ZA19E 智能电力监测仪

使用手册

合肥能信电子科技有限公司

1. 概述

ZA19E 智能电力监测仪(以下简称 ZA19E)是一种具有可编程功能、自动化测量、LCD、显示、电能累加、实时时钟、数字通讯等功能为一体的智能三相综合电力参数监测仪表,它集数字化、智能化、网络化于一身、使测量过程及数据分析处理实现自动化,减少人为失误,能够全面代替电量变送器、电度表、数显仪表、数据采集器、记录分析仪等仪器,是组成电气自动化系统的理想产品.起结构紧凑,电路先进,测量功能强大,是对传统仪表的革命性设计.

ZA19E 可广泛应用于电力、邮电、石油、煤炭、冶金、铁道、市政、智能大厦等行业, 部门的电气装置,自动控制以及调度系统.

2. 功能特点

2.1 测量功能多

ZA19E 功能强大,产品采用高性能的 24 位 DSP 高速数字信号处理,24 位的 Σ - \triangle 的 ADC 对输入信号交流采样,它集合里电量变送器、数字式电度表、数显表、数据采集器、RTU 等仪器的部分或全部功能.测量功能包括:一条三相四线或其他任何线制的全部相/线电压(V)、电流(I)、功率(P,Q,S)、电能(Wh,Qh)、功率因数(COS Φ)、频率(F)、零序电压(U0)及零序电流(I0)的功能.

作为显示仪表使用时可以代替:三电流表、三相电压表、三相视在功率表、三相有功功率表、三相无功功率表、三相功率因数表、三相有功电能表、三相无功电能表、频率表、零序电压表、零序电流表等。

在自动化系统中用作数据采集时可以代替:三相电流变送器、三相电压变送器、三相视 在功率变送器、三相有功功率变送器、三相无功功率变送器、三相功率因数变送器、频率变 送器、零序电压变送器、零序电流变送器等以及数据采集模块、RTU等。

作为电能计量仪表时可以代替:三相有功电能表、三相无功电能表、可设置 24 个时段分时计量有功电能、无功电能的峰、谷、平、尖四种费率的电能等。

2.2 中文显示

ZA19E 采用了 LCD 大屏幕液晶显示,中文字幕,非常适合中国国情.显示器采用人的眼睛感觉比较自然舒适的黄绿色背光,体现了人文关怀的理念.同时可显示三相同类参数,并能通过手动或自动设定,按顺序读出 30 个参数.

2.3 标准规则,轻松组网

ZA19E 为了满足未来测量仪表的环境,备有光电隔离的 RS-485 串行口(或 RS-232),允许连接开放式的结构局域网络.

应用 Modbus-RTU 通讯规约,在 PC 或数据采集系统上运行的软件,能提供一个对于工厂、电厂、工业和建筑物的服务的简单、实用的电量管理方案.

2.4 自动隐零

具有自动校准零点,克服零点随时间和温度的漂移.实现所有参数的零点免调,提高了仪 表的整体测量精度,提高了系统的整体稳定性,简化了校准流程.

2.5 极宽的动态输入范围

ZA19E 采用量程自动切换技术,提供 5~120V/600V 的电压输入量程,0~1A/5A 电流输入量程,能自动适用于各种测量系统,无需任何硬件和软件的调整.

2.6 内部实时时钟(RTC)

ZA19E 提供内部的 RTC(实时时钟),精确记录系统时间,掉电状态下,内部时钟正常运行.

2.7 可编程状态设定

ZA19E 允许用户对其工作状态"测量系统选择", "CT、PT 变比"、"通讯"、"时钟"、"电能累加复位"、"分时时段"等进行更改设定.

2.8 记忆

ZA19E 在电源掉电时,能够记忆所有的当前工作状态或设定值、电能累加数值、时间、PT 变化、CT 变比等.

2.9 多种接线方式

适用于多种接线方式:三相四线、三相四线平衡负载、三相三线、三相三线平衡负载、一相二线和一相三线.

2.10 数字化整定

所有参数均采用数字化校准,摒弃了常规采用电位器的模拟调整方法,简化了硬件电路, 提高了整机的可靠性和稳定性,每个测量参数都可以调整,且不会对其他参数造成影响.

