
W3.5
C Compiler and Library

 Manual for ADSP-218x DSPs

Revision 4.1, October 2003

Part Number:
82-000400-03

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2003 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, VisualDSP++, and the VisualDSP++ logo are
registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

CONTENTS
CONTENTS

PREFACE

Purpose ... xxv

Intended Audience .. xxv

Manual Contents Description .. xxvi

What’s New in this Manual .. xxvi

Technical or Customer Support ... xxvii

Supported Processors ... xxvii

Product Information .. xxviii

MyAnalog.com ... xxviii

DSP Product Information ... xxviii

Related Documents .. xxix

Online Technical Documentation .. xxx

From VisualDSP++ ... xxx

From Windows .. xxxi

From the Web .. xxxi

Printed Manuals .. xxxii

VisualDSP++ Documentation Set xxxii
VisualDSP 3.5 C Compiler and Library Manual iii
for ADSP-218x DSPs

CONTENTS
Hardware Manuals ... xxxii

Datasheets .. xxxii

Contacting DSP Publications ... xxxiii

Notation Conventions ... xxxiii

COMPILER

C Compiler Overview ... 1-2

Standard Conformance .. 1-3

Compiler Command-Line Reference ... 1-6

Running the Compiler .. 1-7

Specifying Compiler Options in VisualDSP++ 1-10

Compiler Command-Line Switches 1-11

-@ filename .. 1-18

-A name(tokens) ... 1-18

-alttok .. 1-19

-bss .. 1-19

-build-lib .. 1-20

-C .. 1-20

-c ... 1-20

-const-read-write .. 1-20

-Dmacro [=definition] .. 1-20

-debug-types <file.h> .. 1-21

-default-linkage-{asm|C} ... 1-21

-dry .. 1-22

-dryrun .. 1-22
iv VisualDSP 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

CONTENTS
-E ... 1-22

-ED .. 1-22

-EE ... 1-22

-extra-keywords ... 1-22

-flags-{asm|compiler|lib|link|mem} switch [,switch2 [,...]] .. 1-23

-fp-associative ... 1-23

-full-version .. 1-23

-g ... 1-23

-H .. 1-24

-HH ... 1-24

-h[elp] .. 1-24

-I- ... 1-25

-I directory [{,|;} directory...] ... 1-25

-include filename .. 1-25

-ipa ... 1-26

-jump-{dm|pm|same} .. 1-26

-L directory [{,|;} directory...] .. 1-27

-l library ... 1-27

-M .. 1-27

-MD ... 1-28

-MM .. 1-28

-Mo filename .. 1-28

-Mt filename ... 1-28

-MQ ... 1-28
VisualDSP 3.5 C Compiler and Library Manual v
for ADSP-218x DSPs

CONTENTS
-make-autostatic ... 1-29

-map filename .. 1-29

-mem ... 1-29

-no-alttok ... 1-29

-no-bss ... 1-30

-no-builtin ... 1-30

-no-defs .. 1-30

-no-extra-keywords ... 1-30

-no-fp-associative .. 1-31

-no-mem .. 1-31

-no-std-ass .. 1-31

-no-std-def ... 1-31

-no-std-inc ... 1-31

-no-std-lib .. 1-32

-no-widen-muls .. 1-32

-O .. 1-32

-Oa .. 1-33

-Os .. 1-33

-Ov num .. 1-33

-o filename ... 1-33

-P ... 1-34

-PP .. 1-34

-path-{asm|compiler|def|lib|link|mem} filename 1-34

-path-install directory ... 1-34
vi VisualDSP 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

CONTENTS
-path-output directory .. 1-35

-path-temp directory ... 1-35

-pch .. 1-35

-pch directory ... 1-35

-pedantic .. 1-35

-pedantic-errors .. 1-36

-pplist filename ... 1-36

-proc processor .. 1-36

-R directory [{;|,}directory …] ... 1-37

-R- ... 1-38

-reserve register[,register...] .. 1-38

-S ... 1-38

-s .. 1-39

-save-temps ... 1-39

-show .. 1-39

-si-revision version .. 1-39

-signed-bitfield .. 1-40

-signed-char .. 1-40

-syntax-only .. 1-40

-sysdefs ... 1-41

-T filename ... 1-41

-time .. 1-41

-Umacro ... 1-42

-unsigned-bitfield .. 1-42
VisualDSP 3.5 C Compiler and Library Manual vii
for ADSP-218x DSPs

CONTENTS
-unsigned-char .. 1-43

-v ... 1-43

-val-global <name-list> ... 1-43

-verbose .. 1-43

-version .. 1-43

-Wdriver-limit number ... 1-44

-Werror-limit number ... 1-44

-W{error|remark|suppress|warn} <num>[,num...] 1-44

-Wremarks .. 1-44

-Wterse .. 1-45

-w .. 1-45

-warn-protos ... 1-45

-write-files .. 1-45

-write-opts .. 1-45

-xref <file> .. 1-46

Data Type Sizes ... 1-47

Optimization Control ... 1-49

Interprocedural Analysis ... 1-50

C Compiler Language Extensions .. 1-52

Inline Function Support Keyword (inline) 1-55

Inline Assembly Language Support Keyword (asm) 1-56

Assembly Construct Template ... 1-57

ASM() Construct Syntax: .. 1-57

ASM() Construct Syntax Rules 1-59
viii VisualDSP 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

CONTENTS
ASM() Construct Template Example 1-60

Assembly Construct Operand Description 1-61

Assembly Constructs With Multiple Instructions 1-67

Assembly Construct Reordering and Optimization 1-67

Assembly Constructs with Input and Output Operands 1-68

Assembly Constructs and Macros 1-70

Assembly Constructs and Flow Control 1-70

Dual Memory Support Keywords (pm dm) 1-71

Memory Keywords and Assignments/Type Conversions 1-73

Memory Keywords and Function Declarations/Pointers 1-74

Memory Keywords and Function Arguments 1-75

Memory Keywords and Macros ... 1-75

PM and DM Compiler Support for Standard C Library Functions
1-76

Placement Support Keyword (section) 1-76

Boolean Type Support Keywords (bool, true, false) 1-77

Pointer Class Support Keyword (restrict) 1-77

Variable-Length Array Support .. 1-78

Non-Constant Aggregate Initializer Support 1-80

Indexed Initializer Support .. 1-80

Aggregate Constructor Expression Support 1-82

Preprocessor-Generated Warnings .. 1-83

C++-Style Comments .. 1-83

Compiler Built-in Functions .. 1-83

I/O Space for Read/Write .. 1-84
VisualDSP 3.5 C Compiler and Library Manual ix
for ADSP-218x DSPs

CONTENTS
Read/Write of Non-Memory-Mapped Registers 1-85

Interrupt Control ... 1-85

ETSI Support ... 1-86

ETSI Support Overview .. 1-86

Calling ETSI Library Functions .. 1-88

Using the ETSI Built-In Functions 1-89

Linking ETSI Library Functions 1-89

Working with ETSI Library Source Code 1-90

ETSI Support for Data Types .. 1-90

ETSI Header File .. 1-91

Pragmas .. 1-99

Data Alignment Pragmas .. 1-101

#pragma align (num) .. 1-101

#pragma pad (alignopt) ... 1-102

Interrupt Handler Pragmas ... 1-102

#pragma interrupt .. 1-102

#pragma altregisters .. 1-103

Loop Optimization Pragmas ... 1-103

#pragma loop_count(min, max, modulo) 1-104

#pragma vector_for ... 1-104

#pragma no_alias .. 1-105

General Optimization Pragmas 1-105

Linking Control Pragmas .. 1-106

#pragma linkage_name identifier 1-107
x VisualDSP 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

CONTENTS
 #pragma retain_name ... 1-107

 #pragma weak_entry .. 1-108

Stack Usage Pragma .. 1-108

#pragma make_auto_static .. 1-108

Function Side-Effect Pragmas .. 1-109

#pragma alloc .. 1-109

#pragma pure .. 1-110

#pragma const ... 1-110

#pragma regs_clobbered string 1-111

#pragma result_alignment (n) 1-114

Header File Control Pragmas ... 1-115

#pragma hdrstop ... 1-115

#pragma no_pch ... 1-116

#pragma once ... 1-116

#pragma system_header ... 1-116

GCC Compatibility Extensions ... 1-117

Statement Expressions ... 1-117

Type Reference Support Keyword (typeof) 1-118

GCC Generalized Lvalues ... 1-119

Conditional Expressions with Missing Operands 1-120

Hexadecimal Floating-Point Numbers 1-120

Zero Length Arrays ... 1-121

Variable Argument Macros .. 1-121

Line Breaks in String Literals ... 1-121
VisualDSP 3.5 C Compiler and Library Manual xi
for ADSP-218x DSPs

CONTENTS
Arithmetic on Pointers to Void and Pointers to Functions 1-122

Cast to Union ... 1-122

Ranges in Case Labels ... 1-122

Declarations mixed with Code .. 1-122

Escape Character Constant ... 1-123

Alignment Inquiry Keyword (__alignof__) 1-123

Keyword for Specifying Names in Generated Assembler (asm) 1-123

Function, Variable and Type Attribute Keyword (__attribute__)
1-124

Preprocessor Features .. 1-125

Predefined Preprocessor Macros ... 1-125

__ADSP21XX__ and __ADSP218X__ 1-126

__ADSP21{81|83|84|85|86|87|88|89}__ 1-126

__ANALOG_EXTENSIONS__ 1-126

__DATE__ .. 1-126

__DOUBLES_ARE_FLOATS__ 1-126

__ECC__ ... 1-126

__EDG__ .. 1-126

__EDG_VERSION__ .. 1-127

__FILE__ ... 1-127

_LANGUAGE_C ... 1-127

__LINE__ .. 1-127

__NO_BUILTIN ... 1-127

__NO_LONG_LONG .. 1-127

__SIGNED_CHARS__ .. 1-127
xii VisualDSP 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

CONTENTS
__STDC__ ... 1-128

__STDC_VERSION__ .. 1-128

__TIME__ ... 1-128

__VERSION__ .. 1-128

Header Files .. 1-128

Writing Preprocessor Macros .. 1-129

Preprocessing of .IDL Files .. 1-131

C Run-Time Model and Environment 1-132

Using the Run-Time Header .. 1-133

Interrupt Table and Interface ... 1-133

Autobuffering Support ... 1-134

Stack Frame ... 1-136

Stack Frame Description ... 1-137

General System-Wide Specifications 1-138

At a procedure call, the following must be true: 1-139

At an interrupt, the following must be true: 1-139

Return Values ... 1-139

Procedure Call and Return .. 1-140

On Entry: ... 1-140

To Return from a Procedure: 1-140

File I/O Support .. 1-141

Extending I/O Support To New Devices 1-141

Miscellaneous Information ... 1-143

Register Classification .. 1-144
VisualDSP 3.5 C Compiler and Library Manual xiii
for ADSP-218x DSPs

CONTENTS
Callee Preserved Registers (“Preserved”) 1-144

Dedicated Registers .. 1-144

Caller Save Registers (“Scratch”) 1-144

Circular Buffer Length Registers 1-144

Mode Status (MSTAT) Register 1-145

Complete List of Registers ... 1-145

C and Assembly Language Interface .. 1-148

Calling Assembly Subroutines from C Programs 1-148

Calling C Routines from Assemby Programs 1-151

Using Mixed C/Assembly Support Macros 1-152

function_entry ... 1-153

exit ... 1-153

leaf_entry ... 1-153

leaf_exit ... 1-153

alter(x) ... 1-153

save_reg .. 1-154

restore_reg .. 1-154

readsfirst(register) ... 1-154

register = readsnext ... 1-154

putsfirst = register ... 1-154

putsnext = register .. 1-155

getsfirst(register) ... 1-155

register = getsnext ... 1-155

Using Mixed C/Assembly Naming Conventions 1-155
xiv VisualDSP 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

CONTENTS
Compatibility Call ... 1-156

ACHIEVING OPTIMAL PERFORMANCE FROM C
SOURCE CODE

General Guidelines ... 2-3

How the Compiler Can Help ... 2-4

Using the Compiler Optimizer .. 2-4

 Using the Statistical Profiler ... 2-4

Using Interprocedural Optimization 2-5

Data Types .. 2-7

Avoiding Emulated Arithmetic .. 2-8

Getting the Most from IPA .. 2-9

Initializing Constants Statically ... 2-9

Avoiding Aliases .. 2-10

Indexed Arrays vs. Pointers .. 2-12

Trying Pointer and Indexed Styles 2-13

Function Inlining .. 2-13

Using Inline asm Statements .. 2-14

Memory Usage .. 2-15

Loop Guidelines ... 2-17

Keeping Loops Short ... 2-17

Avoiding Unrolling Loops .. 2-17

Avoiding Loop Rotation by Hand .. 2-18

Avoiding Array Writes in Loops ... 2-19

 Inner Loops vs. Outer Loops ... 2-19
VisualDSP 3.5 C Compiler and Library Manual xv
for ADSP-218x DSPs

CONTENTS
Avoiding Conditional Code in Loops 2-20

Avoiding Placing Function Calls in Loops 2-21

 Avoiding Non-Unit Strides ... 2-21

Loop Control .. 2-21

Using the Restrict Qualifier ... 2-22

Using the Const Qualifier ... 2-23

Using Built-in Functions in Code Optimization 2-24

Fractional Data ... 2-24

System Support Built-in Functions .. 2-25

Smaller Applications: Optimizing for Code Size 2-27

Pragmas .. 2-29

Function Pragmas ... 2-29

#pragma const .. 2-29

#pragma pure ... 2-30

#pragma alloc ... 2-30

#pragma regs_clobbered .. 2-31

#pragma optimize_{off|for_speed|for_space|as_cmd_line} .. 2-33

Loop Optimization Pragmas .. 2-33

#pragma loop_count ... 2-33

#pragma no_alias .. 2-34

Useful Optimization Switches ... 2-35

C RUN-TIME LIBRARY

C Run-Time Library Guide .. 3-2

Calling Library Functions .. 3-2
xvi VisualDSP 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

CONTENTS
Using the Compiler’s Built-In Functions 3-2

Linking Library Functions ... 3-3

Working With Library Source Code ... 3-4

Working with Library Header Files .. 3-5

assert.h ... 3-6

ctype.h ... 3-6

def2181.h – Memory Map Definitions 3-7

def2181x.h – Memory Map Definitions 3-7

errno.h ... 3-7

ffts.h – Fast Fourier Transforms ... 3-7

filters.h – DSP Filters .. 3-8

float.h – Floating Point ... 3-8

fract.h – ADSP-218x DSP Macro Fract Definitions 3-8

iso646.h ... 3-8

locale.h ... 3-9

math.h .. 3-9

misc.h – ADSP-218x DSP Timer Functions 3-10

setjmp.h .. 3-10

signal.h ... 3-10

sport.h – ADSP-218x DSP Serial Ports 3-11

stdarg.h .. 3-11

stdio.h .. 3-11

stdlib.h ... 3-12

string.h ... 3-12
VisualDSP 3.5 C Compiler and Library Manual xvii
for ADSP-218x DSPs

CONTENTS
sysreg.h .. 3-13

Documented Library Functions .. 3-14

C Run-Time Library Reference ... 3-18

Notation Conventions ... 3-18

Reference Format .. 3-18

abort .. 3-19

abs ... 3-20

acos .. 3-21

asin .. 3-22

atan .. 3-23

atan2 .. 3-24

atexit .. 3-25

atof .. 3-26

atoi .. 3-29

atol .. 3-30

biquad .. 3-31

bsearch ... 3-34

calloc ... 3-36

ceil ... 3-37

clear_interrupt .. 3-38

copysign ... 3-40

cos ... 3-41

cosh ... 3-44

cot ... 3-45
xviii VisualDSP 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

CONTENTS
demean_buffer ... 3-46

disable_interrupts ... 3-48

div ... 3-49

enable_interrupts .. 3-50

exit ... 3-51

exp ... 3-52

fabs .. 3-53

fftN ... 3-54

fir .. 3-57

floor ... 3-59

fmod .. 3-60

free .. 3-61

frexp .. 3-62

ifftN .. 3-63

iir ... 3-66

interrupt .. 3-71

io_space_read ... 3-75

io_space_write .. 3-77

isalnum .. 3-79

isalpha .. 3-80

iscntrl ... 3-81

isdigit ... 3-82

isgraph ... 3-83

isinf ... 3-84
xix VisualDSP 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

CONTENTS
islower .. 3-86

isnan .. 3-87

isprint .. 3-89

ispunct ... 3-90

isspace .. 3-91

isupper ... 3-92

isxdigit ... 3-93

labs .. 3-94

ldexp .. 3-95

ldiv .. 3-96

log ... 3-97

log10 .. 3-98

longjmp ... 3-99

malloc .. 3-101

memchr .. 3-102

memcmp .. 3-103

memcpy ... 3-104

memmove .. 3-105

memset .. 3-106

modf .. 3-107

pow .. 3-108

qsort .. 3-109

raise ... 3-111

rand ... 3-113
xx VisualDSP 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

realloc ... 3-114

setjmp .. 3-115

signal .. 3-116

sin .. 3-120

sinh .. 3-122

sqrt ... 3-123

srand .. 3-124

strcat .. 3-125

strchr .. 3-126

strcmp .. 3-127

strcoll ... 3-128

strcpy ... 3-129

strcspn .. 3-130

strerror ... 3-131

strlen .. 3-132

strncat .. 3-133

strncmp .. 3-134

strncpy ... 3-135

strpbrk .. 3-136

strrchr ... 3-137

strspn ... 3-138

strstr ... 3-139

strtod .. 3-140

strtodf .. 3-143
VisualDSP++ 3.5 C Compiler and Library Manual for ADSP-218x DSPs xxi

strtok ... 3-146

strtol .. 3-148

strtoul .. 3-150

strxfrm ... 3-152

sysreg_read ... 3-154

sysreg_write .. 3-156

tan ... 3-158

tanh ... 3-159

timer_off .. 3-160

timer_on .. 3-161

timer_set .. 3-162

tolower ... 3-163

toupper .. 3-164

va_arg .. 3-165

va_end ... 3-168

va_start .. 3-169

COMPILER LEGACY SUPPORT

Tools Differences .. A-1

C Compiler and C Run-Time Library A-3

Segment Placement Support Keyword Changed to Section ... A-3

G21 Compatibility Call .. A-3

Support for G21-Based Options and Extensions A-3

Indexed Initializers ... A-4

Compiler Diagnostics ... A-4
xxii VisualDSP++ 3.5 C Compiler and Library Manual for ADSP-218x DSPs

ANSI C Extensions .. A-4

Compiler Switch Modifications .. A-5

Warnings ... A-7

Run-Time Model ... A-8

INDEX
VisualDSP++ 3.5 C Compiler and Library Manual for ADSP-218x DSPs xxiii

xxiv VisualDSP++ 3.5 C Compiler and Library Manual for ADSP-218x DSPs

PREFACE

Thank you for purchasing Analog Devices development software for digi-

tal signal processors (DSPs).

Purpose
The VisualDSP++ 3.5 C Compiler and Library Manual for ADSP-218x
DSPs contains information about the C compiler and run-time library for
ADSP-218x DSPs. It includes syntax for command lines, switches, and
language extensions. It leads you through the process of using library rou-
tines and writing mixed C/assembly code.

Intended Audience
The primary audience for this manual is programmers who are familiar
with Analog Devices DSPs. This manual assumes that the audience has a
working knowledge of the ADSP-218x DSP architecture and instruction
set and the C programming language.

Programmers who are unfamiliar with ADSP-218x DSPs can use this
manual, but they should supplement it with other texts (such as the
appropriate hardware reference and instruction set reference) that provide
information about your ADSP-218x DSP architecture and instructions).
VisualDSP 3.5 C Compiler and Library Manual xxv
for ADSP-218x DSPs

Manual Contents Description
Manual Contents Description
This manual contains:

• Chapter 1, “Compiler”

Provides information on compiler options, language extensions and
C/assembly interfacing

• Chapter 2, “Achieving Optimal Performance from C Source Code”
Shows how to optimize compiler operation.

• Chapter 3, “C Run-Time Library”

Shows how to use library functions and provides a complete C
library function reference

• Appendix A, “Compiler Legacy Support”

Describes support for legacy code that was developed with previous
releases of the development tools.

What�s New in this Manual
This edition of the VisualDSP++ 3.5 C Compiler and Library Manual for
ADSP-218x DSPs documents support for all ADSP-218x processors.

Refer to VisualDSP++ 3.5 Product Bulletin for 16-Bit Processors for infor-
mation on all new and updated features and other release information.
 xxvi VisualDSP 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Preface
Technical or Customer Support
You can reach DSP Tools Support in the following ways:

• Visit the DSP Development Tools website at
www.analog.com/technology/dsp/developmentTools/index.html

• Email questions to
dsptools.support@analog.com

• Phone questions to 1-800-ANALOGD

• Contact your ADI local sales office or authorized distributor

• Send questions by mail to:

Analog Devices, Inc.
One Technology Way
P.O. Box 9106
Norwood, MA 02062-9106|
USA

Supported Processors
The name “ADSP-218x” refers to a family of Analog Devices 16-bit,
fixed-point processors. VisualDSP++ currently supports the following
ADSP-218x processors:

ADSP-2181, ADSP-2183, ADSP-2184, ADSP-2185, ADSP-2186,
ADSP-2187, ADSP-2188, and ADSP-2189M
VisualDSP 3.5 C Compiler and Library Manual xxvii
for ADSP-218x DSPs

Product Information
Product Information
You can obtain product information from the Analog Devices website,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our website provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices website that allows
customization of a webpage to display only the latest information on
products you are interested in. You can also choose to receive weekly email
notification containing updates to the webpages that meet your interests.
MyAnalog.com provides access to books, application notes, data sheets,
code examples, and more.

Registration:

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and allows you to select the informa-
tion you want to receive.

If you are already a registered user, just log on. Your user name is your
email address.

DSP Product Information
For information on digital signal processors, visit our website at
www.analog.com, which provides access to technical publications,
datasheets, application notes, product overviews, and product
announcements.
 xxviii VisualDSP 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Preface
You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• Email questions or requests for information to
dsp.support@analog.com

• Fax questions or requests for information to
1-781-461-3010 (North America)
089/76 903-557 (Europe)

• Access the Digital Signal Processing Division’s FTP website at
ftp ftp.analog.com or ftp 137.71.23.21
ftp://ftp.analog.com

Related Documents
For information on product related development software, see the follow-
ing publications:

For hardware information, refer to the processor’s Hardware Reference
Manual and Instruction Set Reference Manual.

VisualDSP++ 3.5 Getting Started Guide for 16-Bit Processors

VisualDSP++ 3.5 User’s Guide for 16-Bit Processors

VisualDSP++ 3.5 Assembler and Preprocessor Manual for ADSP-218x and ADSP-219x DSPs

VisualDSP++ 3.5 Linker and Utilities Manual for 16-Bit Processors

VisualDSP++ 3.5 Loader Manual for 16-Bit Processors

VisualDSP++ 3.5 Product Bulletin 16-Bit Processors

VisualDSP++ Kernel (VDK) User’s Guide

VisualDSP++ Component Software Engineering User’s Guide

Quick Installation Reference Card
VisualDSP 3.5 C Compiler and Library Manual xxix
for ADSP-218x DSPs

Product Information
Online Technical Documentation
Online documentation comprises VisualDSP++ Help system and tools
manuals, and FlexLM network license manager software documentation.
You can easily search across the entire VisualDSP++ documentation set for
any topic of interest. For easy printing, supplementary PDF files for the
tools manuals are also provided.

If documentation is not installed on your system as part of the software
installation, you can add it from the VisualDSP++ CD-ROM at any time.

Access the online documentation from the VisualDSP++ environment,
Windows Explorer, or Analog Devices website.

A description of each documentation file type is as follows.

From VisualDSP++

Access VisualDSP++ online Help from the Help menu’s Contents,
Search, and Index commands.

Open online Help from context-sensitive user interface items (toolbar
buttons, menu commands, and windows).

File Description

.CHM Help system files and VisualDSP++ tools manuals.

.HTM or .HTML FlexLM network license manager software documentation. Viewing and
printing the .HTML files require a browser, such as Internet Explorer 4.0 (or
higher).

.PDF VisualDSP++ tools manuals in Portable Documentation Format, one .PDF
file for each manual. Viewing and printing the .PDF files require a PDF
reader, such as Adobe Acrobat Reader 4.0 (or higher).
 xxx VisualDSP 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Preface
From Windows

In addition to any shortcuts you may have constructed, there are many
ways to open VisualDSP++ online Help or the supplementary documenta-
tion from Windows.

Help system files (.CHM files) are located in the Help folder, and .PDF files
are located in the Docs folder of your VisualDSP++ installation. The Docs
folder also contains the FlexLM network license manager software
documentation.

Using Windows Explorer

• Double-click any file that is part of the VisualDSP++ documenta-
tion set.

• Double-click the vdsp-help.chm file, which is the master Help sys-
tem, to access all the other .CHM files.

Using the Windows Start Button

• Access the VisualDSP++ online Help by clicking the Start button
and choosing Programs, Analog Devices, VisualDSP++, and
VisualDSP++ Documentation.

• Access the .PDF files by clicking the Start button and choosing
Programs, Analog Devices, VisualDSP++, Documentation for
Printing, and the name of the book.

From the Web

To download the tools manuals, point your browser at
http://www.analog.com/technology/dsp/developmentTools/gen_purpose.html

Select a DSP family and book title. Download archive (.ZIP) files, one for
each manual. Use any archive management software, such as WinZip, to
decompress downloaded files.
VisualDSP 3.5 C Compiler and Library Manual xxxi
for ADSP-218x DSPs

Product Information
Printed Manuals
For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

VisualDSP++ Documentation Set

VisualDSP++ manuals may be purchased through Analog Devices Cus-
tomer Service at 1-781-329-4700; ask for a Customer Service
representative. The manuals can be purchased only as a kit. For additional
information, call 1-603-883-2430.

If you do not have an account with Analog Devices, you will be referred to
Analog Devices distributors. To obtain information on our distributors,
log onto http://www.analog.com/salesdir/continent.asp.

Hardware Manuals

Hardware reference and instruction set reference manuals can be ordered
through the Literature Center or downloaded from the Analog Devices
website. The phone number is 1-800-ANALOGD (1-800-262-5643).
The manuals can be ordered by a title or by product number located on
the back cover of each manual.

Datasheets

All data sheets can be downloaded from the Analog Devices website. As a
general rule, any data sheet with a letter suffix (L, M, N) can be obtained
from the Literature Center at 1-800-ANALOGD (1-800-262-5643) or
downloaded from the website. Data sheets without the suffix can be
downloaded from the website only—no hard copies are available. You can
ask for the data sheet by a part name or by product number.
 xxxii VisualDSP 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Preface
If you want to have a data sheet faxed to you, call 1-800-446-6212.
Follow the prompts and a list of data sheet code numbers will be faxed to
you. Call the Literature Center first to find out if requested datasheets are
available.

Contacting DSP Publications
Please send your comments and recommendation on how to improve our
manuals and online Help. You can contact us @ dsp.techpubs@analog.com.

Notation Conventions
The following table identifies and describes text conventions used in this
manual. Additional conventions, which apply only to specific chapters,
may appear throughout this document.

Example Description

Close command
(File menu)

Text in bold style indicates the location of an item within the
VisualDSP++ environment’s menu system. For example, the Close
command appears on the File menu.

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipsis; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.
VisualDSP 3.5 C Compiler and Library Manual xxxiii
for ADSP-218x DSPs

Notation Conventions
A note, providing information of special interest or identifying a
related topic. In the online version of this book, the word Note appears
instead of this symbol.

A caution, providing information about critical design or program-
ming issues that influence operation of a product. In the online version
of this book, the word Caution appears instead of this symbol.

Example Description
 xxxiv VisualDSP 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

1 COMPILER

The C compiler (cc218x) is part of Analog Devices development software

for ADSP-218x DSPs.

This chapter contains:

• “C Compiler Overview” on page 1-2
Provides an overview of C compiler for ADSP-218x DSPs.

• “Compiler Command-Line Reference” on page 1-6
Describes the operation of the compiler as it processes programs,
including input and output files, and command-line switches.

• “C Compiler Language Extensions” on page 1-52
Describes the cc218x compiler’s extensions to the ISO/ANSI stan-
dard for the C language.

• “Preprocessor Features” on page 1-125
Contains information on the preprocessor and ways to modify
source compilation.

• “C Run-Time Model and Environment” on page 1-132
Contains reference information about implementation of C pro-
grams, data, and function calls in ADSP-218x DSPs.

• “C and Assembly Language Interface” on page 1-148
Describes how to call an assembly language subroutine from C pro-
gram, and how to call a C function from within an assembly
language program.
VisualDSP++ 3.5 C Compiler and Library Manual 1-1
for ADSP-218x DSPs

C Compiler Overview
C Compiler Overview
The C compiler (cc218x) is designed to aid your DSP project develop-
ment efforts by:

• Processing C source files, producing machine level versions of the
source code and object files

• Providing relocatable code and debugging information within the
object files

• Providing relocatable data and program memory segments for
placement by the linker in the processors’ memory

Using C, developers can significantly decrease time-to-market since it
gives them the ability to efficiently work with complex signal processing
data types. It also allows them to take advantage of specialized DSP opera-
tions without having to understand the underlying DSP architecture.

The C compiler (cc218x) compiles ISO/ANSI standard C code for the
ADSP-218x DSPs. Additionally, Analog Devices includes within the com-
piler a number of C language extensions designed to assist in DSP
development. The cc218x compiler runs from the VisualDSP++ environ-
ment or from an operating system command line.

The C compiler (cc218x) processes your C language source files and pro-
duces ADSP-218x DSP’s assembler source files. The assembler source files
are assembled by the ADSP-218x assembler (easm218x). The assembler
creates Executable and Linkable Format (ELF) object files that can either
be linked (using the linker) to create an ADSP-218x executable file or
included in an archive library (using elfar). The way in which the com-
piler controls the assemble, link, and archive phases of the process depends
on the source input files and the compiler options used.

Source files contain C programs to be processed by the compiler. The
compiler takes these source files for preprocessing first. Preprocessed
source files are assembled by the ADSP-218x DSP assembler (easm218x).
1-2 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
The assembler creates Executable and Linkable Format object files that
can either be linked (using the linker) to create an ADSP-218x executable
file

The cc218x compiler supports the ANSI/ISO standard definitions of the
C language. For information on these standards, see any of the many ref-
erence texts on the C language. In addition to ANSI standards, the
compiler supports a set of C-language extensions. These extensions sup-
port hardware features of the ADSP-218x DSPs. For information on these
extensions, see “C Compiler Language Extensions” on page 1-52.

Compiler options are set in the VisualDSP++ Integrated Development
and Debug Environment (IDDE) from the Compile page of the Project
Options dialog box (see “Specifying Compiler Options in VisualDSP++”
on page 1-10). The selections control how the compiler processes your
source files, letting you select features that include the language dialect,
error reporting, and debugger output.

For more information on the VisualDSP++ environment, see the
VisualDSP++ 3.5 User’s Guide for ADSP-21xx DSPs and online Help.

Standard Conformance
Analog C compilers conform to the ISO/IEC 998:1990 C standard with a
small number of currently unsupported features or areas of divergence.

Unsupported features are:

• ANSI features that require operating-system support are generally
not supported. This includes time.h functionality in C.

• The cc218x compiler does not provide comprehensive support of
NaN's, overflow and underflow conditions in their compiler sup-
port floating-point routines.
VisualDSP++ 3.5 C Compiler and Library Manual 1-3
for ADSP-218x DSPs

C Compiler Overview
Areas of divergence from Standard:

• The double type is defined in terms of a single precision 32-bit
floats, not double precision 64-bit floats.

• The cc218x compiler makes use of the DSP’s double word (long)
MAC instruction results to avoid having to explicitly promote inte-
ger operand multiplication to long. If the integer multiplication
result overflows the integer type, then the result is not truncated
as would be the case in strict ANSI terms. This behavior is disabled
using the “-no-widen-muls” switch (on page 1-32).

• Normal ANSI C external linkage does not specifically require stan-
dard include files to be used, although it is recommended. In many
cases, Analog C compilers do require standard include files to be
used as build configurations. Instead, optimizations are used to
select the correct and optimal implementation of C library func-
tions. For example, the include files may redefine standard C
functions to use optimal compiler built-in implementations.

The compilers also support a number of language extensions that are
essentially aids to DSP programmers and would not be defined in strict
ANSI conforming implementations. These extensions are usually enabled
by default and in some cases can be disabled using a command-line switch,
if required.

These extensions include:

• Inline (function) which directs the compiler to integrate the func-
tion code into the code of the callers. Disabled if the -O switches
(described on page 1-32) are not used.

• Dual memory support keywords (pm/dm). Disabled using the
-no-extra-keywords compiler switch (on page 1-30).

• Placement support keyword (section). Disabled using the
-no-extra-keywords compiler switch (on page 1-30).
1-4 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
• Boolean type support keywords in C (bool, true, false). Disabled
using the -no-extra-keywords compiler switch (see on page 1-30).

• Variable length array support

• Non-constant aggregate initializer support

• Indexed initializer support

• Preprocessor generated warnings

• Support for C++-style comments in C programs

For more information on these extensions, see the “C Compiler Language
Extensions” on page 1-52.
VisualDSP++ 3.5 C Compiler and Library Manual 1-5
for ADSP-218x DSPs

Compiler Command-Line Reference
Compiler Command-Line Reference
This section describes how the cc218x compiler is invoked from the com-
mand line, the various types of files used by and generated from the
compiler, and the switches used to tailor the compiler’s operation.

This section contains:

• “Running the Compiler” on page 1-7

• “Specifying Compiler Options in VisualDSP++” on page 1-10

• “Compiler Command-Line Switches” on page 1-11

• “Data Type Sizes” on page 1-47

• “Optimization Control” on page 1-49

By default, the cc218x compiler runs with Analog Extensions for C code
enabled. This means that the compiler processes source files written in
ANSI/ISO standard C language supplemented with Analog Devices exten-
sions. Table 1-1 on page 1-9 lists valid extensions. By default, the
compiler processes the input file through the listed stages to produce a
.DXE file.

� When developing a DSP project, you may find it useful to modify
the compiler’s default options settings. The way you set the com-
piler’s options depends on the environment used to run the DSP
development software.

See “Specifying Compiler Options in VisualDSP++” on page 1-10
for more information.
1-6 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Running the Compiler
Use the following general syntax for the cc218x command line:

cc218x [-switch [-switch …]] sourcefile [sourcefile …]

where:

• -switch is the name of the switch to be processed. The compiler
has many switches. These switches select the operations and modes
for the compiler and other tools. Command-line switches are case
sensitive. For example, -O is not the same as -o.

• The sourcefile is the name of the file to be preprocessed, com-
piled, assembled, and/or linked.

• A file name can include the drive, directory, file name and file
extension. The compiler supports both Win32- and POSIX-style
paths, using either forward or back slashes as the directory delim-
iter. It also supports UNC path names (starting with two slashes
and a network name).

• The cc218x compiler uses the file extension to determine what the
file contains and what operations to perform upon it. Table 1-1 on
page 1-9 lists the allowed extensions.

For example, the following command line

cc218x -proc ADSP-2189 -O -Wremarks -o program.dxe source.c

runs cc218x with the following switches:

 -proc ADSP-2189 Specifies the processor

 -O Specifies optimization for the compiler

 -Wremarks Selects extra diagnostic remarks in addition to warning and error messages

 -o program.dxe Selects a name for the compiled, linked output

 source.c Specifies the C language source file to be compiled
VisualDSP++ 3.5 C Compiler and Library Manual 1-7
for ADSP-218x DSPs

Compiler Command-Line Reference
The normal function of the cc218x switch is to invoke the compiler,
assembler, and linker as required to produce an executable file. The pre-
cise operation is determined by the extensions of the input filenames,
and/or by various switches.

The compiler uses the following files to perform the specified action:

If multiple files are specified, each is first processed to produce an object
file; then all object files are presented to the linker.

You can stop this sequence at various points by using appropriate com-
piler switches, or by selecting options within the VisualDSP++ IDDE.
These switches are: -E, -P, -M, -H, -S and -c.

Many of the compiler’s switches take a file name as an optional parameter.
If you do not use the optional output name switch, cc218x names the out-
put for you. Table 1-1 lists the type of files, names, and extensions the
compiler appends to output files.

File extensions vary by command-line switch and file type. These exten-
sions are influenced by the program that is processing the file, any search
directories that you select, and any path information that you include in
the file name.

Table 1-1 indicates the searches that the preprocessor, compiler, assem-
bler, and linker support. The compiler supports relative and absolute
directory names to define file search paths. Using the verbose output
switches for the preprocessor, compiler, assembler, and linker causes each
of these tools to echo the name of each file as it is processed.

Extension Action

.c .C C source file is compiled, assembled, and linked

.asm, .dsp, or .s Assembly language source file is assembled and linked

.doj Object file (from previous assembly) is linked
1-8 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
For information on additional search directories, see the -I directory
switch (on page 1-25) and -L directory switch (on page 1-27).

When you provide an input or output file name as an optional parameter,
use the following guidelines:

• Use a file name (include the file extension) with either an unambig-
uous relative path or an absolute path. A file name with an absolute
path includes the drive, directory, file name, and file extension.

Enclose long file names within straight quotes; for example, “long
file name.c”. The cc218x compiler uses the file extension conven-
tion listed in Table 1-1 to determine the input file type.

Table 1-1. Input and Output Files

Input File Extension Input File Description

.c C source file

.h Header file (referenced by a #include statement)

.i Preprocessed C source, created when preprocess only
(-E compiler switch) is specified

.idl Interface definition language files for VCSE.

.ipa, .opa Interprocedural analysis files — used internally by the compiler
when performing interprocedural analysis.

.pch Precompiled header file.

.s,.dsp,.asm Assembly language source file

.is Preprocessed assembly language source (retained when
-save-temps is specified)

.doj Object file to be linked

.dlb Library of object files to be linked as needed

.xml DSP system memory map file output

.sym DSP system symbol map file output
VisualDSP++ 3.5 C Compiler and Library Manual 1-9
for ADSP-218x DSPs

Compiler Command-Line Reference
• Verify that the compiler is using the correct file. If you do not pro-
vide the complete path as part of the parameter or add additional
search directories, cc218x looks for input in the current directory.

Specifying Compiler Options in VisualDSP++
When using the VisualDSP++ IDDE, use the Compile tab from the
Project Options dialog box to set compiler functional options described
on Figure 1-1.

Figure 1-1. Project Options -- Compile Property Page
1-10 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
There are four sub-pages you can access—General, Preprocessor, Proces-
sor, and Warning. Most page options have a corresponding compiler
command-line switch described in “Compiler Command-Line Switches”.
The Additional options field in each sub-page is used to enter the appro-
priate file names and options that do not have corresponding controls on
the Compile tab but are available as compiler switches.

Use the VisualDSP++ online Help to get more information on compiler
options you can specify from the VisualDSP++ environment.

Compiler Command-Line Switches
Table 1-2 lists the command-line switches accepted by the cc218x com-
piler. A detailed description of each of these switches follows the table.

Table 1-2. Compiler Command-Line Switches

Switch Name Description

-@ filename
(on page 1-18)

Reads command-line input from the file.

-A name(tokens)
(on page 1-18)

Asserts the specified name as a predicate.

-alttok
(on page 1-19)

Allows alternative keywords and sequences in sources.

-bss
(on page 1-20)

Causes the compiler to put global zero-initialized data into a
separate BSS-style section.

-build-lib
(on page 1-20)

Directs the librarian to build a library file.

-C
(on page 1-20)

Retains preprocessor comments in the output file; must run
with the -E or -P switch.

-c
(on page 1-20

Compiles and/or assembles only; does not link.

-const-read-write
(on page 1-20

Specifies that data accessed via a pointer to const data may be
modified elsewhere.
VisualDSP++ 3.5 C Compiler and Library Manual 1-11
for ADSP-218x DSPs

Compiler Command-Line Reference
-Dmacro[=definition]
(on page 1-20)

Defines a macro.

-debug-types
(on page 1-21)

Supports building a *.h file directly and writing a complete
set of debugging information for the header file.

-default-linkage-{asm|C}
(on page 1-21)

Sets the default linkage type (asm, C).

-dry
(on page 1-22)

Displays, but does not perform, main driver actions
(verbose dry-run).

-dryrun
(on page 1-22)

Displays, but does not perform, top-level driver actions (terse
dry-run).

-E
(on page 1-22)

Preprocesses, but does not compile, the source file.

-ED
(on page 1-22)

Produce preprocessed file and compile source.

-EE
(on page 1-22)

Preprocesses and compiles the source file.

-extra-keywords
(on page 1-22)

Recognizes the Analog Devices extensions to ANSI/ISO
standards for C. Default mode.

-flags-{asm | compiler |
| lib | link | mem}
[, argument [,...]]
(on page 1-23)

Passes command-line switches through the compiler to other
build tools.

-fp-associative
(on page 1-23)

Treats floating-point multiplication and addition as associa-
tive.

-full-version
(on page 1-23)

Displays version information for build tools.

-g
(on page 1-23)

Generates DWARF-2 debug information.

-H
(on page 1-24)

Outputs a list of header files, but does not compile.

Table 1-2. Compiler Command-Line Switches (Cont’d)

Switch Name Description
1-12 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
-HH
(on page 1-24)

Outputs a list of included header files and compiles.

-h[elp]
(on page 1-24)

Outputs a list of command-line switches.

-I-
(on page 1-25)

Establishes the point in the include directory list at which
the search for header files enclosed in angle brackets should
begin.

-I directory
(on page 1-25)

Appends the specified search directory to the standard search
path.

-i
(on page 1-25)

Only output header details or makefile dependencies for
include files specified in double quotes.

-include filename
(on page 1-25)

Includes named file prior to processing each source file.

-ipa
(on page 1-26)

Specifies that interprocedural analysis should be performed
for optimization between translation units.

-jump-{dm|pm|same}
(on page 1-26)

Specifies that the compiler should place jump tables in data
memory, program memory, or the same memory section as
the function to which it applies.

-L directory
(on page 1-27)

Appends the specified directory to the standard library search
path when linking.

-l library
(on page 1-27)

Searches the specified library for functions when linking.

-M
(on page 1-27)

Generates make rules only; does not compile.

-MD
(on page 1-28)

Generates make rules and compiles.

-MM
(on page 1-28)

Generates make rules and compiles.

-Mo filename
(on page 1-28)

Specifies a file for output when using the -ED and -MD
switches.

Table 1-2. Compiler Command-Line Switches (Cont’d)

Switch Name Description
VisualDSP++ 3.5 C Compiler and Library Manual 1-13
for ADSP-218x DSPs

Compiler Command-Line Reference
-Mt filename
(on page 1-28)

Makes dependencies for the specified source file.

-MQ
(on page 1-28)

Generates make rules only; does not compile.No notification
when input files are missing.

-make-autostatic
(on page 1-29)

Directs the compiler to place all automatic variables in static
store.

-map filename
(on page 1-29)

Directs the linker to generate a memory map of all symbols.

-mem
(on page 1-29)

Causes the compiler to invoke the Memory Initializer after
linking the executable.

-no-alttok
(on page 1-29)

Does not allow alternative keywords and sequences in
sources.

-no-bss
(on page 1-30)

Causes the compiler to group global zero-initialized data into
the same section as global data with non-zero initializers.

-no-builtin
(on page 1-30)

Disables recognition of __builtin functions.

-no-defs
(on page 1-30)

Disables preprocessor definitions: macros, include directo-
ries, library directories, run-time headers, or keyword exten-
sions.

-no-extra-keywords
(on page 1-30)

Does not define language extension keywords that could be
valid C identifiers.

-no-fp-associative
(on page 1-31)

Does not treat floating-point multiply and addition as an
associative.

-no-mem
(on page 1-31)

Causes the compiler to not invoke the Memory Initializer
after linking. Set by default.

-no-std-ass
(on page 1-31)

Disables any predefined assertions and system-specific
macro definitions.

-no-std-def
(on page 1-31)

Disables normal macro definitions; also disables Analog
Devices keyword extensions that do not have leading under-
scores (__).

Table 1-2. Compiler Command-Line Switches (Cont’d)

Switch Name Description
1-14 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
-no-std-inc
(on page 1-31)

Searches for preprocessor include header files only in the cur-
rent directory and in directories specified with the -I switch.

-no-std-lib
(on page 1-32)

Searches only for those linker libraries specified with the -l
switch when linking.

-no-widen-muls
(on page 1-32)

Disable widening multiplications optimization.

-O
(on page 1-32)

Enables optimizations.

-Oa
(on page 1-33)

Enables automatic function inlining.

-Os
(on page 1-33)

Optimize for code size.

-Ov num
(on page 1-33)

Controls speed vs. size optimizations.

-o filename
(on page 1-33)

Specifies the output file name.

-P
(on page 1-34)

Preprocesses, but does not compile, the source file. Omits
line numbers in the preprocessor output.

-PP
(on page 1-34)

Similar to -P, but does not halt compilation after preprocess-
ing.

-path-{asm|compiler|def
|lib|link|mem} filename
(on page 1-34)

Use the specified component in place of the default installed
version of a compilation tool.

-path-install directory
(on page 1-34)

Uses the specified directory as the location of all compilation
tools.

-path-output directory
(on page 1-35)

Specifies the location of non-temporary files.

-path-temp directory
(on page 1-35)

Specifies the location of temporary files.

-pch
(on page 1-35)

Generates and uses precompiled header files (*.pch)

Table 1-2. Compiler Command-Line Switches (Cont’d)

Switch Name Description
VisualDSP++ 3.5 C Compiler and Library Manual 1-15
for ADSP-218x DSPs

Compiler Command-Line Reference
-pchdir directory
(on page 1-35)

Specifies the location of PCHRepository.

-pedantic
(on page 1-35)

Issues compiler warnings for any constructs that are not
strictly ISO/ANSI standard C-compliant.

-pedantic-errors
(on page 1-36)

Issues compiler errors for any constructs that are not strictly
ISO/ANSI standard C-compliant.

-pplist filename
(on page 1-36)

Outputs a raw preprocessed listing to the specified file.

-proc identifier
(on page 1-36)

Specifies that the compiler should produce code suitable for
the specified DSP.

-R directory
(on page 1-37)

Appends directory to the standard search path for source
files.

-R-
(on page 1-38)

Removes all directories from the standard search path for
source files.

-reserve <reg1>[,reg2..]
(on page 1-38)

Reserves specified registers for autobuffering.

-S
(on page 1-38)

Stops compilation before running the assembler.

-s
(on page 1-39)

Removes debugging information from the output executable
file when linking.

-save-temps
(on page 1-39)

Saves intermediate files.

-show
(on page 1-39)

Displays the driver command-line information.

-si-revision version
(on page 1-39)

Specifies a silicon revision of the specified processor.

-signed-bitfield
(on page 1-40)

Treats bitfields which have not been declared with use of
signed or unsigned keyword as signed. This is the default
behavior.

-signed-char
(on page 1-40)

Makes the char data type signed.

Table 1-2. Compiler Command-Line Switches (Cont’d)

Switch Name Description
1-16 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
-syntax-only
(on page 1-40)

Checks the source code for compiler syntax errors, but does
not write any output.

-sysdefs
(on page 1-41)

Defines the system definition macros.

-T filename
(on page 1-41)

Specifies the Linker Description File.

-time
(on page 1-41)

Displays the elapsed time as part of the output information
on each part of the compilation process.

-Umacro
(on page 1-42)

Undefines macro.

-unsigned-bitfield
(on page 1-42)

Treats bitfields which have not been declared with use of
signed or unsigned keyword as unsigned.

-unsigned-char
(on page 1-43)

Makes the char data type unsigned.

-v
(on page 1-43)

Displays both the version and command-line information.

-val-global <name-list>
(on page 1-43)

Adds global names.

-verbose
(on page 1-43)

Displays command-line information.

-version
(on page 1-43)

Displays version information.

-Wdriver-limit number
(on page 1-44)

Halts the driver after reaching the specified number of errors.

-Werror-limit number
(on page 1-44)

Stops compiling after reaching the specified number of
errors.

-W{error|remark|suppress
|warn} <num>[,num...]
(on page 1-44)

Overrides the severity of compilation diagnostic messages.

-Wremarks
(on page 1-44)

Indicates that the compiler may issue remarks, which are
diagnostic messages even milder than warnings.

Table 1-2. Compiler Command-Line Switches (Cont’d)

Switch Name Description
VisualDSP++ 3.5 C Compiler and Library Manual 1-17
for ADSP-218x DSPs

Compiler Command-Line Reference
The following sections provide detailed comman-line switch descriptions.

-@ filename

The @ filename (command file) switch directs the compiler to read
command-line input from filename. The specified filename must contain
driver options but may also contain source filenames and environment
variables. It can be used to store frequently used options as well as to read
from a file list.

-A name(tokens)

The -A (assert) switch directs the compiler to assert name as a predicate
with the specified tokens. This has the same effect as the #assert prepro-
cessor directive. The following assertions are predefined:

-Wterse
(on page 1-45)

Issues only the briefest form of compiler warnings, errors,
and remarks.

-w
(on page 1-45)

Does not display compiler warning messages.

-warn-protos
(on page 1-45)

Produces a warning when a function is called without a pro-
totype.

-write-files
(on page 1-45)

Enables compiler I/O redirection.

-write-opts
(on page 1-45)

Passes the user options (but not input filenames) via a tem-
porary file.

-xref filename
(on page 1-46)

Outputs cross-reference information to the specified file.

system embedded

machine adsp218x

Table 1-2. Compiler Command-Line Switches (Cont’d)

Switch Name Description
1-18 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
The -A name(value) switch is equivalent to including

#assert name(value)

in your source file, and both may be tested in a preprocessor condition in
the following manner.

#if #name(value)
// do something

#else
// do something else

#endif

For example, the default assertions may be tested as:

#if #machine(adsp218x)
// do something

#endif

� The parentheses in the assertion should be quoted when using the
-A switch, to prevent misinterpretation. No quotes are needed for a
#assert directive in a source file.

-alttok

The -alttok (alternative tokens) switch directs the compiler to allow
digraph sequences in C source files.

-bss

The -bss switch causes the compiler to place global zero-initialized data
into a BSS-style section (called “bsz”), rather than into the normal global
data section. This is default mode. See also the –no-bss switch
(on page 1-30).

cpu adsp218x

compiler cc218x
VisualDSP++ 3.5 C Compiler and Library Manual 1-19
for ADSP-218x DSPs

Compiler Command-Line Reference
-build-lib

The -build-lib (build library) switch directs the compiler to use the
elfar (librarian) to produce a library file (.dlb) as the output instead of
using the linker to produce an executable file (.dxe). The -o option
(on page 1-33) must be used to specify the name of the resulting library.

-C

The -C (comments) switch, which is only active in combination with the
-E, -EE, -ED, -P or -PP switches, directs the preprocessor to retain com-
ments in its output.

-c

The -c (compile only) switch directs the compiler to compile and/or
assemble the source files, but stop before linking. The output is an object
file (.doj) for each source file.

-const-read-write

The -const-read-write switch directs the compiler to specify that con-
stants may be accessed as read-write data (as in ANSI C). The compiler’s
default behavior assumes that data referenced through const pointers will
never change.

The -const-read-write switch changes the compiler’s behavior to match
the ANSI C assumption, which is that other non-const pointers may be
used to change the data at some point.

-Dmacro [=definition]

The -D (define macro) switch directs the compiler to define a macro. If
you do not include the optional definition string, the compiler defines the
macro as the string ‘1’. If definition is required to be a character string
1-20 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
constant, it must be surrounded by escaped double quotes. Note that the
compiler processes -D switches on the command line before any -U (unde-
fine macro) switches.

� This switch can be invoked with the Definitions: dialog field from
the VisualDSP++ Project Options dialog box, Compile tab,
Preprocessor category.

-debug-types <file.h>

The -debug-types switch provides for building an *.h file directly and
writing a complete set of debugging information for the header file. The
-g option (on page 1-23) need not be specified with the -debug-types
switch because it is implied. For example,

cc218x -debug-types anyHeader.h

The implicit -g option writes debugging information for only those
typedefs that are referenced in the program. The -debug-types option
provides complete debugging information for all typedefs and structs.

-default-linkage-{asm|C}

The -default-linkage-asm (assembler linkage) and
-default-linkage-C (C linkage) switches direct the compiler to set the
default linkage type. C is the default linkage type. Compatibility linkage
(OldAsmCall) to previous generation calling conventions cannot be set as a
default linkage.

� This switch can be specified in the Additional Options box located
in the VisualDSP++ Project Options dialog box, Compile tab,
General category.
VisualDSP++ 3.5 C Compiler and Library Manual 1-21
for ADSP-218x DSPs

Compiler Command-Line Reference
-dry

The -dry (verbose dry-run) switch directs the compiler to display main
driver actions, but not to perform them.

-dryrun

The -dryrun (terse dry-run) switch directs the compiler to display
top-level driver actions, but not to perform them.

-E

The -E (stop after preprocessing) switch directs the compiler to stop after
the C preprocessor runs (without compiling). The output (preprocessed
source code) prints the standard output stream (<stdout>) unless the out-
put file is specified with the -o switch. Note that the -C switch can be used
in combination with the -E switch.

