syntax
	Description

	array_check
	Syntax
	Description

	states_used
	Syntax
	Description

	init_state
	Syntax
	Description

	requires_state
	Syntax
	Description

	sets_state
	Syntax
	Description

	reset_to_state
	Syntax
	Description

	clear_state
	Syntax
	Description

	5 VIDL Compiler Command Line Interface
	Running VIDL Compiler
	Table 5-1. Target Processor Families
	Table 5-2. Preprocessor Macros�
	VIDL Compiler Switches
	Table 5-3. VIDL Compiler Common Switches (Cont’d)
	-@
	-accept-any-include-file
	-all-idl
	-asm
	-c++
	-copyright
	-cppflags
	-D
	-dryrun
	-embedded
	-generic
	-harness
	-hdr
	-h[elp]
	-I
	-M
	-MM
	-lghtwt
	-mcd
	-no-adoc
	-no-shell
	-no-vla
	-no-xml
	-overwrite
	-path-[cpp|fe|pr|be]
	-path-def
	-path-html
	-path-install
	-path-output
	-path-temp
	-proc
	Blackfin Processor Switches
	21xx Processor Switches

	-save-temps
	-shell-only
	-si-revision <revision>
	-states-verbose-errors
	-trace
	-U
	-umb-verbose
	-validate-memory
	-v[ersion]
	-verbose

	Processing VIDL Files
	File Organization
	File Names
	Start-of-File Comments
	End-of-File Comments
	Header Files Guards
	Language Identifications

	Standard Files
	Contents of vcse.h
	Contents of vcse_asm.h
	Contents of VCSE_IBase.h

	Generated Source Files
	Interface Definitions
	Table 5-4. Interface Source Files (Cont’d)
	Table 5-5. Common Generated Documentation Files�

	Component Definitions
	C Based Components
	Table 5-6. C Component Source Files�

	C++ Based Components
	Table 5-7. C++ Component Source Files�

	Assembly Based Components
	Table 5-8. Assembly Component Source Files�

	Component Documentation Files
	Table 5-9. Component Specific Documentation Files�

	Component Manifest File
	Test Shell Files
	Table 5-10. Test Shell Files

	6 VCSE Rules and Guidelines
	Summary
	Table 6-1. Common Component Rules (Cont’d)
	Table 6-2. Common Component Guidelines�
	Table 6-3. Algorithm Component Rules�
	Table 6-4. Algorithm Component Guidelines�
	Table 6-5. Non-algorithm Component Rules (Cont’d)

	Programming
	Resource Allocation
	Processor Usage
	Registers and Stack
	Interrupt System and Re-entrancy
	Processor Modes
	Core Peripherals

	Packaging
	Name Clashes
	Address Clashes
	Memory and Processing Characteristics
	Memory
	Processing

	Non-memory Resource Requirements
	Code and Data Elimination
	Addressing Models

	A VCSE Assembler Macros
	General Overview of Macro Definitions
	Method Result Macros
	VCSE_MRESULT
	MR_ICONSTRUCT(F,I)
	MR_FAILURE(mr)
	MR_SUCCESS(mr)
	__CHECK_VCSE_RESPONSE(handler)

	Accessing Factory Functions
	__CREATOR(C)
	__DESTROYER(C)
	__SIZEOF(C)

	Invoking Interface Methods
	__INVOKE(P,T,M)
	__GET_METHOD(P,T,M)

	Function Writing Macros
	__STARTFUNC(Name,Visibility)
	__ENDFUNC(Name)
	__LINK(N)
	__PUSH(Reg)
	__POP(Reg)
	__ALLOCSTACK(N)
	__FREESTACK(N)
	__arg0 to __arg9
	__STORE_ARG(n,Reg)
	__EXIT
	__LEAF_EXIT
	__RETURN(Value)
	__LEAF_RETURN(Value)

	Miscellaneous
	__LA(R,V)
	__VCSE_ASM_TRACE(A1,A2)
	__VCSE_PRINT_VAR(A1,A2,V)

	Implementation of Macros on Blackfin Processors
	C Run-Time Model
	Method Result Macros
	VCSE_MRESULT
	MR_ICONSTRUCT(F,I)
	MR_FAILURE(mr) and MR_SUCCESS(mr)
	__CHECK_VCSE_RESPONSE(handler)

	Accessing Factory Functions
	Invoking Interface Methods
	Function Writing Macros
	__STARTFUNC(Name,Visibility) and __ENDFUNC(Name)
	__LINK(N)
	__PUSH(Reg) and __POP(Reg)
	__ALLOCSTACK(N) and __FREESTACK(N)
	__arg0 to __arg9
	__EXIT and __LEAF_EXIT
	__RETURN(Value) and __LEAF_RETURN(Value)

	Miscellaneous
	__LA(R,V)
	__VCSE_ASM_TRACE(A1,A2)
	__VCSE_PRINT_VAR(A1,A2,V)

	Implementation of Macros on ADSP-21xx DSPs
	C Run-Time Model
	Table A-1. Reserved Registers for ADSP-21xx DSP C Run-time Model (Cont’d)

	Method Result Macros
	VCSE_MRESULT
	MR_ICONSTRUCT(F,I)
	MR_FAILURE(mr) and MR_SUCCESS(mr)
	__CHECK_VCSE_RESPONSE(handler)

	Accessing Factory Functions
	Invoking Interface Methods
	Table A-2. __Get_Method Macros�

	Function Writing Macros
	__STARTFUNC(Name,Visibility) and __ENDFUNC(Name)
	__LINK(N)
	__PUSH(Reg) and __POP(Reg)
	__ALLOCSTACK(N) and __FREESTACK(N)
	__arg0 to __arg9 (ADSP-219x DSPs only)
	__STORE_ARG(n,Reg) (ADSP-218x only)
	__EXIT and __LEAF_EXIT
	__RETURN(Value) and __LEAF_RETURN(Value)

	Miscellaneous Macros
	__LA(R,V)
	__VCSE_ASM_TRACE(A1,A2)
	__VCSE_PRINT_VAR(A1,A2,V)

	B VCSE MRESULT Codes
	MRESULT Structure
	MRESULT Codes
	Table B-1. VCSE MRESULT Codes (Cont’d)

	C VCSE Utilities
	vcse_enforce
	-add library.dlb
	-cname component_name
	-help
	-M
	-MM
	-names name_control_file
	-no_update
	-obfuscate
	-report
	-verbose
	Operation of the Utility
	Table C-1. Standard Section Names

	Name Control File

	vcse_sizer
	-cname component_name
	-desc desc_filename
	-help
	-text
	Description File

	vcse_packager
	-install
	-package
	-uninstall

	D PCC — An Example of VCSE Interface Design
	Introduction
	Motivation
	Scope

	The Interfaces—Detailed Descriptions
	Table D-1. Summary of PCC and Device Interfaces (Cont’d)
	IDataPort
	ICircDataPort
	IDma
	ICallback
	IInterruptHandler
	IPeripheral
	ISysPeripheral
	ISPI
	IOE

	Implementing a PCC Component
	Setup and Overall Control
	Data Transfer and Interrupt Handling

	Using PCC Components

	I Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