2.11 抗电磁干扰能力强

完善的电磁兼容性设计,具有极强的抗电磁干扰能力,适合在强电磁干扰的复杂环境中使用.

2.12 安装方便

ZA19E 强大的功能使系统现场安装、布线的复杂程度和材料的综合成本降低了.外形采用被广泛使用的标准仪表开孔尺寸(113×113 开孔),具有互换性.

3. 主要技术指标

3.1 准确度、显示位数

参数	种类	位 数	显示(最大)	准确度
电压	各相及平均电压	动态	动态 V	0.5%
电流	各相及平均电流	动态	动态 A	0.5%
有功功率	各相及总和	动态	动态 W	0.5%
无功功率	各相及总和	动态	动态 VAr	0.5%
视在功率	各相及总和	动态	动态 VA	0.5%
功率因数	各相及总和	动态	1.0000	0.5%
有功电能		动态	4294967295 Wh	1.0%
无功电能		动态	4294967295 VArh	1.0%
频率		动态	59.00Hz	0.2%

准确度范围(电压和电流,真有效值)				
电压量程:25~120%, 频率:	50 ± 0.5 Hz			
电流量程:0~120%, 频率:	50 ± 0.5 Hz			
准确度范围(功率和电能)				
电流量程:0~120%				
电压量程:25~120%				
功率因数量程: cosΦ:1~0.5 对应于有功功率和电能				
SinΦ: 1 ~ 0.5	对应于无功功率和电能			
频率: 45 ~ 55Hz				

3.2 输入

3.2.1 量程

标准输入为: 100V/5A, 三相四线制/三相三线制/一相二线制等, 可超载 20%.

如果用户需要其他输入规格,可在订货时说明.

3.2.2 吸收功耗

电压: < 0.2VA/600V, < 0.01VA/150V

电流: < 0.1VA/5A

3.2.3 测量系统接线方式

三相四线/三相三线/一相二线或三线/三相平衡,可通过键盘及串行口用软件设定选择.

3.2.4 可编程设定

CT,PT 变比:1~9999;

换页时间: 关闭或 1-99 秒;

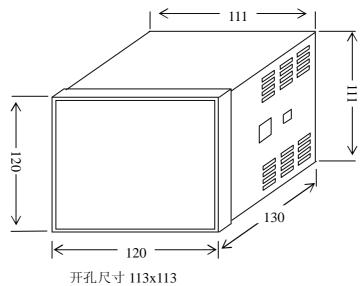
测量系统选择: 三相四线/三相三线/一相二线/一相三线/三相平衡;

电能累加复位:(口令);

通讯: 波特率: 2400/4800/9600/19200/38400;

地址:0~127;

时钟: 年、月、日、时、分、秒;


二十四时段设置;

4. 按键操作和参数设置:

- 1. 按 "SET" 键,选择相关参数;
- 2. 在参数设定状态下,按"▲"+参数,按"▼"-参数;
- 3. 参数设定完毕后,按下"OK"键,贮存参数;
- 4. 密码设定的密码为: "1208"
- 5. 电能复位的密码为: "1528"

5. 外型尺寸:

开孔尺寸:113 × 113

6. 数据及地址

数据及地址(功能码 0X03 读测量参数)

第4页共7页

地址	属性	内容
00H	Ia	A 相电流
01H	Ib	B相电流
02H	Ic	C相电流
03H	Ua	A相电压
04H	Ub	B相电压
05H	Uc	C相电压
06H	Uab	AB 相线电压
07H	Ubc	BC 相线电压
08H	Uac	AC 相线电压
09H	PF	A 功率因数
0AH	PF	B功率因数
0BH	PF	C功率因数
0CH	WA	A 相有功功率
0DH	WB	B相有功功率
0EH	WC	C相有功功率
0FH	Var A	A 相无功功率
10H	Var B	B相无功功率
11H	Var C	C相无功功率
12H	VA A	A 相视在功率
13H	VA B	B相视在功率
14H	VA C	C相视在功率
15H	W	合相有功功率
16H	Var	合相无功功率
17H	VA	合相视在功率
18H	KWH	正向有功电能量
19H	KVH	反向有功电能量
1AH	KVarH	正向无功电能量
1BH	KVarH	反向无功电能量
1CH	KWH	峰有功电能量
1DH	KWH	谷有功电能量
1EH	KWH	平有功电能量
1FH	KWH	尖有功电能量
20H	HZ	线频率
21H	A	三相电流矢量和
22H	V	三相电压矢量和
23H	PF	合相功率因数
24H		表工作状态
25H		校表参数校验和
26H	KVarH	峰无功电能量
27H	KVarH	谷无功电能量
28H	KVarH	平无功电能量
29H	KVarH	尖无功电能量