-ED

The -ED (run after preprocessing to file) switch directs the compiler to
write the output of the C preprocessor to a file named
original_filename.i. After preprocessing, compilation proceeds
normally.

-EE

The -EE (run after preprocessing) switch directs the compiler to write the
output of the C preprocessor to standard output. After preprocessing,
compilation proceeds normally.

-extra-keywords

The -extra-keywords (enable short-form keywords) switch directs the
compiler to recognize the Analog Devices keyword extensions to
ISO/ANSI standard C language, including keywords such as pm and dm
1-22 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
without leading underscores which could affect conforming to ISO/ANSI
C programs. This is the default mode. The “-no-extra-keywords” switch
(see on page 1-30) can be used to disallow support for the additional key-
words. Table 1-5 on page 1-53 provides a list and a brief description of
keyword extensions.

-flags-{asm|compiler|lib|link|mem} switch [,switch2 [,...]]

The -flags (command-line input) switch directs the compiler to pass each
of the comma-separated arguments to the other build tools, such as:

-fp-associative

The -fp-associative switch directs the compiler to treat floating-point
multiplication and addition as associative.

-full-version

The -full-version (display version) switch directs the compiler to display
version information for all the compilation tools as they process each file.

-g

The -g (generate debug information) switch directs the compiler to out-
put symbols and other information used by the debugger.

Table 1-3. Build Tools’ Options

Option Tool

-flags-asm easm218x Assembler

-flags-compiler Compiler executable

-flags-lib elfar Library Builder

-flags-link Linker

-flags-mem Memory Initializer
VisualDSP++ 3.5 C Compiler and Library Manual 1-23
for ADSP-218x DSPs

Compiler Command-Line Reference
When the -g switch is used in conjunction with the enable optimization
(-O) switch, the compiler performs standard optimizations. The compiler
also outputs symbols and other information to provide limited source level
debugging through VisualDSP++. This combination of options provides
line debugging and global variable debugging.

� You can invoke this switch by selecting the Generate debug infor-
mation check box in the VisualDSP++ Project Options dialog box,
Compile tab, General category.

� When -g and -O are specified, no debug information is available for
local variables and the standard optimizations can sometimes
re-arrange program code in a way that inaccurate line number
information may be produced. For full debugging capabilities, use
the -g switch without the -O switch.

-H

The -H (list headers) switch directs the compiler to output only a list of
the files included by the preprocessor via the #include directive, without
compiling. The -o switch (on page 1-33) may be used to specify the redi-
rection of the list to a file.

-HH

The -HH (list headers and compile) switch directs the compiler to print to
the standard output file stream a list of the files included by the preproces-
sor via the #include directive. After preprocessing, compilation proceeds
normally.

-h[elp]

The -help (command-line help) switch directs the compiler to output a
list of command-line switches with a brief syntax description.
1-24 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
-I-

The -I- (start include directory list) switch establishes the point in the
include directory list at which the search for header files enclosed in angle
brackets should begin. Normally, for header files enclosed in double
quotes, the compiler searches in the directory containing the current input
file; then the compiler reverts back to looking in the directories specified
with the -I switch and then in the standard include directory.

� For header files in angle brackets the compiler performs the latter
two searches only.

It is possible to replace the initial search (within the directory containing
the current input file) by placing the -I- switch at the point on the com-
mand line where the search for all types of header file should begin. All
include directories on the command line specified before the -I- switch
will only be used in the search for header files that are enclosed in double
quotes.

This switch removes the directory containing the current input file from
the include directory list.

-I directory [{,|;} directory...]

The -I directory (include search directory) switch directs the C prepro-
cessor to append the directory (directories) to the search path for include
files. This option may be specified more than once; all specified directories
are added to the search path.

-include filename

The -include filename (include file) switch directs the preprocessor to
process the specified file before processing the regular input file. Any -D
and -U options on the command line are always processed before an
-include file.
VisualDSP++ 3.5 C Compiler and Library Manual 1-25
for ADSP-218x DSPs

Compiler Command-Line Reference
Include files, whose names are not absolute path names and that are
enclosed in “...” when included, will be searched for in the following
directories in this order:

1. The directory containing the current input file (the primary source
file or the file containing the #include)

2. Any directories specified with the -I switch in the order they are
listed on the command line

3. Any directories on the standard list:
 <VisualDSP++ install dir>/.../include

� If a file is included using the <...> form, this file will only be
searched for by using directories defined in items 2 and 3 above.

-ipa

The -ipa (interprocedural analysis) switch turns on Interprocedural
Analysis (IPA) in the compiler. This option enables optimization across
the entire program, including between source files that were compiled sep-
arately. The -ipa option should be applied to all C files in the program.
For more information, see “Interprocedural Analysis” on page 1-50. Spec-
ifying -ipa also implies setting the -O switch (on page 1-32).

� You can invoke this switch by selecting the Interprocedural
optimization check box in the VisualDSP++ Project Options dia-
log box, Compile tab, General category.

-jump-{dm|pm|same}

The -jump (select jump table memory type) switch directs the compiler to
place jump tables in data memory (-jump-dm) or program memory
(-jump-pm), or the same memory section as the function to which it
applies (-jump-same). Jump tables are storage that might be required to
1-26 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
hold in memory target addresses for branch instruction used in complex
if-then-else statements or switch statements. The default storage mem-
ory for jump tables is data memory.

-L directory [{,|;} directory...]

The -L (library search directory) switch directs the linker to append the
directory to the search path for library files.

-l library

The -l (link library) switch directs the linker to search the library for
functions when linking. The library name is the portion of the file name
between the lib prefix and .dlb extension. For example, the compiler
command-line switch -lc directs the linker to search in the library named
c for functions. This library resides in a file named libc.dlb.

Normally, you should list all object files on the command line before the
-l switch. This ensures that the functions and global variables the object
files refer to are loaded in the given order. This option may be specified
more than once; libraries are searched as encountered during the
left-to-right processing of the command line.

-M

The -M (generate make rules only) switch directs the compiler not to com-
pile the source file but to output a rule, which is suitable for the make
utility, describing the dependencies of the main program file. The format
of the make rule output by the preprocessor is:

object-file: include-file ...
VisualDSP++ 3.5 C Compiler and Library Manual 1-27
for ADSP-218x DSPs

Compiler Command-Line Reference
-MD

The -MD (generate make rules and compile) switch directs the preprocessor
to print to a file called original_filename.d a rule describing the depen-
dencies of the main program file. After preprocessing, compilation
proceeds normally. See also the –Mo switch.

-MM

The -MM (generate make rules and compile) switch directs the preprocessor
to print to stdout a rule describing the dependencies of the main program
file. After preprocessing, compilation proceeds normally.

-Mo filename

The -Mo filename (preprocessor output file) switch directs the compiler
to use filename for the output of –MD or –ED switches.

-Mt filename

The -Mt filename (output make rule for the named source) switch specifies
the name of the source file for which the compiler generates the make rule
when you use the -M or -MM switch. If the named file is not in the current
directory, you must provide the path name in double quotation marks
(“”). The new file name will override the default base.doj. The -Mt option
supports the .IMPORT extension.

-MQ

The -MQ switch directs the compiler not to compile the source file but to
output a rule. In addition, the -MQ switch does not produce any notifica-
tion when input files are missing.
1-28 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
-make-autostatic

The -make-autostatic (make automatic variables static) switch directs the
compiler to place all automatic variables in static store. This may be bene-
ficial in code that requires many accesses of automatic variables as an
access to static store is done in one instruction, whereas an access to local
automatic stack area may require three instructions.

Alternatively, this feature can be applied on a function-by-function basis
using the make_auto_static pragma. See “Stack Usage Pragma” on
page 1-108 for more information.

� Do not use the -make-autostatic switch if the source being com-
piled contains any functions that are directly or indirectly
recursive.

-map filename

The -map (generate a memory map) switch directs the linker to output a
memory map of all symbols. The map file name corresponds to the
filename argument. For example, if the filename argument is test, the
map file name is test.xml. The .xml extension is added where necessary.

-mem

The -mem (invoke memory initializer) switch causes the compiler to invoke
the Memory Initializer tool after linking the executable. The MemInit
tool can be controlled through the -flags-mem switch (on page 1-23).

-no-alttok

The -no-alttok (disable alternative tokens) switch directs the compiler to
not accept alternative operator keywords and digraph sequences in the
source files. This is the default mode. For more information, see “-alttok”
on page 1-19.
VisualDSP++ 3.5 C Compiler and Library Manual 1-29
for ADSP-218x DSPs

Compiler Command-Line Reference
-no-bss

The -no-bss switch causes the compiler to keep zero-initialized and
non-zero-initialized data in the same data section, rather than separating
zero-initialized data into a different, BSS-style section. See also the –bss
switch (on page 1-19).

-no-builtin

The -no-builtin (no builtin functions) switch directs the compiler to rec-
ognize only built-in functions that begin with two underscores (__). Note
that this switch influences many functions. This switch also predefines the
__NO_BUILTIN preprocessor macro.

� For more information on built-in functions, see “Compiler
Built-in Functions” on page 1-83 and “Using the Compiler’s
Built-In Functions” on page 3-2.

-no-defs

The -no-defs (disable defaults) switch directs the preprocessor not to
define any default preprocessor macros, include directories, library direc-
tories, libraries, or run-time headers.

-no-extra-keywords

The -no-extra-keywords (disable short-form keywords) switch directs the
compiler not to recognize the Analog Devices keyword extensions that
might affect conformance to ISO/ANSI standards for the C language.
These extensions include keywords, such as asm, which may be used as
identifiers in conforming programs. Alternate keywords that are prefixed
with two leading underscores, such as __pm and __dm, continue to work.
The “-extra-keywords” switch (on page 1-22) can be used to explicitly
request support for the additional keywords.
1-30 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
-no-fp-associative

The -no-fp-associative switch directs the compiler not to treat
floating-point multiplication and addition as associative.

-no-mem

The -no-mem switch causes the compiler to not invoke the Memory Initial-
izer tool after linking the executable. This is the default setting. See also
“-mem” on page 1-29.

-no-std-ass

The -no-std-ass (disable standard assertions) switch prevents the com-
piler from defining the system, machine, cpu and compiler assertions and
from defining system-specific assertions. See the -A switch (on page 1-18)
for the list of standard assertions.

-no-std-def

The -no-std-def (disable standard macro definitions) prevents the com-
piler from defining any default preprocessor macro definitions.

-no-std-inc

The -no-std-inc (disable standard include search) switch directs the C
preprocessor to search for header files in only the current directory and
directories specified with -I switch (on page 1-25).

� You can invoke this switch by selecting the Ignore standard
include paths check box in the VisualDSP++ Project Options
dialog box, Compile tab, Preprocessor category.
VisualDSP++ 3.5 C Compiler and Library Manual 1-31
for ADSP-218x DSPs

Compiler Command-Line Reference
-no-std-lib

The -no-std-lib (disable standard library search) switch directs the linker
to limit its search for libraries to directories specified with the -L switch
(on page 1-27). The compiler also defines __NO_STD_LIB during the link-
ing stage and passes it to the linker, so that the SEARCH_DIR directives in
the .LDF file can de disabled.

-no-widen-muls

The -no-widen-muls (disable widening multiplications) switch disables
the compiler optimization which it performs on multiplication operations.

By default, the compiler, attempts to optimize integer multiplication
operations which are stored in a long result to utilize the double-word
MAC result registers of ADSP-218x DSPs. The code produced this way is
better suited to the processor and therefore more efficient.

However, this optimization can generate overflow results which are not
consistent in some cases and may differ from expected results depending
on the optimizations enabled and the way that the source is written. The
inconsistency and differences are seen if an overflow and truncation of the
integer operands would normally occur.

When the optimization is applied, there is no truncation. When the opti-
mization is disabled, the result of overflow will be truncated to integer size
before being stored in the long result.

-O

The -O (enable optimizations) switch directs the compiler to produce code
that is optimized for performance. Optimizations are not enabled by
default for the compiler.

� You can invoke this switch by selecting the Enable optimization
check box in the VisualDSP++ Project Options dialog box,
Compile tab, General category.
1-32 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
-Oa

The -Oa (automatic function inlining) switch enables the inline expansion
of C functions which are not necessarily declared inline in the source
code. The amount of auto-inlining the compiler performs is controlled
using the –Ov (optimize for speed versus size) switch (on page 1-33).
Therefore, use of -Ov100 indicates that as many functions as possible will
be auto-inlined whereas –Ov0 prevents any function from being
auto-inlined. Specifying -Oa also implies the use of -O.

� When remarks are enabled, the compiler will produce a remark to
indicate each function that is inlined.

-Os

The -Os (optimize for size) switch directs the compiler to produce code
that is optimized for size. This is achieved by performing all optimizations
except those that increase code size. The optimizations not performed
include loop unrolling and jump avoidance. It also uses a function to save
and restore preserved registers for a function instead of generating the
more cycle-efficient inline default versions.

-Ov num

The -Ov num (optimize for speed versus size) switch directs the compiler to
produce code that is optimized for speed versus size. The 'num' should be
an integer between 0 (purely size) and 100 (purely speed).

-o filename

The -o (output file) switch directs the compiler to use filename for the
name of the final output file.
VisualDSP++ 3.5 C Compiler and Library Manual 1-33
for ADSP-218x DSPs

Compiler Command-Line Reference
-P

The -P (omit line numbers) switch directs the compiler to stop after the C
preprocessor runs (without compiling) and to omit the #line preprocessor
directives (with line number information) in the output from the prepro-
cessor. The -C switch can be used in conjunction with -P to retain
comments.

-PP

The -PP (omit line numbers and compile) switch is similar to the -P
switch; however, it does not halt compilation after preprocessing.

-path-{asm|compiler|def|lib|link|mem} filename

The -path (tool location) switch directs the compiler to use the specified
component in place of the default installed version of the compilation
tool. The component should comprise a relative or absolute path to its
location. Respectively, the tools are the assembler, compiler, driver defini-
tions file, librarian, linker or memory initializer.

Use this switch when you wish to override the normal version of one or
more of the tools. The -path switch also overrides the directory specified
by the -path-install switch (on page 1-34).

-path-install directory

The -path-install (installation location) switch directs the compiler to
use the specified directory as the location for all compilation tools
instead of the default path. This is useful when working with multiple ver-
sions of the tool set.

� You can selectively override this switch with the -path switch
(on page 1-34).
1-34 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
-path-output directory

The -path-output (non-temporary files location) switch directs the com-
piler to place output files in the specified directory.

-path-temp directory

The -path-temp (temporary files location) switch directs the compiler to
place temporary files in the specified directory.

-pch

The -pch (precompiled header) switch directs the compiler to automati-
cally generate and use precompiled header files. A precompiled output
header has a .pch extension attached to the source file name. By default,
all precompiled headers are stored in a directory called PCHRepository.

� Precompiled header files can significantly speed compilation; pre-
compiled headers tend to occupy more disk space.

-pch directory

The -pch directory (locate PCHRepository) switch specifies the location
of an alternative PCHRepository for storing and invocation of precompiled
header files. If the directory does not exist, the compiler creates it. Note
that -o (output) does not influence the -pchdir option.

-pedantic

The -pedantic (ANSI standard warnings) switch causes the compiler to
issue warnings for any constructs found in your program that do not
strictly conform to the ISO/ANSI standard for C.

� The compiler may not detect all such constructs. In particular, the
-pedantic switch does not cause the compiler to issue errors when
Analog Devices keyword extensions are used.
VisualDSP++ 3.5 C Compiler and Library Manual 1-35
for ADSP-218x DSPs

Compiler Command-Line Reference
-pedantic-errors

The -pedantic-errors (ANSI C errors) switch causes the compiler to
issue errors instead of warnings for cases described in the -pedantic
switch.

-pplist filename

The -pplist (preprocessor listing) switch directs the preprocessor to out-
put a listing to the named file. When more than one source file has been
preprocessed, the listing file contains information about the last file pro-
cessed. The generated file contains raw source lines, information on
transitions into and out of include files, and diagnostics generated by the
compiler.

Each listing line begins with a key character that identifies its type as:

-proc processor

The -proc (target processor) switch specifies that the compiler should pro-
duce code suitable for the specified processor. The processor identifiers
directly supported in VisualDSP++ 3.5 are:

Character Meaning

N Normal line of source

X Expanded line of source

S Line of source skipped by #if or #ifdef

L Change in source position

R Diagnostic message (remark)

W Diagnostic message (warning)

E Diagnostic message (error)

C Diagnostic message (catastrophic error)
1-36 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
ADSP-2181, ADSP-2183, ADSP-2184, ADSP-2185, ADSP-2186,
ADSP-2187, ADSP-2188, and ADSP-2189

For example,

cc218x -proc ADSP-2181 p1.c

� If no target is specified with the -proc switch, the compiler will
generate an error message.

If the processor identifier is unknown to the compiler, it attempts to read
required switches for code generation from the file <processor>.ini. The
assembler searches for the .ini file in the VisualDSP ++ System folder.
For custom processors, the compiler searches the section “proc” in the
<processor>.ini for key 'architecture'. The custom processor must be
based on an architecture key that is one of the known processors. For
example, -proc Customxxx searches the Customxxx.ini file.

When compiling with the -proc switch, the compiler defines the corre-
sponding __ADSP21{81|83|84|85|86|87|88|89}__ macro for the variant
selected in addition to the __ADSP21XX__ and __ADSP218X__ macros which
are always are defined as 1. For example, __ADSP2181__ and __ADSP218X__
are pre-defined to 1 by the compiler.

� See also “-si-revision version” on page 1-39 for more information
on silicon revision of the specified processor.

-R directory [{;|,}directory �]

The -R (add source directory) switch directs the compiler to add the spec-
ified directory to the list of directories searched for source files.

On Windows™ platforms, multiple source directories are given as a
comma or semicolon separated list. The compiler searches for the source
files in the order specified on the command line. The compiler searches
VisualDSP++ 3.5 C Compiler and Library Manual 1-37
for ADSP-218x DSPs

Compiler Command-Line Reference
the specified directories before reverting to the current project directory.
This option is position-dependent on the command line; that is, it affects
only source files that follow the option.

Source files whose file names begin with /, ./ or ../ (or Windows™
equivalent) and contain drive specifiers (on Windows™ platforms) are
not affected by this option.

-R-

The -R- (disable source path) switch removes all directories from the stan-
dard search path for source files, effectively disabling this feature.

� This option is position-dependent on the command line; it only
affects files following it.

-reserve register[,register...]

The -reserve (reserve register) switch directs the compiler not to use the
specified register(s). This guarantees that a known register or set of regis-
ters is available for autobuffering.

You can reserve the I2, I3, I5, I7 and M0 registers. Separate register names
with commas on the compiler command line. Reserving registers seriously
reduces the effectiveness of compiler optimizations and should only be
done when autobuffering (using circular buffers) is essential. For more
information, refer to “Autobuffering Support” on page 1-134.

-S

The -S (stop after compilation) switch directs the compiler to stop compi-
lation before running the assembler. The compiler outputs an assembler
file with a .s extension.

� You can invoke this switch by selecting the Stop after: Compiler
check box in the VisualDSP++ Project Options dialog box,
Compile tab, General category selection.
1-38 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
-s

The -s (strip debugging information) switch directs the compiler to
remove debugging information (symbol table and other items) from the
output executable file during linking.

-save-temps

The -save-temps (save intermediate files) switch directs the compiler to
retain intermediate files generated and normally removed as part of the
various compilation stages. These intermediate files are placed in the
–path-output specified output directory or the build directory if the
-path-output switch (on page 1-35) is not used. See Table 1-1 on
page 1-9 for a list of input/output files (file extensions).

-show

The -show (display command line) switch directs the compiler to echo all
command-line arguments, expanded option files switches and environ-
ment variables used by the compiler.

-si-revision version

The -si-revision version (silicon revision) switch sets the version of the
hardware which is the required target for the build. It is used to enable
inherent behavior relating to any errata in specific silicon revisions. The
revision can be specified as “none” or a number of the form described by
regular expression [0-9]+\.[0-9]{1,3} (for example 1.123). The com-
piler defines a macro __SILICON_REVISION__ to a value specific to each
silicon revision. For unknown revisions, the compiler will generate a
warning and default to the latest known revision.

The parameter “version” represents a silicon revision of the processor
specified by the -proc switch (on page 1-36). The “none” revision disables
support for silicon errata.
VisualDSP++ 3.5 C Compiler and Library Manual 1-39
for ADSP-218x DSPs

Compiler Command-Line Reference
For example,

cc218x -proc ADSP-2189 -si-revision 0.1

� In the absence of silicon revision, the compiler selects the greatest
silicon revision it “knows” about, if any.

A compiler will “pass along” the appropriate -si-revision switch setting
when invoking another VisualDSP++ tool, for example, when the com-
piler driver invokes assembler and linker.

-signed-bitfield

The -signed-bitfield (make plain bitfields signed) switch directs the
compiler to make bitfields which have not been declared with an explicit
signed or unsigned keyword to be signed. This switch does not effect plain
one-bit bitfields which are always unsigned. This is the default mode. See
also the -unsigned-bitfield switch (on page 1-42).

-signed-char

The -signed-char (make char signed) switch directs the compiler to make
the default type for char signed. The compiler also defines the
__SIGNED_CHARS__ macro. This is the default mode when the
-unsigned-char (make char unsigned) switch (on page 1-43) is not used.

-syntax-only

The -syntax-only (just check syntax) switch directs the compiler to check
the source code for syntax errors and warnings. No output files will be
generated with this switch.
1-40 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
-sysdefs

The -sysdefs (system definitions) switch directs the compiler to define
several preprocessor macros describing the current user and user’s system.
The macros are defined as character string constants and are used in func-
tions with null-terminated string arguments.

The following macros are defined if the system returns information for
them:

� __MACHINE__, __GROUPNAME__, and __REALNAME__ are not available
on Windows platforms.

-T filename

The -T (Linker Description File) switch directs that the linker, when
invoked, will use the specified Linker Description File (LDF). If -T is not
specified, a default .LDF file is selected based on the processor variant.

-time

The -time (time the compiler) switch directs the compiler to display the
elapsed time as part of the output information on each part of the compi-
lation process.

Macro Description

__HOSTNAME__ The name of the host machine

__MACHINE__ The machine type of the host machine

__SYSTEM__ The OS name of the host machine

__USERNAME__ The current user's login name

__GROUPNAME__ The current user's group name

__REALNAME__ The current user's real name
VisualDSP++ 3.5 C Compiler and Library Manual 1-41
for ADSP-218x DSPs

Compiler Command-Line Reference
-Umacro

The -U (undefine macro) switch lets you undefine macros. If you specify a
macro name, it will be undefined. The compiler processes all -D (define
macro) switches on the command line before any -U (undefine macro)
switches.

� You can invoke this switch by selecting the Undefines field in the
VisualDSP++ Project Options dialog box, Compile tab,
Preprocessor category.

-unsigned-bitfield

The -unsigned-bitfield (make plain bitfields unsigned) switch directs
the compiler to make bitfields which have not been declared with an
explicit signed or unsigned keyword to be unsigned. This switch does not
effect plain one-bit bitfields which are always unsigned.

For example, given the declaration

struct {
int a:2;
int b:1;
signed int c:2;
unsigned int d:2;

} x;

the bitfield values are:

See also the -signed-bitfields switch (on page 1-40).

Field -unsigned-bitfield -signed-bitfield Why

x.a -2..1 0..3 Plain field

x.b 0..1 0..1 One bit

x.c -2..1 -2..1 Explicit signed

x.d 0..3 0..3 Explicit unsigned
1-42 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
-unsigned-char

The -unsigned-char (make char unsigned) switch directs the compiler to
make the default type for char unsigned. The compiler also undefines the
__SIGNED_CHARS__ preprocessor macro.

-v

The -v (version and verbose) switch directs the compiler to display both
the version and command-line information for all the compilation tools as
they process each file.

-val-global <name-list>

The -val-global (add global names) switch directs the compiler that the
names given by <name-list> are present in all globally defined variables.
The list is separated by double colons(::). In C, the names are prefixed and
separated by underscores (_). The compiler will issue an error on any glo-
bally defined variable in the current source module(s) not using
<name-list>. This switch is used to define VCSE components.

-verbose

The -verbose (display command line) switch directs the compiler to dis-
play command-line information for all the compilation tools as they
process each file.

-version

The -version (display compiler version) switch directs the compiler to
display its version information.
VisualDSP++ 3.5 C Compiler and Library Manual 1-43
for ADSP-218x DSPs

Compiler Command-Line Reference
-Wdriver-limit number

The -Wdriver-limit (maximum process errors) switch lets you set a maxi-
mum number of driver errors (command line, etc.) that the driver aborts
at.

-Werror-limit number

The -Werror-limit (maximum compiler errors) switch lets you set a max-
imum number of errors for the compiler.

-W{error|remark|suppress|warn} <num>[,num...]

The -W <...> number (override error message) switch directs the compiler
to override the severity of the specified diagnostic messages (errors,
remarks, or warnings). The num argument specifies the message to
override.

At compilation time, the compiler produces a number for each specific
compiler diagnostic message. The {D} (discretionary) string after the diag-
nostic message number indicates that the diagnostic may have its severity
overridden. Each diagnostic message is identified by a number that is used
across all compiler software releases.

-Wremarks

The -Wremarks (enable diagnostic warnings) switch directs the compiler to
issue remarks, which are diagnostic messages that are even milder than
warnings.

� You can invoke this switch by selecting the Enable remarks check
box in the VisualDSP++ Project Options dialog box, Compile tab,
Warning selection.
1-44 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
-Wterse

The -Wterse (enable terse warnings) switch directs the compiler to issue
the briefest form of warnings. This also applies to errors and remarks.

-w

The -w (disable all warnings) switch directs the compiler not to issue
warnings.

� You can invoke this switch by selecting the Disable all warnings
and remarks check box in the VisualDSP++ Project Options dia-
log box, Compile tab, Warning selection.

-warn-protos

The -warn-protos (prototypes warning) switch directs the compiler to
produce a warning message when a function is called without a full proto-
type being supplied.

-write-files

The -write-files (enable driver I/O redirection) switch directs the com-
piler driver to redirect the file name portions of its command line through
a temporary file. This technique helps with handling long file names,
which can make the compiler driver’s command line too long for some
operating systems.

-write-opts

The -write-opts switch directs the compiler to pass the user-specified
options (but not the input file names) to the main driver via a temporary
file. This can be helpful if the resulting main driver command line would
otherwise be too long.
VisualDSP++ 3.5 C Compiler and Library Manual 1-45
for ADSP-218x DSPs

Compiler Command-Line Reference
-xref <file>

The -xref (cross-reference list) switch directs the compiler to write
cross-reference listing information to the specified file. When more than
one source file has been compiled, the listing contains information about
the last file processed.

For each reference to a symbol in the source program, a line of the form

symbol-id name ref-code filename line-number column-number

is written to the named file. symbol-id represents a unique decimal num-
ber for the symbol.

The ref-code parameter is one of the following characters.

Character Meaning

D Definition

d Declaration

M Modification

A Address taken

U Used

C Changed (used and modified)

R Any other type of reference

E Error (unknown type of reference)
1-46 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Data Type Sizes
The sizes of intrinsic C data types are selected by Analog Devices so that
normal C programs execute with hardware-native data types and therefore
execute at high speed.

On any platform the basic type int is the native word size. The data type
long is 32 bits, as is float. A pointer is the same size as an int.

Table 1-4. Data Type Sizes for the ADSP-218x DSPs

Type Bit Size sizeof returns

int 16 bits signed 1

unsigned int 16 bits unsigned 1

char 16 bits signed 1

unsigned char 16 bits unsigned 1

short 16 bits signed 1

unsigned short 16 bits unsigned 1

pointer 16 bits 1

fract16 16 bits fractional
(defined in fract_typedef.h)

1

long 32 bits signed 2

unsigned long 32 bits unsigned 2

function pointer 32 bits 2

float 32 bits float 2

double 32 bits float 2

fract32 32 bits fractional
(defined in fract_typedef.h)

2

VisualDSP++ 3.5 C Compiler and Library Manual 1-47
for ADSP-218x DSPs

Compiler Command-Line Reference
On the ADSP-218x processor architecture, the long long int, unsigned
long long int, and long double data types are not implemented (they are
not redefined to other types). In general, double word data types should
be expected to run more slowly, relying largely on software-emulated
arithmetic.

Analog Devices does not support data sizes smaller than a single word
location for ADSP-218x processors. For the current processors, this means
that both short and char have the same size as int. Although 16-bit chars
are unusual, they conform to the standard.

Type double poses a special problem. The C language tends to default to
double for constants and in many floating-point calculations. Without
some special handling, many programs would inadvertently end up using
slow-speed emulated 64-bit floating-point arithmetic, even when variables
are declared consistently as float.

In order to avoid this problem and provide the best performance, the size
of double on the ADSP-218x DSPs is always 32 bits. This should be
acceptable for most DSP programming. It is not, however, fully standard
conforming.

The standard include files automatically redefine the math library inter-
faces such that functions like sin can be directly called with the proper
size operands; therefore:

float sinf (float); /* 32-bit */

double sin (double); /* 32-bit */

For full descriptions of these functions and their implementation, see
Chapter 3, “C Run-Time Library”.
1-48 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Optimization Control
The general aim of compiler optimization is to generate correct code that
executes fast and is small in size. Not all optimizations are suitable for
every application or possible all the time so the compiler optimizer has a
number of configurations, or optimization levels, which can be applied
when suitable. Each of these levels are enabled by one or more compiler
switches (and VisualDSP++ project options) or pragmas.

� Refer to Chapter 2, “Achieving Optimal Performance from C
Source Code” for information on how to obtain maximal code per-
formance from the compiler.

The following list identifies several optimization levels. The levels are
notionally ordered with least optimization listed first and most optimiza-
tion listed last. The descriptions for each level outline the optimizations
performed by the compiler and identifies any switches or pragmas
required or that have direct influence on the optimization levels
performed.

• Debug
The compiler produces debug information to ensure that the object
code matches the appropriate source code line. See “-g” on
page 1-23 for more information.

• Default
The compiler does not perform any optimizations by default when
none of the compiler optimization switches are used (or enabled in
VisualDSP++ project options). Default optimization level can be
enabled using the optimize_off pragma (on page 1-105).

• Procedural Optimizations
The compiler performs advanced, aggressive optimization on each
procedure in the file being compiled. The optimizations can be
directed to favor optimizations for speed (-O) or space (-Os) or a
factor between speed and space (-Ov). If debugging is also
VisualDSP++ 3.5 C Compiler and Library Manual 1-49
for ADSP-218x DSPs

Compiler Command-Line Reference
requested, the optimization is given priority, so the debugging
functionality may be limited. See “-O” on page 1-32, “-Os” on
page 1-33, and “-Ov num” on page 1-33.

Procedural optimizations for speed and space (using -O and -Os)
can be enabled in C source using the pragma
optimize_{for_speed|for_space} (see on page 1-105 for more
information on optimization pragmas).

• Automatic Inlining
The compiler automatically inlines C functions which are not nec-
essarily declared as inline in the source code. It does this when it
has determined that doing so will reduce execution time. How
aggressively the compiler performs automatic inlining is controlled
using the -Ov switch. Automatic inlining is enabled using the -Oa
switch and additionally enables Procedural Optimizations (-O). See
“-O” on page 1-32, “-Os” on page 1-33, and “-Ov num” on
page 1-33. for more information.

• Interprocedural optimizations (IPA)
The compiler performs advanced, aggressive optimization over the
whole program, in addition to the per-file optimizations in proce-
dural optimization. IPA is enabled using the -ipa switch and
additionally enables Procedural Optimizations (-O). See “-ipa” on
page 1-26 and “-O” on page 1-32 for more information.

Interprocedural Analysis

The compiler has an optimization capability called Interprocedural Analysis
(IPA) that allows the compiler to optimize across translation units instead
of within individual translation units. This capability allows the compiler
to see all of the source files used in a final link at compilation time and to
use that information while optimizing.
1-50 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Interprocedural analysis is enabled by selecting the Interprocedural analy-
sis option on the Compiler tab (accessed via the VisualDSP++ Project
Options dialog box), or by specifying the -ipa command-line switch (see
on page 1-26). The -ipa switch automatically enables the -O switch to
turn on optimization.

Use of the -ipa switch causes additional files to be generated along with
the object file produced by the compiler. These files have .ipa and .opa
filename extensions and should not be deleted manually unless the associ-
ated object file is also deleted.

All of the -ipa optimizations are invoked after the initial link; when a spe-
cial program has called, the prelinker reinvokes the compiler to perform
the new optimizations.

Because a file may be recompiled by the prelinker, you cannot use the -S
option to see the final optimized assembler file when -ipa is enabled.
Instead, you must use the -save-temps switch, so that the full com-
pile/link cycle can be performed first.

Because IPA operates only during the final link, the -ipa switch has no
benefit when compiling the source files to object format for inclusion in a
library. Although IPA will generate usage information for potential addi-
tional optimizations at the final link stage, neither the usage information
nor the module's source file are available when the linker includes a mod-
ule from a library. Therefore, each library module is compiled to the
normal -O optimization level.

The prelinker inspects object modules included from libraries and other
object files which were not compiled with the -ipa switch to see whether
there are hidden references to the functions and variables defined in those
objects which were compiled with the -ipa switch, and optimizes those
variables and functions accordingly.
VisualDSP++ 3.5 C Compiler and Library Manual 1-51
for ADSP-218x DSPs

C Compiler Language Extensions
C Compiler Language Extensions
The compiler supports a set of extensions to the ISO/ANSI standards for
the C language. These C extensions add support for DSP hardware and
allow some C programming features.

This section contains:

• “Inline Function Support Keyword (inline)” on page 1-55

• “Inline Assembly Language Support Keyword (asm)” on page 1-56

• “Dual Memory Support Keywords (pm dm)” on page 1-71

• “Placement Support Keyword (section)” on page 1-76

• “Boolean Type Support Keywords (bool, true, false)” on page 1-77

• “Pointer Class Support Keyword (restrict)” on page 1-77

• “Variable-Length Array Support” on page 1-78

• “Non-Constant Aggregate Initializer Support” on page 1-80

• “Indexed Initializer Support” on page 1-80

• “Aggregate Constructor Expression Support” on page 1-82

• “Preprocessor-Generated Warnings” on page 1-83

• “C++-Style Comments” on page 1-83

• “ETSI Support” on page 1-86

• “Pragmas” on page 1-99

• “GCC Compatibility Extensions” on page 1-117
1-52 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
The additional keywords that are part of these C extensions do not con-
flict with any ISO/ANSI C keywords. The formal definitions of these
extension keywords are prefixed with a leading double underscore. Unless
the -no-extra-keywords command-line switch is used (see on page 1-30),
the compiler defines shorter forms of the keyword extensions that omit
the leading underscores.

This section describes only the shorter forms of the keyword extensions,
but in most cases you can use either form in your code. For example, all
references to the inline keyword in this text appear without the leading
double underscores, but you can use inline or __inline interchangeably
in your code.

You might need to use the longer forms (such as __inline) exclusively if
you are porting a program that uses the extra Analog Devices keywords as
identifiers. For example, a program might declare local variables, such as
pm or dm. In this case, you should use the -no-extra-keywords switch, and
if you need to declare a function as inline, or allocate variables to memory
spaces, you can use __inline or __pm/__dm respectively.

Table 1-5 provides a list and a brief description of keyword extensions.
Table 1-6 provides a list and a brief description of operational extensions.
Both tables direct you to sections of this chapter that document each
extension in more detail.

Table 1-5. Keyword Extensions

Keyword extensions Description

inline (function) Directs the compiler to integrate the function code into the code of
the callers. For more information, see “Inline Function Support
Keyword (inline)” on page 1-55.

dm Specifies the location of a static or global variable or qualifies a
pointer declaration “*” as referring to data memory.
For more information, see “Dual Memory Support Keywords (pm
dm)” on page 1-71.
VisualDSP++ 3.5 C Compiler and Library Manual 1-53
for ADSP-218x DSPs

C Compiler Language Extensions
pm Specifies the location of a static or global variable or qualifies a
pointer declaration “*” as referring to program memory.
For more information, see “Dual Memory Support Keywords (pm
dm)” on page 1-71.

section(string) Specifies the section in which an object or function is placed.
For more information, see “Placement Support Keyword (section)”
on page 1-76.

bool, true, false A Boolean type.
For more information, see “Boolean Type Support Keywords (bool,
true, false)” on page 1-77.

restrict keyword Specifies restricted pointer features.
For more information, see “Pointer Class Support Keyword
(restrict)” on page 1-77.

Table 1-6. Operational Extensions

Operation extensions Description

Variable-length arrays Support for variable-length arrays lets you use automatic arrays
whose length is not known until runtime. For more information, see
“Variable-Length Array Support” on page 1-78.

Non-constant initializers Support for non-constant initializers lets you use non-constants as
elements of aggregate initializers for automatic variables.
For more information, see “Non-Constant Aggregate Initializer Sup-
port” on page 1-80.

Indexed initializers Support for indexed initializers lets you specify elements of an aggre-
gate initializer in an arbitrary order. For more information, see
“Indexed Initializer Support” on page 1-80.

Preprocessor generated
warnings

Support for generating warning messages from the preprocessor.
For more information, see “Preprocessor-Generated Warnings” on
page 1-83.

C++-style comments Support for C++-style comments in C programs.
For more information, see “C++-Style Comments” on page 1-83.

Table 1-5. Keyword Extensions (Cont’d)

Keyword extensions Description
1-54 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Inline Function Support Keyword (inline)
The inline keyword directs cc218x to integrate the code for the function
you declare as inline into the code of its callers. Inline function support
and the inline keyword is a standard feature of C++; the compiler pro-
vides it as a C extension. Use of this keyword eliminates the function-call
overhead and therefore can increase the speed of your program’s execu-
tion. Argument values that are constant and that have known values may
permit simplifications at compile time.

The following example shows a function definition that uses the inline
keyword.

inline int max3 (int a, int b int c) {

return max (a, max(b, c));

}

A function declared inline must be defined (its body must be included)
in every file in which the function is used. The normal way to do this is to
place the inline definition in a header file. Usually, it will also be declared
static.

In some cases, the compiler does not output object code for the function;
for example, the address is not needed for an inline function called only
from within the defining program. However, recursive calls, and functions
whose addresses are explicitly referred to by the program, are compiled to
assembly code.

� The compiler only inlines functions, even those declared using the
inline keyword, when optimizations are enabled (using the -O
switches, as described on page 1-32).
VisualDSP++ 3.5 C Compiler and Library Manual 1-55
for ADSP-218x DSPs

C Compiler Language Extensions
Inline Assembly Language Support Keyword (asm)
The cc218x asm() construct lets you code ADSP-218x processor’s assem-
bly language instructions within a C function and to pass declarations and
directives through to the assembler. The asm() construct is useful for
expressing assembly language statements that cannot be expressed easily or
efficiently with C constructs.

The asm() keyword allows you to code complete assembly language
instructions or you can specify the operands of the instruction using C
expressions. When specifying operands with a C expression, you do not
need to know which registers or memory locations contain C variables.

� The compiler does not analyze code defined with the asm() con-
struct; it passes this code directly to the assembler. The compiler
does perform substitutions for operands of the formats %0
through %9. However, it passes everything else through to the
assembler without reading or analyzing it.

� The asm() constructs are executable statements, and as such, may
not appear before declarations within C functions.

� asm() constructs may also be used at global scope, outside function
declarations. Such asm constructs are used to pass declarations and
directives directly to the assembler. They are not executable con-
structs, and may not have any inputs or outputs, or affect any
registers.

A simplified asm() construct without operands takes the form of:

asm(" ENA INTS;");

The complete assembly language instruction, enclosed in double quotes, is
the argument to asm(). Using asm() constructs with operands requires
some additional syntax.
1-56 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
� Note that the compiler generates a label before and after inline
assembly instructions when generating debug code (-g switch).
These labels are used to generate the debug line information used
by the debugger. If the inline assembler inserts conditionally
assembled code, then likely at link time, an undefined symbol error
will occur. If the inline assembler changes the section, causing the
compilers labels to be placed, for example, in a data section
(instead of the default code section), then the debug line informa-
tion will be incorrect for these lines.

Using asm() constructs with operands requires some additional syntax.
The construct syntax is described in:

• “Assembly Construct Template” on page 1-57

• “Assembly Construct Operand Description” on page 1-61

• “Assembly Constructs With Multiple Instructions” on page 1-67

• “Assembly Construct Reordering and Optimization” on page 1-67

• “Assembly Constructs with Input and Output Operands” on
page 1-68

• “Assembly Constructs and Macros” on page 1-70

• “Assembly Constructs and Flow Control” on page 1-70

Assembly Construct Template

Using asm() constructs, you can specify the operands of the assembly
instruction using C expressions. You do not need to know which registers
or memory locations contain C variables.

ASM() Construct Syntax:

Use the following general syntax for your asm() constructs.
VisualDSP++ 3.5 C Compiler and Library Manual 1-57
for ADSP-218x DSPs

C Compiler Language Extensions
asm(
template
[:[constraint(output operand)[,constraint(output operand)…]]

[:[constraint(input operand)[,constraint(input operand)…]]
[:clobber]]]

);

The syntax elements are defined as:

template

The template is a string containing the assembly instruction(s) with
%number indicating where the compiler should substitute the oper-
ands. Operands are numbered in order of occurrence from left to
right, starting at 0. Separate multiple instructions with a semico-
lon; then enclose the entire string within double quotes.

For more information on templates containing multiple instruc-
tions, see “Assembly Constructs With Multiple Instructions” on
page 1-67.

constraint

The constraint is a string that directs the compiler to use certain
groups of registers for the input and output operands. Enclose the
constraint string within double quotes. For more information on
operand constraints, see “Assembly Construct Operand Descrip-
tion” on page 1-61.

output operand

The output operand is the name of a C variable that receives out-
put from a corresponding operand in the assembly instruction.

input operand

The input operand is a C expression that provides an input to a
corresponding operand in the assembly instruction.
1-58 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
clobber

The clobber notifies the compiler that a list of registers are over-
written by the assembly instructions. Use lowercase characters to
name clobbered registers. Enclose each name within double quotes,
and separate each quoted register name with a comma. The input
and output operands are guaranteed not to use any of the clobbered
registers, so you can read and write the clobbered registers as often
as you like. See Table 1-8 on page 1-66.

ASM() Construct Syntax Rules

These rules apply to assembly construct template syntax:

• The template is the only mandatory argument to asm(). All other
arguments are optional.

• An operand constraint string followed by a C expression in paren-
theses describes each operand. For output operands, it must be
possible to assign to the expression—that is, the expression must be
legal on the left side of an assignment statement.

• A colon separates:

• The template from the first output operand

• The last output operand from the first input operand

• The last input operand from the clobbered registers

• A comma separates operands and registers within arguments.

• The number of operands in arguments must match the number of
operands in your template.

• The maximum permissible number of operands is ten (%0, %1, %2,
%3, %4, %5, %6, %7, %8, and %9).
VisualDSP++ 3.5 C Compiler and Library Manual 1-59
for ADSP-218x DSPs

C Compiler Language Extensions
� The compiler cannot check whether the operands have data types
that are reasonable for the instruction being executed. The com-
piler does not parse the assembler instruction template, interpret
the template, nor verify whether the template contains valid input
for the assembler.

ASM() Construct Template Example

The following example shows how to apply the asm() construct template
to the ADSP-218x assembly language abs instruction:

{
int result, x;
…
asm (

"%0 = abs %1;" :
"=d" (result) :
"d" (x)
);

}

In the previous example, note the following points:

• The template is "%0=abs %1;". The %0 is replaced with operand
zero (result), the first operand. The %1 is replaced with operand
one (x).

• The output operand is the C variable result.

The letter c is the operand constraint for the variable. This con-
strains the output to an ALU result register. The compiler generates
code to copy the output from the register to the variable result, if
necessary. The “=” in =c indicates that the operand is an output.

• The input operand is the C variable x.

The letter c is the operand constraint for the variable. This con-
1-60 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
strains x to an ALU register. If x is stored in different kinds of
registers or in memory, the compiler generates code to copy the
values into an register before the asm() construct uses them.

Assembly Construct Operand Description

The second and third arguments to the asm() construct describe the oper-
ands in the assembly language template. There are several pieces of
information that need to be conveyed for cc218x to know how to assign
registers to operands. This information is conveyed with an operand con-
straint. The compiler needs to know what kind of registers the assembly
instructions can operate on, so it can allocate the correct register type.

You convey this information with a letter in the operand constraint string
which describes the class of allowable registers. Table 1-7 on page 1-65
describes the correspondence between constraint letters and register
classes.

� The use of any letter not listed in Table 1-7 results in unspecified
behavior. The compiler does not check the validity of the code by
using the constraint letter.

For example, if your assembly template contains “ax1 = dm(%0

+= m3);” and the address you want to load from is in the variable
p, the compiler needs to know that it should put p in a DAG1 I reg-
ister (I0–I3) before it generates your instruction. You convey this
information to cc218x by specifying the operand “w” (p) where
“w” is the constraint letter for DAG1I registers.

To assign registers to the operands, the compiler must also be told which
operands in an assembly language instruction are inputs, which are out-
puts, and which outputs may not overlap inputs. The compiler is told this
in three ways.
VisualDSP++ 3.5 C Compiler and Library Manual 1-61
for ADSP-218x DSPs

C Compiler Language Extensions
• The output operand list appears as the first argument after the
assembly language template. The list is separated from the assembly
language template with a colon. The input operands are separated
from the output operands with a colon and always follow the out-
put operands.

• The operand constraints describe which registers are modified by
an assembly language instruction. The “=” in =constraint indi-
cates that the operand is an output; all output operand constraints
must use =.

• The compiler may allocate an output operand in the same register
as an unrelated input operand, unless the output operand has the
&= constraint modifier. This situation can occur because the com-
piler assumes that the inputs are consumed before the outputs are
produced.

This assumption may be false if the assembler code actually consists
of more than one instruction. In such a case, use &= for each output
operand that must not overlap an input or supply an “&” for the
input operand. Table 1-7 lists operand constrains.

Operand constraints indicate what kind of operand they describe by
means of preceding symbols. The possible preceding symbols are: no sym-
bol, =, +, &, ?, and #.

• (no symbol)

The operand is an input. It must appear as part of the third
argument to the asm() construct. The allocated register will
be loaded with the value of the C expression before the
asm() template is executed. Its C expression will not be
modified by the asm(), and its value may be a constant or
literal. Example: d
1-62 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
• = symbol

The operand is an output. It must appear as part of the sec-
ond argument to the asm() construct. Once the asm()
template has been executed, the value in the allocated regis-
ter is stored into the location indicated by its C expression;
therefore, the expression must be one that would be valid as
the left-hand side of an assignment.
Example: =d

• + symbol

The operand is both an input and an output. It must appear
as part of the second argument to the asm() construct. The
allocated register is loaded with the C expression value, the
asm() template is executed, and then the allocated register’s
new value is stored back into the C expression. Therefore, as
with pure outputs, the C expression must be one that is
valid on the left-hand side of an assignment.
Example: +d

• ? symbol

The operand is temporary. It must appear as part of the
third argument to the asm() construct. A register is allo-
cated as working space for the duration of the asm()
template execution. The register’s initial value is undefined,
and the register’s final value is discarded. The corresponding
C expression is not loaded into the register, but must be
present. This expression is normally specified using a literal
zero. Example: ?d

• & symbol

This operand constraint may be applied to inputs and out-
puts. It indicates that the register allocated to the input (or
output) may not be one of the registers that are allocated to
VisualDSP++ 3.5 C Compiler and Library Manual 1-63
for ADSP-218x DSPs

C Compiler Language Extensions
the outputs (or inputs). This operand constraint is used
when one or more output registers are set while one or more
inputs are still to be referenced. (This situation sometimes
occurs if the asm() template contains more than one
instruction.)
Example: &d

• # symbol

The operand is an input, but the register's value is clobbered
by the asm() template execution. The compiler may make
no assumptions about the register's final value. The operand
must appear as part of the second argument to the asm()
construct.
Example: #d

Table 1-7 lists the registers that may be allocated for each register con-
straint letter. The use of any letter not listed in the “Constraint” column
of this table results in unspecified behavior. The compiler does not check
the validity of the code by using the constraint letter. Table 1-8 on
page 1-66 lists the registers that may be named as part of the clobber list.

It is also possible to claim registers directly, instead of requesting a register
from a certain class using the constraint letters. You can claim the registers
directly by simply naming the register in the location where the class letter
would be. The register names are the same as those used to specify the
clobber list; see Table 1-8.

For example,

asm("%0 = %1 + %2;”

:"=ar"(sum) /* output */

:"g"(x),"G"(y) /* input */

);

would load x into ALU-X register, y into ALU-Y register, and sum will be cal-
culated in register AR.
1-64 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Table 1-7. ASM() Operand Constraints

Constraint1 Description Registers

b input xregs to MAC MX1, MX0, SR1, SR0, MR1,
MR0, AR

B input yregs to MAC MY1, MY0

c results from ALU AR

C result from int multiplies MR0

cc Used in the clobber list to tell the
compiler that condition codes have
been clobbered

ASTAT

d input xregs to SHIFTER SI, SR1, SR0, MR1, MR0, AR

D result from shift SR1

e data registers, size 16 SI, AX1, AX0, MX1, MX0,
MY0, MY1, AY1, AY0, MR1,
MR0, SR1, SR0, AR

f shift amount SE

g ALU X registers AX1 AX0 AR SR1 SR0 MR1 MR0

G ALU Y registers AY1 AY0

memory Used in the clobber list to tell the
compiler that the asm() statement
writes to memory

r all registers SR1, SR0, SI, MY1, MX1,
AY1, AX1, MY0, MX0, AY0,
AX0, MR1, MR0, AR, I0-I7,
M0-M7, L0-L7

u DAG1 L registers L0-L3

v DAG2 L registers L4-L7

w DAG1 I registers I0-I3

x DAG1 M registers M0-M3

y DAG2 I registers I4-I7
VisualDSP++ 3.5 C Compiler and Library Manual 1-65
for ADSP-218x DSPs

C Compiler Language Extensions
z DAG2 M registers M4-M7

=&constraint Indicates that the constraint is applied to an output operand that may
not overlap an input operand

=constraint Indicates that the constraint is applied to an output operand

&constraint Indicates the constraint is applied to an input operand that may not be
overlapped with an output operand

=&constraint Indicates the constraint is applied to an output operand that may not
overlap an input operand

?constraint Indicates the constraint is temporary

+constraint Indicates the constraint is both an input and output operand

1 The use of any letter not listed here results in unspecified behavior. The compiler does not check
the validity of the code by using the constraint letter.

Table 1-8. Register Names for asm() Constructs

Clobber String Meaning

"AX1", "AX0", "AY1", "AY0", "AR", "AF" ALU registers

"MX1", "MX0", "MY1", "MY0", "MR1", "MR0", "MR2", MF MAC registers

"SI", "SE", "SR1", "SR0", "SB", "SR2" SHIFTER registers

"I0", "I1", "I2", "I3", "I6", "I7" DAG addressing registers

"M0", "M3", "M5” Modifier registers

"L0", "L1", "L2", "L3", "L5", "L6", "L7" Length register

"PX" PMD-DMD bus exchange regis-
ter

"astat" ALU status registers

"MSTAT", "MMODE", "SSTAT" Mode control registers

"IMASK", "ICNTL", "IFC" Interrupt registers

Table 1-7. ASM() Operand Constraints (Cont’d)

Constraint1 Description Registers
1-66 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Assembly Constructs With Multiple Instructions

There can be many assembly instructions in one template. If the asm()
string is longer than one line, you may continue it on the next line by
placing a backslash (\) at the end of the line or by quoting each line
separately.

This is an example of multiple instructions in a template:

asm ("se=exp %1 (hi); \
"sr=norm %1 (hi); \
"%0=sr0;"
: "=e" (normalized) // output
: "e" (inval) ; // input

: "se", "sr1", "sr0") ; // clobbers

Assembly Construct Reordering and Optimization

For the purpose of optimization, the compiler assumes that the side effects
of an asm() construct are limited to changes in the output operands or the
items specified using the clobber specifiers. This does not mean that you
cannot use instructions with side effects, but you must be careful to notify
the compiler that you are using them by using the clobber specifiers (see
Table 1-8 on page 1-66).

"CNTR", "TOPPCSTACK" Program sequencer registers

"DMOVLAY", "PMOVLAY" Overlay registers

"cc" Condition code register

"memory" Unspecified memory location(s)

Table 1-8. Register Names for asm() Constructs (Cont’d)

Clobber String Meaning
VisualDSP++ 3.5 C Compiler and Library Manual 1-67
for ADSP-218x DSPs

C Compiler Language Extensions
The compiler may eliminate supplied assembly instructions if the output
operands are not used, move them out of loops, or replace two with one if
they constitute a common subexpression. Also, if the instruction has a side
effect on a variable that otherwise appears not to change, the old value of
the variable may be reused later if it happens to be found in a register.

Use the keyword volatile to prevent an asm() instruction from being
moved, combined, or deleted. For example:

#define IOwrite(val,addr) \

asm volatile ("si="#val";IO("#addr")=si;": : :"si");

A sequence of asm volatile() constructs is not guaranteed to be com-
pletely consecutive; it may be moved across jump instructions or in other
ways that are not significant to the compiler. To force the compiler to
keep the output consecutive, use only one asm volatile() construct, or
use the output of the asm() construct in a C statement.

