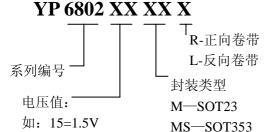
YP6802系列是使用CMOS技术开发的低压差,高精度输出电压,低消耗电流正电压型电压稳压器。由于内置有低通态电阻晶体管,因而压差低,能够获得最大300mA的输出电流。为了使负载电流不超过输出晶体管的电流容量,内置了过载电流保护电路、短路保护电路。因采用SOT-89-3,SOT353等小型封装,可高密度安装。

特点:

输出电压范围 1.2~5.0V, Vstep=0.1 V


输出电压精度 可达±2.0%

输入输出压差低 160 mV 典型值(Vout=3.0V, I_{OUT}=100mA)

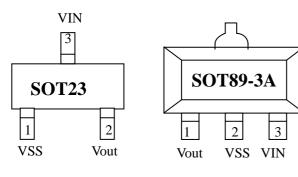
消耗电流 8.0uA (TYP.)

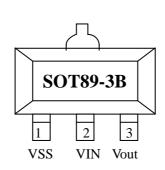
输出电流 可输出 300mA(V_{IN}≥V_{OUT}+1V) 内置保护 内置过流保护和短路保护电路 采用小型封装 SOT-89-3 ,SOT-23, SOT353

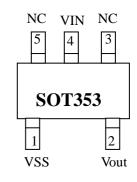
选型指南

PA-SOT89-3A

PB-SOT89-3B


用途:


- · 手机;
- 无绳电话设备;
- 照相机;
- 蓝牙及其他射频产品;
- 基准电压源。


引脚排列图:

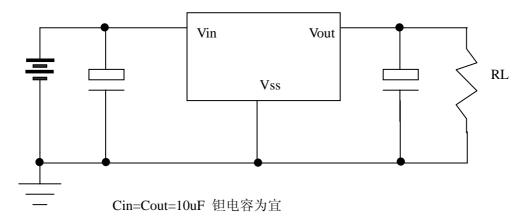
30 = 3.0 V

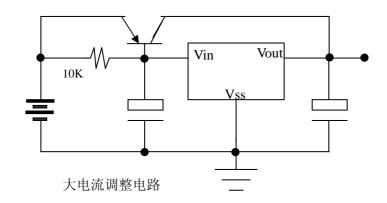
50=5.0V

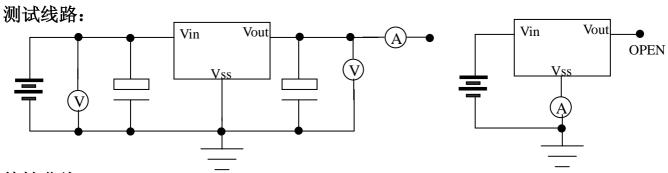
极限参数:

多致 。							
参数		符号	极限值	单位			
输入电压		V _{IN}	VSS-0.3~VSS+6	V			
输出电压		V_{out}	Vss-0.3 ~ Vout+0.3	V			
	SOT23	Pd	250	mW			
允许功耗	SOT353	Pd	250	mW			
	SOT89	Pd	500	mW			
工作温度		T_{Opr}	-25 ~ +85	${\mathbb C}$			
存贮温度		T _{stg}	-40 ~ +125	$^{\circ}$			

Note: 绝对最大额定值是指无论在任何条件下都不能超过的额定值。任何超过都可能造成产品永久性损坏!

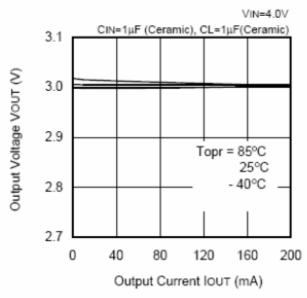

主要参数及工作特性:

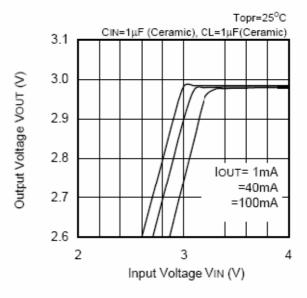

参数	符号	条件	最小值	典型值	最大值	单位
输入电压	Vin		1.8		6	V
输出电压 1	V _{OUT} (E) (Note 1)	I_{OUT} =40mA, V_{IN} =Vouts+1V V_{OUT} *0.98 V_{OUT} (T)		V _{OUT} * 1.02	V	
输出电流 2	I _{OUT}	V _{IN} ≥Vouts+1V			300	mA
负载稳定度	ΔV_{OUT2}	V _{IN} =Vouts+1V, 1mA≤I _{OUT} ≤80mA		20	40	mV
压差	V _{DROP}	1.5V≤V _{OUT} ≤2.5V		0.20	0,28	V
		2.6V≤V _{OUT} ≤3.3V		0.16	0.24	V
	10-1001114	3.4V≤V _{OUT} ≤5.5V		0.12	0.20	V
静态电流	I _{SS}	V _{IN} =Vout+1V		8		μ А
短路电流	short	V _{IN} =Vout+1.5V	V _{IN} =Vout+1.5V 30			mA
限制电流	Imax	V _{IN} =Vout+1.5V		380		mA
纹波抑制比	RR	Vin= [Vout+1]V Vrip=0.5mV I _{OUT} =80mA,f=1.0kHz		57		dB


注:

- 1. Vour (S): 规定的输出电压
 - V_{OUT} (E) : 有效输出电压 (即当 I_{OUT} =30mA, V_{IN} = (V_{OUT} (T)+1.0V)时的输出电压。
- 2. 缓慢增加输出电流,当输出电压为小于V_{OUT} (E)的 95%时的输出电流值 300mA 仅限于 SOT89 封装型

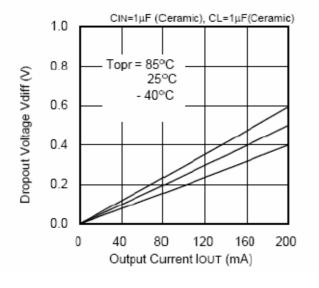
典型应用线路:

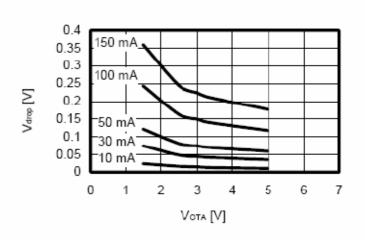


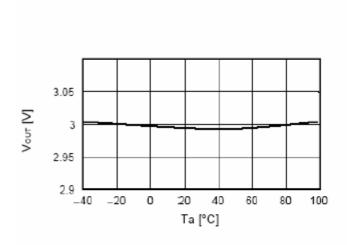


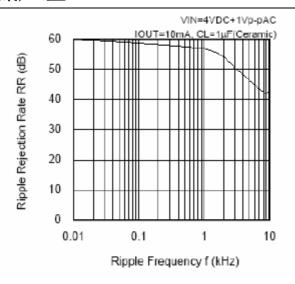
特性曲线:

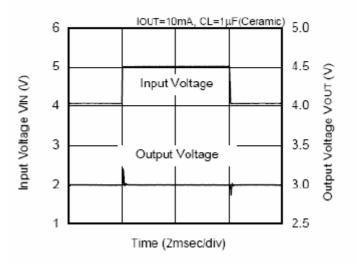
输出电压-输出电流(负载电流增加时)


二、输出电压和输入电压

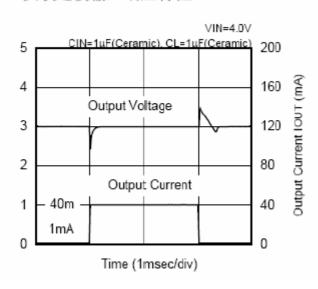


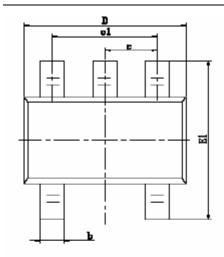

三、Dropout 电压和输出电流

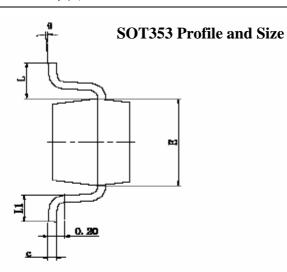

四、Dropout 电压和输出电压

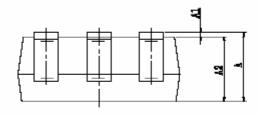


Output Voltage Vour (V)






输入过渡响应特性



负载过渡输入响应特性

Sumbal	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Мах	Min	Max	
Α	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
ь	0.150	0.350	0.006	0.014	
С	0.080	0.150	0.003	0.006	
D	2.000	2.200	0.079	0.087	
E	1.150	1.350	0.045	0.053	
E1	2.150	2.450	0.085	0.096	
е	0.650 TYP		0.026 TYP		
e1	1.200	1.400	0.047	0.055	
L	0.525 REF		0.021 REF		
L1	0.260	0.460	0.010	0.018	
0	O°	8ª	Ou	₽°	