数据及地址(功能码 0X02 读仪表参数设定值)

地址	属 性	内 容
02H	PT	
03H	CT	
09H	Year	
0AH	Month	
0BH	Day	
0CH	Hour	
0DH	Minute	
0EH	Second	

数据帧: 11 位, 1 位起始位(0), 8 位数据据位(1-8), 1 位可编程数据位(9),1 位停止位(10),其中第九位: 1 表示仪表地址(如"9600,M,8,1"), 0 表示数据(如"9600,S,8,1")。

上位机发送仪表数据格式: [Byte] [Byte] [Byte] [Byte] [Byte] [Byte] [Byte] [Byte] 共七字节

第一字节: ZA19E 网络地址。 第二字节: 参数读取功能码。

第三:参数开始地址。

第四字节:参数结止地址。

第五——第七字节:上传参数值。(高字节在前,低字节在后)

第八字节:校验码(前六个字节相加)。

如上位机发送请求指令未能被 ZA19E 校验通过,则返回单字节 0,反之则返回以下格式数据。

仪表回传数据: [Byte] [Byte]

第一字节: 仪表地址。第二字节: 功能码。

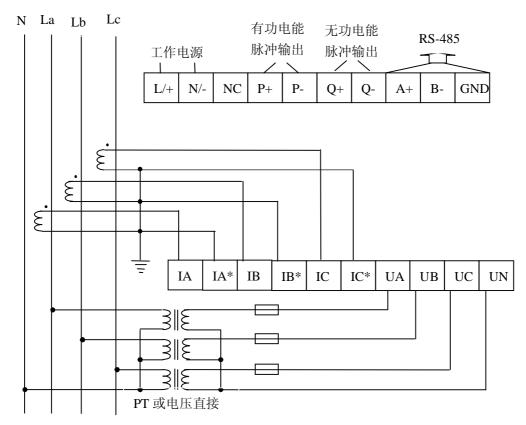
第三字节:参数读取地址。

第四——七字节:为读取的参数值

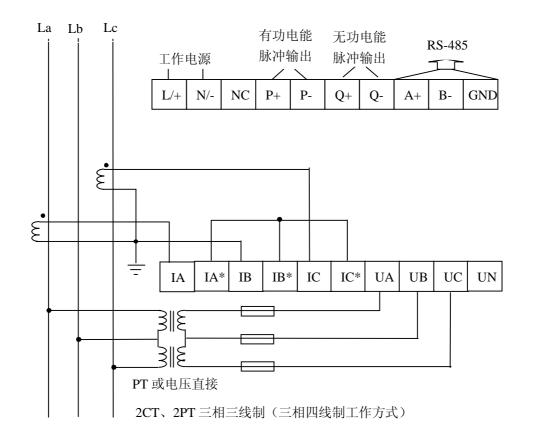
第八字节: 小数位数

第九字节: 1 负数, 0 正数

第十字节:校验码(前九个字节相加)。


读取参数值计算方式:

(-1)^byte(9)*(byte(7)*256*256*256+ byte(6)*256*256+ byte(5)*256+ byte(4)) 除 10 的 byte(8)次方. 上位机与 ZA19E 智能电子间通讯示例程序源代码可向公司索取,公司也可协助开发。


校表方式:

软件校表:通过校表软件对测量寄存器误差校正

五:接线图:

3CT、3PT三相四线线制(三相四线制工作方式)

第7页共7页