Assembly Constructs with Input and Output Operands

The output operands must be write only; cc218x assumes that the values
in these operands do not need to be preserved. When the assembler
instruction has an operand that is both read from and written to, you
must logically split its function into two separate operands: one input
operand and one write-only output operand. The connection between
them is expressed by constraints that say they need to be in the same loca-
tion when the instruction executes.

You can use the same C expression for both operands, or different expres-
sions. For example, in the following statement, the modify instruction uses
sock as its read only source operand and shoe as its read-write destination:

/* (pseudo code) modify (shoe += sock); */

asm("modify(%0 += %2);":"=w"(shoe):"0"(shoe),"x"(sock));
1-68 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
The constraint "0" for operand 1 says that it must occupy the same loca-
tion as operand 0. A digit in an operand constraint is allowed only in an
input operand, and it must refer to an output operand.

Only a digit in the constraint can guarantee that one operand is in the
same place as another operand. Just because a variable (for example shoe
in the code that follows) is used for more than one operand does not guar-
antee that the operands are in the same place in the generated assembler
code.

/* Do NOT try to control placement with operand names; use the

%digit. The following code might NOT work. */

asm("modify(%0 += %2);":"=w"(shoe):"w"(shoe),"x"(sock));

In some cases, operands 0 and 1 could be stored in different registers due
to reloading or optimizations.

Be aware that asm() does not support input operands that are used as both
read operands and write operands. The following example shows a danger-
ous use of such an operand. In this example, my_variable is modified
during the asm() operation. The compiler only knows that the output,
result_asm, has changed. Subsequent use of my_variable after the asm()
instruction may yield incorrect results since those values may have been
modified during the asm() instruction and may not have been restored.

int result_asm;
int *my_variable;
/* NOT recommended */
/* (pseudo code) result_asm = dm(*my_variable += M3); */
/* asm() operation changes value of my_variable */

asm("%0=DM(%1 += M3);":"=e"(result_asm):"w"(my_variable));
VisualDSP++ 3.5 C Compiler and Library Manual 1-69
for ADSP-218x DSPs

C Compiler Language Extensions
Assembly Constructs and Macros

A way to use asm() constructs is to encapsulate them in macros that look
like functions. For example, the following code example shows macros
that contain asm() constructs. This code defines a macro, abs_macro(),
which uses the inline asm() instruction to perform an assembly-language
abs operation of variable x_var, putting the result in result_var.

#define abs_macro(result,x) \
asm("%0=abs %1;":"=c"(result):"c"(x))
/* (pseudo code) result = abs x */

main(){
int result_var=0;
int x_var=10;

abs_macro(result_var, 10);
/* or */
abs_macro(result_var, x_var);
}

Assembly Constructs and Flow Control

It is inadvisable to place flow control operations within an asm() construct
that “leaves” the asm() construct, such as calling a procedure or perform-
ing a jump, to another piece of code that is not within the asm() construct
itself. Such operations are invisible to the compiler and may violate
assumptions made by the compiler.

For example, the compiler is careful to adhere to the calling conventions
for preserved registers when making a procedure call. If an asm() construct
calls a procedure, the asm() construct must also ensure that all conven-
tions are obeyed, or the called procedure may corrupt the state used by the
function containing the asm() construct.
1-70 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Dual Memory Support Keywords (pm dm)
This section covers cc218x keyword extensions to the C language. These
extensions support the dual-memory space, modified Harvard architecture
of the ADSP-218x processors. There are two keywords used to designate
memory space—dm and pm. They can be used to specify the location of a
static or global variable or to qualify a pointer declaration.

These keywords allow you to control placement of data in primary (dm) or
secondary (pm) data memory. No data is placed in the memory unit that
holds programs.

The following rules apply to dual memory support keywords.

• A memory space keyword (dm or pm) refers to the expression to its
right.

• You can specify a memory space for each level of pointer. This cor-
responds to one memory space for each * in the declaration.

• The compiler uses data memory as the default memory space for all
variables. All undeclared spaces for data are data memory spaces.

• The compiler always uses program memory as the memory space
for functions. Function pointers always point to program memory.

• You cannot assign memory spaces to automatic variables. All auto-
matic variables reside on the stack, which is always in data memory.

• Literal character strings always reside in data memory.

• Although program memory on the ADSP-218x DSPs consists of
24-bit words, only 16 bits of each word are used when C data is
stored in pm. (This is normally the case for assembly language pro-
gramming as well.) If you need special access to all 24 bits, you
should use an assembly language subroutine and work with the PX
register.
VisualDSP++ 3.5 C Compiler and Library Manual 1-71
for ADSP-218x DSPs

C Compiler Language Extensions
The following listing shows examples of dual memory keyword syntax.

int pm abc[100];

/* declares an array abc with 100 elements in program memory */

int dm def[100];

/* declares an array def with 100 elements in data memory */

int ghi[100];

/* declares an array ghi with 100 elements in data memory */

int pm * pm pp;

/* declares pp to be a pointer which resides in program memory

and points to a program memory integer */

int dm * dm dd;

/* declares dd to be a pointer which resides in primary Data

Memory and points to a data memory integer */

int *dd;

/* declares dd to be a pointer which resides in data memory

and points to a data memory integer */

int pm * dm dp;

/* declares dp to be a pointer which resides in data memory

and points to a program memory integer */

int pm * dp;

/* declares dp to be a pointer which resides in data memory

and points to a program memory integer */

int dm * pm pd;

/* declares pd to be a pointer which resides in pm (secondary

data memory) and points to a data memory integer */

int * pm pd;

/* declares pd to be a pointer which resides in Program memory

and points to a data memory integer */

float pm * dm * pm fp;

/* the first pm means that *fp is in program memory,

the following dm puts *fp in data memory, and fp

itself is in program memory */
1-72 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Memory space specification keywords cannot qualify type names and
structure tags, but you can use them in pointer declarations. The follow-
ing listing shows examples of memory space specification keywords in
typedef and struct statements.

/* Dual Memory Support Keyword typedef & struct Examples */
typedef float pm * PFLOATP;

/* PFLOATP defines a type which is a pointer to a */
/* float which resides in pm */

struct s {int x; int y; int z;};
static pm struct s mystruct={10,9,8};

/* Note that the pm specification is not used in */
/* the structure definition. The pm specification */
/* is used when defining the variable mystruct */

Memory Keywords and Assignments/Type Conversions

Memory space specifications limit the kinds of assignments your program
can make:

• You may make assignments between variables allocated in different
memory spaces.

• Pointers to program memory must always point to pm. Pointers to
data memory must always point to dm. You may not mix addresses
from different memory spaces within one expression. Do not
attempt to explicitly cast one type of pointer to another.

The following listings show a code segment with variables in different
memory spaces being assigned and a code segment with illegal mixing of
memory space assignments.

/* Legal Dual Memory Space Variable Assignment Example */
int pm x;
int dm y;
x = y; /* Legal code */

/* Illegal Dual Memory Space Type Cast Example */
VisualDSP++ 3.5 C Compiler and Library Manual 1-73
for ADSP-218x DSPs

C Compiler Language Extensions
int pm *x;
int dm *y;
int dm a;
x = y; /* Compiler will flag error */
x = &a; /* Compiler will flag error */

Memory Keywords and Function Declarations/Pointers

Functions always reside in program memory. Pointers to functions always
point to program memory. The following listing shows some sample func-
tion declarations with pointers.

/* Dual Memory Support Keyword Function Declaration (With
Pointers) Syntax Examples */

int * y(); /* function y resides in */
/* pm and returns a */
/* pointer to an integer */
/* which resides in dm */

int pm * y(); /* function y resides in */
/* pm and returns a */
/* pointer to an integer */
/* which resides in pm */

int dm * y(); /* function y resides in */
/* pm and returns a */
/* pointer to an integer */
/* which resides in dm */

int * pm * y(); /* function y resides in */
/* pm and returns a */
/* pointer to a pointer */
/* residing in pm that */
/* points to an integer */
/* which resides in dm */
1-74 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Memory Keywords and Function Arguments

The compiler checks whether calls to prototyped functions for memory
space specifications are consistent with the function prototype. The fol-
lowing example shows sample code that compiler flags as inconsistent use
of memory spaces between a function prototype and a call to the function.

/* Illegal Dual Memory Support Keywords & Calls To Prototyped
Functions */

extern int foo(int pm*);
/* declare function foo() which expects a pointer to
n int residing in pm as its argument and which
returns an int */

int x; /* define int x in dm */

foo(&x); /* call function foo() */
/* using pm pointer (location of x) as the */
/* argument. cc218x FLAGS AS AN ERROR; this is an */
/* inconsistency between the function’s */
/* declared memory space argument and function */
/* call memory space argument */

Memory Keywords and Macros

Using macros when making memory space specification for variables or
pointers can make your code easier to maintain. If you must change the
definition of a variable or pointer (moving it to another memory space),
declarations that depend on the definition may need to be changed to
ensure consistency between different declarations of the same variable or
pointer.

To make changes of this kind easier, you can use C preprocessor macros to
define common memory spaces that must be coordinated. The following
listing shows two code segments that are equivalent after preprocessing.
VisualDSP++ 3.5 C Compiler and Library Manual 1-75
for ADSP-218x DSPs

C Compiler Language Extensions
These code segments demonstrate how you can redefine the memory space
specifications by redefining the macros SPACE1 and SPACE2.

/* Dual Memory Support Keywords & Macros */
#define SPACE1 pm
#define SPACE2 dm

char pm * foo (char dm *) char SPACE1 * foo (char SPACE2 *)
char pm *x; char SPACE1 *x;
char dm y; char SPACE2 y;

x = foo(&y); x = foo(&y);

PM and DM Compiler Support for Standard C Library Functions

There are a number of functions defined in the standard C library that
take pointer input parameter types. These functions, which include for
example strlen(), are implemented differently when the pointer input is
to program memory (PM) or data memory (DM). The different imple-
mentations are called automatically by the compiler because it has specific
in-built knowledge about the standard C functions that require pointer
parameters. The support requires that the normal standard header file, for
example string.h, is included prior to use of the function requiring PM
and DM variants. The default library function variants are DM should the
include file not be used.

Placement Support Keyword (section)
The section keyword directs the compiler to place an object or function
in an assembly .SECTION, in the compiler’s intermediate assembly output
file. You name the assembly .SECTION with section()’s string literal
parameter. If you do not specify a section() for an object or function
declaration, the compiler uses a default section. The .LDF file supplied to
the linker must also be updated to support the additional named sections.
1-76 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Applying section() is only meaningful when the data item is something
that the compiler can place in the named section. Apply section() only to
top-level, named objects that have static duration, meaning they are
explicitly static, or are given as external-object definitions.

The example shows the declaration of a static variable that is placed in the
section called bingo:

static section("bingo") int x;

Boolean Type Support Keywords (bool, true, false)
The bool, true, and false keywords are extensions that support the C
boolean type. The bool keyword is a unique signed integral type. There
are two built-in constants of this type— true and false. When convert-
ing a numeric or pointer value to bool, a zero value becomes false; a
nonzero value becomes true. A bool value may be converted to int by
promotion, taking true to one and false to zero. A numeric or pointer
value is automatically converted to bool when needed.

These keywords behave more or less as if the declaration that follows had
appeared at the beginning of the file, except that assigning a nonzero inte-
ger to a bool type always causes it to take on the value true.

typedef enum { false, true } bool;

Pointer Class Support Keyword (restrict)
The restrict operator keyword is an extension that supports restricted
pointer features. The use of restrict is limited to the declaration of a
pointer and specifies that the pointer provides exclusive initial access to
the object to which it points. More simply, restrict is a way that you can
identify that a pointer does not create an alias. Also, two different
restricted pointers can not designate the same object and, therefore, are
not aliases. The compiler is free to use the information about restricted
pointers and aliasing in order to better optimize C code that uses pointers.
VisualDSP++ 3.5 C Compiler and Library Manual 1-77
for ADSP-218x DSPs

C Compiler Language Extensions
The restrict keyword is most useful when applied to function parameters
about which the compiler would otherwise have little information. For
example,

void fir (short *in,short *c,short *restrict out,int n)

The behavior of a program is undefined if it contains an assignment
between two restricted pointers, except for the following cases:

• A function with a restricted pointer parameter may be called with
an argument that is a restricted pointer.

• A function may return the value of a restricted pointer that is local
to the function, and the return value may then be assigned to
another restricted pointer.

If your program uses a restricted pointer in a way that it does not uniquely
refer to storage, then the behavior of the program is undefined.

Variable-Length Array Support
The compiler supports variable-length automatic arrays. Unlike other
automatic arrays, variable-length ones are declared with a non-constant
length. This means that the space is allocated when the array is declared,
and deallocated when the brace-level is exited.

The compiler does not allow jumping into the brace-level of the array and
produces a compile time error message if this is attempted. The compiler
does allow breaking or jumping out of the brace-level, and it deallocates
the array when this occurs.

You can use variable-length arrays as function arguments, as shown in the
following example.

struct entry
var_array (int array_len, char data[array_len][array_len])
{
1-78 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
...
}

The compiler calculates the length of an array at the time of allocation. It
then remembers the array length until the brace-level is exited and can
return it as the result of the SIZEOF() function performed on the array.
Because variable-length arrays must be stored on the stack, it is impossible
to have variable-length arrays in program memory (pm). The compiler
issues an error if an attempt is made to use a variable-length array in pm.

For example, if you were to implement a routine for computation of a
product of three matrices, you need to allocate a temporary matrix of the
same size as input matrices. Declaring automatic variable-size matrix is
much easier then explicitly allocating it in a heap.

The expression declares an array with a size that is computed at run time.
The length of the array is computed on entry to the block and saved in
sizeof() that is applied to the array. For multidimensional arrays, the
boundaries are also saved for address computation. After leaving the block
all the space allocated for the array and size information are deallocated.

For example, the following program prints 40, not 50.

#include <stdio.h>
void foo(int);
main ()
{

foo(40);
}

void foo (int n)
{

char c[n];
n = 50;
printf("%d”, sizeof(c));

}
VisualDSP++ 3.5 C Compiler and Library Manual 1-79
for ADSP-218x DSPs

C Compiler Language Extensions
Non-Constant Aggregate Initializer Support
The compiler includes extended support for aggregate initializers. The
compiler does not require the elements of an aggregate initializer for an
automatic variable to be constant expressions. The following example
shows an initializer with elements that vary at run time:

void initializer (float a, float b)

{
float the_array[2] = { a-b, a+b };

}

All automatic structures can be initialized by arbitrary expressions involv-
ing literals, previously declared variables and functions.

Indexed Initializer Support
ISO/ANSI Standard C requires the elements of an initializer to appear in a
fixed order, the same as the order of the elements in the array or structure
being initialized. The cc218x C compiler, by comparison, supports label-
ing elements for array initializers. This feature lets you specify array or
structure elements in any order by specifying the array indices or structure
field names to which they apply. All index values must be constant expres-
sions, even in automatic arrays.

For an array initializer, the syntax [INDEX] appearing before an initializer
element value specifies the index to be initialized by that value. Subse-
quent initializer elements are then applied to sequentially following
elements of the array, unless another use of the [INDEX] syntax appears.
The index values must be constant expressions, even if the array being ini-
tialized is automatic.
1-80 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
The following example shows equivalent array initializers—the first in
standard C and the next using the extension. Note that the [index] pre-
cedes the value being assigned to that element.

/* Example 1. Standard C & cc218x C Array Initializer */
/* Standard C array initializer */

int abc[6] = { 0, 0, 12, 0, 14, 0 };

/* equivalent cc218x C array initializer */

int abc[6] = { [3] 12, [5] 14 };

You can combine this technique of naming elements with standard C ini-
tialization of successive elements. The standard C and cc218x instructions
below are equivalent. Note that any unlabeled initial value is assigned to
the next consecutive element of the structure or array.

/* Example 2. Standard C & cc218x C Array Initializer */
/* Standard C array initializer */

int abc[6] = { 0, 5, 6, 0, 12, 0 };

/* equivalent cc218x C array initializer that uses indexed elements */

int abc[6] = { [1] 5, 6, [4] 12 };

The following example shows how to label the array initializer elements
when the indices are characters or an enum type.

/* Example 3. C Array Initializer With enum Type Indices */
/* cc218x C array initializer */

int charsarray[256] =
{

[' '] 1, ['\t'] 1, ['\v'] 1, ['\f'] 1, ['\n'] 1, ['\r'] 1
};
VisualDSP++ 3.5 C Compiler and Library Manual 1-81
for ADSP-218x DSPs

C Compiler Language Extensions
In a structure initializer, specify the name of a field to initialize with field
name before the element value. The standard C and cc218x C struct ini-
tializers in the example below are equivalent.

/* Example 4. Standard C & cc218x C struct Initializer */
/* Standard C struct Initializer */

struct point {int x, y;};
struct point p = {xvalue, yvalue};

/* Equivalent cc218x C struct Initializer With Labeled Elements */

struct point {int x, y;};
struct point p = {y: yvalue, x: xvalue};

Aggregate Constructor Expression Support
Extended initializer support includes support for aggregate constructor
expressions, which enable you to assign values to large structure types
without requiring each element’s value to be individually assigned. The
following example shows an ISO/ANSI standard C struct usage followed
by equivalent cc218x code that has been simplified using an constructor
expression.

/* Standard C struct & cc218x C Constructor struct */
/* Standard C struct */

struct foo {int a; char b[2];};
struct foo make_foo(int x, char *s)
{
struct foo temp;
temp.a = x;
temp.b[0] = s[0];
if (s[0] != '\0')

temp.b[1] = s[1];
else

temp.b[1] = '\0';
return temp;
}

1-82 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
/* Equivalent cc218x C constructor struct */
struct foo make_foo(int x, char *s)
{
return((struct foo) {x, {s[0], s[0] ? s[1] : '\0'}});
}

Preprocessor-Generated Warnings
The preprocessor directive #warning causes the preprocessor to generate a
warning and continue preprocessing. The text on the remainder of the line
that follows #warning is used as the warning message.

C++-Style Comments
The compiler accepts C++-style comments, beginning with // and ending
at the end of the line, in C programs. This is essentially compatible with
standard C, except for the following case:

a = b

//* highly unusual */ c

;

which a standard C compiler processes as:

a = b/c;

Compiler Built-in Functions
The compiler supports intrinsic functions that enable efficient use of
hardware resources. Knowledge of these functions is built into the cc218x
compiler. Your program uses them via normal function call syntax. The
compiler notices the invocation and generates one or more machine
instructions, just as it does for normal operators, such as + and *.
VisualDSP++ 3.5 C Compiler and Library Manual 1-83
for ADSP-218x DSPs

C Compiler Language Extensions
Built-in functions have names which begin with __builtin_. Note that
identifiers beginning with double underlines (__) are reserved by the C
standard, so these names will not conflict with user program identifiers.
The header files also define more readable names for the built-in functions
without the __builtin_ prefix. These additional names are disabled if the
-no-builtin option is used.

The cc218x compiler provides built-in versions of some of the C library
functions as described in “Using the Compiler’s Built-In Functions” on
page 3-2.

The sysreg.h header file defines a set of functions that provide efficient
system access to registers, modes and addresses not normally accessible
from C source. These functions are specific to individual architectures and
this section lists the built-in functions supported at this time on
ADSP-218x DSPs.

The compiler supports:

• “I/O Space for Read/Write” on page 1-84

• “Read/Write of Non-Memory-Mapped Registers” on page 1-85

• “Interrupt Control” on page 1-85

I/O Space for Read/Write

The inclusion of sysreg.h allows the use of built-in functions that gener-
ate efficient inline instructions to implement read and write of values from
and to I/O space addresses.

The prototypes for these functions are, as defined in sysreg.h:

void io_space_write(const unsigned int addr, const int value);

int io_space_read(const unsigned int addr);

These functions are fully described in “io_space_read” on page 3-75 and
“io_space_write” on page 3-77.
1-84 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Read/Write of Non-Memory-Mapped Registers

The inclusion of sysreg.h allows the use of built-in functions that gener-
ate efficient inline instructions to implement read and write of values from
and to non-memory-mapped registers. The DSP has status registers which
track and control machine status modes. These registers are:

ASTAT, SSTAT, MSTAT, ICNTL, IMASK, and IFC

The prototypes for these functions are, as defined in sysreg.h:

void sysreg_write(const int sysreg, const int value);

int sysreg_read(const int sysreg);

The sysreg parameter for these functions should be a member of the
SysReg enumeration defined in sysreg.h. This enumeration is used to
map the actual registers to a small constant defined as a user-friendly
name.

An example call of sysreg read of IMASK might be:

#include <sysreg.h>

int value = sysreg_read(sysreg_IMASK);

These functions are fully described in “sysreg_read” on page 3-154 and
“sysreg_write” on page 3-156.

Interrupt Control

The inclusion of sysreg.h allows the use of built-in functions that gener-
ate the instructions to enable and disable interrupts. The prototypes for
these functions are, as defined in sysreg.h:

void enable_interrupts(void);

void disable_interrupts(void);

These functions are fully described in “enable_interrupts” on page 3-50
and “disable_interrupts” on page 3-48.
VisualDSP++ 3.5 C Compiler and Library Manual 1-85
for ADSP-218x DSPs

C Compiler Language Extensions
ETSI Support
The ETSI (European Telecommunications Standards Institute) support
for ADSP-218x processors is a collection of functions that provides high
performance implementations for operations commonly required by DSP
applications. These operations provided by the ETSI library
(libetsi.dlb) and compiler built-in functions (defined in
ETSI_fract_arith.h) include support for fractional or fixed-point arith-
metic. The results obtained from of use of these operations have well
defined overflow and saturation conditions. The ETSI support operations
are Analog Devices extensions to ANSI C standard.

The ETSI support contains functions that you can call from your source
program. The following topics describe how to use this support.

• “ETSI Support Overview” on page 1-86

• “Calling ETSI Library Functions” on page 1-88

• “Using the ETSI Built-In Functions” on page 1-89

• “Linking ETSI Library Functions” on page 1-89

• “Working with ETSI Library Source Code” on page 1-90

• “ETSI Support for Data Types” on page 1-90

• “ETSI Header File” on page 1-91

ETSI Support Overview

The use of fractional arithmetic is vital for many applications on DSP pro-
cessors as information can be held more compactly than in floating point.
It would take 24 bits in floating-point format to match the precision of
16-bit fractional data. Also, control of normalization and precision is
more complex with floating point. Many DSPs do not include hardware
support for floating-point arithmetic and these operations are therefore
very expensive in both code size and performance terms for such DSPs.
1-86 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Fractional data has a representation similar to that of integers except that
while an integer value is considered to have a decimal point to the right of
the least significant bit, a fractional value is considered to have a decimal
point to the left of the most significant bit. Fractional values are usually
held in 16-bit or 32-bit “containers”. In each case, signed values are in the
range [-1.0, +1.0).

The bit operations on fractional data are identical to those on integer data,
but there are three aspects of the result that are normally treated
differently:

1. MSB extraction: Multiplication is a widening operation, thus mul-
tiplying a 16-bit value by another 16-bit value produces a 32-bit
result. If a 16-bit integer result is required then this is taken to be
the least significant 16 bits of the result, and the upper 16 bits are
regarded as overflow. For a fractional operation the upper 16 bits
would represent a 16-bit result, and the lower 16 bits would be
regarded as an underflow.

2. Duplicate sign bit elimination: Following a multiplication of two
16-bit values the nature of the representation results in two “sign
bits” in the result. For normal integer arithmetic this causes no
problem, but for fractional arithmetic a shift left by one is required
to normalize the result.

3. Saturation: If we perform an arithmetic operation that would cause
us to overflow, it can be useful to return the maximum (appropri-
ately signed) number that can be represented in the result register.
The alternatives which include firing an interrupt, saying the result
is undefined and is some other number, usually look less attractive
to DSP programmers.

These fractional operations can often be done at no extra cost to normal
integer operations on DSPs using special instructions or modes of
operation.
VisualDSP++ 3.5 C Compiler and Library Manual 1-87
for ADSP-218x DSPs

C Compiler Language Extensions
The C programming language does not include a basic type for fractional
data, and rather than introduce a non-standard type, Analog Devices
defines fract16 and fract32 in terms of appropriately-sized integer data
types and provides sets of basic intrinsic functions which perform the
required operations. These look like library function calls, but are spe-
cially recognized by the compilers, which generate short sequences or
single instructions, exploiting any specialized features, which may be avail-
able on the architecture. An important aspect of this is that the compiler
optimizer is not inhibited in any way by the use of these intrinsics.

Because of the varying nature of the architectures, these basic intrinsic
functions cannot be standardized across all the architectures. However, a
set of standard functions for manipulating fractional data has been defined
by the ITU (International Telecommunications Union) and ETSI (Euro-
pean Telecommunications Standards Institute).

Referred to as the ETSI Standard Functions, these have been very widely
used to implement telecommunications packages such as GSM, EFR and
AMR Vocoders, and have become a de-facto industry standard. These
functions have been implemented on ADSP-218x DSPs.

The ETSI standard is aimed at DSP processors with 16-bit inputs, satu-
rated arithmetic and 32-bit accumulators.

Calling ETSI Library Functions

To use an ETSI function, call the function by name and give the appropri-
ate arguments. The names and arguments for each function appear on the
function’s reference page. The names and arguments for each function
appear in “ETSI Header File” on page 1-91.

Like other functions you use, ETSI functions should be declared. Declara-
tions are supplied in the header file ETSI_fract_arith.h, which must be
included in any source files where ETSI functions are called. The function
names are C function names. If you call C run-time library functions from
an assembly language program, you must use the assembly version of the
1-88 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
function name—prefix an underscore on the name. For more information
on naming conventions, see “C and Assembly Language Interface” on
page 1-148.

The standard reference code for the ETSI functions uses the Carry and
Overflow flag global variables to keep track of any carry or overflow as a
result of using on of the ETSI functions. With the ETSI functions pro-
vided by Analog Devices, this can be switched off by compiling with
__NO_ETSI_FLAGS defined in the compiler command line. In fact, this is
the default for the ADSP-218x DSP implementation.

If you wish to keep track of these flags, for debugging purposes, compile
with __NO_ETSI_FLAGS set to zero. This stipulates the use of the functions
in accordance with the ETSI standard, but will result in a reduced
performance.

Using the ETSI Built-In Functions

Some of the ETSI functions have been implemented as part of cc218x
compiler’s set of built-in functions. For information on how to use these
functions, refer to the section “Compiler Built-in Functions” on
page 1-83. These built-in implementations will be automatically defined
when header file ETSI_fract_arith.h is included.

Linking ETSI Library Functions

When your C code calls an ETSI function that is not implemented using a
compiler built-in, the call creates a reference that the linker resolves when
linking. This tells the linker to be directed to link with the ETSI library,
libetsi.dlb in the 218x\lib directory, which is a subdirectory of the
VisualDSP++ installation directory. This is done automatically when
using the default Linker Description File (LDF) for ADSP-218x DSP tar-
gets, as these specify that libetsi.dlb will be on each link line.
VisualDSP++ 3.5 C Compiler and Library Manual 1-89
for ADSP-218x DSPs

C Compiler Language Extensions
If not using default .LDF files, then either add libetsi.dlb to the .LDF file
which is being used, or alternatively use the compiler’s -letsi switch to
specify that libetsi.dlb is to be added to the link line.

Working with ETSI Library Source Code

The source code for functions and macros in the ETSI library is provided
with your VisualDSP++ software. By default, the installation program
copies the source code to a subdirectory of the directory where the
run-time libraries are kept named 218x\lib\src\libetsi_src. Each func-
tion is kept in a separate file. The file name is the name of the function
with the extension .asm. If you do not intend to modify any of the func-
tions, you can delete this directory and its contents to conserve disk space.

The source code is provided so you can customize specific functions for
your own needs. To modify these files, you need proficiency in
ADSP-218x assembly language and an understanding of the run-time
environment, as explained in “C and Assembly Language Interface” on
page 1-148.

Before you make any modifications to the source code, copy the source
code to a file with a different file name and rename the function itself.
Test the function before you use it in your system to verify that it is func-
tionally correct.

Analog Devices only supports the run-time library functions as provided.

ETSI Support for Data Types

ETSI functions support fract16 and fract32 data types as follows:

• fract16 is a 16-bit fractional data type (1.15 format) having a
range of [-1.0, +1.0). This is defined in the C language as:

typedef short fract16
1-90 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
• fract32 is a 32-bit fractional data type (1.31 format) having a
range of [-1.0, +1.0). This is defined in the C language as:

typedef long fract32

ETSI Header File

The following are summary descriptions of the functions provided by the
ETSI library, as defined in the header file ETSI_fract_arith.h.

Short absolute

fract16 abs_s (fract16)

This function returns the 16-bit value that is the absolute value of the
input parameter. Where the input is 0x8000, saturation occurs and 0x7fff
is returned.

Short add

fract16 add (fract16, fract16)

This function returns the 16-bit result of addition of the two fract16
input parameters. Saturation occurs with the result being set to 0x7fff for
overflow and 0x8000 for underflow.

Short division

fract16 div_s (fract16, fract16)

This function returns the 16-bit result of the fractional integer division of
f1 by f2. f1 and f2 must both be positive fractional values with f2 greater
than f1.

Long division

fract16 div_l (fract32, fract16)
VisualDSP++ 3.5 C Compiler and Library Manual 1-91
for ADSP-218x DSPs

C Compiler Language Extensions
This function produces a result which is the fractional integer division of
the first parameter by the second. Both inputs must be positive and the
least significant word of the second parameter must be greater or equal to
the first; the result is positive (leading bit equal to 0) and truncated to 16
bits.

Extract high (most significant 16 bits)

fract16 extract_h (fract32)

This function returns the 16 most significant bits if the 32-bit fract
parameter provided.

Extract low (least significant 16 bits)

fract16 (fract32)

This function returns the 16 least significant bits of the 32-bit fract
parameter provided.

Multiply and accumulate with rounding

fract16 mac_r (fract32, fract16, fract16)

This function performs an L_mac operation using the three parameters
provided. The result is the rounded 16 most significant bits of the 32-bit
results from the L_mac operation.

Multiply and subtract with rounding

fract16 msu_r (fract32, fract16, fract16)

This function performs an L_msu operation using the three parameters
provided. The result is the rounded 16 most significant bits of the 32-bit
result from the L_msu operation.

Short multiply

fract16 mult (fract16, fract16)

This function returns the 16-bit result of the fractional multiplication of
the input parameters. The result is saturated.
1-92 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Multiply with rounding

fract16 mult_r (fract16, fract16)

This function performs a 16-bit multiply with rounding of the result of
the fractional multiplication of the two input parameters.

Short negate

fract16 negate (fract16)

This function returns the 16-bit result of the negation of the input param-
eter. If the input is 0x8000, saturation occurs and 0x7fff is returned.

Long normalize

fract16 norm_l (fract16)

This function returns the number of left shifts required to normalize the
input variable for positive values on the interval with minimum of
0x40000000 and maximum of 0x7fffffff, and for negative values on the
interval with minimum of 0x80000000 and maximum of 0xc0000000.

Short normalize

fract16 norm_s (fract16)

This function returns the number of left shifts required to normalize the
input 16 bit variable for positive values on the interval with minimum of
0x4000 and maximum of 0x7fff, and for negative values on the interval
with minimum of 0x8000 and maximum of 0xc000.

Round

fract16 round (fract32)

This function rounds the lower 16-bits of the 32-bit input parameter into
the most significant 16 bits with saturation. The resulting bits are shifted
right by 16.
VisualDSP++ 3.5 C Compiler and Library Manual 1-93
for ADSP-218x DSPs

C Compiler Language Extensions
Saturate

fract16 saturate (fract32)

This function returns the 16 most significant bits of the input parameter.
If the input parameter is greater than 0x7fff, 0x7fff is returned. If the
input parameter is less than 0x8000, 0x8000 is returned.

Short shift left

fract16 shl (fract16, fract16)

This function arithmetically shifts the first parameter left by second
parameter bits. The empty bits are zero filled. If second parameter is nega-
tive the operation shifts right.

Short shift right

fract16 shr (fract16, fract16)

This function arithmetically shifts the first parameter right by second
parameter bits with sign extension. If second parameter is negative the
operation shifts left.

Shift right with rounding

fract16 shr_r (fract16, fract16)

This function performs a shift to the right as per the shr() operation with
additional rounding and saturation of the result.

Short subtract

fract16 sub (fract16, fract16)

This function returns the 16-bit result of the subtraction of the two
parameters. Saturation occurs with the result being set to 0x7fff for over-
flow and 0x8000 for underflow.
1-94 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Long absolute

fract32 L_abs (fract32)

This function returns the 32-bit absolute value of the input parameter. In
cases where the input is equal to 0x80000000, saturation occurs and
0x7fffffff is returned.

Long add

fract32 L_add (fract32, fract32)

This function returns the 32-bit saturated result of the addition of the two
input parameters.

Long add with carry

fract32 L_add_c (fract32, fract32)

This function performs 32-bit addition of the two input parameters. Uses
the Carry flag as additional input when using the ETSI flag variables.

16-bit variable -> most significant bits (least significant bits zeroed)

fract32 L_deposit_h (fract16)

This function deposits the 16-bit parameter into the 16 most significant
bits of the 32-bit result. The least 16 bits are zeroed.

16-bit variable -> least significant bits (sign extended)

fract32 L_deposit_l (fract16)

This function deposits the 16-bit parameter into the 16 least significant
bits of the 32-bit result. The most significant bits are set to sign extension
for the input.

Multiply and accumulate

fract32 L_mac (fract32, fract16, fract16)
VisualDSP++ 3.5 C Compiler and Library Manual 1-95
for ADSP-218x DSPs

C Compiler Language Extensions
This function performs a fractional multiplication of the two 16-bit
parameters and returns the saturated sum of the multiplication result with
the 32-bit parameter.

Multiply and accumulate without saturation

fract32 L_macNs (fract32, fract16, fract16)

This function performs a non-saturating version of the L_mac operation.

Multiply both the most significant bits and the least significant bits of a
long, by the same short

fract32 L_mls (fract32, fract16)

Multiply and subtract

fract32 L_msu (fract32, fract16, fract16)

This function performs a fractional multiplication of the two 16-bit
parameters and returns the saturated subtraction of the multiplication
result with the 32-bit parameter.

Multiply and subtract without saturation

fract32 L_msuNs (fract32, fract16, fract16)

This function performs a non-saturating version of the L_msu operation.

Long multiply

fract32 L_mult (fract16, fract16)

This function returns the 32-bit result of the fractional multiplication of
the two 16-bit parameters.

Long negate

fract32 L_negate (fract32)

This function returns the 32-bit result of the negation of the parameter.
Where the input parameter is 0x80000000 saturation occurs and
0x7fffffff is returned.
1-96 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Long saturation

fract32 L_sat (fract32)

The resultant variable is set to 0x80000000 if Carry and Overflow ETSI
flags are set (underflow condition), else if Overflow is set, the resultant is
set to 0x7fffffff. The default revision of the library simply returns as no
checking or setting of the Overflow and Carry flags is performed.

Long shift left

fract32 L_shl (fract32, fract16)

This function arithmetically shifts the 32-bit first parameter to the left by
the value given in the 16-bit second parameter. The empty bits of the
32-bit result are zero filled.

If the second parameter is negative, the shift performed is to the right with
sign-extended. The result is saturated in cases of overflow and underflow.

Long shift right

fract32 L_shr (fract32, fract16)

This function arithmetically shifts the 32-bit first parameter to the right
by the value given in the 16-bit second parameter with sign extension. If
the shifting value is negative, the source is shifted to the left. The result is
saturated in cases of overflow and underflow.

Long shift right with rounding

fract32 L_shr_r (fract32, fract16)

This function performs the shift-right operation as per L_shr but with
rounding.

Long subtract

fract32 L_sub (fract32, fract32)

This function returns the 32-bit saturated result of the subtraction of two
32-bit parameters (first-second).
VisualDSP++ 3.5 C Compiler and Library Manual 1-97
for ADSP-218x DSPs

C Compiler Language Extensions
Long subtract with carry

fract32 L_sub_c (fract32, fract32)

This function performs 32-bit subtraction of the two input parameters.
Uses the Carry flag as additional input when using the ETSI flag variables.

Compose long

fract32 L_Comp (fract16, fract16)

This function composes a fract32 type value from the given fract16 high
(first parameter) and low (second parameter) components. The sign is
provided with the low half, the result is calculated to be:

high<<16 + low<<1

Multiply two longs

fract32 Mpy_32 (fract16, fract16, fract16, fract16)

This function performs the multiplication of two fract32 type variables,
provided as high and low half parameters. The result returned is calculated
as:

Res = L_mult(hi1,hi2);
Res = L_mac(Res, mult(hi1,lo2),1);
Res = L_mac(Res, mult(lo1,hi2),1);

Multiply short by a long

fract32 Mpy_32_16 (fract16, fract16, fract16)

Extract a long from two shorts

void L_Extract(fract32 src,fract16 *hi,fract16 *lo)

This function extracts low and high halves of fract32 type value into
fract16 variables pointed to by the parameters hi and lo. The values cal-
culated are:

Hi = bit16 to bit31 of src
Lo = (src - hi<<16)>>1
1-98 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Fract integer division of two longs

fract32 Div_32(fract32 L_num,fract16 denom_hi,fract16 denom_lo)

This is 32-bit fractional divide operation. The result returned is the
fract32 representation of L_num divided by L_denom (represented by
demon_hi and denom_lo). L_num and L_denom must both be positive frac-
tional values and L_num must be less that L_denom to ensure that the result
falls within the fractional range.

Pragmas
The compiler supports a number of pragmas. Pragmas are implementa-
tion-specific directives that modify the compiler’s behavior. There are two
types of pragma usage: pragma directives and pragma operators.

Pragma directives have the following syntax:

#pragmapragma-directive pragma-directive-operands new-line

Pragma operators have the following syntax:

_Pragma (string-literal)

When processing a pragma operator, the compiler effectively turns it into
a pragma directive using a non-string version of string-literal. This
means that the following pragma directive

#pragmalinkage_name mylinkname

can also equivalently be expressed using the following pragma operator

_Pragma ("linkage_name mylinkname")

The examples in this manual use the directive form.
VisualDSP++ 3.5 C Compiler and Library Manual 1-99
for ADSP-218x DSPs

C Compiler Language Extensions
The C compiler supports pragmas for:

• Arranging alignment of data

• Defining functions that can act as interrupt handlers

• Changing the optimization level, midway through a module

• Changing how an externally visible function is linked

• Header file configurations and properties

• Giving additional information about loop usage to improve
optimizations

The following sections describe the pragmas that support these features.

• “Data Alignment Pragmas” on page 1-101

• “Interrupt Handler Pragmas” on page 1-102

• “Loop Optimization Pragmas” on page 1-103

• “General Optimization Pragmas” on page 1-105

• “Linking Control Pragmas” on page 1-106

• “Stack Usage Pragma” on page 1-108

• “Function Side-Effect Pragmas” on page 1-109

• “Header File Control Pragmas” on page 1-115

The compiler will issue a warning when it encounters an unrecognized
pragma directive or pragma operator. The compiler will not expand any
preprocessor macros used within any pragma directive or pragma operator.
1-100 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Data Alignment Pragmas

The data alignment pragmas include align and pad pragmas. Alignments
specified using these pragmas must be a power of two. The compiler will
reject uses of those pragmas that specify alignments that are not powers of
two.

#pragma align (num)

The align (num) pragma may be used before variable and field declara-
tions. It applies to the variable or field declaration that immediately
follows the pragma. Use of this pragma causes the compiler to generate the
next variable or field declaration aligned on a boundary specified by num.

The align pragma is useful for declaring arrays that need to be on a circu-
lar boundary. Such arrays might be required to make use of a bit-reversal
sorting algorithm that is implemented using the ADSP-218x processor’s
DAG1 bit reversal mode.

#pragma align 256
int arr[128];

The align pragma is also useful for declaring arrays in C at correct base
adresses. This way the arrays can be passed to assembly functions and used
as circular buffers or storage for autobuffering.

If the #pragma align directives cause “insufficient memory” errors at link
time due to fragmentation, compile using the -flags-link -ip switch
options (described on page 1-23). See the -ip switch description in the
VisualDSP++ 3.5 Linker and Utilities Manual for 16-Bit Processors for
more information.
VisualDSP++ 3.5 C Compiler and Library Manual 1-101
for ADSP-218x DSPs

C Compiler Language Extensions
#pragma pad (alignopt)

The #pragma pad(alignopt) may be applied to struct definitions. It
applies to struct definitions that follow, until the default alignment is
restored by omitting alignopt, for example, by #pragma pad() with empty
parentheses.

This pragma is effectively a shorthand for placing #pragma align before
every field within the struct definition. The following example shows
how to use #pragma pad().

#pragma pad(4)
struct {

int i;
int j;

} s = {1,2};
#pragma pad()

Interrupt Handler Pragmas

The interrupt pragma s include interrupt and altregisters pragmas.

#pragma interrupt

The interrupt pragma may be used before a function declaration or defi-
nition. It applies to the function declaration or definition that
immediately follows the pragma. Use of this pragma causes the compiler
to generate the function code so that it may be used as a self dispatching
interrupt handler.

The compiler arranges for the function to save its context above and
beyond the usual caller-preserved set of registers, and to restore the con-
text upon exit. The function will return using a return from interrupt
(RTI) instruction.

#pragma interrupt
void field_SIG()
{

1-102 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
/* ISR code */
}

#pragma altregisters

The altregisters pragma may be used in conjunction to the interrupt
pragma to indicate that the compiler can optimize the saving and restoring
of registers through use of the secondary register sets. Note the use of the
altregisters pragma is not safe when nested interrupts are enabled.

#pragma interrupt
#pragma altregisters
void field_SIG()
{
/* ISR code */
}

Loop Optimization Pragmas

Loop optimization pragmas give the compiler additional information
about usage within a particular loop, which allows the compiler to per-
form more aggressive optimization. The pragmas are placed before the
loop statement, and apply to the statement that immediately follows,
which must be a for, while or do statement to have effect. In general, it is
most effective to apply loop pragmas to inner-most loops, since the com-
piler can achieve the most savings there.

The optimizer always attempts to vectorize loops when it is safe to do so.
The optimizer exploits the information generated by the interprocedural
analysis (see “Interprocedural Analysis” on page 1-50) to increase the cases
where it knows it is safe to do so. Consider the following code:

void copy(short *a, short *b) {
int i;
for (i=0; i<100; i++)

a[i] = b[i];
}

VisualDSP++ 3.5 C Compiler and Library Manual 1-103
for ADSP-218x DSPs

C Compiler Language Extensions
If you call copy with two calls, say copy(x,y) and later copy(y,z), the
interprocedural analysis will not be able to tell that “a” never aliases “b”.
Therefore, the optimizer cannot be sure that one iteration of the loop is
not dependent on the data calculated by the previous iteration of the loop.
If it is known that each iteration of the loop is not dependent on the pre-
vious iteration, then the vector_for pragma can be used to explicitly
notify the compiler that this is the case.

#pragma loop_count(min, max, modulo)

The #pragma loop_count(min, max, modulo) appears just before the loop
it describes. It asserts that the loop will iterate at least min times, no more
than max times, and a multiple of modulo times. This information enables
the optimizer to omit loop guards, to decide whether the loop is worth
completely unrolling, and whether code need be generated for odd itera-
tions. The last two arguments can be omitted if they are unknown.

For example,

int i;
#pragma loop_count(24, 48, 8)
for (i=0; i < n; i++)

#pragma vector_for

The #pragma vector_for notifies the optimizer that it is safe to execute
two iterations of the loop in parallel. The vector_for pragma does not
force the compiler to vectorize the loop; the optimizer checks various
properties of the loop and does not vectorize it if it believes it is unsafe or
if it cannot deduce that the various properties necessary for the vectoriza-
tion transformation are valid.

Strictly speaking, the pragma simply disables checking for loop-carried
dependencies.

void copy(short *a, short *b) {
int i;
1-104 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
#pragma vector_for
for (i=0; i<100; i++)

a[i] = b[i];
}

In cases where vectorization is impossible (for example, if array a were
aligned on a word boundary, but array b was not), the information given
in the assertion made by vector_for may still be put to good use in aiding
other optimizations.

#pragma no_alias

Use the #pragma no_alias to tell the compiler the following has no loads
or stores that conflict due to references to the same location through dif-
ferent pointers, known as “aliases”. In this example,

void vadd(int *a, int *b, int *out, int n) {
int i;

#pragma no_alias
for (i=0; i < n; i++)

out[i] = a[i] + b[i];
}

the use of #pragma no_alias just before the loop informs the compiler
that the pointers a, b and out point to different arrays, so no load from b
or a will be using the same address as any store to out. Therefore, a[i] or
b[i] is never an alias for out[i]. The use of the no_alias pragma can lead
to better code because it allows the loads and stores to be reordered and
any number of iterations to be performed concurrently, thus providing
better software pipelining by the optimizer.

General Optimization Pragmas

There are three pragmas which can change the optimization level while a
given module is being compiled. These pragmas must be used at global
scope, immediately prior to a function definition.

These pragmas are:
VisualDSP++ 3.5 C Compiler and Library Manual 1-105
for ADSP-218x DSPs

C Compiler Language Extensions
• #pragma optimize_off
This pragma turns off the optimizer, if it was enabled. This
pragma has no effect if Interprocedural Optimization Analysis is
enabled.

• #pragma optimize_for_space

This pragma turns the optimizer back on, if it was disabled, or sets
focus to give reduced code size a higher priority than high perfor-
mance, where these conflict.

• #pragma optimize_for_speed

This pragma turns the optimizer back on, if it was disabled, or sets
focus to give high performance a higher priority than reduced code
size, where these conflict.

• #pragma optimize_as_cmd_line
This pragma resets the optimization settings to be those specified
on the cc218x command line when the compiler was invoked.

The following shows example uses of these pragmas.

#pragma optimize_off
void non_op() { /* non-optimized code */ }

#pragma optimize_for_space
void op_for_si() { /* code optimized for size */ }

#pragma optimize_for_speed
void op_for_sp() { /* code optimized for speed */ }
/* subsequent functions declarations optimized for speed */

Linking Control Pragmas

Linking pragmas change how a given global function or variable is viewed
during the linking stage.
1-106 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
#pragma linkage_name identifier

The #pragma linkage_name associates the identifier with the next exter-
nal function declaration. It ensures that identifier is used as the external
reference, instead of following the compiler’s usual conventions.

If identifier is not a valid function name, as could be used in normal func-
tion definitions, the compiler will generate an error.

The following shows an example use of this pragma.

#pragma linkage_name realfuncname
void funcname ();
void func() {

funcname(); /* compiler will generate a call to
realfuncname */

}

 #pragma retain_name

The #pragma retain_name indicates that the external function or variable
declaration that follows the pragma is not removed even though Interpro-
cedural Analysis (IPA) sees that it is not used. Use this pragma for C
functions that are only called from assembler routines, such as the startup
code sequence invoked before main(). The following example shows how
to use this pragma.

int delete_me(int x) {

return x-2;
}

#pragma retain_name
int keep_me(int y) {

return y+2;
}

int main(void) {
return 0;

}

VisualDSP++ 3.5 C Compiler and Library Manual 1-107
for ADSP-218x DSPs

C Compiler Language Extensions
Since the program has no uses of either delete_me() or keep_me(), the
compiler will remove delete_me(), but will keep keep_me() because of the
pragma. You do not need to specify retain_name for main().

For more information, see “Interprocedural Analysis” on page 1-50.

 #pragma weak_entry

The #pragma weak_entry may be used before a static variable declaration
or definition. It applies to the function or variable declaration or defini-
tion that immediately follows the pragma. Use of this pragma causes the
compiler to generate the function or variable definition with weak linkage.

The following are example uses of the pragma weak_entry directive.

#pragma weak_entry
int w_var = 0;

#pragma weak_entry
void w_func(){}

Stack Usage Pragma

The C compiler for ADSP-218x DSPs supports the stack usage pragma
make_auto_static.

#pragma make_auto_static

The make_auto_static pragma may be used before a function definition.
The make_auto_static pragma directs the compiler to place all automatic
variables used in the function in static store. This may be beneficial in
code that requires many accesses of automatic variables. This is because an
access to static store for the ADSP-218x DSPs is done in one instruction,
whereas an access to local automatic stack are may require three instruc-
tions. The -make-autostatic switch (on page 1-29) can be used to notify
the compiler to process all function definition in the current source being
compiled as if pragma make_auto_static had been used.
1-108 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
� Make sure that the make_auto_static pragma is not used on func-
tions that are directly or indirectly recursive.

Function Side-Effect Pragmas

The function side-effect pragmas are used before a function declaration to
give the compiler additional information about the function in order to
enable it to improve the code surrounding the function call. These prag-
mas should be placed before a function declaration and apply to that
function.

For example,

#pragma pure

long dot(short*, short*, int);

#pragma alloc

The #pragma alloc tells the compiler that the function behaves like the
library function “malloc”, returning a pointer to a newly allocated object.
An important property of these functions is that the pointer returned by
the function does not point at any other object in the context of the call.
In the example,

#pragma alloc
int *new_buf(void);
int *vmul(int *a, int *b) {

int *out = new_buf();
for (i = 0; i < N; ++i)

out[i] = a[i] * b[i];
return out;

}

the compiler can reorder the iterations of the loop because the #pragma
alloc tells it that a and b cannot overlap out.

The GNU attribute malloc is also be supported with the same meaning.
VisualDSP++ 3.5 C Compiler and Library Manual 1-109
for ADSP-218x DSPs

C Compiler Language Extensions
#pragma pure

The #pragma pure tells the compiler that the function does not write to
any global variables, and does not read or write any volatile variables. Its
result, therefore, is a function of its parameters or of global variables. If
any of the parameters are pointers, the function may read the data they
point at but it may not write it.

Therefore, because the function call will have the same effect every time it
is called between assignments to global variables, the compiler need not
generate the code for every call.

Therefore, in this example,

#pragma pure

long sdot(short *, short *, int);

long tendots(short *a, short *b, int n) {
int i;
long s = 0;

for (i = 1; i < 10; ++i)
s += sdot(a, b, n); // call can get hoisted out of loop

return s;}

the compiler can replace the ten calls to sdot with a single call made
before the loop.

#pragma const

The #pragma const is a more restrictive form of the pure pragma. It tells
the compiler that the function does not read from global variables as well
as not writing to them or reading or writing volatile variables. The result
of the function is therefore a function of its parameters.

If any of the parameters are pointers, the function may not even read the
data they point at.
1-110 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
#pragma regs_clobbered string

The #pragma regs_clobbered string may be used with a function decla-
ration or definition to specify which registers are modified (or clobbered)
by that function. The string contains a list of registers and is
case-insensitive.

When used with an external function declaration, this pragma acts as an
assertion telling the compiler something it would not be able to discover
for itself. In the example,

#pragma regs_clobbered "ar m5"
void f(void);

the compiler knows that only registers ar and m5 may be modified by the
call to f, so it may keep local variables in other registers across that call.

The regs_clobbered pragma may also be used with a function definition,
or a declaration preceding a definition, when it acts as a command to the
compiler to generate register saves and restores on entry and exit from the
function to ensure it only modifies the registers in string. For example,

#pragma regs_clobbered "ar m5"
int g(int a) {

return a+3;
}

The regs_clobbered pragma may not be used in conjunction with
#pragma interrupt. If both are specified, a warning is issued and the
regs_clobbered pragma is ignored.

To obtain best results with the pragma, it is best to restrict the clobbered
set to be a subset of the default scratch registers. The compiler is likely to
produce more efficient code this way than if the scratch set is changed to
use the same number of registers but which does not make a subset of the
default volatile set usually scratch.
VisualDSP++ 3.5 C Compiler and Library Manual 1-111
for ADSP-218x DSPs

C Compiler Language Extensions
When considering when to apply the regs_clobbered pragma, it may be
useful to look at the output of the compiler to see how many scratch regis-
ters were used. Restricting the volatile set to these registers will produce no
impact on the code produced for the function but may free up registers for
the caller to allocate across the call site.

String Syntax
A regs_clobbered string consists of a list of registers, register ranges, or
register sets that are clobbered. The list is separated by spaces, commas, or
semicolons.

A register is a single register name, which is the same as that which may be
used in an assembly file.

A register range consists of start and end registers which both reside in the
same register class, separated by a hyphen. All registers between the two
(inclusive) are clobbered.

A register set is a name for a specific set of commonly clobbered registers
that is predefined by the compiler. The following register sets are defined,

When the compiler detects an illegal string, a warning is issued and the
default volatile set as defined in this compiler manual is used instead.

Set Registers

CCset ASTAT, condition codes

MR MR0 - MR2

SR SR0 - SR1

DAG1scratch Members of DAG1 I, L, and M-registers that are scratch by default

DAG2scratch Members of DAG2 I, L, and M-registers that are scratch by default

DAGscratch DAG1scratch and DAG2scratch

Dscratch Members of D-registers that are scratch by default

ALLscratch Entire default volatile set
1-112 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Unclobberable and Must Clobber Registers
There are certain caveats as to what registers may or must be placed in the
clobbered set.

On ADSP-218x DSPs, the registers I4, M4, MSTAT and M_MODE may not be
specified in the clobbered set, as the correct operation of the function call
requires their value to be preserved. If the user specifies these registers in
the clobbered set, a warning will be issued and they will be removed from
the specified clobbered set.

The registers AR and M5 are always clobbered. If the user specifies a func-
tion definition with the regs_clobbered pragma which does not contain
these registers, a warning is issued and these registers are added to the
clobbered set.

However, if the compiler sees an external function declaration with a
regs_clobbered pragma that does not contain the AR and M5 registers, a
warning will not be issued as an assembly function may have been written
which genuinely does not modify these registers.

Registers from these classes,

D, I, ASTAT, PX, SE, SB, PMOVLAY, DMOVLAY, MF

may be specified in clobbered set and code will be generated to save them
as necessary.

The L-registers are required to be zero on entry and exit from a function.
A user may specify that a function clobbers the L-registers. If it is a com-
piler generated function, then it will in fact leave the L-registers zero at the
end of the function. If it is an assembly function, then it may clobber the
L-registers. In that case, the L-registers are re-zeroed after any call to that
function.

� The IMASK, ICNTL, SSTAT, IFC, and OWNCNTR registers are never used
by the compiler and are never preserved.
VisualDSP++ 3.5 C Compiler and Library Manual 1-113
for ADSP-218x DSPs

C Compiler Language Extensions
User Reserved Registers
User reserved registers will never be preserved in the function wrappers
whether in the clobbered set or not.

Function Results
The registers in which a function returns its result must always be clob-
bered by the callee and retain their new value in the caller. They may
appear in the clobbered set of the callee but it will make no difference to
the generated code; the return register will not be saved and restored.
Only the return register used by the particular function return type is spe-
cial. Return registers used by different return types will be treated in the
clobbered list in the convention way.

For example,

typedef struct { int x, int y } Point;

typedef struct { int x[10] } Big;
int f(); // Result in AX1. SR1, SR0 and I0 may be

preserved across call.
Point g(); // Result in SR1 and SR0. AX1 and I0 may be

preserved across call.
Big f(); // Result pointer in I0. AX1, SR1 and SR0 may be

preserved across call.

#pragma result_alignment (n)

The #pragma result_alignment (n) asserts that the pointer or integer
returned by the function has a value that is a multiple of n. It is often used
in conjunction with the #pragma alloc of custom allocation functions
that return pointers that are more strictly aligned than be deduced from
their type.
1-114 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Header File Control Pragmas

The header file control pragmas help the compiler to handle header files.

#pragma hdrstop

The #pragma hdrstop is used in conjunction with the -pch (precompiled
header) switch (on page 1-35). The switch tells the compiler to look for a
precompiled header (.pch file), and, if it cannot find one, to generate a file
for use on a later compilation. The .pch file contains a snapshot of all the
code preceding the header stop point.

By default, the header stop point is the first non-preprocessing token in
the primary source file. The #pragma hdrstop can be used to set the point
earlier in the source file.

In the example,

#include "standard_defs.h"
#include "common_data.h"
#include "frequently_changing_data.h"

int i;

the default header stop point is start of the declaration of i. This might
not be a good choice, as in this example, “frequently_changing_data.h”
might change frequently, causing the .pch file to be regenerated often,
and, therefore, losing the benefit of precompiled headers.

The hdrstop pragma can be used to move the header stop to a more
appropriate place. In this case,

#include "standard_defs.h"

#include "common_data.h"
#pragma hdrstop
#include "frequently_changing_data.h"

int i;
VisualDSP++ 3.5 C Compiler and Library Manual 1-115
for ADSP-218x DSPs

C Compiler Language Extensions
#pragma no_pch

The #pragma no_pch overrides the -pch (precomiled headers) switch
(on page 1-35) for a particular source file. It directs the compiler not to
look for a .pch file and not to generate one for the specified source file.

#pragma once

The #pragma once, which should appear at the beginning of a header file,
tells the compiler that the header is written in such a way that including it
several times has the same effect as including it once.

For example,

#pragma once
#ifndef FILE_H
#define FILE_H
... contents of header file ...
#endif

� In this example, the #pragma once is actually optional because the
compiler recognizes the #ifndef/#define/#endif idiom and will
not reopen a header that uses it.

#pragma system_header

The #pragma system_header identifies an include file as the file supplied
with VisualDSP++. The pragma tells the compiler that every function and
variable declared in the file (but not in files included in the file) is the vari-
able or function with that name from the VisualDSP++ library.

The compiler will take advantage of any special knowledge it has of the
behavior of the library.
1-116 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
GCC Compatibility Extensions
The compiler provides compatibility with the C dialect accepted by ver-
sion 3.2 of the GNU C Compiler. Many of these features are available in
the C99 ANSI Standard. A brief description of the extensions is included
in this section. For more information, refer to the following web address:

http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/C-Extensions.html#C%20Extensions

Statement Expressions

A statement expression is a compound statement enclosed in parentheses.
A compound statement itself is enclosed in braces { }, so this construct is
enclosed in parentheses-brace pairs ({ }).

The value computed by a statement expression is the value of the last
statement which should be an expression statement. The statement expres-
sion may be used where expressions of its result type may be used. But
they are not allowed in constant expressions.

Statement expressions are useful in the definition of macros as they allow
the declaration of variables local to the macro. In the following example,

#define min(a,b) ({ \
short __x=(a),__y=(b),__res; \
if (__x > __y) \

__res = __y; \
else \
__res = __x; \
__res; \

})

int use_min() {
return min(foo(), thing()) + 2;

}

VisualDSP++ 3.5 C Compiler and Library Manual 1-117
for ADSP-218x DSPs

C Compiler Language Extensions
The foo() and thing() statement get called once each because they are
assigned to the variables __x and __y which are local to the statement
expression that min expands to and min() can be used freely within a larger
expression because it expands to an expression.

Labels local to a statement expression can be declared with the __label__
keyword. For example,

({
__label__ exit;
int i;
for (i=0; p[i]; ++i) {

int d = get(p[i]);
if (!check(d)) goto exit;
process(d);

}
exit:

tot;
})

� Statement expressions are an extension to C originally imple-
mented in the GCC compiler. Analog Devices support the
extension primarily to aid porting code written for that compiler.
When writing new code consider using inline functions, which are
compatible with ANSI/ISO C99 and are as efficient as macros
when optimization is enabled.

Type Reference Support Keyword (typeof)

The typeof(expression) construct can be used as a name for the type
of expression without actually knowing what that type is. It is useful for
making source code that is interpreted more than once such as macros or
include files more generic.

The typeof keyword may be used where ever a typedef name is permitted
such as in declarations and in casts. For example,

#define abs(a) ({ \
1-118 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
typeof(a) __a = a; \
if (__a < 0) __a = - __a; \
__a; \

})

shows typeof used in conjunction with a statement expression to define a
“generic” macro with a local variable declaration.

The argument to typeof may also be a type name. Because typeof itself is
a type name, it may be used in another typeof(type-name) construct.
This can be used to restructure the C type declaration syntax.

For example,

#define pointer(T) typeof(T *)

#define array(T, N) typeof(T [N])

array (pointer (char), 4) y;

declares y to be an array of four pointers to char.

� The typeof keyword is an extension to C originally implemented
in the GCC compiler. It should be used with caution because it is
not compatible with other dialects of C and has not been adopted
by the more recent C99 standard.

GCC Generalized Lvalues

A cast is an lvalue (may appear on the left hand side of an assignment) if
its operand is an lvalue. This is an extension to C, provided for compati-
bility with GCC.

A comma operator is an lvalue if its right operand is an lvalue. This is an
extension to C, provided for compatibility with GCC.

A conditional operator is an lvalue if its last two operands are lvalues of
the same type. This is an extension to C, provided for compatibility with
GCC.
VisualDSP++ 3.5 C Compiler and Library Manual 1-119
for ADSP-218x DSPs

C Compiler Language Extensions
Conditional Expressions with Missing Operands

The middle operand of a conditional operator can be left out. If the con-
dition is non-zero (true), then the condition itself is the result of the
expression. This can be used for testing and substituting a different value
when a pointer is NULL. The condition is only evaluated once; therefore,
repeated side effects can be avoided. For example,

printf("name = %s\n", lookup(key)?:"-");

calls lookup() once, and substitutes the string “-” if it returns NULL. This
is an extension to C, provided for compatibility with GCC.

Hexadecimal Floating-Point Numbers

C99 style hexadecimal floating-point constants are accepted. They have
the following syntax.

hexadecimal-floating-constant:

{0x|0X} hex-significand binary-exponent-part [floating-suffix]

hex-significand: hex-digits [. [hex-digits]]

binary-exponent-part: {p|P} [+|-] decimal-digits

floating-suffix: { f | l | F | L }

The hex-significand is interpreted as a hexadecimal rational number. the
digit sequence in the exponent part is interpreted as a decimal integer. The
exponent indicates the power of two by which the significand is to be
scaled. The floating suffix has the same meaning it does for decimal float-
ing constants: a constant with no suffix is of type double, a constant with
suffix F is of type float, and a constant with suffix L is of type long
double.

Hexadecimal floating-point constants enable the programmer to specify
the exact bit pattern required for a floating-point constant. For example,
the declaration

float f = 0x1p-126f;
1-120 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
causes f to be initialized with the value 0x800000.

Zero Length Arrays

Arrays may be declared with zero length. This is an anachronism sup-
ported to provide compatibility with GCC. Use variable length array
members instead.

Variable Argument Macros

The final parameter in a macro declaration may be followed by ... to indi-
cate the parameter stands for a variable number of arguments.

For example,

#define trace(msg, args...) fprintf (stderr, msg, ## args);

can be used with differing numbers of arguments,

trace("got here\n");

trace("i = %d\n", i);

trace("x = %f, y = %f\n", x, y);

The ## operator has a special meaning when used in a macro definition
before the parameter that expands the variable number of arguments: if
the parameter expands to nothing then it removes the preceding comma.

� The variable argument macro syntax comes from GCC. It is not
compatible with C99 variable argument macros.

Line Breaks in String Literals

String literals may span many lines. The line breaks do not need to be
escaped in any way. They are replaced by the character \n in the generated
string. The extension is not compatible with many dialects of C including
ANSI/ISO C89 and C99. However, it is useful in asm statements, which
are intrinsically non-portable.
VisualDSP++ 3.5 C Compiler and Library Manual 1-121
for ADSP-218x DSPs

C Compiler Language Extensions
Arithmetic on Pointers to Void and Pointers to Functions

Addition and subtraction is allowed on pointers to void and pointers to
functions. The result is as if the operands had been cast to pointers to
char. The sizeof operator returns one for void and function types.

Cast to Union

A type cast can be used to create a value of a union type, by casting a value
of one of the unions member’s types.

Ranges in Case Labels

A consecutive range of values can be specified in a single case, by separat-
ing the first and last values of the range with For example,

case 200 ... 300:

Declarations mixed with Code

In C mode the compiler will accept declarations in the middle of code as
in C99 and C++. This allows the declaration of local variables to be placed
at the point where they are required. Therefore, the declaration can be
combined with initialization of the variable.

For example, in the following function

void func(Key k) {
Node *p = list;
while (p && p->key != k)

p = p->next;
if (!p)

return;
Data *d = p->data;
while (*d)

process(*d++);
}

1-122 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
the declaration of d is delayed until its initial value is available, so that no
variable is uninitialized at any point in the function.

Escape Character Constant

The character escape '\e' may be used in character and string literals and
maps to the ASCII Escape code, 27.

Alignment Inquiry Keyword (__alignof__)

The __alignof__ (type-name) construct evaluates to the alignment
required for an object of a type. The __alignof__ expression construct
can also be used to give the alignment required for an object of the
expression type.

If expression is an lvalue (may appear on the left hand side of an assign-
ment), the alignment returned takes into account alignment requested by
pragmas and the default variable allocation rules.

Keyword for Specifying Names in Generated Assembler
(asm)

The asm keyword can be used to direct the compiler to use a different
name for a global variable or function. For example,

int N asm("C11045");

tells the compiler to use the label C11045 in the assembly code it gener-
ates wherever it needs to access the source level variable N. By default the
compiler would use the label _N.

The asm keyword can also be used in function declarations but not func-
tion definition. However, a definition preceded by a declaration has the
desired effect. For example,

extern int f(int, int) asm("func");
VisualDSP++ 3.5 C Compiler and Library Manual 1-123
for ADSP-218x DSPs

C Compiler Language Extensions
int f(int a, int b) {
. . .
}

Function, Variable and Type Attribute Keyword (__attribute__)

The __attribute__ keyword can be used to specify attributes of functions,
variables and types, as in these examples,

void func(void) __attribute__ ((section("fred")));

int a __attribute__ ((aligned (8)));

typedef struct {int a[4];} __attribute__((aligned (4))) Q;

The __attribute__ keyword is supported, and therefore code, written for
GCC, can be ported. All attributes accepted by GCC on ix86 are
accepted. The ones that are actually interpreted by the compiler are
described in the sections of this manual describing the corresponding
pragmas (see “Pragmas” on page 1-99).
1-124 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Preprocessor Features
The cc218x compiler provides standard preprocessor functionality, as
described in any C text. The following extensions to standard C are also
supported:

// end of line (C++-style) comments

#warning directive

For more information about these extensions refer to “Preprocessor-Gen-
erated Warnings” on page 1-83 and “C++-Style Comments” on
page 1-83.

This section contains:

• “Predefined Preprocessor Macros” on page 1-125

• “Header Files” on page 1-128

• “Writing Preprocessor Macros” on page 1-129

• “Preprocessing of .IDL Files” on page 1-131

Predefined Preprocessor Macros
The cc218x compiler defines a number of macros to produce information
about the compiler, source file, and options specified. These macros can
be tested, using the #ifdef and related directives, to support your pro-
gram’s needs. Similar tailoring is done in the system header files.

Macros such as __DATE__ can be useful to incorporate in text strings. The
“#” operator with a macro body is useful in converting such symbols into
text constructs.

The predefined preprocessor macros are:
VisualDSP++ 3.5 C Compiler and Library Manual 1-125
for ADSP-218x DSPs

Preprocessor Features
__ADSP21XX__ and __ADSP218X__

cc218x always defines __ADSP21XX__ and __ADSP218X__ as 1.

__ADSP21{81|83|84|85|86|87|88|89}__

cc218x defines __ADSP21{81|83|84|85|86|87|88|89}__ as 1 when you
compile with the corresponding
 -proc ADSP-21{81|83|84|85|86|87|88|89} command-line switch.

__ANALOG_EXTENSIONS__

cc218x defines __ANALOG_EXTENSIONS__ as 1 unless you compile with
-pedantic or -pedantic-errors.

__DATE__

The preprocessor expands this macro into the current date as a string con-
stant. The date string constant takes the form mm dd yyyy (ANSI
standard).

__DOUBLES_ARE_FLOATS__

cc218x always defines __DOUBLES_ARE_FLOATS__ as 1.

__ECC__

cc218x always defines __ECC__ as 1.

__EDG__

cc218x always defines __EDG__ as 1. This signifies that an Edison Design
Group front end is being used.
1-126 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
__EDG_VERSION__

cc218x always defines __EDG_VERSION__ as an integral value representing
the version of the compiler’s front end.

__FILE__

The preprocessor expands this macro into the current input file name as a
string constant. The string matches the name of the file specified on the
cc218x command line or in a preprocessor #include command (ANSI
standard).

_LANGUAGE_C

cc218x always defines _LANGUAGE_C as 1 when compiling C source.

__LINE__

The preprocessor expands this macro into the current input line number
as a decimal integer constant (ANSI standard).

__NO_BUILTIN

cc218x defines __NO_BUILTIN as 1 when you compile with the -no-builtin
command-line switch.

__NO_LONG_LONG

cc218x defines __NO_LONG_LONG as 1 for C source. This definition signifies
no support is present for the long long int type.

__SIGNED_CHARS__

cc218x defines __SIGNED_CHARS__ as 1 unless you compile with the
-unsigned-char command-line switch.
VisualDSP++ 3.5 C Compiler and Library Manual 1-127
for ADSP-218x DSPs

Preprocessor Features
__STDC__

cc218x defines __STDC__ as 1.

__STDC_VERSION__

cc218x defines __STDC__ as 199409L.

__TIME__

The preprocessor expands this macro into the current time as a string con-
stant. The time string constant takes the form hh:mm:ss (ANSI standard).

__VERSION__

The preprocessor defines __VERSION__ as a string constant giving the ver-
sion number of the compiler used to compile this module.

Header Files
A header file contains C declarations and macro definitions. Use the
#include C preprocessor directive to access header files for your program.
Header file names have an .h extension. There are two main categories of
header files:

• System header files declare the interfaces to the parts of the operat-
ing system. Include these header files in your program for the
definitions and declarations you need to access system calls and
libraries. Use angle brackets to indicate a system header file. For
example, #include <file>.

• User header files contain declarations for interfaces between the
source files of your program. Use double quotes to indicate a user
header file. For example, #include "file".
1-128 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Writing Preprocessor Macros
A macro is a name standing for a block of text that the preprocessor sub-
stitutes. Use the #define C preprocessor command to create a macro
definition. When the macro definition has arguments, the block of text
the preprocessor substitutes can vary with each new set of arguments.

Compound Statements as Macros

When writing macros, define a macro that expands into a compound
statement. You can define such a macro to invoke it the same way you
would call a function, making your source code easier to read and
maintain.

The following two code segments define two versions of the macro
SKIP_SPACES.

/* SKIP_SPACES, regular macro */
#define SKIP_SPACES ((p), limit) \{

char *lim = (limit); \
while (p != lim) { \

if (*(p)++ != ' ') { \
(p)—; \
break; \

} \
} \

}
/* SKIP_SPACES, enclosed macro */
#define SKIP_SPACES (p, limit) \

do { \
char *lim = (limit); \
while ((p) != lim) { \

if (*(p)++ != ' ') { \
(p)—; \
break; \

} \
} \

} while (0)
VisualDSP++ 3.5 C Compiler and Library Manual 1-129
for ADSP-218x DSPs

Preprocessor Features
Enclosing the first definition within the do {…} while (0) pair changes
the macro from expanding into a compound statement to expanding into
a single statement. With the macro expansion into a compound statement,
you must sometimes omit the semicolon after the macro call in order to
have a valid program. This leads to a need to remember whether a func-
tion or macro is being invoked for each call and whether the macro needs
a trailing semicolon.

With the do {…} while (0) construct, you can treat the macro as a func-
tion and put the semicolon after it.

For example,

 /* SKIP_SPACES, enclosed macro, ends without ‘;’ */
 if (*p != 0)
 SKIP_SPACES (p, lim);
 else …

This expands to

 if (*p != 0)
 do {
 …
 } while (0); /* semicolon from SKIP_SPACES (…); */
 else …

Without the do {…} while (0) construct, the expansion would be:

 if (*p != 0)
 {
 …
 }
 /* semicolon from SKIP_SPACES (…); */

else

This is not legal C syntax. For more information on macros, see the
VisualDSP++ 3.5 Assembler and Preprocessor Manual for ADSP-218x and
ADSP-219x DSPs.
1-130 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Preprocessing of .IDL Files
Every VisualDSP++ Interface Definition Language (VIDL) specification is
analyzed by the C language preprocessor prior to syntax analysis.

The #include directive is used to control the inclusion of additional
VIDL source text from a secondary input file that is named in the direc-
tive. Two available forms of #include are shown in Figure 1-2.

The file identified by the file name is located by searching a list of directo-
ries. When the name is delimited by quote characters, the search begins in
the directory containing the primary input file, then proceeds with the list
of directories specified by the -I command-line switch. When the name is
delimited by angle-bracket characters, the search proceeds directly with
the directories specified by -I. If the file is not located within any direc-
tory on the search list, the search may be continued in one or more
platform dependent system directories.

For more information, refer to the VisualDSP++ Component Software
Engineering User’s Guide.

Figure 1-2. #INCLUDE Syntax Diagram

“ “

#include

VIDL file name

< >VIDL file name
VisualDSP++ 3.5 C Compiler and Library Manual 1-131
for ADSP-218x DSPs

C Run-Time Model and Environment
C Run-Time Model and Environment
This section provides a full description of the ADSP-218x DSP run-time
model and run-time environment. The run-time model, which applies to
compiler-generated code, includes descriptions of the layout of the stack,
data access, and call/entry sequence. The C run-time environment
includes the conventions that C routines must follow to run on
ADSP-218x DSPs. Assembly routines linked to C routines must follow
these conventions.

� ADI recommends that assembly programmers maintain stack
conventions.

This section describes the conventions that you must follow as you write
assembly code that can be linked with C code. The description of how C
constructs appear in assembly language are also useful for low-level pro-
gram analysis and debugging.

This section contains:

• “Using the Run-Time Header” on page 1-133

• “Interrupt Table and Interface” on page 1-133

• “Autobuffering Support” on page 1-134

• “Stack Frame” on page 1-136

• “File I/O Support” on page 1-141

• “Miscellaneous Information” on page 1-143

• “Register Classification” on page 1-144

• “Complete List of Registers” on page 1-145
1-132 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Using the Run-Time Header
The run-time header is an assembly language procedure that initializes the
processor and sets up processor features to support the C run-time envi-
ronment. The default run-time header source code for the ADSP-218x is
in the 218x_hdr.asm file. This run-time header performs the following
operations:

• Initializes the C run-time environment

• Calls your main routine

• Calls exit routine, defined in the C run-time library (libc.dlb), if
main returns.

• Defines system halt instruction called from exit routine.

Interrupt Table and Interface
The interrupt table is an assembly language set of functions defined in
named sections. These get placed appropriately in the Linker Description
File (.LDF) to be executed at interrupt vector addresses. The default code
for the ADSP-218x DSP interrupt table is defined in 218x_int_tab.asm.

The default interrupt table uses the following external symbols,

The 218x_int_tab file contains a section of code for each hardware inter-
rupt. The .LDF file places these code sections in the correct interrupt vector
slots for each interrupt.

_lib_int_table Static table holding interrupt information defined in the C
run-time library

__lib_int_determiner An interrupt dispatcher defined in the C run-time library

_____system_start C run-time initialization defined in the run-time header
VisualDSP++ 3.5 C Compiler and Library Manual 1-133
for ADSP-218x DSPs

C Run-Time Model and Environment
If an interrupt occurs, program execution begins at the interrupt vector
addresses. Program execution causes a jump to __lib_int_determiner in
the default vector code. If __lib_int_determiner finds (by inspecting
__lib_int_table) a handler set for the interrupt, it will call the handler.
__lib_int_determiner saves and restores all scratch registers around the
handler call. The function __lib_int_determiner terminates by executing
a return from interrupt (RTI) instruction, which restores program execu-
tion to the point at which the interrupt was raised.

A handler for an interrupt or signal is set using the interrupt or signal C
run-time library functions. These functions pass the signal name and a
handler function pointer as parameters. The signal macro names are
defined in signal.h.

The default interrupt vector code may be replaced with custom code by
modifying or creating a new piece of code to be placed at the vector
addresses. This is usually done by copying the default 218x_int_tab.asm
file and .LDF file into your project and modifying them as required.

An interrupt pragma defined function can be placed in the interrupt vec-
tor code directly or be jumped to from the vector if it does not fit in the
interrupt vector space (see “Interrupt Handler Pragmas” on page 1-102).

� The reset vector code, which is placed at address zero (0) and does
a jump to _____system_start, should not be replaced.

Autobuffering Support
The cc218x compiler allows registers I2, I3, I5, I7 and M0 to be reserved
from compiler use so that serial ports (SPORTS) can be configured to use
autobuffering. Registers are reserved using the -reserve switch
(on page 1-38). This support makes it possible to to enable both SPORT
for transmit and receive autobuffering.
1-134 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
In addition to the compiler not using any reserved registers, the run-time
libraries must do likewise. The libraries normally avoid the use of registers
I2, I3 and M0 by default. Making the library code avoid registers I5 and I7
can add an extra complexity and in some cases introduces a performance
penalty. The aim is to avoid this penalty for applications that do not
require autobuffering or these extra registers.

To this end, autobuffering variants of the libraries are provided
(libcab.dlb and libioab.dlb) which avoid I5 and I7 and will be used in
place of the defaults. These libraries will be added to the link line by the
default .LDF files when macro __RESERVE_AUTOBUFFER_REGS__ is defined.
The compiler driver will define this macro in compile, assemble and link
phases when the compilers -reserve switch is used.

The compiler will also plant a common symbol, ___reserved_bitmask,
into modules compiled with the -reserve switch. This symbol can be
used to determine which registers are reserved accross an application. This
is sometimes required when saving and restoring registers in an interrupt
service routine.

Bits, set in ___reserved_bitmask, correspond to the following reserved
registers:

bit 0 set = I2 reserved

bit 1 set = I3 reserved

bit 2 set = I5 reserved

bit 3 set = I7 reserved

bit 4 set = M0 reserved
VisualDSP++ 3.5 C Compiler and Library Manual 1-135
for ADSP-218x DSPs

C Run-Time Model and Environment
Stack Frame
The stack frame (or activation record) provides for the following activities:

• Space for local variables for the current procedure. For the com-
piler, this includes temporary storage as well as that required for
explicitly declared user automatic variables.

• Place to save linkage information such as return addresses, location
information for the previous caller’s stack frame and to allow this
procedure to return to its caller

• Space to save information that must be preserved and restored

• Arguments passed to the current procedure

In addition, if this is not a leaf procedure (a procedure calling other proce-
dures), its stack frame also contains outgoing linkage and parameter space:

• space for the arguments to the called procedure.

• space for the callee to save basic linkage information.

Figure 1-3 provides a general overview of the ADSP-218x DSP stack.

� The stack grows downward on the page. Because the stacks grow
towards smaller addresses, higher addresses are found in the
upwards direction.

The stack resides in primary data memory (DM). It is controlled by a pair of
pointers: a stack pointer (SP), which identifies the boundary of the in-use
portion of the stack space, and a frame pointer (FP), which provides stable
addressing to the current frame. The C compiler environment defines reg-
ister I4 as the SP (stack pointer) and M4 as the FP (frame pointer).
1-136 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Stack Frame Description

This section describes each part of the stack frame as shown in Figure 1-3.

Incoming Arguments

The memory area for incoming arguments begins at the FP value
+1. Argument words are mapped by ascending addresses, so the sec-
ond argument word is mapped at FP+2.

Linkage Information

The return address is saved on the hardware stack by the CALL
instruction. In the called function, the address can then be popped
from the hardware stack and saved as part of the stack frame. This
information is used by the debugger to generate call stack debug
information for source level debugging. Saving the return address
on the stack frame is also useful in avoiding overflowing the finite
hardware call stack; for example, when using recursion. The value

Figure 1-3. ADSP-218x DSP Stack

Incoming Arguments

Linkage Information

Linkage Information
and Temporaries

 Save Area
 (for caller info)

 Free Space

FP

SP
VisualDSP++ 3.5 C Compiler and Library Manual 1-137
for ADSP-218x DSPs

C Run-Time Model and Environment
stored on the stack gets pushed back on the hardware call stack
before the function returns. The compiler detects recursive
routines.

Local Variables and Temporaries

Space for a register save area and local variables/temporaries is allo-
cated on the stack by the function prologue. Local variables and
temporaries are typically placed first in this area, so they can be
addressed with the smallest offsets from FP. The register save area is
located at the farthest end of this area and can be accessed by
SP-relative addressing.

Outgoing Arguments

Outgoing arguments are located at the top of the stack prior to the
call. Space may be pre-allocated or claimed at the time of each call.

Free Space

Space below SP is considered free and unprotected; it is available
for use (in growing the stack) at any time, synchronously or asyn-
chronously (the latter for interrupt handling). This space should
never be used on the ADSP-218x DSPs.

General System-Wide Specifications

The following list contains some general specifications that apply to the
stacks.

• The stacks grow down in memory from higher to lower addresses.

• The current frame’s “base” is addressed by the FP register.

• The first free word in each stack is addressed by the SP register.
Locations at that point and beyond are vulnerable and must not be
used. These locations may be clobbered by asynchronous activities
like interrupt service routines. Alternatively, locations at SP and
1-138 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
beyond are always available if additional space is needed, but SP
must be moved to guard the space. Therefore, the first “used” (pro-
tected) word is at SP+1.

� Data can be pushed onto the stack by executing an instruction like
the following one for the ADSP-218x DSPs:

 DM (I4 += M7) = rej.

• The return address of the caller is stored at offset -1 from the
address carried by the current FP if it is stored on the stack.

• The linkage back to the previous stack frame is stored at offset 0
from the current FP.

At a procedure call, the following must be true:

• There must be at least one free slot on the PC stack to hold the
return address.

At an interrupt, the following must be true:

• Space beyond the SP must be available.

Return Values

Return values always use registers. Single-word return values come back in
register AX1 (for OldAsmCall, register AR is used). Double-word return val-
ues are stored in SR1:0, with the most significant part in SR1.

If the return value is larger than two words, then the caller must allocate
space and pass the address as a “hidden argument”. The register I0 is used
for this purpose.
VisualDSP++ 3.5 C Compiler and Library Manual 1-139
for ADSP-218x DSPs

C Run-Time Model and Environment
Procedure Call and Return

To call a procedure:

1. Evaluate the arguments and push them onto the stack.

2. Call the procedure.

3. On return, remove arguments if desired.

On Entry:

1. Save the old FP, then set FP to the current SP.

2. If debugging, pop the PC stack and store it on the main stack.

3. Move the SP to create space for the new frame.

4. If -g is specified, push the return address back onto the hardware
stack.

After this step, the new frame is officially in place.

5. Continue saving registers, and then execute the procedure.

A leaf procedure, which does not require much stack space, might choose
to omit steps (1) and (2), operating without its own stack frame.

To Return from a Procedure:

1. Restore miscellaneous saved registers.

2. Place the return value in the correct register (if not there already).

3. Restore FP for the previous frame.

4. Reset SP to remove the frame for procedure.

5. Return to the caller.
1-140 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
File I/O Support
The VisualDSP++ environment provides access to files on a host system,
using stdio functions. File I/O support is provided through a set of
low-level primitives that implement the open, close, read, write, and
seek operations.The stdio functions make use of these primitives to pro-
vide conventional C input and output facilities. The source files for the
I/O primitives are available under the VisualDSP++ installation in the
subdirectory 218x\lib\src\libio_src.

Refer to “stdio.h” on page 3-11 for more information.

Extending I/O Support To New Devices

The I/O primitives are implemented using an extensible device driver
mechanism. The default start-up code includes a device driver that can
perform I/O through the VisualDSP++ simulator and EZ-KIT Lite. Other
device drivers may be registered and then used through the normal stdio
functions.

A device driver is a set of primitive functions, grouped together into a
DevEntry structure. This structure is defined in device.h:

struct DevEntry {
int DeviceID;
void *data;

int (*init)(struct DevEntry *entry);
int (*open)(const char *name, int mode);
int (*close)(int fd);
int (*write)(int fd, unsigned char *buf, int size);
int (*read)(int fd, unsigned char *buf, int size);
long (*seek)(long fd, long offset, int whence);

}

typedef struct DevEntry DevEntry;
typedef struct DevEntry *DevEntry_t;
VisualDSP++ 3.5 C Compiler and Library Manual 1-141
for ADSP-218x DSPs

C Run-Time Model and Environment
The DeviceID field is a unique identifier for the device, known to the user.
Device IDs are used globally across an application. The data field is a
pointer for any private data the device may need; it is not used by the
run-time libraries. The function pointed to by the init field is invoked by
the run-time library when the device is first registered. It returns a nega-
tive value for failure, positive value for success.

The functions pointed to by the open, close, write and read fields are the
functions that provide the same functionality used in the default I/O
device. Seek is another function at the same level, for those devices which
support such functionality. If a device does not support an operation (such
as seeking, writing on read-only devices or reading write-only devices),
then a function pointer must still be provided; the function must arrange
to always return failure codes when the operation is attempted.

A new device can be registered with the following call:

int add_devtab_entry(DevEntry_t entry);

If the device is successfully registered, the init() routine of the device is
called, with entry as its parameter. add_devtab_entry() returns the
DeviceID of the device registered.

If the device is not successfully registered, a negative value is returned.
Reasons for failure include, but are not limited to:

• The DeviceID is the same as another device, already registered

• There are no more spaces left in the device registry table

• The DeviceID is less than zero

• Some of the function pointers are NULL

• The device's init() routine returned a failure result

Once a device is registered, it can be made the default device, using the
following function:
1-142 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
void set_default_io_device(int);

The user passes the DeviceID. There is a corresponding function for
retrieving the current default device:

int get_default_io_device(void);

The default device is used by fopen() when a file is first opened. The
fopen() function passes the open request to the open() function of the
device indicated by get_default_io_device(). The device file identifier
(dfid) returned by the open() function is private to the device; other
devices may simultaneously have other files open which use the same iden-
tifier. An open file is uniquely identified by the combination of DeviceID
and dfid.

The fopen() function records the DeviceID and dfid in the global open
file table, and allocates its own internal fid to this combination. All future
operations on the file reads, writes, seeks and close —use this fid to
retrieve the DeviceID—and thus direct the request to the appropriate
device's primitive functions, passing the dfid along with other parameters.
Once a file has been opened by fopen(), the current value of
get_default_io_device() is irrelevant to that file.

Miscellaneous Information
This section contains a number of miscellaneous aspects of the design that
may be helpful in understanding stack functionality.

• Procedures without prototypes can be called successfully, provided
the argument types correspond properly. Prototypes are always
good programming practice. Programs that call library subroutines
should always include header files.

• There is no special interface for calling system library functions.
They use the standard calling convention.
VisualDSP++ 3.5 C Compiler and Library Manual 1-143
for ADSP-218x DSPs

C Run-Time Model and Environment
Register Classification
This section describes the ADSP-218x registers. Registers are listed in
order of preferred allocation by the compiler.

Callee Preserved Registers (�Preserved�)

Registers I2, I3, I5, 17, and M0 are preserved. A subroutine which uses any
of these registers must save (preserve) and restore it.

Dedicated Registers

Certain registers have dedicated purposes and are not used for other
things. Compiled code and libraries expect the dedicated registers to be
correct.

Caller Save Registers (�Scratch�)

All registers not preserved or dedicated are scratch registers. A subroutine
may use a scratch register without having to save it.

Circular Buffer Length Registers

Registers L0 through L7 are the circular buffer length registers. The com-
piler assumes that these registers contain zero, which disables circular
buffering; they must be set to zero when compiled code is executing, to
avoid incorrect behavior. There is no restriction on the value of an L regis-
ter when the corresponding I register has been reserved from compiler use.

See “-reserve register[,register...]” on page 1-38 for more information
about reserving registers.
1-144 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
Mode Status (MSTAT) Register

The C runtime initializes the MSTAT register as part of the run-time header
code. The compiler and run-time libraries assume to be running in these
preset modes. If you change any of the modes listed in Table 1-9, ensure
that they are reverted before calling C compiled functions or functions
from the C run-time library. Failure to revert to the default modes may
cause applications to fail when running.

Complete List of Registers
The following tables describe all of the registers for the ADSP-218x DSPs.

• Table 1-10 lists the data register’s file registers

• Table 1-11 lists the DAG1 registers

• Table 1-12 lists the DAG2 registers

Table 1-9. MSTAT Register Modes

Mode Description State

SEC_REG Secondary Data Registers disabled

BIT_REV Bit-reversed address output disabled

AR_SAT ALU saturation mode disabled

M_MODE MAC result mode Integer Mode, 16.0
format

Table 1-10. Data Register File Registers

Register Descriptuon Notes

AX0 scratch

AX1 scratch; single-word return

AY0 scratch
VisualDSP++ 3.5 C Compiler and Library Manual 1-145
for ADSP-218x DSPs

C Run-Time Model and Environment
AY1 scratch Argument 2 for compatibility call

AR scratch; Argument 1 for compatibility call

AF scratch

MX0 scratch

MX1 scratch

MY0 scratch

MY1 scratch

MR1:0 scratch

MR2 scratch

MF scratch

SB scratch

SE scratch

SI scratch

SR1:0 scratch; double-word return

Table 1-11. DAG1 Registers

Register Descriptuon

I0 scratch

I1 scratch

I2 preserved

I3 preserved

Table 1-10. Data Register File Registers (Cont’d)

Register Descriptuon Notes
1-146 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
M0 preserved

M1 dedicated: +1

M2 dedicated: 0

M3 scratch

L0-3 not used, must be zero

Table 1-12. List of DAG2 Registers

Register Descriptuon

I4 dedicated: SP

I5 preserved

I6 scratch

I7 preserved

M4 dedicated: FP

M5 scratch

M6 dedicated: 0

M7 dedicated: -1

L4-7 not used, must be zero

Table 1-11. DAG1 Registers

Register Descriptuon
VisualDSP++ 3.5 C Compiler and Library Manual 1-147
for ADSP-218x DSPs

C and Assembly Language Interface
C and Assembly Language Interface
This section describes how to call assembly language subroutines from
within C programs, and how to call C functions from within assembly
language programs. Before attempting to do either of these, be sure to
familiarize yourself with the information about the C run-time model
(including details about the stack, data types, and how arguments are han-
dled) in “C Run-Time Model and Environment” on page 1-132.

This section contains:

• “Calling Assembly Subroutines from C Programs”

• “Calling C Routines from Assemby Programs” on page 1-151

• “Using Mixed C/Assembly Naming Conventions” on page 1-155

• “Compatibility Call” on page 1-156

Calling Assembly Subroutines from C Programs
Before calling an assembly language subroutine from a C program, create a
prototype to define the arguments for the assembly language subroutine
and the interface from the C program to the assembly language subrou-
tine. Even though it is legal to use a function without a prototype in C,
prototypes are a strongly recommended practice for good software engi-
neering. When the prototype is omitted, the compiler cannot perform
argument type checking and assumes that the return value is of type inte-
ger and uses K&R promotion rules instead of ANSI promotion rules.

The run-time model defines some registers as scratch registers and others
as preserved or dedicated registers. Scratch registers can be used within the
assembly language program without worrying about their previous con-
tents. If more room is needed (or an existing code is used) and you wish to
use the preserved registers, you must save their contents and then restore
those contents before returning.
1-148 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
In general, you should perform the following steps when writing C-call-
able assembly subroutines:

• Familiarize yourself with the general features of the C run-time
model. This should include the general notion of a stack, how
arguments are handled, and also the various data types and their
sizes.

• Create an interface definition, or “prototype”, so that the C pro-
gram knows the name of your function and the types of its
arguments. The prototype also determines how the arguments are
passed.

In C mode, the compiler allows you to use a function without a
prototype. In this case, the compiler assumes that all the argu-
ments, as they appear in the call, are of the proper type even
though this may not be desired. The compiler also assumes that the
return type is integer.

• The compiler normally prefaces the name of external entry points
with an underscore. You can simply declare the function with an
underscore as the compiler does. When using the function from
assembly programs, you might want your function’s name to be
just as you write it. Then you will also need to tell the C compiler
that it is an asm function, by placing 'extern "asm" {}' around
the prototype.

• The C run time determines that all function parameters are passed
on the stack. A good way to observe and understand how argu-
ments are passed is to write a dummy function in C and compile it
using the -save-temps command-line switch (on page 1-39). The
resulting compiler generated assembly file (.s) can then be viewed.
VisualDSP++ 3.5 C Compiler and Library Manual 1-149
for ADSP-218x DSPs

C and Assembly Language Interface
The following example includes the global volatile variable assign-
ments to indicate where the arguments can be found upon entry to
asmfunc.

// Sample file for exploring compiler interface...
// global variables assign arguments there just so
// we can track which registers were used
// (type of each variable corresponds to one of arguments)

int global_a;
float global_b;
int * global_p;

// the function itself

int asmfunc(int a, float b, int * p, int d, int e) {
// do some assignments so that .s file will show where args are

global_a = a;
global_b = b;
global_p = p;
//value gets loaded into the return register
return 12345;

}

When compiled with the -save-temps option set (see on page 1-39), this
produces the following:

// PROCEDURE: _asmfunc

.global _asmfunc;

_asmfunc:

SI = DM(I4 + 4);

I0 = SI ;

AX1 = DM(I4 + 2);

SI = DM(I4 + 1);

AX0 = DM(I4 + 3);

DM(_global_b) = AX1;

DM(_global_a) = SI;

DM(_global_b+1) = AX0;
1-150 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
RTS (DB);

AX1 = 12345;

DM(_global_p) = I0;

_asmfunc.end

� For a more complicated function, you might find it useful to fol-
low the general run-time model, and use the run-time stack for
local storage, etc. A simple C program, passed through the com-
piler, will provide a good template to build on. Alternatively, you
may find it just as convenient to use local static storage for
temporaries.

Calling C Routines from Assemby Programs
You may want to call a C-callable library and other functions from within
an assembly language program. As discussed in “Calling Assembly Subrou-
tines from C Programs” on page 1-148, you may want to create a test
function to do this in C, and then use the code generated by the compiler
as a reference when creating your assembly language program and the
argument setup. Using volatile global variables may help clarify the essen-
tial code in your test function.

The run-time model defines some registers as scratch registers and others
as preserved or dedicated. The contents of the scratch registers may be
changed without warning by the called C function. If the assembly lan-
guage program needs the contents of any of those registers, you must save
their contents before the call to the C function and then restore those con-
tents after returning from the call.

Do not use the dedicated registers for other than their intended purpose;
the compiler, libraries, debugger, and interrupt routines all depend on
having a stack available as defined by those registers.

Preserved registers can be used; their contents will not be changed by call-
ing a C function. The function will always save and restore the contents of
preserved registers if they are going to change.
VisualDSP++ 3.5 C Compiler and Library Manual 1-151
for ADSP-218x DSPs

C and Assembly Language Interface
If arguments are on the stack, they are addressed via an offset from the
stack pointer or frame pointer. Explore how arguments are passed between
an assembly language program and a function by writing a dummy func-
tion in C and compiling it with the save temporary files option (the
-save-temps switch on page 1-39). By examining the contents of volatile
global variables in *.s file, you can determine how the C function passes
arguments, and then duplicate that argument setup process in the assem-
bly language program.

The stack must be set up correctly before calling a C-callable function. If
you call other functions, maintaining the basic stack model also facilitates
the use of the debugger. The easiest way to do this is to define a C main
program to initialize the run-time system; maintain the stack until it is
needed by the C function being called from the assembly language pro-
gram; and then continue to maintain that stack until it is needed to call
back into C. However, make sure the dedicated registers are correct. You
do not need to set the FP prior to the call; the caller’s FP is never used by
the recipient.

Using Mixed C/Assembly Support Macros

This section describes the C/Assembly interface support macros available
via the asm_sprt.h system header file. Use these macros for interfacing
assembly language modules with C functions.

Your software package includes a version of the asm_sprt.h file.
Table 1-13 lists and the following section describes the macros.

Table 1-13. Interface Support Macros

function_entry exit leaf_entry leaf_exit

alter(x)

save_reg restore_reg readsfirst(x) readsnext

putsfirst putsnext getsfirst(x) getsnext
1-152 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
function_entry

The function_entry macro expands into the function prologue for
non-leaf functions. This macro should be the first line of any non-leaf
assembly routine.

exit

The exit macro expands into the function epilogue for non-leaf func-
tions. This macro should be the last line of any non-leaf assembly routine.
Exit is responsible for restoring the caller’s stack and frame pointers and
jumping to the return address.

leaf_entry

The leaf_entry macro expands into the function prologue for leaf func-
tions. This macro should be the first line of any leaf assembly routine.

� This macro is currently null, but should be used for future
compatibility.

leaf_exit

The leaf_exit macro expands into the function epilogue for non-leaf
functions. This macro should be the last line of any leaf assembly routine.
leaf_exit is responsible for restoring the caller’s stack and frame pointers
and jumping to the return address.

alter(x)

The alter macro expands into an instruction that adjusts the stack
pointer by adding the immediate value x. With a positive value for x, alter
pops x words from the top of the stack. You could use alter to clear
x number of parameters off the stack after a call.
VisualDSP++ 3.5 C Compiler and Library Manual 1-153
for ADSP-218x DSPs

C and Assembly Language Interface
save_reg

The preprocessor expands the save_reg macro into a series of assembly
language commands that push the following registers (on the ADSP-218x
architecture) onto the C run-time stack:

 AY0, AX0, AX1, MY0, MX0, MX1, MR1, MR0, SR1, SR0, I0, I1, M0, M3, I5

restore_reg

The restore_reg macro expands into a series of instructions that pop the
stored registers off of the C run-time stack.

readsfirst(register)

The preprocessor expands the readsfirst macro into a series of assembly
language commands that read the value off the top of the stack, write the
value to register, and set up for a read of the next stack entry with the
readsnext macro. The readsfirst macro references the stack-pointer (I4)
and might be used to read values that were placed on the stack using the
putsfirst and putsnext macros.

register = readsnext

The preprocessor expands the readsnext macro into a series of assembly
language commands. These commands continue the read process set up by
the readsfirst macro by reading the next value off the top of the stack
and writing it to register.

putsfirst = register

The preprocessor expands the putsfirst macro into a series of assembly
language commands. These commands write the contents of register to
the top of the stack and set up for a write of the next stack entry with the
putsnext macro.
1-154 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
putsnext = register

The preprocessor expands the putsnext macro into a series of assembly
language commands. These commands continue the write process set up
by the putsfirst macro by writing the next register to the top of the
stack.

getsfirst(register)

The preprocessor expands the getsfirst macro into a series of assembly
language commands that read the value off the top of the stack, write the
value to register, and set up for a read of the next stack entry with the
getsnext macro. The preprocessor expands the getsfirst macro into a
series of assembly language instructions that read a value from the top of a
function frame, write the value to register and set up a read of the next
value with getsnext. The getsfirst macro references the frame-pointer
(M4) and would be used to read function parameters.

register = getsnext

The preprocessor expands the getsnext macro into a series of assembly
language commands. These commands continue the read process set up by
the getsfirst macro by reading the next value off the top of the stack and
writing it to register.

Using Mixed C/Assembly Naming Conventions
It is necessary to be able to use C symbols (function or variable names) in
assembly routines and use assembly symbols in C routines. This section
describes how to name C and assembly symbols and how to use C and
assembly symbols.

To name an assembly symbol that corresponds to a C symbol, add an
underscore prefix to the C symbol name when declaring the symbol in
assembly. For example, the C symbol main becomes the assembly symbol
_main.
VisualDSP++ 3.5 C Compiler and Library Manual 1-155
for ADSP-218x DSPs

C and Assembly Language Interface
To use a C function or variable in your assembly routine, declare it as glo-
bal in the C program and import the symbol into the assembly routine by
declaring the symbol with the .EXTERN assembler directive.

To use an assembly function or variable in your C program, declare the
symbol with the .GLOBAL assembler directive in the assembly routine and
import the symbol by declaring the symbol as extern in the C program.

� Alternatively, the cc218x compiler provides an “asm” linkage speci-
fier (used similarly to the “C” linkage specifier of C++), which
when used, removes the need to add an underscore prefix to the
symbol that is defined in assembly.

Table 1-14 shows the C/Assembly interface naming conventions.

Compatibility Call
The cc218x compiler in VisualDSP++ 3.5 produces code that is not fully
compatible with the Release 6.1 run-time model. However, the new com-
piler is superior in many ways to the old one, and your programs will be
faster, smaller, and more reliable after the C code is converted to the new
system.

Table 1-14. Naming Conventions for Symbols

In The C Program In The Assembly Subroutine

int c_var;
/* declared global */

.extern _c_var;

void c_func(); .extern _c_func;

extern int asm_var; .global _asm_var;

extern void asm_func(); .global _asm_func;
_asm_func:

extern "asm" void asm_func(); .global asm_func;
asm_func:
1-156 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler
The cc218x compiler provides a compatibility call to enable usage of exist-
ing libraries and special-purpose assembly language subroutines with the
new compiler. This feature is available with a small amount of source code
modification by adding an 'extern "OldAsmCall" ‘ specification to the
prototype in the source program, similar to what is done when calling
between C and C++ source programs. There is no compiler option for
compatibility calls.

This feature provides full compatibility with the following restrictions:

• You cannot mix old and new compiled modules

• Old code is not allowed to call into a new compiled module

• A procedure pointer from a new compiled module is not allowed as
an argument to an old routine

Some programs may not have any declarations of external assembly lan-
guage functions. This is not good programming practice and should be
fixed.

The effect of the OldAsmCall declaration is as follows:

• Pass the first two arguments in registers AR and AY1.

� The C run-time stack for compatibility calls is normally used to
pass the third and subsequent parameters to a called function. This
changes if either of the first two parameters is a multi-word param-
eter, in which case, it and all subsequent parameters are passed on
the stack. Functions that take variable arguments (varargs func-
tions) will have the last named parameter and subsequent
parameters passed on the stack.

• Postpend an underscore onto the external name.

• Look in the AR register (instead of AX1) for a one-word return value.
VisualDSP++ 3.5 C Compiler and Library Manual 1-157
for ADSP-218x DSPs

C and Assembly Language Interface
The OldAsmCall extern declaration can encompass one or more prototypes
that define external entry points, as shown in the following example.

extern "OldAsmCall" {
int libfn(int flag, int * a);
void resetmach(int idle);
}

1-158 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

2 ACHIEVING OPTIMAL
PERFORMANCE FROM C
SOURCE CODE

This chapter provides guidance to help you to tune your application to

achieve the best possible code from the compiler. Some implementation
choices are available when coding an algorithm, and understanding their
impact is crucial to attaining optimal performance.

The focus of what follows is on how to obtain maximal code performance
from the compiler. Most of these guidelines also apply when optimizing
for minimum code size, although some techniques specific to that goal are
also discussed. The first section looks at some general principles, and how
the compiler can lend the most help to your optimization effort. Optimal
coding styles are then considered in detail. Special features such as com-
piler switches, built-in functions, and pragmas are also discussed. The
chapter ends with a short example to demonstrate how the optimizer
works.

Small examples are included throughout this chapter to demonstrate
points being made. Some show recommended coding styles, others iden-
tify styles to be avoided or code that it may be possible to improve. These
are marked as “Good” and “Bad”, respectively.

This chapter contains:

• “General Guidelines” on page 2-3

• “Loop Guidelines” on page 2-17

• “Using Built-in Functions in Code Optimization” on page 2-24

• “Smaller Applications: Optimizing for Code Size” on page 2-27
VisualDSP++ 3.5 C Compiler and Library Manual 2-1
for ADSP-218x DSPs

• “Pragmas” on page 2-29

• “Useful Optimization Switches” on page 2-35
2-2 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Achieving Optimal Performance from C Source Code
General Guidelines
It is useful to bear in mind the following basic strategy when writing an
application:

1. Try to choose an algorithm that is suited to the architecture being
targeted. For example, there may be a trade-off between memory
usage and algorithm complexity that may be influenced by the tar-
get architecture.

2. Code the algorithm in a simple, high-level generic form. Keep the
target in mind, especially with respect to choices of data types.

3. You can then turn your attention towards code tuning. For critical
code sections, think more carefully about the strengths of the target
platform, and make any non-portable changes where necessary.

� Tip: Choose the language as appropriate.

This section contains:

• “How the Compiler Can Help” on page 2-4

• “Data Types” on page 2-7

• “Getting the Most from IPA” on page 2-9

• “Indexed Arrays vs. Pointers” on page 2-12

• “Function Inlining” on page 2-13

• “Using Inline asm Statements” on page 2-14

• “Memory Usage” on page 2-15
VisualDSP++ 3.5 C Compiler and Library Manual 2-3
for ADSP-218x DSPs

General Guidelines
How the Compiler Can Help
The compiler provides many facilities designed to help the programmer.

Using the Compiler Optimizer

There is a vast difference in performance between code compiled opti-
mized and code compiled non-optimized. In some cases optimized code
can run ten or twenty times faster. Optimization should always be used
when measuring performance or shipping code as product.

The optimizer in the C compiler is designed to generate efficient code
from source that has been written in a straightforward manner. The basic
strategy for tuning a program is to present the algorithm in a way that
gives the optimizer excellent visibility of the operations and data, and
hence the greatest freedom to safely manipulate the code. Future releases
of the compiler will continue to enhance the optimizer, and expressing
algorithms simply will provide the best chance of benefiting from such
enhancements.

Note that the default setting (or “debug” mode within the VisualDSP++
IDDE) is for non-optimized compilation in order to assist programmers
in diagnosing problems with their initial coding. The optimizer is enabled
in VisualDSP++ by checking the Enable optimization check-box under
the Project Options ->Compile tab. This adds the -O (enable optimiza-
tion) switch (on page 1-32) to the compiler invocation. A “release” build
from within VisualDSP++ will automatically enable optimization.

 Using the Statistical Profiler

Tuning an application begins with an understanding of which areas of the
application are most frequently executed and therefore where improve-
ments would provide the largest gains. The statistical profiling feature
provided in VisualDSP++ is an excellent means for finding these areas.
More details about how to use it may be found in the VisualDSP++ 3.5
User’s Guide.
2-4 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Achieving Optimal Performance from C Source Code
The particular advantage of statistical profiling is that it is completely
unobtrusive. Other forms of profiling insert instrumentation into the
code, perturbing the original optimization, code size and register alloca-
tion to some degree.

The best methodology is usually to compile with both optimization and
debug information generation enabled. In this way, you can obtain a pro-
file of the optimized code while retaining function names and line number
information. This will give you accurate results that correspond directly to
the C source. Note that the compiler optimizer may have moved code
between lines.

You can obtain a more accurate view of your application if you build it
optimized but without debug information generation. You will then
obtain statistics that relate directly to the assembly code. The only prob-
lem with doing this may be in relating assembly lines to the original
source. Do not strip out function names when linking, since keeping func-
tion names means you can scroll through the assembly window to
instructions of interest.

In very complicated code, you can locate the exact source lines by count-
ing the loops, unless they are unrolled. Looking at the line numbers in the
assembly file (use the -save-temps switch (on page 1-39) to retain com-
piler generated assembly files, which will have the .s filename extension)
may also help. The compiler optimizer may have moved code around so
that it does not appear in the same order as in your original source.

Using Interprocedural Optimization

To obtain the best performance, the optimizer often requires information
that can only be determined by looking outside the function that it is
working on. For example, it helps to know what data can be referenced by
pointer parameters, or whether a variable actually has a constant value.
The -ipa compiler switch (on page 1-26) enables interprocedural analysis
VisualDSP++ 3.5 C Compiler and Library Manual 2-5
for ADSP-218x DSPs

General Guidelines
(IPA), which can make this available. When this switch is used the com-
piler will be called again from the link phase to recompile the program
using additional information obtained during previous compilations.

Because it only operates at link time, the effects of IPA will not be seen if
you compile with the -S switch (on page 1-38). To see the assembly file
when IPA is enabled, use the -save-temps switch (on page 1-39), and look
at the .s file produced after your program has been built.

As an alternative to IPA, you can achieve many of the same benefits by
adding pragma directives and other declarations such as
__builtin_aligned to provide information to the compiler about how
each function interacts with the rest of the program.

These directives are further described “Using Built-in Functions in Code
Optimization” on page 2-24 and “Pragmas” on page 2-29.
2-6 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Achieving Optimal Performance from C Source Code
Data Types
The compiler directly supports the following scalar data types.

Fractional data types are represented using the integer types. Manipula-
tion of these is best done by use of built-in functions, described in
“System Support Built-in Functions” on page 2-25.

Single-Word Fixed-Point Data Types: Native Arithmetic

char 16-bit signed integer

unsigned char 16-bit unsigned integer

short 16-bit signed integer

unsigned short 16-bit unsigned integer

int 16-bit signed integer

unsigned int 16-bit unsigned integer

Double-Word Fixed-Point Data Types: Emulated Arithmetic

long 32-bit signed integer

unsigned long 32-bit unsigned integer

Floating-Point Data Types: Emulated Arithmetic

double 32-bit float

float 32-bit float
VisualDSP++ 3.5 C Compiler and Library Manual 2-7
for ADSP-218x DSPs

General Guidelines
Avoiding Emulated Arithmetic

Arithmetic operations for some types are implemented by library func-
tions because the DSP hardware does not directly support these types.
Consequently, operations for these types are far slower than native opera-
tions-sometimes by a factor of a hundred-and also produce larger code.
These types are marked as “Emulated Arithmetic” in “Data Types” on
page 2-7.

The hardware does not provide direct support for division, so division and
modulus operations are almost always multi-cycle operations, even on
integral type inputs. If the compiler has to issue a full division operation,
it will usually need to generate a call to a library function. One notable sit-
uation in which a library call is avoided is for integer division when the
divisor is a compile-time constant and is a power of two. In that case the
compiler generates a shift instruction. Even then, a few fix-up instructions
are needed after the shift if the types are signed. If you have a signed divi-
sion by a power of two, consider whether you can change it to unsigned in
order to obtain a single-instruction operation.

When the compiler has to generate a call to a library function for one of
these arithmetic operators that are not supported by the hardware, perfor-
mance will suffer not only because the operation will take multiple cycles,
but also because the effectiveness of the compiler optimizer will be
reduced.

For example, such an operation in a loop can prevent the compiler from
making use of efficient zero-overhead hardware loop instructions. Also,
calling the library to perform the required operation can change values
held in scratch registers before the call, so the compiler will have to gener-
ate more stores and loads from the data stack to keep values required after
the call returns. Emulated arithmetic operators should therefore be
avoided where possible, especially in loops.
2-8 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Achieving Optimal Performance from C Source Code
Getting the Most from IPA
Interprocedural analysis (IPA) is designed to try to propagate information
about the program to parts of the optimizer that can use it. This section
looks at what information is useful, and how to structure your code to
make this information easily accessible to the analysis.

Initializing Constants Statically

IPA will identify variables that have only one value and replace them with
constants, resulting in a host of benefits for the optimizer's analysis. For
this to happen a variable must have a single value throughout the pro-
gram. If the variable is statically initialized to zero, as all global variables
are by default, and is subsequently assigned some other value at another
point in the program, then the analysis sees two values and will not con-
sider the variable to have a constant value.

For example,

#include <stdio.h>
int val; // initialized to zero

void init() {
val = 3; // re-assigned

}

void func() {
printf("val %d",val);

}

int main() {
init();
func();

}

Bad: IPA cannot see that val is a constant
VisualDSP++ 3.5 C Compiler and Library Manual 2-9
for ADSP-218x DSPs

General Guidelines
is better written as

#include <stdio.h>
const int val = 3; // initialized once

void init() {
}

void func() {
printf("val %d",val);

}

int main() {
init();
func();

}

Good: IPA knows val is 3.

Avoiding Aliases

It may seem that the iterations may be performed in any order in the fol-
lowing loop:

void fn(char a[], char b[], int n) {
int i;
for (i = 0; i < n; ++i)

a[i] = b[i];
}

Bad: a and b may alias each other.

but a and b are both parameters, and, although they are declared with [],
they are in fact pointers, which may point to the same array. When the
same data may be reachable through two pointers, they are said to alias
each other.

If IPA is enabled, the compiler will look at the call sites of fn and try to
determine whether a and b can ever point to the same array.
2-10 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Achieving Optimal Performance from C Source Code
Even with IPA, it is quite easy to create what appear to the compiler as
aliases. The analysis works by associating pointers with sets of variables
that they may refer to at some point in the program. If the sets for two
pointers are found to intersect, then both pointers are assumed to point to
the union of the two sets.

If fn above were called in two places with global arrays as arguments, then
IPA would have the results shown below:

fn(glob1, glob2, N);

fn(glob1, glob2, N);

Good: sets for a and b do not intersect: a and b are not aliases.

fn(glob1, glob2, N);

fn(glob3, glob4, N);

Good: sets for a and b do not intersect: a and b are not aliases.

fn(glob1, glob2, N);

fn(glob3, glob1, N);

Bad: sets intersect - both a and b may access glob1; a and b may be
aliases.

The third case arises because IPA considers the union of all calls at once,
rather than considering each call individually, when determining whether
there is a risk of aliasing. If each call were considered individually, IPA
would have to take flow control into account and the number of permuta-
tions would make compilation time impracticably long.

The lack of control flow analysis can also create problems when a single
pointer is used in multiple contexts. For example, it is better to write

int *p = a;
int *q = b;

// some use of p
// some use of q
VisualDSP++ 3.5 C Compiler and Library Manual 2-11
for ADSP-218x DSPs

General Guidelines
Good: p and q do not alias.

than

int *p = a;
// some use of p

p = b;
// some use of p

Bad: uses of p in different contexts may alias.

because the latter may cause extra apparent aliases between the two uses.

Indexed Arrays vs. Pointers
C allows a program to access data from an array in two ways: either by
indexing from an invariant base pointer, or by incrementing a pointer.
These two versions of vector addition illustrate the two styles:

Style 1: using indexed arrays

void va_ind(const short a[], const short b[], short out[], int n) {
int i;
for (i = 0; i < n; ++i)

out[i] = a[i] + b[i];
}

Style 2: using pointers

void va_ptr(const short a[], const short b[], short out[], int n) {
int i;
short *pout = out;
const short *pa = a, *pb = b;
for (i = 0; i < n; ++i)

*pout++ = *pa++ + *pb++;
}

2-12 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Achieving Optimal Performance from C Source Code
Trying Pointer and Indexed Styles

One might hope that the chosen style would not make any difference to
the generated code, but this is not always the case. Sometimes, one version
of an algorithm will generate better optimized code than the other, but it
is not always the same style that is better.

� Tip: Try both pointer and index styles.

The pointer style introduces additional variables that compete with the
surrounding code for resources during the compiler optimizer’s analysis.
Array accesses, on the other hand, must be transformed to pointers by the
compiler and sometimes it does not do the job as well as you could do by
hand.

The best strategy is to start with array notation. If the generated code
looks unsatisfactory, try using pointers. Outside the critical loops, use the
indexed style, since it is easier to understand.

Function Inlining
The function inlining may be used in two ways

• By annotating functions in the source code with the inline key-
word. In this case, function inlining is only performed when
optimization is enabled.

• By turning on automatic inlining with the -Oa switch
(on page 1-33). This switch automatically enables optimization.

� Tip: Inline small, frequently executed functions.

You can use the compiler’s inline keyword to indicate that functions
should have code generated inline at the point of call. Doing this avoids
various costs such as program flow latencies, function entry and exit
instructions and parameter passing overheads. Using an inline function
also has the advantage that the compiler can optimize through the inline
VisualDSP++ 3.5 C Compiler and Library Manual 2-13
for ADSP-218x DSPs

General Guidelines
code and does not have to assume that scratch registers and condition
states are modified by the call. Prime candidates for inlining are small, fre-
quently used functions because they will cause the least code-size increase
while giving most performance benefit.

As an example of the usage of the inline keyword, the function below
sums two input parameters and returns the result.

inline int add(int a, int b) {

return (a+b);

}

Good: use of the inline keyword.

Inlining has a code-size to performance trade-off that should be consid-
ered when it is used. With -Oa, the compiler will automatically inline
small functions where possible. If the application has a tight upper
code-size limit, the resulting code-size expansion may be too great. It is
worth considering using automatic inlining in conjunction with the -Ov n
switch (on page 1-33) to restrict inlining (and other optimizations with a
code-size cost) to parts of the application that are performance-critical.
This will be considered in more detail later in this chapter.

Using Inline asm Statements
The compiler allows use of inline asm statements to insert small sections of
assembly into C code.

� Tip: Avoid use of inline asm statements where built-in functions
may be used instead

The compiler does not intensively optimize code that contains inline asm
statements because it has little understanding about what the code in the
statement does. In particular, use of an asm statement in a loop may
inhibit useful transformations.
2-14 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Achieving Optimal Performance from C Source Code
The compiler has been enhanced with a large number of built-in func-
tions. These generate specific hardware instructions and are designed to
allow the programmer to more finely tune the code produced by the com-
piler, or to allow access to system support functions. A complete list of
compiler’s built-in functions is given in “Compiler Built-in Functions” on
page 1-83.

Use of these builtins is much preferred to using inline asm statements.
Since the compiler knows what each builtin does, it can easily optimize
around them. Conversely, since the compiler does not parse asm state-
ments, it does not know what they do, and so is hindered in optimizing
code that uses them. Note also that errors in the text string of an asm state-
ment will be caught by the assembler and not the compiler.

Examples of efficient use of built-in functions are given in “System Sup-
port Built-in Functions” on page 2-25.

Memory Usage
The compiler, in conjunction with the use of the linker description file
(.LDF), allows the programmer control over where data is placed in mem-
ory. This section describes how to best lay out data for maximum
performance.

� Tip: Try to put arrays into different memory sections.

The DSP hardware can support two memory operations on a single
instruction line, combined with a compute instruction. However, two
memory operations will only complete in one cycle if the two addresses are
situated in different memory blocks; if both access the same block, then a
stall will be incurred.
VisualDSP++ 3.5 C Compiler and Library Manual 2-15
for ADSP-218x DSPs

General Guidelines
Take as an example the dot product loop below. Because data is loaded
from both array a and array b in every iteration of the loop, it may be use-
ful to ensure that these arrays are located in different blocks.

for (i=0; i<100; i++)

sum += a[i] * b[i];

Bad: compiler assumes that two memory accesses together may give
a stall.

This is done by using the “Dual Memory Support Language Keywords”
compiler extension. Placing a pm qualifier before the type definition tells
the compiler that the array is located in “Program Memory” (PM). The
memory may be accessed in parallel with the usual “Data Memory” (DM).

The array declaration of one of either a or b is modified to

pm int a[100];

and any pointers to the buffer a become, for example,

pm int *p = a;

to allow simultaneous accesses to the two buffers.

Note that the explicit placement of data in PM can only be done for global
data.
2-16 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Achieving Optimal Performance from C Source Code
Loop Guidelines
Loops are where an application will ordinarily spend the majority of its
time. It is therefore useful to look in detail at how to help the compiler to
produce the most efficient code possible for them.

Keeping Loops Short
For best code efficiency, loops should be as small as possible. Large loop
bodies are usually more complex and difficult to optimize. Additionally,
they may require register data to be stored in memory. This will cause a
decrease in code density and execution performance.

Avoiding Unrolling Loops

� Tip: Do not unroll loops yourself.

Not only does loop unrolling make the program harder to read but it also
prevents optimization by complicating the code for the compiler.

void va1(const short a[], const short b[], short c[], int n)
{

int i;
for (i = 0; i < n; ++i) {

c[i] = b[i] + a[i];
}

}

Good: the compiler will unroll if it helps.

void va2(const short a[], const short b[], short c[], int n)
{

short xa, xb, xc, ya, yb, yc;
int i;
for (i = 0; i < n; i+=2) {

xb = b[i]; yb = b[i+1];
xa = a[i]; ya = a[i+1];
VisualDSP++ 3.5 C Compiler and Library Manual 2-17
for ADSP-218x DSPs

Loop Guidelines
xc = xa + xb; yc = ya + yb;
c[i] = xc; c[i+1] = yc;

}
}

Bad: harder for the compiler to optimize.

Avoiding Loop Rotation by Hand

� Tip: Do not rotate loops by hand.

Programmers are often tempted to “rotate” loops in DSP code by “hand”
attempting to execute loads and stores from earlier or future iterations at
the same time as computation from the current iteration. This technique
introduces loop-carried dependencies that prevent the compiler from rear-
ranging the code effectively. However, it is better to give the compiler a
“normalized” version, and leave the rotation to the compiler.

int ss(short *a, short *b, int n) {
int sum = 0;
int i;
for (i = 0; i < n; i++) {

sum += a[i] + b[i];
}
return sum;

}

Good: will be rotated by the compiler.

int ss(short *a, short *b, int n) {
short ta, tb;
int sum = 0;
int i = 0;
ta = a[i]; tb = b[i];
for (i = 1; i < n; i++) {

sum += ta + tb;
ta = a[i]; tb = b[i];

}
sum += ta + tb;
2-18 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Achieving Optimal Performance from C Source Code
return sum;
}

Bad: rotated by hand—hard for the compiler to optimize.

By rotating the loop, the scalar variables ta and tb have been added, intro-
ducing loop-carried dependencies.

Avoiding Array Writes in Loops
Other dependencies can be caused by writes to array elements. In the fol-
lowing loop, the optimizer cannot determine whether the load from a
reads a value defined on a previous iteration or one that will be overwrit-
ten in a subsequent iteration.

for (i = 0; i < n; ++i)
a[i] = b[i] * a[c[i]];

Bad: has array dependency.

The optimizer can resolve access patterns where the addresses are expres-
sions that vary by a fixed amount on each iteration. These are known as
“induction variables”.

for (i = 0; i < n; ++i)
a[i+4] = b[i] * a[i];

Good: uses induction variables.

 Inner Loops vs. Outer Loops

� Tip: Inner loops should iterate more than outer loops.

The optimizer focuses on improving the performance of inner loops
because this is where most programs spend the majority of their time. It is
considered a good trade-off for an optimization to slow down the code
before and after a loop if it is going to make the loop body run faster.
Therefore, try to make sure that your algorithm also spends most of its
VisualDSP++ 3.5 C Compiler and Library Manual 2-19
for ADSP-218x DSPs

Loop Guidelines
time in the inner loop; otherwise it may actually be made to run slower by
optimization. If you have nested loops where the outer loop runs many
times and the inner loop a small number of times, it may be possible to
rewrite the loops so that the outer loop has the fewer iterations.

Avoiding Conditional Code in Loops
If a loop contains conditional code, control-flow latencies may incur large
penalties if the compiler has to generate conditional jumps within the
loop. In some cases, the compiler will be able to convert IF-THEN-ELSE and
?: constructs into conditional instructions. In other cases, it will be able
to relocate the expression evaluation outside of the loop entirely. How-
ever, for important loops, linear code should be written where possible.

The compiler will not perform the loop transformation that interchanges
conditional code and loop structures. Instead of writing

for (i=0; i<100; i++) {
if (mult_by_b)

sum1 += a[i] * b[i];
else

sum1 += a[i] * c[i];
}

Bad: loop contains conditional code.

it is better to write

if (mult_by_b) {
for (i=0; i<100; i++)

sum1 += a[i] * b[i];
} else {

for (i=0; i<100; i++)
sum1 += a[i] * c[i];

}

Good: two simple loops can be optimized well.

if this is an important loop.
2-20 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Achieving Optimal Performance from C Source Code
Avoiding Placing Function Calls in Loops
The compiler will not usually be able to generate a hardware loop if the
loop contains a function call due to the expense of saving and restoring the
context of a hardware loop. In addition to obvious function calls, such as
printf(), hardware loop generation can also be prevented by operations
such as division, modulus, and some type coercions. These operations may
require implicit calls to library functions. For more details, see “Data
Types” on page 2-7.

 Avoiding Non-Unit Strides
If you write a loop such as:

for (i=0; i<n; i+=3) {
// some code

}

Bad: non-unit stride means division may be required.

then in order for the compiler to turn this into a hardware loop, it will
need to work out the loop trip count. To do so, it must divide n by 3. The
compiler will decide that this is worthwhile as it will speed up the loop,
but as discussed above, division is an expensive operation. Try to avoid
creating loop control variables with strides of non-unit magnitude.

Loop Control

� Tip: Use int types for loop control variables and array indices.

� Tip: Use automatic variables for loop control and loop exit test.

For loop control variables and array indices, it is always better to use
signed ints rather than any other integral type. The C standard requires
various type promotions and standard conversions that complicate the
code for the compiler optimizer. Frequently, the compiler is still able to
VisualDSP++ 3.5 C Compiler and Library Manual 2-21
for ADSP-218x DSPs

Loop Guidelines
deal with such code and create hardware loops and pointer induction vari-
ables. However, it does make it more difficult for the compiler to optimize
and may occasionally result in under-optimized code.

The same advice goes for using automatic (local) variables for loop con-
trol. It is easy for a compiler to see that an automatic scalar, whose address
is not taken, may be held in a register during a loop. But it is not as easy
when the variable is a global or a function static. Therefore, code such as

for (i=0; i<globvar; i++)
a[i] = 10;

Bad: may need to reload globvar on every iteration.

may not create a hardware loop if the compiler cannot be sure that the
write into the array a does not change the value of the global variable. The
globvar must be re-loaded each time around the loop before performing
the exit test.

In this circumstance, the programmer can make the compiler’s job easier
by writing

int upper_bound = globvar;
for (i=0; i<upper_bound; i++)

a[i] = 10;

Good: easily becomes hardware loop.

Using the Restrict Qualifier
The restrict qualifier provides one way to help the compiler resolve
pointer aliasing ambiguities. Accesses from distinct restricted pointers
do not interfere with each other. The loads and stores in the following
loop

for (i=0; i<100; i++)
a[i] = b[i];

Bad: possible alias of arrays a and b.
2-22 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Achieving Optimal Performance from C Source Code
 may be disambiguated by writing

int * restrict p = a;
int * restrict q = b;
for (i=0; i<100; i++)

*p++ = *q++;

Good: restrict qualifier tells compiler that memory accesses do
not alias.

The restrict keyword is particularly useful on function parameters.

Using the Const Qualifier
By default, the compiler assumes that the data referenced by a pointer to
const type will not change. Therefore, another way to tell the compiler
that the two arrays a and b do not overlap is to use the const keyword.

void copy(short *a, const short *b) {
int i;
for (i=0; i<100; i++)

a[i] = b[i];
}

Good: pointers disambiguated via const qualifier.

The above example will have a similar effect on the no_alias pragma (see
in “#pragma no_alias” on page 2-34). In fact, the const implementation is
better since it also allows the optimizer to use the fact that accesses via a
and b are independent in other parts of the code, not just the inner loop.

In C, it is legal, though bad programming practice, to use casts to allow
the data pointed to by pointers to const type to change. This should be
avoided since, by default, the compiler will generate code that assumes
const data does not change. If you have a program that modifies const
data through a pointer, you can generate standard-conforming code by
using the compile-time flag -const-read-write.
VisualDSP++ 3.5 C Compiler and Library Manual 2-23
for ADSP-218x DSPs

Using Built-in Functions in Code Optimization
Using Built-in Functions in Code
Optimization

Built-in functions, also known as compiler intrinsics, provide a method
for the programmer to efficiently use low-level features of the DSP hard-
ware while programming in C. Although this section does not cover all the
built-in functions available (for more information, refer to “Compiler
Built-in Functions” on page 1-83), it presents some code examples where
implementation choices are available to the programmer.

Fractional Data
Fractional data, represented as an integral type, can be manipulated in two
ways: one way is the use of long promoted shifts and multiply constructs,
and the other is the use of compiler built-in functions. The built-in func-
tions are recommended as they give you the most control over your data.
Let’s consider the fractional dot product algorithm. This may be written
as:

long dot_product (short *a, short *b) {
int i;
long sum=0;
for (i=0; i<100; i++) {

/* this line is performance critical */
sum += (((long)a[i]*b[i]) << 1);

}
return sum;

}

Bad: uses shifts to implement fractional multiplication.

This presents some problems to the optimizer. Normally, the code gener-
ated here would be a multiply, followed by a shift, followed by an
accumulation. However, the DSP hardware has a fractional multiply/accu-
mulate instruction that performs all these tasks in one cycle.
2-24 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Achieving Optimal Performance from C Source Code
In the example code, the compiler recognizes this idiom and replaces the
multiply followed by shift with a fractional multiply. In more complicated
cases, where perhaps the multiply is further separated from the shift, the
compiler may not detect the possibility of using a fractional multiply.

The recommended coding style is to use built-in functions. In the follow-
ing example, a builtin is used to multiply fractional 16-bit data.

#include <math.h>
fract32 dot_product(fract16 *a, fract16 *b) {

int i;
fract32 sum=0;
for (i=0; i<100; i++) {

/* this line is performance critical */
sum += __builtin_mult_fr1x32(a[i],b[i]);

}
return sum;

}

Good: uses builtins to implement fractional multiplication.

Note that the fract16 and fract32 types used in the example above are
merely typedefs to C integer types used by convention in standard
include files. The compiler does not have any in-built knowledge of these
types and treats them exactly as the integer types that they are typedefed to.

System Support Built-in Functions
Built-in functions are also provided to perform low-level system manage-
ment, in particular for the manipulation of system registers (defined in
sysreg.h). It is usually better to use these built-in functions rather than
inline asm statements. The built-in functions cause the compiler to gener-
ate efficient inline instructions and their use often results in better
optimization of the surrounding code at the point where they are used.
Using builtins will also usually result in improved code-readability. For
more information on built-in functions supported by the compiler, refer
to “Compiler Built-in Functions” on page 1-83.
VisualDSP++ 3.5 C Compiler and Library Manual 2-25
for ADSP-218x DSPs

Using Built-in Functions in Code Optimization
Examples of the two styles are:

int read_io() {
int ret_val;
asm("%0 = IO(0x20);" : "=e"(ret_val) : :);

return ret_val;
}

Bad: uses inline asm statement.

#include <sysreg.h>
#define ADDR 0x20
int read_io() {

return io_space_read(ADDR);
}

Good: uses sysreg.h.
2-26 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Achieving Optimal Performance from C Source Code
Smaller Applications: Optimizing for
Code Size

The same ethos for producing fast code also applies to producing small
code. You should present the algorithm in a way that gives the optimizer
excellent visibility of the operations and data, and hence the greatest free-
dom to safely manipulate the code to produce small applications.

Once the program is presented in this way, the optimization strategy will
depend on the code-size constraint that the program must obey. The first
step should be to optimize the application for full performance, using -O
or -ipa switches. If this obeys the code-size constraints, then no more
need be done.

The “optimize for space” switch -Os (on page 1-33). which may be used in
conjunction with IPA, will perform every performance-enhancing trans-
formation except those that increase code-size. In addition, the -e linker
switch (-flags-link -e if used from the compiler command line) may be
helpful (on page 1-23). This performs section elimination in the linker to
remove unneeded data and code. If the code produced with -Os and -e
does not meet the code-size constraint, some analysis of the source code
will be required to try to reduce the code-size further.

Note that loop transformations such as unrolling and software pipelining
increase code size. But it is these loop transformations that also give the
greatest performance benefit. Therefore, in many cases compiling for min-
imum code size will produce significantly slower code than optimizing for
speed.

The compiler provides a way to balance between the two extremes of -O
and -Os. This is the sliding-scale -Ov num switch (adjustable using the
optimization slider bar under Project Options in the VisualDSP++
IDDE), described on page 1-33. The n is a value between 0 and 100,
where the lower value corresponds to minimum code size and the upper to
maximum performance. A value in between will try to optimize the fre-
VisualDSP++ 3.5 C Compiler and Library Manual 2-27
for ADSP-218x DSPs

Smaller Applications: Optimizing for Code Size
quently executed regions of code for maximum performance, while
keeping the infrequently executed parts as small as possible. The switch is
most reliable when using profile-guided optimization, since the execution
counts of the various code regions have been measured experimentally.
Without PGO, the execution counts are estimated, based on the depth of
loop nesting.

� Tip: Avoid the use of inline code.

Avoid using the inline keyword to inline code for functions that are used
a number of times, especially if they not very small functions. The -Os
switch does not have any effect on the use of the inline keyword. It does,
however, prevent automatic inlining (using the -Oa switch described
on page 1-33) from increasing the code size. Macro functions can also
cause code expansion and should be used with care.
2-28 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Achieving Optimal Performance from C Source Code
Pragmas
Pragmas can assist optimization by allowing the programmer to make
assertions or suggestions to the compiler. This section looks at how they
can be used to finely tune source code. Refer “Pragmas” on page 1-99 for
full details of how each pragma works; the emphasis here will be in consid-
ering under what circumstances they are useful during the optimization
process.

In most cases the pragmas serve to give the compiler information which it
is unable to deduce for itself. It must be emphasized that the programmer
is responsible for making sure that the information given by the pragma is
valid in the context in which it is used. Use of a pragma to assert that a
function or loop has a quality that it does not in fact have is likely to result
in incorrect code and hence a malfunctioning application.

An advantage of the use of pragmas is that they allow code to remain por-
table, since they will normally be ignored by a compiler that does not
recognize them.

Function Pragmas
Function pragmas include:
#pragma const, #pragma pure, #pragma alloc, #pragma regs_clobbered,
and #pragma optimize_{off|for_speed|for_space},.

#pragma const

The pragma const pragma asserts to the compiler that a function does not
have any side effects (such as modifying global variables or data buffers),
and the result returned is only a function of the parameter values. The
pragma may be applied to a function prototype or definition. It helps the
compiler since two calls to the function with identical parameters will
always yield the same result. In this way, calls to #pragma const functions
may be hoisted out of loops if their parameters are loop independent.
VisualDSP++ 3.5 C Compiler and Library Manual 2-29
for ADSP-218x DSPs

Pragmas
#pragma pure

Like #pragma const, this pragma asserts to the compiler that a function
does not have any side effects (such as modifying global variables or data
buffers). However, the result returned may be a function of both the
parameter values and any global variables. The pragma may be applied to a
function prototype or definition. Two calls to the function with identical
parameters will always yield the same result provided that no global vari-
ables have been modified between the calls. Hence, calls to #pragma pure
functions may be hoisted out of loops if their parameters are loop inde-
pendent and no global variables are modified in the loop.

#pragma alloc

The pragma alloc pragma asserts that the function behaves like the
malloc library function. In particular, it returns a pointer to new memory
that cannot alias any pre-existing buffers. In the following code,

#pragma alloc
int *new_buf(void);
int *vmul(int *a, int *b) {

int i;
int *out = new_buf();
for (i=0; i<100; i++)

out[i] = a[i] * b[i];
}

Good: uses #pragma alloc to disambiguate out from a and b.

the use of the pragma allows the compiler to be sure that the write into
buffer out does not modify either of the two input buffers a or b, and,
therefore, the iterations of the loop may be re-ordered.
2-30 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Achieving Optimal Performance from C Source Code
#pragma regs_clobbered

The regs_clobbered pragma is a useful way to improve the performance
of code that makes function calls. The best use of the pragma is to increase
the number of call-preserved registers available across a function call.
There are two complementary ways in which this may be done.

First of all, suppose that you have a function written in assembly that you
wish to call from C source code. The regs_clobbered pragma may be
applied to the function prototype to specify which registers are “clob-
bered” by the assembly function, that is, which registers may have
different values before and after the function call. Consider for example an
simple assembly function to add two integers and mask the result to fit
into 8 bits:

_add_mask:
I6 = I4;
M5 = 1;
MODIFY(I6 += M5);
AY1 = DM(I6 += M5);
AX1 = DM(I6 += M6);
AY0 = 255;
AR = AX1 + AY1;
AR = AR AND AY0;
AX1 = AR;
RTS;

._add_mask.end

Clearly, the function does not modify the majority of the scratch registers
available and thus these could instead be used as call-preserved registers.
This way, fewer spills to the stack would be needed in the caller function.
Using the prototype

#pragma regs_clobbered "I6, M5, AX1, AY1, AY1, AR, ASTAT"

int add_mask(int, int);

Good: uses regs_clobbered to increase call-preserved register set.
VisualDSP++ 3.5 C Compiler and Library Manual 2-31
for ADSP-218x DSPs

Pragmas
the compiler is told which registers are modified by a call to the add_mask
function. The registers not specified by the pragma are assumed to pre-
serve their values across such a call and the compiler may use these spare
registers to its advantage when optimizing the call sites.

The pragma is also powerful when all of the source code is written in C. In
the above example, a C implementation might be:

int add_mask(int a, int b) {
return ((a+b)&255);

}

Bad: function thought to clobber entire volatile register set.

Since this function will not need many registers when compiled, it can be
defined using:

#pragma regs_clobbered "AX1, AY0, AY1, AR, M5, I6, CCset"
int add_mask(int a, int b) {

return ((a+b)&255);
}

Good: function compiled to preserve most registers.

to ensure that any other registers aside from AX1, AY0, AY1, AR, M5, I6
and the condition codes will not be modified by the function. If any other
registers are used in the compilation of the function, they will be saved
and restored during the function prologue and epilogue.

In general, it is not very helpful to specify any of the condition codes as
call-preserved as they are difficult to save and restore and are usually clob-
bered by any function. Moreover, it is usually of limited benefit to be able
to keep them live across a function call. Therefore, it is better to use CCset
(all condition codes) rather than ASTAT in the clobbered set above.

For more information, refer to “#pragma regs_clobbered string” on
page 1-111.
2-32 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Achieving Optimal Performance from C Source Code
#pragma optimize_{off|for_speed|for_space|as_cmd_line}

The optimize_ pragma may be used to change the optimization setting on
a function-by-function basis. In particular, it may be useful to optimize
functions that are rarely called (for example, error handling code) for
space (using #pragma optimize_for_space), whereas functions critical to
performance should be compiled for maximum speed
(#pragma optimize_for_speed). The #pragma optimize_off is useful for
debugging specific functions without increasing the size or decreasing the
performance of the overall application unnecessarily.

For more information, refer to “General Optimization Pragmas” on
page 1-105.

Loop Optimization Pragmas
Many pragmas are targeted towards helping to produce optimal code for
inner loops. These are the loop_count and no_alias pragmas.

#pragma loop_count

The loop_count pragma enables the programmer to inform the compiler
about a loop's iteration count. The compiler is able to make more reliable
decisions about the optimization strategy for a loop if it knows the itera-
tion count range. If you know that the loop count is always a multiple of
some constant, this can also be useful as it allows a loop to be partially
unrolled or vectorized without the need for conditionally-executed itera-
tions. Knowledge of the minimum trip count may allow the compiler to
omit the guards that are usually required after software pipelining. Any of
the parameters of the pragma that are unknown may be left blank.

An example of the use of the loop_count pragma might be:

#pragma loop_count(/*minimum*/ 40, /*maximum*/ 100, /*modulo*/ 4)
for (i=0; i<n; i++)

a[i] = b[i];
VisualDSP++ 3.5 C Compiler and Library Manual 2-33
for ADSP-218x DSPs

Pragmas
Good: the loop_count pragma gives compiler helpful information to
assist optimization.

For more information, refer to “#pragma loop_count(min, max, modulo)”
on page 1-104.

#pragma no_alias

When immediately preceding a loop, the no_alias pragma asserts that no
load or store in the loop accesses the same memory as any other. This
helps to produce shorter loop kernels as it permits instructions in the loop
to be rearranged more freely. See “#pragma no_alias” on page 1-105 for
more information.
2-34 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Achieving Optimal Performance from C Source Code
Useful Optimization Switches
These are the compiler switches useful during the optimization process.

Switch Name Description

-const-read-write
on page 1-20

Specifies that data accessed via a pointer to const data may be modi-
fied elsewhere.

-flags-link -e
on page 1-23

Specifies linker section elimination.

-ipa
on page 1-26

Turns on inter-procedural optimization. Implies use of -O.
May be used in conjunction with -Os or -Ov.

-no-fp-associative
on page 1-31

Does not treat floating-point multiply and addition as an associative.

-O
on page 1-32

Enables code optimizations and optimizes the file for speed.

-Os
on page 1-33

Optimizes the file for size.

-Ov num
on page 1-33

Controls speed vs. size optimizations (sliding scale).

-save-temps
on page 1-39

Saves intermediate files (for example, .s).
VisualDSP++ 3.5 C Compiler and Library Manual 2-35
for ADSP-218x DSPs

Useful Optimization Switches
2-36 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

3 C RUN-TIME LIBRARY

The C run-time library is a collection of functions that you can call from

your C programs. Many of these functions are implemented in
ADSP-218x DSP’s assembly language. C programs depend on library
functions to perform operations that are basic to the C language. These
operations include memory allocation, character and string conversions,
and math calculations.

This chapter describes the current release of the run-time library. Future
releases may include more functions. You may use the object files of the
library functions in systems based on ADSP-218x processors.

This chapter contains:

• “C Run-Time Library Guide” on page 3-2

• “Documented Library Functions” on page 3-14

• “C Run-Time Library Reference” on page 3-18

� For more information on the C standard library, see The Standard
C Library by P.J. Plauger, Prentice Hall, 1992. For more informa-
tion on the algorithms on which many of the library’s math
functions are based, see Cody, W. J. and W. Waite, “Software
Manual For The Elementary Functions”, Englewood Cliffs, New Jer-
sey: Prentice Hall,1980.
VisualDSP++ 3.5 C Compiler and Library Manual 3-1
for ADSP-218x DSPs

C Run-Time Library Guide
C Run-Time Library Guide
The C run-time library contains functions that you can call from your C
program. This section describes how to use the library.

Calling Library Functions
To use a C library function, call the function by name and give the appro-
priate arguments. The names and arguments for each function appear on
the function’s reference page. The reference pages appear in “C Run-Time
Library Reference” on page 3-18.

Like other functions you use, library functions should be declared. Decla-
rations are supplied in header files, as described in the section, “Working
with Library Header Files” on page 3-5.

Function names are C function names. If you call C run-time library func-
tions from an assembly language program, you must use the assembly
version of the function name: prefix an underscore on the name. For more
information on naming conventions, see the section, “C and Assembly
Language Interface” on page 1-148.

� You can use the archiver, described in the VisualDSP++ 3.5 Linker
and Utilities Manual for 16-Bit Processors, to build library archive
files of your own functions.

Using the Compiler�s Built-In Functions
The C compiler’s built-in functions are a set of functions that the com-
piler immediately recognizes and replaces with inline assembly code
instead of a function call. Typically, in-line assembly code is faster than a
library routine, and it does not incur the calling overhead. For example,
the absolute value function, abs(), is recognized by the compiler, which
subsequently replaces a call to the C run-time library version with an
in-line version.
3-2 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
To use built-in functions, your source must include the required standard
include file. For the abs functions this would require stdlib.h to be
included. There are built-in functions used to define some ANSI C
math.h, string.h and stdlib.h functions. There are also built-in func-
tions to support various ANALOG extensions to the ANSI standard
defined in the include file math_builtins.h. Not all built-in functions
have a library alternate definition. Therefore, the failure to use the
required include files can result in your program build failing to link.

If you want to use the C run-time library functions of the same name,
compile with the -no-builtin (no builtin functions) compiler switch.

Linking Library Functions
The C run-time library is organized as several libraries which are cata-
logued in Table 3-15 on page 3-4. The libraries and start-up files are
installed within the subdirectory ...218x\lib of your VisualDSP++
installation. When you call a run-time library function, the call creates a
reference that the linker resolves. One way to direct the linker to the
library's location is to use the default Linker Description File
(ADSP-21<your_target>.ldf).

If you are not using the default .LDF file, then either add the appropriate
library/libraries to the .LDF file used for your project, or use the compiler's
-l switch to specify the library to be added to the link line. For example,
the switches -lc -letsi will add the C library libc.dlb and the ETSI
support library libetsi.dlb to the list of libraries to be searched by the
linker. For more information on the ETSI support library, see “ETSI Sup-
port” on page 1-86. For more information on the .LDF file, see the
VisualDSP++ 3.5 Linker and Utilities Manual for 16-Bit Processors.
VisualDSP++ 3.5 C Compiler and Library Manual 3-3
for ADSP-218x DSPs

C Run-Time Library Guide
Working With Library Source Code
The source code for some functions in the C run-time libraries is provided
with your VisualDSP++ software. By default, the installation program
copies the source code to a subdirectory of the directory where the
run-time libraries are kept, named 218x\lib\src. Each function is kept in
a separate file. The filename is the name of the function with the appro-
priate extension for C or assembler source. If you do not intend to modify
any of the run-time library functions and are not interested in using the
source for reference, you can delete this directory and its contents to con-
serve disk space.

The source code is provided so you can customize specific functions for
your own needs. To modify these files, you need proficiency in
ADSP-218x DSP assembly language and an understanding of the
run-time environment, as explained in “C Run-Time Model and Environ-

Table 3-15. C Run-Time Library Files

218x\lib Directory Description

218x_hdr.doj Default C run-time initialization code . Calls main().

218x_ezkit_hdr.doj C run-time initialization code with EZ-Kit monitor program
support. Calls main().

218x_int_tab.doj Default interrupt vector code

218x_ezkit_int_tab.doj
2189_int_tab.doj

Object files for backward compatibility

218x_exit.doj Dummy exit object for backwards compatibility.

libc.dlb C run-time library

libcab.dlb C run-time library code with autobuffering support

libetsi.dlb ETSI library support

libio.dlb I/O library

libioab.dlb I/O library with autobuffering support
3-4 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
ment” on page 1-132. Before you make any modifications to the source
code, copy the source code to a file with a different filename and rename
the function itself. Test the function before you use it in your system to
verify that it is functionally correct.

� Analog Devices only supports the run-time library functions as
provided.

Working with Library Header Files
When you use a library function in your program, you should also include
the function’s header with the #include preprocessor command. The
header file for each function is identified in the Synopsis section of the
function’s reference page. Header files contain function prototypes. The
compiler uses these prototypes to check that each function is called with
the correct arguments.

A list of the header files that are supplied with this release of the cc218x
compiler appears in Table 3-16. You should use a C standard text to aug-
ment the information supplied in this chapter.

Table 3-16. C Run-Time Library Header Files

Header Purpose Standard

assert.h Diagnostics ANSI

circ.h Support for circular buffers C Extension

ctype.h Character handling ANSI

def2181.h Memory map definitions C Extension

def218x.h Memory map definitions C Extension

errno.h Error handling ANSI

ffts.h FFT functions C Extension

filters.h DSP filters C Extension

float.h Floating-point types ANSI
VisualDSP++ 3.5 C Compiler and Library Manual 3-5
for ADSP-218x DSPs

C Run-Time Library Guide
The following sections provides descriptions of all header files.

assert.h

The assert.h header file contains the assert macro.

ctype.h

The ctype.h header file contains functions for character handling, such as
isalpha, tolower, and others.

fract.h Macros to use fract C Extension

iso646.h Boolean operators ANSI

limits.h Limits ANSI

locale.h Localization ANSI

math.h Mathematics ANSI

misc.h Timer C Extension

setjmp.h Non-local jumps ANSI

signal.h Signal handling ANSI

sport.h Serial port C Extension

stdarg.h Variable arguments ANSI

stddef.h Standard definitions ANSI

stdio.h Input/Output ANSI

stdlib.h Standard library ANSI

string.h String handling ANSI

sysreg.h Efficient system access C Extension

Table 3-16. C Run-Time Library Header Files (Cont’d)

Header Purpose Standard
3-6 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
def2181.h � Memory Map Definitions

The def2181.h header file contains macros that define reserved memory
addresses for a ADSP-2181 processor. These memory addresses are used as
system registers.

def2181x.h � Memory Map Definitions

The def2181.h header file contains macros that define reserved memory
addresses for a ADSP-218x processor, apart from a ADSP-2181 processor.
These memory addresses are used as system registers.

errno.h

The errno.h header file provides access to errno. This facility is not, in
general, supported by the rest of the library.

ffts.h � Fast Fourier Transforms

This category includes the Fast Fourier Transform functions of the C
library. These functions are Analog Devices extensions to the ANSI
standard.

� fftN stands for the entire family of Fast Fourier Transform func-
tions: fft1024, fft512, etc.

The fftN functions compute the Fast Fourier Transform (FFT) of their
N-point complex input signal. The ifftN functions compute the Inverse
Fast Fourier Transform of their N-point complex input signal. The input
to each of these functions is two integer arrays (real and imaginary) of N
elements. The routines output two N-element arrays, and an associated
block exponent for them.

� If you only wish to input the real part of a signal, make sure that
the imaginary input array is filled with zeros before calling the
function.
VisualDSP++ 3.5 C Compiler and Library Manual 3-7
for ADSP-218x DSPs

C Run-Time Library Guide
The functions first bit-reverse the input arrays and then process them with
an optimized block floating-point FFT (or IFFT) routine.

filters.h � DSP Filters

This category includes the digital signal processing filter functions of the
C library. These functions are Analog Devices extensions to the ANSI
standard.

float.h � Floating Point

The float.h file defines the format of floating-point data types. The
FLT_ROUNDS macro, defined in the header file, is set to the C run-time
environment definition of the rounding mode for float variables, which
is round-towards-nearest.

fract.h � ADSP-218x DSP Macro Fract Definitions

The fract.h header file defines macros used to manipulate fract fixed
point types.

� Improved fractional support is provided through the new ETSI
operators added for VisualDSP++ 3.5 (see “ETSI Support” on
page 1-86).

iso646.h

The iso646.h header file defines symbolic names for certain C operators;
the symbolic names and their associated value are shown in Table 3-17.

Table 3-17. Symbolic Names Defined in iso646.h

Symbolic Name Equivalent

and &&

and_eq &=
3-8 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
locale.h

The locale.h header file contains definitions for expressing numeric,
monetary, time, and other data.

math.h

This category includes the floating-point mathematical functions of the C
run-time library. The mathematical functions are ANSI standard. The
math.h header file contains prototypes for functions used to calculate
mathematical properties of single-precision floating type variables. On the
ADSP-218x processors, double and float are both single-precision float-
ing point types. Additionally, some functions support a 16-bit fractional
data type.

The math.h file also defines the macro HUGE_VAL. HUGE_VAL evaluates to
the maximum positive value that the type double can support. The macros
EDOM and ERANGE, defined in errno.h, are used by math.h functions to
indicate domain and range errors.

bitand &

bitor |

compl ~

not !

not_eq !=

or ||

or_eq |=

xor ^

xor_eq ^=

Table 3-17. Symbolic Names Defined in iso646.h (Cont’d)

Symbolic Name Equivalent
VisualDSP++ 3.5 C Compiler and Library Manual 3-9
for ADSP-218x DSPs

C Run-Time Library Guide
Some of the functions in this header file exist as both integer and floating
point. The floating-point functions typically have an f prefix. Make sure
you are using the correct one.

� The C language provides for implicit type conversion, so the fol-
lowing sequence produces surprising results with no warnings:

float x,y;

y = abs(x);

The value in x is truncated to an integer prior to calculating the
absolute value, then reconverted to floating point for the assign-
ment to y.

misc.h � ADSP-218x DSP Timer Functions

The misc.h header file includes processor-specific timer functions of the C
library, such as timer_set(), timer_on(), and timer_off().

setjmp.h

The setjmp.h header file contains setjmp and longjmp for non-local
jumps.

signal.h

The signal.h header file provides function prototypes for the standard
ANSI signal.h routines and also for several ADSP-218x DSP extensions
such as interrupt() and clear_interrupt().

The signal handling functions process conditions (hardware signals) that
can occur during program execution. They determine the way that your C
program responds to these signals. The functions are designed to process
such signals as external interrupts and timer interrupts.
3-10 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
sport.h � ADSP-218x DSP Serial Ports

The sport.h header file contains macros and subroutines to support the
serial ports of the ADSP-218x DSPs.

stdarg.h

The stdarg.h header file contains definitions needed for functions that
accept a variable number of arguments. Programs that call such functions
must include a prototype for the functions referenced.

stdio.h

The stdio.h header file defines a set of functions, macros, and data types
for performing input and output. Applications that use the facilities of
this header file should link with the I/O library libio.dlb in the same way
as linking with the C run-time library libc.dlb. The library is not inter-
rupt-safe and should not therefore be called either directly or indirectly
from an interrupt service routine.

The implementation of the stdio.h routines is based on a simple interface
with a device driver that provides a set of low-level primitives for open,
close, read, write, and seek operations. By default, these operations are
provided by the VisualDSP++ simulator and EZ-kits. However, alterna-
tive device drivers may be registered (see “Extending I/O Support To New
Devices” on page 1-141) that can then be used through the stdio.h
functions.

The following restrictions apply to this software release:

• Functions tmpfile() and tmpnam() are not available,

• Functions rename() and remove() are only supported under the
default device driver supplied by the VisualDSP++ simulator and
EZ-kits, and they only operate on the host file system,
VisualDSP++ 3.5 C Compiler and Library Manual 3-11
for ADSP-218x DSPs

C Run-Time Library Guide
• Positioning within a file that has been opened as a text stream is
only supported if the lines within the file are terminated by the
character sequence \r\n.

When using the default device driver, all I/O operations are channeled
through the C function _primIO(). The assembly label has two under-
scores, __primIO. The _primIO() function accepts no arguments. Instead,
it examines the I/O control block at label _primIOCB. Without external
intervention by a host environment, the _primIO routine simply returns,
which indicates failure of the request.

At program termination, the host environment will close down any physi-
cal connection between the application and an opened file. However, the
I/O library will not implicitly close any opened streams to avoid an unnec-
essary overheads (particularly with respect to memory occupancy).

Therefore, unless explicit action is taken by an application any unflushed
output may be lost. Any output generated by printf is always flushed but
output generated by other library functions, such as putchar, fwrite,
fprintf, will not be automatically flushed. Applications should therefore
arrange to close down any streams that they open. Note that the function
reference fflush (NULL); will flush the buffers of all opened streams.

stdlib.h

The stdlib.h header file contains general utilities specified by the C stan-
dard. These include some integer math functions, such as abs, div, and
rand; general string-to-numeric conversions; memory allocation functions,
such as malloc and free; and termination functions, such as exit. This
header file also contains prototypes for miscellaneous functions such as
bsearch and qsort.

string.h

The string.h header file contains string handling functions, including
strcpy and memcpy.
3-12 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
sysreg.h

The sysreg.h header file defines a set of functions that provide efficient
system access to registers, modes and addresses not normally accessible
from C source. See “Compiler Built-in Functions” on page 1-83 for more
information on these functions.
VisualDSP++ 3.5 C Compiler and Library Manual 3-13
for ADSP-218x DSPs

Documented Library Functions
Documented Library Functions
The following tables list the library functions documented in this chapter.

� These tables list the functions for each header file separately; how-
ever, the reference pages for these library functions are in
alphabetical order.

Table 3-18. Library Functions in the ctype.h Header File

isalnum isalpha iscntrl

isdigit isgraph islower

isprint ispunct isspace

isupper isxdigit tolower

toupper

Table 3-19. Library Functions in the ffts.h Header File

fftN (fft1024, fft512, fft256, fft128, fft64, fft32, fft16, fft8)

ifftN (ifft1024, ifft512, ifft256, ifft128, ifft64, ifft32, ifft16, ifft8)

Table 3-20. Library Functions in the filters.h Header File

biquad demean_buffer fir

iir

Table 3-21. Library Functions in the math.h Header File

acos asin atan

atan2 ceil cos

cosh cot exp

fabs floor fmod
3-14 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
frexp isinf isnan

ldexp log log10

modf pow sin

sinh tan tanh

Table 3-22. Library Functions in the misc.h Header File

timer_off timer_on timer_set

Table 3-23. Library Functions in the setjmp.h Header File

longjmp setjmp

Table 3-24. Library Functions in the signal.h Header File

clear_interrupt interrupt raise

signal

Table 3-25. Library Functions in the stdarg.h Header File

va_arg va_end va_start

Table 3-26. Supported Library Functions in the stdio.h Header File

clearerr fclose feof

ferror fflush fgetc

fgetpos fgets fopen

fprintf fputc fputs

fread freopen fscanf

fseek fsetpos ftell

fwrite getc getchar

Table 3-21. Library Functions in the math.h Header File (Cont’d)
VisualDSP++ 3.5 C Compiler and Library Manual 3-15
for ADSP-218x DSPs

Documented Library Functions
gets perror putc

putchar puts remove

rename rewind scanf

setbuf setvbuf sprintf

sscanf ungetc vfprintf

vprintf vsprintf

Table 3-27. Library Functions in the stdlib.h Header File

abort abs atexit

atof atoi atol

bsearch calloc div

exit free labs

ldiv malloc qsort

rand realloc srand

strtod strtodf strtol

strtoul

Table 3-28. Library Functions in the string.h Header File

memchr memcmp memcpy

memmove memset strcat

strchr strcmp strcoll

strcpy strcspn strerror

strlen strncat strncmp

strncpy strpbrk strrchr

strspn strstr strtok

strxfrm

Table 3-26. Supported Library Functions in the stdio.h Header File
3-16 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
Table 3-29. Library Functions in the sysreg.h Header File

disable_interrupts enable_interrupts

io_space_read io_space_write

sysreg_read sysreg_write
VisualDSP++ 3.5 C Compiler and Library Manual 3-17
for ADSP-218x DSPs

C Run-Time Library Reference
C Run-Time Library Reference
The C run-time library is a collection of functions that you can call from
your C programs.

� The information that follows applies to all of the functions in the
library.

Notation Conventions
An interval of numbers is indicated by the minimum and maximum, sepa-
rated by a comma, and enclosed in two square brackets, two parentheses,
or one of each. A square bracket indicates that the endpoint is included in
the set of numbers; a parenthesis indicates that the endpoint is not
included.

Reference Format
Each function in the library has a reference page. These pages have the fol-
lowing format:

Name and Purpose of the function

Synopsis—Required header file and functional prototype

Description—Function specification

Error Conditions—How the function indicates an error

Example—Typical function usage

See Also—Related functions
3-18 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
abort

abnormal program end

Synopsis

#include <stdlib.h>

void abort(void);

Description

The abort function causes an abnormal program termination by raising a
SIGABRT signal. If the SIGABRT handler returns, abort() calls exit() to
terminate the program with a failure condition

Error Conditions

The abort function does not return.

Example

#include <stdlib.h>

extern int errors;

if(errors) /* terminate program if */

abort(); /* errors are present */

See Also

atexit, exit
VisualDSP++ 3.5 C Compiler and Library Manual 3-19
for ADSP-218x DSPs

C Run-Time Library Reference
abs

absolute value

Synopsis

#include <stdlib.h>

int abs(int j);

Description

The abs function returns the absolute value of its int input. The abs
function is implemented through a built-in. The built-in causes the com-
piler to emit an inline instruction to perform the required function at the
point where abs is called.

� abs(INT_MIN) returns INT_MIN.

Error Conditions

The abs function does not return an error condition.

Example

#include <stdlib.h>

int i;

i = abs(-5); /* i == 5 */

See Also

fabs, labs
3-20 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
acos

arc cosine

Synopsis

#include <math.h>

double acos(double x);

float acosf (float x);

fract16 acos_fr16 (fract16 x);

Description

The acos function returns the arc cosine of the argument. The input must
be in the range [-1, 1]. The output, in radians, is in the range [0, π].

The acos_fr16 function is only defined for input values between 0 and
0.9 (=0x7333). The input argument is in radians. Output values range
from acos(0)*2π(= 0x7FFF) to acos(0.9)*2/π(= 0x24C1).

Error Conditions

The acos function returns a zero if the input is not in the range [-1, 1].

Example

#include <math.h>

double y;

y = acos(0.0); /* y = π/2 */

See Also

cos
VisualDSP++ 3.5 C Compiler and Library Manual 3-21
for ADSP-218x DSPs

C Run-Time Library Reference
asin

arc sine

Synopsis

#include <math.h>

double asin(double x);

float asinf (float x);

fract16 asin_fr16(fract16 x);

Description

The asin function returns the arc sine of the argument. The input must
be in the range [-1, 1]. The output, in radians, is in the range -π/2 to π/2.

The asin_fr16 function is only defined for input values between -0.9
(=0X8CCD) and 0.9 (=0x7333). The input argument is in radians. Output
values range from asin(-0.9)*2/π (= 0XA4C1) to asin(0.9)*2/π(=
0x5B3F).

Error Conditions

The asin function returns a zero if the input is not in the range [-1, 1].

Example

#include <math.h>

double y;

y = asin(1.0); /* y = π/2 */

See Also

sin
3-22 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
atan

arc tangent

Synopsis

#include <math.h>

double atan(double x);

float atanf (float x);

fract16 atan_fr16 (fract16 x);

Description

The atan function returns the arc tangent of the argument. The output, in
radians, is in the range -π/2 to π/2.

The atan_fr16 function covers the output range from -π/4 (input value
0x8000, output value 0x9B78) to π/4 (input value 0x7FFF, output value
0x6488). The input argument is in radians.

Error Conditions

The atan function does not return an error condition.

Example

#include <math.h>

double y;

y = atan(0.0); /* y = 0.0 */

See Also

atan2, tan
VisualDSP++ 3.5 C Compiler and Library Manual 3-23
for ADSP-218x DSPs

C Run-Time Library Reference
atan2

arc tangent of quotient

Synopsis

#include <math.h>

double atan2 (double x, double y);

float atan2f (float x, float y);

fract16 atan2 (fract16 x, fract16 y);

Description

The atan2 function computes the arc tangent of the input value x divided
by input value y. The output, in radians, is in the range [-π, π].

The atan2_fr16 function uses the full range from -π/4 to π/4 (0x8000 to
0x7FFF) for both input and output arguments. This corresponds to a scal-
ing by π compared to the floating-point function. The input argument is
in radians.

Error Conditions

The atan2 function returns a zero if x = 0 and y < > 0.

Example

#include <math.h>

double a;

float b;

a = atan2(0.0, 0.5); /* the error condition: a = 0.0 */

b = atan2(1.0, 0.0); /* b = π/2 */

See Also

atan, tan
3-24 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
atexit

register a function to call at program termination

Synopsis

#include <stdlib.h>

int atexit(void (*func)(void));

Description

The atexit function registers a function to be called at program termina-
tion. Functions are called once for each time they are registered, in the
reverse order of registration. Up to 32 functions can be registered using
atexit.

Error Conditions

The atexit function returns a non-zero value if the function cannot be
registered.

Example

#include <stdlib.h>

extern void goodbye(void);

if (atexit(goodbye()))

exit(1);

See Also

abort, exit
VisualDSP++ 3.5 C Compiler and Library Manual 3-25
for ADSP-218x DSPs

C Run-Time Library Reference
atof

convert string to a double

Synopsis

#include <stdlib.h>

double atof(const char *nptr);

Description

The atof function converts a character string into a floating-point value
of type double, and returns its value. The character string is pointed to by
the argument nptr and may contain any number of leading whitespace
characters (as determined by the function isspace) followed by a
floating-point number. The floating-point number may either be of the
form of a decimal floating-point number or a hexadecimal floating-point
number.

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (–); and
digits are one or more decimal digits. The sequence of digits may contain
a decimal point (.).

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

The form of a hexadecimal floating-point number is:

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign] [digits]]
3-26 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
A hexadecimal floating-point number may start with an optional plus (+)
or minus (-) followed by the hexadecimal prefix 0x or 0X . This character
sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).

The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P , an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number will stop the
scan.

Error Conditions

The atof function returns a zero if no conversion could be made. If the
correct value results in an overflow, a positive or negative (as appropriate)
HUGE_VAL is returned. If the correct value results in an underflow, 0.0 is
returned. The ERANGE value is stored in errno in the case of either an over-
flow or underflow.

Notes

The function reference atof (pdata) is functionally equivalent to:

strtod (pdata, (char *) NULL);

and therefore, if the function returns zero, it is not possible to determine
whether the character string contained a (valid) representation of 0.0 or
some invalid numerical string.

Example

#include <stdlib.h>

double x;

x = atof("5.5"); /* x == 5.5 */
VisualDSP++ 3.5 C Compiler and Library Manual 3-27
for ADSP-218x DSPs

C Run-Time Library Reference
See Also

atoi, atol, strtod
3-28 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
atoi

convert string to integer

Synopsis

#include <stdlib.h>

int atoi(const char *nptr);

Description

The atoi function converts a character string to an integer value. The
character string to be converted is pointed to by the input pointer, nptr.
The function clears any leading characters for which isspace would return
true. Conversion begins at the first digit (with an optional preceding sign)
and terminates at the first non-digit.

Error Conditions

The atoi function returns a zero if no conversion can be made.

Example

#include <stdlib.h>

int i;

i = atoi("5"); /* i == 5 */

See Also

atof, atol, strtod, strtol, strtoul
VisualDSP++ 3.5 C Compiler and Library Manual 3-29
for ADSP-218x DSPs

C Run-Time Library Reference
atol

convert string to long integer

Synopsis

#include <stdlib.h>

long atol(const char *nptr);

Description

The atol function converts a character string to a long integer value. The
character string to be converted is pointed to by the input pointer, nptr.
The function clears any leading characters for which isspace would return
true. Conversion begins at the first digit (with an optional preceding sign)
and terminates at the first non-digit.

� There is no way to determine if a zero is a valid result or an indica-
tor of an invalid string.

Error Conditions

The atol function returns a zero if no conversion can be made.

Example

#include <stdlib.h>

long int i;

i = atol("5"); /* i == 5 */

See Also

atof, atoi, strtod, strtol, strtoul
3-30 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
biquad

biquad filter section

Synopsis

#include <filters.h>

int biquad(int sample, int pm coeffs[],

int dm state[], int sections);

Description

This function is an Analog Devices extension to the ANSI standard.

The biquad function implements a biquad filter. The function produces
the filtered response of its input data. The parameter sections specifies
the number of biquad sections. The biquad filter implemented in this
function is based on the Oppenheim and Schafer Nth order Direct Form
II cascaded scheme. The characteristics of the filter depend on the coeffi-
cient values supplied by the calling program.

The coeffs array must be five (5) times the number of sections in length
and it also must be located in program memory (pm). The definition is:

int pm coeffs[5*sections];

The state array holds two delay elements per section. It also has one extra
location that holds an internal pointer. The total length must be
2*sections + 1. The definition is:

int dm state[2*sections + 1];

You cannot access the state array, except that the array should be initial-
ized to all zeros before the first call to biquad. The first location of state is
an address. Setting the address to zero tells the function that it is being
called for the first time.
VisualDSP++ 3.5 C Compiler and Library Manual 3-31
for ADSP-218x DSPs

C Run-Time Library Reference
Error Conditions

The biquad function does not return an error condition.

Example

#include <filters.h>
#define TAPS 9

float sample, output, state[2*TAPS+1];
float pm coeffs[5*TAPS];
int i;

for (i = 0; i < 2*TAPS+1; i++)
state[i] = 0;/* initialize state array */

output = biquad (sample, coeffs, state, TAPS);
3-32 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
N = the number of biquad sections.

The algorithm shown here is adapted from Oppenheim, Alan V. and
Ronald Schafer, Digital Signal Processing, Englewood Cliffs, New Jersey:
Prentice Hall, 1975.

See Also

fir, iir
VisualDSP++ 3.5 C Compiler and Library Manual 3-33
for ADSP-218x DSPs

C Run-Time Library Reference
bsearch

perform binary search in a sorted array

Synopsis

#include <stdlib.h>

void *bsearch(const void *key, const void *base,

size_t nelem, size_t size,

int (*compare)(const void *, const void *));

Description

The bsearch function executes a binary search operation on a pre-sorted
array, where:

• key is a pointer to the element to search for

• base points to the start of the array

• nelem is the number of elements in the array

• size is the size of each element of the array

• *compare points to the function used to compare two elements. It
takes as parameters a pointer to the key and a pointer to an array
element and should return a value less than, equal to, or greater
than zero, according to whether the first parameter is less than,
equal to, or greater than the second.

The bsearch function returns a pointer to the first occurrence of key in
the array.

Error Conditions

The bsearch function returns a null pointer if the key is not found in the
array.
3-34 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
Example

#include <stdlib.h>

char *answer;

char base[50][3];

answer = bsearch("g", base, 50, 3, strcmp);

See Also

qsort
VisualDSP++ 3.5 C Compiler and Library Manual 3-35
for ADSP-218x DSPs

C Run-Time Library Reference
calloc

allocate and initialize memory

Synopsis

#include <stdlib.h>

void *calloc(size_t nmemb, size_t size);

Description

The calloc function returns a pointer to a range of dynamically allocated
memory that has been initialized to zero. The number of elements (the
first argument) multiplied by the size of each element (the second argu-
ment) is the total memory allocated. The memory may be deallocated with
the free function.

Error Conditions

The calloc function returns a null pointer if unable to allocate the
requested memory.

Example

#include <stdlib.h>

int *ptr;

ptr = (int *) calloc(10, sizeof(int));

/* ptr points to a zeroed array of length 10 */

See Also

free, malloc, realloc
3-36 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
ceil

ceiling

Synopsis

#include <math.h>

double ceil (double x);

float ceilf (float x);

Description

The ceil functions return the smallest integral value, expressed as double,
that is not less than its input.

Error Conditions

The ceil functions do not return an error condition.

Example

#include <math.h>
double y;
float x;

y = ceil (1.05); /* y = 2.0 */
x = ceilf (-1.05); /* y = -1.0 */

See Also

floor
VisualDSP++ 3.5 C Compiler and Library Manual 3-37
for ADSP-218x DSPs

C Run-Time Library Reference
clear_interrupt

clear a pending signal

Synopsis

#include <signal.h>

int clear_interrupt(int sig);

Description

The clear_interrupt function sets a bit in the IFC (Interrupt Force and
Clear register) to clear a pending interrupt. The sig argument must be
one of the processor signals shown below for the ADSP-218x DSPs.

Error Conditions

The clear_interrupt function returns a -1 if the parameter is not a valid
signal and a zero in all other cases.

Table 3-30. ADSP-218x DSP Signals

Sig Value Definition

SIGTIMER Timer interrupt

SIGIRQ0 Interrupt 0

SIGSPORT1RECV Signal Sport 1 receive

SIGIRQ1 Interrupt 1

SIGSPORT1XMIT Signal Sport 1 transmit

SIGBDMA Byte DMA interrupt

SIGIRQE Level sensitive

SIGSPORT0RECV Signal Sport 0 receive

SIGSPORT0XMIT Signal Sport 0 transmit

SIGIRQ2 Interrupt 2
3-38 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
Example

#include <signal.h>

clear_interrupt(SIGTIMER);

/* clears the timer clear bit in IFC */

See Also

interrupt, raise, signal
VisualDSP++ 3.5 C Compiler and Library Manual 3-39
for ADSP-218x DSPs

C Run-Time Library Reference
copysign

copy the sign

Synopsis

#include <math.h>

double copysign (double parm1, double parm2);

float copysignf (float parm1, float parm2);

fract16 copysign_fr16 (fract16 parm1, fract16 parm2);

Description

This function copies the sign of the second argument to the first
argument.

Algorithm

return(|parm1| * copysignof(parm2))

Domain

Full Range for type of parameters used.
3-40 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
cos

cosine

Synopsis

#include <math.h>

double cos(double);

float cosf (float);

fract16 cos_fr16 (fract16);

Description

The cos function returns the cosine of the argument. The input is inter-
preted as radians; the output is in the range [-1, 1].

The cos_fr16 function inputs a fractional value in the range [-1.0, 1.0)
corresponding to [-π/2, π/2]. The domain represents half a cycle which
can be used to derive a full cycle if required (see Notes below). The result,
in radians, is in the range [-1.0, 1.0).

Error Conditions

The cos function does not return an error condition.

Example

#include <math.h>

double y;

y = cos(3.14159); /* y = -1.0 */
VisualDSP++ 3.5 C Compiler and Library Manual 3-41
for ADSP-218x DSPs

C Run-Time Library Reference
Notes

The domain of the cos_fr16 function is restricted to the fractional range
[0x8000, 0x7fff] which corresponds to half a period from –(π /2) to π/2.
It is possible however to derive the full period using the following proper-
ties of the function.

cosine [0, π/2] = -cosine [π, 3/2 π]
cosine [-π/2, 0] = -cosine [π/2, π]

The function below uses these properties to calculate the full period (from
0 to 2π) of the cosine function using an input domain of [0, 0x7fff].

#include <math.h>

fract16 cos2pi_fr16 (fract16 x)
{

if (x < 0x2000) { /* <0.25 */
/* first quadrant [0..π/2): */
/* cos_fr16([0x0..0x7fff]) = [0..0x7fff) */
return cos_fr16(x * 4);

} else if (x < 0x6000) { /* < 0.75 */
/* if (x < 0x4000) */
/* second quadrant [π/2..π): */
/* -cos_fr16([0x8000..0x0)) = [0x7fff..0) */
/* */
/* if (x < 0x6000) */
/* third quadrant [π..3/2π): */
/* -cos_fr16([0x0..0x7fff]) = [0..0x8000) */
return -cos_fr16((0xc000 + x) * 4);

} else {
/* fourth quadrant [3/2π..π): */
/* cos_fr16([0x8000..0x0)) = [0x8000..0) */
return cos_fr16((0x8000 + x) * 4);

}
}

3-42 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
See Also

acos, sin
VisualDSP++ 3.5 C Compiler and Library Manual 3-43
for ADSP-218x DSPs

C Run-Time Library Reference
cosh

hyperbolic cosine

Synopsis

#include <math.h>

double cosh(double);

Description

The cosh function returns the hyperbolic cosine of its argument.

Error Conditions

The cosh function returns the IEEE constant +Inf if the argument is out-
side the domain.

Example

#include <math.h>

double x,y;

y = cosh(x);

See Also

sinh
3-44 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
cot

cotangent

Synopsis

#include <math.h>

float cotf (float a)

double cot (double a)

Description

This function calculates the cotangent of its argument a, which is mea-
sured in radians. If a is outside of the domain, the function returns 0.

Algorithm

 c = cot(a)

Domain

 x = [–9099 ... 9099]
VisualDSP++ 3.5 C Compiler and Library Manual 3-45
for ADSP-218x DSPs

C Run-Time Library Reference
demean_buffer

remove the mean of a data buffer

Synopsis

#include <filters.h>

int demean_buffer (int *input_buffer, int old_mean, int length)

Description

The demean_buffer() routine removes a DC-bias from input signals and
the mean from a buffer of data. It can also execute a notch filter on the
input based on an adaptive filter. (See “Adaptive Signal Processing” from
Prentice Hall (1985).)

demean_buffer returns the mean of the current buffer as a result. This
value should be passed as a parameter to the function on the next call; the
first call to demean_buffer should have a 0 for the old_mean value.

Error Conditions

The demean_buffer function does not return an error condition.

Example

#include <filters.h
#define BUFSIZE 1024

int data_buffer [BUFSIZE];
int data_mean = 0;
/* The buffer is filled with data, possibly from a converter. */

/* Remove the mean from the buffer with this demean function */

data_demean = demean_buffer(data_buffer, data_mean, BUFSIZE);

/* or, as in this example: */
3-46 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
{
int i, temp_mean;
temp_mean = 0;
for (i=0; i<BUFSIZE; i++)

temp_mean += data_buffer[i];
temp_mean /= BUFSIZE;
for (i=0; i<BUFSIZE; i++)

data_buffer[i] -= temp_mean;
}

See Also

No references to this function.
VisualDSP++ 3.5 C Compiler and Library Manual 3-47
for ADSP-218x DSPs

C Run-Time Library Reference
disable_interrupts

disable interrupts

Synopsis

include <sysreg.h>

void disable_interrupts(void)

Description

The disable_interrupts function causes the compiler to emit an instruc-
tion to disable hardware interrupts.

This function is implemented as a compiler built-in; the emitted instruc-
tion will be inline at the point of disable_interrupts use. The inclusion
of the sysreg.h include file is mandatory when using
disable_interrupts.

The disable_interrupts function does not return a value.

Error Conditions

The disable_interrupts function does not return, raise, or set any error
conditions.

Example

#include <sysreg.h>

main(){

disable_interrupts(); // emits "DIS INTS;" instruction inline

}

See Also

enable_interrupts, io_space_read, io_space_write, sysreg_read,
sysreg_write
3-48 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
div

division

Synopsis

#include <stdlib.h>

div_t div(int numer, int denom);

Description

The div function divides numer by denom, both of type int, and returns a
structure of type div_t. The type div_t is defined as

typedef struct {

int quot;

int rem;

} div_t

where quot is the quotient of the division and rem is the remainder, such
that if result is of type div_t,

result.quot * denom + result.rem == numer

Error Conditions

If denom is zero, the behavior of the div function is undefined.

Example

#include <stdlib.h>

div_t result;

result = div(5, 2); /* result.quot=2, result.rem=1 */

See Also

fmod, ldiv, modf
VisualDSP++ 3.5 C Compiler and Library Manual 3-49
for ADSP-218x DSPs

C Run-Time Library Reference
enable_interrupts

enable interrupts

Synopsis

include <sysreg.h>

void enable_interrupts(void)

Description

The enable_interrupts function causes the compiler to emit an instruc-
tion to enable hardware interrupts.

This function is implemented as a compiler built-in; the emitted instruc-
tion will be inline at the point of enable_interrupts use.

The inclusion of the sysreg.h include file is mandatory when using
enable_interrupts.

The enable_interrupts function does not return a value.

Error Conditions

The enable_interrupts function does not return, raise, or set any error
conditions.

Example

#include <sysreg.h>

main(){

enable_interrupts(); // emits "ENA INTS;" instruction inline

}

See Also

disable_interrupts, io_space_read, io_space_write, sysreg_read,
sysreg_write
3-50 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
exit

normal program termination

Synopsis

#include <stdlib.h>

void exit(int status);

Description

The exit function causes normal program termination. The functions
registered by the atexit function are called in reverse order of their regis-
tration and the microprocessor is put into the IDLE state. The status
argument is stored in register AX1, and control is passed to the label
___lib_prog_term, which is defined in the run-time start-up.

Error Conditions

The exit function does not return an error condition.

Example

#include <stdlib.h>

exit(EXIT_SUCCESS);

See Also

abort, atexit
VisualDSP++ 3.5 C Compiler and Library Manual 3-51
for ADSP-218x DSPs

C Run-Time Library Reference
exp

exponential

Synopsis

#include <math.h>

double exp(double);

float expf(float);

Description

The exp function computes the exponential value e to the power of its
argument. The argument must be in the range [-87.9 , 88.6].

Error Conditions

The exp function returns the value HUGE_VAL and stores the value ERANGE
in errno when there is an overflow error. In the case of underflow, the exp
function returns a zero.

Example

#include <math.h>

double y;

y = exp(1.0); /* y = 2.71828...*/

See Also

log, pow
3-52 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
fabs

float absolute value

Synopsis

#include <math.h>

double fabs(double);

float fabsf(float);

Description

The fabs function returns the absolute value of the argument.

Error Conditions

The fabs function does not return an error condition.

Example

#include <math.h>

double y;

y = fabs(-2.3); /* y = 2.3 */

y = fabs(2.3); /* y = 2.3 */

See Also

abs, labs
VisualDSP++ 3.5 C Compiler and Library Manual 3-53
for ADSP-218x DSPs

C Run-Time Library Reference
fftN

N-point complex input fast Fourier transform (FFT)

Synopsis

#include <ffts.h>
int fft1024(int rl_in[],

int im_in[],
int rl_out[],
int im_out[]);

int fft512(int rl_in[],
int im_in[],
int rl_out[],
int im_out[]);

int fft256(int rl_in[],
int im_in[],
int rl_out[],
int im_out[]);

int fft128(int rl_in[],
int im_in[],
int rl_out[],
int im_out[]);

int fft64(int rl_in[],
int im_in[],
int rl_out[],
int im_out[]);

int fft32(int rl_in[],
int im_in[],
int rl_out[],
int im_out[]);

int fft16(int rl_in[],
int im_in[],
int rl_out[],
int im_out[]);
3-54 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
int fft8(int rl_in[],
int im_in[],
int rl_out[],
int im_out[]);

Description

These functions are Analog Devices extensions to the ANSI standard.

 Each of these eight fftN functions computes the N-point radix-2 Fast
Fourier transform (FFT) of its integer input (where N is 8, 16, 32, 64, 128,
256, 512, or 1024).

There are eight distinct functions in this set. They all perform the same
function with the same type and number of arguments. The only differ-
ence between them is the size of the arrays on which they operate. To call
a particular function, substitute the number of points for N; for example,

fft8(r_inp, i_inp, r_outp, i_outp);

not

fftN(r_inp, i_inp, r_outp, i_outp);

The input to fftN are two integer array of N points. The array rl_in con-
tains the real components of the complex signal, and the array im_in
contains the imaginary components. If there are fewer than N actual data
points, you must pad the array with zeros to make N samples. Better
results occur with less zero padding, however. The input data should be
windowed (if necessary) before calling the function because no preprocess-
ing is performed on the data. The functions return a block exponent. The
input and output arrays must be different. The output arrays must be on
circular boundaries.

Error Conditions

The fftN functions do not return error conditions.
VisualDSP++ 3.5 C Compiler and Library Manual 3-55
for ADSP-218x DSPs

C Run-Time Library Reference
Example

#include <ffts.h>
#define N 1024

int real_input[N], imag_input[N];

#pragma align 1024
int real_output[N];
#pragma align 1024
int imag_output[N];

int block_exponent;

block_exponent = fft1024 (real_input, imag_input,
real_output, imag_output);

See Also

ifftN
3-56 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
fir

finite impulse response (FIR) filter

Synopsis

#include <filters.h>

int fir(int sample, int pm coeffs[],

int dm state[], int taps);

Description

This function is an Analog Devices extension to the ANSI standard.

The fir function implements a finite impulse response (FIR) filter
defined by the coefficients and delay line that are supplied in the call of
fir. The function produces the filtered response of its input data. This
FIR filter is structured as a sum of products. The characteristics of the fil-
ter (passband, stop band, etc.) are dependent on the coefficient values and
the number of taps supplied by the calling program.

The integer input to the filter is sample. The integer taps indicates the
length of the filter, which is also the length of the array coeffs. The
coeffs array holds one FIR filter coefficient per element. The coefficients
are stored in reverse order; for example, coeffs[0] holds the (taps-1)
coefficient. The coeffs array is located in program memory data space to
use the single-cycle dual-memory fetch of the processor.

The state array contains a pointer to the delay line as its last element, pre-
ceded by the delay line values. The length of the state array is therefore
one (1) greater than the number of taps. Each filter has its own state
array, which should not be modified by the calling program, only by the
fir function. The state array should be initialized to zeros before the fir
function is called for the first time. The delay state array parameter must
be located on a circular boundary, otherwise the function will not work.
VisualDSP++ 3.5 C Compiler and Library Manual 3-57
for ADSP-218x DSPs

C Run-Time Library Reference
The parameters sample, coeffs[], and state[], are all considered to be
fractional numbers. The fir function executes fractional multiplications
that preserve the format of the fractional input. If your application
requires a true integer fir(), you should divide the output of the filter by
two.

Error Conditions

The fir function does not return an error condition.

Example

#include <filters.h>

int y;

int pm coeffs[10]; /* coeffs array must be */

/* initialized and in */

/* PM memory */

#pragma align 16

int state[11];

int i;

for (i=0; i < 11; i++)

state[i]=0; /* initialize state array */

y = fir(0x1234,coeffs, state, 10);

/* y holds the filtered output */

See Also

biquad, iir
3-58 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
floor

floor

Synopsis

#include <math.h>

double floor(double);

float floorf(float);

Description

The floor function returns the largest integral value that is not greater
than its input.

Error Conditions

The floor function does not return an error condition.

Example

#include <math.h>

double y;

y = floor(1.25); /* y = 1.0 */

y = floor(-1.25); /* y = -2.0 */

See Also

ceil
VisualDSP++ 3.5 C Compiler and Library Manual 3-59
for ADSP-218x DSPs

C Run-Time Library Reference
fmod

floating-point modulus

Synopsis

#include <math.h>
double fmod(double numer, double denom);
float fmodf(float numer, float denom);

Description

The fmod function computes the floating-point remainder that results
from dividing the first argument into the second argument. This value is
less than the second argument and has the same sign as the first argument.
If the second argument is equal to zero, fmod returns a zero.

Error Conditions

The fmod function does not return an error condition.

Example

#include <math.h>

double y;

y = fmod(5.0, 2.0); /* y = 1.0 */

See Also

div, ldiv, modf
3-60 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
free

deallocate memory

Synopsis

#include <stdlib.h>

void free(void *ptr);

Description

The free function deallocates a pointer previously allocated to a range of
memory (by calloc or malloc) to the free memory heap. If the pointer
was not previously allocated by calloc, malloc or realloc, the behavior is
undefined.

The free function returns the allocated memory to the heap from which it
was allocated.

Error Conditions

The free function does not return an error condition.

Example

#include <stdlib.h>

char *ptr;

ptr = malloc(10); /* Allocate 10 words from heap */

free(ptr); /* Return space to free heap */

See Also

calloc, malloc, realloc
VisualDSP++ 3.5 C Compiler and Library Manual 3-61
for ADSP-218x DSPs

C Run-Time Library Reference
frexp

separate fraction and exponent

Synopsis

#include <math.h>
double frexp(double f, int *expptr);
float frexpf(float f, int *expptr);

Description

The frexp function separates a floating-point input into a normalized
fraction and a (base 2) exponent. The function returns the first argument
as a fraction in the interval [½, 1), and stores a power of 2 in the integer
pointed to by the second argument. If the input is zero, then the fraction
and exponent will both be set to zero.

Error Conditions

The frexp function does not return an error condition.

Example

#include <math.h>

double y;

int exponent;

y = frexp(2.0, &exponent); /* y=0.5, exponent=2 */

See Also

modf
3-62 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
ifftN

N-point inverse complex input fast Fourier transform (IFFT)

Synopsis

#include <ffts.h>
int ifft1024(int dm real_input[],

int dm imag_input[],
int dm real_output[],
int dm imag_output[]);

int ifft512(int dm real_input[],
int dm imag_input[],
int dm real_output[],
int dm imag_output[]);

int ifft256(int dm real_input[],
int dm imag_input[],
int dm real_output[],
int dm imag_output[]);

int ifft128(int dm real_input[],
int dm imag_input[],
int dm real_output[],
int dm imag_output[]);

int ifft64(int dm real_input[],
int dm imag_input[],
int dm real_output[],
int dm imag_output[]);

int ifft32(int dm real_input[],
int dm imag_input[],
int dm real_output[],
int dm imag_output[]);

int ifft16(int dm real_input[],
int dm imag_input[],
int dm real_output[],
int dm imag_output[]);
VisualDSP++ 3.5 C Compiler and Library Manual 3-63
for ADSP-218x DSPs

C Run-Time Library Reference
int ifft8(int dm real_input[],
int dm imag_input[],
int dm real_output[],
int dm imag_output[]);

Description

These functions are Analog Devices extensions to the ANSI standard.

Each of these eight ifftN functions computes the N-point radix-2 Inverse
Fast Fourier transform (IFFT) of its integer input (where N is 8, 16, 32,
64, 128, 256, 512, or 1024).

There are eight distinct functions in this set. They all perform the same
function with the same type and number of arguments. The only differ-
ence between them is the size of the arrays on which they operate. To call
a particular function, substitute the number of points for N; for example,

 ifft8(r_inp, i_inp, r_outp, i_outp);

not

 ifftN(r_inp, i_inp, r_outp, i_outp);

The input to ifftN are two integer array of N points. The array
real_input contains the real components of the inverse FFT input and
the array imag_input contains the imaginary components. If there are
fewer than N actual data points, you must pad the array with zeros to
make N samples. Better results occur with less zero padding, however. The
input data should be windowed (if necessary) before calling the function
because no preprocessing is performed on the data. The functions return a
block exponent. The input and output arrays must be different. The out-
put arrays must be on circular boundaries.

Error Conditions

The ifftN functions do not return error conditions.
3-64 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
Example

#include <ffts.h>
#define N 1024

int real_input[N], imag_input[N];

#pragma align 1024
int imag_output[N];
#pragma align 1024
int real_output[N];

int block exponent;

block exponent = ifft1024 (real_input, imag_input,
real_output, imag_output);

See Also

fftN
VisualDSP++ 3.5 C Compiler and Library Manual 3-65
for ADSP-218x DSPs

C Run-Time Library Reference
iir

infinite impulse response (IIR) filter

Synopsis

#include <filters.h>
int iir (int sample,

int pm a_coeffs[],
int float pm b_coeffs[],
int dm state[],
int taps);

Description

This function is an Analog Devices extension to the ANSI standard.

The iir function implements an infinite impulse response (IIR) filter
based on the Oppenheim and Schafer direct form II. The function returns
the filtered response of the input data sample. The characteristics of the
filter are dependent upon a set of coefficients, a delay line, and the length
of the filter. The length of filter is specified by the argument taps.

The set of IIR filter coefficients is composed of a-coefficients and
b-coefficients. The a0 coefficient is assumed to be 1.0, and the remaining
a-coefficients should be scaled accordingly and stored in the array
a_coeffs in reverse order. The length of the a_coeffs array is taps and
therefore a_coeffs[0] should contain ataps, and a_coeffs[taps-1] should
contain a1.

The b-coefficients are stored in the array b_coeffs, also in reverse order.
The length of the b_coeffs is taps+1, and so b_coeffs[0] will contain
btaps and b_coeffs[taps] will contain b0
3-66 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
Both the a_coeffs and b_coeffs arrays must be located in program mem-
ory (PM) so that the single-cycle dual-memory fetch of the processor can
be used.

� When importing coefficients from a filter design tool that employs
a transposed direct form II, the a1 and a2coefficients have to be
negated. For example, if a filter design tool returns A = [1.0, 0.2,
-0.9], then the a-coefficients will first have to be inverted to
A = [1.0, -0.2, 0.9].

The state array contains a pointer to the delay line as its last element, pre-
ceded by the delay line values. The length of the state array is therefore
one (1) greater than the number of taps. Each filter has its own state array,
which should not be modified by the calling program, only by the iir func-
tion. The state array should be initialized to zeros (0) before the iir
function is called for the first time. The state array needs to be declared on
a circular boundary.

The parameters sample, a_coeffs[], b_coeffs[] and state[], are all con-
sidered to be fractional numbers. The iir function executes fractional
multiplications that preserve the format of the fractional input.

The following flow graph corresponds to the iir() routine as part of the
C Run-Time Library (adapted from the Oppenheim and Schafer text
“Digital Signal Processing” from Prentice Hall (1975)):

• The b_coeffs and state arrays should equal length TAPS+1

• The a_coeffs array should equal length TAPS
VisualDSP++ 3.5 C Compiler and Library Manual 3-67
for ADSP-218x DSPs

C Run-Time Library Reference
Algorithm

d(n) = x(n) - a(1) * d(n-1) - a(2) * d(n-2) ...

y(n) = b(0) * d(n) + b(1) * d(n-1) + b(2) * d(n-2) ...

x(n) is sample and y(n) is output

b-coeffs [TAPS-3]

b-coeffs[0]

a-coeffs [TAPS-3]

a-coeffs [0]

-1

-1

Z

Z

sample output

b-coeffs [TAPS]

b-coeffs [TAPS-1]

b-coeffs [TAPS-2]

-1
Z

a-coeffs [TAPS-1]

a-coeffs [TAPS-2]

-1
Z

iir ()
3-68 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
Error Conditions

The iir function does not return an error condition.

Example

#include <stdio.h>
#include <filters.h>

#define FRACT int
#define TAPS 4

static FRACT output[TAPS];
/* verified with matlab */

static FRACT e_output[TAPS]={0x225,0xe10,0x545,0x16a0};
static int fail=0;

/* state array needs to be declared on circular boundary */
#pragma align 8static FRACT state[TAPS+1];

main(){
int i; /* temporary loop index */

/* example random input/coeffs */
static FRACT pm a_coeffs[TAPS]=
{0x4321, 0x8765, 0x1234, 0x5678};

static FRACT pm b_coeffs[TAPS+1]=
{0x1234, 0x5678, 0x9876, 0x5432, 0x1012};

int sample[TAPS] = {0x1111, 0x2222, 0x3333, 0x4444};

extern FRACT state[TAPS+1];
/* state array needs to be intialised to zero */

for (i=0; i<TAPS+1; i++) state[i]=0;

/* iir loop */
for (i=0; i<TAPS; i++)

output[i] = iir(sample[i], a_coeffs, b_coeffs, state, TAPS);

/* check output with expected */
VisualDSP++ 3.5 C Compiler and Library Manual 3-69
for ADSP-218x DSPs

C Run-Time Library Reference
for (i=0; i<TAPS; i++)
if (output[i] != e_output[i]) fail++;

/* print out pass/fail message */
if (fail==0)

printf("Test passed\n");
else

printf("Test failed\n");
}

See Also

biquad, fir
3-70 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
interrupt

define interrupt handling

Synopsis

#include <signal.h>

void (*interrupt (int sig, void(*func)(int))) (int);

void (*interruptf(int sig, void (*func)(int))) (int);

void (*interrupts(int sig, void (*func)())) ();

Description

These functions are Analog Devices extensions to the ANSI standard.

The interrupt function determines how a signal received during program
execution is handled. The interrupt function executes the function
pointed to by func at every interrupt sig; the signal function executes the
function only once.

The different variants of the interrupt functions differentiate between
handler dispatching functions. The variants will be appropriate for some
applications and provide improved efficiency. The default interrupt
function dispatcher saves and restores all scratch registers and modes on
the data stack around a call to the handler (func) when servicing an inter-
rupt. This dispatcher will pass the interrupt ID (for example, SIG_PWRDWN)
to the handler as its parameter.

The interruptf interrupt dispatcher does the same as interrupt, except it
switches between primary and secondary register sets to save and restore
registers instead of using the data stack. The interruptf function cannot
be used in applications where nested interrupts are enabled. This interrupt
dispatcher will pass the interrupt ID to the handler as its parameter.

The interrupts interrupt dispatcher saves and restores only the smallest
number of registers and modes required to determine if a handler has been
registered and to call that handler. The handler passed as input to
VisualDSP++ 3.5 C Compiler and Library Manual 3-71
for ADSP-218x DSPs

C Run-Time Library Reference
interrupts must be declared using the #pragma interrupt directive
(on page 1-102). The #pragma altregisters directive (on page 1-103)
may be used in conjunction with the interrupt pragma in the definition
of the handler. This dispatcher will not pass the interrupt ID to the
handler.

The sig argument must be one of the signals listed in priority order in
Table 3-31.

Table 3-31. Interrupt Function Signals - Values and Meanings

Sig Value Definition

SIGPWRDWN Power down interrupt

SIGIRQ2 Interrupt 2

SIGIRQL1 Interrupt 1 (level sensitive)

SIGIRQL0 Interrupt 0 (level sensitive)

SIGSPORT0XMIT Signal Sport 0 transmit

SIGSPORT0RECV Signal Sport 0 receive

SIGIRQE Level sensitive

SIGBDMA Byte DMA interrupt

SIGSPORT1XMIT Signal Sport 1 transmit

SIGIRQ1 Interrupt 1

SIGSPORT1RECV Signal Sport 1 receive

SIGIRQ0 Interrupt 0

SIGTIMER Timer interrupt

SIGABRT Software abort signal

SIGILL Software illegal signal

SIGINT Software segmentation signal

SIGTERM Software termination signal

SIGFPE Software floating point exception signal
3-72 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
The interrupt function causes the receipt of the signal number sig to be
handled in one of the following ways:

• SIG_DFL—The default action is taken.

• SIG_IGN—The signal is ignored.

• Function Address—The function pointed to by func is executed.

The function pointed to by func is executed each time the interrupt is
received. The interrupt function must be called with the SIG_IGN argu-
ment to disable interrupt handling.

� Interrupts are not nested by the default start-up file.

Error Conditions

The interrupt function returns SIG_ERR and sets errno equal to SIG_ERR
if the requested interrupt is not recognized.

Example

include <signal.h>

void handler (int sig) { /* Interrupt Service Routine (ISR) */
}

main () {
/* enable power down interrupt and register ISR */
interrupt(SIG_PWRDWN, handler);

/* disable power down interrupt */
interrupt(SIG_PWRDWN, SIG_IGN);

/* enable power down interrupt and register ISR */
interruptf(SIG_PWRDWN, handler);

/* disable power down interrupt */
interruptf(SIG_PWRDWN, SIG_IGN);

}

VisualDSP++ 3.5 C Compiler and Library Manual 3-73
for ADSP-218x DSPs

C Run-Time Library Reference
See Also

raise, signal
3-74 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
io_space_read

read I/O space

Synopsis

#include <sysreg.h>
int io_space_read(const int)

Description

The io_space_read function returns the value read from I/O memory
space at the address specified by the parameter.

The function is implemented as a compiler built-in. If the input argument
is a constant literal value, the compiler will emit a Type 29 instruction
that will be inlined at the point of io_space_read use. For non-literal
inputs, the compiler will call a library compiler support routine to per-
form the required read.

Error Conditions

The io_space_read function does not return, raise, or set any error
conditions.

Example

#include <sysreg.h>

int addr = 0xA;

main(){

int v1 = io_space_read(0xA); /* inline instruction

will be generated */

int v2 = io_space_read(addr); /* library support routine

will be called */

}

VisualDSP++ 3.5 C Compiler and Library Manual 3-75
for ADSP-218x DSPs

C Run-Time Library Reference
See Also

disable_interrupts, enable_interrupts, io_space_write, sysreg_read,
sysreg_write
3-76 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
io_space_write

write I/O space

Synopsis

#include <sysreg.h>

void io_space_write(const int address, const unsigned int value)

Description

The io_space_write function stores the value passed as the second param-
eter to I/O memory space at the address passed as the first parameter.

This function is implemented as a compiler built-in. If the address param-
eter is a constant literal value the compiler will emit a Type 29 instruction
that will be inlined at the point of io_space_write use. For non-literal
addresses, the compiler will call a library compiler support routine to per-
form the required write.

The inclusion of the sysreg.h include file is mandatory when using
io_space_write.

Error Conditions

The io_space_write function does not return, raise or set any error
conditions.

Example

#include <sysreg.h>
int addr = 0xA;
int val = 0xA;

main(){
int v1 = io_space_write(0xA, val); /* inline instruction

will be generated */
VisualDSP++ 3.5 C Compiler and Library Manual 3-77
for ADSP-218x DSPs

C Run-Time Library Reference
int v2 = io_space_write(addr, 0xFF); /* support routine
will be called */

}

See Also

disable_interrupts, enable_interrupts, io_space_read, sysreg_read,
sysreg_write
3-78 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
isalnum

detect alphanumeric character

Synopsis

#include <ctype.h>

int isalnum(int c);

Description

The isalnum function determines if the argument is an alphanumeric
character (A-Z, a-z, or 0-9). If the argument is not alphanumeric,
isalnum returns a zero. If the argument is alphanumeric, isalnum returns a
non-zero value.

Error Conditions

The isalnum function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%3s", isalnum(ch) ? "alphanumeric" : "");

putchar(‘\n’);

}

See Also

isalpha, isdigit
VisualDSP++ 3.5 C Compiler and Library Manual 3-79
for ADSP-218x DSPs

C Run-Time Library Reference
isalpha

detect alphabetic character

Synopsis

#include <ctype.h>

int isalpha(int c);

Description

The isalpha function determines if the input is an alphabetic character
(A-Z or a-z). If the input is not alphabetic, isalpha returns a zero. If the
input is alphabetic, isalpha returns a non-zero value.

Error Conditions

The isalpha function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isalpha(ch) ? "alphabetic" : "");

putchar(‘\n’);

}

See Also

isalnum, isdigit
3-80 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
iscntrl

detect control character

Synopsis

#include <ctype.h>

int iscntrl(int c);

Description

The iscntrl function determines if the argument is a control character
(0x00-0x1F or 0x7F). If the argument is not a control character, iscntrl
returns a zero. If the argument is a control character, iscntrl returns a
non-zero value.

Error Conditions

The iscntrl function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", iscntrl(ch) ? "control" : "");

putchar(‘\n’);

}

See Also

isalnum, isgraph
VisualDSP++ 3.5 C Compiler and Library Manual 3-81
for ADSP-218x DSPs

C Run-Time Library Reference
isdigit

detect decimal digit

Synopsis

#include <ctype.h>

int isdigit(int c);

Description

The isdigit function determines if the input character is a decimal digit
(0-9). If the input is not a digit, isdigit returns a zero. If the input is a
digit, isdigit returns a non-zero value.

Error Conditions

The isdigit function does not return an error condition.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isdigit(ch) ? "digit" : "");

putchar(‘\n’);

}

See Also

isalnum, isalpha, isxdigit
3-82 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
isgraph

detect printable character, not including white space

Synopsis

#include <ctype.h>

int isgraph(int c);

Description

The isgraph function determines if the argument is a printable character,
not including white space (0x21-0x7e). If the argument is not a printable
character, isgraph returns a zero. If the argument is a printable character,
isgraph returns a non-zero value.

Error Conditions

The isgraph function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isgraph(ch) ? "graph" : "");

putchar(‘\n’);

}

See Also

isalnum, iscntrl, isprint
VisualDSP++ 3.5 C Compiler and Library Manual 3-83
for ADSP-218x DSPs

C Run-Time Library Reference
isinf

test for infinity

Synopsis

#include <math.h>
int isinff(float x);
int isinf(double x);

Description

The isinf function returns a zero if the argument is not set to the IEEE
constant for +Infnity or -Infinity; otherwise, the function will return a
non-zero value.

Error Conditions

The isinf function does not return or set any error conditions.

Example

#include <stdio.h>
#include <math.h>

static int fail=0;

main(){
/* test int isinf(double) */
union {

double d; float f; unsigned long l;
} u;

#ifdef __DOUBLES_ARE_FLOATS__
u.l=0xFF800000L; if (isinf(u.d)==0) fail++;
u.l=0xFF800001L; if (isinf(u.d)!=0) fail++;
u.l=0x7F800000L; if (isinf(u.d)==0) fail++;
u.l=0x7F800001L; if (isinf(u.d)!=0) fail++;

#endif
3-84 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
/* test int isinff(float) */
u.l=0xFF800000L; if (isinff(u.f)==0) fail++;
u.l=0xFF800001L; if (isinff(u.f)!=0) fail++;
u.l=0x7F800000L; if (isinff(u.f)==0) fail++;
u.l=0x7F800001L; if (isinff(u.f)!=0) fail++;

/* print pass/fail message */
if (fail==0)

printf("Test passed\n");
else

printf("Test failed: %d\n", fail);
}

See Also

isnan
VisualDSP++ 3.5 C Compiler and Library Manual 3-85
for ADSP-218x DSPs

C Run-Time Library Reference
islower

detect lowercase character

Synopsis

#include <ctype.h>

int islower(int c);

Description

The islower function determines if the argument is a lowercase character
(a-z). If the argument is not lowercase, islower returns a zero. If the argu-
ment is lowercase, islower returns a non-zero value.

Error Conditions

The islower function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", islower(ch) ? "lowercase" : "");

putchar(‘\n’);

}

See Also

isalpha, isupper
3-86 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
isnan

test for not-a-number (NAN)

Synopsis

#include <math.h>
int isnanf(float x);
int isnan(double x);

Description

The isnan function returns a zero if the argument is not set to an IEEE
NaN (Not a Number); otherwise, the function will return a non-zero value.

Error Conditions

The isnan function does not return or set any error conditions.

Example

#include <stdio.h>
#include <math.h>

static int fail=0;

main(){
/* test int isnan(double) */
union {

double d; float f; unsigned long l;
} u;

#ifdef __DOUBLES_ARE_FLOATS__
u.l=0xFF800000L; if (isnan(u.d)!=0) fail++;
u.l=0xFF800001L; if (isnan(u.d)==0) fail++;
u.l=0x7F800000L; if (isnan(u.d)!=0) fail++;
u.l=0x7F800001L; if (isnan(u.d)==0) fail++;

#endif
VisualDSP++ 3.5 C Compiler and Library Manual 3-87
for ADSP-218x DSPs

C Run-Time Library Reference
/* test int isnanf(float) */
u.l=0xFF800000L; if (isnanf(u.f)!=0) fail++;
u.l=0xFF800001L; if (isnanf(u.f)==0) fail++;
u.l=0x7F800000L; if (isnanf(u.f)!=0) fail++;
u.l=0x7F800001L; if (isnanf(u.f)==0) fail++;

/* print pass/fail message */
if (fail==0)

printf("Test passed\n");
else

printf("Test failed: %d\n", fail);
}

See Also

isinf
3-88 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
isprint

detect printable character

Synopsis

#include <ctype.h>

int isprint(int c);

Description

The isprint function determines if the argument is a printable character
(0x20-0x7E). If the argument is not a printable character, isprint returns
a zero. If the argument is a printable character, isprint returns a non-zero
value.

Error Conditions

The isprint function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%3s", isprint(ch) ? "printable" : "");

putchar(‘\n’);

}

See Also

isgraph, isspace
VisualDSP++ 3.5 C Compiler and Library Manual 3-89
for ADSP-218x DSPs

C Run-Time Library Reference
ispunct

detect punctuation character

Synopsis

#include <ctype.h>

int ispunct(int c);

Description

The ispunct function determines if the argument is a punctuation charac-
ter. If the argument is not a punctuation character, ispunct returns a zero.
If the argument is a punctuation character, ispunct returns a non-zero
value.

Error Conditions

The ispunct function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%3s", ispunct(ch) ? "punctuation" : "");

putchar(‘\n’);

}

See Also

isalnum
3-90 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
isspace

detect whitespace character

Synopsis

#include <ctype.h>

int isspace(int c);

Description

The isspace function determines if the argument is a blank whitespace
character (0x09-0x0D or 0x20). This includes space, form feed (\f), new
line (\n), carriage return (\r), horizontal tab (\t) and vertical tab (\v).

If the argument is not a blank space character, isspace returns a zero. If
the argument is a blank space character, isspace returns a non-zero value.

Error Conditions

The isspace function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isspace(ch) ? "space" : "");

putchar(‘\n’);

}

See Also

iscntrl, isgraph
VisualDSP++ 3.5 C Compiler and Library Manual 3-91
for ADSP-218x DSPs

C Run-Time Library Reference
isupper

detect uppercase character

Synopsis

#include <ctype.h>

int isupper(int c);

Description

The isupper function determines if the argument is an uppercase charac-
ter (A-Z). If the argument is not an uppercase character, isupper returns a
zero. If the argument is an uppercase character, isupper returns a
non-zero value.

Error Conditions

The isupper function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isupper(ch) ? "uppercase" : "");

putchar(‘\n’);

}

See Also

isalpha, islower
3-92 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
isxdigit

detect hexadecimal digit

Synopsis

#include <ctype.h>

int isxdigit(int c);

Description

The isxdigit function determines if the argument character is a hexadec-
imal digit character (A-F, a-f, or 0-9). If the argument is not a
hexadecimal digit, isxdigit returns a zero. If the argument is a hexadeci-
mal digit, isxdigit returns a non-zero value.

Error Conditions

The isxdigit function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isxdigit(ch) ? "hexadecimal" : "");

putchar(‘\n’);

}

See Also

isalnum, isdigit
VisualDSP++ 3.5 C Compiler and Library Manual 3-93
for ADSP-218x DSPs

C Run-Time Library Reference
labs

long integer absolute value

Synopsis

#include <stdlib.h>

long int labs(long int);

Description

The labs function returns the absolute value of its long integer input.

Error Conditions

The labs function does not return an error condition.

Example

#include <stdlib.h>

long int j;

j = labs(-285128); /* j = 285128 */

See Also

abs, fabs
3-94 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
ldexp

multiply by power of 2

Synopsis

#include <math.h>

double ldexp(double x, int n);

float ldexpf(float x, int n);

Description

The ldexp function returns the value of the floating-point input multi-
plied by 2 raised to the power of n. It adds the value of the second
argument n to the exponent of the first argument x.

Error Conditions

If the result overflows, ldexp returns a NaN. If the result underflows, ldexp
returns a zero.

Example

#include <math.h>

double y;

y = ldexp(0.5, 2); /* y = 2.0 */

See Also

exp, pow
VisualDSP++ 3.5 C Compiler and Library Manual 3-95
for ADSP-218x DSPs

C Run-Time Library Reference
ldiv

long division

Synopsis

#include <stdlib.h>

ldiv_t ldiv(long int numer, long int denom);

Description

The ldiv function divides numer by denom, and returns a structure of type
ldiv_t. The type ldiv_t is defined as:

typedef struct {

long int quot;

long int rem;

} ldiv_t

where quot is the quotient of the division and rem is the remainder, such
that if result is of type ldiv_t:

result.quot * denom + result.rem = numer

Error Conditions

If denom is zero, the behavior of the ldiv function is undefined.

Example

#include <stdlib.h>

ldiv_t result;

result = ldiv(7, 2); /* result.quot=3, result.rem=1 */

See Also

fmod, div
3-96 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
log

natural logarithm

Synopsis

#include <math.h>

double log(double);

float logf(float);

Description

The log function computes the natural (base e) logarithm of its input.

Error Conditions

The log function returns a zero and sets errno to EDOM if the input value is
negative.

Example

#include <math.h>

double y;

y = log(1.0); /* y = 0.0 */

See Also

exp, log10
VisualDSP++ 3.5 C Compiler and Library Manual 3-97
for ADSP-218x DSPs

C Run-Time Library Reference
log10

base 10 logarithm

Synopsis

#include <math.h>

double log10(double);

float log10f(float);

Description

The log10 function returns the base 10 logarithm of its input.

Error Conditions

The log10 function indicates a domain error (sets errno to EDOM) and
returns a zero if the input is negative.

Example

#include <math.h>

double y;

y = log10(100.0); /* y = 2.0 */

See Also

log, pow
3-98 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
longjmp

second return from setjmp

Synopsis

#include <setjmp.h>

void longjmp(jmp_buf env, int return_val);

Description

The longjmp function causes the program to execute a second return from
the place where setjmp (env) was called (with the same jmp_buf
argument).

The longjmp function takes as its arguments a jump buffer that contains
the context at the time of the original call to setjmp. It also takes an inte-
ger, return_val, which setjmp returns if return_val is non-zero.
Otherwise, setjmp returns a 1.

If env was not initialized through a previous call to setjmp or the function
that called setjmp has since returned, the behavior is undefined. Also,
automatic variables that are local to the original function calling setjmp,
that do not have volatile-qualified type, and that have changed their
value prior to the longjmp call, have indeterminate value.

Error Conditions

The longjmp function does not return an error condition.

Example

#include <setjmp.h>
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
VisualDSP++ 3.5 C Compiler and Library Manual 3-99
for ADSP-218x DSPs

C Run-Time Library Reference
jmp_buf env;
int res;

if ((res == setjmp(env)) != 0) {
printf ("Problem %d reported by func ()", res);
exit (EXIT_FAILURE);

}
func ();

void func (void)
{

if (errno != 0) {
longjmp (env, errno);

}
}

See Also

setjmp
3-100 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
malloc

allocate memory

Synopsis

#include <stdlib.h>

void *malloc(size_t size);

Description

The malloc function returns a pointer to a block of memory of length
size. The block of memory is uninitialized.

Error Conditions

The malloc function returns a null pointer if it is unable to allocate the
requested memory.

Example

#include <stdlib.h>

int *ptr;

ptr = (int *)malloc(10); /* ptr points to an */

/* array of length 10 */

See Also

calloc, free, realloc
VisualDSP++ 3.5 C Compiler and Library Manual 3-101
for ADSP-218x DSPs

C Run-Time Library Reference
memchr

find first occurrence of character

Synopsis

#include <string.h>

void *memchr(const void *s1, int c, size_t n);

Description

The memchr function compares the range of memory pointed to by s1 with
the input character c and returns a pointer to the first occurrence of c. A
null pointer is returned if c does not occur in the first n characters.

Error Conditions

The memchr function does not return an error condition.

Example

#include <string.h>

char *ptr;

ptr= memchr("TESTING", ‘E’, 7);

/* ptr points to the E in TESTING */

See Also

strchr, strrchr
3-102 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
memcmp

compare objects

Synopsis

#include <string.h>

int memcmp(const void *s1, const void *s2, size_t n);

Description

The memcmp function compares the first n characters of the objects pointed
to by s1 and s2. It returns a positive value if the s1 object is lexically
greater than the s2 object, a negative value if the s2 object is lexically
greater than the s1 object, and a zero if the objects are the same.

Error Conditions

The memcmp function does not return an error condition.

Example

#include <string.h>

char string1 = “ABC”;

char string2 = “BCD”;

int result;

result = memcmp (string1, string2, 3); /* result < 0 */

See Also

strcmp, strcoll, strncmp
VisualDSP++ 3.5 C Compiler and Library Manual 3-103
for ADSP-218x DSPs

C Run-Time Library Reference
memcpy

copy characters from one object to another

Synopsis

#include <string.h>

void *memcpy(void *s1, const void *s2, size_t n);

Description

The memcpy function copies n characters from the object pointed to by s2
into the object pointed to by s1. The behavior of memcpy is undefined if
the two objects overlap.

The memcpy function returns the address of s1.

Error Conditions

The memcpy function does not return an error condition.

Example

#include <string.h>

char *a = "SRC";

char *b = "DEST";

result=memcpy (b, a, 3); /* *b="SRCT" */

See Also

 memmove, strcpy, strncpy
3-104 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
memmove

copy characters between overlapping objects

Synopsis

#include <string.h>

void *memmove(void *s1, const void *s2, size_t n);

Description

The memmove function copies n characters from the object pointed to by s2
into the object pointed to by s1. The entire object is copied correctly even
if the objects overlap.

The memmove function returns a pointer to s1.

Error Conditions

The memmove function does not return an error condition.

Example

#include <string.h>

char *ptr, *str = "ABCDE";

ptr = str + 2;

memmove(str, str, 3); /* *ptr = "ABC", *str = "ABABC" */

See Also

memcpy, strcpy, strncpy
VisualDSP++ 3.5 C Compiler and Library Manual 3-105
for ADSP-218x DSPs

C Run-Time Library Reference
memset

set range of memory to a character

Synopsis

#include <string.h>

void *memset(void *s1, int c, size_t n);

Description

The memset function sets a range of memory to the input character c. The
first n characters of s1 are set to c.

The memset function returns a pointer to s1.

Error Conditions

The memset function does not return an error condition.

Example

#include <string.h>

char string1[50];

memset(string1, ‘\0’, 50); /* set string1 to 0 */

See Also

memcpy
3-106 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
modf

separate integral and fractional parts

Synopsis

#include <math.h>

double modf(double f, double *fraction);

float modff (float f, float *fraction);

Description

The modf function separates the first argument into integral and fractional
portions. The fractional portion is returned and the integral portion is
stored in the object pointed to by the second argument. The integral and
fractional portions have the same sign as the input.

Error Conditions

The modf function does not return an error condition.

Example

#include <math.h>

double y, n;

y = modf(-12.345, &n); /* y = -0.345, n = -12.0 */

See Also

frexp
VisualDSP++ 3.5 C Compiler and Library Manual 3-107
for ADSP-218x DSPs

C Run-Time Library Reference
pow

raise to a power

Synopsis

#include <math.h>

double pow(double, double);

Description

The pow function computes the value of the first argument raised to the
power of the second argument.

Error Conditions

A domain error occurs if the first argument is negative and the second
argument cannot be represented as an integer. If the first argument is zero,
the second argument is less than or equal to zero, and the result cannot be
represented, EDOM is stored in errno.

Example

#include <math.h>

double z;

z = pow(4.0, 2.0); /* z = 16.0 */

See Also

exp, ldexp
3-108 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
qsort

quicksort

Synopsis

#include <stdlib.h>

void qsort(void *base, size_t nelem, size_t size,

int (*compare) (const void *, const void *));

Description

The qsort function sorts an array of nelem objects, pointed to by base.
The size of each object is specified by size.

The contents of the array are sorted into ascending order according to a
comparison function pointed to by compare, which is called with two
arguments that point to the objects being compared. The function shall
return an integer less than, equal to, or greater than zero if the first argu-
ment is considered to be respectively less than, equal to, or greater than
the second.

If two elements compare as equal, their order in the sorted array is unspec-
ified. The qsort function executes a binary-search operation on a
pre-sorted array. Note that:

• base points to the start of the array

• nelem is the number of elements in the array

• size is the size of each element of the array.

• compare is a pointer to a function that is called by qsort to com-
pare two elements of the array. The function should return a value
less than, equal to, or greater than zero, according to whether the
first argument is less than, equal to, or greater than the second.
VisualDSP++ 3.5 C Compiler and Library Manual 3-109
for ADSP-218x DSPs

C Run-Time Library Reference
Error Conditions

The qsort function does not return an error condition.

Example

#include <stdlib.h>
float a[10];

int compare_float (const void *a, const void *b)
{

float aval = *(float *)a;
float bval = *(float *)b;
if (aval < bval)

return -1;
else if (aval == bval)

return 0;
else

return 1;
}

qsort (a, sizeof (a)/sizeof (a[0]), sizeof (a[0]), compare_float);

See Also

bsearch
3-110 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
raise

force a signal

Synopsis

#include <signal.h>

int raise(int sig);

Description

The raise function sends the signal sig to the executing program. The
raise function forces interrupts wherever possible and simulates an inter-
rupt otherwise.

Edge sensitive hardware interrupts are raised by setting the correct bit in
the Interrupt Force and Clear (IFC) Register. Setting this bit forces a full
interrupt and causes the program execution to change to the interrupt vec-
tor address for sig. All other interrupts and signals are raised by calling
the handler (if set) for sig, directly from raise.

The sig argument must be one of the signals listed in priority order in
Table 3-32.

Table 3-32. Raise Function Signals - Values and Meanings

Sig Value Definition

SIGPWRDWN Power down interrupt

SIGIRQ2 Interrupt 2

SIGIRQL1 Interrupt 1 (level sensitive)

SIGIRQL0 Interrupt 0 (level sensitive)

SIGSPORT0XMIT Signal Sport 0 transmit

SIGSPORT0RECV Signal Sport 0 receive

SIGIRQE Level sensitive
VisualDSP++ 3.5 C Compiler and Library Manual 3-111
for ADSP-218x DSPs

C Run-Time Library Reference
� Interrupts are not nested by the default start-up file.

Error Conditions

The raise function returns a zero if successful, a non-zero value if it fails.

Example

#include <signal.h>

raise(SIGABRT);

See Also

interrupt, signal

SIGBDMA Byte DMA interrupt

SIGSPORT1XMIT Signal Sport 1 transmit

SIGIRQ1 Interrupt 1

SIGSPORT1RECV Signal Sport 1 receive

SIGIRQ0 Interrupt 0

SIGTIMER Timer interrupt

SIGABRT Software abort signal

SIGILL Software illegal signal

SIGINT Software segmentation signal

SIGTERM Software termination signal

SIGFPE Software floating point exception signal

Table 3-32. Raise Function Signals - Values and Meanings (Cont’d)

Sig Value Definition
3-112 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
rand

random number generator

Synopsis

#include <stdlib.h>

int rand(void);

Description

The rand function returns a pseudo-random integer value in the range
[0, 215 – 1].

For this function, the measure of randomness is its periodicity, the num-
ber of values it is likely to generate before repeating a pattern. The output
of the pseudo-random number generator has a period in the order of
215 – 1.

Error Conditions

The rand function does not return an error condition.

Example

#include <stdlib.h>

int i;

i = rand();

See Also

 srand
VisualDSP++ 3.5 C Compiler and Library Manual 3-113
for ADSP-218x DSPs

C Run-Time Library Reference
realloc

change memory allocation

Synopsis

#include <stdlib.h>

void *realloc(void *ptr, size_t size);

Description

The realloc function changes the memory allocation of the object
pointed to by ptr to size. Initial values for the new object are taken from
those in the object pointed to by ptr. If the size of the new object is
greater than the size of the object pointed to by ptr, then the values in the
newly allocated section are undefined.

If ptr is a non-null pointer that was not allocated with malloc or calloc,
the behavior is undefined. If ptr is a null pointer, realloc imitates
malloc. If size is zero and ptr is not a null pointer, realloc imitates free.

Error Conditions

If memory cannot be allocated, ptr remains unchanged and realloc
returns a null pointer.

Example

#include <stdlib.h>

int *ptr;

ptr = (int *)malloc(10); /* intervening code */

ptr = (int *)realloc(ptr, 20); /* the size is now 20 */

See Also

calloc, free, malloc
3-114 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
setjmp

define a run-time label

Synopsis

#include <setjmp.h>

int setjmp(jmp_buf env);

Description

The setjmp function saves the calling environment in the jmp_buf argu-
ment. The effect of the call is to declare a run-time label that can be
jumped to via a subsequent call to longjmp.

When setjmp is called, it immediately returns with a result of zero to indi-
cate that the environment has been saved in the jmp_buf argument. If, at
some later point, longjmp is called with the same jmp_buf argument,
longjmp will restore the environment from the argument. The execution
will then resume at the statement immediately following the correspond-
ing call to setjmp. The effect is as if the call to setjmp has returned for a
second time but this time the function returns a non-zero result.

The effect of calling longjmp will be undefined if the function that called
setjmp has returned in the interim.

Error Conditions

The setjmp function does not return an error condition.

Example

See code example for “longjmp” on page 3-99.

See Also

longjmp
VisualDSP++ 3.5 C Compiler and Library Manual 3-115
for ADSP-218x DSPs

C Run-Time Library Reference
signal

define signal handling

Synopsis

#include <signal.h>

void (*signal(int sig, void (*func)(int))) (int);

void (*signalf(int sig, void (*func)(int))) (int);

void (*signals(int sig, void (*func)())) ();

Description

These functions are Analog Devices extensions to the ANSI standard.

The signal function determines how a signal received during program
execution is handled. The signal functions cause a single execution the
function pointed to by func; the interrupt functions cause the function
to be executed for every interrupt.

The different variants of the signal functions differentiate between han-
dler dispatching functions. The variants will be appropriate for some
applications and provide improved efficiency. The default signal func-
tion dispatcher saves and restores all scratch registers and modes on the
data stack around a call to the handler (func) when servicing an interrupt.
This dispatcher will pass the interrupt ID (for example, SIG_PWRDWN) to
the handler as its parameter.

The signalf interrupt dispatcher does the same as interrupt, except it
switches between primary and secondary register sets to save and restore
registers instead of using the data stack. The signalf function cannot be
used in applications where nested interrupts are enabled. This interrupt
dispatcher will pass the interrupt ID to the handler as its parameter.

The signals interrupt dispatcher saves and restores only the smallest
number of registers and modes required to determine if a handler has been
registered and to call that handler. The handler passed as input to signals
3-116 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
must be declared using the #pragma interrupt directive (see
on page 1-102). The altregisters directive (see on page 1-103) may be
used in conjunction with the interrupt pragma in the definition of the
handler. This dispatcher will not pass the interrupt ID to the handler.

The sig argument must be one of the signals listed in highest to lowest
priority of interrupts in Table 3-33.

Table 3-33. Signal Function Signals - Values and Meanings

Sig Value Definition

SIGPWRDWN Power down interrupt

SIGIRQ2 Interrupt 2

SIGIRQL1 Interrupt 1 (level sensitive)

SIGIRQL0 Interrupt 0 (level sensitive)

SIGSPORT0XMIT Signal Sport 0 transmit

SIGSPORT0RECV Signal Sport 0 receive

SIGIRQE Level sensitive

SIGBDMA Byte DMA interrupt

SIGSPORT1XMIT Signal Sport 1 transmit

SIGIRQ1 Interrupt 1

SIGSPORT1RECV Signal Sport 1 receive

SIGIRQ0 Interrupt 0

SIGTIMER Timer interrupt

SIGABRT Software abort signal

SIGILL Software illegal signal

SIGINT Software segmentation signal

SIGTERM Software termination signal

SIGFPE Software floating point exception signal
VisualDSP++ 3.5 C Compiler and Library Manual 3-117
for ADSP-218x DSPs

C Run-Time Library Reference
The signal function causes the receipt of the signal number sig to be
handled in one of the following ways:

• SIG_DFL—The default action is taken.

• SIG_IGN—The signal is ignored.

• Function address—The function pointed to by func is executed.
The function pointed to by func is executed once when the signal
is received. Handling is then returned to the default state.

� Interrupts are not nested by the default start-up file.

Error Conditions

The signal function returns SIG_ERR and sets errno to SIG_ERR if it does
not recognize the requested signal.

Example

#include <signal.h>

void handler (int sig) { /* Interrupt Service Routine (ISR) */
}

main () {

/* enable power down interrupt and register ISR */
signal(SIG_PWRDWN, handler);

/* disable power down interrupt */
signal(SIG_PWRDWN, SIG_IGN);

/* enable power down interrupt and register ISR */
signalf(SIG_PWRDWN, handler);

/* disable power down interrupt */
signalf(SIG_PWRDWN, SIG_IGN);

}

3-118 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
See Also

interrupt, raise
VisualDSP++ 3.5 C Compiler and Library Manual 3-119
for ADSP-218x DSPs

C Run-Time Library Reference
sin

sine

Synopsis

#include <math.h>

double sin(double x);

float sinf (float x);

fract16 sin_fr16 (fract16 x);

Description

The sin function returns the sine of the argument x. The input is inter-
preted as a radian; the output is in the range [-1, 1].

The sin_fr16 function inputs a fractional value in the range [-1.0, 1.0)
corresponding to [-π/2, π/2]. The domain represents half a cycle which
can be used to derive a full cycle if required (see Notes below). The result,
in radians, is in the range [-1.0, 1.0).

Error Conditions

The sin function does not return an error condition.

Example

#include <math.h>

double y;

y = sin(3.14159); /* y = 0.0 */

Notes

The domain of the sin_fr16 function is restricted to the fractional range
[0x8000, 0x7fff] which corresponds to half a period from –(π/2) to π/2.
It is possible however to derive the full period using the following proper-
ties of the function.
3-120 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
sine [0, π/2] = -sine [π, 3/2 π]

sine [-π/2, 0] = -sine [π/2, π]

The function below uses these properties to calculate the full period (from
0 to 2π) of the sine function using an input domain of [0, 0x7fff].

#include <math.h>

fract16 sin2pi_fr16 (fract16 x)
{

if (x < 0x2000) { /* <0.25 */
/* first quadrant [0..π/2): */
/* sin_fr16([0x0..0x7fff]) = [0..0x7fff) */
return sin_fr16(x * 4);

} else if (x < 0x6000) { /* < 0.75 */
/* if (x < 0x4000) */
/* second quadrant [π/2..π): */
/* -sin_fr16([0x8000..0x0)) = [0x7fff..0) */
/* */
/* if (x < 0x6000) */
/* third quadrant [π..3/2π): */
/* -sin_fr16([0x0..0x7fff]) = [0..0x8000) */
return -sin_fr16((0xc000 + x) * 4);

} else {
/* fourth quadrant [3/2π..π): */
/* sin_fr16([0x8000..0x0)) = [0x8000..0) */
return sin_fr16((0x8000 + x) * 4);

}
}

See Also

asin, cos
VisualDSP++ 3.5 C Compiler and Library Manual 3-121
for ADSP-218x DSPs

C Run-Time Library Reference
sinh

hyperbolic sine

Synopsis

#include <math.h>

double sinh(double);

float sinhf(float);

Description

The sinh function returns the hyperbolic sine of the input parameter.

Error Conditions

The sinh function returns the IEEE constant +Inf if the argument is out-
side the domain.

Example

#include <math.h>

double x,y;

y = sinh(x);

See Also

cosh
3-122 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
sqrt

square root

Synopsis

#include <math.h>

double sqrt(double);

fract16 sqrt_fr16 (fract16);

Description

The sqrt function returns the positive square root of the input parameter.

Error Conditions

The sqrt function returns a zero for a negative input.

Example

#include <math.h>

double y;

y = sqrt(2.0); /* y = 1.414..... */

See Also

No references to this function.
VisualDSP++ 3.5 C Compiler and Library Manual 3-123
for ADSP-218x DSPs

C Run-Time Library Reference
srand

random number seed

Synopsis

#include <stdlib.h>

void srand(unsigned int seed);

Description

The srand function is used to set the seed value for the rand function.
A particular seed value always produces the same sequence of
pseudo-random numbers.

Error Conditions

The srand function does not return an error condition.

Example

#include <stdlib.h>

srand(22);

See Also

rand
3-124 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
strcat

concatenate strings

Synopsis

#include <string.h>

char *strcat(char *s1, const char *s2);

Description

The strcat function appends a copy of the null-terminated string pointed
to by s2 to the end of the null-terminated string pointed to by s1. It
returns a pointer to the new s1 string, which is null-terminated. The
behavior of strcat is undefined if the two strings overlap.

Error Conditions

The strcat function does not return an error condition.

Example

#include <string.h>

char string1[50];

string1[0] = ‘A’;

string1[1] = ‘B’;

string1[2] = ‘\0’;

strcat(string1, "CD"); /* new string is "ABCD" */

See Also

strncat
VisualDSP++ 3.5 C Compiler and Library Manual 3-125
for ADSP-218x DSPs

C Run-Time Library Reference
strchr

find first occurrence of character in string

Synopsis

#include <string.h>

char *strchr(const char *s1, int c);

Description

The strchr function returns a pointer to the first location in s1, a
null-terminated string that contains the character c.

Error Conditions

The strchr function returns a null pointer if c is not part of the string.

Example

#include <string.h>

char *ptr1, *ptr2;

ptr1 = "TESTING";

ptr2 = strchr(ptr1, ‘E’);

/* ptr2 points to the E in TESTING */

See Also

memchr, strrchr
3-126 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
strcmp

compare strings

Synopsis

#include <string.h>

int strcmp(const char *s1, const char *s2);

Description

The strcmp function lexicographically compares the null-terminated
strings pointed to by s1 and s2. It returns a positive value if the s1 string
is greater than the s2 string, a negative value if the s2 string is greater than
the s1 string, and a zero if the strings are the same.

Error Conditions

The strcmp function does not return an error condition.

Example

#include <string.h>

char string1[50], string2[50];

if (strcmp(string1, string2))

printf("%s is different than %s \n", string1, string2);

See Also

memcmp, strncmp
VisualDSP++ 3.5 C Compiler and Library Manual 3-127
for ADSP-218x DSPs

C Run-Time Library Reference
strcoll

compare strings

Synopsis

#include <string.h>

int strcoll(const char *s1, const char *s2);

Description

The strcoll function compares the string pointed to by s1 with the string
pointed to by s2. The comparison is based on the locale macro,
LC_COLLATE. Because only the C locale is defined in the ADSP-218x DSP
environment, the strcoll function is identical to the strcmp function.
The function returns a positive value if the s1 string is greater than the s2
string, a negative value if the s2 string is greater than the s1 string, and a
zero if the strings are the same.

Error Conditions

The strcoll function does not return an error condition.

Example

#include <string.h>

char string1[50], string2[50];

if (strcoll(string1, string2))

printf("%s is different than %s \n", string1, string2);

See Also

strcmp, strncmp
3-128 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
strcpy

copy from one string to another

Synopsis

#include <string.h>

void *strcpy(char *, const char *);

Description

The strcpy function copies the null-terminated string pointed to by s2
into the space pointed to by s1. Memory allocated for s1 must be large
enough to hold s2, plus one space for the null character (‘\0’). The behav-
ior of strcpy is undefined if the two objects overlap or if s1 is not large
enough. The strcpy function returns the new s1.

Error Conditions

The strcpy function does not return an error condition.

Example

#include <string.h>

char string1[50];

strcpy(string1, "SOMEFUN");

/* SOMEFUN is copied into string1 */

See Also

memcpy, memmove, strncpy
VisualDSP++ 3.5 C Compiler and Library Manual 3-129
for ADSP-218x DSPs

C Run-Time Library Reference
strcspn

length of character segment in one string but not the other

Synopsis

#include <string.h>

size_t strcspn(const char *s1, const char *s2);

Description

The strcspn function returns the length of the initial segment of s1 which
consists entirely of characters not in the string pointed to by s2. The
string pointed to by s2 is treated as a set of characters. The order of the
characters in the string is not significant.

Error Conditions

The strcspn function does not return an error condition.

Example

#include <string.h>

char *ptr1, *ptr2;

size_t len;

ptr1 = "Tried and Tested";

ptr2 = "aeiou";

len = strcspn (ptr1, ptr2); /* len = 2 */

See Also

strlen, strspn
3-130 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
strerror

get string containing error message

Synopsis

#include <string.h>

char *strerror(int errnum);

Description

The strerror function returns a pointer to a string containing an error
message by mapping the number in errnum to that string.

Error Conditions

The strerror function does not return an error condition.

Example

#include <string.h>

char *ptr1;

ptr1 = strerror(1);

See Also

No references to this function.
VisualDSP++ 3.5 C Compiler and Library Manual 3-131
for ADSP-218x DSPs

C Run-Time Library Reference
strlen

string length

Synopsis

#include <string.h>

size_t strlen(const char *s1);

Description

The strlen function returns the length of the null-terminated string
pointed to by s (not including the terminating null character).

Error Conditions

The strlen function does not return an error condition.

Example

#include <string.h>

size_t len;

len = strlen("SOMEFUN"); /* len = 7 */

See Also

No references to this function.
3-132 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
strncat

concatenate characters from one string to another

Synopsis

#include <string.h>

char *strncat(char *s1, const char *s2, size_t n);

Description

The strncat function appends a copy of up to n characters in the
null-terminated string pointed to by s2 to the end of the null-terminated
string pointed to by s1. It returns a pointer to the new s1 string.

The behavior of strncat is undefined if the two strings overlap. The new
s1 string is terminated with a null (‘\0’).

Error Conditions

The strncat function does not return an error condition.

Example

#include <string.h>

char string1[50], *ptr;

string1[0]=’\0';

ptr = strncat(string1, "MOREFUN", 4);

/* string1 equals "MORE" */

See Also

strcat
VisualDSP++ 3.5 C Compiler and Library Manual 3-133
for ADSP-218x DSPs

C Run-Time Library Reference
strncmp

compare characters in strings

Synopsis

#include <string.h>

int strncmp(const char *s1, const char *s2, size_t n);

Description

The strncmp function lexicographically compares up to n characters of the
null-terminated strings pointed to by s1 and s2. It returns a positive value
if the s1 string is greater than the s2 string, a negative value if the s2 string
is greater than the s1 string, and a zero if the strings are the same.

Error Conditions

The strncmp function does not return an error condition.

Example

#include <string.h>

char *ptr1;

ptr1 = "TEST1";

if (strncmp(ptr1, "TEST", 4) == 0)

printf("%s starts with TEST \n", ptr1);

See Also

memcmp, strcmp
3-134 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
strncpy

copy characters from one string to another

Synopsis

#include <string.h>

char *strncpy(char *s1, const char *s2, size_t n);

Description

The strncpy function copies up to n characters of the null-terminated
string pointed to by s2 into the space pointed to by s1. If the last character
copied from s2 is not a null, the result does not end with a null. The
behavior of strncpy is undefined when the two objects overlap. The
strncpy function returns the new s1.

If the s2 string contains fewer than n characters, the s1 string is padded
with the null character until all n characters have been written.

Error Conditions

The strncpy function does not return an error condition.

Example

#include <string.h>
char string1[50];

strncpy(string1, “MOREFUN”, 4);
/* MORE is copied into string1 */

string1[4] = ‘\0’; /* must null-terminate string1 */

See Also

memcpy, memmove, strcpy
VisualDSP++ 3.5 C Compiler and Library Manual 3-135
for ADSP-218x DSPs

C Run-Time Library Reference
strpbrk

find character match in two strings

Synopsis

#include <string.h>

char *strpbrk(const char *s1, const char *s2);

Description

The strpbrk function returns a pointer to the first character in s1 that is
also found in s2. The string pointed to by s2 is treated as a set of charac-
ters. The order of the characters in the string is not significant.

Error Conditions

In the event that no character in s1 matches any in s2, a null pointer is
returned.

Example

#include <string.h>

char *ptr1, *ptr2, *ptr3;

ptr1 = "TESTING";

ptr2 = "SHOP"

ptr3 = strpbrk(ptr1, ptr2);

/* ptr3 points to the S in TESTING */

See Also

strspn
3-136 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
strrchr

find last occurrence of character in string

Synopsis

#include <string.h>

char *strrchr(const char *s1, int c);

Description

The strrchr function returns a pointer to the last occurrence of character
c in the null-terminated input string s1.

Error Conditions

The strrchr function returns a null pointer if c is not found.

Example

#include <string.h>

char *ptr1, *ptr2;

ptr1 = "TESTING”;

ptr2 = strrchr(ptr1, ‘T’);

/* ptr2 points to the second T of TESTING */

See Also

memchr, strchr
VisualDSP++ 3.5 C Compiler and Library Manual 3-137
for ADSP-218x DSPs

C Run-Time Library Reference
strspn

length of segment of characters in both strings

Synopsis

#include <string.h>

size_t strspn(const char *s1, const char *s2);

Description

The strspn function returns the length of the initial segment of s1 which
consists entirely of characters in the string pointed to by s2. The string
pointed to by s2 is treated as a set of characters. The order of the charac-
ters in the string is not significant.

Error Conditions

The strspn function does not return an error condition.

Example

#include <string.h>

size_t len;

char *ptr1, *ptr2;

ptr1 = "TESTING";

ptr2 = "ERST";

len = strspn(ptr1, ptr2); /* len = 4 */

See Also

strcspn, strlen
3-138 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
strstr

find string within string

Synopsis

#include <string.h>

char *strstr(const char *s1, const char *s2);

Description

The strstr function returns a pointer to the first occurrence in the string
pointed to by s1 of the characters in the string pointed to by s2. This
excludes the terminating null character in s1.

Error Conditions

If the string is not found, strstr returns a null pointer. If s2 points to a
string of zero length, s1 is returned.

Example

#include <string.h>

char *ptr1, *ptr2;

ptr1 = "TESTING";

ptr2 = strstr(ptr1, "E");

/* ptr2 points to the E in TESTING */

See Also

strchr
VisualDSP++ 3.5 C Compiler and Library Manual 3-139
for ADSP-218x DSPs

C Run-Time Library Reference
strtod

convert string to double

Synopsis

#include <stdlib.h>
double strtod(const char *nptr, char **endptr)

Description

The strtod function extracts a value from the string pointed to by nptr,
and returns the value as a double. The strtod function expects nptr to
point to a string that represents either a decimal floating-point number or
a hexadecimal floating-point number. Either form of number may be pre-
ceded by a sequence of whitespace characters (as determined by the
isspace function) that the function ignores.

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (–); and dig-
its are one or more decimal digits. The sequence of digits may contain a
decimal point (.).

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

The form of a hexadecimal floating-point number is:

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign] [digits]]
3-140 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
A hexadecimal floating-point number may start with an optional plus (+)
or minus (–) followed by the hexadecimal prefix 0x or 0X. This character
sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).

The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P, an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number will stop the
scan. If endptr is not NULL, a pointer to the character that stopped the
scan is stored at the location pointed to by endptr. If no conversion can be
performed, the value of nptr is stored at the location pointed to by
endptr.

Error Conditions

The strtod function returns a zero if no conversion can be made and a
pointer to the invalid string is stored in the object pointed to by endptr. If
the correct value results in an overflow, a positive or negative (as appropri-
ate) HUGE_VAL is returned. If the correct value results in an underflow, 0 is
returned. The ERANGE value is stored in errno in the case of either an over-
flow or underflow.

Example

#include <stdlib.h>
char *rem;
double dd;

dd = strtod ("2345.5E4 abc",&rem);
/* dd = 2.3455E+7, rem = "abc" */

dd = strtod ("-0x1.800p+9,123",&rem);
/* dd = -768.0, rem = ",123" */
VisualDSP++ 3.5 C Compiler and Library Manual 3-141
for ADSP-218x DSPs

C Run-Time Library Reference
See Also

atof, strtol, strtoul
3-142 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
strtodf

convert string to float

Synopsis

#include <stdlib.h>

float strtodf(const char *nptr, char **endptr)

Description

The strtodf function extracts a value from the string pointed to by nptr,
and returns the value as a float. The strtodf function expects nptr to
point to a string that represents either a decimal floating-point number or
a hexadecimal floating-point number. Either form of number may be pre-
ceded by a sequence of whitespace characters (as determined by the
isspace function) that the function ignores.

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (–); and dig-
its are one or more decimal digits. The sequence of digits may contain a
decimal point (.).

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

The form of a hexadecimal floating-point number is:

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign] [digits]]
VisualDSP++ 3.5 C Compiler and Library Manual 3-143
for ADSP-218x DSPs

C Run-Time Library Reference
A hexadecimal floating-point number may start with an optional plus (+)
or minus (–) followed by the hexadecimal prefix 0x or 0X. This character
sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).

The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P, an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number will stop the
scan. If endptr is not NULL, a pointer to the character that stopped the
scan is stored at the location pointed to by endptr. If no conversion can be
performed, the value of nptr is stored at the location pointed to by
endptr.

Error Conditions

The strtodf function returns a zero if no conversion can be made and a
pointer to the invalid string is stored in the object pointed to by endptr. If
the correct value results in an overflow, a positive or negative (as appropri-
ate) HUGE_VAL is returned. If the correct value results in an underflow, 0 is
returned. The ERANGE value is stored in errno in the case of either an over-
flow or underflow.

Example

#include <stdlib.h>

char *rem;

float f;

f = strtodf ("2345.5E4 abc",&rem);

/* f = 2.3455E+7, rem = "abc" */

f = strtodf ("-0x1.800p+9,123",&rem);

/* f = -768.0, rem = ",123 */
3-144 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
See Also

atof, strtol, strtoul
VisualDSP++ 3.5 C Compiler and Library Manual 3-145
for ADSP-218x DSPs

C Run-Time Library Reference
strtok

convert string to tokens

Synopsis

#include <string.h>

char *strtok(char *s1, const char *s2);

Description

The strtok function returns successive tokens from the string s1, where
each token is delimited by characters from s2.

A call to strtok with s1 not NULL returns a pointer to the first token in
s1, where a token is a consecutive sequence of characters not in s2. s1 is
modified in place to insert a null character at the end of the token
returned. If s1 consists entirely of characters from s2, NULL is returned.

Subsequent calls to strtok with s1 equal to NULL will return successive
tokens from the same string. When the string contains no further tokens,
NULL is returned. Each new call to strtok may use a new delimiter
string, even if s1 is NULL, in which case the remainder of the string is
tokenized using the new delimiter characters.

Error Conditions

The strtok function returns a null pointer if there are no tokens remain-
ing in the string.

Example

#include <string.h>
static char str[] = "a phrase to be tested, today";
char *t;

t = strtok(str, " "); /* t points to "a" */
t = strtok(NULL, " "); /* t points to "phrase" */
3-146 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
t = strtok(NULL, ","); /* t points to "to be tested" */
t = strtok(NULL, "."); /* t points to " today" */
t = strtok(NULL, "."); /* t = NULL */

See Also

No references to this function.
VisualDSP++ 3.5 C Compiler and Library Manual 3-147
for ADSP-218x DSPs

C Run-Time Library Reference
strtol

convert string to long integer

Synopsis

#include <stdlib.h>

long int strtol(const char *nptr, char **endptr, int base);

Description

The strtol function returns as a long int the value that was represented
by the string nptr. If endptr is not a null pointer, strtol stores a pointer
to the unconverted remainder in *endptr.

The strtol function breaks down the input into three sections: white
space (as determined by isspace), the initial characters, and unrecognized
characters, including a terminating null character. The initial characters
may be composed of an optional sign character, 0x or 0X if base is 16, and
those letters and digits which represent an integer with a radix of base.
The letters (a-z or A-Z) are assigned the values 10 to 35, and their use is
permitted only when those values are less than the value of base.

If base is zero, then the base is taken from the initial characters. A leading
0x indicates base 16; a leading 0 indicates base 8. For any other leading
characters, base 10 is used. If base is between 2 and 36, it is used as a base
for conversion.

Error Conditions

The strtol function returns a zero if no conversion can be made and the
invalid string is stored in the object pointed to by endptr. If the correct
value results in an overflow, positive or negative (as appropriate) LONG_MAX
is returned. If the correct value results in an underflow, LONG_MIN is
returned. ERANGE is stored in errno in the case of either overflow or
underflow.
3-148 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
Example

#include <stdlib.h>

#define base 10

char *rem;

long int i;

i = strtol("2345.5", &rem, base);

/* i=2345, rem=".5" */

See Also

atoi, atol, strtoul
VisualDSP++ 3.5 C Compiler and Library Manual 3-149
for ADSP-218x DSPs

C Run-Time Library Reference
strtoul

convert string to unsigned long integer

Synopsis

#include <stdlib.h>

unsigned long int strtoul(const char *nptr, char **endptr, int base);

Description

The strtoul function returns as an unsigned long int the value repre-
sented by the string nptr. If endptr is not a null pointer, strtoul stores a
pointer to the unconverted remainder in *endptr.

The strtoul function breaks down the input into three sections:

• white space (as determined by isspace)

• initial characters

• unrecognized characters including a terminating null character.

The initial characters may be composed of an optional sign character, 0x
or 0X if base is 16, and those letters and digits which represent an integer
with a radix of base. The letters (a-z or A-Z) are assigned the values 10 to
35, and their use is permitted only when those values are less than the
value of base.

If base is zero, then the base is taken from the initial characters. A leading
0x indicates base 16; a leading 0 indicates base 8. For any other leading
characters, base 10 is used. If base is between 2 and 36, it is used as a base
for conversion.
3-150 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
Error Conditions

The strtoul function returns a zero if no conversion can be made and a
pointer to the invalid string is stored in the object pointed to by endptr. If
the correct value results in an overflow, ULONG_MAX is returned. ERANGE is
stored in errno in the case of overflow.

Example

#include <stdlib.h>

#define base 10

char *rem;

unsigned long int i;

i = strtoul("2345.5", &rem, base);

/* i = 2345, rem = ".5" */

See Also

atoi, atol, strtoul
VisualDSP++ 3.5 C Compiler and Library Manual 3-151
for ADSP-218x DSPs

C Run-Time Library Reference
strxfrm

transform string using LC_COLLATE

Synopsis

#include <string.h>

size_t strxfrm(char *s1, const char *s2, size_t n);

Description

The strxfrm function transforms the string pointed to by s2 using the
locale specific category LC_COLLATE. It places the result in the array
pointed to by s1.

The function returns the length of the transformed string (not including
the terminating null character). If n is zero and s1 is set to the null
pointer, then strxfrm will return the number of characters required for
the transformed string. Overlapping strings are not supported

� The transformation is such that strcmp will return the same result
for two transformed strings as strcoll would for the same original
strings. However, because only the C locale is defined in the
ADSP-218x DSP environment, the strxfrm function is similar to
the strncpy function except that the null character is always
appended at the end of the output string.

Error Conditions

The strxfrm function does not return an error condition.

Example

#include <string.h>

char string1[50];

strxfrm(string1, "SOMEFUN", 49);

/* SOMEFUN is copied into string1 */
3-152 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
See Also

strcmp, strcoll, strncpy
VisualDSP++ 3.5 C Compiler and Library Manual 3-153
for ADSP-218x DSPs

C Run-Time Library Reference
sysreg_read

read from non-memory-mapped register

Synopsis

#include <sysreg.h>

int sysreg_read(const int)

Description

The sysreg_read function causes the compiler to emit instructions to read
the non-memory-mapped register, which is passed as a parameter, and to
set the value read from that register as a return value.

The input parameter for sysreg_read should be a member of the SysReg
enumeration defined in sysreg.h. This enumeration is used to map the
non-memory-mapped actual registers to a small constant defined as a user
friendly name. The enumerated variables defined are:

sysreg_ASTAT arithmetic status
sysreg_SSTAT shifter status
sysreg_MSTAT multiplier status
sysreg_ICNTL interrupt control
sysreg_IMASK interrupts enabled mask
sysreg_IFC interrupt force and clear

The sysreg_read function is implemented as a compiler built-in; the
emitted instructions will be inlined at the point of sysreg_read use.

The inclusion of the sysreg.h include file is mandatory when using
sysreg_read.

Error Conditions

The sysreg_read function does not return, raise, or set any error
conditions.
3-154 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
Example

#include <sysreg.h>

main(){

int value = sysreg_read(sysreg_IMASK);

}

See Also

disable_interrupts, enable_interrupts, io_space_read, io_space_write,
sysreg_write
VisualDSP++ 3.5 C Compiler and Library Manual 3-155
for ADSP-218x DSPs

C Run-Time Library Reference
sysreg_write

write to non-memory-mapped register

Synopsis

#include <sysreg.h>

void sysreg_write (const int, const unsigned int);

Description

The sysreg_write function causes the compiler to emit instructions to
write the non-memory-mapped register, which is passed as the first param-
eter, with the value, passed as the second parameter.

The first parameter for sysreg_write should be a member of the SysReg
enumeration defined in sysreg.h. This enumeration is used to map the
non-memory-mapped actual registers to a small constant, which is defined
as a user friendly name. The enumerated variables defined are:

sysreg_ASTAT arithmetic status
sysreg_SSTAT shifter status
sysreg_MSTAT multiplier status
sysreg_ICNTL interrupt control
sysreg_IMASK interrupts enabled mask
sysreg_IFC interrupt force and clear

The sysreg_write function is implemented as a compiler built-in; the
emitted instructions will be inlined at the point of sysreg_write use.

The inclusion of the sysreg.h include file is mandatory when using
sysreg_write.

Error Conditions

The sysreg_write function does not return, raise, or set any error
conditions.
3-156 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
Example

#include <sysreg.h>

main(){

sysreg_write(sysreg_IMASK, 0x1);

}

See Also

disable_interrupts, enable_interrupts, io_space_read, io_space_write,
sysreg_read
VisualDSP++ 3.5 C Compiler and Library Manual 3-157
for ADSP-218x DSPs

C Run-Time Library Reference
tan

tangent

Synopsis

#include <math.h>

double tan(double x);

float tanf(float x);

fract16 tan_fr16 (fract16 x);

Description

The tan function returns the tangent of the argument x. The input, in
radians, must be in the range [-9099, 9099].

The tan_fr16 function is only defined for input values between -π/4
(=0x9B78) and π/4 (=0x6488). The input argument is in radians. Output
values range from 0x8000 to 0x7FFF. The library function returns zero for
any input argument that is outside the defined domain.

Error Conditions

The tan function returns zero if the input argument is outside the defined
domain.

Example

#include <math.h>

double y;

y = tan(3.14159/4.0); /* y = 1.0 */

See Also

atan, atan2
3-158 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
tanh

hyperbolic tangent

Synopsis

#include <math.h>

double tanh(double x);

float tanhf(float x);

Description

The tanh function returns the hyperbolic tangent of the argument x.

Error Conditions

The tanh function does not return an error condition.

Example

#include <math.h>

double x,y;

y = tanh(x);

See Also

cosh, sinh
VisualDSP++ 3.5 C Compiler and Library Manual 3-159
for ADSP-218x DSPs

C Run-Time Library Reference
timer_off

disable ADSP-218x DSP timer

Synopsis

#include <misc.h>

unsigned int timer_off(void);

Description

This function is an Analog Devices extension to the ANSI standard.

The timer_off function disables the ADSP-218x DSP timer and returns
the current value of the TCOUNT register.

Error Conditions

The timer_off function does not return an error condition.

Example

#include <misc.h>

unsigned int hold_tcount;

hold_tcount = timer_off();

/* hold_tcount contains value of TCOUNT */

/* register AFTER timer has stopped */

See Also

 timer_on, timer_set
3-160 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
timer_on

enable ADSP-218x DSP timer

Synopsis

#include <misc.h>

unsigned int timer_on(void);

Description

This function is an Analog Devices extension to the ANSI standard.

The timer_on function enables the ADSP-218x DSP timer and returns
the current value of the TCOUNT register.

Error Conditions

The timer_on function does not return an error condition.

Example

#include <misc.h>

unsigned int hold_tcount;

hold_tcount = timer_on();

/* hold_tcount contains value of TCOUNT */

/* register when timer starts */

See Also

timer_off, timer_set
VisualDSP++ 3.5 C Compiler and Library Manual 3-161
for ADSP-218x DSPs

C Run-Time Library Reference
timer_set

initialize ADSP-218x DSP timer

Synopsis

#include <misc.h>
int timer_set(unsigned int tperiod,

unsigned int tcount, int tscale);

Description

This function is an Analog Devices extension to the ANSI standard.

The timer_set function sets the ADSP-218x DSP timer registers TPERIOD
and TCOUNT. The function returns a 1 if the timer is enabled, a 0 if the
timer is disabled.

The TSCALE value is used to set the TSCALE register. For a complete
description of the ADSP-218x DSP timer, refer to the ADSP-218x DSP
Hardware Reference.

� Each interrupt call takes approximately 50 cycles on entrance and
50 cycles on return. If tperiod and tcount are set too low, you may
incur initializing overhead that could create an infinite loop.

Error Conditions

The timer_set function does not return an error condition.

Example

#include <misc.h>

if(timer_set(1000, 1000,1) != 1)
timer_on(); /* enable timer */

See Also

timer_off, timer_on
3-162 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
tolower

convert from uppercase to lowercase

Synopsis

#include <ctype.h>

int tolower(int c);

Description

The tolower function converts the input character to lowercase if it is
uppercase; otherwise, it returns the character.

Error Conditions

The tolower function does not return an error condition.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

if(isupper(ch))

printf("tolower=%#04x", tolower(ch));

putchar(‘\n’);

}

See Also

islower, isupper, toupper
VisualDSP++ 3.5 C Compiler and Library Manual 3-163
for ADSP-218x DSPs

C Run-Time Library Reference
toupper

convert from lowercase to uppercase

Synopsis

#include <ctype.h>

int toupper(int c);

Description

The toupper function converts the input character to uppercase if it is in
lowercase; otherwise, it returns the character.

Error Conditions

The toupper function does not return an error condition.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

if(islower(ch))

printf("toupper=%#04x", toupper(ch));

putchar(‘\n’);

}

See Also

islower, isupper, tolower
3-164 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
va_arg

get next argument in variable-length list of arguments

Synopsis

#include <stdarg.h>

void va_arg(va_list ap, type);

Description

The va_arg macro is used to walk through the variable length list of argu-
ments to a function.

After starting to process a variable-length list of arguments with va_start,
call va_arg with the same va_list variable to extract arguments from the
list. Each call to va_arg returns a new argument from the list.

Substitute a type name corresponding to the type of the next argument for
the type parameter in each call to va_arg. After processing the list, call
va_end.

The header file stdarg.h defines a pointer type called va_list that is used
to access the list of variable arguments.

The function calling va_arg is responsible for determining the number
and types of arguments in the list. It needs this information to determine
how many times to call va_arg and what to pass for the type parameter
each time. There are several common ways for a function to determine
this type of information. The standard C printf function reads its first
argument looking for %-sequences to determine the number and types of
its extra arguments. In the example below, all of the arguments are of the
same type (char*), and a termination value (NULL) is used to indicate the
end of the argument list. Other methods are also possible.
VisualDSP++ 3.5 C Compiler and Library Manual 3-165
for ADSP-218x DSPs

C Run-Time Library Reference
If a call to va_arg is made after all arguments have been processed, or if
va_arg is called with a type parameter that is different from the type of the
next argument in the list, the behavior of va_arg is undefined.

Error Conditions

The va_arg macro does not return an error condition.

Example

#include <stdarg.h>
#include <string.h>
#include <stdlib.h>

char *concat(char *s1,...)
{

int len = 0;
char *result;
char *s;
va_list ap;

va_start (ap,s1);
s = s1;
while (s){

len += strlen (s);
s = va_arg (ap,char *);

}
va_end (ap);

result = malloc (len +7);
if (!result)

return result;
*result = '';
va_start (ap,s1);
s = s1;
while (s){

strcat (result,s);
s = va_arg (ap,char *);
3-166 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
}
va_end (ap);
return result;

}

See Also

va_end, va_start
VisualDSP++ 3.5 C Compiler and Library Manual 3-167
for ADSP-218x DSPs

C Run-Time Library Reference
va_end

finish variable-length argument list processing

Synopsis

#include <stdarg.h>

void va_end(va_list ap);

Description

The va_end macro can only be used after the va_start macro has been
invoked. A call to va_end concludes the processing of a variable-length list
of arguments that was begun by va_start.

Error Conditions

The va_end macro does not return an error condition.

Example

See “va_arg” on page 3-165.

See Also

va_arg, va_start
3-168 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

C Run-Time Library
va_start

initialize the variable-length argument list processing

Synopsis

#include <stdarg.h>

void va_start(va_list ap, parmN);

Description

The va_start macro is used in a function declared to take a variable num-
ber of arguments to start processing those variable arguments. The first
argument to va_start should be a variable of type va_list, which is used
by va_arg to walk through the arguments.

The second argument is the name of the last named parameter in the func-
tion's parameter list; the list of variable arguments immediately follows
this parameter. The va_start macro must be invoked before either the
va_arg or va_end macro can be invoked.

Error Conditions

The va_start macro does not return an error condition.

Example

See “va_arg” on page 3-165.

See Also

va_arg, va_end
VisualDSP++ 3.5 C Compiler and Library Manual 3-169
for ADSP-218x DSPs

C Run-Time Library Reference
3-170 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

A COMPILER LEGACY
SUPPORT

The VisualDSP++ environment and tools provide several types of support

for legacy code that was developed with previous releases of the develop-
ment tools. For more information on legacy code support, see the
VisualDSP++3.5 Linker and Utilities Manual for 16-Bit Processors and
VisualDSP++ 3.5 C Assembler and Preprocessor Manual for ADSP-218x and
ADSP-219x DSPs.

Tools Differences
VisualDSP++ 3.5 includes an updated C compiler, linker, and debugger,
and a binary file format, ELF. Due to use of the VisualDSP++ Integrated
Development and Debugging Environment (IDDE) and other enhance-
ments, VisualDSP++ 3.5 has significant differences from Release 6.1 that
you will need to be aware of. In some cases you will need to modify your
sources to use the new tools.

Of the new features and enhancements, the following have the most
impact on your existing projects:

• Some tools’ switches have changed. If you use any of the modified
or obsolete switches, you must revise your command-line scripts or
batch files in order to rebuild your project.

• The code generation tools no longer support AEXE-format DSP
executables (.EXE). They now generate ELF-format DSP executa-
bles (.DXE), and the debugger requires DSP executables to be in the
ELF/DWARF-2 format. As a result, AEXE-formatted files must be
VisualDSP++ 3.5 C Compiler and Library Manual A-1
for ADSP-218x DSPs

Tools Differences
recompiled or reassembled in order to be debugged under
VisualDSP++ 3.5. An ELF/DWARF-to-AEXE conversion utility is
available in VisualDSP++ 3.5 to perform back-conversion. An
AEXE-to-ELF conversion utility performs forward conversion.

• Some assembly instructions and directives have changed from the
VisualDSP 6.1 syntax, but a -legacy assembler switch has been
provided to assemble files in the old syntax. You may need to
review diagnostic messages and revise your source code in order to
reassemble your source. Legacy syntax and the new syntax under
VisualDSP++ 3.5 cannot be used together in the same source file.
They can be mixed together within the same project, as long as
they are assembled in different source files.

• Some C compiler extensions to the ISO/ANSI standard have
changed. If you use any of the modified or removed extensions,
you must revise your code in order to rebuild your project.

• The run-time model has changed. If you call a Release 6.1 assem-
bly-language subroutine from your C program, you must revise the
assembly code to comply with the new rules for the C run-time
environment.

• The Architecture File (.ACH) is no longer supported. If you re-link
using your Release 6.1 object files or object libraries, you must cre-
ate a Linker Description File for each object or object library before
using the new linker.

The remainder of this section describes these and other known differences
between VisualDSP Releases 6.1 and VisualDSP++ 3.5. It also provides
assistance when possible to make transformation to the new software
easier.
A-2 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler Legacy Support
C Compiler and C Run-Time Library
The new cc218x compiler provided in VisualDSP++ 3.5 does not support
some switches and extensions that were available in the g21 compiler. As a
result, the compiler supports a set of new rules for the run-time environ-
ment. This section lists the extensions and switches that have been
removed, replaced, or whose function works differently than in
Release 6.1. For further details about the cc218x compiler, see Chapter 1,
“Compiler”.

Segment Placement Support Keyword Changed to Section

The segment() placement keyword has changed to section(). The
section() construct now precedes the variable declaration, and its argu-
ment is a string; for example:

section("my_sec") int myvar;

For more information about the section() construct, see “Placement Sup-
port Keyword (section)” on page 1-76.

G21 Compatibility Call

The C compiler provides a special g21 compatibility call that enables use
of existing libraries with the new compiler. The extern OldAsmCall decla-
ration can be added to the prototype(s) of the functions developed under
Release 6.1. Your programs will be faster, smaller, and more reliable after
the C code is upgraded to use the new compiler.

� This convention is similar to the C linkage specification.

Support for G21-Based Options and Extensions

The C compiler supports most of the switches and extensions of the previ-
ous GNU-based compiler release. For a list of absolute or modified
options, see “Compiler Switch Modifications” on page A-5.
VisualDSP++ 3.5 C Compiler and Library Manual A-3
for ADSP-218x DSPs

Tools Differences
Indexed Initializers

The syntax for indexed initializers may change in a future release. This
change may be incompatible with the existing syntax. For more informa-
tion about indexed initializers, see“Indexed Initializer Support” on
page 1-80.

Compiler Diagnostics

Compiler diagnostics now go to stderr on the PC, rather than to stdout.

ANSI C Extensions

The following extensions are no longer supported:

• typeof — This extension was used to obtain the type of an
expression.

• complex types: complex, creal, cimag, and conj — These exten-
sions were used to define complex numbers. Although you cannot
write complex number literals, you can have a complex type
defined with real and imaginary components. These types need to
be managed by the programmer.

• compound statements within expressions — This extension was
used to declare variables within an expression. You can achieve
similar results using in-line functions.

• iterator types: iter, sum — These extensions created loop expres-
sions that were used as a shorthand for working with arrays.

• assigning variables to specific registers: asm — This extension was
used to declare a variable and specify a machine register in which to
store it.

If you used any of these extensions in your C source code, you must
remove them if you modify or re-compile that source.
A-4 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler Legacy Support
Compiler Switch Modifications

Compiler switches (listed in Table A-1) have been removed or their action
has been modified. If you used any of these switches to compile your C
code, you should remove or replace the switch before recompiling the
code with the new C compiler.

Table A-1. Obsolete and Replaced Switches

Switch Name Operation under
Release 6.1

Change for
VisualDSP++ 3.5

-a Specify Architecture File. Replaced with -T and used with
a Linker Description File.

-dD, -dM, and -dN Output the results of prepro-
cessing and/or list of # defines.

Removed.

-deps Generate dependencies list. Removed.

-fcond-mismatch Allow conditional expression
mismatch.

Removed.

-finline-functions Force function inlining. Removed.

-fkeep-inline-functions Force keeping of inlined func-
tions.

Removed.

-fno-asm Don’t recognize asm as a key-
word.

Replaced with
-no-extra-keywords.

-fno-builtin Don’t recognize builtin func-
tions.

Replaced with -no-builtin.

-fsigned-bitfields
-funsigned-bitfields

Control whether bit field is
signed or unsigned.

Removed.
Bitfield is signed or unsigned
based on the sign of the type
definition declaring the bitfield.

-fno-signed-bitfields
-fno-unsigned- bitields

Negative form of the
-fsigned-bitfield and
-funsigned-bitfield.

Replaced with
-signed-bitfield and
-unsigned-bitfield..

-fsigned-char
-funsigned-char

Specify whether to default to
signed or unsigned char type.

Replaced with -signed-char
and -unsigned-char.
VisualDSP++ 3.5 C Compiler and Library Manual A-5
for ADSP-218x DSPs

Tools Differences
-fsyntax_only Check syntax only; no output. Replaced with -syntax-only.

-fwritable-strings Store string constants in the
writable data segment.

Removed.
String constants are placed in
the seg_data1 section. Defini-
tion in the .LDF file can place
this section in RAM or ROM.

-imacros Process macro file. Removed.

-MD, -MM, and -MMD Output rules for the make util-
ity; used with -E.

Removed.

-mboot-page= Specify boot page. Removed.
The ADSP-218x DSP does not
support paging.

-mdmdata=
-mpmdata=
-mdcode=

Specify architecture file seg-
ments.

Removed.
You can control placement of
object file segments using the
.SECTION directive in the .LDF
file.

-mlistm Merge C code with assem-
bler-generated code.

Removed.

-mno-doloops Don’t generate loop structures
in assembled code.

Removed.

-mno-inits Don’t initialize variables in
assembled code.

Removed.

-mpjump Place the jump table in pm
memory.

Replaced with
-jump-{dm|pm}.

-mreserved= Instructs the compiler not to
use specified registers.

Replaced with -reserve.

-mrom Make the module a ROM
module.

Removed.

-msmall-code Optimize for size, not for
speed.

Replaced with -Os.

Table A-1. Obsolete and Replaced Switches (Cont’d)

Switch Name Operation under
Release 6.1

Change for
VisualDSP++ 3.5
A-6 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler Legacy Support
Warnings

The VisualDSP++ 3.5 compiler includes several new warning switches.
These switches control the number and type of messages reported during a
given compilation. They are described in Table A-2.

-mstatic-spill Use dm memory when all regis-
ter are used.

Removed.

-nostdinc Do not search standard system
directories for header files.

Replaced with -no-std-inc.

-nostdlib Do not use standard system
libraries and startup files when
linking.

Replaced with -no-std-lib.

-runhdr Specify a particular run-time
header.

Removed.
This feature can now be defined
in the .LDF file.

-traditional-cpp Support some preprocessing
features.

Removed.

Table A-2. Compiler -- New Warning Switches

VisualDSP ++ 3.5
Warning Switch

Description

-warn-protos Produce a warning when a function is called with-
out a full prototype.

-Wdriver-limit number Set a maximum number of driver errors.

-Werror-limit number Set a maximum number of compiler errors.

-Wremarks Indicates that the compiler may issue remarks,
which are diagnostic messages even milder than
warnings.

-Wterse Enable terse warnings.

Table A-1. Obsolete and Replaced Switches (Cont’d)

Switch Name Operation under
Release 6.1

Change for
VisualDSP++ 3.5
VisualDSP++ 3.5 C Compiler and Library Manual A-7
for ADSP-218x DSPs

Tools Differences
The Release 6.1 warning switches that are no longer supported are listed
in Table A-3.

� See “Compiler Command-Line Reference” on page 1-6 for com-
plete descriptions of current C compiler switches.

Run-Time Model

The cc218x compiler in VisualDSP++ 3.5 produces code that is not fully
compatible with the Release 6.1 run-time model. However, the new com-
piler is superior in many ways to the old one, and your programs will be
faster, smaller, and more reliable after the C code is converted to the new
system.

-pedantic Causes the compiler to generate warnings for any
constructs in a C source file that does not conform
to the ANSI standard.

-W{error|remark|suppress|warn}
<num> [, num ...]

Overrides the severity of specific compilation diag-
nostic messages, where num is the number repre-
senting the message to override.

Table A-3. Obsolete Warning Switches

-W -Wformat -Wtrigraphs

-Wall -Wimplicit -Wuninitialized

-Wchar-subscripts -Wparentheses -Wunused

-Wcomment -Wreturn-type

-Werror -Wswitch

Table A-2. Compiler -- New Warning Switches (Cont’d)

VisualDSP ++ 3.5
Warning Switch

Description
A-8 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

Compiler Legacy Support
VisualDSP++ 3.5 includes significant changes to the registers, stack usage,
and other features of the run-time model; these changes are especially
important if you wish to call assembly language subroutines from C pro-
grams, or C functions from assembly language programs. For complete
details about the VisualDSP++ 3.5 run-time model, see “C Run-Time
Model and Environment” on page 1-132.
VisualDSP++ 3.5 C Compiler and Library Manual A-9
for ADSP-218x DSPs

Tools Differences
A-10 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

I INDEX

Symbols #pragma regs_clobbered string 1-111

#assert directive 1-19
#pragma align num 1-101
#pragma alloc 1-109, 2-30
#pragma altregisters 1-103
#pragma const 1-110, 2-29
#pragma hdrstop 1-115
#pragma interrupt 1-102
#pragma linkage_name 1-107
#pragma loop_count 2-33
#pragma loop_count(min, max,

modulo) 1-104
#pragma make_auto_static 1-108
#pragma no_alias 1-105, 2-34
#pragma no_pch 1-116
#pragma once 1-116
#pragma

optimize_{off|for_speed|for_space
} 2-33

#pragma optimize_as_cmd_line 1-106
#pragma optimize_for_space 1-106
#pragma optimize_for_speed 1-106
#pragma optimize_off 1-106
#pragma pad (alignopt) 1-102
#pragma pure 1-110, 2-30
#pragma regs_clobbered 2-31

#pragma result_alignment 1-114
#pragma retain_name 1-107
#pragma system_header 1-116
#pragma vector_for 1-104
#pragma weak_entry 1-108
.IDL file 1-131
.xml extension 1-29
@ filename (command file) compiler

switch 1-18
__alignof__ (type-name) construct

1-123
__attribute__ keyword 1-124
__builtin_aligned declaration 2-6
__GROUPNAME__ macro 1-41
__HOSTNAME__ macro 1-41
__MACHINE__ macro 1-41
__NO_BUILTIN preprocessor macro.

1-30
__NO_STD_LIB macro 1-32
__REALNAME__ macro 1-41
__SIGNED_CHARS__ macro 1-40,

1-43
__SILICON_REVISION__ macro

1-39
__SYSTEM__ macro 1-41
__USERNAME__ macro 1-41
VisualDSP++ 3.5 C Compiler and Library Manual I-1
for ADSP-218x DSPs

INDEX
_primIO()
C function

 3-12

A
-A (assert) compiler switch 1-18
abend (see abort function)
abort (abnormal program end)

function 3-19
abs (absolute value) function 3-20
acos (arc cosine) function 3-21
acos_fr16 function 3-21
activation record 1-136
aggregate

initializers 1-80
aggregate assignment support

(compiler) 1-82
aggregate constructor expression

support 1-82
alias

avoiding 2-10
align num pragma 1-101
alignment inquiry keyword 1-123
allocate memory (see calloc, free,

malloc, realloc functions)
alphanumeric character test (see

isalnum function)
alter(x) macro 1-153
altregisters pragma 1-103
-alttok (alternative tokens) compiler

switch 1-19
ANSI C extensions A-4
ANSI standard compiler 1-22
arc tangent 3-23

array
indexed 2-12
initializer 1-80
length 1-79
zero length 1-121

array search, binary (see bsearch
function)

ASCII string (see atof, atoi, atol
functions)

asin (arc sine) function 3-22
asin_fr16 function 3-22
asm

compiler keyword 1-53
keyword 1-56, 1-123
statements 2-14

line breaks in 1-121
asm compiler keyword (see inline

assembly language support
keyword (asm))

asm()
constructs 1-57
flow control constructs 1-70
operand constraints 1-64

asm() construct reordering 1-68
asm_sprt.h – mixed C/assembly

support 1-152
assembler 1-2
assembly

constructs 1-57
language subroutines 1-148

assert.h header file 3-6
assignments 1-73
atan (arc tangent) function 3-23
atan_fr16 function 3-23
I-2 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

INDEX
atan2 (arc tangent of quotient)
function 3-24

atan2_fr16 function 3-24
atexit (select exit function) function

3-25
atof (convert string to double)

function 3-26
atoi (convert string to integer)

function 3-29
atol (convert string to long integer)

function 3-30
attributes

functions, variables and types
1-124

autobuffering 1-38, 1-134
automatic

inlining 1-33, 1-50, 2-13
loop control 2-21
variables 1-71

B
base 10 logarithm 3-98
binary array search (see bsearch

function)
biquad (biquad filter) function 3-31
bitfields

signed 1-40
unsigned 1-42

bit-reversal sorting algorithm 1-101
bool (see Boolean type support

keywords (bool, true, false))
boolean type support keywords 1-77
Boolean type support keywords

(bool, true, false) 1-53

bsearch (binary search in sorted
array) function 3-34

-bss compiler switch 1-19
-build-lib (build library) compiler

switch 1-20
built-in functions 1-83, 1-84

system 2-25

C
-C (comments) compiler switch

1-20
-c (compile only) compiler switch

1-20
C function

_primIO() 3-12
C language extensions 1-53

aggregate assignments 1-82
asm keyword 1-56
bool keyword 1-77
C++-style comments 1-54
compound statements 1-79
false keyword 1-53
indexed initializers 1-81
inline keyword 1-55
non-constant initializers 1-80
segment keyword 1-53
true keyword 1-53

C run-time environment
see also C Run-time library

C run-time library 3-2
C/assembly interface, see mixed

C/assembly programming)
calling

assembly language subroutine
VisualDSP++ 3.5 C Compiler and Library Manual I-3
for ADSP-218x DSPs

INDEX
1-148
C library functions 3-2

calloc (allocate and initialize
memory) function 3-36

ceil (ceiling) function 3-37
character string search (see strchr

function)
character string search, recursive (see

strrchr function)
circular boundary array

declaring 1-101
circular buffer length registers 1-144
clear_interrupt (clear a pending

signal) function 3-38
clobber 1-59
clobber string specifiers 1-64
clobbered register set 1-112, 1-113
clobbered registers 1-59, 1-111,

1-112
close operation 3-11
command-line interface 1-6
compatibility call 1-157
compiler

C extensions 1-53
code optimization 1-49, 2-3
command-line syntax 1-7
diagnostics output A-4
file extensions 1-9
input/output files 1-9
intrinsic functions 1-83
legacy support A-1–A-9
obsolete/modified switches A-5
optimization disabling 1-32
optimization enabling 1-32

optimizer 2-4
overview 1-2
reference 1-132
running 1-7
selecting options 1-3, 1-10

compiler command-line switches
-@ filename (command file) 1-18
-A (assert) 1-18
-alttok (alternative tokens) 1-19
-bss 1-19
-build-lib (build library) 1-20
-C (comments) 1-20
-c (compile only) 1-20
-const-read-write 1-20
-debug-types 1-21
-default-linkage- (assembler

linkage) 1-21
-Dmacro (define macro) 1-20
-dry (verbose dry-run) 1-22
-dryrun (terse dry-run) 1-22
-E (stop after preprocessing) 1-22
-ED (run after preprocessing to

file) 1-22
-EE (run after preprocessing) 1-22
-extra-keywords 1-22
-flags (command-line input) 1-23
-fp-associative 1-23
-full-version (display version)

1-23
-g (generate debug information)

1-23
-H (list headers) 1-24
-h[elp] (command-line help) 1-24
-HH (list headers and compile)
I-4 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

INDEX
1-24
-I- (start include directory) 1-25
-I directory (include search

directory) 1-25
-include filename (include file)

1-25
-ipa (interprocedural analysis)

1-26
-jump-{dm|pm|same} (select

jump table memory type) 1-26
-L (library search directory) 1-27
-l (link library) 1-27
-M (generate make rules only)

1-27
-make-autostatic (make automatic

variables static) 1-29
-map (generate a memory map)

1-29
-MD (generate make rules and

compile) 1-28
-mem (invoke memory initializer)

1-29
-MM (generate make rules and

compile) 1-28
-Mo (processor output file) 1-28
-MQ 1-28
-Mt (output make rules) 1-28
-no-alttok (disable tokens) 1-29
-no-bss 1-30
-no-builtin (no built-in functions)

1-30
-no-defs (disable defaults) 1-30
-no-extra-keywords (disable

short-form keywords) 1-30

-no-fp-associative 1-31
-no-mem (not invoking memory

initializer) 1-31
-no-std-ass (disable standard

assertions) 1-31
-no-std-def (disable standard

macro definitions) 1-31
-no-std-inc (disable standard

include search) 1-31
-no-std-lib (disable standard

library search) 1-32
-no-widen-muls (disable widening

multiplications) 1-32
-O (enable optimizations) 1-32
-o (output file) 1-33
-Oa (automatic function inlining)

1-33
-Os (optimize for size) 1-33
-Ov (optimize for speed vs. size)

1-33
-P (omit line numbers) 1-34
-path (tool location) 1-34
-path-install directory (installation

location) 1-34
-path-output (non-temporary files

location) 1-35
-path-temp (temporary files

location) 1-35
-pch (precompiled header) 1-35
-pchdir (locate PCHRepository)

1-35
-pedantic (ANSI standard

warnings) 1-35
-pedantic-errors (ANSI C errors)
VisualDSP++ 3.5 C Compiler and Library Manual I-5
for ADSP-218x DSPs

INDEX
1-36
-PP (omit line numbers and run)

1-34
-pplist (preprocessor listing) 1-36
-proc (target processor) 1-36
-R (add source directory) 1-37
-R- (disable source path) 1-38
-reserve (reserve register) 1-38
-S (stop after compilation) 1-38
-s (strip debugging information)

1-39
-save-temps (save intermediate

files) 1-39
-show (display command line)

1-39
-signed-bitfield (make plain

bitfields signed) 1-40
-signed-char (make char signed)

1-40
-si-revision version (silicon

revision) 1-39
-syntax-only (just check syntax)

1-40
-sysdefs (system definitions) 1-41
-T (linker description file) 1-41
-time (time the compiler) 1-41
-Umacro (undefine macro) 1-42
-unsigned-bitfield (make plain

bitfields unsigned) 1-42
-unsigned-char (make char

unsigned) 1-43
-v (version and verbose) 1-43
-val-global (add global names)

1-43

-verbose (display command line)
1-43

-version (display version) 1-43
-w (display all warnings) 1-45
-W (override error messages) 1-44
-warns-protos (prototypes

warning) 1-45
-Wdriver-limit (maximum

process errors) 1-44
-Werror-limit (maximum

compiler errors) 1-44
-Wremarks (enable diagnostic

warnings) 1-44
-write-files (enable driver I/O

redirection) 1-45
-write-opts 1-45
-Wterse (terse warnings) 1-45
-xref file (cross-reference list) 1-46

compound statements with in
expressions support (compiler)
1-79

conditional code
in loops 2-20

conditional expressions
with missing operands 1-120

const
keyword 2-23
pointers 1-20
qualifier 2-23

-const-read-write compiler switch
1-20

-const-read-write flag 2-23
constructs

flow control 1-70
I-6 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

INDEX
control character test (see iscntrl
function)

controlling
header files with pragmas 1-115
interrupts 1-85
optimization 1-49

convert
characters (see tolower, toupper

functions)
strings (see atof, atoi, atol, strtok,

strtol, strtoul, functions)
copying

characters between overlapping
objects 3-105

characters from one object to
another 3-104

copysign 3-40
cos (cosine) function 3-41
cos_fr16() function 3-41
cosh (hyperbolic cosine) function

3-44
cotangent 3-45
C-type functions

isalnum 3-79
iscntrl 3-81
isdigit 3-82
isgraph 3-83
islower 3-84, 3-86
isprint 3-89
ispunct 3-90
isspace 3-91
isupper 3-92
isxdigit 3-93
tolower 3-163

toupper 3-164
ctype.h header file 3-6
custom processors 1-37

D
-D (define macro) compiler switch

1-20, 1-42
DAG1 registers 1-146
DAG2 registers 1-147
data

alignment pragmas 1-101
register 1-145
scalar type 2-7
types 1-47

deallocate memory (see free
function)

debug information 1-39, 1-49
-debug-types compiler switch 1-21
declarations

mixed with code 1-122
dedicated registers 1-144
def2181.h header file 3-7
-default-linkage- (assembler linkage)

compiler switch 1-21
demean_buffer (remove mean of

data buffer) function 3-46
device

driver 1-141
identifiers 1-141

DeviceID field 1-142
differences between releases A-1
disable_interrupts (disable

interrupts) function 3-48
VisualDSP++ 3.5 C Compiler and Library Manual I-7
for ADSP-218x DSPs

INDEX
disabling compiler optimization
1-32

div (division) function 3-49
division (see div, ldiv functions)
dm (see dual memory support

keywords (pm dm))
DM support

standard C library 1-76
double

data type 1-48
representation 3-140

-dry (verbose dry-run) compiler
switch 1-22

-dryrun (terse dry-run) compiler
switch 1-22

dual memory
space 1-71
support keywords (pm dm) 1-53,

1-71
dual memory support keywords (pm

dm) 1-71
duplicate sign bit elimination 1-87

E
-E stop after preprocessing)

compiler switch 1-22
-ED (run after preprocessing to file)

compiler switch 1-22
-EE (run after preprocessing)

compiler switch 1-22
emulated arithmetic

avoiding 2-8
enable_interrupts (enable

interrupts) function 3-50

end (see atexit, exit functions)
enumerated variables 3-154, 3-156
errno.h header file 3-7
escape character 1-123
ETSI

built-in functions 1-89
fract16 and fract32 data types

1-90
function calls 1-88
library source code 1-90
linking library functions 1-89
support operations 1-86

ETSI library functions
16-bit variable - least significant

bits 1-95
16-bit variable - most significant

bits 1-95
compose long 1-98
extract high 1-92
extract long from two shorts 1-98
extract low 1-92
fract integer division of two longs

1-99
long absolute 1-95
long add 1-95
long add with carry 1-95
long division 1-91
long multiply 1-96
long negate 1-96
long normalize 1-93
long saturation 1-97
long shift left 1-97
long shift right 1-97
long shift right with rounding
I-8 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

INDEX
1-97
long subtract 1-97
long subtract with carry 1-98
multiply and accumulate 1-95
multiply and accumulate with

rounding 1-92
multiply and accumulate without

saturation 1-96
multiply and subtract 1-96
multiply and subtract with

rounding 1-92
multiply and subtract without

saturation 1-96
multiply both most significant

bits and least significant bits of
long, by same short 1-96

multiply short by a long 1-98
multiply two longs 1-98
multiply with rounding 1-93
round 1-93
saturate 1-94
shift right with rounding 1-94
short absolute 1-91
short add 1-91
short division 1-91
short multiply 1-92
short negate 1-93
short normalize 1-93
short shift left 1-94
short shift right 1-94
short subtract 1-94

ETSI_fract_arith.h header file 1-91
exit (normal program termination)

function 3-51

exit macro 1-153
exp (exponential) function 3-52
extensions

using compiler language 1-3
-extra-keywords (not quite -analog)

compiler switch 1-22
EZ-KIT Lite 1-141
EZ-kits 3-11

F
fabs (float absolute value) function

3-53
false (see Boolean type support

keywords (bool, true, false))
far jump return (see longjmp,

setjmp functions)
Fast Fourier Transform functions

3-7
fflush (NULL) function reference

3-12
fftN (N-point complex input FFT)

function 3-54
fftN functions 3-7
ffts.h – Fast Fourier Transforms 3-7
file

extension 1-7, 1-9
I/O support 1-141
searches 1-8
searching <filename> 1-131

filenames
on command line 1-18

filter functions
biquad 3-31

filters.h – DSP filters 3-8
VisualDSP++ 3.5 C Compiler and Library Manual I-9
for ADSP-218x DSPs

INDEX
fir (finite impulse response filter)
function 3-57

-flags (command line input)
compiler switch 1-23

float representation 3-143
float.h (floating point) header file

3-8
floating-point

hexadecimal constants 1-120
mathematical functions 3-9

flow control operations 1-70
FLT_ROUNDS macro 3-8
fmod (floating-point modulus)

function 3-60
-fp-associative (floating-point

associative) compiler switch
1-23

fract.h header file 3-8
fractional data, 2-24
frame pointer 1-136
free (deallocate memory) function

3-61
frexp (separate fraction and

exponent) function 3-62
-full-version (display version)

compiler switch 1-23
function

arguments 1-75
call in loop 2-21
inlining 2-13

function_entry macro 1-153
functions

primitive I/O 3-11

G
-g (generate debug information)

compiler switch 1-23
g21-based options and extensions

A-3
GCC compatibility extensions

1-117
GCC compiler compatibility 1-117
general optimization pragmas 1-105
general utilities

specified by C standard 3-12
getsfirst macro 1-155
getsnext macro 1-155
globvar global variable 2-22
GNU C compiler 1-117
graphical character test (see isgraph

function)

H
-H (list *.h) compiler switch 1-24
hardware

interrupt 1-133
header file control pragmas 1-115
header files 1-31, 1-128

assert.h 3-6
ctype.h 3-6
def2181.h 3-7
def218x.h 3-7
defESP202.h 3-7
errno.h 3-7
ffts.h 3-7
filters.h 3-8
fract.h 3-8
iso646.h 3-8
I-10 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

INDEX
locale.h 3-9
math.h 3-9
misc.h 3-10
setjmp.h 3-10
signal.h 3-10
sport.h 3-11
stdarg.h 3-11
stdio.h 3-11
stdlib.h 3-12
string.h 3-12
supplied with compiler 3-5
sysreg.h 1-84, 3-13

header files (standard)
float.h 3-8
stdio.h 1-141

-help (command line help) compiler
switch 1-24

hexadecimal digit test (see isxdigit
function)

hexadecimal floating-point
constants 1-120

-HH (list *.h and compile) compiler
switch 1-24

hyperbolic
sine 3-122
tangent 3-159

I
-I (include search directory)

compiler switch 1-25, 1-31
-I- (start include directory) compiler

switch 1-25
I/O

files 1-9

functions 3-11
new device support 1-141
primitives 3-11

I/O
file support 1-141

space address 1-84
I/O functions

primitive 3-11
IFC (Interrupt Force and Clear)

register 3-38
ifftN (inverse complex FFT)

function 3-63
iir (infinite impulse response) filter

function 3-66
IIR filter coefficients 3-66
-include (include file) compiler

switch 1-25
include directives 1-131
indexed

array 2-12
initializer 1-80, A-4

induction variables 2-19
infinite impulse response (IIR) filter

3-66
initializers

aggregate 1-80
array 1-80
indexed 1-80, A-4

inline
asm keyword construct

template 1-57
asm statements 2-14
assembler 1-57
assembly code 1-132
VisualDSP++ 3.5 C Compiler and Library Manual I-11
for ADSP-218x DSPs

INDEX
assembly support keyword (asm)
1-56

keyword 2-13, 2-28
inline assembly language support

keyword (asm)
construct I/O operands 1-68
construct template 1-57
construct template operands 1-61
constructs

optimization 1-68
constructs with multiple

instructions 1-67
macros containing asm 1-70

inline code
avoiding 2-28

inline function support keyword
(inline) 1-47, 1-53, 1-55

inlining
automatic 1-50, 2-13
function 2-13

inner loop 2-19
interface support macros 1-152
interfacing C/assembly (see mixed

C/assembly programming)
intermediate files 1-39
interprocedural

analysis 1-26, 1-50
analysis (IPA) 2-5
optimizations 1-50

interprocedural analysis (IPA) 1-26
interrupt

control 1-85
default table 1-133
handling interrupt

dispatcher 3-71
pragmas 1-102
RTI instruction 1-133
vector addresses 1-133

interrupt (define interrupt
handling) function 3-71

interrupt table
218x_int_tab.asm 1-133

interrupt table symbols
_____system_start 1-133
__lib_int_determiner 1-133
_lib_int_table 1-133

interruptf function 3-71
interrupts (see clear_interrupt,

interruptf, interrupts, signal,
raise functions)

intrinsic functions 1-83
io_space_read (read I/O space)

function 3-75
io_space_write (write I/O space)

function 3-77
IPA 1-26, 1-50
-ipa (interprocedural analysis)

compiler switch 1-26, 2-5
isalnum (detect alphanumeric

character) function 3-79
isalpha (detect alphabetic character)

function 3-80
iscntrl (detect control character)

function 3-81
isdigit (detect decimal digit)

function 3-82
isgraph (detect printable character)

function 3-83
I-12 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

INDEX
islower (detect lowercase character)
function 3-86

iso646.h (Boolean operator) header
file 3-8

iso646.h header file 3-8
isprint (detect printable character)

function 3-89
ispunct (detect punctuation

character) function 3-90
isspace (detect whitespace character)

function 3-91
isupper (detect uppercase character)

function 3-92
isxdigit (detect hexadecimal digit)

function 3-93

J
-jump-{dm|pm|same} (select jump

table memory type) compiler
switch 1-26

K
keywords

boolean 1-77
illegal 1-75
illegal dual memory support 1-75
memory macros 1-75

keywords (compiler) (see compiler
C extensions)

L
-L (library search directory)

compiler switch 1-27

-l (link library) compiler switch 1-27
labs (long integer absolute value)

function 3-94
language extensions (compiler) (see

compiler C extensions)
ldexp (multiple by power of 2)

function 3-95
ldiv (division, long) function 3-96
ldiv (long division) function 3-96
leaf procedure 1-136
leaf_entry macro 1-153
leaf_exit macro 1-153
library

header files, working with 3-5
linking functions 3-3
source code, working with 3-4

line breaks
in string literals 1-121

linking
library functions 3-3
pragmas for 1-106

locale.h header file 3-9
localtime (return address of encoded

calendar time) function 3-97
log (natural logarithm) function

3-97
log, logf (log base e) function 3-101
log10 (base 10 logarithm) function

3-98
log10, log10f (log base 10) function

3-101
long division 3-96
long jump (see longjmp, setjmp

functions)
VisualDSP++ 3.5 C Compiler and Library Manual I-13
for ADSP-218x DSPs

INDEX
longjmp (far jump return) function
3-101

longjmp (second return from
setjmp) function 3-99

loop
exit test 2-21
iteration count 2-33
optimization 1-103, 2-33
parallel processing 1-104
rotatiing by hand 2-18
short 2-17
unrolling 2-17
vectorizing 1-103

loop control
automatic variables 2-21
variables 2-21

loop kernels
short 2-34

loop-carried dependency 2-18
lower case (see islower, tolower

functions)
lvalue

GCC generalized 1-119

M
-M (generate make rules only)

compiler switch 1-27
macros

__NO_LONG_LONG 1-127
__VERSION__ 1-128
ADSP21 1-126
_ADSP21XX_and_ADSP218X_

1-126
_ANALOG_EXTENSIONS_

1-126
DATE 1-126
_DOUBLES_ARE_FLOATS_

1-126
ECC 1-126
EDG 1-126
_EDG_VERSION_ 1-127
FILE 1-127
LINE 1-127
_NO_BUILTIN 1-127
_SIGNED_CHARS_ 1-127
STDC 1-128
_STDC_VERSION_ 1-128
TIME 1-128
compound statements 1-129
EDOM 3-9
ERANGE 3-9
for C/Assembly interface support

1-152
HUGE_VAL 3-9
variable argument 1-121

macros and asm() C program
constructs 1-70

-make-autostatic (make automatic
variables static) compiler switch
1-29, 1-108

malloc (allocate memory) function
1-109, 3-101

-map (generate a memory map)
compiler switch 1-29

map file
with .xml extension 1-29

math.h header file 3-9
mathematical functions
I-14 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

INDEX
floating point 3-9
floating-point 3-9

maximum performance. 2-27
-MD (make and compile) compiler

switch 1-28
-mem (invoke memory initializer)

compiler switch 1-29
memchr (find first occurrence of

character) function 3-102
memcmp (compare objects)

function 3-103
memcpy (copy characters from one

object to another) function
3-104

memmove (copy characters between
overlapping objects) function
3-105

memory
data placement in 2-15

memory (see calloc, free, malloc,
memcmp, memcpy, memset,
memmove, memchar, realloc
functions)

memory initializer 1-23, 1-31
invoking 1-29

memory keywords
function arguments 1-75
macros 1-75

memset (set range of memory to a
character) function 3-106

minimum code size 2-27
misc.h header file 3-10
missing operands

in conditional expressions 1-120

mixed C/assembly
C run-time model 1-132
calling C from assembler 1-151
naming conventions 1-155
programming 1-132

asm() constructs 1-56, 1-57,
1-61, 1-67, 1-68, 1-70

support macros 1-152
mixed C/assembly programming

asm() constructs 1-57, 1-68
-MM (generate make rules and

compile) compiler switch 1-28
-Mo (processor output file)

compiler switch 1-28
modf (separate integral and

fractional parts) function 3-107
-MQ compiler switch 1-28
MSB extraction 1-87
MSTAT (mode status) register

1-145
-Mt filename (output make rule)

compiler switch 1-28
multidimensional arrays 1-79
multi-line asm() C program

constructs 1-67

N
naming conventions

C and assembly 1-155
next argument in variable list 3-165
-no-alttok (disable alternative

tokens) compiler switch 1-29
-no-bss compiler switch 1-30
VisualDSP++ 3.5 C Compiler and Library Manual I-15
for ADSP-218x DSPs

INDEX
-no-builtin (no builtin functions)
compiler switch 1-30

-no-def (disable defaults) compiler
switch 1-30

-no-extra-keywords (disable
short-form keywords) compiler
switch 1-30

-no-fp-associative compiler switch
1-31

-no-mem (not invoking memory
initializer) compiler switch 1-31

non-constant initializer support
(compiler) 1-80

non-memory-mapped registers 1-85
non-unit stride

avoiding 2-21
-no-std-ass (disable standard

assertions) compiler switch
1-31

-no-std-def (disable standard macro
definitions) compiler switch
1-31

-no-std-inc (disable standard
include search) compiler switch
1-31

-no-std-lib (disable standard library
search) compiler switch 1-32

-no-widen-muls (disable widening
multiplications) compiler
switch 1-32

O
-O (enable optimization) compiler

switch 1-32

-o (output file) compiler switch
1-33

-Oa (automatic function inlining)
compiler switch 1-33

obsolete warning switches A-8
obsolete/modified switches A-5
OldAsmCall declaration 1-157
open operation 3-11
operand constraints 1-62
optimization

code 1-49, 2-27
controlling 1-49
default 1-49
interprocedural analysis 1-50
IPA 1-50
IPA option 1-26
pragmas 1-50, 1-105
reset 1-106
switches 1-32, 2-35

optimizer 1-49, 1-103, 2-4
optimizing

asm() C program constructs 1-68
for space 1-106, 2-27, 2-33
for speed 1-106, 2-27, 2-33

-Os (optimize for size) compiler
switch 1-33

outer loop 2-19
output

flushing 3-12
generated by printf 3-12

-Ov (optimize for speed vs. size)
compiler switch 1-33
I-16 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

INDEX
P
-P (omit #line) compiler switch

1-34
-P (omit line numbers) compiler

switch 1-34
-path-install (installation location)

compiler switch 1-34
-path-output (non-temporary files

location) compiler switch 1-35
-path-temp (temporary files

location) compiler switch 1-35
-path-tool (tool location) compiler

switch 1-34
-pch (precompiled header) compiler

switch 1-35
-pchdir (locate PCHRepository)

compiler switch 1-35
PCHRepository directory 1-35
-pedantic (ANSI standard warnings)

compiler switch 1-35
-pedantic-errors (ANSI C errors)

compiler switch 1-36
placement

support keyword (section) 1-76
support keyword (segment) 1-53

pm (see dual memory support
keywords (pm dm))

PM support
standard C library 1-76

pointer
arithmetic action on 1-122
incrementing 2-12
input parameter types 1-76

pointer class support keyword
(restrict) 1-53, 1-77

pow (raise to a power) function
3-108

-pplist (preprocessor listing)
compiler switch 1-36

pragmas 1-99
align num 1-101
alloc 1-109
altregisters 1-103
const 1-110
function side-effect 1-109
hdrstop 1-115
header file control 1-115
interrupt 1-102, 1-103
interrupt handler 1-102
linkage_name 1-107
linking 1-106
linking control 1-106
loop optimization 1-103, 2-33
loop_count(min, max, modulo)

1-104
make_auto_static 1-108
no_alias 1-105
no_pch 1-116
once 1-116
optimize_as_cmd_line 1-106
optimize_for_space 1-106
optimize_for_speed 1-106
optimize_off 1-106
pad (alignopt) 1-102
pure 1-110
regs_clobbered string 1-111
result_alignment 1-114
VisualDSP++ 3.5 C Compiler and Library Manual I-17
for ADSP-218x DSPs

INDEX
retain_name 1-107
system_header 1-116
vector_for 1-104
weak_entry 1-108

precompiled header 1-35
predefined macros 1-125

___NO_LONG_LONG 1-127
__ADSP21{81|83|84|85|86|87|8

8|89}__ 1-126
__ADSP21XX__ ,

__ADSP218X__ 1-126
__ANALOG_EXTENSIONS__

1-126
__DATE__ 1-126
__DOUBLES_ARE_FLOATS__

1-126
__ECC__ 1-126
__EDG__ 1-126
__EDG_VERSION__ 1-127
__FILE__ 1-127
__LINE__ 1-127
__NO_BUILTIN 1-127
__SIGNED_CHARS__ 1-127
__STDC__ 1-128
__STDC_VERSION__ 1-128
__TIME__ 1-128
__VERSION__ 1-128
_LANGUAGE_C 1-127

prelinker 1-51
preprocessing

IDL files 1-131
program 1-125

preprocessor
features 1-125

macros 1-125
preprocessor macros 1-125
primitive I/O functions 3-11
printable character test (see isprint

function)
printf function 3-165

flushing output 3-12
-proc (target processor) compiler

switch 1-36
procedural optimizations

optimization
procedural 1-49

procedure call 1-139, 1-140
procedure call/return 1-139, 1-140
profile-guided optimization 2-28
program control functions

calloc 3-36
malloc 3-101
realloc 3-114

punctuation character test (ispunct)
function 3-90

putsfirst macro 1-154
putsnext macro 1-155
PX register 1-71

Q
qsort (quicksort) function 3-109

R
-R- (disable source path) compiler

switch 1-38
-R (search for source files) compiler

switch 1-37
raise (raise a signal) function 3-111
I-18 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

INDEX
rand (random number generator)
function 3-113

random number (see rand, srand
functions) 3-113

read operation 3-11
reading

non-memory-mapped register
3-154

readsfirst macro 1-154
readsnext macro 1-154
realloc (change memory allocation)

function 3-114
real-time signals (see

clear_interrupt, interruptf,
interrupts, poll_flag_in, raise,
signal functions)

register
MSTAT (mode status) 1-145

register classification 1-144
register usage (see mixed C/assembly

programming)
registers

asm() constructs 1-61
callee preserved 1-144
circular buffer length 1-144
clobbered 1-111
DAG1 1-146
DAG2 1-147
data register 1-145
dedicated 1-144
reserving 1-38
save/scratch 1-144

regs_clobbered string 1-112
remove function 3-11

rename function 3-11
-reserve compiler switch 1-38
restore_reg macro 1-154
restrict (see pointer class support

keyword (restrict))
restrict keyword 2-23
restrict operator keyword 1-77
restrict qualifier 2-22
restricted pointer 2-22
retain_name pragma 1-107
return from interrupt (RTI)

instruction 1-134
return registers 1-114
return value 1-139
RTI instruction 1-102
run-time

legacy model A-8
model 1-132

run-time environment (see mixed
C/assembly programming)

run-time environment
programming (see mixed
C/assembly programming)

run-time header 1-133
218x_hdr.asm 1-133

S
-S (stop after compilation) compiler

switch 1-38
-s (strip debugging information)

compiler switch 1-39
saturation 1-87
save/scratch registers 1-144
save_reg macro 1-154
VisualDSP++ 3.5 C Compiler and Library Manual I-19
for ADSP-218x DSPs

INDEX
-save-temps (save intermediate files)
compiler switch 1-39

scalar data types 2-7
search character string (see strchr,

strrchr functions)
search memory, character (see

memchar function)
search path

for include files 1-25
for library files 1-27

searching for #included files 1-131
section

elimination 2-27
keyword 1-76

seek operation 3-11
segment (see placement support

keyword (segment))
segment placement A-3
set jump (see longjmp, setjmp

functions)
setjmp (define run-time label)

function 3-115
setjmp.h header file 3-10
setting compiler options 1-132
-show (display command line)

compiler switch 1-39
shr() operation 1-94
signal (define signal handling)

function 3-116
signal.h header file 3-10
signalf function 3-116

signals (see clear_interrupt,
interruptf, interrupts,
poll_flag_in, raise, signal
functions)

-signed-bitfield (make plain bitfields
signed) compiler switch 1-40

-signed-char (make char signed)
compiler switch 1-40

silicon revision setting 1-39
sin (sine) function 3-120
sin_fr16() function 3-120
single case range 1-122
sinh (hyperbolic sine) function

3-122
-si-revision (silicon revision)

compiler switch 1-39
sizeof operator 1-122
SPORT 1-134
sport.h header file 3-11
sqrt (square root) function 3-125
srand (random number seed)

function 3-124
stack frame 1-136

free space 1-138
incoming arguments 1-137
linkage information 1-137
local variables/temporaries 1-138
outgoing arguments 1-138
system-wide specifications 1-138

stack pointer 1-136
stack usage pragma 1-108
standard conformances 1-3
Standard library functions

memcmp 3-103
I-20 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

INDEX
standard library functions
abort 3-19
atexit 3-25
atof 3-26
atol 3-30
bsearch 3-34
div 3-49
exit 3-51
free 3-61
ldiv (long division) 3-96
malloc 3-101
rand 3-113
srand 3-124
strtol 3-148
strtoul 3-150

statement expression 1-117
statistical profiling 2-4, 2-5
stdarg.h header file 3-11
stdio functions 1-141
stdio.h header file 1-141, 3-11
stdlib.h header file 3-12
stop (see atexit, exit functions)
strcat (concatenate strings) function

3-125
strchr (find first occurrence of

character in string) function
3-126

strcmp (compare strings) function
3-127, 3-130

strcoll (compare strings) function
3-128

strcpy (copy from one string to
another) function 3-129

strcspn (length of character segment
in one string) function 3-130

strerror (get string containing error
message) function 3-131

string conversion (see atof, atoi, atol,
strtok, strtol, strxfrm functions)

string functions
compare characters in 3-134
copy characters 3-135
memchar 3-102
memmove 3-105
strchr 3-126
strcoll 3-128
strcspn 3-130
strerror 3-131
string length 3-132
strpbrk 3-136
strrchr 3-137, 3-138
strspn 3-138
strstr 3-139
strtok 3-146
strxfrm 3-152

string literals
with line breaks 1-121

string.h header file 3-12
strings

converting to double 3-140
strlen (string length) function 3-132
strncat (concatenate characters from

one string to another) function
3-133

strncmp (compare characters in
strings) function 3-134
VisualDSP++ 3.5 C Compiler and Library Manual I-21
for ADSP-218x DSPs

INDEX
strncpy (copy characters from one
string to another) function
3-135

strpbrk (find character match in two
strings) function 3-136

strrchr (find last occurrence of
character in string) function
3-137

strspn (length of segment of
characters in both strings)
function 3-138

strstr (find string within string)
function 3-139

strtod (convert string to double)
function 3-140

strtok (convert string to tokens)
function 3-146

strtol (convert string to long integer)
function 3-148

strxfrm (transform string using
LC_COLLATE) function
3-152

-syntax-only (just check syntax)
compiler switch 1-40

-sysdef (system definitions)
compiler switch 1-41

sysreg.h header file 1-84, 2-25, 3-13
sysreg_read (read from

non-memory-mapped register)
function 3-154

sysreg_write (write to
non-memory-mapped register)
function 3-156

system header files 1-128, 1-152

T
-T (linker description file) compiler

switch 1-41
tan (tangent) function 3-158
tan_fr16 function 3-158
tangent 3-158
tanh (hyperbolic tangent) function

3-159
template

for asm() in C programs 1-57
terminate (see atexit, exit functions)
time (store and return current

calendar time) function 3-160
-time (time the compiler) compiler

switch 1-41
timer_off (disable ADSP-218x

timer) function 3-160
timer_on (enable ADSP-218x

timer) function 3-161
timer_set (initialize ADSP-218x

timer) function 3-162
tokens, string convert (see strtok

function)
tolower (convert from uppercase to

lowercase) function 3-163
toupper (convert characters to upper

case) function 3-164
true (see Boolean type support

keywords (bool, true, false))
type cast 1-122
typeof keyword 1-118
I-22 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

INDEX
U
-U (undefine macro) compiler

switch 1-21, 1-42
unclobbered registers 1-113
-unsigned-bitfield (make plain

bitfields unsigned) compiler
switch 1-42

-unsigned-char (make char
unsigned) compiler switch 1-43

upper case (see isupper, toupper
functions)

user header files 1-128
user reserved registers 1-114

V
-v (version & verbose) compiler

switch 1-43
va_arg (get next argument in

variable list) function 3-165
va_end (reset variable list pointer)

function 3-168
va_end macro 3-168
va_start (set variable list pointer)

function 3-169
-val-global (add global names)

compiler switch 1-43
variable

argument macros 1-121
variable-length argument list

finishing 3-168, 3-169
initializing 3-169

variable-length array support 1-78,
1-121

-verbose (display command line)
compiler switch 1-43

-version (display version) switch
1-43

VIDL source text 1-131
VisualDSP++

compiler C language extensions
1-53

IDDE 1-3, 1-10
mixed C/assembly reference

1-132
simulator 1-141, 3-11

volatile and asm() C program
constructs 1-68

W
-w (disable all warnings) switch 1-45
-W (override error message)

compiler switch 1-44
warnings, new in this release A-7
-warn-protos (prototypes warning)

compiler switch 1-45
-Wdriver-limit (maximum process

errors) compiler switch 1-44
-Werror-limit (maximum compiler

errors) compiler switch 1-44
white space character test (see

isspace function)
-Wremarks (enable diagnostic

warnings) compiler switch 1-44
write operation 3-11
-write-files (enable driver I/O

redirection) compiler switch
1-45
VisualDSP++ 3.5 C Compiler and Library Manual I-23
for ADSP-218x DSPs

INDEX
-write-opts compiler switch 1-45
writes

array element 2-19
writing

macros 1-129
non-memory-mapped register

3-156
-Wterse (enable terse warnings)

compiler switch 1-45

X
-xref (cross-reference list) compiler

switch 1-46

Z
zero length arrays 1-121
I-24 VisualDSP++ 3.5 C Compiler and Library Manual
for ADSP-218x DSPs

	Contents
	Preface
	Purpose
	Intended Audience
	Manual Contents Description
	What’s New in this Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	DSP Product Information
	Related Documents
	Online Technical Documentation
	From VisualDSP++
	From Windows
	From the Web

	Printed Manuals
	VisualDSP++ Documentation Set
	Hardware Manuals
	Datasheets

	Contacting DSP Publications

	Notation Conventions

	1 Compiler
	C Compiler Overview
	Standard Conformance

	Compiler Command-Line Reference
	Running the Compiler
	Table 1-1. Input and Output Files�

	Specifying Compiler Options in VisualDSP++
	Figure 1-1. Project Options -- Compile Property Page

	Compiler Command-Line Switches
	Table 1-2. Compiler Command-Line Switches�
	�@ filename
	-A name(tokens)
	-alttok
	-bss
	�build�lib
	�C
	�c
	-const-read-write
	-Dmacro [=definition]
	-debug-types <file.h>
	-default-linkage-{asm|C}
	-dry
	-dryrun
	-E
	-ED
	-EE
	�extra�keywords
	-flags-{asm|compiler|lib|link|mem} switch [,switch2 [,...]]
	Table 1-3. Build Tools’ Options

	-fp-associative
	-full-version
	-g
	�H
	-HH
	-h[elp]
	-I-
	�I directory [{,|;} directory...]
	�include filename
	-ipa
	-jump-{dm|pm|same}
	-L directory [{,|;} directory...]
	�l library
	�M
	-MD
	-MM
	-Mo filename
	-Mt filename
	-MQ
	�make-autostatic
	�map filename
	-mem
	-no-alttok
	-no-bss
	�no�builtin
	�no�defs
	�no�extra�keywords
	�no-fp-associative
	-no-mem
	-no-std-ass
	�no�std�def
	�no�std�inc
	�no�std�lib
	-no-widen-muls
	�O
	-Oa
	�Os
	-Ov num
	�o filename
	-P
	-PP
	�path-{asm|compiler|def|lib|link|mem} filename
	�path�install directory
	-path-output directory
	�path�temp directory
	-pch
	-pch directory
	�pedantic
	�pedantic�errors
	-pplist filename
	-proc processor
	-R directory [{;|,}directory …]
	-R-
	-reserve register[,register...]
	�S
	�s
	-save-temps
	-show
	-si-revision version
	-signed-bitfield
	�signed�char
	�syntax�only
	-sysdefs
	�T filename
	�time
	�Umacro
	-unsigned-bitfield
	�unsigned�char
	�v
	-val-global <name-list>
	�verbose
	�version
	-Wdriver�limit number
	�Werror�limit number
	-W{error|remark|suppress|warn} <num>[,num...]
	�Wremarks
	�Wterse
	�w
	�warn-protos
	�write�files
	-write-opts
	-xref <file>

	Data Type Sizes
	Table 1-4. Data Type Sizes for the ADSP-218x DSPs�

	Optimization Control
	Interprocedural Analysis

	C Compiler Language Extensions
	Table 1-5. Keyword Extensions�
	Table 1-6. Operational Extensions�
	Inline Function Support Keyword (inline)
	Inline Assembly Language Support Keyword (asm)
	Assembly Construct Template
	ASM() Construct Syntax:
	ASM() Construct Syntax Rules
	ASM() Construct Template Example

	Assembly Construct Operand Description
	Table 1-7. ASM() Operand Constraints�
	Table 1-8. Register Names for asm() Constructs�

	Assembly Constructs With Multiple Instructions
	Assembly Construct Reordering and Optimization
	Assembly Constructs with Input and Output Operands
	Assembly Constructs and Macros
	Assembly Constructs and Flow Control

	Dual Memory Support Keywords (pm dm)
	Memory Keywords and Assignments/Type Conversions
	Memory Keywords and Function Declarations/Pointers
	Memory Keywords and Function Arguments
	Memory Keywords and Macros
	PM and DM Compiler Support for Standard C Library Functions

	Placement Support Keyword (section)
	Boolean Type Support Keywords (bool, true, false)
	Pointer Class Support Keyword (restrict)
	Variable-Length Array Support
	Non-Constant Aggregate Initializer Support
	Indexed Initializer Support
	Aggregate Constructor Expression Support
	Preprocessor-Generated Warnings
	C++-Style Comments
	Compiler Built-in Functions
	I/O Space for Read/Write
	Read/Write of Non-Memory-Mapped Registers
	Interrupt Control

	ETSI Support
	ETSI Support Overview
	Calling ETSI Library Functions
	Using the ETSI Built-In Functions
	Linking ETSI Library Functions
	Working with ETSI Library Source Code
	ETSI Support for Data Types
	ETSI Header File

	Pragmas
	Data Alignment Pragmas
	#pragma align (
	#pragma pad (

	Interrupt Handler Pragmas
	#pragma interrupt
	#pragma altregisters

	Loop Optimization Pragmas
	#pragma loop_count(
	#pragma vector_for
	#pragma no_alias

	General Optimization Pragmas
	Linking Control Pragmas
	#pragma linkage_name
	#pragma retain_name
	#pragma weak_entry

	Stack Usage Pragma
	#pragma make_auto_static

	Function Side-Effect Pragmas
	#pragma alloc
	#pragma pure
	#pragma const
	#pragma regs_clobbered
	#pragma result_alignment (

	Header File Control Pragmas
	#pragma hdrstop
	#pragma no_pch
	#pragma once
	#pragma system_header

	GCC Compatibility Extensions
	Statement Expressions
	Type Reference Support Keyword (typeof)
	GCC Generalized Lvalues
	Conditional Expressions with Missing Operands
	Hexadecimal Floating-Point Numbers
	Zero Length Arrays
	Variable Argument Macros
	Line Breaks in String Literals
	Arithmetic on Pointers to Void and Pointers to Functions
	Cast to Union
	Ranges in Case Labels
	Declarations mixed with Code
	Escape Character Constant
	Alignment Inquiry Keyword (__alignof__)
	Keyword for Specifying Names in Generated Assembler (asm)
	Function, Variable and Type Attribute Keyword (__attribute__)

	Preprocessor Features
	Predefined Preprocessor Macros
	__ADSP21XX__ and __ADSP218X__
	__ADSP21{81|83|84|85|86|87|88|89}__
	__ANALOG_EXTENSIONS__
	__DATE__
	__DOUBLES_ARE_FLOATS__
	__ECC__
	__EDG__
	__EDG_VERSION__
	__FILE__
	_LANGUAGE_C
	__LINE__
	__NO_BUILTIN
	__NO_LONG_LONG
	__SIGNED_CHARS__
	__STDC__
	__STDC_VERSION__
	__TIME__
	__VERSION__

	Header Files
	Writing Preprocessor Macros
	Preprocessing of .IDL Files
	Figure 1-2. #INCLUDE Syntax Diagram

	C Run-Time Model and Environment
	Using the Run-Time Header
	Interrupt Table and Interface
	Autobuffering Support
	Stack Frame
	Figure 1-3. ADSP-218x DSP Stack
	Stack Frame Description
	General System-Wide Specifications
	At a procedure call, the following must be true:
	At an interrupt, the following must be true:

	Return Values
	Procedure Call and Return
	On Entry:
	To Return from a Procedure:

	File I/O Support
	Extending I/O Support To New Devices

	Miscellaneous Information
	Register Classification
	Callee Preserved Registers (“Preserved”)
	Dedicated Registers
	Caller Save Registers (“Scratch”)
	Circular Buffer Length Registers
	Mode Status (MSTAT) Register
	Table 1-9. MSTAT Register Modes

	Complete List of Registers
	Table 1-10. Data Register File Registers �
	Table 1-11. DAG1 Registers
	Table 1-12. List of DAG2 Registers �

	C and Assembly Language Interface
	Calling Assembly Subroutines from C Programs
	Calling C Routines from Assemby Programs
	Using Mixed C/Assembly Support Macros
	Table 1-13. Interface Support Macros�
	function_entry
	exit
	leaf_entry
	leaf_exit
	alter(x)
	save_reg
	restore_reg
	readsfirst(register)
	register = readsnext
	putsfirst = register
	putsnext = register
	getsfirst(register)
	register = getsnext

	Using Mixed C/Assembly Naming Conventions
	Table 1-14. Naming Conventions for Symbols�

	Compatibility Call

	2 Achieving Optimal Performance from C Source Code
	General Guidelines
	How the Compiler Can Help
	Using the Compiler Optimizer
	Using the Statistical Profiler
	Using Interprocedural Optimization

	Data Types
	Avoiding Emulated Arithmetic

	Getting the Most from IPA
	Initializing Constants Statically
	Avoiding Aliases

	Indexed Arrays vs. Pointers
	Trying Pointer and Indexed Styles

	Function Inlining
	Using Inline asm Statements
	Memory Usage

	Loop Guidelines
	Keeping Loops Short
	Avoiding Unrolling Loops
	Avoiding Loop Rotation by Hand
	Avoiding Array Writes in Loops
	Inner Loops vs. Outer Loops
	Avoiding Conditional Code in Loops
	Avoiding Placing Function Calls in Loops
	Avoiding Non-Unit Strides
	Loop Control
	Using the Restrict Qualifier
	Using the Const Qualifier

	Using Built-in Functions in Code Optimization
	Fractional Data
	System Support Built-in Functions

	Smaller Applications: Optimizing for Code Size
	Pragmas
	Function Pragmas
	#pragma const
	#pragma pure
	#pragma alloc
	#pragma regs_clobbered
	#pragma optimize_{off|for_speed|for_space|as_cmd_line}

	Loop Optimization Pragmas
	#pragma loop_count
	#pragma no_alias

	Useful Optimization Switches

	3 C Run-Time Library
	C Run-Time Library Guide
	Calling Library Functions
	Using the Compiler’s Built-In Functions
	Linking Library Functions
	Table 3-15. C Run-Time Library Files

	Working With Library Source Code
	Working with Library Header Files
	Table 3-16. C Run-Time Library Header Files�
	assert.h
	ctype.h
	def2181.h – Memory Map Definitions
	def2181x.h – Memory Map Definitions
	errno.h
	ffts.h – Fast Fourier Transforms
	filters.h – DSP Filters
	float.h – Floating Point
	fract.h – ADSP-218x DSP Macro Fract Definitions
	iso646.h
	Table 3-17. Symbolic Names Defined in iso646.h�

	locale.h
	math.h
	misc.h – ADSP-218x DSP Timer Functions
	setjmp.h
	signal.h
	sport.h – ADSP-218x DSP Serial Ports
	stdarg.h
	stdio.h
	stdlib.h
	string.h
	sysreg.h

	Documented Library Functions
	Table 3-18. Library Functions in the ctype.h Header File�
	Table 3-19. Library Functions in the ffts.h Header File�
	Table 3-20. Library Functions in the filters.h Header File�
	Table 3-21. Library Functions in the math.h Header File�
	Table 3-22. Library Functions in the misc.h Header File
	Table 3-23. Library Functions in the setjmp.h Header File
	Table 3-24. Library Functions in the signal.h Header File
	Table 3-25. Library Functions in the stdarg.h Header File
	Table 3-26. Supported Library Functions in the stdio.h Header File�
	Table 3-27. Library Functions in the stdlib.h Header File
	Table 3-28. Library Functions in the string.h Header File�
	Table 3-29. Library Functions in the sysreg.h Header File

	C Run-Time Library Reference
	abort
	abs
	acos
	asin
	atan
	atan2
	atexit
	atof
	atoi
	atol
	biquad
	bsearch
	calloc
	ceil
	clear_interrupt
	Table 3-30. ADSP-218x DSP Signals�

	copysign
	cos
	cosh
	cot
	demean_buffer
	disable_interrupts
	div
	enable_interrupts
	exit
	exp
	fabs
	fftN
	fir
	floor
	fmod
	free
	frexp
	ifftN
	iir
	interrupt
	Table 3-31. Interrupt Function Signals - Values and Meanings�

	io_space_read
	io_space_write
	isalnum
	isalpha
	iscntrl
	isdigit
	isgraph
	isinf
	islower
	isnan
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	labs
	ldexp
	ldiv
	log
	log10
	longjmp
	malloc
	memchr
	memcmp
	memcpy
	memmove
	memset
	modf
	pow
	qsort
	raise
	Table 3-32. Raise Function Signals - Values and Meanings�

	rand
	realloc
	setjmp
	signal
	Table 3-33. Signal Function Signals - Values and Meanings

	sin
	sinh
	sqrt
	srand
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strerror
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtodf
	strtok
	strtol
	strtoul
	strxfrm
	sysreg_read
	sysreg_write
	tan
	tanh
	timer_off
	timer_on
	timer_set
	tolower
	toupper
	va_arg
	va_end
	va_start

	A Compiler Legacy Support
	Tools Differences
	C Compiler and C Run-Time Library
	Segment Placement Support Keyword Changed to Section
	G21 Compatibility Call
	Support for G21-Based Options and Extensions
	Indexed Initializers
	Compiler Diagnostics
	ANSI C Extensions
	Compiler Switch Modifications
	Table A-1. Obsolete and Replaced Switches�

	Warnings
	Table A-2. Compiler -- New Warning Switches�
	Table A-3. Obsolete Warning Switches

	Run-Time Model

	I INDEX
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

